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Editorial on the Research Topic
Remote sensing applications in oceanography with deep learning

Deep learning and remote sensing for the ocean:
from concept to operational impact

Deep learning (DL) and remote sensing (RS) are transforming how we observe and
manage the ocean. Modern algorithms, platforms, and multi-sensor data integration now
deliver insights at scales and speeds that were impossible just a few years ago. This Research
Topic gathers 17 contributions across seafloor geomorphology, Ship and hazard
monitoring, water quality assessment, mesoscale dynamics, under-ice processes, sonar
perception, and enabling methods—demonstrating a field that is both technically
innovative and mission-driven.

Seafloor to shoreline

Ocean science relies on accurate mapping of the seabed. Automation can quickly
analyse broad regions while collecting characteristics that satellite altimetry misses, as
demonstrated by a CNN + U-Net pipeline for recognising tiny seamounts in multibeam
data. RipFinder, a mobile machine learning system for real-time rip current identification
that also functions as a citizen-science tool in places with restricted connection, exemplifies
“Al to edge” at the land-sea interface.

Ships, safety, and hazards

For marine awareness, synthetic aperture radar (SAR), is still essential. While previous
research use AIS data, sea fog, and remote sensing to evaluate collision risk, a super-
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resolution Mask R-CNN architecture uses scale-aware fusion to
improve ship detection in noisy SAR settings, providing evidence-
based navigation management tools.

Ecosystems and water quality

Chlorophyll-a (Chl-a) variations and harmful blooms are
important ecological markers. Green tide identification from
MODIS images is enhanced by WaveNet (VGG16 + BiFPN +
CBAM). The importance of physics-aware features is demonstrated
by ResUNet models that relate ocean-atmosphere dynamics to Chl-a
in the South China Sea. Long-term variability in the Persian Gulf and
Arabian Sea is revealed by rebuilt MODIS datasets, and new
techniques also yield transferable Chl-a products for estuaries.
MarGEN, a GAN-based augmentation technique that enhances
marine mammal call categorisation in situations where labelled
audio is limited, is one example of an advancement in
acoustic ecology.

Mesoscale and cryosphere dynamics

OIEDNet generates the first large-scale MIZ eddy catalogues by
detecting under-ice eddies from Sentinel-1 dual-pol data, whereas
Conv-LSTM GAN hybrids predict mesoscale eddy properties with
high fidelity.

Perception underwater

Sonar and visual sensing are crucial for autonomous systems.
Forward-looking sonar object detection is improved by MLFANet,
side-scan sonar small-object recognition is improved by SOCA-
YOLO, and underwater optical imaging is improved by CUG-UIEF
using edge- and attention-based fusion.

Data, platforms, and decision support

New contributions also address scalable data management
(LSH-based retrieval for ocean archives) and decision-making
(multi-criteria approaches for underwater IoT and AUV
deployments), underscoring the need to co-design sensing,
connectivity, and computation.

Cross-cutting lessons

Five themes emerge: (1) multi-scale architectures consistently
boost detectability; (2) embedding physics-aware features enhances
generalization; (3) translating models to edge-deployable tools
enables real-world impact; (4) data efficiency strategies such as
augmentation and self-supervision are critical in data-sparse
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regimes; and (5) benchmarking and openness will accelerate
progress.

Outlook

This Research Topic highlights a decisive shift from proof-of-
concept to operational potential in ocean AI. Future priorities
include embedding physical priors, advancing generative/self-
supervised methods for sparse data, and ensuring scalability,
efficiency, and usability for real-world applications. Together,
these works show how DL and RS can protect mariners, monitor
ecosystems, and reveal ocean dynamics—bringing us closer to truly
actionable ocean intelligence.

We thank all authors and reviewers for their contributions and
the editors for their support. We hope that this Research Topic will
serve as both a reference and a springboard for progress in
observing and managing the blue planet.
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The underwater Internet of Things (UloT) and remote sensing are significant for
biodiversity preservation, environmental protection, national security, disaster
assistance, and technological innovation. Assigning tasks to autonomous
underwater vehicles (AUVs) is a fundamental challenge in underwater
technology and exploration. Remote sensing and AUVs are vital for pollution
detection, disaster prevention, marine observation, and ocean monitoring. This
work presents an optimized network connectivity using a multi-attribute
decision-making approach for underwater IoT deployment. A feature
engineering approach highlights the significant characteristics of underwater
things, incorporating remote sensing data, and a multi-objective optimization
method is used to select optimal UloT for effective task allocation in deep-sea
environments. A balance between data transmission, energy economy, and
operational performance is necessary for efficient task distribution. Effective
communication algorithms and protocols are needed to maintain
environmental sustainability, protect marine ecosystems, and improve
underwater monitoring enhanced by remote sensing technologies. Multi-
criteria decision-making (MCDM) is beneficial for addressing various challenges
in underwater technology, considering factors such as mission objectives, energy
efficiency, environmental conditions, vehicle performance, safety, and much
more. The proposed criteria importance through intercriteria correlation
(CRITIC) methodology will assess technical competencies like communication,
resilience, navigation, and safety in an underwater environment, leveraging
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remote sensing and aiding decision-makers in selecting appropriate undersea
devices and vehicles for enhancing communication and transportation. This
method prioritizes characteristics and aligns them with specific objectives,
improving decision-making quality in the marine environment.

KEYWORDS

autonomous underwater vehicles, remote sensing, internet of underwater things,
acoustics sensor networks, marine applications

1 Introduction

Emerging technologies such as the Internet of Things (IoT),
machine learning, and big data analytics have revolutionized the
lifestyles of common people. In essence, the term “IoT” solely
pertains to the networking and communication stratum of the
infrastructures in the Information Society, which establish
connections between entities or devices and the Internet as well as
among themselves. Through the linkage of entities that are ubiquitously
present in our surroundings, the IoT has the potential to enhance our
interactions with it (Jahanbakht et al., 2021; Gu et al., 2024). The term
“underwater Internet of Things (UloT)” describes an extensive
worldwide network of networked underwater items that use
embedded sensors, remote sensing technologies, tracking
technologies, and the Internet to sense, understand, and react to
their environment. Moreover, these gadgets can connect submerged
and aboveground objects, including phones. Every underwater object
has a fully functional virtual counterpart and is available to the public.
Devices are connected to the Internet via the IoT, and underwater
things are digitally identified via the underwater IoT (Domingo, 2012;
Mariani et al., 2021). However, the lack of advanced sensors limits
underwater surveillance technologies and sensor use. Low-power
sensors, accompanied by remote sensing, can help address this issue,
while marine sensors are crucial for ecological and environmental
sustainability and saving lives (Refulio-Coronado et al., 2021).

The collaboration between remote sensing and underwater
sensor networks (USNs) represents a significant advancement in
marine technology, facilitating more precise and effective
monitoring of oceanic conditions (Chen et al., 2022). USNs are
employed for oceanography, pollution detection, underwater
target detection, offshore exploration, and disaster prevention.
These networks utilize unmanned underwater vehicles (UUVs)
equipped with sensors specifically designed for underwater
environments (Sun and Boukerche, 2018; Zacchini et al., 2022).
The exchange of configuration, location, and motion information
among these devices is made possible through underwater wireless
acoustic networking. The UASN comprises diverse sensors and
vehicles collaborating to monitor tasks within a designated area
(Akyildiz et al., 2005). The next generation of USNs should have
key characteristics such as reliability, robustness, adaptability,
security, evaluability, efficiency, scalability, and intelligence, as
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illustrated in Figure 1 (Luo et al, 2018). Remote sensing is
essential in these marine ecosystem procedures because it
enables the gathering of data from underwater regions that are
difficult to reach. The figure below depicts the fundamental
characteristics essential for the future iteration of USNs. These
characteristics guarantee that the USNs can operate efficiently and
dependably in submerged surroundings.

Underwater communications necessitate the continuous
monitoring of oceanic regions utilizing pre-existing technologies.
However, such monitoring can lead to data loss during an
interruption before recovery. To address this issue, it is
imperative to establish instantaneous communication between the
underwater instruments and the central control devices. This task is
achieved by creating a rudimentary underwater acoustic network,
which entails establishing a two-way acoustic connection between
various devices, including autonomous underwater vehicles
(AUVs) and sensors (Zhou et al., 2023). Remote sensing is
essential for supplementing these acoustic networks by offering
supplementary techniques for collecting data. This network is

Underwater Sensor

Networks
Reliable |« $»  Robust
Adaptable |« »  Secure
Evolvable |« » Efficient
Scalable | | Intelligent
FIGURE 1

Performance metrics of UWSNSs.
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subsequently linked to a ground station, which can be connected to
a host system via radio frequency (RF) communications, such as the
Internet. Integrating the remote sensing data can augment the
flexibility of such systems. Unlike terrestrial wireless sensor
networks (WSNs), which trust radio waves for communication
purposes, USNs use acoustic waves, which places a new research
challenge in the scheme of MAC protocols. A comparison of
various technologies for underwater communication and remote
sensing is summarized in Table 1.

Underwater IoT (UIoT) applications utilize various network
layers, often defined by the open systems interconnection (OSI)
model and TCP/IP protocols. Remote sensing technologies can
enhance these applications by offering additional sources of data.
The data link layer uses a water channel for reliable transmission,
while the physical layer uses specialized underwater communication
technology. The OSI architecture uses a unique protocol
considering depth, distance, and energy efficiency for packet
routing (Luo et al., 2021). Remote sensing data can enhance and
refine these techniques. It also handles reliability issues at the
transport layer, improving latency and packet loss. The
application layer analyzes data from underwater sensor platforms
and devices to enable the implementation of IoT applications and
services (Jiang, 2018). The use of remote sensing at this layer
enables a more thorough analysis of data and the development of
applications. Figure 2 shows the data transmission between various
layers. The lower four layers of the OSI model comprise the main
functionalities required for reliable transfer, which are divided into
link and path levels. Link-level function objective is to lessen
transmission errors caused by interference, noise, and frame
collision between neighboring nodes. Path-level functions
endeavor to guarantee end-to-end consistent transfer via network
pathways, particularly by addressing packet losses.

AUVs utilized on underwater networks possess a promising
capability to enhance their operational reach by transmitting

10.3389/fmars.2024.1468481

control and data signals across extensive networks. AUVs and
remote sensing can increase this capability by adding data and
improving situational awareness. However, it should be noted that
the capacity of shallow water acoustic channels is constrained, and
numerous time-varying paths can result in significant symbol
interference, as well as notable dispersion and Doppler shifts. To
attain the necessary level of energy efficiency, underwater
networks necessitate a hierarchical architecture (Sozer et al,
2000). Figure 3 shows the taxonomy of UASN and remote
sensing. Underwater wireless satellites, called UWSNSs, are
crucial in coastal activities such as fish farm control, seabed
mining, and water monitoring. Various factors influence
underwater ecosystem instability, including temperature, lack of
sensing capability, pressure, noise, and water density fluctuations
(Abelson et al., 2020). Coping with several challenges, namely
transmission delays, high probability of bit errors, limited
bandwidth, and occasional loss of connectivity, poses significant
problems in this domain (Garcia et al., 2011; Lloret et al., 2011).
Moreover, RF signals are attenuated underwater, resulting in
lower data rates and lesson remote sensing at very low
frequencies. Alternatively, optical signals may not be useful due
to light scattering in the underwater remote sensing environment.
Acoustic modems fill a gap in existing technologies and must be
energy efficient and economical due to the limited energy
resources in the aquatic environment remote sensing. The
hardware required to transmit audio signals is inexpensive, but
transmission times are much slower than electromagnetic (EM)
modems, at about 1500 m/s (Frampton, 2006; Farr et al., 2010).
The UloT and remote sensing haven’t received widespread
attention due to their recent discovery and lack of scientific
progress. Although 44% of the Earth’s people live 150 kilometers
or less from the ocean, 95% of the ocean’s surface remains
unexplored. Oceans cover 70% of the Earth’s surface and provide
habitat for nearly 500 million people. The development and use of

TABLE 1 Comparison of different technologies used for underwater communications and remote sensing.

Technology Working Frequency Modulation Distance (m) Data Rates (kbps)
EM Waves 2.4GHz CCK 0.16m 11Mbps

2.4GHz QPSK 0.17m 2Mbps
1KHz BPSK 2m 1Kbps
10KHz BPSK 16m 1Kbps
3KHz - 40m 100bps
5MHz - 90m 500Kbps

Acoustic Waves 800KHz BPSK Im 80Kbps
70KHz ASK 70m 0.2Kbps
24KHz QPSK 2500m 30Kbps
12KHz MIMO-OFDM - 24.36Kbps

Optical Waves - PPM 1.8m 100Kbps
- - 10m 10Mbps
- - 1lm 9.69Kbps
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The data transmission between different layers (Zhou et al., 2023).

underwater exploration in UloT can have a significant impact on
people’s lives. Due to the advancement in remote sensing and
WSNs, the IoT has gained popularity for monitoring various
applications, including volcanic activity, forest fire detection, air
quality assessment, and home automation systems. However,
underwater applications face challenges like sensor deployment
and maintenance, energy acquisition, manufacturing costs,
sensing issues, and signal propagation issues. Advanced wireless
communication and sensing techniques are needed for underwater
applications, which can be achieved through three-dimensional (3D
space and algorithm placement). These networks offer
opportunities for systematic examination of the underwater

environment, including climate change impacts, deep-sea habitat
research, sensing applications, coral reef population observations,
ecological observation, military applications, mine exploration,
water quality monitoring, disaster prevention systems,
aquaculture supervision, and oceanic data collection and
navigation (Sendra et al., 2015; Khan et al., 2023). Thus, UWSNs
present a promising solution for various applications of remote
sensing in the open sea. This work’s key objectives are as follows:

* To expedite the use of modern technology for the AUV
navigation and sensing system to enhance communication
and networking.

Centralized ——.‘ Estimation-based
N Localization
methods Distributed ——4 Prediction-based
—»jfaECacimension —+ Projection-based
. (2D)
. Spatial B :
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FIGURE 3
The taxonomy of underwater acoustics sensor networks (UASNs).
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* To collect and retrieve various parameters, such as water quality,
pressure, etc., that directly influence the behaviors of aquatic life
and the UloT.

» Using feature engineering strategy to highlight the significant
characteristics of underwater things for efficient and effective
sensing and tracking operations.

* To design a multifaceted criteria importance through
intercriteria correlation (CRITIC)-based approach to prioritize
and assess the essential attributes of UloT for efficient task
allocation and sensing in UloT.

The rest of the article is organized as follows: Section II presents
the overall literature review in the domain of underwater things,
whereas Section III presents the methodology of the proposed
model. Moreover, Section IV illustrates the results and
discussions, while Section V concludes this work.

2 Literature review

Examining the extensive oceans, which cover two-thirds of the
Earth’s surface, requires UWSNs to understand this immense
expanse fully. Future projections suggest that the market for
AUVs is expected to grow substantially, with a compound annual
growth rate (CAGR) of USD 1.638 billion by 2025. This represents
a notable surge from the USD 638 million recorded in 2020.
The applications of AUVs can be commercial, oceanographic,
environmental, military, sensing, and more. Examples of
commercial activities are surveying, port monitoring, and
geophysical and archaeological research (Li et al, 2023; Wang
et al., 2023). Scientific/oceanographic missions require seabed
exploration, remote sensing, and water body exploration.
Environmentally significant applications include habitat
monitoring and water quality sampling. Anti-submarine warfare
and border security are examples of military/defense activities.
Shallow and medium water is the most typical deployments of
AUVs in coastal waters (Brasier et al.,, 2020; Duan et al., 2020).
Wireless charging in remote oceanic environments is expected to
drive steady growth in the foreseeable future. The AUV Repository
lists over 1,050 underwater platforms from over 350 universities,
including standard components like battery modules, propulsion
systems, sensing capacity, communication systems, navigation
systems, and collision avoidance systems (Tian et al., 2023).
However, the inertial navigation system’s long-term accuracy is
limited by accelerometer drift. To address this, ultra-short baseline
or long baseline transponder systems can be used, or simultaneous
localization and mapping (SLAM) can be employed (Cao et al.,
2021; Hoeher et al., 2021).

However, current networks are hardware-centric, rigid, and
need more resource-sharing capabilities. New models, such as
software-defined technologies, have emerged to improve UWSNs
by providing robustness, flexibility, adaptability, programmability,
resource sharing, and easy administration (Sun and Boukerche,
2018). These technologies include software-defined networking
(SDN), software-defined radio (SDR), network function
virtualization (NFV), cognitive acoustic radio (CAR), underwater
IoT sensing, and sensor clouds, turning network resources into
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software, improving resource efficiency and simplifying network
management. These technologies could transform traditional
UWSNs into next-generation, software-based, programmable,
customizable, and service-oriented networks.

Many challenges arise when deploying IoT devices and
networks in aquatic environments or underwater IoT for remote
sensing purposes. These include challenges related to signal
propagation and transmission in water, building and maintaining
robust underwater positioning and navigation systems, optimizing
energy efficiency for long-term operation, data processing and
retrieval in low-bandwidth environments, and manufacturing
waterproof and durable hardware (Arul et al, 2021; Wei et al,
2021). The data rates and usual bandwidth for underwater channels
with different ranges are shown in Table 2 (Moradi et al., 2012). The
underwater environment is particularly harsh and corrosive,
making it difficult to build long-lasting sensors, secure networks,
and keep sensors working as intended. Addressing these issues is
crucial for the successful implementation of underwater IoT
applications, from environmental monitoring to underwater
robotics and exploration.

Autonomous underwater vehicles, or AUVs, are automated
submersible platforms capable of operating at a maximum depth
of three thousand meters. In 1957, the self-propelled underwater
research vehicle (SPURV) became the inaugural AUV (Yang et al.,
2021). Over the past six decades, AUV techniques have undergone
significant advancements, enabling them to perform sensing tasks
autonomously without human intervention (Bai et al., 2018). AUV
navigation systems play a vital role in their operation by allowing
computers and onboard sensors to govern and guide their
movements. However, navigation and remote sensing can be
exceedingly challenging due to the attenuation of GPS signals in
submerged scenarios. Promising technologies, including
cooperative navigation (CN) and SLAM, which can be swiftly
implemented and adjusted with minimal infrastructure, are being
proposed as potential solutions to this predicament. AUV typically
use batteries, but lithium batteries are now widely used due to their
rechargeability and cost-effectiveness (Rymansaib et al., 2023).
AUVs can serve as sensing platforms for various sensors,
including echo sounders, underwater laser scanners, forward-
looking sonars, and conductivity temperature depth sensors.

Ocean engineers are investigating over-actuated and under-
actuated underwater vehicles. Over-actuated vehicles align with
trajectories using surge, sway, and heave actuators, while under-
actuated vehicles pitch and yaw. Tolerable thrust forces, damping

TABLE 2 Typical bandwidth and data rates for underwater channels with
different ranges.

Data Bandwidth
rate (kbps) (KHz)
Short Range <1 km 20 kbps 20-50 KHz
Medium 1-10 km 10 kbps 10 KHz
Range
Long Range 10-100 km 1 kbps 2-5 KHz
Basin-Scale 3000 km 10 bps <1 KHz

frontiersin.org


https://doi.org/10.3389/fmars.2024.1468481
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Ullah et al.

limits, and inertia effects limit these models’ attitude. Marine vehicles
are managed remotely by input, status, and output barriers. A
supplementary system and Doppler Indicator (DI) optimization are
applied to track a fully-actuated underwater vehicle (He et al., 2022).
In the event of a tracking error occurring within a confined area, the
vehicle simultaneously moves in both the rightward and forward
directions. Through simulations and experiments conducted under
three different scenarios, the efficiency of the proposed strategy has
been demonstrated with the tracking error confined to a narrow zone
(Cao et al,, 2022). A novel open-water path planning strategy called
UP40 is designed for AUVs operating in challenging water
conditions (Yang et al., 2022). The strategy uses an environmental
encoder module to bind local obstacle data and combine it with
relative position, velocity, and ocean currents, resulting in continuous
operational decision-making using local dynamic information. The
system has a diverse state space with at least 26 actions, ensuring
motion accuracy and minimizing deviations from ocean current
vectors (Yan et al, 2014). Experimental results support UP40O’s
ability to accelerate convergence and provide smoother paths in
complex oceanic environments.

The domain of designing control systems for robotic arm
systems and underwater vehicles is explained. The main focus is on
the mathematical analysis of singular perturbation theory. Two control
rules were proposed: one that is more straightforward and partially
compensates for the sluggish subsystem and another that is a resilient
nonlinear control not influenced by model parameters. The stability of
both control rules is demonstrated using perturbation theory, and the
performance of the suggested controller in a closed-loop system can be
compared to that of a model-based correction (De Wit et al., 2000).
Marine robotics has revolutionized the use of remotely operated
underwater vehicles (ROVs) in science and industry, enabling
humans to perform tasks like moving objects across long distances.
The effectiveness of single- and multi-ROV systems depends on the
right tracking controller. Issues related to individual ROV tracking
include energy efficiency, Lyapunov-based model predictive control,
feedback and linearization techniques, adaptive algorithms,
proportional-derivative control, area tracking controllers, auto-
tracking controller adjustment, multivariate control techniques,
high-order adaptive sliding mode controllers, controllers based on
models (Yan etal., 2019). Following the Deepwater Horizon disaster in
2010, public attention shifted to monitoring the subsurface sea
environment (Vasilijevic et al., 2017). Remote sensing technologies
have proven effective for terrestrial disasters, but detecting and
measuring underwater pollution requires field methods (Hao et al.,
2022). A joint robotic system combining autonomous underwater and
unmanned autonomous surface vehicles is proposed to rapidly detect/
sense and quantify contaminants in the water column in situ. This
system enables real-time contamination readings while minimizing
human intervention and time commitments.

Autonomous underwater navigation relies on efficiency and
autonomy, with dead reckoning techniques relying on
proprioceptive data from compasses, Doppler Velocity Logs, and
Inertial Navigation Systems. However, positioning errors tend to
magnify over time, necessitating absolute georeferenced sources for
precise positioning. Time-of-flight (ToF) acoustic positioning
systems are the current method for correcting underwater
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positions and sensing (Li et al., 2018). As technology and
hydroacoustic communication standards for AUVs continue to
advance, CN may become a highly accurate method for locating
multiple underwater vehicles. CN allows a group of AUVs to
mutually estimate their current positions based on relative
distance, velocity, and acceleration (Lyu et al, 2022). Figure 4
illustrates the USN and AUV architecture. The surface
components like satellites, drones, ships, base stations, surface
sinks, and servers aid communication and data management.
AUVs communicate with stationary seabed sensors and other
underwater mobile nodes. The Surface and underwater
components communicate by two-way packet exchange and via
wireless signals, safeguarding effective data collecting and network
coordination in diverse underwater environments.

By utilizing ocean currents as control inputs during way-point
tracking missions, the power consumption of the engine is reduced.
The controller effectively considers multiple constraints, such as those
related to the workplace, the vehicle’s maximum speed, sensing
capacity, the saturation of control inputs, and the presence of rare
obstacles. The proposed technology accounts for all the vehicle
dynamics, including ocean currents, enabling optimal thrust
determination to minimize errors in waypoint tracking (Heshmati-
Alamdari et al., 2019). Utilizing the ocean currents for control inputs
during waypoint tracking missions reduces the power consumption
of the engine. Analytical guarantees for stability and convergence are
established for closed-loop systems. The presented work focuses on
utilizing AUVs to monitor underwater pipelines and gather data
from submarine networks (SNs) within the transmission range. This
collected data is transmitted to a surface borehole using acoustic
communication technology. This approach reduces power
consumption, and the need for costly data re-transmissions is
avoided. This architectural framework is well-suited for data
applications that can tolerate latency and provide flexibility in
implementing submarine networks. Various algorithms for AUV
motion and remote sensing are put forth, and an investigation is
conducted to determine the impact of the system on network
performance. Furthermore, the system can be optimized by
considering design parameters, such as SN density, distance,
network reliability, medium access control (MAC), communication
channel conditions, security measures, and quality of service (QoS)
requirements (Jawhar et al., 2018).

Despite development in AUVs and underwater wireless sensor
networks (UWSNS), there are still several limitations. The existing
hardware-focused networks cannot exchange resources or familiarize
themselves with software-defined solutions. Accelerometer drift
disturbs navigation system accuracy, necessitating further research.
Due to energy efficiency, localization, sensing, and navigation system
resilience issues in demanding underwater environments, IoT device
installation and conservation must be enhanced. Current challenges
include creating long-lasting, water-resistant sensors and efficient
data processing in low-network settings. Novel control and path
planning systems like UP40 must also be authenticated in complex
marine surroundings. The existing problems must be addressed to
increase the performance, reliability, and expandability of AUVs and
UWSNs. This will enable future advanced, flexible, and effective
marine systems.
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Remote sensing communication and navigation in deep-sea environment.

3 Methodology

Multi-criteria optimization is crucial for selecting the most
efficient UloT for underwater task assignment and sensing (Song,
2020; Fang et al., 2021). These devices must be chosen based on
energy efficiency, communication range, remote sensing capacity,
data transmission capability, durability, and adaptability to
dynamic oceanic environments. The effectiveness of IoT devices
depends on the specific objectives of underwater operations, such as
accurate data collection in oceanography and robust and durable
devices for marine remote sensing infrastructure repair work.
Multi-criteria optimization helps decision-makers select IoT
devices that align with operational goals and requirements. It also
addresses trade-offs between features like energy efficiency and data
transmission capabilities, ensuring the efficiency and effectiveness of
IoT deployments tailored to specific underwater sensing
applications. The optimal selection of vehicles based on multi-
criteria is shown in Figure 5. Starting with the UIoT, digital library
articles are assessed. These articles undergo feature engineering to
extract relevant features. The selected features are evaluated for
sufficiency. After recognizing significant attributes, ideal vehicles
are selected using multi-criteria evaluation.

3.1 Feature engineering

An important and challenging aspect of the UIoT is to identify
the unique characteristics of the underwater sensing environment
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through an in-depth review of previous research (Zhu et al.,, 2023).
These characteristics include energy efficiency, water pressure,
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contact closure, resistance to corrosion, salinity, sensing issues, and
temperature. Understanding and specifying these characteristics is
important for effectively deploying IoT devices in an oceanic
environment, as they directly affect network performance and
reliability. Functional engineering is essential for optimizing IoT
devices for specific underwater tasks such as oceanography, where
data accuracy is critical, or maritime/oceanic infrastructure
maintenance, where reliability and durability are priorities. As
feature development is versatile, IoT devices may be customized
to meet specific remote sensing needs. Functional engineering also
promotes using and integrating cutting-edge scientific innovations
and findings.

Engineers and researchers may uncover new possibilities and
chances that extend the remote sensing potential of IoT devices by
evaluating relevant literature and considering the latest developments.
In addition to revolutionizing IoT technology, this iterative approach
to feature development will produce creative solutions for applications
emerging in underwater or oceanic environments. Feature engineering
is essential to underwater IoT, enabling decision-makers to select,
modify, and design IoT devices tailored to underwater remote sensing
applications’ needs and objectives. The UloT is a network of
submerged devices and systems that enable efficient communication,
cooperation, and data transmission. These resilient and adaptable
systems allow aquatic systems to withstand environmental pressures
and recover from disturbances. Their flexibility allows them to respond
to dynamic changes and gather oceanic research and exploration data.

Interoperability and integration are significant in the IoT,
fostering collaboration and data exchange between devices. The
dependability and efficiency of underwater technologies ensure
consistent service provision, while their durability ensures
functionality over time. Tolerance mechanisms and collision
avoidance ensure secure sensing, navigation, and operations. Both
bound and unbound deployment options allow flexibility in
deployment. The visibility of the IoT enables real-time
monitoring and visualization of underwater conditions,
facilitating data analysis and seabed mapping for scientific
research and exploration. These capabilities enable multitasking,
responsiveness, and controllable sub-sea systems that provide
essential services and data analytics, revolutionizing the way we
explore and comprehend the vast depths of the ocean. The various
key characteristics of underwater vehicles are illustrated in Figure 6.

3.2 Decision making

Ocean engineering is a rapidly developing field that relies on
decision-making to guide undersea technologies. Researchers,
producers, and institutions are constantly improving underwater
vehicles to sense, navigate, and explore deep oceans (Rolland et al.,
2023). These vehicles are designed for security, resource
exploitation, remote sensing, ecological protection, and scientific
investigation. Their creation ensures wise choices for the submerged
environment, preserving marine ecosystems for future generations
and allowing exploration of mysterious deep-sea enclaves (Borja
et al,, 2020). The ultimate goal is to provide creative and effective
solutions for the vast, unexplored oceans.
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3.3 Feature selection

The UlIoT faces challenges in identifying unique underwater
characteristics like power usage efficiency, water pressure, sensing
issues, contact closure, corrosion resistance, salinity, and temperature
(Khalil et al., 2020). These factors directly impact the remote sensing
network’s performance and reliability. Functional engineering
promotes the use of state-of-the-art scientific discoveries and
innovations, allowing engineers and researchers to assess the
literature and consider recent advancements to uncover novel
attributes and capabilities. This iterative approach revolutionizes
IoT technology and provides innovative solutions for underwater/
oceanic applications. Functional design is at the core of the UloT,
enabling decision-makers to choose, tailor, and design IoT devices to
meet underwater remote sensing application requirements.

3.4 Multi-criterial decision making in UloT

The Internet of vehicles (IoV) presents a challenge for
policymakers and stakeholders in selecting optimal vehicle
solutions to improve operations and productivity. Multi-criteria
decision-making (MCDM) methodologies, such as the analytical
hierarchy process (AHP) and Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS), help assess and prioritize
vehicles across various dimensions, including fuel effectiveness,
connectivity, environmental impact, safety attributes, and cost
efficiency. These approaches provide a structured framework for
informed choices, enabling stakeholders to navigate various
alternatives, ultimately leading to efficiency, sustainability, and
innovation in the transformative sector.

The UloT aims to revolutionize underwater activities by
combining interconnectivity, data sharing, and real-time
monitoring. It enhances operational efficiency and predictability
by enabling effective task control, route tracking, sensing, and
location determination. UIoT’s manoeuvrability, adaptability,
multitasking, resource management, continuous integration, and
efficient telemetry further enhance operational capabilities. It also
provides durability, protection, safety, and resilience, promoting
real-time monitoring and accountability in harsh environments.
The responsiveness of IoT systems supports their reliability and
interoperability, enabling seamless functioning and interaction.
These capabilities can potentially revolutionize underwater
remote sensing operations and usher in a new era of subsurface
exploration and data collection. The overall methodology of this
study is represented in Section 4, and the characteristics that are
collected by properly analyzing existing approaches are presented
in Table 3.

4 Results and discussions

The detailed methodology and the evaluation results of the
proposed approach are presented in the below subsections.
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FIGURE 6
Various key characteristics of underwater vehicles.
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4.1 CRITIC approach

A technique utilized in MCDM to help with complex selection
procedures where multiple factors require evaluation is called the
CRITIC choice-making strategy. It works especially well when
assessing and ranking choices or alternatives in situations where
there is a lot of ambiguity and mutual dependence. Rather than
considering each decision criterion separately, CRITIC focuses on
their interrelatedness. Adapting to complicated and evolving
decision situations, reducing subjectivity in weight distribution,
and understanding hidden linkages between factors are only a few
advantages of the CRITIC technique. It provides an organized and
systematic manner to rank and incorporate multiple factors during
the selection process, making it an extremely valuable tool across a
wide range of industries, including sustainability management,
engineering, finance, and healthcare. When everything is said and
done, the CRITIC choice-making strategy offers a solid and
methodical way to handle complicated problems that need a
careful examination of criteria connections. These steps involved
in the mechanism of the CRITIC calculation are portrayed
in Figure 7.
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The CRITIC technique assesses every criterion’s significance by
considering its relationships to other factors in addition to subjective
perceptions. This implies that the method considers the possible
consequences of altering one of the factors on others, resulting in a
more accurate and comprehensive depiction of the decision problem.
Decision-makers estimate every criterion’s relative importance to all
other factors by comparing them pairwise, creating an inter-criteria
correlation matrix. After that, the ultimate weights for the criteria are
obtained by subjecting this matrix to a number of mathematical
operations, many of which include dynamic investigation.

Furthermore, all the chosen factors in the proposed work are
beneficial. The chosen factors impact the alternatives more, which we
can find after determining their weightage. The weights were assigned
to every criterion based on their importance, according to expert
opinion, using a scale ranging from one (1) to nine (9). The one value
illustrates the equal significance of one factor over another. In contrast,
the nine values state the extreme significance of one factor over another
while comparing them against each other using the CRITIC approach.
A 7*7 matrix has been constructed using Equation 1, and weights are
distributed among criteria as per expert opinion. These factors have
been properly comprehensively compared against each other to
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TABLE 3 Multi-criteria-based optimal feature selection of underwater vehicles.

Criteria
Alternatives
C4
Meth 1 Communication Connectivity Endurance Sharing Collaboration Transmission Propagation
Task: Real-
Meth 2 asis Path Monitoring Surveillance ‘ea L Predictability Sensing Data Collection
Management time Monitoring
Meth 3 Positioning Navigation Localization Positioning Tracking Detection Tethered
Meth 4 Oceanography Exploration Virtualization Seafloor mapping | Sampling Visibility Deployment
. - . . . Resource X .
Meth 5 Service Provision Forecasting Multi-tasking Integration Telemetry Controllability
Management
Meth 6 Robustness Protection Resilience Security Tolerance Durability Shielding
Real- . . . S -
Meth 7 . . Accountability Responsiveness Storage Processing Reliability Interoperability
time Operation
Meth | 8 Adaptiven R Resistan, Collision Elasticit Rejuvenation Upgradation
e aptiveness ecovery esistance Avoidance asticity ejuvenatiol pgradatio

determine the precise weightage of each criterion and determine their
significance and impacts on the required alternatives. The evaluation
matrix has been designed for eight alternatives based on specific
factors. The maximum and minimum values have also been

Build
Decizion
Matrix
Quality
of
Information

Correlation
Coefficient Standard

of Deviation

Criteria

Measure

Conflict

FIGURE 7

Representation of various (CRITIC approach) steps for underwater Things.

determined from every column, which states that every maximum
value is the highest and the minimum is the lowest due to the beneficial
nature of all the criteria. The alternatives have been set in rows, while
the criteria have been set in columns, as depicted in Table 4.
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Here, the original matrix has been normalized through the
utilization of Equation 2, as given below;
T _ Xl] — min (XU)
7 max (X;) - min (X;)

2

Where, )_(,j indicates the normalized outputs, and it is essential
to realize that normalization does not account for the kind
of criterion.

The constructed matrix has been undergone to normalize
original values by utilizing Equation 2 to reduce subjectivity and
remove errors. The outcomes obtained from the entire calculation
of the normalization process are listed in Table 5.

Equation 3 has been applied to the normalized matrix to obtain
the standard deviation outputs. The entire calculation and obtained
outputs are listed in Table 6.

LG - %)?

Standard Deviation (oj) = —"

3)

Figure 8 plots the calculated standard deviation values for every
criterion. The correlation coefficient outputs have been obtained by
comparing two pairs of criteria in the normalized matrix. The
required values of the correlation coefficient between pairs of
criteria have been identified, as listed in Table 7 and Figure 9.

Py = S (ry = )i — tr)
L =
J \/(E::l(ﬁj = 5P (i — 1)

(4)

TABLE 4 Evaluation matrix.

Criteria

Alternatives

Meth 1 3 7 2 5 6 8 4
Meth 2 9 4 6 2 8 3 5
Meth 3 2 5 3 7 4 6 3
Meth 4 5 2 7 3 9 4 6
Meth 5 7 6 2 4 5 2 4
Meth 6 4 3 5 6 2 7 5
Meth 7 6 4 8 2 3 5 2
Meth 8 8 2 4 3 7 6 3
MAX 9 7 8 7 9 8 6
MIN 2 2 2 2 2 2 2
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The required values have been achieved through the use of
Equation 5. Every correlation coefficient value mentioned above has
been subtracted from one, and then these values are added in a row-
wise manner to get the required values according to the equation.
The calculated outputs of the measure of conflict are outlined in
Table 8.

Measure of conflict = (37_, (1 - rj)) (5

The calculated outcomes, known as the measure of conflict of
every criterion, are plotted in Figure 10. The required outputs,
known as the quantity of information, have been achieved through
the application of (Equation 6). These values are obtained by
multiplying the measure of conflict outputs with the standard
deviation scores as per the quantity of information formula. The
calculated outcomes of the quantity of information are listed in
Table 9.

Quality of information (Cj) = oj * (2?:1(1 - rjj/)) (6)

The calculated scores of the quantity of information have been
plotted in Figure 11, which improves visibility and understanding of
the calculated outcomes.

According to Equation 7, every single value of the quantity of
information has been divided by the total of the values of the
quantity of information in order to get the required weights of every
criterion to determine the relative importance of the factors and
identify their effects on the numerous essential alternatives. The
calculated weightage of each criterion in the study is displayed in
Table 10.

Criteria weights (W)= (n:ijc (7)
=1

The weightage of each criterion calculated by the CRITIC
procedure is plotted in graphical form, as shown in Figure 12 to
increase the readability and clarity for the user to easily understand
the relative importance of numerous essential criteria chosen and
evaluated in the study. A criterion with the highest weight indicates
a greater significance and high effect on the chosen alternatives, as
followed by the remaining criteria in a sequence.

The CRITIC technique will prioritize the primary
characteristics of submersible vehicles, enabling decision-makers
to optimize vessel deployment. The appropriate vehicles will be
selected, and tasks will be assigned to them, leading to higher
success rates, enhanced security measures, efficient resource
allocation, and improved underwater operations accuracy. The
technique is valuable for investigating subsea technologies and
enhancing vessel deployment in the undersea IoT.

Comparing the proposed work with previous systems shows
notable differences in important performance measures, such as the
distribution of trust values, the time it takes for data to go from one
end to another, the lifespan of individual nodes, and the time it
takes for the system to reach a stable state, see Table 11. The
proposed technique showcases the most minimal end-to-end
latency of 50 ms, suggesting very efficient data transfer, whereas
the other alternatives display the highest delay of 65 ms. The
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TABLE 5 Normalized matrix.

10.3389/fmars.2024.1468481

C1 C2 C3 C4 C5 C6 Cc7
Meth 1 0.142857143 1 0 0.600 0.571 1 0.500
Meth 2 1 0.4 0.66666667 0 0.857 0.16666667 0.75
Meth 3 0.000 0.600 0.16666667 1 0.28571429 0.667 0.250
Meth 4 0.428571429 0.000 0.83333333 0.2 1 0.333 1.000
Meth 5 0.714 0.800 0 0.400 0.429 0.000 0.5
Meth 6 0.286 0.200 0.5 0.800 0.000 0.833 0.750
Meth 7 0.571428571 0.400 1 0 0.143 0.500 0.000
Meth 8 0.857142857 0 0.33333333 0.200 0.714 0.667 0.250

TABLE 6 Calculation of standard deviation.

C1 Cc2 C3 C4 C5 C6 Cc7
Meth 1 0.142857143 1 0 0.600 0.571 1 0.500
Meth 2 1 0.4 0.66666667 0 0.857 0.16666667 0.75
Meth 3 0.000 0.600 0.16666667 1 0.28571429 0.667 0.250
Meth 4 0.428571429 0.000 0.83333333 0.2 1 0.333 1.000
Meth 5 0.714 0.800 0 0.400 0.429 0.000 0.5
Meth 6 0.286 0.200 0.5 0.800 0.000 0.833 0.750
Meth 7 0.571428571 0.400 1 0 0.143 0.500 0.000
Meth 8 0.857142857 0 0.33333333 0.200 0.714 0.667 0.250
Std deviation 0.350 0.362 0.377 0.370 0.350 0.339 0.327

proposed work exhibits the highest trust value distribution (0.95),
indicating a greater level of reliability among network nodes. In
contrast, the other approach demonstrates the lowest trust value
distribution (0.85), implying inferior trust management. The
suggested work has the greatest node lifespan, lasting for 200

hours, compared to the other job with a shorter node lifetime of
175 hours. This emphasizes the energy efficiency of the proposed
work. In addition, the suggested work demonstrates the fastest
convergence time of 30 seconds, which indicates a rapid
stabilization of the network. In contrast, the comparison work has

FIGURE 8

Standard deviation outputs.
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TABLE 7 Calculation of correlation coefficient between criteria.

Criteria

Criteria
C1 1.000 -0.339 0.296 -0.819 0.429 -0.646 0.045
2 -0.339 1.000 -0.650 0.341 -0.242 0.073 -0.241
c3 0.296 -0.650 1.000 -0.613 0.090 -0.206 0.096
C4 -0.819 0.341 -0.613 1.000 -0.504 0.532 0.000
(e 0.429 -0.242 0.090 -0.504 1.000 -0.359 0.490
c6 -0.646 0.073 -0.206 0.532 -0.359 1.000 0215
c7 0.045 -0.241 0.096 0.000 0.490 -0.215 1.000

Correlation Coefficients

1.00

-0.34 03 0.045

0.75

0.50

-0.25

-0.00

--0.25

-0.50

-0.75

FIGURE 9
Correlation coefficients.

TABLE 8 Calculation of measure of conflict.

Measure
of Conflict
C1 0.000 1.339 0.70373712 1.81892302 0.57142857 1.64609574 0.95545646 7.034
2 1.339 0 1.650 0.65856832 1.24196696 0.92704422 1.24142866 7.058
c3 0.70373712 1.650159294 0 161343836 0.90983304 1.2058396 0.90360746 6.987
C4 1.818923025 0.65856832 1.61343836 0 1.50395263 0.46818398 1 7.063
Cs 0.571428571 1.241966959 0.90983304 1.50395263 0 1.35894208 0.51002106 6.096
c6 1.646095738 0.927044217 1.2058396 0.46818398 1.35894208 0 1.21488612 6.821
c7 0.95545646 1.241428656 0.90360746 1 0.51002106 1.21488612 0 5.825
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Calculation of Measure of Conflict

Cl 0.0 134 0.7 1.82 0.57 1.65 0.96
C2r 134 0.0 1.65 0.66 124 093 124
c3 0.7 1.65 0.0 1.61 0.91 121 0.9
2
c
g
g C4F 182 0.66 1.61 0.0 15 047 1.0
E
<]
(]
c5 0.57 124 091 15 0.0 1.36 051
C6F 165 093 121 047 1.36 0.0 121
Cc7 0.96 124 0.9 1.0 0.51 121 0.0
& & o ¢ & o )
Components

FIGURE 10
Measure of conflict outcomes.

w

F-
Measure of Conflict

w

TABLE 9 Calculation of quantity of information.

Standard Deviation

Measure of Conflict

Quantity of Information (Cj)

C1 0.350 7.034 2.462
C2 0.362 7.058 2.552
C3 0.377 6.987 2.636
C4 0.370 7.063 2.616
C5 0.350 6.096 2.133
C6 0.339 6.821 2.309
Cc7 0.327 5.825 1.907

FIGURE 11
Quantity of information values.
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TABLE 10 Calculation of weights.

Quantity Weights Weights in

of Information Percent (%)
1 2.462 0.148 14.82%
c2 2552 0.154 15.36%
c3 2.636 0.159 15.87%
ca 2616 0.157 15.74%
cs 2133 0.128 12.84%
C6 2309 0.139 13.90%
c7 1.907 0.115 11.48%
Sum 16.614 1.000 100%

the slowest convergence time of 37 seconds, highlighting the
superior performance of the proposed work. The data
demonstrates that the suggested methodology surpasses other
methods in all measurable dimensions, emphasizing reducing
delay and maximizing trust, node lifetime, and speedy convergence.

B Weights

c7
C6
Cs
C4
C3
C2
Cl

FIGURE 12
Illustration of criteria weights.

