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Editorial on the Research Topic 


Remote sensing applications in oceanography with deep learning





Deep learning and remote sensing for the ocean: from concept to operational impact

Deep learning (DL) and remote sensing (RS) are transforming how we observe and manage the ocean. Modern algorithms, platforms, and multi-sensor data integration now deliver insights at scales and speeds that were impossible just a few years ago. This Research Topic gathers 17 contributions across seafloor geomorphology, Ship and hazard monitoring, water quality assessment, mesoscale dynamics, under-ice processes, sonar perception, and enabling methods—demonstrating a field that is both technically innovative and mission-driven.





Seafloor to shoreline

Ocean science relies on accurate mapping of the seabed. Automation can quickly analyse broad regions while collecting characteristics that satellite altimetry misses, as demonstrated by a CNN + U-Net pipeline for recognising tiny seamounts in multibeam data. RipFinder, a mobile machine learning system for real-time rip current identification that also functions as a citizen-science tool in places with restricted connection, exemplifies “AI to edge” at the land–sea interface.





Ships, safety, and hazards

For marine awareness, synthetic aperture radar (SAR), is still essential. While previous research use AIS data, sea fog, and remote sensing to evaluate collision risk, a super-resolution Mask R-CNN architecture uses scale-aware fusion to improve ship detection in noisy SAR settings, providing evidence-based navigation management tools.





Ecosystems and water quality

Chlorophyll-a (Chl-a) variations and harmful blooms are important ecological markers. Green tide identification from MODIS images is enhanced by WaveNet (VGG16 + BiFPN + CBAM). The importance of physics-aware features is demonstrated by ResUNet models that relate ocean-atmosphere dynamics to Chl-a in the South China Sea. Long-term variability in the Persian Gulf and Arabian Sea is revealed by rebuilt MODIS datasets, and new techniques also yield transferable Chl-a products for estuaries. MarGEN, a GAN-based augmentation technique that enhances marine mammal call categorisation in situations where labelled audio is limited, is one example of an advancement in acoustic ecology.





Mesoscale and cryosphere dynamics

OIEDNet generates the first large-scale MIZ eddy catalogues by detecting under-ice eddies from Sentinel-1 dual-pol data, whereas Conv-LSTM GAN hybrids predict mesoscale eddy properties with high fidelity.





Perception underwater

Sonar and visual sensing are crucial for autonomous systems. Forward-looking sonar object detection is improved by MLFANet, side-scan sonar small-object recognition is improved by SOCA-YOLO, and underwater optical imaging is improved by CUG-UIEF using edge- and attention-based fusion.





Data, platforms, and decision support

New contributions also address scalable data management (LSH-based retrieval for ocean archives) and decision-making (multi-criteria approaches for underwater IoT and AUV deployments), underscoring the need to co-design sensing, connectivity, and computation.





Cross-cutting lessons

Five themes emerge: (1) multi-scale architectures consistently boost detectability; (2) embedding physics-aware features enhances generalization; (3) translating models to edge-deployable tools enables real-world impact; (4) data efficiency strategies such as augmentation and self-supervision are critical in data-sparse regimes; and (5) benchmarking and openness will accelerate progress.





Outlook

This Research Topic highlights a decisive shift from proof-of-concept to operational potential in ocean AI. Future priorities include embedding physical priors, advancing generative/self-supervised methods for sparse data, and ensuring scalability, efficiency, and usability for real-world applications. Together, these works show how DL and RS can protect mariners, monitor ecosystems, and reveal ocean dynamics—bringing us closer to truly actionable ocean intelligence.

We thank all authors and reviewers for their contributions and the editors for their support. We hope that this Research Topic will serve as both a reference and a springboard for progress in observing and managing the blue planet.





Author contributions

MY: Writing – original draft, Writing – review & editing. CC: Writing – original draft, Writing – review & editing. SN: Writing – original draft, Writing – review & editing. WH: Writing – original draft, Writing – review & editing.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.





Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2025 Yasir, Chen, Nazir and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 19 September 2024

doi: 10.3389/fmars.2024.1468481

[image: image2]


Optimizing underwater connectivity through multi-attribute decision-making for underwater IoT deployments using remote sensing technologies


Inam Ullah 1,2, Farhad Ali 3, Amin Sharafian 1,2, Ahmad Ali 1,2, H. M. Yasir Naeem 1,2 and Xiaoshan Bai 1,4*


1 College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China, 2 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China, 3 Department of Accounting and Information Systems, College of Business and Economics, Qatar University, Doha, Qatar, 4 National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China




Edited by: 

Chao Chen, Suzhou University of Science and Technology, China

Reviewed by: 

Prince Waqas Khan, West Virginia University, United States

Chunjiong Zhang, Ajou University, Republic of Korea

Abdur Rasool, Chinese Academy of Sciences (CAS), China

*Correspondence: 

Xiaoshan Bai
 baixiaoshan@szu.edu.cn


Received: 22 July 2024

Accepted: 30 August 2024

Published: 19 September 2024

Citation:
Ullah I, Ali F, Sharafian A, Ali A, Naeem HMY and Bai X (2024) Optimizing underwater connectivity through multi-attribute decision-making for underwater IoT deployments using remote sensing technologies. Front. Mar. Sci. 11:1468481. doi: 10.3389/fmars.2024.1468481



The underwater Internet of Things (UIoT) and remote sensing are significant for biodiversity preservation, environmental protection, national security, disaster assistance, and technological innovation. Assigning tasks to autonomous underwater vehicles (AUVs) is a fundamental challenge in underwater technology and exploration. Remote sensing and AUVs are vital for pollution detection, disaster prevention, marine observation, and ocean monitoring. This work presents an optimized network connectivity using a multi-attribute decision-making approach for underwater IoT deployment. A feature engineering approach highlights the significant characteristics of underwater things, incorporating remote sensing data, and a multi-objective optimization method is used to select optimal UIoT for effective task allocation in deep-sea environments. A balance between data transmission, energy economy, and operational performance is necessary for efficient task distribution. Effective communication algorithms and protocols are needed to maintain environmental sustainability, protect marine ecosystems, and improve underwater monitoring enhanced by remote sensing technologies. Multi-criteria decision-making (MCDM) is beneficial for addressing various challenges in underwater technology, considering factors such as mission objectives, energy efficiency, environmental conditions, vehicle performance, safety, and much more. The proposed criteria importance through intercriteria correlation (CRITIC) methodology will assess technical competencies like communication, resilience, navigation, and safety in an underwater environment, leveraging remote sensing and aiding decision-makers in selecting appropriate undersea devices and vehicles for enhancing communication and transportation. This method prioritizes characteristics and aligns them with specific objectives, improving decision-making quality in the marine environment.




Keywords: autonomous underwater vehicles, remote sensing, internet of underwater things, acoustics sensor networks, marine applications




1 Introduction

Emerging technologies such as the Internet of Things (IoT), machine learning, and big data analytics have revolutionized the lifestyles of common people. In essence, the term “IoT” solely pertains to the networking and communication stratum of the infrastructures in the Information Society, which establish connections between entities or devices and the Internet as well as among themselves. Through the linkage of entities that are ubiquitously present in our surroundings, the IoT has the potential to enhance our interactions with it (Jahanbakht et al., 2021; Gu et al., 2024). The term “underwater Internet of Things (UIoT)” describes an extensive worldwide network of networked underwater items that use embedded sensors, remote sensing technologies, tracking technologies, and the Internet to sense, understand, and react to their environment. Moreover, these gadgets can connect submerged and aboveground objects, including phones. Every underwater object has a fully functional virtual counterpart and is available to the public. Devices are connected to the Internet via the IoT, and underwater things are digitally identified via the underwater IoT (Domingo, 2012; Mariani et al., 2021). However, the lack of advanced sensors limits underwater surveillance technologies and sensor use. Low-power sensors, accompanied by remote sensing, can help address this issue, while marine sensors are crucial for ecological and environmental sustainability and saving lives (Refulio-Coronado et al., 2021).

The collaboration between remote sensing and underwater sensor networks (USNs) represents a significant advancement in marine technology, facilitating more precise and effective monitoring of oceanic conditions (Chen et al., 2022). USNs are employed for oceanography, pollution detection, underwater target detection, offshore exploration, and disaster prevention. These networks utilize unmanned underwater vehicles (UUVs) equipped with sensors specifically designed for underwater environments (Sun and Boukerche, 2018; Zacchini et al., 2022). The exchange of configuration, location, and motion information among these devices is made possible through underwater wireless acoustic networking. The UASN comprises diverse sensors and vehicles collaborating to monitor tasks within a designated area (Akyildiz et al., 2005). The next generation of USNs should have key characteristics such as reliability, robustness, adaptability, security, evaluability, efficiency, scalability, and intelligence, as illustrated in Figure 1 (Luo et al., 2018). Remote sensing is essential in these marine ecosystem procedures because it enables the gathering of data from underwater regions that are difficult to reach. The figure below depicts the fundamental characteristics essential for the future iteration of USNs. These characteristics guarantee that the USNs can operate efficiently and dependably in submerged surroundings.

