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Editorial on the Research Topic

Remote sensing applications in oceanography with deep learning
Deep learning and remote sensing for the ocean:
from concept to operational impact

Deep learning (DL) and remote sensing (RS) are transforming how we observe and

manage the ocean. Modern algorithms, platforms, and multi-sensor data integration now

deliver insights at scales and speeds that were impossible just a few years ago. This Research

Topic gathers 17 contributions across seafloor geomorphology, Ship and hazard

monitoring, water quality assessment, mesoscale dynamics, under-ice processes, sonar

perception, and enabling methods—demonstrating a field that is both technically

innovative and mission-driven.
Seafloor to shoreline

Ocean science relies on accurate mapping of the seabed. Automation can quickly

analyse broad regions while collecting characteristics that satellite altimetry misses, as

demonstrated by a CNN + U-Net pipeline for recognising tiny seamounts in multibeam

data. RipFinder, a mobile machine learning system for real-time rip current identification

that also functions as a citizen-science tool in places with restricted connection, exemplifies

“AI to edge” at the land–sea interface.
Ships, safety, and hazards

For marine awareness, synthetic aperture radar (SAR), is still essential. While previous

research use AIS data, sea fog, and remote sensing to evaluate collision risk, a super-
frontiersin.org015

https://www.frontiersin.org/articles/10.3389/fmars.2025.1701125/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1701125/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1701125/full
https://www.frontiersin.org/research-topics/65308
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2025.1701125&domain=pdf&date_stamp=2025-09-26
mailto:lb2116001@s.upc.edu.cn
https://doi.org/10.3389/fmars.2025.1701125
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2025.1701125
https://www.frontiersin.org/journals/marine-science


Yasir et al. 10.3389/fmars.2025.1701125
resolution Mask R-CNN architecture uses scale-aware fusion to

improve ship detection in noisy SAR settings, providing evidence-

based navigation management tools.
Ecosystems and water quality

Chlorophyll-a (Chl-a) variations and harmful blooms are

important ecological markers. Green tide identification from

MODIS images is enhanced by WaveNet (VGG16 + BiFPN +

CBAM). The importance of physics-aware features is demonstrated

by ResUNet models that relate ocean-atmosphere dynamics to Chl-a

in the South China Sea. Long-term variability in the Persian Gulf and

Arabian Sea is revealed by rebuilt MODIS datasets, and new

techniques also yield transferable Chl-a products for estuaries.

MarGEN, a GAN-based augmentation technique that enhances

marine mammal call categorisation in situations where labelled

audio is limited, is one example of an advancement in

acoustic ecology.
Mesoscale and cryosphere dynamics

OIEDNet generates the first large-scale MIZ eddy catalogues by

detecting under-ice eddies from Sentinel-1 dual-pol data, whereas

Conv-LSTM GAN hybrids predict mesoscale eddy properties with

high fidelity.
Perception underwater

Sonar and visual sensing are crucial for autonomous systems.

Forward-looking sonar object detection is improved by MLFANet,

side-scan sonar small-object recognition is improved by SOCA-

YOLO, and underwater optical imaging is improved by CUG-UIEF

using edge- and attention-based fusion.
Data, platforms, and decision support

New contributions also address scalable data management

(LSH-based retrieval for ocean archives) and decision-making

(multi-criteria approaches for underwater IoT and AUV

deployments), underscoring the need to co-design sensing,

connectivity, and computation.
Cross-cutting lessons

Five themes emerge: (1) multi-scale architectures consistently

boost detectability; (2) embedding physics-aware features enhances

generalization; (3) translating models to edge-deployable tools

enables real-world impact; (4) data efficiency strategies such as

augmentation and self-supervision are critical in data-sparse
Frontiers in Marine Science 026
regimes; and (5) benchmarking and openness will accelerate

progress.
Outlook

This Research Topic highlights a decisive shift from proof-of-

concept to operational potential in ocean AI. Future priorities

include embedding physical priors, advancing generative/self-

supervised methods for sparse data, and ensuring scalability,

efficiency, and usability for real-world applications. Together,

these works show how DL and RS can protect mariners, monitor

ecosystems, and reveal ocean dynamics—bringing us closer to truly

actionable ocean intelligence.

We thank all authors and reviewers for their contributions and

the editors for their support. We hope that this Research Topic will

serve as both a reference and a springboard for progress in

observing and managing the blue planet.
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The underwater Internet of Things (UIoT) and remote sensing are significant for

biodiversity preservation, environmental protection, national security, disaster

assistance, and technological innovation. Assigning tasks to autonomous

underwater vehicles (AUVs) is a fundamental challenge in underwater

technology and exploration. Remote sensing and AUVs are vital for pollution

detection, disaster prevention, marine observation, and ocean monitoring. This

work presents an optimized network connectivity using a multi-attribute

decision-making approach for underwater IoT deployment. A feature

engineering approach highlights the significant characteristics of underwater

things, incorporating remote sensing data, and a multi-objective optimization

method is used to select optimal UIoT for effective task allocation in deep-sea

environments. A balance between data transmission, energy economy, and

operational performance is necessary for efficient task distribution. Effective

communication algorithms and protocols are needed to maintain

environmental sustainability, protect marine ecosystems, and improve

underwater monitoring enhanced by remote sensing technologies. Multi-

criteria decision-making (MCDM) is beneficial for addressing various challenges

in underwater technology, considering factors such asmission objectives, energy

efficiency, environmental conditions, vehicle performance, safety, and much

more. The proposed criteria importance through intercriteria correlation

(CRITIC) methodology will assess technical competencies like communication,

resilience, navigation, and safety in an underwater environment, leveraging
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remote sensing and aiding decision-makers in selecting appropriate undersea

devices and vehicles for enhancing communication and transportation. This

method prioritizes characteristics and aligns them with specific objectives,

improving decision-making quality in the marine environment.
KEYWORDS

autonomous underwater vehicles, remote sensing, internet of underwater things,
acoustics sensor networks, marine applications
1 Introduction

Emerging technologies such as the Internet of Things (IoT),

machine learning, and big data analytics have revolutionized the

lifestyles of common people. In essence, the term “IoT” solely

pertains to the networking and communication stratum of the

infrastructures in the Information Society, which establish

connections between entities or devices and the Internet as well as

among themselves. Through the linkage of entities that are ubiquitously

present in our surroundings, the IoT has the potential to enhance our

interactions with it (Jahanbakht et al., 2021; Gu et al., 2024). The term

“underwater Internet of Things (UIoT)” describes an extensive

worldwide network of networked underwater items that use

embedded sensors, remote sensing technologies, tracking

technologies, and the Internet to sense, understand, and react to

their environment. Moreover, these gadgets can connect submerged

and aboveground objects, including phones. Every underwater object

has a fully functional virtual counterpart and is available to the public.

Devices are connected to the Internet via the IoT, and underwater

things are digitally identified via the underwater IoT (Domingo, 2012;

Mariani et al., 2021). However, the lack of advanced sensors limits

underwater surveillance technologies and sensor use. Low-power

sensors, accompanied by remote sensing, can help address this issue,

while marine sensors are crucial for ecological and environmental

sustainability and saving lives (Refulio-Coronado et al., 2021).

The collaboration between remote sensing and underwater

sensor networks (USNs) represents a significant advancement in

marine technology, facilitating more precise and effective

monitoring of oceanic conditions (Chen et al., 2022). USNs are

employed for oceanography, pollution detection, underwater

target detection, offshore exploration, and disaster prevention.

These networks utilize unmanned underwater vehicles (UUVs)

equipped with sensors specifically designed for underwater

environments (Sun and Boukerche, 2018; Zacchini et al., 2022).

The exchange of configuration, location, and motion information

among these devices is made possible through underwater wireless

acoustic networking. The UASN comprises diverse sensors and

vehicles collaborating to monitor tasks within a designated area

(Akyildiz et al., 2005). The next generation of USNs should have

key characteristics such as reliability, robustness, adaptability,

security, evaluability, efficiency, scalability, and intelligence, as
028
illustrated in Figure 1 (Luo et al., 2018). Remote sensing is

essential in these marine ecosystem procedures because it

enables the gathering of data from underwater regions that are

difficult to reach. The figure below depicts the fundamental

characteristics essential for the future iteration of USNs. These

characteristics guarantee that the USNs can operate efficiently and

dependably in submerged surroundings.

Underwater communications necessitate the continuous

monitoring of oceanic regions utilizing pre-existing technologies.

However, such monitoring can lead to data loss during an

interruption before recovery. To address this issue, it is

imperative to establish instantaneous communication between the

underwater instruments and the central control devices. This task is

achieved by creating a rudimentary underwater acoustic network,

which entails establishing a two-way acoustic connection between

various devices, including autonomous underwater vehicles

(AUVs) and sensors (Zhou et al., 2023). Remote sensing is

essential for supplementing these acoustic networks by offering

supplementary techniques for collecting data. This network is
FIGURE 1

Performance metrics of UWSNs.
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subsequently linked to a ground station, which can be connected to

a host system via radio frequency (RF) communications, such as the

Internet. Integrating the remote sensing data can augment the

flexibility of such systems. Unlike terrestrial wireless sensor

networks (WSNs), which trust radio waves for communication

purposes, USNs use acoustic waves, which places a new research

challenge in the scheme of MAC protocols. A comparison of

various technologies for underwater communication and remote

sensing is summarized in Table 1.

Underwater IoT (UIoT) applications utilize various network

layers, often defined by the open systems interconnection (OSI)

model and TCP/IP protocols. Remote sensing technologies can

enhance these applications by offering additional sources of data.

The data link layer uses a water channel for reliable transmission,

while the physical layer uses specialized underwater communication

technology. The OSI architecture uses a unique protocol

considering depth, distance, and energy efficiency for packet

routing (Luo et al., 2021). Remote sensing data can enhance and

refine these techniques. It also handles reliability issues at the

transport layer, improving latency and packet loss. The

application layer analyzes data from underwater sensor platforms

and devices to enable the implementation of IoT applications and

services (Jiang, 2018). The use of remote sensing at this layer

enables a more thorough analysis of data and the development of

applications. Figure 2 shows the data transmission between various

layers. The lower four layers of the OSI model comprise the main

functionalities required for reliable transfer, which are divided into

link and path levels. Link-level function objective is to lessen

transmission errors caused by interference, noise, and frame

collision between neighboring nodes. Path-level functions

endeavor to guarantee end-to-end consistent transfer via network

pathways, particularly by addressing packet losses.

AUVs utilized on underwater networks possess a promising

capability to enhance their operational reach by transmitting
Frontiers in Marine Science 039
control and data signals across extensive networks. AUVs and

remote sensing can increase this capability by adding data and

improving situational awareness. However, it should be noted that

the capacity of shallow water acoustic channels is constrained, and

numerous time-varying paths can result in significant symbol

interference, as well as notable dispersion and Doppler shifts. To

attain the necessary level of energy efficiency, underwater

networks necessitate a hierarchical architecture (Sozer et al.,

2000). Figure 3 shows the taxonomy of UASN and remote

sensing. Underwater wireless satellites, called UWSNs, are

crucial in coastal activities such as fish farm control, seabed

mining, and water monitoring. Various factors influence

underwater ecosystem instability, including temperature, lack of

sensing capability, pressure, noise, and water density fluctuations

(Abelson et al., 2020). Coping with several challenges, namely

transmission delays, high probability of bit errors, limited

bandwidth, and occasional loss of connectivity, poses significant

problems in this domain (Garcia et al., 2011; Lloret et al., 2011).

Moreover, RF signals are attenuated underwater, resulting in

lower data rates and lesson remote sensing at very low

frequencies. Alternatively, optical signals may not be useful due

to light scattering in the underwater remote sensing environment.

Acoustic modems fill a gap in existing technologies and must be

energy efficient and economical due to the limited energy

resources in the aquatic environment remote sensing. The

hardware required to transmit audio signals is inexpensive, but

transmission times are much slower than electromagnetic (EM)

modems, at about 1500 m/s (Frampton, 2006; Farr et al., 2010).

The UIoT and remote sensing haven’t received widespread

attention due to their recent discovery and lack of scientific

progress. Although 44% of the Earth’s people live 150 kilometers

or less from the ocean, 95% of the ocean’s surface remains

unexplored. Oceans cover 70% of the Earth’s surface and provide

habitat for nearly 500 million people. The development and use of
TABLE 1 Comparison of different technologies used for underwater communications and remote sensing.

Technology Working Frequency Modulation Distance (m) Data Rates (kbps)

EM Waves 2.4GHz CCK 0.16m 11Mbps

2.4GHz QPSK 0.17m 2Mbps

1KHz BPSK 2m 1Kbps

10KHz BPSK 16m 1Kbps

3KHz – 40m 100bps

5MHz – 90m 500Kbps

Acoustic Waves 800KHz BPSK 1m 80Kbps

70KHz ASK 70m 0.2Kbps

24KHz QPSK 2500m 30Kbps

12KHz MIMO-OFDM – 24.36Kbps

Optical Waves – PPM 1.8m 100Kbps

– – 10m 10Mbps

– – 11m 9.69Kbps
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underwater exploration in UIoT can have a significant impact on

people’s lives. Due to the advancement in remote sensing and

WSNs, the IoT has gained popularity for monitoring various

applications, including volcanic activity, forest fire detection, air

quality assessment, and home automation systems. However,

underwater applications face challenges like sensor deployment

and maintenance, energy acquisition, manufacturing costs,

sensing issues, and signal propagation issues. Advanced wireless

communication and sensing techniques are needed for underwater

applications, which can be achieved through three-dimensional (3D

space and algorithm placement). These networks offer

opportunities for systematic examination of the underwater
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environment, including climate change impacts, deep-sea habitat

research, sensing applications, coral reef population observations,

ecological observation, military applications, mine exploration,

water quality monitoring, disaster prevention systems,

aquaculture supervision, and oceanic data collection and

navigation (Sendra et al., 2015; Khan et al., 2023). Thus, UWSNs

present a promising solution for various applications of remote

sensing in the open sea. This work’s key objectives are as follows:
• To expedite the use of modern technology for the AUV

navigation and sensing system to enhance communication

and networking.
FIGURE 3

The taxonomy of underwater acoustics sensor networks (UASNs).
FIGURE 2

The data transmission between different layers (Zhou et al., 2023).
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• To collect and retrieve various parameters, such as water quality,

pressure, etc., that directly influence the behaviors of aquatic life

and the UIoT.

• Using feature engineering strategy to highlight the significant

characteristics of underwater things for efficient and effective

sensing and tracking operations.

• To design a multifaceted criteria importance through

intercriteria correlation (CRITIC)-based approach to prioritize

and assess the essential attributes of UIoT for efficient task

allocation and sensing in UIoT.

The rest of the article is organized as follows: Section II presents

the overall literature review in the domain of underwater things,

whereas Section III presents the methodology of the proposed

model. Moreover, Section IV illustrates the results and

discussions, while Section V concludes this work.
2 Literature review

Examining the extensive oceans, which cover two-thirds of the

Earth’s surface, requires UWSNs to understand this immense

expanse fully. Future projections suggest that the market for

AUVs is expected to grow substantially, with a compound annual

growth rate (CAGR) of USD 1.638 billion by 2025. This represents

a notable surge from the USD 638 million recorded in 2020.

The applications of AUVs can be commercial, oceanographic,

environmental, military, sensing, and more. Examples of

commercial activities are surveying, port monitoring, and

geophysical and archaeological research (Li et al., 2023; Wang

et al., 2023). Scientific/oceanographic missions require seabed

exploration, remote sensing, and water body exploration.

Environmentally significant applications include habitat

monitoring and water quality sampling. Anti-submarine warfare

and border security are examples of military/defense activities.

Shallow and medium water is the most typical deployments of

AUVs in coastal waters (Brasier et al., 2020; Duan et al., 2020).

Wireless charging in remote oceanic environments is expected to

drive steady growth in the foreseeable future. The AUV Repository

lists over 1,050 underwater platforms from over 350 universities,

including standard components like battery modules, propulsion

systems, sensing capacity, communication systems, navigation

systems, and collision avoidance systems (Tian et al., 2023).

However, the inertial navigation system’s long-term accuracy is

limited by accelerometer drift. To address this, ultra-short baseline

or long baseline transponder systems can be used, or simultaneous

localization and mapping (SLAM) can be employed (Cao et al.,

2021; Hoeher et al., 2021).

However, current networks are hardware-centric, rigid, and

need more resource-sharing capabilities. New models, such as

software-defined technologies, have emerged to improve UWSNs

by providing robustness, flexibility, adaptability, programmability,

resource sharing, and easy administration (Sun and Boukerche,

2018). These technologies include software-defined networking

(SDN), software-defined radio (SDR), network function

virtualization (NFV), cognitive acoustic radio (CAR), underwater

IoT sensing, and sensor clouds, turning network resources into
Frontiers in Marine Science 0511
software, improving resource efficiency and simplifying network

management. These technologies could transform traditional

UWSNs into next-generation, software-based, programmable,

customizable, and service-oriented networks.

Many challenges arise when deploying IoT devices and

networks in aquatic environments or underwater IoT for remote

sensing purposes. These include challenges related to signal

propagation and transmission in water, building and maintaining

robust underwater positioning and navigation systems, optimizing

energy efficiency for long-term operation, data processing and

retrieval in low-bandwidth environments, and manufacturing

waterproof and durable hardware (Arul et al., 2021; Wei et al.,

2021). The data rates and usual bandwidth for underwater channels

with different ranges are shown in Table 2 (Moradi et al., 2012). The

underwater environment is particularly harsh and corrosive,

making it difficult to build long-lasting sensors, secure networks,

and keep sensors working as intended. Addressing these issues is

crucial for the successful implementation of underwater IoT

applications, from environmental monitoring to underwater

robotics and exploration.

Autonomous underwater vehicles, or AUVs, are automated

submersible platforms capable of operating at a maximum depth

of three thousand meters. In 1957, the self-propelled underwater

research vehicle (SPURV) became the inaugural AUV (Yang et al.,

2021). Over the past six decades, AUV techniques have undergone

significant advancements, enabling them to perform sensing tasks

autonomously without human intervention (Bai et al., 2018). AUV

navigation systems play a vital role in their operation by allowing

computers and onboard sensors to govern and guide their

movements. However, navigation and remote sensing can be

exceedingly challenging due to the attenuation of GPS signals in

submerged scenarios. Promising technologies, including

cooperative navigation (CN) and SLAM, which can be swiftly

implemented and adjusted with minimal infrastructure, are being

proposed as potential solutions to this predicament. AUVs typically

use batteries, but lithium batteries are now widely used due to their

rechargeability and cost-effectiveness (Rymansaib et al., 2023).

AUVs can serve as sensing platforms for various sensors,

including echo sounders, underwater laser scanners, forward-

looking sonars, and conductivity temperature depth sensors.

Ocean engineers are investigating over-actuated and under-

actuated underwater vehicles. Over-actuated vehicles align with

trajectories using surge, sway, and heave actuators, while under-

actuated vehicles pitch and yaw. Tolerable thrust forces, damping
TABLE 2 Typical bandwidth and data rates for underwater channels with
different ranges.

Span Range
(km)

Data
rate (kbps)

Bandwidth
(KHz)

Short Range <1 km 20 kbps 20-50 KHz

Medium
Range

1-10 km 10 kbps 10 KHz

Long Range 10-100 km 1 kbps 2-5 KHz

Basin-Scale 3000 km 10 bps <1 KHz
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limits, and inertia effects limit these models’ attitude. Marine vehicles

are managed remotely by input, status, and output barriers. A

supplementary system and Doppler Indicator (DI) optimization are

applied to track a fully-actuated underwater vehicle (He et al., 2022).

In the event of a tracking error occurring within a confined area, the

vehicle simultaneously moves in both the rightward and forward

directions. Through simulations and experiments conducted under

three different scenarios, the efficiency of the proposed strategy has

been demonstrated with the tracking error confined to a narrow zone

(Cao et al., 2022). A novel open-water path planning strategy called

UP4O is designed for AUVs operating in challenging water

conditions (Yang et al., 2022). The strategy uses an environmental

encoder module to bind local obstacle data and combine it with

relative position, velocity, and ocean currents, resulting in continuous

operational decision-making using local dynamic information. The

system has a diverse state space with at least 26 actions, ensuring

motion accuracy and minimizing deviations from ocean current

vectors (Yan et al., 2014). Experimental results support UP4O’s

ability to accelerate convergence and provide smoother paths in

complex oceanic environments.

The domain of designing control systems for robotic arm

systems and underwater vehicles is explained. The main focus is on

themathematical analysis of singular perturbation theory.Twocontrol

rules were proposed: one that is more straightforward and partially

compensates for the sluggish subsystem and another that is a resilient

nonlinear control not influenced bymodel parameters. The stability of

both control rules is demonstrated using perturbation theory, and the

performance of the suggested controller in a closed-loop system can be

compared to that of a model-based correction (De Wit et al., 2000).

Marine robotics has revolutionized the use of remotely operated

underwater vehicles (ROVs) in science and industry, enabling

humans to perform tasks like moving objects across long distances.

The effectiveness of single- and multi-ROV systems depends on the

right tracking controller. Issues related to individual ROV tracking

include energy efficiency, Lyapunov-based model predictive control,

feedback and linearization techniques, adaptive algorithms,

proportional-derivative control, area tracking controllers, auto-

tracking controller adjustment, multivariate control techniques,

high-order adaptive sliding mode controllers, controllers based on

models (Yan et al., 2019). Following theDeepwaterHorizondisaster in

2010, public attention shifted to monitoring the subsurface sea

environment (Vasilijević et al., 2017). Remote sensing technologies

have proven effective for terrestrial disasters, but detecting and

measuring underwater pollution requires field methods (Hao et al.,

2022). A joint robotic system combining autonomous underwater and

unmanned autonomous surface vehicles is proposed to rapidly detect/

sense and quantify contaminants in the water column in situ. This

system enables real-time contamination readings while minimizing

human intervention and time commitments.

Autonomous underwater navigation relies on efficiency and

autonomy, with dead reckoning techniques relying on

proprioceptive data from compasses, Doppler Velocity Logs, and

Inertial Navigation Systems. However, positioning errors tend to

magnify over time, necessitating absolute georeferenced sources for

precise positioning. Time-of-flight (ToF) acoustic positioning

systems are the current method for correcting underwater
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positions and sensing (Li et al., 2018). As technology and

hydroacoustic communication standards for AUVs continue to

advance, CN may become a highly accurate method for locating

multiple underwater vehicles. CN allows a group of AUVs to

mutually estimate their current positions based on relative

distance, velocity, and acceleration (Lyu et al., 2022). Figure 4

illustrates the USN and AUV architecture. The surface

components like satellites, drones, ships, base stations, surface

sinks, and servers aid communication and data management.

AUVs communicate with stationary seabed sensors and other

underwater mobile nodes. The Surface and underwater

components communicate by two-way packet exchange and via

wireless signals, safeguarding effective data collecting and network

coordination in diverse underwater environments.

By utilizing ocean currents as control inputs during way-point

tracking missions, the power consumption of the engine is reduced.

The controller effectively considers multiple constraints, such as those

related to the workplace, the vehicle’s maximum speed, sensing

capacity, the saturation of control inputs, and the presence of rare

obstacles. The proposed technology accounts for all the vehicle

dynamics, including ocean currents, enabling optimal thrust

determination to minimize errors in waypoint tracking (Heshmati-

Alamdari et al., 2019). Utilizing the ocean currents for control inputs

during waypoint tracking missions reduces the power consumption

of the engine. Analytical guarantees for stability and convergence are

established for closed-loop systems. The presented work focuses on

utilizing AUVs to monitor underwater pipelines and gather data

from submarine networks (SNs) within the transmission range. This

collected data is transmitted to a surface borehole using acoustic

communication technology. This approach reduces power

consumption, and the need for costly data re-transmissions is

avoided. This architectural framework is well-suited for data

applications that can tolerate latency and provide flexibility in

implementing submarine networks. Various algorithms for AUV

motion and remote sensing are put forth, and an investigation is

conducted to determine the impact of the system on network

performance. Furthermore, the system can be optimized by

considering design parameters, such as SN density, distance,

network reliability, medium access control (MAC), communication

channel conditions, security measures, and quality of service (QoS)

requirements (Jawhar et al., 2018).

Despite development in AUVs and underwater wireless sensor

networks (UWSNs), there are still several limitations. The existing

hardware-focused networks cannot exchange resources or familiarize

themselves with software-defined solutions. Accelerometer drift

disturbs navigation system accuracy, necessitating further research.

Due to energy efficiency, localization, sensing, and navigation system

resilience issues in demanding underwater environments, IoT device

installation and conservation must be enhanced. Current challenges

include creating long-lasting, water-resistant sensors and efficient

data processing in low-network settings. Novel control and path

planning systems like UP4O must also be authenticated in complex

marine surroundings. The existing problems must be addressed to

increase the performance, reliability, and expandability of AUVs and

UWSNs. This will enable future advanced, flexible, and effective

marine systems.
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3 Methodology

Multi-criteria optimization is crucial for selecting the most

efficient UIoT for underwater task assignment and sensing (Song,

2020; Fang et al., 2021). These devices must be chosen based on

energy efficiency, communication range, remote sensing capacity,

data transmission capability, durability, and adaptability to

dynamic oceanic environments. The effectiveness of IoT devices

depends on the specific objectives of underwater operations, such as

accurate data collection in oceanography and robust and durable

devices for marine remote sensing infrastructure repair work.

Multi-criteria optimization helps decision-makers select IoT

devices that align with operational goals and requirements. It also

addresses trade-offs between features like energy efficiency and data

transmission capabilities, ensuring the efficiency and effectiveness of

IoT deployments tailored to specific underwater sensing

applications. The optimal selection of vehicles based on multi-

criteria is shown in Figure 5. Starting with the UIoT, digital library

articles are assessed. These articles undergo feature engineering to

extract relevant features. The selected features are evaluated for

sufficiency. After recognizing significant attributes, ideal vehicles

are selected using multi-criteria evaluation.
3.1 Feature engineering

An important and challenging aspect of the UIoT is to identify

the unique characteristics of the underwater sensing environment
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through an in-depth review of previous research (Zhu et al., 2023).

These characteristics include energy efficiency, water pressure,
FIGURE 4

Remote sensing communication and navigation in deep-sea environment.
FIGURE 5

Optimal selection of vehicles based on multi-criteria.
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contact closure, resistance to corrosion, salinity, sensing issues, and

temperature. Understanding and specifying these characteristics is

important for effectively deploying IoT devices in an oceanic

environment, as they directly affect network performance and

reliability. Functional engineering is essential for optimizing IoT

devices for specific underwater tasks such as oceanography, where

data accuracy is critical, or maritime/oceanic infrastructure

maintenance, where reliability and durability are priorities. As

feature development is versatile, IoT devices may be customized

to meet specific remote sensing needs. Functional engineering also

promotes using and integrating cutting-edge scientific innovations

and findings.

Engineers and researchers may uncover new possibilities and

chances that extend the remote sensing potential of IoT devices by

evaluating relevant literature and considering the latest developments.

In addition to revolutionizing IoT technology, this iterative approach

to feature developmentwill produce creative solutions for applications

emerging in underwater or oceanic environments. Feature engineering

is essential to underwater IoT, enabling decision-makers to select,

modify, and design IoT devices tailored to underwater remote sensing

applications’ needs and objectives. The UIoT is a network of

submerged devices and systems that enable efficient communication,

cooperation, and data transmission. These resilient and adaptable

systems allow aquatic systems to withstand environmental pressures

and recover fromdisturbances. Theirflexibility allows themtorespond

to dynamic changes and gather oceanic research and exploration data.

Interoperability and integration are significant in the IoT,

fostering collaboration and data exchange between devices. The

dependability and efficiency of underwater technologies ensure

consistent service provision, while their durability ensures

functionality over time. Tolerance mechanisms and collision

avoidance ensure secure sensing, navigation, and operations. Both

bound and unbound deployment options allow flexibility in

deployment. The visibility of the IoT enables real-time

monitoring and visualization of underwater conditions,

facilitating data analysis and seabed mapping for scientific

research and exploration. These capabilities enable multitasking,

responsiveness, and controllable sub-sea systems that provide

essential services and data analytics, revolutionizing the way we

explore and comprehend the vast depths of the ocean. The various

key characteristics of underwater vehicles are illustrated in Figure 6.
3.2 Decision making

Ocean engineering is a rapidly developing field that relies on

decision-making to guide undersea technologies. Researchers,

producers, and institutions are constantly improving underwater

vehicles to sense, navigate, and explore deep oceans (Rolland et al.,

2023). These vehicles are designed for security, resource

exploitation, remote sensing, ecological protection, and scientific

investigation. Their creation ensures wise choices for the submerged

environment, preserving marine ecosystems for future generations

and allowing exploration of mysterious deep-sea enclaves (Borja

et al., 2020). The ultimate goal is to provide creative and effective

solutions for the vast, unexplored oceans.
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3.3 Feature selection

The UIoT faces challenges in identifying unique underwater

characteristics like power usage efficiency, water pressure, sensing

issues, contact closure, corrosion resistance, salinity, and temperature

(Khalil et al., 2020). These factors directly impact the remote sensing

network’s performance and reliability. Functional engineering

promotes the use of state-of-the-art scientific discoveries and

innovations, allowing engineers and researchers to assess the

literature and consider recent advancements to uncover novel

attributes and capabilities. This iterative approach revolutionizes

IoT technology and provides innovative solutions for underwater/

oceanic applications. Functional design is at the core of the UIoT,

enabling decision-makers to choose, tailor, and design IoT devices to

meet underwater remote sensing application requirements.
3.4 Multi-criterial decision making in UIoT

The Internet of vehicles (IoV) presents a challenge for

policymakers and stakeholders in selecting optimal vehicle

solutions to improve operations and productivity. Multi-criteria

decision-making (MCDM) methodologies, such as the analytical

hierarchy process (AHP) and Technique for Order of Preference by

Similarity to Ideal Solution (TOPSIS), help assess and prioritize

vehicles across various dimensions, including fuel effectiveness,

connectivity, environmental impact, safety attributes, and cost

efficiency. These approaches provide a structured framework for

informed choices, enabling stakeholders to navigate various

alternatives, ultimately leading to efficiency, sustainability, and

innovation in the transformative sector.

The UIoT aims to revolutionize underwater activities by

combining interconnectivity, data sharing, and real-time

monitoring. It enhances operational efficiency and predictability

by enabling effective task control, route tracking, sensing, and

location determination. UIoT’s manoeuvrability, adaptability,

multitasking, resource management, continuous integration, and

efficient telemetry further enhance operational capabilities. It also

provides durability, protection, safety, and resilience, promoting

real-time monitoring and accountability in harsh environments.

The responsiveness of IoT systems supports their reliability and

interoperability, enabling seamless functioning and interaction.

These capabilities can potentially revolutionize underwater

remote sensing operations and usher in a new era of subsurface

exploration and data collection. The overall methodology of this

study is represented in Section 4, and the characteristics that are

collected by properly analyzing existing approaches are presented

in Table 3.
4 Results and discussions

The detailed methodology and the evaluation results of the

proposed approach are presented in the below subsections.
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4.1 CRITIC approach

A technique utilized in MCDM to help with complex selection

procedures where multiple factors require evaluation is called the

CRITIC choice-making strategy. It works especially well when

assessing and ranking choices or alternatives in situations where

there is a lot of ambiguity and mutual dependence. Rather than

considering each decision criterion separately, CRITIC focuses on

their interrelatedness. Adapting to complicated and evolving

decision situations, reducing subjectivity in weight distribution,

and understanding hidden linkages between factors are only a few

advantages of the CRITIC technique. It provides an organized and

systematic manner to rank and incorporate multiple factors during

the selection process, making it an extremely valuable tool across a

wide range of industries, including sustainability management,

engineering, finance, and healthcare. When everything is said and

done, the CRITIC choice-making strategy offers a solid and

methodical way to handle complicated problems that need a

careful examination of criteria connections. These steps involved

in the mechanism of the CRITIC calculation are portrayed

in Figure 7.
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The CRITIC technique assesses every criterion’s significance by

considering its relationships to other factors in addition to subjective

perceptions. This implies that the method considers the possible

consequences of altering one of the factors on others, resulting in a

more accurate and comprehensive depiction of the decision problem.

Decision-makers estimate every criterion’s relative importance to all

other factors by comparing them pairwise, creating an inter-criteria

correlation matrix. After that, the ultimate weights for the criteria are

obtained by subjecting this matrix to a number of mathematical

operations, many of which include dynamic investigation.

Furthermore, all the chosen factors in the proposed work are

beneficial. The chosen factors impact the alternatives more, which we

can find after determining their weightage. The weights were assigned

to every criterion based on their importance, according to expert

opinion, using a scale ranging from one (1) to nine (9). The one value

illustrates the equal significance of one factor over another. In contrast,

the ninevalues state the extreme significanceof one factorover another

while comparing them against each other using the CRITIC approach.

A 7 * 7matrix has been constructed using Equation 1, and weights are

distributed among criteria as per expert opinion. These factors have

been properly comprehensively compared against each other to
FIGURE 6

Various key characteristics of underwater vehicles.
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determine the precise weightage of each criterion and determine their

significance and impacts on the required alternatives. The evaluation

matrix has been designed for eight alternatives based on specific

factors. The maximum and minimum values have also been
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determined from every column, which states that every maximum

value is the highest and theminimum is the lowest due to the beneficial

nature of all the criteria. The alternatives have been set in rows, while

the criteria have been set in columns, as depicted in Table 4.
FIGURE 7

Representation of various (CRITIC approach) steps for underwater Things.
TABLE 3 Multi-criteria-based optimal feature selection of underwater vehicles.

Alternatives
Criteria

C1 C2 C3 C4 C5 C 6 C7

Meth 1 Communication Connectivity Endurance Sharing Collaboration Transmission Propagation

Meth 2
Tasks
Management

Path Monitoring Surveillance
Real-
time Monitoring

Predictability Sensing Data Collection

Meth 3 Positioning Navigation Localization Positioning Tracking Detection Tethered

Meth 4 Oceanography Exploration Virtualization Seafloor mapping Sampling Visibility Deployment

Meth 5 Service Provision Forecasting Multi-tasking
Resource
Management

Integration Telemetry Controllability

Meth 6 Robustness Protection Resilience Security Tolerance Durability Shielding

Meth 7
Real-
time Operation

Accountability Responsiveness Storage Processing Reliability Interoperability

Meth 8 Adaptiveness Recovery Resistance
Collision
Avoidance

Elasticity Rejuvenation Upgradation
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Here, the original matrix has been normalized through the

utilization of Equation 2, as given below;

�Xij =
Xij −min (Xij)

max (Xij) −min (Xij)
(2)

Where, �Xij indicates the normalized outputs, and it is essential

to realize that normalization does not account for the kind

of criterion.

The constructed matrix has been undergone to normalize

original values by utilizing Equation 2 to reduce subjectivity and

remove errors. The outcomes obtained from the entire calculation

of the normalization process are listed in Table 5.

Equation 3 has been applied to the normalized matrix to obtain

the standard deviation outputs. The entire calculation and obtained

outputs are listed in Table 6.

Standard Deviation (sj) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(ci − c)2

n − 1

r
(3)

Figure 8 plots the calculated standard deviation values for every

criterion. The correlation coefficient outputs have been obtained by

comparing two pairs of criteria in the normalized matrix. The

required values of the correlation coefficient between pairs of

criteria have been identified, as listed in Table 7 and Figure 9.

rjk = om
i=1(rij −  ѓj)(rik −  ѓk) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(om
i=1(rij −  ѓj)2  om

i=1(rik −  ѓk)2
q

 
(4)
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The required values have been achieved through the use of

Equation 5. Every correlation coefficient value mentioned above has

been subtracted from one, and then these values are added in a row-

wise manner to get the required values according to the equation.

The calculated outputs of the measure of conflict are outlined in

Table 8.

Measure of conflict = (on
j0=1(1 − r0jj)) (5)

The calculated outcomes, known as the measure of conflict of

every criterion, are plotted in Figure 10. The required outputs,

known as the quantity of information, have been achieved through

the application of (Equation 6). These values are obtained by

multiplying the measure of conflict outputs with the standard

deviation scores as per the quantity of information formula. The

calculated outcomes of the quantity of information are listed in

Table 9.

Quality of information (Cj) = s j � on
j 0=1(1 − rjj

0)
� �

(6)

The calculated scores of the quantity of information have been

plotted in Figure 11, which improves visibility and understanding of

the calculated outcomes.

According to Equation 7, every single value of the quantity of

information has been divided by the total of the values of the

quantity of information in order to get the required weights of every

criterion to determine the relative importance of the factors and

identify their effects on the numerous essential alternatives. The

calculated weightage of each criterion in the study is displayed in

Table 10.

Criteria weights (Wj)=
Cj 

 on
j=1Cj

(7)

The weightage of each criterion calculated by the CRITIC

procedure is plotted in graphical form, as shown in Figure 12 to

increase the readability and clarity for the user to easily understand

the relative importance of numerous essential criteria chosen and

evaluated in the study. A criterion with the highest weight indicates

a greater significance and high effect on the chosen alternatives, as

followed by the remaining criteria in a sequence.

The CRITIC technique will prioritize the primary

characteristics of submersible vehicles, enabling decision-makers

to optimize vessel deployment. The appropriate vehicles will be

selected, and tasks will be assigned to them, leading to higher

success rates, enhanced security measures, efficient resource

allocation, and improved underwater operations accuracy. The

technique is valuable for investigating subsea technologies and

enhancing vessel deployment in the undersea IoT.

Comparing the proposed work with previous systems shows

notable differences in important performance measures, such as the

distribution of trust values, the time it takes for data to go from one

end to another, the lifespan of individual nodes, and the time it

takes for the system to reach a stable state, see Table 11. The

proposed technique showcases the most minimal end-to-end

latency of 50 ms, suggesting very efficient data transfer, whereas

the other alternatives display the highest delay of 65 ms. The
TABLE 4 Evaluation matrix.

Criteria C1 C2 C3 C4 C5 C6 C7

Alternatives

Meth 1 3 7 2 5 6 8 4

Meth 2 9 4 6 2 8 3 5

Meth 3 2 5 3 7 4 6 3

Meth 4 5 2 7 3 9 4 6

Meth 5 7 6 2 4 5 2 4

Meth 6 4 3 5 6 2 7 5

Meth 7 6 4 8 2 3 5 2

Meth 8 8 2 4 3 7 6 3

MAX 9 7 8 7 9 8 6

MIN 2 2 2 2 2 2 2
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proposed work exhibits the highest trust value distribution (0.95),

indicating a greater level of reliability among network nodes. In

contrast, the other approach demonstrates the lowest trust value

distribution (0.85), implying inferior trust management. The

suggested work has the greatest node lifespan, lasting for 200
Frontiers in Marine Science 1218
hours, compared to the other job with a shorter node lifetime of

175 hours. This emphasizes the energy efficiency of the proposed

work. In addition, the suggested work demonstrates the fastest

convergence time of 30 seconds, which indicates a rapid

stabilization of the network. In contrast, the comparison work has
FIGURE 8

Standard deviation outputs.
TABLE 5 Normalized matrix.

C1 C2 C3 C4 C5 C6 C7

Meth 1 0.142857143 1 0 0.600 0.571 1 0.500

Meth 2 1 0.4 0.66666667 0 0.857 0.16666667 0.75

Meth 3 0.000 0.600 0.16666667 1 0.28571429 0.667 0.250

Meth 4 0.428571429 0.000 0.83333333 0.2 1 0.333 1.000

Meth 5 0.714 0.800 0 0.400 0.429 0.000 0.5

Meth 6 0.286 0.200 0.5 0.800 0.000 0.833 0.750

Meth 7 0.571428571 0.400 1 0 0.143 0.500 0.000

Meth 8 0.857142857 0 0.33333333 0.200 0.714 0.667 0.250
TABLE 6 Calculation of standard deviation.

C1 C2 C3 C4 C5 C6 C7

Meth 1 0.142857143 1 0 0.600 0.571 1 0.500

Meth 2 1 0.4 0.66666667 0 0.857 0.16666667 0.75

Meth 3 0.000 0.600 0.16666667 1 0.28571429 0.667 0.250

Meth 4 0.428571429 0.000 0.83333333 0.2 1 0.333 1.000

Meth 5 0.714 0.800 0 0.400 0.429 0.000 0.5

Meth 6 0.286 0.200 0.5 0.800 0.000 0.833 0.750

Meth 7 0.571428571 0.400 1 0 0.143 0.500 0.000

Meth 8 0.857142857 0 0.33333333 0.200 0.714 0.667 0.250

Std deviation 0.350 0.362 0.377 0.370 0.350 0.339 0.327
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FIGURE 9

Correlation coefficients.
TABLE 7 Calculation of correlation coefficient between criteria.

Criteria C1 C2 C3 C4 C5 C6 C7

Criteria

C1 1.000 -0.339 0.296 -0.819 0.429 -0.646 0.045

C2 -0.339 1.000 -0.650 0.341 -0.242 0.073 -0.241

C3 0.296 -0.650 1.000 -0.613 0.090 -0.206 0.096

C4 -0.819 0.341 -0.613 1.000 -0.504 0.532 0.000

C5 0.429 -0.242 0.090 -0.504 1.000 -0.359 0.490

C6 -0.646 0.073 -0.206 0.532 -0.359 1.000 -0.215

C7 0.045 -0.241 0.096 0.000 0.490 -0.215 1.000
F
rontiers in Marine S
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TABLE 8 Calculation of measure of conflict.

C1 C2 C3 C4 C5 C6 C7 Measure
of Conflict

C1 0.000 1.339 0.70373712 1.81892302 0.57142857 1.64609574 0.95545646 7.034

C2 1.339 0 1.650 0.65856832 1.24196696 0.92704422 1.24142866 7.058

C3 0.70373712 1.650159294 0 1.61343836 0.90983304 1.2058396 0.90360746 6.987

C4 1.818923025 0.65856832 1.61343836 0 1.50395263 0.46818398 1 7.063

C5 0.571428571 1.241966959 0.90983304 1.50395263 0 1.35894208 0.51002106 6.096

C6 1.646095738 0.927044217 1.2058396 0.46818398 1.35894208 0 1.21488612 6.821

C7 0.95545646 1.241428656 0.90360746 1 0.51002106 1.21488612 0 5.825
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FIGURE 10

Measure of conflict outcomes.
TABLE 9 Calculation of quantity of information.

Standard Deviation Measure of Conflict Quantity of Information (Cj)

C1 0.350 7.034 2.462

C2 0.362 7.058 2.552

C3 0.377 6.987 2.636

C4 0.370 × 7.063 2.616

C5 0.350 6.096 2.133

C6 0.339 6.821 2.309

C7 0.327 5.825 1.907
F
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FIGURE 11

Quantity of information values.
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the slowest convergence time of 37 seconds, highlighting the

superior performance of the proposed work. The data

demonstrates that the suggested methodology surpasses other

methods in all measurable dimensions, emphasizing reducing

delay and maximizing trust, node lifetime, and speedy convergence.
Frontiers in Marine Science 1521
5 Conclusion

The impact of 5G and 6G communication networks on underwater

technology drives rapid growth in the IoT market. As a result,

underwater automobiles, vessels, tracking devices, and surveillance

devices, such as s, environmental sensitivity observation equipment

and advanced aquatic study instruments, have emerged. These

technologies have the potential to transform our understanding of the

underwater oceanic environment and contribute to the long-term

management of ocean resources. The Internet of underwater vehicles

is an exciting breakthrough in the IoT area that is transforming sub-

aquatic operations and communications. It has energy-efficient

communication modules, quick data processing, flexible sensors,

remote sensing capability, and better mobility. The Internet of

underwater vehicles enhances sub-aquatic vehicle communication

capabilities while also accelerating job completion, resulting in a more

productive, automatic, and adaptive sub-aquatic network. These

advancements in technology bring up new avenues for subaquatic

applications, environmental surveillance, and marine exploration. In

this study, the CRITIC technique is proposed to examine and evaluate

appropriate UIoT characteristics such as localization, sensing,
TABLE 10 Calculation of weights.

Quantity
of Information

Weights Weights in
Percent (%)

C1 2.462 0.148 14.82%

C2 2.552 0.154 15.36%

C3 2.636 0.159 15.87%

C4 2.616 0.157 15.74%

C5 2.133 0.128 12.84%

C6 2.309 0.139 13.90%

C7 1.907 0.115 11.48%

Sum 16.614 1.000 100%
FIGURE 12

Illustration of criteria weights.
TABLE 11 Comparison with other approaches.

Work End-to-End Delay (ms) Trust Value Distribution Node Lifetime (hrs) Convergence Time (s)

(Jawhar et al., 2018) 62 0.89 195 36

(Song, 2020) 57 0.86 178 34

(Li et al., 2018) 60 0.90 190 32

(Lyu et al., 2022) 65 0.85 175 37

(Jahanbakht et al., 2021) 55 0.88 180 35

(Heshmati-Alamdari
et al., 2019)

58 0.87 185 33

Proposed 50 0.95 200 30
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positioning security, privacy, resource allocation, and optimization.

These multi-characteristics will assist decision-makers in assessing

correlations and interdependencies between various characteristics,

which is critical for effective and well-informed decision-making in

dynamic UIoT environments and for modifying Vehicles with multi-

features to achieve specificobjectives inunderseaoperations.Developing

an integrated approach to submerged technology, ensuring the

effectiveness and safety of underwater remote sensing systems, and

developing energy-saving solutions to increase the lifespan of

underwater vehicles are various domains that need further research

and exploration to achieve the objectives of ocean andmarine engineers.
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Development of VIIRS-OLCI
chlorophyll-a product for the
coastal estuaries
Alexander Gilerson1*, Mateusz Malinowski1, Jacopo Agagliate1,
Eder Herrera-Estrella1, Maria Tzortziou2,
Michelle C. Tomlinson3, Andrew Meredith4, Richard P. Stumpf3,
Michael Ondrusek5, Lide Jiang5,6 and Menghua Wang5

1Optical Remote Sensing Laboratory, The City College of New York, CUNY, New York,
NY, United States, 2The City College of New York, CUNY, New York, NY, United States, 3National
Centers for Coastal Ocean Science, NOAA, Silver Spring, MD, United States, 4Consolidated Safety
Services, Inc., Fairfax, VA, United States, 5NOAA NESDIS Center for Satellite Applications and Research,
College Park, MD, United States, 6CIRA at Colorado State University, Fort Collins, CO, United States
Coastal waters require monitoring of chlorophyll-a concentration (Chl-a) in a

wide range of Chl-a from a fewmg/m3 to hundreds of mg/m3, which is of interest

to the fisheries industry, evaluation of climate change effects, ecological

modeling and detection of Harmful Algal Blooms (HABs). Monitoring can be

carried out from the Visible Infrared Imaging Radiometer Suite (VIIRS) and Ocean

and Land Colour Instrument (OLCI) Ocean Color (OC) satellite sensors, which are

currently on orbit and are expected to be the main operational OC sensors at

least for the next decade. A Neural Network (NN) algorithm, which uses VIIRS

M3-M5 reflectance bands and an I1 imaging band, was developed to estimate

Chl-a in the Chesapeake Bay, for the whole range of Chl-a from clear waters in

the Lower Bay to extreme bloom conditions in the Upper Bay and the Potomac

River, where Chl-a can be used for bloom detection. The NN algorithm

demonstrated a significant improvement in the Chl-a retrieval capabilities in

comparison with other algorithms, which utilize only reflectance bands. OLCI

NIR/red 709/665 nm bands red edge 2010 algorithm denoted as RE10 was also

explored with several atmospheric corrections from EUMETSAT, NOAA and

NASA. Good consistency between the two types of algorithms is shown for the

bloom conditions and the whole range of waters in the Chesapeake Bay (with

RE10 switch to OC4 for lower Chl-a) and these algorithms are recommended for

the combined VIIRS-OLCI product for the estimation of Chl-a and bloom

monitoring. The algorithms were expanded to the waters in Long Island Sound,

demonstrating good performance.
KEYWORDS

chlorophyll-a concentration, coastal waters, neural network, VIIRS, OLCI
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1 Introduction

In estuaries and adjacent coastal waters, algal blooms are both a

key water quality indicator and a potential hazard (Tango and Batiuk,

2016; Karlson et al., 2021). High biomass blooms have implications

for reducing water clarity and are indicators of eutrophication in

coastal systems (Bricker et al., 2008; Le et al., 2013). Reduced water

clarity and depleted oxygen in bottom waters can have deleterious

effects on essential fish habitats such as submerged aquatic vegetation

in estuaries, leading to a shift from benthic to pelagic-dominated

system productivity (Bricker et al., 2008). Harmful Algal Blooms

(HABs), pertaining to a class of phytoplankton that often contain

toxins, occur in various coastal areas and have a strong impact on

fisheries, tourism, and recreation industries, requiring improved

monitoring of HABs by environmental and health programs. HABs

are often difficult to locate through routine monitoring programs

because of their patchiness, physical circulation of the water, and

vertical migration of algal particles. As a first approximation,

typically, the concentration of chlorophyll-a (Chl-a) is considered

as a proxy for the strength of the algal bloom, while bloom effects can

vary depending on the type of algal species (IOCCG, 2021). Satellites

can support the monitoring of HABs if they provide frequent

coverage and retrieve Chl-a over a wide range of concentrations.

Improved temporal resolution, which could be provided by using

remote sensing products from multiple satellite sensors, can improve

efforts of monitoring and forecasting HABs in coastal and estuarine

waters. Data should come from multiple ocean color sensors to

improve coverage during periods of cloud cover or sun glint (a

problem especially in spring and summer), and to provide multiple

views of blooms within a day.

Ocean color algorithms are based on remote sensing reflectance,

Rrs spectra with Chl-a dominating Rrs spectra in the blue in clear

waters. These algorithms often fail in optically complex coastal and

estuarine waters where HABs occur, due to the high absorption of

colored dissolved organic matter (CDOM) and scattering from

sediments. Therefore, it is important to develop Chl-a algorithms

that are minimally influenced by CDOM and/or high sediment

concentrations. Efforts have been made to improve Chl-a retrievals

from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors

operated by National Oceanic and Atmospheric Administration

(NOAA) and from Sentinel-3 Ocean and Land Colour Instrument

(OLCI) sensors processed by NOAA in collaboration with the

European Organization for the Exploitation of Meteorological

Satellites (EUMETSAT) (Wang and Son, 2016; Mikelsons and

Wang, 2019; Liu and Wang, 2022; Mikelsons et al., 2022; Wynne

et al., 2022). Currently, there are three VIIRS sensors (on the SNPP,

NOAA-20 and NOAA-21 platforms) and two OLCI sensors on the

Sentinel-3A and 3B in space with 750 m and 300 m spatial resolution

(at nadir), respectively. With additional launches of VIIRS planned,

these two groups of sensors are expected to provide reliable and stable

multi-spectral Ocean Color (OC) data for the next decade and

beyond. The NASA Phytoplankton, Aerosol, Cloud, ocean

Ecosystem (PACE) mission (Werdell et al., 2019), which was

successfully launched in February 2024, has a main hyperspectral

Ocean Color Instrument (OCI), but with a relatively coarse spatial

resolution of 1.0 km (at nadir), which is not often sufficient for many
Frontiers in Marine Science 0225
coastal areas. The availability of consistent data in a wide range of

Chl-a, with appropriate temporal resolution, will expand the number

of applications and agencies, which utilize remote sensing data to

complement the field data they use for decision-making regarding

HABs. While the definition of HABs can be different for different

water bodies, for this work we only consider high biomass blooms

with Chl-a above 25-30 mg/m3, which require the attention of coastal

managers. This does not imply anything related to toxicity or

deleterious effects to wildlife or public health and relies on in situ

sampling to determine phytoplankton species.

Large uncertainties in remote sensing reflectance (Rrs) retrieval

in blue bands remain a major problem for OC satellite sensors in

coastal areas because of difficulties in atmospheric correction and

low Rrs at this part of the spectrum (Ransibrahmanakul and Stumpf,

2006; IOCCG, 2019). In addition, due to the inability to see through

clouds with OC sensors, daily imagery from current satellite sensors

may be obscured. When monitoring blooms in coastal areas the

combination of insufficient atmospheric correction in coastal and

estuarine waters, and missing imagery due to clouds and sun glint,

can often hinder the use of satellites in monitoring and forecasting

efforts. Large uncertainties make an estimation of Chl-a

concentration unreliable using standard OCx algorithms, which

include the 443 nm band. A Neural Network (NN) Chl-a algorithm

(Ioannou et al., 2014), which avoids blue bands at 412 and 443 nm

for VIIRS demonstrated good performance in variable water areas

(El-Habashi et al., 2016, 2017, 2019). Specifically, based on field

measurements and matchups with satellite data, it has been shown

that the NN Chl-a algorithm is valuable for the detection of Karenia

brevis (KB) algal blooms near the West Florida coast (El-Habashi

et al., 2016, 2017). The algorithm performs similarly to the standard

OCx algorithms in the open ocean and coastal waters for Chl-a < 10

mg/m3 (El-Habashi et al., 2019), but usually cannot detect

accurately for Chl-a > 10-15 mg/m3. A near-infrared (NIR)/red

Chl-a algorithm applied to the bands available on MEdium

Resolution Imaging Spectrometer (MERIS) and OLCI sensors

performs well at Chl-a > 5 mg/m3 in the field (Stumpf and Tyler,

1988; Gitelson, 1992; Moses et al., 2009; Gilerson et al., 2010; Smith

et al., 2018; Neil et al., 2020). Unfortunately, applying the NIR/red

algorithm to VIIRS is impossible, since it lacks a 709 nm band. A

special AC has been developed by the NOAA’s National Centers for

Coastal Ocean Science (NCCOS) group for OLCI and has been

applied to top-of-atmosphere reflectance corrected for molecular

scattering (Wynne et al., 2018). Thus, an accurate estimation of high

Chl-a values remains elusive from VIIRS and even from other

multi-spectral sensors with a richer set of bands.

In addition to M1-M5 bands in the visible, VIIRS sensors have

an imaging band I1 which integrates radiances from 600 to 680 nm,

centered around 640 nm with an almost rectangular spectral

transmission function. Utilization of this band on VIIRS opens

additional possibilities. This 640 nm band covers Rrs features related

to the increase of specific phytoplankton absorption from small

values at 600 nm to high at 675 nm and thus can be sensitive to high

Chl-a. This band as 638_ag (aggregated to 750 m spatial resolution

as all M reflective bands) on SNPP VIIRS and as 642_ag on NOAA-

20 was added to the images using the Multi-Sensor Level-1 to Level-

2 (MSL12) data processing system (Wang and Jiang, 2018)
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and distributedthrough the NOAA CoastWatch (https://

coastwatch.noaa.gov/).

NN and Machine learning algorithms are based on the training

of large datasets of synthetic, field, or satellite data and have recently

been developed to estimate Chl-a and other water parameters on the

global and regional scales (Hieronymi et al., 2017; Pahlevan et al.,

2020; Liu and Wang, 2022; Werther et al., 2022; Cao et al., 2024).

Their performance also depends on the applied atmospheric

correction (Hieronymi et al., 2017).

The Chesapeake Bay and Long Island Sound (LIS) are large US

estuaries on the US East Coast, where Chl-a needs to be monitored

synoptically due to the often-occurring algal blooms and hypoxia

events (Aurin et al., 2010; Wolny et al., 2020; Wynne et al., 2022).

They are highly variable environments. Algal blooms are patchy and

small-scale changes in Chl-a occur rapidly, making synoptic

measurements essential to resolve phytoplankton biomass

(Anderson and Taylor, 2001; Harding et al., 2005). While well-

established monitoring programs, such as the Chesapeake Bay

Program, Save the Sound, and state-lead monitoring provide

routine monthly sampling at select stations, daily synoptic satellite

Chl-a covering the entire estuary provide a better estimate of biomass

and capture transient blooms, often missed by routine sampling.

Multiple studies characterized well water optical properties in

these estuaries from field measurements and satellite observations

(Stumpf and Pennock, 1989; Magnuson et al., 2004; Tzortziou et al.,

2006; Aurin et al., 2010; Shi and Wang, 2013; Zheng et al., 2015;

Turner et al., 2022; Menendez and Tzortziou, 2024), atmospheric

correction algorithms have been assessed (Windle et al., 2022;

Sherman et al., 2023; Cao and Tzortziou, 2024) and algorithms

for the retrieval of Chl-a were developed (Gitelson et al., 2007; Le

et al., 2013; Freitas and Dierssen, 2019; Sherman et al., 2023) for the

specific sensors in these waters beyond standard OC3 and OC4

algorithms (O'Reilly et al., 1998, 2019).

The goal of this work is to extend the previously developed

VIIRS NN-Chl-a algorithm for higher Chl-a by including the I1

imaging band data (600-680 nm) on VIIRS, investigate different

processing schemes for the optimal use of the NIR/red (red edge)

algorithm (Gilerson et al., 2010) on OLCI and develop a field

validated combined OLCI-VIIRS products to improve detection

and surveillance of algal blooms in complex estuarine waters such as

the Chesapeake Bay and Long Island Sound. A more reliable

estimation of Chl-a over the range seen along the U.S. East Coast

is expected to enhance satellite coverage to improve ecological

models, fisheries applications, and provide early and reliable

detection of various blooms to support coastal managers in aiding

aquaculture activities and protecting public health.

OLCI passes the US East Coast around 10 am EST and VIIRS

around 1:30 pm EST. Data from several sensors increase coverage,

however, the benefits are beyond simple statistics because bloom

conditions can change in several hours with changes in tide

conditions and biological processes. Multiple observations per day

were the main incentive for the launch of GOCI sensors, and the

development of geostationary GLIMR and Geo-XO sensors

(Schaeffer et al., 2023). The product described in this paper

creates a capability that would allow an approximation of the

multi-scene capability offered by the geostationary satellites.
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In Section 2, the bio-optical model is discussed, which is used

for the generation of a large dataset for NN training and testing,

different NN approaches are evaluated, and the development of the

NN Chl-a algorithm for VIIRS based on M3-M5 reflectance bands

and I1 imaging band is described. In Section 3, validation of the NN

algorithm on field and satellite data is provided together with the

comparison of VIIRS NN and OLCI RE10 algorithms for a broad

range of conditions with different OLCI atmospheric correction

processing schemes, and expansion of the NN-OLCI product to LIS,

validation on field data. A discussion and conclusions are in

Section 4.
2 Materials and methods

2.1 Field data

Field data, which were used in bio-optical modeling,

comparisons of modeled and field Chl-a and other parameters,

included data from several Chesapeake Bay cruises. A very

comprehensive dataset was acquired by the CCNY-NOAA group

in August 2013 at 43 stations, which included Chl-a, inherent

optical properties (IOPs) and reflectance spectra. Attenuation and

absorption of water and CDOM spectra were measured by the ac-s

instrument; backscattering at 5 wavelengths was measured by the

bb-9 instrument, both included in the WETLABS (Philomath, OR)

package. At each station, upwelling radiance Lu(l,0-) was measured

using a fiber bundle placed just beneath the water surface and

connected to a GER spectroradiometer (SpectraVista, NY). The

downwelling radiance above the surface Ld(l,0+) was measured by

pointing the same probe bundle onto a Spectralon plate and the

downwelling irradiance was determined as Ed(l,0+) = A·p·Ld(l,0+),
where A = 0.99 is the reflectance factor of the Spectralon plate

(Labsphere, NH), constant for the spectrum in the range of

wavelengths from 400 to 800 nm. The underwater remote sensing

reflectance Rrs- is then calculated as Lu(l,0-)/Ed(l,0-) sr-1, which was
adjusted for the propagation through the water-air interface to

calculate above surface Rrs. Chl-a from the samples that were

collected during the field campaign were determined according to

NASA protocol for fluorometric Chl-a determination (Ocean

Optics Protocols, 2003).

Capturing the timing and location of a bloom is difficult, and

often missing in routine monitoring datasets. An opportunistic

sampling event occurred on May 18, 2021, during a high biomass

(reaching up to 50 million cells/L) bloom of Prorocentrum

minimum. Rrs and water samples for Chl-a were collected at 5

stations in the Upper Bay. Chl-a concentrations were measured in

the range of 73–161 mg/m3 and coincided in time with VIIRS and

OLCI overpasses. Additional Rrs spectra and Chl-a were acquired in

the Chesapeake Bay sporadically from 2014–2016, capturing a

range of Chl-a of 9–48 mg/m3. In all these measurements, Rrs
were determined from below water HyperOCR depth profiles.

There was also a large dataset of NCCOS Rrs measurements but

without corresponding Chl-a. All four Rrs datasets are shown below in

Figure 1 in the discussion of the bio-optical model. Ranges of many

parameters, necessary for the model and absorption spectra were
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taken from the previous Chesapeake Bay cruises (Magnuson et al.,

2004) and NASA bio-Optical Marine Algorithm Dataset (NOMAD)

database (Werdell and Bailey, 2005). Finally, Chl-a data from the

Chesapeake Bay program (https://www.chesapeakebay.net/) at

multiple stations were used for the validation of the satellite and

in-situ data, where most of Chl-a fell below 20 mg/m3.

Concurrent water samples to extract Chl-a and hyperspectral

Rrs were collected throughout LIS in 2018–2022 in collaboration

with the Connecticut Department of Environmental Protection

(CTDEEP) (Turner et al., 2022; Sherman et al., 2023). Additional

data were collected from small boats. Hyperspectral Rrs were

measured using a HR512-I spectroradiometer (SpectraVista, NY).
2.2 Satellite data and processing schemes

2.2.1 VIIRS data
The Level-2 science-quality data for SNPP VIIRS and near-real-

time (NRT) for NOAA-20 VIIRS with the MSL12 processing were

obtained from the NOAA CoastWatch site, featuring a pixel

resolution of 750 meters at the nadir. This dataset included

normalized water-leaving radiance spectra nLw(l), which were

converted to remote sensing reflectance, Rrs(l), across visible

wavelengths at 410, 443, 486, 551, 638, and 671 nm on SNPP

VIIRS, and 411, 445, 489, 556, 642, and 667 nm on NOAA-20

VIIRS, and Level-2 quality flags. Flag exclusion criteria were applied

to pixels meeting any of the following conditions: land, cloud, sea

ice, atmospheric correction failure, stray light (except for LISCO),

bad navigation quality, high or moderate glint, viewing angles
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exceeding 60°, and solar zenith angles exceeding 70°. Selection of

files required at least > 50% valid pixels in a given set, i.e., to be free

of flagged conditions. Additionally, pixels with negative water-

leaving radiance were excluded from averaging. In matchups of

satellite to in-situ data from 1 pixel closest to in-situ measurements

was considered and a 3×3-pixel grid box (2250 m × 2250 m)

centered at the AERONET-OC site for the comparison with

AERONET-OC data (Hlaing et al., 2013; Gilerson et al., 2022).

The average Rrs(l) and standard deviation (STD) between pixels,

along with their geometric and radiometric properties, were

recorded. The bidirectional reflectance distribution function

(BRDF) have been applied to the MSL12-derived VIIRS ocean

color data as well as to OLCI data with MSL12 processing

(Gordon, 2005; Wang, 2006; IOCCG, 2010).

2.2.2 OLCI data
The OLCI S3A and S3B Level-2 full-resolution data with 300-

meter spatial resolution per pixel (EUMETSAT, 2021; Mikelsons

et al., 2022) with the Operational Baseline Collection-3 (OBC-3)

processing (Zibordi et al., 2022) were acquired from the NOAA

CoastWatch website (https://coastwatch.noaa.gov/cwn/

index.html), focusing on the Chesapeake Bay area and Long

Island Sound. Each Level-2 file encompasses various geophysical

products related to the atmosphere and ocean, including aerosol

optical thickness, Angstrom exponent at 865 nm, water-leaving

reflectance at 413, 443, 490, 560, 665, 681, and 709 nm, sensor

zenith angle, solar zenith angle, and quality flags. The remote

sensing reflectance, Rrs (l), is computed by dividing the

reflectance spectra by p.
FIGURE 1

Available field Rrs datasets (A–D) and examples of simulated datasets (E) with main water parameters; based specific phytoplankton absorption a*ph(l)
(Magnuson et al., 2004) used in the model (F). Unshaded parameters are measured (A, C, D) or simulated (E). Shaded parameters are estimated from
different algorithms.
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OLCI Level-2 operational water reflectance products do not

include BRDF correction. This omission is due to historical usage

patterns, with primary interest focusing on coastal and inland

waters where the standard open-ocean BRDF approach is not

applicable. Mikelsons et al. (2022) showed that there are some

significant BRDF effects, both on the surface (Gordon, 2005; Wang,

2006) and in water BRDFs (IOCCG, 2010), over open oceans.

However, because there are no established BRDF correction

algorithms for a wide range of coastal waters considered in this

work, BRDF correction was not applied.

Pixels flagged under any of the following conditions were

excluded: invalid flag, land, cloud (including ambiguous and

marginal), coastline, solar zenith angle exceeding 70°, saturated flag,

moderate or high glint, whitecaps, and failed atmospheric correction.

It is important to note that this flag set differs slightly from the set

recommended by EUMETSAT for OLCI (EUMETSAT, 2022). A file

was selected if at least 50% of valid pixels in the set were free of flags.

As for VIIRS, a comparison with measured in-situ Chl-a was carried

out for 1 closest pixel and for comparison with AERONET-OC 7×7

(2100 m × 2100 m) pixel box was considered.

Rrs uncertainties from OLCI in the blue part of the spectra in

EUMETSAT atmospheric correction processing are higher than

those from VIIRS, especially in coastal waters (Zibordi et al., 2022;

Mikelsons et al., 2022; Gilerson et al., 2023). NOAA NCCOS

considered a special atmospheric correction (Wynne et al., 2018)

using SeaDAS and the subtraction of the Rayleigh component from

the TOA radiance. Later, OLCI TOA data were processed using

NOAA MSL12 and NASA l2gen algorithm. All these processing

schemes were considered with a focus on Rrs(l) at the red/NIR

bands necessary to apply the RE10 algorithm for the detection of

algal blooms.
2.3 AERONET-OC data

Remote sensing reflectance (Rrs) for VIIRS and OLCI satellite

sensors were assessed through comparisons with SeaPRISM

instrument (CIMEL Electronique, France) data at the Chesapeake

Bay and Long Island Sound (LISCO) stations, where SeaPRISM

radiometers are deployed on offshore fixed platforms and are part

of AERONET-OC network (Zibordi et al., 2009, 2021). Normalized

water-leaving radiances, nLw(l), following AERONET-OC protocols

and incorporating BRDF correction based on open ocean approaches

(Zibordi et al., 2009, 2021), were acquired from the AERONET-OC

website for the designated sites. These radiances were transformed

into remote sensing reflectance at specific wavelengths. The Long

Island Sound Coastal Observatory (LISCO) site (Harmel et al., 2011)

upgraded its sensor head in August 2021 to match OLCI sensors with

bands at 412, 443, 490, 510, 560, 620, 667, 681, and 709 nm, for

detailed comparisons with OLCI data.

The ocean color data employed in this analysis were derived

from version 3 level 1.5 data, which underwent cloud screening and

quality control measures to ensure data accuracy. All satellite-to-in

situ matchups were conducted within a ±2-hour window around

the satellite overpass time (Zibordi et al., 2009, 2021).
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2.4 Bio-optical model

To develop the NN algorithm, datasets, which connect Chl-a,

IOPs and Rrs(l), water reflectance spectra were simulated based on

the bio-optical model (Gilerson and Huot, 2017) with Rrs(l)
including the sum of elastic Rrs

e(l) component and fluorescence

component Rrs
f(l); the latter was included because it is a part of the

reflectance detected by the broad I1 600-680 nm band. Rrs(l)
spectra were simulated with 1 nm resolution in the range of 400–

750 nm. The maximum of the peak of the fluorescence emission was

assumed at 685 nm, fluorescence quantum yield was assumed 1%;

the spectral shape of fluorescence was modeled as a Gaussian

spectral profile centered at 685 nm, having a full width at half

maximum (FWHM) of 25 nm (Mobley, 1994; Gower et al., 2004).

Above water elastic Rrs
e(l) was calculated following

Lee et al. (2002):

Re
rs(l) = 0:52

R−
rs(l)

(1 − 1:7R−
rs(l))

(1)

where R−
rs(l) is the remote sensing reflectance due to elastic

scattering just below the surface, which is calculated as:

R−
rs(l) = g1u(l)

2 + g2u(l), (2)

u(l) = bb(l)=(a(l) + bb(l)) (3)

where a(l) (m-1) and bb(l) (m-1) are the total absorption and

backscattering coefficient spectra, respectively. Broadly used

empirically derived parameters (Lee et al., 2009) g1 = 0.125 and

g2 = 0.089, which work well for moderate open ocean and coastal

waters were replaced with g1 = 0.23 and g2 = 0.089 equivalent to the

relationship based on our previous studies for a broader range of

water parameters (Gilerson et al., 2007, 2015).

The total spectral absorption coefficient, a(l), is modeled as

a(l) = aw(l) + aph(l) + ag(l) + aNAP(l), (4)

where the water absorption spectrum aw(l) was obtained from

(Pope and Fry, 1997).

In coastal waters, aph(443), ag(443) and aNAP(443) typically

have some correlation (even often weak) with each other (IOCCG,

2006). Based on the data from the NOMAD Chesapeake Bay field

campaigns (Gilerson et al., 2015) and a*ph(443) spectra in the Upper

Chesapeake Bay (Magnuson et al., 2004) the following relationships

at 443 nm were used in the model:

aph(443) = a*ph(443)Chl‐a = 0:031Chl‐a−0:12Chl‐a

= 0:031Chl‐a0:88 for Chl‐a < 60 mg=m3 (5a)

aph(443) = a*ph(443)Chl‐a = 0:019Chl‐a for Chl‐a > 60 mg=m3 (5b)

ag(443) = 1:1aph(443) (6)

aNAP(443) = 1:32� 0:04Chl‐a0:65 (7)
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According to Equation 5, a*ph(443) gradually decreases with

Chl-a and remains constant after 60 mg/m3. ag(443) mostly

followed aph(443) and aNAP(443) increases with Chl-a, but less

fast than Chl-a itself.

Chl-a were randomly distributed between 0.5 and 200 mg/m3.

The spectral phytoplankton absorption coefficient was obtained by

multiplying the Chl-a by a specific absorption coefficient (a*ph(l),
m2 mg-1),

aph(l) = Chl‐a� a*ph(l Þ: (8)

The choice of a*ph(l) strongly influences the corresponding

remote sensing reflectance and the emission of fluorescence and

was modeled as the specific phytoplankton absorption coefficient in

the Upper Chesapeake Bay (Magnuson et al., 2004), shown in

Figure 1F with a gradual decrease with increasing Chl-a consistent

with Equation 5.

To simulate natural variability, a*ph(443) were multiplied by a

random number drawn from a normal distribution (N(m,s 2)) with

a mean m=1 and a variance s2=0.04: X1 eN(1, 0:04). In a similar

manner, ag(443) and aNAP(443) in Equations 6 and 7 were

multiplied by X2 eN(1, 0:09). The ranges of variability here and

below were based primarily on the published values from IOCCG

(2006), NOMAD and the authors’ data for the Chesapeake Bay

(Gilerson et al., 2015).

The spectral absorption coefficients of both CDOM and NAP were

modeled as having an exponentially decreasing shape with wavelength

and referenced to 443 nm (Bukata et al., 1995; Stramski et al., 2001):

ag(l) = ag(443)e
−Sg (l−443), (9)

aNAP(l) = aNAP(443)e
−SNAP(l−443) : (10)

Sg was modeled as a normal distribution 0:017N(1, 0:022) and SNAP
as 0:010N(1, 0:012). Equation 7 was also used to determine the

concentration of NAP, [NAP] (g m-3):

½NAP� = aNAP(443)=a*NAP(443), (11)

where a*NAP(443) (m
2 g-1) is the mass-specific absorption coefficient

of NAP at 443 nm, which was simulated as a uniformly distributed

random number 0:03 ≤ a*NAP(443) ≤ 0:05 (m2 g-1). The [NAP] was

typically in the range of 0–30 g m-3.

The total scattering coefficient (b(l), m-1) was simulated as a

sum of three components:

b(l) = bw(l) + bph(l) + bNAP(l) : (12)

Scattering by NAP was modeled using a power law function

(Stramski et al., 2001; Twardowski et al., 2001) as follows:

bNAP(l) = bNAP(550)(
550
l

)g2 , (13)

bNAP(550) = b*NAP(550)½NAP�, (14)

where b*NAP(550) = 0:5N(1, 0:04) (m2 g-1) is the mass-specific

scattering of non-algal particles at 550 nm, and g2 = 0:8N(1, 0:0049).
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The scattering by phytoplankton was calculated as the

difference between their attenuation and absorption coefficients

(Voss, 1992; Roesler and Boss, 2003):

bph(l) = cph(l) − aph(l): (15)

The attenuation coefficient itself was modeled as a power law

function (Voss, 1992),

cph(l) = cph(550)(
550
l

)g1; (16)

where cph(550) = 0:3Chla0:57 and g1 = 0:8.

In the simulations, the backscattering coefficient (bb(l), m-1)

was modeled as the sum of the contributing components,

bb(l) = bbw(l) + ~bb  phbph(l) + ~bb  NAPbNAP(l), (17)

where bbw(l) is obtained according to Morel, 1974 and ~bb  ph and
~bb  NAP are backscattering ratios for phytoplankton and non-algal

particles assumed to be independent of the wavelength

(Twardowski et al., 2001; Sydor and Arnone, 1997). Typical

values were used as ~bb  ph(l) = 0:006 and ~bb  NAP(l) = 0:02.

120000 different conditions were simulated using this model

with 70% used in generation and 30% in testing and validation.

As was discussed above, several field Rrs datasets were available

for analysis together with (or without) some measurements of water

parameters. Four Rrs sets are shown in Figure 1 with corresponding

water parameters; some of these parameters (shown in grey) were

not measured directly but estimated using available algorithms.

Examples of simulated Rrs spectra are also shown in this figure. It

should be noted that there was a relatively small flexibility in the

selection of parameters described above, which produce spectra

similar to the ones in the bloom areas with typical high CDOM and

corresponding low Rrs in the blue, spectral features in green-red and

a very strong peak around 700 nm comparable with the peak in

the green.

In the model development, Rrs(l) spectra were supposed to be

similar not only to the field spectra in Figure 1, but there were also

supposed to be consistent with the good performance of blue-green

algorithms for Chl-a retrievals. This should be true at least in the waters

with low to moderate Chl-a and RE10 NIR/red bands algorithm for a

broad range of waters and Chl-a concentrations, which were observed

previously for the Chesapeake Bay (Gilerson et al., 2015).

The ranges of water parameters in the Chesapeake Bay are Chl-a =

0.06–165 mg/m3, CDOM absorption at 443 nm ag(443) = 0.015–2.0

m-1, absorption of non-algal particles aNAP(443) = 0.001–3.0 m-1,

scattering at 443 nm b(443) = 0.3–40.3 m-1 with the lowest value

typically in the Lower Bay and the highest in the Upper Bay

(Magnuson et al., 2004). For LIS Chl-a = 1–25 mg/m3, ag(440) =

0.012–0.5m-1, aNAP(440) = 0.02–0.42m-1, particulate backscattering at

650 nm bbp = 0.005–0.06 m-1 with the lowest value in the eastern part

of the Sound and the highest in the western part (Aurin et al., 2010).

In the model Chl-a values were randomly distributed between 0.5 and

200 mg/m3, ag(443) were mostly in the range of 0–3 m-1 with

decreasing quantities till 6.5 m-1 and aNAP(443) = 0–2.5 m-1.

Several metrics were used in the evaluation of Chl-a algorithms

performance which includes a coefficient of determination R2, root
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mean square error (RMSE), relative error e = RMSE/mean as well as

recently suggested metrics (Seegers et al., 2018) mean absolute error

MAE = 10 ^
o
n

i=1
log10 (Mi) − log10 (Qi)j j

n

0
BB@

1
CCA, (18)

and bias

bias = 10 ^
o
n

i=1
log10 (Mi) − log10 (Qi)

n

0
BB@

1
CCA: (19)

It should be noted that in some figures Chl-a values are shown

in the logarithmic scale, while RMSE and e were calculated based on

the linear scale.
2.5 NN algorithm development, analysis of
the optimized structure and validation

In continuation of the approach used by (El-Habashi et al., 2016),

their simple one-hidden layer multilayer perceptron (MLP) structure

was first applied to a newly developed synthetic dataset, to produce a

minimum benchmark against which to improve with the introduction

of the VIIRS imaging I1 band to complement the 486, 551 and 671 nm

band inputs as well as with modifications to the neural network itself.

Variables aph(443), ag(443), ad(443) and bb(443) were kept as outputs.

Chl-a was determined also as an independent output parameter.

Performance results are visible in Table 1. The introduction of the

imaging I1 band immediately provided a large performance boost on all

four output parameters. However, changes in the neural network

structure with the introduction of more neurons in the single hidden

layer and the introduction of Rectified Linear Units (ReLU) as the

activation function produced a negligible change in the network

performance. Similarly, the introduction of a second hidden layer also

produced a negligible change in the network performance, indicating

that the simpler neural network utilized in previous studies is already

capable of capturing the relationships between inputs and outputs well.

In original tests, the bio-optical model was slightly different from

the one described above (specific phytoplankton absorption consisted

of the micro- and picoplankton absorption with a weighting factor

from Ciotti and Bricaud, 2006). In the final version, R2 coefficients

were higher as shown in Table 1 in parentheses. Figure 2 contrasts the

performance of the NNs in the 3-band and 4-band versions against

the expected values for aph(443), ag(443), ad(443), and bb(443) as

measured during the CCNY 2013 cruise in the Chesapeake Bay. In all

cases, including the VIIRS imaging I1 band noticeably improves the

retrieval quality. In these tests, Chl-a were determined from aph(443).

When Chl-a were used directly as one of the retrieval parameters, R2

for Chl-a became 0.984.

If large datasets of Chl-a and Rrs are available for relevant water

conditions, the training can be carried out directly to retrieve Chl-a

and other water parameters from Rrs spectra (Hieronymi et al., 2017;

Pahlevan et al., 2020). While only 70 points of the field data were

available for the Chesapeake Bay, the training gave results quite similar
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to the ones from the bio-optical modeling, however, some additional

tuning was still required, and this option was not further explored.
3 Results

3.1 Preliminary studies

3.1.1 Performance of different Chl-a algorithms
A Satlantic HyperSAS (Halifax, Canada) systemwas installed from

2009 to 2014 at the LISCO site (Harmel et al., 2011) together with the

SeaPRISM instrument on top of a retractable tower at approximately

12 m above the water surface. Three spectrometers observed

downwelling irradiance Ed, sky radiance Ls, and total radiance Lt in

the wavelength range of 305–905 nm with 180 equally spaced

channels. HyperSAS data were processed by the 3C model

(Groetsch et al., 2017, 2020) to minimize the impact of the sky

reflectance from the windy surface and to produce reliable Rrs data.

Several algorithms to determine Chl-a were applied to analyze water

conditions in the area of LISCO during the year of 2013, which

included conditions of algal blooms. Algorithms included standard 3

bands OC3V algorithm (based on 443, 486 and 551 nm), 6 bands

OC6P algorithm (O'Reilly and Werdell, 2019), NN algorithm

(El-Habashi et al., 2019), and NIR/red (red edge) (Gilerson et al.,

2010), further referred to as RE10, based on Rrs(709)/Rrs(665) ratio.

The latter algorithm proved to perform well in a very broad range of

Chl-a > 5 mg/m3 and other water components (Smith et al., 2018;

Pahlevan et al., 2022). All algorithms except RE10 performed similarly

at Chl-a < 10 mg/m3 and substantially underestimated Chl-a in bloom

conditions in 2013, where only RE10 indicated Chl-a up to 40 mg/m3.

3.1.2 Rrs uncertainties
It has been well known for a long time that main Rrs

uncertainties over coastal waters occur at the blue bands 412 and

443 nm (IOCCG, 2019), which motivated the development of other

algorithms avoiding the 443 nm band on VIIRS sensors (Ioannou

et al., 2014; Gilerson et al., 2015; El-Habashi et al., 2016) and NIR/

red algorithms on MERIS and OLCI sensors, which have 709 nm

band (Gitelson, 1992; Moses et al., 2009; Gilerson et al., 2010).

While main uncertainties in the blue were usually attributed to

inaccurate aerosol models in the atmospheric correction process

(IOCCG, 2019), a recent analysis based on the decomposition of Rrs
uncertainties spectra showed that some uncertainties may be

associated with Rayleigh-type components and thus might be

related to small variability (about 1.5%) of the Rayleigh radiance

(Gilerson et al., 2022, 2023) or Rayleigh noise (Malinowski et al.,

2024). It was also shown that OLCI uncertainties in coastal waters

in EUMETSAT processing are about 50% higher than uncertainties

for VIIRS in the blue (Mikelsons et al., 2022; Zibordi et al., 2022;

Gilerson et al., 2023) due to the different atmospheric correction

schemes (Mikelsons et al., 2022) with NOAA MSL12 OLCI

processing having Rrs uncertainties about the same as for VIIRS.

Further, NASA OLCI processing also showed the same level of

uncertainties as those from VIIRS and NOAA MSL12 OLCI. These

effects are additionally demonstrated in Figure 3, where matchups
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are shown for VIIRS, OLCI EUMETSAT, and OLCI MSL12 data

processing at the LISCO AERONET-OC site.

High uncertainties can be clearly seen at the 443 nm band for

VIIRS with a much more stable 490 nm band. Results are similar in

OLCI MSL12 data processing. In EUMETSAT data processing, all

bands below 560 nm show high uncertainties. Uncertainties at 665

nm and 709 nm are also high but these Rrs are related to low Chl-a <

10 mg/m3 conditions in LIS, they are not of the main interest for the

application of the NIR/red algorithm, which works reliably mostly

for higher Chl-a. At the Chesapeake Bay AERONET-OC station

with waters clearer around the AERONET-OC station than at the

LISCO site, correlations were higher for OLCI (not shown).

3.1.3 Evaluation of the performance of Chl-a
algorithms in algal bloom conditions

Blooms often occur near salinity fronts in the Upper Bay and

Potomac River. Satellite imagery for the Chesapeake Bay with

bloom conditions in the Upper Bay, processed with OC3V for

VIIRS, with RE10 using EUMETSAT OLCI imagery with default

and NCCOS atmospheric corrections together with the Chl-a

distributions received with an additional band ratio algorithm.

Chl-a in the bloom areas from different algorithms were 27–140
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mg/m3 for the Upper Bay and 30–200 mg/m3 for the Potomac

River. These data had to be reconciled between different satellite

sensors and algorithms to develop a combined VIIRS-OLCI

product for bloom detection.

At the beginning, Chl-a were estimated in the bloom areas in the

Chesapeake Bay and in the Potomac River for May 13, 2020, using

four different algorithms, including the standard three bands OC

algorithm for VIIRS OC3V, the band ratio VIIRS algorithm with I1

band (chlC) (Gilerson et al., 2021) described below in Section 3.1.4,

OLCI RE10 algorithm with standard OLCI AC and with NCCOS AC

(Wynne et al., 2018). Two bloom areas have been identified: in the

Upper Bay and in the Potomac River. While the shapes of the bloom

areas on satellite images looked similar, it was found that OC3V had

the lowest Chl-a values around 30 mg/m3 and RE10 = 50 – 140 mg/

m3 in the Upper Bay and above 200mg/m3 in the Potomac River with

chlC values were in the middle of these ranges. The focus of this work

was a more detailed evaluation of these algorithms and the newly

developed NN algorithm in various bloom conditions.

3.1.4 Band ratio algorithm with I1 band
The first tests (Gilerson et al., 2021) proved the utility of I1 band

in detecting higher concentrations of Chl-a values. Because of the
TABLE 1 Performance summary in R2 of the neural networks tested on the synthetic dataset, original (final) bio-optical model.

Description Network structure Activation aph(443) ag(443) ad(443) bb(443)

Original MLP 3 × 6 × 4 Sigmoid 0.601 (0.726) 0.588 (0.753) 0.546 (0.738) 0.555 (0.635)

I1 band 4 × 6 × 4 Sigmoid 0.722 (0.80) 0.796 (0.823) 0.640 (0.807) 0.749 (0.77)

More neurons 4 × 36 × 4 ReLU 0.719 0.794 0.635 0.743

2 hidden layers 4 × 36 × 30 × 4 ReLU 0.722 0.798 0.639 0.746
FIGURE 2

Results of a and bb retrievals in m-1 using NN with 3 bands (top) and 4 bands (bottom) based on field data from CCNY 2013 cruise.
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complexity of water IOPs spectra in the I1 range, including

variability of CDOM and mineral concentrations in various areas,

it was clear that the algorithm eventually needs to be implemented

in a NN format. But, it appeared useful to evaluate a multi-band

algorithm for the estimation of Chl-a in a wide range of water

conditions. The algorithm was developed using available band
Frontiers in Marine Science 0932
ratios, which include I1 band. A proper band combination was

determined by tests on the synthetic dataset discussed above.

Application of the first version of the algorithm with I1 band,

which was calibrated on the field data showed a strong dependence

of the estimated Chl-a on the concentration of suspended

particulate matter (SPM) with sediment concentrations estimated
FIGURE 3

Satellite and AERONET-OC matchups at the LISCO site for the matching wavelengths available on the SeaPRISM and on the sensor: (A) SNPP VIIRS,
(B) S3A OLCI with EUMETSAT (OBC-3), and (C) S3A OLCI with NOAA MSL12 data processing.
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from (Nechad et al., 2010) based on Rrs at 671 nm. In the next

iteration, the algorithm was corrected for the impact of SPM

concentration. It was also found that the algorithm often

underestimates Chl-a at Chl-a < 10–15 mg/m3 and it was therefore

combined with the standard OC3V algorithm at Chl-a ≤ 15 mg/m3.

The algorithm was tuned using MATLAB curve fitting toolbox

on 43 Rrs-Chl-a combinations from the CCNY 2013 cruise and then

further on field data from M. Ondrusek’s measurements in 2014-

2021 (see Figures 4D and F) with a total of 70 points. It was

implemented with the final result as chlC:

SPM = 384:11� pRrs(671)=(1 − pRrs(671)=0:1747)  + 1:44 (20)

ratio = (Rrs(486) + Rrs(551))=Rrs(638)� SPM0:3 (21)

ChlC = k� 4604� ratio(−4:252) (22)

chlC = ChlC if  ChlC > 10 mg=m3 (23a)

chlC = OC3V  if  ChlC ≤ 10 mg=m3 (23b)
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Coefficient k in Equation 22 is a tuning parameter, which can be

further changed. In this version, coefficients are different from the

original version (Gilerson et al., 2021), when the algorithm was tuned

only on the data from the CCNY 2013 cruise. The performance of the

algorithm with k =1.0 is demonstrated below in Figures 4D, F.
3.2 Validation of VIIRS algorithms on
satellite and field data

A total of 70 matchups were included in the tests (43 from

CCNY 2013, 22 from Ondrusek 2014-16, and 5 from Ondrusek

2021 measurements) for the validation of NN3, NN4 and VIIRS

standard OC3V algorithms on the field data collected across the

Chesapeake Bay. Results are shown in Figures 4A–C. The

performance of chlC and RE10 on the same field dataset is

shown in Figures 4D–F. Among the first three algorithms in

Figure 4 the NN4 algorithm shows better performance, although

it is worse than the performance of chlC, where all points were

used in the tuning and RE10, for which 709 nm band is not

available on VIIRS. In Figures 4D–F chlC is plotted against field
FIGURE 4

Test of algorithms on the field data: (A) 3 bands NN; (B) 4 bands NN; (C) OC3 VIIRS; (D) chlC vs in-situ Chl-a; (E) RE10 vs in-situ Chl-a,
(F) chlC vs RE10.
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Chl-a and against RE10; RE10 against Chl-a is also shown for the

comparison. High correlations exist for all comparisons in a broad

range of conditions in the Chesapeake Bay, but these relationships

are not always valid for other types of waters. RE10 was also

considered as OC3 VIIRS if RE10 <10 mg/m3.

RE10 was used with the expression (24), which matches the

original version in Gilerson et al., 2010, but does not produce

complex numbers at low Chl-a

RE10 = 46:0676(Rrs(709)=Rrs(665))
1:2260 − 22:6012 (24)

Further tests were performed on SNPP VIIRS data 2012–2022

(NOAA MSL12 data processing) compared with in-situ data from

the Chesapeake Bay program (https://www.chesapeakebay.net)

and there were 2021 measurements at 5 locations. Results are

shown in Figure 5. The stray light flag was on, HIGLINT and

MODGLINT flags were suspended since they did not change the

algorithm performance significantly. Most of the points are in the

Chl-a range below 20 mg/m3. However, all algorithms, including

the OC3 algorithm, retrieve high Chl-a values reasonably well; good

performance of OC3 is most likely due to the specific combination

of the water parameters in bloom areas, which is not typical for

coastal waters with high Chl-a. The time window between satellite

and in-situmeasurements was ±4 hours. Based on our studies in the

Chesapeake Bay, stricter time limits would reduce the number of

points but would not improve statistics.

Here and in the figures below the solid grey line marks the 1:1

relationship, while the upper and lower dashed lines mark the limit

of Y = X*2 and Y = X/2, respectively, where Y are predicted values

and X are expected values.
3.3 Comparison of Chl-a retrievals by VIIRS
and OLCI algorithms

Performance of the RE10 algorithm for OLCI sensors was

evaluated with NCCOS, EUMETSAT, MSL12 and NASA

atmospheric correction by the comparison with VIIRS Chl-a in

bloom areas with a very broad range Chl-a from 2 mg/m3 to over

100 mg/m3. Because the RE10 algorithm does not provide accurate

retrievals for lowChl-a and the OC4 algorithm for OLCI was found not
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to be always reliable in the waters of the Chesapeake Bay, comparisons

were carried out using the RE10M algorithm, where RE10 was replaced

with OC3V Chl-a for Chl-a < 6 mg/m3. It was found that the most

consistent matchups between VIIRS and OLCI retrievals come from

EUMETSAT and MSL12 processing. Examples of such matchups for

the Upper Bay and Potomac River bloom areas are shown in Figure 6.

NN4 versus RE10M shows better results than other algorithms. For low

Chl-a < 6mg/m3, OC3V and chlCmatchups with RE10M are along 1:1

line because OC3V retrievals are used in all these cases. Since VIIRS

algorithmsmatchups vs RE10M in EUMETSAT andMSL12matchups

produce similar results, both processing approaches from EUMETSAT

and MSL12 were recommended for the combined OLCI product. It

should be noted that, according toMikelsons et al. (2022), EUMETSAT

processing is more sensitive to the sun glint, which was shown in

our comparisons.
3.4 Combined products, and
satellite imagery

Based on the whole study, NN4 VIIRS and OLCI RE10

algorithms were recommended for the combined VIIRS-OLCI

product. RE10 was used in combination with OC4 (with OC4 if

RE10< 10 mg/m3 and OC4 <10 mg/m3 or OC4 < 10 mg/m3 and clear

water conditions based on the diffuse attenuation coefficient

threshold Kd(490) < 0.25 m-1). Examples of the imagery from both

algorithms are shown in Figure 7 for May 18, 2021, when field

measurements were also available at 5 locations with the coordinates

shown in Table 2, together with measured Chl-a at these points and

retrieved from OC3, chlC, NN3, and NN4 algorithms from VIIRS

and RE10 fromOLCI. Note that part of the area on the OLCI image is

masked because of clouds. As before, a slight overestimation of Chl-a

is seen in both images in very turbid waters in the Upper Bay,

Delaware Bay, and some tributaries. Adjustment coefficients for chlC,

NN3, and NN4 are also given in Table 2. Relative spectral response

(RSR) functions were not taken into account in the NN algorithms

development to simplify tuning of the algorithms based on the bio-

optical model only and comparison with field measurements; for the

same reason RSR for the I1 band was considered as RSR = 1.0 for the

whole range of wavelengths 600–680 nm. The actual RSR for this
FIGURE 5

Comparison of satellite and in-situ data for the Chesapeake Bay. Expected and predicted Chl-a as determined by the one-hidden layer MLP in both
its 3-band and 4-band versions and OC3 VIIRS algorithms.
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band is close to RSR ≈ 0.9, which matches the adjustment coefficient

for NN4. The NN3 and chlC algorithms provided similar images but

with some adjustments of coefficients, which were less stable than

those from the NN4 algorithm. Other examples of images from

VIIRS and OLCI for bloom conditions on May 21, 2021, and non-

bloom conditions on April 4, 2024, are shown in Figure 8.