. 0.115
- 0.139
. 0:128
T 0. 157
T 0.159
0. 154
T 0.148

10.3389/fmars.2024.1468481

5 Conclusion

The impact of 5G and 6G communication networks on underwater
technology drives rapid growth in the IoT market. As a result,
underwater automobiles, vessels, tracking devices, and surveillance
devices, such as s, environmental sensitivity observation equipment
and advanced aquatic study instruments, have emerged. These
technologies have the potential to transform our understanding of the
underwater oceanic environment and contribute to the long-term
management of ocean resources. The Internet of underwater vehicles
is an exciting breakthrough in the IoT area that is transforming sub-
aquatic operations and communications. It has energy-efficient
communication modules, quick data processing, flexible sensors,
remote sensing capability, and better mobility. The Internet of
underwater vehicles enhances sub-aquatic vehicle communication
capabilities while also accelerating job completion, resulting in a more
productive, automatic, and adaptive sub-aquatic network. These
advancements in technology bring up new avenues for subaquatic
applications, environmental surveillance, and marine exploration. In
this study, the CRITIC technique is proposed to examine and evaluate
appropriate UloT characteristics such as localization, sensing,

TABLE 11 Comparison with other approaches.

Trust Value Distribution

Node Lifetime (hrs)

End-to-End Delay (ms)

Convergence Time (s)

(Jawhar et al., 2018) 62 0.89 195 36
(Song, 2020) 57 0.86 178 34
(Li et al., 2018) 60 0.90 190 32
(Lyu et al,, 2022) 65 0.85 175 37
(Jahanbakht et al., 2021) 55 0.88 180 35
(Heshmati-Alamdari 58 0.87 185 33
et al., 2019)

Proposed 50 0.95 200 30
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positioning security, privacy, resource allocation, and optimization.
These multi-characteristics will assist decision-makers in assessing
correlations and interdependencies between various characteristics,
which is critical for effective and well-informed decision-making in
dynamic UloT environments and for modifying Vehicles with multi-
features to achieve specific objectives in undersea operations. Developing
an integrated approach to submerged technology, ensuring the
effectiveness and safety of underwater remote sensing systems, and
developing energy-saving solutions to increase the lifespan of
underwater vehicles are various domains that need further research
and exploration to achieve the objectives of ocean and marine engineers.
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Coastal waters require monitoring of chlorophyll-a concentration (Chl-a) in a
wide range of Chl-a from a few mg/m? to hundreds of mg/m?, which is of interest
to the fisheries industry, evaluation of climate change effects, ecological
modeling and detection of Harmful Algal Blooms (HABs). Monitoring can be
carried out from the Visible Infrared Imaging Radiometer Suite (VIIRS) and Ocean
and Land Colour Instrument (OLCI) Ocean Color (OC) satellite sensors, which are
currently on orbit and are expected to be the main operational OC sensors at
least for the next decade. A Neural Network (NN) algorithm, which uses VIIRS
M3-M5 reflectance bands and an I1 imaging band, was developed to estimate
Chl-a in the Chesapeake Bay, for the whole range of Chl-a from clear waters in
the Lower Bay to extreme bloom conditions in the Upper Bay and the Potomac
River, where Chl-a can be used for bloom detection. The NN algorithm
demonstrated a significant improvement in the Chl-a retrieval capabilities in
comparison with other algorithms, which utilize only reflectance bands. OLCI
NIR/red 709/665 nm bands red edge 2010 algorithm denoted as RE10 was also
explored with several atmospheric corrections from EUMETSAT, NOAA and
NASA. Good consistency between the two types of algorithms is shown for the
bloom conditions and the whole range of waters in the Chesapeake Bay (with
RE10 switch to OC4 for lower Chl-a) and these algorithms are recommended for
the combined VIIRS-OLCI product for the estimation of Chl-a and bloom
monitoring. The algorithms were expanded to the waters in Long Island Sound,
demonstrating good performance.
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chlorophyll-a concentration, coastal waters, neural network, VIIRS, OLCI
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1 Introduction

In estuaries and adjacent coastal waters, algal blooms are both a
key water quality indicator and a potential hazard (Tango and Batiuk,
2016; Karlson et al., 2021). High biomass blooms have implications
for reducing water clarity and are indicators of eutrophication in
coastal systems (Bricker et al., 2008; Le et al,, 2013). Reduced water
clarity and depleted oxygen in bottom waters can have deleterious
effects on essential fish habitats such as submerged aquatic vegetation
in estuaries, leading to a shift from benthic to pelagic-dominated
system productivity (Bricker et al, 2008). Harmful Algal Blooms
(HABs), pertaining to a class of phytoplankton that often contain
toxins, occur in various coastal areas and have a strong impact on
fisheries, tourism, and recreation industries, requiring improved
monitoring of HABs by environmental and health programs. HABs
are often difficult to locate through routine monitoring programs
because of their patchiness, physical circulation of the water, and
vertical migration of algal particles. As a first approximation,
typically, the concentration of chlorophyll-a (Chl-a) is considered
as a proxy for the strength of the algal bloom, while bloom effects can
vary depending on the type of algal species (IOCCG, 2021). Satellites
can support the monitoring of HABs if they provide frequent
coverage and retrieve Chl-a over a wide range of concentrations.
Improved temporal resolution, which could be provided by using
remote sensing products from multiple satellite sensors, can improve
efforts of monitoring and forecasting HABs in coastal and estuarine
waters. Data should come from multiple ocean color sensors to
improve coverage during periods of cloud cover or sun glint (a
problem especially in spring and summer), and to provide multiple
views of blooms within a day.

Ocean color algorithms are based on remote sensing reflectance,
R, spectra with Chl-a dominating R, spectra in the blue in clear
waters. These algorithms often fail in optically complex coastal and
estuarine waters where HABs occur, due to the high absorption of
colored dissolved organic matter (CDOM) and scattering from
sediments. Therefore, it is important to develop Chl-a algorithms
that are minimally influenced by CDOM and/or high sediment
concentrations. Efforts have been made to improve Chl-a retrievals
from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors
operated by National Oceanic and Atmospheric Administration
(NOAA) and from Sentinel-3 Ocean and Land Colour Instrument
(OLCI) sensors processed by NOAA in collaboration with the
European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) (Wang and Son, 2016; Mikelsons and
Wang, 2019; Liu and Wang, 2022; Mikelsons et al., 2022; Wynne
et al,, 2022). Currently, there are three VIIRS sensors (on the SNPP,
NOAA-20 and NOAA-21 platforms) and two OLCI sensors on the
Sentinel-3A and 3B in space with 750 m and 300 m spatial resolution
(at nadir), respectively. With additional launches of VIIRS planned,
these two groups of sensors are expected to provide reliable and stable
multi-spectral Ocean Color (OC) data for the next decade and
beyond. The NASA Phytoplankton, Aerosol, Cloud, ocean
Ecosystem (PACE) mission (Werdell et al., 2019), which was
successfully launched in February 2024, has a main hyperspectral
Ocean Color Instrument (OCI), but with a relatively coarse spatial
resolution of 1.0 km (at nadir), which is not often sufficient for many
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coastal areas. The availability of consistent data in a wide range of
Chl-a, with appropriate temporal resolution, will expand the number
of applications and agencies, which utilize remote sensing data to
complement the field data they use for decision-making regarding
HABs. While the definition of HABs can be different for different
water bodies, for this work we only consider high biomass blooms
with Chl-a above 25-30 mg/ m?, which require the attention of coastal
managers. This does not imply anything related to toxicity or
deleterious effects to wildlife or public health and relies on in situ
sampling to determine phytoplankton species.

Large uncertainties in remote sensing reflectance (R) retrieval
in blue bands remain a major problem for OC satellite sensors in
coastal areas because of difficulties in atmospheric correction and
low R, at this part of the spectrum (Ransibrahmanakul and Stumpf,
2006; IOCCG, 2019). In addition, due to the inability to see through
clouds with OC sensors, daily imagery from current satellite sensors
may be obscured. When monitoring blooms in coastal areas the
combination of insufficient atmospheric correction in coastal and
estuarine waters, and missing imagery due to clouds and sun glint,
can often hinder the use of satellites in monitoring and forecasting
efforts. Large uncertainties make an estimation of Chl-a
concentration unreliable using standard OCx algorithms, which
include the 443 nm band. A Neural Network (NN) Chl-a algorithm
(Toannou et al., 2014), which avoids blue bands at 412 and 443 nm
for VIIRS demonstrated good performance in variable water areas
(El-Habashi et al., 2016, 2017, 2019). Specifically, based on field
measurements and matchups with satellite data, it has been shown
that the NN Chl-a algorithm is valuable for the detection of Karenia
brevis (KB) algal blooms near the West Florida coast (El-Habashi
etal., 2016, 2017). The algorithm performs similarly to the standard
OCx algorithms in the open ocean and coastal waters for Chl-a < 10
mg/m’ (El-Habashi et al., 2019), but usually cannot detect
accurately for Chl-a > 10-15 mg/m>. A near-infrared (NIR)/red
Chl-a algorithm applied to the bands available on MEdium
Resolution Imaging Spectrometer (MERIS) and OLCI sensors
performs well at Chl-a > 5 mg/m” in the field (Stumpf and Tyler,
1988; Gitelson, 1992; Moses et al., 2009; Gilerson et al., 2010; Smith
et al,, 2018; Neil et al,, 2020). Unfortunately, applying the NIR/red
algorithm to VIIRS is impossible, since it lacks a 709 nm band. A
special AC has been developed by the NOAA’s National Centers for
Coastal Ocean Science (NCCOS) group for OLCI and has been
applied to top-of-atmosphere reflectance corrected for molecular
scattering (Wynne et al., 2018). Thus, an accurate estimation of high
Chl-a values remains elusive from VIIRS and even from other
multi-spectral sensors with a richer set of bands.

In addition to M1-M5 bands in the visible, VIIRS sensors have
an imaging band I1 which integrates radiances from 600 to 680 nm,
centered around 640 nm with an almost rectangular spectral
transmission function. Utilization of this band on VIIRS opens
additional possibilities. This 640 nm band covers R, features related
to the increase of specific phytoplankton absorption from small
values at 600 nm to high at 675 nm and thus can be sensitive to high
Chl-a. This band as 638_ag (aggregated to 750 m spatial resolution
as all M reflective bands) on SNPP VIIRS and as 642_ag on NOAA-
20 was added to the images using the Multi-Sensor Level-1 to Level-
2 (MSL12) data processing system (Wang and Jiang, 2018)
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and distributedthrough the NOAA CoastWatch (https://
coastwatch.noaa.gov/).

NN and Machine learning algorithms are based on the training
of large datasets of synthetic, field, or satellite data and have recently
been developed to estimate Chl-a and other water parameters on the
global and regional scales (Hieronymi et al., 2017; Pahlevan et al.,
2020; Liu and Wang, 2022; Werther et al., 2022; Cao et al., 2024).
Their performance also depends on the applied atmospheric
correction (Hieronymi et al., 2017).

The Chesapeake Bay and Long Island Sound (LIS) are large US
estuaries on the US East Coast, where Chl-a needs to be monitored
synoptically due to the often-occurring algal blooms and hypoxia
events (Aurin et al., 2010; Wolny et al., 2020; Wynne et al.,, 2022).
They are highly variable environments. Algal blooms are patchy and
small-scale changes in Chl-a occur rapidly, making synoptic
measurements essential to resolve phytoplankton biomass
(Anderson and Taylor, 2001; Harding et al., 2005). While well-
established monitoring programs, such as the Chesapeake Bay
Program, Save the Sound, and state-lead monitoring provide
routine monthly sampling at select stations, daily synoptic satellite
Chl-a covering the entire estuary provide a better estimate of biomass
and capture transient blooms, often missed by routine sampling.

Multiple studies characterized well water optical properties in
these estuaries from field measurements and satellite observations
(Stumpf and Pennock, 1989; Magnuson et al., 2004; Tzortziou et al.,
2006; Aurin et al., 2010; Shi and Wang, 2013; Zheng et al., 2015;
Turner et al., 2022; Menendez and Tzortziou, 2024), atmospheric
correction algorithms have been assessed (Windle et al., 2022;
Sherman et al., 2023; Cao and Tzortziou, 2024) and algorithms
for the retrieval of Chl-a were developed (Gitelson et al., 2007; Le
et al., 2013; Freitas and Dierssen, 2019; Sherman et al., 2023) for the
specific sensors in these waters beyond standard OC3 and OC4
algorithms (O'Reilly et al., 1998, 2019).

The goal of this work is to extend the previously developed
VIIRS NN-Chl-a algorithm for higher Chl-a by including the I1
imaging band data (600-680 nm) on VIIRS, investigate different
processing schemes for the optimal use of the NIR/red (red edge)
algorithm (Gilerson et al., 2010) on OLCI and develop a field
validated combined OLCI-VIIRS products to improve detection
and surveillance of algal blooms in complex estuarine waters such as
the Chesapeake Bay and Long Island Sound. A more reliable
estimation of Chl-a over the range seen along the U.S. East Coast
is expected to enhance satellite coverage to improve ecological
models, fisheries applications, and provide early and reliable
detection of various blooms to support coastal managers in aiding
aquaculture activities and protecting public health.

OLCI passes the US East Coast around 10 am EST and VIIRS
around 1:30 pm EST. Data from several sensors increase coverage,
however, the benefits are beyond simple statistics because bloom
conditions can change in several hours with changes in tide
conditions and biological processes. Multiple observations per day
were the main incentive for the launch of GOCI sensors, and the
development of geostationary GLIMR and Geo-XO sensors
(Schaeffer et al., 2023). The product described in this paper
creates a capability that would allow an approximation of the
multi-scene capability offered by the geostationary satellites.
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In Section 2, the bio-optical model is discussed, which is used
for the generation of a large dataset for NN training and testing,
different NN approaches are evaluated, and the development of the
NN Chl-a algorithm for VIIRS based on M3-M5 reflectance bands
and I1 imaging band is described. In Section 3, validation of the NN
algorithm on field and satellite data is provided together with the
comparison of VIIRS NN and OLCI RE10 algorithms for a broad
range of conditions with different OLCI atmospheric correction
processing schemes, and expansion of the NN-OLCI product to LIS,
validation on field data. A discussion and conclusions are in
Section 4.

2 Materials and methods

2.1 Field data

Field data, which were used in bio-optical modeling,
comparisons of modeled and field Chl-a and other parameters,
included data from several Chesapeake Bay cruises. A very
comprehensive dataset was acquired by the CCNY-NOAA group
in August 2013 at 43 stations, which included Chl-a, inherent
optical properties (IOPs) and reflectance spectra. Attenuation and
absorption of water and CDOM spectra were measured by the ac-s
instrument; backscattering at 5 wavelengths was measured by the
bb-9 instrument, both included in the WETLABS (Philomath, OR)
package. At each station, upwelling radiance L,(A,0") was measured
using a fiber bundle placed just beneath the water surface and
connected to a GER spectroradiometer (SpectraVista, NY). The
downwelling radiance above the surface L;(A,0+) was measured by
pointing the same probe bundle onto a Spectralon plate and the
downwelling irradiance was determined as E;(A,0+) = A-w-L4(A,0+),
where A = 0.99 is the reflectance factor of the Spectralon plate
(Labsphere, NH), constant for the spectrum in the range of
wavelengths from 400 to 800 nm. The underwater remote sensing
reflectance R,.- is then calculated as L,,(1,07)/E4(\,07) sr’}, which was
adjusted for the propagation through the water-air interface to
calculate above surface R,. Chl-a from the samples that were
collected during the field campaign were determined according to
NASA protocol for fluorometric Chl-a determination (Ocean
Optics Protocols, 2003).

Capturing the timing and location of a bloom is difficult, and
often missing in routine monitoring datasets. An opportunistic
sampling event occurred on May 18, 2021, during a high biomass
(reaching up to 50 million cells/L) bloom of Prorocentrum
minimum. R,; and water samples for Chl-a were collected at 5
stations in the Upper Bay. Chl-a concentrations were measured in
the range of 73-161 mg/m’ and coincided in time with VIIRS and
OLCI overpasses. Additional R, spectra and Chl-a were acquired in
the Chesapeake Bay sporadically from 2014-2016, capturing a
range of Chl-a of 9-48 mg/m’. In all these measurements, R,
were determined from below water HyperOCR depth profiles.

There was also a large dataset of NCCOS R, measurements but
without corresponding Chl-a. All four R, datasets are shown below in
Figure 1 in the discussion of the bio-optical model. Ranges of many
parameters, necessary for the model and absorption spectra were
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taken from the previous Chesapeake Bay cruises (Magnuson et al,
2004) and NASA bio-Optical Marine Algorithm Dataset (NOMAD)
database (Werdell and Bailey, 2005). Finally, Chl-a data from the
Chesapeake Bay program (https://www.chesapeakebay.net/) at
multiple stations were used for the validation of the satellite and
in-situ data, where most of Chl-a fell below 20 mg/m”.
Concurrent water samples to extract Chl-a and hyperspectral
R, were collected throughout LIS in 2018-2022 in collaboration
with the Connecticut Department of Environmental Protection
(CTDEEP) (Turner et al., 2022; Sherman et al., 2023). Additional
data were collected from small boats. Hyperspectral R,; were
measured using a HR512-1 spectroradiometer (SpectraVista, NY).

2.2 Satellite data and processing schemes

2.2.1 VIIRS data

The Level-2 science-quality data for SNPP VIIRS and near-real-
time (NRT) for NOAA-20 VIIRS with the MSL12 processing were
obtained from the NOAA CoastWatch site, featuring a pixel
resolution of 750 meters at the nadir. This dataset included
normalized water-leaving radiance spectra nL,(A), which were
converted to remote sensing reflectance, R, (1), across visible
wavelengths at 410, 443, 486, 551, 638, and 671 nm on SNPP
VIIRS, and 411, 445, 489, 556, 642, and 667 nm on NOAA-20
VIIRS, and Level-2 quality flags. Flag exclusion criteria were applied
to pixels meeting any of the following conditions: land, cloud, sea
ice, atmospheric correction failure, stray light (except for LISCO),
bad navigation quality, high or moderate glint, viewing angles
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exceeding 60°, and solar zenith angles exceeding 70°. Selection of
files required at least > 50% valid pixels in a given set, i.e.,, to be free
of flagged conditions. Additionally, pixels with negative water-
leaving radiance were excluded from averaging. In matchups of
satellite to in-situ data from 1 pixel closest to in-sifu measurements
was considered and a 3x3-pixel grid box (2250 m x 2250 m)
centered at the AERONET-OC site for the comparison with
AERONET-OC data (Hlaing et al.,, 2013; Gilerson et al., 2022).
The average R, (A1) and standard deviation (STD) between pixels,
along with their geometric and radiometric properties, were
recorded. The bidirectional reflectance distribution function
(BRDF) have been applied to the MSL12-derived VIIRS ocean
color data as well as to OLCI data with MSL12 processing
(Gordon, 2005; Wang, 2006; IOCCG, 2010).

2.2.2 OLClI data

The OLCI S3A and S3B Level-2 full-resolution data with 300-
meter spatial resolution per pixel (EUMETSAT, 2021; Mikelsons
et al., 2022) with the Operational Baseline Collection-3 (OBC-3)
processing (Zibordi et al., 2022) were acquired from the NOAA
CoastWatch website (https://coastwatch.noaa.gov/cwn/
index.html), focusing on the Chesapeake Bay area and Long
Island Sound. Each Level-2 file encompasses various geophysical
products related to the atmosphere and ocean, including aerosol
optical thickness, Angstrom exponent at 865 nm, water-leaving
reflectance at 413, 443, 490, 560, 665, 681, and 709 nm, sensor
zenith angle, solar zenith angle, and quality flags. The remote
sensing reflectance, R,; (4), is computed by dividing the
reflectance spectra by .
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OLCI Level-2 operational water reflectance products do not
include BRDF correction. This omission is due to historical usage
patterns, with primary interest focusing on coastal and inland
waters where the standard open-ocean BRDF approach is not
applicable. Mikelsons et al. (2022) showed that there are some
significant BRDF effects, both on the surface (Gordon, 2005; Wang,
2006) and in water BRDFs (IOCCG, 2010), over open oceans.
However, because there are no established BRDF correction
algorithms for a wide range of coastal waters considered in this
work, BRDF correction was not applied.

Pixels flagged under any of the following conditions were
excluded: invalid flag, land, cloud (including ambiguous and
marginal), coastline, solar zenith angle exceeding 70°, saturated flag,
moderate or high glint, whitecaps, and failed atmospheric correction.
It is important to note that this flag set differs slightly from the set
recommended by EUMETSAT for OLCI (EUMETSAT, 2022). A file
was selected if at least 50% of valid pixels in the set were free of flags.
As for VIIRS, a comparison with measured in-situ Chl-a was carried
out for 1 closest pixel and for comparison with AERONET-OC 7x7
(2100 m x 2100 m) pixel box was considered.

R, uncertainties from OLCI in the blue part of the spectra in
EUMETSAT atmospheric correction processing are higher than
those from VIIRS, especially in coastal waters (Zibordi et al., 2022;
Mikelsons et al., 2022; Gilerson et al., 2023). NOAA NCCOS
considered a special atmospheric correction (Wynne et al., 2018)
using SeaDAS and the subtraction of the Rayleigh component from
the TOA radiance. Later, OLCI TOA data were processed using
NOAA MSL12 and NASA I2gen algorithm. All these processing
schemes were considered with a focus on R,s(A) at the red/NIR
bands necessary to apply the RE10 algorithm for the detection of
algal blooms.

2.3 AERONET-OC data

Remote sensing reflectance (R,;) for VIIRS and OLCI satellite
sensors were assessed through comparisons with SeaPRISM
instrument (CIMEL Electronique, France) data at the Chesapeake
Bay and Long Island Sound (LISCO) stations, where SeaPRISM
radiometers are deployed on offshore fixed platforms and are part
of AERONET-OC network (Zibordi et al., 2009, 2021). Normalized
water-leaving radiances, nL,,(A), following AERONET-OC protocols
and incorporating BRDF correction based on open ocean approaches
(Zibordi et al., 2009, 2021), were acquired from the AERONET-OC
website for the designated sites. These radiances were transformed
into remote sensing reflectance at specific wavelengths. The Long
Island Sound Coastal Observatory (LISCO) site (Harmel et al., 2011)
upgraded its sensor head in August 2021 to match OLCI sensors with
bands at 412, 443, 490, 510, 560, 620, 667, 681, and 709 nm, for
detailed comparisons with OLCI data.

The ocean color data employed in this analysis were derived
from version 3 level 1.5 data, which underwent cloud screening and
quality control measures to ensure data accuracy. All satellite-to-in
situ matchups were conducted within a +2-hour window around
the satellite overpass time (Zibordi et al., 2009, 2021).
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2.4 Bio-optical model

To develop the NN algorithm, datasets, which connect Chl-a,
IOPs and R,((A), water reflectance spectra were simulated based on
the bio-optical model (Gilerson and Huot, 2017) with R, (A)
including the sum of elastic R,;°(A) component and fluorescence
component R,/(\); the latter was included because it is a part of the
reflectance detected by the broad I1 600-680 nm band. R,(A)
spectra were simulated with 1 nm resolution in the range of 400-
750 nm. The maximum of the peak of the fluorescence emission was
assumed at 685 nm, fluorescence quantum yield was assumed 1%;
the spectral shape of fluorescence was modeled as a Gaussian
spectral profile centered at 685 nm, having a full width at half
maximum (FWHM) of 25 nm (Mobley, 1994; Gower et al., 2004).

Above water elastic R,;°(A) was calculated following
Lee et al. (2002):

R(M)

R(4) = 052770

(1
where R;(A) is the remote sensing reflectance due to elastic
scattering just below the surface, which is calculated as:

R(A) = gu(A) + &u(d), )

u(2) = by(1)/(a(2) + by(2)) ®3)

where a(4) (m) and b,(A) (m™) are the total absorption and
backscattering coefficient spectra, respectively. Broadly used
empirically derived parameters (Lee et al., 2009) g = 0.125 and
£ = 0.089, which work well for moderate open ocean and coastal
waters were replaced with g; = 0.23 and g, = 0.089 equivalent to the
relationship based on our previous studies for a broader range of
water parameters (Gilerson et al., 2007, 2015).
The total spectral absorption coefficient, a(4), is modeled as

a(A) = a,(A) + ay(2) + ag(2) + aup(R), @

where the water absorption spectrum a,,(A) was obtained from
(Pope and Fry, 1997).

In coastal waters, a,,(443), a,(443) and ay,p(443) typically
have some correlation (even often weak) with each other IOCCG,
2006). Based on the data from the NOMAD Chesapeake Bay field
campaigns (Gilerson et al., 2015) and a;h(443) spectra in the Upper
Chesapeake Bay (Magnuson et al., 2004) the following relationships
at 443 nm were used in the model:

a,,(443) = a,,,(443)Chl-a = 0.031Chl-a” "> Chl-a
= 0.031Chl-a"®® for Chl-a < 60 mg/m’ (5a)
a,;,(443) = ;h(443)Chl—a = 0.019Chl-a for Chl-a > 60 mg/m3 (5b)

a,(443) = 1.1a,,(443) (6)

llNAp(443) =132 % O~04Chl—u0‘65 )

frontiersin.org


https://doi.org/10.3389/fmars.2024.1476425
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Gilerson et al.

According to Equation 5, a;h(443) gradually decreases with
Chl-a and remains constant after 60 mg/m3. a,(443) mostly
followed a,,(443) and ay,p(443) increases with Chl-a, but less
fast than Chl-a itself.

Chl-a were randomly distributed between 0.5 and 200 mg/m”.
The spectral phytoplankton absorption coefficient was obtained by
multiplying the Chl-a by a specific absorption coefficient (a;h(/l),

m? mg‘l),

ap(A) = Chl-a x ay,(1). (8)

The choice of a;h(/l) strongly influences the corresponding
remote sensing reflectance and the emission of fluorescence and
was modeled as the specific phytoplankton absorption coefficient in
the Upper Chesapeake Bay (Magnuson et al., 2004), shown in
Figure 1F with a gradual decrease with increasing Chl-a consistent
with Equation 5.

To simulate natural variability, a;h(443) were multiplied by a
random number drawn from a normal distribution (N(u, 62)) with
a mean u=1 and a variance 62=0.04: X; ~N(1,0.04). In a similar
manner, a,(443) and ayyp(443) in Equations 6 and 7 were
multiplied by X, ~N(1,0.09). The ranges of variability here and
below were based primarily on the published values from IOCCG
(2006), NOMAD and the authors” data for the Chesapeake Bay
(Gilerson et al., 2015).

The spectral absorption coefficients of both CDOM and NAP were
modeled as having an exponentially decreasing shape with wavelength
and referenced to 443 nm (Bukata et al.,, 1995; Stramski et al., 2001):

a,(A) = ay(443)e %), )

o

anap(A) = ayap(443)e Swrd—43) (10)

S, was modeled as a normal distribution 0.017N(1, 0.022) and Syup
as 0.010N(1,0.01%). Equation 7 was also used to determine the
concentration of NAP, [NAP] (g m>):

[NAP] = ay,p(443)/ay,, »(443), 5

where a:,AP(443) (m® g™) is the mass-specific absorption coefficient
of NAP at 443 nm, which was simulated as a uniformly distributed
random number 0.03 < a;mp(443) < 0.05 (m? g’l). The [NAP] was
typically in the range of 0-30 g m™.

The total scattering coefficient (b(A), m™') was simulated as a
sum of three components:

b(A) = b, (A) + by, (A) + byap(4) - (12)

Scattering by NAP was modeled using a power law function
(Stramski et al., 2001; Twardowski et al., 2001) as follows:

550

byap(A) = bNAp(550)(7)yz, (13)
byap(550) = by,p(550)[NAP), (14)

where b;]AP(SSO) =0.5N(1,0.04) (m? g'l) is the mass-specific
scattering of non-algal particles at 550 nm, and 9, = 0.8N(1,0.0049).
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The scattering by phytoplankton was calculated as the
difference between their attenuation and absorption coefficients
(Voss, 1992; Roesler and Boss, 2003):

by(A) = 6(A) - ap(A) (15)

The attenuation coefficient itself was modeled as a power law
function (Voss, 1992),

550
e
where ¢,;,(550) = 0.3Chla® and 7, = 0.8.

In the simulations, the backscattering coefficient (b (1), m™)

() = ¢,1,(550) ), (16)

was modeled as the sum of the contributing components,

by(A) = by (A) + by pibya(A) + by napbnap(A), 17)

where by, (1) is obtained according to Morel, 1974 and Eb ph and
Bb ~nap are backscattering ratios for phytoplankton and non-algal
particles assumed to be independent of the wavelength
(Twardowski et al., 2001; Sydor and Arnone, 1997). Typical
values were used as I;bph(/l) =0.006 and by yap(A) = 0.02.

120000 different conditions were simulated using this model
with 70% used in generation and 30% in testing and validation.

As was discussed above, several field R,, datasets were available
for analysis together with (or without) some measurements of water
parameters. Four R, sets are shown in Figure 1 with corresponding
water parameters; some of these parameters (shown in grey) were
not measured directly but estimated using available algorithms.
Examples of simulated R, spectra are also shown in this figure. It
should be noted that there was a relatively small flexibility in the
selection of parameters described above, which produce spectra
similar to the ones in the bloom areas with typical high CDOM and
corresponding low R, in the blue, spectral features in green-red and
a very strong peak around 700 nm comparable with the peak in
the green.

In the model development, R,(A) spectra were supposed to be
similar not only to the field spectra in Figure 1, but there were also
supposed to be consistent with the good performance of blue-green
algorithms for Chl-a retrievals. This should be true at least in the waters
with low to moderate Chl-a and RE10 NIR/red bands algorithm for a
broad range of waters and Chl-a concentrations, which were observed
previously for the Chesapeake Bay (Gilerson et al., 2015).

The ranges of water parameters in the Chesapeake Bay are Chl-a =
0.06-165 mg/m’, CDOM absorption at 443 nm a,(443) = 0.015-2.0
m’ absorption of non-algal particles aysp(443) = 0.001-3.0 m’,
scattering at 443 nm b(443) = 0.3-40.3 m™ with the lowest value
typically in the Lower Bay and the highest in the Upper Bay
(Magnuson et al., 2004). For LIS Chl-a = 1-25 mg/m3, a,(440) =
0.012-0.5 m™, an,p(440) = 0.02-0.42 m™", particulate backscattering at
650 nm by, = 0.005-0.06 m™" with the lowest value in the eastern part
of the Sound and the highest in the western part (Aurin et al,, 2010).
In the model Chl-a values were randomly distributed between 0.5 and
200 mg/m’, a,(443) were mostly in the range of 0-3 m™ with
decreasing quantities till 6.5 m™ and anap(443) = 0-25 m™.

Several metrics were used in the evaluation of Chl-a algorithms
performance which includes a coefficient of determination R?, root
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mean square error (RMSE), relative error e = RMSE/mean as well as
recently suggested metrics (Seegers et al., 2018) mean absolute error

S[logyo (M;) — logio (Q)]

MAE =10/ | =L , (18)
n

and bias

i log;o (M;) - logyo (Q))
i=1

bias = 10/ (19)

n

It should be noted that in some figures Chl-a values are shown
in the logarithmic scale, while RMSE and e were calculated based on
the linear scale.

2.5 NN algorithm development, analysis of
the optimized structure and validation

In continuation of the approach used by (El-Habashi et al., 2016),
their simple one-hidden layer multilayer perceptron (MLP) structure
was first applied to a newly developed synthetic dataset, to produce a
minimum benchmark against which to improve with the introduction
of the VIIRS imaging I1 band to complement the 486, 551 and 671 nm
band inputs as well as with modifications to the neural network itself.
Variables a,,(443), a(443), a,(443) and b,(443) were kept as outputs.
Chl-a was determined also as an independent output parameter.
Performance results are visible in Table 1. The introduction of the
imaging I1 band immediately provided a large performance boost on all
four output parameters. However, changes in the neural network
structure with the introduction of more neurons in the single hidden
layer and the introduction of Rectified Linear Units (ReLU) as the
activation function produced a negligible change in the network
performance. Similarly, the introduction of a second hidden layer also
produced a negligible change in the network performance, indicating
that the simpler neural network utilized in previous studies is already
capable of capturing the relationships between inputs and outputs well.

In original tests, the bio-optical model was slightly different from
the one described above (specific phytoplankton absorption consisted
of the micro- and picoplankton absorption with a weighting factor
from Ciotti and Bricaud, 2006). In the final version, R? coeflicients
were higher as shown in Table 1 in parentheses. Figure 2 contrasts the
performance of the NNs in the 3-band and 4-band versions against
the expected values for a,,(443), a,(443), a,(443), and b,(443) as
measured during the CCNY 2013 cruise in the Chesapeake Bay. In all
cases, including the VIIRS imaging I1 band noticeably improves the
retrieval quality. In these tests, Chl-a were determined from aj,,(443).
When Chl-a were used directly as one of the retrieval parameters, R*
for Chl-a became 0.984.

If large datasets of Chl-a and R, are available for relevant water
conditions, the training can be carried out directly to retrieve Chl-a
and other water parameters from R, spectra (Hieronymi et al., 2017;
Pahlevan et al, 2020). While only 70 points of the field data were
available for the Chesapeake Bay, the training gave results quite similar
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to the ones from the bio-optical modeling, however, some additional
tuning was still required, and this option was not further explored.

3 Results
3.1 Preliminary studies

3.1.1 Performance of different Chl-a algorithms

A Satlantic HyperSAS (Halifax, Canada) system was installed from
2009 to 2014 at the LISCO site (Harmel et al., 2011) together with the
SeaPRISM instrument on top of a retractable tower at approximately
12 m above the water surface. Three spectrometers observed
downwelling irradiance E,, sky radiance L, and total radiance L, in
the wavelength range of 305-905 nm with 180 equally spaced
channels. HyperSAS data were processed by the 3C model
(Groetsch et al,, 2017, 2020) to minimize the impact of the sky
reflectance from the windy surface and to produce reliable R,; data.
Several algorithms to determine Chl-a were applied to analyze water
conditions in the area of LISCO during the year of 2013, which
included conditions of algal blooms. Algorithms included standard 3
bands OC3V algorithm (based on 443, 486 and 551 nm), 6 bands
OC6P algorithm (O'Reilly and Werdell, 2019), NN algorithm
(El-Habashi et al, 2019), and NIR/red (red edge) (Gilerson et al.,
2010), further referred to as RE10, based on R,{(709)/R,(665) ratio.
The latter algorithm proved to perform well in a very broad range of
Chl-a > 5 mg/m3 and other water components (Smith et al., 2018;
Pahlevan et al., 2022). All algorithms except RE10 performed similarly
at Chl-a < 10 mg/m’ and substantially underestimated Chl-a in bloom
conditions in 2013, where only RE10 indicated Chl-a up to 40 mg/m”.

3.1.2 R, uncertainties

It has been well known for a long time that main R,
uncertainties over coastal waters occur at the blue bands 412 and
443 nm (IOCCG, 2019), which motivated the development of other
algorithms avoiding the 443 nm band on VIIRS sensors (Ioannou
et al., 2014; Gilerson et al., 2015; El-Habashi et al., 2016) and NIR/
red algorithms on MERIS and OLCI sensors, which have 709 nm
band (Gitelson, 1992; Moses et al., 2009; Gilerson et al., 2010).
While main uncertainties in the blue were usually attributed to
inaccurate aerosol models in the atmospheric correction process
(IOCCG, 2019), a recent analysis based on the decomposition of R,
uncertainties spectra showed that some uncertainties may be
associated with Rayleigh-type components and thus might be
related to small variability (about 1.5%) of the Rayleigh radiance
(Gilerson et al., 2022, 2023) or Rayleigh noise (Malinowski et al.,
2024). It was also shown that OLCI uncertainties in coastal waters
in EUMETSAT processing are about 50% higher than uncertainties
for VIIRS in the blue (Mikelsons et al., 2022; Zibordi et al., 2022;
Gilerson et al., 2023) due to the different atmospheric correction
schemes (Mikelsons et al., 2022) with NOAA MSL12 OLCI
processing having R, uncertainties about the same as for VIIRS.
Further, NASA OLCI processing also showed the same level of
uncertainties as those from VIIRS and NOAA MSL12 OLCI. These
effects are additionally demonstrated in Figure 3, where matchups
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TABLE 1 Performance summary in R? of the neural networks tested on the synthetic dataset, original (final) bio-optical model.

Description Network structure = Activation
Original MLP 3x6x4 Sigmoid

11 band 4x6x4 Sigmoid
More neurons 4 x36 x4 ReLU

2 hidden layers 4x36x30x4 ReLU

are shown for VIIRS, OLCI EUMETSAT, and OLCI MSL12 data

processing at the LISCO AERONET-OC site.

High uncertainties can be clearly seen at the 443 nm band for
VIIRS with a much more stable 490 nm band. Results are similar in
OLCI MSL12 data processing. In EUMETSAT data processing, all
bands below 560 nm show high uncertainties. Uncertainties at 665
nm and 709 nm are also high but these R,; are related to low Chl-a <
10 mg/m” conditions in LIS, they are not of the main interest for the
application of the NIR/red algorithm, which works reliably mostly
for higher Chl-a. At the Chesapeake Bay AERONET-OC station
with waters clearer around the AERONET-OC station than at the
LISCO site, correlations were higher for OLCI (not shown).

3.1.3 Evaluation of the performance of Chl-a

algorithms in algal bloom conditions

Blooms often occur near salinity fronts in the Upper Bay and
Potomac River. Satellite imagery for the Chesapeake Bay with
bloom conditions in the Upper Bay, processed with OC3V for
VIIRS, with RE10 using EUMETSAT OLCI imagery with default
and NCCOS atmospheric corrections together with the Chl-a
distributions received with an additional band ratio algorithm.
Chl-a in the bloom areas from different algorithms were 27-140

apn(443) ay(443) a4(443) by(443)
0.601 (0.726) 0.588 (0.753) 0.546 (0.738) 0.555 (0.635)
0.722 (0.80) 0.796 (0.823) 0.640 (0.807) 0.749 (0.77)
0719 0.794 ‘ 0.635 0.743

0.722 0.798 ‘ 0.639 0.746

mg/m’ for the Upper Bay and 30-200 mg/m’ for the Potomac
River. These data had to be reconciled between different satellite
sensors and algorithms to develop a combined VIIRS-OLCI
product for bloom detection.

At the beginning, Chl-a were estimated in the bloom areas in the
Chesapeake Bay and in the Potomac River for May 13, 2020, using
four different algorithms, including the standard three bands OC
algorithm for VIIRS OC3V, the band ratio VIIRS algorithm with I1
band (chlC) (Gilerson et al., 2021) described below in Section 3.1.4,
OLCI RE10 algorithm with standard OLCI AC and with NCCOS AC
(Wynne et al,, 2018). Two bloom areas have been identified: in the
Upper Bay and in the Potomac River. While the shapes of the bloom
areas on satellite images looked similar, it was found that OC3V had
the lowest Chl-a values around 30 mg/m® and RE10 = 50 - 140 mg/
m?” in the Upper Bay and above 200 mg/m? in the Potomac River with
chlC values were in the middle of these ranges. The focus of this work
was a more detailed evaluation of these algorithms and the newly
developed NN algorithm in various bloom conditions.

3.1.4 Band ratio algorithm with 11 band
The first tests (Gilerson et al., 2021) proved the utility of 11 band
in detecting higher concentrations of Chl-a values. Because of the
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complexity of water IOPs spectra in the I1 range, including
variability of CDOM and mineral concentrations in various areas,
it was clear that the algorithm eventually needs to be implemented
in a NN format. But, it appeared useful to evaluate a multi-band
algorithm for the estimation of Chl-a in a wide range of water
conditions. The algorithm was developed using available band
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ratios, which include I1 band. A proper band combination was
determined by tests on the synthetic dataset discussed above.
Application of the first version of the algorithm with I1 band,
which was calibrated on the field data showed a strong dependence
of the estimated Chl-a on the concentration of suspended
particulate matter (SPM) with sediment concentrations estimated
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from (Nechad et al,, 2010) based on R,; at 671 nm. In the next
iteration, the algorithm was corrected for the impact of SPM
concentration. It was also found that the algorithm often
underestimates Chl-a at Chl-a < 10-15 mg/m’ and it was therefore
combined with the standard OC3V algorithm at Chl-a < 15 mg/m’.

The algorithm was tuned using MATLAB curve fitting toolbox
on 43 R,,-Chl-a combinations from the CCNY 2013 cruise and then
further on field data from M. Ondrusek’s measurements in 2014-
2021 (see Figures 4D and F) with a total of 70 points. It was
implemented with the final result as chlC:

SPM = 384.11 x mR,(671)/(1 — mR,(671)/0.1747) + 1.44 (20)

ratio = (R,4(486) + R,((551))/R,,(638) x SPM"? (21)
ChIC = k x 4604 x ratio™**? (22)

chIC = ChIC if ChIC > 10 mg/m’ (23a)

chlC = OC3V if ChIC < 10 mg/m’ (23b)

10.3389/fmars.2024.1476425

Coefficient k in Equation 22 is a tuning parameter, which can be
further changed. In this version, coefficients are different from the
original version (Gilerson et al., 2021), when the algorithm was tuned
only on the data from the CCNY 2013 cruise. The performance of the
algorithm with k =1.0 is demonstrated below in Figures 4D, F.

3.2 Validation of VIIRS algorithms on
satellite and field data

A total of 70 matchups were included in the tests (43 from
CCNY 2013, 22 from Ondrusek 2014-16, and 5 from Ondrusek
2021 measurements) for the validation of NN3, NN4 and VIIRS
standard OC3V algorithms on the field data collected across the
Chesapeake Bay. Results are shown in Figures 4A-C. The
performance of chlC and RE10 on the same field dataset is
shown in Figures 4D-F. Among the first three algorithms in
Figure 4 the NN4 algorithm shows better performance, although
it is worse than the performance of chlC, where all points were
used in the tuning and RE10, for which 709 nm band is not
available on VIIRS. In Figures 4D-F chlC is plotted against field
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FIGURE 4

Test of algorithms on the field data: (A) 3 bands NN;
(F) chlC vs RE10.
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(B) 4 bands NN; (C) OC3 VIIRS; (D) chlC vs in-situ Chl-a; (E) RE10 vs in-situ Chl-a,
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Chl-a and against RE10; RE10 against Chl-a is also shown for the
comparison. High correlations exist for all comparisons in a broad
range of conditions in the Chesapeake Bay, but these relationships
are not always valid for other types of waters. RE10 was also
considered as OC3 VIIRS if RE10 <10 mg/m”.

RE10 was used with the expression (24), which matches the
original version in Gilerson et al,, 2010, but does not produce
complex numbers at low Chl-a

RE10 = 46.0676(R,,(709)/R,s(665))"**® —22.6012  (24)

Further tests were performed on SNPP VIIRS data 2012-2022
(NOAA MSLI12 data processing) compared with in-situ data from
the Chesapeake Bay program (https://www.chesapeakebay.net)
and there were 2021 measurements at 5 locations. Results are
shown in Figure 5. The stray light flag was on, HIGLINT and
MODGLINT flags were suspended since they did not change the
algorithm performance significantly. Most of the points are in the
Chl-a range below 20 mg/m>. However, all algorithms, including
the OC3 algorithm, retrieve high Chl-a values reasonably well; good
performance of OC3 is most likely due to the specific combination
of the water parameters in bloom areas, which is not typical for
coastal waters with high Chl-a. The time window between satellite
and in-situ measurements was +4 hours. Based on our studies in the
Chesapeake Bay, stricter time limits would reduce the number of
points but would not improve statistics.

Here and in the figures below the solid grey line marks the 1:1
relationship, while the upper and lower dashed lines mark the limit
of Y = X*2 and Y = X/2, respectively, where Y are predicted values
and X are expected values.