[image: Diagram illustrating features of Underwater Sensor Networks. Central box labeled "Underwater Sensor Networks" connects to pairs of features: Reliable and Robust, Adaptable and Secure, Evolvable and Efficient, Scalable and Intelligent. Each pair is connected by arrows pointing towards the feature names.]
Figure 1 | Performance metrics of UWSNs.

Underwater communications necessitate the continuous monitoring of oceanic regions utilizing pre-existing technologies. However, such monitoring can lead to data loss during an interruption before recovery. To address this issue, it is imperative to establish instantaneous communication between the underwater instruments and the central control devices. This task is achieved by creating a rudimentary underwater acoustic network, which entails establishing a two-way acoustic connection between various devices, including autonomous underwater vehicles (AUVs) and sensors (Zhou et al., 2023). Remote sensing is essential for supplementing these acoustic networks by offering supplementary techniques for collecting data. This network is subsequently linked to a ground station, which can be connected to a host system via radio frequency (RF) communications, such as the Internet. Integrating the remote sensing data can augment the flexibility of such systems. Unlike terrestrial wireless sensor networks (WSNs), which trust radio waves for communication purposes, USNs use acoustic waves, which places a new research challenge in the scheme of MAC protocols. A comparison of various technologies for underwater communication and remote sensing is summarized in Table 1.

Table 1 | Comparison of different technologies used for underwater communications and remote sensing.


[image: Table comparing communication technologies:   - EM Waves with frequencies 2.4GHz to 5MHz, modulations CCK, QPSK, and BPSK, distances 0.16m to 90m, data rates 11Mbps to 100bps. - Acoustic Waves with frequencies 800KHz to 12KHz, modulations BPSK to MIMO-OFDM, distances 1m to 2500m, data rates 80Kbps to 24.36Kbps. - Optical Waves using PPM modulation, distances 1.8m to 11m, data rates 100Kbps to 10Mbps.]
Underwater IoT (UIoT) applications utilize various network layers, often defined by the open systems interconnection (OSI) model and TCP/IP protocols. Remote sensing technologies can enhance these applications by offering additional sources of data. The data link layer uses a water channel for reliable transmission, while the physical layer uses specialized underwater communication technology. The OSI architecture uses a unique protocol considering depth, distance, and energy efficiency for packet routing (Luo et al., 2021). Remote sensing data can enhance and refine these techniques. It also handles reliability issues at the transport layer, improving latency and packet loss. The application layer analyzes data from underwater sensor platforms and devices to enable the implementation of IoT applications and services (Jiang, 2018). The use of remote sensing at this layer enables a more thorough analysis of data and the development of applications. Figure 2 shows the data transmission between various layers. The lower four layers of the OSI model comprise the main functionalities required for reliable transfer, which are divided into link and path levels. Link-level function objective is to lessen transmission errors caused by interference, noise, and frame collision between neighboring nodes. Path-level functions endeavor to guarantee end-to-end consistent transfer via network pathways, particularly by addressing packet losses.

[image: Diagram showing a network communication model with two columns labeled "End point" and "Relaying node." The layers include Application, Transport, Network, Data link, and Physical. Arrows indicate paths for ensuring end-to-end and hop-by-hop reliability and link and channel reliability control. An optional path is shown at the Network level.]
Figure 2 | The data transmission between different layers (Zhou et al., 2023).