The distribution of absorption and backscattering coefficients at

443 nm retrieved from NN4 together with the SPM concentration

based on Equation 20 for May 18, 2021, are shown in Figure 9,

providing additional information about water parameters in the
Frontiers in Marine Science 1235
Chesapeake Bay and specifically in the bloom areas, which helps to

understand bloom conditions in more details. As can be expected,

ad(443), bb(443) and SPM have similar patterns since they are

mostly proportional to the concentrations of non-algal particles, aph
(443) and ag(443) are high in the bloom areas.

The NN4 algorithm was developed based on SNPP VIIRS bands,

VIIRS on NOAA-20 has several slightly different bands as was shown

above, specifically for the NN algorithm there are M3–M5 bands

centered at 489, 556, and 667 nm, and I1 band centered at 642 nm

and NN4 algorithm required additional tuning. While the effects of
FIGURE 6

Matchups between VIIRS and OLCI Chl-a retrievals in bloom areas.
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TABLE 2 Chl-a measurements and retrieval comparison for May 18, 2021.

Lat/Lon (West) Ondrusek SNPP VIIRS OLCI N20 VIIRS

OC3V chlC (1.6) NN3 (0.85) NN4 (0.9) RE10 OC3V NN4 (0.7)

39.046 76.392 133 82 128 125 126 128 253 110

39.053 76.405 129 91 135 133 133 114 NaN 126

39.055 76.423 161 143 143 156 154 286 NaN 118

39.073 76.403 137 80 121 126 126 164 NaN 163

38.964 76.452 73 60 77 104 96 85 313 104
F
rontiers in Marine Science
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FIGURE 7

OC3 VIIRS (left panel), NN4 VIIRS (middle panel) and OLCI (right panel) Chl-a retrievals in bloom areas on May 18, 2021.
FIGURE 8

OC3 VIIRS, NN4 VIIRS and OLCI Chl-a retrievals with bloom conditions on May 21, 2021 (top row) and non-bloom conditions on April 15, 2024
(bottom row).
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spectral differences between VIIRS-SNPP and VIIRS-NOAA-20 at

the blue bands are negligible (e.g., within ~0.1% at M2 band), there

are large differences at M4 (green) and M5 (red) bands (e.g., ~16% at

M4 band for open oceans) (Wang et al., 2020). Over coastal regions,
Frontiers in Marine Science 1437
there are important effects of M4 band difference between VIIRS-

SNPP and VIIRS-NOAA-20, because Rrs from NOAA-20 (at 556

nm) is usually much closer to the Rrs peak than that from SNPP (at

551 nm). The same NN4 algorithm was used for VIIRS NOAA-20
FIGURE 9

Distributions of absorption, backscattering coefficients (m-1), in the Chesapeake Bay from NN4 VIIRS algorithm, SPM (g/m3) from (NeChad et al., 2010).
FIGURE 10

Comparison of NOAA-20 VIIRS images retrieved with OC3V and NN4 algorithms.
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bands but with the coefficient 0.65. Images for OC3V and NN4 for

NOAA-20 VIIRS are shown in Figure 10 and Chl-a are added to

Table 2. Chl-a fromOC3V andNN4 in the same scale looks similar to

SNPP Chl-a distributions. For OC3V Chl-a values at in-situ

measured points match less accurately with a strong overestimation

at two points and were not processed at three other points. NN4 for

NOAA-20 is less accurate than for SNPP but can be also

recommended for the joint product.
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3.5 Applications of the developed
algorithms to the waters in Long
Island Sound

The performance of the NN4 algorithm was validated on the

field data in Long Island Sound. Field data were acquired during

cruises in 2018–2023 and included radiometric measurements and

Chl-a (Sherman et al., 2023). Results for different algorithms are
FIGURE 11

Performance of algorithms on Rrs and Chl-a data in LIS.
FIGURE 12

Performance of several VIIRS algorithms in comparison with OC4 based on the LISCO radiometric data.
Chl-a OC3 VIIRS           Chl-a NN4 VIIRS             Chl-a OC4 OLCI

FIGURE 13

OC3, NN4 Chl-a from VIIRS and OC4 from OLCI in LIS on April 16, 2024.
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shown in Figure 11. Most of Chl-a values are below 25 mg/m3, the

range that was not the main focus of the NN4 algorithm. The best

performing algorithm is OC4 followed by OC3 and NN4. However,

all these algorithms perform quite well for Chl-a > 2 mg/m3 and

much worse below this value. The NN4 algorithm was used with a

coefficient of 0.6, while it was 0.9 in the Chesapeake Bay for SNPP

VIIRS. The difference in coefficients might be explained by

differences in a*ph(l) with shifts in phytoplankton species

(including size and Chl-a packaging), between the time periods in

LIS and in the Chesapeake Bay. Optical differences in the water may

also influence the bio-optical model. More details about this

difference should be further studied.

There were few matchups with VIIRS for field data used in

Figure 11. Sherman et al. (2023) had OLCI retrievals corrected with

the Polymer atmospheric correction algorithm and a bio-optical

model for moderately turbid waters (Steinmetz et al., 2011), which

resulted in good agreement with field observation across the Sound.

The performance of algorithms was evaluated at the LISCO site for

the period of August 2021–May 2022. The SeaPRISM instrument

has bands similar to OLCI bands, and there were no direct field Chl-

a measurements. Chl-a were estimated by the OC4 algorithm and

compared with those from the NN4 and OC3 algorithms with

VIIRS bands, with Rrs determined from the SeaPRISM bands using

an adjustment based on the relationship between bands from the

synthetic dataset. The NN4 and OC3 algorithms perform very

consistently in the whole range of Chl-a from 2–25 mg/m3 as

shown in Figure 12. However, there were no in-situ Chl-a data to

confirm these retrievals. Images of Chl-a in LIS based on OC3 and

NN4 retrievals for VIIRS and OC4 for OLCI are shown in Figure 13

and are very consistent with each other generally confirming the

good performance of algorithms in Figure 12. Both NN4 and OC3

algorithms for VIIRS can be recommended for the joint product

with OLCI OC4.
4 Discussion and conclusions

Satellite data and imagery from SNPP and NOAA-20 VIIRS

sensors and Sentinel-3A and 3B OLCI sensors were analyzed

together with field data to develop the combined product for the

estimation of Chl-a in two large US estuaries: the Chesapeake Bay

and Long Island Sound to improve detection of algal blooms. The

bio-optical model was developed to satisfy a broad range of

conditions in waters from low Chl-a and corresponding

absorption and backscattering coefficients in fresher reaches of

the estuaries, with a switch for higher values in areas with high

Chl-a and phytoplankton bloom conditions. The neural network

(NN4) algorithm was developed for the retrieval of Chl-a and other

water parameters from VIIRS in the Chesapeake Bay, which

reasonably matches in-situ data. All VIIRS imagery used was

from NOAA processing using MSL12 atmospheric correction.

Based on the long-time knowledge about the vulnerability of the

Rrs at 412 and 443 nm bands over coastal turbid waters, these bands

were excluded from potential algorithms. The NN4 algorithm

utilizes SNPP VIIRS four bands centered at 486, 551, 638, and
Frontiers in Marine Science 1639
671 nm, which includes data from the imaging I1 600-680 nm band

centered at 638 nm. It is demonstrated that the inclusion of this

band data significantly improved retrieval of Chl-a and other water

parameters in comparison with the previous versions of similar

algorithms, which utilized only three 486, 551, and 671 nm bands.

Analysis of several atmospheric correction and processing

approaches from EUMETSAT (OBC-3), NOAA (MSL12), and

NASA (L2gen) for OLCI for the application of the NIR/red RE10

Chl-a algorithm that requires accurate Rrs values at 665 and 709 nm

bands showed that both MSL12 and OBC-3 data can be

recommended for the combined product.

The NN4 and RE10 algorithms were analyzed in various water

types demonstrating consistency during algal bloom conditions. These

algorithms were selected for the multi-sensor product to support algal

bloom detection in the Chesapeake Bay. The OC4 algorithm replaces

RE10 for Chl-a < 10 mg/m3, so VIIRS and OLCI Chl-a retrievals are

consistent for the broad range of conditions in the Chesapeake Bay.

The Rrs from the bio-optical model were re-trained to develop a NN4

algorithm for NOAA-20 VIIRS, which showedmostly Chl-a similar to

those from the NN4 for SNPP VIIRS. In LIS during the whole period

of study, there were no in-situ Chl-a above 30 mg/m3. The NN4, OC3

and OC4 algorithms showed approximately the same performance

and can be recommended for the estimation of Chl-a in LIS with the

switch to RE10 for OLCI in case of higher Chl-a.

Further examination is recommended to determine if the

combined NN4, OLCI with a switch to OC4 under low Chl-a

conditions is accurate and provides the best estimate of Chl-a when

switching water classes from coastal to offshore. This ability to

provide consistent Chl-a from coastal to offshore, with improved

cloud clearing capability through a multi-sensor approach, would

support improved fisheries modeling capability, improved bloom

monitoring, and the development of an improved long-time-series

data of Chl-a to determine changes in primary productivity under

changing climate conditions and in response to managing nutrient

loading into coastal systems.
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AB-LSTM: a mesoscale
eddy feature prediction
method based on an improved
Conv-LSTM model
Xiaodong Ma, Lei Zhang*, Weishuai Xu and Maolin Li

Department of Military Oceanography and Surveying, Dalian Naval Academy, Dalian, China
Mesoscale eddies are the most important mesoscale phenomena in the oceans,

and determining how to predict their spatial and temporal characteristics is a very

challenging task. Most previous studies focused on the accuracy of full-domain

prediction and ignored the accuracy of single-eddy prediction. To solve this

problem, in this paper, we first apply multi-year sea surface height data to

produce a spatiotemporal sequence sample dataset with a bidirectional

prediction mechanism. Then, we introduce an adversarial generative

mechanism through stacked spatiotemporal prediction blocks and rely on the

strong generative ability of the generative adversarial network models to

construct an adversarial bidirectional long- and short-term memory model

(AB-LSTM). Next, the mesoscale eddy mixing algorithm is used to extract the

matching eddy pair features from the real and predicted data, and several

evaluation metrics are used to conduct error analysis. The experiments yield

the following results. Prediction sequence days 1–7: the root mean square error

(RMSE) values are 1.97–7.70 cm, the structural similarity index (SSIM) values are

>0.61, the accuracy is >54.6%, and the eddy centre distance error is 6.34 km. The

result is 11.61 km, which is consistent with many spatiotemporal prediction

models and passes the generalisation test in many different sea areas. Finally,

we carry out single eddy prediction on the basis of the evaluation of the entire

prediction of the sea surface height and also obtain a more satisfactory

experimental effect. This method has a better prediction ability than the

original spatiotemporal method and has a certain reference significance for

mesoscale eddy spatiotemporal feature prediction technology and subsequent

underwater reconstruction.
KEYWORDS

mesoscale eddies, spatiotemporal sequence prediction, generative adversarial

networks, deep learning, sea surface height prediction, long short-term memory
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1 Introduction

Mesoscale eddies (MEs) are a special phenomenon that widely

occurs in the oceans. Their spatial scales are usually tens and

hundreds of kilometres, and their lifetimes vary from tens of days

to hundreds of days (Chelton et al., 2011). MEs are widely

distributed in the global oceans and have become an important

topic in research on ocean dynamics. According to the rotational

direction of the eddy, mesoscale eddies can be divided into two

categories: cold eddies (cyclonic eddies) and warm eddies

(anticyclonic eddies). In the Northern Hemisphere, cyclonic

eddies (CEs) rotate counterclockwise and anticyclonic eddies

(AEs) rotate clockwise. In the Southern Hemisphere, these two

types of eddies rotate in opposite directions (Zhang et al., 2013).

These types of eddies are widely distributed in the global oceans.

This rotation not only affects the fluid motion inside the eddy but

also has a significant impact on the ocean’s thermohaline

properties. Mesoscale eddies have an all-encompassing effect on

the marine environment. By adjusting local water masses, they

cause a huge difference in the thermohaline properties inside and

outside of their area. This difference not only affects the pattern of

ocean circulation but also influences the exchange of materials and

energy transfer in the ocean (Dong et al., 2014). In addition,

mesoscale eddies have a significant impact on marine

environment variability and are important drivers of dynamic

changes in marine ecosystems. The characteristics of mesoscale

eddies are particularly evident in specific oceanic regions, such as

the Kuroshio Extension (KE) region. Detailed statistics presented by

Itoh et al. (Itoh and Yasuda, 2010) indicate that the northern side of

the KE is dominated by a large number of anticyclonic eddies, and

these eddies usually have long life cycles. However, on the southern

side of the KE and near the flow axis, there are more CEs, and these

eddies usually have stronger intensities. Further analysis has

revealed that more than 85% of the anticyclonic eddies have

high-salt warm cores, whereas only 15% of the anticyclonic eddies

have cold cores. These features not only reveal the unique nature of

the mesoscale eddies in the KE region but also provide important

clues for understanding dynamic ocean processes in this region.

With the launch of ocean observation satellites, abundant large-

scale, long time-series, and high-precision ocean remote sensing

observation data have been obtained and processed, among which

long time-series observation data accumulated through many years

of observations have been widely used in analyses and forecasts of

oceanic phenomena (Oka and Qiu, 2012; Qiu and Chen, 2013). Liu

et al. (Liu et al., 2012) conducted a multi-year statistical analysis of

the number, life cycle, amplitude, and radius of mesoscale eddies in

the North West (NW) Pacific Ocean. Wang et al. (Wang et al.,

2016) found that the interannual characteristics of the KE region

may be affected by the instability of the main flow axis of the KE

under the effect of the topography, and the results of their

experiment were also affected by the instability of the main flow

axis of the Kuroshio under the effect of the topography. Qiu et al.

(Qiu and Chen, 2005) used the linear vorticity dynamics method to

back-project the high- and low-pressure signals and reached the

conclusion that the changes in the circulation characteristics of the

KE are associated with the high- and low-pressure anomalies in the
Frontiers in Marine Science 0244
eastern North Pacific Ocean. In terms of prediction of the

characteristics of mesoscale eddies, roughly classified, most

scholars have adopted two approaches. The first is to make

predictions using ocean numerical prediction models. Shriver

et al. (Shriver et al., 2007) successfully improved the resolution of

the prediction system by combining the Naval Layered Ocean

Model (NLOM) with the optimal interpolation method, which in

turn enhances the accuracy of the ME prediction. Trott et al. (Trott

et al., 2023) used the hybrid coordinate ocean model (HYCOM) to

simulate future sea-level anomaly (SLA) data and then adopted an

SLA-based identification technique to identify MEs and predict

their future distribution. The second method is to make predictions

that are purely data-driven. This type of method can be subdivided

into the direct prediction of ME features (often multi-feature one-

dimensional sequence prediction). For example, Ashkezari et al.

(Ashkezari et al., 2016) successfully predicted ME lifetimes under

stable evolutionary conditions by employing an extreme random

forest regression method. Wang et al. (Wang et al., 2020) combined

extreme random trees and a long short-term memory (LSTM)

network based on mesoscale eddy trajectory and feature datasets to

predict several key features, including the latitude and longitude

coordinates. Wang et al. (Wang et al., 2021) incorporated meso-

historical latitude and longitude sequence data, sea surface height

data, sea surface temperature data, and other additional

information using a gated recurrent unit (GRU) network

combined with a temporal attention mechanism to improve the

prediction accuracy of the future centre coordinates of the ME. Ge

et al. (Ge et al., 2023) developed a neural network for predicting the

trajectory of an ME in compliance with the physical constraints,

providing a more reliable and comprehensible method for the

prediction of the trajectories of MEs. Another prediction method

is to reconstruct a large sea surface height field (2-D) and

accordingly to use a mesoscale eddy identification algorithm to

obtain mesoscale eddy features in the predicted spatiotemporal

sequence. For example, Ma et al. (Ma et al., 2019) obtained an

accuracy higher than that of HYCOM for predicting the 7-day sea

surface height field using a more mature convolutional LSTM. Nian

et al. (Nian et al., 2021) proposed a neural network equipped with a

Memory In Memory (MIM) model and a spatial attention module

and obtained higher experimental results than those of many

spatiotemporal prediction methods. However, according to the

current state of research, the limitations of numerical modelling

methods in terms of prediction performance should not be ignored.

These limitations mainly stem from the nonlinear nature of MEs

and the sensitivity of numerical models to initial conditions.

Furthermore, these models mainly focus on the prediction of the

marine environment rather than directly targeting the ME, so it is

difficult to achieve a direct prediction. However, the pure data-

driven approach has a lower demand for the initial field, and the

current sea surface height observation data have the natural

advantages of being large, continuous, and accurate, making the

data sufficient to support the model computation. This also lays a

solid foundation for the pure data-driven deep learning network

prediction model.

The spatial and temporal smoothing properties of mesoscale

eddy trajectory and feature prediction enable continuous
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observations with a high accuracy, which often causes the spatial

and temporal properties between sequence units to have a nonlinear

correlation. However, previous studies tended to focus on the

predecessor sequence to the successor sequence prediction, which

inevitably leads to the propagation of the errors generated by the

predecessor prediction resulting in backward cumulative

propagation. Although Nian et al. (Nian et al., 2021) utilized

corresponding improvement measures for the non-stationary

state and error accumulation problems in sea surface height

anomaly (SLA) prediction, including optimising the memory and

planned sampling methods, and achieved lower prediction errors,

the error accumulation effect still occurred and was significant. This

was due to the fact that the planned sampling method is only used

to correct the weights via jump verification during the learning

process, thus turning the continuous error into the accumulation of

the stage error, rather than considering the entire range of errors in

the prediction sequence as a whole. In addition, since most long-

lived mesoscale eddies (more than 7 days) have strong continuity

and physical interpretability of the sea surface height field with and

without eddy features, we can make predictions from past

measurements and can also make predictions from past

measurements in the reverse direction. However, the related work

has not been carried out so far. Currently, the models commonly

used for spatiotemporal prediction are generally based on stacked

recurrent neural network (RNN) models or LSTM models. Thus,

the former links the correlation between the temporal and spatial

attributes, while the latter is more prominent in solving the

challenge of gradient explosion, leading to its wider use compared

with the RNN. However, native LSTM models tend to focus more

on non-Markovian attributes in the time series rather than spatial

feature variations in dealing with long time-series prediction

problems. For mesoscale eddy prediction tools that are time-

varying and highly dependent on variations in spatial feature

attributes (Yunbo Wang et al., 2017), one or the other is

important. Second, the mesoscale eddy prediction process is often

accompanied by eddy generation and elimination, as well as fusion,

and existing prediction tools pay more attention to the description

of high-value features rather than those of low-level features, which

is acceptable in semantic recognition-related applications, but

neither of them can be neglected in mesoscale eddy prediction.

To solve the problem of the continuity of the prediction caused by

unidirectional inputs and the problem of complex spatiotemporal

feature description, in this paper, we propose an adversarial

bidirectional LSTM (AB-LSTM) and a set of evaluation criteria

for mesoscale eddy prediction, which obtained a good comparison

effect compared with various spatio-temporal prediction models

and numerical ocean prediction models.
2 Data and methods

2.1 Data

2.1.1 AVISO satellite altimeter data
The SLA data used in this paper were obtained from a gridded

product provided by the Satellite Ocean Archive Data Centre
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(AVISO) of the Centre national d’études spatiales (CNES). This

dataset combines altimetry data from several satellites, such as

Jason-1, Topex/Poseidon, Envisat, GFO, and ERS-1&2, interpolated

to a 1/4°×1/4° grid spatial resolution on the Mercator projection.

The temporal resolution is interpolated from the original resolution

of 7 d to 1 d, the spatial range of the selected data is 25–45°N, 150–

170°E, and the time span is from January 1993 to December 2022.

These data have been widely used by many scholars (Dong et al.,

2014; Duo et al., 2019; Eden and Dietze, 2009), are the most

important sample and training data used in this paper, and are

also an important indicator for evaluating the quality of the

prediction data.

2.1.2 Marine model data
The HYCOM is a data-assimilated hybrid isodensity sigma

pressure (generalised) coordinate ocean model (Chassignet et al.,

2009, 2007). The subset of HYCOM global sea surface height

forecasts hosted in GEE (Google Earth Engine) has been plugged

into a 1/12 degree latitude/longitude grid and has been widely used in

several previous studies (Metzger et al., 2010; Wallcraft et al., 2007).
2.2 Research methods

2.2.1 Mesoscale eddy identification methods
Since the launch of the T/P satellite on 25 September 1992 and

the output of data, the study of ocean mesoscale phenomena using

ocean altimetry data has been taking place for more than 30 years.

Mesoscale eddy identification algorithms have attracted the

attention of several scholars, who have successively proposed

physical parameters (Isern-Fontanet et al., 2004), flow field

geometry (McWilliams, 2016; Nencioli et al., 2010), and machine

vision algorithms (Franz et al., 2018; Xu et al., 2019). Each of the

above-described algorithms has its own advantages, and in

combination with the reality of this paper, in this paper, we refer

to Ma et al (Ma et al., 2024).’s hybrid algorithm that combines flow

field geometry and closed contours as the mesoscale eddy

identification algorithm. Before carrying out the identification

process of the hybrid algorithm, we need to convert the SLA data

into the geostrophic flow field, which is calculated as follows:

u = −
g
f
∂ h
∂ y

 ,   v = −
g
f
∂ h
∂ x

(1)

where u and v are the latitudinal and longitudinal components

of the geostrophic anomalies, respectively, g is gravitational

acceleration, f is the Koch parameter, and h is the height of the

sea surface anomaly.

The flow field geometry method is based on the geometric

characteristics of mesoscale eddies, which are defined as regions

with rotating velocity vectors, a centre at the velocity extremum,

and symmetrically rotating surrounding vectors. The SLA closure

curve method focuses on the detection of sea surface altitude closure

curves, which reduces the likelihood of non-closed eddies. To

reduce the effect of the subjectivity of the sea surface height

difference threshold and to balance the identification effect with
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the subjective threshold sensitivity, a hybrid algorithm that

combines the two methods is used to analyse the sea surface flow

field and the SLA data. When the goal is to detect mesoscale eddy

pairs with the largest overlapping boundaries, the stable

identification of the same eddy using both identification methods

is determined by setting generic custom thresholds (intersecting

area more than 50% and eddy centre distance of less than 1/12°).

The eddy centre of this eddy determined using the flow field

geometry method is considered the actual centre (Figure 1).

In addition, in order to demonstrate the advantages of the

recognition effect of the hybrid algorithm, 1000 days were randomly

selected from the sample data set (daily sea surface height data

within the time span of the data), and the flow field geometry

method, closed contour method and hybrid recognition algorithm

were respectively adopted for recognition. In addition, most experts

and scholars in this field conducted artificial recognition and judged

the recognition effect. The recognition accuracy and the proportion

that should be recognized but not recognized were evaluated by

horizontal comparison. The results are shown in Table 1.

2.2.2 Determination of input frame
data resolution

For the identification of a mesoscale eddy, since all the current

data-driven mesoscale eddy identification algorithms are based on

feature identification of grid point data, the selection of the region

and the determination of the data resolution play crucial roles, and

too large or too small a resolution will have a great impact on the

eddy identification results. Thus, in this paper, to ensure that the steps

of the data extraction, model training, metric evaluation, and testing

of the generalisation capability are characterised by continuity and

referability, we fixed the study area as 25–45°N, 150–170°E. Since the

resolution of the original altimetry data is 1/4°×1/4°, i.e., the

dimension of the data in this part of the region is 80×80, to retain

the details of the original data and facilitate the construction of the

model, we interpolate all of the input–output data to 128×128 using

the Akima (Akima, 1970) interpolation algorithm.

2.2.3 Evaluation metrics for predicting mesoscale
eddy features

In previous mesoscale eddy predictions, most scholars have

tended to use the sea surface height forecast error and the mesoscale
Frontiers in Marine Science 0446
eddy trajectory prediction as the evaluation metrics and have

achieved better experimental results, but these two metrics cannot

evaluate the sea surface height prediction in a complete way. Thus,

in this subsection, we propose a mesoscale eddy prediction

evaluation framework to evaluate the mesoscale eddy prediction

metrics in a complete way. It should be noted that the evaluation

metrics introduced in this subsection need to be predicated based

on the basic information about the eddies obtained using the

mesoscale eddy mixing identification algorithm described in

Section 2.2.1, except for the root mean square error (RSME) and

structural similarity index (SSIM), which is a metric for regional

prediction results.

The characteristics of mesoscale vortices in the prediction can

be expressed in a variety of ways, and the most important ones

that can be obtained from the sea surface information field can be

divided into three categories: The first type is the numerical error

index of eddy prediction, which is reflected as the RSME index of

sea surface height information, which intuitively reflects the

overall error level of the predicted results and the real results.

The second category is the representation of the number of

vortices, because deep learning network is the best solution

generated based on probability theory in two-dimensional

space-time prediction process, while the application of

mesoscale vortices may result in low numerical error and high

distortion. For this reason, Num index, Accuracy index and Dist

index are introduced. These three indexes can directly show

whether the number and location of vortices in the prediction

sequence can be accurately expressed without losing the target.

The third category is the performance of the overall similarity. We

use the SSIM index to show the structural similarity of the whole

selection area. This consideration is that not only the prediction

level of the eddy itself needs to be reflected, but also the

complex interaction field around it needs to be well predicted

and expressed.

The first metric is the sea surface height prediction error. We

use the two-dimensional RMSE as the standard for this metric:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

H �Wo
H

i=1
o
W

j=1
(Oa(i, j) − Pa(i, j))

2

s
  i = 1, 2, 3…H;   j

= 1, 2, 3…W, (2)
FIGURE 1

Schematic diagram of mesoscale eddy extraction in KE region utilizing the hybrid recognition algorithm.
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where H and W are the length and width of the data,

respectively, and Pa and Oa are the predicted and original

data, respectively.

The second metric is the mesoscale eddy prediction hit rate

(Accuracy) and mesoscale eddy trajectory error (Dist). We take the

distance of the same eddy centre (km) in the eddy identification

results corresponding to the real dataset and the prediction dataset

as the daily prediction trajectory error, in which the same eddy hit is

discriminated by the fact that the area inside the two eddy profiles

matches 75% or more of both the prediction results and real data in

the same day. Then, we sum and average the matched eddy centre

distances on that day to obtain the trajectory error indicator for that

day, which is calculated as follows:

Dist =
1
no

n
m=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xO(m) − xP(m))2 + (yO(m) − yP(m))2

q
,

Accuracy =
NP

NO
*100%, (3)

Where n is the total number of identified matching eddies on

that day, xO,   yO, xP , and yP are the horizontal and vertical

coordinates in the real data identified eddy results, and NP and NO

  are the number of predicted eddies in the region and the number of

real eddies, respectively.

The third metric is the sea surface prediction SSIM, which is one

of the indicators used to measure the structural similarity of the

data. When we have two datasets x, y, the structural similarity can

be defined as follows:

SSIM(x, y) =
(2mxmy + c1)(2sxy + c2)

(mx
2 + my

2 + c1)(sx
2 + sy

2 + c2)

c1 = (k1L)
2  ,   c2 = (k2L)

2   (4)

where mx is the mean of x,    my is the mean of y, s 2
x is the

variance of x, s 2
y is the variance of y, and sxy is the covariance of x

and y. L is the dynamic range of the pixel value, which is set to 100

in this paper, and k1 and k2 are constants, which are set to 0.01 and

0.03, respectively, in this paper.
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2.3 Data cleaning

Both ocean observation data and model prediction data have

the advantages of wide coverage and clear grid, but they also often

contain uncontrollable abnormal data. Due to the various data

sources used in this paper, in order to ensure the quality of the

data when forming the deep learning sample dataset, We will

perform data cleaning on the data used for training, testing,

verification and evaluation in this paper. Drawing on the

experience of several atmospheric and oceanic researchers, we

used the Mahalanobis denoising method (Eq. 5). First, the

sequence data of sea surface height is obtained, and the

Mahalanobis Distance (DM) of each two-dimensional grid point

in the sequence is calculated. When DM is greater than three

standard deviations of the average distance, the grid point data is

considered as “abnormal”; when the number of “abnormal” grid

points exceeds 1% of the total grid points, the entire sequence

including the two-dimensional grid point data is discarded.

m =
1
no

n

i=1

xi

S =
1

n − 1o
n

i=1

(xi − m)(xi − m)T

DM(xi) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi − m)S−1(xi − m)

p
(5)
3 Model

3.1 Spatiotemporal Long Short-Term
Memory Model

Suppose we are monitoring a dynamic system in which each

measurement is recorded at all locations in a spatial region

represented by an M  �  N grid. From a spatial point of view,

these P measurements observed at any time can be represented by

the tensor X ∈ RP�M�N (Liu et al., 2018; Wang et al., 2021). From a

temporal point of view, the observations at t time steps form a

tensor sequence of X1,X2,X3,X4,…,Xt . The spatiotemporal

predictive learning problem is to predict the most probable length −

K sequence in the future given the two previous length-J sequences,

including the current observation:

X̂ t+1,…,   X̂ t+k = a rgmax
Xt+1,…,Xt+k

p(Xt+1,…,Xt+kjXt−j+1,…,Xt) : (6)

Sequence prediction has been a popular research topic in the field

of machine learning, and LSTM, as an emerging RNN model with

long- and short-term memory, has led to a breakthrough in dealing

with the solution of long-term-dependent problems. Shi et al. (Shi et al.,

2015) creatively used the input-to-state and state-to-state methods to

visually extract the inputs using stacked LSTM layers and achieved
TABLE 1 Results of horizontal comparison of recognition effects of
various recognition methods.

Methods

Recognition
Accuracy (%)

Failure to
recognize* (%)

AE CE AE CE

Flow field geometry 82.12 76.17 1.52 2.27

Physical parameter 73.24 70.56 2.36 3.52

Closed profile 79.38 79.01 0.62 0.95

Hybrid (ours) 88.32 80.17 1.97 2.34
*Represents eddies that should be detected but are not and the bolded part is the one with
better value.
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pioneering research results in this field. However, the current problem

is that this model needs to continue learning and predicting from the

previous state. This means that the continuity prediction will be based

on the previous prediction result, which will lead to the accumulation

of error and feature bias. To solve this problem, several scholars have

improved this model (Kalchbrenner et al., 2017; Patraucean et al., 2015;

Villegas et al., 2017). In this paper, we utilize a spatiotemporal long-

and short-term memory model (ST-LSTM) (Wang et al., 2022) as the

basis of the generation of the model. Based on the stacking technique of

the convolutional LSTM (Conv-LSTM), the model obtains higher

experimental results than other models by proposing spatiotemporal

memory flow and memory transfer across layers in several prediction

results. The model’s architecture is shown in Figure 2.

The formulas are as follows:

Gt = tanh(WxG ∗Xt +WHG ∗Ht−1 + bG)

It = s(WxI ∗Xt +WHI ∗Ht−1 + bI),

Ft = s (WxF ∗Xt +WHF ∗Ht−1 + bF),

Ct = Ft ⨀Ct−1 + It ⨀Gt ,

gt=tanh(Wxg∗Xt+WMg∗Mt−1+bg ),

it=s (Wxi∗Xt+WMi∗Mt−1+bi),

f t=s (Wxf ∗Xt+WMf ∗Mt−1+bf ),

Mt=f t⨀Mt+it⨀gt ,

Ot=s (WxO∗Xt+WHO∗Ht−1+WCO∗Ct+WMO∗Mt+bO),

Ht=Ot⨀tanh(W1�1∗½Ct ,Mt �), (7)

where s is the activation function,W corresponds to the process

weight of the corner scale, b is the bias term (distinguished by the

corner scale), X is the input sequence, C is the output cell, and H is

the hidden state. The most important feature of the ST-LSTM

model is that the memory cell is divided into two parts, namely, the

classical Ct temporal cell and the Mt spatio-temporal cell, and they

are distinguished in the level of the data flow. The Ct stream is

passed continuously between the same corresponding layers of

different stacks according to the classical Conv-LSTM. The Mt

stream is first passed layer by layer in the same stack, repeated as

the input of the next stack, and finally reduced to the same

dimension by a 1×1 convolutional gate and outputted as Ht. This

is different from the spatiotemporal memory transfer method of the

classical Conv-LSTM to a large extent.
3.2 Generative adversarial network models

The main idea of the basic model of the generative adversarial

network (GAN) is to make the two neural networks continuously
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play the binary extremely large and extremely small game, during

which the model gradually learns the real sample distribution. In

general, the training is considered complete when the two networks

reach a Nash equilibrium in their want confrontation (Goodfellow

et al., 2014).

The basic GAN model is shown in Figure 3. The input of the

generator network (denoted as G) is a random variable (denoted as z)

from the hidden space (denoted as pz) and the output of the generator

samples, the training goal of which is to improve the similarity

between the generator samples and real samples, so that they are

indistinguishable from those of the discriminator (denoted as D)

network, i.e., to make the distributions of the generator samples

(denoted as   pg  ) and real samples (denoted as pdata) as identical as

possible. The training objectives of the native GAN network can be

summarized as follows: to minimize the distance between  pg and

pdata and to maximize the accuracy of the samples discriminated by

D, i.e., the value of D(x) tends to be 1 and the value of D(x0) tends to
be 0. This leads to the basic GAN network objective function

expression:

min
G

max
D

Exe pdata(x)
½logD(x)� + Eze pz(z)

½log (1 − D(G(z)))� : (8)
3.3 Adversarial bidirectional long- and
short-term memory models

To solve the problems of the LSTM, namely, unidirectional

prediction error and continuous accuracy of the spatiotemporal

prediction, we embed a 4-layer stacked ST-LSTM model as the

generative unit into the adversarial network model as the core of the

generator. Then, we divide the generator inputs into forward

spatiotemporal sequence inputs and inverse spatiotemporal

sequence inputs and control the input streams of the two

according to the discriminative results of the discriminators in a

training cycle to achieve effective bi-directional training (Figure 4).

To increase the learning ability of the overall trend, we train a global

discriminator (Iizuka et al., 2017) to discriminate whether the

output is true. The purpose of constructing the global

discriminator is to strengthen the ability of the discriminator to

identify the overall characteristics of the input region and to

emphasise the importance of guiding the model to pay more

attention to the overall trend of the sea surface data. The global

discriminator consists of five consecutive convolutional layers, each

of which has a step size of 2. It uses a fully connected layer and a

sigmoid output layer to process the input data of size 128 × 128 into

a high-dimensional vector, which is then transformed into a

continuous and normalised real probability distribution by a fully

connected layer and a sigmoid transfer function.

In this paper, we use a total of 10,000 days of sea surface

altimetry data from 1 January 1993 to 19 May 2020 as the training

(first 90%) and validation datasets (second 10%), and the sea surface

altimetry data from 20 May 2020 to 20 May 2022 as the model

generalisation test datasets (validation and testing sets). We process

each of the three datasets into time-series blocks with a length of 10

days (structure 3-4-3: the first number is the length of the forward
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input sequence, the second number is the length of the target

prediction sequence, and the third number is the length of the

reverse input sequence, as shown in pdata in Figure 4), with 3 days of

forward prediction input (pforward) in each block, 7 days (including 3

days of reverse input) of target prediction data (x), and 3 days of

reverse prediction input pbackward , corresponding to the generation

results denoted as xforward and xbackward . The next batch of inputs in

the generator is updated after the discriminator decides whether it is

true or false and updates the current batch of generators (ST-LSTM

cells) and the discriminator weights. The corresponding objective

function is updated to

min
G

max
D

Exe pdata(x)
½logD(x)� + Exe pforward

½log (1

− D(G(pforward))) + Exe pbackward
½log (1 − D(G(pbackward)))� (9)

In the model proposed in this paper, we use the L1+L2 loss

function and the Adam optimiser (Kingma and Ba, 2014) for the

training, and in the actual training process we pre-train the GAN

network and then access the ST-LSTM module. Regarding the

setting of the hyperparameters, in general, the learning rate is set

within 0.0001–0.1. A learning rate that is too high will make the
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model training effect poor, while a learning rate that is too low will

make the model training convergence slow. Thus, through many

adjustments, we determine the learning rate to be 0.0001, the batch

is determined to be eight, and the corresponding epoch is

appropriately increased to 100,000. If the dataset has a large

amount of noise, we should try to minimise b1 and b2. Although
the average coefficients converge faster, they are more susceptible to

noise. In this paper, we set b1 = 0.9 and b2 = 0.999. All of the

experiments are implemented in Pytorch = 3.10 (Paszke et al., 2019)

and trained on an NVIDIA RTX4080. Additionally, it should be

emphasized here that the parameter Settings of the Adam optimizer

in this paper are determined by many attempts in the experiment

process and previous experience of Adam optimizer parameters

when applying deep learning models in the Marine field.
4 Model evaluation

In this subsection, first, we discuss the effect of different

prediction lengths on prediction accuracy to confirm the optimal

prediction range of the proposed model. Then, we conduct a multi-
FIGURE 3

Schematic diagram of the basic GAN model.
FIGURE 2

Schematic diagrams of the ST-LSTM model (left) and the stacked sequence monolayer (the dark blue marks are space-time fluid cells different from
the original Conv-LSTM).
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criteria comparison with the two modal datasets and a variety of

existing spatiotemporal prediction models. Finally, we test the

generalisation ability of the model using the day-by-day

prediction history data from HYCOM. It should be noted that all

input and output data used in this process are first interpolated to

128 × 128 using the interpolation method described in Section 2.2.2.

Based on the conclusion of Ma et al. (Ma et al., 2019), the polarity of

the mesoscale eddies has a limited effect on the smoothness, as well

as the accuracy of the prediction process, so we do not take the issue

of eddy polarity into account during the training process, but we do

discuss it in the evaluation process.
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4.1 Prediction effect

Figure 5 shows the trend of the training loss after 100,000

iterations. The black solid line in the figure is the real value of the

training loss from iteration to iteration, and the red line is the

higher-order smoothing curve of the black real loss. It can be seen

from Figure 5 that the training loss of the model decreases rapidly

during the initial training and stabilises at 10,000 iterations. After a

long period of small and slow increase, it continues to decrease

slowly after 40,000 iterations and finally converges slowly after

90,000 iterations.
FIGURE 5

Plot of training loss versus number of iterations for the AB-LSTM and the AVISO sea surface height dataset. Due to the large span of the original
training loss (Y-axis), to better show the trend of the change, we present it in logarithmic form, which results in the absence of some of the
magnitude (the original magnitude is in cm), The black line is the original value of the training loss, and the red line is the error smoothing curve after
5-order Fourier fitting).
FIGURE 4

Overall schematic diagram of the AB-LSTM model.
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Figure 6 shows the effect of the prediction experiment for 7 days for

different numbers of iterations. Intuitively, the prediction effect is good.

As the number of iterations increases, the model prediction effect

continues to improve. The effect tends to stabilise at 50,000 iterations,

and the subsequent prediction results are not easily distinguished by

the human eye. In addition, it can be seen that the prediction sequences

for the different numbers of iterations exhibit good continuity of the

overall trend, and the mesoscale eddy characteristics are more obvious,

except for the test with 5000 iterations. This indicates that the training
Frontiers in Marine Science 0951
process is effective. Figure 7 shows the change trends of the RMSE and

SSIM metrics for the AB-LSTM for the AVISO sea surface height

dataset with increasing iteration numbers. It can be clearly seen that the

results shown in Figure 7 are highly consistent with the prediction effect

shown in Figure 6. This also shows that the selected metrics can

accurately reflect the actual performance of the model in terms of the

prediction process.

To discuss the effect of the forward and backward inputs on the

model training in the AB-LSTM model, in this subsection we set up
FIGURE 6

Schematic representation of the effect of the prediction experiment with different numbers of iterations. The predicted values are shown in the
red boxes.
FIGURE 7

Plots of RMSE and SSIM metrics versus number of iterations for the AB-LSTM and the AVISO sea surface height dataset.
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control experiment groups A (forward and backward) and B

(forward only), randomly select 500 sets of experimental data

from the sample dataset, which all have 3-4-3 structures, and

make a 7-day prediction. The obtained results are averaged

within each group according to the day-by-day prediction

results (Table 2).
4.2 Model comparison validation

In this subsection, to demonstrate the feasibility and the

advantages of the model, we compare the AB-LSTM with the

HYCOM model forecast and the FC-LSTM (Srivastava et al.,

2015), PredRNN (Wang et al., 2022), and Conv-LSTM (Shi et al.,

2015) spatiotemporal prediction methods under the 3-4-3 input

block conditions described in Section 4.1 and using the evaluation

metrics described in Section 2.2.3. It is worth emphasizing that the

horizontal comparison verification of the model should be

discussed in different scenarios. For mesoscale vortices, the
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different properties of vortices and the setting of the research area

are very important elements for scene division. Therefore, we will

reflect the model verification effect under different research areas in

the subsequent regional generalization verification. The model

generalization test for differentiating AE and CE in a single eddy

prediction scenario is also presented.

Since the prediction results of AE and CE are similar, we

consider the polarity of the eddy to be less influential on the

comparison experiments, so we will not distinguish between them

in this subsection. To avoid the high prediction effect caused by the

use of the sample dataset and the inability to effectively compare the

results of the experiments, we conduct the experiments on 1000 sets

of sea-surface height data that are not included in the sample data.

Data structure is still 3-4-3, and the metrics are averaged within the

groups. We set the prediction area to the KE region of 25–45°N and

150–170°E. The results are shown in Figure 8.

As can be seen from Figure 7, according to all the computational

indexes, the AB-LSTM yields better results. The AB-LSTM’s RMSE

index increases from 1.97 cm on the first day to 7.70 cm on the
TABLE 2 Quantitative analysis of the effect of the forward and backward input conditions on the prediction.

Assessment
Indicators

Forecasting Days

1 2 3 4 5 6 7

RMSE
(cm)

A 1.97 2.90 3.90 4.77 5.80 6.84 7.70

B 2.42 3.12 4.91 5.11 6.23 8.65 9.39

Accuracy
(%)

A 90.0 81.3 72.7 72.7 66.7 57.1 54.6

B 85.7 75.0 62.5 61.5 52.9 50.0 41.3

SSIM
A 0.91 0.86 0.81 0.76 0.71 0.66 0.61

B 0.88 0.83 0.78 0.75 0.69 0.64 0.57

Dist (km)
A 6.34 6.52 7.40 8.18 9.27 9.80 11.61

B 6.88 7.00 7.82 8.39 10.55 11.65 12.96
A (forward and backward) and B (forward only).
FIGURE 8

Plots of the (A) RMSE, (B) SSIM, (C) accuracy, and (D) Dist metrics for a 7-day forecast series for multiple forecasting methods and models.
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seventh day, which is the same trend as the other methods, but the

values are significantly lower than those of the other prediction

methods. The AB-LSTM yields lower RMSE values than the

unidirectional model in the control group, which distinguishes

between positive and bidirectional inputs. Regarding the SSIM

index, the AB-LSTM method has values similar to several of the

prediction methods, except that the numerical prediction is within

the range of 0.6–0.9 and only differs from the other prediction

methods by about 0.05. This is since several of the deep learning-

based spatial-temporal prediction models utilized as the control

group in this paper are able to achieve very good results in terms of

structural similarity, so it is not possible for this metric to clearly

reflect the superiority of the AB-LSTM. The AB-LSTM has a much

higher Accuracy, with a hit rate of more than 50% during the

prediction sequence (days 1–7). This is 10–20% better than those of

the other methods. On average, it achieves a 5% higher Accuracy in

the control experiments and can distinguish between forward and

reverse inputs. This suggests that the forward and reverse inputs are

important for the model in the long mesoscale eddy time series

prediction. The AB-LSTM model has a slightly better Dist value.

The prediction distance error ranges from 6.34 to 11.61 km, which

is generally 1–10 km lower than those of the other prediction

methods for the 7-day prediction series. The AB-LSTM model with

bidirectional input is more accurate in terms of the prediction

results after the fourth day compared with the model with only

forward input. After the fourth day, the prediction results of the AB-

LSTM model with bi-directional inputs are lower, which suggests

that the bi-directional inputs have a positive effect on the model in

the long-term prediction of mesoscale eddies. Overall, compared

with the traditional numerical prediction models’ results, the spatial

and temporal prediction models that use deep learning algorithms

have a greater advantage in terms of the overall prediction error and

mesoscale eddy-related prediction indexes. For the sample dataset

introduced in this paper, according to all the metrics, the AB-LSTM

has the best performance, which directly proves the superiority of

the AB-LSTM. In addition, by analysing the experimental results of

the control experiment group, it was found that the two-way input

training of the confrontation has more advantages and positive

significance compared with the one-way input.
4.3 Model generalisation test

Model generalisability refers to the model’s ability to adapt to

new data, i.e., whether the model can make accurate predictions for

data that does not appear in the training set. A model with a strong

generalisability can perform well on different datasets, not just on

the training set. In summary, generalisability concerns the model’s

ability to adapt to unknown situations (Liu and Aitkin, 2008). To

explore the generalisability of our model, we experimentally validate

the AB-LSTM using data from the same region as the data in the

training sample set but that are not included in the training and

testing sets. We also test the model on data for other sea areas. In

this paper, we take the Oyashino Extension (OE, 35–45°N, 140–

150°E) region and the North Pacific Subtropical Countercurrent

(STCC, 15–25°N, 130–140°E) as the validation areas. It should be
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noted that in this subsection, the sea surface height data for the OE

and STCC regions are processed into 128×128 grids using the data

processing method described in Section 2.2.2, and the data span

from January 1993 to 31 December 2022. The experimental data for

the KE region, which are not included in the training and testing

datasets, span from 1 to 30 October 2023 and are processed in the

same manner.

As can be seen from Figure 8, the prediction results of the tested

models are slightly poorer than the prediction results presented in

Section 4.2, but the overall effects are similar, and all of the models

yield more stable and good prediction results. The AB-LSTM is still

better than the other models in terms of several metrics. For the

prediction results for the three regions, the RMSE index remains

within the range of 2.25–9.41 cm, which is slightly higher than the

prediction results of 1.97–7.70 cm obtained in Section 4.2. The

SSIM indicator remains within the range of 0.52–0.85, which is

slightly lower than the range of 0.61–0.90 obtained in Section 4.2.

The Accuracy remains within the range of 48.35–84.03%, which is

slightly lower than the range of 54.60–90.00% obtained in Section

4.2. The Dist remains within the range of 6.71–12.89 km, which is

slightly higher than the range obtained in Section 4.2. The possible

reason for this result is that the OE region and STCC region are not

within the region of the training set, and there may be motion

features that are not fully fitted by the model, which may lead to the

result that the AB-LSTM fits the KE region data better and the data

for the other two regions slightly worse in terms of the prediction

effect. The mesoscale eddy recognition algorithm used in this paper

has a better recognition ability, but it still has a slightly worse

recognition ability. In addition, it still has the possibility of

identification error, and the mesoscale eddies identified from the

predicted sea surface height data may have the intermittent

appearance or disappearance of error, which would lead to

problems in estimating the distance deviation of the centre of the

mesoscale eddy and will make the error falsely high.

Based on the prediction results presented in Figure 9, several of

the models achieve better prediction results in several sea areas, but

the performance of the AB-LSTM is the best, which proves that the

AB-LSTM model has an acceptable generalization ability for

different sea surface height datasets.
4.4 Single eddy prediction effect

Although regional sea surface prediction can reflect the overall

prediction effect better, the prediction effect on single eddies is not

fully reflected, so in this subsection, we predict multiple single

eddies and use the strength at the centre of the eddy (denoted as the

SSH in the centre of the eddy in this paper) and the eddy radius to

describe them. Thus, the prediction effect of single eddies will be

more clearly reflected in the form of data. Figure 10 shows a

schematic representation of the evolution of a typical dipole pair

over the course of its evolution.

We randomly select 1000 days of data in the sea surface height

sample dataset used in this paper as experimental samples, and then we

use the AB-LSTM model to make predictions for a period of 7 days

according to the 3-4-3 structure. We use the mesoscale eddy mixing
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FIGURE 10

Schematic of the 7-day evolution of a pair of dipoles located in the KE region on 1 September 2017. To make the dipole evolution visually clearer,
we converted the sea surface height data into a pseudo-colour map with an intercept area of 28–32°N, 146–150°E.
FIGURE 9

Generalisation test of the AB-LSTM model using data for the (A) OE region, (B) STCC region, and (C) KE region.
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identification algorithm to identify the matched eddy pairs (real vs.

predicted). Then, we extract their centre eddy strengths and eddy radii

as the control group for the experiments. To avoid the unmatched

vortices and matching errors caused by the identification algorithms

(described in the previous section) and thus to more effectively reflect

the prediction effect, we exclude the matching error terms. Table 3

presents the single eddy prediction errors in the form of within-group

averages and the distinction between AEs and CEs.

The Radius metric is the equivalent radius of the identified

eddy. As can be seen from Table 4, the AB-LSTM model also

achieves relatively good prediction results in single-eddy prediction.

In terms of the eddy centre height errors, the AE centre height

errors are within the range of 1.12–6.59 cm, and the CE centre

height errors are within the range of 1.31–7.86 cm. Overall, both

increase as the prediction time increases. However, under the

condition of distinguishing between the AEs and CEs, there is not

a large difference in the overall errors of the two, which is similar to

the conclusion of Wang et al (Wang et al., 2020). In terms of the

eddy radius error, it also exhibits an overall prediction result with a

trend similar to that of the eddy centre height error, which indicates

that the model is more stable in the prediction process. In order to

reflect the advantages of the AB-LSTM model in the single-eddy

experiment, we conducted experiments according to the same

sample collection method, and the results are shown in Table 4.

From Table 3, AB-LSTM is significantly better than the primary

Conv-LSTM in single-eddy prediction results, and the experimental

results of the AB-LSTM model are continued by the experimental

results in Table 2. It is worth emphasizing that we have obtained the

horizontal comparison results among multiple models above, so in

the horizontal comparison experiment of single eddy prediction, we
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only compared the two models with similar performance as the AB-

LSTM model.
4.5 Additional experiment

In the first few sections of this chapter, the AB-LSTM model

proposed by us has achieved a small advantage in the image numerical

evaluation index (SSIM, RMSE), and an even greater advantage in the

feature prediction of mesoscale vorticity. However, its performance in

the prediction error analysis results on the 7th day still makes us

worried: Whether the trend of error change shown by AB-LSTM

during the 7-day forecast will lead to more drastic changes over a

longer forecast time horizon, making the prediction model worse than

other spatio-temporal prediction models over a longer time horizon.

Since the data input format we selected in the previous paper is 3-4-3

mode, which is not fully applicable for a longer prediction time, we use

a longer data input mode here: 3-7-3. As a comparison, we still use

RMSE, Accuracy, SSIM and Dist for error quantification (for longer

forecast time series, a longer input should be selected).

After comparing the results of the two data input modes, we can

find from Table 5 that there is no significant increase in prediction

error on the whole. The 3-4-3 input mode has better prediction

effect within 3 days, while the 3-7-3 input mode has better lasting

prediction ability within a longer prediction period. This error is

generally reversed on the fourth or fifth day of prediction, which

also shows a relatively easy to understand trend, that is, different

input data models are generated under different deep network

models, and with the change of its application scenario, its

prediction effect will also change.
TABLE 4 Quantification of single eddies during the 7-day forecast period (different models and no distinction between AE and CE).

Assessment
Indicators

Forecasting Days

1 2 3 4 5 6 7

Amplitude
(cm)

AB-LSTM 1.21 2.69 3.44 3.81 6.00 5.78 7.23

PredRNN 1.52 2.94 3.98 4.22 5.97 6.71 8.64

Conv-LSTM 2.99 4.12 5.32 6.64 8.24 10.58 12.21

Radius
(km)

AB-LSTM 7.30 8.84 9.81 11.93 12.93 15.60 19.39

PredRNN 8.15 8.99 10.10 12.52 13.17 16.02 21.10

Conv-LSTM 12.98 14.35 16.58 19.71 21.39 24.14 26.54
TABLE 3 Quantification of single eddies during the 7-day forecast period.

Assessment
Indicators

Forecasting Days

1 2 3 4 5 6 7

Amplitude
(cm)

AE 1.12 2.54 3.12 3.27 5.67 5.21 6.59

CE 1.31 2.83 3.76 4.35 6.33 6.34 7.86

Radius
(km)

AE 6.82 8.32 9.37 10.17 10.62 12.64 17.24

CE 7.77 9.36 10.24 13.69 15.24 18.56 21.54
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5 Summary and outlook

In this study, we acquired AVISO satellite altimeter data and

HYCOM ocean model forecast data as the basis of our work. These

data not only provide rich ocean information but also provide the

necessary data support for the identification and characterization of

mesoscale eddies. Then, we effectively identified and extracted the

features of mesoscale eddies utilizing the hybrid mesoscale eddy

identification algorithm, which has a better identification effect. We

combined it with the sea surface height data and established an

evaluation system for mesoscale eddy prediction, which includes

four test metrics, namely, the RMSE, SSIM, Dist, and Num.

Subsequently, we combined the time-series prediction

advantages of the LSTM model with those of previous studies,

utilized the ST-LSTM model as the base generative model, and

stacked them to form a prediction network in the same way as the

Conv-LSTM. In addition to introducing the generative adversarial

network model, which has a strong generative capability, the AB-

LSTM model was constructed by embedding the ST-LSTM module

into the generator therein. Considering that previous studies have

mostly focused on unidirectional sequence prediction without using

backward-assisted prediction, we incorporated backward sequence

prediction into the input sequences based on the AB-LSTM model

and obtained better results than when only unidirectional inputs

were utilized. The RMSE was 1.97–7.70 cm, the SSIM was ≥0.61, the

Accuracy was ≥54.6%, and the Dist was 6.34–11.61 km. All of the

above indicators were better than those of the other models and

numerical prediction products, thus achieving the goal of this study.

In the training process, we used the Adam optimizer as the

hyperparameter container, and through many experiments, we

determined that the number of iterations should be 100,000 times

and the number of batches should be 8. The experimental results

show that the relevant parameters were set reasonably, and a

relatively smooth trend was maintained in the training iteration

loss. Then, we tested the model’s generalization ability using data

for a different sea area and new data for the same sea area to achieve

data expansion of the non-training testing set. The experimental
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results show that the AB-LSTM also has a good prediction ability

for data that are different from the training test sample dataset. Its

prediction ability is only slightly lower than the training sample

prediction results according to the indicators, and it is still able to

maintain a large improvement compared with the other models.

Therefore, the results of the generalization test prove that the AB-

LSTM has an acceptable generalization ability. Finally, to address

the problem that the full-domain prediction error cannot directly

describe the single-eddy prediction effect, we conducted single-eddy

prediction analyses using randomly selected pairs of identified

vortices. The results show that the eddy polarity has little effect

on the prediction effect and that the single-eddy prediction error

tends to be smaller than the full-domain prediction error.

Although the AB-LSTM model developed in this study

preforms better than other prediction models in terms of the

prediction error, it still has some shortcomings. First, the

mesoscale eddy identification algorithm used in this paper was

found to have discrepancies in terms of matching the real eddy with

the predicted eddy, and there is no matching criterion that can be

adopted, which leads to the fact that we have no choice but to

eliminate the eddy pairs that are incorrectly matched in our single-

eddy prediction analysis. To a certain extent, this is not possible in a

single eddy prediction analysis. This may make our experimental

results better than the real results to a certain extent. Second, more

physical parameters should be introduced into the single-eddy

prediction instead of only using the eddy centre height and radius

to evaluate the error. In the future, we plan to introduce vorticity,

shear deformation, and tensile deformation to improve the

evaluation of the single-eddy prediction effect. Third, the

computational redundancy of the AB-LSTM model is greater

than those of several of the prediction models cited in the paper.

To achieve better results, the AB-LSTM takes longer to run,

occupies more memory, and has more training iterations, which

means that our model still needs to be improved in terms of

performance. In the next step, we will try to introduce more

mesoscale eddy physics information to improve the prediction

effect while improving the model.
TABLE 5 Quantification of eddies over a 7-day forecast period (No distinction is made between AE and CE).

Assessment
Indicators

Forecasting Days

1 2 3 4 5 6 7 8 9 10

RMSE
(cm)

A 1.97 2.90 3.90 4.77 5.80 6.84 7.70 8.57 9.44 11.01

B 2.04 3.11 3.97 5.13 5.77 6.37 7.26 8.29 9.17 10.67

SSIM
A 0.91 0.86 0.81 0.76 0.71 0.66 0.61 0.55 0.50 0.43

B 0.88 0.82 0.78 0.73 0.69 0.65 0.62 0.57 0.53 0.49

Dist(km)
A 6.34 6.52 7.40 8.18 9.27 9.80 11.61 12.17 14.25 15.97

B 7.15 7.39 7.75 8.21 8.69 9.22 10.15 10.98 12.19 14.76
fro
A (3-4-3 input format) and B (3-7-3 input format).
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and Shengqiang Wang6*
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Nagoya, Japan, 5Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute
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Sciences, Nanjing University of Information Science & Technology, Nanjing, China
The spatiotemporal variability of chlorophyll-a (Chl-a) in the Arabian Sea (AS) and

Persian Gulf (PG) has been widely studied, but long-term trends and influencing

factors remain less understood due to data gaps. This study investigates Chl-a

variability and trends from 2001 to 2019 using reconstructed MODIS-Terra

monthly Chl-a and sea surface temperature (SST) data, employing the Data

Interpolating Empirical Orthogonal Functions (DINEOF) method for

high-accuracy reconstruction. Results reveal pronounced seasonal variability,

with Chl-a peaks exceeding 3 mg m-3 during southwestern monsoons and

ranging between 1–3 mg m-3 during northeastern monsoons, with the lowest

levels in transitional months. Spatially, the highest Chl-a concentrations were

observed in the western and northeastern AS, influenced by summer

southwestern (SW) and winter northeastern (NE) monsoons. Trend analysis

using Sen’s slope and the Mann-Kendall test indicates significant Chl-a

declines (-0.002 to 0) along ASPG coasts, with slight increases (~0.005) in the

southeastern AS and southern PG. Rising SST anomalies (SST_A) correlated with

reduced Chl-a anomalies (Chl-a_A) in the western AS, while increased wind

anomalies (Wind_A) enhanced Chl-a_A in the western AS but decreased it in the

southern PG. These findings enhance our understanding of the complex

environmental dynamics shaping the ASPG ecosystems.
KEYWORDS

chlorophyll-a, data interpolating empirical orthogonal function, Arabian Sea and
Persian Gulf, MODIS, sea surface temperature, wind
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1 Introduction

Chlorophyll-a (Chl-a) concentration serves as a key

bioindicator of phytoplankton biomass and marine productivity,

making it crucial for monitoring the health of marine ecosystems.

The Arabian Sea (AS) and Persian Gulf (PG) is recogonized as one

of the most productive regions in the world (Sathyendranath et al.,

1996). Understanding Chl-a variability and trends over the AS and

PG (ASPG) is crucial for predicting marine ecosystem health,

managing fisheries sustainably, and providing early warnings for

harmful algal blooms. Satellite remote sensing has proven to be an

effective tool for examining the spatiotemporal dynamics of Chl-a

in the ASPG (Goes et al., 2005; Prakash et al., 2012; Moradi, 2020;

Sarma et al., 2012; Jayaram et al., 2018; Moradi and Moradi, 2020;

Bordbar et al., 2024), thanks to its broad coverage and real-time

observation capabilities.

Previous research in these areas has revealed distinct seasonal and

interannual patterns in Chl-a variability, which are often associated

with factors such as sea surface temperatures (SST), monsoonal

winds, upwelling events, and large-scale climate phenomena like

the Indian Ocean Dipole and El Niño (Jayaram et al., 2018; Nezlin

et al., 2007; Sarma et al., 2012; Seelanki et al., 2022). Furthermore,

some studies have reported trends in Chl-a that either increase or

decrease over different time periods, typically related to changes in

SST, monsoonal winds, and sea level anomalies (Prakash et al., 2012;

Goes et al., 2005; Prasanna Kumar et al., 2010). However, many of

these studies in the ASPG region have been limited by their relatively

short time frames or their focus on specific regional areas, which may

restrict the generalizability of their findings. Expanding research to

cover longer time periods and broader regions could provide a more

comprehensive understanding of Chl-a variability and its underlying

drivers. Additionally, it has been observed that satellite-derived

products in the ASPG are often affected by suboptimal conditions,

such as sun-glint and cloud cover. These factors can lead to gaps in

the satellite-derived geographical data, which may result in

incomplete information for subsequent analyses.

Data Interpolating Empirical Orthogonal Function (DINEOF)

has emerged as a powerful method for reconstructing missing

geophysical data, such as SST and Chl-a. Compared to traditional

methods like linear interpolation and optimal interpolation, DINEOF

offers significant advantages, including faster computation,

parameter-free processing, and the ability to handle multiple

correlated data types without prior de-correlation scales (Miles and

He, 2010). These attributes make DINEOF particularly suitable for

oceanographic applications where satellite observations are often

hindered by clouds, sun-glint, and aerosols, leading to data gaps.

Despite alternatives like machine learning showing promise, it often

requires extensive in-situ data for training, which limits their

scalability, particularly in regions like the ASPG. DINEOF has

demonstrated success in various marine environments worldwide,

including the South Atlantic Bight, the coastal Gulf of Alaska, the

Gulf of Maine, the Gulf of Mexico, as well as the Sargasso Sea, and is

currently employed in global ocean color products by NOAA (Li and

He, 2014; Shropshire et al., 2016; Liu and Wang, 2018). However, in

the ASPG region, the application of DINEOF is still underexplored,

with issues such as limited studies on its efficacy and its primary focus
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on Chl-a reconstruction (Jayaram et al., 2018), highlighting the need

for further research to assess its potential in filling satellite-derived

data gaps across different oceanographic parameters.

This study has two primary objectives: (1) to investigate long-

term trends and associated spatiotemporal variability in Chl-a from

2001 to 2019 across the ASPG, and (2) to assess the influence of SST

and wind on Chl-a variability and trends. To achieve these goals,

DINEOF was employed to reconstruct missing MODIS-Terra Chl-a

and SST data over the study period. Subsequently, we investigated

the monthly Chl-a variability and conducted a trend analysis across

the entire ASPG. Additionally, we investigated the correlation

between Chl-a anomalies (Chl-a_A) and SST anomalies (SST_A),

as well as between Chl-a_A and wind anomalies (wind_A),

providing deeper insights into the environmental drivers of

marine productivity in the ASPG.
2 Data and methods

2.1 Study area and its subregions

The AS and PG, both located in the northwestern Indian Ocean

(Figure 1), exhibit distinct oceanic and atmospheric processes that

are critical for regional climate regulation and marine productivity.

The AS, spanning 5°N to 25°N and 55°E to 77°E, is characterized by

monsoon-driven ocean dynamics, influenced by the seasonal

reversal of monsoon winds and the region’s unique geography.

These winds generate variations in mixed layer depth, thermocline

shifts, and nutrient upwelling, particularly along the coasts of

Somalia and Oman during the Southwestern Monsoon, resulting

in high phytoplankton biomass and biological productivity (Goes

et al., 2005; Khan et al., 2023; Wiggert et al., 2005; Prasanna Kumar

et al., 2010). Additional factors influencing biological activity

include wind mixing, Ekman pumping, mesoscale eddies, and

large-scale climate events like the Indian Ocean Dipole (IOD) and

El Niño, which impact both phytoplankton blooms and surface
FIGURE 1

A bathymetry map of the ASPG region, showing the distribution of
21 stations across seven zones. Each station, represented by a filled
triangle, is assigned to a specific zone. Z1 through Z7 represent
zones 1 to 7, respectively, while S1, S2, and S3 represent stations 1,
2, and 3 within each zone. The yellow unfilled circles indicate the
stations selected for calculating the upwelling index.
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biomass distribution (Seelanki et al., 2022; Keerthi et al., 2013;

Shafeeque et al., 2021). In contrast, the PG, situated between 24°N

and 30°N and 48°E to 57°E, is a shallow, semi-enclosed sea marked

by extreme salinity, temperatures, and limited water exchange.

Despite these harsh conditions, it sustains a productive

ecosystem, influenced by seasonal wind stress, tidal turbulence,

and human activities such as coastal development and pollution

(Swift and Bower, 2003; Moradi and Moradi, 2020; Khan et al.,

2019). Understanding the differing productivity patterns of the

ASPG is vital for assessing long-term environmental changes and

the broader impact of climate change on these ecosystems.

The study area was divided into seven zones, each containing

three stations strategically positioned based on geographical and

oceanographic significance (Figure 1). Zone 1, along the Pakistan

coastline, is crucial for its upwelling, supporting rich fisheries in the

northern AS. Zone 2, along the Indian coast, is influenced by

monsoons driving nutrient inflow and boosting productivity.

Zone 3, near Oman, is shaped by Arabian coastal currents, while

Zone 4, along southern India, is affected by monsoon-driven

currents impacting nutrient dynamics. Zone 5, off Yemen,

benefits from upwelling, supporting marine biodiversity. Zone 6,

in the equatorial region, experiences equatorial currents and

upwelling influencing Chl-a variability. Zone 7, the PG, is notable

for its unique hydrological conditions and proximity to oil-

producing nations. This division enabled a region-specific analysis

of the factors driving Chl-a dynamics, offering insights into how

geographic and climatic factors influence marine productivity

across the ASPG.
2.2 Satellite data and preprocessing

The monthly composite Level-3 MODIS-Terra (hereafter

referred to as MODIS) Chl-a and SST data, with a 4 km spatial

resolution for 2001–2019, were obtained from NASA’s Ocean

Biology Processing Group (https://oceancolor.gsfc.nasa.gov/).

MODIS-Terra data were selected over MODIS-Aqua due to their

longer temporal coverage. A comparison of the accuracy between

MODIS-Terra and MODIS-Aqua data was conducted in our

subsequent research, revealing consistent seasonal variability and

trends in Chl-a across the ASPG, thus confirming the reliability of

MODIS-Terra for this study.

Due to factors such as cloud cover, sun glint, and other

atmospheric issues, the ASPG region experiences significant gaps

in the data, particularly during the summer monsoon season. For

instance, a previous study reported that the missing data rate for

MODIS-Aqua daily Chl-a between 2020 and 2021 fluctuated

significantly in the northern AS, with an overall rate ranging

from 65% to 100% (Yan et al., 2023). These data gaps can result

in the loss of important local information. Therefore, it is essential

to reconstruct missing Chl-a and SST data. In this study, the

DINEOF method was employed to fill in the missing data over

the ASPG (Section 2.4 below). Before reconstruction, all Chl-a and

SST data were filtered, and images with more than 95% cloud

coverage were discarded to maintain accuracy. Additionally, Chl-a
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data were log-transformed before reconstruction to meet DINEOF’s

assumption of normality, given the wide range of Chl-a values.

Once the data were reconstructed, the MODIS Chl-a and SST

values at each station were obtained by averaging values from a 3 ×

3 window centered on the station’s location. To eliminate the

seasonal cycle influence, the long-term monthly mean for each

month across all years was subtracted from the corresponding

monthly time series. This process generated monthly anomalies

of Chl-a and SST for each station, which were then used to compute

Chl-a_A and SST_A trends over the entire study period.

Furthermore, correlation statistics were calculated for the time

series of Chl-a_A and SST_A at each station to quantitatively

analyze the relationship between these anomalies.
2.3 Reanalysis data and preprocessing

From 2001 to 2019, weekly wind data at a spatial resolution of

0.12° × 0.12° and a height of 10 meters above the surface were

obtained from the European Centre for Medium-Range Weather

Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). To

represent monthly climatological patterns, these weekly wind data

were averaged for each of the 12 months, spanning from January

2001 to December 2019. ERA-Interim is a global atmospheric

reanalysis product that combines model-based predictions with

observations from various sources to provide a consistent,

comprehensive estimate of numerous atmospheric and oceanic

parameters. Furthermore, the wind data were used to compute

the Ekman transport components for each month during the study

period, based on the formulas provided by Kok et al. (2017) in

Equations 1, 2.

ETx =
rairc(u2 + v2)1=2v

rwaterf
(1)

ETy =
rairc(u2 + v2)1=2v

rwaterf
(2)

where u corresponds to the wind coming from the west (with

positive values indicating eastward wind) and v corresponds to the

wind coming from the south (with positive values indicating

northward wind). The parameter rair represents the density of air,

valued at 1.22 kg m-3, while rwater represents the density of water,

valued at 1025 kg m-3. Additionally, c is the drag coefficient, and f is

the Coriolis parameter. The calculated components of Ekman

transport, ETx and ETy, were used to generate monthly plots of

Ekman transport, providing a visual representation of its variability

over time.

The analysis of Ekman transport is critical for understanding

upwelling processes. This involves decomposing the movement of

water masses into perpendicular components to calculate the

Coastal Upwelling Index (CUI). Specifically, a “coast angle” is

formed between a northward vector and the landward side of the

shoreline, which is determined through geometric measurements at

each coastal station. Using geometric tools, these angles are
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measured and incorporated into the computation of the CUI.

Specifically, q represents the angle perpendicular to the

oceanward unit vector relative to the mean shoreline location.

The CUI quantifies coastal upwelling by factoring in the strength

and direction of Ekman transport in relation to the coastline. In this

study, the study area is divided into eight stations (as shown in

Figure 1) to assess the upwelling intensity across the region. The

effective angles of the coastline are calculated by averaging the

angles of arbitrary coastal lines with respect to the equator at each of

the eight coastal stations. The formulas used for CUI calculation is

provided in Equations 3 (Kok et al., 2017).

UI = − sin j −
p
2

� �� �
ETy + cos(j −

p
2
)ETx) (3)

where f represents the angle between the coastline and the

equator. According to the definition of CUI, a positive CUI

indicates regions where upwelling conditions are favorable, while

a negative CUI suggests that upwelling is unfavorable.
2.4 DINEOF reconstruction

DINEOF was employed to reconstruct missing data in the

MODIS Chl-a and SST datasets over the ASPG from 2001 to

2019. We utilized the DINEOF 3.0 package (Alvera-Azcárate

et al., 2005; Beckers and Rixen, 2003), available for download

from the GeoHydrodynamics and Environment Research (GHER)

website. The reconstruction process followed these key steps:
Fron
1. Each dataset was organized into a 3Dmatrix (y × x × t), where

y and x represent the latitude and longitude dimensions of

each image, and t is the total number of images, ensuring that

y×x> t. For Chl-a data, the natural logarithm was applied to

prevent negative values during reconstruction, while raw SST

data were used without transformation.

2. The mean value across both spatial and temporal

dimensions was subtracted from the matrix, and missing

data points were initialized to zero to minimize bias in the

initial guess.

3. Iterative singular value decomposition (SVD) (Toumazou

and Cretaux, 2001) and cross-validation using 3% of

randomly selected valid data were employed to identify

the optimal empirical orthogonal function (EOF) modes.

4. The optimal EOF modes were then used to reconstruct the

entire dataset. For further details on the DINEOF

methodology, see Alvera-Azcárate et al. (2005) and

Beckers and Rixen (2003).
To verify the accuracy of the DINEOF reconstruction, we

randomly selected 1% of the valid pixels from the original Chl-a

and SST datasets, treating them as “missing values” (Yang et al.,

2021). The remaining valid pixels were left unchanged to ensure

that only invalid pixels were involved in the reconstruction process.

After performing the DINEOF method, the reconstructed values for

the 1% of randomly selected pixels were compared with their

original values to evaluate the accuracy of the reconstruction.
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2.5 Trend calculation

The Mann-Kendall test and Sen’s slope trend analysis are widely

employed to assess the magnitude and significance of trends in Chl-a

and SST using long-term satellite-derived datasets. The Mann-Kendall

test is a non-parametric statistical method used to identify trends in

time series data and is based on the variance of the data (Solidoro et al.,

2009). Sen’s slope (Sen, 1968), another non-parametric method,

estimates the magnitude of monotonic trends over time and detects

their presence at a chosen significance level. Non-parametric tests, such

as these, offer higher statistical power when dealing with non-normally

distributed data, which is often the case for Chl-a, and are resistant to

the influence of outliers. In this study, a significance level of 95% was

used to determine trend significance. Both the Mann-Kendall test and

Sen’s slope were calculated using MATLAB.

To further investigate relationships among Chl-a_A, SST_A,

and Wind_A, Pearson’s correlation coefficients (r) were calculated,

and their significance was tested using Student’s t-test at a 5%

significance level (p < 0.05). Regression analyses were also

conducted for each variable pair, with statistical performance

evaluated through slope, coefficient of determination (R²), bias,

and root mean square error (RMSE).
3 Results

3.1 DINEOF reconstruction and validation
for Chl-a and SST

MODIS monthly log-transformed Chl-a and linear SST data from

2001 to 2019 were reconstructed using the DINEOF technique. The

reconstruction statistics are presented in Table 1, where the missing

data rates for Chl-a and SST are 24.67% and 1.26%, respectively. This

highlights the critical role of DINEOF in reconstructing Chl-a data,

which has a significantly higher missing data rate. Additionally, the

means of the input and output data for both Chl-a (-0.42 for input and

-0.428 for output) and SST (27.27 for both input and output) are

almost identical. Similarly, the standard deviations for input and output

data are very close for both Chl-a (0.41 for input and 0.405 for output)

and SST (1.96 for input and 1.958 for output). These similarities

indicate that the distribution of the reconstructed Chl-a and SST data
TABLE 1 Statistics of the DINEOF computations.

Log (Chl-a) SST

Dimensions
(latitude×longitude×time)

480×600×228 480×600×228

Missing data 24.67% 1.26%

Number of cross-validation points 373975 373975

Mean (input data) -0.42 27.27

Standard deviation (input data) 0.41 1.96

Mean (output data) -0.428 27.27

Standard deviation (output data) 0.405 1.958
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closely matches that of the original data, suggesting a high accuracy of

the reconstruction.

To evaluate the quality of the reconstructed data, we selected

one image of the reconstructed Chl-a from August and one image of

the reconstructed SST from June for comparison with the original

SST and Chl-a images (see Figure 2). The original images exhibited

numerous spatial gaps, particularly in the Chl-a data. In contrast,

the reconstructed images were more continuous and displayed a

more coherent spatial distribution.

We further conducted a cross-validation of the reconstructed

Chl-a and SST data using the method described earlier. The results

of the comparison between the reconstructed and original Chl-a/

SST data are presented in the density plots shown in Figure 3. Both

reconstructions showed strong correlations with the original data,

as evidenced by favorable metrics: slope (0.86 for Chl-a, 0.95 for

SST), R² (0.84 for Chl-a, 0.96 for SST), bias (0.002 for Chl-a, 0.04 for

SST), and RMSE (0.16 for Chl-a, 1.52 for SST). Additionally, the

density plots, which represent the number of data points within

each 4 km × 4 km grid bin, show an increasing trend towards the 1:1

line. This suggests that the data reconstructed using the DINEOF

method are both accurate and reliable.
3.2 Monthly climatology of Chl-a in
the ASPG

Based on the reconstructed data, the interannual monthly

climatology of Chl-a from 2001 to 2019 was generated.
Frontiers in Marine Science 0563
Hovmöller diagram (Figure 4) displays monthly Chl-a time series

along latitudinal sections at 17°N, 21°N, and 25°N, as well as

longitudinal sections at 61°E, 64°E, and 67°E. The interannual

variability of Chl-a across both latitudinal and longitudinal

gradients is further detailed in the Supplementary Materials

(Supplementary Figures 1, 2). This study focuses on the monthly

variability of Chl-a, with all plots in Figure 4 consistently capturing

the well-established seasonal cycle in the ASPG. Chl-a

concentrations peak during summer, with a secondary peak in

winter, and reach their lowest levels during the transitional months.

Spatially, the highest concentrations are observed near the western

and northern coastlines. This seasonal cycle is driven primarily by

the SW monsoon during summer and the NE monsoon in winter.

Along the latitudinal sections, chlorophyll-a (Chl-a) exhibited

two annual peaks: a major peak in summer and a minor peak in

winter (Figure 4). At 17°N, which is closer to the equator, Chl-a

concentrations remain consistently lower throughout the year.

Nevertheless, two distinct peaks are observed, one in summer

(August and September) and the other in winter (February and

March). As latitude increases to 21°N, Chl-a concentrations rise

significantly during both seasons, with the summer peak occurring

between July and September and the winter peak between February

and March. Further north at 25°N, a coastal region forming the

northern boundary of the AS, Chl-a levels remain high and

productive throughout most of the year, with pronounced peaks

during the summer (August to October) and winter (February to

March). Additionally, Chl-a concentrations increase gradually with
FIGURE 2

MODIS Chl-a in August and MODIS SST in June: (A, C) original cloudy data, and (B, D) data reconstructed using the DINEOF method.
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FIGURE 3

Density plots: (A) log(Chl-a) (reconstructed) vs Chl-a (original) and (B) SST (reconstructed) vs SST (original). The black solid lines are the 1:1 line.
FIGURE 4

A Hovmöller diagram illustrating the monthly variability of reconstructed MODIS Chl-a from January to December at 17°N, 21°N, and 25°N, as well as
at 61°E, 64°E, and 67°E.
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longitude. Overall, the AS is heavily influenced by monsoonal

dynamics, impacting both coastal regions and open ocean waters.

Similarly, along the longitudinal sections, Chl-a exhibited two

seasonal peaks, with the exception of the northeastern region

(Figure 4). At 61°E, closer to the western coast, Chl-a levels

remain consistently higher throughout the year, particularly in

the northern regions. Two seasonal peaks are apparent, occurring

during summer (July to September) and winter (February to

March). At 64°E, while the temporal and spatial patterns of Chl-a

are similar, the overall concentration is slightly lower. Moving

further east to 67°E, distinct spatial and temporal distribution

patterns emerge. Specifically, between 21°N and 23°N, Chl-a

exhibits two peaks in summer (August) and winter (February),

while between 23°N and 24°N, Chl-a increases markedly and

remains elevated throughout the year. These spatial variations

highlight the complex interplay between monsoonal forces and

the unique oceanographic characteristics of different regions within

the AS.
3.3 Long-term trends of Chl-a associated
with SST and wind

To analyze long-term trends in Chl-a and SST, the interannual

monthly anomaly data were used to compute Sen’s slope for each

pixel, where positive and negative values indicate increasing and

decreasing trends, respectively, and a value of zero denotes no trend.

The statistical significance of Sen’s slope was assessed using the

Mann-Kendall (MK) test, with results coded as 1 for significant

trends and 0 for non-significant trends. Non-significant Sen’s slope

values were masked, indicated by white areas. The spatial
Frontiers in Marine Science 0765
distributions of Sen’s slope, along with the MK test results for

Chl-a_A and SST_A, are illustrated in Figures 5A, B, respectively.

The Sen’s slope values for Chl-a_A with statistically significant

MK-test results were primarily concentrated in the coastal areas of

the ASPG. Most values were negative across the entire ASPG,

indicating a declining trend in Chl-a levels. In the AS, the lowest

Sen’s slope values were observed along the Arabian coasts, gradually

increasing towards open sea waters, with some positive values in the

southeastern region. In contrast, in the PG, Sen’s slope values

increased from the northern to the southern coasts. For SST_A,

Sen’s slope values with significant MK-test results were widespread

across the ASPG, with all values being positive, reflecting a rising

trend in SST. In the AS, larger Sen’s slope values were observed

along the Arabian coasts, decreasing towards open sea waters. In the

PG, the highest Sen’s slope values were found in the northwestern

region, diminishing towards the southern part of the gulf. The

detailed statistical summaries of Sen’s slope values for both Chl-a_A

and SST_A are presented in the Supplementary Materials

(Supplementary Table 1).

For the 21 selected stations shown in Figure 1, significant Sen’s

slope values were identified at only four stations: Z3-S1 (open sea

waters near the Oman coast), Z5-S2 (open sea waters near the

Yemen coast), Z5-S3 (coastal waters near the Oman coast), and Z7-

S2 (southern PG). The Sen’s slope values for these stations are

detailed in the Supplementary Materials (Supplementary Table 2).

Additionally, Sen’s slope values for SST_A and Wind anomalies

(Wind_A) were calculated for these stations, as they are two key

factors influencing Chl-a variability. The calculation of Wind_A

followed the same methodology used for Chl-a_A and SST_A. As

shown in Supplementary Table S2, all four stations exhibited a

decreasing trend in Chl-a_A. The trends for SST_A were
FIGURE 5

Spatial distributions of Sen’s slopes and MK-test results for (A) Chl-a_A and (B) SST_A over the ASPG from 2001 to 2019, along with the spatial
distributions of r values between (C) Chl-a_A and SST_A, as well as (D) Chl-a and Wind_A over the same period.
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significantly positive at Z3-S1, Z5-S2, and Z5-S3, but there was no

significant trend at Z7-S2. For Wind_A, significant positive trends

were observed at Z5-S2 and Z7-S2, while no significant trends were

found at Z3-S1 and Z5-S3. These results highlight the complex

interplay between Chl-a, SST, and wind patterns across different

regions of the ASPG.

To assess the impact of SST and wind on the long-term trends

of Chl-a, correlation coefficients (r) between Chl-a_A and SST_A,

as well as Chl-a_A and Wind_A, were calculated for each pixel

(Figures 5C, D). The r values between Chl-a_A and SST_A were

predominantly negative across the ASPG, indicating an inverse

relationship between these variables, with a few positive values in

the southern PG suggesting localized positive correlations.

Additionally, the majority of these correlations were statistically

significant throughout the ASPG. In contrast, the r values between

Chl-a_A and Wind_A were mostly positive in the AS, signifying a

positive correlation, while in the PG, the r values were generally

negative. Significant correlations between Chl-a_A and Wind_A

were primarily observed along the Oman coast, northeastern

Arabian coast, and western Indian coast in the AS, as well as in

the southern PG. The detailed statistical summaries of r values

between Chl-a_A and SST_A, as well as Chl-a_A and Wind_A are

presented in the Supplementary Materials (Supplementary Table 3).

Since significant trends in Chl-a_A were only detected at four

stations—Z3-S1, Z5-S2, Z5-S3, and Z7-S2—the time series of Chl-

a_A, SST_A, and Wind_A were extracted for these locations to

further examine temporal variability and the correlations between

Chl-a_A and SST_A, as well as Chl-a_A and Wind_A. A detailed

statistical summary of these correlations, covering the entire study

period, the southwestern monsoons, the northeastern monsoons, and

the transitional months (pre- and post-southwestern monsoons), is

presented in Table 2. At Z3-S1, no significant correlations between

Chl-a_A and either SST_A or Wind_A were observed for any time

frame. At Z5-S2, two significant correlations were found between

Chl-a_A and Wind_A: one positive correlation for the entire study

period and the other positive correlation during the northeastern

monsoons. At Z5-S3, three significant correlations were identified

between Chl-a_A and SST_A—one for the entire study period, one

for the northeastern monsoons, and another during the transitional

months. At Z7-S2, two significant correlations emerged between Chl-

a_A and Wind_A: one for the entire study period and the other

during the southwestern monsoons. These results underscore the

regional differences in the relationships between Chl-a_A and SST_A,

as well as Chl-a_A and Wind_A.

The time series of Chl-a_A, SST_A, and Wind_A at four stations

(Z3-S1, Z5-S2, Z5-S3, and Z7-S2) are presented in Figure 6. The

coefficient of variation (CV) was used to quantify variability, revealing

the highest Chl-a_A variation at Z5-S3 (6.50E+16), followed by Z5-S2

(-1.77E+16), Z3-S1 (-1.47E+16), and Z7-S2 (-3.49E+15). SST_A

variation was highest at Z5-S3 (-4.24E+15), followed by Z3-S1

(-2.54E+15), Z7-S2 (-1.34E+15), and Z5-S2 (1.04E+15). Wind_A

exhibited the most variation at Z3-S1 (6246.99), followed by Z7-S2

(152.20), Z5-S2 (-93.41), and Z5-S3 (-93.41). Due to the low spatial

resolution of wind data, Z5-S2 and Z5-S3 shared the same dataset.

Large Chl-a_A outliers were observed at Z3-S1 (e.g., August 2003,

February 2017), Z5-S2 (e.g., September 2001, February 2008), and Z5-
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S3 (e.g., August 2002, 2009, 2017). Although not fully explored, some

anomalies were linked to specific oceanographic events. For example,

the high Chl-a_A value in August 2003 coincided with a cold-core eddy

near the Somali coast, which likely contributed to elevated Chl-a_A

concentrations during this period (Prakash et al., 2012). These findings

highlight the complex dynamics influencing Chl-a_A variability.
4 Discussion

4.1 Advantages of using the DINEOF to fill
in the data gaps

In this study, the DINEOF method was employed to reconstruct

MODIS datasets of Chl-a and SST over the ASPG from 2001 to 2019.

The primary source of missing data in the original datasets was adverse
TABLE 2 Statistical summary of the significance of r values between
Chl-a_A and SST_A, as well as Chl-a_A and Wind_A, at the four stations
for the entire study period, southwestern monsoon seasons,
northeastern monsoon seasons, and transitional months from 2001
to 2019.

Stations
Chl-a_A
VS SST_A

Chl-a_A
VS Wind_A Time period

Z3-S1 0 0 All months

0 0
Southwestern
monsoons

0 0
Northeastern
monsoons

0 0
Transitional
months

Z5-S2 0 1+ All months

0 0
Southwestern
monsoons

0 1+
Northeastern
monsoons

0 0
Transitional
months

Z5-S3 1- 0 All months

0 0
Southwestern
monsoons

1- 0
Northeastern
monsoons

1- 0
Transitional
months

Z7-S2 0 1- All months

0 1-
Southwestern
monsoons

0 0
Northeastern
monsoons

0 0
Transitional
months
A value of 1 indicates a significant correlation, while 0 denotes no significance. The symbols
“+” and “–” represent positive and negative correlations, respectively.
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weather conditions, such as cloud cover and rainfall. Specifically,

24.67% of the Chl-a data and 1.26% of the SST data were missing, as

shown in Table 1. The relatively high percentage of missing Chl-a data

underscores the significance of applying DINEOF for accurate

reconstruction in this region. The comparison between the original

and reconstructed datasets demonstrated that the mean and standard

deviation values were closely aligned (Table 1), confirming the

precision and reliability of the DINEOF reconstruction. Additionally,

visual comparisons of the original and reconstructed Chl-a and SST

data for specific dates, illustrated in Figures 2, 3, reveal smooth and

plausible patterns in the reconstructed outputs. Further validation,

through cross-correlation analysis (Figure 4), shows strong agreement

between the reconstructed and original datasets for both Chl-a and

SST, reinforcing the robustness of the reconstruction method. In future

research, we aim to integrate field observations to further enhance the

validation of our reconstructed data.

To the best of our knowledge, only a limited number of studies

have utilized the DINEOF method to reconstruct satellite-derived Chl-

a datasets in specific regions like the AS or PG. Even fewer have applied

DINEOF to simultaneously reconstruct both Chl-a and SST datasets

over the entire ASPG. For instance, Jayaram et al. (2018) employed

DINEOF to reconstruct MODIS-Aqua Chl-a data over the AS for the

period 2002–2015. This study primarily investigated the seasonal and

interannual variability of Chl-a, highlighting the method’s utility in

regions with frequent data gaps due to cloud cover. Similarly, Huang

et al. (2022) used DINEOF to reconstruct Chl-a datasets from the

Ocean Colour Climate Change Initiative (OC-CCI) by the European

Space Agency (ESA) over the AS from 1998 to 2017. In contrast, Khan

et al. (2019) and Khan et al. (2022) extended the application of

DINEOF by reconstructing both MODIS-Terra monthly Chl-a and

SST datasets from 2001 to 2017. Their studies analyzed the seasonal

variability and explored the correlations between Chl-a and SST over

the entire study area. However, while they provided valuable insights

into the seasonal dynamics of Chl-a and SST, their work did not

examine the long-term trends in Chl-a.

In light of these gaps, the present study offers a more

comprehensive approach by not only reconstructing both Chl-a and

SST datasets using DINEOF but also performing an in-depth analysis

of the spatio-temporal variability and long-term trends of Chl-a across

the entire ASPG from 2001 to 2019. This extended temporal range

allows us to assess the potential impacts of climate variability and

oceanographic changes on Chl-a dynamics in the region. Additionally,

by reconstructing both Chl-a and SST, we are able to investigate their

interactions and correlations over time, providing a more holistic view

of the region’s marine ecosystem dynamics. Our study contributes to

the broader field of oceanography by demonstrating the effectiveness of

DINEOF in reconstructing multi-variable datasets and its potential

application in other regions where satellite data is frequently

compromised by missing observations.
4.2 Impact of SST and wind on the
spatiotemporal variability of Chl-a

The seasonal variability of Chl-a, as revealed in Figure 4, aligns

with findings from previous studies (Lévy et al., 2007; Sarma et al.,
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2012; Piontkovski et al., 2013; Jayaram et al., 2018; Khan et al.,

2022), where monsoon-driven wind reversals were identified as the

main drivers of phytoplankton blooms. These wind shifts

significantly impact mixed-layer dynamics and promote

upwelling, bringing nutrient-rich waters from the deeper ocean to

the surface, which fuels phytoplankton growth during both the SW

and NE monsoon seasons (Goes et al., 2005; Jayaram et al., 2018).

This is further supported by the monthly climatology of wind

patterns from 2001 to 2019 (Figure 7), which reveals stronger

southwestern winds during the SW monsoon and weaker

northeastern winds during the NE monsoon, with the weakest

winds observed during the transitional periods.

Ekman transport, derived from wind data, exhibits distinct

seasonal variability across the ASPG, as illustrated in the

Supplementary Materials (Supplementary Figure 3). In the AS, it

peaks during the summer monsoon, driving surface water offshore

and promoting upwelling, with a maximum value of approximately

2 m³ s-1 m-1 in July. In winter, the transport shifts southeast,

resulting in downwelling. In contrast, Ekman transport in the PG

remains minimal throughout the year, with the highest values

observed in June, directed northeast.

To further investigate upwelling dynamics, an upwelling index

was calculated using wind vectors at eight coastal stations

(Figure 1). These coastal stations were strategically selected for

their proximity to known upwelling regions, such as Kochi, Duqm,

and Qishn, which are significantly influenced by seasonal

monsoonal winds. Additional stations were chosen based on their

alignment with nearshore data points within each zone to ensure

comprehensive coverage. Spanning a wide latitudinal range across

the ASPG, these stations provide a thorough spatial representation

of upwelling zones. This selection forms a robust foundation for

analyzing upwelling dynamics and their influence on regional Chl-

a variability.