3.3 Comparison of Chl-a retrievals by VIIRS
and OLCI algorithms

Performance of the RE10 algorithm for OLCI sensors was
evaluated with NCCOS, EUMETSAT, MSL12 and NASA
atmospheric correction by the comparison with VIIRS Chl-a in
bloom areas with a very broad range Chl-a from 2 mg/m® to over
100 mg/m’. Because the RE10 algorithm does not provide accurate
retrievals for low Chl-a and the OC4 algorithm for OLCI was found not

10.3389/fmars.2024.1476425

to be always reliable in the waters of the Chesapeake Bay, comparisons
were carried out using the RE10M algorithm, where RE10 was replaced
with OC3V Chl-a for Chl-a < 6 mg/m®. Tt was found that the most
consistent matchups between VIIRS and OLCI retrievals come from
EUMETSAT and MSL12 processing. Examples of such matchups for
the Upper Bay and Potomac River bloom areas are shown in Figure 6.
NN4 versus RE10M shows better results than other algorithms. For low
Chl-a < 6 mg/m®, OC3V and chIC matchups with REIOM are along 1:1
line because OC3V retrievals are used in all these cases. Since VIIRS
algorithms matchups vs RE1I0M in EUMETSAT and MSL12 matchups
produce similar results, both processing approaches from EUMETSAT
and MSL12 were recommended for the combined OLCI product. It
should be noted that, according to Mikelsons et al. (2022), EUMETSAT
processing is more sensitive to the sun glint, which was shown in
our comparisons.

3.4 Combined products, and
satellite imagery

Based on the whole study, NN4 VIIRS and OLCI REI10
algorithms were recommended for the combined VIIRS-OLCI
product. RE10 was used in combination with OC4 (with OC4 if
RE10< 10 mg/m® and OC4 <10 mg/m’ or OC4 < 10 mg/m® and clear
water conditions based on the diffuse attenuation coefficient
threshold K,;(490) < 0.25 m™). Examples of the imagery from both
algorithms are shown in Figure 7 for May 18, 2021, when field
measurements were also available at 5 locations with the coordinates
shown in Table 2, together with measured Chl-a at these points and
retrieved from OC3, chlC, NN3, and NN4 algorithms from VIIRS
and RE10 from OLCI. Note that part of the area on the OLCI image is
masked because of clouds. As before, a slight overestimation of Chl-a
is seen in both images in very turbid waters in the Upper Bay,
Delaware Bay, and some tributaries. Adjustment coefficients for chlC,
NN3, and NN4 are also given in Table 2. Relative spectral response
(RSR) functions were not taken into account in the NN algorithms
development to simplify tuning of the algorithms based on the bio-
optical model only and comparison with field measurements; for the
same reason RSR for the 11 band was considered as RSR = 1.0 for the
whole range of wavelengths 600-680 nm. The actual RSR for this

NN Chl-a (VIIRS) pred. performance

FIGURE 5
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FIGURE 6
Matchups between VIIRS and OLCI Chl-a retrievals in bloom areas.

band is close to RSR = 0.9, which matches the adjustment coefficient
for NN4. The NN3 and chlC algorithms provided similar images but
with some adjustments of coefficients, which were less stable than
those from the NN4 algorithm. Other examples of images from
VIIRS and OLCI for bloom conditions on May 21, 2021, and non-
bloom conditions on April 4, 2024, are shown in Figure 8.

The distribution of absorption and backscattering coefficients at
443 nm retrieved from NN4 together with the SPM concentration
based on Equation 20 for May 18, 2021, are shown in Figure 9,
providing additional information about water parameters in the
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Chesapeake Bay and specifically in the bloom areas, which helps to
understand bloom conditions in more details. As can be expected,
a4(443), by(443) and SPM have similar patterns since they are
mostly proportional to the concentrations of non-algal particles, a,,
(443) and ag(443) are high in the bloom areas.

The NN4 algorithm was developed based on SNPP VIIRS bands,
VIIRS on NOAA-20 has several slightly different bands as was shown
above, specifically for the NN algorithm there are M3-M5 bands
centered at 489, 556, and 667 nm, and I1 band centered at 642 nm
and NN4 algorithm required additional tuning. While the effects of
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FIGURE 7
OC3 VIIRS (left panel), NN4 VIIRS (middle panel) and OLCI (right panel) Chl-a retrievals in bloom areas on May 18, 2021.

TABLE 2 Chl-a measurements and retrieval comparison for May 18, 2021.

Lat/Lon (West) Ondrusek SNPP VIIRS OLCI N20 VIIRS
OC3V chlC (1.6) NN3(0.85) NN4 (0.9) RE10 OC3Vv NN4 (0.7)
39.046 76.392 133 82 128 125 126 128 253 110
39.053 76.405 129 91 135 133 133 114 NaN 126
39.055 76.423 161 143 143 156 154 286 NaN 118
39.073 76.403 137 80 121 126 126 164 NaN 163
38.964 76.452 73 60 77 104 96 85 313 104
Chl-a OC3 VIIRS Chl-a NN4 VIIRS
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FIGURE 8
OC3 VIIRS, NN4 VIIRS and OLCI Chl-a retrievals with bloom conditions on May 21, 2021 (top row) and non-bloom conditions on April 15, 2024
(bottom row).
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FIGURE 9
Distributions of absorption, backscattering coefficients (m™), in the Chesapeake Bay from NN4 VIIRS algorithm, SPM (g/m?) from (NeChad et al., 2010).

spectral differences between VIIRS-SNPP and VIIRS-NOAA-20 at  there are important effects of M4 band difference between VIIRS-
the blue bands are negligible (e.g., within ~0.1% at M2 band), there =~ SNPP and VIIRS-NOAA-20, because R,; from NOAA-20 (at 556
are large differences at M4 (green) and M5 (red) bands (e.g., ~16% at  nm) is usually much closer to the R, peak than that from SNPP (at
M4 band for open oceans) (Wang et al., 2020). Over coastal regions, 551 nm). The same NN4 algorithm was used for VIIRS NOAA-20
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FIGURE 10
Comparison of NOAA-20 VIIRS images retrieved with OC3V and NN4 algorithms.
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FIGURE 13

OC3, NN4 Chl-a from VIIRS and OC4 from OLCI in LIS on April 16, 2024.

bands but with the coefficient 0.65. Images for OC3V and NN4 for
NOAA-20 VIIRS are shown in Figure 10 and Chl-a are added to
Table 2. Chl-a from OC3V and NN4 in the same scale looks similar to

SNPP Chl-a distributions. For OC3V Chl-a values at in-situ

measured points match less accurately with a strong overestimation
at two points and were not processed at three other points. NN4 for
NOAA-20 is less accurate than for SNPP but can be also

recommended for the joint product.
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3.5 Applications of the developed
algorithms to the waters in Long
Island Sound

The performance of the NN4 algorithm was validated on the
field data in Long Island Sound. Field data were acquired during
cruises in 2018-2023 and included radiometric measurements and

Chl-a (Sherman et al,, 2023). Results for different algorithms are
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shown in Figure 11. Most of Chl-a values are below 25 mg/m3, the
range that was not the main focus of the NN4 algorithm. The best
performing algorithm is OC4 followed by OC3 and NN4. However,
all these algorithms perform quite well for Chl-a > 2 mg/m® and
much worse below this value. The NN4 algorithm was used with a
coefficient of 0.6, while it was 0.9 in the Chesapeake Bay for SNPP
VIIRS. The difference in coefficients might be explained by
differences in a;h(l) with shifts in phytoplankton species
(including size and Chl-a packaging), between the time periods in
LIS and in the Chesapeake Bay. Optical differences in the water may
also influence the bio-optical model. More details about this
difference should be further studied.

There were few matchups with VIIRS for field data used in
Figure 11. Sherman et al. (2023) had OLCI retrievals corrected with
the Polymer atmospheric correction algorithm and a bio-optical
model for moderately turbid waters (Steinmetz et al., 2011), which
resulted in good agreement with field observation across the Sound.
The performance of algorithms was evaluated at the LISCO site for
the period of August 2021-May 2022. The SeaPRISM instrument
has bands similar to OLCI bands, and there were no direct field Chl-
a measurements. Chl-a were estimated by the OC4 algorithm and
compared with those from the NN4 and OC3 algorithms with
VIIRS bands, with R,; determined from the SeaPRISM bands using
an adjustment based on the relationship between bands from the
synthetic dataset. The NN4 and OC3 algorithms perform very
consistently in the whole range of Chl-a from 2-25 mg/m’ as
shown in Figure 12. However, there were no in-situ Chl-a data to
confirm these retrievals. Images of Chl-a in LIS based on OC3 and
NN4 retrievals for VIIRS and OC4 for OLCI are shown in Figure 13
and are very consistent with each other generally confirming the
good performance of algorithms in Figure 12. Both NN4 and OC3
algorithms for VIIRS can be recommended for the joint product
with OLCI OC4.

4 Discussion and conclusions

Satellite data and imagery from SNPP and NOAA-20 VIIRS
sensors and Sentinel-3A and 3B OLCI sensors were analyzed
together with field data to develop the combined product for the
estimation of Chl-a in two large US estuaries: the Chesapeake Bay
and Long Island Sound to improve detection of algal blooms. The
bio-optical model was developed to satisfy a broad range of
conditions in waters from low Chl-a and corresponding
absorption and backscattering coefficients in fresher reaches of
the estuaries, with a switch for higher values in areas with high
Chl-a and phytoplankton bloom conditions. The neural network
(NN4) algorithm was developed for the retrieval of Chl-a and other
water parameters from VIIRS in the Chesapeake Bay, which
reasonably matches in-situ data. All VIIRS imagery used was
from NOAA processing using MSL12 atmospheric correction.
Based on the long-time knowledge about the vulnerability of the
R,, at 412 and 443 nm bands over coastal turbid waters, these bands
were excluded from potential algorithms. The NN4 algorithm
utilizes SNPP VIIRS four bands centered at 486, 551, 638, and
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671 nm, which includes data from the imaging I1 600-680 nm band
centered at 638 nm. It is demonstrated that the inclusion of this
band data significantly improved retrieval of Chl-a and other water
parameters in comparison with the previous versions of similar
algorithms, which utilized only three 486, 551, and 671 nm bands.
Analysis of several atmospheric correction and processing
approaches from EUMETSAT (OBC-3), NOAA (MSL12), and
NASA (L2gen) for OLCI for the application of the NIR/red RE10
Chl-a algorithm that requires accurate R, values at 665 and 709 nm
bands showed that both MSL12 and OBC-3 data can be
recommended for the combined product.

The NN4 and RE10 algorithms were analyzed in various water
types demonstrating consistency during algal bloom conditions. These
algorithms were selected for the multi-sensor product to support algal
bloom detection in the Chesapeake Bay. The OC4 algorithm replaces
RE10 for Chl-a < 10 mg/m®, so VIIRS and OLCI Chl-a retrievals are
consistent for the broad range of conditions in the Chesapeake Bay.
The R, from the bio-optical model were re-trained to develop a NN4
algorithm for NOAA-20 VIIRS, which showed mostly Chl-a similar to
those from the NN4 for SNPP VIIRS. In LIS during the whole period
of study, there were no in-situ Chl-a above 30 mg/m3. The NN4, OC3
and OC4 algorithms showed approximately the same performance
and can be recommended for the estimation of Chl-a in LIS with the
switch to RE10 for OLCI in case of higher Chl-a.

Further examination is recommended to determine if the
combined NN4, OLCI with a switch to OC4 under low Chl-a
conditions is accurate and provides the best estimate of Chl-a when
switching water classes from coastal to offshore. This ability to
provide consistent Chl-a from coastal to offshore, with improved
cloud clearing capability through a multi-sensor approach, would
support improved fisheries modeling capability, improved bloom
monitoring, and the development of an improved long-time-series
data of Chl-a to determine changes in primary productivity under
changing climate conditions and in response to managing nutrient
loading into coastal systems.
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AB-LSTM: a mesoscale
eddy feature prediction

method based on an improved
Conv-LSTM model

Xiaodong Ma, Lei Zhang*, Weishuai Xu and Maolin Li

Department of Military Oceanography and Surveying, Dalian Naval Academy, Dalian, China

Mesoscale eddies are the most important mesoscale phenomena in the oceans,
and determining how to predict their spatial and temporal characteristics is a very
challenging task. Most previous studies focused on the accuracy of full-domain
prediction and ignored the accuracy of single-eddy prediction. To solve this
problem, in this paper, we first apply multi-year sea surface height data to
produce a spatiotemporal sequence sample dataset with a bidirectional
prediction mechanism. Then, we introduce an adversarial generative
mechanism through stacked spatiotemporal prediction blocks and rely on the
strong generative ability of the generative adversarial network models to
construct an adversarial bidirectional long- and short-term memory model
(AB-LSTM). Next, the mesoscale eddy mixing algorithm is used to extract the
matching eddy pair features from the real and predicted data, and several
evaluation metrics are used to conduct error analysis. The experiments yield
the following results. Prediction sequence days 1-7: the root mean square error
(RMSE) values are 1.97-7.70 cm, the structural similarity index (SSIM) values are
>0.61, the accuracy is >54.6%, and the eddy centre distance error is 6.34 km. The
result is 11.61 km, which is consistent with many spatiotemporal prediction
models and passes the generalisation test in many different sea areas. Finally,
we carry out single eddy prediction on the basis of the evaluation of the entire
prediction of the sea surface height and also obtain a more satisfactory
experimental effect. This method has a better prediction ability than the
original spatiotemporal method and has a certain reference significance for
mesoscale eddy spatiotemporal feature prediction technology and subsequent
underwater reconstruction.

KEYWORDS

mesoscale eddies, spatiotemporal sequence prediction, generative adversarial
networks, deep learning, sea surface height prediction, long short-term memory
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1 Introduction

Mesoscale eddies (MEs) are a special phenomenon that widely
occurs in the oceans. Their spatial scales are usually tens and
hundreds of kilometres, and their lifetimes vary from tens of days
to hundreds of days (Chelton et al., 2011). MEs are widely
distributed in the global oceans and have become an important
topic in research on ocean dynamics. According to the rotational
direction of the eddy, mesoscale eddies can be divided into two
categories: cold eddies (cyclonic eddies) and warm eddies
(anticyclonic eddies). In the Northern Hemisphere, cyclonic
eddies (CEs) rotate counterclockwise and anticyclonic eddies
(AEs) rotate clockwise. In the Southern Hemisphere, these two
types of eddies rotate in opposite directions (Zhang et al., 2013).
These types of eddies are widely distributed in the global oceans.
This rotation not only affects the fluid motion inside the eddy but
also has a significant impact on the ocean’s thermohaline
properties. Mesoscale eddies have an all-encompassing effect on
the marine environment. By adjusting local water masses, they
cause a huge difference in the thermohaline properties inside and
outside of their area. This difference not only affects the pattern of
ocean circulation but also influences the exchange of materials and
energy transfer in the ocean (Dong et al, 2014). In addition,
mesoscale eddies have a significant impact on marine
environment variability and are important drivers of dynamic
changes in marine ecosystems. The characteristics of mesoscale
eddies are particularly evident in specific oceanic regions, such as
the Kuroshio Extension (KE) region. Detailed statistics presented by
Itoh et al. (Itoh and Yasuda, 2010) indicate that the northern side of
the KE is dominated by a large number of anticyclonic eddies, and
these eddies usually have long life cycles. However, on the southern
side of the KE and near the flow axis, there are more CEs, and these
eddies usually have stronger intensities. Further analysis has
revealed that more than 85% of the anticyclonic eddies have
high-salt warm cores, whereas only 15% of the anticyclonic eddies
have cold cores. These features not only reveal the unique nature of
the mesoscale eddies in the KE region but also provide important
clues for understanding dynamic ocean processes in this region.

With the launch of ocean observation satellites, abundant large-
scale, long time-series, and high-precision ocean remote sensing
observation data have been obtained and processed, among which
long time-series observation data accumulated through many years
of observations have been widely used in analyses and forecasts of
oceanic phenomena (Oka and Qiu, 2012; Qiu and Chen, 2013). Liu
et al. (Liu et al,, 2012) conducted a multi-year statistical analysis of
the number, life cycle, amplitude, and radius of mesoscale eddies in
the North West (NW) Pacific Ocean. Wang et al. (Wang et al,
2016) found that the interannual characteristics of the KE region
may be affected by the instability of the main flow axis of the KE
under the effect of the topography, and the results of their
experiment were also affected by the instability of the main flow
axis of the Kuroshio under the effect of the topography. Qiu et al.
(Qiu and Chen, 2005) used the linear vorticity dynamics method to
back-project the high- and low-pressure signals and reached the
conclusion that the changes in the circulation characteristics of the
KE are associated with the high- and low-pressure anomalies in the
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eastern North Pacific Ocean. In terms of prediction of the
characteristics of mesoscale eddies, roughly classified, most
scholars have adopted two approaches. The first is to make
predictions using ocean numerical prediction models. Shriver
et al. (Shriver et al., 2007) successfully improved the resolution of
the prediction system by combining the Naval Layered Ocean
Model (NLOM) with the optimal interpolation method, which in
turn enhances the accuracy of the ME prediction. Trott et al. (Trott
et al,, 2023) used the hybrid coordinate ocean model (HYCOM) to
simulate future sea-level anomaly (SLA) data and then adopted an
SLA-based identification technique to identify MEs and predict
their future distribution. The second method is to make predictions
that are purely data-driven. This type of method can be subdivided
into the direct prediction of ME features (often multi-feature one-
dimensional sequence prediction). For example, Ashkezari et al.
(Ashkezari et al., 2016) successfully predicted ME lifetimes under
stable evolutionary conditions by employing an extreme random
forest regression method. Wang et al. (Wang et al., 2020) combined
extreme random trees and a long short-term memory (LSTM)
network based on mesoscale eddy trajectory and feature datasets to
predict several key features, including the latitude and longitude
coordinates. Wang et al. (Wang et al., 2021) incorporated meso-
historical latitude and longitude sequence data, sea surface height
data, sea surface temperature data, and other additional
information using a gated recurrent unit (GRU) network
combined with a temporal attention mechanism to improve the
prediction accuracy of the future centre coordinates of the ME. Ge
etal. (Ge et al,, 2023) developed a neural network for predicting the
trajectory of an ME in compliance with the physical constraints,
providing a more reliable and comprehensible method for the
prediction of the trajectories of MEs. Another prediction method
is to reconstruct a large sea surface height field (2-D) and
accordingly to use a mesoscale eddy identification algorithm to
obtain mesoscale eddy features in the predicted spatiotemporal
sequence. For example, Ma et al. (Ma et al., 2019) obtained an
accuracy higher than that of HYCOM for predicting the 7-day sea
surface height field using a more mature convolutional LSTM. Nian
etal. (Nian et al., 2021) proposed a neural network equipped with a
Memory In Memory (MIM) model and a spatial attention module
and obtained higher experimental results than those of many
spatiotemporal prediction methods. However, according to the
current state of research, the limitations of numerical modelling
methods in terms of prediction performance should not be ignored.
These limitations mainly stem from the nonlinear nature of MEs
and the sensitivity of numerical models to initial conditions.
Furthermore, these models mainly focus on the prediction of the
marine environment rather than directly targeting the ME, so it is
difficult to achieve a direct prediction. However, the pure data-
driven approach has a lower demand for the initial field, and the
current sea surface height observation data have the natural
advantages of being large, continuous, and accurate, making the
data sufficient to support the model computation. This also lays a
solid foundation for the pure data-driven deep learning network
prediction model.

The spatial and temporal smoothing properties of mesoscale
eddy trajectory and feature prediction enable continuous
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observations with a high accuracy, which often causes the spatial
and temporal properties between sequence units to have a nonlinear
correlation. However, previous studies tended to focus on the
predecessor sequence to the successor sequence prediction, which
inevitably leads to the propagation of the errors generated by the
predecessor prediction resulting in backward cumulative
propagation. Although Nian et al. (Nian et al., 2021) utilized
corresponding improvement measures for the non-stationary
state and error accumulation problems in sea surface height
anomaly (SLA) prediction, including optimising the memory and
planned sampling methods, and achieved lower prediction errors,
the error accumulation effect still occurred and was significant. This
was due to the fact that the planned sampling method is only used
to correct the weights via jump verification during the learning
process, thus turning the continuous error into the accumulation of
the stage error, rather than considering the entire range of errors in
the prediction sequence as a whole. In addition, since most long-
lived mesoscale eddies (more than 7 days) have strong continuity
and physical interpretability of the sea surface height field with and
without eddy features, we can make predictions from past
measurements and can also make predictions from past
measurements in the reverse direction. However, the related work
has not been carried out so far. Currently, the models commonly
used for spatiotemporal prediction are generally based on stacked
recurrent neural network (RNN) models or LSTM models. Thus,
the former links the correlation between the temporal and spatial
attributes, while the latter is more prominent in solving the
challenge of gradient explosion, leading to its wider use compared
with the RNN. However, native LSTM models tend to focus more
on non-Markovian attributes in the time series rather than spatial
feature variations in dealing with long time-series prediction
problems. For mesoscale eddy prediction tools that are time-
varying and highly dependent on variations in spatial feature
attributes (Yunbo Wang et al., 2017), one or the other is
important. Second, the mesoscale eddy prediction process is often
accompanied by eddy generation and elimination, as well as fusion,
and existing prediction tools pay more attention to the description
of high-value features rather than those of low-level features, which
is acceptable in semantic recognition-related applications, but
neither of them can be neglected in mesoscale eddy prediction.
To solve the problem of the continuity of the prediction caused by
unidirectional inputs and the problem of complex spatiotemporal
feature description, in this paper, we propose an adversarial
bidirectional LSTM (AB-LSTM) and a set of evaluation criteria
for mesoscale eddy prediction, which obtained a good comparison
effect compared with various spatio-temporal prediction models
and numerical ocean prediction models.

2 Data and methods
2.1 Data
2.1.1 AVISO satellite altimeter data

The SLA data used in this paper were obtained from a gridded
product provided by the Satellite Ocean Archive Data Centre
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(AVISO) of the Centre national d’etudes spatiales (CNES). This
dataset combines altimetry data from several satellites, such as
Jason-1, Topex/Poseidon, Envisat, GFO, and ERS-1&2, interpolated
to a 1/4°x1/4° grid spatial resolution on the Mercator projection.
The temporal resolution is interpolated from the original resolution
of 7 d to 1 d, the spatial range of the selected data is 25-45°N, 150-
170°E, and the time span is from January 1993 to December 2022.
These data have been widely used by many scholars (Dong et al.,
2014; Duo et al., 2019; Eden and Dietze, 2009), are the most
important sample and training data used in this paper, and are
also an important indicator for evaluating the quality of the
prediction data.

2.1.2 Marine model data

The HYCOM is a data-assimilated hybrid isodensity sigma
pressure (generalised) coordinate ocean model (Chassignet et al,
2009, 2007). The subset of HYCOM global sea surface height
forecasts hosted in GEE (Google Earth Engine) has been plugged
into a 1/12 degree latitude/longitude grid and has been widely used in
several previous studies (Metzger et al., 2010; Wallcraft et al., 2007).

2.2 Research methods

2.2.1 Mesoscale eddy identification methods

Since the launch of the T/P satellite on 25 September 1992 and
the output of data, the study of ocean mesoscale phenomena using
ocean altimetry data has been taking place for more than 30 years.
Mesoscale eddy identification algorithms have attracted the
attention of several scholars, who have successively proposed
physical parameters (Isern-Fontanet et al., 2004), flow field
geometry (McWilliams, 2016; Nencioli et al., 2010), and machine
vision algorithms (Franz et al., 2018; Xu et al,, 2019). Each of the
above-described algorithms has its own advantages, and in
combination with the reality of this paper, in this paper, we refer
to Ma et al (Ma et al., 2024).’s hybrid algorithm that combines flow
field geometry and closed contours as the mesoscale eddy
identification algorithm. Before carrying out the identification
process of the hybrid algorithm, we need to convert the SLA data
into the geostrophic flow field, which is calculated as follows:

yo_89h  _ _goh 0
foy fox

where u and v are the latitudinal and longitudinal components
of the geostrophic anomalies, respectively, g is gravitational
acceleration, f is the Koch parameter, and h is the height of the
sea surface anomaly.

The flow field geometry method is based on the geometric
characteristics of mesoscale eddies, which are defined as regions
with rotating velocity vectors, a centre at the velocity extremum,
and symmetrically rotating surrounding vectors. The SLA closure
curve method focuses on the detection of sea surface altitude closure
curves, which reduces the likelihood of non-closed eddies. To
reduce the effect of the subjectivity of the sea surface height
difference threshold and to balance the identification effect with
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the subjective threshold sensitivity, a hybrid algorithm that
combines the two methods is used to analyse the sea surface flow
field and the SLA data. When the goal is to detect mesoscale eddy
pairs with the largest overlapping boundaries, the stable
identification of the same eddy using both identification methods
is determined by setting generic custom thresholds (intersecting
area more than 50% and eddy centre distance of less than 1/12°).
The eddy centre of this eddy determined using the flow field
geometry method is considered the actual centre (Figure 1).

In addition, in order to demonstrate the advantages of the
recognition effect of the hybrid algorithm, 1000 days were randomly
selected from the sample data set (daily sea surface height data
within the time span of the data), and the flow field geometry
method, closed contour method and hybrid recognition algorithm
were respectively adopted for recognition. In addition, most experts
and scholars in this field conducted artificial recognition and judged
the recognition effect. The recognition accuracy and the proportion
that should be recognized but not recognized were evaluated by
horizontal comparison. The results are shown in Table 1.

2.2.2 Determination of input frame
data resolution

For the identification of a mesoscale eddy, since all the current
data-driven mesoscale eddy identification algorithms are based on
feature identification of grid point data, the selection of the region
and the determination of the data resolution play crucial roles, and
too large or too small a resolution will have a great impact on the
eddy identification results. Thus, in this paper, to ensure that the steps
of the data extraction, model training, metric evaluation, and testing
of the generalisation capability are characterised by continuity and
referability, we fixed the study area as 25-45°N, 150-170°E. Since the
resolution of the original altimetry data is 1/4°x1/4° i.e., the
dimension of the data in this part of the region is 80x80, to retain
the details of the original data and facilitate the construction of the
model, we interpolate all of the input-output data to 128x128 using
the Akima (Akima, 1970) interpolation algorithm.

2.2.3 Evaluation metrics for predicting mesoscale
eddy features

In previous mesoscale eddy predictions, most scholars have
tended to use the sea surface height forecast error and the mesoscale

140°E
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eddy trajectory prediction as the evaluation metrics and have
achieved better experimental results, but these two metrics cannot
evaluate the sea surface height prediction in a complete way. Thus,
in this subsection, we propose a mesoscale eddy prediction
evaluation framework to evaluate the mesoscale eddy prediction
metrics in a complete way. It should be noted that the evaluation
metrics introduced in this subsection need to be predicated based
on the basic information about the eddies obtained using the
mesoscale eddy mixing identification algorithm described in
Section 2.2.1, except for the root mean square error (RSME) and
structural similarity index (SSIM), which is a metric for regional
prediction results.

The characteristics of mesoscale vortices in the prediction can
be expressed in a variety of ways, and the most important ones
that can be obtained from the sea surface information field can be
divided into three categories: The first type is the numerical error
index of eddy prediction, which is reflected as the RSME index of
sea surface height information, which intuitively reflects the
overall error level of the predicted results and the real results.
The second category is the representation of the number of
vortices, because deep learning network is the best solution
generated based on probability theory in two-dimensional
space-time prediction process, while the application of
mesoscale vortices may result in low numerical error and high
distortion. For this reason, Num index, Accuracy index and Dist
index are introduced. These three indexes can directly show
whether the number and location of vortices in the prediction
sequence can be accurately expressed without losing the target.
The third category is the performance of the overall similarity. We
use the SSIM index to show the structural similarity of the whole
selection area. This consideration is that not only the prediction
level of the eddy itself needs to be reflected, but also the
complex interaction field around it needs to be well predicted
and expressed.

The first metric is the sea surface height prediction error. We
use the two-dimensional RMSE as the standard for this metric:

H W
SIS0, 30, ) = P(inj))* i=1,2,3... H; j
i=1j=1

RMSE - \/;
HxW

=1,2,3... W, (2)

Schematic diagram of mesoscale eddy extraction in KE region utilizing the hybrid recognition algorithm.
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TABLE 1 Results of horizontal comparison of recognition effects of
various recognition methods.

Recognition Failure to
Methods Accuracy (%) recognize* (%)

AE CE AE CE
Flow field geometry = 82.12 76.17 1.52 227
Physical parameter | 73.24 ‘ 70.56 236 3.52
Closed profile 79.38 ‘ 79.01 0.62 0.95
Hybrid (ours) 88.32 80.17 1.97 2.34

*Represents eddies that should be detected but are not and the bolded part is the one with
better value.

where H and W are the length and width of the data,
respectively, and P, and O, are the predicted and original
data, respectively.

The second metric is the mesoscale eddy prediction hit rate
(Accuracy) and mesoscale eddy trajectory error (Dist). We take the
distance of the same eddy centre (km) in the eddy identification
results corresponding to the real dataset and the prediction dataset
as the daily prediction trajectory error, in which the same eddy hit is
discriminated by the fact that the area inside the two eddy profiles
matches 75% or more of both the prediction results and real data in
the same day. Then, we sum and average the matched eddy centre
distances on that day to obtain the trajectory error indicator for that
day, which is calculated as follows:

Dist =S/ Geolrm) = o) + (ro(m) = yplm),

N,
Accuracy = N_P *100 %, (3)
0

Where # is the total number of identified matching eddies on
that day, xp, yo, xp, and yp are the horizontal and vertical
coordinates in the real data identified eddy results, and Np and Ny

are the number of predicted eddies in the region and the number of
real eddies, respectively.

The third metric is the sea surface prediction SSIM, which is one
of the indicators used to measure the structural similarity of the
data. When we have two datasets x, y, the structural similarity can
be defined as follows:

(zlux,uy + Cl)(zo-xy + CZ)

(.uxz + :uyz + Cl)(ax2 + Gyz + 52)

SSIM(x,y) =

= (le)z > 6 = (kzL)2 (4)

where y, is the mean of x, u, is the mean of y, o7 is the
variance of x, ofis the variance of y, and (o is the covariance of x
and y. L is the dynamic range of the pixel value, which is set to 100
in this paper, and k; and k, are constants, which are set to 0.01 and
0.03, respectively, in this paper.
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2.3 Data cleaning

Both ocean observation data and model prediction data have
the advantages of wide coverage and clear grid, but they also often
contain uncontrollable abnormal data. Due to the various data
sources used in this paper, in order to ensure the quality of the
data when forming the deep learning sample dataset, We will
perform data cleaning on the data used for training, testing,
verification and evaluation in this paper. Drawing on the
experience of several atmospheric and oceanic researchers, we
used the Mahalanobis denoising method (Eq. 5). First, the
sequence data of sea surface height is obtained, and the
Mahalanobis Distance (D,;) of each two-dimensional grid point
in the sequence is calculated. When D, is greater than three
standard deviations of the average distance, the grid point data is
considered as “abnormal”; when the number of “abnormal” grid
points exceeds 1% of the total grid points, the entire sequence
including the two-dimensional grid point data is discarded.

n-—14«

R E(x,-—u)(xf—u)T
i=1

Dy(x;) =/ (x; = )S™ (x; — ) (5)

3 Model

3.1 Spatiotemporal Long Short-Term
Memory Model

Suppose we are monitoring a dynamic system in which each
measurement is recorded at all locations in a spatial region
represented by an M x N grid. From a spatial point of view,
these P measurements observed at any time can be represented by
the tensor X € RP*MXN (Liy et al., 2018; Wangetal, 2021). From a
temporal point of view, the observations at ¢ time steps form a
tensor sequence of X;,X,,X3,X,,...,X;. The spatiotemporal
predictive learning problem is to predict the most probable length —
K sequence in the future given the two previous length-J sequences,
including the current observation:

XH]» s XHk =a ngaxP(Xm, ---’Xt+k|Xt—j+l» X)) (6)
Xi1see Xk

Sequence prediction has been a popular research topic in the field

of machine learning, and LSTM, as an emerging RNN model with
long- and short-term memory, has led to a breakthrough in dealing
with the solution of long-term-dependent problems. Shi et al. (Shi et al,,
2015) creatively used the input-to-state and state-to-state methods to
visually extract the inputs using stacked LSTM layers and achieved
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pioneering research results in this field. However, the current problem
is that this model needs to continue learning and predicting from the
previous state. This means that the continuity prediction will be based
on the previous prediction result, which will lead to the accumulation
of error and feature bias. To solve this problem, several scholars have
improved this model (Kalchbrenner et al., 2017; Patraucean et al., 2015;
Villegas et al.,, 2017). In this paper, we utilize a spatiotemporal long-
and short-term memory model (ST-LSTM) (Wang et al., 2022) as the
basis of the generation of the model. Based on the stacking technique of
the convolutional LSTM (Conv-LSTM), the model obtains higher
experimental results than other models by proposing spatiotemporal
memory flow and memory transfer across layers in several prediction
results. The model’s architecture is shown in Figure 2.
The formulas are as follows:

G, = tanh(Wog % X, + Wyg * H,_| + bg)
L =oc(Wy*X,+ Wy xH,_, +bp),
F,=0(WxX, + WypxH,_| + bg),
CG=FOC.L,+L(OG,
gi=tanh(W o+ X+ Wy M, _; +b,),
=0 (W X+ Wit M,;_ +b;),

ft=0'( fo*Xt+WMf*Mt71 +bf)’

M=f OM+i,(Og;
O0;=0(W, 04X+ WyoxH;_ 1+ W co*Ci+WyoxM;+bp),

H,=0,(Dtanh(W,*[C,;,M,]), (7)

where o'is the activation function, W corresponds to the process
weight of the corner scale, b is the bias term (distinguished by the
corner scale), X is the input sequence, C is the output cell, and H is
the hidden state. The most important feature of the ST-LSTM
model is that the memory cell is divided into two parts, namely, the
classical C, temporal cell and the M, spatio-temporal cell, and they
are distinguished in the level of the data flow. The C, stream is
passed continuously between the same corresponding layers of
different stacks according to the classical Conv-LSTM. The M,
stream is first passed layer by layer in the same stack, repeated as
the input of the next stack, and finally reduced to the same
dimension by a 1x1 convolutional gate and outputted as H,. This
is different from the spatiotemporal memory transfer method of the
classical Conv-LSTM to a large extent.

3.2 Generative adversarial network models

The main idea of the basic model of the generative adversarial
network (GAN) is to make the two neural networks continuously
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play the binary extremely large and extremely small game, during
which the model gradually learns the real sample distribution. In
general, the training is considered complete when the two networks
reach a Nash equilibrium in their want confrontation (Goodfellow
et al,, 2014).

The basic GAN model is shown in Figure 3. The input of the
generator network (denoted as G) is a random variable (denoted as z)
from the hidden space (denoted as p,) and the output of the generator
samples, the training goal of which is to improve the similarity
between the generator samples and real samples, so that they are
indistinguishable from those of the discriminator (denoted as D)
network, ie., to make the distributions of the generator samples
(denoted as  p, ) and real samples (denoted as p,q,) as identical as
possible. The training objectives of the native GAN network can be
summarized as follows: to minimize the distance between p, and
Pdata @and to maximize the accuracy of the samples discriminated by
D, i.e., the value of D(x) tends to be 1 and the value of D(x) tends to
be 0. This leads to the basic GAN network objective function
expression:

min max

TT X~Pdntn(x) [logD(x)] + Ez~pl(z) [10g (1 - D(G(z)))] . (8)

3.3 Adversarial bidirectional long- and
short-term memory models

To solve the problems of the LSTM, namely, unidirectional
prediction error and continuous accuracy of the spatiotemporal
prediction, we embed a 4-layer stacked ST-LSTM model as the
generative unit into the adversarial network model as the core of the
generator. Then, we divide the generator inputs into forward
spatiotemporal sequence inputs and inverse spatiotemporal
sequence inputs and control the input streams of the two
according to the discriminative results of the discriminators in a
training cycle to achieve effective bi-directional training (Figure 4).
To increase the learning ability of the overall trend, we train a global
discriminator (lizuka et al., 2017) to discriminate whether the
output is true. The purpose of constructing the global
discriminator is to strengthen the ability of the discriminator to
identify the overall characteristics of the input region and to
emphasise the importance of guiding the model to pay more
attention to the overall trend of the sea surface data. The global
discriminator consists of five consecutive convolutional layers, each
of which has a step size of 2. It uses a fully connected layer and a
sigmoid output layer to process the input data of size 128 x 128 into
a high-dimensional vector, which is then transformed into a
continuous and normalised real probability distribution by a fully
connected layer and a sigmoid transfer function.

In this paper, we use a total of 10,000 days of sea surface
altimetry data from 1 January 1993 to 19 May 2020 as the training
(first 90%) and validation datasets (second 10%), and the sea surface
altimetry data from 20 May 2020 to 20 May 2022 as the model
generalisation test datasets (validation and testing sets). We process
each of the three datasets into time-series blocks with a length of 10
days (structure 3-4-3: the first number is the length of the forward
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FIGURE 2

Schematic diagrams of the ST-LSTM model (left) and the stacked sequence monolayer (the dark blue marks are space-time fluid cells different from

the original Conv-LSTM).

input sequence, the second number is the length of the target
prediction sequence, and the third number is the length of the
reverse input sequence, as shown in pg,, in Figure 4), with 3 days of
forward prediction input (pf,pyars) in each block, 7 days (including 3
days of reverse input) of target prediction data (x), and 3 days of
reverse prediction input pyucxyard> cOrresponding to the generation
results denoted as Xfyara and Xpacara- The next batch of inputs in
the generator is updated after the discriminator decides whether it is
true or false and updates the current batch of generators (ST-LSTM
cells) and the discriminator weights. The corresponding objective
function is updated to

min max
G D X Pdaa

- D(G(pforwurd))) +E ~

X Ppackward

[logD(x)] + E ~ [log (1

DPforward

[log (1 - D(G(pbackwurd)))] (9)

In the model proposed in this paper, we use the L1+L2 loss
function and the Adam optimiser (Kingma and Ba, 2014) for the
training, and in the actual training process we pre-train the GAN
network and then access the ST-LSTM module. Regarding the
setting of the hyperparameters, in general, the learning rate is set
within 0.0001-0.1. A learning rate that is too high will make the

!

| Generator
(G, p2)

FIGURE 3
Schematic diagram of the basic GAN model.
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model training effect poor, while a learning rate that is too low will
make the model training convergence slow. Thus, through many
adjustments, we determine the learning rate to be 0.0001, the batch
is determined to be eight, and the corresponding epoch is
appropriately increased to 100,000. If the dataset has a large
amount of noise, we should try to minimise 8, and f,. Although
the average coefficients converge faster, they are more susceptible to
noise. In this paper, we set f; = 0.9 and f, = 0.999. All of the
experiments are implemented in Pytorch = 3.10 (Paszke et al., 2019)
and trained on an NVIDIA RTX4080. Additionally, it should be
emphasized here that the parameter Settings of the Adam optimizer
in this paper are determined by many attempts in the experiment
process and previous experience of Adam optimizer parameters
when applying deep learning models in the Marine field.

4 Model evaluation

In this subsection, first, we discuss the effect of different
prediction lengths on prediction accuracy to confirm the optimal
prediction range of the proposed model. Then, we conduct a multi-
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FIGURE 4
Overall schematic diagram of the AB-LSTM model.

criteria comparison with the two modal datasets and a variety of
existing spatiotemporal prediction models. Finally, we test the
generalisation ability of the model using the day-by-day
prediction history data from HYCOM. It should be noted that all
input and output data used in this process are first interpolated to
128 x 128 using the interpolation method described in Section 2.2.2.
Based on the conclusion of Ma et al. (Ma et al., 2019), the polarity of
the mesoscale eddies has a limited effect on the smoothness, as well
as the accuracy of the prediction process, so we do not take the issue
of eddy polarity into account during the training process, but we do
discuss it in the evaluation process.

4.1 Prediction effect

Figure 5 shows the trend of the training loss after 100,000
iterations. The black solid line in the figure is the real value of the
training loss from iteration to iteration, and the red line is the
higher-order smoothing curve of the black real loss. It can be seen
from Figure 5 that the training loss of the model decreases rapidly
during the initial training and stabilises at 10,000 iterations. After a
long period of small and slow increase, it continues to decrease
slowly after 40,000 iterations and finally converges slowly after
90,000 iterations.

Iogm(Train Loss)

L L L L 1

FIGURE 5

Epochs

10
x10*

Plot of training loss versus number of iterations for the AB-LSTM and the AVISO sea surface height dataset. Due to the large span of the original
training loss (Y-axis), to better show the trend of the change, we present it in logarithmic form, which results in the absence of some of the
magnitude (the original magnitude is in cm), The black line is the original value of the training loss, and the red line is the error smoothing curve after

5-order Fourier fitting).
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Figure 6 shows the effect of the prediction experiment for 7 days for
different numbers of iterations. Intuitively, the prediction effect is good.
As the number of iterations increases, the model prediction effect
continues to improve. The effect tends to stabilise at 50,000 iterations,
and the subsequent prediction results are not easily distinguished by
the human eye. In addition, it can be seen that the prediction sequences
for the different numbers of iterations exhibit good continuity of the
overall trend, and the mesoscale eddy characteristics are more obvious,
except for the test with 5000 iterations. This indicates that the training

10.3389/fmars.2024.1463531

process is effective. Figure 7 shows the change trends of the RMSE and
SSIM metrics for the AB-LSTM for the AVISO sea surface height
dataset with increasing iteration numbers. It can be clearly seen that the
results shown in Figure 7 are highly consistent with the prediction effect
shown in Figure 6. This also shows that the selected metrics can
accurately reflect the actual performance of the model in terms of the
prediction process.

To discuss the effect of the forward and backward inputs on the
model training in the AB-LSTM model, in this subsection we set up

FIGURE 6
Schematic representation of the effect of the prediction experiment with different numbers of iterations. The predicted values are shown in the
red boxes.
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FIGURE 7

Plots of RMSE and SSIM metrics versus number of iterations for the AB-LSTM and the AVISO sea surface height dataset.
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TABLE 2 Quantitative analysis of the effect of the forward and backward input conditions on the prediction.

Forecasting Days

Assessment
Indicators 1 2
RMSE A 1.97 2.90 3.90 477 5.80 6.84 7.70
(cm) B 242 3.12 491 5.11 6.23 8.65 9.39
N A 90.0 81.3 72.7 72.7 66.7 57.1 546
ccuracy
(%) B 85.7 75.0 62.5 61.5 529 50.0 413
A 091 0.86 0.81 0.76 0.71 0.66 0.61
SSIM
B 0.88 0.83 0.78 0.75 0.69 0.64 0.57
A 6.34 6.52 7.40 8.18 9.27 9.80 11.61
Dist (km)
B 6.88 7.00 7.82 8.39 10.55 11.65 12.96

A (forward and backward) and B (forward only).

control experiment groups A (forward and backward) and B
(forward only), randomly select 500 sets of experimental data
from the sample dataset, which all have 3-4-3 structures, and
make a 7-day prediction. The obtained results are averaged
within each group according to the day-by-day prediction
results (Table 2).

4.2 Model comparison validation

In this subsection, to demonstrate the feasibility and the
advantages of the model, we compare the AB-LSTM with the
HYCOM model forecast and the FC-LSTM (Srivastava et al,,
2015), PredRNN (Wang et al.,, 2022), and Conv-LSTM (Shi et al.,
2015) spatiotemporal prediction methods under the 3-4-3 input
block conditions described in Section 4.1 and using the evaluation
metrics described in Section 2.2.3. It is worth emphasizing that the
horizontal comparison verification of the model should be
discussed in different scenarios. For mesoscale vortices, the

different properties of vortices and the setting of the research area
are very important elements for scene division. Therefore, we will
reflect the model verification effect under different research areas in
the subsequent regional generalization verification. The model
generalization test for differentiating AE and CE in a single eddy
prediction scenario is also presented.