AUVs utilized on underwater networks possess a promising capability to enhance their operational reach by transmitting control and data signals across extensive networks. AUVs and remote sensing can increase this capability by adding data and improving situational awareness. However, it should be noted that the capacity of shallow water acoustic channels is constrained, and numerous time-varying paths can result in significant symbol interference, as well as notable dispersion and Doppler shifts. To attain the necessary level of energy efficiency, underwater networks necessitate a hierarchical architecture (Sozer et al., 2000). Figure 3 shows the taxonomy of UASN and remote sensing. Underwater wireless satellites, called UWSNs, are crucial in coastal activities such as fish farm control, seabed mining, and water monitoring. Various factors influence underwater ecosystem instability, including temperature, lack of sensing capability, pressure, noise, and water density fluctuations (Abelson et al., 2020). Coping with several challenges, namely transmission delays, high probability of bit errors, limited bandwidth, and occasional loss of connectivity, poses significant problems in this domain (Garcia et al., 2011; Lloret et al., 2011). Moreover, RF signals are attenuated underwater, resulting in lower data rates and lesson remote sensing at very low frequencies. Alternatively, optical signals may not be useful due to light scattering in the underwater remote sensing environment. Acoustic modems fill a gap in existing technologies and must be energy efficient and economical due to the limited energy resources in the aquatic environment remote sensing. The hardware required to transmit audio signals is inexpensive, but transmission times are much slower than electromagnetic (EM) modems, at about 1500 m/s (Frampton, 2006; Farr et al., 2010).

[image: Diagram of UASNs architecture detailing categories and subcategories: Localization methods include centralized and distributed, with further divisions like estimation-based, prediction-based, and projection-based. Spatial coverage includes two-dimension and three-dimension. Range measurement divides into range-free and range-based, leading to methods like area-based and hop-count. Sensor nodes state covers stationary, mobile, and hybrid. Communications in sensor nodes include single-stage and multi-stage, with techniques like TOA, TDOA, RSSI, and AOA. Specific methods such as ALS, APIT, DV-Hop, robust positioning, and DHL are noted.]
Figure 3 | The taxonomy of underwater acoustics sensor networks (UASNs).

The UIoT and remote sensing haven’t received widespread attention due to their recent discovery and lack of scientific progress. Although 44% of the Earth’s people live 150 kilometers or less from the ocean, 95% of the ocean’s surface remains unexplored. Oceans cover 70% of the Earth’s surface and provide habitat for nearly 500 million people. The development and use of underwater exploration in UIoT can have a significant impact on people’s lives. Due to the advancement in remote sensing and WSNs, the IoT has gained popularity for monitoring various applications, including volcanic activity, forest fire detection, air quality assessment, and home automation systems. However, underwater applications face challenges like sensor deployment and maintenance, energy acquisition, manufacturing costs, sensing issues, and signal propagation issues. Advanced wireless communication and sensing techniques are needed for underwater applications, which can be achieved through three-dimensional (3D space and algorithm placement). These networks offer opportunities for systematic examination of the underwater environment, including climate change impacts, deep-sea habitat research, sensing applications, coral reef population observations, ecological observation, military applications, mine exploration, water quality monitoring, disaster prevention systems, aquaculture supervision, and oceanic data collection and navigation (Sendra et al., 2015; Khan et al., 2023). Thus, UWSNs present a promising solution for various applications of remote sensing in the open sea. This work’s key objectives are as follows:

	To expedite the use of modern technology for the AUV navigation and sensing system to enhance communication and networking.

	To collect and retrieve various parameters, such as water quality, pressure, etc., that directly influence the behaviors of aquatic life and the UIoT.

	Using feature engineering strategy to highlight the significant characteristics of underwater things for efficient and effective sensing and tracking operations.

	To design a multifaceted criteria importance through intercriteria correlation (CRITIC)-based approach to prioritize and assess the essential attributes of UIoT for efficient task allocation and sensing in UIoT.



The rest of the article is organized as follows: Section II presents the overall literature review in the domain of underwater things, whereas Section III presents the methodology of the proposed model. Moreover, Section IV illustrates the results and discussions, while Section V concludes this work.




2 Literature review

Examining the extensive oceans, which cover two-thirds of the Earth’s surface, requires UWSNs to understand this immense expanse fully. Future projections suggest that the market for AUVs is expected to grow substantially, with a compound annual growth rate (CAGR) of USD 1.638 billion by 2025. This represents a notable surge from the USD 638 million recorded in 2020. The applications of AUVs can be commercial, oceanographic, environmental, military, sensing, and more. Examples of commercial activities are surveying, port monitoring, and geophysical and archaeological research (Li et al., 2023; Wang et al., 2023). Scientific/oceanographic missions require seabed exploration, remote sensing, and water body exploration. Environmentally significant applications include habitat monitoring and water quality sampling. Anti-submarine warfare and border security are examples of military/defense activities. Shallow and medium water is the most typical deployments of AUVs in coastal waters (Brasier et al., 2020; Duan et al., 2020). Wireless charging in remote oceanic environments is expected to drive steady growth in the foreseeable future. The AUV Repository lists over 1,050 underwater platforms from over 350 universities, including standard components like battery modules, propulsion systems, sensing capacity, communication systems, navigation systems, and collision avoidance systems (Tian et al., 2023). However, the inertial navigation system’s long-term accuracy is limited by accelerometer drift. To address this, ultra-short baseline or long baseline transponder systems can be used, or simultaneous localization and mapping (SLAM) can be employed (Cao et al., 2021; Hoeher et al., 2021).