The time series of the monthly upwelling indices (Figure 8)

reveals that upwelling was most pronounced along the western and

southeastern coasts of the AS (Duqam, Qishn, Kochi), followed by

the northern PG (Bandar Bushehr) and northeastern AS (Karachi)

during the SW monsoon. Higher Chl-a concentrations in the

western and northern AS (Figure 4) suggest that upwelling is a

key driver of Chl-a variability in these regions during the SW

monsoon. Notably, the monthly Chl-a data for the southeastern AS

and northern PG are not depicted in Figure 4. However, a prior

study by Khan et al. (2019) reported elevated Chl-a levels in the

southeastern AS during the SWmonsoon, whereas the northern PG

did not exhibit similar increases during this period; instead, higher

Chl-a concentrations were noted during the NW monsoon. This

discrepancy suggests that the effects of upwelling on Chl-a

variability differ between the AS and PG.

We also observed that the timing of Chl-a peaks varies across

different regions of the AS (Figure 4). A previous study by Jayaram

et al. (2018) reported that the northern AS was more productive

during the winter monsoon, while the southern coastal regions were

less productive, and vice versa. Our findings refine this observation,

indicating that the southwestern AS is more productive during the

summer monsoon, with reduced productivity in the northern

coastal regions, except for the northeastern area. Their study also
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identified intra-seasonal variability, with a primary productivity

peak during the onset phase of the summer monsoon and a

secondary peak during the withdrawal phase in the northern AS,

in addition to a single dominant peak during the winter monsoon,

based on Wavelet analysis. In contrast, our results show that the

timing of Chl-a peaks varies across regions in both summer and

winter in the northern AS. This regional variability aligns with the

findings of Lévy et al. (2007), who similarly reported that the timing

of peak productivity differs between regions within the northern AS,

due to differences in local physical and oceanographic processes.

These variations highlight the intricate relationship between large-

scale monsoon patterns and local environmental conditions,

showing that a detailed, region-specific analysis is essential for a

complete understanding of Chl-a variability in this area.

Additionally, we examined the influence of SST on the

spatiotemporal variability of Chl-a in the ASPG in our previous
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research. Khan et al. (2019) applied the DINEOF method to

reconstruct monthly MODIS-Terra Chl-a and SST data from 2001

to 2017, revealing that the majority of the study area (96%) exhibited

a significantly negative correlation between SST and Chl-a. Only a

small portion (4%), including certain coastal areas, the PG, and parts

of the southeastern AS, showed a significant positive correlation. This

negative correlation is primarily driven by wind-induced upwelling,

where cooler, nutrient-rich water is brought to the surface, resulting

in higher Chl-a concentrations (Goes et al., 2005). Building on this, in

our recent study (Khan et al., 2022), we utilized the same

reconstructed MODIS-Terra Chl-a and SST datasets and found

that regions with elevated Chl-a were associated with lower SST

and strong Ekman transport, further validating the connection

between upwelling and the negative correlation between Chl-a and

SST. Our findings suggest that both SST and wind are key factors

influencing the seasonal variability of Chl-a in the ASPG, with
FIGURE 6

Time series of Chl-a_A and SST_A at four stations—(A) Z3-S1, (B) Z5-S2, (C) Z5-S3, and (D) Z7-S2—spanning the period from January 2001 to
December 2019 are shown. The blue and red lines represent the respective trendlines for Chl-a_A and SST_A. Similarly, time series of Chl-a_A and
Wind_A at the same four stations—(E) Z3-S1, (F) Z5-S2, (G) Z5-S3, and (H) Z7-S2—are presented for the same period, with blue and red lines
depicting the trendlines for Chl-a_A and Wind_A, respectively.
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FIGURE 8

Time series of monthly averaged coastal upwelling indices from 2001 to 2019 for (A) Duqm and Qishn stations along the western AS coast,
(B) Gawada and Karachi stations along the northern AS stations, (C) Mumbai and Kochi stations along the eastern AS stations, and (D) Bandar Busher
and Abu Dhabi stations along the PG coast. Error bars in each plot represent one standard deviation.
FIGURE 7

Monthly climatology of wind vectors over the ASPG from January to December (A–L). Vectors in all panels have the same scaling to allow for direct
comparison of wind intensity across different months. Quantitative values of wind speeds are also provided for reference.
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upwelling playing a critical role in regulating surface productivity in

response to local wind patterns.
4.3 Influence of SST_A and wind_A trends
on the Chl-a_A trend

Previous studies have revealed conflicting trends in Chl-a for

the AS. Goes et al. (2005) reported a more than 350% increase in

Chl-a off the Somali coast during the summer, attributed to the

strengthening of southwestern monsoon winds. In contrast,

Prasanna Kumar et al. (2010) observed a weak basin-wide

increasing trend in the monthly Chl-a during September-

October and the winter monsoon, but a decreasing trend during

the summer monsoon from 1997 to 2007. They linked the Chl-a

increase in September-October to dust-induced iron fertilization,

which enhanced productivity when sufficient nitrate accumulated

in the upper ocean. During winter, intensified evaporative cooling,

driven by stronger winds, promoted convective mixing and the

upward transport of nutrients from deeper layers, further

supported by increased dust deposition, which together

explained the Chl-a increase. Prakash et al. (2012) found an

increasing Chl-a trend from 1997 to 2003, similar to Goes et al.

(2005), but attributed it to a cold-core eddy in 2003, which

enhanced Chl-a. However, from 2004 to 2010, they observed a

decline in Chl-a off the Somali coast, suggesting that SLA, rather

than SST or wind, were likely the main drivers. These studies

highlight the spatial and temporal variability in Chl-a trends

across the AS. Given the significant seasonal-to-interannual

variability in this region, identifying long-term, climate-driven

trends requires an extended dataset of at least a decade or more

(McClain, 2009). Therefore, we used two decades of Chl-a data in

this study. We also found a decreasing trend in the western AS

(Figure 5A), consistent with Prakash et al. (2012).

Our results for the Persian Gulf align with previous studies, but

with some differences. Moradi (2020) reported a mostly decreasing

trend in annual Chl-a from 2002 to 2018 across the Persian Gulf,

except for small areas in the southern and central regions, while SST

showed an increasing trend throughout the Gulf, with the exception

of the Strait of Hormuz. In contrast, we found non-significant trends

in Chl-a in the central Persian Gulf and similarly non-significant

trends in SST in the Strait of Hormuz (Figure 5B). Bordbar et al.

(2024) observed an increasing SST trend in the entire Persian Gulf

from 2003 to 2021, which differs slightly from our findings. This

discrepancy could be attributed to differences in datasets or trend

calculation methods. Regarding the correlation between Chl-a and

SST, Bordbar et al. (2024) found an inverse relationship between SST

and Chl-a throughout the Gulf, except in the southern region, which

is consistent with our results (Figure 5C). Concerning surface winds,

the northwesterly Shamal wind, prevalent year-round in the Persian

Gulf (Perrone, 1979; Pous et al., 2013; Yu et al., 2016), has shown a

positive trend over the past decades (Aboobacker and Shanas, 2018),

consistent with the increasing wind trend observed at station Z7-S2

(Supplementary Table 2). Moreover, as Chl-a_A at Z7-S2 exhibited a
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decreasing trend (Supplementary Table 2), this led to a negative

correlation between Chl-a_A andWind_A at this station (Figure 5D).
5 Conclusion

In this study, we conducted a comprehensive analysis of the

spatiotemporal variability and long-term trends of Chl-a across the

ASPG using reconstructed MODIS monthly Chl-a and SST data from

2001 to 2019. The validation of the reconstructed dataset confirmed its

highaccuracyandreliability, ensuringtherobustnessofourfindings.Our

analysis revealed significant seasonal variability in Chl-a, with distinct

regional differences. Generally, a pronounced Chl-a peak occurred in

summer, followed by a secondary peak in winter, with the lowest levels

observed during the transitional months. Chl-a concentrations were

highest in the western and northeastern Arabian Sea. This seasonal

pattern is primarily driven by the SWmonsoon in summer and the NE

monsoon inwinter. Additionally, we observed regional variability in the

timingofChl-apeaksinbothsummerandwinter, likelyduetodifferences

in local physical and oceanographic processes, such as wind patterns,

vertical mixing, and nutrient availability.

Over the two decades from 2001 to 2019, Chl-a_A exhibited a

significant decreasing trend along the coasts of the ASPG, with only

small areas showing increasing trend in the southeastern AS and

southern PG. At the regional level, an analysis of 21 stations identified

significant Chl-a trends at four locations: Z3-S1, Z5-S2, and Z5-S3 in

the western AS, and Z7-S2 in the southern PG. Correlation analysis

revealed predominantly negative correlations between Chl-a_A and

SST_A in the western AS, while correlations between Chl-a_A and

Wind_Awere positive in the western AS and negative in the southern

PG. Significant correlations were found in specific cases: For Z5-S2,

we observed a significant positive correlation between Chl-a_A and

Wind_A throughout the study period and during the northeastern

monsoon. For Z5-S3, significant negative correlations between Chl-

a_A and SST_A were found over the entire study period, during the

northeastern monsoon, and the transitional monsoons. Similarly, Z7-

S2 exhibited significant negative correlations between Chl-a_A and

SST_A over the entire period and during the southwestern monsoon.

These three stations also displayed significant positive trends in both

SST_A and Wind_A.

This research advances our understanding of the complex

dynamics of marine ecosystems in the ASPG, shaped by both local

physical processes and broader climate variability. Future studies

should investigate additional factors, such as sea level anomalies

(SLA), wind stress curl (curlt), and the horizontal (u) and vertical (v)

components of wind vectors, and their influence on Chl-a trends, as

well as explore the underlying mechanisms driving these changes.

Such research will deepen our knowledge of marine productivity

trends in the ASPG and their broader ecological implications.
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The complex convergence of cold and warm ocean currents in the Nordic Seas

provides suitable conditions for the formation and development of eddies. In the

Marginal Ice Zones (MIZs), ice eddies contribute to the accelerated melting of

surface sea ice by facilitating vertical heat transfer, which influences the evolution

of the marginal ice zone and plays an indirect role in regulating global climate. In

this paper, we employed high-resolution synthetic aperture radar (SAR) satellite

imagery and proposed an oriented ice eddy detection network (OIEDNet)

framework to conduct automated detection and spatiotemporal analysis of ice

eddies in the Nordic Seas. Firstly, a high-quality RGB false-color imaging method

was developed based on Sentinel-1 dual-polarization (HH+HV) Extra-Wide

Swath (EW) mode products, effectively integrating denoising algorithms and

image processing techniques. Secondly, an automatic ice eddy detection

method based on oriented bounding boxes (OBB) was constructed to identify

the ice eddy and output features such as horizontal scales, eddy centers and

rotation angles. Finally, the characteristics of the detected ice eddies in the

Nordic Seas during 2022-2023 were systematically analyzed. The results

demonstrate that the proposed OIEDNet exhibits significant performance in

ice eddy detection.
KEYWORDS

synthetic aperture radar, dual-polarization, ice eddy, oriented object detection,
deep learning
1 Introduction

Ocean eddies are a pervasive oceanic phenomenon that plays a significant role in the

transport and distribution of material, energy, heat, and freshwater in the global ocean

(Chelton et al., 2011; Zhang et al., 2020). The observational advantages of SAR satellites,

which operate in all weather conditions and at all times of the day, and offer high spatial
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resolution, make them an important data source for the refined

study of oceanic eddies. SAR satellites are essential for the study of

submesoscale eddies that remain unobservable by altimeter

satellites. The remote sensing imaging mechanism of SAR ocean

eddies is mainly influenced by two mechanisms (ZHENG et al.,

2018; Fu and Holt, 1983; Karimova et al., 2012): the wave-current

interaction mechanism and the sea surface floating tracer

mechanism, such as bio-oil films and ice floes. In the MIZs,

surface sea ice is driven by ocean eddies, exhibiting spiral motion

and eddy characteristics (Manucharyan and Thompson, 2017). This

paper refers to the ice-water mixing pattern formed by surface sea

ice and ocean eddies as an ice eddy (Johannessen et al., 1987;

Dumont et al., 2011). The melting of surface ice is facilitated by ice

eddies through the vertical transfer of heat, which affects the

development of MIZs and indirectly influences global

climate regulation.

Data acquisition for ice eddies relies on both in situ instruments

and satellite sensors. In general, in situ observations are

characterized by their high quality and reliability and include

moorings (Cassianides et al., 2021; von Appen et al., 2018), ice-

tethered profilers (Toole et al., 2011), and under-ice gliders.

However, due to the high cost of observations and poor weather

conditions, the amount and coverage of in situ observational data

may not adequately support experimental demands. Satellite

sensors theoretically possess the capability to acquire vast

amounts of data , supporting ice eddy detect ion and

characterization tasks with high spatial resolution and wide-area

global observation. In the Arctic Ocean, the detection of

submesoscale and small-scale eddies using satellite altimetry data

is challenging due to the limited spatial and temporal coverage of
Frontiers in Marine Science 0274
both altimetry and in situ data. The Rossby radius of deformation in

the Arctic Ocean is significantly smaller than in mid- and low-

latitude seas (Bashmachnikov et al., 2020; Nurser and Bacon, 2013).

Due to the presence of sea ice, the complexity of using altimeter data

in the Arctic Ocean renders it nearly unsuitable for detecting ice

eddies. Observational costs and adverse weather limit the quantity

and coverage of in situ data, which may be insufficient to meet

experimental demands. In contrast, SAR satellites with high spatial

resolution, full-time, and all-weather capability are better suited for

detecting mesoscale and submesoscale oceanic phenomena in the

Arctic Ocean (Kozlov et al., 2019). SAR satellites have become

essential in in-depth studies of oceanic eddies, particularly

submesoscale eddies challenging to detect with altimeter satellites.

The unique advantages of SAR satellites are illustrated in Figure 1.

The detection of eddies using SAR imagery has been the focus of

numerous studies (Cassianides et al., 2021; Kozlov and

Atadzhanova, 2021; Manucharyan and Thompson, 2017).

However, most studies rely on manual visual interpretation

methods for the detection of eddies from SAR images (Toole

et al., 2011; Gupta and Thompson, 2022). The accumulation of

massive SAR images has rendered it time-consuming and laborious

to recognize ocean eddies solely through manual visual

interpretation, highlighting the growing importance of automated

ocean eddy detection. In recent years, several researchers have

applied deep learning methods to ocean eddy detection on

synthetic aperture radar (SAR) images (Zhang et al., 2023; Xia

et al., 2022; Huang et al., 2017; Du et al., 2019b; Zhang et al., 2020).

Du et al. (2019a) attempted to fuse a variety of features to

automatically identify ocean eddies and proposed an eddy

identification method based on adaptive weighted multi-feature
FIGURE 1

S1 EW HH-polarized SAR image, 6 August 2022,07:47 UTC.
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fusion for SAR images. Considering the different importance of

different features for eddy recognition, an adaptive weighted feature

fusion method based on multiple kernel learning (MKL) is also

proposed. Although MKL demonstrates excellent performance in

addressing heterogeneous data, the method exhibits low detection

efficiency. Du et al. (2019b) proposed DeepEddy, a deep learning-

based ocean eddy detection method consisting of a hierarchical

feature learning model and a simple Support Vector Machine

(SVM) classifier. Eddy features are learned using two principal

component analysis convolutional layers. Additionally, DeepEddy

employs Spatial Pyramid Pooling (SPP), which addresses the

complex structure and morphology of ocean eddies by fusing

multi-scale features. However, this method fails to localize eddies

on SAR images. Zhang et al. (2023) proposed EddyDet, a deep

framework based on the Mask RCNN framework utilizing

Convolutional Neural Networks for eddy detection on SAR

images. Khachatrian et al. (2023) applied the YOLOv5 network to

SAR ocean eddy detection and realized the automatic detection of

ice eddies in the MIZs. Zi et al. (2024) proposed an EOLO network

to enhance the feature fusion method by introducing a channel

attention mechanism and employing an upsampling operator with

a larger receptive field. Xia et al. (2022) constructed a context and

edge association network (CEA-Net) based on the YOLOv3

backbone network for identifying ocean eddies in S1

interferometric wide (IW) swath mode data. While the automatic

detection of eddies in SAR images using deep learning has shown

promising results, current research emphasizes the detection of

eddies in ice-free areas within mid- and low-latitude waters through

the use of co-polarization SAR images. HH-polarized images make

small-scale features more visible, while HV-polarization provided

more stable large-scale features related to sea-ice morphology

(Korosov and Rampal, 2017). The HV-polarized images were less

sensitive to surface scattering from open water but were very

sensitive to body scattering from sea ice. As a result, the contrast

between sea ice and open water is higher in HV-polarized images,

making ice eddy features more visible (Qiu and Li, 2022). The

advantages of HH-polarized images in detecting ice eddies are due

to its high sensitivity to surface scattering, its strong contrast with

open water, and its high signal-to-noise ratio, particularly under low

wind speed or rough surface conditions, where HH polarization can

offer precise and reliable ice eddy detection results. Combining HH-

polarization and HV-polarization features for ice eddy detection,

compared to using a single polarization, is beneficial for reducing

detection errors and improving accuracy.

Although the aforementioned methods have achieved

superior results in eddy detection in SAR images, they all

utilize the conventional horizontal bounding box (HBB) and

still exhibit notable limitations. HBBs are not optimal for

representing oceanic ice eddies with arbitrary orientations and
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large aspect ratios, as they provide only a rough location without

accurate directional and scale information. Additionally, the HBB

representation often includes excessive background or nearby

object interference, which can lead to misidentification of ice

eddies. Unlike HBBs, OBBs are capable of flexibly adjusting the

orientation of detection boxes, allowing for the accurate

enclosure of inclined or rotated ice eddies. This capability

addresses issues related to redundant and overlapping detection

boxes, thereby significantly reducing detection errors. The field of

target detection has made remarkable progress over the past

decade. Directional target detection, as an extended branch of

target detection, has attracted significant attention due to its wide

range of applications (Li et al., 2020; Liu et al., 2020; Han et al.,

2021; Xia et al., 2018; Ma et al., 2018; Ding et al., 2019; Yang et al.,

2019). Ice eddies have distinct rotational characteristics and

directionality, and directional target detection can not only

detect the position of eddies but also accurately estimate their

rotational direction, which is highly significant for ocean

dynamics research, marine environment monitoring, and

marine resource development.

To address the above challenge, in this paper, we proposed

OIEDNet, which is a oriented ice eddy detection network based on

the Sentinel-1 dual-polarization data. The remainder of this paper is

structured as follows. Section 2 provides an overview of the dataset.

Section 3 describes the methodology employed in this study. Section

4 presents the experimental results and discussion. Finally,

conclusions are outlined in Section 5.
2 Materials

We utilize Sentinel-1A Level-1 EW mode Ground Range

Detected (GRD) product. The swath width for the EW Mode is

approximately 400 km, with an incidence angle ranging from 18.9°

to 47° and a pixel spacing of 40 m × 40 m.We selected 702 Sentinel-

1 SAR images containing ice eddies in the marginal ice area of the

Nordic Seas during January 2022-December 2023 as shown in

Table 1 and Figure 2.

The bathymetric product is the 200m resolution version 4.0 of

the International Bathymetric Chart of the Arctic Ocean

(IBCAOv4.0) (Jakobsson et al., 2020). The relationship between

the intensity of ice eddy production and the background wind

velocity was analyzed using 10m u and v hourly means from the

ERA-Interim reanalysis. The validation was conducted using the

Level 3 (L3) products from the Surface Water and Ocean

Topography (SWOT) mission, the Mesoscale Eddy Trajectory

Atlas Product (META3.1exp DT), the situ data collected from

OpenMetBuoys-v2021 (OMBs) deployed in the marginal ice zone

(Rabault et al., 2024) and drifters 15m drogue.
TABLE 1 SAR data statistics for Nordic ice eddy detection (S1).

Year Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

2022 18 13 12 28 39 41 48 35 33 46 45 28

2023 23 9 6 20 29 28 45 30 23 46 30 27
fro
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3 Methods

The pipeline of the proposed OIEDNet framework is depicted

in Figure 3. From this figure, it is evident that the proposed

framework consists of three components: the Polarization

Combination Enhancement Module, the Neural Network Module,

and the Feature Statistical Analysis Module.

Firstly, the Sentinel-1 satellite’s HH and HV dual-polarized ice

eddy SAR images undergo data preprocessing, HH-polarized

incidence angle correction (IAC), HV-polarized thermal noise

removal (TNR), and dual-polarized false-color image synthesis to

generate dual-polarized SAR false-color ice eddy images. Secondly,

the ice eddy sample library is created using the data expansion
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method. Finally, based on the dual-polarized SAR false-color ice

eddy images, a rotating frame ice eddy auto-detection model is

developed and trained to achieve the automatic detection of ice

eddies in the Nordic Seas MIZs.
3.1 Polarization combination
enhancement method

The polarization combination enhancement method includes

(1) data preprocessing; (2) HH-polarized IAC; (3) HV-polarized

TNR; (4) polarized data enhancement, and (5) RGB false-color

composite. Figure 4 illustrates the flowchart of the polarization
FIGURE 3

The structure of the proposed OIEDNet framework.
FIGURE 2

The distribution of experimental SAR images collected in the marginal ice zone of the Nordic Seas from January 2022 to December 2023. (A) Spatial
coverage of SAR images. (B) The number of SAR images is represented by color intensity. The gray lines indicate the 200 m and 2000 m isobaths,
derived from IBCAOv4.0.
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combination enhancement process. Data preprocessing mainly

involves orbit correction, radiometric calibration, filtering,

conversion to dB values, and geocoding processing.

In the process of ice eddy detection, the variation in the

backward scattering coefficient caused by changes in the incidence

angle may introduce significant errors, necessitating the correction

of the incidence angle for HH-polarized data. In this study, the IAC

algorithm (Qiu and Li, 2022; Li et al., 2020) is utilized, and the

calculation formula is presented in Equation 1.

s = s0 + 0:200� (q − q0), (1)

where s is the corrected backward scattering coefficient (in dB),

s 0 is the backward scattering coefficient before correction, q is the

incidence angle of the pixel, and q0 is the corrected standard

incidence angle, which is taken as 34.5°. Figure 5D illustrates the

effects following the correction of the HH polarization

incidence angle.
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In Sentinel-1 EW-mode SAR images that are strongly affected

by scallop stripe noise in the azimuth direction and by noise

gradients in the distance direction, especially in HV-polarized

images, thermal noise is particularly prominent as displayed in

Figures 5A, B. Although ESA provides a standard method of noise

vector correction, the effect of residual noise cannot be ignored due

to the narrow distribution of HV polarization backscatter.

The denoising algorithm (Park et al., 2017; Sun and Li, 2020)

was improved for the removal of thermal noise. The average noise

power was added to the denoised results. This adjustment enabled

the conversion of noise power from a linear scale to a logarithmic

scale (dB) sigma zero conversion, ensuring that these pixels did not

become invalid values. By appropriately scaling and balancing the

noise vectors given by ESA, the algorithm can approximate the

actual noise values as much as possible by using the azimuthal

antenna element pattern in the azimuthal direction, so that the

effects of the scallop stripe and the noise gradient in the distance
FIGURE 4

Flowchart of the polarization combination enhancement method.
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direction can be effectively eliminated. The specific processing steps

are as follows.

To eliminate the noise step phenomenon between sub-bands, it

can be assumed that the denoising process model satisfies a linear

relationship. It is calculated using Equation 2.

s(k) = s 0
SN − (Kns,n · G •s 0

N + K0
pb,n), (2)

where s(k) is the denoised s0 value. s 0
SN is the uncorrected

original s 0 value. s 0
N is the s 0 calculated by bilinear interpolation

using the thermal noise vector provided by ESA. Kns,n is the optimal

noise scaling factor. K0
pb,n is the interstrip noise power balance

factor. n is the number of sub-bands, n = 1, 2, 3, 4, 5. Kns,n can be

obtained by least squares solution using a large amount of HV

polarized data. K0
pb,n can be calculated using Equation 3.

K0
pb,n = (an−1i + bn−1) − (ani + bn), (3)
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where an and bn are the slopes and intercepts, respectively, of

the linear models for the different sub-strips. i is the number of

image elements in the range direction at the boundary between the

strips n = 2, 3, 4, 5. Since there are only four interstrip boundaries.

K0
pb,1 is set to 0.

When the original image is subtracted from the thermal noise

acquired using the described method, some image element points

become negative. To eliminate the effect of negative noise power,

noise compensation is required. By appropriately scaling and

balancing the noise vectors provided by ESA, the algorithm can

closely approximate the actual noise values using the azimuthal

antenna element pattern, effectively eliminating the effects of scallop

stripes and noise gradients in the range direction.

First, the Signal-Noise Ratio (SNR) is defined as the ratio of the

s0 value (s0g) after Gaussian filtering to the noise equivalent sigma

zero (NESZ). The SNR is calculated using Equation 4.
FIGURE 5

Effect of HV TNR and HH IAC. (A) Original HV polarized image. (B)The thermal noise in HV polarized images. (C) HV polarized image after TNR, (D)
HH polarized image after IAC (S1 EW image taken on 1 November 2023 at 08:21:44 UTC).
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SNR =
s0g

NESZ
: (4)

Subsequently, further calculations were conducted to obtain the

power compensated using Equation 5.

s0o =
weight �   s0g +   SNR �   s0

weight  +  SNR
+ s0offset, (5)

where s0o is the residual noise power compensated s 0. s0offset is

the noise field compensation value, which can be taken as the

average value of the reconstructed noise field.

Finally, the HV polarization grayscale image with thermal noise

removed can be obtained. Figure 5C illustrates the effects after the

removal of thermal noise from the HV polarization.

In this paper, a high-quality dual-polarization SAR RGB false-

color ice eddy image production method is proposed, compositing

HH and HV polarizations into a single false-color image. Since the

ice eddy information in the Sentinel-1 EW model is primarily

contained in the HH-polarized data, the HH-polarized image is

used for the blue channel and the HV-polarized image for the red

channel. To optimize the visual quality, the square root is applied to

the HH and HV channels, with a slight offset added to mitigate the

effect of grain noise on the data. The calculation formula is

presented in Equation 6 and Equation 7.

HHB =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HH + 0:002

p
: (6)

HVR =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HV + 0:002

p
: (7)

The green channel image is produced by combining the offset-

processed HH and HV polarization data, as shown Equation 8.

G = HVR � (2�HHB + HVR � (1 − 2�HHB)) : (8)

Finally, the SAR image was enhanced using SAR image

stretching and contrast-limited adaptive histogram equalization

(CLAHE). Figure 6 illustrates a comparison the RGB false color

images before and after denoising.

The data expansion of 702 dual-polarized false-color ice eddy

images was achieved through noise perturbation transformations,

rotations (90°, 180°, 270°), and up-down flip transformations,

resulting in dual-polarized ice eddy samples. Eddies that rotate

clockwise in the northern hemisphere are referred to as anticyclonic

eddies, while those that rotate counterclockwise are referred to as

cyclonic eddies. Figure 7 illustrates examples of anticyclonic and

cyclonic ice eddies.
3.2 Neural network

In this paper, we propose the neural network component of

OIEDNet, a multiscale rotating frame model designed for the

automatic detection of ice eddies. The model structure is

illustrated in Figure 8. Traditional target detection algorithms

typically utilize HBB, assuming that object positions in the image

are calculated relative to the image center. However, this

assumption is not always accurate, particularly for objects with
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distinct directional features, as the HBB often fails to accurately

locate the true position of such objects. OIEDNet addresses this

limitation by introducing OBB, which allow bounding boxes to be

positioned at any arbitrary angle, making it more adaptable for

detecting target objects with various orientations.

3.2.1 Feature spatial pyramid module
The backbone of OIEDNet consists of the CSPDarknet53

feature extractor, which is followed by a C2f module. The C2f

module is succeeded by two segmentation heads designed to predict

the semantic segmentation masks of the input images.

Submesoscale ice eddies (approximately 0.1 to 10 km) and

mesoscale ice eddies (approximately 10 to 100 km) can be

detected by SAR satellites. To address the wide range of ice eddy

target scales in SAR images, a feature fusion module is integrated

into CSPDarknet53 to fuse feature maps of varying scales,

enhancing the detection of ice eddies of different sizes. OIEDNet

incorporates the Spatial Pyramid Pooling Faster (SPPF) module in

the feature-enhanced Neck layer, which is optimized from the

original SPP module structure. To obtain high-level semantic

information from multiscale features and further improve

detection accuracy and speed, The SPPF module is inserted

between the convolutional and fully connected layers. The SPPF

module integrates multiscale local feature information, providing

the network with a global perspective and facilitating the extraction

of rich multiscale feature representations, as illustrated in Figure 9.

The original SPP module generates a final feature map by

connecting three feature maps processed in parallel with 5 × 5,

9 × 9, and 13 × 13 max pooling kernels. However, this approach is

time-intensive. To improve operational efficiency and detection

speed, the SPPF module optimizes this process by merging the

feature map processed by a mixed layer (convolutional layer +

BatchNorm layer + SiLU layer) with three feature maps derived

from a single 5 × 5 max pooling operation. This concatenation

enables efficient extraction of the final feature map.

Traditional Feature Pyramid Networks (FPNs) enhance the

representation of low-level features by transferring high-level

features downwards through a top-down pathway (Lin et al.,

2017). Nonetheless, traditional FPNs face challenges in effectively

managing scale variations. To compensate for this deficiency,

OIEDNet introduces the Progressive Asymmetric Feature

Pyramid Network (PAFPN) structure (Liu et al., 2018), which

enhances the performance of the target detection task by fusing

features from neighboring levels and incorporating higher-level

features into the fusion process in an incremental manner,

enabling direct interaction between non-neighboring levels.

PAFPN is applied between a feature extraction network

(backbone) and a neck network (neck module). Specifically,

different levels of feature maps are first extracted by the backbone,

and then feature fusion is performed using PAFPN. The fused

feature maps are fed into OIEDNet’s head network (head module)

for object classification and bounding box regression. PAFPN

incorporates the Path Aggregation Network (PAN) into the

Feature Pyramid Network (FPN) by employing a bottom-to-top

fusion approach. OIEDNet replaces the Context Enhancement
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Module (C3) in PAN with a Context Enhancement Module with

feature fusion (C2f) and removes the 1×1 convolution prior to

upsampling. OIEDNet directly inputs the feature output from

various stages of the backbone into the upsampling operation.

The PAFPN network structure enables the construction of multi-

scale feature maps from a single image, ensuring that each layer of

the pyramid produces feature maps with robust semantic

information. This approach provides richer spatial detail and

high-level semantic features for detecting marine ice eddies,

which exhibit complex structures, varying scales, and rapid,

continuous changes.

3.2.2 Rotation bounding box
Five variables (cx, cy,w, h, q) are used to define the bounding

box with an arbitrary orientation. As shown in Figure 10, cx and cy
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represent the coordinates of the center point, and the rotation angle

q indicates the angle between the horizontal axis and the first edge

of the rectangle after counterclockwise rotation. Here, the first edge

defines the width of the bounding box, while the other edge defines

its height, with the angle ranging from -90° to 0°.
3.3 Feature statistical analysis module

Based on the obtained location information, the center and

diameter of the ice eddy in the predicted box can be determined,

laying the foundation for subsequent ice eddy studies. The center of

the tangent ellipse inside the rotating frame was used as the eddy

center, and the average distance from the center of the ice eddy to all

points on the fitted ellipse is used as the radius of the ice eddy.
FIGURE 6

Comparison of the RGB false-color images before and after denoising. A comparison of the RGB false-color images before and after denoising is
presented. (A, C) represent the RGB images prior to denoising, while (B, D) represent the RGB images following denoising. (A, B) correspond to the
S1 EW image acquired on 28th September 2023 at 08:03:22 UTC, while Figures (C, D) correspond to the data acquired on 1st November 2023 at
08:21:44 UTC.
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According to the ice eddy automatic detection model, the rotating

frame parameters (cx, cy,w, h, q) of the ice eddy are obtained. Using
the eddy center (cx, cy) as the starting point, the coordinate

positions of the four vertices A,B,C,D can be calculated.

During the data preprocessing stage, SAR images are geocoded

using the WGS1984 standard, transforming pixel coordinates (rows

and columns) into geographic coordinates (longitude and latitude).
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Consequently, it becomes possible to calculate the location of the ice

eddy center and the eddy diameter. The Feature Statistical Analysis

Module primarily facilitates the extraction of ice eddy center and

diameter information, and performs statistical analyses to produce

thematic maps of ice eddies for any time period and any region.

These maps depict the spatial distribution of ice eddies and related

scale histograms (see Chapter 4.4). These analyses support
FIGURE 7

Examples of ice eddies photographed by S1. (A–C) are anticyclonic eddies and (D–F) are cyclonic eddies.
FIGURE 8

The detailed structure of the neural network part of OIEDNet.
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researchers in examining the generative mechanisms and

evolutionary processes of ice eddies.
4 Experimental results and discussion

4.1 Experimental environment

The experimental setup configuration is provided in Table 2.

Computation was performed on GPUs with 16 multithreads, and

the training data share was configured to 0.75. The RGB ice eddy

training set and S1 annotations were employed for training, and the

model’s parameters were fine-tuned based on experience and

experimental results to attain optimal performance.

YOLOX is an open-source high-performance detector that

builds upon YOLOv3 by introducing decoupled heads, data

augmentation, anchor-free detection, and the SimOTA sample

matching method, thus constructing an end-to-end anchor-free

object detection framework (Zheng et al., 2021). YOLOv8 is a real-

time object detection model that utilizes advanced techniques such

as anchor-free detection and multi-scale feature fusion within a

HBB framework (Varghese and Sambath, 2024). We conduct

comparative experiments on OIEDNet, YOLOX and YOLOv8. In
Frontiers in Marine Science 1082
addition, we conduct multi-model comparison experiments to

evaluate performance before and after denoising, and between

single polarization and dual polarization.

The precision evaluation of the model is based on the validation

set, and the evaluation metrics include the precision rate (P), the

recall rate (R) and the F1-Score (F1), as shown in Equations 9–11.

P =
TP

TP + FP
: (9)

R =
TP

TP + FN
: (10)
FIGURE 9

The structure of the Spatial Pyramid Pooling Faster module.
FIGURE 10

Oriented bounding boxes(green solid lines).The red ellipse represents the eddy edge, while yellow arrows show the distance from the eddy center to
any point on the ellipse. A red dot marks the center of the ice eddy.
TABLE 2 Experimental setup configuration.

Server Configuration Operating
System

Bare
Metal (GPU)

GPU Card: NVIDIA TESLA-A-
1002
Single Card Memory Size: 32GB
per card
Memory: 1024GB
Single Memory Module: 128GB

Kunpeng kC1
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F1 = 2� P � R
P + R

: (11)

TP denotes the number of correctly detected ice eddies, FP

denotes the number of false positive detections of ice eddies, and FN

denotes the number of missed ice eddies.
4.2 Comparison

The results of OIEDNet,YOLOX and YOLOv8 were compared

using the same test set, as presented in Table 3. Both YOLOv8 and

YOLOX are traditional HBB detection models. The experimental

results indicate that the OIEDNet model exhibits a precision of

94.40% and a recall of 93.65%, while YOLOv8 and YOLOX exhibit

precisions of 93.50% and 87.90%, as well as recalls of 92.00% and

86.51%. In comparison to YOLOv8 and YOLOX, the OIEDNet

model demonstrates superior performance in detecting dense eddy

regions. The rotational detection of OIEDNet more accurately

detects eddies with irregular shapes and changing directions, and

the inspection frame fits the eddies more closely, significantly

reducing the redundancy of the horizontal inspection frame, as

shown in Figure 11. For eddies with large differences in scales and

similar locations, there is obvious overlapping of inspection frames

in horizontal detection, while rotational detection effectively avoids

overlapping of inspection frames (Figure 11B). The interaction

between ocean circulation and ocean currents is accompanied by

the splitting and fusion of ocean eddies, leading to the

multinucleated structure of ice eddies, which the rotational

detection method can detect more accurately (Figure 11D). The

IEDNet model reduces the leakage and false alarms of ice eddies to a

certain extent. The OIEDNet model has obvious advantages in the

precision and recall of ice eddy detection, and it can effectively

detect submesoscale and mesoscale ice eddies.

This study evaluates the enhancement effects of IAC, TNR, and

dual-polarization RGB false color synthesis in the OIEDNet model.

Comparison of four sets of ice eddy detection results for the same

OIEDNet model (Figure 12). Before and after the denoising of dual-

polarized false-color images, the detection accuracy increases from

88.71% to 94.40%, reflecting an improvement of 5.69%. In contrast,

the detection accuracy of ice eddies in HV-polarized images without

TNR is 85.04%, while the detection accuracy in HH-polarized

images without IAC is 89.06%. This indicates that thermal noise

significantly reduces the detection accuracy of ice eddies, whereas
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the incidence angle has a relatively minor effect on detection

accuracy. The detection performance of the proposed model

shows significant improvement with the adoption of the

Polarization Combination Enhancement, resulting in an

approximate 8.65% increase in the F1 score. This enhancement

effectively boosts detection accuracy in noise-heavy environments.
4.3 Validation

Altimeters and SWOT satellites rely on radar echo signals for

measuring sea surface height. However, sea ice leads to attenuation

and scattering of radar signals, rendering the echo signals unstable,

which makes it difficult to obtain accurate sea surface height data

and, therefore, makes it unable to accurately detect ice eddies, as

shown in Figures 13, 14. SAR, on the other hand, can clearly detect

ice eddies in this environment due to its high-resolution imaging

and penetration capabilities. Mesoscale eddies can be identified

from sea level height data using altimetry, but the daily mesoscale

eddy dataset is identified by measuring different time trajectories,

which results in low spatial and temporal resolution. Figures 13B,

14B shows a comparison of eddies identified by OIEDNet and

altimeters. It is clear that SAR is able to detect more submesoscale

ice eddies and that SAR is even more advantageous in detecting

high-latitude ice eddies.

The ice eddies detected by OIEDNet were compared and

validated against in situ data collected from OpenMetBuoys-

v2021 (OMBs) deployed in the marginal ice zone. Figure 15

illustrates the movement trajectories of two ice buoys in the

marginal ice zone around Svalbard from August 18, 2022, to

August 26, 2022. Red triangles are used to denote the starting

positions of the buoys, while pentagrams indicate the ending

positions of their trajectories. The ice buoy trajectories exhibit a

counterclockwise rotation consistent with the direction of the ice

eddy, indicating a cyclonic ice eddy.
4.4 Spatial and temporal distribution of
ice eddies

Using the OIEDNet ice eddy detection framework, ice eddy

identification and scale information extraction were performed on

702 SAR images containing ice eddies in the Nordic Seas from
TABLE 3 Accuracy evaluation of different models.

Model HH IAC HV TNR HH HV RGB P R F1

OIEDNet × × ✓ × × 0.8906 0.9048 0.8976

× × × ✓ × 0.8504 0.8571 0.8537

× × ✓ ✓ ✓ 0.8871 0.9167 0.9017

✓ ✓ × × ✓ 0.9440 0.9365 0.9402

YOLOv8 ✓ ✓ × × ✓ 0.9350 0.9200 0.9274

YOLOX ✓ ✓ × × ✓ 0.8790 0.8651 0.8720
"×" indicates that the corresponding data is not utilized by the model, whereas "✓" indicates that the data is utilized.
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January 2022 to December 2023. To ensure the accuracy of the

statistical feature information of the ice eddies, the detected ice eddy

types were annotated using a manual visual inspection method. A

total of 2283 ice eddies were identified, including 1724 cyclonic

eddies (CEs) and 559 anticyclonic eddies (AEs). The number of

cyclonic ice eddies is 3.08 times that of anticyclonic eddies, which

may be related to the mechanism of anticyclonic eddy generation

and the interaction between the two (McWilliams, 2016).

The spatial density distribution of ice eddies was calculated

using a 0.1° × 0.1° grid, as shown in Figure 16A, revealing that the

densest distribution of ice eddies is located in the north-central

Greenland Sea, which exhibits a high number of both cyclonic and

anticyclonic ice eddies. The monthly variation is shown in

Figure 16B, indicating that Nordic Seas ice eddies are present

throughout the year, with two peaks in the total number of ice

eddies in May and October, and a low in March. Overall, May to
Frontiers in Marine Science 1284
November is the period when ice eddies are most frequent. The

formation of ice eddies in the Nordic Seas results from a

combination of dynamical and thermal forces (Perovich and

Jones, 2014). Spatially, areas of high ice eddy occurrence are often

closely linked to the Arctic Current, with the East Greenland Cold

Current flowing along the east coast of Greenland. Temporally, with

the onset of the Arctic summer polar day, sea surface temperatures

(SSTs) rise, and glacier melting causes the expansion of marginal ice

areas, leading to high ice eddy occurrence. In contrast, the Nordic

Seas ice cover decreases rapidly to reach a minimum at the

beginning of October, after which the ice area starts to expand

rapidly. Thus, the thermodynamic factors in the Nordic Seas are

more complex in October, which is conducive to the formation of

ice eddies.

Figure 17A shows that the sizes of ice eddies in the Nordic Seas

are primarily concentrated in the mesoscale and submesoscale
FIGURE 11

The comparison of ice eddy detection results between OIEDNet and YOLOv8 is shown in (A–D) where the red HBB is used to represent YOLOv8
detection results, and the green OBB is used to represent OIEDNet detection results.
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intervals. The diameters of these eddies are mostly in the range of

10-100 km. The diameter of cyclonic ice eddies is mainly between

10-60 km, while the diameter of anticyclonic ice eddies is mostly

between 30-70 km, indicating that anticyclonic ice eddies tend to be

larger than cyclonic ice eddies. Large ice eddies are primarily located

in the north-central Greenland Sea.

From Figure 17B, we observe that the proposed model

maintains detection performance despite increasing wind velocity.

Although the number of ice eddy detections decreases with higher

wind speeds, this does not indicate a decline in model performance;

instead, it reflects the inherent difficulty of eddy formation in areas

with strong winds, resulting in a reduced number of eddies. The

lack of a sharp downward trend in detections further illustrates the

robustness of the proposed model across varying wind speeds.

Regarding wind velocity, 79.7% of the detected ice eddies formed

under low wind conditions of 1-4 m/s, while about 20.3% occurred
Frontiers in Marine Science 1385
under medium wind conditions. Similarly, from Figure 18, as ice

concentration increases, the number of ice eddies decreases. The

rate of detected ice eddies shows a gradual decline, which further

demonstrates the robustness of the proposed model under varying

ice concentrations.
5 Conclusions

To accurately detect MIZs ice eddies, denoising algorithms and

image processing techniques are combined to propose a high-

quality RGB false-color image production method and to create a

dual-polarization synthetic aperture radar false-color ice eddy

dataset. Simultaneously, the OIEDNet ice eddy detection model

was developed and trained, achieving a precision rate of 94.4% and a

recall rate of 93.65%, highlighting significant advantages in ice eddy
FIGURE 12

Comparison of four sets of ice eddy detection results using the OIEDNet model: (A) detection results without HH-polarized IAC, (B) detection results
without HV-polarized thermal noise reduction, (C) detection results of dual-polarized RGB images before denoising, and (D) detection results of
dual-polarized RGB images after denoising.
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detection. The OIEDNet effectively detects dual-polarized SAR ice

eddies with a small sample size, identifying Submesoscale and

mesoscale ice eddies in SAR images quickly and accurately. The

experimental results demonstrate that the ice eddies detected in

SAR images are not as large as previously indicated. The

experimental results show that the OIEDNet model excels at

detecting dense eddy regions in ice eddy detection. The rotating
Frontiers in Marine Science 1486
detection frame of OIEDNet better fits the eddy, effectively avoiding

overlap. The interaction between ocean circulation and currents

involves the splitting and fusion of ocean eddies, leading to the

multinuclear structure of ice eddies, which can be more accurately

detected by the rotational detection method. The OIEDNet also

significantly reduces the leakage of ice eddies and false detections,

especially in dense eddy regions. The OIEDNet not only
FIGURE 13

Comparison of the ice eddy identification results from OIEDNet (green) with those obtained from SWOT, drifting buoys(yellow), and the mesoscale
eddy track atlas product META3.1exp DT (red). (A, B) data time are S1: 2023-10-15 08:13:37 UTC. SWOT: 2023-10-15 03:43:56 UTC, META3.1exp
DT: 2023-10-15 UTC. drifting buoys(5801987): from 2023-10-1 to 2023-10-15 UTC. The orange arrow in (B) indicates the trajectory of the
drifting buoy.
FIGURE 14

Comparison of the ice eddy identification results from OIEDNet (green) with those obtained from SWOT and the mesoscale eddy track atlas product
META3.1exp DT (red). (A, B) data time are S1: 2023-11-03 08:05:21 UTC. SWOT: 2023-11-03 16:46:19 UTC, META3.1exp DT: 2023-11-03 UTC.
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FIGURE 15

Comparison of the ice eddy identification results from OIEDNet (green) with those obtained from OMBs (red and yellow). The acquisition time for
Sentinel-1 occurred on August 23, 2022, at 07:53:58 UTC. OMBs data collection spanned from August 18, 2022, to August 26, 2022, between
07:53:58 and 07:55:02 UTC. Red triangles are used to denote the starting positions of the buoys, while pentagrams indicate the ending positions of
their trajectories.
FIGURE 16

Spatial distribution of ice eddies with histograms of months. (A) The spatial distribution of ice eddy frequency (gray lines represent the 200 m and
2000 m bathymetry lines of IBCAOv4.0). (B) Monthly variation in the number of ice eddies detected during 2022-2023.
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accurately detects ice eddies in the Arctic MIZs but also addresses

the traditional HBB’s limitations in identifying ice eddies of

different scales and forms. This work lays a solid foundation for

future research on the automatic detection and quantification of

ice eddies.

Despite the OIEDNet model’s high performance in ice eddy

detection, certain limitations persist. For instance, minor changes in

the rotation angle can lead to significant alterations in the detection
Frontiers in Marine Science 1688
frame, increasing instability and difficulty in the detection and

regression process. Exploring new angle representations could

reduce ambiguity. Furthermore, we will incorporate multi-

polarization and multi-frequency SAR images for model training

to enhance the accuracy of ice eddy detection. The identification of

ice eddy drift using Synthetic Aperture Radar (SAR) images holds

significant potential for enhancing the understanding of sea ice

eddy dynamics.
FIGURE 18

Distribution of the number of ice eddies and their average diameter (km) across ice concentration (%) for cyclonic (blue) and anticyclonic (orange)
ice eddies.
FIGURE 17

Histogram distributions of ice eddy number, ice eddy diameter, and wind velocity. (A) Distributions of the number and diameter of ice eddies, with
cyclones shown in blue and anticyclones in orange. (B) Distributions of the number of ice eddies and wind velocity (m/s), based on data from the
ERA5 Interim Reanalysis.
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Administration, Beijing, China, 3Technology Innovation Center for Maritime Silk Road Marine
Resources and Environment Networked Observation, Ministry of Natural Resources, Qingdao,
Shandong, China
Sea fog is a severe marine environmental disaster that significantly threatens the

safety of maritime transportation. It is a major environmental factor contributing to

ship collisions. The Himawari-8 satellite’s remote sensing capabilities effectively

bridge the spatial and temporal gaps in data from traditional meteorological

stations for sea fog detection. Therefore, the study of the influence of sea fog

on ship collisions becomes feasible and is highly significant. To investigate the

spatial and temporal effects of sea fog on vessel near-miss collisions, this paper

proposes a general-purpose framework for analyzing the spatial and temporal

correlations between satellite-derived large-scale sea fog using amachine learning

model and the near-miss collisions detected by the automatic identification

system through the Vessel Conflict Ranking Operator. First, sea fog-sensitive

bands from the Himawari-8 satellite, combined with the Normalized Difference

Snow Index (NDSI), are chosen as features, and an SVMmodel is employed for sea

fog detection. Second, the geographically weighted regression model investigates

spatial variations in the correlation between sea fog and near-miss collisions. Third,

we perform the analysis for monthly time series data to investigate the within-year

seasonal dynamics and fluctuations. The proposed framework is implemented in a

case study using the Bohai Sea as an example. It shows that in large harbor areas

with high ship density (such as Tangshan Port and Tianjin Port), sea fog contributes

significantly to near-miss collisions, with local regression coefficients greater than

0.4. While its impact is less severe in the central Bohai Sea due to the open waters.

Temporally, the contribution of sea fog to near-miss collisions is more

pronounced in fall and winter, while it is lowest in summer. This study sheds

light on how the spatial and temporal patterns of sea fog, derived from satellite

remote sensing data, contribute to the risk of near-miss collisions, which may help

in navigational decisions to reduce the risk of ship collisions.
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1 Introduction

Sea fog is a frequent and dangerous meteorological

phenomenon, significantly threatening marine activity safety. This

phenomenon drastically reduces the horizontal visibility of the sea

surface to less than one kilometer (Gultepe et al., 2007). Unlike

land-based scenarios, reduced visibility at sea poses a heightened

risk due to the intricate nature of maritime navigation (Sim and Im,

2023), substantially increasing the likelihood of ship collisions and

thus endangering lives, property, and the environment. Ship

collisions, as one of the primary maritime accidents, can inflict

substantial eco-nomic losses and adverse social impacts. Using non-

accident information to understand maritime transportation safety

is an effective strategy. This often involves identifying near-miss

collision events from Automatic Identification System (AIS) data.

Since near-miss collisions occur more frequently than actual

accidents, near-miss collisions can provide richer insights for

maritime traffic risk analysis than actual accident data (Zhou

et al., 2021). Due to sea fog on 22 May 1922, the Peninsular &

Oriental Steam Navigation Company’s Egypt collided with the

French cargo ship Seine en route from London to Bombay, India.

The ship sank, killing 86 passengers and crew members. Because sea

fog occurs geographically heterogeneously and temporally

seasonally, it is crucial to analyze how it affects near-miss

collisions over time and space.

In 2000, the International Maritime Organization (IMO)

adopted a new requirement for all ships to carry an Automatic

Identification System (AIS) that automatically communicates

information among ships and coastal authorities. The AIS system

transmits the ship’s static, dynamic, and voyage information to the

surrounding ships and AIS base stations via a specific Very High

Frequency (VHF). Because of the rich positional and temporal

information provided by AIS, it has become a valuable tool in

maritime studies, including maritime traffic (Harun-Al-Rashid

et al., 2022; Yang et al., 2024; Zhang et al., 2019), marine
Frontiers in Marine Science 0292
observing (Almunia et al., 2021; Wright et al., 2019), and ship

collisions (Cai et al., 2021; Liu et al., 2023; Zhang et al., 2016), etc.

The AIS is popular because of its ability to conduct in-depth studies

of ship near-miss collisions.

Nowadays, water traffic safety studies are focusing on incidents

narrowly susceptible to collisions, often termed “near-miss

collisions”. In the maritime sector, a near-miss collision refers to

a scenario where two vessels pass each other in close proximity (Du

et al., 2020). A prevalent method for detecting near-miss collisions

involves using navigation information from AIS data (Zhang et al.,

2015, 2016). The few maritime accidents so far limit the possibility

of conducting large-scale collision studies. However, near-miss

collisions studies can help overcome this limitation (Prastyasari

and Shinoda, 2020). To prevent ship collisions more effectively,

numerous studies have been conducted on the spatial geographic

distribution of near-miss collisions to identify high-risk areas (Du

et al., 2021; Zhixiang et al., 2019; Zhou et al., 2021). However,

previous studies have primarily focused on visualizing the spatial

distribution of near-miss collisions without delving deeply into the

relevant influencing factors. From the maritime traffic safety

perspective, the factors contributing to collisions can be

categorized into human, vessel, and environment domains.

Among these, environmental factors are the primary causes of

accidents (Zhang and Hu, 2009). Variations in environmental

conditions can significantly increase collision risks. Given that

marine environmental factors exhibit stability, regularity, and

spatial heterogeneity, it is crucial to optimally use the rich

geographic information associated with near-miss collisions.

Integrating these marine environmental factors into the research

framework for near-miss collisions would enable more

comprehensive and insightful studies.

Among various marine environmental factors, sea fog is a

frequently occurring catastrophic weather. Studies have shown

that poor visibility, often associated with fog, exerts the most

significant impact on maritime traffic safety, predisposing vessels
FIGURE 1

Overview of the study area.
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to collision accidents (Bye and Aalberg, 2018; Gultepe et al., 2006).

Approximately 70% of ship collisions are attributed to foggy

conditions (Wu et al., 2015). Moreover, the consequences of ship

collisions are most severe during the foggy season (Zhang and Hu,

2009). Investigating the influence of sea fog on near-miss collision

risk is essential for enhancing the supervision and management of

critical maritime areas and periods to ensure secured

marine navigation.

Traditional sea fog detection methods rely on meteorological

stations and buoys, which are sparse in spatial and temporal

distributions (Kim et al., 2020). In recent years, remote sensing

technology has been widely applied in ocean environment

monitoring (Ullah et al., 2024; Khan et al., 2023). And, the advent

of satellite remote sensing technology enables long-term and large-

scale sea fog detection results. Using remote sensing for sea fog

detection started in the 1970s when Hunt (Hunt, 1973) discovered

significant differences in brightness temperatures between the mid-

infrared (MIR) channel of 3.7 mm and the thermal infrared (TIR)

channel of 11 mm for low clouds or fog with small particle size. Based

on this theory, several studies have explored sea fog detection

techniques, leveraging the difference between mid-infrared and

thermal infrared channels (Cermak, 2012; Eyre et al., 1984; Wu

and Li, 2014; Yibo et al., 2016; Zhang and Yi, 2013). Also, the sea fog

detection accuracy can be enhanced with spectral indices, such as

Normalized Snow Deposition Index, NDSI (Ryu and Hong, 2020),

Normalized Difference Water Index, NDWI (Wu and Li, 2014),

and Normalized Difference Flow Index, NDFI (Shi et al., 2023) and

environmental factors such as air–sea temperature difference (Han

et al., 2022). Due to the challenges of determining optimal thresholds
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with traditional methods, various machine-learning techniques are

also widely employed in sea fog detection. With its unique vertically

resolved measurement capability that provides accurate sea surface

cloud information, the Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observation (Calipso) has been widely used for sea fog

detection (Badarinath et al., 2009; Cermak, 2012; Wu et al., 2015;

Xiao et al., 2023; Xiaofei et al., 2021). Sea fog based on remote sensing

satellites can conduct spatial analyses of ship near-miss collisions.

Many studies have examined ship near-miss collisions to

achieve a safe and reliable maritime transportation system (Chai

et al., 2017; Rawson and Brito, 2021; Szlapczynski and Szlapczynska,

2016). Most recent studies infer that sea fog positively affects

collisions (Heo et al., 2014; Rømer et al., 1995). However, sea fog

occurrences are spatially heterogeneous and temporally seasonal.

Therefore, it is necessary to explore the impact of sea fog on near

miss-collision risk in time and space. Conventional global

regression analysis methods, such as least squares regression,

assume independence and identical distribution of observations,

rendering them unsuitable for analyzing spatially unevenly

distributed data. Geographically weighted regression (GWR), a

local linear regression method based on spatial variation

relationships, is widely applied in various fields, such as

meteorology (Li et al., 2024; Wahiduzzaman et al., 2022), ecology

(Wang et al., 2021; Xiao et al., 2023), and economics (Cellmer et al.,

2020; Shang and Niu, 2023). The model generates a regression

equation at each local location, enabling spatial analysis of sea fog’s

impact on near-miss collisions (Yongtian et al., 2023).

However, few studies have focused on the spatial and temporal

variations in the relationship between ship near-miss collisions and
TABLE 1 AHI observation bands details on Himawari-8 satellite.

Channel
Spatial resolution

(mm)
Central wavelength

(mm)
Main detection category

1 1 0.47 Vegetation, aerosol

2 1 0.51 Vegetation, aerosol

3 0.5 0.64 Low cloud (fog)

4 1 0.86 Vegetation, aerosol

5 2 1.6 Cloud phase recognition

6 2 2.3 Cloud droplet effective radius

7 2 3.9 Low cloud (fog), natural disaster

8 2 6.2
Water vapor density from troposphere to

mesosphere

9 2 6.9 Water vapor density in the mesosphere

10 2 7.3 Water vapor density in the mesosphere

11 2 8.6 Cloud phase discrimination, sulfur dioxide

12 2 9.6 Ozone content

13 2 10.1 Cloud image, cloud top

14 2 11.2 Cloud image, sea surface temperature

15 2 12.4 Cloud image, sea surface temperature

16 2 13.3 Cloud height
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sea fog because traditional ocean observation data are usually in

point form, which limits studying the relationship between sea fog

and ship near-miss collisions in terms of spatial and temporal

variations. To address the issue, this paper presents a novel

approach of exploring the spatial and temporal variations in the

relationship between ship near-miss collisions and sea fog. The

primary contribution of the paper lies in proposing a framework for

measuring spatial and temporal variation in the correlations

between large-scale sea fog, which is detected using satellite
Frontiers in Marine Science 0494
remote sensing data instead of traditional point-based data from

meteorological stations, and near-miss collisions which are derived

from AIS data by the VCRO model. The GWR model measures the

spatial variation of near-miss collisions influenced by sea fog while

an average coefficient analysis of monthly data is used to describe

the temporal variation of those collisions. The Bohai Sea is chosen

as a case study to illustrate the approach. This study provides

insights into the spatial heterogeneity and intra-annual seasonal

variations of near-miss collisions influenced by sea fog. The
FIGURE 3

Himawari-8-image NDSI index distribution chart (A) Original image of Himawari-8 (B) NDSI calculation results shown in graded classes.
FIGURE 2

Workflow of the analytical procedure.
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approach can support decision-making for navigation and enhance

maritime safety.
2 Study area and datasets

2.1 Study area

This study selected the Bohai Sea area (37°07′~41°00′N117°35′
~121°10′E) as the study area (Figure 1). This region represents the

northernmost offshore area of China, surrounded by land on three

sides, characterized as an almost enclosed inland sea. The Bohai Sea is

particularly susceptible to sea fog. Sea fog in the Bohai Sea primarily

occurs during spring and less frequently in summer. Renowned for its

abundance of fisheries and mineral resources and its dense

concentration of ports and harbors, the Bohai Sea emerges as one

of the busiest maritime regions for shipping activities.

In 2018, the major ports in the Bohai Sea (including Tangshan,

Tianjin, Dalian, Yantai, Yingkou, and Huanghua) ranked among the

world’s top 20 ports in terms of cargo throughput. The total port

throughput size reflects a port’s transport capacity. According to the

2018 port data from the China Port Yearbook, the annual throughput

(in million tons) of Tianjin, Tangshan, Huanghua, Qinhuangdao,

Dalian, Yantai, Yingkou, Jinzhou, Huludao, Panjin, Binzhou,

Dongying, Weifang, and Laizhou Ports was 507, 637, 288, 231, 468,

443, 370, 110, 31.9, 40.91, 12, 58.25, 46.57, and 22.7, respectively. The

total throughput of each port is categorized into large, medium, and

small sizes based on mean and standard deviation breakpoints. Large

ports include Tangshan, Tianjin, Dalian, and Yantai Ports; medium

ports include Yingkou, Huanghua, and Qinhuangdao Ports; and

small ports include Jinzhou, Huludao, Panjin, Dongying, Binzhou,

Weifang, and Laizhou Ports.
2.2 Data

2.2.1 Himawari-8
This study’s remote sensing satellite data were obtained from

the Himawari-8 satellite, a third-generation geostationary

meteorological satellite operated by the Japanese Meteorological

Office and equipped with Advanced Himawari Imager (AHI). It

covered sixteen spectral bands, including three visible light

channels, three near-infrared channels, and ten infrared channels

(Table 1). Its quality of cloud imagery, number of spectral bands,

and clarity were substantially improved over those of previous

generations. Additionally, its full-disk observation frequency of

every 10 min provided excellent time resolution, thereby

facilitating the study of time-series sea fog events.

2.2.2 The AIS data
The Automatic Identification System (AIS) is a shipboard

monitoring system that provides vital information about a ship’s

position, speed, heading, and other relevant data. Being less

impacted by meteorological conditions, sea surface states, and

other environmental factors, AIS has gradually become a

mainstream data source for ship trajectory research. The primary
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data used in this study is the ship’s position, timestamp, direction

toward the earth, and sailing speed.

This paper used the 42.6 GB of 2018 Bohai Sea area AIS data,

containing a substantial data volume. To ensure the usability of the data,

we initially performed preliminary cleaning to remove records with

abnormal critical information, such as speed, heading, longitude, and

latitude. Since analyzing the encounter process is unpractical when the

shipping speed is low or in amoored state, we filtered out low-speed data

and data indicating a moored sailing state. The remaining trajectory data

were then divided into several sub-trajectories for detailed analysis.
3 Methodologies

Figure 2 provides the study workflow. We explored the effect of

sea fog on collision risk and the key factors influencing the collision

risk as explanatory variables, such as ship density. As shown in

Figure 2, the main steps include identifying sea fog, calculating

collision risk, dividing the sea area to be studied into grids, counting

the monthly frequency of sea fog and the total collision risk, and

performing spatial analyses. The main steps are further described

in detail.
3.1 Sea fog detection

The advantages of remote sensing satellite data include wide

coverage and continuous observation, enabling constant

monitoring of sea fog over a wide range and an extended period.

In this study, we used Himawari-8 satellite data, which is equipped

with the Advanced Himawari Imager (AHI), a next-generation

sensor with 16 spectral bands ranging from visible to infrared

wavelengths. The spectral characterization of Himawari-8 data

identified the bands B1, B2, B3, and B14 as the most suitable for

the task. To enhance the differentiation between sea fog and other

features, the Normalized Snow Deposition Index (NDSI) was

constructed as follows:

NDSI =
B3 − B5

B3 + B5
(1)

where B3 is the third-band reflectance and B5 is the fifth-band

reflectance. Figure 3 shows the spatial distribution of NDSI index,

and it can be found that most of the sea fog pixels in the Bohai Sea

and Yellow Sea can be distinguished according to the NDSI index.

The selected feature bands are normalized to address the varied data

magnitudes in each band, which could induce low accuracy and

slow computation.

In this study, only sea fog is dichotomized, i.e., into fog and

non-fog categories. In sea fog remote sensing detection, visual

interpretation is the conventional approach to sample selection. It

involves analyzing the texture or spectral characteristics of features

on satellite remote sensing images to identify those that meet the

pre-defined interpretation criteria. Among the visual interpretation

criteria for sea fog, the following features are essential: uniform,

smooth, and delicate texture, milky white color, darker and less

variable brightness, and more apparent and precise boundaries.
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Nevertheless, low-altitude stratocumulus clouds and sea fog are

essentially clouds, with no significant difference in their physical

properties. Therefore, selecting sea fog samples solely based on

visual interpretation of satellite remote sensing images is subjective.

Vertical Feature Mask (VFM) data, a secondary product of

CALIOP data, can differentiate among several feature types,

including cloud, sea surface, subsurface, stratosphere, aerosol, and

no-signal data, within the range of satellite subsurface points. The

data is widely used in cloud and fog detection research. Based on the

CALIOP VFM data, those connected to the sea surface were

considered sea fog. The synchronized transit of CALIOP VFM data

and Himawari-8 satellite images are taken. Here, synchronization is a

transit time difference between the two data sets of no more than 10

minutes. Samples of sea fog and non-fog conditions have been

identified through visual interpretation and are further

corroborated with CALIOP Vertical Feature Mask (VFM) data.

Four types of feature samples, sea fog, medium-high clouds, low

clouds, and sea surface, were selected through visual interpretation

and in combination with CALIOP VFM data. The samples were

selected by the following cases: 1) Sea fog samples are clouds in

contact with the sea surface or anomalous sea surface above sea level

in the VFM data. 2) Low cloud samples are clouds with cloud base

heights lower than 2 km in the VFM. 3) Medium-high cloud samples

are clouds with cloud base heights greater than 2 km in the VFM. The
Frontiers in Marine Science 0696
sample selection process resulted in the following types and

corresponding pixel counts: 6725 pixels for sea fog, 7267 pixels for

sea surface, 6961 pixels for low-level clouds, and 9367 pixels for mid-

high level clouds.

The classification model in the study is the Support Vector

Machine (SVM), a novel pattern recognition method initially

proposed by Vapnik and Cortes in 1995 (Vapnik, 1995). The SVM

is widely used in numerous domains, including feature extraction,

pattern recognition, and regression analysis. Additionally, the SVM

exhibits several advantageous characteristics, such as its suitability for

small-sample training, robustness, stability, and automation. It has

been extensively adopted, demonstrating high efficacy in remote

sensing image classifications. The system randomly generates a

hyperplane in the binary classification of linearly divisible data. It

moves it until the points belonging to different categories in the

training set are precisely on both sides of the hyperplane, thus

achieving the optimal classification with the minimum difference

between similar categories and vice versa. In the case of nonlinear

problems, it is necessary to map the input samples to a high-

dimensional feature space and construct the optimal classification

surface in this feature space. As the dimensionality of the feature

space increases exponentially, computing the optimal classification

plane directly in this high-dimensional space becomes challenging.

The SVM addresses this issue by defining a kernel function, which
FIGURE 4

Spatial distribution of near-miss collisions in 2018.
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translates the problem to the input space. SVM can effectively divide

sea fog and non-sea fog regions in high-dimensional feature space,

especially suitable for complex data features in sea fog detection. SVM

can accurately capture the distribution features of different regions by

constructing the decision hyperplane to improve the classification

accuracy. Unlike deep learning methods that usually rely on a large

amount of labeled data, SVM can still provide good classification

performance with limited sample size. In view of the difficulty and

high cost of acquiring sea spray labeled data, CALIPSO data is used

for labeling in this study, and SVM is able to give full play to its

classification advantages with limited labeled samples. SVM has

strong robustness to noise and outliers, which effectively improves

the stability of the detection of sea spray, and reduces the

classification error of the traditional methods in complex

environments. Therefore, the SVM method can realize efficient

processing while ensuring accuracy, and is an ideal choice for the

sea fog detection task in this study.

This study selected the radial basis function (RBF) as the kernel

function, with 70% of the samples used as training data and 30% as

test data.

k(x, x0) = f(x)Tf(x0) =oM
i=1f i(x)f i(x

0) (2)
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3.2 Near miss collisions

There are two main approaches for calculating collision risk

based on historical AIS data. The first method utilizes Distance at

Closest Point of Approach (DCPA) and Time to Closest Point of

Approach (TCPA). The technique identifies near-miss collisions by

establishing criteria for DCPA and TCPA within a defined vessel

domain (Fukuto and Imazu, 2013; Langard et al., 2015; Yoo, 2018).

Nevertheless, collision risk assessment, solely based on DCPA/TCPA,

ignores the heading information between ship pairs and thus cannot

detect the collision risk during head-on encounters. The second

method involves constructing a model to calculate the near-miss

collisions based on factors that directly influence ship collisions.

The Vessel Conflict Ranking Operator (VCRO) model assessed

the collision risks between ships, with the input variables including

distance, relative speed, and phase difference between the two ships

(Zhang et al., 2015). The equation is as follows:

VCRO(x, y, z) = ((kx−1y)(m · sin (z) + n · sin (2z)) (3)

where x is the distance between the two ships, y is the relative speed,

z is the phase, k,  m, n are the model parameters. The parameter values

used in this study are based on Zhang, with k;=3.87,m=1, and n=0.386.
FIGURE 5

Spatial distribution of vessel density in 2018.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1536363
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1536363
The relative distance between ships is calculated using Equation

4, where (x1, y1) represents the coordinates of ship A, (x2, y2) is the

coordinates of ship B, and d is the distance between the centers of

the two ships.

d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 − x1)

2 + (y2 − y1)
2

q
(4)

The relative velocity between ships is calculated using Equation

5, where Va and Vb represent the speed of ship A and ship B,

respectively, HDGa and HDGb represent the heading of ship A and

ship B, and a   represents the heading angle of the ship.

y(a,b) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

a + V2
b − 2VaVb cosa

q
(5)

The phase describes the relative position of the ships, denoted

by angle and direction. The phase range is [-p, p], where a negative
value indicates a concluded encounter and the two ships move away

from each other, posing no collision risk. Conversely, a positive

value indicates that the ships are approaching each other,

heightening their collision risks.

To analyze the law governing ship collision risk on spatial and

temporal scales, the study area must be gridded. Considering its

size, the Bohai Sea is divided into grid cells of 0.125°, and the sum of

near-miss collisions of each grid cell is counted as the value of this

grid near-miss collisions:

Risksum =o VCROn (6)
3.3 Global Moran’s I

Global Moran’s I is the most frequently employed statistic in

global correlation analysis. It is a comprehensive measure of spatial

autocorrelation across the study area (Moran, 1948). It is expressed

as Equation 7, where wij represents the weight between observations

i and j, and S0 denotes the total sum of wij, given as Equation 8

I =
n
S0

�o
n
i=1on

j=1wij(yi − �y)(yj − �y)

on
i=1(yi − �y)2

(7)

S0 =on
i=1on

j=1wij (8)

A Moran’s I > 0 indicates a positive spatial correlation,

described as a “high-high, low-low” aggregation trend between

neighboring elements. The larger the value, the more pronounced

the spatial correlation. Conversely, Moran’s I< 0 signifies a negative

spatial correlation, characterized as a “high-low, low-high”

distribution trend among neighboring elements. However, there is

a random distribution when Moran’s I = 0, indicating spatial

randomness. After calculating Moran’s I index, it is impossible to

judge the spatial correlation directly based on its positive or negative

value. The significance of the index must be assessed in

combination with the p-value and Z-score.
Frontiers in Marine Science 0898
3.4 Geographically weighted regression

According to the first law of geography, anything is spatially

correlated. Geographically weighted regression is a local linear

regression method that involves modeling spatially varying

relationships to solve spatial heterogeneity of the variables by

assigning weights to different locations (Brunsdon et al., 1996). Its

Equation 9 is as follows:

yi = b0(mi, vi) +okbk(mi, vi)xik + e i (9)

where (mi, vi) denotes the position of grid cell i, b0(mi, vi)   is the

intercept term, bk(mi, vi) is the regression coefficient of the

parameter k on the grid cell, and ei is the model random error.

The parameter vector at location i is estimated using the weighted

least square approach as follows Equation 10:

b̂ (ui, vi) = (XTW(ui, vi)X)
−1XTW(ui, vi)y (10)

The GWR model is adjusted using a distance decay weighted

function modified by a bandwidth. The three most commonly used

weighting functions are Gaussian-based, bi-square, and tri-cube

kernels. Bandwidth includes fixed and adaptive types. We used a

geographically weighted regression model with the dependent

variable as near-miss collisions, while the explanatory variables

were the frequency of sea fog, ship density. We employed a

Gaussian kernel spatial weight matrix, where the weight between

observation points i and j is calculated as Equation 11, where dij
represents the geographical distance between the two points and b is

the bandwidth parameter. We used the adaptive bandwidth

specified by the Akaike information criterion (AICc) due to the

uneven distribution of the near-miss collision data.

wij = exp −
d2ij
2b2

 !
(11)

Further, the AICc and R2 values evaluated the performance of

the developed models. Higher R2 indicates a better fit, while lower

AICc indicates a poorer fit. The GWR model has significant

advantages over the OLS model in its ability to optimize the

global model on a local scale and to visualize the spatial

distribution of the local regression coefficients. It enables the

analyses of each factor’s local contribution and non-stationarity

characteristics through local coefficient variations, which are

unavailable in the OLS model.
4 Result and discussion

4.1 Spatial and temporal differences in
near-miss collision

Figure 4 displays the grid statistics for near-miss collisions in

2018. The value for each grid represents the total values for all near-
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miss collisions occurring within that grid as calculated using Eq (6).

Areas of high near-miss collision are concentrated around ports

because of the confined navigable space and the high density of

ships in these areas (Figure 5), while fewer near miss collisions were

observed in the central waters of Bohai Sea. Notably, the Laotieshan

Channel, located at the northernmost end of the Bohai Strait, is a

major maritime transport hub in the Bohai Sea. It experiences
Frontiers in Marine Science 0999
substantial maritime traffic, resulting in a heightened risk of near-

miss collision risks in the area.

In addition, Figure 6 shows the spatial distribution of near-miss

collisions from January to December 2018. We observed that the

fishing moratorium in the Bohai Sea, lasting from May to August,

results in fewer near-miss collisions during this period. The number

of near collisions starts to increase in September. By January, vessel
FIGURE 6

Spatial distribution of near-miss collisions, (A–I) represent the spatial distribution of near-miss collisions for each month from January to December
2018 respectively.
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activity decreases as the temperature drops and the icing period

begins, leading to a corresponding decline in near collisions.
4.2 Spatial and temporal differences in
sea fog

The spatial distribution of sea fog in the Bohai Sea is

significantly heterogeneous, with most occurrences concentrated

in the southwestern and northern regions (Figure 7).

Figure 8 illustrates the monthly distribution of sea fog frequency

in the Bohai Sea in 2018. The data indicate that sea fog is

significantly higher in winter and spring. Despite this seasonal

peak, the overall frequency of sea fog remained relatively low,

with almost no occurrences in summer.

In summary, the sea fog in the Bohai Sea in 2018 has obvious

spatial and temporal distribution differences, showing the

characteristics of “high in spring, low in summer, high along the

coast, and low in the distant sea”. Spring is the high incidence of sea

fog, with a wide spatial distribution; while in summer, sea fog is

significantly reduced and concentrated in local coastal areas.

Understanding the spatial and temporal variability in the

distribution of sea fog is critical to maritime safety and the

development of effective navigation strategies.
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4.3 Spatial autocorrelation

Before performing the GWR model, a spatial autocorrelation

analysis of sea fog occurrence was conducted using the Moran’s I

index, along with z-scores (indicating the distance from the mean in

standard deviations) and p-values (assessing the statistical

significance of the index). Table 2 presents these results for each

month of 2018, as well as for the entire year. All the Moran’ I index

values (bounded by 1.0 and 1.0) are positive and high (> 0.25),

indicating a high degree of spatial positive autocorrelation. Also, the

p-values are all less than 0.01 (reaching 99% confidence level), and

the z-scores are significantly higher than 2.58, indicating that the

spatial autocorrelation results are statistically significant.

Consequently, the linear regression model is inadequate for

analyzing the impact of sea fog on collision risk. In contrast, the

GWR model is well-suited to address these spatial dependencies.

Using the GWR model enables an in-depth analysis, better

capturing the spatial impact of sea fog on near-miss collision

risks across the region.
4.4 GWR model diagnosis

The GWR models were constructed for 2018 and each month

therein, with near-miss collisions as the dependent variable, while sea
FIGURE 7

Spatial distribution of sea fog occurrence days in 2018.
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fog frequency and ship density were explanatory variables. Prior to

constructing the GWR models, all values were normalized to ensure

consistent scale and improve model accuracy. To assess the

effectiveness of the GWR model, an OLS model was also established

for comparison. The model results (Table 3) showed that the R2 values

of the OLS model are generally lower than 0.6, indicating that it

explains less than 60% of the variance in near-miss collision incidents.

For instance, in January, February, and March, the OLS R2 values are

low at 0.10, 0.21, and 0.19, respectively, suggesting limited explanatory
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power. In contrast, the GWRmodel significantly outperforms the OLS

model with R2 values above 0.7 for most months, indicating that its

effectiveness in dealing with spatially heterogeneous data. Similarly, the

Akaike Information Criterion corrected (AICc) values further validate

the GWR model’s superiority. AICc is a measure of model quality

where lower values indicate better fit. The AICc values of the GWR

model are lower than those of the OLS model. These results indicate

that the GWR model, which accounts for spatial heterogeneity, fits the

data more effectively and provides more accurate regression analyses.
FIGURE 8

Spatial distribution of the frequency of sea fog occurrence, (A–I) represent the spatial distribution of the frequency of sea fog occurrence in each
month from January to December 2018, respectively.
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TABLE 2 The spatial autocorrelation test results obtained using moran’ I
index combined with the z-score and p-value of sea fog (as GWR-
independent variables).

Month Moran’ I Z P

1 0.307 11.4 0.00

2 0.314 11.67 0.00

3 0.444 16.46 0.00

4 0.524 19.28 0.00

5 0.419 15.44 0.00

6 0.271 10.03 0.00

7 0.284 10.45 0.00

8 0.264 9.74 0.00

9 0.258 9.52 0.00

10 0.358 13.25 0.00

11 0.314 11.62 0.00

12 0.303 10.98 0.00
F
rontiers in Marine S
cience
Year Moran’ I Z P

2018 0.406 14.98 0
12102
TABLE 3 Performance evaluation of the GWR and OLS model.

Month
OLS GWR

R2 AICC R2 AICC

1 0.10 -760.77 0.81 -1141.87

2 0.21 -651.09 0.87 -1035.79

3 0.19 -1415.51 0.93 -2378.54

4 0.15 -1493.52 0.84 -2198.11

5 0.76 -1730.34 0.95 -2278.35

6 0.12 -1515.95 0.82 -2197.67

7 0.68 -1847.73 0.94 -2590.70

8 0.47 -1642.87 0.74 -1918.78

9 0.60 -4550.58 0.78 -4689.05

10 0.30 -1399.03 0.71 -1702.76

11 0.59 -1903.69 0.84 -2302.02

12 0.57 -1596.99 0.86 -1970.90

Year
OLS GWR

R2 AICC R2 AICC

2018 0.265 -2084.45 0.82 -2729.98
FIGURE 9

Spatial distribution of the local R2 values by GWR model in 2018.
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The seasonal patterns also suggest that the GWR model performs

especially well in winter and spring, when sea fog occurrences are more

frequent. For example, in February through May, when sea fog events

are prevalent, the GWR model R2 values range from 0.87 to 0.95. This

result reinforces that sea fog, as an environmental factor, has a

significant spatially variable impact on near-miss collisions during

these months.
Frontiers in Marine Science 13103
Figure 9 shows the spatial distribution of local R2 values of

GWR for the 2018 annual data. The values generally exceed 0.4,

indicating that the sea fog and ship density can fit the GWR model

well. Notably, the areas with higher R2 (> 0.8) are concentrated in

large port areas, such as Tianjin Port, Tangshan Port, Yantai Port,

and Dalian Port. In contrast, the rest of the medium ports, such as

Qinhuangdao and Yingkou Port, also have R2 between 0.6 and 0.8.
FIGURE 10

Spatial distribution of the local R2 values by GWR model, (A–I) represent the spatial distribution of the local R2 values in each month from January
to December 2018, respectively.
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Suggests that sea fog and ship density are more strongly correlated

with ship near-miss collisions in ports areas.

Figure 10 displays the local R2 values for different locations in

the GWR model over the 12 months of 2018, highlighting temporal

variation in the model’s performance across different locations. The

GWR model performs well in essentially all months, with local R2

values generally exceeding 0.6, although it varies monthly for

different locations. This temporal variability suggests that the

influence of sea fog and ship density on collision risks may shift

over time, potentially due to seasonal changes in weather

conditions, maritime traffic, or operational patterns in these

port areas.

Overall, the R2 values are consistently high for most regions of

the Bohai Sea. This deduction indicates that the driving factors used

in the model effectively explain the spatial heterogeneity in near-

miss collision risk.
4.5 Spatial relationship between sea fog
and collision

The local regression coefficients of the GWR model (Figure 11)

highlight the spatial variation in the effect of sea fog on near-miss

collisions. The regression coefficients are generally greater than 0,

indicating that sea fog positively affects near-miss collisions, thus
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the occurrence of sea fog contributing to collision risk. Generally,

the impact of sea fog on near-miss collisions shows significant

spatial inhomogeneity. The areas with the highest impact by sea fog

are predominantly near the ports in the western part of the Bohai

Sea, mainly concentrated around Tianjin Port and Tangshan Port.

The high density of ships and heavy traffic in these harbors increase

the likelihood of collision accidents when encountering sea fog due

to reduced visibility and increased difficulty in ship handling.

Further from these large ports, the coefficients decrease,

indicating a relatively lower but still positive effect of sea fog on

near-miss incidents. The areas with moderate coefficients (0.3 to

0.5) include regions around medium ports, where the collision risk

remains elevated during fog but to a lesser extent than in the large

ports. Therefore, near-miss collisions at key shipping nodes, such as

ports, significantly increase during sea fog scenarios. Consequently,

port authorities in large ports, such as Tianjin and Tangshan,

should enhance navigation monitoring and optimize ship

scheduling during foggy conditions to mitigate the increased risk

of collisions. Implementing real-time navigation assistance and

optimizing traffic flow in these key nodes can further reduce the

risk of incidents under low-visibility conditions.

Figure 12 illustrates the monthly spatial distribution of local

regression coefficients from the GWR model. Throughout the year,

sea fog consistently shows a positive effect on near-miss collision risk,

but the intensity and spatial distribution of this impact fluctuate
FIGURE 11

Spatial distribution of regression coefficient values of sea fog in 2018 using GWR models.
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significantly. Specifically, the contributions of sea fog were more

significant in January, February, March, April, and June, with high-

impact areas concentrated near the large, medium-sized ports in the

western Bohai Sea, such as Tianjin and Yingkou Port. In contrast, May,

July, and September display a more even distribution of lower local

coefficients, with values generally below 0.1. This pattern suggests that

during these months, the effect of sea fog on near-miss collisions is less

severe across the region. In August, some changes occurred in the
Frontiers in Marine Science 15105
geographical distribution of the contribution of sea fog, with Dongying

and Huludao harbors being more affected in localized areas. The effect

of sea fog in the Bohai Sea intensified again fromOctober to December,

with several high-impact zones. Particularly in October, the effect was

more significant, affecting the ports of Tianjin, Qinhuangdao, Laizhou,

and Dongying. In November, Tianjin and Qinhuangdao ports were

more affected, while in December, the port of Tianjin experienced the

most significant impact.
FIGURE 12

Spatial distribution of regression coefficient values of sea fog by GWR models, (A–I) represent the spatial distribution of regression coefficient values
of sea fog in each month from January to December 2018, respectively.
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4.6 Temporal relationship between sea fog
and collision

Here, we present line plots of the average regression coefficients for

each month in Figure 13, providing a visual comparative time-series

analysis of how much the Bohai Sea area is affected by sea fog in

different months. The results demonstrate that sea fog in autumn and

winter most significantly impacts ships’ near-miss collisions, while

spring has the second-highest impact. In contrast, the effect of sea fog

on near misses is minimal in summer. The seasonal difference can be

explained in two ways. First, sea fog is less frequent in summer, which

directly reduces the adverse effects of sea fog on navigational

conditions. Secondly, the fishing moratorium in the Bohai Sea area

coincides with summer, and the reduced activity offishing vessels leads

to a relative decrease in the number of vessels, thus reducing the risk of

collision due to sea fog. Nevertheless, it is crucial to note that, although

May and June also fall within the fishing moratorium period,

commercial vessel activity is higher at this time than from January to

April. This increased activity can still contribute to collision risks, even

with the reduced traffic of fishing vessels.
Specifically, May to August is the closed season for fishing in the

Bohai Sea, so the mean regression coefficient increases from September

(Figure 13 red line), indicating that sea fog has started to affect ship

collisions significantly. However, as winter approaches (December-

March), the number of active ships decreases due to the lowering of

temperatures and the freezing period, and the mean regression

coefficient starts to decrease, indicating less impact by sea fog

(Figure 13 green line). The regression coefficients remain smoother

but slowly increase in spring and summer (March-August) (Figure 13

yellow line). In July, sea fog had almost no effect on collision risk because

it hardly occurred, and the number of vessels was low during the fishing

moratorium in the Bohai Sea. Collisions are more significantly affected

by sea fog when vessel traffic is high. This observation suggests that

navigation safety strategies should focus on periods with high vessel

traffic and frequent sea fog to mitigate collision risks effectively.
5 Conclusions

This paper presents a new framework for analyzing the spatial

and temporal effects of sea fog on ship near-miss collisions. Data from
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the Himawari-8 satellite is used to detect sea fog, with a Support

Vector Machine (SVM) model applied for identification. Near-miss

collisions between vessels are analyzed using the Vessel Conflict

Ranking Operator (VCRO) model, which is based on Automatic

Identification System (AIS) data. Spatial autocorrelation analysis by

Moran ‘s I index reveals significant spatial heterogeneity in the

distribution of sea fog. To account for this variability, a

geographically weighted regression model (GWR) is employed,

which enables measuring the spatial variation of sea fog’s effect on

ship near-miss collisions through local regression coefficients.

Additionally, further conduct regression analysis on the monthly

time series data to investigate the intra-annual seasonal dynamics and

variations by calculating the mean regression coefficients. This

temporal analysis can help us understand how the sea fog factor

influences ship near-miss collisions over time. The proposed

framework is implemented in a case study focused on the Bohai

Sea, and the results are as follows.

According to the performance metrics (AICc and R2), the GWR

model performs much better than the OLS model. The R2 of the

GWR model ranges from 0.70 to 0.95, suggesting that GWR is more

suitable for data where spatial non-stationarity exists. Regression

coefficients generally greater than 0 indicate a positive influence of sea

fog on ship near-miss collisions. Visualizing the local regression

coefficients can intuitively reveal the spatial differences in the

contribution of sea fog to ship near-miss collisions. Overall, sea

areas near large and medium ports along the coast of the Bohai Sea

with high ship densities, such as Tangshan Port and Tianjin Port, are

more susceptible to sea fog. However, the impact on the central Bohai

Sea is minimal due to the vast expanse of the water area. We estimate

the mean regression coefficients for each month to explore temporal

differences. It reveals that the contribution of sea fog intensifies in the

autumn after the end of the fishing moratorium. In winter, the

contribution of sea fog decreases due to the low number of vessel

activities. However, the contribution rises steadily by spring, while it

is lowest in summer due to its low occurrence frequency. Future

studies should explore the spatial and temporal correlation between

sea fog and ship near-miss collisions in more detail in response to

multi-year data analysis. This research demonstrates that sea fog data

derived from remote sensing satellite observations allows for a more

comprehensive understanding of relationships and patterns in space

and time.
FIGURE 13

Average regression coefficients for January-December 2018.
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Chlorophyll-a (Chl-a) plays a vital role in assessing environmental health and

understanding the response of marine ecosystems to physical factors and

climate change. In situ sampling, remote sensing, and moored buoys or floats

are commonly employed methods for obtaining Chl-a in marine science

research. Although in situ sampling, buoys, and floats could provide accurate

data, they are limited by the spatial and temporal resolution. Remote sensing

offers continuous and broad spatial coverage, while it is often hindered by cloud

cover in the South China Sea (SCS). This study discussed the feasibility of a

predictive model by linking the physical factors [e.g., wind field, surface currents,

sea surface height (SSH), and sea surface temperature (SST)] with surface Chl-a in

the SCS based on the ResUnet. The ResUnet architecture performs well in

capturing non-linear relationships between variables, with the model achieving

a prediction accuracy exceeding 90%. The results indicate that (1) the

combination of oceanic dynamical and meteorological data could effectively

estimate the Chl-a based on deep learning methods; (2) the combination of

meteorological and SST effectively reproduces Chl-a in the northern SCS, while

adding surface currents and SSH improves model performance in the southern

SCS; (3) With the addition of surface currents and SSH, the model effectively

captures the high Chl-a patches induced by eddies. This research presents a

viable method for estimating surface Chl-a concentrations in regions where they

are highly correlated with dynamic factors, using deep learning and

comprehensive oceanic and atmospheric data.
KEYWORDS

ResUnet, chlorophyll-a, deep learning, South China Sea, physical factors
frontiersin.org01109

https://www.frontiersin.org/articles/10.3389/fmars.2025.1528921/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1528921/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1528921/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1528921/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2025.1528921&domain=pdf&date_stamp=2025-03-03
mailto:shuchan16@mails.ucas.ac.cn
mailto:pxiu@xmu.edu.cn
https://doi.org/10.3389/fmars.2025.1528921
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2025.1528921
https://www.frontiersin.org/journals/marine-science


Fang et al. 10.3389/fmars.2025.1528921
1 Introduction

Phytoplankton chlorophyll-a (Chl-a) is a key indicator of

marine phytoplankton biomass and primary productivity

(Fernández-González et al., 2022). The SCS is characterized by

diverse biogeochemical regimes, which is related to the dynamical

process over the SCS. Nutrients from rivers such as the Pearl River

and the Mekong River typically dominate the shelf regions (Dai

et al., 2022). While the central SCS exhibits oligotrophic conditions

with low productivity and depths exceeding 5000 m (Chen, 2005).

The East Asian monsoon largely drives the circulation in the South

China Sea (SCS), forming the South China Sea Western Boundary

Current influencing the distribution of nutrients (Fang et al., 2012).

Under northeasterly monsoon and stronger Kuroshio intrusion, a

cyclonic circulation prevails in the upper layer during winter (Qu,

2000; Gan et al., 2006). However, some studies indicate an

anticyclonic circulation pattern (Chu et al., 1999; Xue et al., 2004;

Fang et al., 2009), while others describe a cyclonic circulation in the

northern SCS (NSCS) and an anticyclonic circulation in the

southern SCS (SSCS) (Figure 1; we recreated it based on the Shu

et al., 2018; Liu et al., 2008).

In the NSCS, Chl-a concentrations display a marked seasonal

cycle, with high levels in winter and low levels in summer (Ning

et al., 2004; Xian et al., 2012). The SCS connects to the Pacific Ocean

through the Luzon Strait, allowing the Kuroshio to intrude into the

SCS and contribute to its circulation (Xue et al., 2004; Qian et al.,

2018; Cai et al., 2020). Winter phytoplankton blooms in Luzon

Strait are often attributed to the interaction between monsoon-

driven or current-induced upwelling, vertical mixing, meso-scale

eddies, and fronts (Peñaflor et al., 2007; Shen et al., 2008; Wang

et al., 2010, 2023; Shang et al., 2012; Lu et al., 2015; Xiu et al., 2016;

Guo et al., 2017; Chang et al., 2022; Lao et al., 2023). The Luzon

Cold Eddy, generally prevailed in winter and spring near the

northwestern coast of Luzon Island, would alter the distribution

of the Chl-a near the Luzon Island (Lu et al., 2015; Huang et al.,

2019; Sun et al., 2023). During the summer, when the southwest
Frontiers in Marine Science 02110
monsoon prevails, upwelling and a northeastward jet are induced

along the coast of Vietnam (Kuo, 2000; Fang et al., 2002; Xie et al.,

2003; Lin et al., 2009; Ma et al., 2012). The upwelling elevates

nutrients into shallow layers, supporting phytoplankton growth,

resulting in the surface high Chl-a (Yang et al., 2012; Chen et al.,

2021). With the transport of this jet in nutrients and biomass, the

Chl-a off the east of the Vietnam significantly was enhanced. The

interaction between cyclonic and anticyclonic eddies with the jet

stream formed a high Chl-a belt (Liang et al., 2018).

There are several methods to measure Chl-a concentrations in

the ocean, each with its own limitations. Traditionally, in situ ship-

based, autonomous profiling float, and remote sensing satellites are

the primary means of acquiring Chl-a data in the ocean (Kishino

et al., 1997; Wright, 1997; Dierssen, 2010; Rykaczewski and Dunne,

2011; Boyce et al., 2012; Wernand et al., 2013). In situ ship-based

and floats generally have low spatial or temporal resolution. Remote

sensing satellite, offering high spatial and temporal resolution data,

is easily affected by cloud cover (Shropshire et al., 2016).

Considering the difficulties in acquiring the Chl-a, simulating the

Chl-a or phytoplankton with marine ecological numerical model

was an excellent method. However, the accuracy of numerical

model results depends on the parameterization scheme of

ecological (or biogeochemical) processes and the optimization of

parameters. Developing a robust ocean ecological model requires

substantial time for construction, calibration, and computation.