Since the prediction results of AE and CE are similar, we
consider the polarity of the eddy to be less influential on the
comparison experiments, so we will not distinguish between them
in this subsection. To avoid the high prediction effect caused by the
use of the sample dataset and the inability to effectively compare the
results of the experiments, we conduct the experiments on 1000 sets
of sea-surface height data that are not included in the sample data.
Data structure is still 3-4-3, and the metrics are averaged within the
groups. We set the prediction area to the KE region of 25-45°N and
150-170°E. The results are shown in Figure 8.

As can be seen from Figure 7, according to all the computational
indexes, the AB-LSTM yields better results. The AB-LSTM’s RMSE
index increases from 1.97 cm on the first day to 7.70 cm on the
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FIGURE 8

Plots of the (A) RMSE, (B) SSIM, (C) accuracy, and (D) Dist metrics for a 7-day forecast series for multiple forecasting methods and models.
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seventh day, which is the same trend as the other methods, but the
values are significantly lower than those of the other prediction
methods. The AB-LSTM yields lower RMSE values than the
unidirectional model in the control group, which distinguishes
between positive and bidirectional inputs. Regarding the SSIM
index, the AB-LSTM method has values similar to several of the
prediction methods, except that the numerical prediction is within
the range of 0.6-0.9 and only differs from the other prediction
methods by about 0.05. This is since several of the deep learning-
based spatial-temporal prediction models utilized as the control
group in this paper are able to achieve very good results in terms of
structural similarity, so it is not possible for this metric to clearly
reflect the superiority of the AB-LSTM. The AB-LSTM has a much
higher Accuracy, with a hit rate of more than 50% during the
prediction sequence (days 1-7). This is 10-20% better than those of
the other methods. On average, it achieves a 5% higher Accuracy in
the control experiments and can distinguish between forward and
reverse inputs. This suggests that the forward and reverse inputs are
important for the model in the long mesoscale eddy time series
prediction. The AB-LSTM model has a slightly better Dist value.
The prediction distance error ranges from 6.34 to 11.61 km, which
is generally 1-10 km lower than those of the other prediction
methods for the 7-day prediction series. The AB-LSTM model with
bidirectional input is more accurate in terms of the prediction
results after the fourth day compared with the model with only
forward input. After the fourth day, the prediction results of the AB-
LSTM model with bi-directional inputs are lower, which suggests
that the bi-directional inputs have a positive effect on the model in
the long-term prediction of mesoscale eddies. Overall, compared
with the traditional numerical prediction models’ results, the spatial
and temporal prediction models that use deep learning algorithms
have a greater advantage in terms of the overall prediction error and
mesoscale eddy-related prediction indexes. For the sample dataset
introduced in this paper, according to all the metrics, the AB-LSTM
has the best performance, which directly proves the superiority of
the AB-LSTM. In addition, by analysing the experimental results of
the control experiment group, it was found that the two-way input
training of the confrontation has more advantages and positive
significance compared with the one-way input.

4.3 Model generalisation test

Model generalisability refers to the model’s ability to adapt to
new data, i.e., whether the model can make accurate predictions for
data that does not appear in the training set. A model with a strong
generalisability can perform well on different datasets, not just on
the training set. In summary, generalisability concerns the model’s
ability to adapt to unknown situations (Liu and Aitkin, 2008). To
explore the generalisability of our model, we experimentally validate
the AB-LSTM using data from the same region as the data in the
training sample set but that are not included in the training and
testing sets. We also test the model on data for other sea areas. In
this paper, we take the Oyashino Extension (OE, 35-45°N, 140-
150°E) region and the North Pacific Subtropical Countercurrent
(STCC, 15-25°N, 130-140°E) as the validation areas. It should be
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noted that in this subsection, the sea surface height data for the OE
and STCC regions are processed into 128x128 grids using the data
processing method described in Section 2.2.2, and the data span
from January 1993 to 31 December 2022. The experimental data for
the KE region, which are not included in the training and testing
datasets, span from 1 to 30 October 2023 and are processed in the
same manner.

As can be seen from Figure 8, the prediction results of the tested
models are slightly poorer than the prediction results presented in
Section 4.2, but the overall effects are similar, and all of the models
yield more stable and good prediction results. The AB-LSTM is still
better than the other models in terms of several metrics. For the
prediction results for the three regions, the RMSE index remains
within the range of 2.25-9.41 c¢m, which is slightly higher than the
prediction results of 1.97-7.70 cm obtained in Section 4.2. The
SSIM indicator remains within the range of 0.52-0.85, which is
slightly lower than the range of 0.61-0.90 obtained in Section 4.2.
The Accuracy remains within the range of 48.35-84.03%, which is
slightly lower than the range of 54.60-90.00% obtained in Section
4.2. The Dist remains within the range of 6.71-12.89 km, which is
slightly higher than the range obtained in Section 4.2. The possible
reason for this result is that the OE region and STCC region are not
within the region of the training set, and there may be motion
features that are not fully fitted by the model, which may lead to the
result that the AB-LSTM fits the KE region data better and the data
for the other two regions slightly worse in terms of the prediction
effect. The mesoscale eddy recognition algorithm used in this paper
has a better recognition ability, but it still has a slightly worse
recognition ability. In addition, it still has the possibility of
identification error, and the mesoscale eddies identified from the
predicted sea surface height data may have the intermittent
appearance or disappearance of error, which would lead to
problems in estimating the distance deviation of the centre of the
mesoscale eddy and will make the error falsely high.

Based on the prediction results presented in Figure 9, several of
the models achieve better prediction results in several sea areas, but
the performance of the AB-LSTM is the best, which proves that the
AB-LSTM model has an acceptable generalization ability for
different sea surface height datasets.

4.4 Single eddy prediction effect

Although regional sea surface prediction can reflect the overall
prediction effect better, the prediction effect on single eddies is not
fully reflected, so in this subsection, we predict multiple single
eddies and use the strength at the centre of the eddy (denoted as the
SSH in the centre of the eddy in this paper) and the eddy radius to
describe them. Thus, the prediction effect of single eddies will be
more clearly reflected in the form of data. Figure 10 shows a
schematic representation of the evolution of a typical dipole pair
over the course of its evolution.

We randomly select 1000 days of data in the sea surface height
sample dataset used in this paper as experimental samples, and then we
use the AB-LSTM model to make predictions for a period of 7 days
according to the 3-4-3 structure. We use the mesoscale eddy mixing

frontiersin.org


https://doi.org/10.3389/fmars.2024.1463531
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Ma et al. 10.3389/fmars.2024.1463531

_ | 1
15 1
%
10 ' =
= ~""\\\\\\\\\?i§‘jffff%§f%§?015a
)
5 5| |
Qo
9
O]

1 Og |—AB-LSTM(backaforward) —AB-LSTM(forward-only) — Predrn ——FC-LSTM — Conv-LSTM —HYCOM 20

Accuracy(%)

1 2 3 4 5 6 7)1 2 3 4 5 6 7
Forcasting Days

0

Accuracy(%) _ Global RMSE(cm)

1 2 3 4 5 6 il 2 3 4 5 6 74
Forcasting Days

=%
o

|

05

SSIM

Accuracy(%) _ Global RMSE(cm)

08 —AB-L;TM(bacK&fomard) —AB-L§TM(forward-onIy) ~—Predrnn =—FC-LSTM —Conv-LSTM —HYCOM[ 0
50 :
0 \
1 2 3 4 5 6 7 2 3 4 5 6 7

Forcasting Days

FIGURE 9
Generalisation test of the AB-LSTM model using data for the (A) OE region, (B) STCC region, and (C) KE region.
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FIGURE 10
Schematic of the 7-day evolution of a pair of dipoles located in the KE region on 1 September 2017. To make the dipole evolution visually clearer,
we converted the sea surface height data into a pseudo-colour map with an intercept area of 28-32°N, 146-150°E.
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identification algorithm to identify the matched eddy pairs (real vs.
predicted). Then, we extract their centre eddy strengths and eddy radii
as the control group for the experiments. To avoid the unmatched
vortices and matching errors caused by the identification algorithms
(described in the previous section) and thus to more effectively reflect
the prediction effect, we exclude the matching error terms. Table 3
presents the single eddy prediction errors in the form of within-group
averages and the distinction between AEs and CEs.

The Radius metric is the equivalent radius of the identified
eddy. As can be seen from Table 4, the AB-LSTM model also
achieves relatively good prediction results in single-eddy prediction.
In terms of the eddy centre height errors, the AE centre height
errors are within the range of 1.12-6.59 c¢m, and the CE centre
height errors are within the range of 1.31-7.86 cm. Overall, both
increase as the prediction time increases. However, under the
condition of distinguishing between the AEs and CEs, there is not
a large difference in the overall errors of the two, which is similar to
the conclusion of Wang et al (Wang et al., 2020). In terms of the
eddy radius error, it also exhibits an overall prediction result with a
trend similar to that of the eddy centre height error, which indicates
that the model is more stable in the prediction process. In order to
reflect the advantages of the AB-LSTM model in the single-eddy
experiment, we conducted experiments according to the same
sample collection method, and the results are shown in Table 4.

From Table 3, AB-LSTM is significantly better than the primary
Conv-LSTM in single-eddy prediction results, and the experimental
results of the AB-LSTM model are continued by the experimental
results in Table 2. It is worth emphasizing that we have obtained the
horizontal comparison results among multiple models above, so in
the horizontal comparison experiment of single eddy prediction, we

TABLE 3 Quantification of single eddies during the 7-day forecast period.

Forecasting Days

10.3389/fmars.2024.1463531

only compared the two models with similar performance as the AB-
LSTM model.

4.5 Additional experiment

In the first few sections of this chapter, the AB-LSTM model
proposed by us has achieved a small advantage in the image numerical
evaluation index (SSIM, RMSE), and an even greater advantage in the
feature prediction of mesoscale vorticity. However, its performance in
the prediction error analysis results on the 7th day still makes us
worried: Whether the trend of error change shown by AB-LSTM
during the 7-day forecast will lead to more drastic changes over a
longer forecast time horizon, making the prediction model worse than
other spatio-temporal prediction models over a longer time horizon.
Since the data input format we selected in the previous paper is 3-4-3
mode, which is not fully applicable for a longer prediction time, we use
a longer data input mode here: 3-7-3. As a comparison, we still use
RMSE, Accuracy, SSIM and Dist for error quantification (for longer
forecast time series, a longer input should be selected).

After comparing the results of the two data input modes, we can
find from Table 5 that there is no significant increase in prediction
error on the whole. The 3-4-3 input mode has better prediction
effect within 3 days, while the 3-7-3 input mode has better lasting
prediction ability within a longer prediction period. This error is
generally reversed on the fourth or fifth day of prediction, which
also shows a relatively easy to understand trend, that is, different
input data models are generated under different deep network
models, and with the change of its application scenario, its
prediction effect will also change.

Assessment

Indicators

Amplitude AE 112 2.54 3.12 327 5.67 521 6.59

(cm) ‘ CE 1.31 2.83 3.76 ‘ 435 ‘ 6.33 6.34 7.86
) AE 6.82 8.32 9.37 10.17 10.62 12.64 17.24

Radius

(km) ‘ CE 777 9.36 10.24 ‘ 13.69 ‘ 15.24 18.56 2154

TABLE 4 Quantification of single eddies during the 7-day forecast period (different models and no distinction between AE and CE).

Forecasting Days

Assessment

Indicators 1 2
AB-LSTM 121 2.69 3.44 381 6.00 5.78 7.23

’(i':l‘;’ litude PredRNN 152 2.94 3.98 42 5.97 671 8.64
Conv-LSTM | 2.99 412 5.32 6.64 8.24 10.58 1221
AB-LSTM 7.30 8.84 9.81 11.93 12.93 15.60 19.39

Radius

o) PredRNN 8.15 8.99 10.10 12.52 13.17 16.02 21.10
Conv-ISTM | 1298 14.35 16.58 1971 2139 2414 2654
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TABLE 5 Quantification of eddies over a 7-day forecast period (No distinction is made between AE and CE).

Forecasting Days

Assessment
Indicators 1 2
RMSE A 1.97 2.90 3.90 4.77 5.80 6.84 7.70 8.57 9.44 11.01
(cm) B 2.04 3.11 3.97 5.13 577 6.37 7.26 8.29 9.17 10.67
A 0.91 0.86 0.81 0.76 0.71 0.66 0.61 0.55 0.50 0.43
SSIM
B 0.88 0.82 0.78 0.73 0.69 0.65 0.62 0.57 0.53 0.49
A 6.34 6.52 7.40 8.18 9.27 9.80 11.61 12.17 14.25 15.97
Dist(km)
B 7.15 7.39 7.75 8.21 8.69 9.22 10.15 10.98 12.19 14.76

A (3-4-3 input format) and B (3-7-3 input format).

5 Summary and outlook

In this study, we acquired AVISO satellite altimeter data and
HYCOM ocean model forecast data as the basis of our work. These
data not only provide rich ocean information but also provide the
necessary data support for the identification and characterization of
mesoscale eddies. Then, we effectively identified and extracted the
features of mesoscale eddies utilizing the hybrid mesoscale eddy
identification algorithm, which has a better identification effect. We
combined it with the sea surface height data and established an
evaluation system for mesoscale eddy prediction, which includes
four test metrics, namely, the RMSE, SSIM, Dist, and Num.

Subsequently, we combined the time-series prediction
advantages of the LSTM model with those of previous studies,
utilized the ST-LSTM model as the base generative model, and
stacked them to form a prediction network in the same way as the
Conv-LSTM. In addition to introducing the generative adversarial
network model, which has a strong generative capability, the AB-
LSTM model was constructed by embedding the ST-LSTM module
into the generator therein. Considering that previous studies have
mostly focused on unidirectional sequence prediction without using
backward-assisted prediction, we incorporated backward sequence
prediction into the input sequences based on the AB-LSTM model
and obtained better results than when only unidirectional inputs
were utilized. The RMSE was 1.97-7.70 cm, the SSIM was >0.61, the
Accuracy was 254.6%, and the Dist was 6.34-11.61 km. All of the
above indicators were better than those of the other models and
numerical prediction products, thus achieving the goal of this study.
In the training process, we used the Adam optimizer as the
hyperparameter container, and through many experiments, we
determined that the number of iterations should be 100,000 times
and the number of batches should be 8. The experimental results
show that the relevant parameters were set reasonably, and a
relatively smooth trend was maintained in the training iteration
loss. Then, we tested the model’s generalization ability using data
for a different sea area and new data for the same sea area to achieve
data expansion of the non-training testing set. The experimental
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results show that the AB-LSTM also has a good prediction ability
for data that are different from the training test sample dataset. Its
prediction ability is only slightly lower than the training sample
prediction results according to the indicators, and it is still able to
maintain a large improvement compared with the other models.
Therefore, the results of the generalization test prove that the AB-
LSTM has an acceptable generalization ability. Finally, to address
the problem that the full-domain prediction error cannot directly
describe the single-eddy prediction effect, we conducted single-eddy
prediction analyses using randomly selected pairs of identified
vortices. The results show that the eddy polarity has little effect
on the prediction effect and that the single-eddy prediction error
tends to be smaller than the full-domain prediction error.

Although the AB-LSTM model developed in this study
preforms better than other prediction models in terms of the
prediction error, it still has some shortcomings. First, the
mesoscale eddy identification algorithm used in this paper was
found to have discrepancies in terms of matching the real eddy with
the predicted eddy, and there is no matching criterion that can be
adopted, which leads to the fact that we have no choice but to
eliminate the eddy pairs that are incorrectly matched in our single-
eddy prediction analysis. To a certain extent, this is not possible in a
single eddy prediction analysis. This may make our experimental
results better than the real results to a certain extent. Second, more
physical parameters should be introduced into the single-eddy
prediction instead of only using the eddy centre height and radius
to evaluate the error. In the future, we plan to introduce vorticity,
shear deformation, and tensile deformation to improve the
evaluation of the single-eddy prediction effect. Third, the
computational redundancy of the AB-LSTM model is greater
than those of several of the prediction models cited in the paper.
To achieve better results, the AB-LSTM takes longer to run,
occupies more memory, and has more training iterations, which
means that our model still needs to be improved in terms of
performance. In the next step, we will try to introduce more
mesoscale eddy physics information to improve the prediction
effect while improving the model.
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The spatiotemporal variability of chlorophyll-a (Chl-a) in the Arabian Sea (AS) and
Persian Gulf (PG) has been widely studied, but long-term trends and influencing
factors remain less understood due to data gaps. This study investigates Chl-a
variability and trends from 2001 to 2019 using reconstructed MODIS-Terra
monthly Chl-a and sea surface temperature (SST) data, employing the Data
Interpolating Empirical Orthogonal Functions (DINEOF) method for
high-accuracy reconstruction. Results reveal pronounced seasonal variability,
with Chl-a peaks exceeding 3 mg m™ during southwestern monsoons and
ranging between 1-3 mg m™ during northeastern monsoons, with the lowest
levels in transitional months. Spatially, the highest Chl-a concentrations were
observed in the western and northeastern AS, influenced by summer
southwestern (SW) and winter northeastern (NE) monsoons. Trend analysis
using Sen’s slope and the Mann-Kendall test indicates significant Chl-a
declines (-0.002 to 0) along ASPG coasts, with slight increases (~0.005) in the
southeastern AS and southern PG. Rising SST anomalies (SST_A) correlated with
reduced Chl-a anomalies (Chl-a_A) in the western AS, while increased wind
anomalies (Wind_A) enhanced Chl-a_A in the western AS but decreased it in the
southern PG. These findings enhance our understanding of the complex
environmental dynamics shaping the ASPG ecosystems.

KEYWORDS

chlorophyll-a, data interpolating empirical orthogonal function, Arabian Sea and
Persian Gulf, MODIS, sea surface temperature, wind
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1 Introduction

Chlorophyll-a (Chl-a) concentration serves as a key
bioindicator of phytoplankton biomass and marine productivity,
making it crucial for monitoring the health of marine ecosystems.
The Arabian Sea (AS) and Persian Gulf (PG) is recogonized as one
of the most productive regions in the world (Sathyendranath et al.,
1996). Understanding Chl-a variability and trends over the AS and
PG (ASPG) is crucial for predicting marine ecosystem health,
managing fisheries sustainably, and providing early warnings for
harmful algal blooms. Satellite remote sensing has proven to be an
effective tool for examining the spatiotemporal dynamics of Chl-a
in the ASPG (Goes et al., 2005; Prakash et al., 2012; Moradi, 2020;
Sarma et al., 2012; Jayaram et al., 2018; Moradi and Moradi, 2020;
Bordbar et al., 2024), thanks to its broad coverage and real-time
observation capabilities.

Previous research in these areas has revealed distinct seasonal and
interannual patterns in Chl-a variability, which are often associated
with factors such as sea surface temperatures (SST), monsoonal
winds, upwelling events, and large-scale climate phenomena like
the Indian Ocean Dipole and El Nifo (Jayaram et al., 2018; Nezlin
et al., 2007; Sarma et al., 2012; Seelanki et al., 2022). Furthermore,
some studies have reported trends in Chl-a that either increase or
decrease over different time periods, typically related to changes in
SST, monsoonal winds, and sea level anomalies (Prakash et al., 2012;
Goes et al., 2005; Prasanna Kumar et al., 2010). However, many of
these studies in the ASPG region have been limited by their relatively
short time frames or their focus on specific regional areas, which may
restrict the generalizability of their findings. Expanding research to
cover longer time periods and broader regions could provide a more
comprehensive understanding of Chl-a variability and its underlying
drivers. Additionally, it has been observed that satellite-derived
products in the ASPG are often affected by suboptimal conditions,
such as sun-glint and cloud cover. These factors can lead to gaps in
the satellite-derived geographical data, which may result in
incomplete information for subsequent analyses.

Data Interpolating Empirical Orthogonal Function (DINEOF)
has emerged as a powerful method for reconstructing missing
geophysical data, such as SST and Chl-a. Compared to traditional
methods like linear interpolation and optimal interpolation, DINEOF
offers significant advantages, including faster computation,
parameter-free processing, and the ability to handle multiple
correlated data types without prior de-correlation scales (Miles and
He, 2010). These attributes make DINEOF particularly suitable for
oceanographic applications where satellite observations are often
hindered by clouds, sun-glint, and aerosols, leading to data gaps.
Despite alternatives like machine learning showing promise, it often
requires extensive in-situ data for training, which limits their
scalability, particularly in regions like the ASPG. DINEOF has
demonstrated success in various marine environments worldwide,
including the South Atlantic Bight, the coastal Gulf of Alaska, the
Gulf of Maine, the Gulf of Mexico, as well as the Sargasso Sea, and is
currently employed in global ocean color products by NOAA (Li and
He, 2014; Shropshire et al., 2016; Liu and Wang, 2018). However, in
the ASPG region, the application of DINEOF is still underexplored,
with issues such as limited studies on its efficacy and its primary focus
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on Chl-a reconstruction (Jayaram et al.,, 2018), highlighting the need
for further research to assess its potential in filling satellite-derived
data gaps across different oceanographic parameters.

This study has two primary objectives: (1) to investigate long-
term trends and associated spatiotemporal variability in Chl-a from
2001 to 2019 across the ASPG, and (2) to assess the influence of SST
and wind on Chl-a variability and trends. To achieve these goals,
DINEOF was employed to reconstruct missing MODIS-Terra Chl-a
and SST data over the study period. Subsequently, we investigated
the monthly Chl-a variability and conducted a trend analysis across
the entire ASPG. Additionally, we investigated the correlation
between Chl-a anomalies (Chl-a_A) and SST anomalies (SST_A),
as well as between Chl-a_A and wind anomalies (wind_A),
providing deeper insights into the environmental drivers of
marine productivity in the ASPG.

2 Data and methods
2.1 Study area and its subregions

The AS and PG, both located in the northwestern Indian Ocean
(Figure 1), exhibit distinct oceanic and atmospheric processes that
are critical for regional climate regulation and marine productivity.
The AS, spanning 5°N to 25°N and 55°E to 77°E, is characterized by
monsoon-driven ocean dynamics, influenced by the seasonal
reversal of monsoon winds and the region’s unique geography.
These winds generate variations in mixed layer depth, thermocline
shifts, and nutrient upwelling, particularly along the coasts of
Somalia and Oman during the Southwestern Monsoon, resulting
in high phytoplankton biomass and biological productivity (Goes
et al.,, 2005; Khan et al., 2023; Wiggert et al., 2005; Prasanna Kumar
et al, 2010). Additional factors influencing biological activity
include wind mixing, Ekman pumping, mesoscale eddies, and
large-scale climate events like the Indian Ocean Dipole (IOD) and
El Nifno, which impact both phytoplankton blooms and surface
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FIGURE 1

A bathymetry map of the ASPG region, showing the distribution of
21 stations across seven zones. Each station, represented by a filled
triangle, is assigned to a specific zone. Z1 through Z7 represent
zones 1 to 7, respectively, while S1, S2, and S3 represent stations 1,
2, and 3 within each zone. The yellow unfilled circles indicate the
stations selected for calculating the upwelling index.
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biomass distribution (Seelanki et al., 2022; Keerthi et al., 2013;
Shafeeque et al., 2021). In contrast, the PG, situated between 24°N
and 30°N and 48°E to 57°E, is a shallow, semi-enclosed sea marked
by extreme salinity, temperatures, and limited water exchange.
Despite these harsh conditions, it sustains a productive
ecosystem, influenced by seasonal wind stress, tidal turbulence,
and human activities such as coastal development and pollution
(Swift and Bower, 2003; Moradi and Moradi, 2020; Khan et al,,
2019). Understanding the differing productivity patterns of the
ASPG is vital for assessing long-term environmental changes and
the broader impact of climate change on these ecosystems.

The study area was divided into seven zones, each containing
three stations strategically positioned based on geographical and
oceanographic significance (Figure 1). Zone 1, along the Pakistan
coastline, is crucial for its upwelling, supporting rich fisheries in the
northern AS. Zone 2, along the Indian coast, is influenced by
monsoons driving nutrient inflow and boosting productivity.
Zone 3, near Oman, is shaped by Arabian coastal currents, while
Zone 4, along southern India, is affected by monsoon-driven
currents impacting nutrient dynamics. Zone 5, off Yemen,
benefits from upwelling, supporting marine biodiversity. Zone 6,
in the equatorial region, experiences equatorial currents and
upwelling influencing Chl-a variability. Zone 7, the PG, is notable
for its unique hydrological conditions and proximity to oil-
producing nations. This division enabled a region-specific analysis
of the factors driving Chl-a dynamics, offering insights into how
geographic and climatic factors influence marine productivity
across the ASPG.

2.2 Satellite data and preprocessing

The monthly composite Level-3 MODIS-Terra (hereafter
referred to as MODIS) Chl-a and SST data, with a 4 km spatial
resolution for 2001-2019, were obtained from NASA’s Ocean
Biology Processing Group (https://oceancolor.gsfc.nasa.gov/).
MODIS-Terra data were selected over MODIS-Aqua due to their
longer temporal coverage. A comparison of the accuracy between
MODIS-Terra and MODIS-Aqua data was conducted in our
subsequent research, revealing consistent seasonal variability and
trends in Chl-a across the ASPG, thus confirming the reliability of
MODIS-Terra for this study.

Due to factors such as cloud cover, sun glint, and other
atmospheric issues, the ASPG region experiences significant gaps
in the data, particularly during the summer monsoon season. For
instance, a previous study reported that the missing data rate for
MODIS-Aqua daily Chl-a between 2020 and 2021 fluctuated
significantly in the northern AS, with an overall rate ranging
from 65% to 100% (Yan et al., 2023). These data gaps can result
in the loss of important local information. Therefore, it is essential
to reconstruct missing Chl-a and SST data. In this study, the
DINEOF method was employed to fill in the missing data over
the ASPG (Section 2.4 below). Before reconstruction, all Chl-a and
SST data were filtered, and images with more than 95% cloud
coverage were discarded to maintain accuracy. Additionally, Chl-a
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data were log-transformed before reconstruction to meet DINEOF’s
assumption of normality, given the wide range of Chl-a values.

Once the data were reconstructed, the MODIS Chl-a and SST
values at each station were obtained by averaging values from a 3 x
3 window centered on the station’s location. To eliminate the
seasonal cycle influence, the long-term monthly mean for each
month across all years was subtracted from the corresponding
monthly time series. This process generated monthly anomalies
of Chl-a and SST for each station, which were then used to compute
Chl-a_A and SST_A trends over the entire study period.
Furthermore, correlation statistics were calculated for the time
series of Chl-a_A and SST_A at each station to quantitatively
analyze the relationship between these anomalies.

2.3 Reanalysis data and preprocessing

From 2001 to 2019, weekly wind data at a spatial resolution of
0.12° x 0.12° and a height of 10 meters above the surface were
obtained from the European Centre for Medium-Range Weather
Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). To
represent monthly climatological patterns, these weekly wind data
were averaged for each of the 12 months, spanning from January
2001 to December 2019. ERA-Interim is a global atmospheric
reanalysis product that combines model-based predictions with
observations from various sources to provide a consistent,
comprehensive estimate of numerous atmospheric and oceanic
parameters. Furthermore, the wind data were used to compute
the Ekman transport components for each month during the study
period, based on the formulas provided by Kok et al. (2017) in
Equations 1, 2.

_ pairc(uz + VZ)I/ZV

ET, = (1)
pwaterf

= Larci + V)
pwaterf

where u corresponds to the wind coming from the west (with

)

positive values indicating eastward wind) and v corresponds to the
wind coming from the south (with positive values indicating
northward wind). The parameter p,;, represents the density of air,
valued at 1.22 kg m >, while pyater represents the density of water,
valued at 1025 kg m™. Additionally, c is the drag coefficient, and f is
the Coriolis parameter. The calculated components of Ekman
transport, ET, and ETy, were used to generate monthly plots of
Ekman transport, providing a visual representation of its variability
over time.

The analysis of Ekman transport is critical for understanding
upwelling processes. This involves decomposing the movement of
water masses into perpendicular components to calculate the
Coastal Upwelling Index (CUI). Specifically, a “coast angle” is
formed between a northward vector and the landward side of the
shoreline, which is determined through geometric measurements at
each coastal station. Using geometric tools, these angles are
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measured and incorporated into the computation of the CUL
Specifically, © represents the angle perpendicular to the
oceanward unit vector relative to the mean shoreline location.
The CUI quantifies coastal upwelling by factoring in the strength
and direction of Ekman transport in relation to the coastline. In this
study, the study area is divided into eight stations (as shown in
Figure 1) to assess the upwelling intensity across the region. The
effective angles of the coastline are calculated by averaging the
angles of arbitrary coastal lines with respect to the equator at each of
the eight coastal stations. The formulas used for CUT calculation is
provided in Equations 3 (Kok et al., 2017).

4

Ul = —(sin((p—;))ETy +cos(qo—§)ETx) (3)

where ¢ represents the angle between the coastline and the
equator. According to the definition of CUI, a positive CUI
indicates regions where upwelling conditions are favorable, while
a negative CUI suggests that upwelling is unfavorable.

2.4 DINEOF reconstruction

DINEOF was employed to reconstruct missing data in the
MODIS Chl-a and SST datasets over the ASPG from 2001 to
2019. We utilized the DINEOF 3.0 package (Alvera-Azcarate
et al., 2005; Beckers and Rixen, 2003), available for download
from the GeoHydrodynamics and Environment Research (GHER)
website. The reconstruction process followed these key steps:

1. Each dataset was organized into a 3D matrix (y x x X t), where
y and x represent the latitude and longitude dimensions of
each image, and t is the total number of images, ensuring that
yxx> t. For Chl-a data, the natural logarithm was applied to
prevent negative values during reconstruction, while raw SST
data were used without transformation.

2. The mean value across both spatial and temporal
dimensions was subtracted from the matrix, and missing
data points were initialized to zero to minimize bias in the
initial guess.

3. Tterative singular value decomposition (SVD) (Toumazou
and Cretaux, 2001) and cross-validation using 3% of
randomly selected valid data were employed to identify
the optimal empirical orthogonal function (EOF) modes.

4. The optimal EOF modes were then used to reconstruct the
entire dataset. For further details on the DINEOF
methodology, see Alvera-Azcarate et al. (2005) and
Beckers and Rixen (2003).

To verify the accuracy of the DINEOF reconstruction, we
randomly selected 1% of the valid pixels from the original Chl-a
and SST datasets, treating them as “missing values” (Yang et al.,
2021). The remaining valid pixels were left unchanged to ensure
that only invalid pixels were involved in the reconstruction process.
After performing the DINEOF method, the reconstructed values for
the 1% of randomly selected pixels were compared with their
original values to evaluate the accuracy of the reconstruction.
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2.5 Trend calculation

The Mann-Kendall test and Sen’s slope trend analysis are widely
employed to assess the magnitude and significance of trends in Chl-a
and SST using long-term satellite-derived datasets. The Mann-Kendall
test is a non-parametric statistical method used to identify trends in
time series data and is based on the variance of the data (Solidoro et al.,
2009). Sen’s slope (Sen, 1968), another non-parametric method,
estimates the magnitude of monotonic trends over time and detects
their presence at a chosen significance level. Non-parametric tests, such
as these, offer higher statistical power when dealing with non-normally
distributed data, which is often the case for Chl-a, and are resistant to
the influence of outliers. In this study, a significance level of 95% was
used to determine trend significance. Both the Mann-Kendall test and
Sen’s slope were calculated using MATLAB.

To further investigate relationships among Chl-a_A, SST_A,
and Wind_A, Pearson’s correlation coefficients (r) were calculated,
and their significance was tested using Student’s t-test at a 5%
significance level (p < 0.05). Regression analyses were also
conducted for each variable pair, with statistical performance
evaluated through slope, coefficient of determination (R?), bias,
and root mean square error (RMSE).

3 Results

3.1 DINEOF reconstruction and validation
for Chl-a and SST

MODIS monthly log-transformed Chl-a and linear SST data from
2001 to 2019 were reconstructed using the DINEOF technique. The
reconstruction statistics are presented in Table 1, where the missing
data rates for Chl-a and SST are 24.67% and 1.26%, respectively. This
highlights the critical role of DINEOF in reconstructing Chl-a data,
which has a significantly higher missing data rate. Additionally, the
means of the input and output data for both Chl-a (-0.42 for input and
-0.428 for output) and SST (27.27 for both input and output) are
almost identical. Similarly, the standard deviations for input and output
data are very close for both Chl-a (0.41 for input and 0.405 for output)
and SST (1.96 for input and 1.958 for output). These similarities
indicate that the distribution of the reconstructed Chl-a and SST data

TABLE 1 Statistics of the DINEOF computations.

Log (Chl-a) SST

Dimensions

(latitudexlongitudextime) 480x600x228 480600228
Missing data 24.67% 1.26%
Number of cross-validation points 373975 373975
Mean (input data) -0.42 27.27
Standard deviation (input data) 0.41 1.96

Mean (output data) -0.428 27.27
Standard deviation (output data) 0.405 1.958
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closely matches that of the original data, suggesting a high accuracy of
the reconstruction.

To evaluate the quality of the reconstructed data, we selected
one image of the reconstructed Chl-a from August and one image of
the reconstructed SST from June for comparison with the original
SST and Chl-a images (see Figure 2). The original images exhibited
numerous spatial gaps, particularly in the Chl-a data. In contrast,
the reconstructed images were more continuous and displayed a
more coherent spatial distribution.

We further conducted a cross-validation of the reconstructed
Chl-a and SST data using the method described earlier. The results
of the comparison between the reconstructed and original Chl-a/
SST data are presented in the density plots shown in Figure 3. Both
reconstructions showed strong correlations with the original data,
as evidenced by favorable metrics: slope (0.86 for Chl-a, 0.95 for
SST), R? (0.84 for Chl-a, 0.96 for SST), bias (0.002 for Chl-a, 0.04 for
SST), and RMSE (0.16 for Chl-a, 1.52 for SST). Additionally, the
density plots, which represent the number of data points within
each 4 km x 4 km grid bin, show an increasing trend towards the 1:1
line. This suggests that the data reconstructed using the DINEOF
method are both accurate and reliable.

3.2 Monthly climatology of Chl-a in
the ASPG

Based on the reconstructed data, the interannual monthly
climatology of Chl-a from 2001 to 2019 was generated.
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Hovmoller diagram (Figure 4) displays monthly Chl-a time series
along latitudinal sections at 17°N, 21°N, and 25°N, as well as
longitudinal sections at 61°E, 64°E, and 67°E. The interannual
variability of Chl-a across both latitudinal and longitudinal
gradients is further detailed in the Supplementary Materials
(Supplementary Figures 1, 2). This study focuses on the monthly
variability of Chl-a, with all plots in Figure 4 consistently capturing
the well-established seasonal cycle in the ASPG. Chl-a
concentrations peak during summer, with a secondary peak in
winter, and reach their lowest levels during the transitional months.
Spatially, the highest concentrations are observed near the western
and northern coastlines. This seasonal cycle is driven primarily by
the SW monsoon during summer and the NE monsoon in winter.

Along the latitudinal sections, chlorophyll-a (Chl-a) exhibited
two annual peaks: a major peak in summer and a minor peak in
winter (Figure 4). At 17°N, which is closer to the equator, Chl-a
concentrations remain consistently lower throughout the year.
Nevertheless, two distinct peaks are observed, one in summer
(August and September) and the other in winter (February and
March). As latitude increases to 21°N, Chl-a concentrations rise
significantly during both seasons, with the summer peak occurring
between July and September and the winter peak between February
and March. Further north at 25°N, a coastal region forming the
northern boundary of the AS, Chl-a levels remain high and
productive throughout most of the year, with pronounced peaks
during the summer (August to October) and winter (February to
March). Additionally, Chl-a concentrations increase gradually with
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FIGURE 2

MODIS Chl-a in August and MODIS SST in June: (A, C) original cloudy data, and (B, D) data reconstructed using the DINEOF method.
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FIGURE 3
Density plots: (A) log(Chl-a) (reconstructed) vs Chl-a (original) and (B) SST (reconstructed) vs SST (original). The black solid lines are the 1:1 line.
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FIGURE 4

A Hovmoller diagram illustrating the monthly variability of reconstructed MODIS Chl-a from January to December at 17°N, 21°N, and 25°N, as well as
at 61°E, 64°E, and 67°E.
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longitude. Overall, the AS is heavily influenced by monsoonal
dynamics, impacting both coastal regions and open ocean waters.

Similarly, along the longitudinal sections, Chl-a exhibited two
seasonal peaks, with the exception of the northeastern region
(Figure 4). At 61°E, closer to the western coast, Chl-a levels
remain consistently higher throughout the year, particularly in
the northern regions. Two seasonal peaks are apparent, occurring
during summer (July to September) and winter (February to
March). At 64°E, while the temporal and spatial patterns of Chl-a
are similar, the overall concentration is slightly lower. Moving
further east to 67°E, distinct spatial and temporal distribution
patterns emerge. Specifically, between 21°N and 23°N, Chl-a
exhibits two peaks in summer (August) and winter (February),
while between 23°N and 24°N, Chl-a increases markedly and
remains elevated throughout the year. These spatial variations
highlight the complex interplay between monsoonal forces and
the unique oceanographic characteristics of different regions within
the AS.

3.3 Long-term trends of Chl-a associated
with SST and wind

To analyze long-term trends in Chl-a and SST, the interannual
monthly anomaly data were used to compute Sen’s slope for each
pixel, where positive and negative values indicate increasing and
decreasing trends, respectively, and a value of zero denotes no trend.
The statistical significance of Sen’s slope was assessed using the
Mann-Kendall (MK) test, with results coded as 1 for significant
trends and 0 for non-significant trends. Non-significant Sen’s slope
values were masked, indicated by white areas. The spatial

10.3389/fmars.2024.1520775

distributions of Sen’s slope, along with the MK test results for
Chl-a_A and SST_A, are illustrated in Figures 5A, B, respectively.

The Sen’s slope values for Chl-a_A with statistically significant
MK-test results were primarily concentrated in the coastal areas of
the ASPG. Most values were negative across the entire ASPG,
indicating a declining trend in Chl-a levels. In the AS, the lowest
Sen’s slope values were observed along the Arabian coasts, gradually
increasing towards open sea waters, with some positive values in the
southeastern region. In contrast, in the PG, Sen’s slope values
increased from the northern to the southern coasts. For SST A,
Sen’s slope values with significant MK-test results were widespread
across the ASPG, with all values being positive, reflecting a rising
trend in SST. In the AS, larger Sen’s slope values were observed
along the Arabian coasts, decreasing towards open sea waters. In the
PG, the highest Sen’s slope values were found in the northwestern
region, diminishing towards the southern part of the gulf. The
detailed statistical summaries of Sen’s slope values for both Chl-a_A
and SST_A are presented in the Supplementary Materials
(Supplementary Table 1).

For the 21 selected stations shown in Figure 1, significant Sen’s
slope values were identified at only four stations: Z3-S1 (open sea
waters near the Oman coast), Z5-S2 (open sea waters near the
Yemen coast), Z5-S3 (coastal waters near the Oman coast), and Z7-
S2 (southern PG). The Sen’s slope values for these stations are
detailed in the Supplementary Materials (Supplementary Table 2).
Additionally, Sen’s slope values for SST_A and Wind anomalies
(Wind_A) were calculated for these stations, as they are two key
factors influencing Chl-a variability. The calculation of Wind_A
followed the same methodology used for Chl-a_A and SST_A. As
shown in Supplementary Table S2, all four stations exhibited a
decreasing trend in Chl-a_A. The trends for SST_A were
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FIGURE 5

Spatial distributions of Sen’s slopes and MK-test results for (A) Chl-a_A and (B) SST_A over the ASPG from 2001 to 2019, along with the spatial
distributions of r values between (C) Chl-a_A and SST_A, as well as (D) Chl-a and Wind_A over the same period.
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significantly positive at Z3-S1, Z5-S2, and Z5-S3, but there was no
significant trend at Z7-S2. For Wind_A, significant positive trends
were observed at Z5-S2 and Z7-S2, while no significant trends were
found at Z3-S1 and Z5-S3. These results highlight the complex
interplay between Chl-a, SST, and wind patterns across different
regions of the ASPG.

To assess the impact of SST and wind on the long-term trends
of Chl-a, correlation coefficients (r) between Chl-a_A and SST_A,
as well as Chl-a_A and Wind_A, were calculated for each pixel
(Figures 5C, D). The r values between Chl-a_A and SST_A were
predominantly negative across the ASPG, indicating an inverse
relationship between these variables, with a few positive values in
the southern PG suggesting localized positive correlations.
Additionally, the majority of these correlations were statistically
significant throughout the ASPG. In contrast, the r values between
Chl-a_A and Wind_A were mostly positive in the AS, signifying a
positive correlation, while in the PG, the r values were generally
negative. Significant correlations between Chl-a_A and Wind_A
were primarily observed along the Oman coast, northeastern
Arabian coast, and western Indian coast in the AS, as well as in
the southern PG. The detailed statistical summaries of r values
between Chl-a_A and SST_A, as well as Chl-a_A and Wind_A are
presented in the Supplementary Materials (Supplementary Table 3).

Since significant trends in Chl-a_A were only detected at four
stations—Z3-S1, Z5-S2, Z5-S3, and Z7-S2—the time series of Chl-
a_A, SST_A, and Wind_A were extracted for these locations to
further examine temporal variability and the correlations between
Chl-a_A and SST_A, as well as Chl-a_A and Wind_A. A detailed
statistical summary of these correlations, covering the entire study
period, the southwestern monsoons, the northeastern monsoons, and
the transitional months (pre- and post-southwestern monsoons), is
presented in Table 2. At Z3-S1, no significant correlations between
Chl-a_A and either SST_A or Wind_A were observed for any time
frame. At Z5-S2, two significant correlations were found between
Chl-a_A and Wind_A: one positive correlation for the entire study
period and the other positive correlation during the northeastern
monsoons. At Z5-S3, three significant correlations were identified
between Chl-a_A and SST_A—one for the entire study period, one
for the northeastern monsoons, and another during the transitional
months. At Z7-S2, two significant correlations emerged between Chl-
a_A and Wind_A: one for the entire study period and the other
during the southwestern monsoons. These results underscore the
regional differences in the relationships between Chl-a_A and SST_A,
as well as Chl-a_A and Wind_A.

The time series of Chl-a_A, SST_A, and Wind_A at four stations
(Z3-S1, Z5-S2, Z5-S3, and Z7-S2) are presented in Figure 6. The
coefficient of variation (CV) was used to quantify variability, revealing
the highest Chl-a_A variation at Z5-S3 (6.50E+16), followed by Z5-S2
(-1.77E+16), Z3-S1 (-1.47E+16), and Z7-S2 (-3.49E+15). SST_A
variation was highest at Z5-S3 (-4.24E+15), followed by Z3-S1
(-2.54E+15), Z7-S2 (-1.34E+15), and Z5-S2 (1.04E+15). Wind_A
exhibited the most variation at Z3-S1 (6246.99), followed by Z7-S2
(152.20), Z5-S2 (-93.41), and Z5-S3 (-93.41). Due to the low spatial
resolution of wind data, Z5-S2 and Z5-S3 shared the same dataset.
Large Chl-a_A outliers were observed at Z3-S1 (e.g., August 2003,
February 2017), Z5-S2 (e.g., September 2001, February 2008), and Z5-
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TABLE 2 Statistical summary of the significance of r values between
Chl-a_A and SST_A, as well as Chl-a_A and Wind_A, at the four stations
for the entire study period, southwestern monsoon seasons,
northeastern monsoon seasons, and transitional months from 2001

to 2019.