However, current networks are hardware-centric, rigid, and need more resource-sharing capabilities. New models, such as software-defined technologies, have emerged to improve UWSNs by providing robustness, flexibility, adaptability, programmability, resource sharing, and easy administration (Sun and Boukerche, 2018). These technologies include software-defined networking (SDN), software-defined radio (SDR), network function virtualization (NFV), cognitive acoustic radio (CAR), underwater IoT sensing, and sensor clouds, turning network resources into software, improving resource efficiency and simplifying network management. These technologies could transform traditional UWSNs into next-generation, software-based, programmable, customizable, and service-oriented networks.

Many challenges arise when deploying IoT devices and networks in aquatic environments or underwater IoT for remote sensing purposes. These include challenges related to signal propagation and transmission in water, building and maintaining robust underwater positioning and navigation systems, optimizing energy efficiency for long-term operation, data processing and retrieval in low-bandwidth environments, and manufacturing waterproof and durable hardware (Arul et al., 2021; Wei et al., 2021). The data rates and usual bandwidth for underwater channels with different ranges are shown in Table 2 (Moradi et al., 2012). The underwater environment is particularly harsh and corrosive, making it difficult to build long-lasting sensors, secure networks, and keep sensors working as intended. Addressing these issues is crucial for the successful implementation of underwater IoT applications, from environmental monitoring to underwater robotics and exploration.

Table 2 | Typical bandwidth and data rates for underwater channels with different ranges.


[image: Table showing data transmission specifications across different spans. Short range: less than 1 km, 20 kbps, 20-50 kHz. Medium range: 1-10 km, 10 kbps, 10 kHz. Long range: 10-100 km, 1 kbps, 2-5 kHz. Basin-scale: 3000 km, 10 bps, less than 1 kHz.]
Autonomous underwater vehicles, or AUVs, are automated submersible platforms capable of operating at a maximum depth of three thousand meters. In 1957, the self-propelled underwater research vehicle (SPURV) became the inaugural AUV (Yang et al., 2021). Over the past six decades, AUV techniques have undergone significant advancements, enabling them to perform sensing tasks autonomously without human intervention (Bai et al., 2018). AUV navigation systems play a vital role in their operation by allowing computers and onboard sensors to govern and guide their movements. However, navigation and remote sensing can be exceedingly challenging due to the attenuation of GPS signals in submerged scenarios. Promising technologies, including cooperative navigation (CN) and SLAM, which can be swiftly implemented and adjusted with minimal infrastructure, are being proposed as potential solutions to this predicament. AUVs typically use batteries, but lithium batteries are now widely used due to their rechargeability and cost-effectiveness (Rymansaib et al., 2023). AUVs can serve as sensing platforms for various sensors, including echo sounders, underwater laser scanners, forward-looking sonars, and conductivity temperature depth sensors.

Ocean engineers are investigating over-actuated and under-actuated underwater vehicles. Over-actuated vehicles align with trajectories using surge, sway, and heave actuators, while under-actuated vehicles pitch and yaw. Tolerable thrust forces, damping limits, and inertia effects limit these models’ attitude. Marine vehicles are managed remotely by input, status, and output barriers. A supplementary system and Doppler Indicator (DI) optimization are applied to track a fully-actuated underwater vehicle (He et al., 2022). In the event of a tracking error occurring within a confined area, the vehicle simultaneously moves in both the rightward and forward directions. Through simulations and experiments conducted under three different scenarios, the efficiency of the proposed strategy has been demonstrated with the tracking error confined to a narrow zone (Cao et al., 2022). A novel open-water path planning strategy called UP4O is designed for AUVs operating in challenging water conditions (Yang et al., 2022). The strategy uses an environmental encoder module to bind local obstacle data and combine it with relative position, velocity, and ocean currents, resulting in continuous operational decision-making using local dynamic information. The system has a diverse state space with at least 26 actions, ensuring motion accuracy and minimizing deviations from ocean current vectors (Yan et al., 2014). Experimental results support UP4O’s ability to accelerate convergence and provide smoother paths in complex oceanic environments.