Recently, machine learning techniques, particularly deep

learning, have advanced rapidly. The application of machine

learning in ocean science has provided new insights into

predicting key environmental or hydrodynamic indicators (Jouini

et al., 2013; Aleshin et al., 2024; Krestenitis et al., 2024). Due to its

strong capabilities in nonlinear regression, deep learning has been

extensively utilized in oceanography, for tasks such as predicting sea

surface temperature (SST), eddies, waves, and Chl-a (Liu et al.,

2021; Liu and Li, 2023; Roussillon et al., 2023; Zhao et al., 2024).

Ding and Li (2024) compared the performance of CNN, LSTM, and

hybrid CNN-LSTM models for Chl-a prediction, concluding that

the hybrid CNN-LSTM model outperformed standalone models

with an R-squared, R² = 0.72. Similarly, Zhou et al. (2024)

contributed further insights into the application of machine

learning for ecological predictions. However, in some cases,

machine-learning was not performed well than empirical

algorithms. Bygate and Ahmed (2024) combined observational

data and Landsat 8 surface reflectance to evaluate empirical and

machine learning models for retrieving water quality indicators in

Matagorda Bay, highlighting the limitations of traditional machine

learning models in water quality inversion. Yang et al. (2024)

developed a self-attention mechanism-based deep learning model

to estimate nine phytoplankton pigment concentrations within the

upper 300 m of the ocean, achieving R² > 0.8 and revealing a

positive correlation between the maximum phytoplankton layer

location and the Niño 3.4 index in the Equatorial Pacific Niño 3.4

region. Roussillon et al. (2023) introduced a multi-mode CNN to

globally reconstruct phytoplankton biomass by learning region-

specific responses to physical forcing. Their model achieved an R² >

0.87, highlighting the capacity of multi-mode approaches to

uncover spatially consistent responses to ocean dynamic.
FIGURE 1

Diagram of the surface current patterns (based on data from Shu et
al. 2018; Liu et al., 2008). Red (Green) means current pattern in
winter (summer). LCE, Luzon Cold Eddy; SCSWBC, South China Sea
Western Boundary Current; VCE, Vietnam Cold Eddy; KC,
Karimata Current.
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On the one hand, previous studies have revealed various

complex dynamical processes related with the surface Chl-a in the

SCS (Dai et al., 2022; Xian et al., 2012; Wang et al., 2023; Guo et al.,

2017; Ma et al., 2012; Yu et al., 2019). On the other hand, machine

learning has the advantage of finding complex nonlinear

relationship among variables in an environmental setting (Song

and Jiang, 2023). Hence, machine learning can provide a powerful

support in elucidating the complex quantitative relationship

between the physical factors (such as wind, SST) and the surface

Chl-a. A few studies have used machine learning or deep learning to

build a model link the physical factors and surface Chl-a with

monthly data (Li et al., 2023; Roussillon et al., 2023). However, the

possibility and performance by using the atmospheric and oceanic

physical data to predict surface Chl-a with daily data remains

unclear. This study discussed the feasibility of a predictive model

based on the ResUnet architecture (Diakogiannis et al., 2020) to

predict daily Chl-a concentrations in the SCS (100°E-124°E, 0°N-

25°N) by atmospheric and oceanic dynamic factors. The ResUnet

model enables the capture of the effects of multiple ocean dynamical

processes on Chl-a evolution from the data. This approach yields

accurate results while significantly reducing computational costs

compared to traditional ocean ecological modeling methods.
2 Data and methods

2.1 Data

The dataset used in this study was derived from the atmosphere

and ocean reanalysis datasets, European Centre for Medium-Range

Weather Forecasts (ECMWF) Reanalysis v5 (ERA-5; https://

www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5) and

Hybr id Coordinate Ocean Model (HYCOM; https : / /

www.hycom.org/). The 10 m wind fields were derived from the

ERA-5, with spatial resolution as 0.25°×0.25° and the temporal

resolution as 1-hourly. We calculated the mean value per 24 hours

for acquiring the daily air forcing data to keep the same temporal

resolution in our study. The SST, surface currents (eastward and

northward velocity) and sea surface height (SSH) were derived from
Frontiers in Marine Science 03111
the HYCOM. The original spatial resolution is 0.08° and temporal

resolution is 3-hourly. We interpolated the original data to the

ERA-5 resolution and calculated the daily data every 8 times layer.

These physical factors, such as wind, current, SSH, and SST, have

been shown to be closely related to the variation in surface Chl-a in

previous studies (Yu et al., 2019; Xiu et al., 2016; Geng et al., 2019).

This study focuses on discussing feasibility of a predictive model

capable of forecasting future Chl-a concentrations by establishing a

link between oceanic and atmospheric dynamic variables (e.g., wind

fields, sea surface temperature, and current fields) and surface Chl-

a. The predictive model requires complete and valid Chl-a as the

label to ensure the effectiveness of the model. However, there is a

number of missing values in the SCS from the remote sensing

satellite data. Therefore, the Chl-a data used as the target variable

(True) was derived from the Ye et al. (2024). The data covers the

period from January 1, 2013, to December 31, 2017, with a temporal

resolution of daily averages. This dataset was reconstructed using a

combination of satellite and observational data, employing optimal

interpolation and the SwinUnet method. Ye et al. (2024)

successfully reconstructed a high-quality surface Chl-a dataset;

however, the approach relies heavily on satellite remote sensing

data, which limited the application in short-term prediction. In

contrast, numerical models, such as HYCOM and ERA5, could

provide oceanic and atmospheric dynamic factors, which can be

leveraged to predict short-term variations in surface Chl-a. For this

purpose, we considered the datasets from Ye et al. (2024) as the true

Chl-a to train a model with physical factors. More information is

listed in Table 1.
2.2 Methods

2.2.1 Data pre-processing
In order to achieve spatial resolution consistency across all

predictor variables, we employed linear interpolation to adjust

predictor variables from HYCOM to a resolution of 0.25° × 0.25°.

Each predictor variable contained 97 × 101 data grid points,

covering the period from 2013 to 2017. To maintain consistency

among the variables, data standardization was applied. The daily
TABLE 1 Introduction of the datasets used in this study.

DataSets Unit Min Max Spatial Resolution Time Period Data Sources

Chl-a mg  m−3 0.0012 4:9� 1033 0.0105°

2013.01
–

2017.12

Ye et al. (2024)

Wind speed m   s−1 1.4 15.4

0.25°

ERA5
(Wind stress curl is
calculated based on
the Equations 1, 2)

Wind stress curl N  m−3 − 2� 10−7 2:5� 10−7

10m v wind m   s−1 -32.6 32.9

10m u wind m   s−1 -31.3 32.2

Sea surface temperature °C 12.35 34.05

0.08° HYCOM
u-velocity m   s−1 -1.7 1.8

v-velocity m   s−1 -2.0 1.8

Sea surface height m -0.1 1.6
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predictor variables, represented as two-dimensional arrays of 97 ×

101, were then concatenated to form a three-dimensional array with

dimensions N × 97 × 101, with each variable occupying a separate

channel within the data structure. In our experimental design, the

predictors include data points for all available variables on a given

day, which are subsequently used to forecast the Chl-a

concentration (predictand) for that same day. To align the

predictand data with the model output, Chl-a data was resampled

to 0.25° × 0.25° before model training and was standardized

thereafter. Following training, the model outputs were

denormalized to retrieve the predicted Chl-a values. The

experimental results demonstrated that this methodology

effectively enhances the model’s fitting performance. The wind

stress and wind stress curl in Table 1 are calculated as follows:

~t = rC~u · ~uj j (1)

∇�~t =
∂ty
∂x

−
∂tx
∂y

(2)

The ~u is the wind vector, and ~t is the wind stress. tx and ty
represent the eastward and northward component of the wind

stress. The r and C are the air density and drag coefficient,

respectively. The C is estimated based on Large and Pond (1981).
2.2.2 Residual U-Net model
The UNet is a deep learning architecture for image

segmentation that utilizes a symmetric encoder-decoder structure

with skip connections to effectively capture and preserve detailed

spatial information (Ronneberger et al., 2015). In this study, we
Frontiers in Marine Science 04112
employed a modified UNet architecture to enhance effectiveness, as

shown in Figure 2. The model features a U-shaped structure with

four encoder-decoder modules. To enhance the model’s ability to

handle non-linear relationships, the traditional ReLU activation

function was replaced with the Sigmoid Linear Unit (SiLU)

activation function due to its advantage in smooth activation

(Elfwing et al., 2017). To address overfitting and mitigate issues of

exploding or vanishing gradients, Batch Normalization (BN) was

applied after the convolutional layers. Furthermore, the AdamW

optimizer was employed to improve training stability and

performance by effectively managing weight decay (Loshchilov

and Hutter, 2019). Consistent with most regression tasks, Mean

Squared Error Loss (MSELoss) was utilized as the loss function.

These modifications were implemented to collectively improve the

model’s performance, accuracy, and computational efficiency.

The basic module of the UNet network is a residual module,

each of which consists of two 3 × 3 two-dimensional convolutional

layers, two BatchNorm2d layers, and two SiLU activation functions.

The encoder part (left half of Figure 2) consists of a residual module

and a max pooling layer. This configuration gradually reduces the

feature mapping dimensions in length and width, thereby

enhancing higher-order features. Following the encoder, the same

number of decoders (right half of Figure 2) decode the features,

including up-sampling to double the size of the feature map and

skip connections. This process produces a feature map of size [64,

97, 101]. The final layer of the model is a 1 × 1 convolutional layer

that reduces the number of channels to 1, producing the final 97 ×

101 Chl-a outputs of the model. Definitions of deep learning terms,

including Residual Block, SiLU, and max pooling, are provided in

the Appendix.
FIGURE 2

An illustration of the ResUNet architecture. Each colored cube symbolizes a feature map, with the numbers within the parentheses indicating the
(width × height × channels).
frontiersin.org

https://doi.org/10.3389/fmars.2025.1528921
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fang et al. 10.3389/fmars.2025.1528921
2.2.3 Data split and model accuracy metrics
In this study, Chl-a data from 2013 to 2016 were allocated for

model training, testing, and validation at proportions of 70%, 20%,

and 10%, respectively. Data from 2017 was subsequently utilized to

evaluate the model’s effectiveness in applications. There are some

extremely large anomalies (> 1010) in Chl-a data from Ye et al.

(2024). Therefore, during data preprocessing, we conducted

thorough data cleaning and identified anomalies in the Chl-a data

for a total of 26 days, which were removed to maintain the accuracy

and consistency of the dataset. To comprehensively evaluate model

performance, we employed three key metrics: the correlation

coefficient (r), Root Mean Square Error (RMSE), and Mean

Absolute Error (MAE). These metrics offer a quantitative

assessment of the correlation and discrepancies between predicted

and True data, thus providing valuable insights into the model’s

performance and reliability.
Fron
1. Correlation Coefficient (r): It measures the strength and

direction of the linear relationship between predicted and

True values, calculated as:

r = o(yi − y)(ŷ i − ŷ )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(yi − y)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(ŷ i − ŷ )2

q

2. Root Mean Square Error (RMSE): RMSE quantifies the

average deviation of predictions from actual values, given

by:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s

3. Mean Absolute Error (MAE): MAE provides a

straightforward interpretation of the average prediction

error:

MAE =
1
no

n

i=1
yi − ŷ ij j
The symbols used in the equations are defined as follows: yi
represents the True value, ŷ i denotes the predicted value, y is the

mean of the True values, ŷ is the mean of the predicted values, and n

refers to the number of observations. It is already known that there

is a certain correlation between atmospheric and oceanic dynamic

data and surface Chl-a in the SCS (Yu et al., 2019). The temporal

and spatial variation of Chl-a are influenced by factors such as wind

fields, ocean currents, and SST. To test the accuracy of model in

different predictors, we conducted two sets of experiments: (1) using

10 m wind field, wind speed, wind stress curl, and SST (Exp1), and

(2) using 10 m wind field, wind speed, wind stress curl, SST, surface

current, and SSH (Exp2). In the SCS, wind fields and SST are

strongly correlated with surface Chl-a (Yu et al., 2019). Therefore,

the goal of the Exp1 was to explore the feasibility of building a

robust model. On the other hand, surface current and SSH are

related to the horizontal advection process and vertical structure of
tiers in Marine Science 05113
density to some extent (e.g., mesoscale eddies), which, to some

extent, influence the distribution of nutrients and phytoplankton

(Xiu et al., 2016). The goal of the Exp2 was to explore the

performance of the model when considering the currents and SSH.
3 Results and discussion

3.1 Model evaluation using
statistical indicators

The comparisons between predicted and true Chl-a

concentrations of two experiments based on the Chl-a from 2013

to 2016, separated into three parts (training, testing, and validation

sets), are shown in Figure 3. In general, the data points are primarily

distributed along the 1:1 line, with correlation coefficients between

predicted and true Chl-a exceeding 0.9 across all datasets (Figure 3). It

indicated that both Exp1 and Exp2 could well predict the surface Chl-

a in the SCS. However, there were some discrepancies in

performances between these two experiments. The Exp2 showing

higher correlation coefficient (Figures 3a–f) among training (0.929 in

Exp1 versus 0.935 in Exp2), testing (0.911 in Exp1 vs 0.918 in Exp2)

and validation datasets (0.913 in Exp1 versus 0.925 in Exp2). And the

RMSE of Exp2 were 0.1, 0.112, and 0.107 for the training, testing, and

validation datasets, respectively (Figures 3d–f). It also indicated that

the deviation between the predicted values and the true values of the

model is smaller. The comparison of MAE between Exp1 and Exp2

also denoted the Exp2 might be better. Li et al. (2023) employed four

machine learning methods to predict the Chl-a using physical factors

with Random Forests demonstrating the best performance (R2 ~ 0.8).

Aleshin et al. (2024) applied LightGBM and ResNet-18 to predict the

Chl-a with an R2 ~ 0.7. Roussillon et al. (2023) used a multi-mode

convolutional neural network to reconstruct satellite-derived Chl-a

with monthly physical drivers, such as SST, with R2 ~ 0.85. In

comparison, our model exhibited superior performance in predicting

the Chl-a in the SCS.

Further, the residuals between predicted and true Chl-a,

separated into training, testing, and validation sets, from 2013 to

2016 were calculated and shown in Figure 4. The results showed

that frequency of the residuals shown normal distribution

(Figure 4). The average of the residuals is -0.00039, -0.00095,

-0.00045 for training, testing, and validation datasets in Exp1,

respectively (Figures 4a–c). While the averages of the residuals

are -0.00015, -0.00163, and -0.00061 for training, testing, and

validation datasets in Exp2, respectively (Figures 4d–f). Although

the mean residuals in Exp2 was less than Exp1, both Exp1 and Exp2

had small mean residuals (< 1%), which indicated a good

performance of the model without significant systematic bias.

This reflected the robustness and reliability of the model in

capturing the surface Chl-a. In addition, the s were about 0.14,

0.22, and 0.21 for training, testing, and validation datasets in Exp1,

respectively (Figures 4a–c). They were slightly higher than the

corresponding parts in Exp2 (Figures 4d–f). It denotes the results

of Exp2 are more stable compared to the result of Exp1.
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3.2 Model evaluation in terms of Chl-a
temporal and spatial distributions

The model performance was evaluated using correlation

coefficients, RMSE, and MAE, all of which indicated good

performance for this deep learning model. Experimental results

suggested that surface currents (eastward and northward velocities)

and SSH slightly enhance the model’s performance. The model’s

ability to predict the spatial distribution and seasonal variation of

surface Chl-a requires further evaluation.

To represent seasonal variations (Spring, Summer, Autumn,

andWinter), surface Chl-a values from the validation dataset on the

dates 2013/03/05, 2013/06/15, 2013/09/28, and 2013/12/11 were

selected. Figure 5 illustrates the spatial distributions of Chl-a for

these selected dates across the true, Exp1, and Exp2. Generally,

surface Chl-a exhibits high concentrations on the shelf, particularly

along the coast, and low concentrations in the basin of the SCS (Liu

et al., 2002, 2012; Shen et al., 2008; Fang et al., 2014). The high Chl-a

on the shelf is typically attributed to riverine inputs, such as

nutrients, biomass, terrestrial transport, and upwelling (Li et al.,

2018; Lu and Gan, 2015). Both the Exp1 and Exp2 effectively

captured the prominent feature of the higher Chl-a along the

coast and lower Chl-a in the basin (Figures 5e–l).

Meanwhile, seasonal Chl-a variation were exhibited

significantly (Figures 5a–d). Along the coast, the area with high

Chl-a (e.g., > 0.4) were more prominent in the Spring and Winter

(Figures 5a, d), while they were lower in the Summer and Autumn

(Figures 5b, c). And the Chl-a in the basin were lowest during the
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Summer (Figures 5b). This feature was also captured by the model

in both Exp1 and Exp2 (Figures 5f, j). Additionally, the Luzon Strait,

as a major pathway between the Pacific and the SCS, shows

significant blooms in winter and spring when northeasterly winds

prevail (Peñaflor et al., 2007; Shen et al., 2008). The true Chl-a data

includes a notable phytoplankton bloom on the western side of the

Luzon Strait (see arrow in Figures 5a, d). Both Exp1 and Exp2

predicted similar phytoplankton blooms, although the area might

be slightly larger.

In terms of the overall Chl-a distribution, both Exp1 and Exp2

successfully captured the high Chl-a on the shelf and low Chl-a in

the basin, and the seasonal variation of the surface Chl-a. They also

reproduced the relatively high Chl-a concentration on the

northwest side of Luzon Island (Figures 5e, h, i, l) in Spring and

Winter. Based on the evaluation of the Chl-a spatial pattern

and seasonal variation, the two experiments demonstrated

good performance.
3.3 Spatial distribution of temporal
correlation coefficients

The model well captured the spatial pattern and seasonal

variation of the Chl-a in both Exp1 and Exp2. However, the

temporal correlation between true Chl-a and model predicted

Chl-a was unclear. To evaluate the model’s performance in

capturing Chl-a temporal variation, the Pearson correlation

coefficients between true Chl-a and model predicted Chl-a for
FIGURE 3

Scatter plots between predicted and the counterpart locations of the True Chl-a in training (a, d), testing (b, e), and validation (c, f). The first
(second) row represents Exp1 (Exp2).
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each grid were calculated (Figure 6). Figure 6 illustrates the spatial

distribution of correlation coefficients in training (Figures 6a, d),

testing (Figures 6b, e), and validation (Figures 6c, f).

In general, the correlation coefficients in the training dataset

(Figures 6a, d) were the highest, which is reasonable given that the

training dataset was used to train the model. Regarding the spatial

pattern of the correlation coefficients, whether in the Exp1 or Exp2,

the values to the north of 16°N were notably higher than those to the

south of 16°N in training, testing, and validation (Figures 6a–f).

Specifically, the correlation coefficients in the NSCS were generally

above 0.8, while in the SSCS, they typically ranged from 0.6 ~ 0.8, with

the highest values observed in the training dataset (Figures 6a, d). This

discrepancy might be caused by the strength of the relationship

between physical factors and surface Chl-a in the NSCS and SSCS.

Significant seasonal and inter-seasonal variability of Chl-a is observed

in the NSCS (Shen et al., 2008; Palacz et al., 2011; Tang et al., 2014),

which is generally associated with the seasonal dynamics of factors

such as the monsoon and Kuroshio intrusion (Xue et al., 2004; Xian

et al., 2012; Chang et al., 2022; Sun et al., 2023). Previous studies have

shown a high correlation between SST and Chl-a (Shen et al., 2008;

Tang et al., 2014; Yu et al., 2019). In summer, the mixed layer depth

(MLD) is shallow, and the presence of strong stratification due to high

SST and weaker winds inhibits the supply of nutrient-rich subsurface

water. However, in winter, the MLD usually deepens due to

intensified northeasterly monsoons and buoyancy flux,

accompanied by a reduction in SST (Tang et al., 2003). As the

MLD deepens, nutrient-rich water from the subsurface is

transported to the surface layer. With sufficient nutrient support,

phytoplankton flourishes during winter. Consequently, Exp1

performs well in capturing the temporal variability of surface Chl-a

in NSCS (Figures 6a–c). However, in the SSCS, Geng et al. (2019)
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revealed that wind- and buoyancy-induced mixing are less intense in

the central SCS than in the NSCS, limiting vertical nutrient transport

to above the subsurface Chl-a maximum layer. This may explain the

lower correlation coefficients in the SSCS (Figures 6a–f).

In respect of the comparison between Exp1 and Exp2, the

correlation coefficients in the Exp2 were generally slightly higher

than that in the Exp1 in the SCS (Figures 6g–i). However, in the

Exp1, the correlation coefficients in the NSCS were comparable with

those of Exp2, especially in the training dataset, with increasing

correlation coefficients less than 0.03 (Figures 6g–i). It indicated

that atmospheric data and SST are crucial factors for simulating the

Chl-a in the NSCS. However, between 12°N and 16°N, Exp2

performed well in capturing the temporal variation of Chl-a, with

Dr (rExp2 − rExp1) exceeding 0.04 (Figures 6h, i). Generally, Exp2

performed better than Exp1, although there were small areas with

decreased correlation coefficients to the south of 16°N. In the basin

of SSCS, the correlation coefficients were higher than that on the

shelf. For Exp1, the correlation coefficient in the Sunda Shelf were

not as strong as in Exp2, with r < 0.7 (Figure 6c). However, the Exp2

showed slightly improvement in the Sunda Shelf with slightly

higher r (Figure 6i). Comparisons between Exp1 and Exp2

demonstrated that the model achieved the best performance when

SSH and currents were included as an input variable, especially in

the SSCS.
3.4 Model performance in capturing local
important features

We evaluated the model based on spatial distribution of Chl-a

and the temporal correlation by Pearson correlation coefficients
FIGURE 4

Frequency plots with x-axis as residuals (model results – True value) in training (a, d), testing (b, e), and validation (c, f). The first (second) row
represents Exp1 (Exp2).
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between true Chl-a and model predicted Chl-a. It denoted the

performance of the model was excellent, especially for the NSCS.

However, the model’s ability to reproduce local spatial

characteristics of Chl-a required further assessment. We selected

typical high surface Chl-a patches near the Luzon Strait, Hainan

Island, and Vietnam (see red arrows in Figures 7a, d, g) to validate

the model’s ability in capturing details from validation datasets

(2014/01/30, 2013/10/20, 2014/7/23). Figures 7a, d showed a high

surface Chl-a patch surrounded by low surface Chl-a. Previous

studies have demonstrated that cold eddies contribute to this
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phenomenon (Wang et al., 2010; Lu et al., 2015; Sun et al., 2023).

In fact, these high Chl-a patches were generally closed to the cold

eddies, as indicated by SSH (0.4 contours in Figures 7a, d). Off the

coast of Vietnam, high Chl-a concentrations usually followed the jet

during the summer (Liang et al., 2018), as shown in Figure 7g (see

red arrow). The high Chl-a patch off the Vietnam closely matched

the location of the strengthened current velocity.

Both Exp1 and Exp2 captured the main features of these high

Chl-a patches. To the northwest of Luzon Island, while Exp1

predicted high Chl-a patch (Figure 7b), the Chl-a concentration
FIGURE 5

Spatial distributions of Chl-a in 2013/03/05 (a, e, i), 2013/06/15 (b, f, j); 2013/09/28 (c, g, k); 2013/12/11 (d, h, l). The first column is the true Chl-a,
while the second and third column represent Chl-a in Exp1 and Exp2, respectively.
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was not as high as in Figure 7a. However, Exp2 performed better in

simulating this patch with higher Chl-a concentration closed to the

0.4 contour (Figure 7c), although it was still lower than that in Exp1.

In addition, to the northwest of the high Chl-a patch, the Chl-a

concentration was higher than in the True Chl-a (Figures 7a, b).

Nonetheless, Exp2 provided a better prediction of Chl-a

distribution (Figure 7c) in this area as True Chl-a (Figure 7a).

Similarly, the high Chl-a patches near 112°E, 16°N, predicted by the

Exp1 and Exp2, were different (Figures 7e, f). The Chl-a

concentration in Exp1 was higher than in the True Chl-a

(Figure 7d) and Exp2 (Figure 7f). The high Chl-a derived from

Exp2 was more comparable to that in the true Chl-a (Figures 7d, f).

East of Vietnam, high surface Chl-a is generally induced by

upwelling and a southwesterly wind-driven jet (Qiu et al., 2011;

Liu et al., 2012; Gao et al., 2013; Chen et al., 2014, 2021). A snapshot

of high Chl-a extending from the coast to the east of Vietnam,

aligned with the jet (indicated by the strengthened velocity), was

shown in Figure 7g. Our model successfully reproduced the high

Chl-a along the jet (Figures 7h, i), although the concentrations were

not as pronounced as those in the true Chl-a (see red arrow in
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Figure 7g). Exp2 demonstrated a better prediction of Chl-a along

the jet, with higher Chl-a concentrations (see red circles in

Figure 7h, i).

This comparison between Exp1 and Exp2 demonstrated that

additional variables, SSH and currents, are beneficial to predict the

details of the Chl-a distribution. To some extent, the spatial distribution

of SSH reflects vertical information, such as the thermocline.

Approximately 28.7 cyclonic eddies and 27.9 anticyclonic eddies

occur annually in the SCS, which significantly influence the

ecosystem of the SCS (Xiu et al., 2010). Mesoscale eddies played a

significant role in modulating surface Chl-a through eddy advection,

eddy pumping, eddy trapping, and eddy-induced Ekman pumping in

the SCS (Gaube et al., 2014; Xiu et al., 2016). Eddy pumping played an

important role in controlling surface Chl-a variability to the west of the

Luzon Strait and northwest of Luzon Island (Xiu et al., 2016). Yu et al.

(2019) found that sea level anomalies are highly correlated with surface

Chl-a. Meanwhile, Xiu et al. (2016) revealed that horizontal eddy

advection highly influenced the Chl-a off the Vietnam coast. Therefore,

including SSH and advection as model inputs enabled the predicted

data to more effectively reproduce surface Chl-a.
FIGURE 6

Spatial distributions of Pearson correlation coefficients (with p < 0.05) in training (a, d), testing (b, e), and validation (c, f) datasets. The (g–i) were, Dr,
calculated by (d) minus (a), (e) minus (b), and (f) minus (c), respectively. The first column represents Exp1 (Exp2). Boxes A, B, and C in (i) covered the
NSCS, central SCS, and Sunda Shelf.
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3.5 Application of the model in 2017

The model trained in Exp2 was further applied to predict

surface Chl-a in 2017. Based on model performance in the NSCS

and SSCS (Figure 6), spatially averaged Chl-a in Boxes A, B, and C

was used to assess temporal variability. The predicted Chl-a largely

captured the magnitude and temporal variability of surface Chl-a

across Boxes A, B, and C (Figures 8a-1, b-1, c-1). Model

performance, as measured by correlation coefficients, was highest

in the NSCS, followed by the Sunda Shelf and the central SCS

(Figures 8a-2, b-2, c-2). Although the model effectively reproduced

the temporal variability of surface Chl-a, particularly the seasonal

cycle, its performance was relatively less accurate for daily-scale

Chl-a variations, as indicated by the distribution of observed Chl-a

(Figures 8a-1, b-1, c-1). To improve model validation, we further

calculated 8-day averaged surface Chl-a and compared predicted

values with observed Chl-a. On the 8-day scale, correlation

coefficients between predicted and observed Chl-a were higher

than those on the daily scale (Figures 8d-2, e-2, f-2). Observed

Chl-a data aligned more closely with predicted values, and both
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RMSE and MAE indicated reduced errors in 8-day averaged results

(Figures 8d-1, e-1, f-1).

One possible reason for the reduced daily-scale accuracy was that

daily variations in surface Chl-a were more complex than those on

longer timescales. Small-scale dynamic processes, such as fronts and

submesoscale eddies, played an essential role in vertical nutrient

transport (Callbeck et al., 2017; Jing et al., 2021; Zheng and Jing,

2022). However, the horizontal resolution of model inputs may limit

the model’s ability to capture these small-scale features, affecting day-

scale performance. Additionally, surface Chl-a is often associated

with vertical nutrients distribution (Geng et al., 2019; Liu et al., 2020),

but obtaining continuous, widespread data on nutrient distribution in

the vertical direction remains challenging. These factors constrain the

model’s precision in predicting daily-scale Chl-a variability.

4 Conclusion

In this study, we developed a statistical model based on the ResUnet

architecture to predict daily Chl-a in the SCS through atmospheric and

oceanic physical data. The strong correlation between the model-
FIGURE 7

Spatial distributions of Chl-a snapshots in the True (a, d, g) and Validation datasets (b, c, e, f, h, i). The second and third columns show surface Chl-a
in Exp1 and Exp2, respectively. The gray contours represent SSH (0.1 m interval between solid and dashed contours), and the black arrows indicate
velocity, exceeding 0.4 m s−1, vectors in HYCOM.
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predicted and true Chl-a demonstrates that the model performed well

in estimating surface Chl-a. It supported the feasibility of predicting

surface Chl-a based on atmospheric and oceanic data.

The model performed better in the NSCS than in the SSCS. In

the NSCS, the combination of atmospheric factors and SST was

sufficient to reproduce the temporal variability in Chl-a. This

superior performance can likely be attributed to the strong

correlation between SST and surface Chl-a in this region. In the

SSCS, the model-predicted variability of Chl-a had better

performance in Exp2, which denoted that the oceanic dynamic

factors, such as surface currents and SSH, played a vital role in

estimating the Chl-a in the SSCS using deep learning methods.

While the model moderately captured the spatial distribution

features in Chl-a when considering only wind-related variables and

SST, its performance improved significantly when oceanic dynamic

data were included. The addition of surface currents and SSH

enabled the model to accurately represent areas with elevated

Chl-a due to eddies, particularly around the Luzon Strait and the

southeastern side of Hainan Island. The SSH is generally associated

with eddies, which enhances the ability of model to predict elevated

Chl-a resulting from eddies. In conclusion, the incorporation of

ocean dynamics into ecological prediction models based on deep
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learning technology offers effectively ways and enhances the

accuracy of Chl-a predictions in the SCS.
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Appendix A. terms in deep learning
method used in this study
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• Feature: In the context of deep learning, a feature represents

an individual measurable attribute or characteristic that can

be used to describe and analyze an observation

or phenomenon.

• Batch Normalization (BatchNorm) Layer: This layer

standardizes the inputs of each minibatch, which

enhances the stability and efficiency of the training

process by reducing internal covariate shift.

• Convolutional Layer: The convolutional layer applies a set

of filters to the input data, producing feature maps that

capture spatial hierarchies and patterns. This layer performs

the convolution operation by sliding the filters over the

input and computing the dot product between the filter and

the input data, which is fundamental for feature extraction

in convolutional neural networks.

• Max Pooling Layer: This layer decreases the spatial

dimensions of the input feature maps by extracting the

maximum value from each sub-region. Max pooling aids in

m i n im i z i n g c ompu t a t i o n a l c omp l e x i t y a n d

mitigating overfitting.

• Sigmoid Linear Unit (SiLU) Activation Function: The SiLU

activation function, also known as the Swish function, is

defined as:
SiLU(x) = x · s (x)

where s (x) is the sigmoid function, given by:

s (x) =
1

1 + e−x

It combines the properties of linear and sigmoid functions,

allowing for smooth, non-linear transformations that can improve

the training dynamics of neural networks. The SiLU function has

been shown to perform well in various deep learning tasks due to its

ability to enhance gradient flow and adaptively control the output.
• Residual Connection: A residual connection bypasses one

or more intermediate layers, directly feeding the output of

one layer to subsequent layers. This technique aids in

training deeper networks by alleviating the vanishing

gradient problem.

• Skip Connection: A skip connection, also known as a

shortcut connection, involves bypassing one or more

layers in the neural network and directly passing the

output from an earlier layer to a deeper layer.

• Up-Sampling: In the UNet architecture, up-sampling is

employed in the expansive path to restore the resolution

of the feature maps. This step is essential for reconstructing

high-resolut ion outputs from lower-resolut ion

feature representations.

• Down-Sampling: Down-sampling decreases the spatial

dimensions of the input feature maps, commonly used in

the contracting path of the UNet. This process simplifies the
tiers in Marine Science 15123
information, enabling the model to capture more global

features in the earlier layers.

• AdamW Optimizer: The AdamW optimizer is an extension

of the Adam optimization algorithm that incorporates

weight decay directly into the optimization process.

Unlike traditional Adam, which applies weight decay as

part of the regularization term added to the loss, AdamW

decouples weight decay from the optimization steps, leading

to better regularization and improved training dynamics.
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A novel edge-feature attention
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Underwater images captured by Remotely Operated Vehicles are critical for

marine research, ocean engineering, and national defense, but challenges such

as blurriness and color distortion necessitate advanced enhancement

techniques. To address these issues, this paper presents the CUG-UIEF

algorithm, an underwater image enhancement framework leveraging edge

feature attention fusion. The method comprises three modules: 1) an

Attention-Guided Edge Feature Fusion Module that extracts edge information

via edge operators and enhances object detail through multi-scale feature

integration with channel-cross attention to resolve edge blurring; 2) a Spatial

Information Enhancement Module that employs spatial-cross attention to

capture spatial interrelationships and improve semantic representation,

mitigating low signal-to-noise ratio; and 3) Multi-Dimensional Perception

Optimization integrating perceptual, structural, and anomaly optimizations to

address detail blurring and low contrast. Experimental results demonstrate that

CUG-UIEF achieves an average peak signal-to-noise ratio of 24.49 dB, an 8.41%

improvement over six mainstream algorithms, and a structural similarity index of

0.92, a 1.09% increase. These findings highlight the model’s effectiveness in

balancing edge preservation, spatial semantics, and perceptual quality, offering

promising applications in marine science and related fields.
KEYWORDS

underwater image enhancement, edge feature attention fusion, spatial crossattention,
multidimensional perception optimization, attention-guided edge feature fusion
1 Introduction

Underwater images, captured in aquatic environments using remotely operated

vehicles (ROVs), are crucial for marine exploration, underwater archaeology, and fishery

monitoring, providing visual representations of underwater scenes and objects. However,

underwater imaging environments are complex. The images obtained by ROVs are limited
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by aggravated color distortion, objects with the same color in the

background, and difficulty in edge distinction.

Underwater image enhancement (UIE) improves the quality of

underwater images by mitigating their characteristic degradation

features and bringing images closer to their true color and clarity, as

observed in normal lighting environments. This enables more

effective extraction and utilization of valuable features (Alsakar

et al., 2024). High-quality underwater image data help reveal

unknown marine life and geological features in the deep sea and

provide critical information for biodiversity protection (Nazir and

Kaleem, 2021), marine environmental monitoring (Wang et al.,

2007), and resource sample collection (Mazzeo et al., 2022).

UIE techniques can be divided into two categories: traditional

and deep learning-based methods. Traditional UIE techniques

include color correction and image restoration methods. Color

correction methods such as color balancing can improve color

distortion but cannot address blurring and detail loss. Image

restoration methods that incorporate physical models, such as

light transmission or dehazing models, improve image clarity and

optical effects more effectively (Hu et al., 2022). Common color

correction methods often perform pixel-level restoration of image

colors. For instance, Banik et al. (2018) used gamma correction in

the value channel of the hue, saturation, value space to enhance low-

light image contrast but introduced problems such as over-

enhancement and halos. Garg et al. (2018) applied CLAHE and

percentile methods to enhance underwater images and obtained

good results in specific scenes but limited improvement in certain

water environments. Image-restoration methods typically integrate

physical models. Zhu (2023) proposed an enhancement algorithm

based on graph theory that improves contrast and color using

CIELab and red, green, blue (RGB) spaces combined with CLAHE.

However, owing to the independent operations in each color space,

the method lacks robustness in complex scenes. Drews et al. (2016)

enhanced blue-green channels using a light propagation model but

introduced red color distortion. Xiong et al. (2020) applied a linear

model and nonlinear adaptive weighting strategy based on the

Beer–Lambert law (Swinehart, 1962) to adjust underwater image

colors. Recent studies have developed enhanced methods based on

conventional algorithmic frameworks to address imaging

degradation in specific scenarios. Zhang et al. (2025) proposes a

cascaded restoration algorithm grounded in quadtree search-guided

background region classification and cross-domain synergy, which

integrates dynamic channel discrepancy compensation, S-curve-

optimized homomorphic filtering, and chromatic space fusion,

thereby significantly improving underwater image fidelity and

object recognition robustness. Li et al. (2025) proposes a cascaded

restoration algorithm integrating quadtree search-guided

background region classification and a cross-domain

collaboration mechanism, which effectively addresses color

distortion and detail blurring in underwater optical imaging

through dynamic channel discrepancy compensation and S-curve-

optimized homomorphic filtering, thereby significantly enhancing

object detection robustness and visual task performance. However,

the methods do not perform well with foggy and low-light

underwater images. In general, traditional methods based on fixed
Frontiers in Marine Science 02125
underwater priors perform well in specific scenes but are limited by

the unpredictability of underwater environments and thus lack

general applicability.

Deep learning-based UIE methods use large datasets to train

models that adaptively handle various problems, such as color

distortion, blurring, and low contrast. These methods can restore

image details more accurately and adapt to diverse underwater

scenarios. Among the deep learning methods, generative adversarial

networks (GANs) have gained prominence in the early stages of

UIE for their ability to address limited data availability (Goodfellow

et al., 2014). Li et al. (2017) proposed WaterGAN, which corrects

underwater image colors by training on both aerial and underwater

real images. However, the aerial image model introduces unrealistic

background colors. Fabbri et al. (2018) proposed UGAN, which

uses CycleGAN generated paired datasets and a Pix2Pix-like

structure for UIE. However, CycleGAN generates artifacts under

certain scenarios. Despite the requirement of high-quality training

data, their proposed method struggles with low-quality underwater

images. These methods effectively restore color but often face

challenges such as over-enhanced contrast, information loss,

instability, and convergence difficulties.

Convolutional neural network (CNN)-based methods (Wang

et al., 2021; Lyu et al., 2022; Yang et al., 2023) are particularly

effective for UIE tasks owing to their strong feature extraction

capabilities and nonlinear feature mapping, which enable them to

adapt to various underwater scenes. Wang et al. (2017) designed an

end-to-end CNN-based network for color correction and

deblurring by employing a pixel disturbance strategy to improve

model convergence speed and accuracy. However, their method

overfocuses on local features while neglecting the overall semantic

information, global color, and light–shadow relationships in the

image. Li et al. (2019) developed a paired underwater image

enhancement benchmark (UIEB) dataset and proposed Water-

Net, a CNN-based model that serves as a benchmark for CNN

applications in UIE. Li et al. (2020) trained their proposed UWCNN

on synthetic underwater images of various scenes, which resulted in

different model parameters. However, owing to the singularity of

the training data scenes, the model is overly sensitive to subtle

changes in underwater environments and thus, performs poorly.

Islam et al. (2020) proposed the UFO-120 dataset and a residual

nested CNN called Deep SESR, which has a multimodal objective

function for both enhancement and super-resolution of images.

However, the shared feature space in this model can cause

significant features from the super-resolution task to interfere

with the color performance of image enhancement. The

aforementioned CNN-based models have powerful feature-

learning capabilities and can adapt to complex underwater

environments; however, CNNs primarily extract features through

local receptive fields, which renders fully capturing global

information challenging. Consequently, enhanced images often

show a marked locality with coordination problems among

objects in complex underwater environments.

To address this limitation, several studies have used Swin

Transformers (Liu et al., 2021) for UIE. Sun et al. (2022)

enhanced the underwater image contrast by inputting images into
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a Swin Transformer following gamma and white balance

corrections. However, white balance and gamma correction

cannot fully resolve the complex problems of underwater images,

particularly in foggy and blurry scenes. Peng et al. (2023)

constructed a large-scale underwater image dataset and proposed

a channel multi-scale fusion transformer and spatial global feature

transformer to enhance severely attenuated color channels and

spatial regions. However, the sensitivity of different color spaces

to various colors varies, which degrades model stability in scenarios

with strong color contrast. Transformer architecture, with its

unique mechanisms and processing methods, has tremendous

potential and value as a primary framework for UIE. Zhu et al.

(2024) proposed an adaptive multi-scale image fusion cascaded

neural network that integrates polarization-based multi-

dimensional features to improve image enhancement quality

under low-quality imaging conditions. Concurrently, the team

establishing a standardized evaluation framework for

polarization-aware visual restoration algorithms. Zhu et al. (2025)

proposed a Fourier-guided dual-channel diffusion network,

enhances underwater images via phase-based edge refinement and

amplitude mapping, coupled with a lightweight transformer

denoiser, outperforming leading methods in generalization and

visual quality on real underwater datasets. Wang et al. (2025)

proposed a SAM-powered framework for underwater image

enhancement, integrating precise foreground-background

segmentation, region-specific color correction, adaptive contrast

enhancement, and high-frequency detail reconstruction to mitigate

crosstalk and blurring, thereby significantly improving restoration

fidelity and visual quality. Considering that underwater images

exhibit inconsistent attenuation characteristics across different

color channels and spatial regions and that the object edges in

these images degrade, the proposed network focuses on these

characteristics to restore underwater image information and

achieve high-quality underwater image data.

The main contributions of this paper are as follows:
Fron
1. We propose a network model, CUG-UIEF, based on U-Net

and a multi-feature cross-fusion module, which greatly

improves the quality of underwater images.

2. We introduce a multi-feature cross-fusion module that

enhances the feature representation of images at different

scales, thereby improving the overall quality and accuracy

of the final output.

3. We evaluate the proposed CUG-UIEF model on the UIEB,

low-light and super-resolution underwater image (LSUI), and

U45 datasets and compared its performance with that of six

other mainstream models. The experimental results show that

CUG-UIEF achieves substantial improvements in the peak

signal-to-noise ratio (PSNR) and structural similarity index

(SSIM). The results also demonstrated excellent performance

in both underwater image quality metrics and underwater

color image quality assessments, indicating that the CUG-

UIEF effectively overcomes underwater environmental

interference and can be applied in related fields.
tiers in Marine Science 03126
2 Proposed method

2.1 Network structure

The overall structure of the CUG-UIEF is shown in Figure 1; it

can be divided into three parts: an encoder, a multi-feature cross-

fusion module (DDEM), and decoder. The encoder converts the

input image into a deep feature representation. The decoder

gradually fuses the features and performs upsampling to

reconstruct an underwater image. In this study, the multi-scale

features extracted by the encoder were input into the DDEM, and its

output was fused with the upsampling results at each stage of the

decoder. An enhanced underwater image was obtained after the

final upsampling step.

Encoder stage: This module extracts multi-scale features

through the Swin Transformer layer and performs downsampling

to capture the details and global information in the image. The deep

feature representation provides rich semantic information for the

subsequent DDEM module and decoder, which facilitates the final

image reconstruction and enhancement.

DDEM module: Uses the Sobel operator to extract edge

information from the multi-scale features extracted in the four

stages of the encoder and inputs the edge and multi-scale features

together into the channel cross-attention (CCA) module to fuse the

feature information across channels. Subsequently, the output of the

CCA is passed to the spatial cross-attention module to capture the

long-distance dependencies among the multi-scale features.

Following layer normalization and GeLU activation, the final

features are sent to the decoder to gradually restore the spatial

resolution and reconstruct the enhanced image.

Decoder stage: The decoder first upsamples the output of the

final stage of the encoder and inputs it into the Swin Transformer

block. Subsequently, the output of the DDEM is fused with the

upsampled results of each decoder stage. The decoder restores the

spatial resolution through gradual upsampling to reconstruct an

enhanced image. The parameters of the Swin Transformer layer are

adjusted at this stage to maintain the integrity of the features,

whereas the upsampling layer is used to restore the size of the

feature maps. The final upsampling restores the features to the

resolution of the original input and projects them onto the RGB

channels through the convolutional layer to generate an enhanced

underwater image.
2.2 Multi-feature cross-fusion module
(DDEM)

The proposed multi-feature cross-fusion module fuses the

features extracted from the four multi-scale encoder stages

(Figure 2). It generates enhanced feature representations and

connects these enhanced features to the corresponding decoder

stages. The module can be further divided into attention-guided

edge fusion and spatial information enhancement modules.
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The specific operations performed by the module are as follows:

The edge features are extracted from the multi-scale features output

by the encoder and then input layer by layer together with the

multi-scale features into the edge fusion and spatial information

enhancement modules. Attention maps are constructed by fusing

the features of the multi-scale encoder, enabling them to capture

long-distance dependencies across different stages to achieve more

accurate and comprehensive modeling of complex scenes and

dynamic changes.

Through this series of operations, the output results are processed

by layer normalization and subjected to nonlinear mapping via the

GeLU activation function to establish dynamic correlations between

the feature maps at different levels and edge feature maps.
Frontiers in Marine Science 04127
2.2.1 Attention-guided edge fusion module
This module promotes information interactions between features

at different levels in the channel dimension. In this study, the edge

features are gradually fused in multiple stages. The weights of the

weighted edge features are adjusted using CCA to ensure that detailed

information, such as colors and textures, can be accurately transmitted.

Upon being output to the decoder stage, as the decoding process

proceeds, the weighting coefficients are dynamically adjusted based on

the local information of the image; thus, the edge features are enhanced

in detailed areas while minimizing interference in the background or

smooth regions. In this manner, the edge information is strengthened

in key areas (such as object boundaries and detailed parts), while the

global consistency and natural appearance of the image are preserved.
FIGURE 2

Proposed multi-feature cross-fusion module. (A) Attention-guided edge fusion module; (B) Spatial information enhancement module.
FIGURE 1

Architecture of the proposed network, featuring an encoder–decoder structure enhanced with the addition of a multi-feature cross-fusion module.
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The Sobel operator is applied for edge feature extraction. It

identifies edge information by calculating the gray gradient of the

area around each pixel in the image. The core of this algorithm lies

in its elaborately designed convolution kernels, which perform

convolution operations on the horizontal and vertical features of

the image, thereby effectively capturing the edge changes in the

image in different directions.

The change in the x-axis direction in the Sobel operator is

Gx =
−1   0 þ 1
− 2   0 þ 2
− 1   0 þ 1

 !

The change in the y-axis direction is

Gy =
−1 − 2 − 1
0   0   0

þ 1 þ 2 þ 1

 !

Approximate gradient values of the image in the horizontal and

vertical directions can be obtained by performing convolution

operations on the image using these two sets of convolution

kernels. The gradient magnitude of each pixel point can then be

obtained by calculating the square root of the sum of the squares of

these two gradient values (or the sum of their absolute values) to

determine the intensity of the edge.

G =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x + G2

y

q

The Sobel operator extracts edge information across different

scales, performs layer normalization along the channel dimension,

and conducts weighted fusion with the multi-scale feature output

from the encoder stage.

fusedfeature = a · edgefeature + (1 − a) · encoderfeature

Subsequently, the fused features automatically adjust the

attention distribution by calculating the similarity between

channels to strengthen key features in the image. At this stage,

layer normalization is first performed on each token to stabilize the

training process. Subsequently, all tokens are concatenated along

the channel dimension to create unified keys and values while

retaining each token as an independent query. The linear projection

in the self-attention mechanism is replaced with a 1 × 1 depthwise

convolutional projection. This enables cross-channel information

integration and interaction and enhances its nonlinear

characteristics. The process formula is as follows:

K,V = conv1D concat(T1,T2 … Ti)ð Þ

Qi = conv1D(T1,T2 … Ti)

CCA(Qi,K,V) = Softmax(QT
i KS)V

T

Qi,K , and V are matrices that represent the queries, keys,

and values, respectively, which are obtained by concatenating

the tokens along the channel dimension. S is the scaling factor.

Once the output of the CCA is connected to the original tokens,

the enhanced features are input into the spatial information

enhancement module.
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2.2.2 Spatial Information Enhancement Module
This module dynamically adjusts the feature weights of different

regions of the image by calculating the correlations among different

spatial positions, thereby enhancing the key features in the image.

Edge features provide essential structural cues for the image,

enabling the model to focus more on the detailed areas of the

image while reducing attention allocation to smooth areas, thus

avoiding excessive enhancement. Combined with enhanced multi-

scale features, the module can capture the details of the image at

different levels, effectively restoring the detail loss in underwater

images caused by light attenuation and blurring. At this stage, all the

tokens are first subjected to layer normalization along the channel

dimensions and then concatenated. In contrast to the edge-fusion

module, this module uses concatenated tokens as queries and keys;

each token is used as a value. Moreover, 1 × 1 depthwise

convolutions are also used for projection onto the queries, keys,

and values. This design enables the spatial information

enhancement module to focus on information integration in the

spatial dimension, thereby complementing the edge fusion module

to collaboratively establish a comprehensive and enhanced feature

representation. The process is defined by the following formulas:

K,Q = conv1D concat(T1,T2 … Ti)ð Þ

Vi = conv1D(T1,T2 … Ti)

SCA(Qi,K,V) = Softmax(QTKS)VT
i

Q,K , and Vi are matrices that represent queries, keys, and

values, respectively. S is the scaling factor.

To ensure that the generated enhanced features can effectively

serve the decoder, the following processing steps are adopted. First,

layer normalization and the GeLU activation function are applied to

the output to stabilize the features and introduce nonlinear

transformations. Subsequently, through a combined sequence of

an upsampling layer, a 1 × 1 convolution, batch normalization, and

GeLU activation function, necessary size adjustments and

enhancements are made to the features, which are fused with the

features in the decoder stage. The upsampling layer is used to

restore the spatial resolution of the feature maps, ensuring that the

details of the image can be better reconstructed in the decoding

stage. The 1 × 1 convolution is used for channel compression and

feature fusion, enhancing the expressive ability of the model, while

batch normalization ensures the consistency of features among

different layers. The GeLU activation function introduces

nonlinear transformations that aid in handling complex feature

relationships. This method ensures the continuity and consistency

of information and greatly improves the decoding efficiency and

performance of the entire network.
2.3 Loss function

We propose a multi-dimensional perceptual loss function for

training the CUG-UIEF to align the enhanced images with human

visual perception and improve detail reconstruction.
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1) Perceptual Loss.

Deep features capture high-level semantic information from

images. By comparing the feature maps of the two images in a

pretrained network, their perceptual similarity can be evaluated.

lper = x − yj j,
x represents the predicted image, and y represents the

real image.

2) Multi-scale Structural Similarity Loss.

Multi-Scale Structural Similarity (MSSSIM) is an image quality

assessment metric that evaluates brightness, contrast, and structural

features across multiple scales, providing a measure more aligned

with human visual perception.

lms−ssim = 1 −
YM
m=1

2upug + c1
u2g + u2p + c1

 !bm 2spg + c2
s2
p + s2

g + c2

 !gm

Here, M represents different scales.   ug and up represent the

means of the predicted image and ground truth, respectively. sp and

sg represent the standard deviations between the predicted and real

images. spg represents the covariance between the predicted and

real images. bm and gm represent the relative importance constants

between the two items.   c1 and c2 are constants.

3) Charbonnier Loss.

The Charbonnier loss function is a variant of the L1 loss

function. It prevents the denominator from reducing to zero by

introducing a small positive number e and ensures smoother

changes when the gradient is large. It maintains the sharpness of

an image while reducing noise.

lcharbonnier =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 +∈2

p

X represents the difference between the predicted image and

ground truth. e is a small posit ive number used for

numerical stability.

Finally, the loss function is expressed as

l = l1lper + l2lms−ssim + l3lcharbonnier :

Hyperparameters l1,   l2, and l3 determine the balance

between the overall performance and the local texture details.

Following experimental analysis the parameters were set to 1, 2,

and 1, respectively.
3 Experiments and analyses

3.1 Experimental environment and
parameter settings

The proposed model was implemented using PyTorch 2.4.0. It

was trained on an NVIDIA RTX 2080Ti GPU without a pretrained

network. During the training process, the Adam optimizer was

adopted, and the initial learning rate was set to 0.0005, with the b
parameter pair being (0.9, 0.999). Training was performed for 700

epochs, and the number of samples in each batch was four.
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3.2 Datasets

This study uses three datasets.
1. UIEB Dataset (Li et al., 2019): This dataset included 950

real underwater images. Among them, 890 images had

corresponding reference images, and another 60

underwater images without reference images were used as

the challenging data. In this study, 90 pairs of challenging

images in multiple scenes with corresponding reference

images from the UIEB were selected as the test set Test-

U90, and 60 images without reference images were used as

the test set Test-C60. The remaining images were divided

into training and validation sets at a 8:2 ratio. The training

data were enhanced using random cropping, size

adjustment, and random rotation.

2. LSUI Dataset (Peng et al., 2023): This is a large-scale

underwater image dataset that contains 5,004 underwater

images with reference images. It contains richer underwater

scenes. Forty-five images were selected from this dataset as

the test set, Test-L45. The remaining images were divided

into training and validation sets at a 8:2 ratio. The training

data were enhanced through random cropping, size

adjustment, and random rotation.

3. U45 Dataset: The U45 dataset is a publicly available

underwater image test dataset that contains 45 underwater

images in different scenes and involves underwater

degradation phenomena, such as color shift, low contrast,

and fogginess. Forty-five images were used as the test set,

Test-U45.
3.3 Evaluation metrics and comparative
algorithms

Reference Evaluation Metrics: To quantify the performance of

each model on the dataset with reference images, this study adopted

two measurement standards: PSNR and SSIM. These two indicators

help measure the similarity between the restored and reference

images. PSNR is an objective quality metric calculated based on the

mean squared error between the original image and the enhanced

image, with the unit of decibel (dB). In UIE, a higher PSNR value

indicates that the enhanced image has a smaller error than the

original image and, thus, better quality. SSIM is an index used to

measure the similarity between two images. It considers luminance,

contrast, and structural information, and its value ranges from –1 to

1. In UIE, the closer the SSIM value is to one, the more similar the

enhanced image to the original image in terms of structure,

luminance, and contrast, suggesting a higher image quality.

No-reference Evaluation Metrics: For the test sets of images

without reference images, we adopted three evaluation methods:

underwater color image quality evaluation (UCIQE), underwater

image quality measure (UIQM) and Underwater Ranker(URanker)
frontiersin.org

https://doi.org/10.3389/fmars.2025.1555286
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shen et al. 10.3389/fmars.2025.1555286
(Guo et al., 2023). UCIQE focuses on the color density, saturation,

and contrast of images and uses a linear combination of these three

aspects as the quantitative form of color cast, blurring, and low

contrast. UIQM includes color (UICM), sharpness (UISM), and

contrast measurements (UIConM). As the scores of these methods

increase, the image processing results become more aligned with the

visual perception preferences of human beings.

Comparative Algorithms: The comparative algorithms adopted

in this experiment are representative algorithms among traditional

UIE methods and deep-learning-based UIE methods, which can

verify the effectiveness and advancement of the proposed method,

including the UIE algorithm based on color correction: Fusion

(Ancuti et al., 2012); UIE algorithms based on image restoration:

IBLA (Wang et al., 2013); HL (Berman et al., 2021); WWPF (Zhang

et al., 2023); CBLA (Jha and Bhandari, 2024); UIE algorithms based

on deep learning: UWCNN (Li et al., 2020), Shallow-UWnet (Naik

et al., 2021), USUIR (Fu et al., 2022), URSCT (Ren et al., 2022),

DiffWater (Guan et al., 2023).
3.4 Experimental results

All experimental results are presented with the best outcomes

bolded and the second-best outcomes highlighted in blue font. This

section first presents the test results of the model based on the UIEB

training set on the Test-U90 dataset. As indicated in Table 1, CUG-

UIEF outperformed the other algorithms in terms of the PSNR and

SSIM. Moreover, compared to the second-best performance, CUG-

UIEF achieved percentage gains of 8.41% and 0.1% in PSNR and

SSIM, respectively. This study also conducted a no-reference

evaluation comparison of Test-C60 and Test-U45. Table 2

presents all the statistical results. Both UIQM and UCIQE have

specific feature biases and are relatively sensitive to the contrast of

images. Therefore, results based on visual priors and physical

models can yield higher scores. Our experimental results align

with this conclusion. And the proposed method achieves the best

performance on the URanker evaluation metric, with an average

improvement of 12.21% over the second-best model. Therefore, the

results cannot indicate whether the processed images are the best in

all aspects. However, by combining the results of the two

parameters, the images performed well in terms of contrast and

color. CUG-UIEF obtained the second-best result among the

models that were used in the experiment, only lower than that of

the fusion method. Combined with the previous results, this shows

that the generalization ability and actual performance of the CUG-

UIEF are the best.
3.5 Comparative mechanism analysis of
algorithms

The fusion algorithm addresses underwater color cast and low-

contrast degradation through adaptive weight mapping, yet exhibits

critical limitations when confronting specific technical challenges. Its
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edge restoration capability deteriorates in low signal-to-noise ratio

(SNR) regions, producing blurred textures and artificial transitions

around fine structural details, while contrast optimization remains

suboptimal under non-uniform illumination caused by suspended

particulates. Furthermore, the water-quality-dependent input

generation mechanism demonstrates unstable color correction

performance across chromatic water types, particularly failing to

compensate for wavelength-specific absorption in turbid greenish

waters where waterborne noise amplifies color inconsistency along

depth gradients. These limitations stem from the algorithm’s inherent

constraints in decoupling overlapping degradation patterns and

adapting to spatially variant underwater optical conditions.

The IBLA algorithm decomposes images via luminance-

ordering error metrics and bright-pass filtering to separately

regulate reflectance and illumination, dynamically adjusting their

weights through dual-logarithmic transformations. While effective

for uniform scenes, the framework suffers from edge-texture

mismatches in areas with overlapping illumination-reflectance

gradients, where low-SNR conditions exacerbate erroneous

boundary segmentation and nonlinear illumination transitions

degrade fine details. The logarithmic weight adaptation further

struggles to resolve high dynamic range conflicts, causing halo

artifacts near specular highlights and contextual inconsistency in

shadowed low-contrast regions. These limitations arise from

inadequate noise-robust disentanglement of radiometrically

coupled components under complex degradation patterns.

The HL algorithm frames color restoration as a single-image

dehazing task by estimating attenuation ratios for the blue-red and

blue-green color channels, with a color distribution screening

mechanism to identify optimal parameter combinations. However,

this approach faces three critical limitations in addressing

underwater-specific degradation: Its unified attenuation coefficient

oversimplifies spectral interactions, failing to resolve edge blurriness
TABLE 1 PSNR and SSIM scores of different methods on the test set
Test-U90.

Method
TEST-U90

PSNR SSIM

Traditional Method

HL 14.8429 0.6497

IBLA 14.9395 0.6742

Fusion 21.1843 0.8639

CBLA 15.2359 0.6614

WWPF 18.5371 0.7062

Deep-Learning
Method

Sha-UWnet 17.4575 0.7174

UWCNN 15.4532 0.7560

USUIR 20.5514 0.8544

URSCT 22.5976 0.9171

Diff-Water 20.1567 0.8391

Ours 24.4952 0.9262
In the results, boldface indicates the best data and blue denotes the suboptimal data.
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caused by wavelength-dependent scattering anisotropy. The channel-

agnostic model amplifies noise in low-SNR scenarios, particularly in

red-dominated deep-water regions where backscatter varies

disproportionately. Linear color compensation ignores depth-

related contrast attenuation gradients, leading to inaccurate

recovery in shaded seabed areas with nonlinear illumination decay.

These simplifications fundamentally disregard the photometric

complexity of real underwater environments, where multi-band

light refraction and particulate scattering create spatially varying

attenuation patterns.

The color-balanced locally adjustable (CBLA) algorithm targets

underwater color distortion and contrast degradation through dual-

space hierarchical enhancement, yet reveals critical vulnerabilities

when addressing complex photometric interactions. Its RGB-space

color restoration mechanism struggles to decouple chromatic

shifts from suspended particulate backscattering in high-turbidity

environments, occasionally overcompensating blue-green dominance

while neglecting wavelength-specific absorption residuals. The

CIELAB-space contrast optimization demonstrates limited

adaptivity to illumination gradients across depth-varying scenes,

where aggressive luminosity adjustments in localized regions may

amplify noise patterns and induce halo artifacts near high-frequency

textures. Furthermore, the separate processing pipelines for color

correction and contrast enhancement fail to maintain spectral

consistency in transitional zones between adjusted and unprocessed

areas, particularly under abrupt optical density changes caused by

marine snow or biological layers. These deficiencies originate from

the method’s sequential processing framework that insufficiently

models the nonlinear coupling between wavelength attenuation and

turbidity-induced light diffusion.

The weighted wavelet visual perception fusion (WWPF)

method tackles underwater color distortion and contrast

degradation through multi-strategy hierarchical optimization, yet

reveals critical constraints when handling complex photonic
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interactions. Its attenuation-map-guided color correction exhibits

incomplete spectral separation in high-turbidity greenish waters,

where particulate backscattering interferes with wavelength-specific

absorption estimation, occasionally preserving residual cyan

dominance while overcompensating red-channel artifacts. The

maximum entropy optimized global contrast enhancement

demonstrates limited dynamic range adaptation across depth-

varying illumination fields, where uniform intensity stretching

may amplify noise in low-transmission regions while compressing

texture details in high-clarity zones. Furthermore, the wavelet-based

multi-scale fusion mechanism shows inadequate edge preservation

at high-frequency subbands when processing particulate-laden

scenes, as directional filter banks struggle to differentiate between

authentic structural contours and suspended particle clusters,

resulting in oversmoothed textures near marine snow interfaces.

These limitations stem from the method’s implicit assumption of

linear degradations and insufficient modeling of nonlinear light-

particle-camera interactions in turbid aquatic environments.

The UWCNN algorithm constructs a synthetic degradation

dataset using spectral-attenuation priors to train a lightweight

CNN for direct underwater image restoration, thereby reducing

error propagation. While effective for general color cast correction,

its wavelength-agnostic framework introduces spectral bias by

oversimplifying depth-dependent chromatic shifts and angular

illumination variations inherent in real underwater environments.

Specifically, the model fails to address nonlinear wavelength

absorption caused by suspended particulates and depth-varying

water types, leading to color channel imbalance in scenes with

multi-spectral artificial lighting or bioluminescent interference.

Furthermore, its static prior integration neglects photometric

divergence between shallow and deep-water zones, resulting in

inconsistent color constancy when reconstructing red-depleted

regions or high-turbidity sediments. These limitations stem from

inadequate modeling of spectrally asymmetric degradation and
TABLE 2 UIQM and UCIQE scores of different methods on test sets C60 and U45.

Method
Test-C60 Test-U45

UCIQE UIQM URanker UCIQE UIQM URanker

Traditional
Method

HL 0.5311 2.8774 0.094 0.5126 1.9423 0.751

IBLA 0.5642 3.3236 0.815 0.4612 1.2768 0.945

Fusion 0.5848 2.8092 0.745 0.6473 1.6984 0.726

CBLA 0.4781 2.4273 1.285 0.5139 1.7141 1.392

WWPF 0.5135 2.4861 1.348 0.5641 1.7311` 1.351

Deep-Learning
Method

Sha-UWnet 0.4198 2.2751 0.921 0.4595 1.6893 1.257

UWCNN 0.4894 2.4523 1.687 0.4524 1.4338 1.582

USUIR 0.5673 2.3234 1.618 0.5131 1.8952 1.685

URSCT 0.5529 2.7453 1.713 0.5729 2.1861 1.724

Diff-Water 0.5372 2.5894 1.632 0.5338 2.0142 1.583

Ours 0.5737 2.8168 1.982 0.5937 2.3247 1.859
In the results, boldface indicates the best data and blue denotes the suboptimal data.
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cross-domain generalization across heterogeneous underwater

optical conditions.

The Sha-UWnet employs a parameter-efficient architecture to

optimize underwater image enhancement, leveraging prioritized

feature extraction to balance computational cost and restoration

quality. While its streamlined design effectively addresses global

color shifts, the constrained network depth impedes hierarchical

abstraction of multi-scale edge contexts, resulting in blurred

boundary delineation and textural discontinuities in low-contrast

turbid waters. Specifically, the shallow structure fails to resolve

edge-texture conflicts caused by suspended particle scattering, often

miscalculating gradient magnitudes in regions with overlapping

foreground-background chromaticity. Furthermore, its limited

receptive field struggles to suppress waterborne noise while

preserving high-frequency details, leading to artificial sharpening

artifacts near bioluminescent features or sediment-rich zones. These

limitations highlight the inherent trade-off between model efficiency

and multi-scale degradation disentanglement in underwater

optical environments.

The USUIR algorithm reformulates unsupervised restoration

through homology-driven cycle consistency between original and

synthetically re-degraded images, theoretically circumventing the

need for paired training data. While effective for global error

minimization, the framework exhibits edge gradient confusion in

low signal-to-noise ratio regions, failing to resolve sub-pixel

boundary discontinuities caused by suspended particle scattering

or nonlinear light attenuation. This manifests as blurred bio-

structural contours and textural oversmoothing in turbid waters

where foreground-background chromatic similarity exacerbates

edge ambiguity. Furthermore, its spectrally insensitive homology

constraints inadequately model wavelength-dependent absorption,

inducing color channel crosstalk that amplifies greenish hue bias in

deep pelagic zones and artificial saturation spikes under multi-

spectral artificial lighting. These limitations stem from insufficient

physical priors to disentangle spatially coupled degradation patterns

across heterogeneous underwater optical domains.

The URSCT algorithm integrates Swin Transformer into a U-

Net framework to enhance global context modeling for structural

and chromatic restoration, while its RSCTB module employs

convolutional layers to refine local features. Although this hybrid

design improves cross-scale feature aggregation in uniform

underwater scenes, the global attention mechanism in Swin

Transformer induces boundary erosion when processing low-

contrast edges or suspended particle-induced textures, where

multi-scale edge ambiguity arises from nonlinear light scattering.

Concurrently, the convolutional RSCTB module exhibits limited

texture-edge decoupling capacity, failing to recover high-frequency

boundary cues lost during transformer-based global smoothing,

particularly in high-turbidity regions with overlapping bio-optical

signals. This synergistic deficiency manifests as gradient reversal

artifacts along complex seabed contours and chromatic offsets in

shadowed areas, highlighting the algorithm’s inadequate fusion of

spectral-spatial priors to address depth-variant degradation

patterns in dynamic underwater environments.
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The DiffWater method addresses underwater color distortion

and quality degradation through conditional diffusion modeling,

yet demonstrates critical vulnerabilities when confronting

nonlinear photometric interactions in complex aquatic

scenarios. Its channelwise color compensation mechanism in

RGB space shows incomplete chromatic separation in turbid

greenish waters, where wavelength-dependent scattering

interferes with particulate density estimation, occasionally

preserving blue-green dominance while introducing artificial

magenta casts in shadow regions. The conditional DDPM

framework exhibits unstable noise prediction capabilities under

dynamic illumination fields, where conditional guidance from

color-compensated inputs may misdirect the denoising

trajectory, generating texture-inconsistent hallucinated details

near high-particle-concentration zones. Furthermore, the

sequential integration of color correction and diffusion processes

demonstrates spectral incoherence in transitional depth layers,

particularly failing to preserve wavelength attenuation gradients

when processing scenes with abrupt optical density changes

caused by algal blooms or sediment plumes. These limitations

stem from the method’s simplified assumption of additive

degradation patterns and insufficient physical modeling of the

nonlinear correlation between waterborne light scattering and

depth-dependent chromatic absorption.

The proposed UIE algorithm in this study employs edge feature

attention fusion to address critical problems, such as edge

blurriness, low SNR, and low contrast in underwater images. It

integrates three innovative modules: (1) Edge operators extract edge

information through gradient-sensitive feature learning, while CCA

fuses multi-scale features using cross-channel coherence analysis,

restoring object edge details by jointly optimizing high-frequency

components and improving visual performance.(2) A spatial cross-

attention mechanism strengthens spatial structure information via

edge-guided attention propagation, preserving details under low

signal-to-noise ratio conditions through noise-adaptive feature

reinforcement.(3) A multi-dimensional perception optimization

method enhances semantic understanding, structural integrity,

and local contrast using frequency-aware adversarial learning,

while mitigating the effects of outliers through multi-scale

degradation disentanglement. Collectively, these modules establish

hierarchical edge-texture synchronization, where edge restoration

and feature fusion are systematically coordinated to resolve cross-

scale degradation conflicts in turbid underwater environments.
3.6 Component ablation and fusion
validation

The excellent performance of the CUG-UIEF proposed in this

study for UIE mainly benefits from the multi-feature cross-fusion

module and the redesigned loss function. To verify the effectiveness of

the modules proposed in this study, we conducted ablation studies

using the UIEB dataset as the training set on Test-U90 and by

selecting 45 challenging images from the LSUI dataset as Test-L45.
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The original model selected in this study has been described in the

literature (Ren et al., 2022). The specific experimental settings were

consistent with those used in a previous experiment. Table 3 presents

the results of this index. DDEM-1 represents CUG-UIEF with the

edge fusion module removed, and DDEM-2 represents CUG-UIEF

with the spatial information enhancement module removed.

As indicated in Table 3, the proposed model achieved the best

quantitative performance on the two test datasets, reflecting the

effectiveness of the combination of multi-feature cross-fusion and

multidimensional perceptual loss function modules.

As shown in Figure 3, compared with the original model, the

added multi-feature cross-fusion module better address the problem of

cyan-green color casts. When processing images, the cross-attention

mechanism can adaptively focus on the interactions between cyan-

green channels and other channels, avoiding excessive or insufficient

utilization of cyan-green channel information. It emphasizes local

details than on the convolution in the original model. The color

distribution in real scenes was better matched adjusting the weights

and contributions of the cyan-green channels in the image to a more

reasonable level, thus effectively correcting the cyan-green color cast

and improving the accuracy and naturalness of the image colors.

Moreover, after adding edge features, the attention mechanism can

focus on the structural information in the image and avoid wasting

resources in unimportant areas. Following the addition of edge

features, the details of the stones and creatures in the two

comparison images became clearer. As we can observe in Figure 4,

owing to the multidimensional perceptual loss function, the obtained

images exhibit enhanced details, improved color restoration, vivid

object edges, high contrast, and clear boundaries.

3.7 Qualitative comparison through
visualization

First, the image comparison results of the UIEB dataset are

presented. A comprehensive training was conducted using the

UIEB dataset. The test data selected for this study were sampled

according to six scenes with distinct characteristics: shadow,

texture, blur, blue, yellow, and green. The images that best
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represented each type of scene and were to some extent

challenging were chosen. Figure 5 presents the enhancement

results of the different methods.

In the green scene, color casts occurred in the results of HL,

Sha-UWnet, and UWCNN. Only Fusion, USUIR, URSCT, and

CUG-UIEF showed color restoration similar to that of the real

image. However, CUG-UIEF achieved the closest color restoration

effect to the real image, and the details in the shadowed parts were

the clearest and most distinguishable. In the blue scene, except for

USUIR, URSCT, and CUG-UIEF, none of the methods restored the

real illumination effect, and only CUG-UIEF truly restored the color

texture of the fish in the upper left corner. In foggy and textured

scenes, only the proposed URSCT and CUG-UIEF achieved good

effects in defogging and enhancing textures and object edges.

However, compared to real situations, both methods had some

deficiencies. In the final yellow scene, only CUG-UIEF retained

delicate edge information during defogging. Overall, CUG-UIEF

was visually superior to the other methods.

This section also presents the image results of CUG-UIEF on

no-reference datasets. The tests were performed on two test sets,

Test-C60 and Test-U45.

Test-C60 includes five underwater environments—red, yellow,

green, blue, and foggy scenes—all of which were affected by high

backscattering and color deviation. The most representative images of

each type were selected for visual comparison. As shown in Figure 6,

HL, CBLA, WWPF, Sha-UWnet, UWCNN, and URSCT exhibited

obvious color deviations in some cases. In the yellow scene, HL, IBLA,

and USUIR restored the paddle blade to purple, whereas UWCNN

and CUG-UIEF restored it to yellow, which is closer to the normal

visual perception of humans. Moreover, CUG-UIEF can better

restore blurred details in the original image. In the green and blue

scenes, only URSCT and CUG-UIEF achieved good restoration of the

background and surfaces of the creatures. In the foggy scene, URSCT

had a significant defogging effect but overly enhanced the red color in

the original image. CUG-UIEF attempted to retain the information of

the original image while defogging, and the color restoration at the

bottom background was more in line with normal perception. In the

shadow and texture scenes, all the methods except USUIR, URSCT,

and CUG-UIEF, exhibited color restoration deviations. These three

methods could restore the details in the shaded parts while retaining

the natural illumination, but only CUG-UIEF could retain sufficient

light–dark contrast and object details while providing improved color

for the seawater background.

TEST-U45 contains multiple scenes, such as color deviation and

foggy scenes. Multiple scenes were selected for the experiments, and

representative scenes were selected for display. As is shown

Figure 7, except for HL, UWCNN, CBLA, WWPF and Sha-

UWnet, the methods exhibited a lower degree of color deviation.

In the shadow and texture scenes, Fusion, USUIR, URSCT, and

CUG-UIEF performed well in color restoration and texture

information preservation. However, in the blue scene, only the

URSCT and CUG-UIEF restored colors that were more in line with

normal visual perception and preserved the texture information of

the objects well. In the green scene, only CUG-UIEF could better

reflect the natural illumination environment and delicate details.
TABLE 3 Statistical results of the ablation study on the modules and
loss functions.

Module

Test-U90 Test-L45

PSNR SSIM PSNR SSIM

Origin 23.2074 0.9178 21.9878 0.9164

DDEM-1 23.4076 0.9183 22.3455 0.9142

DDEM-2 25.5647 0.9195 23.2346 0.9234

CUG-UIEF 26.4693 0.9286 24.5212 0.9276

Loss PSNR SSIM PSNR SSIM

lp 24.3572 0.9142 22.0478 0.9123

lp,lm 25.7823 0.9212 23.5689 0.9201

lp,lm,lc 26.4693 0.9286 24.5212 0.9276
In the results, boldface indicates the best data.
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In summary, HL, UWCNN, WWPF and Sha-UWnet were

prone to color-cast phenomena. The IBLA improved the quality

of underwater images using local adaptive methods but performed

poorly in yellow, foggy, and some blue scenes. Fusion greatly

increased artificial colors to enhance contrast but could not adapt
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well to the changes caused by foggy scenes. USUIR performed well

in most scenes but often exhibited a red-shift phenomenon in blue

scenes. URSCT had good robustness and strong defogging ability;

however, when restoring objects in foggy scenes, it was prone to

red-shift phenomena. CUG-UIEF had good robustness and
FIGURE 4

Multi-dimensional ablation study. Each panel includes the original image (RAW) and the results of the original method. The results of using only Lp,
the results of using both Lp and Lm, and the results of using Lp, Lm, and Lc simultaneously. (A) Test-U90, (B) Test-L45.
FIGURE 3

Ablation study on the contribution of cross-fusion. Each panel includes the original image (RAW), the results of the original method, the results of
DDEM-1, the results of DDEM-2, and the results of CUG-UIEF. (A) Test-U90, (B) Test-L45.
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FIGURE 5

Comparison of the underwater images sampled from the Test-U90 dataset. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-UWnet
(H) UWCNN (I) USUIR (J) URSCT (K) Diff-Water (L) Ours (M) Ground truth.
FIGURE 6

Visual comparison of the underwater images sampled from the Test-C60 dataset. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-
UWnet (H) UWCNN (I) USUIR (J) URSCT (K) Diff-Water (L) Ours.
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performed well in yellow, blue, green, foggy, shadowed, and

textured scenes.
3.8 Application and inference efficiency

As feature extraction-matching and edge detection constitute

core technical pillars in underwater image analysis, this study

systematically validated the necessity of the proposed method as a

preprocessing module for feature matching and edge detection. In

feature matching tasks, the SIFT algorithm was utilized to extract

feature points, complemented by the RANSAC algorithm for false

match elimination. Feature matching was performed on

preprocessed 256×256 pixels underwater stereo image pairs from

the SQUID dataset. Figure 8 revealed that the proposed approach

significantly optimized matching performance while concurrently

improving visual quality. Table 4 demonstrates that compared to

baseline methods, our scheme ranked second in both initial and

valid matches, yet achieved the highest matching precision.

Integrative qualitative-quantitative analyses corroborated the

critical utility of this method for underwater feature matching tasks.

Regarding edge detection tasks, all images in the Test-C60 and

Test-U45 datasets underwent enhancement prior to edge extraction

and evaluation via the Canny operator. Detection performance was

quantified using three metrics: Precision, F1 (harmonic mean of

precision and recall), and Edge Pixel Ratio (EPR). Table 5 indicated

that our method ranked first in accuracy and second in EPR relative

to state-of-the-art approaches. Figure 9 demonstrates the
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experimental findings: In Test-U45 fish samples, the enhanced

edge detection preserves intact morphological contours while

precisely discriminating target-background depth disparities,

revealing underwater spatial hierarchy. In Test-C60 columnar

targets, the algorithm achieves complete extraction of artificial

structures' geometric edges with enhanced low-light gradient

responses, where continuous seagrass blade edges further validate

optical attenuation compensation. Convergent qualitative and

quantitative evidence validated the significant contribution of this

method to underwater edge detection tasks.

To evaluate the practical applicability of underwater image

enhancement algorithms, we conducted a systematic comparison

of inference efficiency among competing methods. The experiments

were performed using the UIEB dataset as the benchmark, with

average inference times calculated across all test samples.

Traditional algorithms were executed in batch processing mode,

while deep learning approaches employed pre-trained models on

the UIEB training set for inference. Owing to significant

architectural variations among deep learning algorithms,

substantial discrepancies in inference times were observed across

different models. As demonstrated in Table 6, conventional

algorithms maintain absolute superiority in computational speed,

whereas the proposed framework achieves the second-highest

efficiency among deep learning methods while demonstrating a

competitive advantage over structurally complex traditional

approaches. These findings validate the proposed method’s

significant advantages in balancing computational complexity

with practical deployment feasibility.
FIGURE 7

Visual comparison of the underwater images sampled from the Test-U45 dataset. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-
UWnet (H) UWCNN (I) USUIR (J) URSCT (K) Diff-Water (L) Ours.
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TABLE 4 Mean evaluation results of underwater feature matching on the SQUID dataset.

Method Initial matches Valid matches Precision

Traditional
Method

HL 44.32 38.67 87.25%

IBLA 37.42 31.73 84.79%

Fusion 46.56 39.14 84.06%

CBLA 87.35 78.15 89.46%

WWPF 198.58 166.21 83.70%

Deep-Learning
Method

Sha-UWnet 36.74 31.27 85.12%

UWCNN 39.55 32.52 82.29%

USUIR 152.46 135.14 88.64%

URSCT 163.24 145.81 89.24%

Diff-Water 108.47 97.09 89.51%

Ours 172.68 155.81 90.23%
F
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In the results, boldface indicates the best data and blue denotes the suboptimal data.
FIGURE 8

Application examples of underwater feature matching. (A) RAW-Left (B) RAW-right (C) RAW (D) HL (E) IBLA (F) Fusion (G) CBLA (H) WWPE (I) Sha-
UWnet (J) UWCNN (K) USUIR (L) URSCT (M) Diff-Water (N) Ours.
TABLE 5 Mean evaluation results of underwater feature matching on the Test-C60 and Test-U45 dataset.

Method Precision F1 EPR

Traditional
Method

HL 0.6011 0.1406 0.0303

IBLA 0.6208 0.4789 0.1492

Fusion 0.6149 0.3311 0.0926

CBLA 0.6215 0.5435 0.2021

WWPF 0.6571 0.5252 0.1888

(Continued)
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4 Conclusion

This study presented a deep learning model for UIE that improves

blurring and color distortion caused by light scattering and attenuation.

The proposed model integrates a multi-feature cross-fusion module,

which combines edge features with encoder features and utilizes a

channel-cross attention mechanism, effectively enhancing the clarity of

blurred areas and improving edge detail capture. Additionally, the

spatial information enhancement module strengthens feature

interactions across different locations, enabling more natural

restoration of color-distorted regions, thereby bringing the image

closer to true colors and clarity. Through multi-dimensional

perception optimization, the model further improves clarity, color

accuracy, and edge details. Experimental results confirm the superior

ability of themodel to restore image details and correct color distortion.

Ablation studies highlight the effectiveness of both the multi-feature

cross-fusion module and multi-dimensional perception optimization

in enhancing detail and overall color consistency. However, the
TABLE 6 Inference Efficiency Comparison.

Method Per-image inference time

Traditional
Method

HL 0.284s

IBLA 0.622s

Fusion 1.756s

CBLA 0.199s

WWPF 0.652s

Deep-Learning
Method

Sha-UWnet 3.643s

UWCNN 2.911s

USUIR 1.876s

URSCT 1.061s

Diff-Water 44.322s

Ours 1.083s
In the results, boldface indicates the best data and blue denotes the suboptimal data.
TABLE 5 Continued

Method Precision F1 EPR

Deep-Learning
Method

Sha-UWnet 0.6666 0.0295 0.0057

UWCNN 0.6523 0.3145 0.0649

USUIR 0.6314 0.2227 0.0542

URSCT 0.6289 0.4445 0.1436

Diff-Water 0.6403 0.4474 0.1381

Ours 0.6719 0.4761 0.1989
In the results, boldface indicates the best data and blue denotes the suboptimal data.
FIGURE 9

Application examples of canny edge detection. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-UWnet (H) UWCNN (I) USUIR (J)
URSCT (K) Diff-Water (L) Ours.
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dehazing performance of the model in large-scale foggy underwater

images requires further improvement. Future work will incorporate

multispectral data to address the limitations, enhance dehazing

performance, and improve the overall robustness and generalizability

of the model in complex scenarios, ultimately providing more reliable

image enhancement solutions for practical underwater operations and

deep-sea exploration.
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School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China
Although side-scan sonar can provide wide and high-resolution views of

submarine terrain and objects, it suffers from severe interference due to

complex environmental noise, variations in sonar configuration (such as

frequency, beam pattern, etc.), and the small scale of targets, leading to a high

misdetection rate. These challenges highlight the need for advanced detection

models that can effectively address these limitations. Here, this paper introduces

an enhanced YOLOv9(You Only Look Once v9) model named SOCA-YOLO,

which integrates a Small Object focused Convolution module and an Attention

mechanism to improve detection performance to tackle the challenges. The

SOCA-YOLO framework first constructs a high-resolution SSS (sidescan sonar

image) enhancement pipeline through image restoration techniques to extract

fine-grained features of micro-scale targets. Subsequently, the SPDConv (Space-

to-Depth Convolution) module is incorporated to optimize the feature

extraction network, effectively preserving discriminative characteristics of small

targets. Furthermore, the model integrates the standardized CBAM

(Convolutional Block Attention Module) attention mechanism, enabling

adaptive focus on salient regions of small targets in sonar images, thereby

significantly improving detection robustness in complex underwater

environments. Finally, the model is verified on a public side-scan sonar image

dataset Cylinder2. Experiment results indicate that SOCA-YOLO achieves

Precision and Recall at 71.8% and 72.7%, with an mAP50 of 74.3%. It

outperforms the current state-of-the-art object detection method, YOLO11, as

well as the original YOLOv9. Specifically, our model surpasses YOLO11 and

YOLOv9 by 2.3% and 6.5% in terms of mAP50, respectively. Therefore, the

SOCA-YOLO model provides a new and effective approach for small

underwater object detection in side-scan sonar images.
KEYWORDS

side-scan sonar, image restoration, YOLOv9, attention mechanism, Space-to-
Depth Convolution
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1 Introduction

Side-scan sonar (何勇光, 2020) is an extensively utilized

underwater sensing technology, mainly applied in underwater

terrain mapping, object detection, and exploration tasks. In

contrast to conventional downward-looking sonar, side-scan

sonar transmits acoustic waves at horizontal or inclined angles,

thereby covering a larger area of seabed features and improving

detection performance. As a result, side-scan sonar is widely utilized

in areas such as maritime archaeology, submerged pipeline

monitoring, and wreck exploration (Gomes et al., 2020; Tian

et al., 2007; Fengchun et al., 2002; Sun et al., 2021; Jinhua et al.,

2016). Nevertheless, the intricate underwater environment often

introduces multiple sources of noise and blurring in side-scan sonar

images, including scattering noise, multipath artifacts, noise streaks,

and acoustic shadow distortions. Furthermore, instrumental noise

arises from the sensor’s inherent electronic noise and the

transducer’s non-ideal properties, potentially leading to image

signal degradation. The interaction of these noise factors results

in considerable difficulties in processing side-scan sonar images for

real-world applications.

The unique properties of side-scan sonar images introduce

significant difficulties in target detection. Firstly, sonar imagery

often exhibits considerable background noise and spurious objects,

including natural seabed formations and acoustic backscatter from

sediment particles, which frequently resemble real targets and result

in an elevated false alarm rate in detection models. Secondly, targets

in sonar images generally manifest as small, diffuse high-intensity

reflections with vague edges and uneven signals, making them

indistinguishable from surrounding textures and increasing the

difficulty of segmentation from the background. Furthermore,

side-scan sonar image data exhibit substantial distribution

discrepancies across different scenarios. Given the high cost and

inefficiency of underwater data acquisition, labeled datasets are

often scarce. This non-uniformity and data insufficiency severely

hinder the generalization capability of algorithms, posing a

formidable challenge for achieving accurate target detection in

complex underwater settings. The rapid progress in artificial
Frontiers in Marine Science 02142
intelligence and machine learning has facilitated the fusion of

advanced image processing techniques with target detection

models, substantially enhancing side-scan sonar image quality

and improving the precision of seabed target detection (Yasir

et al., 2024; Cheng et al., 2023; Wen et al., 2024; Fan et al., 2022;

Yu et al., 2021; Fayaz et al., 2022).

Among existing underwater target detection methods for side-

scan sonar images, some object detection models have become

relatively outdated and struggle to meet the current diversified

underwater application requirements. Although some studies have

improved traditional deep learning models, these enhancements often

fail to adequately consider the inherent structural characteristics of

side-scan sonar images. This neglect of sonar image characteristics

makes targeted model optimization challenging, resulting in subpar

detection performance in practical applications. Furthermore, while

some modified models have enhanced detection capabilities to some

extent, their parameter counts have also increased substantially,

leading to higher computational costs. Therefore, developing an

effective underwater target detection method tailored to the specific

requirements of side-scan sonar images is particularly crucial. As

shown in Figure 1, by improving existing object detection models with

greater emphasis on the structure and characteristics of side-scan

sonar images, we can significantly enhance detection performance

while effectively controlling model parameters and computational

complexity, thereby providing more reliable metrics for underwater

detection tasks.

This paper is structured into four main sections: The first section

provides a literature review, systematically summarizing the current

research status in underwater side-scan sonar image target detection.

The second section focuses on methodology, providing a detailed

explanation of the proposed detection model and its theoretical

framework. The third section presents experimental validation,

where multiple comparative and ablation experiments empirically

analyze the performance advantages of the proposed model. The

fourth section provides conclusions and future perspectives,

discussing in depth the future research directions and trends in

underwater side-scan sonar image processing based on an evaluation

of the model’s practical performance.
FIGURE 1

SSS object detection architecture.
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The main contributions of this paper are as follows:
Fron
1. SwinIR-based sonar image enhancement method: To

address the issues of low quality and high noise

interference in traditional sonar images, the SwinIR

super-resolution reconstruction network is introduced

into the field of sonar image preprocessing. This method

can more effectively enhance image quality, providing

clearer input features for subsequent target detection.

2. Optimal model selection for small target detection in

images: In the task of small target detection in side-scan

sonar images, a comparison of existing object detection

network models reveals that YOLOv9, through its auxiliary

reversible branch, retains critical feature information,

significantly enhancing the model’s ability to detect small

targets, particularly improving target recognition accuracy

in complex backgrounds.

3. CBAM-enhanced detection model: Building upon the

standard YOLOv9 network, the convolutional block

attention module (CBAM) is innovatively incorporated.

Unlike the original model’s reliance solely on convolutional

feature extraction, this method adaptively focuses on key

target features, significantly improving target detection

accuracy in complex underwater environments.

4. SPDConv replacement for ADown downsampling scheme:

To address the challenges of small target detection in sonar

images, the original ADown module in YOLOv9 is replaced

with the SPDConv (Space-to-Depth Convolution) module.

Compared to traditional downsampling methods, this

improvement effectively mitigates the issue of small target

feature loss.

5. Sonar image dataset reconstruction and evaluation:

Existing public sonar datasets are systematically

restructured, and a data partitioning standard more

aligned with practical application scenarios is proposed.

Experimental results demonstrate that the proposed

improvements outperform traditional methods across

all metrics.
2 Related work

As deep learning technology advances, various effective approaches

have been introduced in image enhancement. The goal of image

enhancement is to enhance image visual quality and interpretability

using different algorithms, spanning from basic filtering to

sophisticated color adjustment and detail refinement. Methods based

on Convolutional Neural Networks (CNNs), such as Du (Du et al.,

2023), employ four conventional CNN models for training and

predicting on the same submarine SSS dataset. A comparative

analysis was conducted on the predictive accuracy and

computational efficiency of the four CNN models. Generative

Adversarial Networks (GANs) employ adversarial learning between a

generator and a discriminator to produce highly detailed images. Jiang
tiers in Marine Science 03143
(Jiang et al., 2020), for example, introduced a GAN-based semantic

image synthesis model that can efficiently generate high-quality SSS

images with reduced computational cost and time. Swin Transformer

(Liu et al., 2021) serves as a versatile vision model designed mainly for

image classification, object detection, and semantic segmentation (Lin

et al., 2022; Gao et al., 2022; He et al., 2022; Jannat and Willis, 2022),

with potential applications in image enhancement and video

processing. It is specifically designed for efficient high-resolution

image processing and has demonstrated superior performance in

multiple visual tasks. SwinIR (Liang et al., 2021), built upon Swin

Transformer, is a deep learning framework tailored for image

restoration, encompassing super-resolution, noise reduction, and

deblurring, among other tasks. Retaining the strengths of Swin

Transformer, it integrates task-specific optimizations for image

restoration, leading to improved processing efficiency and output

quality. SwinIR has demonstrated significant performance

improvements across various fields. For instance, in medical imaging,

its application in low-dose PET/MRI restoration achieves a mean SSIM

of 0.91 at a 6.25% dose level, substantially enhancing image quality

(Wang et al., 2023b). In the domain of remote sensing, experiments on

benchmark datasets show that SwinIR can enhance the resolution of

satellite and aerial images—at a 2× scaling factor, its PSNR reaches

35.367dB and its SSIM increases to 0.9449, thereby facilitating more

accurate topographic monitoring and mapping (Ali et al., 2023).

Moreover, in video enhancement and facial recognition (Zheng et al.,

2022; Lin, 2023), SwinIR’s robust feature extraction and reconstruction

capabilities significantly improve detail recovery and overall

performance, as evidenced by its competitive results in multiple top-

tier challenges. These advancements in deep learning have propelled

significant innovations in image enhancement techniques.

In the field of computer vision, object detection and image

enhancement are two complementary and important research

directions. Image enhancement techniques aim to improve image

quality, providing more accurate inputs for object detection, while

object detection techniques focus on identifying and localizing

objects of interest within images. Deep learning-based object

detection methods are primarily divided into two categories: one-

stage methods and two-stage methods. One-stage detection models

directly predict target locations and categories through a single

network forward pass, offering faster speed but potentially slightly

lower accuracy. Representative works include the SSD (Single Shot

Detector) series (Liu et al., 2016) and the YOLO (You Only Look

Once) family (Redmon, 2016; Redmon and Farhadi, 2017; Redmon,

2018; Bochkovskiy et al., 2020; Li et al., 2022; Wang et al., 2023a,

2025, 2024). Two-stage detection models first generate candidate

regions and then classify and regress these regions, achieving higher

accuracy but at a relatively slower speed. Representative works

include the R-CNN family (Girshick et al., 2014; Ren et al., 2016; He

et al., 2017). Currently, these methods have been widely applied in

underwater object detection tasks using sonar images and have

achieved significant results (Heng et al., 2024; Yang et al., 2025; Ma

et al., 2024; Yulin et al., 2020; Polap et al., 2022).