Chl-a_A Chl-a_A
Stations | VS SST_A VS Wind_A Time period
Z73-S1 0 0 All months
Southwestern
0 0 monsoons
Northeastern
0 0 monsoons
Transitional
0 0 months
75-S2 0 1+ All months
Southwestern
0 0 monsoons
Northeastern
0 1+ monsoons
Transitional
0 0 months
75-S3 1- 0 All months
Southwestern
0 0 monsoons
Northeastern
1 0 monsoons
Transitional
1 0 months
Z77-S2 0 1- All months
Southwestern
0 1 monsoons
Northeastern
0 0 monsoons
Transitional
0 0 months

A value of 1 indicates a significant correlation, while 0 denotes no significance. The symbols
“+” and “~” represent positive and negative correlations, respectively.

S3 (e.g., August 2002, 2009, 2017). Although not fully explored, some
anomalies were linked to specific oceanographic events. For example,
the high Chl-a_A value in August 2003 coincided with a cold-core eddy
near the Somali coast, which likely contributed to elevated Chl-a_A
concentrations during this period (Prakash et al., 2012). These findings
highlight the complex dynamics influencing Chl-a_A variability.

4 Discussion

4.1 Advantages of using the DINEOF to fill
in the data gaps

In this study, the DINEOF method was employed to reconstruct

MODIS datasets of Chl-a and SST over the ASPG from 2001 to 2019.
The primary source of missing data in the original datasets was adverse
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weather conditions, such as cloud cover and rainfall. Specifically,
24.67% of the Chl-a data and 1.26% of the SST data were missing, as
shown in Table 1. The relatively high percentage of missing Chl-a data
underscores the significance of applying DINEOF for accurate
reconstruction in this region. The comparison between the original
and reconstructed datasets demonstrated that the mean and standard
deviation values were closely aligned (Table 1), confirming the
precision and reliability of the DINEOF reconstruction. Additionally,
visual comparisons of the original and reconstructed Chl-a and SST
data for specific dates, illustrated in Figures 2, 3, reveal smooth and
plausible patterns in the reconstructed outputs. Further validation,
through cross-correlation analysis (Figure 4), shows strong agreement
between the reconstructed and original datasets for both Chl-a and
SST, reinforcing the robustness of the reconstruction method. In future
research, we aim to integrate field observations to further enhance the
validation of our reconstructed data.

To the best of our knowledge, only a limited number of studies
have utilized the DINEOF method to reconstruct satellite-derived Chl-
a datasets in specific regions like the AS or PG. Even fewer have applied
DINEOF to simultaneously reconstruct both Chl-a and SST datasets
over the entire ASPG. For instance, Jayaram et al. (2018) employed
DINEOF to reconstruct MODIS-Aqua Chl-a data over the AS for the
period 2002-2015. This study primarily investigated the seasonal and
interannual variability of Chl-a, highlighting the method’s utility in
regions with frequent data gaps due to cloud cover. Similarly, Huang
et al. (2022) used DINEOF to reconstruct Chl-a datasets from the
Ocean Colour Climate Change Initiative (OC-CCI) by the European
Space Agency (ESA) over the AS from 1998 to 2017. In contrast, Khan
et al. (2019) and Khan et al. (2022) extended the application of
DINEOF by reconstructing both MODIS-Terra monthly Chl-a and
SST datasets from 2001 to 2017. Their studies analyzed the seasonal
variability and explored the correlations between Chl-a and SST over
the entire study area. However, while they provided valuable insights
into the seasonal dynamics of Chl-a and SST, their work did not
examine the long-term trends in Chl-a.

In light of these gaps, the present study offers a more
comprehensive approach by not only reconstructing both Chl-a and
SST datasets using DINEOF but also performing an in-depth analysis
of the spatio-temporal variability and long-term trends of Chl-a across
the entire ASPG from 2001 to 2019. This extended temporal range
allows us to assess the potential impacts of climate variability and
oceanographic changes on Chl-a dynamics in the region. Additionally,
by reconstructing both Chl-a and SST, we are able to investigate their
interactions and correlations over time, providing a more holistic view
of the region’s marine ecosystem dynamics. Our study contributes to
the broader field of oceanography by demonstrating the effectiveness of
DINEOF in reconstructing multi-variable datasets and its potential
application in other regions where satellite data is frequently
compromised by missing observations.

4.2 Impact of SST and wind on the
spatiotemporal variability of Chl-a

The seasonal variability of Chl-a, as revealed in Figure 4, aligns
with findings from previous studies (Levy et al., 2007; Sarma et al.,
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2012; Piontkovski et al., 2013; Jayaram et al.,, 2018; Khan et al.,
2022), where monsoon-driven wind reversals were identified as the
main drivers of phytoplankton blooms. These wind shifts
significantly impact mixed-layer dynamics and promote
upwelling, bringing nutrient-rich waters from the deeper ocean to
the surface, which fuels phytoplankton growth during both the SW
and NE monsoon seasons (Goes et al., 2005; Jayaram et al,, 2018).
This is further supported by the monthly climatology of wind
patterns from 2001 to 2019 (Figure 7), which reveals stronger
southwestern winds during the SW monsoon and weaker
northeastern winds during the NE monsoon, with the weakest
winds observed during the transitional periods.

Ekman transport, derived from wind data, exhibits distinct
seasonal variability across the ASPG, as illustrated in the
Supplementary Materials (Supplementary Figure 3). In the AS, it
peaks during the summer monsoon, driving surface water offshore
and promoting upwelling, with a maximum value of approximately
2 m® s' m™ in July. In winter, the transport shifts southeast,
resulting in downwelling. In contrast, Ekman transport in the PG
remains minimal throughout the year, with the highest values
observed in June, directed northeast.

To further investigate upwelling dynamics, an upwelling index
was calculated using wind vectors at eight coastal stations
(Figure 1). These coastal stations were strategically selected for
their proximity to known upwelling regions, such as Kochi, Duqm,
and Qishn, which are significantly influenced by seasonal
monsoonal winds. Additional stations were chosen based on their
alignment with nearshore data points within each zone to ensure
comprehensive coverage. Spanning a wide latitudinal range across
the ASPG, these stations provide a thorough spatial representation
of upwelling zones. This selection forms a robust foundation for
analyzing upwelling dynamics and their influence on regional Chl-
a variability.

The time series of the monthly upwelling indices (Figure 8)
reveals that upwelling was most pronounced along the western and
southeastern coasts of the AS (Dugam, Qishn, Kochi), followed by
the northern PG (Bandar Bushehr) and northeastern AS (Karachi)
during the SW monsoon. Higher Chl-a concentrations in the
western and northern AS (Figure 4) suggest that upwelling is a
key driver of Chl-a variability in these regions during the SW
monsoon. Notably, the monthly Chl-a data for the southeastern AS
and northern PG are not depicted in Figure 4. However, a prior
study by Khan et al. (2019) reported elevated Chl-a levels in the
southeastern AS during the SW monsoon, whereas the northern PG
did not exhibit similar increases during this period; instead, higher
Chl-a concentrations were noted during the NW monsoon. This
discrepancy suggests that the effects of upwelling on Chl-a
variability differ between the AS and PG.

We also observed that the timing of Chl-a peaks varies across
different regions of the AS (Figure 4). A previous study by Jayaram
et al. (2018) reported that the northern AS was more productive
during the winter monsoon, while the southern coastal regions were
less productive, and vice versa. Our findings refine this observation,
indicating that the southwestern AS is more productive during the
summer monsoon, with reduced productivity in the northern
coastal regions, except for the northeastern area. Their study also
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identified intra-seasonal variability, with a primary productivity
peak during the onset phase of the summer monsoon and a
secondary peak during the withdrawal phase in the northern AS,
in addition to a single dominant peak during the winter monsoon,
based on Wavelet analysis. In contrast, our results show that the
timing of Chl-a peaks varies across regions in both summer and
winter in the northern AS. This regional variability aligns with the
findings of Levy et al. (2007), who similarly reported that the timing
of peak productivity differs between regions within the northern AS,
due to differences in local physical and oceanographic processes.
These variations highlight the intricate relationship between large-
scale monsoon patterns and local environmental conditions,
showing that a detailed, region-specific analysis is essential for a
complete understanding of Chl-a variability in this area.
Additionally, we examined the influence of SST on the
spatiotemporal variability of Chl-a in the ASPG in our previous
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research. Khan et al. (2019) applied the DINEOF method to
reconstruct monthly MODIS-Terra Chl-a and SST data from 2001
to 2017, revealing that the majority of the study area (96%) exhibited
a significantly negative correlation between SST and Chl-a. Only a
small portion (4%), including certain coastal areas, the PG, and parts
of the southeastern AS, showed a significant positive correlation. This
negative correlation is primarily driven by wind-induced upwelling,
where cooler, nutrient-rich water is brought to the surface, resulting
in higher Chl-a concentrations (Goes et al., 2005). Building on this, in
our recent study (Khan et al, 2022), we utilized the same
reconstructed MODIS-Terra Chl-a and SST datasets and found
that regions with elevated Chl-a were associated with lower SST
and strong Ekman transport, further validating the connection
between upwelling and the negative correlation between Chl-a and
SST. Our findings suggest that both SST and wind are key factors
influencing the seasonal variability of Chl-a in the ASPG, with
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depicting the trendlines for Chl-a_A and Wind_A, respectively.
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upwelling playing a critical role in regulating surface productivity in
response to local wind patterns.

4.3 Influence of SST_A and wind_A trends
on the Chl-a_A trend

Previous studies have revealed conflicting trends in Chl-a for
the AS. Goes et al. (2005) reported a more than 350% increase in
Chl-a off the Somali coast during the summer, attributed to the
strengthening of southwestern monsoon winds. In contrast,
Prasanna Kumar et al. (2010) observed a weak basin-wide
increasing trend in the monthly Chl-a during September-
October and the winter monsoon, but a decreasing trend during
the summer monsoon from 1997 to 2007. They linked the Chl-a
increase in September-October to dust-induced iron fertilization,
which enhanced productivity when sufficient nitrate accumulated
in the upper ocean. During winter, intensified evaporative cooling,
driven by stronger winds, promoted convective mixing and the
upward transport of nutrients from deeper layers, further
supported by increased dust deposition, which together
explained the Chl-a increase. Prakash et al. (2012) found an
increasing Chl-a trend from 1997 to 2003, similar to Goes et al.
(2005), but attributed it to a cold-core eddy in 2003, which
enhanced Chl-a. However, from 2004 to 2010, they observed a
decline in Chl-a off the Somali coast, suggesting that SLA, rather
than SST or wind, were likely the main drivers. These studies
highlight the spatial and temporal variability in Chl-a trends
across the AS. Given the significant seasonal-to-interannual
variability in this region, identifying long-term, climate-driven
trends requires an extended dataset of at least a decade or more
(McClain, 2009). Therefore, we used two decades of Chl-a data in
this study. We also found a decreasing trend in the western AS
(Figure 5A), consistent with Prakash et al. (2012).

Our results for the Persian Gulf align with previous studies, but
with some differences. Moradi (2020) reported a mostly decreasing
trend in annual Chl-a from 2002 to 2018 across the Persian Gulf,
except for small areas in the southern and central regions, while SST
showed an increasing trend throughout the Gulf, with the exception
of the Strait of Hormuz. In contrast, we found non-significant trends
in Chl-a in the central Persian Gulf and similarly non-significant
trends in SST in the Strait of Hormuz (Figure 5B). Bordbar et al.
(2024) observed an increasing SST trend in the entire Persian Gulf
from 2003 to 2021, which differs slightly from our findings. This
discrepancy could be attributed to differences in datasets or trend
calculation methods. Regarding the correlation between Chl-a and
SST, Bordbar et al. (2024) found an inverse relationship between SST
and Chl-a throughout the Gulf, except in the southern region, which
is consistent with our results (Figure 5C). Concerning surface winds,
the northwesterly Shamal wind, prevalent year-round in the Persian
Gulf (Perrone, 1979; Pous et al., 2013; Yu et al., 2016), has shown a
positive trend over the past decades (Aboobacker and Shanas, 2018),
consistent with the increasing wind trend observed at station Z7-S2
(Supplementary Table 2). Moreover, as Chl-a_A at Z7-S2 exhibited a
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decreasing trend (Supplementary Table 2), this led to a negative
correlation between Chl-a_A and Wind_A at this station (Figure 5D).

5 Conclusion

In this study, we conducted a comprehensive analysis of the
spatiotemporal variability and long-term trends of Chl-a across the
ASPG using reconstructed MODIS monthly Chl-a and SST data from
2001 to 2019. The validation of the reconstructed dataset confirmed its
high accuracy and reliability, ensuring the robustness of our findings. Our
analysis revealed significant seasonal variability in Chl-a, with distinct
regional differences. Generally, a pronounced Chl-a peak occurred in
summer, followed by a secondary peak in winter, with the lowest levels
observed during the transitional months. Chl-a concentrations were
highest in the western and northeastern Arabian Sea. This seasonal
pattern is primarily driven by the SW monsoon in summer and the NE
monsoon in winter. Additionally, we observed regional variability in the
timing of Chl-a peaks in both summer and winter, likely due to differences
in local physical and oceanographic processes, such as wind patterns,
vertical mixing, and nutrient availability.

Over the two decades from 2001 to 2019, Chl-a_A exhibited a
significant decreasing trend along the coasts of the ASPG, with only
small areas showing increasing trend in the southeastern AS and
southern PG. At the regional level, an analysis of 21 stations identified
significant Chl-a trends at four locations: Z3-S1, Z5-S2, and Z5-S3 in
the western AS, and Z7-S2 in the southern PG. Correlation analysis
revealed predominantly negative correlations between Chl-a_A and
SST_A in the western AS, while correlations between Chl-a_A and
Wind_A were positive in the western AS and negative in the southern
PG. Significant correlations were found in specific cases: For Z5-S2,
we observed a significant positive correlation between Chl-a_A and
Wind_A throughout the study period and during the northeastern
monsoon. For Z5-S3, significant negative correlations between Chl-
a_A and SST_A were found over the entire study period, during the
northeastern monsoon, and the transitional monsoons. Similarly, Z7-
S2 exhibited significant negative correlations between Chl-a_A and
SST_A over the entire period and during the southwestern monsoon.
These three stations also displayed significant positive trends in both
SST_A and Wind_A.

This research advances our understanding of the complex
dynamics of marine ecosystems in the ASPG, shaped by both local
physical processes and broader climate variability. Future studies
should investigate additional factors, such as sea level anomalies
(SLA), wind stress curl (curl,), and the horizontal (u) and vertical (v)
components of wind vectors, and their influence on Chl-a trends, as
well as explore the underlying mechanisms driving these changes.
Such research will deepen our knowledge of marine productivity
trends in the ASPG and their broader ecological implications.
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The complex convergence of cold and warm ocean currents in the Nordic Seas
provides suitable conditions for the formation and development of eddies. In the
Marginal Ice Zones (MIZs), ice eddies contribute to the accelerated melting of
surface sea ice by facilitating vertical heat transfer, which influences the evolution
of the marginal ice zone and plays an indirect role in regulating global climate. In
this paper, we employed high-resolution synthetic aperture radar (SAR) satellite
imagery and proposed an oriented ice eddy detection network (OIEDNet)
framework to conduct automated detection and spatiotemporal analysis of ice
eddies in the Nordic Seas. Firstly, a high-quality RGB false-color imaging method
was developed based on Sentinel-1 dual-polarization (HH+HV) Extra-Wide
Swath (EW) mode products, effectively integrating denoising algorithms and
image processing techniques. Secondly, an automatic ice eddy detection
method based on oriented bounding boxes (OBB) was constructed to identify
the ice eddy and output features such as horizontal scales, eddy centers and
rotation angles. Finally, the characteristics of the detected ice eddies in the
Nordic Seas during 2022-2023 were systematically analyzed. The results
demonstrate that the proposed OIEDNet exhibits significant performance in
ice eddy detection.

KEYWORDS

synthetic aperture radar, dual-polarization, ice eddy, oriented object detection,
deep learning

1 Introduction

Ocean eddies are a pervasive oceanic phenomenon that plays a significant role in the
transport and distribution of material, energy, heat, and freshwater in the global ocean
(Chelton et al., 2011; Zhang et al., 2020). The observational advantages of SAR satellites,
which operate in all weather conditions and at all times of the day, and offer high spatial
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resolution, make them an important data source for the refined
study of oceanic eddies. SAR satellites are essential for the study of
submesoscale eddies that remain unobservable by altimeter
satellites. The remote sensing imaging mechanism of SAR ocean
eddies is mainly influenced by two mechanisms (ZHENG et al,
2018; Fu and Holt, 1983; Karimova et al.,, 2012): the wave-current
interaction mechanism and the sea surface floating tracer
mechanism, such as bio-oil films and ice floes. In the MIZs,
surface sea ice is driven by ocean eddies, exhibiting spiral motion
and eddy characteristics (Manucharyan and Thompson, 2017). This
paper refers to the ice-water mixing pattern formed by surface sea
ice and ocean eddies as an ice eddy (Johannessen et al., 1987;
Dumont et al., 2011). The melting of surface ice is facilitated by ice
eddies through the vertical transfer of heat, which affects the
development of MIZs and indirectly influences global
climate regulation.

Data acquisition for ice eddies relies on both in situ instruments
and satellite sensors. In general, in situ observations are
characterized by their high quality and reliability and include
moorings (Cassianides et al., 2021; von Appen et al., 2018), ice-
tethered profilers (Toole et al., 2011), and under-ice gliders.
However, due to the high cost of observations and poor weather
conditions, the amount and coverage of in situ observational data
may not adequately support experimental demands. Satellite
sensors theoretically possess the capability to acquire vast
amounts of data, supporting ice eddy detection and
characterization tasks with high spatial resolution and wide-area
global observation. In the Arctic Ocean, the detection of
submesoscale and small-scale eddies using satellite altimetry data
is challenging due to the limited spatial and temporal coverage of
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both altimetry and in situ data. The Rossby radius of deformation in
the Arctic Ocean is significantly smaller than in mid- and low-
latitude seas (Bashmachnikov et al., 2020; Nurser and Bacon, 2013).
Due to the presence of sea ice, the complexity of using altimeter data
in the Arctic Ocean renders it nearly unsuitable for detecting ice
eddies. Observational costs and adverse weather limit the quantity
and coverage of in situ data, which may be insufficient to meet
experimental demands. In contrast, SAR satellites with high spatial
resolution, full-time, and all-weather capability are better suited for
detecting mesoscale and submesoscale oceanic phenomena in the
Arctic Ocean (Kozlov et al., 2019). SAR satellites have become
essential in in-depth studies of oceanic eddies, particularly
submesoscale eddies challenging to detect with altimeter satellites.
The unique advantages of SAR satellites are illustrated in Figure 1.

The detection of eddies using SAR imagery has been the focus of
numerous studies (Cassianides et al., 2021; Kozlov and
Atadzhanova, 2021; Manucharyan and Thompson, 2017).
However, most studies rely on manual visual interpretation
methods for the detection of eddies from SAR images (Toole
et al, 2011; Gupta and Thompson, 2022). The accumulation of
massive SAR images has rendered it time-consuming and laborious
to recognize ocean eddies solely through manual visual
interpretation, highlighting the growing importance of automated
ocean eddy detection. In recent years, several researchers have
applied deep learning methods to ocean eddy detection on
synthetic aperture radar (SAR) images (Zhang et al, 2023; Xia
et al,, 2022; Huang et al., 2017; Du et al., 2019b; Zhang et al., 2020).
Du et al. (2019a) attempted to fuse a variety of features to
automatically identify ocean eddies and proposed an eddy
identification method based on adaptive weighted multi-feature
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fusion for SAR images. Considering the different importance of
different features for eddy recognition, an adaptive weighted feature
fusion method based on multiple kernel learning (MKL) is also
proposed. Although MKL demonstrates excellent performance in
addressing heterogeneous data, the method exhibits low detection
efficiency. Du et al. (2019b) proposed DeepEddy, a deep learning-
based ocean eddy detection method consisting of a hierarchical
feature learning model and a simple Support Vector Machine
(SVM) classifier. Eddy features are learned using two principal
component analysis convolutional layers. Additionally, DeepEddy
employs Spatial Pyramid Pooling (SPP), which addresses the
complex structure and morphology of ocean eddies by fusing
multi-scale features. However, this method fails to localize eddies
on SAR images. Zhang et al. (2023) proposed EddyDet, a deep
framework based on the Mask RCNN framework utilizing
Convolutional Neural Networks for eddy detection on SAR
images. Khachatrian et al. (2023) applied the YOLOV5 network to
SAR ocean eddy detection and realized the automatic detection of
ice eddies in the MIZs. Zi et al. (2024) proposed an EOLO network
to enhance the feature fusion method by introducing a channel
attention mechanism and employing an upsampling operator with
a larger receptive field. Xia et al. (2022) constructed a context and
edge association network (CEA-Net) based on the YOLOvV3
backbone network for identifying ocean eddies in S1
interferometric wide (IW) swath mode data. While the automatic
detection of eddies in SAR images using deep learning has shown
promising results, current research emphasizes the detection of
eddies in ice-free areas within mid- and low-latitude waters through
the use of co-polarization SAR images. HH-polarized images make
small-scale features more visible, while HV-polarization provided
more stable large-scale features related to sea-ice morphology
(Korosov and Rampal, 2017). The HV-polarized images were less
sensitive to surface scattering from open water but were very
sensitive to body scattering from sea ice. As a result, the contrast
between sea ice and open water is higher in HV-polarized images,
making ice eddy features more visible (Qiu and Li, 2022). The
advantages of HH-polarized images in detecting ice eddies are due
to its high sensitivity to surface scattering, its strong contrast with
open water, and its high signal-to-noise ratio, particularly under low
wind speed or rough surface conditions, where HH polarization can
offer precise and reliable ice eddy detection results. Combining HH-
polarization and HV-polarization features for ice eddy detection,
compared to using a single polarization, is beneficial for reducing
detection errors and improving accuracy.

Although the aforementioned methods have achieved
superior results in eddy detection in SAR images, they all
utilize the conventional horizontal bounding box (HBB) and
still exhibit notable limitations. HBBs are not optimal for
representing oceanic ice eddies with arbitrary orientations and

TABLE 1 SAR data statistics for Nordic ice eddy detection (S1).
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large aspect ratios, as they provide only a rough location without
accurate directional and scale information. Additionally, the HBB
representation often includes excessive background or nearby
object interference, which can lead to misidentification of ice
eddies. Unlike HBBs, OBBs are capable of flexibly adjusting the
orientation of detection boxes, allowing for the accurate
enclosure of inclined or rotated ice eddies. This capability
addresses issues related to redundant and overlapping detection
boxes, thereby significantly reducing detection errors. The field of
target detection has made remarkable progress over the past
decade. Directional target detection, as an extended branch of
target detection, has attracted significant attention due to its wide
range of applications (Li et al., 2020; Liu et al., 2020; Han et al,,
2021; Xia et al., 2018; Ma et al., 2018; Ding et al., 2019; Yang et al.,
2019). Ice eddies have distinct rotational characteristics and
directionality, and directional target detection can not only
detect the position of eddies but also accurately estimate their
rotational direction, which is highly significant for ocean
dynamics research, marine environment monitoring, and
marine resource development.

To address the above challenge, in this paper, we proposed
OIEDNet, which is a oriented ice eddy detection network based on
the Sentinel-1 dual-polarization data. The remainder of this paper is
structured as follows. Section 2 provides an overview of the dataset.
Section 3 describes the methodology employed in this study. Section
4 presents the experimental results and discussion. Finally,
conclusions are outlined in Section 5.

2 Materials

We utilize Sentinel-1A Level-1 EW mode Ground Range
Detected (GRD) product. The swath width for the EW Mode is
approximately 400 km, with an incidence angle ranging from 18.9°
to 47° and a pixel spacing of 40 m x 40 m. We selected 702 Sentinel-
1 SAR images containing ice eddies in the marginal ice area of the
Nordic Seas during January 2022-December 2023 as shown in
Table 1 and Figure 2.

The bathymetric product is the 200m resolution version 4.0 of
the International Bathymetric Chart of the Arctic Ocean
(IBCAOV4.0) (Jakobsson et al., 2020). The relationship between
the intensity of ice eddy production and the background wind
velocity was analyzed using 10m u and v hourly means from the
ERA-Interim reanalysis. The validation was conducted using the
Level 3 (L3) products from the Surface Water and Ocean
Topography (SWOT) mission, the Mesoscale Eddy Trajectory
Atlas Product (META3.lexp DT), the situ data collected from
OpenMetBuoys-v2021 (OMBs) deployed in the marginal ice zone
(Rabault et al., 2024) and drifters 15m drogue.

Year Jan Feb Mar Apr May Jun Jul UTe] Sept Oct Nov Dec
2022 18 13 12 28 39 48 35 33 ‘ 46 45 ‘ 28
2023 23 9 6 20 29 45 30 23 ‘ 46 30 ‘ 27
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(@

FIGURE 2

The distribution of experimental SAR images collected in the marginal ice zone of the Nordic Seas from January 2022 to December 2023. (A) Spatial
coverage of SAR images. (B) The number of SAR images is represented by color intensity. The gray lines indicate the 200 m and 2000 m isobaths,

derived from IBCAOv4.0.

3 Methods

The pipeline of the proposed OIEDNet framework is depicted
in Figure 3. From this figure, it is evident that the proposed
framework consists of three components: the Polarization
Combination Enhancement Module, the Neural Network Module,
and the Feature Statistical Analysis Module.

Firstly, the Sentinel-1 satellite’s HH and HV dual-polarized ice
eddy SAR images undergo data preprocessing, HH-polarized
incidence angle correction (IAC), HV-polarized thermal noise
removal (TNR), and dual-polarized false-color image synthesis to
generate dual-polarized SAR false-color ice eddy images. Secondly,
the ice eddy sample library is created using the data expansion

method. Finally, based on the dual-polarized SAR false-color ice
eddy images, a rotating frame ice eddy auto-detection model is
developed and trained to achieve the automatic detection of ice
eddies in the Nordic Seas MIZs.

3.1 Polarization combination
enhancement method

The polarization combination enhancement method includes
(1) data preprocessing; (2) HH-polarized IAC; (3) HV-polarized
TNR; (4) polarized data enhancement, and (5) RGB false-color
composite. Figure 4 illustrates the flowchart of the polarization
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FIGURE 3
The structure of the proposed OIEDNet framework.

Frontiers in Marine Science

76

Neural network

s

t

R Ay
! AL
i | Angle.angle loss J
! ——

as

Feature Fusion

o1 o2 03 04 G5 05 07 O8 03 10 11 12
Month

frontiersin.org


https://doi.org/10.3389/fmars.2024.1480796
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Wu et al.

10.3389/fmars.2024.1480796

Sentinel-1 EW HV and HH

polarization

v

Data preprocessing

v v

HH -polarized incidence
angle correction

HV-polarized thermal
noise removal

v v

Polarization data enhancement

Blue layer

Red layer
channel channel

Generate green
layer channel

A

v

Gamma correction

v

I
I
I
I
I
I
I
RGB false-color composite [
I
I
I
I
I
I
I

Contrast limited adaptive
histogram equalization

RGB false-color

composite |

RGB false-color

Image

FIGURE 4
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combination enhancement process. Data preprocessing mainly
involves orbit correction, radiometric calibration, filtering,
conversion to dB values, and geocoding processing.

In the process of ice eddy detection, the variation in the
backward scattering coefficient caused by changes in the incidence
angle may introduce significant errors, necessitating the correction
of the incidence angle for HH-polarized data. In this study, the IAC
algorithm (Qiu and Li, 2022; Li et al., 2020) is utilized, and the
calculation formula is presented in Equation 1.

6 =0"+0.200 X (8 - 6,), 1)

where ois the corrected backward scattering coefficient (in dB),
0" is the backward scattering coefficient before correction, 6 is the
incidence angle of the pixel, and 6, is the corrected standard
incidence angle, which is taken as 34.5°. Figure 5D illustrates the
effects following the correction of the HH polarization
incidence angle.
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In Sentinel-1 EW-mode SAR images that are strongly affected
by scallop stripe noise in the azimuth direction and by noise
gradients in the distance direction, especially in HV-polarized
images, thermal noise is particularly prominent as displayed in
Figures 5A, B. Although ESA provides a standard method of noise
vector correction, the effect of residual noise cannot be ignored due
to the narrow distribution of HV polarization backscatter.

The denoising algorithm (Park et al.,, 2017; Sun and Li, 2020)
was improved for the removal of thermal noise. The average noise
power was added to the denoised results. This adjustment enabled
the conversion of noise power from a linear scale to a logarithmic
scale (dB) sigma zero conversion, ensuring that these pixels did not
become invalid values. By appropriately scaling and balancing the
noise vectors given by ESA, the algorithm can approximate the
actual noise values as much as possible by using the azimuthal
antenna element pattern in the azimuthal direction, so that the
effects of the scallop stripe and the noise gradient in the distance
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direction can be effectively eliminated. The specific processing steps
are as follows.

To eliminate the noise step phenomenon between sub-bands, it
can be assumed that the denoising process model satisfies a linear
relationship. It is calculated using Equation 2.

K

ns,n ° Ge 0-1(\)] + K (2)

s(k) = o3y — o)

(

where s(k) is the denoised ¢° value. 6y is the uncorrected
original 6° value. oy is the 6° calculated by bilinear interpolation
using the thermal noise vector provided by ESA. K, , is the optimal
noise scaling factor. Kpbn is the interstrip noise power balance
factor. n is the number of sub-bands, n = 1, 2, 3, 4, 5. K, can be
obtained by least squares solution using a large amount of HV
polarized data. K;,’byn can be calculated using Equation 3.

K,

an—li"'ﬁn—l)_ (ani+ﬁn)> (3)

bn:(
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where ¢, and 3, are the slopes and intercepts, respectively, of
the linear models for the different sub-strips. i is the number of
image elements in the range direction at the boundary between the
strips n = 2, 3, 4, 5. Since there are only four interstrip boundaries.
th)l is set to 0.

When the original image is subtracted from the thermal noise
acquired using the described method, some image element points
become negative. To eliminate the effect of negative noise power,
noise compensation is required. By appropriately scaling and
balancing the noise vectors provided by ESA, the algorithm can
closely approximate the actual noise values using the azimuthal
antenna element pattern, effectively eliminating the effects of scallop
stripes and noise gradients in the range direction.

First, the Signal-Noise Ratio (SNR) is defined as the ratio of the
0" value (so,) after Gaussian filtering to the noise equivalent sigma
zero (NESZ). The SNR is calculated using Equation 4.
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Sog

SNR = NESZ'

(4)

Subsequently, further calculations were conducted to obtain the
power compensated using Equation 5.

weight x 5o, + SNR X s
$00 = weight + SNR

* Sooffset> (5)

where s, is the residual noise power compensated 6°. syofet 1S
the noise field compensation value, which can be taken as the
average value of the reconstructed noise field.

Finally, the HV polarization grayscale image with thermal noise
removed can be obtained. Figure 5C illustrates the effects after the
removal of thermal noise from the HV polarization.

In this paper, a high-quality dual-polarization SAR RGB false-
color ice eddy image production method is proposed, compositing
HH and HV polarizations into a single false-color image. Since the
ice eddy information in the Sentinel-1 EW model is primarily
contained in the HH-polarized data, the HH-polarized image is
used for the blue channel and the HV-polarized image for the red
channel. To optimize the visual quality, the square root is applied to
the HH and HV channels, with a slight offset added to mitigate the
effect of grain noise on the data. The calculation formula is
presented in Equation 6 and Equation 7.

HHjy = VHH +0.002. (©6)

HVy = VHV +0.002. )

The green channel image is produced by combining the offset-
processed HH and HV polarization data, as shown Equation 8.

G=HVy x (2 x HHg + HVy X (1 -2 X HHp)) . (8)

Finally, the SAR image was enhanced using SAR image
stretching and contrast-limited adaptive histogram equalization
(CLAHE). Figure 6 illustrates a comparison the RGB false color
images before and after denoising.

The data expansion of 702 dual-polarized false-color ice eddy
images was achieved through noise perturbation transformations,
rotations (90°, 180°, 270°), and up-down flip transformations,
resulting in dual-polarized ice eddy samples. Eddies that rotate
clockwise in the northern hemisphere are referred to as anticyclonic
eddies, while those that rotate counterclockwise are referred to as
cyclonic eddies. Figure 7 illustrates examples of anticyclonic and
cyclonic ice eddies.

3.2 Neural network

In this paper, we propose the neural network component of
OIEDNet, a multiscale rotating frame model designed for the
automatic detection of ice eddies. The model structure is
illustrated in Figure 8. Traditional target detection algorithms
typically utilize HBB, assuming that object positions in the image
are calculated relative to the image center. However, this
assumption is not always accurate, particularly for objects with

Frontiers in Marine Science

10.3389/fmars.2024.1480796

distinct directional features, as the HBB often fails to accurately
locate the true position of such objects. OIEDNet addresses this
limitation by introducing OBB, which allow bounding boxes to be
positioned at any arbitrary angle, making it more adaptable for
detecting target objects with various orientations.

3.2.1 Feature spatial pyramid module

The backbone of OIEDNet consists of the CSPDarknet53
feature extractor, which is followed by a C2f module. The C2f
module is succeeded by two segmentation heads designed to predict
the semantic segmentation masks of the input images.
Submesoscale ice eddies (approximately 0.1 to 10 km) and
mesoscale ice eddies (approximately 10 to 100 km) can be
detected by SAR satellites. To address the wide range of ice eddy
target scales in SAR images, a feature fusion module is integrated
into CSPDarknet53 to fuse feature maps of varying scales,
enhancing the detection of ice eddies of different sizes. OIEDNet
incorporates the Spatial Pyramid Pooling Faster (SPPF) module in
the feature-enhanced Neck layer, which is optimized from the
original SPP module structure. To obtain high-level semantic
information from multiscale features and further improve
detection accuracy and speed, The SPPF module is inserted
between the convolutional and fully connected layers. The SPPF
module integrates multiscale local feature information, providing
the network with a global perspective and facilitating the extraction
of rich multiscale feature representations, as illustrated in Figure 9.
The original SPP module generates a final feature map by
connecting three feature maps processed in parallel with 5 x 5,
9 x 9, and 13 x 13 max pooling kernels. However, this approach is
time-intensive. To improve operational efficiency and detection
speed, the SPPF module optimizes this process by merging the
feature map processed by a mixed layer (convolutional layer +
BatchNorm layer + SiLU layer) with three feature maps derived
from a single 5 x 5 max pooling operation. This concatenation
enables efficient extraction of the final feature map.

Traditional Feature Pyramid Networks (FPNs) enhance the
representation of low-level features by transferring high-level
features downwards through a top-down pathway (Lin et al,
2017). Nonetheless, traditional FPNs face challenges in effectively
managing scale variations. To compensate for this deficiency,
OIEDNet introduces the Progressive Asymmetric Feature
Pyramid Network (PAFPN) structure (Liu et al., 2018), which
enhances the performance of the target detection task by fusing
features from neighboring levels and incorporating higher-level
features into the fusion process in an incremental manner,
enabling direct interaction between non-neighboring levels.
PAFPN is applied between a feature extraction network
(backbone) and a neck network (neck module). Specifically,
different levels of feature maps are first extracted by the backbone,
and then feature fusion is performed using PAFPN. The fused
feature maps are fed into OIEDNet’s head network (head module)
for object classification and bounding box regression. PAFPN
incorporates the Path Aggregation Network (PAN) into the
Feature Pyramid Network (FPN) by employing a bottom-to-top
fusion approach. OIEDNet replaces the Context Enhancement
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08:21:44 UTC.

Module (C3) in PAN with a Context Enhancement Module with
feature fusion (C2f) and removes the 1x1 convolution prior to
upsampling. OIEDNet directly inputs the feature output from
various stages of the backbone into the upsampling operation.
The PAFPN network structure enables the construction of multi-
scale feature maps from a single image, ensuring that each layer of
the pyramid produces feature maps with robust semantic
information. This approach provides richer spatial detail and
high-level semantic features for detecting marine ice eddies,
which exhibit complex structures, varying scales, and rapid,
continuous changes.

3.2.2 Rotation bounding box
Five variables (cx, cy,w,h, 8) are used to define the bounding
box with an arbitrary orientation. As shown in Figure 10, cx and cy
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represent the coordinates of the center point, and the rotation angle
0 indicates the angle between the horizontal axis and the first edge
of the rectangle after counterclockwise rotation. Here, the first edge
defines the width of the bounding box, while the other edge defines
its height, with the angle ranging from -90° to 0°.

3.3 Feature statistical analysis module

Based on the obtained location information, the center and
diameter of the ice eddy in the predicted box can be determined,
laying the foundation for subsequent ice eddy studies. The center of
the tangent ellipse inside the rotating frame was used as the eddy
center, and the average distance from the center of the ice eddy to all
points on the fitted ellipse is used as the radius of the ice eddy.
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Examples of ice eddies photographed by S1. (A—C) are anticyclonic eddies and (D—F) are cyclonic eddies.

According to the ice eddy automatic detection model, the rotating
frame parameters (cx, cy, w, h, 6) of the ice eddy are obtained. Using
the eddy center (cx,cy) as the starting point, the coordinate
positions of the four vertices A,B,C,D can be calculated.

During the data preprocessing stage, SAR images are geocoded
using the WGS1984 standard, transforming pixel coordinates (rows
and columns) into geographic coordinates (longitude and latitude).

Consequently, it becomes possible to calculate the location of the ice
eddy center and the eddy diameter. The Feature Statistical Analysis
Module primarily facilitates the extraction of ice eddy center and
diameter information, and performs statistical analyses to produce
thematic maps of ice eddies for any time period and any region.
These maps depict the spatial distribution of ice eddies and related
scale histograms (see Chapter 4.4). These analyses support
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Oriented bounding boxes(green solid lines). The red ellipse represents the eddy edge, while yellow arrows show the distance from the eddy center to

any point on the ellipse. A red dot marks the center of the ice eddy.

researchers in examining the generative mechanisms and
evolutionary processes of ice eddies.

4 Experimental results and discussion

4.1 Experimental environment

addition, we conduct multi-model comparison experiments to
evaluate performance before and after denoising, and between
single polarization and dual polarization.

The precision evaluation of the model is based on the validation
set, and the evaluation metrics include the precision rate (P), the
recall rate (R) and the F1-Score (F1), as shown in Equations 9-11.

TP
P=——. )
. L . . TP + FP
The experimental setup configuration is provided in Table 2.
Computation was performed on GPUs with 16 multithreads, and TP
the training data share was configured to 0.75. The RGB ice eddy R= TP+ EN" (10)

training set and S1 annotations were employed for training, and the
model’s parameters were fine-tuned based on experience and
experimental results to attain optimal performance.

YOLOX is an open-source high-performance detector that
builds upon YOLOvV3 by introducing decoupled heads, data
augmentation, anchor-free detection, and the SimOTA sample
matching method, thus constructing an end-to-end anchor-free
object detection framework (Zheng et al., 2021). YOLOVS is a real-

TABLE 2 Experimental setup configuration.

Configuration Operating

System

GPU Card: NVIDIA TESLA-A-

1002
time object detection model that utilizes advanced techniques such Bare Single Card Memory Size: 32GB Cnmens kG
. . . . . U
as anchor-free detection and multi-scale feature fusion within a Metal (GPU) per card peng

HBB framework (Varghese and Sambath, 2024). We conduct
comparative experiments on OIEDNet, YOLOX and YOLOvVS. In
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Memory: 1024GB
Single Memory Module: 128GB
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Fl1=2x

P+R’ an

TP denotes the number of correctly detected ice eddies, FP
denotes the number of false positive detections of ice eddies, and FN
denotes the number of missed ice eddies.

4.2 Comparison

The results of OIEDNet,YOLOX and YOLOvV8 were compared
using the same test set, as presented in Table 3. Both YOLOv8 and
YOLOX are traditional HBB detection models. The experimental
results indicate that the OIEDNet model exhibits a precision of
94.40% and a recall of 93.65%, while YOLOv8 and YOLOX exhibit
precisions of 93.50% and 87.90%, as well as recalls of 92.00% and
86.51%. In comparison to YOLOv8 and YOLOX, the OIEDNet
model demonstrates superior performance in detecting dense eddy
regions. The rotational detection of OIEDNet more accurately
detects eddies with irregular shapes and changing directions, and
the inspection frame fits the eddies more closely, significantly
reducing the redundancy of the horizontal inspection frame, as
shown in Figure 11. For eddies with large differences in scales and
similar locations, there is obvious overlapping of inspection frames
in horizontal detection, while rotational detection effectively avoids
overlapping of inspection frames (Figure 11B). The interaction
between ocean circulation and ocean currents is accompanied by
the splitting and fusion of ocean eddies, leading to the
multinucleated structure of ice eddies, which the rotational
detection method can detect more accurately (Figure 11D). The
IEDNet model reduces the leakage and false alarms of ice eddies to a
certain extent. The OIEDNet model has obvious advantages in the
precision and recall of ice eddy detection, and it can effectively
detect submesoscale and mesoscale ice eddies.

This study evaluates the enhancement effects of IAC, TNR, and
dual-polarization RGB false color synthesis in the OIEDNet model.
Comparison of four sets of ice eddy detection results for the same
OIEDNet model (Figure 12). Before and after the denoising of dual-
polarized false-color images, the detection accuracy increases from
88.71% to 94.40%, reflecting an improvement of 5.69%. In contrast,
the detection accuracy of ice eddies in HV-polarized images without
TNR is 85.04%, while the detection accuracy in HH-polarized
images without TAC is 89.06%. This indicates that thermal noise
significantly reduces the detection accuracy of ice eddies, whereas

TABLE 3 Accuracy evaluation of different models.

10.3389/fmars.2024.1480796

the incidence angle has a relatively minor effect on detection
accuracy. The detection performance of the proposed model
shows significant improvement with the adoption of the
Polarization Combination Enhancement, resulting in an
approximate 8.65% increase in the F1 score. This enhancement
effectively boosts detection accuracy in noise-heavy environments.

4.3 Validation

Altimeters and SWOT satellites rely on radar echo signals for
measuring sea surface height. However, sea ice leads to attenuation
and scattering of radar signals, rendering the echo signals unstable,
which makes it difficult to obtain accurate sea surface height data
and, therefore, makes it unable to accurately detect ice eddies, as
shown in Figures 13, 14. SAR, on the other hand, can clearly detect
ice eddies in this environment due to its high-resolution imaging
and penetration capabilities. Mesoscale eddies can be identified
from sea level height data using altimetry, but the daily mesoscale
eddy dataset is identified by measuring different time trajectories,
which results in low spatial and temporal resolution. Figures 13B,
14B shows a comparison of eddies identified by OIEDNet and
altimeters. It is clear that SAR is able to detect more submesoscale
ice eddies and that SAR is even more advantageous in detecting
high-latitude ice eddies.

The ice eddies detected by OIEDNet were compared and
validated against in situ data collected from OpenMetBuoys-
v2021 (OMBs) deployed in the marginal ice zone. Figure 15
illustrates the movement trajectories of two ice buoys in the
marginal ice zone around Svalbard from August 18, 2022, to
August 26, 2022. Red triangles are used to denote the starting
positions of the buoys, while pentagrams indicate the ending
positions of their trajectories. The ice buoy trajectories exhibit a
counterclockwise rotation consistent with the direction of the ice
eddy, indicating a cyclonic ice eddy.