The domain of designing control systems for robotic arm systems and underwater vehicles is explained. The main focus is on the mathematical analysis of singular perturbation theory. Two control rules were proposed: one that is more straightforward and partially compensates for the sluggish subsystem and another that is a resilient nonlinear control not influenced by model parameters. The stability of both control rules is demonstrated using perturbation theory, and the performance of the suggested controller in a closed-loop system can be compared to that of a model-based correction (De Wit et al., 2000). Marine robotics has revolutionized the use of remotely operated underwater vehicles (ROVs) in science and industry, enabling humans to perform tasks like moving objects across long distances. The effectiveness of single- and multi-ROV systems depends on the right tracking controller. Issues related to individual ROV tracking include energy efficiency, Lyapunov-based model predictive control, feedback and linearization techniques, adaptive algorithms, proportional-derivative control, area tracking controllers, auto-tracking controller adjustment, multivariate control techniques, high-order adaptive sliding mode controllers, controllers based on models (Yan et al., 2019). Following the Deepwater Horizon disaster in 2010, public attention shifted to monitoring the subsurface sea environment (Vasilijević et al., 2017). Remote sensing technologies have proven effective for terrestrial disasters, but detecting and measuring underwater pollution requires field methods (Hao et al., 2022). A joint robotic system combining autonomous underwater and unmanned autonomous surface vehicles is proposed to rapidly detect/sense and quantify contaminants in the water column in situ. This system enables real-time contamination readings while minimizing human intervention and time commitments.

Autonomous underwater navigation relies on efficiency and autonomy, with dead reckoning techniques relying on proprioceptive data from compasses, Doppler Velocity Logs, and Inertial Navigation Systems. However, positioning errors tend to magnify over time, necessitating absolute georeferenced sources for precise positioning. Time-of-flight (ToF) acoustic positioning systems are the current method for correcting underwater positions and sensing (Li et al., 2018). As technology and hydroacoustic communication standards for AUVs continue to advance, CN may become a highly accurate method for locating multiple underwater vehicles. CN allows a group of AUVs to mutually estimate their current positions based on relative distance, velocity, and acceleration (Lyu et al., 2022). Figure 4 illustrates the USN and AUV architecture. The surface components like satellites, drones, ships, base stations, surface sinks, and servers aid communication and data management. AUVs communicate with stationary seabed sensors and other underwater mobile nodes. The Surface and underwater components communicate by two-way packet exchange and via wireless signals, safeguarding effective data collecting and network coordination in diverse underwater environments.

[image: Diagram of a communication network involving various components. Satellites, a drone, and a ship are above water. A base station and server are on land. Surface sinks and mobile nodes connect these with autonomous underwater vehicles (AUVs) and seabed sensors underwater. Yellow lightning bolts indicate data exchange pathways, highlighting a two-way packet exchange between AUVs and nodes.]
Figure 4 | Remote sensing communication and navigation in deep-sea environment.

By utilizing ocean currents as control inputs during way-point tracking missions, the power consumption of the engine is reduced. The controller effectively considers multiple constraints, such as those related to the workplace, the vehicle’s maximum speed, sensing capacity, the saturation of control inputs, and the presence of rare obstacles. The proposed technology accounts for all the vehicle dynamics, including ocean currents, enabling optimal thrust determination to minimize errors in waypoint tracking (Heshmati-Alamdari et al., 2019). Utilizing the ocean currents for control inputs during waypoint tracking missions reduces the power consumption of the engine. Analytical guarantees for stability and convergence are established for closed-loop systems. The presented work focuses on utilizing AUVs to monitor underwater pipelines and gather data from submarine networks (SNs) within the transmission range. This collected data is transmitted to a surface borehole using acoustic communication technology. This approach reduces power consumption, and the need for costly data re-transmissions is avoided. This architectural framework is well-suited for data applications that can tolerate latency and provide flexibility in implementing submarine networks. Various algorithms for AUV motion and remote sensing are put forth, and an investigation is conducted to determine the impact of the system on network performance. Furthermore, the system can be optimized by considering design parameters, such as SN density, distance, network reliability, medium access control (MAC), communication channel conditions, security measures, and quality of service (QoS) requirements (Jawhar et al., 2018).