Deep learning-based side-scan sonar image enhancement and

object detection technologies have achieved significant progress in

both theoretical research and practical applications. Burguera et al
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(Burguera and Oliver, 2016) employed a probability model-based

high-resolution seabed mapping method, correcting sonar data

using physical models to generate high-precision images

surpassing the device’s resolution, laying the foundation for

scientific applications. Tang et al. (2023) proposed a deep

learning-based real-time object detection method, incorporating

lightweight network design to address the challenges of detection

efficiency and accuracy in complex underwater terrains. Li et al.

(2024) designed an image generation algorithm for zero-shot and

few-shot scenarios by combining UA-CycleGAN and StyleGAN3,

significantly enhancing the generalization performance of deep

learning-based object detection models. Yang et al. (2023)

employed diffusion models to generate high-fidelity sonar images

and validated the effectiveness of these enhanced data in practical

object detection tasks. Zhu et al. (2024) significantly improved the

stability and global information extraction capabilities of generative

models by introducing CC-WGAN and CBAM modules, while also

enhancing the accuracy of object detection. Yang et al. (2024)

generated full-category sonar image samples using diffusion

models combined with transfer learning, and trained object

detection and semantic segmentation models with these samples,

significantly improving model performance and data diversity.

Aubard et al. (2024) proposed the YOLOX-ViT model, effectively

compressing the model size using knowledge distillation while

maintaining high detection performance, particularly reducing

false alarm rates in underwater environments. Peng et al. (2024)

designed a single-image enhancement method based on the CBL-

sinGAN network, incorporating CBAM modules and L1 loss

functions to enhance the construction capability of small-sample

object detection models while preserving sonar image style.
3 Method

This section introduces the proposed SOCA-YOLO model,

which integrates the image restoration model SwinIR, the CBAM

(Woo et al., 2018) attention mechanism, the SPDConv (Sunkara

and Luo, 2022) convolution module, and the YOLOv9 object

detection model.
3.1 SwinIR

Image restoration is the process of transforming low-quality

images into high-quality versions. SwinIR, a model based on the

Swin Transformer, is primarily used for image super-resolution,

denoising, and JPEG compression artifact reduction.

SwinIR combines the strengths of both Transformers and

CNNs, outperforming traditional CNNs in handling large images

due to its local attention mechanism. SwinIR employs a sliding

window approach, dividing the input image into multiple small

windows and processing each window separately, while retaining

the Transformer’s ability to manage long-range pixel relationships

within the image. As illustrated in Figure 2, SwinIR is designed

based on the Swin Transformer and comprises three modules:
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Shallow Feature Extraction, Deep Feature Extraction, and High-

Quality Image Reconstruction.

The Shallow Feature Extraction module extracts initial features

through convolutional layers, preserving lowfrequency information

and passing it to the reconstruction module. The Deep Feature

Extraction module incorporates Residual Swin Transformer Blocks

(RSTB), which achieve local attention and cross-window

interactions through multiple Swin Transformer layers. Residual

connections provide a shortcut for feature aggregation, and

convolutional layers further enhance the features. Finally, the

High-Quality Image Reconstruction module combines shallow

and deep features to produce high-quality images. Each module is

detailed below.

Shallow Feature Extraction Module: This module uses a 3×3

convolution to extract shallow features. The main purpose of this

process is to retain low-frequency information, leading to better and

more stable results. A low-quality imageis ILinput at the input stage,

and after passing through the shallow feature extraction moduleHS,

the shallow feature F0 is obtained as shown in Equation 1:

F0 = HS(IL) (1)

Deep Feature Extraction Module: This module consists of

several RSTBs (Residual Swin Transformer Blocks) and a 3×3

convolution. Each RST is composed of an even number of Swin

Transformer Layers (STL) and a convolution layer. This module

further processes the shallow features, resulting in its deep feature

FD, as shown in Equation 2.

FD = HD(F0) (2)

Here, HD represents the deep feature extraction module.

High-Quality Image Reconstruction: The shallow and deep

features are aggregated, transferring both the lowfrequency and

high-frequency information of the image to the reconstruction

layer. The high-quality image reconstruction module uses a sub-

pixel convolution layer to upsample the feature map, resulting in

the reconstructed high-quality image IH , as shown in Equation 3:

IH = HRE(F0 + FD) (3)

Here, HRE represents the high-quality image reconstruction

module.
3.2 CBAM

The Convolutional Block Attention Module (CBAM) is an

efficient attention module for feedforward convolutional neural

networks, proposed by Sanghyun Woo et al, as illustrated in

Figure 3a. CBAM enhances the model’s perceptive capability by

incorporating a Channel Attention Module (CAM) (Figure 3b) and

a Spatial Attention Module (SAM) (Figure 3c) into CNNs, thereby

improving performance without adding significant network

complexity. As a lightweight and versatile module, CBAM can be

seamlessly integrated into any CNN architecture, adding minimal

parameters and enabling end-to-end training with YOLOv9 models.
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FIGURE 3

(a) Convolutional Block Attention Module (CBAM) architecture, (b) Channel Attention Module (CAM) architecture, (c) Spatial Attention Module
(SAM) architecture.
FIGURE 2

SwinIR transformer architecture.
Frontiers in Marine Science frontiersin.org05145

https://doi.org/10.3389/fmars.2025.1542832
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cui et al. 10.3389/fmars.2025.1542832
The input feature map F first passes through the CAM, where

the channel weights are multiplied with the input feature map to

produce F0. Then, F0 is fed into the SAM, where the normalized

spatial weights are multiplied with the input feature map of the

spatial attention mechanism, resulting in the final weighted feature

map F00.
3.3 Space-to-Depth Convolution

The fundamental principle of SPDConv (Space-to-Depth

Convolution) is to enhance the performance of convolutional

neural networks (CNNs) when processing low-resolution images

and small objects, as illustrated in Figure 4. This improvement is

achieved through the following key steps:
Fron
1. Replacing Strided Convolutions and Pooling Layers:

SPDConv is designed to replace traditional strided

convolution and pooling layers, which often cause the

loss of fine-grained information when dealing with low-

resolution images or small objects.

2. Space-to-Depth (SPD) Layer: This transformation layer

converts the spatial dimensions of the input image into the

depth dimension, increasing the feature map depth without

information loss. The SPD layer is critical for retaining spatial

information, especially when processing low-resolution

images and small objects. By converting spatial information

into the depth dimension, the SPD layer mitigates the
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information loss typically associated with traditional strided

convolutions and pooling operations.

3. Non-strided Convolution Layer: A convolutional layer with

a stride of 1, applied after the SPD transformation,

preserves fine-grained information by avoiding size

reduction of the feature map. This non-strided

convolution enables feature extraction while maintaining

the full resolution of the feature map, which is essential for

enhancing recognition performance on low-resolution

images and small objects.
SPDConv effectively processes low-resolution images and small

objects by combining space-to-depth transformations with non-

strided convolutions. This method addresses the fine-grained

information loss commonly caused by traditional strided

convolutions and pooling layers during downsampling. By

preserving spatial information through the SPD layer and

converting it into depth features, combined with non-strided

convolutions to capture finer details, SPDConv excels in small

object detection tasks. It significantly enhances detection accuracy

and adaptability to low-resolution images, offering a novel solution

for small object detection and related tasks.
3.4 YOLOv9

Proposed in 2024, YOLOv9 is an object detection network that

excels in both detection accuracy and processing speed. The model
FIGURE 4

SPDConv architecture.
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introduces Programmable Gradient Information (PGI), as

illustrated in Figure 5. Through auxiliary reversible branches, PGI

allows deep features to retain essential object characteristics,

enabling the network to preserve crucial visual features of the

target without sacrificing important information. This approach

enhances YOLOv9’s ability to maintain high performance even in

complex detection scenarios.

PGI consists of three components: the main branch, multi-level

auxiliary information, and the auxiliary reversible branch. Each

component is detailed below:

Main Branch: The main branch includes the backbone network,

neck network, and head network, which are common components

in the YOLO series. The backbone network primarily uses Conv

and RepNCSPELAN4 layers for feature extraction. The neck

network comprises Upsample, Conv, and RepNCSPELAN4 layers,

utilizing an FPN+PAN structure for multi-scale target detection.

The head network processes features from the neck network to

predict and classify large, medium, and small objects.

Auxiliary Reversible Branch: This branch addresses information

loss that occurs as network depth increases, leading to information

bottlenecks that hinder reliable gradient generation from the loss

function. It introduces an additional network between the feature

pyramid layers and the main branch to integrate gradient

information from multiple prediction heads.

Multi-level Auxiliary Information: Multi-level auxiliary

information involves inserting an integrated network between the

feature pyramid’s sub-layers and the main branch under auxiliary

supervision. This network aggregates gradient information from
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various prediction heads and passes it to the main branch for

parameter updates. Consequently, the feature pyramid in the main

branch is not dominated by specific objects, enabling the main

branch to retain comprehensive information necessary for learning

target features.
3.5 SOCA-YOLO

In this study, we have improved upon the YOLOv9 object

detection framework to address challenges such as noise

interference, small target size, and edge blurring in side-scan

sonar images. Due to the unique imaging mechanism of side-scan

sonar, the images often exhibit high noise and low contrast, which

can hinder traditional detection models from effectively extracting

fine-grained features. Although YOLOv9 demonstrates notable

advantages in real-time performance and multi-scale feature

fusion, its standard convolutional layers and global feature

extraction strategies still exhibit certain limitations when handling

such specialized scenarios. Therefore, we propose two main

improvements: the introduction of the CBAM attention

mechanism into the model and the replacement of some standard

convolutional layers with SPDConv modules, thereby achieving

more precise feature extraction and fusion for small targets. The

modified network model is illustrated in Figure 6.

In our improved model, the overall architecture still adheres to

the core design principles of YOLOv9, divided into three

components: Backbone, Neck, and Head. However, novel
FIGURE 5

YOLOv9 architecture.
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modules have been strategically incorporated at each stage to adapt

to the characteristics of side-scan sonar images. First, the Backbone

section integrates SPDConv modules alongside traditional

convolutional layers to enhance multi-scale representation

capabilities in feature extraction. Specifically, the SPDConv

module performs spatial reorganization of input feature maps.

This operation can be formally described as follows: let the input

feature map be defined in Equation 4.

x ∈ RC�H�W (4)

Initially, SPDConv samples x to derive four sub-regions, as

shown in Equation Equation 5.

x1 = x½…, : : 2, : : 2�, x2 = x½…, 1 : : 2, : : 2�, 
x3 = x½…, : : 2, 1 : : 2�, x4 = x½…, 1 : : 2, 1 : : 2�

(5)

The four sub-features are concatenated in the channel

dimension, resulting in a new feature map, as shown in Equation 6.
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xSPD = Concat x1, x2, x3, x4f g ∈ R4C�H
2�W

2 , (6)

Subsequently, a 3� 3 convolutional layer (denoted as Conv3�3)

is employed for fusion, producing the output features, as shown in

Equation 7:

y = Conv3�3(xSPD) : (7)

This spatial reorganization and downsampling strategy not only

reduces the size of the feature maps and computational load but also

effectively captures fine-grained information through channel

expansion, offering significant advantages for detecting small,

blurry targets in side-scan sonar images.

In the Backbone and some Head modules, we also embed the

CBAM to apply dual attention weighting to the features.

Specifically, let the input feature be F ∈ RC�H�W , and first,

channel statistics are computed through global average pooling

and max pooling along the channel dimension, as shown in

Equation 8:
FIGURE 6

SOCA-YOLO architecture.
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favg(c) =
1

H �Wo
H

i=1
o
W

j=1
 F (c, i, j), fmax(c) = max

i,j
 F (c, i, j) : (8)

These two sets of statistics are processed through a shared

multi-layer perceptron (MLP) and a Sigmoid activation to generate

the channel attention vector Mc ∈ RC , which is then multiplied

with the original features on a per-channel basis to obtain the

intermediate feature F0 = Mc ⊗ F. Next, average and max pooling

are applied along the channel dimension of F0, followed by

concatenation, a 7� 7 convolution, and Sigmoid activation to

generate the spatial attention map Ms ∈ RH�W , which is then

used to output the spatially weighted feature, as shown in

Euqation 9:

Fatt = Ms ⊗ F0 : (9)

This process allows the network to automatically focus on the

target regions, effectively suppress background noise, and further

enhance the discriminative ability for small target features.

In the overall architecture, the multi-scale features extracted by

the Backbone are strengthened by the SPDConv and CBAM

modules and then passed to the Neck section. The Neck employs

an FPN and PAN-style multi-scale feature fusion strategy, merging

features from different levels in an abstract formulation, as shown in

Euqation 10:

Fneck =o
N

i=1
wi · fi(Fatt), (10)

Here, fi(·) denotes the feature transformation function for each

scale branch, and wi represents the corresponding weight. This

fusion not only retains fine-grained information from each layer but

also enriches the global semantics, making it particularly suitable

for detecting small targets in side-scan sonar images.

In the Head section, the improved features are processed

through a series of modules such as SPPELAN, RepNCSPELAN4,

and CBAM, and then further integrated using upsampling and

cross-layer concatenation (Concat) to merge multi-scale

information. It is worth mentioning that in the subsequent design

of the Head, we also introduce multi-level reversible auxiliary

branches (through CBLinear and CBFuse modules), which re-fuse

features from different levels of the Backbone, providing stronger

discriminative signals for final target detection. Finally, after passing

through the DualDDetect module, the network outputs detection

results containing target categories, bounding box coordinates, and

confidence scores, as shown in Equation 11:

Ŷ = fhead(Fneck), (11)

The network is then trained end-to-end using a multi-task loss

function, composed of localization loss, classification loss, and

confidence loss, as shown in Equation 12:

L = llocLloc + lclsLcls + lconfLconf : (12)

This improvement strategy fully integrates the advantages of

SPDConv for spatial reorganization and downsampling, CBAM’s

dual attention weighting ability for features, and the overall design of

multi-scale fusion. It significantly enhances the model’s detection
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performance for small targets in side-scan sonar images, while

balancing real-time processing and efficiency, providing a solid

theoretical and technical foundation for future practical deployment.

During model training, the original images are first uniformly

resized to a standard dimension of 640×640×3. This standardization

ensures consistency in input data. Subsequently, the images undergo

a series of convolution and pooling operations, through which the

network generates feature maps of varying scales. Shallow feature

maps retain finer details for detecting small targets, while deep feature

maps capture global information for large target detection. This

multi-scale feature extraction mechanism effectively enhances the

network’s capability to detect targets of varying sizes.
4 Experiments and analysis

To validate that our SOCA-YOLO network achieves superior

results on public side-scan sonar images compared to other

methods, we designed the following experiments. First, we

applied SwinIR to preprocess the original dataset, generating a

high-resolution dataset. We then compared various object detection

models, demonstrating that our network exhibits a certain level of

superiority. Additionally, we conducted comparative experiments

using different convolution modules and attention mechanisms to

verify the effectiveness of the SPDConv module and the CBAM

attention mechanism. Finally, ablation experiments confirmed that

each of our proposed improvements contributes positively to the

overall performance.
4.1 Environment and dataset

To comprehensively assess the effectiveness of the proposed

method, we conduct experiments in a high-performance computing

environment and evaluate the model on a publicly available side-

scan sonar image dataset. This section provides a detailed

description of the experimental setup and dataset used in our study.
4.1.1 Environment
To ensure the reproducibility of experiments and the efficiency

of computational performance, the experimental environment in

this study is built on the mainstream deep learning framework

PyTorch, fully meeting the computational requirements for model

training and inference. Detailed configuration information is

presented in Table 1.
4.1.2 Dataset
The experimental dataset used in this paper is the publicly

available Cylinder2 ([Dataset] yeesonmin@naver.com, 2022),

utilized to evaluate the model’s performance. Released in 2022,

this dataset contains 478 side-scan sonar images categorized into

two classes: cylinders and manta rays, with each image containing

exactly one object. Each object occupies a relatively small pixel area

compared to the full image, making this dataset suitable for
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underwater small object detection tasks. We excluded the portion

containing manta rays (140 images), retaining only the 338 cylinder

images. The dataset was subsequently split into training, validation,

and test sets in an 8:1:1 ratio, which was then used to train the

network. The basic configuration of the dataset is shown in Table 2.
4.2 Evaluation metrics

During the image restoration stage using SwinIR, the image

quality was evaluated using standard metrics, including Peak

Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM).

PSNR: Given a clean image and a noisy image of size m×n, the

Mean Squared Error (MSE) is defined, as shown in Equation 13:

MSE =
1
mn o

m−1

i=0
o
n−1

j=0
½I(i, j) − K(i, j)�2 (13)

At this point, PSNR is defined as shown in Equation 14:

PSNR = 10 · log10
MAX2

I

MSE

� �
(14)

Here, MAX2
I represents the maximum possible pixel value in

the image. If each pixel is represented by 8-bit binary, then the

maximum value is 255. Typically, if the pixel value is represented in

B-bit binary, then MAXI = 2B − 1.

SSIM: The SSIM formula is based on three comparison

measures between samples x and y: luminance (Equation 15),

contrast (Equation 16), and structure (Equation 17).

l(x, y) =
2mxmy + c1
m2
x + m2

y + c1
(15)

c(x, y) =
2sxsy + c2
s 2
x + s 2

y + c2
(16)
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s(x, y) =
sxy + c3
sxsy + c3

(17)

Typically, c3 =
c2
2 , where mx represents the mean of x, my

represents the mean of y, s 2
x is the variance of x, s 2

y is the

variance of y, and sxy is the covariance between x and y. Thus

SSIM can be expressed, as shown in Equation 18:

SSIM(x, y) = ½l(x, y)a · c(x, y)b · s(x, y)g � (18)

Setting, a = b = g = 1 we obtain Equation 19:

SSIM(x, y) =
(2mxmy + c1)(2sxy + c2)

(m2
x + m2

y + c1)(s 2
x + s 2

y + c2)
(19)

During the training and testing phases, the model’s performance

is evaluated according to the PASCAL VOC 2010 standard, which

includes Precision (P), Recall (R), and Mean Average Precision

(mAP). P represents the proportion of samples correctly predicted

as positive out of all samples predicted as positive by the model. R

represents the proportion of correctly predicted positive samples out

of all true positive samples. mAP is used to comprehensively assess

the model’s performance across all categories by calculating the

average precision at various recall thresholds. Since this paper

focuses on detecting a single target type, the AP value is equivalent

to the mAP value. Ideally, a higher mAP value indicates better model

performance. The formulas for calculating P, R, and mAP are

provided in equations Equations 20–23.

P =
TP

TP + FP
(20)

R =
TP

TP + FN
(21)

AP =
Z 1

0
P(R) dR (22)

mAP = o
N
i=1APi
N

(23)

Here, TP represents true positives, where positive samples are

correctly predicted as positive; FP represents false positives, where

negative samples are incorrectly predicted as positive; and FN

represents false negatives, where positive samples are incorrectly

predicted as negative.
4.3 Experimental results

To validate the effectiveness of the proposed method, we conduct a

series of comparative experiments. First, we apply SwinIR for image

restoration and analyze its impact on the quality of side-scan sonar

images. Then, we perform multiple comparative studies, including

object detection model comparison, attention mechanism comparison,

and convolution module comparison. These experiments provide a

comprehensive evaluation of the contributions of different

components to the overall detection performance.
TABLE 2 Dataset split settings.

Dataset Images

Train 270

Val 34

Test 34
TABLE 1 System configuration.

Name Configuration

Python 3.9.18

PyTorch 1.12.0

CUDA 11.3

CPU Intel(R) Core(TM) i5-13600KF@3.50GHz

GPU NVIDIA GeForce RTX 4070Ti (12GB)
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4.3.1 Using SwinIR for image processing
In this paper, we employ the SwinIR model as a preprocessing

step to enhance the quality of original side-scan sonar images. The

enhanced images are subsequently used to train and validate the

SOCA-YOLO model, which is designed for small object detection.

Pretrained weights from the official SwinIR GitHub repository

(Liang et al., 2021) are utilized to leverage the architecture’s

robust super-resolution capabilities. The application of SwinIR

results in processed side-scan sonar images with sharper edges,

reduced noise, and improved fine details—key factors for accurate

detection. Figure 7 presents comparative examples of the original

and enhanced images, illustrating the effectiveness of this

preprocessing step.

To intuitively assess the effectiveness of SwinIR in enhancing image

clarity, we used PSNR and SSIM to compare the experimental results.

The findings indicate that, compared to the original images, the

processed images achieved average PSNR and SSIM values of 36.14

and 0.9807, respectively. These results demonstrate that SwinIR not

only improves the visual quality and resolution of the images but also

yields higher PSNR and SSIM values. Consequently, this enhancement

facilitates more accurate detection of small objects, with notable

improvements across various detection metrics.
4.3.2 Comparative experiment
1. Comparison of SOCA-YOLO with mainstream object

detection networks.

To verify the performance of this method, we conducted

comparative experiments with several mainstream object

detection models, including SSD, Faster R-CNN, and various
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YOLO series models. Table 3 presents the experimental results of

each model on the side-scan sonar dataset.

As shown in Table 3, the proposed method outperforms the

original YOLOv9 and other object detection algorithms across

multiple metrics. Specifically, compared to the original YOLOv9,

P increases by 4.2%, R by 7.2%, and mAP50 by 6.5%. In comparison

with SSD, Faster R-CNN, and the latest YOLO models, the

proposed algorithm demonstrates superior performance in

metrics such as P, R, and mAP. Although YOLO11 achieves a

higher P of 75.8% compared to SOCA-YOLO’s 71.8%, SOCA-

YOLO surpasses YOLO11 in both recall and mAP50, highlighting

its balanced and robust detection capabilities.

These results indicate that the algorithm significantly enhances

the detection capability for small underwater targets. Figure 8

displays sample results of SOCA-YOLO target detection,

illustrating noticeable improvements in both detection metrics

and practical detection outcomes. However, some instances of

missed and false detections remain in the detection process.

Furthermore, to provide a more comprehensive comparison of

our model’s superiority, we also compared the P-R curves. Figure 9

presents the P-R curve of the original YOLOv9 and the P-R curve of

SOCA-YOLO.

In summary, for small object detection in underwater side-scan

sonar images, the proposed method significantly outperforms

mainstream object detection algorithms. Figure 10 compares the

detection results of SOCA-YOLO with other models for the same

target. As shown in the Figure 10, while other models produce false

positives and missed detections, SOCA-YOLO accurately identifies

the target, demonstrating its robustness and precision.

2. Comparison of SPDConv with other convolutional methods.
FIGURE 7

Partial results of SwinIR preprocessing, with the first row showing the original images, the second row showing the restored images, and the red
boxes indicating a zoomed-in view of the target region.
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To verify the contribution of the introduced convolution

module SPDConv to our model’s improvements, we replaced the

original YOLOv9 convolution module ADown with AConv,

AKConv, and SPDConv, respectively. ADown is the default

convolution module in YOLOv9; AConv is a standard

convolution module consisting of a pooling layer and a

convolution layer; AKConv (Zhang et al., 2023) is a variable

kernel convolution module that allows the kernel to dynamically

adjust its shape and size based on target characteristics; SPDConv is

the proposed convolution module in our SOCA-YOLO network,

designed for superior detection capability on low-resolution images

and small objects. We tested each module replacement on side-scan

sonar images without SwinIR preprocessing. The experimental

results are shown in Table 4.

As show in Table 4, SPDConv demonstrates significant

advantages in object detection tasks, outperforming other
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convolutional modules across all key metrics. Specifically,

SPDConv achieves a P of 70.4%, a R of 71%, and a mAP50 of

72.6%. These results represent improvements of 2.8%, 5.5%, and

4.8%, respectively, compared to those obtained using the original

YOLOv9 convolution module, ADown. Compared to traditional

convolutional modules, these improvements are particularly

important for enhancing the overall performance of the YOLOv9

network. SPDConv not only improves precision but also

significantly enhances the network’s detection consistency (i.e.,

the balanced performance of P and R), making it especially

suitable for small object detection in side-scan sonar images.

3. Comparison of CBAM with other attention mechanisms.

To validate the effectiveness of the attention mechanism in our

network model, we conducted comparative experiments

incorporating various popular attention modules, including the

SE module (Hu et al., 2018), CA module (Hou et al., 2021), ECA

module (Wang et al., 2020), CBAM module, and the baseline

YOLOv9 network without any attention mechanism. Each

attention module was integrated into the same position within the

YOLOv9 network to ensure the comparability of results. Consistent

training and validation datasets were used throughout the

experiments to maintain fairness. The experimental results are

presented in Table 5.

The results demonstrate that the performance improvements

provided by attention mechanisms depend on the specific module

design. Among these, CBAM achieved the best performance,

significantly enhancing both detection P and R. This outcome

highlights the effectiveness of CBAM’s dual-branch design in

capturing feature correlations at multiple levels, thereby
FIGURE 8

Partial results of SOCA-YOLO detection, with red boxes representing correctly detected targets, yellow boxes representing false detections, and
green boxes representing missed detections.
TABLE 3 Comparison of SOCA-YOLO with mainstream object
detection networks.

Methods Precision / % Recall / % mAP50 / %

SSD 48.6 51.5 44.8

Faster-RCNN 42.4 52.9 45.5

YOLOv9 42.4 52.9 45.5

YOLOv10 70.6 65.3 71.4

YOLO11 75.8 66.7 72.0

SOCA-YOLO 71.8 72.7 74.3
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improving the model’s ability to locate and classify targets. In

comparison, the SE module, which focuses on channel attention,

shows notable classification improvements in specific scenarios

but offers relatively limited gains in complex environments. The

CA module, by incorporating coordinate information, improves
Frontiers in Marine Science 13153
the locality of feature representations and performs well in

scenarios with targets of varying aspect ratios. The ECA

module strikes a balance by reducing the computational cost of

attention but delivers l imited improvements in small

object detection.
FIGURE 10

Detection results from different object detection models for four targets, with each image containing exactly one target: (a) Original image, (b)
Faster-RCNN, (c) YOLOv9, (d) YOLOv10, (e) SOCA-YOLO. Red boxes indicate correctly detected targets, yellow boxes indicate false detections, and
green boxes indicate missed detections.
FIGURE 9

P-R curves. (A) shows the P-R curve of the original YOLOv9. (B) shows the P-R curve of SOCA-YOLO.
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Table 5 shows that the CBAM module achieved the best

performance, with a P of 69.9%, R of 72.2%, and mAP50 of

73.3%. These values represent improvements of 2%, 6.7%, and

5.5%, respectively, compared to the baseline YOLOv9 network.

However, the results also indicate that while certain attention

modules provide performance enhancements, not all attention

mechanisms positively impact object detection tasks. The

selection and design of attention modules should be carefully

adjusted and optimized to align with the specific characteristics of

the task.
4.4 Ablation study

To evaluate the impact of each proposed innovation on network

performance, we conducted ablation experiments on different

modules. This study primarily examines the effects of using

SwinIR for preprocessing the original images, replacing the

original YOLOv9 convolution module with SPDConv, and adding

the CBAM attention mechanism. These three enhancements were

gradually incorporated into the YOLOv9 network. The experiments

were conducted on the side-scan sonar image dataset, and the

experimental outcomes are presented in Table 6.
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As shown in Table 6, preprocessing the original dataset using

SwinIR and applying the resulting high-quality images for SOCA-

YOLO training and testing increased the mAP50 by 0.3%. Replacing

the convolution module in the original YOLOv9 network resulted

in a 5.6% increase in mAP50 compared to the original YOLOv9

results. Finally, adding the CBAM module to the YOLOv9 network

with the replaced convolution module further increased the mAP50

by 0.6%. These experimental results demonstrate that each

improvement is meaningful. Compared to the original network,

the cumulative mAP50 increase of 6.5% significantly reduces

missed detections and false detections of small objects in the

original YOLOv9 network.
4.5 Generalization experiment

To validate the generalization capability of the object detection

method proposed in this paper under different data distributions,

we selected another publicly available side-scan sonar image dataset

as the test platform (Santos et al., 2024). This dataset differs

significantly from the data used during training, with marked

variations in the capture environment, target types, and noise

interference, thereby thoroughly assessing the model’s adaptability

and robustness in new scenarios. The dataset primarily comprises

1170 high-resolution side-scan sonar images and includes two types

of targets—NOn-Mine-like BOttom Objects (NOMBO) and MIne-

Like COntacts (MILCO)—with varying sizes and shapes. The

experimental results are presented in Table 7. It can be seen that

the method proposed in this paper outperforms traditional

detection approaches across evaluation metrics, demonstrating

strong generalization ability.

Additionally, to further analyze the detection performance

across different target categories, the P-R curves for each category

were plotted, as shown in Figure 11.

From the above experimental results, it is evident that the

proposed method effectively adapts to noise and interference

issues in public side-scan sonar image data across different

marine environments, achieving high detection accuracy and recall.
5 Conclusions

In this paper, we introduced the object detection algorithm

YOLOv9 with several modifications. The specific improvements are

as follows: (1) Using the SwinIR model to preprocess the original
TABLE 5 Comparison of CBAM with other attention mechanisms.

Model Precision / % Recall / % mAP50 / %

YOLOv9 67.6 65.5 67.8

YOLOv9+SE 65.6 67.4 67.2

YOLOv9+CA 66.4 70.7 68.8

YOLOv9+ECA 69.5 70.3 66.3

YOLOv9+CBAM 69.9 72.2 73.3
TABLE 6 Ablation study.

YOLOv9 SwinIR SPDConv CBAM Precision / % Recall / % mAP50 / %

✓ × × × 67.6 65.5 67.8

✓ ✓ × × 73.5 63.4 68.1

✓ ✓ ✓ × 69.6 71.6 73.7

✓ ✓ ✓ ✓ 71.8 72.7 74.3
The symbol "✓" indicates that the condition was included in the experiment, while "×" signifies that the condition was not incorporated into the experimental setup.
TABLE 4 Comparison of SPDConv with other convolutional methods.

Model Precision / % Recall / % mAP50 / %

ADwon 67.6 65.5 67.8

AConv 66.7 65.7 67.8

AKConv 68.1 69.4 69.1

SPDConv 70.4 71.0 72.6
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dataset and generate a re-divided high-resolution image dataset. (2)

Adding the CBAM attention mechanism to the original YOLOv9

model to enhance focus on regions of interest. (3) Replacing the

original ADown module with the SPDConv convolution module,

which is more effective for small object detection. The resulting

SOCA-YOLO model was applied for small object detection in

underwater side-scan sonar images, achieving a Precision of

71.8%, Recall of 72.7%, and mAP50 of 74.3% on the enhanced

dataset. These results indicate that the method significantly

improves target detection performance in side-scan sonar images.

In future work, expanding the dataset is a crucial research

direction. Although the current dataset has demonstrated the

feasibility of our method, its limited scope may constrain the

model’s robustness and generalization ability. By incorporating

additional datasets from different environments, operational

conditions, and various sonar devices, we can capture a broader

range of image features and noise characteristics. Such dataset

expansion not only enables more comprehensive model training

but also allows fine-tuning and validation of the model across

various real-world scenarios. Furthermore, given the inherent

unique noise characteristics of side-scan sonar images, developing

specialized image processing techniques is particularly crucial. Future

research can focus on designing denoising and image enhancement

algorithms tailored to issues such as speckle noise and signal

interference in sonar data. Exploring the integration of multimodal

data is also a highly promising direction. For example, combining

side-scan sonar data with optical or hyperspectral imaging data can

provide complementary information, thereby improving the overall

performance of detection and classification tasks. Such data fusion is
Frontiers in Marine Science 15155
expected to lead to the development of more robust and accurate

models, ultimately driving new methodologies and applications in

underwater imaging and analysis.
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FIGURE 11

Performance of different target categories.
TABLE 7 Performance of YOLO9 and SOCA-YOLO.

Method Precision / % Recall / % mAP50 / %

YOLO9 82.1 65.3 74.3

SOCA-YOLO 93.7 76.2 83.7
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Sonar image object detection plays a crucial role in obstacle detection, target

recognition, and environmental perception in autonomous underwater vehicles

(AUVs). However, the complex underwater acoustic environment introduces

various interferences, such as noise, scattering, and echo, which hinder the

effectiveness of existing object detection methods in achieving satisfactory

accuracy and robustness. To address these challenges in forward-looking

sonar (FLS) images, we propose a novel multi-level feature aggregation

network (MLFANet). Specifically, to mitigate the impact of seabed reverberation

noise, we designed a low-level feature aggregation module (LFAM), which

enhances key low-level image features, such as texture, edges, and contours

in the object regions. Given the common presence of shadow interference in

sonar images, we introduce the discriminative feature extraction module (DFEM)

to suppress redundant features in the shadow regions and emphasize the object

region features. To tackle the issue of object scale variation, we designed amulti-

scale feature refinement module (MFRM) to improve both classification accuracy

and positional precision by refining the feature representations of objects at

different scales. Additionally, the CIoU-DFL loss optimization function was

constructed to address the class imbalance in sonar data and reduce model

computational complexity. Extensive experimental results demonstrate that our

method outperforms state-of-the-art detectors on the Underwater Acoustic

Target Detection (UATD) dataset. Specifically, our approach achieves a mean

average precision (mAP) of 81.86%, an improvement of 7.85% compared to the

best-performing existing model. These results highlight the superior

performance of our method in marine environments.
KEYWORDS

autonomous underwater vehicles, forward-looking sonar, marine object detection,
feature extraction, feature fusion
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1 Introduction

As an important underwater exploration means, sonar

technology is widely used in the field of marine resource

development (Zhang et al., 2022b), marine scientific studies

(Grzadziel, 2020), and national defense security (Hansen et al.,

2011). A forward-looking sonar (FLS) system can realize the

positioning, imaging, and recognition of underwater targets by

transmitting sound waves and receiving echo information (Liu

et al., 2015), so it has significant advantages in underwater object

detection and monitoring tasks. FLS image object detection

(Karimanzira et al., 2020) refers to using computer vision and

signal processing technology to perform object detection and

recognition on the image data obtained by sonar devices to achieve

the classification, positioning, and tracking of underwater objects.

Different from natural scene images, sonar images are affected by the

underwater environment and terrain. As shown in Figure 1, there are

serious interferences, such as seabed reverberation noise, sediment

shadow region, and background clutter information, in the sonar

image. Moreover, FLS images commonly contain underwater objects

with different scales and weak feature information, which presents

great challenges for sonar object detection.

Compared to object detection in natural scene images, sonar

image object detection faces unique challenges due to severe noise

interference, complex environments, substantial variations in object

scales, and weak saliency of object features. These factors often lead

to low detection accuracy, missed detections, and false positives. To

address these issues, many methods based on hand-crafted feature

extraction combined with classifiers have been proposed. These

approaches rely on algorithms for extracting features such as edges,

contours, and textures from sonar image regions of interest,

followed by classifiers such as support vector machine (SVM)

(Chandra and Bedi, 2021), AdaBoost (Collins et al., 2002), and K-

nearest neighbors (KNN) (Zhang and Zhou, 2007) for object

recognition. For example, Abu and Diamant (2019) developed an

object detection framework for synthetic aperture sonar (SAS)
Frontiers in Marine Science 02159
images based on unsupervised statistical learning. In the context

of FLS images, Zhou et al. (2022b) combined fuzzy C-means and K-

means clustering to extract target features through global clustering.

Kim and Yu (2017) employed multi-scale feature extraction to

obtain Haar-like features from sonar target regions, leveraging

AdaBoost to cascade weak classifiers for detection. In efforts to

address noise interference, Xinyu et al. (2017) applied fast curve

transforms to filter noise and K-means clustering for object region

pixel extraction. Zhang et al. (2023) used non-local mean filtering to

remove speckle noise and applied super-pixel segmentation to

delineate object contours. Although these hand-crafted feature-

based methods combined with classifiers have been widely used

in sonar object detection, they are limited by their applicability to

simple underwater scenes or single-object detection. In more

complex underwater acoustic environments and multi-class object

detection scenarios, these methods exhibit shortcomings such as

insufficient robustness, poor real-time performance, and limited

ability to meet high-precision detection requirements.

Benefiting from the robust feature extraction and representation

capabilities of convolutional neural networks (CNNs) (Gu et al.,

2018), CNN-based methods have gained widespread use in object

detection tasks, achieving significantly improved detection

performance (Li et al., 2021). These methods leverage frameworks

similar to those used in natural scene object detection, such as Faster

R-CNN (Ren et al., 2016), You Only Look Once, Version 3

(YOLOv3) (Redmon and Farhadi, 2018), and FPN (Lin et al.,

2017a), to detect various types of sonar images, including forward-

looking sonar, side-scan sonar, and synthetic aperture sonar. For

example, based on the FPN framework, Li et al. (2024) proposed a

dual spatial attention network that utilizes a multi-layer

convolutional structure to extract features at different scales, with

the attention mechanism enhancing feature representation to

improve sonar object detection accuracy. To address sonar object

detection in complex underwater acoustic environments, Zhao et al.

(2023) introduced a composite backbone network that extracts multi-

level feature information. Their method uses the shuffle convolution
FIGURE 1

Example of a forward-looking sonar image containing object region, seabed reverberation noise, clutter information, and shadow interference.
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block attention mechanism and multi-scale feature fusion module to

suppress redundant feature interference. Inspired by the two-stage

object detection network architecture, Wang et al. (2022d) developed

the sonar object detection model, which includes multi-level feature

extraction and fusion modules to handle both forward-looking and

side-scan sonar detection challenges. Building on the YOLO series of

detectors, Zhang et al. (2022a) incorporated the coordinate attention

mechanism to extract spatial position features from sonar image

regions. They also employed model pruning and compression

techniques to enhance the real-time performance of their detector.

Yasir et al. (2024) proposed the YOLOShipTracker for ship detection,

which has achieved better results in tiny object detection in complex

scenes. For tiny object detection, Wang et al. (2022c) introduced the

multi-branch shuffle module to reconstruct features at different

scales, along with a mixture attention mechanism to strengthen

feature representation of small object regions and mitigate clutter

interference. Combining CNNs with transformer models, Yuanzi

et al. (2022) proposed the TransYOLO detector, which integrates a

cascade structure to capture texture and contour features from sonar

images, utilizing the attention mechanism for multi-scale feature

fusion. Kong et al. (2019) developed the YOLOv3-DPFIN, which

achieves effective sonar object detection in complex underwater

environments. Their approach employs dense connections for

multi-scale feature transmission and the cross-attention mechanism

to enhance object region features while reducing reverberation

noise interference.

Although CNN-based sonar object detection methods have

shown significant improvements over traditional hand-crafted

feature extraction techniques, they still face challenges in certain

difficult scenarios, such as seabed reverberation noise, shadow

interference, object scale variation, and tiny object detection. It is

well established that CNN-based object detection methods achieve

excellent performance primarily due to their powerful feature

extraction capabilities. However, the inherent characteristics of
Frontiers in Marine Science 03160
sonar images, such as noise and interference, significantly hinder

the feature extraction process of CNN models, making it difficult to

fully capture the valuable information necessary for effective sonar

image object detection. As illustrated in Figure 2, we provide

visualization results of convolution feature heatmaps in

challenging scenarios involving seabed reverberation noise

interference, shadow interference, clutter, and multi-scale object

transformations. These visualizations clearly demonstrate how

these interference factors disrupt the feature extraction process of

CNN models, leading to a notable decline in detection accuracy

across different categories of sonar objects. To address the challenge

of sonar image object detection in complex marine acoustic

environments, we propose a multi-level feature aggregation

network (MLFANet) for FLS image detection. Different from

traditional CNN-based methods, MLFANet is specifically

designed for challenging sonar detection tasks. The main

contributions of this study are as follows:
• Low-Level Feature Aggregation Module (LFAM): We

introduce the LFAM, a novel module that enhances low-

level features and suppresses the impact of seabed

reverberation noise, improving feature extraction and

object detection in noisy underwater environments. The

LFAM significantly enhances the robustness of sonar object

detection in the presence of acoustic interference.

• Discriminative Feature Extraction Module (DFEM): To

handle large-scale shadow regions, we designed the DFEM,

which filters redundant features and refines object region

representations. The DFEM improves the accuracy of object

localization and classification, making MLFANet more

efficient in detecting objects even in highly cluttered or

shadowed regions.

• Multi-Scale Feature Refinement Module (MFRM): We

developed the MFRM to address the challenge of object
FIGURE 2

Visualization of convolution feature heat map under different interference scenes. (a) Two original FLS images. (b) Seabed reverberation noise
interference. (c) Shadow interference. (d) Clutter information interference. (e) Multi-scale object transformation.
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scale variation. The MFRM extracts and fuses fine-grained

multi-scale features, enabling the network to handle objects

of various sizes more effectively, ensuring that small,

medium, and large objects are all accurately detected.

• CIoU-DFL Loss Function: To address the issue of object

category imbalance in sonar datasets, we propose the CIoU-

DFL loss function. This loss function optimizes the model

by improving the accuracy of bounding box predictions and

reducing computational complexity, particularly for

chal lenging sonar image datasets with skewed

category distributions.

• Extensive Experimental Validation: We perform extensive

experiments on the Underwater Acoustic Target Detection

(UATD) dataset, demonstrating that MLFANet outperforms

existing state-of-the-art methods in terms of both efficiency

and accuracy. Our results highlight the effectiveness of

MLFANet in real-world sonar object detection tasks,

particularly in complex underwater environments.
The article is organized as follows. Section 2 presents an

overview of related works. Section 3 introduces the proposed

MLFANet framework and related components. Section 4 presents

the experimental results and analysis. Finally, the conclusion is

drawn in Section 5.
2 Related works

2.1 Multi-scale feature extraction

For CNN-based object detection methods, multi-scale features

play an important function in improving model detection accuracy,

fusing global context information, and enhancing model robustness

and generalization. Currently, widely used multi-scale feature

extraction methods include constructing multi-scale convolution

structures (Mustafa et al., 2019), using feature pyramid networks

(Lin et al., 2017a), and designing adaptive extraction strategies

(Zhou et al., 2022a). Guo et al. (2020) constructed AugFPN to

obtain semantic multi-scale features and used residual feature

augmentation to highlight the object region feature information.

Ma et al. (2020) used the cascade structure to extract multi-scale

context information and used feature parameter sharing to establish

the correlation of different scale features. To reduce the detail

information loss in the multi-scale feature extraction process,

Kim et al. (2018b) achieved feature restoration by constructing

the global relationship between channel and spatial features.

Jiang et al. (2024) used the dense feature pyramid network for

small object detection, which uses the multi-scale parallel structure

to obtain different scale feature information of the multi-scale object

region. MFEFNet (Zhou et al., 2024) uses the efficient spatial feature

extraction module to obtain context semantic information and uses

a progressive feature extraction strategy to obtain multi-scale

features of context information. Tang et al. (2022) constructed a

scale-aware feature pyramid structure to obtain multi-scale feature

information of the object deformation region and used the feature
tiers in Marine Science 04161
alignment module to solve the feature offset problem. However,

these multi-scale feature extraction methods focus on the extraction

of spatial and semantic features, ignoring the important

contribution of low-level feature information. Especially for FLS

image object detection, low-level features can effectively improve

the positioning precision of the object detection model. In this

article, we construct the LFAM to obtain low-level multi-scale

feature information of the FLS image to improve positioning and

recognition accuracy for the sonar object region.
2.2 Contextual feature fusion

Since the contextual information can provide more object

region and background information, it can effectively improve the

detection accuracy of the object detection model for small object

categories. FLS image object detection is a typical small object

detection scene, so it is essential to fully mine and fuse the global

context feature information. Currently, the commonly used context

feature fusion methods include the context feature pyramid

(Kim et al., 2018a), global context model (Du et al., 2023), and

multi-scale context structure (Wang et al., 2022a). Liang et al.

(2019) used the feature pyramid structure to obtain multi-scale

context feature information and performed context feature fusion

using a spatial-channel reconstruction strategy. Cheng et al. (2020)

constructed a cross-scale feature fusion framework to extract local

context features and used the region feature aggregation module to

achieve context feature fusion. Lu et al. (2021) used the multi-layer

feature fusion module to obtain context feature information and

introduced a dual-path attention mechanism and multi-scale

receptive field module for context feature fine-grained fusion.

CANet (Chen et al., 2021) uses a patch attention mechanism to

obtain context patch spatial feature information and uses feature

mapping and semantic enhancement modules to filter the valuable

information of context features. Dong et al. (2022) used deformable

convolution and feature pyramids to obtain multi-scale global

information and the multi-level feature fusion module is used to

fuse local-global context features. These aforementioned context

feature fusion methods can effectively fuse feature information of

different scales to improve the feature representation for the object

region. However, for FLS image object detection, due to the

interference of shadow region and clutter information, the

existing context feature fusion method cannot solve the feature

redundancy problem. In this article, we design the DFEM to

suppress redundant feature representation and achieve context

feature fusion.
2.3 Visual attention mechanism

An important component of an object detection model, the

visual attention mechanism enhances feature representation,

solving object deformation and feature correlation modeling.

Currently, the attention modules widely used in object detection

models include the spatial attention mechanism (Zhu et al., 2019),
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channel attention mechanism (Wang et al., 2020), and self-

attention mechanism (Shaw et al., 2018). Gong et al. (2022) used

the self-attention mechanism to obtain the robust invariant feature

information of the object region to enhance the small object region

feature representation. Wang et al. (Wang and Wang, 2023)

constructed a pooling and global feature fusion self-attention

mechanism to obtain the feature correlation and used the feature

adaption module for fine-grained feature fusion. Zhu et al. (2018)

constructed a cascade attention mechanism to obtain global

receptive field information and used dual encoder-decoder

attention to reduce feature information loss. Miao et al. (2022)

used cross-context attention to obtain local-global feature

information and used a spatial-channel attention module to

enhance different scale features. To accurately detect multi-scale

objects with complex backgrounds, Xiao et al. (2022) designed a

pixel attention mechanism to model the pixel correlation

information of different object regions and used the self-attention

mechanism to enhance the pixel region feature representation.

Although the existing visual attention mechanism can effectively

enhance the model feature representation and solve the object scale

variable problem, for FLS image object detection, due to the serious

interference of clutter information and underwater terrain in the

object region, the existing attention mechanism struggles to fine-

grain enhance the object region feature information, so it cannot

obtain satisfactory detection results for small object categories. To

solve this problem, inspired by the deformable convolution and

attention mechanism, we construct the MFRM to improve the

detection accuracy for multi-scale sonar objects by extracting the

robust invariant feature information of the object region.
3 Methodology

To solve the problem of object detection in FLS sonar images,

based on the YOLOX (Ge et al., 2021) detector, we constructed
Frontiers in Marine Science 05162
MLFANet to detect different object categories in sonar images.

As shown in Figure 3, the proposed MLFANet introduces the

LFAM, DFEM, and MFRM on the basis of the YOLOX detector.

Specifically, to improve the object detection performance in complex

seabed reverberation noise interference scenes, the LFAM is used to

enhance the shallow feature information (C1, C2, and C3) of the

backbone network, so that the model can obtain more feature

information that is conducive to improving the object positioning

precision. Then, to suppress redundant feature representation in deep

feature information (C4 and C5), the DFEM is used to obtain valuable

information on deep features to optimize the sonar object detection

effect under shadow interference conditions. Moreover, to improve

the recognition accuracy of the detector for different categories of

sonar objects, we introduce the DFEM into the neck structure, which

performs fine-grained fusion of multi-scale feature maps by

generating attention weights to further enhance the representation

ability of the feature maps and alleviate clutter noise information

interference. For the model parameter optimization, we combine

CIoU (Zheng et al., 2020) and the DLF (Li et al., 2020) loss function

to solve the problem of sample category imbalance and model

computational complexity.
3.1 Low-level feature aggregation module

Since the interference of signal intensity difference and

reverberation noise, there are many dark areas in sonar images,

which makes it difficult for the existing feature extraction network

(Elharrouss et al., 2022) to obtain low-level feature information

such as texture, edge, and contour of sonar object regions, and the

obtained low-level features lead to serious loss in the process of

convolutional feature transmission. To solve this problem, we

designed the LFAM and embedded it into the backbone network

to compensate for the feature information loss of deep convolution

by mining the low-level features obtained in the shallow
FIGURE 3

The overall architecture of the proposed multi-level feature aggregation network (MLFANet), including the low-level feature aggregation module
(LFAM), discriminative feature extraction module (DFEM), and multi-scale feature refinement module (MFRM).
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convolution stages. The LFAM is designed to enhance low-level

feature information, such as texture, edges, and contours, while

suppressing seabed reverberation noise that commonly disrupts the

feature extraction process.

The specific structure of the LFAM is shown in Figure 4, where

the backbone network consists of five convolution stages, and

denotes the feature map obtained in the lth convolution stage and

l∈ [1, 5]. The proposed LFAM takes the feature maps C1, C2, and C3

obtained in the shallow convolution stage as input features, and

performs feature fusion in turn to generate the aggregation feature

map G ∈ RC�H�W , so that it can retain more low-level feature

information. The specific fusion process is as follows:

G = K3�3(K3�3(C1)⊕ C2)⊕ C3 (1)

where K3�3( · ) represents the 3 × 3 convolution function for

feature map resolution and feature channel adjustment, and ⊕
denotes the element-by-element summation operation. The

aggregate feature map is used as the output of parallel pooling,

which uses different pooling layers to obtain the context

information of the aggregate feature map to extract more

discriminative low-level features. The parallel pooling consists of

different pooling functions, namely 1 ×W strip pooling, H × 1 strip

pooling, and S × S spatial pooling and residual connection. For the

aggregate feature map G with a size of H × W, the feature map is

averaged using strip pooling with a pooling range of (1,W) and

(H, 1), which compresses the feature map and encodes feature

information along the vertical and horizontal directions.

Furthermore, the use of strip pooling establishes long-distance

dependencies between discretely distributed feature regions for

spatial dimension information in the vertical and horizontal

directions and obtains low-level feature information such as edges

and contours of the object region in the global dimension. The

calculation of strip pooling is as follows:
Frontiers in Marine Science 06163
yw =
1
Ho0≤i<HG(i,W) (2)

yh =
1
Ho0≤j<WG(H, j) (3)

where yw ∈ RC�1�W and yh ∈ RC�H�1 represent the feature

tensors obtained by strip pooling with sizes of 1 × 1 and 3 × 3,

respectively. The one-dimensional convolution is used to integrate

the adjacent feature information inside the feature tensor, and the

bilinear interpolation operation is used to recover the spatial

information of feature tensor yw and yℎ. To generate low-level

features with rich edges and contours, the feature tensor is fused by

using the element-by-element multiplication operation. The

calculation process is as follows:

z1 = F ex(f3�1(yw))⊕ F ex(f1�3(yh)) (4)

where F ex( · ) represents the bilinear interpolation operation,

and f3�1( · ) and f1�3( · ) represent the one-dimensional convolution

operation with the size of 3� 1 and 1� 3, respectively. Moreover,

the parallel pooling introduces spatial pooling with a range of S� S,

which can use rectangular pooling windows to detect densely

distributed object region feature information and obtain texture

feature information of sonar objects in the local receptive field

range. The residual connection is used to preserve the original

spatial information of the aggregate feature map G, and it is fused

with the spatial pooling feature to generate low-level texture feature

tensor z2. The specific calculation process is as follows:

z2 = Ps�s(G)⊕ G (5)

where Ps�s( · ) denotes the spatial pooling with a size of 1� 1.

For feature tensors z1 and z2, the 3� 3 convolution is used to

further extract detailed information, and the feature stitching

operation is used to generate feature map z3 ∈ RC�H�W with
FIGURE 4

The specific structure of the low-level feature aggregation module (LFAM) includes 3×3 convolution, 1 × 1 convolution, 3 × 1, 1 × 3 one-dimensional
convolution, element-by-element summation, channel stitching, and bilinear interpolation operation.
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more discriminative information. The calculation is as follows:

z3 = K1�1(½K3�3(z1);K3�3(z2)�) (6)

where K1�1( · ) and K3�3( · ) represent convolution operations

with sizes of 1×1 and 3×3, respectively, and [·; ·] denotes the feature

stitching operation on the channel dimension. The feature map z3 is

fused with the features C3 and C4 in the deep convolution stage of

the backbone network, and input to the subsequent convolution

stage to compensate for low-level feature information loss. The

feature maps C
0
3, C

0
4, and C

0
5 generated by the fuse operation can

retain more effective edge, contour, and texture feature information,

which is beneficial for improving the positioning precision for

different object categories. The generation process of feature maps

C
0
3, C

0
4, and C

0
5 is calculated as follows:

C
0
3 = C3 ⊕ z3 (7)

C
0
4 = K3�3(z3)⊕ F 4

conv(C
0
3) (8)

C
0
5 = F 5

conv(C
0
4) (9)

where K3�3( · ) represents the convolution operation with a size

of 3 × 3, and F l
conv(·) denotes the lth convolution stage. The LFAM

leverages feature aggregation and parallel pooling operations to

extract discriminative low-level feature information. By preserving

key spatial details and reducing noise interference, LFAM

enhances the model’s ability to detect object boundaries and

localization precision.
3.2 Discriminative feature extraction
module

Due to the redundant feature interference in the feature

extraction process of the convolution operation (Qin et al., 2020),

it is difficult to retain valuable tiny object region information. To

solve this problem, we propose the DFEM, as shown in Figure 5.

The DFEM improves the robustness of feature extraction in

shadowed and cluttered regions by suppressing redundant

features and enhancing salient object features. For the deep

feature information (C4 and C5) obtained by the backbone
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network, given the specific feature mapping X ∈ RC�W�H , where

C,H, andW represent the number of channels, width, and height of

the feature map, respectively. To mine the local regions with

discriminative attributes in convolution features, the obtained

deep features are divided into k regions along the W dimension,

where each region feature is defined as Xi ∈ RC�W=k�H . The feature

description importance factor corresponding to each region is

calculated as

ai = SoftMax(FGAP(K1�1(X i))) (10)

where K1�1( · ) represents the convolution operation with a size

of 1 × 1, FGAP( · ) denotes the global average pooling function, and

the softmax function is used for feature normalization. The high

importance factor indicates that the region feature significance is

strong. By comparing the importance factor of different regions, the

region with strong discrimination feature description in W

dimension can be located. We use the descriptor Y to denote the

positioning region and separate it from the initial feature X. The
region Y is uniformly split into n sub-regions along the H

dimension, and Y j ∈ RC�W=k�H=n is used to denote the feature

information of each sub-region, where j ∈ ½1, 2,…, n�. The

calculation of the importance factor for sub-region feature

description is as follows:

bj = SoftMax FGPA(K1�1(Y j))
� �

(11)

The normalized importance factor of each sub-region can be

used to discriminate the sub-region Y
0
J ∈ RC�W=k�H=n with

important feature information in the feature mapping X. By
using the above feature discrimination process, it can effectively

solve the deviation problem of feature extraction and enhance the

localization ability for the discriminant feature region. To further

mine the valuable information in the feature map, we use the

discriminative feature enhancement-suppression strategy to

preprocess the sub-region feature Y
0
J , and obtain the feature

maps Y e ∈ RC�W=k�H and Y s ∈ RC�W=k�H . The calculation is

as follows:

Y e = Y + a � (E⊗Y) (12)

Y s = S⊗Y (13)
FIGURE 5

The specific structure of the discriminative feature extraction module (DFEM) includes saliency region discrimination, global feature information
extraction, saliency region selection, and saliency feature enhancement and suppression.
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where ⊗ represents the element-by-element multiplication,

and the specific calculation for features E and S are as follows:

E = (e1, e2,…, en)
T

ej =
bj, ifbj = max (b1, b2,…, bn)

0, otherwise

(
8>><
>>:

(14)

S = (s1, s2,…, sn)
T

sj =
1 − b , ifbj = max (b1, b2,…, bn)

1, otherwise

(
8>><
>>:

(15)

where a and b denote the coefficients used to control feature

enhancement and suppression, respectively. The original feature Y is

replaced by feature maps Y e and Y s, and fused with feature Xi along

theW dimension to generate the discriminative enhancement feature

Xe ∈ RC�W�H and the discriminative suppression feature Xs ∈
RC�W�H , respectively. By using a discriminative enhancement

operation, it can effectively suppress redundant feature

representation to improve the detection accuracy for tiny object

categories in sonar images. The DFEM improves the robustness of

feature extraction in shadowed and cluttered regions by suppressing

redundant features and enhancing salient object features.
3.3 Multi-scale feature refinement module

Due to interference in underwater environments, FLS images

contain serious object deformation problems, which makes it

difficult for the object detection network to extract fine-grained

feature information from the object region, and it is prone to lose

the valuable feature information in the shadow region. To solve this

problem, we constructed the MFRM and embedded it into the neck

structure of the detector to enhance the feature extraction capacity

for the deformation object regions. The MFRM consists of region

location branch and feature refinement branch, and the specific
Frontiers in Marine Science 08165
structure is shown in Figure 6. The MFRM addresses the challenge

of detecting objects at varying scales by extracting robust, scale-

invariant features and refining multi-scale feature representations.

The region location branch is used to position the range of object

region, which uses 7 × 7 convolution to obtain local feature

information and extract the valuable feature region information

for the input feature map X ∈ RC�W�H . The 7 × 7 convolution

kernel provides a larger receptive field compared to smaller kernels

(e.g., 3 × 3 or 5 × 5), enabling the extraction of richer local feature

information. Parallel dilated convolution with different dilation

coefficients is used to expand the range of receptive fields and

stitch the dilated convolution features to aggregate fine-grained

context information. To generate the region attention map, the 3 ×

3 convolution is used to encode the context information to obtain

the object region features. The calculation is as follows:

U1 = K3�3(½F 6
atr(K7�7(X));F 12

atr(K7�7(X))�) (16)

where K3�3( · ) and K7�7( · ) represent convolution operations

with sizes of 3 × 3 and 7 × 7, respectively; F 6
atr( · ) and F 12

atr( · )

denote the dilation coefficients of 6 and 12; [·; ·] represents the

feature splicing operation on the spatial dimension. The feature

refinement branch obtains the fine-grained feature information of

the object region through the feature cross-dimensional interaction.

This branch performs different global adaptive pooling operations

on the input feature map X ∈ RC�H�W to obtain global spatial

feature information and perform feature space compression.

Specifically, 1 × 1 global adaptive average pooling is used to

compress the global feature spatial information, 3×3 global

adaptive average pooling is used to enhance the global feature

representation, and 2 × 2 global adaptive maximum pooling is used

to enhance the feature structure information and refine the global

feature information obtained by the global adaptive average

pooling. The feature tensor obtained by the different pooling

operations is converted into vector representation using feature

reconstruction to achieve a cross-dimensional interaction of feature
FIGURE 6

The specific structure of the multi-scale feature refinement module (LFAM) includes a region location branch and feature refinement branch.
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information on the spatial dimension and fuse it with the object

region features retained on the channel dimension to generate one-

dimensional feature vectors x1 ∈ RC , x2 ∈ R4C and x3 ∈ R9C . The

one-dimensional feature vector is spliced to obtain the feature

vector x4 ∈ R14C that aggregates rich cross-dimensional

interaction feature information. The specific calculation of this

process is as follows:

x1 = F resize P1
avg(X)

� �
(17)

x2 = F resize P2
avg(X)

� �
(18)

x3 = F resize P3
max(X)

� �
(19)

Xc = ½x1; x2; x3� (20)

where Pn
avg( · ) represents the global adaptive average pooling

function with a size of n×n, Pn
max( · ) represents the global adaptive

maximum pooling function with a size of n×n, and F resize( · ) feature

reconstruction operation. The multi-layer perceptron composed of

the fully connected layer and non-linear activation function is used to

encode the feature vector Xc to generate the feature descriptor U2 ∈
RC�1�1. The specific calculation process is as follows:

U2 = MLP(Xc) = F 1(d (F 2(Xc))) (21)

where F 1 ∈ RC=r�C and F 2 ∈ RC�C=r represent different fully

connected functions, and set r = 32; d denotes the ReLU activation

function. Element-by-element multiplication is used to fuse the

region attention mapping U1 and the feature descriptor U2, and

the Sigmoid function is used to normalize the feature values to the

range of (0, 1) to generate the attention weight M. The original

feature map X is weighted to achieve object feature adaptive

optimization to highlight the object region feature information

and reduce the seabed reverberation noise interference. The

specific calculation is as follows:

M = s (U1 ⊗U2) (22)

Y = X ⊕ (X⊗M) (23)

where ⊗ represents element-by-element multiplication, s
denotes the Sigmoid activation function, ⊕ denotes element-by-

element summation, and Y represents the multi-scale refinement

feature map. The MFRM uses a dual-branch architecture to

effectively model object regions at different scales. The region

location branch focuses on coarse object localization, while the

feature refinement branch enhances fine-grained feature details

through cross-dimensional feature interactions. This ensures that

objects of different sizes, from small to large, are accurately detected

and classified.
3.4 Loss function optimization

To optimize the proposed MLFANet detector, we combined

CIoU (Zheng et al., 2020) and DLF (Li et al., 2020) to calculate the
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regression loss of the bounding box. The constructed loss function

uses DLF loss to obtain the loss probability of the bounding box and

object label by calculating the cross-entropy function. The distribution

probability of the bounding box is restored as the prediction box, and

CIoU is used to calculate the loss value of the prediction box and truth

box to achieve the optimization of the prediction box generation

process. The calculation of CIoU is as follows:

LCIoU = 1 − IoU +
r2(b, bgt)

(cw)
2 + (ch)

2

+
4
p

arctan 
wgt

hgt
− arctan 

w
h

 !2

(24)

where IoU represents the intersection in the union of the

prediction bounding box and truth bounding box; r2(b, bgt)
denotes the Euclidean distance between the prediction box and

the truth box; ℎ and w represent the height and width of the

prediction box; hgt and wgt represent the height and width of the

truth box; ch and cw denote the height and width of the minimum

bounding box consisting of the prediction box and truth box. Since

CIoU ignores the problem of sample imbalance, smaller positional

offsets lead to significant decreases in IoU values for small object

regions in sonar images, while large size object regions will produce

an IoU difference. Moreover, since the calculation process involves

the solution of inverse trigonometric function, it increases the

model computational complexity. To solve this problem, we

introduce the normalized Wasserstein distance (NWD) position

regression loss function, which uses the two-dimensional Gaussian

distribution to calculate the similarity between the prediction box

and truth box. The loss calculation process can reflect the true

distance between the prediction box and object region distribution,

and it has strong robustness to the object scale scaling, so it is more

suitable for solving the tiny object detection problem. The specific

calculation of the NWD position loss function is as follows:

Na = ½cxa, cya,wa=2, ha=2�T (25)

Nb = ½cxb, cyb,wa=2, ha=2� (26)

W2
2 (Na,Nb) = ‖ (Na,Nb) ‖22 (27)

LNWD(Na,Nb) = exp  −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

2 (Na,Nb)
q

=C

� �
(28)

where C denotes the number of object categories;W2
2 (Na,Nb)

denotes the distance measure; Na and Nb denote the Gaussian

distributions modeled by A = (cxa, cya,wa, ha) and B = (cxb, cyb,

wb, hb), respectively. Since CIoU is suitable for large size object

categories, we combine CIoU and NWD to construct the loss

optimization function. The specific calculation is as follows:

LCIoU_NWD = a · LCIoU + (1 − a) · LNWD (29)

where a represents the adaptive weight adjustment coefficient,

LCIoU and LNWD denote the CIoU loss function and the NWD loss

function, respectively.
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4 Experiments and analysis

In this section, we present a detailed description of the forward-

looking sonar image dataset, model training strategy, experimental

parameter setting, evaluation metrics, ablation studies, and

robustness analysis.
4.1 FLS image dataset

To verify the effectiveness and feasibility of the proposed

method, we conducted experimental verification on the UATD

dataset (Qin et al., 2020) in a real-scene underwater acoustic

environment. The dataset was released in 2022 and was provided

by Peng Cheng Laboratory, Shenzhen, China. It used Tritech

Gemini 1200ik multi-beam forward-looking sonar for image

collection. The sonar operates at two acoustic frequencies,

720kHZ for lone-range object detection, and 1,200kHz for

enhanced high-resolution imaging at shorter ranges. The data

collection sites were located in Golden Pebble Beach in Dalian

(39.0904292°N, 122.0071952°E) and Haoxin Lake in Maoming

(21.7011602°N, 110.8641811°E).

The dataset contains 9,200 high-resolution original forward-

looking sonar images and corresponding manual annotation

information. To improve the readability of the sonar images, we

performed Gaussian filtering and pseudo-color enhancement on the

original images, as shown in Figure 7. The annotation object

categories provided by the dataset contain a cube, ball, cylinder,

human body model, tire, circle cage, square cage, metal bucket,

plane model, and ROV, and the corresponding physical entities and

sizes are shown in Figure 8. We present the statistical information of
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the number of different object categories in Figure 9a, from which it

can be seen that the dataset has a serious category imbalance

problem. To further analyze the dataset, we calculated the area

and aspect ratio of the rectangular label boxes of different object

categories, and drew the corresponding histogram, as shown in

Figures 9b, c. It can be seen that the different object category sizes

were diverse, as the minimum area covered 12 pixels, and the

maximum area included 38,272 pixels; the rectangle minimum ratio

of length/width was 0.22, and the maximum ratio was 7.95. From

the above statistical information, it can be shown that the dataset

poses a great challenge to the sonar image object detection task.
4.2 Training strategies and implementation
details

The specific details of the dataset and hyperparameters in the

experiment are described as follows.

4.2.1 Dataset setting
For the 9,200 forward-looking sonar images contained in the

UATD dataset, we randomly split them into the training,

verification, and testing sets based on the ratio of 7:2:1.

Specifically, the training set contained 6,440 images, the

verification set contained 1,840 images, and the testing set

contained 920 images. To further improve the model robustness

and generalization performance, data augmentation methods

including random rotation, image deformation, brightness

transformation, image sharpening, and adding noise were used to

supplement the number of training set samples. The use of data

augmentation can also alleviate the overfitting problem in the
FIGURE 7

The original forward-looking sonar image and the preprocessed image from the UATD dataset. (a) original image. (b) preprocessed image.
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model training process. Moreover, limited by the device memory,

we uniformly scaled the original sonar image to 512×512 pixels in

the training process and maintained the original image size for the

verification and testing sets.

4.2.2 Training strategies
The experiments were conducted on a workstation equipped

with an Intel i9-12900T CPU, 64GB RAM, an NVIDIA GeForce

RTX 4090 GPU, and the Ubuntu 18.04 operating system. The code
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was implemented using the PyTorch 2.1.0 and MMDetection 3.2.0

frameworks. All models were trained and evaluated on the UATD

dataset using the same training, validation, and testing splits to

ensure fairness. During training, input images were resized to

512×512 pixels, and data augmentation techniques, including

random horizontal flipping, random rotation, and color jittering,

were applied equally to all models to improve robustness and

prevent overfitting. Mixed precision training was employed to

enhance training speed and memory efficiency.
FIGURE 9

An overview of the detailed statistical information of the UATD dataset. (a) Object categories distribution statistics. (b) Object region pixel statistics.
(c) Label box length-width ratio statistics.
FIGURE 8

The physical sonar target entities and their corresponding size in the UATD dataset. The size is measured in meters.
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For the proposed MLFANet, we used a ResNet-50 or ResNet-

101 backbone pre-trained on ImageNet. The batch size was set to 8,

and the optimizer was SGD with momentum (0.9) and a weight

decay of 0.0001. The initial learning rate was set to 0.02 and reduced

by a factor of 10 at epochs 8 and 11, with a total of 12 training

epochs (1× schedule). To further optimize performance, we adopted

a three-stage training strategy: (1) pre-training the backbone on

ImageNet with a batch size of 32 and an initial learning rate of

0.001, decayed every 1,000 iterations; (2) fine-tuning the pre-trained

backbone on the sonar image dataset with a batch size of 8, an initial

learning rate of 0.001, and decay applied every 500 iterations; and

(3) training the entire model with a batch size of 16, an initial

learning rate of 0.0001, and decay applied every 2,000 iterations.

This staged strategy ensured optimal parameter learning and

mitigated overfitting.

For the baseline models, we used their standard configurations

as described in their original implementations. For example, Faster

R-CNN, RetinaNet, Cascade R-CNN, Dynamic R-CNN, and DH R-

CNN were trained with a ResNet-50 backbone, a batch size of 8, an

initial learning rate of 0.02 (reduced by a factor of 10 at epochs 8

and 11), and 12 training epochs. CenterNet was trained with a

ResNet-101 backbone, a batch size of 16, an initial learning rate of

0.01 (reduced at epochs 30 and 45), and 50 training epochs. The

DETR-based models (e.g., DETR, DAB-DETR, Sparse R-CNN, and

CO-DETR) used AdamW optimizers, with a batch size of 4 and an

initial learning rate of 0.0001 for the transformer and 0.00001 for

the backbone. These models were trained for 50 epochs, with

learning rate reductions at epoch 40. ViTDet used a ViT-B

backbone, a batch size of 8, an initial learning rate of 0.0001, and

was trained for 36 epochs, with learning rate reductions at epochs

24 and 30. By using consistent preprocessing, training splits, and

hyperparameters tailored to each model, we ensured a fair and

comprehensive comparison across all methods.
4.3 Evaluation metrics

To quantitatively evaluate the effectiveness and advantages of the

proposed sonar object detection model, we used the precision, recall,

average precision (AP), false alarm rate (FAR), F1 score, and frames-

per-second (FPS) metrics commonly used in natural scene image

object detection tasks as the evaluation metrics. First, we defined TP,

FP, TN, and FN as true positive, false positive, true negative, and false

negative. Specifically, TP indicates the model correctly detects the sonar

object, FP denotes a non-object is falsely detected as the object region,

TN indicates the model correctly predicts the non-object category, and

FN denotes the object region is mistakenly predicted as a non-object.

The calculation of different evaluation metrics is as follows.
Fron
1) The precision is defined as the proportion of the model’s

correct object detection to overall detection results.
Precision =
TP

TP + FP
(30)
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2) The recall is defined as the proportion of model correct

object detection to the truth annotation object.
Recall =
TP

TP + FN
(31)
3) The AP is defined as the area under the precision-recall (PR)

curve used to evaluate the model performance.
APIoU =
Z 1

0
P (R) d (R) (32)

where IoU denotes the intersection-over-union threshold used

to determine whether the detection result belongs to TP or FP. For

the sonar object detection task, we set the IoU to 0.5. Additionally,

the evaluation metrics APs, APm, and APl of the Microsoft COCO

dataset (Lin et al., 2014) were used to further refine the evaluation

and analyze model performance.
4) The FAR evaluates the prediction result credibility by

calculating the proportion of FP in all the results.
FAR =
FP

TP + FP
(33)
5) The F1 score is defined as the harmonic mean of precision

and recall and can assess the comprehensive performance

of the object detection model.
F1 _ score =
2� Precision� Recall
Precision + Recall

(34)
6) The FPS represents the speed of the object detection model

to process a single frame image per second.
FPS = 1=Tsin gle (35)

where Tsin gle denotes the time taken to process a single forward-

looking sonar image.
4.4 Comparison experiments and analysis

To demonstrate the advantages of the proposed forward-

looking sonar object detector MLFANet, we compared it with 11

state-of-the-art object detection models on the UATD dataset.

The compared methods can be classified into CNN-based

methods and Transformer-based methods. Specifically, the

CNN-based methods included Faster R-CNN (Girshick, 2015),

RetinaNet (Lin et al., 2017b), Cascade R-CNN (Cai and

Vasconcelos, 2019), CenterNet (Duan et al., 2019), Dynamic R-

CNN (Zhang et al., 2020), DH R-CNN (Wang et al., 2022b), and

Spare R-CNN (Sun et al., 2023); the Transformer-based methods

included DETR (Carion et al., 2020), ViTDet (Li et al., 2022),

DAB-DETR (Liu et al., 2022) and CO-DETR (Zong et al., 2023).

To ensure experiment fairness, the compared methods were

retrained on the UATD dataset and used the same training

strategy and parameter settings as the proposed methods.
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The comparative analysis included quantitative comparison,

qualitative comparison, and model complexity analysis. The

details are as follows:

4.4.1 Quantitative analysis
The quantitative comparison of different object detection

methods was performed on the testing set of the UATD dataset.

The performance quantitative analysis results of different methods

are shown in Table 1. From the analysis results, compared with

other object detection models, the proposed MLFANet obtained the

optimal results on multiple evaluation metrics. Additionally, for

metrics APl, APm, and APs, the proposed method reached 62.79%,

58.24%, and 45.36%, respectively, which further explains the

comprehensive performance advantages of our MLFANet.

Specifically, compared with the CNN-based optimal model

CenterNet (Duan et al., 2019) and Transformer-based optimal

model CO-DETR (Zong et al., 2023), the proposed method was

6.53% and 2.85% higher for the AP metric, respectively. For the

CNN-based methods, such as Faster R-CNN (Girshick, 2015),

RetinaNet (Lin et al., 2017b), and Cascade R-CNN (Cai and

Vasconcelos, 2019), the AP values only reached 32.53%, 29.75%,

and 34.97%, respectively, and were accompanied by higher FAR

values. The reason for this phenomenon is that the seabed

reverberation noise and clutter information contained in the

sonar image seriously interfere with the feature extraction process

of the CNN model, and the use of a simple convolution operation

cannot fully extract the valuable feature information. Moreover, the

weak and dark light characteristics of the sonar image object region

diminish the positioning and recognition of the CNN-based

methods, so they cannot achieve the ideal detection accuracy.

Since the Transformer model has better global feature extraction

and modeling effect, compared with the CNN-based method, the

Transformer-based method has a slight advantage for the sonar
Frontiers in Marine Science 13170
image object detection task. For example, compared with Dynamic

R-CNN (Girshick, 2015), ViTDet (Li et al., 2022) was 8.40% and

6.86% higher for the AP and F1 score, respectively. Furthermore, for

the metrics APl and APm, the optimal Transformer-based model

CO-DETR (Zong et al., 2023) reached 58.93% and 54.68%,

indicating that the method can accurately detect large/medium

size objects in sonar images. However, the imaging characteristics of

sonar images cause redundant information interference in the

global information correlation modeling process of the

Transformer-based method, which makes it difficult to achieve

satisfactory results for small object detection. For instance, the

APs values of ViDet (Li et al., 2022), DAB-DETR (Liu et al.,

2022), and CO-DETR (Zong et al., 2023) were only 41.32%,

39.76%, and 42.18%, and these methods have high false alarm

rates. The reason for this problem is that the Transformer model

only focuses on global feature information extraction, ignoring the

important value of local feature information, resulting in false

discrimination of small object region features as background

information features. To verify the detection accuracy of different

object detection models for different object categories in sonar

images, we randomly selected 1,200 images from the UATD

dataset as experimental data. As shown in Table 2, the mean AP

(mAP) value of the proposed MLFANet was 81.86%, which is better

than all the compared methods. The quantitative results further

illustrate the superior detection performance of the proposed

method compared to other object detection models. For the AP

value of each sonar object category, we can conclude that for the

tiny object categories, i.e. the ball, circle cage, and tire, the optimal

CNN-based model CenterNet (Duan et al., 2019) only reached

61.28%, 39.78%, and 30.12%, and the optimal Transformer-based

model CO-DETR (Zong et al., 2023) only reached 62.85%, 45.63%,

and 35.92%. For the large-size object categories, i.e., the cube, plane,

and metal bucket, the experimental results in Table 2 show that
TABLE 1 Performance comparison of different object detection methods on the testing set of the UATD dataset, where the score in bold is the
highest score.

Model Backbone Precision Recall F1 score AP AP50 AP75 APl APm APs FAR

Faster R-CNN ResNet-50 0.8245 0.8547 0.8393 0.3253 0.8013 0.2179 0.4768 0.4312 0.3147 0.1755

RetinaNet ResNet-50 0.7852 0.8165 0.8005 0.2975 0.7928 0.1852 0.4573 0.4127 0.3052 0.2148

Cascade R-CNN ResNet-50 0.8564 0.8872 0.8715 0.3497 0.8417 0.2368 0.4892 0.4562 0.3387 0.1436

CenterNet ResNet-101 0.8864 0.8953 0.8908 0.3958 0.8736 0.2873 0.5579 0.5124 0.3865 0.1136

Dynamic R-CNN ResNet-50 0.8426 0.8692 0.8557 0.3375 0.8327 0.2295 0.4936 0.4457 0.3249 0.1574

DH R-CNN ResNet-50 0.8647 0.8873 0.8758 0.3589 0.8562 0.2674 0.5183 0.4618 0.3621 0.1353

DETR ResNet-50 0.8958 0.9267 0.9110 0.4122 0.8893 0.3275 0.5724 0.5218 0.4018 0.1042

Sparse R-CNN ResNet-101 0.8782 0.8879 0.8830 0.3624 0.8624 0.2587 0.5276 0.4835 0.3512 0.1218

ViTDet ViT-B 0.9128 0.9385 0.9255 0.4215 0.9032 0.3386 0.5597 0.5197 0.4132 0.0872

DAB-DETR ResNet-50 0.9067 0.9249 0.9157 0.4037 0.8924 0.3194 0.5482 0.4973 0.3976 0.0933

CO-DETR Swin-L 0.9273 0.9486 0.9378 0.4326 0.9162 0.3417 0.5893 0.5468 0.4218 0.0727

MLFANet (Ours)
ResNet-50 0.9438 0.9652 0.9543 0.4583 0.9548 0.3578 0.6142 0.5679 0.4427 0.0562

ResNet-101 0.9521 0.9716 0.9617 0.4611 0.9602 0.3792 0.6279 0.5824 0.4536 0.0479
fron
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these compared object detection models still cannot achieve

satisfactory detection accuracy. In contrast, the proposed

MLFANet obtained AP values of 95.84%, 98.14%, and 95.26% for

the large-size object categories, respectively. Additionally, for the

other object categories such as cylinder, human body, square cage,

and ROV, the proposed method achieved AP values of 92.03%,

83.06%, 80.14%, and 86.15%, which are the optimal results for all

compared methods. The quantitative analysis results in Tables 1

and 2 show that the proposed method has significant advantages in

solving sonar image object detection tasks. The reason is that
Frontiers in Marine Science 14171
MLFANet fully considers the interference of seabed reverberation

noise, shadow region, and clutter information in the sonar images,

and proposes corresponding solutions, so it can obtain better object

detection accuracy. To further intuitively compare the performance

of different object detection models, we drew the PR curve of

different object detection models for comparison. The PR curve in

Figure 10 demonstrates the performance of MLFANet compared to

baseline models across various classification thresholds. The PR

curve of MLFANet exhibits a higher AUC, indicating its ability to

achieve both high precision and high recall. This is particularly
TABLE 2 Comparison of category detection accuracy of different object detection methods, where the score in bold is the highest score.

Model Backbone Cube Ball Cylinder HB Plane CC SC MB Tire ROV mAP

Faster R-CNN ResNet-50 0.8126 0.5247 0.7582 0.6978 0.8668 0.3576 0.6632 0.8345 0.2864 0.7238 0.6516

RetinaNet ResNet-50 0.7834 0.4873 0.7763 0.6504 0.8174 0.2865 0.5983 0.7853 0.2981 0.7124 0.6195

Cascade R-CNN ResNet-50 0.8345 0.5562 0.7956 0.7126 0.8972 0.4128 0.6895 0.8672 0.2573 0.7559 0.6779

CenterNet ResNet-101 0.8872 0.6128 0.8325 0.7382 0.9203 0.3978 0.7326 0.8763 0.3012 0.8057 0.7105

Dynamic R-CNN ResNet-50 0.8257 0.5369 0.8154 0.6893 0.8438 0.3736 0.6782 0.8325 0.2297 0.7354 0.6561

DH R-CNN ResNet-50 0.8536 0.5738 0.7862 0.7025 0.9056 0.4265 0.7024 0.8614 0.2895 0.7564 0.6858

DETR ResNet-50 0.8842 0.6297 0.8537 0.7458 0.9159 0.4758 0.7253 0.8713 0.3158 0.8126 0.7230

Sparse R-CNN ResNet-101 0.8264 0.5261 0.7436 0.6951 0.8397 0.3695 0.6915 0.8427 0.2697 0.7327 0.6537

ViTDet ViT-B 0.8976 0.6385 0.8423 0.7626 0.9234 0.4425 0.7456 0.9057 0.3387 0.8051 0.7302

DAB-DETR ResNet-50 0.8653 0.5642 0.8535 0.7715 0.9386 0.3871 0.7167 0.8976 0.3254 0.8385 0.7158

CO-DETR Swin-L 0.8946 0.6285 0.8761 0.7869 0.9527 0.4563 0.7315 0.9143 0.3592 0.8274 0.7428

MLFANet (Ours)

ResNet-50 0.9473 0.7942 0.9182 0.8213 0.9738 0.5138 0.7826 0.9485 0.4895 0.8573 0.8046

ResNet-101 0.9584 0.8157 0.9203 0.8306 0.9814 0.5264 0.8014 0.9526 0.5123 0.8615 0.8161
fron
HB, CC, SC, and MB denote the human body, circle cage, square cage, and metal bucket.
FIGURE 10

Comparison of PR curves for different object detection models.
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important for FLS images, where the presence of noise, shadows,

and reverberation can lead to false positives or missed detections.

Compared to baseline models, MLFANet maintains a more gradual

decline in precision as recall increases, reflecting its robustness to

challenging underwater conditions. This is attributed to the

integration of the LFAM, DFEM, and MFRM, which together

enhance feature representation and reduce noise interference.

Additionally, the CIoU-DFL loss function contributes to this

improved performance by addressing class imbalance and refining

object localization and classification. The precision value of

MLFANet was the highest among all models, further supporting

the superior performance of the proposed framework. This analysis

highlights the effectiveness of MLFANet in achieving a favorable

precision-recall trade-off, making it well-suited for underwater

object detection.

4.4.2 Qualitative analysis
To further demonstrate the effectiveness of the proposed

MLFANet, we visualized the prediction results of sonar images

under different scene conditions contained in the UATD dataset. As

shown in Figures 11–13, these scenes include seabed reverberation

noise interference, shadow region interference, and object scale

variation. It can be seen from the prediction results that the

proposed method can accurately locate and recognize the

different categories of sonar objects in the test images with high

confidence scores. In contrast, the compared methods suffer from

location deviation, high false alarm rate, and recognition failures.

Additionally, as shown in Table 3, we present the confidence scores
Frontiers in Marine Science 15172
of different object detection models for the object categories in the

test images. Following this, we present a detailed analysis of the

different object detection model prediction results under three

underwater scene conditions and the advantages of the

constructed sonar object detector. The qualitative comparison

results effectively illustrate the advantages of the proposed

method for sonar object detection.

4.4.2.1 Superiority in scenes with seabed reverberation
noise interference

The irregularity of underwater terrain seriously affects the

propagation and reflection of sound waves on the seabed, so a

forward-looking sonar image is disturbed by seabed reverberation

noise. As shown in Figure 11, under the interference of seabed

reverberation noise, it is difficult for the compared object detection

models to obtain satisfactory detection results. For example, for

CNN-based object detection models, Faster R-CNN (Girshick,

2015) and RetinaNet (Lin et al., 2017b) could not correctly detect

all object categories in sonar images, resulting in false detection and

missing detection. The reason is that the non-linear characteristics

of seabed reverberation noise interfere with the detection and

recognit ion process of CNN-based methods. For the

Transformer-based object detection models, ViTDet (Li et al.,

2022) and CO-DETR (Zong et al., 2023) obtained relatively better

detection results. However, the results in Figure 11 show that these

methods still struggle to accurately detect small-size object

categories. In contrast, MLFANet effectively suppress the seabed

reverberation noise interference on the feature extraction process,
FIGURE 11

Visualization detection results of different object detection models in seabed reverberation noise interference scenes.
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successfully detects different object categories and obtains the

higher confidence score. Moreover, in environments with strong

seabed reverberation noise, MLFANet occasionally misclassifies

noise patterns as objects due to their similar intensity and texture.

Future work could focus on integrating advanced noise suppression

or training with adversarial noise augmentation to mitigate

this issue.

4.4.2.2 Superiority in scenes with shadow region
interference

Since the underwater object has the characteristics of absorption,

reflection, and scattering of sonar signal, it is difficult for the acoustic

wave to directly penetrate the object entity, so the shadow

interference region is formed in the reverse of the object region.

The existence of the shadow region causes object occlusion, so it is

difficult for the object detection model to accurately extract the edge,

contour, and detail feature information. As shown in Figure 12, in the

shadow interference scene, the compared sonar object detection

models struggled to accurately locate and identify the object

category and obtained a lower confidence score. Among the

competitors, for CNN-based methods, CenterNet (Duan et al.,

2019) obtained relatively better detection results. The reason is that

the model uses a center point detection strategy to locate the object

region, which can effectively alleviate the shadow region interference

on the object feature extraction process. For the Transformer-based

methods, CO-DETR obtained the optimal detection results. The

reason is that it suppresses the representation of redundant feature

information in the shadow region through global context modeling,
Frontiers in Marine Science 16173
and uses the position encoder mechanism to improve the object

positioning accuracy. The proposed method obtains the optimal

detection effect, which suppresses and filters the shadow feature

interference by focusing on the discriminative feature information

of the object region to improve the location and recognition accuracy.

In addition, the objects located in regions with strong shadow

interference are sometimes missed due to low contrast and

insufficient discriminative features. Introducing adaptive contrast

enhancement or attention mechanisms could help improve

detection in such regions.

4.4.2.3 Superiority in scenes with object multi-scale
transformation

Due to the influence of different object entities, object distance

transformation, sonar beam angle, and object motion state, there

are complex object scale transformation phenomena in the forward-

looking sonar image. The variable object scale puts forward higher

requirements for the multi-scale feature extraction capability of the

object detection model. However, the existing object detection

methods can only solve the multi-scale feature extraction problem

of natural scene images, while multi-scale feature extraction for

sonar images still cannot achieve satisfactory performance. As

shown in Figure 13, for sonar images with different scale objects,

the compared methods had false alarms and missing detection

problems. Among competitors, Cascade R-CNN (Cai and

Vasconcelos, 2019) and Dynamic R-CNN (Zhang et al., 2020),

which use multi-scale feature extraction strategies, achieved

relatively better results. The reason is that these methods
FIGURE 12

Visualization detection results of different object detection models on shadow region interference scenes.
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FIGURE 13

Visualization detection results of different object detection models on object multi-scale transformation scenes.
TABLE 3 Comparison of the confidence scores of different object detection methods.

Models
Reverberation noise scenes Shadow interference scenes Object scale transformation

NA NO Confidence NA NO Confidence NA NO Confidence

Faster R-CNN 3 4 80.2%, 99.3%, 64.9%, 49.0% 3 2 68.1%, 34.6% 3 2 95.2%, 45.2%

RetinaNet 3 5 42.1%, 57.3%, 99.3%,
53.6%, 96.2%

3 5 93.8%, 67.0%, 58.3%,
30.6%, 81.2%

3 1 98.7%

Cascade
R-CNN

3 3 61.7%, 87.5%, 68.6% 3 3 86.2%, 94.0%, 49.4% 3 3 99.0%, 94.8%, 81.1%

CenterNet 3 3 81.0%, 83.2%, 51.0% 3 3 97.9%, 94.8%, 75.3% 3 3 47.0%, 31.7%, 72.4%

Dynamic
R-CNN

3 4 97.6%, 98.2%, 34.3%, 28.6% 3 1 69.0% 3 3 98.3%, 93.9%, 91.2%

DH R-CNN 3 5 36.0%, 61.7%, 44.3%,
93.8%, 86.8%

3 3 98.6%, 97.3%, 61.2% 3 1 52.2%

DETR 3 3 87.4%, 97.0%, 95.5% 3 3 98.2%, 98.3%, 38.4% 3 3 98.0%, 87.6%, 88.8%

Sparse R-CNN 3 4 91.6%, 98.9%, 48.6%, 82.0% 3 3 89.9%, 97.8%, 50.7% 3 2 70.6%, 45.6%

ViDet 3 3 84.9%, 97.9%, 93.8% 3 3 98.3%, 98.8%, 92.0% 3 4 98.9%, 32.9%, 46.6%, 96.7%

DAB-DETR 3 3 93.9%, 93.9%, 88.2% 3 4 97.8%, 45.7%, 78.3%, 85.0% 3 4 98.0%, 43.4%, 54.2%, 61.2%

CO-DETR 3 3 96.6%, 97.4%, 94.8% 3 3 97.2%, 98.3%, 92.2% 3 6 99.8%, 99.3%, 40.2%,
83.9%, 31.2%

MLFANet 3 3 99.7%, 99.8%, 99.6% 3 3 99.0%, 99.5%, 92.3% 3 3 99.0%, 94.8%, 81.1%
F
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HB, CC, SC, and MB denote the human body, circle cage, square cage, and metal bucket.
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construct a multi-scale feature extraction structure, which can

alleviate the influence of object scale transformation. In contrast,

we can observe from Figure 12 that the Transformer-based object

detection models were less effective for object scale variable

scenarios. Taking the DAB-DETR (Liu et al., 2022) detector as an

example, it only focuses on the efficient modeling of global

information and ignores the extraction of scale-invariant features,

which leads to missing detection and false alarm problems. The

proposed MLFANet can effectively detect the different scale object

categories in sonar images and obtain a higher confidence score.

The reason is that the multi-scale feature refinement module can

accurately locate sonar objects with different scales and obtain the

robust invariant feature information in sonar image. Moreover,

MLFANet struggles with extreme scale variations, leading to missed

detections of very small objects or fragmented detections of very

large targets. Developing more robust multi-scale feature fusion

techniques or scale-invariant detection mechanisms could address

this limitation.

4.4.3 Performance in small sample scenarios
To evaluate the potential of MLFANet for small sample

learning, we conducted experiments by reducing the training

dataset size to simulate limited data conditions. Specifically, 50%,

25%, and 10% of the original training data were used, while the test
Frontiers in Marine Science 18175
set remained unchanged. The performance of MLFANet and four

representative baseline models (Faster R-CNN, RetinaNet, DETR,

and CO-DETR) under these conditions is summarized in Table 4.

The results in Table 4 demonstrate that MLFANet consistently

outperforms the baseline models across all training data fractions.

Notably, in extremely small sample conditions (10% training data),

MLFANet achieved an AP of 30.85%, significantly surpassing Faster

R-CNN (18.57%), RetinaNet (16.42%), DETR (24.17%), and CO-

DETR (26.58%). This highlights the robustness and effectiveness of

MLFANet in low-data conditions.

4.4.4 Computational complexity analysis
Since the sonar image object detection task has high

requirements for algorithm real-time performance, we compared

and analyzed the computational complexity of different object

detection models, and the specific results are shown in Figure 14.

Table 5 presents the number of parameters, FLOPs (Floating Point

Operations), and FPS for each model on a workstation equipped

with an NVIDIA RTX 4090 GPU. It can be seen from the

comparison results that the CNN-based methods have advantages

in computational complexity and real-time performance compared

with the Transformer-based object detection models. To take the

Transformer-based method ViTDet (Li et al., 2022) as an example,

its calculation parameter reached 5,792 MB, and the inference speed
TABLE 4 Model performance verification under small sample conditions.