4.4 Spatial and temporal distribution of
ice eddies

Using the OIEDNet ice eddy detection framework, ice eddy
identification and scale information extraction were performed on
702 SAR images containing ice eddies in the Nordic Seas from

Model HH IAC HV TNR HH HV RGB P R F1
OIEDNet x x v x x 0.8906 0.9048 0.8976
x x x v x 0.8504 0.8571 0.8537
x x v v v 0.8871 0.9167 0.9017
v v x x v 0.9440 0.9365 0.9402
YOLOVS8 v v x x v 0.9350 0.9200 0.9274
YOLOX v v x x v 0.8790 0.8651 0.8720

"x" indicates that the corresponding data is not utilized by the model, whereas "v" indicates that the data is utilized.
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The comparison of ice eddy detection results between OIEDNet and YOLOVS is shown in (A—D) where the red HBB is used to represent YOLOvV8
detection results, and the green OBB is used to represent OIEDNet detection results.

January 2022 to December 2023. To ensure the accuracy of the
statistical feature information of the ice eddies, the detected ice eddy
types were annotated using a manual visual inspection method. A
total of 2283 ice eddies were identified, including 1724 cyclonic
eddies (CEs) and 559 anticyclonic eddies (AEs). The number of
cyclonic ice eddies is 3.08 times that of anticyclonic eddies, which
may be related to the mechanism of anticyclonic eddy generation
and the interaction between the two (McWilliams, 2016).

The spatial density distribution of ice eddies was calculated
using a 0.1° x 0.1° grid, as shown in Figure 16A, revealing that the
densest distribution of ice eddies is located in the north-central
Greenland Sea, which exhibits a high number of both cyclonic and
anticyclonic ice eddies. The monthly variation is shown in
Figure 16B, indicating that Nordic Seas ice eddies are present
throughout the year, with two peaks in the total number of ice
eddies in May and October, and a low in March. Overall, May to

Frontiers in Marine Science

84

November is the period when ice eddies are most frequent. The
formation of ice eddies in the Nordic Seas results from a
combination of dynamical and thermal forces (Perovich and
Jones, 2014). Spatially, areas of high ice eddy occurrence are often
closely linked to the Arctic Current, with the East Greenland Cold
Current flowing along the east coast of Greenland. Temporally, with
the onset of the Arctic summer polar day, sea surface temperatures
(SSTs) rise, and glacier melting causes the expansion of marginal ice
areas, leading to high ice eddy occurrence. In contrast, the Nordic
Seas ice cover decreases rapidly to reach a minimum at the
beginning of October, after which the ice area starts to expand
rapidly. Thus, the thermodynamic factors in the Nordic Seas are
more complex in October, which is conducive to the formation of
ice eddies.

Figure 17A shows that the sizes of ice eddies in the Nordic Seas
are primarily concentrated in the mesoscale and submesoscale
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Comparison of four sets of ice eddy detection results using the OIEDNet model: (A) detection results without HH-polarized IAC, (B) detection results
without HV-polarized thermal noise reduction, (C) detection results of dual-polarized RGB images before denoising, and (D) detection results of

dual-polarized RGB images after denoising.

intervals. The diameters of these eddies are mostly in the range of
10-100 km. The diameter of cyclonic ice eddies is mainly between
10-60 km, while the diameter of anticyclonic ice eddies is mostly
between 30-70 km, indicating that anticyclonic ice eddies tend to be
larger than cyclonic ice eddies. Large ice eddies are primarily located
in the north-central Greenland Sea.

From Figure 17B, we observe that the proposed model
maintains detection performance despite increasing wind velocity.
Although the number of ice eddy detections decreases with higher
wind speeds, this does not indicate a decline in model performance;
instead, it reflects the inherent difficulty of eddy formation in areas
with strong winds, resulting in a reduced number of eddies. The
lack of a sharp downward trend in detections further illustrates the
robustness of the proposed model across varying wind speeds.
Regarding wind velocity, 79.7% of the detected ice eddies formed
under low wind conditions of 1-4 m/s, while about 20.3% occurred
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under medium wind conditions. Similarly, from Figure 18, as ice
concentration increases, the number of ice eddies decreases. The
rate of detected ice eddies shows a gradual decline, which further
demonstrates the robustness of the proposed model under varying
ice concentrations.

5 Conclusions

To accurately detect MIZs ice eddies, denoising algorithms and
image processing techniques are combined to propose a high-
quality RGB false-color image production method and to create a
dual-polarization synthetic aperture radar false-color ice eddy
dataset. Simultaneously, the OIEDNet ice eddy detection model
was developed and trained, achieving a precision rate of 94.4% and a
recall rate of 93.65%, highlighting significant advantages in ice eddy
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detection. The OIEDNet effectively detects dual-polarized SAR ice
eddies with a small sample size, identifying Submesoscale and
mesoscale ice eddies in SAR images quickly and accurately. The
experimental results demonstrate that the ice eddies detected in
SAR images are not as large as previously indicated. The
experimental results show that the OIEDNet model excels at
detecting dense eddy regions in ice eddy detection. The rotating
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detection frame of OIEDNet better fits the eddy, effectively avoiding
overlap. The interaction between ocean circulation and currents
involves the splitting and fusion of ocean eddies, leading to the
multinuclear structure of ice eddies, which can be more accurately
detected by the rotational detection method. The OIEDNet also
significantly reduces the leakage of ice eddies and false detections,
especially in dense eddy regions. The OIEDNet not only
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accurately detects ice eddies in the Arctic MIZs but also addresses
the traditional HBB’s limitations in identifying ice eddies of
different scales and forms. This work lays a solid foundation for
future research on the automatic detection and quantification of
ice eddies.

Despite the OIEDNet model’s high performance in ice eddy
detection, certain limitations persist. For instance, minor changes in
the rotation angle can lead to significant alterations in the detection
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frame, increasing instability and difficulty in the detection and
regression process. Exploring new angle representations could
reduce ambiguity. Furthermore, we will incorporate multi-
polarization and multi-frequency SAR images for model training
to enhance the accuracy of ice eddy detection. The identification of
ice eddy drift using Synthetic Aperture Radar (SAR) images holds
significant potential for enhancing the understanding of sea ice
eddy dynamics.
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Sea fog is a severe marine environmental disaster that significantly threatens the
safety of maritime transportation. It is a major environmental factor contributing to
ship collisions. The Himawari-8 satellite’'s remote sensing capabilities effectively
bridge the spatial and temporal gaps in data from traditional meteorological
stations for sea fog detection. Therefore, the study of the influence of sea fog
on ship collisions becomes feasible and is highly significant. To investigate the
spatial and temporal effects of sea fog on vessel near-miss collisions, this paper
proposes a general-purpose framework for analyzing the spatial and temporal
correlations between satellite-derived large-scale sea fog using a machine learning
model and the near-miss collisions detected by the automatic identification
system through the Vessel Conflict Ranking Operator. First, sea fog-sensitive
bands from the Himawari-8 satellite, combined with the Normalized Difference
Snow Index (NDSI), are chosen as features, and an SVM model is employed for sea
fog detection. Second, the geographically weighted regression model investigates
spatial variations in the correlation between sea fog and near-miss collisions. Third,
we perform the analysis for monthly time series data to investigate the within-year
seasonal dynamics and fluctuations. The proposed framework is implemented in a
case study using the Bohai Sea as an example. It shows that in large harbor areas
with high ship density (such as Tangshan Port and Tianjin Port), sea fog contributes
significantly to near-miss collisions, with local regression coefficients greater than
0.4. While its impact is less severe in the central Bohai Sea due to the open waters.
Temporally, the contribution of sea fog to near-miss collisions is more
pronounced in fall and winter, while it is lowest in summer. This study sheds
light on how the spatial and temporal patterns of sea fog, derived from satellite
remote sensing data, contribute to the risk of near-miss collisions, which may help
in navigational decisions to reduce the risk of ship collisions.
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1 Introduction

Sea fog is a frequent and dangerous meteorological
phenomenon, significantly threatening marine activity safety. This
phenomenon drastically reduces the horizontal visibility of the sea
surface to less than one kilometer (Gultepe et al., 2007). Unlike
land-based scenarios, reduced visibility at sea poses a heightened
risk due to the intricate nature of maritime navigation (Sim and Im,
2023), substantially increasing the likelihood of ship collisions and
thus endangering lives, property, and the environment. Ship
collisions, as one of the primary maritime accidents, can inflict
substantial eco-nomic losses and adverse social impacts. Using non-
accident information to understand maritime transportation safety
is an effective strategy. This often involves identifying near-miss
collision events from Automatic Identification System (AIS) data.
Since near-miss collisions occur more frequently than actual
accidents, near-miss collisions can provide richer insights for
maritime traffic risk analysis than actual accident data (Zhou
et al,, 2021). Due to sea fog on 22 May 1922, the Peninsular &
Oriental Steam Navigation Company’s Egypt collided with the
French cargo ship Seine en route from London to Bombay, India.
The ship sank, killing 86 passengers and crew members. Because sea
fog occurs geographically heterogeneously and temporally
seasonally, it is crucial to analyze how it affects near-miss
collisions over time and space.

In 2000, the International Maritime Organization (IMO)
adopted a new requirement for all ships to carry an Automatic
Identification System (AIS) that automatically communicates
information among ships and coastal authorities. The AIS system
transmits the ship’s static, dynamic, and voyage information to the
surrounding ships and AIS base stations via a specific Very High
Frequency (VHF). Because of the rich positional and temporal
information provided by AIS, it has become a valuable tool in
maritime studies, including maritime traffic (Harun-Al-Rashid
et al, 2022; Yang et al., 2024; Zhang et al., 2019), marine
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observing (Almunia et al, 2021; Wright et al,, 2019), and ship
collisions (Cai et al., 2021; Liu et al., 2023; Zhang et al., 2016), etc.
The AIS is popular because of its ability to conduct in-depth studies
of ship near-miss collisions.

Nowadays, water traffic safety studies are focusing on incidents
narrowly susceptible to collisions, often termed “near-miss
collisions”. In the maritime sector, a near-miss collision refers to
a scenario where two vessels pass each other in close proximity (Du
et al,, 2020). A prevalent method for detecting near-miss collisions
involves using navigation information from AIS data (Zhang et al.,
2015, 2016). The few maritime accidents so far limit the possibility
of conducting large-scale collision studies. However, near-miss
collisions studies can help overcome this limitation (Prastyasari
and Shinoda, 2020). To prevent ship collisions more effectively,
numerous studies have been conducted on the spatial geographic
distribution of near-miss collisions to identify high-risk areas (Du
et al,, 2021; Zhixiang et al, 2019; Zhou et al.,, 2021). However,
previous studies have primarily focused on visualizing the spatial
distribution of near-miss collisions without delving deeply into the
relevant influencing factors. From the maritime traffic safety
perspective, the factors contributing to collisions can be
categorized into human, vessel, and environment domains.
Among these, environmental factors are the primary causes of
accidents (Zhang and Hu, 2009). Variations in environmental
conditions can significantly increase collision risks. Given that
marine environmental factors exhibit stability, regularity, and
spatial heterogeneity, it is crucial to optimally use the rich
geographic information associated with near-miss collisions.
Integrating these marine environmental factors into the research
framework for near-miss collisions would enable more
comprehensive and insightful studies.

Among various marine environmental factors, sea fog is a
frequently occurring catastrophic weather. Studies have shown
that poor visibility, often associated with fog, exerts the most
significant impact on maritime traffic safety, predisposing vessels
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FIGURE 1
Overview of the study area.
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to collision accidents (Bye and Aalberg, 2018; Gultepe et al., 2006).
Approximately 70% of ship collisions are attributed to foggy
conditions (Wu et al., 2015). Moreover, the consequences of ship
collisions are most severe during the foggy season (Zhang and Hu,
2009). Investigating the influence of sea fog on near-miss collision
risk is essential for enhancing the supervision and management of
critical maritime areas and periods to ensure secured
marine navigation.

Traditional sea fog detection methods rely on meteorological
stations and buoys, which are sparse in spatial and temporal
distributions (Kim et al, 2020). In recent years, remote sensing
technology has been widely applied in ocean environment
monitoring (Ullah et al., 2024; Khan et al., 2023). And, the advent
of satellite remote sensing technology enables long-term and large-
scale sea fog detection results. Using remote sensing for sea fog
detection started in the 1970s when Hunt (Hunt, 1973) discovered
significant differences in brightness temperatures between the mid-
infrared (MIR) channel of 3.7 um and the thermal infrared (TIR)
channel of 11 um for low clouds or fog with small particle size. Based
on this theory, several studies have explored sea fog detection
techniques, leveraging the difference between mid-infrared and
thermal infrared channels (Cermak, 2012; Eyre et al, 1984; Wu
and Li, 2014; Yibo et al.,, 2016; Zhang and Yi, 2013). Also, the sea fog
detection accuracy can be enhanced with spectral indices, such as
Normalized Snow Deposition Index, NDSI (Ryu and Hong, 2020),
Normalized Difference Water Index, NDWI (Wu and Li, 2014),
and Normalized Difference Flow Index, NDFI (Shi et al., 2023) and
environmental factors such as air-sea temperature difference (Han
et al,, 2022). Due to the challenges of determining optimal thresholds

TABLE 1 AHI observation bands details on Himawari-8 satellite.

Spatial resolution

Central wavelength

10.3389/fmars.2024.1536363

with traditional methods, various machine-learning techniques are
also widely employed in sea fog detection. With its unique vertically
resolved measurement capability that provides accurate sea surface
cloud information, the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (Calipso) has been widely used for sea fog
detection (Badarinath et al., 2009; Cermak, 2012; Wu et al., 2015;
Xiao et al,, 2023; Xiaofei et al., 2021). Sea fog based on remote sensing
satellites can conduct spatial analyses of ship near-miss collisions.

Many studies have examined ship near-miss collisions to
achieve a safe and reliable maritime transportation system (Chai
etal., 2017; Rawson and Brito, 2021; Szlapczynski and Szlapczynska,
2016). Most recent studies infer that sea fog positively affects
collisions (Heo et al., 2014; Romer et al., 1995). However, sea fog
occurrences are spatially heterogeneous and temporally seasonal.
Therefore, it is necessary to explore the impact of sea fog on near
miss-collision risk in time and space. Conventional global
regression analysis methods, such as least squares regression,
assume independence and identical distribution of observations,
rendering them unsuitable for analyzing spatially unevenly
distributed data. Geographically weighted regression (GWR), a
local linear regression method based on spatial variation
relationships, is widely applied in various fields, such as
meteorology (Li et al., 2024; Wahiduzzaman et al., 2022), ecology
(Wang et al., 2021; Xiao et al., 2023), and economics (Cellmer et al.,
2020; Shang and Niu, 2023). The model generates a regression
equation at each local location, enabling spatial analysis of sea fog’s
impact on near-miss collisions (Yongtian et al., 2023).

However, few studies have focused on the spatial and temporal
variations in the relationship between ship near-miss collisions and

Channel (um) (um) Main detection category

1 1 0.47 Vegetation, aerosol

2 1 0.51 Vegetation, aerosol

3 0.5 0.64 Low cloud (fog)

4 1 0.86 Vegetation, aerosol

5 2 1.6 Cloud phase recognition

6 2 23 Cloud droplet effective radius

7 2 3.9 Low cloud (fog), natural disaster

s ) 62 Water vapor density from troposphere to
mesosphere

9 2 6.9 Water vapor density in the mesosphere

10 2 7.3 Water vapor density in the mesosphere

11 2 8.6 Cloud phase discrimination, sulfur dioxide

12 2 9.6 Ozone content

13 2 10.1 Cloud image, cloud top

14 2 11.2 Cloud image, sea surface temperature

15 2 12.4 Cloud image, sea surface temperature

16 2 133 Cloud height
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FIGURE 2
Workflow of the analytical procedure.

sea fog because traditional ocean observation data are usually in  remote sensing data instead of traditional point-based data from
point form, which limits studying the relationship between sea fog ~ meteorological stations, and near-miss collisions which are derived
and ship near-miss collisions in terms of spatial and temporal  from AIS data by the VCRO model. The GWR model measures the
variations. To address the issue, this paper presents a novel  spatial variation of near-miss collisions influenced by sea fog while
approach of exploring the spatial and temporal variations in the  an average coefficient analysis of monthly data is used to describe
relationship between ship near-miss collisions and sea fog. The  the temporal variation of those collisions. The Bohai Sea is chosen
primary contribution of the paper lies in proposing a framework for ~ as a case study to illustrate the approach. This study provides
measuring spatial and temporal variation in the correlations  insights into the spatial heterogeneity and intra-annual seasonal
between large-scale sea fog, which is detected using satellite  variations of near-miss collisions influenced by sea fog. The

117°0'0"E 117°0'0"E 120°0'0"E 123°0'0"E 126°0'0"E
3 z
1=} =&
a 2
o =N
o
4 z
1=} =&
2 2
A o
o o
Z
;g | g_ Legend
e & | I 0324 --0.068
« “@ I -0.068 - 0.028
[ 0.028- 0286
[ 0286 - 0.681

FIGURE 3
Himawari-8-image NDSI index distribution chart (A) Original image of Himawari-8 (B) NDSI calculation results shown in graded classes.
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approach can support decision-making for navigation and enhance
maritime safety.

2 Study area and datasets
2.1 Study area

This study selected the Bohai Sea area (37°07'~41°00'N117°35
~121°10’E) as the study area (Figure 1). This region represents the
northernmost offshore area of China, surrounded by land on three
sides, characterized as an almost enclosed inland sea. The Bohai Sea is
particularly susceptible to sea fog. Sea fog in the Bohai Sea primarily
occurs during spring and less frequently in summer. Renowned for its
abundance of fisheries and mineral resources and its dense
concentration of ports and harbors, the Bohai Sea emerges as one
of the busiest maritime regions for shipping activities.

In 2018, the major ports in the Bohai Sea (including Tangshan,
Tianjin, Dalian, Yantai, Yingkou, and Huanghua) ranked among the
world’s top 20 ports in terms of cargo throughput. The total port
throughput size reflects a port’s transport capacity. According to the
2018 port data from the China Port Yearbook, the annual throughput
(in million tons) of Tianjin, Tangshan, Huanghua, Qinhuangdao,
Dalian, Yantai, Yingkou, Jinzhou, Huludao, Panjin, Binzhou,
Dongying, Weifang, and Laizhou Ports was 507, 637, 288, 231, 468,
443,370, 110, 31.9, 40.91, 12, 58.25, 46.57, and 22.7, respectively. The
total throughput of each port is categorized into large, medium, and
small sizes based on mean and standard deviation breakpoints. Large
ports include Tangshan, Tianjin, Dalian, and Yantai Ports; medium
ports include Yingkou, Huanghua, and Qinhuangdao Ports; and
small ports include Jinzhou, Huludao, Panjin, Dongying, Binzhou,
Weifang, and Laizhou Ports.

2.2 Data

2.2.1 Himawari-8

This study’s remote sensing satellite data were obtained from
the Himawari-8 satellite, a third-generation geostationary
meteorological satellite operated by the Japanese Meteorological
Office and equipped with Advanced Himawari Imager (AHI). It
covered sixteen spectral bands, including three visible light
channels, three near-infrared channels, and ten infrared channels
(Table 1). Its quality of cloud imagery, number of spectral bands,
and clarity were substantially improved over those of previous
generations. Additionally, its full-disk observation frequency of
every 10 min provided excellent time resolution, thereby
facilitating the study of time-series sea fog events.

2.2.2 The AIS data

The Automatic Identification System (AIS) is a shipboard
monitoring system that provides vital information about a ship’s
position, speed, heading, and other relevant data. Being less
impacted by meteorological conditions, sea surface states, and
other environmental factors, AIS has gradually become a
mainstream data source for ship trajectory research. The primary
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data used in this study is the ship’s position, timestamp, direction
toward the earth, and sailing speed.

This paper used the 42.6 GB of 2018 Bohai Sea area AIS data,
containing a substantial data volume. To ensure the usability of the data,
we initially performed preliminary cleaning to remove records with
abnormal critical information, such as speed, heading, longitude, and
latitude. Since analyzing the encounter process is unpractical when the
shipping speed is low or in a moored state, we filtered out low-speed data
and data indicating a moored sailing state. The remaining trajectory data
were then divided into several sub-trajectories for detailed analysis.

3 Methodologies

Figure 2 provides the study workflow. We explored the effect of
sea fog on collision risk and the key factors influencing the collision
risk as explanatory variables, such as ship density. As shown in
Figure 2, the main steps include identifying sea fog, calculating
collision risk, dividing the sea area to be studied into grids, counting
the monthly frequency of sea fog and the total collision risk, and
performing spatial analyses. The main steps are further described
in detail.

3.1 Sea fog detection

The advantages of remote sensing satellite data include wide
coverage and continuous observation, enabling constant
monitoring of sea fog over a wide range and an extended period.
In this study, we used Himawari-8 satellite data, which is equipped
with the Advanced Himawari Imager (AHI), a next-generation
sensor with 16 spectral bands ranging from visible to infrared
wavelengths. The spectral characterization of Himawari-8 data
identified the bands B1, B2, B3, and B14 as the most suitable for
the task. To enhance the differentiation between sea fog and other
features, the Normalized Snow Deposition Index (NDSI) was
constructed as follows:

B; — B;

NDSI =
B; + B;

(1)

where B3 is the third-band reflectance and B5 is the fifth-band
reflectance. Figure 3 shows the spatial distribution of NDSI index,
and it can be found that most of the sea fog pixels in the Bohai Sea
and Yellow Sea can be distinguished according to the NDSI index.
The selected feature bands are normalized to address the varied data
magnitudes in each band, which could induce low accuracy and
slow computation.

In this study, only sea fog is dichotomized, i.e., into fog and
non-fog categories. In sea fog remote sensing detection, visual
interpretation is the conventional approach to sample selection. It
involves analyzing the texture or spectral characteristics of features
on satellite remote sensing images to identify those that meet the
pre-defined interpretation criteria. Among the visual interpretation
criteria for sea fog, the following features are essential: uniform,
smooth, and delicate texture, milky white color, darker and less
variable brightness, and more apparent and precise boundaries.
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Spatial distribution of near-miss collisions in 2018.

Nevertheless, low-altitude stratocumulus clouds and sea fog are
essentially clouds, with no significant difference in their physical
properties. Therefore, selecting sea fog samples solely based on
visual interpretation of satellite remote sensing images is subjective.

Vertical Feature Mask (VEM) data, a secondary product of
CALIOP data, can differentiate among several feature types,
including cloud, sea surface, subsurface, stratosphere, aerosol, and
no-signal data, within the range of satellite subsurface points. The
data is widely used in cloud and fog detection research. Based on the
CALIOP VEM data, those connected to the sea surface were
considered sea fog. The synchronized transit of CALIOP VEM data
and Himawari-8 satellite images are taken. Here, synchronization is a
transit time difference between the two data sets of no more than 10
minutes. Samples of sea fog and non-fog conditions have been
identified through visual interpretation and are further
corroborated with CALIOP Vertical Feature Mask (VFM) data.
Four types of feature samples, sea fog, medium-high clouds, low
clouds, and sea surface, were selected through visual interpretation
and in combination with CALIOP VFM data. The samples were
selected by the following cases: 1) Sea fog samples are clouds in
contact with the sea surface or anomalous sea surface above sea level
in the VFM data. 2) Low cloud samples are clouds with cloud base
heights lower than 2 km in the VFM. 3) Medium-high cloud samples
are clouds with cloud base heights greater than 2 km in the VEM. The
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sample selection process resulted in the following types and
corresponding pixel counts: 6725 pixels for sea fog, 7267 pixels for
sea surface, 6961 pixels for low-level clouds, and 9367 pixels for mid-
high level clouds.

The classification model in the study is the Support Vector
Machine (SVM), a novel pattern recognition method initially
proposed by Vapnik and Cortes in 1995 (Vapnik, 1995). The SVM
is widely used in numerous domains, including feature extraction,
pattern recognition, and regression analysis. Additionally, the SVM
exhibits several advantageous characteristics, such as its suitability for
small-sample training, robustness, stability, and automation. It has
been extensively adopted, demonstrating high efficacy in remote
sensing image classifications. The system randomly generates a
hyperplane in the binary classification of linearly divisible data. It
moves it until the points belonging to different categories in the
training set are precisely on both sides of the hyperplane, thus
achieving the optimal classification with the minimum difference
between similar categories and vice versa. In the case of nonlinear
problems, it is necessary to map the input samples to a high-
dimensional feature space and construct the optimal classification
surface in this feature space. As the dimensionality of the feature
space increases exponentially, computing the optimal classification
plane directly in this high-dimensional space becomes challenging.
The SVM addresses this issue by defining a kernel function, which
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translates the problem to the input space. SVM can eftectively divide
sea fog and non-sea fog regions in high-dimensional feature space,
especially suitable for complex data features in sea fog detection. SVM
can accurately capture the distribution features of different regions by
constructing the decision hyperplane to improve the classification
accuracy. Unlike deep learning methods that usually rely on a large
amount of labeled data, SVM can still provide good classification
performance with limited sample size. In view of the difficulty and
high cost of acquiring sea spray labeled data, CALIPSO data is used
for labeling in this study, and SVM is able to give full play to its
classification advantages with limited labeled samples. SVM has
strong robustness to noise and outliers, which effectively improves
the stability of the detection of sea spray, and reduces the
classification error of the traditional methods in complex
environments. Therefore, the SVM method can realize efficient
processing while ensuring accuracy, and is an ideal choice for the
sea fog detection task in this study.

This study selected the radial basis function (RBF) as the kernel
function, with 70% of the samples used as training data and 30% as
test data.

10.3389/fmars.2024.1536363

3.2 Near miss collisions

There are two main approaches for calculating collision risk
based on historical AIS data. The first method utilizes Distance at
Closest Point of Approach (DCPA) and Time to Closest Point of
Approach (TCPA). The technique identifies near-miss collisions by
establishing criteria for DCPA and TCPA within a defined vessel
domain (Fukuto and Imazu, 2013; Langard et al., 2015; Yoo, 2018).
Nevertheless, collision risk assessment, solely based on DCPA/TCPA,
ignores the heading information between ship pairs and thus cannot
detect the collision risk during head-on encounters. The second
method involves constructing a model to calculate the near-miss
collisions based on factors that directly influence ship collisions.

The Vessel Conflict Ranking Operator (VCRO) model assessed
the collision risks between ships, with the input variables including
distance, relative speed, and phase difference between the two ships
(Zhang et al., 2015). The equation is as follows:

VCRO(x,y,2) = ((kx'ly)(m -sin (z) + n - sin (2z)) (3)

where x is the distance between the two ships, y is the relative speed,
z is the phase, k, m, n are the model parameters. The parameter values

! T ! M !
k(x,x) = 9(x)" p(x') = D75, 9i(x)¢i(x) (2 used in this study are based on Zhang, with k;=3.87, m=1, and n=0.386.
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The relative distance between ships is calculated using Equation
4, where (x;, ;) represents the coordinates of ship A, (x;,y,) is the
coordinates of ship B, and d is the distance between the centers of
the two ships.

d=/t -3 + (2 -y @

The relative velocity between ships is calculated using Equation
5, where V, and V), represent the speed of ship A and ship B,
respectively, HDG, and HDG, represent the heading of ship A and
ship B, and « represents the heading angle of the ship.

Yab) = \/Vﬁ +V2-2V,V,cosc (5)

The phase describes the relative position of the ships, denoted
by angle and direction. The phase range is [-7, 7], where a negative
value indicates a concluded encounter and the two ships move away
from each other, posing no collision risk. Conversely, a positive
value indicates that the ships are approaching each other,
heightening their collision risks.

To analyze the law governing ship collision risk on spatial and
temporal scales, the study area must be gridded. Considering its
size, the Bohai Sea is divided into grid cells of 0.125°, and the sum of
near-miss collisions of each grid cell is counted as the value of this
grid near-miss collisions:

Riskg,, =S VCRO, (6)

3.3 Global Moran's |

Global Moran’s I is the most frequently employed statistic in
global correlation analysis. It is a comprehensive measure of spatial
autocorrelation across the study area (Moran, 1948). It is expressed
as Equation 7, where wy; represents the weight between observations
i and j, and Sy denotes the total sum of wj, given as Equation 8

PN Sty =y - y)

So E?:l(}’i —5’)2

™)

S() = E?zlz}lﬂwl‘f (8)

A Moran’s I > 0 indicates a positive spatial correlation,
described as a “high-high, low-low” aggregation trend between
neighboring elements. The larger the value, the more pronounced
the spatial correlation. Conversely, Moran’s I< 0 signifies a negative
spatial correlation, characterized as a “high-low, low-high”
distribution trend among neighboring elements. However, there is
a random distribution when Moran’s I = 0, indicating spatial
randomness. After calculating Moran’s I index, it is impossible to
judge the spatial correlation directly based on its positive or negative
value. The significance of the index must be assessed in
combination with the p-value and Z-score.
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3.4 Geographically weighted regression

According to the first law of geography, anything is spatially
correlated. Geographically weighted regression is a local linear
regression method that involves modeling spatially varying
relationships to solve spatial heterogeneity of the variables by
assigning weights to different locations (Brunsdon et al., 1996). Its
Equation 9 is as follows:

¥i = Bo(lis vi) + 2k B (i vi)xis + € )

where (1;,v;) denotes the position of grid cell i, B,(1;, v;) is the

intercept term, Bi(1;,v;) is the regression coefficient of the

parameter k on the grid cell, and ¢ is the model random error.

The parameter vector at location i is estimated using the weighted
least square approach as follows Equation 10:

Bl vy) = (X" W (aty, v)X) " XTW (i, v,)y (10)

The GWR model is adjusted using a distance decay weighted
function modified by a bandwidth. The three most commonly used
weighting functions are Gaussian-based, bi-square, and tri-cube
kernels. Bandwidth includes fixed and adaptive types. We used a
geographically weighted regression model with the dependent
variable as near-miss collisions, while the explanatory variables
were the frequency of sea fog, ship density. We employed a
Gaussian kernel spatial weight matrix, where the weight between
observation points i and j is calculated as Equation 11, where dj;
represents the geographical distance between the two points and b is
the bandwidth parameter. We used the adaptive bandwidth
specified by the Akaike information criterion (AICc) due to the
uneven distribution of the near-miss collision data.

dz
W,l = exp <_ Z—blz)

Further, the AICc and R? values evaluated the performance of

(11)

the developed models. Higher R* indicates a better fit, while lower
AICc indicates a poorer fit. The GWR model has significant
advantages over the OLS model in its ability to optimize the
global model on a local scale and to visualize the spatial
distribution of the local regression coefficients. It enables the
analyses of each factor’s local contribution and non-stationarity
characteristics through local coefficient variations, which are
unavailable in the OLS model.

4 Result and discussion

4.1 Spatial and temporal differences in
near-miss collision

Figure 4 displays the grid statistics for near-miss collisions in
2018. The value for each grid represents the total values for all near-
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Spatial distribution of near-miss collisions, (A—I) represent the spatial distribution of near-miss collisions for each month from January to December

2018 respectively.

miss collisions occurring within that grid as calculated using Eq (6).
Areas of high near-miss collision are concentrated around ports
because of the confined navigable space and the high density of
ships in these areas (Figure 5), while fewer near miss collisions were
observed in the central waters of Bohai Sea. Notably, the Laotieshan
Channel, located at the northernmost end of the Bohai Strait, is a
major maritime transport hub in the Bohai Sea. It experiences

Frontiers in Marine Science

substantial maritime traffic, resulting in a heightened risk of near-
miss collision risks in the area.

In addition, Figure 6 shows the spatial distribution of near-miss
collisions from January to December 2018. We observed that the
fishing moratorium in the Bohai Sea, lasting from May to August,
results in fewer near-miss collisions during this period. The number
of near collisions starts to increase in September. By January, vessel
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activity decreases as the temperature drops and the icing period
begins, leading to a corresponding decline in near collisions.

4.2 Spatial and temporal differences in
sea fog

The spatial distribution of sea fog in the Bohai Sea is
significantly heterogeneous, with most occurrences concentrated
in the southwestern and northern regions (Figure 7).

Figure 8 illustrates the monthly distribution of sea fog frequency
in the Bohai Sea in 2018. The data indicate that sea fog is
significantly higher in winter and spring. Despite this seasonal
peak, the overall frequency of sea fog remained relatively low,
with almost no occurrences in summer.

In summary, the sea fog in the Bohai Sea in 2018 has obvious
spatial and temporal distribution differences, showing the
characteristics of “high in spring, low in summer, high along the
coast, and low in the distant sea”. Spring is the high incidence of sea
fog, with a wide spatial distribution; while in summer, sea fog is
significantly reduced and concentrated in local coastal areas.
Understanding the spatial and temporal variability in the
distribution of sea fog is critical to maritime safety and the
development of effective navigation strategies.

10.3389/fmars.2024.1536363

4.3 Spatial autocorrelation

Before performing the GWR model, a spatial autocorrelation
analysis of sea fog occurrence was conducted using the Moran’s I
index, along with z-scores (indicating the distance from the mean in
standard deviations) and p-values (assessing the statistical
significance of the index). Table 2 presents these results for each
month of 2018, as well as for the entire year. All the Moran’ I index
values (bounded by 1.0 and 1.0) are positive and high (> 0.25),
indicating a high degree of spatial positive autocorrelation. Also, the
p-values are all less than 0.01 (reaching 99% confidence level), and
the z-scores are significantly higher than 2.58, indicating that the
spatial autocorrelation results are statistically significant.
Consequently, the linear regression model is inadequate for
analyzing the impact of sea fog on collision risk. In contrast, the
GWR model is well-suited to address these spatial dependencies.
Using the GWR model enables an in-depth analysis, better
capturing the spatial impact of sea fog on near-miss collision
risks across the region.

4.4 GWR model diagnosis

The GWR models were constructed for 2018 and each month
therein, with near-miss collisions as the dependent variable, while sea
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Spatial distribution of the frequency of sea fog occurrence, (A—I) represent the spatial distribution of the frequency of sea fog occurrence in each

month from January to December 2018, respectively.

fog frequency and ship density were explanatory variables. Prior to
constructing the GWR models, all values were normalized to ensure
consistent scale and improve model accuracy. To assess the
effectiveness of the GWR model, an OLS model was also established
for comparison. The model results (Table 3) showed that the R* values
of the OLS model are generally lower than 0.6, indicating that it
explains less than 60% of the variance in near-miss collision incidents.
For instance, in January, February, and March, the OLS R2 values are
low at 0.10, 0.21, and 0.19, respectively, suggesting limited explanatory

Frontiers in Marine Science

power. In contrast, the GWR model significantly outperforms the OLS
model with R2 values above 0.7 for most months, indicating that its
effectiveness in dealing with spatially heterogeneous data. Similarly, the
Akaike Information Criterion corrected (AICc) values further validate
the GWR model’s superiority. AICc is a measure of model quality
where lower values indicate better fit. The AICc values of the GWR
model are lower than those of the OLS model. These results indicate
that the GWR model, which accounts for spatial heterogeneity, fits the
data more effectively and provides more accurate regression analyses.
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TABLE 2 The spatial autocorrelation test results obtained using moran’ | TABLE 3 Performance evaluation of the GWR and OLS model.
index combined with the z-score and p-value of sea fog (as GWR-
independent variables).

Month Moran’ | Z
1 0.307 114 1 0.10 -760.77 0.81 -1141.87
2 0.314 11.67 0.00 2 0.21 -651.09 0.87 -1035.79
3 0.444 16.46 0.00 3 0.19 -1415.51 0.93 -2378.54
4 0.524 19.28 0.00 4 0.15 -1493.52 0.84 -2198.11
5 0.419 15.44 0.00 5 0.76 -1730.34 0.95 -2278.35
6 0.271 10.03 0.00 6 0.12 -1515.95 0.82 -2197.67
7 0.284 10.45 0.00 7 0.68 -1847.73 0.94 -2590.70
8 0.264 9.74 0.00 8 0.47 -1642.87 0.74 -1918.78
9 0.258 9.52 0.00 9 0.60 -4550.58 0.78 -4689.05
10 0.358 13.25 0.00 10 0.30 -1399.03 0.71 -1702.76
11 0.314 11.62 0.00 11 0.59 -1903.69 0.84 -2302.02
12 0.303 10.98 0.00 12 0.57 -1596.99 0.86 -1970.90
Moran’ |
2018 0.406 14.98 0
2018 0.265 -2084.45 0.82 -2729.98
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The seasonal patterns also suggest that the GWR model performs
especially well in winter and spring, when sea fog occurrences are more
frequent. For example, in February through May, when sea fog events
are prevalent, the GWR model R2 values range from 0.87 to 0.95. This
result reinforces that sea fog, as an environmental factor, has a
significant spatially variable impact on near-miss collisions during
these months.

118°E 120°E 122°E 118°E
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1

10.3389/fmars.2024.1536363

Figure 9 shows the spatial distribution of local R* values of
GWR for the 2018 annual data. The values generally exceed 0.4,
indicating that the sea fog and ship density can fit the GWR model
well. Notably, the areas with higher R* (> 0.8) are concentrated in
large port areas, such as Tianjin Port, Tangshan Port, Yantai Port,
and Dalian Port. In contrast, the rest of the medium ports, such as
Qinhuangdao and Yingkou Port, also have R2 between 0.6 and 0.8.
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FIGURE 10

Spatial distribution of the local R2 values by GWR model, (A-I) represent the spatial distribution of the local R2 values in each month from January

to December 2018, respectively.
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Suggests that sea fog and ship density are more strongly correlated
with ship near-miss collisions in ports areas.

Figure 10 displays the local R2 values for different locations in
the GWR model over the 12 months of 2018, highlighting temporal
variation in the model’s performance across different locations. The
GWR model performs well in essentially all months, with local R2
values generally exceeding 0.6, although it varies monthly for
different locations. This temporal variability suggests that the
influence of sea fog and ship density on collision risks may shift
over time, potentially due to seasonal changes in weather
conditions, maritime traffic, or operational patterns in these
port areas.

Overall, the R” values are consistently high for most regions of
the Bohai Sea. This deduction indicates that the driving factors used
in the model effectively explain the spatial heterogeneity in near-
miss collision risk.

4.5 Spatial relationship between sea fog
and collision

The local regression coefficients of the GWR model (Figure 11)
highlight the spatial variation in the effect of sea fog on near-miss
collisions. The regression coefficients are generally greater than 0,
indicating that sea fog positively affects near-miss collisions, thus

10.3389/fmars.2024.1536363

the occurrence of sea fog contributing to collision risk. Generally,
the impact of sea fog on near-miss collisions shows significant
spatial inhomogeneity. The areas with the highest impact by sea fog
are predominantly near the ports in the western part of the Bohai
Sea, mainly concentrated around Tianjin Port and Tangshan Port.
The high density of ships and heavy traffic in these harbors increase
the likelihood of collision accidents when encountering sea fog due
to reduced visibility and increased difficulty in ship handling.
Further from these large ports, the coefficients decrease,
indicating a relatively lower but still positive effect of sea fog on
near-miss incidents. The areas with moderate coefficients (0.3 to
0.5) include regions around medium ports, where the collision risk
remains elevated during fog but to a lesser extent than in the large
ports. Therefore, near-miss collisions at key shipping nodes, such as
ports, significantly increase during sea fog scenarios. Consequently,
port authorities in large ports, such as Tianjin and Tangshan,
should enhance navigation monitoring and optimize ship
scheduling during foggy conditions to mitigate the increased risk
of collisions. Implementing real-time navigation assistance and
optimizing traffic flow in these key nodes can further reduce the
risk of incidents under low-visibility conditions.

Figure 12 illustrates the monthly spatial distribution of local
regression coefficients from the GWR model. Throughout the year,
sea fog consistently shows a positive effect on near-miss collision risk,
but the intensity and spatial distribution of this impact fluctuate
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FIGURE 11

Spatial distribution of regression coefficient values of sea fog in 2018 using GWR models.
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significantly. Specifically, the contributions of sea fog were more
significant in January, February, March, April, and June, with high-
impact areas concentrated near the large, medium-sized ports in the
western Bohai Sea, such as Tianjin and Yingkou Port. In contrast, May,
July, and September display a more even distribution of lower local
coefficients, with values generally below 0.1. This pattern suggests that
during these months, the effect of sea fog on near-miss collisions is less
severe across the region. In August, some changes occurred in the
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geographical distribution of the contribution of sea fog, with Dongying
and Huludao harbors being more affected in localized areas. The effect
of sea fog in the Bohai Sea intensified again from October to December,
with several high-impact zones. Particularly in October, the effect was
more significant, affecting the ports of Tianjin, Qinhuangdao, Laizhou,
and Dongying. In November, Tianjin and Qinhuangdao ports were
more affected, while in December, the port of Tianjin experienced the
most significant impact.
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4.6 Temporal relationship between sea fog
and collision

Here, we present line plots of the average regression coefficients for
each month in Figure 13, providing a visual comparative time-series
analysis of how much the Bohai Sea area is affected by sea fog in
different months. The results demonstrate that sea fog in autumn and
winter most significantly impacts ships’ near-miss collisions, while
spring has the second-highest impact. In contrast, the effect of sea fog
on near misses is minimal in summer. The seasonal difference can be
explained in two ways. First, sea fog is less frequent in summer, which
directly reduces the adverse effects of sea fog on navigational
conditions. Secondly, the fishing moratorium in the Bohai Sea area
coincides with summer, and the reduced activity of fishing vessels leads
to a relative decrease in the number of vessels, thus reducing the risk of
collision due to sea fog. Nevertheless, it is crucial to note that, although
May and June also fall within the fishing moratorium period,
commercial vessel activity is higher at this time than from January to
April. This increased activity can still contribute to collision risks, even

with the reduced traffic of fishing vessels.
Specifically, May to August is the closed season for fishing in the

Bohai Sea, so the mean regression coefficient increases from September
(Figure 13 red line), indicating that sea fog has started to affect ship
collisions significantly. However, as winter approaches (December-
March), the number of active ships decreases due to the lowering of
temperatures and the freezing period, and the mean regression
coefficient starts to decrease, indicating less impact by sea fog
(Figure 13 green line). The regression coefficients remain smoother
but slowly increase in spring and summer (March-August) (Figure 13
yellow line). In July, sea fog had almost no effect on collision risk because
it hardly occurred, and the number of vessels was low during the fishing
moratorium in the Bohai Sea. Collisions are more significantly affected
by sea fog when vessel traffic is high. This observation suggests that
navigation safety strategies should focus on periods with high vessel
traffic and frequent sea fog to mitigate collision risks effectively.

5 Conclusions

This paper presents a new framework for analyzing the spatial
and temporal effects of sea fog on ship near-miss collisions. Data from

Frontiers in Marine Science

the Himawari-8 satellite is used to detect sea fog, with a Support
Vector Machine (SVM) model applied for identification. Near-miss
collisions between vessels are analyzed using the Vessel Conflict
Ranking Operator (VCRO) model, which is based on Automatic
Identification System (AIS) data. Spatial autocorrelation analysis by
Moran ‘s I index reveals significant spatial heterogeneity in the
distribution of sea fog. To account for this variability, a
geographically weighted regression model (GWR) is employed,
which enables measuring the spatial variation of sea fog’s effect on
ship near-miss collisions through local regression coefficients.
Additionally, further conduct regression analysis on the monthly
time series data to investigate the intra-annual seasonal dynamics and
variations by calculating the mean regression coefficients. This
temporal analysis can help us understand how the sea fog factor
influences ship near-miss collisions over time. The proposed
framework is implemented in a case study focused on the Bohai
Sea, and the results are as follows.