Despite development in AUVs and underwater wireless sensor networks (UWSNs), there are still several limitations. The existing hardware-focused networks cannot exchange resources or familiarize themselves with software-defined solutions. Accelerometer drift disturbs navigation system accuracy, necessitating further research. Due to energy efficiency, localization, sensing, and navigation system resilience issues in demanding underwater environments, IoT device installation and conservation must be enhanced. Current challenges include creating long-lasting, water-resistant sensors and efficient data processing in low-network settings. Novel control and path planning systems like UP4O must also be authenticated in complex marine surroundings. The existing problems must be addressed to increase the performance, reliability, and expandability of AUVs and UWSNs. This will enable future advanced, flexible, and effective marine systems.




3 Methodology

Multi-criteria optimization is crucial for selecting the most efficient UIoT for underwater task assignment and sensing (Song, 2020; Fang et al., 2021). These devices must be chosen based on energy efficiency, communication range, remote sensing capacity, data transmission capability, durability, and adaptability to dynamic oceanic environments. The effectiveness of IoT devices depends on the specific objectives of underwater operations, such as accurate data collection in oceanography and robust and durable devices for marine remote sensing infrastructure repair work. Multi-criteria optimization helps decision-makers select IoT devices that align with operational goals and requirements. It also addresses trade-offs between features like energy efficiency and data transmission capabilities, ensuring the efficiency and effectiveness of IoT deployments tailored to specific underwater sensing applications. The optimal selection of vehicles based on multi-criteria is shown in Figure 5. Starting with the UIoT, digital library articles are assessed. These articles undergo feature engineering to extract relevant features. The selected features are evaluated for sufficiency. After recognizing significant attributes, ideal vehicles are selected using multi-criteria evaluation.

[image: Flowchart illustrating the process of selecting optimal vehicles for the Underwater Internet of Things (UIoT). The process begins with analyzing articles, followed by feature engineering. In the decision-making stage, if relevant features are selected, it leads to optimal vehicles being chosen. If not, the process loops to select more articles from digital libraries for further analysis.]
Figure 5 | Optimal selection of vehicles based on multi-criteria.



3.1 Feature engineering

An important and challenging aspect of the UIoT is to identify the unique characteristics of the underwater sensing environment through an in-depth review of previous research (Zhu et al., 2023). These characteristics include energy efficiency, water pressure, contact closure, resistance to corrosion, salinity, sensing issues, and temperature. Understanding and specifying these characteristics is important for effectively deploying IoT devices in an oceanic environment, as they directly affect network performance and reliability. Functional engineering is essential for optimizing IoT devices for specific underwater tasks such as oceanography, where data accuracy is critical, or maritime/oceanic infrastructure maintenance, where reliability and durability are priorities. As feature development is versatile, IoT devices may be customized to meet specific remote sensing needs. Functional engineering also promotes using and integrating cutting-edge scientific innovations and findings.

Engineers and researchers may uncover new possibilities and chances that extend the remote sensing potential of IoT devices by evaluating relevant literature and considering the latest developments. In addition to revolutionizing IoT technology, this iterative approach to feature development will produce creative solutions for applications emerging in underwater or oceanic environments. Feature engineering is essential to underwater IoT, enabling decision-makers to select, modify, and design IoT devices tailored to underwater remote sensing applications’ needs and objectives. The UIoT is a network of submerged devices and systems that enable efficient communication, cooperation, and data transmission. These resilient and adaptable systems allow aquatic systems to withstand environmental pressures and recover from disturbances. Their flexibility allows them to respond to dynamic changes and gather oceanic research and exploration data.

Interoperability and integration are significant in the IoT, fostering collaboration and data exchange between devices. The dependability and efficiency of underwater technologies ensure consistent service provision, while their durability ensures functionality over time. Tolerance mechanisms and collision avoidance ensure secure sensing, navigation, and operations. Both bound and unbound deployment options allow flexibility in deployment. The visibility of the IoT enables real-time monitoring and visualization of underwater conditions, facilitating data analysis and seabed mapping for scientific research and exploration. These capabilities enable multitasking, responsiveness, and controllable sub-sea systems that provide essential services and data analytics, revolutionizing the way we explore and comprehend the vast depths of the ocean. The various key characteristics of underwater vehicles are illustrated in Figure 6.

[image: Circular chart displaying various capabilities and their associated numbers, organized into colored segments. Categories include Communication, Navigation, Security, Virtualization, and more, numbered sequentially from 1 to 59.]
Figure 6 | Various key characteristics of underwater vehicles.