Data
fraction

Model AP (%) AP50 (%) AP75 (%) APl (%) APm (%) APs (%) FAR (%)

100%

Faster R-CNN 32.53 80.13 21.79 47.68 43.12 31.47 17.55

RetinaNet 29.75 79.52 18.52 45.73 41.27 30.52 21.48

DETR 41.22 88.92 32.75 57.24 52.18 40.18 10.42

CO-DETR 43.26 91.62 34.17 58.92 54.68 42.18 7.27

MLFANet (Ours) 46.11 96.02 37.92 62.79 58.24 45.36 4.79

50%

Faster R-CNN 29.20 76.80 18.50 43.12 39.84 28.74 19.80

RetinaNet 26.85 74.30 15.67 41.45 37.20 26.32 23.67

DETR 36.80 85.20 28.90 50.72 46.10 36.40 12.80

CO-DETR 39.40 88.10 30.70 53.34 49.36 39.20 9.72

MLFANet (Ours) 42.50 93.80 34.80 57.30 53.60 42.10 6.30

25%

Faster R-CNN 24.72 63.18 14.52 37.11 32.84 23.45 23.42

RetinaNet 22.17 64.82 12.33 33.84 30.11 21.52 26.64

DETR 31.25 76.41 23.74 43.55 39.62 30.18 15.63

CO-DETR 33.84 80.12 26.24 46.85 42.62 33.51 12.92

MLFANet (Ours) 37.58 86.74 30.66 49.25 46.13 36.35 8.87

10%

Faster R-CNN 18.57 55.42 9.83 25.17 22.52 15.68 27.92

RetinaNet 16.42 51.27 8.28 21.84 19.43 14.36 30.65

DETR 24.17 61.74 17.98 33.65 30.24 24.06 18.73

CO-DETR 26.58 65.97 20.42 36.84 33.41 26.17 15.83

MLFANet (Ours) 30.85 74.26 24.74 41.58 38.92 31.74 10.48
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was only 19.7 FPS. The reason is that the self-attention mechanism

used in the Transformer model requires the calculation of the

correlation of each pixel spatial position information, which

increases the model inference time and calculation parameters.

For the CNN-based methods, to take the Cascade R-CNN (Cai

and Vasconcelos, 2019) as an example, the number of calculation

parameters was 3,854 MB, and the inference speed reached 35.3

FPS. Although this method outperforms several Transformer-based

object detection models, it still fails to address the real-time

requirements of the sonar object detection task. In contrast, the
Frontiers in Marine Science 19176
computational parameter of the proposed MLFANet reached 3,157

MB, and the inference speed was 82.3 FPS, which was significantly

better than the other object detection models. The proposed method

can achieve an advantage because it constructs the corresponding

feature extraction and fusion module for the sonar image, and

effectively alleviates the influence of redundant feature and noise

information on the inference process of the object detection model.

To further validate the feasibility of MLFANet for deployment on

embedded devices, experiments were conducted on an NVIDIA

Jetson Xavier NX. The model was optimized using quantization

techniques to reduce memory consumption and computational

overhead. After optimization, MLFANet achieved an inference

speed of 27.4 FPS with a memory footprint of 2.60 GB on the

Jetson Xavier NX. These results demonstrate that MLFANet meets

the real-time requirements of embedded systems, making it

practical for AUV applications such as obstacle avoidance and

object tracking.
4.5 Ablation study and analysis

To demonstrate the effectiveness of the important components

LFAM, DFEM, and MFRM in the constructed MLFANet, we

performed an ablation study on the UATD testing set, and the

specific quantitative analysis results are shown in Table 6. In the

experiment, we used the YOLOX detector (Ge et al., 2021) as the

baseline model and verified the detector performance improvement

by adding different components. Additionally, since the different

constructed components are mainly for feature extraction and

fusion of sonar images, we present the feature map visualization

results of the different component modules in Figure 15. The

specific analysis of the ablation study is as follows.
FIGURE 14

Comparison of our method with other object detection models in calculation parameters and inference speed.
TABLE 5 Comparison of the computational complexity of different
object detection models.

Model
Parameter

(MB)
FLOPs (G)

FPS (512×512
image size)

Faster R-CNN 4,138 207.1 32.6

RetinaNet 3,815 198.7 35.9

Cascade R-CNN 3,854 223.2 35.3

CenterNet 3,384 189.2 41.2

Dynamic R-CNN 4,052 204.7 30.1

DH R-CNN 4,327 212.3 29.6

DETR 5,748 350.2 19.4

Sparse R-CNN 4,877 298.1 22.3

ViTDet 5,792 420.5 17.8

DAB-DETR 6,015 368.4 18.5

CO-DETR 5,674 324.5 19.7

MLFANet (Ours) 3,157 183.4 82.3
frontiersin.org

https://doi.org/10.3389/fmars.2025.1539371
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2025.1539371
4.5.1 Effect of the LFAM
The constructed LFAM aims to fully exploit the low-level

feature information such as texture, edge, and contour in the

sonar image to improve the discriminating ability of the model

for object region and background information. As shown in Table 6,

when the LFAM was embedded into the baseline model, it achieved

68.74% (18.5% ↑) mAP on the testing set. Additionally, each object

category experienced a corresponding increase in AP value, for

example, the ball category had an increase of 25.58%, and the circle

cage category had an increase of 22.13%. The feature visualization

results corresponding to Figure 15 further show that the LFAM can

make the model focus on feature extraction in the sonar object

region and significantly enhance the model’s feature representation

ability for low-level feature information.
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4.5.2 Effect of the DFEM
To filter the redundant feature information interference in the

feature extraction process, the DFEM was constructed, which obtains

the discriminative attributes of the object region by enhancing the local

feature information representation in deep convolution. As shown in

Table 6, when the DFEM was introduced into the baseline model, its

mAP on the testing set reached 70.60%. Moreover, the DFEM

enhanced the small object region feature representation, so that the

AP values of the ball, circle cage and tire small object categories

increased by 30.74%, 25.59%, and 9.60% respectively, and the AP

values of the cube, plane and metal bucket large-size object categories

increased by 15.69%, 11.47%, and 12.87% respectively. Combined with

the LFAM and DFEM, the baseline model achieved significant

performance improvement. Compared with the initial results, the
TABLE 6 Quantitative evaluation of the ablation study with different components, where the score in bold is the highest score.

Methods Cube Ball Cylinder HB Plane CC SC MB Tire ROV mAP

Baseline 0.7153 0.3274 0.5865 0.4317 0.7528 0.2154 0.5171 0.7349 0.2054 0.5366 0.5024

+LFAM 0.8543 0.5832 0.7941 0.7352 0.8759 0.4367 0.7185 0.8437 0.2681 0.7639 0.6874

+DFEM 0.8722 0.6348 0.8364 0.7281 0.8675 0.4713 0.6985 0.8636 0.3014 0.7863 0.7061

+MFRM 0.8657 0.5962 0.8046 0.7524 0.8854 0.3762 0.6735 0.8893 0.3267 0.8127 0.6983

+LFAM+DFEM 0.8875 0.6584 0.8536 0.7782 0.9107 0.4685 0.7639 0.9164 0.4172 0.8311 0.7485

+LFAM+DFEM+MFRM 0.9318 0.7653 0.8735 0.8094 0.9512 0.4956 0.7855 0.9381 0.4597 0.8535 0.7864
fron
NA denotes the number of actual objects and NO denotes the number of objects detected.
FIGURE 15

Visualizing the feature extraction effects of the LFAM, DFEM, and MFRM. (a) original forward-looking sonar images. (b) Feature extraction results
from baseline. (c) Feature extraction results with the LFAM. (d) Feature extraction results with the DFEM. (e) Feature extraction results with
the MFRM.
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mAP increased by 24.61%, and the AP values for the cylinder, human

body, square cage, and ROV increased by 26.71%, 34.65%, 24.64%, and

29.45%, respectively. The feature visualization results in Figure 15 show

that DFEM can effectively filter the redundant feature information

interference to improve the sonar object detection accuracy in clutter

and shadow information interference scene.

4.5.3 Effect of the MFRM
To solve the problem of multi-scale feature extraction in seabed

reverberation noise and shadow region interference scene, theMFRM

was constructed, which obtains the scale-invariant features of sonar

images by region location branch and feature refinement branch.

Different from placing the LFAM and the DFEM in the feature

extraction stage, we embedded the MFRM into the neck structure of

the detector. As shown in Table 6, when placing the MFRM in the

baseline model, it increased the mAP by 19.59%. Additionally, the

model obtained a significant boost in AP values for object categories

with different scales, for example, it increased by 26.88%, 16.08%, and

12.13% for the ball, circle cage, and tire, respectively. From the results

shown in Figure 15, it can be observed that the use of the MFRM

effectively improved the model’s receptive field deformation ability,

so that it could obtain the discriminative feature information of object

regions with different scales. Notably, when combining the LFAM,

DFEM, and MFRM, the baseline model performance was optimized,

and the mAP value on the UATD testing set reached 78.64%, which

further demonstrates the effectiveness of the different components in

improving the detector performance.
5 Conclusion

To solve the problem of forward-looking sonar image object

detection in complex underwater acoustic environment, in this

article, we propose a novel multi-level feature aggregation

network (MLFANet) to achieve an underwater sonar image object

detection task. The proposed MLFANet contains three innovative

modules, the LFAM, DFEM, and MFRM. Specifically, the LFAM is

used to enhance the low-level feature information representation of

sonar images to alleviate the influence of seabed reverberation noise

on the feature extraction process. The DFEM enhances the saliency

of object region features in deep convolution by constructing the

correlation of local-global features to filter shadow and clutter

information interference. The MFRM uses the region location

and feature refinement branches to extract robust invariant

feature information of different scale objects to solve the problem

of underwater object multi-scale variation. To demonstrate the

effectiveness and advantages of the proposed method, we

conducted a series of experiments on a real-scene sonar image

dataset, and MLFANet achieved better performance than the

existing state-of-the-art methods. The ablation studies further

validate the effectiveness and feasibility of the proposed different

innovation modules. Although the proposed method can obtain
Frontiers in Marine Science 21178
better detection performance, it requires more training samples.

Therefore, in future work, we intend to explore the forward-looking

sonar image object detection method in small sample conditions.
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Rip currents present a significant safety risk to beach tourists and coastal

communities, resulting in hundreds of annual drownings all over the world. A

key contributing factor to this danger is the lack of awareness among beachgoers

about recognizing and avoiding these rip currents. In response to this issue, we

introduce RipFinder, a mobile app equipped with machine learning (ML) models

trained to detect two types of rip currents. Users can leverage the app’s

computer vision capabilities to use their phone’s camera to identify these

hazardous rip currents in real time. The amorphous and ephemeral nature of

rip currents makes it challenging to detect them with high accuracy using object

detection models. To address this, we propose a client-server ML model-based

computer vision system designed specifically to improve rip current detection

accuracy. This novel approach enables the app to function with or without

internet connectivity, proving particularly beneficial in regions without lifeguards

or internet access. Additionally, the app serves as an educational resource,

offering in-app information about rip currents. It also promotes citizen science

involvement by encouraging users to contribute valuable information on

detected rip currents. This paper presents the app’s overall design and

discusses the challenges inherent to the rip current detection system.
KEYWORDS

rip current detection, data collection, citizen science, coastal observation, computer
vision, deep learning, mobile application
1 Introduction

Rip currents are dangerous, strong, fast-moving currents that pull swimmers away from

the shore, often leading to drownings and fatalities. They pose a significant hazard to

beachgoers and can easily overpower even strong, experienced swimmers. Rip currents are

a global issue, affecting coastlines around the world (Zhang et al., 2021; Retnowati et al.,

2012; Mucerino et al., 2021). In the United States alone, they account for an estimated 100

drownings a year (Gensini and Ashley, 2010). Rip currents can form suddenly and without

obvious signs, which can catch swimmers off guard. While there are general conditions that
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can lead to their formation, predicting exactly when and where they

will appear is challenging. Furthermore, rip currents are created

through various mechanisms and, as a result, exhibit different visual

characteristics. This complexity of occurrence and variability in

appearance makes them difficult to identify (Castelle et al., 2016).

Consequently, many beachgoers lack the essential knowledge and

awareness needed to recognize and avoid these perilous currents.

Rip current detection techniques are significantly important

because of their potential to save lives. As a public safety issue, the

implications extend beyond swimmers. Lifeguards, rescue teams,

and even bystanders who try to help can also be put in danger. If rip

currents could be detected reliably, then beachgoers and lifeguards

could be alerted to the dangers in real-time. This would likely result

in a significant decrease in the number of rip current-related

incidents and fatalities. By providing more accurate information

about rip currents, the general public could make more informed

decisions about when it is safe to enter the water, thereby enhancing

overall public safety. The development and deployment of tools,

such as rip current prediction models (Dusek and Seim, 2013) or

mobile apps that can detect and provide real-time alerts and tips

about rip currents could be instrumental in these efforts.

While rip currents can often be visually identified by

experienced swimmers, surfers, lifeguards, and coastal scientists,

traditional detection and data collection methods typically involve

in-situ instrumentation, such as GPS-equipped drifters and current

meters (Leatherman, 2017; MacMahan et al., 2011). However,

recent studies have demonstrated that images and video can also

be used to detect rip currents. These approaches leverage computer

vision and machine learning (ML) models for object detection to

spot and identify these potentially dangerous phenomena (de Silva

et al., 2021; Silva et al., 2023; Dumitriu et al., 2023; Maryan et al.,

2019; Mori et al., 2022; Philip and Pang, 2016; Rampal et al., 2022;

Rashid et al., 2021). However, detecting and segmenting rip

currents with high accuracy using ML methods presents unique

challenges due to their amorphous and ephemeral nature. Given the

potentially fatal nature of dangerous rip currents, their detection is a

matter of life and death. Thus, high accuracy and reliability are

crucial for any rip current detection tool to issue warnings and take

preventive actions to decrease the number of rip current-related

incidents. Providing such capability for real-world use, i.e., on

mobile platforms, adds another layer of technical challenge.

Many object detection ML models can detect rip currents, but

the challenge lies in deploying these models in real-time on mobile

devices with limited power and computational resources. More

accurate yet computationally resource-intensive, ML models cannot

run directly on mobile devices. By sending the visual input for

object detection to a remote server, it can be achieved on mobile

devices. However, this approach is not always feasible, especially in

beach locations where server connectivity is unavailable.

Alternatively, mobile-optimized ML models can feasibly run

using the limited computational resources of portable devices

without server connectivity but at the cost of sacrificing accuracy.

To address these challenges, we introduce a mobile application,

or app, designed to detect rip currents using ML models for

computer vision. Users can identify potential rip currents in real-
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time by simply aiming their phone’s camera toward the ocean. We

propose a client-server system of object detection models to balance

the trade-off between computational speed and accuracy.

Depending on the mobile device’s available computational

resources and internet connectivity, this app employs one or

more ML models to identify rip currents. If the device is

relatively new and has adequate computational resources, our app

runs two different types of mobile-optimized MLmodels to enhance

the reliability of rip current detection. For older, resource-

constrained devices, only one ML model is used. Moreover, when

internet connectivity is available, part of the visual data is

transmitted to a server for further verification of the detection

using a more accurate large model. Our system combines client-

server architecture with multiple ML model-based computer vision

to enhance the accuracy and reliability of rip current detection. The

novelty of our solution lies in its implementation of this combined

system, allowing the app to function both with and without internet

connectivity. Our app’s versatility is especially invaluable in areas

where lifeguards are absent or internet access is limited, establishing

it as a crucial tool for public safety.

In addition to rip current detection, our app places a strong

emphasis on educating users about the dangers of rip currents

through informative in-app content and links to additional

resources. Our aim is to empower beach enthusiasts with the

knowledge necessary to make informed decisions, protecting

themselves and others from these hazardous rip currents.

Moreover, our app includes a citizen science feature, enabling

users to contribute to scientific knowledge. This is done by

encouraging them to record and share data, such as geotagged

images and videos, along with additional information about

detected rip currents. Harnessing the collective power of app

users, we can gather valuable data that improves our

understanding of rip currents and helps verify existing rip current

forecast models. Ultimately, this leads to the development of more

effective safety measures and strategies.

The contributions of this paper are as follows:
• Introduction of RipFinder: a mobile app designed for real-

time, vision-based rip current detection.

• Development of a client-server system tailored for the ML

models utilized in the rip current detection app.

• A comprehensive analysis and comparison of state-of-the-

art ML models for rip detection.
2 Related work

2.1 Real-time object detection

Developing a mobile application for effectively and reliably

identifying rip currents necessitates real-time object detection

capabilities. Deep learning has revolutionized the field of object

detection, as well as other computer vision tasks. Convolutional

neural networks (CNNs) have become the standard method for
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these applications. Numerous large and intricate models, such as

Faster R-CNN—a two-stage regionbased detector (Ren et al., 2015)—

and DETR (Detection Transformers)—an object detector based on

the Transformer architecture (Carion et al., 2020)—offer remarkable

accuracy in object detection tasks. For instance, Faster R-CNN has

been adeptly used for real-time object detection in drones by

connecting to a remote GPU server (Lee et al., 2017). However,

these detectors often bear significant computational complexity,

rendering them difficult to deploy on mobile or embedded

platforms for real-time performance. An earlier server-based

system named Glimpse, offering continuous, real-time object

recognition for mobile devices, was introduced by Chen et al.

(2015). Nonetheless, server-reliant systems prove impractical in

locations devoid of internet connectivity.

Achieving accurate and reliable real-time object detection on

mobile devices without depending on servers presents inherent

challenges. Numerous efforts have been directed toward integrating

deep learning methods on mobile devices by creating compact,

mobile-optimized ML models. Typically, streamlined architectures,

like one-stage CNNs, render the models lightweight, allowing them

to function swiftly on mobile devices—making them an ideal choice

for real-time object detection. The primary compromise for such

efficiency is a minor decrease in accuracy relative to their more

elaborate counterparts (Huang et al., 2017). We scrutinized a range

of mobile-optimized ML models to ascertain the best fit for our

system. SSD-MobileNetV2 (Sandler et al., 2018) stood out as one of

the earliest trustworthy models tailored for mobile platforms.

Among the contemporary one-stage models refined for mobile

devices are variants of RT-DETR (Lv et al., 2023), EfficientDet

(Tan et al., 2020), and YOLO (Jocher et al., 2022). Our investigation

encompassed a comprehensive evaluation of potential ML models

suitable for real-time rip current detection using computer vision

on mobile platforms.
2.2 Rip current detection with ML

Given its impact on public safety, the problem of automated rip

current detection has been approached using various methods,

some of which predate the emergence of deep learning

techniques. For example, Philip and Pang (2016) utilized optical

flow on video sequences to discern the predominant flow towards

the sea, aiding human observers in rip current detection. Maryan

et al. (2019) employed modified Haar cascade methods to detect rip

currents from time-averaged images. The concept of rip current

detection via deep learning-based methods is not entirely new

either. de Silva et al. (2021) were among the early adopters of

deep learning methods for rip current detection, employing Faster

R-CNN, a large model that achieved high accuracy. They

introduced a frame aggregation technique that bolstered detection

accuracy for fixedposition cameras, but this technique was not

suitable for moving cameras. Mori et al. (2022) offered a flow-based

method to accentuate and depict rip currents for human observers.

However, this approach also demands a stationary camera and

serves as a visualization tool rather than an automated detection

system. In recent years, there have been several scholarly works
Frontiers in Marine Science 03183
about new deep learning model-based rip current detection

techniques. For instance, Rashid et al. (2021) and Zhu et al.

(2022) presented RipDet and YOLO-Rip, respectively. These

lightweight rip current detection models, rooted in Tiny-YOLOv3

and YOLOv5s, belong to the smaller members of the YOLO family

and are adept for environments with limited computational power.

Rampal et al. (2022) showcased that the mobile-optimized, single-

stage model SSD-MobileNetV2 can achieve performance metrics

comparable to Faster R-CNN. Furthermore, Dumitriu et al. (2023)

explored and compared various iterations of YOLOv8 for rip

current segmentation. Silva et al. (2023) unveiled RipViz, an

innovation that examines 2D vector fields and interprets pathline

behaviors to pinpoint rip currents. Like that of Dumitriu et al.

(2023), this method highlights the rip region’s shape but identifies

currents based on water movement rather than water appearance.

Yet, while there is an assortment of effective rip current detection

methods employing ML, a real-world application—such as a mobile

app—primed for public safety and enhancing awareness for tangible

societal impact remains elusive. This work endeavors to fill that void

by devising a deployable mobile device-based real-time system for

rip current detection.
3 System design and methods

3.1 System architecture

Figure 1 presents an overview of the RipFinder system

architecture. Our comprehensive system, designed to effectively

identify and alert users of rip currents, is organized into two

primary components:
1. The client mobile app serves as the primary user interface.

Within this app, we have integrated four ML models, each

tailored specifically for mobile devices. As the device

processes real-time visual input, these models evaluate the

data and issue warnings if rip currents are detected.

Depending on the device’s processing power, the app can

deploy either one or two ML models for detection. More

modern devices with substantial resources can utilize two

types of mobile-optimized ML models simultaneously,

enhancing the reliability of rip current detection. In

contrast, older devices with limited resources might

default to a single model. Nevertheless, the ultimate

decision to use one or two models rests with the user.

When feasible, the app suggests users employ two models

for optimal detection, but they retain the freedom to choose

only one from the available options if preferred.

2. Our system’s server-side employs complex ML models that

demand significant computational resources and GPU

capabilities, ensuring rip currents are detected with high

accuracy. When a user captures an image or video via our

mobile app, this data is sent to the server for in-depth

analysis. After the server-side models process the data, the

detection results are relayed back to the mobile app.
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Additionally, we offer the option to execute multiple models on the

server, depending on its capabilities (number of CPUs and GPUs,

system memory, etc.), enhancing reliability through redundancy.

Our system attempts to improve the reliability of rip current

detection in a two-fold way. The use of two models enhances

detection reliability on the client app, even though it demands

more computational resources. Server-side models, being complex

and larger, boast superior accuracy, thus ensuring that server-aided

rip current detection is more reliable when internet access is

available. The client-side model, meanwhile, operates using the

on-device computational resources without the need for an internet

connection. The results section further elaborates on the

justification behind these two design choices. Thus, our system’s

design allows it to operate both online and offline.

Training datasets are essential for training both client-side and

server-side ML models. We developed our dataset by utilizing the

existing dataset from de Silva et al. (2021) and supplementing it

with a large amount of our own data. Further details on the dataset
Frontiers in Marine Science 04184
and the ML model training process are explained in the

implementation section.
3.2 Mobile apps

Figure 2 provides a visual representation of our mobile app’s

user interface, offering an intuitive, user-friendly environment. We

created both Android and iOS versions of the mobile app. The

application’s design caters to a variety of user needs and includes

the following features:
3.2.1 Live camera and visualization tool
The app offers a live camera feature to capture the seashore and

serves as a real-time visualizer, placing bounding boxes around

detected rip currents in the view, thus acting as an immediate

warning system (Figure 2b).
FIGURE 1

The high-level system architecture of RipFinder.
FIGURE 2

GUI of RipFinder App (a) Main menu, (b) Real-time detection from live camera view, (c) Detection from single image, (d) Data uploader for citizen
science contribution.
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3.2.2 ML model selection
From the in-app menu, users can choose the MLmodel for real-

time rip current detection. On devices with higher computational

resources, users have the option to turn on or off the use of two

models in parallel for increased reliability.

3.2.3 Image and video recording
The app enables real-time rip current detection and the recording

of images and videos, letting users document and share potential rip

currents with other beachgoers and rip current researchers.

3.2.4 Rip current detection tool for existing
images

RipFinder app analyzes existing images on the phone to identify

rip currents, offering retrospective insights to users (Figure 2c).

3.2.5 Educational resources
Our app features an educational hub with resources on rip

currents, accessible via a pull-up menu and help menu, ensuring

users always have information at hand (Figure 2b).

3.2.6 Data upload tool
We integrated a data upload tool (Figure 2d) for users to share

geotagged rip current images and observations, fostering

community collaboration and enhancing our dataset for

improved algorithm refinement.
3.3 Client-side ML models

In our application, RipFinder, we integrate several mobile-

optimized ML models, all trained on a rip current dataset for

client-side detection. These models have been tailored to ensure

swift and efficient performance on mobile devices, which facilitates

real-time rip current detection. The current version of RipFinder

incorporates the following models:

3.3.1 YOLOv8n and YOLOv8m
YOLOv8, the latest in the YOLO series known for fast object

detection (Redmon et al., 2016; Jocher et al., 2023), includes variants

like YOLOv8n (nano) and YOLOv8m (medium) optimized for mobile

devices. Its architecture facilitates single-pass detections, making it ideal

for real-time applications such as rip current detection.

3.3.2 EfficientDet D0 and EfficientDet D2
EfficientDet, known for its object detection prowess (Tan et al.,

2020), has a unique scalable architecture that adjusts to

computational resources, making it ideal for mobile use; it offers

eight variants, D0 to D7, based on image size.

Of the four ML models at our disposal, the app selects one or two

mobile-optimized models for rip current detection, contingent upon a

device’s computational prowess and internet connectivity. Modern,

high-end devices employ two models, while the older, resource-

constrained devices resort to just one. YOLOv8n and EfficientDet
Frontiers in Marine Science 05185
D0, due to their lesser computational demand, are ideally deployed as

standalone models or in conjunction with dated or less competent

mobile devices. In contrast, YOLOv8m and EfficientDet D2 are better

aligned with newer devices boasting significant computational strength.
3.4 Server-side ML models

Server-side, we engage a collection of high-performance ML

models tailored for more resource-intensive computations. Given

their demanding computational needs, these models are perfectly

positioned for server-side deployment, capitalizing on robust

hardware resources, including GPUs. For the server side, we’ve selected:

3.4.1 YOLOv8l and YOLOv8x
The YOLOv8 ‘l’ (large) and ‘x’ (extra-large) variants (Jocher

et al., 2023) are more complex than their mobile-optimized

versions, offering higher accuracy but requiring greater

computational power, ideal for situations demanding utmost

accuracy with ample resources.

3.4.2 Real-time detection transformer
RT-DETR, a real-time adaptation of the DETR transformer-

based object detection model (Lv et al., 2023; Carion et al., 2020),

maintains DETR’s accuracy while ensuring faster performance. We

trained its large and extra-large versions, RT-DETR-L and RT-

DETR-X, for server-side use.

By leveraging these server-side models that can deliver high

accuracy, we bolster the final verification of detected rip currents,

reinforcing the reliability of our rip current detection tool.
4 Implementation

Various components of our system were implemented using the

latest available technology.
4.1 Dataset

Our training dataset distinguishes between two types of rip currents

based on their visual features. The first, termed bathymetry-controlled rip,

is characterized by areas devoid of breaking waves, presenting as darker

and calmer regions flanked by brighter waves. The second, known as

transient rip, is identified by water discoloration due to sediment plumes

that extend beyond the breaking waves. Though both classes represent

rip currents, their visual features differ significantly. Detecting one type of

rip current with an ML model trained on data from another type is

unfeasible. Treating these two types as a single class compromises the

effectiveness of the trained model. The label correlograms in the Figure 3

illustrate the distinctions between the two classes based on the labeled

regions of images from each class.

For the bathymetry-controlled rip current category, we utilized

a dataset consisting of 1780 images made publicly available by de
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Silva et al. (2021). For the transient rip current category, we curated

a new dataset comprising 7565 labeled images. These were

selectively extracted from videos captured by a drone, which

focused on the visual signature of transient rip currents, and a

Wi-Fi camera set up specifically for monitoring rip currents. We

combined both datasets to train our model in the detection of the

two rip current types. This dataset was then divided into an 80:20

split for training and validation, with 80% allocated for training

purposes and the remaining 20% used for validation. The efficacy of

the trained models was assessed using a series of test videos.

Figure 4 showcases a selection of images from our dataset.

It is important to include imagery from diverse geographic regions

and environmental conditions to enhance model robustness. Our

dataset includes images from publicly available sources, drone

footage, and fixed-location cameras. We incorporated the de Silva

et al. (2021) dataset, which features satellite imagery from diverse

regions. To enhance generalization, we are collaborating with coastal

research partners to expand data collection across varied wave

conditions, lighting, and water characteristics. Additionally, our

citizen science initiative allows users to contribute images, enriching

the dataset. While expanding the dataset and refining models is an

ongoing effort, it remains independent of RipFinder’s core architecture,

as theMLmodels can be continuously updated with improved datasets.
4.2 ML model training and evaluation

We conducted ML model training on an AWS cloud server

equipped with eight vCPUs, 61 GB of memory, and an NVIDIA

Tesla V100 GPU boasting 16 GB of video memory. The EfficientDet
Frontiers in Marine Science 06186
models were trained using the TensorFlow library, while the

YOLOv8 and RT-DETR models were trained with the Ultralytics

library, which is based on PyTorch. All model trainings were

initialized with a maximum of 500 epochs. For all versions of

YOLOv8 and RT-DETR, a patience parameter of 50 was set. The

patience parameter defines the number of epochs to wait before

halting training via early stopping if there’s no improvement in

performance on a validation dataset. Since the EfficientDet models

do not allow for the definition of a patience parameter, we

monitored convergence through TensorBoard and manually

terminated the training once convergence was observed. All

models converged within 300 epochs. We trained all models from

scratch, instead of using transfer learning with MS COCO

pretrained models from the ML libraries, to prevent negative

transfer (Wang et al., 2019). This decision was made because our

rip current class data domain is distinct from any of the classes in

the MS COCO2017 dataset (Lin et al., 2014).
4.3 Client apps and server

We developed the iOS version of the app in Swift using Xcode,

and wrote the Android version in Java with Android Studio. To

ensure broad accessibility, we tested the RipFinder app on a wide

range of mobile devices, including both high-end and low-end

models. While Table 1 presents results from the iPhone 12 Pro

(2020) and Google Pixel 6 (2021), which served as our primary

development devices, we also validated the app’s performance on

older and more budget-friendly models such as the Samsung A50

(2019), Samsung S23 (2023), LG G3 (2014), LG G5 (2016), and
FIGURE 3

The label correlograms for (a) bathymetry controller rips and (b) transient rips, depicted in the figure, illustrate the distinctions between the two
classes based on the labeled regions of images from each class.
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Xiaomi Redmi 10A (2022), and older iPhones such as the iPhone

XR (2018). This extensive testing confirms that the app performs

efficiently across a diverse spectrum of hardware, greatly enhancing

its real-world applicability.

The server-side components were programmed in Python. We

evaluated the server-side ML models on a desktop server equipped

with a 16-core Intel Core i9 3.2 GHz CPU, 30 GB of memory, and

an NVIDIA RTX3080 GPU with 10 GB of video memory.
4.4 Data privacy and security measures

Ensuring data privacy and security is a core aspect of RipFinder,

particularly for citizen science contributions. All uploaded images, videos,

and metadata are encrypted to prevent unauthorized access. Personally

identifiable information is anonymized before storage, and location data

is collected only with user consent, then obscured or aggregated to

prevent tracking.We adhere to institutional ethical guidelines and restrict

data access to authorized researchers who validate contributions. Users

receive clear terms of use and can request data removal. Our retention

policies prevent unnecessary long-term storage, ensuring responsible

data handling while supporting rip current research.
4.5 Quality control and validation of user-
uploaded data

To ensure the accuracy and reliability of citizen science

contributions, RipFinder employs a multi-step validation process

combining automated filtering, metadata verification, and expert review.
Frontiers in Marine Science 07187
4.5.1 Automated screening and metadata
verification

All user-uploaded images and videos first undergo computer

vision-based pre-screening, which filters out irrelevant or low-

quality submissions. Additionally, metadata, such as location,

timestamp, and environmental conditions, is cross-referenced

with rip current forecasts from NOAA and other sources. Any

inconsistencies flag submissions for further review.

4.5.2 Expert validation and continuous
improvement

Flagged submissions undergo manual review by rip current

specialists, including NOAA scientists and coastal researchers,

ensuring only verified data is incorporated into the dataset. A

continuous feedback loop refines detection accuracy by improving

machine learning models over time. Verified contributors may also

receive recognition, fostering quality participation.

By integrating automated detection with expert validation,

RipFinder ensures that only high-confidence, research-grade data

supports scientific analysis and rip current safety efforts.
5 Results and discussion

5.1 Performance analysis of ML models

In this section, we present a performance analysis and comparison

of state-of-the-art (SOTA) object detection models tailored for rip

current detection.We comparedMLmodels including EfficientDet D0,

EfficientDet D1, EfficientDet D2, YOLOv8n, YOLOv8s, YOLOv8m,
FIGURE 4

Some examples from our training dataset. The images on the first column are from the dataset by de Silva et al. (2021). The images on the second
and third columns are from the dataset we collected using a drone and a wireless rip activity monitoring camera, respectively.
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YOLOv8l, YOLOv8x, RT-DETR-l, and RT-DETR-x. To gauge the

accuracy of these models, we utilized nine test videos annotated with

ground truth data. To ensure model generalization and robustness, we

validated RipFinder using diverse test videos from independent

sources. Four of these videos were selected for their relevance to our

rip current detection objectives from the test set introduced by de Silva

et al. (2021). Additionally, three videos were drone-captured by us,

while the last two originated from a wireless camera at webcoos.org

dedicated to rip current monitoring.

While our model validation primarily utilized video data captured

from elevated perspectives, we acknowledge that real-world user

applications will often involve videos recorded at ground level.

However, rip currents exhibit distinct visual characteristics that

remain detectable even from a beach-level viewpoint. Lifeguards and

experienced swimmers routinely identify rip currents using precisely

these visual cues. With appropriate training datasets, ML models can

similarly leverage these visual indicators to detect rip currents.

To evaluate the effectiveness of our object detection models, we

use Intersection over Union (IoU) as the primary performance

metric. Our evaluation methodology follows the object detection

benchmarking approach outlined by Padilla et al. (2020), which

provides a standardized toolbox for computing IoU. This toolbox

calculates the ratio of overlap between the predicted and ground

truth bounding boxes, allowing for a precise and objective

assessment of detection accuracy.

Unlike classification tasks that rely on confusion matrices,

object detection inherently requires spatial accuracy in addition to

detection presence. IoU directly accounts for true positives, false

positives, and localization precision, making it a more suitable

metric for this study. Given the established use of IoU in object

detection benchmarks, additional metrics such as precision, recall,

and F1 score are not required to support our results and would be

redundant in this context.

Our accuracy assessment followed the methodology described

by de Silva et al. (2021), where:

accuracy =
correct _ labels
total _ frames

Frames were considered classified as correct if the detected

bounding boxes had an Intersection over Union (IoU) score versus

ground truth bounding boxes above 0.3. IoU is calculated as:

IoU =
area _ of _ intersection

area _ of _ union

The comparison results are presented in Table 2, and some

examples of detected rip currents are shown in Figure 5. Based on

these results, we can justify the following two design choices we made.
5.2 Statistical analysis of model
performance

While the per-video accuracy results in Table 2 offer a general

comparison, we further examined whether the observed accuracy

differences among models are statistically meaningful. We treated
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each of the nine test videos as repeated measurements, one “sample”

per model, yielding paired accuracy data for each model across the

same videos. Below, we illustrate a straightforward method using

95% confidence intervals (CIs) for each model’s mean accuracy.

These intervals help gauge whether model performance truly differs

on average or if apparent differences could be due to sampling

variability Rainio et al. (2024).

The mean accuracy of each model was computed by averaging the

detection accuracy across all test videos. The standard deviation was

calculated to measure the variability in performance across different

video samples. The standard error of the mean was calculated as:

SE  =  
StDevffiffiffi

9
p ,

To quantify the uncertainty in these estimates, we determined

the 95% confidence interval (CI). We used a two-sided t-

distribution (given the small sample size) with 8 degrees of

freedom (n − 1 = 9 − 1) and a critical value of ≈ 2.306 for 95%

confidence:

95% CI  =  �x  ±  t0:975, df=8 �  SE :

A higher-variance model yields a wider interval, possibly

overlapping intervals of both stronger and weaker performers. Large

differences in means with minimal interval overlap typically point to

genuine performance gaps, but borderline cases call for further

pairwise statistical testing (e.g., with multiplecomparison corrections).

Table 3 reports the mean accuracy, standard deviation, and 95%

CIs for each model. Although the average accuracies match Table 2,

the confidence intervals offer insight into the consistency of each

model’s performance across videos.

5.2.1 Findings and interpretation
From the statistical analysis, the RT-DETR-X model achieved

the highest mean accuracy (µ = 0.96) with a very narrow confidence
Frontiers in Marine Science 09189
interval (CI = [0.91,1.00]), indicating consistent and highly reliable

performance. Similarly, RT-DETR-L (µ = 0.93) and EffDet-D2 (µ =

0.91) demonstrated high accuracy with relatively low variability,

confirming their robustness for rip current detection. Conversely,

YOLOv8n, YOLOv8s, and YOLOv8m exhibited the lowest mean

accuracies and the widest confidence intervals, reflecting high

variability and inconsistent detection performance. The EffDet-D0

and EffDet-D1 models, while moderately accurate, showed greater

performance fluctuations due to their wider confidence intervals.

5.2.2 Implications for model selection
The statistical findings reinforce the rationale behind selecting

EffDet-D2 and YOLOv8n for mobile deployment, as they balance

accuracy and efficiency. Meanwhile, RT-DETR-L and RT-DETR-X

were the most reliable server-side models, offering superior

accuracy with minimal variability. These insights confirm that our

chosen client-server hybrid approach effectively optimizes both

computational efficiency and real-time detection performance. By

incorporating statistical validation, we ensure that model selection

is based on empirical evidence rather than raw accuracy alone. This

strengthens the reliability of RipFinder as a robust and scientifically

validated rip current detection tool.
5.3 Other considerations

5.3.1 Running two ML models to increase
accuracy

While running multiple models demands more computational

resources, it enhances reliability. This design decision stems from

the understanding that ML models with varying architectures

possess distinct strengths and shortcomings. Research by

Mekhalfi et al. (2022) indicates that models from the YOLO

family tend to identify more objects, even if their precision varies.
TABLE 2 We compared the detection accuracy of the SOTA methods to select the best options for the client and server application.

Test Videos Client Side Models Server Side Models

EfficientDet YOLOv8 RT-DETR

D0 D1 D2 n s m l x L X

Rip_test_video_1 1.00 1.00 1.00 0.94 0.72 0.99 0.99 0.93 1.00 1.00

Rip_test_video_2 0.99 0.86 1.00 0.01 0.01 0.05 0.20 0.05 1.00 0.99

Rip_test_video_3 0.86 0.84 0.79 0.58 0.30 0.71 0.46 0.53 0.90 0.93

Rip_test_video_4 0.27 0.79 0.72 0.00 0.00 0.04 0.00 0.00 0.85 0.89

Rip_test_video_5 0.73 0.91 1.00 0.76 0.50 1.00 1.00 1.00 1.00 1.00

Rip_test_video_6 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.86 1.00

Rip_test_video_7 0.99 1.00 1.00 0.19 0.35 0.93 1.00 1.00 1.00 1.00

Rip_test_video_8 0.70 0.71 0.71 0.00 0.00 0.00 0.15 0.29 0.76 0.80

Rip_test_video_9 1.00 1.00 1.00 0.21 0.24 0.62 0.71 0.63 1.00 1.00

Average Accuracy 0.73 0.79 0.91 0.30 0.24 0.48 0.50 0.49 0.93 0.96
fro
Bold values in the last row represent the average detection accuracy for each model variant across all test videos, used to evaluate overall model performance.
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In contrast, EfficientDet provides more stable and accurate

detection. In many cases, one of the models might not detect

specific instances of rip currents, even if they were trained using

the same data. For instance, although the rip current in “Rip test

video 6” can be detected by EfficientDet D2, it isn’t identified by any

other mobile models. Thus, deploying two models ensures that a

challenging-to-detect rip current is more likely to be detected on a

more capable device. Additionally, since rip current detection

pertains to safety, minimizing false negatives is more crucial than

avoiding excessive false positives. Therefore, while employing two

models might seem redundant for general applications, it is

beneficial for the purpose of rip current detection.

5.3.2 Two models vs. three or more
The decision to use two models on the client side balanced

accuracy, computational demands, and processing time. Although
Frontiers in Marine Science 10190
running more than two models could improve detection accuracy

through ensemble techniques, the benefits were minimal compared

to the significant increase in resource consumption and latency.

Additional models would heavily strain server CPU and GPU

resources, leading to higher costs and potential delays during peak

usage. Increased latency from more models would compromise

real-time detection, critical for user safety. The two-model setup

already offers robust redundancy, ensuring reliable detection even if

one model underperforms. The combination of YOLOv8l for broad

detection and RT-DETR-L for detailed analysis provides a well-

rounded solution.

After evaluating various models, EfficientDet-D2 and YOLOv8n

were selected for mobile deployment due to their optimal balance of

speed, accuracy, and compact size. For server-side operations,

YOLOv8l and RT-DETR-L were chosen to maximize accuracy

and reliability, enabling effective online and offline functionality.

The findings, summarized in Table 1, highlight models that meet

both hardware constraints and application needs for proficient rip

current detection.

5.3.3 Running ML models on both the client and
server side

More advanced and complex models, such as RT-DETR-L and

RT-DETR-X, achieve higher accuracy but are limited to server

execution. Thus, when an internet connection is available, server-

assisted rip current detection becomes more reliable. The client-side

models serve as the primary object detection mechanism, ensuring

that rip current detection operates at the highest possible accuracy

both with and without internet connectivity.
5.4 Evaluation and model selection

5.4.1 Addressing detection bias
Different machine learning models exhibit varying performance

across rip current types, leading to detection bias in some cases. For
FIGURE 5

Some examples of detected rip currents from our test videos.
TABLE 3 Mean accuracy, standard deviation, and 95% confidence
intervals (CIs) for each model.

Model Mean StDev SE 95% CI

EffDet-D0 0.73 0.36 0.12 (0.45, 1.01)

EffDet-D1 0.79 0.31 0.10 (0.55, 1.03)

EffDet-D2 0.91 0.13 0.04 (0.81, 1.01)

YOLOv8n 0.30 0.37 0.12 (0.02, 0.58)

YOLOv8s 0.24 0.26 0.09 (0.04, 0.44)

YOLOv8m 0.48 0.45 0.15 (0.13, 0.83)

YOLOv8l 0.50 0.43 0.14 (0.17, 0.83)

YOLOv8x 0.49 0.43 0.14 (0.16, 0.82)

RT-DETR-L 0.93 0.09 0.03 (0.86, 1.00)

RT-DETR-X 0.96 0.07 0.02 (0.90, 1.01)
The confidence intervals indicate the range in which each model’s true mean accuracy is likely
to lie, based on nine test videos.
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example, EfficientDet-D0 struggles with transient rip currents,

showing a higher false-negative rate. This discrepancy arises due

to differences in model architectures, feature extraction capabilities,

and training data distribution. Models optimized for certain visual

cues, such as wave breaks in bathymetry-controlled rips, may not

generalize as well to transient rips, which often exhibit diffuse,

sediment-laden water patterns.

Rather than refining a single model, RipFinder employs a multi-

model strategy to balance detection accuracy and computational

efficiency. This approach ensures adaptability, allowing the system

to leverage mobile-optimized models for real-time detection while

utilizing more powerful server-side models when internet access is

available. Table 2 compares model performance, highlighting trade-

offs between accuracy, speed, and resource constraints.

While this work prioritizes flexibility over single-model

optimization, we recognize the importance of improving

individual model performance. Future efforts will focus on fine-

tuning models using more diverse datasets and reducing false

negatives in challenging conditions. By continuously integrating

improved architectures and expanded training data, RipFinder will

further enhance detection reliability for all rip current types.

5.4.2 Evaluation
Among the ten (10) models highlighted in Table 2, we chose

eight (8) for further evaluation. From the less accurate EfficientDet

D0 and D1 variants, we selected only D0 because of smaller size.

YOLOv8s was similarly excluded due to its poor accuracy. We

evaluated the chosen models on a server equipped with a single

GPU, an iPhone 12 Pro, and a Google Pixel 6 to determine the best-

fit models for each platform (Table 1). Our benchmarking of each

model’s performance focused on two primary metrics:
Fron
1. We evaluated the real-time responsiveness of each model

by measuring the frames processed per second (FPS). This

metric offers insights into the model’s speed and its ability

to detect rip currents in real-time scenarios. EfficientDet-

D0 and YOLOv8n exhibited higher FPS on mobile devices,

marking them as optimal choices for devices with limited

computational capabilities. Meanwhile, the enhanced

accuracy of EfficientDet-D2 makes it a reliable option

while still maintaining real-time performance.

2. Each model’s storage footprint needs to be considered for

embedding them in a mobile app, given that mobile devices

have diverse storage capabilities and may also be running

other apps simultaneously. Assessing a model’s storage

needs ensures that the application remains streamlined

and does not overtax the device’s memory. While the

compactness of EfficientDet-D0 and YOLOv8n makes

them as ideal for devices with resource constraints, the

relatively small size and superior performance of

EfficientDet-D2 make it a trustworthy option.
To further validate the practical applicability of our system, we

extended our device testing to include low-end and older Android

models. While certain high-end devices demonstrated superior
tiers in Marine Science 11191
performance, models such as the Xiaomi Redmi 10A and

Samsung A50 successfully ran RipFinder, demonstrating that the

app is not solely dependent on flagship devices.
5.5 Model performance evaluation

5.5.1 EfficientDet-D0 and D2
EfficientDet-D0 was notable for its high FPS, making it

responsive on mobile devices, but it sometimes struggled with

detecting transient rip currents in complex backgrounds, leading

to occasional false negatives. On the other hand, EfficientDet-D2,

while slightly slower, offered higher accuracy in distinguishing rip

currents from similar water patterns, making it a more reliable

choice for detailed analysis despite its larger storage requirements.

5.5.2 YOLOv8 variants
YOLOv8n excelled in real-time performance due to its compact

size and speed, effectively detecting well-defined rip currents but

occasionally missing subtler ones. YOLOv8m balanced speed and

accuracy, handling both bathymetry-controlled and transient rip

currents consistently, making it suitable for mobile deployment.

The larger YOLOv8l and YOLOv8x models used server-side

provided superior accuracy, detecting even faint rip currents,

though their size and computational demands restricted them to

server environments. YOLOv8s was excluded due to poor accuracy,

particularly in complex scenarios.

5.5.3 RT-DETR variants
RT-DETR-L and RT-DETR-X, designed for server use, offered

high accuracy and reliability, excelling in differentiating rip currents

from similar patterns like wave shadows and sandbars. Their

complex architecture required substantial computational

resources, making them suitable only for server-side deployment.
6 Limitations and future work

While RipFinder is designed to improve rip current detection

using diverse datasets and a hybrid clientserver architecture, certain

limitations remain.
6.1 Dataset scope and generalization

Our dataset includes rip current images from multiple

independent sources, such as NOAA, coastal research partners,

and public sources (de Silva et al., 2021; Mori et al., 2022). However,

we recognize that geographic and environmental variations may

still impact model generalization, particularly in detecting rip

currents under unique wave conditions or in less studied coastal

regions. To mitigate these effects and improve generalization,

we are:
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• Expanding the dataset by incorporating images from

diverse geographic locations and environmental conditions.

• Using data augmentation techniques, such as lighting

adjustments, resolution scaling, and viewpoint shifts, to

simulate different acquisition conditions.

• Leveraging citizen science contributions to introduce more

real-world variability, ensuring models encounter a wider

range of rip current appearances.
Future work will include a systematic evaluation of model

generalization across different data sources and acquisition

methods to further reduce bias and improve detection accuracy in

real-world applications.
6.2 Server dependency and offline
functionality

The client-server hybrid architecture enhances detection

accuracy by leveraging more powerful models on the server.

However, we acknowledge that server dependency may limit real-

time detection in areas with poor or no internet connectivity. To

mitigate this, RipFinder is designed to function independently using

on-device models, ensuring continued usability in offline scenarios,

although with a trade-off in detection accuracy.
6.3 Potential biases in model training

Training data biases may influence model performance,

particularly in detecting less common rip current types. To

improve fairness and generalizability, we plan to conduct further

bias analysis, integrate domain adaptation techniques, and

continuously refine the dataset to address potential imbalances.
6.4 Robustness in complex marine
environments

Rip current detection is inherently challenging in extreme

conditions, such as strong waves, light variations, and surface

reflections. While multi-model detection improves reliability, some

edge cases remain difficult to classify. Detection failures often occur

when transient rips blend into background wave activity, making

them harder to distinguish. As RipFinder is model-agnostic, future

iterations can integrate more advanced models specifically trained for

challenging marine conditions. Additionally, ongoing data collection

through citizen science contributions will help refine model

generalization, ensuring greater robustness over time.
6.5 Real-world usability from beach-level
perspective

Another key consideration is the real-world usability of the app

when deployed by users at beach level rather than from an elevated
tiers in Marine Science 12192
viewpoint. Although our current dataset primarily includes images

captured from drones and other high vantage points, we recognize

the importance of validating detections from ground-level

perspectives. Future work will involve expanding our dataset to

incorporate user-submitted images and videos captured at beach

level, enabling the machine learning models to generalize more

effectively across various viewing angles. Additionally, we plan to

implement citizen-science feedback loops to continuously refine

model accuracy based on real-world user data.
7 Conclusion

In this paper, we introduce Ripfinder, a mobile app equipped

with an ML-based computer vision tool designed to mitigate the

safety hazards associated with rip currents, which are a leading

cause of drownings globally. Ripfinder features a sophisticated

system that ensures rip current detection even in the absence of

internet connectivity, making it indispensable in regions without

lifeguards or reliable internet coverage. This capability is crucial for

enhancing beach safety in remote and underserved areas.

Beyond its detection capabilities, Ripfinder enriches user

knowledge with in-app informational content and videos about

rip currents, helping users understand the dangers and how to avoid

them. This educational component is vital for raising awareness and

promoting safe behaviors at the beach. A standout feature of

Ripfinder is its inclusion of citizen science. By inviting users to

share data about identified rip currents, the app not only enhances

scientific understanding but also fosters community engagement.

This participatory approach leverages the collective efforts of users

to contribute valuable data that can be used for further research and

analysis, ultimately improving the overall understanding of rip

current patterns and behaviors.

Ripfinder’s integration of public safety, education, and scientific

progress underscores its multifaceted approach to ensuring safer

beach outings. By combining advanced technology with user

engagement and educational resources, Ripfinder aims to create a

comprehensive solution that addresses both immediate safety

concerns and long-term scientific goals. The app exemplifies how

modern technology can be harnessed to address real-world

problems, making beaches safer and more enjoyable for everyone.
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In marine ecology research, it is crucial to accurately identify the marinemammal

species active in the target area during the current season, which helps

researchers understand the behavioral patterns of different species and their

ecological environment. However, the difficulty and high cost of collecting

marine mammal calls, coupled with limited publicly available datasets, result in

insufficient data for support, making it difficult to obtain accurate and reliable

identification results. To address this problem, we propose MarGEN, a deep

learning-based augmentation method for marine mammal call signal data. This

method processed the call data into Mel spectrograms, then designed a self-

attention conditional generative adversarial network to generate new samples of

Mel spectrograms that were highly similar to the real data, and finally

reconstructed them into call signals using WaveGlow. The classification

experiments on the calls of four Marine mammals show that MarGEN

significantly enriches the diversity and volume of the data, increasing the

classification accuracy of the model by an average of 4.7%. The method

proposed in this paper greatly promotes marine ecological protection and

sustainable development, while effectively advancing research progress in

bionic covert underwater acoustic communication technology.
KEYWORDS

marine ecology, marine mammal call signals, MarGEN, deep learning, data
augmentation, self-attention conditional generative adversarial network
1 Introduction

Marine mammal calls serve as important ecological signals, carrying a wealth of

behavioral and environmental information. Accurately recognizing marine mammal calls

not only contributes to species monitoring and conservation but also facilitates the

assessment of the health of the marine environment. At the same time, accurate

recognition of marine mammal calls also has important military application value, bionic

covert underwater acoustic communication technology embeds secret information into

marine mammal calls to improve the security of underwater communication Qiao et al.
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(2018); Ma et al. (2024), the working principle diagram of this

technology is shown in Figure 1. The prerequisite for realizing this

technique is to accurately identify the active marine mammals in the

target sea area in the current season, so as to select the appropriate

calls for bionic communication. Currently, deep learning-based

recognition classification offers the most effective results Shi et al.

(2023); Dong et al. (2020), but its training demands a large number of

data samples as support Li et al. (2021). However, the current limited

availability of marine mammal call data significantly reduces the

performance of deep learning-based recognition and classification

models. Buda et al. (2018). Therefore, increasing the number and

diversity of Marine mammal call data has become the key to

improving the recognition accuracy.

Data augmentation is a method to expand the size of datasets

Khan et al. (2024), which not only enhances the predictive ability of

classification models but also provides diversity-rich call signals for

bionic communication. Currently, data augmentation methods

have performed well in the field of computer vision, which has

attracted researchers to focus on its application in the field of audio

Sun et al. (2024); Xu et al. (2024).

The cropping method Garcea et al. (2023) obtains multiple

cropped sub-data by sliding the audio sequence over a sliding

window. Scaling methods Lie and Chang (2006) are implemented

by adjusting the audio amplitude or frequency, amplitude scaling is

achieved by multiplying all the elements of the time series by some

constant, and frequency scaling is achieved by changing the

sampling rate of the audio signal. Adding some random noise to

the original data can also increase data diversity Kishk and Dhillon

(2017), but inappropriate noise may mask important signal features

and lead to degradation of model performance. The random

oversampling technique Wei et al. (2022) achieves data

augmentation by randomly selecting samples for replication. The

Synthetic Minority Oversampling Technique (SMOTE) Azhar et al.

(2023) generates new samples by interpolating the minority class

sample, which improves the problem of unbalanced data

distribution. SpecAugment Kim et al. (2024) is a data

augmentation method that operates on the audio spectrum. By

distorting or masking the spectrogram of the speech signal, the data

diversity during model training is increased. Experiments have

demonstrated that this method can significantly reduce the word

error rate and improve the robustness of the model in speech

recognition tasks. This method performs data augmentation on

individual sequences, utilizing only the nature of the sequence itself

and not taking the overall distribution of the dataset into account.

In the wake of rapid advancements in artificial intelligence,

researchers have started to apply deep learning techniques to data

augmentation. Yan employed a convolutional neural network

model for data augmentation of music in a rhythm game. He

took the first 30 seconds of 16 piano arrangements as input,

generated additional material that mimicked the original styles

through Jukebox and extended them to 60 seconds for data

enhancement. However, this method is time-consuming because

it generates only one sample at a time Yan (2024). The adversarial

training model of Generative Adversarial Networks (GANs)
Frontiers in Marine Science 02196
Goodfellow et al. (2020); Wu et al. (2020) gives them excellent

generative results. Significant advancements and outcomes have

been achieved in the generation of high-resolution and realistic

images, which has a wide range of potentials in the field of computer

vision and image generation, which also encourages researchers to

apply GANs In the field of audio generation. Some researchers have

applied GANs to environmental sounds and footstep signal

generation with better results Bahmei et al. (2022); Chakraborty

and Kar (2023). At present, among the published methods, no

researcher has applied the data augmentation method based on

GANs to marine mammal call signals.

We proposed MarGEN, a data augmentation method for

marine mammal call signals based on audio transformation and a

Self-Attention Conditional Generative Adversarial Network

(SACGAN). It can effectively enrich the number and diversity of

marine mammal call signals and greatly improve the recognition

accuracy of the model. The main contributions of this paper are

as follows.
1. We proposed a novel method for generating marine

mammal call signals, marking the first application of

generative adversarial networks in the field of marine

mammal call signal data augmentation.

2. We designed a self-attention conditional generation

adversarial network for generating new samples that are

highly similar to the Mel spectrograms Hong and Suh

(2023); Ustubioglu et al. (2023) of real marine mammal

calls. The network innovatively added conditional variables

representing marine mammal species and self-attention

modules and replaced some of the convolutional layers

with improved Inception blocks, which significantly

improved the model performance and the quality of the

generated samples.

3. In order to analyze the performance of our generated call

signals, we performed classification experiments and

compared them with baseline datasets, which demonstrated

the superiority of our method in terms of prediction accuracy.

4. The proposed method can effectively extend the existing

marine mammal sound database. It greatly advances the

research progress in marine mammal conservation and

bionic covert underwater acoustic communication

technology. It also provides a reference method for the

generation of other types of sound.
2 Data preprocessing

The dataset used in this study comes from the Watkins Marine

Mammal Sound Database Sayigh et al. (2016), which provides a

variety of call clips of marine mammals recorded in real marine

environments. In this study, four marine mammal calls, which are

widely distributed in China’s sea area and have a relatively large
frontiersin.org
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amount of data, were selected for downloading. After clipping,

denoising, resampling, and other operations, 4190 samples with a

duration of 1 second are finally obtained and labeled. The

distribution and characteristics of the samples are shown in Table 1.
3 MarGEN method

The overall flowchart of the MarGEN method is illustrated in

Figure 2, consisting of three main steps. In the first step, due to the

large number of audio sampling points of marine mammal calls,

resulting in many network parameters and training difficulties, and

given that generative adversarial networks are more mature in the

image generation domain, we converted the marine mammal call

audio files into the form of spectrograms that are more suitable for

machine learning to understand the characterization. In the second

step, we innovatively designed the SACGAN, whose generator and

discriminator engaged in continuous adversarial training until Nash

equilibrium Lv et al. (2024) was reached, thereby generating new

samples that closely resembled the original images. In the final step,

the generated spectrogram was converted into audio signals using

WaveGlow Prenger et al. (2019).
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3.1 Feature extraction

The features of different call samples behave similarly in the

time domain but differ significantly in the frequency domain.

Therefore, the feature representations chosen in this study were

mainly frequency domain features. First, the original signal is

analyzed in time-frequency by Short-Time Fourier Transform

(STFT) to extract its local frequency domain information. The

STFT can effectively capture the spectral changes of the signal in the

time dimension. On this basis, Mel frequency cepstrum coefficient

(MFCC) based analysis can be further frequency transformed

according to the auditory perception of the human ear, thus

preserving the key features of the signal. Its accuracy and

computational efficiency are better than other representations in

the speech recognition task. Therefore, the Mel spectrogram was

chosen as the feature representation in this study. The expression

for the MEL frequency is shown in Equation 1:

M = 2595log10(1 +
f
700

) (1)

Where M is the frequency in Mel and f is the frequency in Hz,

128 Meier filters are used in this study.
3.2 Self-attention conditional generative
adversarial network

GANs consist of a generator and a discriminator. The generator

receives random noise and outputs newly generated data samples,

while the discriminator is responsible for determining whether the

received data is real or generated by the generator. The generator

and discriminator engage in adversarial training, which ultimately

generates new data that closely resembles real data.
TABLE 1 Distribution and characteristics of samples.

Species
Name

Abbreviation Sample
Size

Sampling
Rate

Killer Whale KW 1394 48000Hz

Humpback Whale HW 908 48000Hz

Pilot Whale PW 1165 48000Hz

Bottlenose
Dolphin

BND 723 48000Hz
FIGURE 1

Working principle diagram of bionic covert underwater acoustic communication technology.
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We innovatively designed SACGAN, which introduced

conditional variables representing marine mammal species and

self-attention modules based on generative adversarial networks.

Additionally, traditional convolutional neural networks consist of

multiple layers of convolutional layers stacked on top of each other,

which tends to lead to overfitting as well as difficulty in updating the

gradient. The network we designed utilized improved Inception

blocks, a structure that combines convolutional kernels of various

sizes within the same layer to capture multi-scale information,

thereby enhancing the capability of feature extraction.

The specific network structure of SACGAN is shown in

Figure 3A. In the generator network structure, the discrete labeled

variables were converted to continuous vectors through the

Embedding layer, which were spliced with random noise to help

the model better understand the input data. The network structure

of the Inception block is shown in Figure 3B. We improved its

second branch by decomposing a 3x3 convolution into a 1x3

convolution and a 3x1 convolution, further reducing the number

of parameters and computational complexity. The residual block

consisted of the deconvolution layer, the batch normalization layer,

and the activation layer. In the residual block, the gradient

information was propagated by means of skip connections to help

the generator better recover the image details. A self-attention

module was added between two residual blocks to enhance the

generator’s ability to produce specific content under given

conditions, thereby improving generation precision. In the

discriminator network structure, the residual block consisted of

the convolution layer, the batch normalization layer, and the

activation layer. The pooling layer was responsible for reducing

the feature dimensions and extracting the main information of the

features. We added a self-attention module after the pooling
Frontiers in Marine Science 04198
operation to help the model compensate for information loss,

ensuring that the model retained some detailed information while

capturing the main features. The formula expression of the self-

attention mechanism is shown as Equation 2:

Attention(Q,K ,V) = softmax (
QKTffiffiffiffiffi

dk
p )V (2)

Where Q denotes the query matrix, K denotes the key matrix, V

denotes the value matrix, KT is the transpose matrix of K, and dk
denotes the dimension length.

In addition, the model used the loss function of WGAN-GP Pu

et al. (2022); Zhu et al. (2023) to prevent the pattern collapse

problem during training. A gradient penalty term was added to the

discriminator loss function to ensure that the discriminator

function satisfied the Lipschitz continuity constraint, avoiding the

problem of gradient explosion or gradient disappearance during the

training process and enhancing the convergence speed of the model.

The generator loss function is shown as Equation 3:

L(G) = −Ez∼Pz½D(G(z y))�j (3)

Where Pz denotes the data distribution of samples generated by

the generator, z is the randomly sampled noise vector in Pz, and y is

the condition variable.

The discriminator loss function is shown as Equation 4:

L(D) = Ex∼pr½D(x y)� − Ez∼Pz½D(G(zj jy))�
+lEx̂∼Px̂ ½( ∥∇x̂ D(x̂ ) ∥2 −1)2�

(4)

Where pr denotes the data distribution of the real sample, x is the

sample in pr, l is the gradient penalty term weight, lEx̂∼Px̂ ½( ∥∇x̂

D(x̂ ) ∥2 −1)2� is the gradient penalty term, x̂ is the stochastic
FIGURE 2

Flowchart of MarGEN Method.
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interpolation between the real sample and the generated sample, Px̂

denotes the sampling distribution of the gradient penalty term, and

∥∇x̂ D(x̂ ) ∥2 denotes the gradient parameter of x̂ , which ensures

that the gradient paradigm of the discriminator function is close to

1 and satisfies the Lipschitz constraint.
3.3 Audio signal reconstruction

We used WaveGlow to reconstruct the Mel spectrogram

samples generated by SACGAN into audio signals. The model

can accurately learn the probability distribution of the audio data

and acquire longrange information, resulting in better generation

quality and generalization ability. In addition, WaveGlow supports

GPU parallel operation, significantly accelerating the audio

synthesis speed.
Frontiers in Marine Science 05199
4 Experiment

We designed generation experiments and classification

experiments. The generation experiments were used to increase

the number and diversity of existing datasets. The classification

experiments were used to validate the effectiveness of the

MarGEN method.
4.1 Generation experiment

The experimental programming language was Python 3.9, and

the network construction was built using Pytorch 1.10 deep learning

framework. We trained SACGAN with 4,190 Mel spectrograms of

marine mammal calls, setting the labels for killer whale calls to 0,

humpback whale calls to 1, pilot whale calls to 2, and bottlenose
FIGURE 3

(A) Network structure of the self-attention conditional generative adversarial network; (B) structure of the inception block.
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dolphin calls to 3. The experimental dataset was divided into a

training set and a test set in an 8:2 ratio, with a learning rate set at

1e-4; the batch size was 64; the number of training epochs was 2000.

An alternating training strategy was adopted, in which the

discriminator was trained six times corresponding to the training

of the generator once.

Figure 4 shows an example of Mel spectrograms generated

using the SACGAN. As shown, SACGAN can generate high-quality

Mel spectrograms. In this experiment, a total of 1755 samples of

Mel spectrograms of marine mammal calls were generated using

the SACGAN.
4.2 Classification experiment

To verify the effectiveness and superiority of the MarGEN

method, this experiment trained the same ResNet classification

model on two datasets separately for performance evaluation.

Table 2 presents the number of samples in the two datasets and

their specific distribution. Among them, OD is a dataset consisting

of the original marine mammal call signals. MD is a mixed dataset

consisting of the original marine mammal call signals and the call

signals obtained using the MarGEN method. The ‘Factor’ column

indicates the ratio between the total number of samples after data

enhancement (original samples plus generated samples) and the

number of original samples. For example, for bottlenose dolphin, a

factor of 2.0 indicates that after augmentation, the dataset contains

twice as many samples as the original dataset (original: 723 samples,

augmented: 1,446 samples). The dataset was divided using 5-fold

cross-validation, in which the entire sample was randomly divided

into five non-overlapping subsets, each of which accounted for
Frontiers in Marine Science 06200
approximately 20% of the entire dataset. In each round of cross-

validation, four of them were selected as the training set. The

remaining one as the validation set, and a total of five rounds

were executed, with a different validation subset being used in each

round. The final results are aggregated by the average of the metrics

obtained from the 5 rounds of experiments to ensure the stability

and generalization ability of the model. At the same time, it is

necessary to make sure that the ratio of original data and generated

data in the training and validation sets is consistent. The learning

rate for the experiments was set to 1e-4; the batch size was 32; and

the training epochs were 150.

Figure 5A illustrates the confusion matrix of the classification

model trained using OD, while Figure 5B illustrates the confusion

matrix of the classification model trained using MD. In these

matrices, the diagonal elements represent the correct classification

rate for each category, while the off-diagonal elements reflect the

misclassifications between species. Through comparison, it can be

found that killer whales showed high classification accuracy in both

confusion matrices, probably due to the even spacing between

fundamental and harmonic frequencies in their calls, regular

frequency bands, often accompanied by high-energy dominant

frequency components, and clear transverse stripe structure on Mel

spectrograms, which had good discriminability, and thus were easy to

be accurately recognized by the model. The classification effect of the

bottlenose dolphin was significantly improved after the data

enhancement. However, the classification accuracy was still at the

lowest level, which may be attributed to the following reasons: on the

one hand, broad-snouted dolphin calls are complex and diverse, with

a large frequency span, which increases the difficulty of identification;

On the other hand, broad-snouted dolphins have the smallest

number of original samples among the four categories, and the
FIGURE 4

Mel spectrograms generated using SACGAN.
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model does not learn enough of its features at the early stage of

training. Although data augmentation greatly mitigates the training

bias caused by the uneven samples, there are still some

recognition challenges.

In general, the model trained using the MD dataset achieves a

higher recognition accuracy for marine mammal calls and exhibits a

significantly reduced gap in classification performance between

species. These results demonstrate that the proposed MarGEN

data augmentation method effectively enhances the model’s

generalization ability and mitigates the problem of class imbalance.

We selected four classical deep learning models for classification

experiments to demonstrate that the MarGENmethod can optimize

the performance of multiple models. In the experiments, we
Frontiers in Marine Science 07201
calculated the Accuracy, Precision, Recall, and F1 Score of the

models to comprehensively evaluate their classification

performance. We calculated the accuracy, precision, recall, and F1

score of these models in the experiments. The corresponding

formulas are as shown in Equations 5–8:

Accuracy =
True   Positives + True  Negatives

True   Positives + False   Positives + True  Negatives + False  Negatives

(5)

Precision =
True   Positives

True   Positives + False   Positives
(6)

Recall =
True   Positives

True   Positives + FalseNegatives
(7)

F1   Score = 2� Precision� Recall
Precision + Recall

(8)

Where the F1 score is the reconciled average of precision and recall,

which can comprehensively evaluate the classification performance.

Table 3 shows that the accuracy of the classification models

trained using MD increased by an average of 4.7%, in which the

accuracy of the ResNetSE model increased by 5.7% from 90.93% to

96.63%; the F1 score increased by an average of 5.75%, proving that
FIGURE 5

(A) Confusion matrix of the classification model trained with OD; (B) Confusion matrix of the classification model trained with MD.
TABLE 2 The number of samples and their specific distribution for the
two datasets.

Species Name Abbreviation OD Factor MD

Killer Whale KW 1394 1.1 1533

Humpback Whale HW 908 1.6 1452

Pilot Whale PW 1165 1.3 1514

Bottlenose Dolphin BND 723 2.0 1446
TABLE 3 Comparison of performance evaluation indexes for two datasets applied to different classification models.

Model Accuracy (OD/MD) (%) Precision (OD/MD) (%) Recall (OD/MD) (%) F1 Score (OD/MD) (%)

CNN 89.98/94.37 88.11/95.20 90.06/94.85 89.07/95.02

Res2Net 91.77/95.37 94.42/96.39 91.37/96.08 92.87/96.23

ResNetSE 90.93/96.63 88.03/96.65 86.81/94.29 87.42/95.46

RNN 88.90/94.03 87.08/92.68 89.70/95.34 88.37/93.99
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the MarGEN method can significantly improve the performance of

multiple deep learning models on the marine mammal call signal

recognition task.
5 Conclusion

We have innovatively presented MarGEN, which can effectively

realize the high similarity generation of marine mammal call signals

and improve their recognition accuracy. First, we designed

SACGAN, which can generate Mel spectrograms that are highly

similar to the original data, and then we converted the Mel

spectrograms into call signals using WaveGlow. The experimental

results demonstrated that after using the MarGEN method, the

recognition accuracy of different classification models is improved

by 4.7% on average, and the F1 score is improved by 5.75% on

average. The proposed method in this paper greatly promotes

marine ecological protection and sustainable development, and at

the same time, it also greatly promotes the research progress of

bionic covert hydroacoustic communication technology, which is of

great strategic significance. In the future, we will further extend the

applicability of the study. On the one hand, we will extend the

MarGEN method to more marine species to verify its

generalizability in multi-species identification tasks; on the other

hand, we will also explore the migration ability of the model under

fewer samples to enable the identification and study of data-

scarce species.
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As an important technology for eliminating redundant data, data deduplication

significantly impacts today’s era of explosive data growth. In recent years, due to

the rapid development of a series of related industries, such as ocean

observation, ocean observation data has also shown a speedy growth trend,

leading to the continuous increase in storage costs of ocean observation

stations. Faced with the constant increase in data scale, our first consideration

is to use data deduplication technology to reduce storage costs. While using

duplicate data deletion technology to achieve our goals, we also need to pay

attention to some of the actual situations of ocean observation stations. The

fingerprint retrieval process in duplicate data deletion technology plays a key role

in the entire process. Therefore, this paper proposes a fast retrieval strategy

based on locally sensitive hashing. The fast retrieval algorithm based on locally

sensitive hashing can enable us to quickly complete the retrieval process in

duplicate data deletion technology and achieve the goal of saving computing

resources. At the same time, we proposed a bucket optimization strategy for

retrieval algorithms based on locally sensitive hashing. We utilized visual

information to address the bottleneck problem in duplicate data deletion

technology. At the end of the article, we conducted careful experiments to

compare hash retrieval algorithms and concluded the strategy’s feasibility.
KEYWORDS

local sensitive hashing, ocean observation data, duplicate data deletion technology, fast
retrieval algorithm, storage location
1 Introduction

As is well known, today’s society is filled with a large amount of data and has entered the

era of big data. At the same time, the scale of data generated by various industries has also

exploded. According to current research reports, IDC estimates that the storage capacity of

the global market will grow exponentially from 33ZB to 173ZB from 2018 to 2025 (Reinsel

et al., 2017) As various industries enter the era of big data, the scale of data generated by

marine-related industries is unprecedentedly large. The existing marine data includes

marine surveying, island monitoring, underwater exploration marine fishery operations,

marine fishery operations, marine buoy monitoring, marine scientific research, oil and gas
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platform environmental monitoring, satellite remote sensing

monitoring, etc., forming a wide range of marine observation and

monitoring systems, accumulating a large amount of marine natural

science data, including on-site observation and monitoring data,

marine remote sensing data, numerical model data, etc. With the

rapid advancement of ocean informatization and the increasing

sophistication of sensing technologies, ocean data volumes have

grown exponentially. For instance, since the launch of the Argo

program, over 10,000 profiling floats have been deployed, with

approximately 3,800 currently operational in global oceans (Riser

et al., 2016) By 2016, Argo-generated data had already surpassed the

cumulative ocean observation dataset of the entire 20th century, and

both its sampling density and vertical coverage continue to expand.

Similarly, as of 2012, the U.S. National Oceanic and Atmospheric

Administration (NOAA) hosted annual data archives exceeding 30

petabytes, aggregating over 3.5 billion daily observations from a

diverse array of sensor systems (Huang et al., 2015) In recent years,

revolutionary changes have occurred in the observation equipment

used for observing ocean data. The scale of ocean data represented

by satellite remote sensing data is exploding, and the growth rate of

ocean observation data is also much faster than most industries. At

present, when ordinary people face data growth, they tend to think

of increasing storage capacity to solve the problem. However, when

we face huge amounts of data, it is unrealistic to solve the problem by

increasing storage capacity. Therefore, people usually choose to

improve storage efficiency so that more data can be stored in

limited storage space. When faced with such problems, people

usually think of compression technology first. However,

compression technology retrieves the same data block through

string matching, mainly using string matching algorithms and

their various variants, which achieve precise matching.

Implementing precise matching is more complex but more

accurate and effective for eliminating fine-grained redundancy.

Data deduplication (Nisha et al., 2016) technology uses the data

fingerprint of data blocks to find identical data blocks, and the

fingerprint of data blocks is calculated using a fuzzy matching hash

function. Fuzzy matching is relatively simple and more suitable for

large granularity data blocks, but its accuracy is lower. If we want to

save storage space on datasets obtained through ocean observation,

we should prioritize duplicate data deletion technology. Data

deduplication technology eliminates redundant data in a dataset

by removing duplicate data and retaining only one copy. Therefore,

data deduplication technology can bring huge practical benefits

when facing such problems, such as effectively controlling the

rapidly growing data scale, saving sufficient storage space,

improving storage efficiency, saving total storage and

management costs, and meeting ROI, TCO, etc (Nisha et al., 2016).

The entire process of data deduplication technology is to cut the

input file into data blocks and determine whether the data block is a

duplicate by querying the fingerprint table in memory. Data

deduplication technology can be divided into five stages,

including data block segmentation, fingerprint calculation of data

blocks, indexing of hash tables, compression techniques, and data
Frontiers in Marine Science 02205
management in various storage systems. The compression stage is

an optional operation, as it is only applicable to some more

traditional compression methods. Data deduplication plays a

crucial role in the final stage of storage management. The above

explanation shows us that block segmentation and retrieval are the

two core stages in data deduplication technology. How to segment

data blocks reasonably will seriously affect the final data

deduplication rate. However, the focus of this article is on

another aspect - retrieval. How to quickly retrieve whether there

are data blocks in the fingerprint table will greatly affect the

efficiency of the entire data deduplication system. We will save

much time if we can achieve fast retrieval. At the same time,

reducing the number of comparisons within the fingerprint table

will directly affect the computational resource consumption of the

entire data deduplication system when facing large-scale data.

At present, there are many research studies on retrieval in

duplicate data deletion technology, including Bloom filters, which

are used to address challenges in the retrieval process (Lu et al.,

2012) HT Indexing accelerates the process by selecting champions,

or Sparse Indexing solves real-world problems (Lillibridge

et al., 2009).

In this study, we aim to save more resource consumption in the

retrieval process of data deduplication technology. Therefore, to

address the existing challenges, we propose a fast retrieval algorithm

based on locally sensitive hashing (Bucket index), which can reduce

the number of comparisons while saving computational resources.

B-index is a fast retrieval algorithm based on locally sensitive

hashing, which puts similar data blocks into the same bucket.

When a data block is passed in, it only needs to be retrieved from

the bucket to which the data block belongs without the need to

retrieve the entire fingerprint table, thus reducing resource

consumption during the retrieval process. The contributions of

this article are as follows:
• We propose a fast retrieval algorithm based on locally

sensitive hashing, which achieves fast retrieval by splitting

and storing many data blocks during the retrieval process.

• We propose a bucket optimization strategy under locally

sensitive hashing, which continuously optimizes retrieval

efficiency by adjusting the number of buckets when facing

different problems.

• Finally, we proposed a strategy for selecting fingerprint

tables when faced with ocean observation data.
The content of the remaining chapters of this article is as

follows: In Chapter 2, we will provide a detailed introduction to

the background of duplicate data deletion technology and the

motivation behind this paper. In Chapter 3, we will elaborate on

various research related to this paper. Chapter 4 will focus on the

fast retrieval algorithm based on locally sensitive hashing. In

Chapter 5, we will verify our hypothesis through detailed

experiments. In the final chapter, we will make plans for

future research.
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2 Background and motivation

In the second part, we will briefly introduce the process of data

deduplication technology, focus on the importance of retrieval, and

briefly introduce other retrieval algorithms. At the end of this

section, we will introduce the motivation behind our work.
2.1 The dilemma of duplicate data deletion
technology in the retrieval process

When analyzing a problem, the first thing we need to do is to

understand where the problem lies. When a data stream is fed into a

data deduplication system, we first need to perform a chunk

operation on the data stream, cutting it into data blocks of

different sizes. How to chunk is based on the content of the data

stream, so we can understand that the same content will produce

the same data blocks. The first definition of this part was mentioned

in the sliding window-based chunk algorithm 1. After the data

blocks are cut, we assign fingerprints to each. Each different data

block has a different fingerprint. After that, the duplicate data

deletion system will compare the fingerprints of each data block

with the existing fingerprints in the memory table. In a duplicate

data removal system, querying whether a data block is duplicate is

done by storing the fingerprint of the data block in a fingerprint

table in memory. After cutting out a new data block, the fingerprint

of the new data block is searched in the fingerprint table. When the

fingerprint of the new data block exists in the fingerprint table, it

will be judged as a duplicate data block. Conversely, if the data block

does not appear in the fingerprint table, the fingerprint of the data

block will be stored in the fingerprint table, and the data block will

be saved as shown in Figure 1. While we understand the basic

process, we must also be aware of the disk bottleneck issue in data

deduplication technology.

Assuming the average size of data blocks is 8KB, the generated

fingerprints are approximately 20GB. For 8TB of data, nearly 20GB

of fingerprint storage will be required. If all these fingerprints are
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stored in memory, it will bring a very serious memory burden. At

the same time, in a system with an average throughput of 100MB/s,

each retrieval will bring a huge burden and increase the system

overhead. Even if you use cache memory to accelerate index access,

there will not be much change. This is because fingerprint

generation is random, and traditional cache memory has a low

hit rate and work efficiency. Therefore, in response to the above

issues, some people store the fingerprint table in external storage.

However, this approach will lead to frequent access to external

storage, thereby reducing efficiency. Some people also choose to put

some fingerprint tables in memory and some in external storage,

but choosing which ones to put in memory and which to put in

external storage is not appropriate. Therefore, to improve efficiency,

it is better to accelerate the indexing speed directly. Because no

matter which method is chosen to avoid the disk bottleneck, it

cannot escape the need to retrieve the fingerprint table.
2.2 The particularity of ocean observation
data

At this point, we can foresee the problem we are facing. If the

fingerprint table becomes larger, we will face great difficulties

retrieving it. As a result, if the fingerprint table continues to grow,

it will also greatly burden the memory if we keep it in memory.

Considering the actual situation we will face, that is, the storage

method of ocean observation stations, ocean observation data

differs from ordinary data, and most ocean observation data is

time series data. Some characteristics need to be understood.

One of them is the existence of non-renewable primitiveness; as

the ocean constantly changes, the elemental data of ocean surveys has

distinct characteristics of non-renewable primitiveness. Ocean

measurement data is a first-hand source of original information

obtained from on-site measurements, organization, and calibration

by ocean survey ships. The data of ocean remote sensing, whether it is

infrared or visible light observations of scanning imaging or

microwave measurements, the measured data (including element

data inverted according to a certain pattern) is specific in time and
FIGURE 1

Process diagram of duplicate data deletion system.
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space, reflecting the characteristics of ocean elements under specific

spatiotemporal conditions; Other data such as ship reports also have

similar characteristics; Although numerical simulation product data

can be obtained repeatedly under certain conditions, a certain type of

product data can still be considered as special original obtained data,

and therefore also considered as having originality. Moreover,

certainty, this characteristic is easy to understand. Certainty refers

to the very accurate observation of ocean element data, such as the

measurement accuracy of water temperature and depth and the

measurement time and space, which are all very precise. There are

also many categories included in ocean observation data, such as the

inferential, fuzzy, and multi-level nature of ocean element data. We

mentioned the characteristics of ocean observation data, and

ultimately, the most important point is that ocean observation data

may contain non-renewable data after observation. Therefore, storing

each observation is crucial, and the disk space challenge caused by

storing a large amount of data must be addressed. So, when facing

practical problems, we need to consider the various bottlenecks of

duplicate data deletion technology and improve duplicate data

deletion technology according to the characteristics of ocean

observation data.
2.3 Motivation

On this occasion, we have learned about the principle of data

deduplication technology and the particularity of ocean observation

data. Therefore, we consider applying data deduplication

technology to ocean observation stations. Of course, we have also

done this. Before this research, we optimized the segmentation

module of data deduplication technology and finally applied it to

the data deduplication system of ocean observation stations.

However, the research at that time mainly aimed to improve the

data deduplication rate and neglected some retrieval efficiency.

Therefore, we will make up for this overlooked efficiency in this

article. The data deduplication system is coherent, so we hope to

recover the efficiency lost when we segment it in the subsequent

retrieval process. At the same time, we learned about the conflicting

issues in the retrieval process, such as how to choose between

fingerprint tables in memory and whether to store them in memory

or external storage. Of course, no matter how we choose, improving

the efficiency of retrieval is crucial because, no matter where it is

placed, improving the efficiency of retrieval will accelerate the

operation efficiency of the entire system. Therefore, this article

chooses algorithms that can accelerate indexing efficiency, and

regardless of which method is chosen, the ultimate goal is to

improve efficiency. At the same time, we consider that a portion

of the fingerprint tables can be stored in memory and another

portion in external storage, and how to make a decision is also the

main research direction of this article. This article will divide the

ocean observation data based on certain characteristics to ensure

that the fingerprint tables in memory can receive more access times

to improve the efficiency of the entire system. In summary, to

address the various problems in the retrieval process of existing

duplicate data removal systems, this paper proposes a fast indexing
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method based on locally sensitive hashing to solve the problem,

which can accelerate the efficiency of the entire duplicate data

removal system through fast indexing. At the same time, in-depth

research has been conducted on the storage of fingerprint tables to

ensure the improvement of the speed of duplicate data deletion

technology in the retrieval process.
3 Related work

When we learn about data deduplication technology, we first

need to understand that the original purpose of CDC was to reduce

network traffic consumption when transferring files. Spring and

Wetherall (2000) designed the first block-based algorithm using the

Border method (Broder, 1997) with the aim of better identifying

redundant network traffic and reducing consumption.

Muthitacharoen et al. (Spring and Wetherall, 2000) proposed a

CDC-based file system called LBFS, which enriches the CDC chunk

algorithm to reduce and eliminate duplicate data in lowbandwidth

network file systems. You et al. (2005) used the CDC algorithm to

reduce data redundancy in archive storage systems. However, due

to the time-consuming calculation of Rabin fingerprints in the CDC

algorithm, which results in a waste of computing resources, many

methods have been proposed to replace Rabin to accelerate the

speed of CDC (Xia et al., 2014; Agarwal et al., 2010; Zhang et al.,

2015) The encryption function required in the fingerprint

recognition process (such as Rabin) can be accelerated through

parallel strategies (Xia et al., 2019) Moreover, using the modified

version of AE (Zhang et al., 2016) to accelerate the time required for

calculating fingerprints.

The retrieval problem in the face of duplicate data deletion

technology can be roughly divided into global and partial indexing.

The global index maintains the metadata of all stored data blocks.

Searching for the fingerprint of each new data block in the index can

identify all duplicates and achieve the best data de-duplication rate.

Due to the requirement for high search throughput, many studies

have focused on improving the read performance of full indexes.

With the help of Bloom filters and index segment caching, DDFS

(Zhu et al., 2008) reduces the large amount of storage reads required

for data block fingerprint lookup. SkimpyStash (Debnath et al.,

2011) stores the metadata of data blocks in a flash and indexes them

in a memory hash table. Bloom filters are used to improve reading

performance. Considering the location of data deletion in the

duplicate data removal system, ChunkStash (Debnath et al., 2010)

buffers index metadata in memory until it reaches the size of a flash

page. Index lookup can benefit from page-based IO, which

preserves the location of de-duplicated data blocks. BloomStore

(Lu et al., 2012) focuses on improving memory efficiency by using

bloom filters to eliminate unnecessary flash reads. Due to the read-

intensive search workload in the index of data de-duplication,

BloomStore can avoid the flash reading of non-existent data block

fingerprints by caching Bloom filters and parallel checking

Bloom filters.

Although this technology uses different optimizations to reduce

storage reads of global indexes, the efficiency of storage reads
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increases with the size of stored data. To address this issue, partial

indexing is proposed, effectively reducing storage reads by searching

only a small portion of the storage block. Another direction for

global indexing is partial indexing, whose basic idea is to search for

new data block fingerprints on a selected subset of stored data

blocks, thereby reducing the number of storage reads and increasing

throughput. According to observations, backup data from the same

source are usually highly similar (Wallace et al., 2012; Park and

Lilja, 2010) The new data block is deduplicated using a batch

processing method called Data Deduplication Window (DW). If

we store the metadata of stored data blocks in groups (called tuples)

in a “log”manner to maintain locality, we can find tuples that share

a certain number of blocks with tuples in DW. These shared blocks

are duplicated; the remaining data blocks are considered’ unique’.

The main goal of partial indexing is to index tuples in memory and

quickly select tuples that may overlap highly with tuples in DW.

Studies indicate that backup data from the same source generally

have highly similar characteristics (Wallace et al., 2012; Park and

Lilja, 2010) Therefore, partial indexing techniques are proposed. In

order to index all tuples using pure memory structures, partial

indexing selects a small portion of data block fingerprints from each

tuple as a representative (hook).

The memory’s fingerprint table (hook index) maintains the

mapping from hooks to their corresponding tuple addresses. After

accumulating a new batch of data blocks in DW, check the

fingerprint of the new data blocks in the hook index. If it matches

one or more hooks (hook hits), there is a high possibility that some

data blocks from the same tuple may also appear in the DW due to

the excellent positional location of the backup data. Sparse indexing

(Lillibridge et al., 2009) extreme binary (Bhagwat et al., 2009) SiLo

(Xia et al., 2011) and LIPA (Xu et al., 2019) all use data segments as

tuples. The duplicate data removal system generates a recipe based

on the order in which data blocks are generated in the input data

stream, strictly preserving the order of data blocks during duplicate

data removal, regardless of whether the data blocks are duplicates.

Sparse indexing calculates the hook hit rate for each tuple and

selects the tuple with the highest hook hit rate based on the

calculation. Extreme Binning (Bhagwat et al., 2009) is designed

for backup based on a single file. It uses the overall recipe of each file

as a tuple. When performing duplicate data deletion on a new file,

Extreme Binning selects recipe segments from the most similar files

and performs duplicate data deletion on the data blocks of the new

file based on the data blocks in the selected similar files. SiLo (Xia

et al., 2011) further extends extreme boxing by simultaneously

considering the similarity of files and the locality of blocks.

SiLo concatenates similar small files together as one data block

and divides large files into several data blocks. To perform duplicate

data deletion on a new data block, SiLo identifies the most similar

data block among existing data blocks. It performs duplicate data

deletion based on the data blocks in the block. LIPA (Xu et al., 2019)

uses reinforcement learning-based algorithms to determine the

similarity between recipe segments and data blocks in DW, thereby

achieving higher data deduplication rates. Meanwhile, in recent years,

countless technologies have combined distributed systems with data

deduplication. Among them, cluster-based sharding methods have
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achieved considerable data deduplication efficiency on a single system

while supporting high throughput (Zhou et al., 2022) Moreover, a

system proposed to simultaneously perform client and server

duplicate data deletion when faced with forced duplicate data

deletion of many concurrent backup streams during peak backup

loads (Ammons et al., 2022) In recent years, there has also been a

problem of pushing duplicate data removal to the network edge. A

new distributed edge-assisted duplicate data removal (EF dedup)

framework has been proposed. Maintain a duplicate data removal

index structure between them using distributed key-value storage and

perform duplicate data removal within these clusters (Li et al., 2022)

These frameworks can effectively solve the contradictions of current

data deduplication technology. However, this project aims to shift the

focus back to the retrieval problem in data deduplication technology,

using machine learning-assisted fingerprint table retrieval in

combination with distributed operating systems and data

deduplication technology. To lay the foundation for subsequent

ocean observations in data storage.

Meanwhile, with the vigorous development of various industries

in recent years, the application of duplicate data deletion technology

is becoming increasingly widespread. The most notable among them

is the data deduplication technology in cloud storage (Mahesh et al.,

2020) However, there are also more security issues in cloud

computing, as PraJapanese et al. (Prajapati and Shah, 2022) made a

stunning statement about the security issues in data deduplication

technology. Even Yuan et al. (2020) proposed blockchain-based

duplicate data removal technology in the popular field of

blockchain. In addition to the challenges proposed by Azad et al.

At the same time, PG et al. (Shynu et al., 2020) proposed a solution to

the network edge problem (Al Azad and Mastorakis, 2022).
4 Fast retrieval algorithm based on
locally sensitive hash

This chapter will explore the retrieval part of the duplicate data

removal system. The retrieval part is the second most important

focus of the entire duplicate data removal system, and the retrieval

speed will directly determine the entire system’s efficiency.

Therefore, this article introduces a fast retrieval method aimed at

improving the entire system’s efficiency in terms of retrieval. In this

chapter, we will provide a detailed introduction to implementing a

retrieval algorithm based on locally sensitive hashing and the

optimization strategy for buckets. Finally, we will discuss how to

choose the storage of fingerprint tables based on the characteristics

of ocean observation data.
4.1 Fast retrieval algorithm based on locally
sensitive hash

In order to address the existing problems in the retrieval process

of the duplicate data removal system, this section proposes a fast

retrieval technique based on locally sensitive hashing. By extracting
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the similarity of data blocks and constructing multiple data buckets,

when similar data blocks appear, the data bucket can be quickly

selected and retrieved within the bucket, achieving a fast retrieval

function. In this section, we will first introduce the application of

locally sensitive hashing, then propose solutions based on existing

situations, and finally explain the entire idea of retrieval based on

locally sensitive hashing.

4.1.1 Local sensitive hashing strategy
Firstly, local sensitive hashing is an approximate nearest

neighbour fast search technique applied in the face of massive

high-dimensional data. In many different application fields, we

often face an astonishing amount of data that needs processing

and generally has high dimensions. Quickly finding the data or a set

closest to certain data from a massive high-dimensional data set has

become a challenging problem. If the data we face is a small, low-

dimensional dataset, we can solve this problem using linear search.

However, for the current situation, most of them are high-

dimensional and large datasets that need to be processed. If we

still use linear search, it will waste much time. Therefore, to solve

the problem of dealing with massive high-dimensional data, we

need to adopt some indexing techniques to accelerate the search

process and speed. This technique is usually called nearest

neighbour search, and local sensitive hashing is precisely this

technique as shown in Figure 2.