According to the performance metrics (AICc and R?), the GWR
model performs much better than the OLS model. The R* of the
GWR model ranges from 0.70 to 0.95, suggesting that GWR is more
suitable for data where spatial non-stationarity exists. Regression
coefficients generally greater than 0 indicate a positive influence of sea
fog on ship near-miss collisions. Visualizing the local regression
coefficients can intuitively reveal the spatial differences in the
contribution of sea fog to ship near-miss collisions. Overall, sea
areas near large and medium ports along the coast of the Bohai Sea
with high ship densities, such as Tangshan Port and Tianjin Port, are
more susceptible to sea fog. However, the impact on the central Bohai
Sea is minimal due to the vast expanse of the water area. We estimate
the mean regression coefficients for each month to explore temporal
differences. It reveals that the contribution of sea fog intensifies in the
autumn after the end of the fishing moratorium. In winter, the
contribution of sea fog decreases due to the low number of vessel
activities. However, the contribution rises steadily by spring, while it
is lowest in summer due to its low occurrence frequency. Future
studies should explore the spatial and temporal correlation between
sea fog and ship near-miss collisions in more detail in response to
multi-year data analysis. This research demonstrates that sea fog data
derived from remote sensing satellite observations allows for a more
comprehensive understanding of relationships and patterns in space
and time.
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Chlorophyll-a (Chl-a) plays a vital role in assessing environmental health and
understanding the response of marine ecosystems to physical factors and
climate change. In situ sampling, remote sensing, and moored buoys or floats
are commonly employed methods for obtaining Chl-a in marine science
research. Although in situ sampling, buoys, and floats could provide accurate
data, they are limited by the spatial and temporal resolution. Remote sensing
offers continuous and broad spatial coverage, while it is often hindered by cloud
cover in the South China Sea (SCS). This study discussed the feasibility of a
predictive model by linking the physical factors [e.g., wind field, surface currents,
sea surface height (SSH), and sea surface temperature (SST)] with surface Chl-ain
the SCS based on the ResUnet. The ResUnet architecture performs well in
capturing non-linear relationships between variables, with the model achieving
a prediction accuracy exceeding 90%. The results indicate that (1) the
combination of oceanic dynamical and meteorological data could effectively
estimate the Chl-a based on deep learning methods; (2) the combination of
meteorological and SST effectively reproduces Chl-a in the northern SCS, while
adding surface currents and SSH improves model performance in the southern
SCS; (3) With the addition of surface currents and SSH, the model effectively
captures the high Chl-a patches induced by eddies. This research presents a
viable method for estimating surface Chl-a concentrations in regions where they
are highly correlated with dynamic factors, using deep learning and
comprehensive oceanic and atmospheric data.
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1 Introduction

Phytoplankton chlorophyll-a (Chl-a) is a key indicator of
marine phytoplankton biomass and primary productivity
(Fernandez-Gonzalez et al., 2022). The SCS is characterized by
diverse biogeochemical regimes, which is related to the dynamical
process over the SCS. Nutrients from rivers such as the Pearl River
and the Mekong River typically dominate the shelf regions (Dai
et al,, 2022). While the central SCS exhibits oligotrophic conditions
with low productivity and depths exceeding 5000 m (Chen, 2005).
The East Asian monsoon largely drives the circulation in the South
China Sea (SCS), forming the South China Sea Western Boundary
Current influencing the distribution of nutrients (Fang et al., 2012).
Under northeasterly monsoon and stronger Kuroshio intrusion, a
cyclonic circulation prevails in the upper layer during winter (Qu,
2000; Gan et al., 2006). However, some studies indicate an
anticyclonic circulation pattern (Chu et al., 1999; Xue et al.,, 2004;
Fang et al., 2009), while others describe a cyclonic circulation in the
northern SCS (NSCS) and an anticyclonic circulation in the
southern SCS (SSCS) (Figure 1; we recreated it based on the Shu
et al., 2018; Liu et al., 2008).

In the NSCS, Chl-a concentrations display a marked seasonal
cycle, with high levels in winter and low levels in summer (Ning
etal., 2004; Xian et al., 2012). The SCS connects to the Pacific Ocean
through the Luzon Strait, allowing the Kuroshio to intrude into the
SCS and contribute to its circulation (Xue et al., 2004; Qian et al.,
2018; Cai et al, 2020). Winter phytoplankton blooms in Luzon
Strait are often attributed to the interaction between monsoon-
driven or current-induced upwelling, vertical mixing, meso-scale
eddies, and fronts (Penaflor et al., 2007; Shen et al., 2008; Wang
et al,, 2010, 2023; Shang et al., 2012; Lu et al,, 2015; Xiu et al., 2016;
Guo et al,, 2017; Chang et al., 2022; Lao et al., 2023). The Luzon
Cold Eddy, generally prevailed in winter and spring near the
northwestern coast of Luzon Island, would alter the distribution
of the Chl-a near the Luzon Island (Lu et al, 2015; Huang et al,,
2019; Sun et al, 2023). During the summer, when the southwest
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FIGURE 1

Diagram of the surface current patterns (based on data from Shu et
al. 2018; Liu et al,, 2008). Red (Green) means current pattern in
winter (summer). LCE, Luzon Cold Eddy; SCSWBC, South China Sea
Western Boundary Current; VCE, Vietnam Cold Eddy; KC,

Karimata Current.
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monsoon prevails, upwelling and a northeastward jet are induced
along the coast of Vietnam (Kuo, 2000; Fang et al., 2002; Xie et al.,
2003; Lin et al, 2009; Ma et al, 2012). The upwelling elevates
nutrients into shallow layers, supporting phytoplankton growth,
resulting in the surface high Chl-a (Yang et al., 2012; Chen et al,
2021). With the transport of this jet in nutrients and biomass, the
Chl-a off the east of the Vietnam significantly was enhanced. The
interaction between cyclonic and anticyclonic eddies with the jet
stream formed a high Chl-a belt (Liang et al., 2018).

There are several methods to measure Chl-a concentrations in
the ocean, each with its own limitations. Traditionally, in situ ship-
based, autonomous profiling float, and remote sensing satellites are
the primary means of acquiring Chl-a data in the ocean (Kishino
et al,, 1997; Wright, 1997; Dierssen, 2010; Rykaczewski and Dunne,
2011; Boyce et al,, 2012; Wernand et al., 2013). In situ ship-based
and floats generally have low spatial or temporal resolution. Remote
sensing satellite, offering high spatial and temporal resolution data,
is easily affected by cloud cover (Shropshire et al., 2016).
Considering the difficulties in acquiring the Chl-a, simulating the
Chl-a or phytoplankton with marine ecological numerical model
was an excellent method. However, the accuracy of numerical
model results depends on the parameterization scheme of
ecological (or biogeochemical) processes and the optimization of
parameters. Developing a robust ocean ecological model requires
substantial time for construction, calibration, and computation.

Recently, machine learning techniques, particularly deep
learning, have advanced rapidly. The application of machine
learning in ocean science has provided new insights into
predicting key environmental or hydrodynamic indicators (Jouini
et al., 2013; Aleshin et al., 2024; Krestenitis et al., 2024). Due to its
strong capabilities in nonlinear regression, deep learning has been
extensively utilized in oceanography, for tasks such as predicting sea
surface temperature (SST), eddies, waves, and Chl-a (Liu et al,
2021; Liu and Li, 2023; Roussillon et al., 2023; Zhao et al., 2024).
Ding and Li (2024) compared the performance of CNN, LSTM, and
hybrid CNN-LSTM models for Chl-a prediction, concluding that
the hybrid CNN-LSTM model outperformed standalone models
with an R-squared, R*> = 0.72. Similarly, Zhou et al. (2024)
contributed further insights into the application of machine
learning for ecological predictions. However, in some cases,
machine-learning was not performed well than empirical
algorithms. Bygate and Ahmed (2024) combined observational
data and Landsat 8 surface reflectance to evaluate empirical and
machine learning models for retrieving water quality indicators in
Matagorda Bay, highlighting the limitations of traditional machine
learning models in water quality inversion. Yang et al. (2024)
developed a self-attention mechanism-based deep learning model
to estimate nine phytoplankton pigment concentrations within the
upper 300 m of the ocean, achieving R*> > 0.8 and revealing a
positive correlation between the maximum phytoplankton layer
location and the Nifio 3.4 index in the Equatorial Pacific Nifio 3.4
region. Roussillon et al. (2023) introduced a multi-mode CNN to
globally reconstruct phytoplankton biomass by learning region-
specific responses to physical forcing. Their model achieved an R* >
0.87, highlighting the capacity of multi-mode approaches to
uncover spatially consistent responses to ocean dynamic.
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On the one hand, previous studies have revealed various
complex dynamical processes related with the surface Chl-a in the
SCS (Dai et al., 2022; Xian et al., 2012; Wang et al., 2023; Guo et al.,
2017; Ma et al., 2012; Yu et al., 2019). On the other hand, machine
learning has the advantage of finding complex nonlinear
relationship among variables in an environmental setting (Song
and Jiang, 2023). Hence, machine learning can provide a powerful
support in elucidating the complex quantitative relationship
between the physical factors (such as wind, SST) and the surface
Chl-a. A few studies have used machine learning or deep learning to
build a model link the physical factors and surface Chl-a with
monthly data (Li et al., 2023; Roussillon et al., 2023). However, the
possibility and performance by using the atmospheric and oceanic
physical data to predict surface Chl-a with daily data remains
unclear. This study discussed the feasibility of a predictive model
based on the ResUnet architecture (Diakogiannis et al., 2020) to
predict daily Chl-a concentrations in the SCS (100°E-124°E, 0°N-
25°N) by atmospheric and oceanic dynamic factors. The ResUnet
model enables the capture of the effects of multiple ocean dynamical
processes on Chl-a evolution from the data. This approach yields
accurate results while significantly reducing computational costs
compared to traditional ocean ecological modeling methods.

2 Data and methods

2.1 Data

The dataset used in this study was derived from the atmosphere
and ocean reanalysis datasets, European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis v5 (ERA-5; https://
www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5) and
Hybrid Coordinate Ocean Model (HYCOM; https://
www.hycom.org/). The 10 m wind fields were derived from the
ERA-5, with spatial resolution as 0.25°%0.25° and the temporal
resolution as 1-hourly. We calculated the mean value per 24 hours
for acquiring the daily air forcing data to keep the same temporal
resolution in our study. The SST, surface currents (eastward and
northward velocity) and sea surface height (SSH) were derived from

TABLE 1 Introduction of the datasets used in this study.

DataSets Unit Min Max
Chl-a mg m> 0.0012 4.9 x 10%
Wind speed m s 1.4 15.4
Wind stress curl N m? -2x107 25%x107
10m v wind m st -32.6 32.9
10m u wind m s’ -31.3 322
Sea surface temperature °C 12.35 34.05
u-velocity m s -1.7 1.8
v-velocity m s -2.0 1.8
Sea surface height m -0.1 1.6
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the HYCOM. The original spatial resolution is 0.08° and temporal
resolution is 3-hourly. We interpolated the original data to the
ERA-5 resolution and calculated the daily data every 8 times layer.
These physical factors, such as wind, current, SSH, and SST, have
been shown to be closely related to the variation in surface Chl-a in
previous studies (Yu et al., 2019; Xiu et al., 2016; Geng et al., 2019).

This study focuses on discussing feasibility of a predictive model
capable of forecasting future Chl-a concentrations by establishing a
link between oceanic and atmospheric dynamic variables (e.g., wind
fields, sea surface temperature, and current fields) and surface Chl-
a. The predictive model requires complete and valid Chl-a as the
label to ensure the effectiveness of the model. However, there is a
number of missing values in the SCS from the remote sensing
satellite data. Therefore, the Chl-a data used as the target variable
(True) was derived from the Ye et al. (2024). The data covers the
period from January 1, 2013, to December 31, 2017, with a temporal
resolution of daily averages. This dataset was reconstructed using a
combination of satellite and observational data, employing optimal
interpolation and the SwinUnet method. Ye et al. (2024)
successfully reconstructed a high-quality surface Chl-a dataset;
however, the approach relies heavily on satellite remote sensing
data, which limited the application in short-term prediction. In
contrast, numerical models, such as HYCOM and ERAS5, could
provide oceanic and atmospheric dynamic factors, which can be
leveraged to predict short-term variations in surface Chl-a. For this
purpose, we considered the datasets from Ye et al. (2024) as the true
Chl-a to train a model with physical factors. More information is
listed in Table 1.

2.2 Methods

2.2.1 Data pre-processing

In order to achieve spatial resolution consistency across all
predictor variables, we employed linear interpolation to adjust
predictor variables from HYCOM to a resolution of 0.25° x 0.25°.
Each predictor variable contained 97 x 101 data grid points,
covering the period from 2013 to 2017. To maintain consistency
among the variables, data standardization was applied. The daily

Spatial Resolution Time Period Data Sources
0.0105° Ye et al. (2024)
ERAS5
(Wind stress curl is
0.25°
calculated based on
2013.01 the Equations 1, 2)
2017.12
0.08° HYCOM
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predictor variables, represented as two-dimensional arrays of 97 x
101, were then concatenated to form a three-dimensional array with
dimensions N x 97 x 101, with each variable occupying a separate
channel within the data structure. In our experimental design, the
predictors include data points for all available variables on a given
day, which are subsequently used to forecast the Chl-a
concentration (predictand) for that same day. To align the
predictand data with the model output, Chl-a data was resampled
to 0.25° x 0.25° before model training and was standardized
thereafter. Following training, the model outputs were
denormalized to retrieve the predicted Chl-a values. The
experimental results demonstrated that this methodology
effectively enhances the model’s fitting performance. The wind
stress and wind stress curl in Table 1 are calculated as follows:

7 = pCii - |u| (1)
0T, o1,
= _ y _ x
VXx1T= ™ 3 2)

The # is the wind vector, and 7 is the wind stress. 7, and T,
represent the eastward and northward component of the wind
stress. The p and C are the air density and drag coefficient,
respectively. The C is estimated based on Large and Pond (1981).

2.2.2 Residual U-Net model

The UNet is a deep learning architecture for image
segmentation that utilizes a symmetric encoder-decoder structure
with skip connections to effectively capture and preserve detailed
spatial information (Ronneberger et al.,, 2015). In this study, we

—_— ‘ (97,101,64)
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—
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@425,128) W 0455056 L

az225) " s 0 (212.1024)
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employed a modified UNet architecture to enhance effectiveness, as
shown in Figure 2. The model features a U-shaped structure with
four encoder-decoder modules. To enhance the model’s ability to
handle non-linear relationships, the traditional ReLU activation
function was replaced with the Sigmoid Linear Unit (SiLU)
activation function due to its advantage in smooth activation
(Elfwing et al., 2017). To address overfitting and mitigate issues of
exploding or vanishing gradients, Batch Normalization (BN) was
applied after the convolutional layers. Furthermore, the AdamW
optimizer was employed to improve training stability and
performance by effectively managing weight decay (Loshchilov
and Hutter, 2019). Consistent with most regression tasks, Mean
Squared Error Loss (MSELoss) was utilized as the loss function.
These modifications were implemented to collectively improve the
model’s performance, accuracy, and computational efficiency.

The basic module of the UNet network is a residual module,
each of which consists of two 3 x 3 two-dimensional convolutional
layers, two BatchNorm2d layers, and two SiLU activation functions.
The encoder part (left half of Figure 2) consists of a residual module
and a max pooling layer. This configuration gradually reduces the
feature mapping dimensions in length and width, thereby
enhancing higher-order features. Following the encoder, the same
number of decoders (right half of Figure 2) decode the features,
including up-sampling to double the size of the feature map and
skip connections. This process produces a feature map of size [64,
97, 101]. The final layer of the model is a 1 x 1 convolutional layer
that reduces the number of channels to 1, producing the final 97 x
101 Chl-a outputs of the model. Definitions of deep learning terms,
including Residual Block, SiLU, and max pooling, are provided in
the Appendix.
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FIGURE 2

An illustration of the ResUNet architecture. Each colored cube symbolizes a feature map, with the numbers within the parentheses indicating the

(width X height x channels).
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2.2.3 Data split and model accuracy metrics

In this study, Chl-a data from 2013 to 2016 were allocated for
model training, testing, and validation at proportions of 70%, 20%,
and 10%, respectively. Data from 2017 was subsequently utilized to
evaluate the model’s effectiveness in applications. There are some
extremely large anomalies (> 10'%) in Chl-a data from Ye et al.
(2024). Therefore, during data preprocessing, we conducted
thorough data cleaning and identified anomalies in the Chl-a data
for a total of 26 days, which were removed to maintain the accuracy
and consistency of the dataset. To comprehensively evaluate model
performance, we employed three key metrics: the correlation
coefficient (r), Root Mean Square Error (RMSE), and Mean
Absolute Error (MAE). These metrics offer a quantitative
assessment of the correlation and discrepancies between predicted
and True data, thus providing valuable insights into the model’s
performance and reliability.

1. Correlation Coefficient (r): It measures the strength and
direction of the linear relationship between predicted and
True values, calculated as:

. Sei-9Gi-7)
VE0i-92/20:- 7

2. Root Mean Square Error (RMSE): RMSE quantifies the
average deviation of predictions from actual values, given

by:

RMSE = Gi-y)*

|~
M=

Il
—_

r

3. Mean Absolute Error (MAE): MAE provides a
straightforward interpretation of the average prediction
error:

1 .
MAE ==y, - 7
nici

The symbols used in the equations are defined as follows: y;
represents the True value, y; denotes the predicted value, ¥ is the
mean of the True Values,)Tl is the mean of the predicted values, and n
refers to the number of observations. It is already known that there
is a certain correlation between atmospheric and oceanic dynamic
data and surface Chl-a in the SCS (Yu et al,, 2019). The temporal
and spatial variation of Chl-a are influenced by factors such as wind
fields, ocean currents, and SST. To test the accuracy of model in
different predictors, we conducted two sets of experiments: (1) using
10 m wind field, wind speed, wind stress curl, and SST (Exp1), and
(2) using 10 m wind field, wind speed, wind stress curl, SST, surface
current, and SSH (Exp2). In the SCS, wind fields and SST are
strongly correlated with surface Chl-a (Yu et al., 2019). Therefore,
the goal of the Expl was to explore the feasibility of building a
robust model. On the other hand, surface current and SSH are
related to the horizontal advection process and vertical structure of

Frontiers in Marine Science

10.3389/fmars.2025.1528921

density to some extent (e.g., mesoscale eddies), which, to some
extent, influence the distribution of nutrients and phytoplankton
(Xiu et al, 2016). The goal of the Exp2 was to explore the
performance of the model when considering the currents and SSH.

3 Results and discussion

3.1 Model evaluation using
statistical indicators

The comparisons between predicted and true Chl-a
concentrations of two experiments based on the Chl-a from 2013
to 2016, separated into three parts (training, testing, and validation
sets), are shown in Figure 3. In general, the data points are primarily
distributed along the 1:1 line, with correlation coefficients between
predicted and true Chl-a exceeding 0.9 across all datasets (Figure 3). It
indicated that both Exp1 and Exp2 could well predict the surface Chl-
a in the SCS. However, there were some discrepancies in
performances between these two experiments. The Exp2 showing
higher correlation coefficient (Figures 3a—f) among training (0.929 in
Exp1 versus 0.935 in Exp2), testing (0.911 in Expl vs 0.918 in Exp2)
and validation datasets (0.913 in Exp1 versus 0.925 in Exp2). And the
RMSE of Exp2 were 0.1, 0.112, and 0.107 for the training, testing, and
validation datasets, respectively (Figures 3d-f). It also indicated that
the deviation between the predicted values and the true values of the
model is smaller. The comparison of MAE between Expl and Exp2
also denoted the Exp2 might be better. Li et al. (2023) employed four
machine learning methods to predict the Chl-a using physical factors
with Random Forests demonstrating the best performance (R*~ 0.8).
Aleshin et al. (2024) applied LightGBM and ResNet-18 to predict the
Chl-a with an R? ~ 0.7. Roussillon et al. (2023) used a multi-mode
convolutional neural network to reconstruct satellite-derived Chl-a
with monthly physical drivers, such as SST, with R* ~ 0.85. In
comparison, our model exhibited superior performance in predicting
the Chl-a in the SCS.

Further, the residuals between predicted and true Chl-a,
separated into training, testing, and validation sets, from 2013 to
2016 were calculated and shown in Figure 4. The results showed
that frequency of the residuals shown normal distribution
(Figure 4). The average of the residuals is -0.00039, -0.00095,
-0.00045 for training, testing, and validation datasets in Expl,
respectively (Figures 4a-c). While the averages of the residuals
are -0.00015, -0.00163, and -0.00061 for training, testing, and
validation datasets in Exp2, respectively (Figures 4d-f). Although
the mean residuals in Exp2 was less than Exp1, both Exp1 and Exp2
had small mean residuals (< 1%), which indicated a good
performance of the model without significant systematic bias.
This reflected the robustness and reliability of the model in
capturing the surface Chl-a. In addition, the ¢ were about 0.14,
0.22, and 0.21 for training, testing, and validation datasets in Exp1,
respectively (Figures 4a—c). They were slightly higher than the
corresponding parts in Exp2 (Figures 4d-f). It denotes the results
of Exp2 are more stable compared to the result of Expl.

frontiersin.org


https://doi.org/10.3389/fmars.2025.1528921
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Fang et al. 10.3389/fmars.2025.1528921
(a) ) (b) (©) o
Train 15 Test 15 Validation
=0.911 ° r=0.913
RMSE=0.112 %° RMSE=0.107 &
10 | °*MAE=0.066wg 10 MAE=0.065°
o .'g! ) %
E o ° E
= LI =
° oo
10 15 10 15
15 Train ; 15 Test 15 Validation
=0.935 % ° r=0.918 1 r=0.925
RMSE=0.096 RMSE=0.106 o RMSE=0.1 “ o
10t MAE=0.057° 10 | ° MAE=0.063 o0 ® 10} MAMAE=0.062 °
] 7 ° Q ga &
E .Q s E ° op0 °
= 7 = . a.'v
s : : 7. B
0 05 1
0 Density
0 5 10 15 0 5 10 15 0 5 10 15
Predicted Predicted Predicted
FIGURE 3

Scatter plots between predicted and the counterpart locations of the True Chl-a in training (a, d), testing (b, e), and validation (c, f). The first

(second) row represents Expl (Exp2).

3.2 Model evaluation in terms of Chl-a
temporal and spatial distributions

The model performance was evaluated using correlation
coefficients, RMSE, and MAE, all of which indicated good
performance for this deep learning model. Experimental results
suggested that surface currents (eastward and northward velocities)
and SSH slightly enhance the model’s performance. The model’s
ability to predict the spatial distribution and seasonal variation of
surface Chl-a requires further evaluation.

To represent seasonal variations (Spring, Summer, Autumn,
and Winter), surface Chl-a values from the validation dataset on the
dates 2013/03/05, 2013/06/15, 2013/09/28, and 2013/12/11 were
selected. Figure 5 illustrates the spatial distributions of Chl-a for
these selected dates across the true, Expl, and Exp2. Generally,
surface Chl-a exhibits high concentrations on the shelf, particularly
along the coast, and low concentrations in the basin of the SCS (Liu
etal, 2002, 2012; Shen et al., 2008; Fang et al., 2014). The high Chl-a
on the shelf is typically attributed to riverine inputs, such as
nutrients, biomass, terrestrial transport, and upwelling (Li et al.,
2018; Lu and Gan, 2015). Both the Expl and Exp2 effectively
captured the prominent feature of the higher Chl-a along the
coast and lower Chl-a in the basin (Figures 5e-1).

Meanwhile, seasonal Chl-a variation were exhibited
significantly (Figures 5a-d). Along the coast, the area with high
Chl-a (e.g., > 0.4) were more prominent in the Spring and Winter
(Figures 5a, d), while they were lower in the Summer and Autumn
(Figures 5b, ¢). And the Chl-a in the basin were lowest during the
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Summer (Figures 5b). This feature was also captured by the model
in both Exp1l and Exp2 (Figures 5f, j). Additionally, the Luzon Strait,
as a major pathway between the Pacific and the SCS, shows
significant blooms in winter and spring when northeasterly winds
prevail (Penaflor et al., 2007; Shen et al., 2008). The true Chl-a data
includes a notable phytoplankton bloom on the western side of the
Luzon Strait (see arrow in Figures 5a, d). Both Expl and Exp2
predicted similar phytoplankton blooms, although the area might
be slightly larger.

In terms of the overall Chl-a distribution, both Expl and Exp2
successfully captured the high Chl-a on the shelf and low Chl-a in
the basin, and the seasonal variation of the surface Chl-a. They also
reproduced the relatively high Chl-a concentration on the
northwest side of Luzon Island (Figures 5e, h, i, 1) in Spring and
Winter. Based on the evaluation of the Chl-a spatial pattern
and seasonal variation, the two experiments demonstrated
good performance.

3.3 Spatial distribution of temporal
correlation coefficients

The model well captured the spatial pattern and seasonal
variation of the Chl-a in both Expl and Exp2. However, the
temporal correlation between true Chl-a and model predicted
Chl-a was unclear. To evaluate the model’s performance in
capturing Chl-a temporal variation, the Pearson correlation
coefficients between true Chl-a and model predicted Chl-a for
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Frequency plots with x-axis as residuals (model results — True value) in training (a, d), testing (b, e), and validation (c, f). The first (second) row

represents Expl (Exp2).

each grid were calculated (Figure 6). Figure 6 illustrates the spatial
distribution of correlation coefficients in training (Figures 6a, d),
testing (Figures 6b, ¢), and validation (Figures 6c, f).

In general, the correlation coefficients in the training dataset
(Figures 6a, d) were the highest, which is reasonable given that the
training dataset was used to train the model. Regarding the spatial
pattern of the correlation coefficients, whether in the Expl or Exp2,
the values to the north of 16°N were notably higher than those to the
south of 16°N in training, testing, and validation (Figures 6a-f).
Specifically, the correlation coefficients in the NSCS were generally
above 0.8, while in the SSCS, they typically ranged from 0.6 ~ 0.8, with
the highest values observed in the training dataset (Figures 6a, d). This
discrepancy might be caused by the strength of the relationship
between physical factors and surface Chl-a in the NSCS and SSCS.
Significant seasonal and inter-seasonal variability of Chl-a is observed
in the NSCS (Shen et al., 2008; Palacz et al., 2011; Tang et al., 2014),
which is generally associated with the seasonal dynamics of factors
such as the monsoon and Kuroshio intrusion (Xue et al., 2004; Xian
etal, 2012; Chang et al., 2022; Sun et al., 2023). Previous studies have
shown a high correlation between SST and Chl-a (Shen et al., 2008;
Tang et al,, 2014; Yu et al,, 2019). In summer, the mixed layer depth
(MLD) is shallow, and the presence of strong stratification due to high
SST and weaker winds inhibits the supply of nutrient-rich subsurface
water. However, in winter, the MLD usually deepens due to
intensified northeasterly monsoons and buoyancy flux,
accompanied by a reduction in SST (Tang et al, 2003). As the
MLD deepens, nutrient-rich water from the subsurface is
transported to the surface layer. With sufficient nutrient support,
phytoplankton flourishes during winter. Consequently, Expl
performs well in capturing the temporal variability of surface Chl-a
in NSCS (Figures 6a-c). However, in the SSCS, Geng et al. (2019)
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revealed that wind- and buoyancy-induced mixing are less intense in
the central SCS than in the NSCS, limiting vertical nutrient transport
to above the subsurface Chl-a maximum layer. This may explain the
lower correlation coefficients in the SSCS (Figures 6a—f).

In respect of the comparison between Expl and Exp2, the
correlation coefficients in the Exp2 were generally slightly higher
than that in the Expl in the SCS (Figures 6g-i). However, in the
Expl, the correlation coefficients in the NSCS were comparable with
those of Exp2, especially in the training dataset, with increasing
correlation coefficients less than 0.03 (Figures 6g-i). It indicated
that atmospheric data and SST are crucial factors for simulating the
Chl-a in the NSCS. However, between 12°N and 16°N, Exp2
performed well in capturing the temporal variation of Chl-a, with
Ar (rgypy = Texp1) exceeding 0.04 (Figures 6h, i). Generally, Exp2
performed better than Expl, although there were small areas with
decreased correlation coefficients to the south of 16°N. In the basin
of SSCS, the correlation coefficients were higher than that on the
shelf. For Expl, the correlation coefficient in the Sunda Shelf were
not as strong as in Exp2, with r < 0.7 (Figure 6¢). However, the Exp2
showed slightly improvement in the Sunda Shelf with slightly
higher r (Figure 6i). Comparisons between Expl and Exp2
demonstrated that the model achieved the best performance when
SSH and currents were included as an input variable, especially in
the SSCS.

3.4 Model performance in capturing local
important features

We evaluated the model based on spatial distribution of Chl-a
and the temporal correlation by Pearson correlation coefficients
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FIGURE 5

Spatial distributions of Chl-a in 2013/03/05 (a, e, i), 2013/06/15 (b, f, j); 2013/09/28 (c, g, k); 2013/12/11 (d, h, ). The first column is the true Chl-a,
while the second and third column represent Chl-a in Expl and Exp2, respectively.

between true Chl-a and model predicted Chl-a. It denoted the
performance of the model was excellent, especially for the NSCS.
However, the model’s ability to reproduce local spatial
characteristics of Chl-a required further assessment. We selected
typical high surface Chl-a patches near the Luzon Strait, Hainan
Island, and Vietnam (see red arrows in Figures 7a, d, g) to validate
the model’s ability in capturing details from validation datasets
(2014/01/30, 2013/10/20, 2014/7/23). Figures 7a, d showed a high
surface Chl-a patch surrounded by low surface Chl-a. Previous
studies have demonstrated that cold eddies contribute to this
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phenomenon (Wang et al,, 2010; Lu et al., 2015; Sun et al., 2023).
In fact, these high Chl-a patches were generally closed to the cold
eddies, as indicated by SSH (0.4 contours in Figures 7a, d). Off the
coast of Vietnam, high Chl-a concentrations usually followed the jet
during the summer (Liang et al., 2018), as shown in Figure 7g (see
red arrow). The high Chl-a patch off the Vietnam closely matched
the location of the strengthened current velocity.

Both Expl and Exp2 captured the main features of these high
Chl-a patches. To the northwest of Luzon Island, while Expl
predicted high Chl-a patch (Figure 7b), the Chl-a concentration
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was not as high as in Figure 7a. However, Exp2 performed better in
simulating this patch with higher Chl-a concentration closed to the
0.4 contour (Figure 7c¢), although it was still lower than that in Expl.
In addition, to the northwest of the high Chl-a patch, the Chl-a
concentration was higher than in the True Chl-a (Figures 7a, b).
Nonetheless, Exp2 provided a better prediction of Chl-a
distribution (Figure 7¢) in this area as True Chl-a (Figure 7a).
Similarly, the high Chl-a patches near 112°E, 16°N, predicted by the
Expl and Exp2, were different (Figures 7e, f). The Chl-a
concentration in Expl was higher than in the True Chl-a
(Figure 7d) and Exp2 (Figure 7f). The high Chl-a derived from
Exp2 was more comparable to that in the true Chl-a (Figures 7d, f).
East of Vietnam, high surface Chl-a is generally induced by
upwelling and a southwesterly wind-driven jet (Qiu et al., 2011;
Liu et al.,, 2012; Gao et al., 2013; Chen et al., 2014, 2021). A snapshot
of high Chl-a extending from the coast to the east of Vietnam,
aligned with the jet (indicated by the strengthened velocity), was
shown in Figure 7g. Our model successfully reproduced the high
Chl-a along the jet (Figures 7h, i), although the concentrations were
not as pronounced as those in the true Chl-a (see red arrow in
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Figure 7g). Exp2 demonstrated a better prediction of Chl-a along
the jet, with higher Chl-a concentrations (see red circles in
Figure 7h, i).

This comparison between Expl and Exp2 demonstrated that
additional variables, SSH and currents, are beneficial to predict the
details of the Chl-a distribution. To some extent, the spatial distribution
of SSH reflects vertical information, such as the thermocline.
Approximately 28.7 cyclonic eddies and 27.9 anticyclonic eddies
occur annually in the SCS, which significantly influence the
ecosystem of the SCS (Xiu et al, 2010). Mesoscale eddies played a
significant role in modulating surface Chl-a through eddy advection,
eddy pumping, eddy trapping, and eddy-induced Ekman pumping in
the SCS (Gaube et al,, 2014; Xiu et al., 2016). Eddy pumping played an
important role in controlling surface Chl-a variability to the west of the
Luzon Strait and northwest of Luzon Island (Xiu et al., 2016). Yu et al.
(2019) found that sea level anomalies are highly correlated with surface
Chl-a. Meanwhile, Xiu et al. (2016) revealed that horizontal eddy
advection highly influenced the Chl-a off the Vietnam coast. Therefore,
including SSH and advection as model inputs enabled the predicted
data to more effectively reproduce surface Chl-a.
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3.5 Application of the model in 2017

The model trained in Exp2 was further applied to predict
surface Chl-a in 2017. Based on model performance in the NSCS
and SSCS (Figure 6), spatially averaged Chl-a in Boxes A, B, and C
was used to assess temporal variability. The predicted Chl-a largely
captured the magnitude and temporal variability of surface Chl-a
across Boxes A, B, and C (Figures 8a-1, b-1, c-1). Model
performance, as measured by correlation coefficients, was highest
in the NSCS, followed by the Sunda Shelf and the central SCS
(Figures 8a-2, b-2, c-2). Although the model effectively reproduced
the temporal variability of surface Chl-a, particularly the seasonal
cycle, its performance was relatively less accurate for daily-scale
Chl-a variations, as indicated by the distribution of observed Chl-a
(Figures 8a-1, b-1, c-1). To improve model validation, we further
calculated 8-day averaged surface Chl-a and compared predicted
values with observed Chl-a. On the 8-day scale, correlation
coefficients between predicted and observed Chl-a were higher
than those on the daily scale (Figures 8d-2, e-2, f-2). Observed
Chl-a data aligned more closely with predicted values, and both
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RMSE and MAE indicated reduced errors in 8-day averaged results
(Figures 8d-1, e-1, f-1).

One possible reason for the reduced daily-scale accuracy was that
daily variations in surface Chl-a were more complex than those on
longer timescales. Small-scale dynamic processes, such as fronts and
submesoscale eddies, played an essential role in vertical nutrient
transport (Callbeck et al., 2017; Jing et al., 2021; Zheng and Jing,
2022). However, the horizontal resolution of model inputs may limit
the model’s ability to capture these small-scale features, affecting day-
scale performance. Additionally, surface Chl-a is often associated
with vertical nutrients distribution (Geng et al., 2019; Liu et al., 2020),
but obtaining continuous, widespread data on nutrient distribution in
the vertical direction remains challenging. These factors constrain the
model’s precision in predicting daily-scale Chl-a variability.

4 Conclusion
In this study, we developed a statistical model based on the ResUnet

architecture to predict daily Chl-a in the SCS through atmospheric and
oceanic physical data. The strong correlation between the model-
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predicted and true Chl-a demonstrates that the model performed well
in estimating surface Chl-a. It supported the feasibility of predicting
surface Chl-a based on atmospheric and oceanic data.

The model performed better in the NSCS than in the SSCS. In
the NSCS, the combination of atmospheric factors and SST was
sufficient to reproduce the temporal variability in Chl-a. This
superior performance can likely be attributed to the strong
correlation between SST and surface Chl-a in this region. In the
SSCS, the model-predicted variability of Chl-a had better
performance in Exp2, which denoted that the oceanic dynamic
factors, such as surface currents and SSH, played a vital role in
estimating the Chl-a in the SSCS using deep learning methods.

While the model moderately captured the spatial distribution
features in Chl-a when considering only wind-related variables and
SST, its performance improved significantly when oceanic dynamic
data were included. The addition of surface currents and SSH
enabled the model to accurately represent areas with elevated
Chl-a due to eddies, particularly around the Luzon Strait and the
southeastern side of Hainan Island. The SSH is generally associated
with eddies, which enhances the ability of model to predict elevated
Chl-a resulting from eddies. In conclusion, the incorporation of
ocean dynamics into ecological prediction models based on deep
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learning technology offers effectively ways and enhances the
accuracy of Chl-a predictions in the SCS.
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Appendix A. terms in deep learning
method used in this study

Feature: In the context of deep learning, a feature represents
an individual measurable attribute or characteristic that can
be used to describe and analyze an observation
or phenomenon.

Batch Normalization (BatchNorm) Layer: This layer
standardizes the inputs of each minibatch, which
enhances the stability and efficiency of the training
process by reducing internal covariate shift.

Convolutional Layer: The convolutional layer applies a set
of filters to the input data, producing feature maps that
capture spatial hierarchies and patterns. This layer performs
the convolution operation by sliding the filters over the
input and computing the dot product between the filter and
the input data, which is fundamental for feature extraction
in convolutional neural networks.

Max Pooling Layer: This layer decreases the spatial
dimensions of the input feature maps by extracting the
maximum value from each sub-region. Max pooling aids in
minimizing computational complexity and
mitigating overfitting.

Sigmoid Linear Unit (SiLU) Activation Function: The SiLU
activation function, also known as the Swish function, is
defined as:

SiLU(x) = x - 0(x)
where o(x) is the sigmoid function, given by:

B 1
T l4e”

o(x)

It combines the properties of linear and sigmoid functions,

allowing for smooth, non-linear transformations that can improve

the training dynamics of neural networks. The SiLU function has

been shown to perform well in various deep learning tasks due to its

ability to enhance gradient flow and adaptively control the output.

Residual Connection: A residual connection bypasses one
or more intermediate layers, directly feeding the output of
one layer to subsequent layers. This technique aids in
training deeper networks by alleviating the vanishing
gradient problem.

Skip Connection: A skip connection, also known as a
shortcut connection, involves bypassing one or more
layers in the neural network and directly passing the
output from an earlier layer to a deeper layer.
Up-Sampling: In the UNet architecture, up-sampling is
employed in the expansive path to restore the resolution
of the feature maps. This step is essential for reconstructing
high-resolution outputs from lower-resolution
feature representations.

Down-Sampling: Down-sampling decreases the spatial
dimensions of the input feature maps, commonly used in
the contracting path of the UNet. This process simplifies the
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information, enabling the model to capture more global
features in the earlier layers.

AdamW Optimizer: The AdamW optimizer is an extension
of the Adam optimization algorithm that incorporates
weight decay directly into the optimization process.
Unlike traditional Adam, which applies weight decay as
part of the regularization term added to the loss, AdamW
decouples weight decay from the optimization steps, leading
to better regularization and improved training dynamics.
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Underwater images captured by Remotely Operated Vehicles are critical for
marine research, ocean engineering, and national defense, but challenges such
as blurriness and color distortion necessitate advanced enhancement
techniques. To address these issues, this paper presents the CUG-UIEF
algorithm, an underwater image enhancement framework leveraging edge
feature attention fusion. The method comprises three modules: 1) an
Attention-Guided Edge Feature Fusion Module that extracts edge information
via edge operators and enhances object detail through multi-scale feature
integration with channel-cross attention to resolve edge blurring; 2) a Spatial
Information Enhancement Module that employs spatial-cross attention to
capture spatial interrelationships and improve semantic representation,
mitigating low signal-to-noise ratio; and 3) Multi-Dimensional Perception
Optimization integrating perceptual, structural, and anomaly optimizations to
address detail blurring and low contrast. Experimental results demonstrate that
CUG-UIEF achieves an average peak signal-to-noise ratio of 24.49 dB, an 8.41%
improvement over six mainstream algorithms, and a structural similarity index of
0.92, a 1.09% increase. These findings highlight the model's effectiveness in
balancing edge preservation, spatial semantics, and perceptual quality, offering
promising applications in marine science and related fields.

KEYWORDS

underwater image enhancement, edge feature attention fusion, spatial crossattention,
multidimensional perception optimization, attention-guided edge feature fusion

1 Introduction

Underwater images, captured in aquatic environments using remotely operated
vehicles (ROVs), are crucial for marine exploration, underwater archaeology, and fishery
monitoring, providing visual representations of underwater scenes and objects. However,
underwater imaging environments are complex. The images obtained by ROV’ are limited
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by aggravated color distortion, objects with the same color in the
background, and difficulty in edge distinction.

Underwater image enhancement (UIE) improves the quality of
underwater images by mitigating their characteristic degradation
features and bringing images closer to their true color and clarity, as
observed in normal lighting environments. This enables more
effective extraction and utilization of valuable features (Alsakar
et al,, 2024). High-quality underwater image data help reveal
unknown marine life and geological features in the deep sea and
provide critical information for biodiversity protection (Nazir and
Kaleem, 2021), marine environmental monitoring (Wang et al,
2007), and resource sample collection (Mazzeo et al., 2022).

UIE techniques can be divided into two categories: traditional
and deep learning-based methods. Traditional UIE techniques
include color correction and image restoration methods. Color
correction methods such as color balancing can improve color
distortion but cannot address blurring and detail loss. Image
restoration methods that incorporate physical models, such as
light transmission or dehazing models, improve image clarity and
optical effects more effectively (Hu et al, 2022). Common color
correction methods often perform pixel-level restoration of image
colors. For instance, Banik et al. (2018) used gamma correction in
the value channel of the hue, saturation, value space to enhance low-
light image contrast but introduced problems such as over-
enhancement and halos. Garg et al. (2018) applied CLAHE and
percentile methods to enhance underwater images and obtained
good results in specific scenes but limited improvement in certain
water environments. Image-restoration methods typically integrate
physical models. Zhu (2023) proposed an enhancement algorithm
based on graph theory that improves contrast and color using
CIELab and red, green, blue (RGB) spaces combined with CLAHE.
However, owing to the independent operations in each color space,
the method lacks robustness in complex scenes. Drews et al. (2016)
enhanced blue-green channels using a light propagation model but
introduced red color distortion. Xiong et al. (2020) applied a linear
model and nonlinear adaptive weighting strategy based on the
Beer-Lambert law (Swinehart, 1962) to adjust underwater image
colors. Recent studies have developed enhanced methods based on
conventional algorithmic frameworks to address imaging
degradation in specific scenarios. Zhang et al. (2025) proposes a
cascaded restoration algorithm grounded in quadtree search-guided
background region classification and cross-domain synergy, which
integrates dynamic channel discrepancy compensation, S-curve-
optimized homomorphic filtering, and chromatic space fusion,
thereby significantly improving underwater image fidelity and
object recognition robustness. Li et al. (2025) proposes a cascaded
restoration algorithm integrating quadtree search-guided
background region classification and a cross-domain
collaboration mechanism, which effectively addresses color
distortion and detail blurring in underwater optical imaging
through dynamic channel discrepancy compensation and S-curve-
optimized homomorphic filtering, thereby significantly enhancing
object detection robustness and visual task performance. However,
the methods do not perform well with foggy and low-light
underwater images. In general, traditional methods based on fixed
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underwater priors perform well in specific scenes but are limited by
the unpredictability of underwater environments and thus lack
general applicability.

Deep learning-based UIE methods use large datasets to train
models that adaptively handle various problems, such as color
distortion, blurring, and low contrast. These methods can restore
image details more accurately and adapt to diverse underwater
scenarios. Among the deep learning methods, generative adversarial
networks (GANs) have gained prominence in the early stages of
UIE for their ability to address limited data availability (Goodfellow
et al,, 2014). Li et al. (2017) proposed WaterGAN, which corrects
underwater image colors by training on both aerial and underwater
real images. However, the aerial image model introduces unrealistic
background colors. Fabbri et al. (2018) proposed UGAN, which
uses CycleGAN generated paired datasets and a Pix2Pix-like
structure for UIE. However, CycleGAN generates artifacts under
certain scenarios. Despite the requirement of high-quality training
data, their proposed method struggles with low-quality underwater
images. These methods effectively restore color but often face
challenges such as over-enhanced contrast, information loss,
instability, and convergence difficulties.