Traditional hashing maps initial data to corresponding buckets,

while locally sensitive hashing, compared to traditional hashing,

maps or projects two adjacent data points in the initial data space

through the same transformation. These two adjacent points in the

original space still have a high probability of being close to the new

data space. The probability of two non-adjacent data points in the

original space being mapped or projected to the same bucket is very

low. In summary, if we perform some hash mapping on the initial

data, locally sensitive hashing can help us map two adjacent data
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points to the same bucket with a high probability of having the same

bucket number. In ocean observation stations, the daily amount of

data generated is astonishing. In duplicate data removal systems,

the data blocks cut by data streams are also massive amounts of

data, making them very suitable for the application scenario of

locally sensitive hashing. We hope to achieve fast retrieval when

fingerprints are used in the data deduplication system. We hope

that the searched data block can be mapped through local sensitive

hashing to find the same data block in its bucket, thus achieving the

goal of fast retrieval and saving computing resources. However, to

determine whether two data blocks are similar, we have to mention

a concept, the Jaccard coefficient. It is expressed as Formula 1,

where the larger the Jaccard coefficient, the greater the similarity,

and vice versa.

J(A,B) =
A ∩ Bj j
A ∪ Bj j (1)

As shown in Figure 3. The method of local sensitive hashing is

to perform a hash mapping on all the data in the initial dataset, and

then we can obtain a hash table. These initial datasets will be

scattered and shuffled into buckets in the hash table, and each

bucket will load some initial data. However, there is a high

probability that data belonging to the same bucket will be

adjacent, although this is not absolute, and there may also be

situations where non-adjacent data is mapped to the same bucket.

Therefore, if we can find some hash functions that enable data to fall

into the same bucket after being hashed and transformed by these

hash functions in the original space, it becomes much simpler for us

to perform the nearest neighbour search in the data set. We only

need to hash map the data to be retrieved to obtain its mapped

bucket number, then extract all the data inside the bucket

corresponding to that bucket number, and perform a linear

search on these data to find the data adjacent to the query data.

As shown in the figure below, after a position-sensitive hash
FIGURE 2

Schematic diagram of locally sensitive hash.
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function hashed it for q, its rNN may be hashed to the same bucket

(such as the first bucket). The probability of hashing to the first

bucket is relatively high, which will be greater than a certain

probability threshold p1. However, objects outside of its (1 + e)
rNN are unlikely to be hashed to the first bucket, meaning the

probability of hashing to the first bucket is small and will be less

than a certain threshold p2. It is expressed as Equations 2 and 3.

p1 = Pr½I(p)
= I(q)�(is  “ high” if p is  “ close ” to q : ) (2)

p2 = Pr½I(p)
= I(q)�(is  “ low ” if p is  “ far ” from q : ) (3)

In other words, after the mapping transformation operation of

the hash function, we divide the initial data set into many sub-

datasets. The data in each sub-data set are close to each other, and

the number of elements in the sub-data set is relatively small.

Therefore, the problem of finding neighbouring elements in a large

set is transformed into the problem of finding neighbouring

elements in a relatively small data set, which reduces the

computational cost. Alternatively, it can be understood as

converting high-dimensional data into low-dimensional data

while maintaining the similarity characteristics of the original

data within a certain range. However, locally sensitive hashing

cannot guarantee determinism. It is probabilistic, or it is possible

to map two originally similar data into two completely different

hash values or to map originally dissimilar data into the same hash

value. High-dimensional data is inevitable in dimensionality

reduction, as there will inevitably be some degree of data loss

during the operation. However, fortunately, the design of locally

sensitive hashing can adjust the corresponding parameters to

control the probability of such errors as much as possible. This is

also an important reason why locally sensitive hashing is widely

used in various fields. The logic of locally sensitive hashing in this

article is shown in the following figure. All similar data blocks in the

fingerprint table will be divided into the same bucket. When
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retrieving a new data block, only the bucket where the data block

should be stored must be searched. There is no need to traverse the

entire fingerprint table for searching, which greatly reduces the time

and computational consumption in the data block retrieval process

and can accelerate the retrieval efficiency.

As shown in Figure 4, when a data block needs to be retrieved

during the retrieval process, we can see that the local sensitive hash

will calculate the bucket number that the data block should be

placed in and perform the retrieval within that bucket. Regardless of

whether the data block is previously stored, it can achieve the goal of

fast retrieval.
4.1.2 Local sensitive hash implementation
In this article, the first step is to abstract the actual problem to

achieve fast retrieval based on locally sensitive hashing. In practical

problems, this article aims to achieve that when a data block’s

fingerprint is passed in, it can be linearly searched within the range

of its similar fingerprints by searching for similar fingerprints rather

than retrieving the entire fingerprint table. Therefore, the

corresponding local sensitive hash directly searches for the bucket

corresponding to a data block fingerprint after inputting it. At the

same time, we need to understand several concepts: Euclidean

distance, Jaccard distance, Hamming distance, and. The Euclidean

distance in locally sensitive hashing refers to Equation 4:

H(V) =
V*R + b

a
(4)

R is a random vector, a is the bucket width, and b is a random

variable uniformly distributed between [0, a]. It can also be

understood that all vectors are mapped to a straight line through

a hash function, and the mapped line is composed of many line

segments of length a. Each vector V will be randomly mapped to a

different line segment. Jaccard distance is a formula used to

calculate the similarity between two data blocks. Hamming

distance refers to the number of times the values at the

corresponding positions in two vectors of the same length differ.

We have completed the integration of practical problems and
FIGURE 3

Diagram 1 of fast retrieval technology based on local sensitive hash.
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locally sensitive hashing. Next, we will provide a detailed

introduction to the specific implementation process:
Fron
Step 1: Data Preprocessing. Before completing feature extraction,

we need to perform a preprocessing step on the data, which

may include data cleaning, supplementing missing data, and

standardizing the data. However, we only need to supplement

the missing data in this article. In addition, the dataset used in

this article is the chunking technique explained in the previous

chapter, which uses the chunking technique to chunk the data

and obtain the hash value of the data block. Finally, the data

block size is applied as the second feature.

Step 2: Feature Extraction. In this section, we need to convert

various data items in the dataset into feature vectors. This

step is based on buckets, where each bucket contains

multiple data blocks. The feature l of each data block is

composed of multiple parameters, including the data block

identifier DID, data block size Chunksize, and feature l as

shown in Formula 5:
l = (DID,Chunksize) (5)
• Data Block Identification: The numerical value obtained by

hashing the content of a data block (such as SHA-1) is used

as the unique identifier for that data block.

• Data block size: Different sizes of data blocks are obtained

based on different data block segmentation methods.

Step 3: Create a locally sensitive hash model. First, in offline

mode, map all the vectors completed in the previous step to

their respective index positions using the determined hash

function. Then, input a vector to be searched and calculate

the hash value using the same function as in the previous
tiers in Marine Science 08211
step. Find all the vectors in that vector’s corresponding hash

value positions, and calculate the Euclidean distance using the

corresponding Euclidean distance calculation method. Finally,

select the n vectors with the smallest Euclidean distance as the n

results that are closest or most similar to the input vector.

Step 4: Optimize the number of hash buckets. When facing different

practical problems, if the data volume is small, we can choose to

optimize the number of hash buckets. By increasing or

decreasing the number of hash tables for locally sensitive

hashes, we can reduce the number of buckets to cope with

different situations and practical problems. If the data volume is

too large and the features are obvious, we can appropriately

increase the number of hash buckets. Conversely, if the features

are not obvious and the data volume is small, we can reduce the

number of hash buckets to speed up the retrieval process.

Below we will provide pseudocode for local sensitive hashing as

shown in Algorithm 1.

We can obtain a set of data block fingerprints through the above

code, similar to the input data block fingerprint. If we can search for the

input data block fingerprint within this set of data block fingerprints,

we can save the need to search for the fingerprint of the data block to be

retrieved from the entire fingerprint table. It can be simply finding the

bucket number to which the data block to be retrieved belongs, making

the number of data blocks in the entire bucket much simpler and more

convenient than the entire hash table. It can be understood as

simplifying large problems into small ones, achieving global

optimization through local optimization. At the same time, it is

emphasized that the fast retrieval based on locally sensitive hashing

proposed in this section is aimed at saving computational resources

when dealing with large-scale data. The purpose is to save the time

wasted by linear retrieval, but it does not mean it can achieve fast

retrieval in any scenario. The rough flowchart of fast retrieval and

computation based on locally sensitive hashing is shown in Figure 5.
FIGURE 4

Diagram 2 of fast retrieval technology based on local sensitive hash.
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Input: Fingerprint of the data block to be retrieved;

Output: Fingerprint of data blocks that are similar to the

fingerprint of the data block to be retrieved;

1: def_init_(self, tables_num:int, a:int, depth:int):

2: self.tables_num = tables_num

3: self.a = a

4: self.R = np.random.random([depth, tables_num])

5: self.b = np.random.uniform(0, a, [1, tables_num])

6:self.hash_tables = [dict() for i in range(tables_num)do]

7: def_hash(self, inputs: Union[List[List],

np.ndarray]):

8: hash_val = np.floor(np.abs(np.matmul(inputs, self.R)

+ self.b)/self.a)

9: return hash_val

10: def insert(self, inputs):

11: inputs = np.array(inputs)

12: IF len(inputs.shape) == 1 then inputs =

inputs.reshape([1, -1])
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13: hash_index = self. hash(inputs)

14: for inputs_one, indexs in zip(inputs, hash_index) do

15: for i, key inenumerate(indesx) do self.hash_tables

[i].setdefault(ley, []).append(tuple(inputs_one))

16: end for

17: end for

18: def query(self, inputs, nums=20):

19: hash_val = self._hash(inputs).ravel()

20: candidates = set()

2 1 : f o r i , k e y i n e n u m e r a t e ( h a s h _ v a l ) d o

candidates.update(self.hash_tables[i][key])

22: end for

23: candidates = sorted(candidates, key=lambda x:

self.euclidean_dis(x, inputs))

24: return candidates[:nums]

25: def euclidean dis(x, y):

26: x = np.array(x)
FIGURE 5

Local sensitive hash flowchart.
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27: y = np.array(y)

28: return np.sqrt(np.sum(np.power(x - y, 2)))

29: IF_name _== ‘_main_’ then

30: data = np.random.random([10000, 100])

31: query = np.random.random([100])

32: lsh = EuclideanLSH(10, 1, 100)

33: lsh.insert(data)

34: res = lsh.query(query, 20)

35: res = np.array(res)

36: print(np.sum(np.power(res - query, 2), axis=-1))

37: sort = np.argsort(np.sum(np.power(data - query, 2),

axis=-1))

38: print(np.sum(np.power(data[sort[:20]] - query, 2),

axis=-1))

39: print(np.sum(np.power(data[sort[-20]]: - query, 2),

axis=-1)) =0

Algorithm 1. Locality-sensitive hashing.
4.2 Bucket optimization strategy

Before discussing this issue, we need to think about why we

need to optimize the number of buckets. In practical applications, if

we initially designed 5 buckets, as the amount of data that needs to

be stored continues to increase, if we still scatter the data in five

buckets, our retrieval efficiency will become lower and lower.

Suppose we can continuously optimize the number of buckets

according to the changes in the amount of data that needs to be

stored. In that case, the entire duplicate data removal system will

have a reasonable usage method. At the same time, we also need to

consider another situation. Our initial design still had 5 buckets, but

the storage device has just been replaced, and the amount of data we

store is small. Therefore, we need to consider whether it is still

necessary to use 5 buckets. In these two real-life situations, we need

to make changes according to our different needs to achieve a

satisfactory state of our duplicate data deletion system.

Implementing this is not difficult. We only need to visualize the

number of buckets in various states to intuitively understand whether

the number of buckets we are currently using is reasonable. The specific

implementation algorithm is as follows as shown in Algorithm 2:
Fron
Input: The number of hash functions in LSH and the number

of buckets for each hash function;
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Output: Visualization results;

1: spark=SparkSession.builder.getOrCreate()

2 : d a ta = s pa r k . re a d .c s v ( “ “ , h ea d e r =T r u e,

inferSchema=True)

3: data=data.dropna()

4 : a s se m b le r = V et o r As s e m bl e r (i n p u tC o l s=

[“featuer1”,”featuer2”],outputCol=“featuer”)

5: data=assembler.transform(data)

6 : l s h = M i n H a s h L S H ( i n p u t C o l = “ f e a t u e r ” ,

outputCol=“hashes”,numHashTables=5)

7: model=lsh.fit(data)

8: hashedData=model.transform(data)

9: model=lsh.setNumHashTables(10).fit(data)

10: hashedData=model.transform(data)

11: hashedData.groupBy(“hashes”).count().show() =0
Algorithm 2. Bucket optimization algorithm.
We can solve existing problems intuitively through visual

results. At the same time, we can make other optimizations based

on the situation inside the bucket, such as the fingerprint table

selection strategy under the ocean observation dataset mentioned in

our next section. Through intuitive data, we can change the number

of buckets for locally sensitive hashes based on storage requirements

and analyze the dataset’s characteristics through result graphs.

However, in this article, we focus more on applying it to

optimizing the number of buckets. At the same time, with

continuous optimization, we can even analyze within which range

the amount of data and how many buckets are more reasonable,

laying a solid foundation for future work.
4.3 Fingerprint table selection strategy in
ocean observation datasets

Before facing this problem, we need to understand why we need

to make a decision strategy for fingerprint tables. Let us imagine

that in the storage system of an ocean observation station, we use a

duplicate data deletion system to achieve the goal of storing more

data. As the amount of data increases, the fingerprint table in our

memory will continue to grow. Just like the simple example we gave

in our article, assuming the average size of a data block is 8KB, the

generated fingerprints will be about 20GB. If we store 8TB of data,
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https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jia et al. 10.3389/fmars.2025.1534900
we will generate nearly 20GB of fingerprints, which means we need

to store nearly 20GB of fingerprint tables in our memory. The

continuous increase of data will undoubtedly bring a huge

memory burden.

The strategy of this article is to store a portion of the fingerprint

tables in memory and another in external storage. The obvious

purpose of this is to reduce the burden on memory. There are many

advantages to doing this: 1. Save memory: Storing a portion of the

hash table in external storage can effectively save memory resources,

allowing the system to process larger datasets without being limited

by memory size. 2. Improve performance: By storing hotspot data in

memory, the search process for common data blocks can be

accelerated without loading from disk every time. 3. Higher

scalability: When processing very large amounts of data, the

storage capacity of memory is limited, while external storage can

provide almost unlimited expansion space, ensuring that the system

can handle larger-scale deduplication tasks.

The benefits of doing so are self-evident, but the more

important issue is deciding which part of the data to store in

memory and which part to store in external storage. Since we only

focus on ocean observation data in this article to solve the problem

of storage devices for ocean observation stations, can we understand

it this way? When facing time series datasets such as ocean

observation, as long as there are more similar data blocks, we can

understand that the probability of them appearing in the future

observation process is also greater, which is what we understand as

hot data. In other words, if there are many similar data blocks in

some buckets generated by locally sensitive hashing, these data

blocks can be defined as hotspot data. So we can store the

fingerprint table of this bucket in memory and the rest in external

storage if we divide the data into 5 buckets through local sensitive

hashing, namely bucket 1, bucket 2, bucket 3, bucket 4, and bucket

5. Briefly introduce the meanings of a few characters: assuming that

the access frequency of each data block is the same, the access

frequency of each bucket is ai, the number of data blocks in each

bucket is ni, and the average size of each data block is kl,S represents

the saved memory space size,m is the number of buckets stored in

external storage, Ah represents the total required space size, and At

represents the external storage space size. As shown in Equation 6:

S = Ah − At = kl · n −o
m

i=1
ni · kl (6)

So, the consumption of external storage access mainly depends

on each bucket’s data volume and the pain’s access frequency. At this

point, we assume that the delay of external storage is the constant

time Text, and each external storage access consumes a fixed time. The

consumption of accessing external storage is proportional to the

bucket’s data volume and access frequency. For bucket i, the external

storage access consumption Qi is Equation 7:

Qi = ai · ni · kl · Text (7)

Therefore, the total access consumption Q is Equation 8:

Q =o
m

i=1
ai · ni · kl · Text (8)
Frontiers in Marine Science 11214
Usually, we can choose buckets that are painful to put into

memory and have high access frequency based on the following

criteria: buckets with higher access frequency ai are usually chosen

to put into memory because they will bring higher performance

improvement. The bucket in memory should be the largest bucket

of ai. Memory capacity limitation: Due to limited memory, storing

some high-frequency access buckets in memory may only be

possible. Usually, the storage capacity of memory Mmemis

limited, so only buckets with high occupancy and access

frequency can be selected until the memory capacity is filled.
5 Experimental results and discussion

Next, we will introduce the experimental results based on locally

sensitive hashing. In this section, we will present the experiments

based on local sensitive hashing in three directions: the impact of

hash tables on the number of buckets, whether the goal of retrieving

data blocks can be achieved, and retrieval efficiency. The specific

details are as follows.
5.1 Experimental environment and data set
source

The computers used in this experiment are shown in Table 1,

and the data set used in this experiment is shown in Table 2. The

datasets 1–4 used in this article are all from ocean observation

datasets, which are a set of time series data sets generated by time

changes, while the data set 5–8 is a data set generated by public daily

network life. The more important reason for listing different data

sets is to observe whether DSW is more suitable for deleting data

generated by time series.While the proposed data partitioning

framework effectively leverages temporal correlations in ocean

observation datasets, its current implementation is tailored to the

spatially constrained nature of the target private datasets, which

originate from fixed-location sensors. These proprietary datasets

exhibit dense temporal sampling but limited spatial coverage,

spanning no more than 500 km2 in targeted zones—contrasting with

global-scale datasets like Argo or satellite remote sensing products. As a

result, the framework prioritizes temporal partitioning to exploit intra-

site time-series dependencies, which are critical for applications such as

localized anomaly detection or short-term environmental forecasting in

these confined environments as shown in Table 3.
TABLE 1 Specific operating environment of the experiment.

Device name DELL XPS 8950

Processor 12th Gen Intel(R)Core(TM)i7-12700 2.10 GHz

RAM 64.0GB(63.7GB Available)

System type Windows11/Ubnutu 22.04

Display adapter NVIDIA GeForce RTX 3060 12GB
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5.2 The relationship between hash table
and bucket

Firstly, we examined the impact of mapping the hash table on

the number of buckets. As shown in the Figure 6, we can indirectly

optimize the number of buckets by changing the hash table. This

operation can be applied to different environments, as shown in

Figure 6. We can see that when we change the number of hash

tables, the number of buckets will decrease as the number of hash

tables decreases. Through experiments, we can see the relationship

between the hash table and the number of buckets, so we can

control the number by changing the number of hash tables. When

faced with large-scale data, such as the storage environment of
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ocean observation stations, we can reduce the number of

comparisons and thus reduce the computational cost of retrieval

by increasing the number of buckets and dispersing the data into

more buckets.
5.3 Retrieve test results

On the other hand, we check whether the local sensitive hash

model can provide us with a set of fingerprints similar to the

fingerprint being queried by inputting the fingerprint to be queried.

This section of the experiment mainly tests whether we can obtain

the hash value we want through locally sensitive hashing. Therefore,
frontiersin.org
TABLE 2 Details of all data sets used in this experiment.

Name Source Size Specific content of
the dataset

1 Ocean observation dataset 1(OD1) Ocean observation station collection 1.94GB Voyage data

2 Ocean observation dataset 2(OD2) Ocean observation station collection 1.83GB Buoy data

3 Ocean observation dataset 3(OD3) Ocean observation station collection 1.01GB Hidden target data

4 Ocean observation dataset 4(OD4) Ocean observation station collection 1.92GB Remote sensing data

5 General Dataset 1(GD1) networkrepository.com 57.3MB Web document data

6 General Dataset 2(GD2) networkrepository.com 661MB Web document data

7 General Dataset 3(GD3) networkrepository.com 852MB Web document data

8 General Dataset 4(GD4) networkrepository.com 878MB Web document data
TABLE 3 Data features algorithm adaptation comparison table.

Data Attribute Marine Observation Context Algorithm Adjustments

1
Time-

series dependency
Continuous high-frequency sampling requires retention of time

dependency relationships
Sliding Time Window

2
Non-

renewable nature

In situ sensor failure leads to data loss that
cannot be recovered, and data integrity

verification is required

Real time CRC verification mechanism during
data acquisition

3 Large volume
Single site generates over 10GB of time-series data

per day, requiring compatibility with distributed storage
Indexing with Space-Time Grid
FIGURE 6

Visualization of the impact of bucket count.
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in this experiment section, we added a test data block from the

training set to test whether this algorithm can accurately find the

data block when it reappears. We continuously input 1000

randomly selected sets of data blocks for testing. These 1000 data

blocks are all from the data block groups in the

As shown in Table 4, when we input the fingerprint to be

queried, the local sensitive hash model can provide us with a set of

fingerprints similar to the queried fingerprint. The table shows that

after each input, there is an accurate data block in memory with an

Euclidean distance of 0 from the input data block fingerprint, which

is the backup of the data block in memory. This also indicates that

the model can accurately identify whether the data block exists in

memory and that the retrieval function is intact and can be applied.

After this round of experiments, we can proceed to the next section

of the experiment to further verify how much computational

consumption can be reduced by the retrieval technology based on

locally sensitive hashing in practical applications and to improve the

subsequent work.
5.4 Mixed test results

Next, we will mix the data blocks in the training set with those

that do not exist in the training set. In this experiment, we will
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prepare four sets of data, with a total of 1000 data blocks present in

the training set, accounting for 20%, 40%, 60%, and 80%,

respectively, as inputs to test the optimization ratio of the local

sensitive hash based retrieval technique compared to traditional

linear search in reducing the number of comparisons. As shown in

Figure 7, as the proportion of the training set continues to increase,

the retrieval technique based on local sensitive hashing also

becomes increasingly effective in reducing the number of

comparisons. This proves that in the practical application

scenario of ocean observation stations, the retrieval technique

based on local sensitive hashing will improve more over time

compared to traditional linear search. This also greatly saves

computational costs.
5.5 Comparison of differences between
internal and external storage fingerprint
tables

In the Figure 8, for the convenience of comparison and viewing,

we have subtracted the memory consumption from LSH’s memory

consumption of LSH, aiming to make the comparison clearer. From

the figure, we can see that under the same dataset type, the memory

consumption of LSH is significantly lower than that of ordinary
FIGURE 7

Optimization ratio result chart.
TABLE 4 Algorithm provides a schematic table of results.

Similar results provided by LSH Input data block fingerprint

ea13550d354f178211a33 772f1c46619ffa81114 ea13550d354f178211a33772f1c46619ffa81114, 960053af900262d8647867224b7099dd7b9e61ea, …

d77a30f6e3349b06fc10ae 541698ea1c43927fe0 d77a30f6e3349b06fc10ae541698ea1c43927fe0, 3f6223a1e77363fb10ede586fdfe2f7810d18a23, …

30bcb804a9aaa4e6e4dc7 e990bc7d15115ac856b 30bcb804a9aaa4e6e4dc7e990bc7d15115ac856b, 00d48d219fcd64b392175c4882c6017c9b758e5e, …

30a9318a3cc9fb13700da 0e350ef0a9dbc47ca2f 30a9318a3cc9fb13700da0e350ef0a9dbc47ca2f, 06e7cbd6cb45751cbeefbc2633a9e8989e1ae0db, …

c84d21e904cca69bc4532 c4ec06c1ec981d3fa9e c84d21e904cca69bc4532c4ec06c1ec981d3fa9e, 7da99e56853c55368528cb793dff6cc54a7a1ccb, …

… …
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retrieval algorithms. This is because we store a part of the

fingerprint table externally. Under the same LSH algorithm,

memory consumption is lower due to the particularity of ocean

observation data. Compared to the normal retrieval algorithm LSH,

storing a portion of the fingerprint table externally reduces

memory consumption.
5.6 Data duplication removal ratio

As shown in Figure 9, the comparison between the double

sliding window segmentation algorithm and the content-based

segmentation algorithm in the figure shows the disadvantages of

LSH. Due to its occasional errors, the proportion of duplicate data

deletion may be slightly reduced. However, reducing the duplicate

data deletion ratio is within our acceptable range as it can accelerate
Frontiers in Marine Science 14217
retrieval speed. This is an abandonment problem, and we can

tolerate abandoning a small portion of the duplicate data deletion

ratio to improve the overall system efficiency.
6 Conclusions and future prospects

This article proposes a fast retrieval strategy for ocean

observation data based on locally sensitive hashing, aiming to

reduce the computational consumption of the duplicate data

deletion system during the retrieval process. In order to achieve

fast retrieval, similar data blocks are placed in similar buckets. In

this way, when searching for the data block, only the corresponding

bucket needs to be searched for the data block, without the need to

search for all the data blocks. This can achieve the goal of saving

computing resources and accelerate the retrieval speed. Finally, this
FIGURE 8

Memory usage comparison chart.
FIGURE 9

Duplicate data deletion ratio result chart.
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article demonstrates through reasonable and rigorous experiments

that as the amount of data in the storage device increases, the

efficiency of fast retrieval algorithms based on local sensitive

hashing also increases compared to other retrieval algorithms.

In future work, we will strive to apply fast retrieval algorithms

based on locally sensitive hashing to other data, making them more

widely applicable.
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1 Introduction

Rivers and lakes serve as critically important water bodies on Earth’s surface. Currently,

freshwater algal blooms have become a global ecological phenomenon, occurring in diverse

water bodies such as lakes, rivers, and reservoirs across temperate and tropical regions, and

have increased significantly over the past several decades. Since the 1980s, around 68% of

the world’s lakes have undergone a persistent rise in algal bloom intensity (Ho et al., 2019;

Sukharevich and Polyak, 2020). The degradation of water quality and eutrophication in

global freshwater systems have emerged as significant environmental challenges,

predominantly driven by anthropogenic activities and accelerating climate change

(Suresh et al., 2023; Van Vliet et al., 2023; Liu et al., 2020; Wang et al., 2020). The

occurrence of algal blooms in inland waters poses a serious threat to aquatic ecosystems and

public health and safety (Brooks et al., 2016). Waters affected by algal blooms often exhibit

high levels of eutrophication, and the subsequent death of blooms can deplete dissolved

oxygen, resulting in black bloom events. Beyond degrading water aesthetics and severely

damaging aquatic ecosystems, algal blooms also pose health risks to humans and animals

through their associated toxins.

Remote sensing demonstrates distinct advantages in aquatic environmental monitoring

through its comprehensive spatial information acquisition, operational efficiency, and cost-

effectiveness. It enables the timely detection of marine environmental risks such as algal

blooms and oil spills, and supports the rapid identification of water quality anomalies in

coastal bays and estuarine rivers, as well as pollution source tracking. These capabilities

have established novel research pathways for forecasting river-to-ocean pollution events

through enhanced spatiotemporal monitoring frameworks. For example, Chen et al. (2023)

used 30 years (1990–2019) of data to analyze the spatial and temporal characteristics of the

Harmful algal blooms (HABs) along the Chinese coasts. To assess the feasibility of remote

sensing for detecting HABs in small to medium-sized waterbodies, Liu et al. (2022) applied

data from three satellites—Planetscope, Sentinel-2 and Landsat-8—to analyze the impacts

of spatial resolution, spectral band availability, and waterbody size on detection accuracy.

Similarly, Binding et al. (2018) investigated algal bloom dynamics in Lake Winnipeg using
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satellite-derived chlorophyll-a (Chl-a) and metrics of bloom

intensity, spatial extent, severity, and duration over the MERIS

mission period. Current remote sensing monitoring of algal blooms,

however, predominantly targets large water bodies (e.g., oceans,

lakes, and reservoirs), while riverine algal blooms have received

disproportionately less attention. This disparity is primarily

attributed to the lower bloom frequency in river systems

compared to lentic ecosystems, coupled with the heightened

requirements for retrieval accuracy and stability imposed by

complex river hydrodynamics (Rolim et al., 2023).

Algal bloom retrieval models with remote sensing are primarily

classified into three categories: empirical, semi-empirical, and

physical models (Li et al., 2025; Yang et al., 2025; Vasilakos et al.,

2020; Lu et al., 2020; Chen et al., 2022; Yang et al., 2022; Chang

et al., 2015). Empirical and semi-empirical models primarily rely on

statistical analysis to establish relationships between remote sensing

signals and Chl-a concentrations through extensive field-measured

datasets (EI-Rawy et al., 2020; Yang et al., 2023; Xiao et al., 2022).

These models demonstrate operational simplicity and

computational efficiency, but exhibit limited generalizability

beyond specific study areas. In contrast, physical models are

grounded in rigorous radiative transfer theory, which

quantitatively describes the relationship between aquatic

components and satellite-derived irradiance through specific

absorption coefficients and scattering coefficients of water

constituents (Li et al., 2025; Guo et al., 2022). These models

simulate light propagation processes in both atmospheric and

aquatic environments using radiative transfer equations, enabling

quantitative inversion of water quality parameter from remote

sensing data. In recent years, the rapid advancement of artificial

intelligence (AI) has facilitated the successful application of

machine learning algorithms, particularly Artificial Neural

Networks (ANNs), Support Vector Machines (SVMs), and

Random Forest (RF), in remote sensing-based monitoring of

organic pollutants in aquatic environments (Vinothkumar and

Karunamurthy, 2023; Zhang et al., 2022; Ruescas et al., 2018;

Deng et al., 2019). Furthermore, emerging deep learning

architectures have demonstrated enhanced capabilities in water

color remote sensing for retrieving concentrations of critical

water quality parameters (Arshad et al., 2024, 2023; Khan et al.,

2023; Ullah et al., 2024). The integrated application of multi-model

approaches enables complementary advantages among different

methodologies, significantly enhancing the accuracy and stability

of water environment remote sensing monitoring.

This study proposes an integrated approach combining satellite

remote sensing with in situ measurements to establish a multi-

technique collaborative monitoring framework for algal blooms in

sea-reaching rivers. The framework addresses the challenges of

cross-system ecological transitions and salinity gradients in river-

to-sea transitional zones. A seasonal algal bloom event in the

Qiantang River Basin from July to September 2016 was

documented, with its complete phenological cycle (initiation,

evolution, and senescence) through multi-temporal remote

sensing data at a 30m resolution. The results demonstrate that the
Frontiers in Marine Science 02221
Chl-a remote sensing physical mechanism model offers advantages

of robust adaptability and algorithm stability, enabling large-scale

synchronous monitoring of river algal blooms. Furthermore, the

integration of extensive synchronous remote sensing observations

with conventional in situ point monitoring significantly enhances

the spatiotemporal resolution and efficiency of river

bloom surveillance.
2 Study area

The Qiantang River Basin is situated between latitude 28°N and

30.5°N and longitude 117.5°E and 120.5°E. Its main stream spans

668 kilometers, encompassing tributaries such as the Xin’an River

and Fuchun River, with an average annual runoff of 43.458 m3 and a

drainage area of approximately 60,000 km2 (Sun et al., 2016). The

construction of multistage hydrojunction projects along the

mainstem and tributaries of the Qiantang River has induced flow

attenuation in certain reaches. Compounded by rapid regional

socioeconomic development in recent decades, this anthropogenic

modification of hydrological regimes has facilitated the persistent

accumulation of nutrients (e.g., nitrogen and phosphorus) within

aquatic systems. Such conditions create a critical threshold whereby

algal blooms can be rapidly triggered when meteorological and

hydrological parameters reach conducive levels. Seasonal algal

blooms in the Qiantang River Basin were initially documented as

early as the late 20th century, with particularly extensive outbreaks

occurring in 2004 and 2010 that triggered severe deterioration of

water quality across the watershed (Gao et al., 2025; Reinl et al.,

2020; Zhou et al., 2022).
3 Data and methods

3.1 Satellite data sources and ground-
based observational data

The HJ-1A/B satellites, China’s first domestically developed

civilian satellites dedicated to environmental monitoring and

disaster mitigation/emergency response, were launched on

September 6, 2008. The HJ-1A/B satellites were each equipped

with two wide-coverage multispectral CCD cameras, covering four

broad spectral bands in the visible and infrared ranges. When

operated jointly, these dual-camera systems achieve a 4-day

revisit cycle, enabling push-broom imaging with a swath width of

720 km, a spatial resolution of 30 m, and four spectral bands. The

HJ-1A/B satellites adopt a band configuration modeled after the

U.S. Landsat series, featuring medium spatial resolution and broad

spectral coverage, while achieving a wider swath width and shorter

revisit cycle compared to their counterparts. One single image of the

HJ-1A/B satellites can achieve complete coverage of the Qiantang

River Basin, fulfilling the temporal resolution requirements of the

study. The key parameters of the HJ-1A/B satellites’ CCD sensors

are presented in Table 1.
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Satellite imagery acquired over the Qiantang River system from

July to September 2016 was screened according to the cloud cover

threshold of<20%, with the final selected images presented

in Table 2.

In addition, synchronized field investigations of algal blooms

and emergency water quality monitoring were conducted from July

to August 2016. Ground-based investigations employed a dual-

mode approach: (1) Fixed-point instrumentation for regular

monitoring of water quality parameters and algal bloom

occurrence; (2) Event-driven manual sampling with laboratory

quantification during bloom episodes in affected areas. Field

sampling and analysis were conducted in strict compliance with

applicable water quality monitoring standards. The spatial

distribution of in situ fixed sampling locations is illustrated in

Figure 1. The monitored parameters included conventional

physicochemical indicators as well as biological indicators such as

Chl-a, algal density, and algal species composition and so on.
3.2 Development of remote sensing
retrieval model for algal blooms

The water-leaving radiance captured by satellite remote sensing

sensors results from the combined effects of: (1) air-water interface

reflectance and refraction, (2) water column absorption and

scattering processes, and (3) benthic substrate absorption and

reflectance. The spectral characteristics of water bodies are

predominantly characterized by volume scattering, resulting from

the combined effects of water molecules and suspended impurities

within the water. The primary pollutants in the water body are

suspended sediments, oxygen-consuming organic matter, and Chl-

a. The inherent optical parameters (IOPs), such as absorption and
Frontiers in Marine Science 03222
scattering coefficients, exhibit wavelength-independent

characteristics across the light spectrum.

The radiative transfer process in water bodies can be expressed

as follows (Li et al., 2022; Lu et al., 2020): The water-leaving

radiance (Lw) is composed of upwelling scattered radiance from

the entire water column (Ls) and the bottom substrate-reflected

radiance (Lb), as mathematically represented by Equation 1:

Lw = Ls + Lb (1)

Based on the radiative scattering characteristics and radiative

transfer processes in aquatic environments, the determination of

the total radiative transfer model for water bodies requires two

essential components: 1) solution of upwelling scattering

throughout the entire water column, and 2) calculation of

substrate reflectance at the water bottom.

For upwelling scattering, the incident light intensity differs

across varying water depths. When considering the scattering

contribution from a thin water layer of thickness dh at depth h

(Equation 2).

dLs =
1
4p

Ebp(Q)dh (2)

E is the downwelling irradiance at water depth h, which can be

expressed as by Equation 3

E = E0cosq
0 e−

(a+b)h
cosq 0 (3)

In the equation, a denotes the total absorption coefficient of the

water body, while bx4E3A;. represents the total scattering

coefficient (Equations 4, 5).

a = aw + Dsas + Duau + Dvav (4)

b = bw + Dsbs + Dubu + Dvbv (5)

The symbols w, s, u and v represent pure water, suspended

sediment, oxygen-consuming organic matter, and Chl-a,

respectively, while d denotes the unknown concentrations of each

constituent to be solved.

The incident light is first attenuated by the thin water layer. The

upward scattered light then undergoes secondary attenuation

through the upper water layer before emerging from the water

surface. The expression is given as follows by Equation 6:

dLs =
1
4p

Ebp(Q)e−
(a+b)h
cosj0 dh  (6)

The upwelling scattered radiance Ls of the entire water column

can be derived by integrating Equation 6, as represented by

Equation 7.

Ls =
E0cosq 0bp(Q)

4pmk
(1 − e−mkh) (7)

Then m = 1
cos q 0 + 1

cosj 0 , the extinction coefficient k = (a + b).
Assuming the water bottom substrate is a Lambertian surface,

the radiance exiting the water body is represented by Equation 8.
TABLE 2 Satellite data employed in this study.

Satellite data
Acquisition time (2016)

July Aug Sep Nov

HJ-1A/B

22 15 9 3

25 20 26 6

26 24 11
TABLE 1 The CCD data parameters of HJ-1A/B satellites.

ID Band (mm)
Spatial

Resolution
(m)

Swath
Width
(km)

Revisit
Period
(day)

1 0.43–0.52 30

360 (single
imager)
700

(two imagers)

4
2 0.52–0.60 30

3 0.63–0.69 30

4 0.76–0.90 30
frontiersin.org

https://doi.org/10.3389/fmars.2025.1620021
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2025.1620021
Lb =
E0cosq 0 Rb

p
e−mkh (8)

The conversion from radiance to surface reflectance (Rw) is

expressed as Equation 9:

R =
pL
E

(9)

Substituting (7) and (8) into (1) and transforming to reflectance

via (9) yields the general radiative transfer equation for water bodies

represented by Equation 10.

R =
bp(Q)
4mk

(1 − e−mkh) + Rbe
−mkh (10)

The scattering and absorption coefficients of suspended

sediment, colored dissolved organic matter (CDOM), and Chl-a

can be experimentally determined. The unknowns to be resolved by

the model include Ds, Dv, Du and water depth H and benthic

substrate reflectance Rb (Equations 4, 5).

For the underdetermined system of equations where the

number of unknowns exceeds the number of spectral bands, the

Chl-a concentration in water bodies can be solved by analyzing

the optical properties of the study area and selecting sensitive bands

to construct the equations (Li et al., 2025; Yang et al., 2025; Liang

et al., 2024). In this study, since HJ-1A/B employed consist of four

spectral bands, the Chl-a concentration in water bodies was derived

by solving a system of four simultaneous equations.

After a series of data processing steps, including geometric

correction, radiometric calibration, radiometric correction,

atmospheric correction, land-water separation, and remote

sensing inversion of water quality parameters—followed by
Frontiers in Marine Science 04223
calibration using sampled laboratory measurements—the remote

sensing monitoring results of Chl-a concentration and algal bloom

status in the Qiantang river were finally obtained.
3.3 Geometric correction and radiometric
calibration

Radiometric calibration is the process of converting the digital

number (DN) values in raw imagery into radiance using calibration

parameters provided in satellite data files. Radiometric correction is

performed to derive planetary reflectance for all bands at each pixel

from radiance using solar spectral irradiance per band, with

corrections applied for solar incidence angle and viewing

geometry effects.
3.4 Atmospheric correction and land-water
separation

Atmospheric correction aims to remove/minimize the influence

of atmospheric scattering and absorption in remote sensing data.

Atmospheric correction analyzes atmospheric factors, constructs

and solves models to maximally mitigate atmospheric interference.

The dark target method was employed to derive the relevant

atmospheric parameters in this study. To mitigate water vapor

effects, clear/deep water pixels were employed as dark targets. After

measuring the reflectance of clear water, the atmospheric optical

thickness and transmittance were calculated to achieve

atmospheric correction.
FIGURE 1

Schematic diagram of river reach distribution in the Qiantang River.
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Following atmospheric correction, water-land separation was

performed using a simple threshold approach with the modified

Normalized Difference Water Index (NDWI) (Liang et al., 2023;

Rad et al., 2021; Mcfeeters, 1996).
3.5 Retrieval of chlorophyll-a
concentration in surface water

Given that phytoplankton predominantly accumulate at the air-

water interface during extensive bloom events, the sensor-reaching

radiance in red and near-infrared bands is mainly representative of

surface water characteristics. The reflectance and absorption

characteristics of Chl-a lead to a significant enhancement of

spectral features in both the red and near-infrared bands, thereby

providing more favorable conditions for the retrieval of Chl-a

concentration. The study adopts the Chl-a water quality remote

sensing physical model described in Section 2 to retrieve water Chl-

a concentration through simultaneous inversion using both red and

shortwave near-infrared band data (Equations 4, 5). Since the

penetration depth of shortwave near-infrared radiation is

approximately 25 cm, the retrieved Chl-a concentration primarily

represents the surface water Chl-a level, with minimal influence

from bottom reflectance.
3.6 Remote sensing index-based
classification of algal blooms

Chl-a concentration thresholds serve as critical indicators for

classifying algal bloom severity in aquatic ecosystem monitoring

standards. Adhering to established in situmonitoring protocols and
Frontiers in Marine Science 05224
accounting for regional hydrological characteristics, this study

implemented the following threshold-based classification: a mild

algal bloom corresponds to Chl-a concentrations of 15–25 mg/L, a
moderate algal bloom to 25–50 mg/L, and a severe algal bloom to

concentrations exceeding 50 mg/L.
4 Results and discussion

4.1 Validation of accuracy

To validate the accuracy of remote sensing inversion for Chl-a

concentration in water bodies, ground-based synchronous

observations were collected, yielding a total of 49 paired

synchronous ground observation points during satellite

overpasses. Figure 2 shows a comparison between the remote

sensing inversion results of the algal bloom index and the in situ

measured Chl-a concentrations on August 15 and August 20, 2016,

during the algal bloom event in the Qiantang River. Figure 3 shows

the accuracy comparison between the remote sensing inversion

results of Chl-a and the measured values.

As shown in Figure 3, the remotely sensed Chl-a concentration

exhibits good linear agreement with in situ measurements

(r=0.7984), demonstrating the capability of remote sensing to

capture relative Chl-a concentration trends. The field-measured

data exhibit significant fluctuations, whereas the remote sensing

results demonstrate more gradual variations. The possible reason is

that the water sampling collects data from a single point, while the

remote sensing result represents the average concentration over a

30×30 meter pixel area of the water surface. This leads to a relatively

smoother variation in the remote sensing data, analogous to a low-

pass filtering effect.
FIGURE 2

Validation of Qiantang river algal bloom remote sensing inversion against in situ measurements with (a) (August 15, 2016) and (b) (August 20, 2016).
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4.2 Spatial distribution characteristics of
algal blooms

Through the aforementioned remote sensing methodology, the

spatial distribution of algal blooms in the Qiantang River during

satellite overpass can be accurately obtained. Unlike ground-based

monitoring which can only obtain data at discrete sampling points,

satellite-derived results provide the spatial distribution of Chl-a in

water bodies during satellite overpasses, enabling rapid

identification of the most severe algal bloom areas. Through

statistical analysis methods, the occurrence area and proportion

of algal blooms in each river section can be obtained. Taking the

remote sensing inversion results on August 20, 2016, as an example,

the algal bloom area in the main reaches of the Qiantang River

within the study region was 138.93 km². Among this, the areas of

mild, moderate, and severe algal blooms were 41.72 km², 51.79 km²,

and 45.42 km², respectively, with moderate algal bloom exhibiting

the highest proportion. The results are presented in Figure 4.
Frontiers in Marine Science 06225
Calculate the proportional area coverage of algal blooms at

different severity levels for each river segment separately. On

August 20, 2016, the Qiantang River mainstream section had the

lowest proportion of algal bloom coverage. The Wuyi River and

Xin’an River segments accounted for the largest proportion of

severe algal bloom coverage, with approximately half of their

water areas affected by intense blooms, as shown in Figure 5.
4.3 Remote sensing monitoring of algal
bloom evolution processes

Statistics and comparative analysis of multi-temporal remote

sensing inversion results can elucidate the temporal evolution of

algal blooms. Remote sensing analysis reveals that the algal bloom

dynamics in the Qiantang River system, occurring from July to

September 2016, exhibited four characteristic phases: incipient

stage, proliferation stage, climax stage, and regression stage, as

shown in Figure 6.
A. In the initial stage of algal bloom occurrence, as shown in

the satellite remote sensing results of the Qiantang River

water system on July 22, 2016, the bloom intensity was

predominantly mild. A large area of moderate to severe

algal blooms occurred in the river section between Lan

river and Xin’an river and the confluence of the Fuchun

river and Fenshui river. Meanwhile, the algal bloom area in

major tributaries such as the Xin’an river further

expanded, with increased bloom intensity.

B. During the algal bloom development phase, as shown by the

satellite remote sensing results of the Qiantang River system

on July 25, the spatial distribution of blooms in the main

channel had expanded from the lower reaches of the Lan river

to the Fuyang city section in the upper reaches of the Fuchun

River, though the bloom intensity remained predominantly

mild. A large area of moderate to severe algal blooms

occurred in the river section between at the confluence of
FIGURE 3

Accuracy validation of remote sensing retrieval for chlorophyll-a
(Chl-a) in the Qiantang River.
FIGURE 4

Areal percentage of algal blooms in key reaches of the Qiantang River.
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Fron
the Lan river and Xin’an river and the confluence of the

Fuchun river and Fenshui river. Meanwhile, the algal bloom

area in major tributaries such as the Xin’an River further

expanded, with increased bloom intensity.

C. The peak bloom period, as demonstrated by the satellite

remote sensing results of the Qiantang river water system on

July 29, 2016. The distribution range of algal blooms in the

main channel had covered the river section from the lower

reaches of Lan river to the upper reaches of Fuchun river

(Fuyang City segment). Meanwhile, large-scale severe algal

blooms in other river sections further intensified with

continued expansion in coverage area. After August 15th,

the intensity of algal blooms in the Qiantang river water

system began to intensify again. The satellite remote sensing

results of algal blooms in the Qiantang river system on

August 20 show that the distribution of algal blooms has

spread throughout the main river channel upstream of the

Qiantang river, as well as major tributaries such as the

Xin’an river and Jinhua river. Moreover, severe algal blooms

in the main channel have covered the Fuchun river and Lan

river. The algal blooms in major tributaries such as the

Xin’an river were also predominantly severe, reaching the

peak of both distribution area and intensity during this

bloom event. The algal bloom in the Qiantang river on

August 24 maintained the outbreak status observed on

August 20, with similar distribution patterns and coverage

extent. The bloom had spread across the main channel

upstream of Qiantang river, as well as major tributaries

including the Xin’an river and Jinhua river.
tiers in Marine Science 07226
D. The algal bloom decline phase, as demonstrated by the

satellite remote sensing results of the Qiantang River water

system on September 26, both the intensity and spatial

distribution of the bloom gradually diminished after early

September. By mid-to-late September, specifically around

September 25, the river conditions had essentially returned

to their original state.
5 Conclusion and prospects

Grounding in radiative transfer mechanisms, this research

established a physics-driven model for Chl-a concentration

retrieval from pixel reflectance of remote sensing. The model

explicitly accounts for Chl-a, delivering transparent inversion

mechanisms and physically interpretable parameters. By

exclusively retrieving the surface Chl-a concentration, this

approach can effectively reflect the actual conditions of algal

blooms. Validation shows a good linear relationship (R=0.7984)

between the remote sensing retrieval results and in situ

measurements, confirming the reliability of satellite data in

monitoring algal bloom dynamics in the Qiantang River.

Given the vast area of the Qiantang River Basin

(approximately 50,000 km²), high-resolution satellites with

limited swath width were inadequate for complete coverage. The

study employed HJ-1A/B satellite data (Environment Satellite)

which provides single-scene coverage of the entire study area.

However, data availability was constrained by adverse weather
FIGURE 5

Distribution of algal bloom area in the main reaches of the Qiantang River water system.
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conditions and satellite imaging schedules, with particularly

scarce acquisitions during early-mid September and October

when no usable data were available. Therefore, for emergency

water quality monitoring of inland rivers and lakes, multi-source

satellites such as Gaofen-1 (GF-1) or Sentinel can be employed to

compensate for the temporal coverage limitations of single
Frontiers in Marine Science 08227
satellite. With the advancement of deep learning theory,

integrating deep learning into quantitative remote sensing

physical models is expected to improve the accuracy of remote

sensing inversion as well as enhance the model’s dynamic

predictive capabilities. This will achieve a transition from status

monitoring to early warning of algal blooms for river systems.
FIGURE 6

Satellite remote sensing of algal blooms of 2016 in the Qiantang river: (a) July 22, (b) July 25, (c) July 29, (d) August 15, (e) August 20, (f) September 26.
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Synthetic aperture radar (SAR) images have all-weather observation capabilities

and are crucial in ocean surveillance and maritime ship detection. However, their

inherent low resolution, scattered noise, and complex background interference

severely limit the accuracy of target detection. This paper proposes an innovative

framework that integrates super-resolution reconstruction and multi-scale

maritime ship detection to improve the accuracy of marine ship detection.

Firstly, a TaylorGAN super-resolution network is designed, and the TaylorShift

attention mechanism is introduced to enhance the generator’s ability to restore

the edge and texture details of the ship. The Taylor series approximation is

combined to optimize the attention calculation, and a multi-scale discriminator

module is designed to improve global consistency. Secondly, a hierarchical

multi-scale Mask R-CNN (HMS-MRCNN) detection method is proposed, which

significantly improves the multi-scale maritime ship detection problem through

the cross-layer fusion of shallow features (small targets) and deep features (large

targets). Experiments on SAR datasets show that TaylorGAN has achieved

significant improvements in both peak signal-to-noise ratio and structural

similarity indicators, outperforming the baseline model. After adding super-

resolution reconstruction, the average precision and recall of HMS-MRCNN

are also greatly improved.
KEYWORDS

synthetic aperture radar (SAR), super-resolution reconstruction, marine ship detection,
multiscale feature fusion, Mask R-CNN, TaylorShift attention mechanism
1 Introduction

Synthetic aperture radar (SAR) as an active microwave remote sensing imaging

technology, with its all-weather, all-day capability, and low dependence on weather and

lighting conditions, has important applications in the fields of marine surveillance, ship

detection, etc (Gao et al., 2024; Meng et al., 2024; Wu et al., 2024). SAR imagery is able to
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provide high-resolution data under complex weather conditions,

which makes it an ideal tool for monitoring ship activities at sea.

However, low-resolution SAR images can have an adverse effect on

the identification of marine vessels. Due to the low resolution of the

equipment and the complex imaging environment, low-resolution

images often lack sufficient details, especially in complex

backgrounds, and are often affected by scattering noise,

background clutter, etc (Li et al., 2023; Cao et al., 2024). Using

super-resolution reconstruction technology, more image details can

be restored without increasing the hardware costs. Therefore, the

development of a method that combines image super-resolution

reconstruction with target detection can not only improve the

utilization value of SAR images but also provide more efficient

technical support for ensuring maritime safety and monitoring

maritime traffic (Tang et al., 2024).

Super-resolution (SR) technology, as an effective means to

improve image quality, has received widespread attention in SAR

image processing (Jiang et al., 2024). SR algorithms for images are

mainly categorized into two types: traditional methods and

methods of deep learning. In traditional methods, interpolation

methods predict unknown pixel information based on known pixel

points to improve image resolution. Common interpolation

methods include nearest neighbor interpolation (Blu et al., 2004),

bilinear interpolation (Tong and Leung, 2007), and bicubic

interpolation (Chang et al., 2004). Although the interpolation

method is faster in reconstruction, it does not utilize a priori

knowledge in the low-resolution image, so the reconstructed

high-resolution image lacks the main texture information,

whereas in reconstruction-based methods a priori information is

introduced as constraints to reconstruct the image. The main

reconstruction-based methods are the convex set projection

method (Tom and Katsaggelos, 1996), the iterative inverse

projection method (Irani and Peleg, 1991), and the maximum a

posteriori probability estimation method (Liu and Sun, 2013).

Reconstruction-based methods have limited utilization of prior

knowledge, and learning-based methods, in order to improve this

problem, introduce external datasets for training in order to learn

more information about the image so that the reconstruction results

contain more high-frequency details. Learning-based methods can

be categorized into shallow learning methods and deep learning

methods. Shallow learning methods mainly include based sample

learning (Freeman et al., 2002), based neighborhood embedding

(Chang et al., 2004), and based sparse representation methods (Xu

et al., 2019). Shallow learning methods can achieve better results

when trained on small-scale datasets, but the learning ability of the

model needs to be improved. In recent years, deep learning-based

methods have made great breakthroughs in the work of super-

resolution reconstruction of images, and the deep learning methods

are mainly based on three types of baseline networks: convolutional

neural networks, generative adversarial networks, and attention

mechanism networks. In 2014, Dong et al. proposed a super-

resolution convolutional neural network (SRCNN), which is

firstly applied to SR reconstruction, and the network convolves

the input image through three layers (feature extraction and

representation layer, nonlinear mapping layer, and reconstruction
Frontiers in Marine Science 02231
layer), it realizes the mapping from low resolution to high

resolution, and the reconstruction effect on image resolution is

better than the traditional reconstruction methods (Dong et al.,

2014). In 2017, Legid et al. proposed the super-resolution generative

adversarial network (SRGAN), which is the first time that

generative adversarial networks (GANs) have been applied to the

field of SR reconstruction. The network makes good use of the

generative-adversarial properties of GAN networks, the generator

and discriminator are trained alternately until convergence, the

output shows more realistic texture details compared to traditional

reconstruction methods, and the resolution is significantly

improved visually (Ledig et al., 2017). In 2018, Zhang et al.

proposed the residual channel attention network (RCAN),

introduced the channel attention mechanism into the SR

reconstruction task, and designed a deep residual channel

convolutional network (Zhang et al., 2018). The network can

learn the information of different channels of the feature map, set

different weights for each channel, and finally reconstruct a high-

resolution image. In recent years, with the excellent performance of

Transformer in other image processing fields, scholars have begun

to pay attention to the combination of Transformer and SR tasks. In

2020, Yang et al. proposed a texture transformation network

(TTSR) for image super-resolution, which can combine low-

frequency and high-frequency information to learn the deep

correspondence of images, thereby stacking texture details in

high-resolution images across scales and enhancing the

reconstruction results (Yang et al., 2020). Due to the excellent

performance of deep learning in optical image super-resolution,

deep learning-based methods have been applied to SAR image

super-resolution reconstruction in recent years. In 2018, Wang et al.

directly applied the SRGAN network to the Terra-SAR dataset and

achieved excellent results in reconstruction accuracy and

computational efficiency (Wang et al., 2018). In 2019, Gu et al.

proposed a DGAN network for the super-resolution reconstruction

of pseudo-high-resolution SAR images, which effectively removed

noise from SAR images and improved the resolution of SAR images

(Gu et al., 2019). In 2020, Shen et al. used residual convolutional

neural networks to improve the spatial resolution of polarimetric

SAR images, which was superior to traditional methods in terms of

image detail preservation (Shen et al., 2020). In 2022, Smith et al.

proposed a SAR image super-resolution reconstruction method

based on residual convolutional neural networks, which was

superior to traditional methods in terms of reconstruction

accuracy and computational efficiency. This method combines

ViT with CNN for the super-resolution reconstruction of near-

field SAR images, enhancing the details of the generated images

(Smith et al., 2022). In 2023, Zhang et al. proposed a learnable

probabilistic degradation model, which introduces SAR noise before

the cycle-GAN framework, learns the relationship between low-

resolution and high-resolution SAR images, and improves the

resolution of SAR images (Zhang et al., 2023a). In 2024, Jiang

et al. proposed a lightweight super-resolution generative adversarial

network (LSRGAN), which improved the resolution of SAR images

by introducing deep separable convolution (DSConv) and SeLU

activation function, and constructed a lightweight residual module
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(LRM) to optimize the GAN network for SAR images (Jiang et al.,

2024). In addition, the feature learning capability of the model is

significantly improved by combining the optimized coordinated

attention (CA) module.

The biggest feature of the traditional SAR image ship detection

algorithm is manual extraction. The manual extraction process first

preprocesses the image to reduce the image noise; secondly, sea and

land segmentation is performed to prevent the near-coastal land

area from interfering with the ship detection; finally, the ship is

detected. The constant false alarm rate (CFAR) algorithm (Baldygo

et al., 1993) is one of the most classical methods in traditional SAR

target detection. The algorithm models the ocean background

clutter and distinguishes between target ships and background

noise. CFAR algorithm does not apply to complex ocean

backgrounds or ship targets with different directions, lengths, and

widths, and its generalization performance is poor. With the

development of artificial intelligence technology, target detection

methods based on deep learning are applied by researchers in the

field of SAR ship detection, which can be divided into one-stage and

two-stage methods. One-stage methods treat all regions of the

image as potential target regions and use only one deep

convolutional network to recognize the target, which is faster,

such as the YOLO series (Redmon, 2016; Ge, 2021). Two-stage

methods use region suggestion module or selective search method

to localize and recognize targets with higher accuracy (Su et al.,

2022), such as R-CNN (Girshick et al., 2014), Faster R-CNN (Ren,

2015), Cascade R-CNN (Cai and Vasconcelos, 2018), Grid R-CNN

(Lu et al., 2019), etc. Girshick et al. applied a convolutional neural

network (CNN) for the first time to the target detection task and

built an R-CNN network, thus achieving good results. Faster R-

CNN extracts candidate frames by regional recommendation

networks (RPN) and introduces a multi-task loss function, which

shows good performance in target detection. In addition,

researchers have proposed a large number of methods for the

problem of target detection in SAR images. In the same year, Sun

et al. (2021) proposed an anchor-free ship detection framework

named CP-FCOS, which employs a category-position module to

improve localization accuracy by guiding the position regression

branch using semantic classification features. Zhang et al. (2021)

proposed a novel quadruple pyramid network consisting of four

FPNs and conducted experiments on five common SAR datasets,

achieving good results. The authors also verified that Quad-FPN has

good transferability. In 2022, Tang et al. proposed an algorithm

based on Faster R-CNN for target detection in SAR images by using

the Bhattacharyya distance (BD) instead of intersection over union

(IoU) to avoid the limitations of the commonly used intersection

over union ratio in target detection networks for small target

recognition, which was evaluated on the LS-SSDD-v1.0 dataset

and achieved significant detection results (Tang et al., 2022). In

2023, Zhang et al. proposed the SCSA-Net to address the effects of

complex noise and land background interference on target

detection in SAR images and also proposed the global average

precision loss (GAP loss) to solve the “fractional bias” problem

(Zhang et al., 2023b). In 2024, Yasir et al. (2024a) proposed the
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lightweight YOLOShipTracker model, which was optimized for

YOLOv8n via the HGNetv2 reconciliation header and combined

with a novel multi-target tracking technique (C-BIoU) to enable

efficient, real-time tracking of ships in short-duration SAR image

sequences. In the same year, Yasir et al. (2024b) also developed

SwinYOLOv7, which combines YOLOv7 with the Swin

Transformer and the CBAM Attention Module to demonstrate

excellent performance in a variety of SAR datasets, especially in

cluttered and near-shore environments. In addition, MGSFA-Net, a

multi-scale global scattering feature association network for SAR

ship identification, is introduced by Zhang et al. (2024). Their

method can effectively capture the intrinsic physical scattering

features and significantly improve the identification performance

even with limited training data. However, the SAR image itself has

limited resolution, which makes it difficult to present key details

such as ship contours and deck structures, which will affect the

detection algorithm’s complete identification of targets. At the same

time, the existing target detection methods still have the problem of

lack of balance when facing multi-scale targets, which makes it

difficult to take into account the small and large targets, resulting in

some scale targets being missed.

In order to solve the abovementioned problems, this paper

proposes a hierarchical multi-scale marine ship detection method

based on Mask R-CNN to accurately detect ships and combines the

TaylorGAN super-resolution reconstruction algorithm to enhance

the resolution of SAR images.

The main contributions of this paper are as follows:
1. The TaylorGAN super-resolution reconstruction algorithm

is proposed by introducing the TaylorShift attention

mechanism in the GAN network to improve the

resolution of ship image details, especially to enhance the

sharpness of ship edges;

2. A hierarchical multi-scale marine ship detection method

based on Mask R-CNN is proposed. Different

convolutional layers are used to extract the large and

small target features of SAR images, respectively. The

extracted features are introduced into the RoI Align layer.

The multi-scale features are balanced through L2

normalization to improve the detection accuracy.

3. The problem of insufficient detection of small targets is

solved by fusing multi-scale feature information to avoid

the degradation of detection accuracy due to low resolution.
The subsequent sections of the paper are organized as follows:

Section 2 presents a detailed description of the proposed

framework, including the TaylorGAN-based super-resolution

reconstruction method and the HMS-MRCNN multi-scale ship

detection architecture. Section 3 introduces the SAR datasets used

in this study, elaborates on the experimental setup, outlines the

evaluation metrics, analyzes the detection performance across

various models, and reports results from comprehensive ablation

studies. Section 4 concludes the paper by summarizing the major

findings and highlighting potential directions for future research.
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2 Methodology

This section first describes the TaylorGAN super-resolution

reconstruction network. Secondly, the hierarchical multi-scale

Mask R-CNN architecture proposed in this study is described

in detail.
2.1 Super-resolution reconstruction
network architecture

Existing super-resolution reconstruction algorithms are often

faced with the problems of blurred edges and degraded structures

when directly applied to SAR images, which make it difficult to meet

the needs offine reconstruction. For this reason, this paper proposes

a network structure called TaylorGAN to improve the super-

resolution quality of SAR images, and the overall architecture is

shown in Figure 1, including a generator and a discriminator.

The generator takes a low-resolution SAR image as inputs and

gradually restores the resolution of the image through the multilayer

TaylorShift attentional module and the step-by-step upsampling

structure while enhancing the ability to model the global structure

and local details of the image. Although the TaylorShift mechanism

itself does not directly enhance the image details, the model can

effectively capture the high-frequency regions such as hull contours

and edges with the help of the hierarchical upsampling and feature

fusion structure so as to realize high-quality detail reproduction.

The discriminator adopts a multi-scale structure design,

combined with the TaylorShift attention module, to extract

features at multiple spatial resolutions, perceive the differences

between local details and the global structure of the image, and
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ultimately output the true/false prediction results through the

classification header and to effectively optimize the training

direction of the generator.

2.1.1 Generator
The upper part of Figure 1 is the generator of TaylorGAN,

which can be divided into three main modules: input module,

feature extraction module, and image reconstruction module. The

low-resolution SAR image is used as input, denoted as ILR ∈
RC�H�W, where C represents the number of image channels, and

H and W represent the height and width of the image, respectively.

First, the initial features are extracted by the embedding module

composed of convolutional layers and ReLU activation function,

and it is represented as x0 ∈ RC�H�W. Subsequently, the embedded

features are processed by the layer Grid TaylorShift Block, and the

attention mechanism is used to capture the long-distance

dependencies in the image and model the local semantic

information. The TaylorShift attention mechanism replaces the

Softmax function by Taylor series expansion, greatly reducing the

computational complexity until the resolution is increased to IHR ∈
RC�Kh�Kw. In order to gradually improve the image resolution, the

generator designs multiple upsampling modules to improve the

reconstruction accuracy by gradually expanding the spatial scale.

After each level of upsampling, the TaylorShift attention module is

stacked to further enhance the feature representation ability,

especially the modeling ability of high-frequency details such as

edges and contours, thereby improving the clarity and structural

consistency of the generated image. Finally, through a set of

convolutional layers and Tanh activation functions, the feature

map is mapped to the output image at the target resolution ISR ∈
RC�Rh�Rw, and r is the magnification factor.
FIGURE 1

TaylorGAN network architecture.
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2.1.2 Discriminator
The lower part of Figure 1 shows the discriminator of

TaylorGAN, whose input is the super-resolution SAR image

generated by the generator. To achieve multi-scale discrimination,

the image is divided into three blocks of different scales (P, 2P, and

4P), corresponding to the feature sequences of y0 ∈ RC�H
P�W

P , y1 ∈
RC�H

2P�W
2P ,   and y2 ∈ RC�H

4P�W
4P , respectively. Each set of sequences is

sent to the corresponding TaylorShift block through linear mapping

to extract semantic features at different scales. Finally, the

discriminator uses a downsampling module to reduce the

resolution of the feature map, and the connection block fuses

features of different scales so that the model can perceive the

global structure and local details of the image at the same time.

To evaluate the overall authenticity of the image, a [CLS] tag is

added at the end of the discriminator. This tag interacts with all

image tokens through a multi-layer attention mechanism, and only

the output features of this tag are used as the classifier input so that

the discriminator can comprehensively judge the global consistency

and detail rationality of the image. Finally, the real/generated

discrimination result is output through the classification head to

assist the generator in optimizing the image quality.

2.1.3 TaylorShift attention mechanism
The traditional self-attention mechanism has a computational

bottleneck, and its time and space complexity are both O(N2),

where N is the length of the token sequence (that is, the number of

patches in the image). When processing high-resolution images

(such as 256 × 256), the memory usage and inference time increase

dramatically, which seriously restricts the scalability of the model.

TaylorShift (Nauen et al., 2025) Attention Mechanisms is a variant

of Transformer that approximates the exponential operations in a

Softmax function by Taylor series expansion. The TaylorShift

attention mechanisms are categorized into direct TaylorShift and

efficient TaylorShift.

1. Direct-TaylorShift

The Taylor approximation is applied to Softmax in Taylor-

Softmax to avoid the computation of the exponential function, and

the k-order (kth) Taylor expansion formula is Equation 1:

exp(x) ≈ o
k

n=0

xn

n !
(1)

The Taylor-Softmax formula is Equation 2:

T − SM(K)(QKT ) = normalize o
k

n=0

(QKT )n

n !

� �
(2)

In Direct-TaylorShift, Taylor-Softmax is used directly instead of

Softmax to compute the attention weights and multiply the computed

result with the value matrix V. The formula is Equation 3:

Y =
ok

n=0
(QKT )n

n !

� �
V

oi ok
n=0

(QKT )ni
n !

� � (3)
Frontiers in Marine Science 05234
Y is the outputs, and o
i
o
k

n=0

(QKT )ni
n !

� �
is the same Taylor

expansion operation performed on each line of QKT , and

normalization is performed on each line. The denominator

ensures that the output is normalized across tokens, making the

weights valid for each token. This expression is suitable for

scenarios with a small number of tokens (such as 32 × 32 and

below). It significantly reduces the reliance on exponential functions

and is faster to calculate, but the computational complexity is O(

N2d).

2. Efficient-TaylorShift

For further optimization, TaylorShift introduced an efficient

implementation form Efficient-TaylorShift. If the length of the

feature sequence exceeds a certain threshold, it is more

appropriate to use Efficient-TaylorShift. It is performed by

assigning Taylor-Softmax values to the matrices Q and K and

moving the normalization operation after multiplying it with the

value matrix V. The formula for normalization is Equations 4–6:

Ynom = 1 + QKT +
1
2
(QKT )⊙ 2

� �
V (4)

Ydenom = 1 + QKT +
1
2
(QKT )⊙ 2

� �
1N (5)

Y =
Ynom

Ydenom
(6)

ȯ denotes Hadamard multiplication (element-level

multiplication), 1N denotes a vector of length N with all ones.

Ynom denotes the weighted attention score, and Ydenom denotes the

value used for normalization.

By changing the calculation order, Efficient-TaylorShift

reduces the computational complexity of traditional attention

from O(N2) to O(Nd3), which is suitable for processing tens of

thousands of tokens in high-resolution images. The reduction in

computational complexity enables the model to better capture

global dependencies and improve the integrity and consistency of

image structure.

In this paper, the TaylorShift attention mechanism is integrated

into two different module structures: TaylorShift Block and Grid

TaylorShift Block, which correspond to two application scenarios of

sequence modeling and spatial modeling, respectively. TaylorShift

Block is suitable for processing flattened image patch token

sequences. The input is a one-dimensional token sequence. The

module calculates the long-distance dependencies between different

tokens through TaylorShift attention to model the overall semantic

information of the image. In contrast, Grid TaylorShift Block is

designed for feature map input that retains the spatial structure of

two-dimensional images. The module calculates self-attention along

the row and column directions of the image, respectively, to more

efficiently capture local spatial relationships in the image, such as

edge and texture information.
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2.2 HMS-MRCNN

The paper proposed a hierarchical multi-scale SAR image

marine ship detection method based on Mask R-CNN as shown

in Figure 2, which is mainly divided into three parts, i.e., the feature

extraction module, the region suggestion network, and the

prediction module. The feature extraction and fusion module is

used to extract the multiscale features of the ship in the SAR image

and fuse the different features. The region suggestion network is

used to identify potential regions of interest. The prediction module

classifies and regresses the candidate boxes and outputs the final

bounding box.

2.2.1 Feature extraction module
In the feature extraction module, the SAR images are fed into

the network, and the features are first extracted by a backbone

network consisting of five convolutional layers that capture the

multi-scale features of the ship. Conv1 and Conv2 are feature

preprocessing modules in the initial stage of the model. They are

mainly used for preliminary feature encoding and spatial

downsampling of the input SAR images, helping the model to

extract clearer local structural information from the original images.

The two middle layers are shallow convolution layers (Conv3–

Conv4), which mainly capture the local structural information of

small-scale ships. The last layer is a deep convolution layer (Conv5)

used to obtain high-level semantic features and contextual
Frontiers in Marine Science 06235
relationships of the image. The output feature maps of Conv3

and Conv4 are subjected to 2 × 2 maximum pooling operations to

reduce their spatial size so that they maintain the same spatial

resolution as the large-scale ship feature maps (such as the feature

maps of Conv5). In order to eliminate the numerical differences

between feature maps of different layers, the spliced feature maps

need to be L2-normalized to ensure that the numerical range of each

feature is consistent.

The pooled small-scale feature map, together with the deep

feature map (Conv5 output), is input into RoI Align for

further processing.
2.2.2 Regional recommended networks—RPNs
The feature maps extracted by the convolutional layers are fed

into the RPN, where the small ship feature maps are sequentially

passed through cascading convolutional layers of sizes 1 and 3 to

ensure that the feature maps can be matched with the output

features of the backbone network. The RPN recognizes the ship

features of the SAR image for bounding box regression and

generates a set of RoI that are considered as possible ship

locations, which include the ship regions in the SAR image of the

SAR image for the bounding box regression values. In addition, the

RPN needs to determine whether each RoI contains a ship and the

precise location of the ship.

RPN uses a 3 × 3 convolutional filter to scan the entire feature

map. At each ship location in the feature map, RPN generates
FIGURE 2

HMS-MRCNN network architecture.
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multiple anchor boxes with different aspect ratios, which are used to

capture ship targets of different sizes and shapes. After generating

the anchor boxes, RPN performs two steps: target discrimination

and bounding box regression. In the target discrimination task,

RPN determines whether the anchor box contains a ship target or

not and applies a binary classification method to marine ship

detection, i.e., whether the anchor box contains a ship or not, and

scores it. RPN performs an accurate bounding box regression task

(Bbox) on the anchor boxes that are judged to be ships, adjusting

the sizes and shapes of the boxes to better fit the ship targets.

2.2.3 Forecasting module
The low-level feature map and the output results of the five-

layer convolution are fused through RoI Align. RoI Align first

divides each RoI into a fixed number of sub-regions. In each sub-

region, RoI Align uses bilinear interpolation to extract image

features. These feature blocks are spliced together to form a

unified feature map. On this basis, L2 normalization is performed

to ensure that the features between different RoI are numerically

consistent. The spliced and normalized feature maps are further

processed through a 1 × 1 convolution layer. The processed feature

maps will be used for target classification (Softmax) and bounding

box regression (Bbox) tasks. The classification task is responsible for

determining whether each RoI contains a target, and the bounding

box regression further accurately adjusts the position of the

candidate box to ensure that the final output bounding box is

more accurate.
2.3 Loss function

2.3.1 Super-resolution reconstruction loss
function

The generated network loss function LSR can be divided into

three parts: the traditional pixel-by-pixel difference MSE-based loss

LSRpix , the content-aware loss L
SR
vgg , and the adversarial loss LSRadv based

on the VGG (Mateen et al., 2018) network.

Define the low-resolution image as LHR, the corresponding

high-resolution image as LHR, and the super-resolution

reconstructed image as LHR; the super-resolution magnification is

r, andW×H and rW � rH are used to denote the size of the LLR and

LHR images, respectively, while G denotes the super-resolution

reconstruction process of the generator, and D denotes the

authenticity process of the discriminator.

The formula for the MSE pixel loss LSRpix is Equation 7:

LSRpix =
1

r2WH o
rW

x=1
o
rH

y=1
(IHRx,y − ISRx,y)

2 (7)

The formula for perceived loss LSRvgg is Equation 8:

Lvgg =
1

Wi,jHi,j
o
Wi,j

x=1
o
Hi,j

y=1
(∅ij (I

HR)x,y −∅ij (I
SR)x,y)

2 (8)

where ∅ij denotes the feature mapping map between the i-th

largest pooling layer and the j-th convolutional layer in the VGG
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model, and (i,j) is the corresponding feature map dimension. Wi,j

and Hi,j denote the dimensions of the current layers of the VGG19

network, respectively.

Against loss LSRadv The formula is Equation 9:

LSRadv = −E½log(D(ISR))� (9)

Because GAN needs to play a game between the generative

network and the adversarial network in training, the reconstruction

results are prone to the “artifacts” phenomenon because of the poor

stability of its network training and the difficulty of convergence of

the model. To address the abovementioned problems, this paper

combines the reconstruction quality evaluation index Structural

Similarity Index (SSIM) to introduce the structural loss function

LSRSSIM , whose formula is Equation 10:

LSRSSIM = 1 − E o
i
SSIMi

" #
(10)

where SSIMi is the structural similarity between the i-th batch of

reconstructed super-resolution image ISR of the generative network

and the reference high-resolution image IHR.

Therefore, the loss function of TaylorGAN is Equation 11:

LSR = LSRvgg + lLSRadv + hLSRpix + xLSRSSIM (11)

l, h, and x represent the weights of adversarial loss, pixel-level

loss, and structural similarity loss, respectively.

2.3.2 Marine ship detection loss function
The marine ship detection loss function is Equation 12:

Lc = Lcls + lLreg (12)

where Lcls and Lreg denote the classifier loss and the bounding

box regression loss, respectively, and l is the weight parameter. The

focal loss function is used for the classification loss, and the formula

is Equation 13:

Lcls = −o
i
ai(1 − pi)

g log(pi) (13)

g is used to control the weights of easily categorized samples,

and ai is used to solve the problem of category imbalance.

For the bounding box regression loss function, we use the CIoU

(complete intersection over union) loss function. CIoU is an

extension of IOU, which takes the center offset of the bounding

box as well as the aspect ratio into account, and it is suitable for

high-precision marine ship detection with Equation 14:

Lreg = 1 − IoU + a
r2(b, bgt)

c2
+ bv (14)

where IoU is used to compute the intersection and concurrency

ratio between the prediction frame b and the real frame bgt , r2(b,

bgt) is the Euclidean distance between the prediction frame and the

center point of the real frame, c2 is the length of the diagonal of the

smallest outer rectangle,  v denotes the consistency of the aspect

ratio, and a , and b are used to regulate the hyperparameters of

the loss.
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3 Experimental results

This section first introduces the SAR image dataset used in this

study, then describes the evaluation indicators used in the

experiment, and finally gives a comprehensive analysis of the

experimental results.
3.1 Datasets

The SSDD dataset (SAR Ship Detection Dataset) was originally

proposed by Li et al. (2017) and contains 1,160 SAR image slices,

each with a resolution of 500 × 500 pixels. The dataset uses data

from multiple satellite sources such as Sentinel-1, TerraSAR-X, and

RadarSat-2. In order to improve the computational efficiency, these

image slices are resized to 256 × 256 pixels. The selected data is

divided into three subsets: training set (70%), validation set (10%),

and test set (20%).

The SAR-Ship dataset (Wang et al., 2019) contains 102 images

from China’s Gaofen-3 satellite and 108 images from Sentinel-1.

The dataset contains 43,819 ship slices, each with a resolution of 256

× 256 pixels. This paper selects 3,000 data slices for super-resolution

and target detection experiments and divides these slices into three

subsets: training set (70%), validation set (10%), and test set (20%).
3.2 Evaluation metrics

In the super-resolution experiment, this paper uses peak signal-

to-noise ratio (PSNR), structural similarity index (SSIM), and MSE

to evaluate the experimental effect of super-resolution

reconstruction. This paper takes the original image of each

dataset as a high-resolution image and obtains the corresponding

low-resolution image through bicubic interpolation.

PSNR is defined by MSE, which is calculated as shown in

Equation 15:

MSE(ISR, IHR) =
1
mn o

m−1

i=0
o
n−1

j=0
½IHR(i, j) − ISR(i, j)�2 (15)

IHR and ISR are high-resolution SAR images and super-

resolution SAR images, respectively, both of which have the

dimensions m� n.

The formula for PSNR is Equation 16:

PSNR(ISR, IHR) = 10 · log10
MAX2

MSE(ISR, IHR)

� �
(16)

SSIM is based on three evaluation metrics: brightness, contrast,

and structure, with Equations 17–20:

l(x, y) =
2mxmy + C1

m2
x + m2

y + C1
(17)

c(x, y) =
2sxsy + C2

s 2
x + s 2

y + C2
(18)
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s(x, y) =
sxy + C3

sxsy + C3
(19)

SSIM(x, y) = ½l(x, y)�a · ½c(x, y)�b · ½s(x, y)�g (20)

a , b , g are used to adjust the brightness, contrast, and structure

of the weight look; when it is 1, SSIM can be simplified as shown in

Equation 21:

SSIM(x, y) =
(2mxmy + C1)(2sxy + C2)

(m2
x + m2

y + C1)(s 2
x + s 2

y + C2)
(21)

where mx and my denote the means, s 2
x and s 2

y denote the

variances. sxy denotes the covariance between x and y, and C1 =

(K1L)
2 and C2 = (K2L)

2 are used to ensure the stability of SSIM.

In marine ship detection experiments, this paper uses accuracy,

recall, and mean average precision mean (mAP) as evaluation

metrics. Recall is defined as shown in Equation 22:

Recall =
TP

TP + FN
(22)

TP is true positives, which denotes the number of correct

positive samples, and FN is false negatives, which denotes the

number of incorrect negative samples. Recall is used to measure

the detection model’s rate of checking completeness. Precision is

defined as shown in Equation 23:

Precision =
TP

TP + FP
(23)

FP stands for false positives and denotes the number of false

positive samples. Precision is used to measure the model’s checking

accuracy, which is related to the false alarm probability Pf. mAP is

defined as shown in Equation 24:

mAP =
Z 1

0
p(r)dr (24)

r denotes recall, P denotes precision, and p(r) denotes the

precision–recall curve (P–R curve). The computational process of

mAP is essentially to find the area under the PRC curve. Because

mAP considers both recall and precision, it has been chosen as the

sole core measure of detection accuracy.
3.3 Experimental details

In this paper, NVIDIA GTX 4090 GPU is used to train the

network model. The training process parameters for the super-

resolution reconstruction experiments are set as follows: the initial

learning rate is 2e-4, and the learning rate decays by half after 50

iterations. The optimizer is Adam, the batch size is 8, and the total

number of epochs is 100. The training process parameters for the

marine ship detection experiment are set as follows: the initial

learning rate is 0.01, and the final learning rate is reduced to 1e-3.

The input image size is 256×256, the optimizer is Adam, and the

batch size is 8, with 150 iterations. The software applications used

included Pytorch version 1.12.0 with CUDA 12.4 and Python 3.9.
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3.4 Experimental results of super-
resolution reconstruction of SAR images

In order to evaluate the excellent performance of TaylorGAN in

the super-resolution reconstruction of SAR images, we compare it

with other super-resolution reconstruction models, and the results

of the comparison are analyzed by evaluating the metrics and visual

effects. The comparison methods include bicubic, SRCNN, SRGAN,

LSRGAN, and cycle-GAN.

3.4.1 Quantitative results
As shown in Table 1, the performance of six super-resolution

methods is evaluated across two SAR datasets, SSDD and Ship-SAR,

under an amplification factor of 4. The results indicate that

TaylorGAN achieves consistent improvements across all

evaluation metrics, outperforming both GAN-based and non-

GAN-based baselines.

On the SSDD dataset, TaylorGAN attains the highest PSNR

(25.43 dB) and SSIM (0.7931), alongside the lowest MSE (0.2481).

Among GAN-based models, it surpasses LSRGAN—the second best

performer—by 1.31 dB in PSNR, 0.0423 in SSIM, and a 0.0102

reduction in MSE. Compared to Cycle-GAN, TaylorGAN shows

more pronounced enhancements, with a 4.09-dB gain in PSNR,

0.2766 in SSIM, and 0.0072 lower MSE. Notably, when

benchmarked against non-GAN approaches such as SRCNN,

TaylorGAN yields an increase of 3.07 dB in PSNR, 0.1765 in

SSIM, and 0.0229 decrease in MSE, reflecting its superior

capability in structure preservation and noise suppression.

On the Ship-SAR dataset, similar trends are observed.

TaylorGAN has a PSNR of 24.55 dB, a SSIM of 0.7721, and an

MSE of 0.2030, outperforming other methods in all indicators.

Compared with GAN-based models, TaylorGAN surpasses

LSRGAN by 1.51 dB, 0.0754, and 0.0121 in PSNR, SSIM, and

MSE, respectively. In addition, compared with Cycle-GAN,

TaylorGAN improves by 2.75 dB, 0.2339, and 0.0468 in the three

indicators, respectively. Compared with the non-GAN baseline

SRCNN, its improvement is also very significant, with a PSNR

increase of 2.00 dB, a SSIM increase of 0.0991, and an MSE

reduction of 0.0254.
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3.4.2 Qualitative results
Figures 3 and 4 qualitatively compare the super-resolution

reconstruction results on the SSDD and SAR-Ship datasets,

respectively. These figures show the visual effects of different

models on improving the resolution of SAR images. As shown in

the figure, TaylorGAN is able to consistently generate images with

clearer textures and higher visual fidelity than other methods. In

particular, TaylorGAN is able to effectively recover the structural

details of the ship and suppress background noise, showing its

advantage in recovering fine-grained features. In contrast, non-

GAN-based models such as bicubic interpolation and SRCNN

produce significantly blurred results. Although SRCNN was

originally proposed for the super-resolution reconstruction of

natural images, it does not generalize well on SAR data due to its

simple structure and limited ability to model high-frequency

components. GAN-based models, such as SRGAN, LSRGAN, and

cycle-GAN, provide better performance than non-GAN baselines

by generating clearer contours and richer textures. However, these

methods often suffer from artifacts or excessive noise. Overall,

the visual results in Figures 3 and 4 demonstrate the superior

perceptual quality of TaylorGAN across different SAR image

scenarios, further confirming its effectiveness in high-fidelity SAR

image reconstruction tasks.
3.5 Experimental results of marine ship
detection for SAR images

To verify the effectiveness of the proposed HMS-MRCNN

method, this paper compares it with several representative object

detection algorithms, including YOLO v8, Quad-FPN (Zhang et al.,

2021), Faster R-CNN, Cascade R-CNN, and Grid R-CNN. In

addition, this paper also tests high-resolution images without

super-resolution reconstruction methods to evaluate the

contribution of SR methods.

3.5.1 Quantitative results
Table 2 presents the quantitative comparison of the proposed

HMS-MRCNN framework against several object detection models

on the SSDD and Ship-SAR datasets. The evaluation metrics

include precision, recall, and mAP50, which comprehensively

reflect the accuracy and robustness of each method.

On the SSDD dataset, the proposed HMS-MRCNN (SR)

achieves the highest performance in all metrics, with accuracy of

93.0%, recall of 90.3%, and mAP50 of 93.1%. These values exceed

those of the high-resolution input version (HMS-MRCNN (HR)) as

well as other traditional detectors. Notably, the mAP50 of HMS-

MRCNN (SR) is improved by 1.9% compared to Quad-FPN,

demonstrating the effectiveness of integrated super-resolution

reconstruction in enhancing detection results.

On the Ship-SAR dataset, the proposed method maintains its

leading position, achieving an accuracy level of 91.9%, recall of

93.0%, and mAP50 of 92.6%. This performance exceeds that of

Quad-FPN and other classic detectors.
TABLE 1 Comparison of the metrics of different methods at an
amplification factor of 4.

Method
SSDD Ship-SAR

PSNR SSIM MSE PSNR SSIM MSE

Bicubic 19.51 0.3713 0.2594 20.43 0.4065 0.2619

SRCNN 22.36 0.6176 0.2710 22.56 0.6730 0.2284

SRGAN 23.31 0.7146 0.2519 21.68 0.5211 0.2405

LSRGAN 24.12 0.7508 0.2373 23.04 0.6970 0.2151

Cycle-GAN 21.34 0.5175 0.2413 21.80 0.5382 0.2498

TaylorGAN 25.43 0.7931 0.2481 24.55 0.7721 0.2030
The best results are indicated in bold.
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Overall, the experimental results verify that the proposed HMS-

MRCNN (SR) not only improves the average detection accuracy but

also enhances its stability at different scales and scene complexity,

making it very suitable for practical SAR-based ship detection tasks.

3.5.2 Qualitative results
Figures 5 and 6 qualitatively compare the detection results of

different target detection algorithms on the SSDD and SAR-Ship

datasets. The methods include YOLO v8, Quad-FPN (Zhang et al.,

2021), Faster R-CNN, Cascade R-CNN, Grid R-CNN, and HMS-

MRCNN. Red circles indicate missed detections, and yellow circles

indicate incorrectly detected target objects.

As can be seen from the figure, YOLO v8 and Faster R-CNN are

prone to more false positives or missed detections, especially when

detecting small or low-contrast ships. Quad-FPN shows higher
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positioning accuracy and recall rate than traditional models, but

it occasionally produces false detections in complex near-shore

scenes or cluttered wave backgrounds. Cascade R-CNN and Grid R-

CNN also have more missed detections and false detections.

In contrast, HMS-MRCNN, proposed in this paper, shows

obvious advantages in detection results. In particular, after using

TaylorGAN to reconstruct the image for super-resolution, HMS-

MRCNN can better detect the target ship.

3.6 Ablation experiments

To evaluate the contribution of key structural components in the

proposed TaylorGAN, this paper conducts ablation experiments

focusing on two core modules: the TaylorShift Attention (TSA)

module and the feature fusion (FF) module. The TSA module is
LR HR bicubic SRCNN

000018 from SSDD SRGAN LSRGAN Cycle-GAN TaylorGAN

LR HR bicubic SRCNN

000068 from SSDD SRGAN LSRGAN Cycle-GAN TaylorGAN

LR HR bicubic SRCNN

LR HR bicubu ic SRCNNNN

000018 frff om SSDD SRGANAA LSRGANAA Cycle-GANAA TaylorGANAA

LR HR bicubic SRCNN

000068 frff om SSDD SRGANAA LSRGANAA Cycle-GANAA TaylorGANAA

LR HR bicubu ic SRCNNNN

000636 from SSDD SRGAN LSRGAN Cycle-GAN TaylorGAN

FIGURE 3

Comparison results of the super-resolution reconstruction of the SSDD dataset.
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designed to enhance the network’s global and local modeling capability

through a position-aware attention mechanism, while the FF module

facilitates the integration of multi-scale features to recover high-

frequency structures such as ship contours and edges.

As shown in Table 3, this paper begins with a baseline

configuration that excludes both TSA and FF modules. This version

achieves relatively low performance (20.89 dB PSNR and 0.5852 SSIM

on SSDD), indicating its limited capability in recovering structural and

fine-grained details. Introducing the TSA module alone yields a

noticeable improvement, increasing PSNR by 1.51 dB and SSIM by
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0.0177 on SSDD. This again demonstrates the effectiveness of

TaylorShift attention in enhancing feature representation, even

without structural fusion.

When both modules are integrated, the model achieves its

highest performance, with 25.43 dB PSNR and 0.7931 SSIM on

SSDD and 24.55 dB PSNR and 0.7721 SSIM on Ship-SAR. This final

configuration outperforms all ablated variants, confirming that the

combination of attention-based modeling and feature fusion

significantly improves image quality, especially in restoring high-

frequency textures under complex SAR imaging conditions.
TABLE 2 Comparative experimental results.

Method
SSDD Ship-SAR

Precision Recall mAP50 Precision Recall mAP50

YOLO v8 87.8 81.9 89.9 80.1 85.3 83.6

Quad-FPN 90.6 88.4 91.2 89.3 91.7 90.5

Faster R-CNN 87.4 86.0 87.2 84.5 84.1 83.1

Cascade R-CNN 91.7 86.5 88.3 87.7 83.0 84.8

Grid R-CNN 88.4 87.0 87.9 81.5 82.3 81.9

HMS-MRCNN (HR) 91.9 89.7 92.5 90.8 89.9 91.3

HMS-MRCNN (SR) 93.0 90.3 93.1 91.9 93.0 92.6
The best results are indicated in bold.
LR HR bicubic SRCNN
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FIGURE 4

Comparison results of the super-resolution reconstruction of the SAR-Ship dataset.
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To evaluate the contribution of each module to detection

performance, this paper conducts a controlled ablation study

analyzing the impact of the DCR (feature imitation) and DCN

(deformable convolution) modules within the HMS-MRCNN

framework. The DCR module enhances semantic-level feature

representation, while the DCN module improves spatial

adaptability. The performance metrics of each module configuration

are detailed in Table 4.
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As shown in Table 4, the DCR module alone yields notable

improvements in recall, while the DCNmodule contributes more to

precision and localization. However, the combination of DCR and

DCN achieves higher overall performance than either module

individually, demonstrating their complementary strengths. The

full model, integrating both modules, significantly enhances

detection accuracy on both SSDD and Ship-SAR datasets.

These results indicate that fusing semantic feature imitation

with spatially adaptive convolution can effectively enhance network

robustness and accuracy under complex SAR imaging conditions.
4 Conclusion

Given the challenges of low resolution of SAR images and the

susceptibility of marine ship detection to noise and multi-scale

target interference, this paper proposes a “super-resolution

reconstruction-multi-scale detection” collaborative optimization

solution. The main contributions are as follows:
FIGURE 6

Comparison of the detection results of each model for the SAR-Ship dataset.
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R-CNN

Grid R-CNN

HMS-

MRCNN (HR)

HMS-

MRCNN (SR)

FIGURE 5

Comparison of the detection results of each model for the SSDD dataset.
TABLE 3 Ablation experiment results of different blocks of TaylorGAN.

TSA FF
SSDD Ship-SAR

PSNR SSIM PSNR SSIM

20.89 0.5852 21.07 0.5631

✓ 22.40 0.6029 22.46 0.6234

✓ ✓ 25.43 0.7931 24.55 0.7721
The best results are indicated in bold.
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TaylorGAN super-resolution network: It aims to recover high-

frequency detail information from low-resolution SAR images. The

method works by feeding the low-resolution image into the

generator taking the corresponding high-resolution image as

the target of discriminator learning and continuously optimizing

the generator through adversarial training so that its output image is

closer to the real high-resolution image in terms of structural clarity

and detail restoration. In order to enhance the detail modeling

ability, TaylorGAN introduces the TaylorShift attention

mechanism, replacing the traditional Softmax operation with

Taylor series expansion, which improves the ability to recover

high-frequency details (e.g., ship contours, deck structures).

Experiments prove that TaylorGAN significantly outperforms

mainstream models such as SRGAN and cycle-GAN in terms of

PSNR, SSIM, and subjective visual quality.

HMS-MRCNN multi-scale detection framework: HMS-

MRCNN is designed for marine ship detection, extracting small

target details from shallow layers (Conv3-4) and capturing global

semantic context from deep layers (Conv5). Through feature map

downsampling and L2 normalization, the model achieves accurate

cross-scale feature alignment. Experiments show that HMS-

MRCNN (SR) achieves 93.1% mAP50 accuracy on SSDD and

92.6% mAP50 accuracy on Ship-SAR, outperforming traditional

detectors such as Faster R-CNN and Grid R-CNN.

End-to-end performance verification: The combination of

super-resolution reconstruction and marine ship detection

improves the mAP50 of ship image detection by 0.6% and 1.3%

on the SSDD and Ship-SAR datasets, indicating that the resolution

improvement d irec t ly improves the per formance of

downstream tasks.
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TABLE 4 Ablation experiment results of different blocks of HMS-MRCNN.
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✓ 92.1 88.6 92.2 90.0 92.1 91.0

✓ ✓ 93.0 90.3 93.1 91.9 93.0 92.6
The best results are indicated in bold.
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Detecting small seamounts
in multibeam data using
convolutional neural
networks
Tobias Ziolkowski1*, Colin W. Devey1 and Agnes Koschmider2

1GEOMAR - Helmholtz Centrum for Ocean Research Kiel, Kiel, Germany, 2Process Analytics Group,
University of Bayreuth, Bayreuth, Germany
Seamounts play a crucial role in marine ecosystems, ocean circulation, and plate

tectonics, yet most remain unmapped due to limitations in detection methods.

While satellite altimetry provides large-scale coverage, its resolution is

insufficient for detecting smaller seamounts, necessitating high-resolution

multibeam bathymetry. This study introduces a deep-learning-based

framework for automated small seamount detection in multibeam bathymetry,

combining a CNN-based filtering step with U-Net segmentation to enhance

accuracy and efficiency. Using multibeam bathymetric data from the SO305–2

expedition, the proposed approach successfully identified 30 seamounts, many

of which were undetectable using satellite altimetry. A hyperparameter

optimization study determined the optimal U-Net configuration, achieving a

Dice Coefficient of 0.8274 and a Mean IoU of 0.7514. While the model performed

well within the training dataset, cross-regional generalization remains

challenging, with reduced accuracy observed in areas of highly variable

seafloor morphology. The results highlight the limitations of satellite altimetry,

as only 14 of the 30 detected seamounts were visible in satellite-derived datasets.

This underscores the necessity of high-resolution multibeam surveys for

capturing fine-scale seafloor features. In contrast to time-intensive manual

annotation—which can require several hours to accurately delineate each

individual seamount—the automated U-Net-based segmentation approach

analyzed 146,060 km² of multibeam data within seconds, offering substantial

time savings and scalability for large-scale mapping efforts. Beyond geological

mapping, automated seamount detection has broad applications in marine

ecology, environmental monitoring, and plate tectonics research. Future work

should focus on integrating physical principles and geological constraints, such

as typical seamount morphology, size distributions, and tectonic setting, to

improve classification accuracy.
KEYWORDS

multibeam, seamount, convolutional neural network, seamount catalog, feature vector,
bathymetry, U-net, seafloor mapping
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1 Introduction

Seamounts, underwater mountains formed by volcanic activity,

are significant features of the ocean floor, providing important

information about plate tectonics and influencing, for example,

marine ecosystems, ocean circulation and global geochemical

cycles. Mapping these structures is essential for advancing

oceanographic and geological research. However, most seamounts

remain unmapped due to limitations in detection methods.

Satellite altimetry has been widely used to detect large

seamounts through gravity anomalies, but its resolution

constraints hinder the identification of smaller structures. Kim

and Wessel (2011) detected seamounts taller than 1,500 meters,

estimating between 25,000 and 140,000 seamounts exceeding 1,000

meters in height while suggesting that up to 25 million seamounts

above 100 meters remain uncharted. More recently, Gevorgian et al.

(2023) expanded the global seamount catalog by identifying 19,325

new seamounts, increasing the total to 43,454. Despite these

advances, the reliability of satellite altimetry in detecting small

seamounts remains uncertain, particularly given the influence of

data resolution and noise.

Multibeam bathymetry enables direct, high-resolution mapping

of the seafloor, offering far greater detail than satellite-based methods.

However, while the surveys themselves remain time-intensive and

spatially constrained, the subsequent analysis and annotation of

collected data present an additional bottleneck. To address this

challenge, this study introduces an automated deep-learning-based

framework to accelerate the detection and classification of small

seamounts in multibeam datasets. The approach combines

convolutional neural networks (CNNs) for initial filtering with a

U-Net-based segmentation model to delineate potential seamount

regions. By replacing manual annotation with a scalable two-step

pipeline, the method significantly reduces the time and effort required

for post-survey analysis—especially for identifying small seamounts

often missed in global databases.

An additional challenge lies in understanding the morphological

properties of small seamounts. Smith (1988) proposed a height-to-

base radius ratio of 0.21, but it remains unclear whether this

relationship holds for smaller seamounts or if geometric variations

require adjustments in altimetry-based models. Addressing this

question is critical for improving detection methodologies.

To systematically evaluate this approach, the study addresses

the following research questions:
Fron
1. How does a filtering-based approach improve the

identification of small seamounts in multibeam

bathymetric data compared to manual identification?

2. What are the optimal hyperparameters for training a U-Net

model to achieve the highest segmentation accuracy for

small seamount detection?

3. How well does the proposed framework generalize across

different geographic regions, and what limitations arise

when applying a model trained in one ocean basin

to another?
tiers in Marine Science 02245
4. What is the effective lower detection limit of satellite

altimetry for small seamounts, and how does this

compare to detections from high-resolution multibeam

bathymetric data?
Beyond geological mapping, automated seamount detection has

broad applications in marine science. In submarine topography

studies, this methodology can be extended to detect and classify

other undersea features, such as ridges, trenches, and hydrothermal

vent fields (Huang et al., 2024). In marine ecology, seamounts serve

as biodiversity hotspots, providing habitat for deep-sea organisms;

automating their detection can support conservation efforts (Clark

et al., 2010). Additionally, accurate seamount mapping contributes

to research on seafloor geodynamics, volcanic activity, and plate

tectonics (Matabos et al., 2022). Automated bathymetric analysis

also plays a critical role in environmental monitoring and deep-sea

mining, assisting in landslide risk assessment and resource

extraction planning (Jones et al., 2021; Usui and S, 2022).
2 Literature review

Seamount classification has been a focal point in marine

geosciences, employing a range of methods from satellite

altimetry to high-resolution multibeam bathymetry. Early studies,

such as Smith (1988) and Mitchell (2001), primarily relied on

satellite-derived gravity data to detect and classify seamounts.

While effective for large-scale features, these approaches are

inherently constrained by resolution limitations, as only larger

seamounts generate sufficiently strong gravitational anomalies to

be visible in global datasets. Multibeam bathymetry provides a

higher-resolution alternative, enabling the detection of smaller

features. However, its limited spatial coverage and the manual

effort required for classification restrict its scalability for

global mapping.

To address these challenges, machine learning techniques have

been explored for automated feature extraction in bathymetric

datasets. Cracknell and Reading (2014) compared various

supervised learning algorithms for lithology classification,

identifying Random Forests as a robust choice due to its spatial

accuracy, while SVMs and k-NN exhibited computational

inefficiencies and sensitivity to noise. Despite their success in

broad geological classification, these methods rely on hand-

engineered features, making them unsuitable for detecting

complex, small-scale seamounts.

Recent advances in deep learning have significantly improved

seafloor classification by automatically extracting hierarchical

features from raw data. Valentine and Kalnins (2013) introduced

an autoencoder-based framework to detect seamount-like features

based on reconstruction errors, reducing human bias but requiring

extensive training data. Similarly, Liu et al. (2024) employed YOLO

V7 Tiny for detecting deepsea features under challenging imaging

conditions, achieving high accuracy but struggling to generalize

across diverse bathymetric terrains.
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Several CNN architectures have been widely explored in

geospatial and seafloor classification applications, including

VGG16 (Simonyan and Zisserman, 2015), ResNet50 (He et al.,

2016), InceptionV3 (Szegedy et al., 2016), and MobileNetV2

(Sandler et al., 2018). These models offer varying trade-offs in

feature representation, computational efficiency, and robustness:
Fron
• VGG16 is a deep yet simple architecture, utilizing small

convolutional filters to extract structured features, making it

effective for hierarchical representation. However, its high

computational demand limits its efficiency for large-

scale datasets.

• ResNet50 introduces residual connections, allowing deeper

networks while mitigating vanishing gradient issues,

making it well-suited for complex pattern recognition in

bathymetric data.

• InceptionV3 employs multi-scale convolutions, enhancing

adaptability to seamounts of varying size and morphology.

• MobileNetV2, optimized for computational efficiency, uses

depthwise separable convolutions but lacks the necessary

depth and architectural components for detailed segmentation.
Given the need for efficient large-scale filtering in seamount

detection, we conduct a comparative analysis of these models in

Section 4.1 to evaluate their effectiveness in generating feature

vectors for clustering and classification.

For detailed bathymetric segmentation, U-Net (Ronneberger et al.,

2015) was selected as the core architecture due to its proven ability to

combine high segmentation accuracy with computational feasibility.

Originally developed for biomedical imaging, U-Net’s encoder-decoder

design, augmented with skip connections, ensures that both contextual

and spatial information is preserved—critical for detecting small,

irregularly shaped seamounts in multibeam bathymetric data. Unlike

classification models that provide a single output per image or object

detectors that require bounding boxes, U-Net performs dense pixel-

wise labeling, which is particularly suited for the continuous and

ambiguous topography of the seafloor. Its relatively low data

requirements and efficient training regime further make it a practical

solution for seafloor mapping tasks where labeled data is limited.

Other segmentation architectures, though effective in image

processing, exhibit notable limitations:
• DeepLabV3+: Chen et al. (2018), while capturing multi-

sca le context through atrous convolut ions , i s

computationally expensive.

• Mask R-CNN: He et al. (2017) excels in instance

segmentation but relies on predefined object boundaries,

making it less suitable for the continuous, often ambiguous

topographies of seamounts.

• YOLO-based models: Wang and Bochkovskiy (2022), while

optimized for real-time object detection, lack the

granularity required for detailed segmentation.
tiers in Marine Science
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Given these considerations, U-Net provides the best balance

between segmentation accuracy and computational efficiency. Its

architecture is uniquely suited for small seamount segmentation,

enabling robust detection even under conditions of sparse training

data and morphologically complex targets.

The increasing availability of high-resolution bathymetric

datasets has led to a surge in the application of deep learning

across marine geosciences, environmental monitoring, and

geospatial data fusion. Chitre et al. (2024) demonstrated machine

learning applications in bathymetric data processing, while

Cherubini et al. (2024) utilized Copernicus Marine Service and

EMODnet data for marine habitat modeling. Similarly, Deng et al.

(2024) applied deep learning to analyze the environmental impact

of floating offshore wind turbines.

Beyond environmental modeling, deep learning has also been

applied in geospatial data fusion and numerical homogenization.

Khalil et al. (2024) integrated airborne electromagnetic and

borehole data with bathymetric analysis to enhance coastal

mapping, while Qin et al. (2024) developed multi-scale satellite-

derived bathymetry models to improve spatial resolution.

Despite these advancements, detecting small seamounts

remains challenging due to:
• Limited labeled training data for small-scale features.

• High variability in seafloor morphology, making

classification difficult.

• Dist inguish ing true seamounts f rom noise in

multibeam bathymetry.
Many models, including Random Forests, SVMs, and XGBoost,

struggle to generalize across diverse regions. Unsupervised

clustering techniques, though useful in segmenting bathymetric

images, often fail to distinguish small seamounts from

background noise.

To address these challenges, this study introduces a two-step

deep learning framework combining CNN-based feature filtering

with U-Net segmentation:
1. Feature Clustering: The dataset is first filtered to pre-select

seamount candidates using CNN-generated feature vectors.

2. Seamount Segmentation: The U-Net model is then applied

to refine the classification, ensuring robust detection.
Additionally, this study explicitly tests cross-regional

generalization, training on Atlantic Ocean bathymetry and

evaluating on Indian Ocean datasets to assess model adaptability.

By integrating these innovations, this study presents a scalable,

high-accuracy framework for small seamount detection, addressing

the key limitations in machine learning-based seafloor

classification. The following sections outline the methodology,

experimental setup, and results to demonstrate the effectiveness of

this approach.
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3 Methodology

3.1 Image filtering

Our framework processes large-scale bathymetric data into

manageable subsets, facilitating the efficient detection of potential

seamount features. The methodology, illustrated in Figure 1,

involves five key steps: image creation, segmentation, feature

calculation, clustering, and manual labeling.

Image Creation: The input consists of multibeam bathymetric

data that has been preprocessed to correct artifacts and improve

overall quality. To ensure clean input data, outlier detection and

removal were performed using the optimized filtering method

described by Ziolkowski et al. (2024), which enhances data

reliability by eliminating spurious depth values from multibeam

echo-sounder measurements. High-resolution seafloor maps were

subsequently generated using Python’s Matplotlib library, applying

the viridis color scheme to represent depth variations. This

perceptually uniform colormap enhances contrast between flat

seafloor and elevated features such as seamounts, facilitating the

ability of the U-Net architecture to learn and distinguish relevant

morphological patterns during the segmentation process. To ensure

that every 256×256 image uses the same absolute depth-to-color

mapping (and thus identical contrast), we compute a single pair of

“global” depth limits (global min, global max) over the entire input

survey before tiling. After interpolating each 24×24 chunk and

resizing it to 256×256, we clip every pixel to [global min,global max]

and linearly rescale to [0,1]. In this way, no two images from the

same survey ever have different contrast ranges—each pixel’s color

always maps back to the same meter-value. Segmentation: To

efficiently manage the computational challenges of seafloor

mapping, the data is divided into 256 × 256 pixel images with

10% overlap, ensuring that no seamount is truncated at the segment

edges. This step enables efficient downstream processing while

retaining critical morphological details in each region and

ensuring that the image size is large enough to fully visualize

entire seamount structures. We chose 256 × 256 as our image size

because it is a common power-of-two input for U-Net. We briefly

tested 128 × 128 (faster but lost small-feature fidelity) and 512 × 512

(higher fidelity but 4× more memory/time) and found that 256 ×

256 provided the best trade-off. Pixel resolution is kept fixed across
Frontiers in Marine Science 04247
all surveys: each chunk is first interpolated to a 24 × 24 grid at 0.001°

resolution—covering 0.024° × 0.024° in latitude/longitude—and

then resized to 256 × 256 pixels. Hence each pixel corresponds to

9.375 × 10° (10 m, depending on latitude), both during training and

application. Even if a new dataset has different raw point densities,

our pipeline “forces” it onto that same 0.024°footprint per image, so

the model always sees a consistent meter-per-pixel scale. In

summary, by fixing grid resolution=0.001 and chunk size=24 and

always resampling to 256 × 256, we guarantee identical pixel

resolution from training to application, regardless of which survey

file is used. Feature Calculation: CNNs compute feature vectors for

each segmented image, capturing key characteristics such as texture

and structure. These vectors provide a compact, descriptive

representation of the seafloor features, enabling effective analysis.

Clustering: Feature vectors are clustered into 10 groups using

unsupervised methods, which ensures that images with similar

morphological characteristics are grouped together, significantly

reducing dataset complexity and focusing attention on potential

seamount regions. The choice of k=10 was not arbitrary but reflects

a balance between two competing needs: capturing the major

morphological variations in our CNN-derived feature space and

keeping the number of clusters low enough for efficient human

review. In practice, we found that ten clusters cleanly separated

large, flat or gently sloping patches from steeper, seamount-like

textures. Increasing k beyond 10 rarely produced qualitatively new

seamount candidate groups—most extra clusters simply subdivided

empty or flat-area images—while fewer than ten clusters began to

merge distinct seamount morphologies with background.

Labeling: A domain expert reviews and labels the clusters. This

human oversight ensures accurate identification of potential

seamount candidates. Images of flat seafloor and background are

excluded from further analysis, while the potential seamount cluster

is retained for subsequent steps. On average, the cluster-level review

takes under five minutes per survey: the expert scans a handful of

thumbnails from each of the 10 clusters (100 images total) in about

2–3 minutes, discards the clearly “background” clusters, and flags

only a few as “seamount candidates.” If desired, they can then page

through those candidate clusters for extra confidence—but the

minimal filtering step is complete in under five minutes, since no

individual “yes/no” decision is made on all 5–804 images. The result

of this methodology is a refined dataset of labeled clusters. Only the
FIGURE 1

Workflow for filtering images containing potential small seamounts from multibeam bathymetric data. The process involves five key steps: (1)
creation of a high-resolution seafloor map, (2) segmentation into smaller images for efficient processing, (3) feature extraction using CNNs, (4)
filtering of images based on calculated feature vectors, and (5) manual labeling of filtered images to identify potential seamount candidates for
further analysis.
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clusters containing potential seamounts undergo further analysis to

detect the summits and extents of each seamount.
3.2 Workflow for training and evaluating a
CNN for seamount detection

The workflow shown in Figure 2 outlines the process for preparing,

training, and evaluating a UNet architecture to detect seamounts in

multibeam data, beginning after the pre-selection of images likely to

contain seamounts (Figure 1).Data Input:The workflow starts with the

selected images containing regions that most likely include seamounts,

as shown in Figure 2. These images serve as the input for the

subsequent labeling and model training steps.

Summit Detection and Extent Mapping: Using labelme, seamount

features are manually annotated to create masks for training. Black

polygons outline the extent of each seamount. This step ensures

accurate identification of key morphological features essential for the

training process. Although all annotations were created by a single

domain expert to maintain consistency, this introduces potential

subjectivity and bias into the ground truth masks. Future work

should consider inter-annotator agreement studies or collaborative

labeling strategies to better quantify annotation reliability and improve

robustness of training data.

Mask Generation: The annotated summit and extent data are

used to generate binary masks for each seamount, where black areas

represent the seamount and white areas indicate the background.

These masks serve as the ground truth for training the UNet

architecture, establishing the expected output for each input image.

Model Training: The UNet architecture is trained using the input

images and their corresponding masks. The model learns to map the

input image features to the expected output, enabling it to detect and

delineate seamounts in multibeam bathymetric data accurately.

Model Evaluation: The trained model is evaluated using the mean

Intersection over Union (mean IoU) metric, which measures the

overlap between the predicted and manually labeled masks and

ranges from 0 (no overlap) to 1 (perfect overlap). A higher mean

IoU indicates better model performance in identifying and segmenting

seamounts, providing a reliable assessment of its accuracy. Generally,
Frontiers in Marine Science 05248
mean IoU values between 0.75 and 0.85 are considered acceptable for

complex medical segmentation tasks, particularly when segment

boundaries are difficult to define, such as in tumor segmentation or

vessel segmentation (Amri et al., 2025; Peng et al., 2025; Moradmand

and R, 2025). In addition to mean IoU, the Dice coefficient is another

widely used metric in image segmentation, particularly in medical

imaging. It measures the similarity between predicted and ground-

truth segmentations and ranges from 0 (no overlap) to 1 (perfect

overlap). The Dice coefficient is particularly useful in imbalanced

datasets, where positive class pixels (e.g., segmented structures) are

much fewer than background pixels (Chamseddine et al., 2025; Yang

et al., 2025; Alyahyan, 2025).

To optimize model training, the Dice loss function is employed,

which is derived from the Dice coefficient. It is commonly used in

medical image segmentation because it mitigates the effect of class

imbalance by emphasizing the similarity of foreground structures

rather than treating all pixels equally. Dice loss is especially beneficial

for detecting small and irregularly shaped structures, making it a

suitable choice for seamount segmentation, where feature boundaries

are often ambiguous (Zhang et al., 2025; Shen et al., 2025). In future

studies, implementing cross-validation labeling rounds with multiple

annotators and calculating inter-annotator metrics such as Cohen’s

kappa (Cohen, 1960) could further strengthen the training dataset

quality and reduce the likelihood of label noise.

This workflow represents a comprehensive pipeline for training

and evaluating a UNet model tailored for the automatic detection of

small seamounts. It combines human expertise in labeling with

advanced machine learning techniques, enabling efficient and

accurate analysis of multibeam bathymetric data.
4 Results and discussion

4.1 Analysis of model performance in
seamount image filtering using feature
vectors

Seamount images show complex patterns and structural

ambiguity, posing significant challenges for automated feature
FIGURE 2

Workflow illustrating the processing pipeline for training a UNet architecture to detect small seamounts in multibeam data. The pipeline begins with
raw multibeam data input, followed by extent mapping to annotate seamount features. Masks are then generated to prepare training images, which
are used to train the UNet model. The workflow concludes with model evaluation to assess performance and accuracy in detecting and delineating
seamounts.
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extraction. The results indicate that models with stronger feature

extraction capabilities, such as VGG16 and ResNet50, produced

more precise feature vectors, leading to better clustering

performance and higher agreement with manual labeling.

Models that rely on lightweight architectures and reduced

feature complexity, such as MobileNetV2, demonstrated lower

performance, particularly in separating clusters when faced with

highly uneven cluster sizes. InceptionV3, while effective in

capturing variations in shape and color, exhibited reduced

clustering precision when confronted with uniform textures

across different clusters. Below, the performance of each model is

discussed in terms of cluster separation, agreement with manual

labeling, strengths, and weaknesses, as summarized in Table 1.
Fron
• VGG16: VGG16 achieved the highest agreement with

manual labeling (97–100%), demonstrating robust and

interpretable feature extraction, leading to clear cluster

separation. Its architecture is particularly suited to

datasets with clear patterns, making it ideal for

applications requiring consistent and robust feature

extraction. However, its tendency to over represent large

clusters limited its effectiveness for highly complex or

imbalanced datasets.

• ResNet50: ResNet50 performed well in scenarios requiring

the extraction of more complex or abstract patterns,

achieving 81–90% agreement with manual labeling. It is a

viable alternative for datasets with higher structural

variability or subtle morphological differences. However,

its performance was less consistent than VGG16,
tiers in Marine Science 06249
par t i cu lar ly in datase t s wi th l imi ted textura l

differentiat ion, where it struggled to maintain

stable clustering.

• InceptionV3: InceptionV3 showed strong multi-scale feature

extraction but lower consistency, with agreement scores

ranging from 66–94%. It is recommended for datasets with

significant variability in patterns and colors, but it is less

effective for uniform image distributions. Its performance

was hindered when dealing with color homogeneity within

clusters, leading to occasional misclassification.

• MobileNetV2: MobileNetV2 had the lowest agreement with

manual labeling (18–82%), reflecting its difficulty in handling

fine-grained textures and separating clusters effectively. This

was especially evident in datasets where clusters varied

significantly in size, ranging from single instances to over

3000 images. While computationally efficient, MobileNetV2

should be avoided in tasks requiring detailed feature

extraction, such as seamount identification, due to its

inability to handle complex patterns.
The analysis highlights VGG16 as the optimal model for

seamount identification due to its ability to extract robust features

and achieve high agreement with manual labeling. ResNet50 is a

strong alternative for datasets with complex patterns but suffers

from inconsistencies in cluster separation. InceptionV3 is useful for

datasets with diverse features but struggles with uniform patterns,

while MobileNetV2 is unsuitable for this application due to its

limited feature extraction capabilities and poor clustering

performance. These insights provide a clear basis for selecting
TABLE 1 Summary of clustering results across different CNN architectures for seamount image classification.

Model Total Selected % sel. Cluster distribution Matches Manual %
match

Clusters

VGG16 16816 11266 66.99 300–2000 per cluster, good separability 124 127 97.64 15

VGG16 16816 5834 34.69 Uniformly distributed 127 127 100.00 10

VGG16 16816 6818 40.54 One large cluster with 10k,
others balanced

120 127 94.49 5

ResNet50 16816 11927 70.93 400–1600 per cluster,
good differentiation

103 127 81.10 15

ResNet50 16816 8151 48.47 Uniformly distributed 86 127 67.72 10

ResNet50 16816 9430 56.08 One large (8k), others 2500 each 115 127 90.55 5

InceptionV3 16816 11178 66.47 129–1900, not perfectly separable 102 127 80.31 15

InceptionV3 16816 14404 85.66 Slightly uneven distribution 120 127 94.49 10

InceptionV3 16816 15419 91.69 One larger cluster, rest uniform 84 127 66.14 5

MobileNetV2 16816 6687 39.77 Very uneven, 1–3059 per cluster 23 127 18.11 15

MobileNetV2 16816 9430 56.08 Very uneven distribution 105 127 82.68 10

MobileNetV2 16816 9433 56.10 Very uneven distribution 69 127 54.33 5
fr
The table lists the number of total and selected images, the percentage selected, and a qualitative description of cluster distribution. “Cluster Distribution” refers to how images are grouped in
terms of size variation, uniformity, and dominance. The “% Match” indicates the percentage of selected images matching the manually curated seamount labels.
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appropriate models based on the specific requirements of seamount

image clustering tasks.
4.2 Training of the U-Net architecture for
seamount detection

The dataset used for training the U-Net architecture consists of

high-resolution bathymetric and geological data collected during

two research cruises, MSM75 and MSM88, in the Atlantic Ocean.

These datasets provide detailed information on seafloor

morphology, fault structures, and small seamounts, making them

well-suited for an image-based deep learning approach.

The MSM75 cruise, conducted in 2018, focused on four key

areas along the Reykjanes Ridge, a slows preading ridge influenced

by the Iceland hotspot. This dataset includes 15 m resolution ship-

based bathymetry, ROV-based ground-truthing, and geochemical

analyses of glass samples, capturing variations in magma

composition, fault density, and seamount morphology. These

features are strongly influenced by factors such as distance from

the hotspot and the magmatic or tectonic accretion state of axial

volcanic ridges (AVRs) (Le Saout et al., 2023). Given the distinct

geological and morphological variations within the dataset, it

provides an excellent basis for training a segmentation model

capable of distinguishing complex seafloor structures.

Complementing this, the MSM88 cruise dataset, collected using

a Kongsberg EM 122 multibeam system at approximately 100 m

horizontal resolution, covers a much larger area—approximately

153,121 square kilometers—spanning from the Cabo Verde

Exclusive Economic Zone (EEZ) to the EEZs of Guadeloupe,

Dominica, and Martinique. This dataset includes diverse Atlantic

seabed morphologies, ranging from flat sedimented plains to

seamounts, fracture zones, and the Mid-Atlantic Ridge. The large

volume of depth soundings (86 million) ensures high spatial

coverage and variability, further enhancing the robustness of the

training data.

Table 2 provides an overview of the spatial extent, resolution,

and depth ranges of the three datasets used for training and testing.

The diversity of these datasets enhances the robustness and

applicability of the model across different seafloor morphologies.

These datasets are particularly well-suited for training the U-

Net model, as they provide high-resolution seafloor imagery with

detailed geological labels. The combination of fine-scale bathymetry

from MSM75 and the broader regional coverage of MSM88 ensures

that the model learns to generalize across varying seafloor

structures, improving its ability to segment and classify geological

features effectively.
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4.3 Hyperparameter selection and training
strategy

In this section, we analyze the impact of different

hyperparameter configurations on the performance of the U-Net

architecture for seamount detection. The evaluation focuses on

validation loss, mean Intersection over Union (IoU), and validation

mean IoU, as summarized in Table 3. The goal of this analysis is to

identify the optimal parameter constellation for final model

training, ensuring high segmentation accuracy and robustness.

Mean Intersection over Union (IoU) is a widely used metric in

image segmentation, quantifying the overlap between predicted and

ground truth masks. It is calculated as the ratio of the intersection to

the union of both masks, ranging from 0 to 1, where higher values

indicate better segmentation performance (Dwarakanath and

Kuntiyellannagari, 2025).

Several key hyperparameters were varied during the grid search,

including the number of filters, kernel size, dropout rate, learning

rate, and batch size. One of the primary considerations is the

number of filters in the convolutional layers, which defines the

depth of feature extraction. A lower filter count, such as 16, may fail

to capture sufficient spatial details, whereas a significantly higher

count, such as 256 or more, increases computational costs and the

risk of overfitting, particularly given the relatively small dataset size.

To balance feature richness and computational efficiency, 32 and

128 filters were selected, following insights from prior research in

biomedical segmentation tasks (Iqbal et al., 2022; Srinivasan

et al., 2024).

Another crucial factor is the kernel size, which determines the

receptive field of convolutional layers. Smaller kernels, such as 3 × 3,

are effective for fine-grained detail extraction, while larger kernels,

such as 5 × 5, allow for broader spatial pattern detection in

bathymetric structures. The study focused on comparing these

two kernel sizes, as excessively large kernels (e.g., 7 × 7) could

introduce computational challenges and potentially over-smooth

small-scale features.

To mitigate overfitting and enhance generalization, dropout

rate was varied between 0.1 and 0.5. Dropout serves as a

regularization technique by randomly deactivating neurons

during training, preventing the model from relying too heavily on

specific features. This variation allowed for an assessment of the

trade-off between preventing overfitting and ensuring sufficient

information retention for effective segmentation.

Additionally, the learning rate plays a vital role in determining

how quickly the model updates its weights during training. A low

learning rate encourages stable convergence, whereas a higher

learning rate accelerates training but increases the risk of
TABLE 2 Summary of bathymetric datasets used for training and evaluation.

Dataset Cruise ID Area covered (km2) Resolution Depth range (m)

MSM75 MSM75 ∼10,000 15 m 102–2,044

MSM88 MSM88 ∼153,000 100 m 1,500–6,000

SO305/2 SO305/2 ∼12,000 100 m 492–5,664
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overshooting optimal weight values. To identify an optimal balance,

the study compared learning rates of 0.0001 and 0.001, ensuring

that the model could learn effectively without instability or

divergence. We use the Adam optimizer (with the learning rate

chosen via our hyperparameter search). Adam combines the

benefits of momentum and adaptive learning rates, which helps

stabilize training on our relatively small U-Net dataset.

Lastly, the batch size was explored to assess its effect on training

efficiency and model performance. Smaller batch sizes allow for

more frequent weight updates per iteration, while larger batch sizes

contribute to more stable gradient estimations. To maintain a

balance between computational efficiency and convergence

stability, batch sizes of 16 and 64 were evaluated.

Their selection was guided by best practices in deep learning,

computational efficiency, and the unique characteristics of

bathymetric data. Specifically, the dataset was divided into 80%

training and 20% validation sets using stratified sampling to

preserve class balance and ensure a robust evaluation of model

performance. We combined labeled images from both MSM75 and

MSM88 into a single pool, then applied an 80/20 split with random

state=42, so the training/validation split is fixed across all runs. For

augmentation, we rotated each normalized 256×256 image by 90°

and 180°, producing two extra images per original (three total).

These practices are widely adopted in the geospatial and marine

sciences communities and have been recommended for applications

involving multibeam bathymetry and habitat mapping (Summers

et al., 2021; Roelfsema et al., 2021). Their influence on model

performance is analyzed in the following sections, with a focus on

preventing overfitting and supporting generalization across diverse

seafloor morphologies.

The following sections discuss the results of these

hyperparameter configurations, analyzing their influence on

model performance and the trade-offs they introduce in the

context of seamount segmentation.
4.3.1 Number of filters
In our implementation, the number of filters doubles at each

successive “down” step in the encoder and then halves again in the

decoder. The results indicate that models using 32 filters generally

outperform those with 128 filters in terms of mean IoU and

validation mean IoU. The best-performing configuration (32

filters, kernel size 5, dropout rate 0.1, learning rate 0.0001, batch

size 64) achieves a validation mean IoU of 0.722, higher than

configurations with 128 filters, which generally yield IoU values

below 0.66.

Models with 128 filters and a large kernel size (5) tend to

perform poorly, particularly in cases where the dropout rate is high

or the learning rate is large. Several configurations with 128 filters,

kernel size 5, dropout rate 0.5, and a learning rate of 0.001 resulted

in extremely poor performance (mean IoU < 0.21). These results

suggest that larger models may overfit or fail to generalize when

handling small-scale features in seamount detection.
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4.3.2 Kernel size
A kernel size of 5 consistently improves model performance

compared to a kernel size of 3. The best-performing models all use a

5 × 5 kernel, which appears to enhance the model’s ability to

capture seamount structures in multibeam data. Notably, the

highest validation mean IoU (0.722) is obtained with a 5 × 5

kernel, 32 filters, dropout rate 0.1, learning rate 0.0001, and batch

size 64.

Configurations with a 3 × 3 kernel tend to yield slightly lower

performance, with validation mean IoU values ranging from 0.584

to 0.660. While smaller kernels may still be effective, the data

suggests that capturing larger contextual information with a 5 × 5

kernel improves segmentation quality. Larger kernels (e.g., 7 × 7)

were not tested due to increased computational complexity and

potential over-smoothing of small seamount features.

4.3.3 Dropout rate
The best-performing models use a dropout rate of 0.1, while

higher dropout rates (0.5) lead to a decline in performance.

Configurations with dropout 0.5 frequently result in unstable

training, with validation mean IoU values dropping below 0.55 in

most cases. This suggests that excessive regularization hinders the

network’s ability to learn fine-grained features necessary for

segmenting small seamounts. Lower dropout values (<0.1) were

avoided to prevent potential overfitting, while higher values (>0.5)

were not considered due to excessive information loss

during training.

4.3.4 Learning rate
A learning rate of 0.0001 is generally more stable and results in

higher mean IoU values than 0.001. Many configurations with a

learning rate of 0.001 exhibit poor performance, with validation loss

values reaching 0.828, indicating divergence or unstable training.

Notably, when a learning rate of 0.0001 is used in combination

with a kernel size of 5 and dropout rate of 0.1, the model achieves

the best performance. These findings suggest that a lower learning

rate prevents the model from overshooting optimal weights, leading

to better generalization. Higher learning rates (>0.01) were

excluded due to the risk of divergence, while lower rates

(<0.0001) were avoided as they could lead to excessively

slow training.

4.3.5 Batch size
The best-performing models generally use a batch size of 64.

While some configurations with batch size 16 perform well

(validation mean IoU around 0.66), they do not outperform batch

size 64 when combined with optimal hyperparameters.

Interestingly, several models with batch size 16 and 128 filters

perform significantly worse, possibly due to instability in training. A

larger batch size appears to contribute to better gradient estimation and

stable convergence. Extremely large batch sizes (>128) were not tested

due to GPU memory constraints and the risk of poor generalization.
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4.3.6 Optimal configuration and conclusions
Based on this analysis, the best-performing configuration is:

32 filters, kernel size 5, dropout rate 0.1, learning rate 0.0001,

batch size 64.

This configuration achieves the highest validation mean IoU of

0.722, suggesting that it provides the most reliable segmentation

performance for small seamounts. These results emphasize the

importance of choosing a balanced architecture that prevents

overfitting while ensuring stable learning dynamics. The findings also

reinforce that hyperparameter tuning is essential for optimizing deep

learning models in seamount segmentation, as poor configurations can

severely impact model accuracy and generalization ability.

4.3.7 Balancing generalization and model
complexity

In deep learning applications, particularly those involving

image segmentation, managing the balance between model

complexity and generalization is crucial to avoid overfitting or

underfitting. These phenomena directly influence a model’s ability

to perform accurately on unseen data and are especially critical

when working with spatially diverse and sparsely labeled

bathymetric datasets.

Overfitting occurs when a model learns the training data too

well, including its noise and minor fluctuations, leading to poor

generalization on validation or test data. This typically manifests as

a low training loss combined with a high validation loss. In contrast,

underfitting arises when the model is too simplistic to capture the

underlying patterns of the data, resulting in high errors on both

training and validation sets.

To ensure that the U-Net model maintains a strong balance

between learning capacity and generalization, we monitored

validation loss, mean Intersection over Union (IoU), and

validation mean IoU across training epochs (see Table 3). These

metrics help assess both segmentation accuracy and model

robustness. In particular, consistently high validation mean IoU

values without significant divergence from training performance

indicate strong generalization ability.

Additionally, to avoid overfitting, regularization strategies such

as dropout, early stopping, and data augmentation were applied.

Stratified sampling was used to divide the dataset into 80% training

and 20% validation subsets, preserving class balance and ensuring

that all seamount categories are proportionally represented.

The observed performance trends align with best practices

established in machine learning literature. For example,

Sivakumar et al. (2024) emphasize the trade-off between training

and testing ratio and its effect on generalization in image processing.

Similarly, Manikandan et al. (2024) highlight the impact of

architectural complexity on overfitting and underfitting in

segmentation tasks using U-Net, supporting our methodological

choices for small seamount detection.

While the model demonstrates strong validation performance, a

limitation remains its sensitivity to out-of-domain (OOD) data—

bathymetric inputs that differ significantly from the training

distribution in terms of seafloor morphology, resolution, or noise

characteristics. Such domain shifts frequently occur in real-world
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deployments and may degrade model reliability. Future work

should therefore explore strategies such as domain adaptation,

transfer learning, and uncertainty quantification. These

approaches can improve robustness by enabling the model to

generalize to morphologically diverse regions, reducing the risk of

false positives or negatives in unfamiliar tectonic settings. Transfer

learning, in particular, has shown promise in segmentation tasks

with sparse annotations and heterogeneous data domains, such as

in medical imaging (Tajbakhsh et al., 2016).
4.4 Application of workflow to real-world
data

The data shown in Figure 3 were acquired during SO305-2, a

transit across the Indian Ocean after exiting the territorial waters of

Indonesia and Malaysia. Using the EM122 swath mapping system,

high-resolution bathymetric data were collected along this

tectonically active region, which exhibits significant deformation

of the oceanic plate. The dataset reveals detailed seafloor

morphology, uncovering previously uncharted geological features

in this underexplored area.

As the survey approached the Central Indian Ridge (CIR), it

focused on the Argo transform fault and its fracture zones. The

EM122 system detected numerous small seamounts, many less than

1000 meters in diameter, which remain undetectable in lower-

resolution satellite altimetry. This highlights the limitations of

satellite-based mapping for smaller topographic features and

underscores the advantages of multibeam systems in resolving

fine-scale bathymetric details.

This high-resolution dataset provides a valuable resource for

developing and validating automated seamount detection

algorithms. It offers detailed bathymetric imagery across varied

tectonic settings, making it an ideal testbed for refining detection

methods and improving our understanding of small seamount

distribution and morphology.

A total of 11,139 images were generated from the SO305–2

expedition data during preprocessing, with 30 seamounts manually

labeled. To prepare the dataset for seamount detection, a filtering

and clustering process (Section 4.1) reduced the dataset to 6,626

images, effectively eliminating 40% of the original data. As shown in

Figure 4, clusters 1, 6, and 7 were selected for further processing, as

they most likely contain seamount images, while the remaining

clusters primarily represent flat seafloor or other irrelevant features.

Clusters 0 and 2, identified as potential artifacts likely caused by

noise, were excluded from further analysis. Additionally, 30

seamounts were manually identified within the dataset, and all 30

seamounts from the original data were retained in the selected

images, ensuring comprehensive coverage of the target structures

for model training. For model training, we used the 256×256 images

generated from the MSM75 and MSM88 datasets, in which 138

seamounts had been manually labeled. The U-Net was trained on

this combined pool of MSM75/MSM88 images.

The model was trained using the optimal hyperparameters

identified in Section 4.3. To prevent overfitting and ensure
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optimal performance, early stopping was implemented, monitoring

validation loss and halting training once no further improvements

were observed. Additionally, model checkpointing was used to save

the model whenever a lower validation loss was achieved, ensuring

retention of the best-performing version for further evaluation. The

progression of validation loss throughout training is shown in

Figure 5, exhibiting a steady decline until approximately epoch

37, after which further reductions become minimal.

Throughout training, the model demonstrated a progressive

improvement in segmentation performance, as reflected in the

increasing Dice Coefficient and Mean IoU, while validation loss

steadily decreased. Dice Loss, commonly used in segmentation tasks

to mitigate class imbalance, is derived from the Dice Coefficient, a

similarity measure evaluating the overlap between two sets. As for

class imbalance, most images have no seamount pixels, and even in

images that do, seamounts cover only about 10–20% of pixels—

hence our use of Dice Loss. By emphasizing misclassified regions,

Dice Loss helps capture fine-grained structures, making it

particularly effective for segmenting objects with irregular

boundaries (Zheng et al., 2025).

During the initial training phase (epochs 1–10), the model

exhibited low Dice scores, ranging from approximately 0.14 to

0.21. However, validation loss dropped sharply from 0.85 to 0.26

within this period, with the first major performance improvement

occurring around epoch 5, marking the transition to more stable

learning. This trend is illustrated in Figure 6, which depicts the

evolution of the Dice Coefficient over epochs.

In the mid-training phase (epochs 11–30), the model continued

improving, with validation loss reaching its minimum (0.1734) at

epoch 37. The Dice Coefficient rose significantly, surpassing 0.82,

while the Mean IoU exhibited a steady upward trend, further

indicating the model’s ability to generalize effectively. The

trajectory of the Mean IoU over training epochs, as visualized in

Figure 7, reflects this improvement.

During the late training phase (epochs 30–50), signs of

overfitting emerged as validation loss plateaued. The Dice

Coefficient fluctuated between 0.81 and 0.86, while the Mean IoU

remained relatively stable, showing minimal gains beyond epoch 37.

These observations suggest that further training did not yield

additional benefits, indicating that the model had reached its

optimal performance.

The best performance was recorded at epoch 37, where

validation loss reached its minimum (0.1734), and the model

attained a Dice Coefficient of 0.8274 and a Mean IoU of 0.7514—

representing the peak segmentation accuracy observed during

training. These results suggest that the model successfully learned

meaningful feature representations for image segmentation, with

performance stabilizing beyond this epoch. Consequently, epoch 37

was identified as the optimal balance point between learning

and generalization.

After training, the U-Net model was applied to the filtered

dataset to generate segmentation results for seamount detection.

Model predictions were compared to manually labeled seamounts

to assess performance. The U-Net successfully identified all 30

seamounts in the dataset, demonstrating high detection accuracy.
Frontiers in Marine Science 10253
The predicted outlines closely matched the ground truth, with only

minor deviations in shape and boundary precision, suggesting that

the model effectively captures key morphological characteristics

of seamounts.

Figure 8 displays all 30 manually labeled seamounts alongside

their corresponding model predictions, highlighting the robustness

of the proposed workflow in accurately detecting and segmenting

small seamount structures.

To further illustrate the challenges of detecting small

seamounts, Figure 9 presents examples of false predictions made

by the U-Net model. The misclassification of certain regions as

seamounts can be attributed to the complexity of seafloor

morphology and the inherent subjectivity of manual labeling.

Seafloor features vary significantly, and even human interpreters

may disagree on what qualifies as a seamount. Given this

subjectivity, discrepancies between model predictions and

reference labels are expected due to human error or differing

interpretations of the data.

A common characteristic among false positives is the presence

of localized seafloor elevations, which appear as yellow regions in

the bathymetric data. Although not actual seamounts, these features

share topographic similarities with true seamount structures,

making misclassification understandable. However, a key

limitation of the U-Net model is its occasional inability to

accurately capture the typical circular morphology of small

seamounts. Instead, elongated or irregularly shaped elevations are

sometimes misclassified as seamounts despite lacking the distinct

topographic characteristics that define them.

These observations suggest that while the model effectively

identifies seafloor elevations, it could be further improved in

distinguishing true seamounts from other raised features. Future

refinements could involve integrating morphological constraints

during training or applying post-processing techniques to filter out

elongated structures that do not conform to the expected circular

shape of small seamounts.

In Section 2, this study identified three key challenges in small

seamount detection: (1) the scarcity of manually labeled training

data, (2) the difficulty of segmenting irregular and morphologically

diverse features, and (3) the need for models that generalize across

varying seafloor conditions. To address the first challenge, a training

set of 138 seamounts was manually labeled using high-resolution

multibeam bathymetry, providing a diverse and representative

dataset for supervised learning. The second challenge was

mitigated through the use of the U-Net architecture, whose

encoder-decoder structure and skip connections allow for precise

pixel-wise segmentation of irregular and fine-scale seafloor features.

Lastly, the model’s generalization capability was enhanced by

filtering the dataset with a CNN-based clustering approach,

reducing noise and guiding the network’s attention to relevant

regions. Together, these strategies enabled effective training and

application of a robust segmentation model capable of detecting

small seamounts with high accuracy in real-world data.

Figure 10 highlights the 30 seamounts identified in the SO305–2

dataset, revealing a significant number of previously undetected

features. A major limitation of satellite-derived global seamount
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datasets, such as those based on vertical gravity gradient (VGG)

data, is their inability to resolve smaller seamounts (Yesson et al.,

2011). Consequently, only 14 of the 30 identified seamounts were

visible in satellite altimetry data, while the remaining 16 were too

small to be detected. This underscores the importance of

high-resolution.
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As shown in Table 4, 16 of the 30 identified seamounts (well-

known = 2) were completely absent from global satellite datasets. In

their study, Gevorgian et al. (2023) improved upon previous

altimetry-based seamount detection methods, identifying

seamounts as small as 421 meters in height, with most detections

exceeding 700 meters due to the limitations of the VGG method.
TABLE 3 Hyperparameter tuning results for U-Net.

Filters Kernel size Dropout
rate

Learning
rate

Batch size Val loss Mean IoU Val mean IoU

32 3 0.5 0.0001 64 0.403 0.584 0.584

128 3 0.5 0.0001 16 0.315 0.513 0.516

128 3 0.1 0.001 16 0.575 0.541 0.546

32 3 0.1 0.0001 64 0.298 0.616 0.617

32 3 0.1 0.0001 16 0.292 0.606 0.606

32 5 0.1 0.0001 16 0.214 0.637 0.636

32 3 0.1 0.001 16 0.301 0.609 0.615

128 5 0.1 0.001 64 0.828 0.207 0.101

128 5 0.5 0.0001 16 0.828 0.193 0.095

32 5 0.1 0.001 64 0.828 0.299 0.153

128 5 0.1 0.0001 16 0.318 0.606 0.628

32 3 0.5 0.001 16 0.828 0.309 0.161

128 5 0.1 0.001 16 0.828 0.199 0.094

32 5 0.1 0.0001 64 0.225 0.721 0.722

32 3 0.1 0.001 64 0.798 0.463 0.460

32 3 0.5 0.0001 16 0.493 0.544 0.548

128 5 0.1 0.0001 64 0.353 0.596 0.609

128 3 0.1 0.0001 64 0.275 0.659 0.660

128 5 0.5 0.001 16 0.505 0.462 0.469

128 5 0.5 0.0001 64 0.369 0.606 0.616

32 5 0.5 0.001 16 0.545 0.427 0.492

128 3 0.5 0.0001 64 0.295 0.650 0.652

128 3 0.5 0.001 64 0.828 0.209 0.100

128 3 0.5 0.001 16 0.828 0.194 0.094

32 3 0.5 0.001 64 0.828 0.318 0.167

32 5 0.5 0.0001 16 0.220 0.696 0.698

128 5 0.5 0.001 64 0.828 0.196 0.093

32 5 0.1 0.001 16 1.000 0.343 0.363

128 3 0.1 0.001 64 0.555 0.459 0.460

128 3 0.1 0.0001 16 0.291 0.649 0.651

32 5 0.5 0.001 64 0.828 0.201 0.095

32 5 0.5 0.0001 64 0.218 0.713 0.715
The configuration with 32 filters, kernel size 5, dropout rate 0.1, learning rate 0.0001, and batch size 64 achieved the highest validation mean IoU of 0.722 (highlighted in bold), indicating optimal
performance for seamount segmentation.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1613061
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ziolkowski et al. 10.3389/fmars.2025.1613061
FIGURE 3

Joint working area of the E-POLIO and M2Argo projects during the SO305–2 cruise, shown along the transit route from Singapore to Port Louis.
The boxed area indicates the survey region focused on the ARGO fracture zone.
FIGURE 4

Clusters generated after the filtering process, highlighting distinct seafloor morphologies. Clusters 1, 6, and 7 likely contain seamount images,
making them suitable for further analysis. All other clusters primarily represent flat seafloor or similar features and can be excluded from the U-Net
detection process for small seamount detection.
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This marked a significant improvement over earlier studies, such

Kim and Wessel (2011), who noted that traditional altimetry-based

methods struggled to detect features smaller than 1,500 meters due

to the limited resolution of gravity anomaly data. These findings

underscore the limitations of satellite-derived data in detecting

smaller seamounts and highlight the necessity of high-resolution

mul t ibeam ba thymet r i c su rveys fo r comprehens ive

seafloor mapping.

Additionally, 10 seamounts (well-known = 1) were previously

cataloged by Gevorgian et al. (2023) and Kim and Wessel (2011),

but our method provided independent validation of their existence
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using direct multibeam observations. These seamounts, ranging

from 315 to 2,005 meters in height, demonstrate that our approach

can both confirm and refine existing seamount inventories through

high-precision bathymetric measurements.

Interestingly, one feature predicted in previous seamount

catalogs (well-known = 0) was not confirmed in our multibeam

dataset. This discrepancy suggests a false positive in the satellite-

derived data, potentially caused by noise, interpolation artifacts, or

misclassification of other seafloor features as seamounts. Such cases

highlight the importance of direct validation using high-resolution

mapping to ensure the accuracy of global seamount databases.
FIGURE 5

Validation loss over epochs during model training. The red dashed line indicates the epoch where the best model was saved based on the lowest
validation loss.
FIGURE 6

Validation Dice coefficient over epochs. A higher Dice coefficient indicates better segmentation performance. The red dashed line highlights the
best model.
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Overall, these findings emphasize the crucial role of multibeam

sonar in capturing fine-scale seafloor topography and identifying

small seamounts that remain undetected in satellite altimetry data.

While altimetry-based methods provide valuable large-scale global

coverage, they systematically underestimate the number of small

seamounts due to resolution constraints. By applying machine

learning-based segmentation on high-resolution bathymetry, our

approach bridges the gap between broad-scale satellite surveys and

precise, localized mapping techniques.
5 Conclusion

This study introduced a deep-learning-based framework for

detecting small seamounts in multibeam bathymetric data,

addressing key limitations of traditional classification methods
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and satellite altimetry. The proposed two-step approach—

combining CNN-based filtering with U-Net segmentation—

significantly improved detection accuracy and efficiency. The

findings provide insights into each of the research questions

posed in the introduction:
• How does a filtering-based approach improve the

identification of small seamounts in multibeam

bathymetric data compared to direct classification

methods? The results demonstrated that CNNbased

filtering enhances seamount detection by pre-selecting

relevant image subsets, reducing noise and improving

segmentation accuracy. Unlike direct classification

methods, which attempt to classify entire images, the

filtering process focuses only on regions likely to contain

seamounts, reducing false positives and computational
FIGURE 7

Validation mean Intersection over Union (IoU) over epochs. The IoU metric evaluates the overlap between predicted and ground truth segmentation
masks, with higher values indicating better performance.
FIGURE 8

Comparison of manually selected images containing seamounts and their corresponding U-Net model predictions. The predicted seamounts closely
align with the actual seamount locations, indicating the model’s high detection performance.
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complexity. This two-step strategy outperformed

traditional direct classification methods, ensuring that the

segmentation model processes only meaningful data.

• What are the optimal hyperparameters for training a U-Net

model to achieve the highest segmentation accuracy for

small seamount detection? A grid search analysis identified

the best-performing hyperparameter configuration: 32

filters, a kernel size of 5 × 5, a dropout rate of 0.1, a

learning rate of 0.0001, and a batch size of 64. These settings

balanced feature extraction depth, regularization, and

training stability, yielding the highest segmentation

accuracy, with a Dice Coefficient of 0.8274 and a Mean
tiers in Marine Science 15258
IoU of 0.7514. Models with excessively high filter counts or

dropout rates exhibited overfitting or unstable convergence,

highlighting the need for a balanced architecture in

seamount segmentation tasks.

• How well does the proposed framework generalize across

different geographic regions, and what limitations arise

when applying a model trained in one ocean basin to

another? While the model performed well on the SO305–

2 dataset, cross-regional generalization remains a challenge.

When tested on new datasets, the model maintained high

accuracy for seamounts with well-defined topographic

signatures, but performance declined in regions with
FIGURE 9

Examples of false predictions made by the U-Net model. In these cases, the model incorrectly labeled certain seafloor features as seamounts, likely
due to local elevation changes or elongated structures that share some morphological characteristics with true seamounts. These misclassifications
highlight the challenges in distinguishing small seamounts from other topographic variations in bathymetric data.
FIGURE 10

Map showing the 30 seamounts identified during the SO305/2 expedition. Seamounts detected by our model and also reported by Gevorgian et al.
(2023) and Kim and Wessel (2011) are marked in white. Green dots indicate newly discovered seamounts that were not previously documented,
while the red dot represents a location where a seamount was expected based on Gevorgian et al. (2023) and Kim and Wessel (2011), but no actual
seamount was found. These findings highlight the effectiveness of multibeam systems in detecting previously unknown seamounts. The expedition
started in Singapore (top right) and concluded in Mauritius (bottom left).
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highly variable seafloor morphology. This suggests that

further fine-tuning or domain adaptation strategies may

be necessary when applying the model to seamounts formed

under different tectonic and geological conditions.

• To what extent can satellite altimetry reliably detect small

seamounts, and how do its results compare to high-

resolution multibeam bathymetric data? The results

confirmed that satell ite altimetry systematically
tiers in Marine Science 16259
underestimates the number of small seamounts due to

resolution constraints. Of the 30 seamounts detected in

the SO305–2 dataset, only 14 were visible in satellite-

derived data, highlighting the importance of high-

resolution multibeam bathymetry for capturing fine-scale

seafloor features. Additionally, satellite-derived databases

contained false positives, underscoring the need for direct

validation using multibeam sonar.
TABLE 4 Seamount characteristics including height, altimeter-derived height, well-known status, and coordinates.

Seamount ID Height (m) Altimeter (m) Well-known Longitude Latitude

6 111 1078 2 70.788 -11.854

20 124 1260 2 66.558 -13.593

13 148 1430 2 66.968 -13.083

8 151 1578 2 70.373 -11.912

12 176 1755 2 67.013 -13.042

7 180 1888 2 70.663 -11.840

9 190 1833 2 67.860 -12.708

17 193 1969 2 67.224 -13.173

21 243 2410 2 66.444 -13.649

14 248 2532 2 66.724 -13.242

11 249 2429 2 67.063 -13.014

10 252 2584 2 67.177 -12.916

32 308 3046 2 58.736 -19.382

18 315 3164 1 67.022 -13.287

22 345 3434 2 66.102 -13.904

28 357 3641 2 62.755 -17.514

5 402 3953 1 71.005 -11.802

23 454 4567 1 65.905 -14.011

25 512 5097 1 66.207 -15.075

29 548 5555 2 62.293 -17.798

31 571 5704 2 59.426 -19.263

26 625 6308 1 64.703 -16.332

30 632 6274 1 61.429 -18.285

24 662 6667 1 65.720 -14.133

27 789 7880 1 64.504 -16.515

2 824 8317 1 84.125 -2.619

16 998 9927 1 66.325 -13.516

4 1091 10930 1 73.057 -11.147

3 1142 11413 1 83.245 -3.324

15 1402 13975 1 66.474 -13.341

19 2005 20124 1 66.710 -13.476

1 – – 0
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Beyond geological applications, the automated detection of

seamounts has broader implications for marine ecology,

environmental monitoring, and plate tectonics research. Future

work should focus on improving cross-regional generalization,

integrating morphological priors into deep-learning models, and

expanding the dataset to further enhance classification accuracy. In

addition, improving the annotation process through inter-annotator

validation or collaborative labeling could reduce subjectivity and

improve the reliability of training labels, which is particularly

important in seafloor datasets where feature boundaries can be

ambiguous. In particular, the integration of domain adaptation or

transfer learning methods holds promise for improving model

performance in morphologically diverse or OOD seafloor regions,

enabling broader applicability of the framework without requiring

extensive manual relabeling or retraining. To further enhance

robustness in real-world applications, future models should also

incorporate strategies for handling OOD inputs, including

uncertainty estimation and domain-specific priors to reduce

prediction errors in unfamiliar seafloor environments. By bridging

the gap between machine learning and marine geosciences, this

framework contributes to the advancement of automated seafloor

mapping and global seamount inventories, improving our

understanding of the ocean floor.
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Introduction: Monitoring Ulva prolifera blooms over the long term is crucial for
maintaining marine ecological balance. MODIS images, with their wide spatial
coverage, high temporal resolution, and rich historical data, are commonly used
for this purpose. However, their relatively low spatial resolution may lead to
inaccuracies in precisely defining the bloom extents, thereby impeding the
formulation of effective management strategies.

Methods: To address this issue, our study developed the WaveNet model. This
model integrates VGG16 with the Bidirectional Feature Pyramid Network (BiFPN)
and is further enhancedwith a Convolutional Block AttentionModule (CBAM). We
applied this framework to MODIS imagery for the detection and monitoring of
U. prolifera.

Results: WaveNet demonstrated superior performance in long-term sea surface
U. prolifera monitoring compared to traditional methods, achieving an accuracy
of 97.14% and an F1 score of 93.26%. This represents a significant improvement
over existing techniques.

Discussion: These results highlight WaveNet’s improved capacity for accurate
spatial recognition and classification, overcoming the limitations of previous
methods. Applying this approach, we analyzed the spatiotemporal distribution
of U. prolifera blooms in the Yellow Sea of China from 2018 to 2024. Our
framework offers valuable insights for early prevention and targeted
management of green tides, contributing to the development of more
effective mitigation strategies.

KEYWORDS

deep learning model, green tide detection, MODIS, satellite remote sensing, yellow sea

1 Introduction

Green tide blooms, particularly those caused by U. prolifera (Ulva prolifera) in the
Yellow Sea, have become a major environmental issue, causing significant ecological and
socio-economic impacts (Ye et al., 2011; Liu et al., 2013). These blooms are fueled by U.
prolifera’s remarkable tolerance to high temperatures and intense light (Cui et al., 2015),
which enables rapid and persistent growth. The decomposition of these algae releases
harmful gases like hydrogen sulfide and ammonia, threatening marine ecosystems, human
health, and coastal economies (Ye et al., 2011; Smetacek and Zingone, 2013). This study
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aims to address this gap by developing a dynamic monitoring
framework, which can serve as a foundation for constructing
real-time monitoring systems for green tide blooms. Remote
sensing, particularly satellite image analysis, offers a promising
solution, but challenges remain in achieving a balance between
spatial resolution, temporal coverage, and processing efficiency.
This study aims to address this gap by developing a dynamic
monitoring framework for real-time detection of green tide
blooms. By leveraging advanced image-processing techniques, the
study seeks to improve the accuracy, scalability, and efficiency of U.
prolifera monitoring, providing valuable insights for timely
intervention and sustainable management of green tides. This
approach not only enhances monitoring but also contributes to
the development of effective strategies for mitigating the
environmental and socio-economic consequences of green
tide blooms.

Satellite remote sensing, in contrast to field surveys, provides
several advantages including wide coverage, rapid data acquisition,
short update cycles, strong timeliness, and cost-effectiveness,
rendering it an effective tool for monitoring and management of
U. prolifera events (Hu et al., 2010; Hu et al., 2017). 10 m resolution
Sentinel-2 imagery is suitable for monitoring smaller features like U.
prolifera (Brisset et al., 2021), but its narrow swath width and coarse
temporal resolution make it unsuitable for large areas like the Yellow
Sea. Imagery from the Moderate Resolution Imaging
Spectroradiometer (MODIS) has significantly advanced the
assessment and prediction of algal bloom mechanisms (Lee et al.,
2011; Cao et al., 2019; Hu et al., 2019; Xing et al., 2019). FromMay to
June each year, U. prolifera blooms rapidly spread across the Yellow
Sea. MODIS imagery, with its near-daily updates and
2,330 km2 coverage, effectively monitors the entire lifecycle of
these blooms. However, the coarse resolution of MODIS images,
with a maximum spatial resolution of only 250 m, introduces a
degree of error in the extracted estimates of algal biomass (Hu et al.,
2010; Hu et al., 2015). Minimizing this extraction error has emerged
as a bottleneck in optical remote sensing for algae detection.

Various remote sensing threshold methods are used to extractU.
prolifera information, utilizing the unique spectral characteristics of
green algae in visible and infrared bands. Common approaches
include the Normalized Difference Vegetation Index (NDVI) and
the Normalized Difference Algae Index (NDAI) (Shi and Wang,
2009), applicable across multiple satellite sensors. Other methods,
such as the Floating Algae Index (FAI) (Hu, 2009), Virtual-baseline
Floating Macro Algae Height index (VB-FAH) (Xing and Hu, 2016),
and RGB Floating Algae Index (Jiang et al., 2020), are robust to
environmental variations, including thin cloud cover (Xu et al.,
2016). However, these optical-based methods are hindered by
challenges such as cloud interference, variable backgrounds, and
the need for meticulous threshold selection, which often requires
expert knowledge (Shi and Wang, 2009; Hu et al., 2010).

While deep learning methods show promise in overcoming
these limitations (Schmidhuber, 2015; Li et al., 2020), existing
studies, such as those utilizing ERISNet for Sargassum algae
extraction in the coastal waters of Mexico and approaches
employing AlexNet for large algae extraction from UAV images,
have made progress in specific environments but still face challenges
in achieving large-scale and accurate monitoring of green tides
(Arellano-Verdejo et al., 2019; Wang et al., 2019). Recent

advancements, like models designed to detect green tide
information from both SAR and optical images, highlight the
potential of deep learning in this domain, paving the way for
more accurate, scalable, and efficient monitoring (Gao et al.,
2022). This study aims to advance the application of deep
learning for dynamic monitoring of U. prolifera, addressing the
gap in real-time, large-scale, and precise green tide detection. It also
focuses on improving the accuracy of U. prolifera extraction from
low-resolution satellite imagery and enabling dynamic daily
monitoring of green tides on a large scale.

The objectives of this paper includ 1) developing of a deep
learning network to more effectively extract information about
green tide from coarse-resolution optical imagery; 2)
implementing of large-scale dynamic monitoring of green tide;
and 3) extracting and analysing of the spatiotemporal
distribution changes of green tide outbreaks in the Yellow Sea
region from 2018 to 2024 on both interannual and intermonthly
scales. The organization of the paper is as follows. Section 2 presents
the study area and related datasets, including optical MODIS data,
Sentinel-2 data, and the training dataset for the deep learning model.
Section 3 introduces the proposed deep learning network model,
encompassing physical model optimization and model performance
verification methods. Section IV details the training of the model
and the research findings. Discussions and conclusions are
presented in Sections 4 and 5.

2 Study area and datasets

2.1 Study area

The study area, situated within the Yellow Sea between 32°N and
37°N and 119°E−124°E, is shown in Figure 1. Influenced by the East
Asian monsoon, the climatic regime of the region under study is
characterized by cold, arid winters and warm, humid summers
(Xing and Hu, 2016; Qi et al., 2017; Zhang et al., 2019). The
confluence of these climatic conditions with substantial terrestrial
influences results in the Yellow Sea exhibiting moderate to high
levels of turbidity, which are characteristic of the region (Shi and
Wang, 2009; Zhang et al., 2010; Xing et al., 2019). These
environmental parameters significantly influence the proliferation
of U. prolifera, as its growth dynamics are intricately tied to water
temperature and nutrient availability. Since the onset of the 21st
century, U. prolifera has exhibited periodic summer blooms in the
region, with each event demonstrating extensive areal coverage,
substantial biomass accumulation, and significant long-distance
transportation (Wang et al., 2015). These phenomena have had
profound negative repercussions on the coastal tourism industry,
aquaculture activities, and the integrity of the ecological
environment, underscoring the urgency and relevance of our
research in real-time, large-scale, and precise green tide detection.

Given the influence of the East Asian monsoon, the climate in
this region is marked by cold, dry winters and hot, humid summers
(Xing and Hu, 2016; Qi et al., 2017; Zhang et al., 2019). These
climatic conditions, coupled with the significant terrestrial impact,
contribute to the Yellow Sea’s moderate to high turbidity levels,
which are typical of the area (Shi andWang, 2009; Zhang et al., 2010;
Xing et al., 2019). Due to these geographical and climatic reasons,
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the proliferation of U. prolifera, a green tide-forming macroalga, is
influenced, as its growth is closely linked to water temperature and
nutrient availability. Understanding these environmental factors is
crucial for this study, as they provide insights into the conditions
that may favor or inhibit the development of U. prolifera blooms,
which are the focus of our research. Since 2007, U. prolifera has
periodically erupted in this region every summer. Its characteristics,
such as broad coverage, large biomass, and extensive distance
transport (Wang et al., 2015), have severely impacted coastal
tourism, aquaculture, and the ecological environment.

2.2 Datasets

The MODIS satellite, initiated by NASA in 1999, is a prominent
space remote sensing instrument, providing surface spectral
reflectance estimates for 36 bands every 1–2 days. Research
indicates that the peak U. prolifera period in the South Yellow
Sea spans from May to August annually (Zhou et al., 2021). To
extend monitoring to March, EOS MODIS 1B (Terra/Aqua) remote
sensing dataset fromMarch to August 2018–2024 were chosen from
NASA’s data repository (https://ladsweb.modaps.eosdis.nasa.gov/
search). This selection included MOD02QKM and MOD02HKM
products with resolutions of 250 m and 500 m, respectively.
Among126 images, those with minimal cloud cover during U.
prolifera blooms from 2018 to 2024 were selected. Data were
processed using SNAP software for reprojection, calibration, and
band synthesis, with MOD02HKM resampled to 250 m.

Subsequently, sea-land separation was conducted to extract
relevant sea areas.

Sentinel-2, part of the European “Copernicus” program, consists
of two satellites, Sentinel-2A (launched 23 June 2015) and Sentinel-
2B (launched 27 March 2017). These satellites operate on a sun-
synchronous orbit with individual revisit periods of 10 days and a
collective revisit period of 5 days. Sentinel-2 Level-2A (L2A) dataset,
comprising atmospherically corrected bottom-of-atmosphere
reflectance dataset, were acquired from the European Space
Agency’s Copernicus Open Access Hub (https://scihub.
copernicus.eu/dhus/#/home). Cloud-free images with 10-m
resolution overlapping with the MODIS data dates in the study
area were selected. Red (R), Green (G), and Blue (B) bands were
utilized to generate true-color composite images for subsequent U.
prolifera extraction validation.

In this research, MODIS images were selected to create a
dataset. Initially, bands 1 (red), 2 (near-infrared), and 4 (green)
were chosen, corresponding to R, G, and B channels, respectively,
to generate false-color composite images. Subsequently, these
images were segmented into 512*512-pixel tiles using a sliding
window approach. Within the MODIS images, U. prolifera
exhibits more prominent green patches compared to seawater.
Therefore, Lableme software was employed to label the
segmented images with U. prolifera samples. Out of 608 sets
of MODIS images and corresponding labels, 425 sets were
allocated for training, and 183 sets were reserved for testing.
During training, the dataset was divided into 70% for training
and 30% for validation.

FIGURE 1
Location of the study area.
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3 Methods

3.1 The structure of the WaveNet model

Figure 2 illustrates the architecture of the proposed model, which
integrates VGG16, BiFPN, and CBAM in a collaborative hierarchy.

Firstly, the Visual Geometry Group 16-layer model (VGG16) is
adopted as the backbone feature extraction network. It transforms the
input MODIS image into multi-level feature maps through four
convolutional and downsampling stages, effectively capturing both
low-level textures and mid-level semantic patterns. Secondly, three
layers of Bidirectional Feature Pyramid Network (BiFPN) are
incorporated to enhance multi-scale feature fusion. BiFPN enables
bidirectional information flow, allowing high-level semantic
information from deep layers to guide low-level spatial details, and
vice versa. This preserves fine-grained localization critical for identifying
U. prolifera boundaries. Thirdly, four upsampling stages are applied to
restore the spatial resolution of feature maps to match the original
image dimensions. At each stage, a Convolutional Block Attention
Module (CBAM) is introduced to emphasize the most relevant spatial
regions and spectral channels. CBAM refines features by applying
sequential channel and spatial attention, thereby improving feature
saliency and reducing background noise.

This hierarchical design enables VGG16 to focus on core visual
patterns, BiFPN to integrate information across scales, and CBAM
to selectively enhance discriminative features. Together, they
collaboratively improve the model’s accuracy in detecting green
tide areas under complex oceanographic conditions.

3.2 Visual Geometry Group 16-layer
model, VGG16

In our study, VGG16 was chosen as the backbone network due
to its proven effectiveness in image feature extraction, particularly
in tasks requiring high accuracy and localization precision, such as
the ILSVRC-2014 ImageNet challenge. Its architectural design,
which includes five sets of convolutional layers followed by max-
pooling layers and three fully connected layers, allows for efficient
feature representation and nonlinearity enhancement while
preserving the perceptual field. The use of 3 × 3 convolutional
kernels and 2 × 2 max-pooling layers increases the network depth,
enabling the detection of intricate patterns critical for identifying
U. prolifera in complex marine environments. VGG16 offers a
deeper structure with more precise feature extraction, which is
crucial for achieving the high accuracy (97.14%) and F1 score
(93.26%) demonstrated in our green tide monitoring framework.
This integration provides a robust foundation for the dynamic
monitoring of U. prolifera, outperforming previous methods in
large-scale green tide detection and classification.

3.3 Bidirectional feature pyramid
network, BiFPN

The traditional VGG16 architecture fails to effectively utilize
multiscale information from the backbone network, as it directly
connects to fully connected layers after the fifth convolutional layer.

FIGURE 2
The structure of the WaveNet.
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To remedy this, we incorporate the BiFPN module, which processes
shallow features and integrates multiscale information. BiFPN,
introduced by Google in 2020 within the EfficientDet model
(Tan et al., 2020), employs a weighted bidirectional feature
pyramid network. This network consists of top-down and
bottom-up pathways, enabling the propagation of both semantic
and positional information, as shown in Figure 3.

To address the challenge of accurately classifying U. prolifera at
the pixel level, we introduced a novel modification to the
VGG16 architecture. Specifically, instead of relying on the
traditional fully connected and softmax output layers, we
replaced them with the fusion results generated by the BiFPN
structure. This approach utilizes attribute maps extracted from
multiple stages of the backbone network, capturing spatial and

contextual information at different resolutions. By adaptively
integrating these multi-scale features, the BiFPN structure
enhances the model’s ability to preserve fine-grained details and
resolve ambiguities in areas with similar spectral characteristics.
This modification significantly improves the network’s feature
representation capabilities, ensuring better accuracy in
distinguishing U. prolifera from surrounding elements.

Mathematically, the fusion process in BiFPN can be expressed
through Equations 1 and 2 as follows:

Fout � ∑n

i�1ωiFi (1)

ωi � exp αi( )
∑n

j�1 exp αj( ) (2)

FIGURE 3
The structure of BiFPN.

FIGURE 4
Structure of CBAM: (a) Channel attention module; (b) Spatial attention module; (c) CBAM.
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where Fi is the feature map at the i-th scale from VGG16; ωi is the
learned attention weight for scale i; αi is a trainable scalar associated
with each input scale. This formulation ensures that features
contributing most to discrimination are emphasized in the final output.

3.4 Convolutional Block Attention
Module, CBAM

Attention mechanisms allow the network to focus on the most
relevant features of the target and have been extensively capabilities of
convolutional neural networks (Lian et al., 2018), and improve feature
extraction efficiency and accuracy (Ma et al., 2023). In our work,
attention mechanisms are central to enhancing feature deployed in
deep learning applications, like natural language processing and visual
recognition, to enhance the learning extraction and representation,
addressing the challenge of accurately identifying U. prolifera in
MODIS imagery. We employ the Convolutional Block Attention
Module (CBAM), which integrates both channel and spatial attention
mechanisms to refine feature representations dynamically, and its
structure is illustrated in Figure 4. The channel attention component
aggregates information across feature map channels, highlighting the
most relevant spectral features for distinguishing U. prolifera.
Simultaneously, the spatial attention mechanism focuses on critical
spatial regions within each channel, enabling the model to capture
localized patterns associated with green tides.

To further enrich the model’s feature extraction capacity, we
integrate CBAM within the last four upsampling layers of the
network. By processing input feature maps and applying
attention mechanisms, CBAM outputs weighted feature maps,
emphasizing both channel and spatial information. This dual-
focus strategy ensures the preservation of spectral and spatial
nuances, significantly improving classification precision. Such an
approach is particularly effective given the moderate spatial
resolution and complex spectral characteristics of MODIS
imagery, providing a robust framework for green tide detection.

3.5 Accuracy assessment

The U. prolifera extraction method underwent evaluation using
standard metrics: accuracy, precision, recall, F1 score, mIoU, and mPA,
with their calculation formulas detailed in Equation 3. Results were
classified into four groups: True Positive (TP) for accurately identifiedU.
prolifera pixels, True Negative (TN) for accurately classified background
pixels, False Positive (FP) for background pixels erroneously identified as
U. prolifera, and False Negative (FN) for U. prolifera pixels mistakenly
classified as background. Manual determination of the true value was
based on MODIS false-color images.

Accuracy � TP + TN( )/ TP + TN + FP + FN( )
Precision � TP + FP( )
Recall � TP/ TP + FN( )

F1 � 2 * Precision *Recall( )/ Precision + Recall( )

mIoU � 1/ k + 1( ) *∑
k

i�0
pii/ ∑k

i�0pij + ∑k
i�0pji − pii( )[ ]

mPA � 1/ k + 1( ) *∑
k

i�0
pii/∑k

i�0pij( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where denotes predicting i as j, which is a false negative (FN);
denotes predicting j as i, which is a false positive (FP); denotes
predicting i as i, which is a true positive (TP).

3.6 Estimation of Ulva prolifera area

Area of U. prolifera depicts the ground area size, which can be
computed by the product of spatial resolution and the
corresponding number of pixels (Cui et al., 2018), as outlined in
Formula 4.

Area GT � PS *N GT (4)
where, Area GT represents the area of U. prolifera in km2; PS
represents the ground area size corresponding to one pixel of
satellite imagery in km2; N GT represents the number of detected
U. prolifera pixels.

4 Experiments and results

4.1 Training and experimental settings

The deep learning tasks were performed on a Windows
10 system equipped with an NVIDIA GeForce RTX 3060Ti GPU
boasting 8 GB of storage. CUDA version 11.6 was utilized, alongside
the PyTorch 11.0 deep learning platform for model construction.
The software environment was Anaconda (Python 3.8). Throughout
the training phase, the Adam optimization algorithm (Ronneberger
et al., 2015) dynamically adjusted the network weights and biases.
The parameters are set as follows: β1 = 0, β2 = 0.99. The learning rate
(α) of the network is initialized to 0.001, and after every 40 epochs
(with a total training epoch limit set to 250), α is multiplied by a
decay factor of 0.1 to reduce the parameter search space.

4.2 Evaluation of model performance

This paper evaluates the detection performance of U. prolifera
using the WaveNet deep learning model in comparison with the
Normalized Difference Vegetation Index (NDVI) and the Adjusted
Floating Algae Index (AFAI) methods, both widely applied in algae
detection tasks.

The NDVI method, proposed by Rouse et al., leverages the
characteristic spectral reflectance of vegetation in the near-infrared
and red bands. Its adaptability to large floating algae, due to their
spectral similarities with vegetation, makes it a commonly used
approach for algae extraction. The calculation formula for NDVI is
given in Equation 5.

NDVI � Rrc,NIR − Rrc,RED( )/ Rrc,NIR + Rrc,RED( ) (5)
where, and represent the reflectance of the near-infrared band
(860 nm) and the red band (660 nm), respectively.

The AFAI method is designed to reduce the impact of
atmospheric effects, thin clouds, and moderate solar glint. It
employs a linear baseline between adjacent bands to compute
near-infrared reflectance (Fang et al., 2018). It employs a linear

Frontiers in Remote Sensing frontiersin.org06

Zhu et al. 10.3389/frsen.2025.1578841

267

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1578841


baseline between adjacent bands to compute near-infrared
reflectance. The formulas are given in Equations 6, 7:

AFAI � Rrc,NIR − Rrc,NIR1
′ (6)

Rrc,NIR1
′ � Rrc,RED + Rrc,NIR2 − Rrc,RED( ) * λNIR1 − λRED( )/ λNIR2 − λRED( ) (7)

where, Rrc,NIR1, Rrc,RED, Rrc,NIR2 represent the reflectance in the near-
infrared band (748 nm), the red band (667 nm), and the long-wave
near-infrared band (869 nm), respectively.

Both NDVI and AFAI have demonstrated effectiveness in
detecting floating algae using satellite imagery, such as MODIS
and Landsat. However, their accuracy is limited bymanual threshold
selection. In this study, the WaveNet model, trained on MODIS
imagery, demonstrated superior performance in U. prolifera
detection. Unlike NDVI and AFAI, the fixed threshold in
WaveNet (0.5) relies on the model’s optimized weights,
eliminating manual adjustments (Liu et al., 2009; Qi et al., 2016a;
Hu et al., 2019; Zheng et al., 2022). Results show that WaveNet not
only reduces threshold dependency but also achieves significantly
higher precision and coverage accuracy, highlighting its potential for
dynamic green tide monitoring.

Figure 5a shows the MODIS true color image of the Yellow Sea
from 5 July 2023, where U. prolifera appears in light green. Our
method, alongside the two index methods (NDVI and AFAI),
confirmed that these colored patches are floating U. prolifera
Figures 5b-f. Through our deep learning model, 1,319,611 algal
pixels were identified. When using thresholds
of >0 and >0.00000433, the NDVI index method identified
8,445,635 and 921,741 algal pixels, respectively. With
thresholds of (0, 0.02) and (0.0025, 0.0176), the AFAI index
method identified 1,892,314 and 339,040 algal pixels,
respectively. Due to differences in threshold selection, both
NDVI and AFAI methods exhibit considerable uncertainty; in

fact, the algal identification results could vary by orders of
magnitude (Hu, 2009; Liu et al., 2009; Xu et al., 2014; Qi
et al., 2016b; Hu et al., 2019). In contrast, the deep learning-
based model mitigates the potential bias introduced by selecting
different extraction thresholds for NDVI or AFAI.

The WaveNet model achieved precision and recall metrics, as
well as a comprehensive F1 score for U. prolifera extraction, all
exceeding 90.0%. The accuracy reached 97.14%, which is 7.6%
higher on average compared to the NDVI method and 4.3%
higher on average compared to the AFAI method. In summary,
our method excels at extracting U. prolifera from MODIS images,
achieving the highest recognition accuracy. The outcomes are
provided in Table 1.

Four areas were randomly selected to compare the segmentation
results of the WaveNet, NDVI, and AFAI methods (Figure 6). In
addition to MODIS false-color images, Sentinel-2 true-color images
with a resolution of 10 m were added as references. Since MODIS
images have a resolution of 250 m, the U. prolifera patches derived
using these methods will appear larger than those in the Sentinel-2
images. Although the selected reference images were taken on the
same day, slight differences in U. prolifera patches may occur due to
different transit times.

In Region 1 (R1), the aim was to compare the extraction
performance of U. prolifera over a large area, while Regions 2

FIGURE 5
Comparison result of the WaveNet model and traditional biological index methods. (a) MODIS true color; (b,e) NDVI results; (c,f) AFAI results; (d)
WaveNet result.

TABLE 1 Accuracy evaluation of the extraction effect.

Models Precision Recall F1-score Accuracy

WaveNet 92.83 93.69 93.26 97.14

NDVI (Th2) 82.37 88.48 85.32 90.55

AFAI (Th1) 87.92 90.02 88.96 92.76
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(R2), 3 (R3), and 4 (R4) focused on smaller areas. In the upper
and lower parts of R1, both the NDVI and AFAI methods
exhibited instances of under-segmentation, while the WaveNet
method provided the most complete extraction of U. prolifera.
However, in R2, both the NDVI and AFAI methods had instances
of under-segmentation in the nearshore area on the upper left,
and the WaveNet method showed misclassification in the
central part.

In R3, both the NDVI and AFAI methods exhibited a
significant amount of under-segmentation. In R4, the
extraction performance of all three methods was relatively
poor, with instances of under-segmentation in the NDVI and
AFAI methods, and misclassification in the WaveNet model. As
shown in Table 2, the pixel count and area of extracted U.
prolifera using different methods were also compared, with the
same conclusions as depicted in Figure 6.

5 Discussion

5.1 Performance evaluation of different
composite models

Group 1: VGG16+(BiFPN + SA). This group integrates the
Spatial Attention (SA) mechanism into the BiFPN
module within the VGG16 framework. The design
focuses on enhancing spatial perception, improving
feature fusion efficiency, and minimizing
information loss. However, as shown in the
heatmap comparison (Figure 7), the performance
of this configuration remains limited. The mean
Intersection over Union (mIoU) reaches only
86.15%, and the F1 score achieves 92.36%, both of
which are lower than those of attention-enhanced

FIGURE 6
The comparison ofU. prolifera extraction results. R1-R4 regions: (a,f,k,p) Sentinel-2; (b,g,l,q)MODIS; (c,h,m,r)WaveNet; (d,i,n,s)NDVI (TH2); (e,j,o,t)
AFAI (TH1)
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dual-dimensional models. This indicates that spatial-
only attention mechanisms may be insufficient for
robust green tide discrimination and comprehensive
feature preservation.

Group 2: VGG16+(BiFPN + CBAM). This model group
substitutes the SA mechanism with CBAM while
maintaining other aspects unchanged to compare the
two attention mechanisms. SA emphasizes spatial
information, while CBAM integrates channel and
spatial attention, enhancing the model’s perception of
both types of information. This adjustment aims to
enhance overall model performance. As depicted in
Figure 7, the replacement leads to slight
improvements in mIoU, Precision, F1 score, and
Accuracy, ranging from 0.5% to 1%.

Group 3: VGG16+skip (BiFPN + CBAM). This group
introduces skip connections to directly transfer
low-level features into upper layers, theoretically
improving representation comprehensiveness.
Nevertheless, the model shows decreased accuracy
compared to Group 2. Specifically, the mIoU drops to
83.69%, and the F1 score declines to 90.75%. These
results may stem from redundant or noisy features
introduced via the skip paths, which interfere with
semantic abstraction and reduce final
prediction quality.

Group 4: VGG16+[BiFPN + dual (CBAM + SA)]. This model
incorporates both CBAM and SA as a dual-attention
mechanism. Although it expands the model’s attention
diversity, the additional complexity leads to
performance degradation. As shown in Figure 7, the
mIoU is only 83.50%, and the F1 score is 90.61%. This
suggests that overly complex attention fusion may
introduce conflicts or overfitting, limiting the
effectiveness of feature integration.

Group 5: VGG16 + 3*BiFPN + CBAM. As the proposed
WaveNet configuration, this group employs a triple
BiFPN structure for deep multi-scale fusion and
integrates CBAM during the upsampling stages.
According to the comparative heatmap (Figure 7),
this model achieves the highest overall performance:
the mIoU reaches 87.79%, and the F1 score improves
to 93.26%, with an accuracy of 97.14%. These results
confirm that deeper fusion layers and attention
refinement significantly enhance both feature
preservation and perceptual discriminability

5.2 Monthly spatial-temporal distribution
characteristics of Ulva prolifera

Based on MODIS remote sensing satellite imagery, the spatial
coverage area and impact scope of U. prolifera were extracted for
different years from 2018 to 2024 (Figure 8).

In late May and early June 2018, U. prolifera was first detected in
the shallow waters of northern Jiangsu Province, China. It then
drifted northeastward, affecting the coastal waters of the northern
Yellow Sea. Initially, its coverage area was only 80 km2, but within
11 days, it sharply increased to 164 km2. Subsequently, U. prolifera
drifted northward, accumulating extensively in the coastal areas of
the northern Yellow Sea by the end of June, reaching its maximum
coverage area and impact range. On July 14, U. prolifera extensively
landed in coastal cities in the northern Yellow Sea. Gradually, its
coverage area decreased and disappeared, with only sporadic patches
remaining in the region by July 18.

In 2019,U. proliferawas first spotted in the southeastern Yellow Sea
on May 9, covering an area of 14 km2. Towards the end of May, it
appeared in the shallow waters off the coast of northern Jiangsu
Province, China, before drifting eastward and merging with the
existing U. prolifera in the southeastern Yellow Sea, then moving
northward. By June 23, it reached its peak coverage area of
2,127 km2. In early July, U. prolifera landed in the northern Yellow
Sea, with coverage shrinking to 703 km2 before gradually fading away.

In 2020, the observation of U. prolifera was about 2 weeks later
than the previous year. Initially appearing in the southeastern
Yellow Sea on April 29, it covered an area of 18 km2. From late
April to late May, it drifted northwestward, steadily expanding its
coverage. By May 27, it reached 219 km2, growing to 302 km2 the
next day. Peaking at 950 km2 on June 4, it then moved northward,
landing in the northern Yellow Sea by the end of June and
dissipating approximately 2 weeks earlier than in 2019. Overall,
the U. prolifera bloom in 2020 was less severe than in 2019.

In 2021, U. prolifera was first spotted on April 8, initially
appearing in scattered amounts in the southeastern Yellow Sea.
By May 21, it had drifted northward, covering 55 km2 in the shallow
waters off northern Jiangsu. Throughout June, U. prolifera
proliferated extensively in the central Yellow Sea. From June
19 to July 10, a severe U. prolifera bloom affected coastal cities in
the northern Yellow Sea, peaking at an extent of 3,534 km2. By mid-
July, the bloom gradually dissipated, with coverage shrinking to
31 km2 by July 19. Compared to previous years, 2021 experienced
the largest coverage area, longest duration, and most severe U.
prolifera disaster, with the widest coverage area four times that of the
previous year.

TABLE 2 The comparison of pixel count and area of extract.

Method Pixel number of floating U. prolifera blooms Asar/km
2

R1 R2 R3 R4 R1 R2 R3 R4

WaveNet 533448 34977 56010 123146 333.44 21.86 35.01 76.97

NDVI (Th2) 268537 10665 4,233 0 167.84 6.67 2.66 0

AFAI (Th1) 315447 11159 4,233 8,283 197.16 6.97 2.66 5.18

Note: Asar represents distribution area of floating Ulva prolifera blooms.
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In 2022, U. prolifera was first spotted on May 27 in the
southeastern Yellow Sea, a month and a half later than the
previous year. By June 25, it had reached coastal cities along the
northern Yellow Sea, peaking at a coverage area of 548 km2 before
gradually dissipating over the following month. Compared to 2021,
the U. prolifera coverage area significantly decreased in 2022,
suggesting a relatively mild U. prolifera bloom overall.

On 16 May 2023, scattered U. prolifera patches were spotted in
the shallow waters of northern Jiangsu, covering just 4 km2. Within
2 weeks, the area surged to 276 km2 by June 3, drifting northward
thereafter. By the end of June,U. prolifera had proliferated massively
in the central Yellow Sea, peaking at 2,170 km2 on June 22, four
times larger than in 2021. By July 24, it had dissipated significantly,
leaving only 8 km2 scattered off Qingdao and Yantai. Overall, the U.
prolifera bloom in 2023 ranked second only to 2021 in severity.

On 18 May 2024, sparse patches of U. prolifera were initially
detected in the shallow waters off northern Jiangsu and in the
southeastern Yellow Sea, spanning an area of merely 17 km2.
Within just 10 days, however, U. prolifera proliferated rapidly
from the northern Jiangsu shallows to the northern Yellow Sea,
with its coverage expanding by a factor of 13. By mid-June, the U.
prolifera extent had decreased to approximately 128 km2. On June
26, it experienced a notable resurgence, reaching a peak area of
454 km2, before gradually dissipating by mid-July. In summary, the
U. prolifera bloom in 2024 demonstrated significant improvement,
with a shorter duration and the smallest maximum coverage
observed in the past 7 years.

5.3 Yearly spatial-temporal distribution
characteristics of Ulva prolifera

Figure 9 illustrates the temporal and spatial dynamics of green
tide (U. prolifera) coverage area in the Yellow Sea from 2018 to 2024.
The trends indicate that peak green tide coverage varies significantly
each year. For instance, 2021 shows the highest recorded green tide
coverage, with a peak area exceeding 3,500 km2, observed between
June and July. In contrast, 2024 reflects a noticeable improvement,
with substantially reduced peak coverage. The annual progression

generally follows a similar pattern: a gradual increase in early year,
peaking around late June, and decreasing in July.

This temporal pattern, along with area fluctuations, aligns with
existing research suggesting that annual environmental conditions,
such as temperature, nutrient availability, and ocean currents,
significantly influence the extent and duration of green tides (Qi
et al., 2016a; Zhang et al., 2019). Our identification results
corroborate these findings, demonstrating that years with higher
peak coverage often correspond to elevated sea surface temperatures
and increased nutrient inputs, potentially driven by anthropogenic
activities and seasonal upwelling. Furthermore, the spatial
distribution of U. prolifera mirrors the prevailing ocean currents,
which likely facilitate its dispersal across the Yellow Sea. These
insights underscore the interplay between biological processes and
physical drivers in shaping green tide dynamics, highlighting the
importance of integrating environmental monitoring with algae
detection systems.

The comprehensive analysis of U. prolifera’s yearly distribution
patterns from2018 to 2024 (Figure 10) reveals significant fluctuations in
the intensity and extent of U. prolifera blooms over the past 7 years.
Notably, 2021 experienced the most severe bloom within the study
period, with the coverage area peaking of approximately 3,534 km2on
June 23. In contrast, 2022 marked a milder bloom and the lowest peak
area of roughly 548 km2. However, in 2023, the bloom coverage area
surged to the second-highest value in nearly 7 years, underscoring the
ongoing need for robust and consistent management strategies to
mitigate green tide impacts.

This consistency, along with the observed peak times, typically
around late June, aligns with previous findings onU. prolifera bloom
cycles and suggests that these blooms may be influenced by
recurring environmental conditions, such as temperature and
nutrient availability, during this period. Notably, the
unprecedented bloom in 2021, with its record-high coverage, was
strongly linked to the impact of typhoons. Typhoons enhance
nutrient enrichment in coastal waters by stirring sediments and
promoting upwelling, creating ideal conditions for U. prolifera
growth. This exceptional event underscores the significance of
incorporating extreme weather events into bloom analyses. The
temporal alignment of peak coverage across years, including the

FIGURE 7
Heatmap of accuracy metrics for different model combinations.
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typhoon-induced surge in 2021, highlights the importance of
targeted monitoring in late June to better anticipate and manage
bloom intensity. By integrating factors such as extreme weather

events, more effective prediction and management strategies can be
developed to mitigate the impact of green tides (Liu et al., 2009; Cui
et al., 2018; Fang et al., 2018).

FIGURE 8
Figures (a–g) present the spatiotemporal distribution patterns of U. prolifera in the Yellow Sea during the period from 2018 to 2024.
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6 Conclusion

U. prolifera, known for forming green tides, poses significant
ecological threats in coastal regions. We propose a tailored WaveNet
deep learning model for U. prolifera detection using MODIS images,

taking advantage of their extensive coverage and high data collection
frequency.WaveNet employs VGG16 as its backbone feature extraction
network and integrates BiFPN feature pyramid network, replacing fully
connected layers and softmax outputs, to enhance feature extraction
across various resolutions. We also introduce a lightweight CBAM

FIGURE 9
The changes in U. prolifera area in the Yellow Sea from 2018 to 2024.

FIGURE 10
Duration and maximum coverage area of U. prolifera in the Yellow Sea from 2018 to 2024.
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attention mechanism to filter background noise, ensuring more
accurate and efficient feature extraction. With 608 annotated sample
pairs, WaveNet achieved a detection accuracy of 97.14%, precision of
92.83%, recall of 93.69%, and an F1 score of 93.26%, significantly
outperforming the NDVI and AFAI methods by mitigating
uncertainties arising from threshold selection discrepancies. Through
analyzing U. prolifera bloom dynamics in the Yellow Sea from 2018 to
2024, we confirmed a significant increase inU. prolifera area every June.
Through our analysis, we observed that the maximum coverage area of
U. prolifera exhibited an oscillating trend, initially increasing and then
decreasing on an interannual basis. Furthermore, our research identified
the southeastern Yellow Sea as the source ofU. prolifera blooms in 2019,
2020, 2021, 2022, and 2024. These findings provide valuable insights
into the early detection, prevention, and control of green tide formation,
especially in identifying key geographical sources and underlying factors
contributing to U. prolifera.
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