Convolutional neural network (CNN)-based methods (Wang
et al,, 2021; Lyu et al, 2022; Yang et al, 2023) are particularly
effective for UIE tasks owing to their strong feature extraction
capabilities and nonlinear feature mapping, which enable them to
adapt to various underwater scenes. Wang et al. (2017) designed an
end-to-end CNN-based network for color correction and
deblurring by employing a pixel disturbance strategy to improve
model convergence speed and accuracy. However, their method
overfocuses on local features while neglecting the overall semantic
information, global color, and light-shadow relationships in the
image. Li et al. (2019) developed a paired underwater image
enhancement benchmark (UIEB) dataset and proposed Water-
Net, a CNN-based model that serves as a benchmark for CNN
applications in UIE. Li et al. (2020) trained their proposed UWCNN
on synthetic underwater images of various scenes, which resulted in
different model parameters. However, owing to the singularity of
the training data scenes, the model is overly sensitive to subtle
changes in underwater environments and thus, performs poorly.
Islam et al. (2020) proposed the UFO-120 dataset and a residual
nested CNN called Deep SESR, which has a multimodal objective
function for both enhancement and super-resolution of images.
However, the shared feature space in this model can cause
significant features from the super-resolution task to interfere
with the color performance of image enhancement. The
aforementioned CNN-based models have powerful feature-
learning capabilities and can adapt to complex underwater
environments; however, CNNs primarily extract features through
local receptive fields, which renders fully capturing global
information challenging. Consequently, enhanced images often
show a marked locality with coordination problems among
objects in complex underwater environments.

To address this limitation, several studies have used Swin
Transformers (Liu et al.,, 2021) for UIE. Sun et al. (2022)
enhanced the underwater image contrast by inputting images into
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a Swin Transformer following gamma and white balance
corrections. However, white balance and gamma correction
cannot fully resolve the complex problems of underwater images,
particularly in foggy and blurry scenes. Peng et al. (2023)
constructed a large-scale underwater image dataset and proposed
a channel multi-scale fusion transformer and spatial global feature
transformer to enhance severely attenuated color channels and
spatial regions. However, the sensitivity of different color spaces
to various colors varies, which degrades model stability in scenarios
with strong color contrast. Transformer architecture, with its
unique mechanisms and processing methods, has tremendous
potential and value as a primary framework for UIE. Zhu et al.
(2024) proposed an adaptive multi-scale image fusion cascaded
neural network that integrates polarization-based multi-
dimensional features to improve image enhancement quality
under low-quality imaging conditions. Concurrently, the team
establishing a standardized evaluation framework for
polarization-aware visual restoration algorithms. Zhu et al. (2025)
proposed a Fourier-guided dual-channel diffusion network,
enhances underwater images via phase-based edge refinement and
amplitude mapping, coupled with a lightweight transformer
denoiser, outperforming leading methods in generalization and
visual quality on real underwater datasets. Wang et al. (2025)
proposed a SAM-powered framework for underwater image
enhancement, integrating precise foreground-background
segmentation, region-specific color correction, adaptive contrast
enhancement, and high-frequency detail reconstruction to mitigate
crosstalk and blurring, thereby significantly improving restoration
fidelity and visual quality. Considering that underwater images
exhibit inconsistent attenuation characteristics across different
color channels and spatial regions and that the object edges in
these images degrade, the proposed network focuses on these
characteristics to restore underwater image information and
achieve high-quality underwater image data.
The main contributions of this paper are as follows:

1. We propose a network model, CUG-UIEF, based on U-Net
and a multi-feature cross-fusion module, which greatly
improves the quality of underwater images.

2. We introduce a multi-feature cross-fusion module that
enhances the feature representation of images at different
scales, thereby improving the overall quality and accuracy
of the final output.

3. We evaluate the proposed CUG-UIEF model on the UIEB,
low-light and super-resolution underwater image (LSUI), and
U45 datasets and compared its performance with that of six
other mainstream models. The experimental results show that
CUG-UIEF achieves substantial improvements in the peak
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM). The results also demonstrated excellent performance
in both underwater image quality metrics and underwater
color image quality assessments, indicating that the CUG-
UIEF effectively overcomes underwater environmental
interference and can be applied in related fields.

Frontiers in Marine Science

10.3389/fmars.2025.1555286

2 Proposed method
2.1 Network structure

The overall structure of the CUG-UIEF is shown in Figure 1; it
can be divided into three parts: an encoder, a multi-feature cross-
fusion module (DDEM), and decoder. The encoder converts the
input image into a deep feature representation. The decoder
gradually fuses the features and performs upsampling to
reconstruct an underwater image. In this study, the multi-scale
features extracted by the encoder were input into the DDEM, and its
output was fused with the upsampling results at each stage of the
decoder. An enhanced underwater image was obtained after the
final upsampling step.

Encoder stage: This module extracts multi-scale features
through the Swin Transformer layer and performs downsampling
to capture the details and global information in the image. The deep
feature representation provides rich semantic information for the
subsequent DDEM module and decoder, which facilitates the final
image reconstruction and enhancement.

DDEM module: Uses the Sobel operator to extract edge
information from the multi-scale features extracted in the four
stages of the encoder and inputs the edge and multi-scale features
together into the channel cross-attention (CCA) module to fuse the
feature information across channels. Subsequently, the output of the
CCA is passed to the spatial cross-attention module to capture the
long-distance dependencies among the multi-scale features.
Following layer normalization and GeLU activation, the final
features are sent to the decoder to gradually restore the spatial
resolution and reconstruct the enhanced image.

Decoder stage: The decoder first upsamples the output of the
final stage of the encoder and inputs it into the Swin Transformer
block. Subsequently, the output of the DDEM is fused with the
upsampled results of each decoder stage. The decoder restores the
spatial resolution through gradual upsampling to reconstruct an
enhanced image. The parameters of the Swin Transformer layer are
adjusted at this stage to maintain the integrity of the features,
whereas the upsampling layer is used to restore the size of the
feature maps. The final upsampling restores the features to the
resolution of the original input and projects them onto the RGB
channels through the convolutional layer to generate an enhanced
underwater image.

2.2 Multi-feature cross-fusion module
(DDEM)

The proposed multi-feature cross-fusion module fuses the
features extracted from the four multi-scale encoder stages
(Figure 2). It generates enhanced feature representations and
connects these enhanced features to the corresponding decoder
stages. The module can be further divided into attention-guided
edge fusion and spatial information enhancement modules.
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Architecture of the proposed network, featuring an encoder—decoder structure enhanced with the addition of a multi-feature cross-fusion module.

The specific operations performed by the module are as follows:
The edge features are extracted from the multi-scale features output
by the encoder and then input layer by layer together with the
multi-scale features into the edge fusion and spatial information
enhancement modules. Attention maps are constructed by fusing
the features of the multi-scale encoder, enabling them to capture
long-distance dependencies across different stages to achieve more
accurate and comprehensive modeling of complex scenes and
dynamic changes.

Through this series of operations, the output results are processed
by layer normalization and subjected to nonlinear mapping via the
GeLU activation function to establish dynamic correlations between
the feature maps at different levels and edge feature maps.

2.2.1 Attention-guided edge fusion module

This module promotes information interactions between features
at different levels in the channel dimension. In this study, the edge
features are gradually fused in multiple stages. The weights of the
weighted edge features are adjusted using CCA to ensure that detailed
information, such as colors and textures, can be accurately transmitted.
Upon being output to the decoder stage, as the decoding process
proceeds, the weighting coefficients are dynamically adjusted based on
the local information of the image; thus, the edge features are enhanced
in detailed areas while minimizing interference in the background or
smooth regions. In this manner, the edge information is strengthened
in key areas (such as object boundaries and detailed parts), while the
global consistency and natural appearance of the image are preserved.
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Proposed multi-feature cross-fusion module. (A) Attention-guided edge fusion module; (B) Spatial information enhancement module.
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The Sobel operator is applied for edge feature extraction. It
identifies edge information by calculating the gray gradient of the
area around each pixel in the image. The core of this algorithm lies
in its elaborately designed convolution kernels, which perform
convolution operations on the horizontal and vertical features of
the image, thereby effectively capturing the edge changes in the
image in different directions.

The change in the x-axis direction in the Sobel operator is

-1 0 +1
Ge=(-2 0 +2
-1

0 +1
The change in the y-axis direction is

-1 -2 -1
Gy=(0 0 o
+1+2 +1

Approximate gradient values of the image in the horizontal and
vertical directions can be obtained by performing convolution
operations on the image using these two sets of convolution
kernels. The gradient magnitude of each pixel point can then be
obtained by calculating the square root of the sum of the squares of
these two gradient values (or the sum of their absolute values) to
determine the intensity of the edge.

G=,/G:+G

The Sobel operator extracts edge information across different
scales, performs layer normalization along the channel dimension,
and conducts weighted fusion with the multi-scale feature output
from the encoder stage.

fusedfeature =Q- edgefeature + (1 - (X) : enCOderfeature

Subsequently, the fused features automatically adjust the
attention distribution by calculating the similarity between
channels to strengthen key features in the image. At this stage,
layer normalization is first performed on each token to stabilize the
training process. Subsequently, all tokens are concatenated along
the channel dimension to create unified keys and values while
retaining each token as an independent query. The linear projection
in the self-attention mechanism is replaced with a 1 x 1 depthwise
convolutional projection. This enables cross-channel information
integration and interaction and enhances its nonlinear

characteristics. The process formula is as follows:

K,V = conviD(concat(T,, T, ... T;))
Q; = convlD(T, T, ... T})

CCA(Q;, K, V) = Softmax(Q{KS)V"*

Q;,K, and V are matrices that represent the queries, keys,
and values, respectively, which are obtained by concatenating
the tokens along the channel dimension. S is the scaling factor.
Once the output of the CCA is connected to the original tokens,
the enhanced features are input into the spatial information
enhancement module.
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2.2.2 Spatial Information Enhancement Module
This module dynamically adjusts the feature weights of different
regions of the image by calculating the correlations among different
spatial positions, thereby enhancing the key features in the image.
Edge features provide essential structural cues for the image,
enabling the model to focus more on the detailed areas of the
image while reducing attention allocation to smooth areas, thus
avoiding excessive enhancement. Combined with enhanced multi-
scale features, the module can capture the details of the image at
different levels, effectively restoring the detail loss in underwater
images caused by light attenuation and blurring. At this stage, all the
tokens are first subjected to layer normalization along the channel
dimensions and then concatenated. In contrast to the edge-fusion
module, this module uses concatenated tokens as queries and keys;
each token is used as a value. Moreover, 1 x 1 depthwise
convolutions are also used for projection onto the queries, keys,
and values. This design enables the spatial information
enhancement module to focus on information integration in the
spatial dimension, thereby complementing the edge fusion module
to collaboratively establish a comprehensive and enhanced feature
representation. The process is defined by the following formulas:

K, Q = convlD(concat(T,, T, ... Tj))
Vi = COnVlD(Tl, Tz Tl)

SCA(Q;, K, V) = Softmax(Q"KS)V{

Q,K, and V; are matrices that represent queries, keys, and
values, respectively. S is the scaling factor.

To ensure that the generated enhanced features can effectively
serve the decoder, the following processing steps are adopted. First,
layer normalization and the GeLU activation function are applied to
the output to stabilize the features and introduce nonlinear
transformations. Subsequently, through a combined sequence of
an upsampling layer, a 1 x 1 convolution, batch normalization, and
GeLU activation function, necessary size adjustments and
enhancements are made to the features, which are fused with the
features in the decoder stage. The upsampling layer is used to
restore the spatial resolution of the feature maps, ensuring that the
details of the image can be better reconstructed in the decoding
stage. The 1 x 1 convolution is used for channel compression and
feature fusion, enhancing the expressive ability of the model, while
batch normalization ensures the consistency of features among
different layers. The GeLU activation function introduces
nonlinear transformations that aid in handling complex feature
relationships. This method ensures the continuity and consistency
of information and greatly improves the decoding efficiency and
performance of the entire network.

2.3 Loss function
We propose a multi-dimensional perceptual loss function for

training the CUG-UIEF to align the enhanced images with human
visual perception and improve detail reconstruction.
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1) Perceptual Loss.

Deep features capture high-level semantic information from
images. By comparing the feature maps of the two images in a
pretrained network, their perceptual similarity can be evaluated.

lper = ‘X - Y|’

x represents the predicted image, and y represents the
real image.

2) Multi-scale Structural Similarity Loss.

Multi-Scale Structural Similarity (MSSSIM) is an image quality
assessment metric that evaluates brightness, contrast, and structural
features across multiple scales, providing a measure more aligned
with human visual perception.

M B i
1 o H 2uyug +¢ 20pg + €3
msTssim w+ud+c 0'12, + cé +¢,

m=1 8 P

Here, M represents different scales. u, and u, represent the
means of the predicted image and ground truth, respectively. 6, and
O, represent the standard deviations between the predicted and real
images. G, represents the covariance between the predicted and
real images. 3, and ¥, represent the relative importance constants
between the two items. ¢, and ¢, are constants.

3) Charbonnier Loss.

The Charbonnier loss function is a variant of the L1 loss
function. It prevents the denominator from reducing to zero by
introducing a small positive number € and ensures smoother
changes when the gradient is large. It maintains the sharpness of
an image while reducing noise.

— \/x2 2
lcharbonnier =VX +E

X represents the difference between the predicted image and
ground truth. € is a small positive number used for
numerical stability.

Finally, the loss function is expressed as

1= A’llper + }"Zlms—ssim + }"3lcha.rbonnier .

Hyperparameters A;, A,, and A; determine the balance
between the overall performance and the local texture details.
Following experimental analysis the parameters were set to 1, 2,
and 1, respectively.

3 Experiments and analyses

3.1 Experimental environment and
parameter settings

The proposed model was implemented using PyTorch 2.4.0. It
was trained on an NVIDIA RTX 2080Ti GPU without a pretrained
network. During the training process, the Adam optimizer was
adopted, and the initial learning rate was set to 0.0005, with the 3
parameter pair being (0.9, 0.999). Training was performed for 700
epochs, and the number of samples in each batch was four.
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3.2 Datasets

This study uses three datasets.

1. UIEB Dataset (Li et al., 2019): This dataset included 950
real underwater images. Among them, 890 images had
corresponding reference images, and another 60
underwater images without reference images were used as
the challenging data. In this study, 90 pairs of challenging
images in multiple scenes with corresponding reference
images from the UIEB were selected as the test set Test-
U90, and 60 images without reference images were used as
the test set Test-C60. The remaining images were divided
into training and validation sets at a 8:2 ratio. The training
data were enhanced using random cropping, size
adjustment, and random rotation.

2. LSUI Dataset (Peng et al., 2023): This is a large-scale
underwater image dataset that contains 5,004 underwater
images with reference images. It contains richer underwater
scenes. Forty-five images were selected from this dataset as
the test set, Test-L45. The remaining images were divided
into training and validation sets at a 8:2 ratio. The training
data were enhanced through random cropping, size
adjustment, and random rotation.

3. U45 Dataset: The U45 dataset is a publicly available
underwater image test dataset that contains 45 underwater
images in different scenes and involves underwater
degradation phenomena, such as color shift, low contrast,
and fogginess. Forty-five images were used as the test set,
Test-U45.

3.3 Evaluation metrics and comparative
algorithms

Reference Evaluation Metrics: To quantify the performance of
each model on the dataset with reference images, this study adopted
two measurement standards: PSNR and SSIM. These two indicators
help measure the similarity between the restored and reference
images. PSNR is an objective quality metric calculated based on the
mean squared error between the original image and the enhanced
image, with the unit of decibel (dB). In UIE, a higher PSNR value
indicates that the enhanced image has a smaller error than the
original image and, thus, better quality. SSIM is an index used to
measure the similarity between two images. It considers luminance,
contrast, and structural information, and its value ranges from -1 to
1. In UIE, the closer the SSIM value is to one, the more similar the
enhanced image to the original image in terms of structure,
luminance, and contrast, suggesting a higher image quality.

No-reference Evaluation Metrics: For the test sets of images
without reference images, we adopted three evaluation methods:
underwater color image quality evaluation (UCIQE), underwater
image quality measure (UIQM) and Underwater Ranker(URanker)
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(Guo et al., 2023). UCIQE focuses on the color density, saturation,
and contrast of images and uses a linear combination of these three
aspects as the quantitative form of color cast, blurring, and low
contrast. UIQM includes color (UICM), sharpness (UISM), and
contrast measurements (UIConM). As the scores of these methods
increase, the image processing results become more aligned with the
visual perception preferences of human beings.

Comparative Algorithms: The comparative algorithms adopted
in this experiment are representative algorithms among traditional
UIE methods and deep-learning-based UIE methods, which can
verify the effectiveness and advancement of the proposed method,
including the UIE algorithm based on color correction: Fusion
(Ancuti et al,, 2012); UIE algorithms based on image restoration:
IBLA (Wang et al., 2013); HL (Berman et al., 2021); WWPF (Zhang
etal., 2023); CBLA (Jha and Bhandari, 2024); UIE algorithms based
on deep learning: UWCNN (Li et al., 2020), Shallow-UWnet (Naik
et al,, 2021), USUIR (Fu et al.,, 2022), URSCT (Ren et al., 2022),
DiffWater (Guan et al., 2023).

3.4 Experimental results

All experimental results are presented with the best outcomes
bolded and the second-best outcomes highlighted in blue font. This
section first presents the test results of the model based on the UTEB
training set on the Test-U90 dataset. As indicated in Table 1, CUG-
UIEF outperformed the other algorithms in terms of the PSNR and
SSIM. Moreover, compared to the second-best performance, CUG-
UIEF achieved percentage gains of 8.41% and 0.1% in PSNR and
SSIM, respectively. This study also conducted a no-reference
evaluation comparison of Test-C60 and Test-U45. Table 2
presents all the statistical results. Both UIQM and UCIQE have
specific feature biases and are relatively sensitive to the contrast of
images. Therefore, results based on visual priors and physical
models can yield higher scores. Our experimental results align
with this conclusion. And the proposed method achieves the best
performance on the URanker evaluation metric, with an average
improvement of 12.21% over the second-best model. Therefore, the
results cannot indicate whether the processed images are the best in
all aspects. However, by combining the results of the two
parameters, the images performed well in terms of contrast and
color. CUG-UIEF obtained the second-best result among the
models that were used in the experiment, only lower than that of
the fusion method. Combined with the previous results, this shows
that the generalization ability and actual performance of the CUG-
UIEF are the best.

3.5 Comparative mechanism analysis of
algorithms

The fusion algorithm addresses underwater color cast and low-
contrast degradation through adaptive weight mapping, yet exhibits
critical limitations when confronting specific technical challenges. Its
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TABLE 1 PSNR and SSIM scores of different methods on the test set
Test-U90.

TEST-U90
Method
PSNR
HL 14.8429 0.6497
IBLA 14.9395 0.6742
Traditional Method | Fusion 21.1843 0.8639
CBLA 15.2359 0.6614
WWPF 18.5371 0.7062
Sha-UWnet 17.4575 0.7174
UWCNN 15.4532 0.7560
D . USUIR 20.5514 0.8544
eep-Learning
Method URSCT 22,5976 09171
Diff-Water 20.1567 0.8391
Ours 24.4952 0.9262

In the results, boldface indicates the best data and blue denotes the suboptimal data.

edge restoration capability deteriorates in low signal-to-noise ratio
(SNR) regions, producing blurred textures and artificial transitions
around fine structural details, while contrast optimization remains
suboptimal under non-uniform illumination caused by suspended
particulates. Furthermore, the water-quality-dependent input
generation mechanism demonstrates unstable color correction
performance across chromatic water types, particularly failing to
compensate for wavelength-specific absorption in turbid greenish
waters where waterborne noise amplifies color inconsistency along
depth gradients. These limitations stem from the algorithm’s inherent
constraints in decoupling overlapping degradation patterns and
adapting to spatially variant underwater optical conditions.

The IBLA algorithm decomposes images via luminance-
ordering error metrics and bright-pass filtering to separately
regulate reflectance and illumination, dynamically adjusting their
weights through dual-logarithmic transformations. While effective
for uniform scenes, the framework suffers from edge-texture
mismatches in areas with overlapping illumination-reflectance
gradients, where low-SNR conditions exacerbate erroneous
boundary segmentation and nonlinear illumination transitions
degrade fine details. The logarithmic weight adaptation further
struggles to resolve high dynamic range conflicts, causing halo
artifacts near specular highlights and contextual inconsistency in
shadowed low-contrast regions. These limitations arise from
inadequate noise-robust disentanglement of radiometrically
coupled components under complex degradation patterns.

The HL algorithm frames color restoration as a single-image
dehazing task by estimating attenuation ratios for the blue-red and
blue-green color channels, with a color distribution screening
mechanism to identify optimal parameter combinations. However,
this approach faces three critical limitations in addressing
underwater-specific degradation: Its unified attenuation coefficient
oversimplifies spectral interactions, failing to resolve edge blurriness
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TABLE 2 UIQM and UCIQE scores of different methods on test sets C60 and U45.

Test-C60 Test-U45
Method
UCIQE URanker UCIQE URanker
HL 0.5311 2.8774 0.094 0.5126 1.9423 0.751
IBLA 0.5642 3.3236 0.815 0.4612 12768 0.945
Traditional R
Fusion 0.5848 2.8092 0.745 0.6473 1.6984 0.726
Method
CBLA 0.4781 24273 1.285 0.5139 1.7141 1.392
WWPF 0.5135 2.4861 1.348 0.5641 1.7311° 1.351
Sha-UWnet 0.4198 2.2751 0.921 0.4595 1.6893 1.257
UWCNN 0.4894 2.4523 1.687 0.4524 1.4338 1.582
b . USUIR 0.5673 2.3234 1.618 0.5131 1.8952 1.685
eep-Learning
Method URSCT 0.5529 2.7453 1.713 0.5729 2.1861 1.724
Diff-Water 0.5372 2.5894 1.632 0.5338 2.0142 1.583
Ours 0.5737 2.8168 1.982 0.5937 2.3247 1.859

In the results, boldface indicates the best data and blue denotes the suboptimal data.

caused by wavelength-dependent scattering anisotropy. The channel-
agnostic model amplifies noise in low-SNR scenarios, particularly in
red-dominated deep-water regions where backscatter varies
disproportionately. Linear color compensation ignores depth-
related contrast attenuation gradients, leading to inaccurate
recovery in shaded seabed areas with nonlinear illumination decay.
These simplifications fundamentally disregard the photometric
complexity of real underwater environments, where multi-band
light refraction and particulate scattering create spatially varying
attenuation patterns.

The color-balanced locally adjustable (CBLA) algorithm targets
underwater color distortion and contrast degradation through dual-
space hierarchical enhancement, yet reveals critical vulnerabilities
when addressing complex photometric interactions. Its RGB-space
color restoration mechanism struggles to decouple chromatic
shifts from suspended particulate backscattering in high-turbidity
environments, occasionally overcompensating blue-green dominance
while neglecting wavelength-specific absorption residuals. The
CIELAB-space contrast optimization demonstrates limited
adaptivity to illumination gradients across depth-varying scenes,
where aggressive luminosity adjustments in localized regions may
amplify noise patterns and induce halo artifacts near high-frequency
textures. Furthermore, the separate processing pipelines for color
correction and contrast enhancement fail to maintain spectral
consistency in transitional zones between adjusted and unprocessed
areas, particularly under abrupt optical density changes caused by
marine snow or biological layers. These deficiencies originate from
the method’s sequential processing framework that insufficiently
models the nonlinear coupling between wavelength attenuation and
turbidity-induced light diffusion.

The weighted wavelet visual perception fusion (WWPF)
method tackles underwater color distortion and contrast
degradation through multi-strategy hierarchical optimization, yet
reveals critical constraints when handling complex photonic
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interactions. Its attenuation-map-guided color correction exhibits
incomplete spectral separation in high-turbidity greenish waters,
where particulate backscattering interferes with wavelength-specific
absorption estimation, occasionally preserving residual cyan
dominance while overcompensating red-channel artifacts. The
maximum entropy optimized global contrast enhancement
demonstrates limited dynamic range adaptation across depth-
varying illumination fields, where uniform intensity stretching
may amplify noise in low-transmission regions while compressing
texture details in high-clarity zones. Furthermore, the wavelet-based
multi-scale fusion mechanism shows inadequate edge preservation
at high-frequency subbands when processing particulate-laden
scenes, as directional filter banks struggle to differentiate between
authentic structural contours and suspended particle clusters,
resulting in oversmoothed textures near marine snow interfaces.
These limitations stem from the method’s implicit assumption of
linear degradations and insufficient modeling of nonlinear light-
particle-camera interactions in turbid aquatic environments.

The UWCNN algorithm constructs a synthetic degradation
dataset using spectral-attenuation priors to train a lightweight
CNN for direct underwater image restoration, thereby reducing
error propagation. While effective for general color cast correction,
its wavelength-agnostic framework introduces spectral bias by
oversimplifying depth-dependent chromatic shifts and angular
illumination variations inherent in real underwater environments.
Specifically, the model fails to address nonlinear wavelength
absorption caused by suspended particulates and depth-varying
water types, leading to color channel imbalance in scenes with
multi-spectral artificial lighting or bioluminescent interference.
Furthermore, its static prior integration neglects photometric
divergence between shallow and deep-water zones, resulting in
inconsistent color constancy when reconstructing red-depleted
regions or high-turbidity sediments. These limitations stem from
inadequate modeling of spectrally asymmetric degradation and
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cross-domain generalization across heterogeneous underwater
optical conditions.

The Sha-UWnet employs a parameter-efficient architecture to
optimize underwater image enhancement, leveraging prioritized
feature extraction to balance computational cost and restoration
quality. While its streamlined design effectively addresses global
color shifts, the constrained network depth impedes hierarchical
abstraction of multi-scale edge contexts, resulting in blurred
boundary delineation and textural discontinuities in low-contrast
turbid waters. Specifically, the shallow structure fails to resolve
edge-texture conflicts caused by suspended particle scattering, often
miscalculating gradient magnitudes in regions with overlapping
foreground-background chromaticity. Furthermore, its limited
receptive field struggles to suppress waterborne noise while
preserving high-frequency details, leading to artificial sharpening
artifacts near bioluminescent features or sediment-rich zones. These
limitations highlight the inherent trade-off between model efficiency
and multi-scale degradation disentanglement in underwater
optical environments.

The USUIR algorithm reformulates unsupervised restoration
through homology-driven cycle consistency between original and
synthetically re-degraded images, theoretically circumventing the
need for paired training data. While effective for global error
minimization, the framework exhibits edge gradient confusion in
low signal-to-noise ratio regions, failing to resolve sub-pixel
boundary discontinuities caused by suspended particle scattering
or nonlinear light attenuation. This manifests as blurred bio-
structural contours and textural oversmoothing in turbid waters
where foreground-background chromatic similarity exacerbates
edge ambiguity. Furthermore, its spectrally insensitive homology
constraints inadequately model wavelength-dependent absorption,
inducing color channel crosstalk that amplifies greenish hue bias in
deep pelagic zones and artificial saturation spikes under multi-
spectral artificial lighting. These limitations stem from insufficient
physical priors to disentangle spatially coupled degradation patterns
across heterogeneous underwater optical domains.

The URSCT algorithm integrates Swin Transformer into a U-
Net framework to enhance global context modeling for structural
and chromatic restoration, while its RSCTB module employs
convolutional layers to refine local features. Although this hybrid
design improves cross-scale feature aggregation in uniform
underwater scenes, the global attention mechanism in Swin
Transformer induces boundary erosion when processing low-
contrast edges or suspended particle-induced textures, where
multi-scale edge ambiguity arises from nonlinear light scattering.
Concurrently, the convolutional RSCTB module exhibits limited
texture-edge decoupling capacity, failing to recover high-frequency
boundary cues lost during transformer-based global smoothing,
particularly in high-turbidity regions with overlapping bio-optical
signals. This synergistic deficiency manifests as gradient reversal
artifacts along complex seabed contours and chromatic offsets in
shadowed areas, highlighting the algorithm’s inadequate fusion of
spectral-spatial priors to address depth-variant degradation
patterns in dynamic underwater environments.
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The DiffWater method addresses underwater color distortion
and quality degradation through conditional diffusion modeling,
yet demonstrates critical vulnerabilities when confronting
nonlinear photometric interactions in complex aquatic
scenarios. Its channelwise color compensation mechanism in
RGB space shows incomplete chromatic separation in turbid
greenish waters, where wavelength-dependent scattering
interferes with particulate density estimation, occasionally
preserving blue-green dominance while introducing artificial
magenta casts in shadow regions. The conditional DDPM
framework exhibits unstable noise prediction capabilities under
dynamic illumination fields, where conditional guidance from
color-compensated inputs may misdirect the denoising
trajectory, generating texture-inconsistent hallucinated details
near high-particle-concentration zones. Furthermore, the
sequential integration of color correction and diffusion processes
demonstrates spectral incoherence in transitional depth layers,
particularly failing to preserve wavelength attenuation gradients
when processing scenes with abrupt optical density changes
caused by algal blooms or sediment plumes. These limitations
stem from the method’s simplified assumption of additive
degradation patterns and insufficient physical modeling of the
nonlinear correlation between waterborne light scattering and
depth-dependent chromatic absorption.

The proposed UIE algorithm in this study employs edge feature
attention fusion to address critical problems, such as edge
blurriness, low SNR, and low contrast in underwater images. It
integrates three innovative modules: (1) Edge operators extract edge
information through gradient-sensitive feature learning, while CCA
fuses multi-scale features using cross-channel coherence analysis,
restoring object edge details by jointly optimizing high-frequency
components and improving visual performance.(2) A spatial cross-
attention mechanism strengthens spatial structure information via
edge-guided attention propagation, preserving details under low
signal-to-noise ratio conditions through noise-adaptive feature
reinforcement.(3) A multi-dimensional perception optimization
method enhances semantic understanding, structural integrity,
and local contrast using frequency-aware adversarial learning,
while mitigating the effects of outliers through multi-scale
degradation disentanglement. Collectively, these modules establish
hierarchical edge-texture synchronization, where edge restoration
and feature fusion are systematically coordinated to resolve cross-
scale degradation conflicts in turbid underwater environments.

3.6 Component ablation and fusion
validation

The excellent performance of the CUG-UIEF proposed in this
study for UIE mainly benefits from the multi-feature cross-fusion
module and the redesigned loss function. To verify the effectiveness of
the modules proposed in this study, we conducted ablation studies
using the UIEB dataset as the training set on Test-U90 and by
selecting 45 challenging images from the LSUT dataset as Test-L45.
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The original model selected in this study has been described in the
literature (Ren et al., 2022). The specific experimental settings were
consistent with those used in a previous experiment. Table 3 presents
the results of this index. DDEM-1 represents CUG-UIEF with the
edge fusion module removed, and DDEM-2 represents CUG-UIEF
with the spatial information enhancement module removed.

As indicated in Table 3, the proposed model achieved the best
quantitative performance on the two test datasets, reflecting the
effectiveness of the combination of multi-feature cross-fusion and
multidimensional perceptual loss function modules.

As shown in Figure 3, compared with the original model, the
added multi-feature cross-fusion module better address the problem of
cyan-green color casts. When processing images, the cross-attention
mechanism can adaptively focus on the interactions between cyan-
green channels and other channels, avoiding excessive or insufficient
utilization of cyan-green channel information. It emphasizes local
details than on the convolution in the original model. The color
distribution in real scenes was better matched adjusting the weights
and contributions of the cyan-green channels in the image to a more
reasonable level, thus effectively correcting the cyan-green color cast
and improving the accuracy and naturalness of the image colors.
Moreover, after adding edge features, the attention mechanism can
focus on the structural information in the image and avoid wasting
resources in unimportant areas. Following the addition of edge
features, the details of the stones and creatures in the two
comparison images became clearer. As we can observe in Figure 4,
owing to the multidimensional perceptual loss function, the obtained
images exhibit enhanced details, improved color restoration, vivid
object edges, high contrast, and clear boundaries.

3.7 Qualitative comparison through
visualization

First, the image comparison results of the UIEB dataset are
presented. A comprehensive training was conducted using the
UIEB dataset. The test data selected for this study were sampled
according to six scenes with distinct characteristics: shadow,
texture, blur, blue, yellow, and green. The images that best

TABLE 3 Statistical results of the ablation study on the modules and
loss functions.

Test-U90 Test-L45

PSNR PSNR
Origin 23.2074 09178 21.9878 0.9164
DDEM:-1 234076 09183 223455 0.9142
DDEM-2 255647 09195 232346 0.9234
CUG-UIEF  26.4693 0.9286 24.5212 0.9276
Loss PSNR SSIM PSNR SSIM
1, 243572 0.9142 22.0478 09123
Ll 257823 0.9212 235689 0.9201
Ll 26.4693 0.9286 24.5212 0.9276

In the results, boldface indicates the best data.
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represented each type of scene and were to some extent
challenging were chosen. Figure 5 presents the enhancement
results of the different methods.

In the green scene, color casts occurred in the results of HL,
Sha-UWnet, and UWCNN. Only Fusion, USUIR, URSCT, and
CUG-UIEF showed color restoration similar to that of the real
image. However, CUG-UIEF achieved the closest color restoration
effect to the real image, and the details in the shadowed parts were
the clearest and most distinguishable. In the blue scene, except for
USUIR, URSCT, and CUG-UIEF, none of the methods restored the
real illumination effect, and only CUG-UIEEF truly restored the color
texture of the fish in the upper left corner. In foggy and textured
scenes, only the proposed URSCT and CUG-UIEF achieved good
effects in defogging and enhancing textures and object edges.
However, compared to real situations, both methods had some
deficiencies. In the final yellow scene, only CUG-UIEF retained
delicate edge information during defogging. Overall, CUG-UIEF
was visually superior to the other methods.

This section also presents the image results of CUG-UIEF on
no-reference datasets. The tests were performed on two test sets,
Test-C60 and Test-U45.

Test-C60 includes five underwater environments—red, yellow,
green, blue, and foggy scenes—all of which were affected by high
backscattering and color deviation. The most representative images of
each type were selected for visual comparison. As shown in Figure 6,
HL, CBLA, WWPEF, Sha-UWnet, UWCNN, and URSCT exhibited
obvious color deviations in some cases. In the yellow scene, HL, IBLA,
and USUIR restored the paddle blade to purple, whereas UWCNN
and CUG-UIEF restored it to yellow, which is closer to the normal
visual perception of humans. Moreover, CUG-UIEF can better
restore blurred details in the original image. In the green and blue
scenes, only URSCT and CUG-UIEF achieved good restoration of the
background and surfaces of the creatures. In the foggy scene, URSCT
had a significant defogging effect but overly enhanced the red color in
the original image. CUG-UIEF attempted to retain the information of
the original image while defogging, and the color restoration at the
bottom background was more in line with normal perception. In the
shadow and texture scenes, all the methods except USUIR, URSCT,
and CUG-UIEF, exhibited color restoration deviations. These three
methods could restore the details in the shaded parts while retaining
the natural illumination, but only CUG-UIEF could retain sufficient
light-dark contrast and object details while providing improved color
for the seawater background.

TEST-U45 contains multiple scenes, such as color deviation and
foggy scenes. Multiple scenes were selected for the experiments, and
representative scenes were selected for display. As is shown
Figure 7, except for HL, UWCNN, CBLA, WWPF and Sha-
UWnet, the methods exhibited a lower degree of color deviation.
In the shadow and texture scenes, Fusion, USUIR, URSCT, and
CUG-UIEF performed well in color restoration and texture
information preservation. However, in the blue scene, only the
URSCT and CUG-UIEF restored colors that were more in line with
normal visual perception and preserved the texture information of
the objects well. In the green scene, only CUG-UIEF could better
reflect the natural illumination environment and delicate details.
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FIGURE 3

Ablation study on the contribution of cross-fusion. Each panel includes the original image (RAW), the results of the original method, the results of
DDEM-1, the results of DDEM-2, and the results of CUG-UIEF. (A) Test-U90, (B) Test-L45.

In summary, HL, UWCNN, WWPF and Sha-UWnet were  well to the changes caused by foggy scenes. USUIR performed well
prone to color-cast phenomena. The IBLA improved the quality  in most scenes but often exhibited a red-shift phenomenon in blue
of underwater images using local adaptive methods but performed  scenes. URSCT had good robustness and strong defogging ability;
poorly in yellow, foggy, and some blue scenes. Fusion greatly — however, when restoring objects in foggy scenes, it was prone to
increased artificial colors to enhance contrast but could not adapt  red-shift phenomena. CUG-UIEF had good robustness and

FIGURE 4

Multi-dimensional ablation study. Each panel includes the original image (RAW) and the results of the original method. The results of using only L,
the results of using both L and Ly, and the results of using Ly, Ly, and L simultaneously. (A) Test-U90, (B) Test-L45.
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FIGURE 5
Comparison of the underwater images sampled from the Test-U90 dataset. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-UWnet
(H) UWCNN (1) USUIR (J) URSCT (K) Diff-Water (L) Ours (M) Ground truth.

A B C D E F G H I J K L

FIGURE 6
Visual comparison of the underwater images sampled from the Test-C60 dataset. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-
UWnet (H) UWCNN (1) USUIR (J3) URSCT (K) Diff-Water (L) Ours.
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FIGURE 7

Visual comparison of the underwater images sampled from the Test-U45 dataset. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-

UWnet (H) UWCNN (I) USUIR (3) URSCT (K) Diff-Water (L) Ours.

performed well in yellow, blue, green, foggy, shadowed, and
textured scenes.

3.8 Application and inference efficiency

As feature extraction-matching and edge detection constitute
core technical pillars in underwater image analysis, this study
systematically validated the necessity of the proposed method as a
preprocessing module for feature matching and edge detection. In
feature matching tasks, the SIFT algorithm was utilized to extract
feature points, complemented by the RANSAC algorithm for false
match elimination. Feature matching was performed on
preprocessed 256x256 pixels underwater stereo image pairs from
the SQUID dataset. Figure 8 revealed that the proposed approach
significantly optimized matching performance while concurrently
improving visual quality. Table 4 demonstrates that compared to
baseline methods, our scheme ranked second in both initial and
valid matches, yet achieved the highest matching precision.
Integrative qualitative-quantitative analyses corroborated the
critical utility of this method for underwater feature matching tasks.

Regarding edge detection tasks, all images in the Test-C60 and
Test-U45 datasets underwent enhancement prior to edge extraction
and evaluation via the Canny operator. Detection performance was
quantified using three metrics: Precision, F1 (harmonic mean of
precision and recall), and Edge Pixel Ratio (EPR). Table 5 indicated
that our method ranked first in accuracy and second in EPR relative
to state-of-the-art approaches. Figure 9 demonstrates the

Frontiers in Marine Science

experimental findings: In Test-U45 fish samples, the enhanced
edge detection preserves intact morphological contours while
precisely discriminating target-background depth disparities,
revealing underwater spatial hierarchy. In Test-C60 columnar
targets, the algorithm achieves complete extraction of artificial
structures' geometric edges with enhanced low-light gradient
responses, where continuous seagrass blade edges further validate
optical attenuation compensation. Convergent qualitative and
quantitative evidence validated the significant contribution of this
method to underwater edge detection tasks.

To evaluate the practical applicability of underwater image
enhancement algorithms, we conducted a systematic comparison
of inference efficiency among competing methods. The experiments
were performed using the UIEB dataset as the benchmark, with
average inference times calculated across all test samples.
Traditional algorithms were executed in batch processing mode,
while deep learning approaches employed pre-trained models on
the UIEB training set for inference. Owing to significant
architectural variations among deep learning algorithms,
substantial discrepancies in inference times were observed across
different models. As demonstrated in Table 6, conventional
algorithms maintain absolute superiority in computational speed,
whereas the proposed framework achieves the second-highest
efficiency among deep learning methods while demonstrating a
competitive advantage over structurally complex traditional
approaches. These findings validate the proposed method’s
significant advantages in balancing computational complexity
with practical deployment feasibility.
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FIGURE 8

10.3389/fmars.2025.1555286

Application examples of underwater feature matching. (A) RAW-Left (B) RAW-right (C) RAW (D) HL (E) IBLA (F) Fusion (G) CBLA (H) WWPE (I) Sha-
UWnet (J) UWCNN (K) USUIR (L) URSCT (M) Diff-Water (N) Ours.

TABLE 4 Mean evaluation results of underwater feature matching on the SQUID dataset.

Method Initial matches Valid matches Precision
HL 44.32 38.67 87.25%
IBLA 37.42 31.73 84.79%
E::l}::;mal Fusion 46.56 39.14 84.06%
CBLA 87.35 78.15 89.46%
WWPF 198.58 166.21 83.70%
Sha-UWnet 36.74 31.27 85.12%
UWCNN 39.55 32.52 82.29%
Deep-Learning USUIR 152.46 135.14 88.64%
Method URSCT 16324 14581 89.24%
Diff-Water 108.47 97.09 89.51%
Ours 172.68 155.81 90.23%
In the results, boldface indicates the best data and blue denotes the suboptimal data.
TABLE 5 Mean evaluation results of underwater feature matching on the Test-C60 and Test-U45 dataset.
Method Precision F1 EPR
HL 0.6011 0.1406 0.0303
IBLA 0.6208 0.4789 0.1492
Iraditional Fusion 0.6149 0.3311 0.0926
Method
CBLA 0.6215 0.5435 0.2021
WWPF 0.6571 0.5252 0.1888
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TABLE 5 Continued

10.3389/fmars.2025.1555286

Method Precision F1 EPR
Sha-UWnet 0.6666 0.0295 0.0057
UWCNN 0.6523 0.3145 0.0649
b ) USUIR 0.6314 0.2227 0.0542
eep-Learning
Method URSCT 0.6289 0.4445 0.1436
Diff-Water 0.6403 0.4474 0.1381
Ours 0.6719 0.4761 0.1989

In the results, boldface indicates the best data and blue denotes the suboptimal data.

FIGURE 9

Application examples of canny edge detection. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-UWnet (H) UWCNN (1) USUIR (J)

URSCT (K) Diff-Water (L) Ours.

TABLE 6 Inference Efficiency Comparison.

Method Per-image inference time

HL 0.284s
IBLA 0.622s
Traditional
raditional Fusion i
Method
CBLA 0.199s
WWPE 0.652s
Sha-UWnet 3.643s
UWCNN 2911s
Deep-Learning USUIR 1.876s
Method URSCT Lo6ls
Diff-Water 44.322s
Ours 1.083s

In the results, boldface indicates the best data and blue denotes the suboptimal data.

Frontiers in Marine Science

4 Conclusion

This study presented a deep learning model for UIE that improves
blurring and color distortion caused by light scattering and attenuation.
The proposed model integrates a multi-feature cross-fusion module,
which combines edge features with encoder features and utilizes a
channel-cross attention mechanism, effectively enhancing the clarity of
blurred areas and improving edge detail capture. Additionally, the
spatial information enhancement module strengthens feature
interactions across different locations, enabling more natural
restoration of color-distorted regions, thereby bringing the image
closer to true colors and clarity. Through multi-dimensional
perception optimization, the model further improves clarity, color
accuracy, and edge details. Experimental results confirm the superior
ability of the model to restore image details and correct color distortion.
Ablation studies highlight the effectiveness of both the multi-feature
cross-fusion module and multi-dimensional perception optimization
in enhancing detail and overall color consistency. However, the
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dehazing performance of the model in large-scale foggy underwater
images requires further improvement. Future work will incorporate
multispectral data to address the limitations, enhance dehazing
performance, and improve the overall robustness and generalizability
of the model in complex scenarios, ultimately providing more reliable
image enhancement solutions for practical underwater operations and
deep-sea exploration.
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side-scan sonar images

based on SOCA-YOLO
and image restoration

Xiaodong Cui, Jiale Zhang, Lingling Zhang, Qunfei Zhang
and Jing Han*

School of Marine Science and Technology, Northwestern Polytechnical University, Xian, China

Although side-scan sonar can provide wide and high-resolution views of
submarine terrain and objects, it suffers from severe interference due to
complex environmental noise, variations in sonar configuration (such as
frequency, beam pattern, etc.), and the small scale of targets, leading to a high
misdetection rate. These challenges highlight the need for advanced detection
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