3.2 Decision making

Ocean engineering is a rapidly developing field that relies on decision-making to guide undersea technologies. Researchers, producers, and institutions are constantly improving underwater vehicles to sense, navigate, and explore deep oceans (Rolland et al., 2023). These vehicles are designed for security, resource exploitation, remote sensing, ecological protection, and scientific investigation. Their creation ensures wise choices for the submerged environment, preserving marine ecosystems for future generations and allowing exploration of mysterious deep-sea enclaves (Borja et al., 2020). The ultimate goal is to provide creative and effective solutions for the vast, unexplored oceans.




3.3 Feature selection

The UIoT faces challenges in identifying unique underwater characteristics like power usage efficiency, water pressure, sensing issues, contact closure, corrosion resistance, salinity, and temperature (Khalil et al., 2020). These factors directly impact the remote sensing network’s performance and reliability. Functional engineering promotes the use of state-of-the-art scientific discoveries and innovations, allowing engineers and researchers to assess the literature and consider recent advancements to uncover novel attributes and capabilities. This iterative approach revolutionizes IoT technology and provides innovative solutions for underwater/oceanic applications. Functional design is at the core of the UIoT, enabling decision-makers to choose, tailor, and design IoT devices to meet underwater remote sensing application requirements.




3.4 Multi-criterial decision making in UIoT

The Internet of vehicles (IoV) presents a challenge for policymakers and stakeholders in selecting optimal vehicle solutions to improve operations and productivity. Multi-criteria decision-making (MCDM) methodologies, such as the analytical hierarchy process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), help assess and prioritize vehicles across various dimensions, including fuel effectiveness, connectivity, environmental impact, safety attributes, and cost efficiency. These approaches provide a structured framework for informed choices, enabling stakeholders to navigate various alternatives, ultimately leading to efficiency, sustainability, and innovation in the transformative sector.

The UIoT aims to revolutionize underwater activities by combining interconnectivity, data sharing, and real-time monitoring. It enhances operational efficiency and predictability by enabling effective task control, route tracking, sensing, and location determination. UIoT’s manoeuvrability, adaptability, multitasking, resource management, continuous integration, and efficient telemetry further enhance operational capabilities. It also provides durability, protection, safety, and resilience, promoting real-time monitoring and accountability in harsh environments. The responsiveness of IoT systems supports their reliability and interoperability, enabling seamless functioning and interaction. These capabilities can potentially revolutionize underwater remote sensing operations and usher in a new era of subsurface exploration and data collection. The overall methodology of this study is represented in Section 4, and the characteristics that are collected by properly analyzing existing approaches are presented in Table 3.

Table 3 | Multi-criteria-based optimal feature selection of underwater vehicles.


[image: Table comparing eight methodologies across seven criteria. Criteria include Communication, Connectivity, Endurance, Sharing, Collaboration, Transmission, and Propagation. Each methodology addresses specific aspects such as Tasks Management, Path Monitoring, Navigation, and Exploration.]




4 Results and discussions

The detailed methodology and the evaluation results of the proposed approach are presented in the below subsections.



4.1 CRITIC approach

A technique utilized in MCDM to help with complex selection procedures where multiple factors require evaluation is called the CRITIC choice-making strategy. It works especially well when assessing and ranking choices or alternatives in situations where there is a lot of ambiguity and mutual dependence. Rather than considering each decision criterion separately, CRITIC focuses on their interrelatedness. Adapting to complicated and evolving decision situations, reducing subjectivity in weight distribution, and understanding hidden linkages between factors are only a few advantages of the CRITIC technique. It provides an organized and systematic manner to rank and incorporate multiple factors during the selection process, making it an extremely valuable tool across a wide range of industries, including sustainability management, engineering, finance, and healthcare. When everything is said and done, the CRITIC choice-making strategy offers a solid and methodical way to handle complicated problems that need a careful examination of criteria connections. These steps involved in the mechanism of the CRITIC calculation are portrayed in Figure 7.

[image: Hexagonal flowchart with seven labeled steps: Calculate Normalization Matrix, Build Decision Matrix, Quality of Information, Correlation Coefficient of Criteria, Criteria Weights, Standard Deviation, and Measure of Conflict. Each hexagon is a different color.]
Figure 7 | Representation of various (CRITIC approach) steps for underwater Things.

The CRITIC technique assesses every criterion’s significance by considering its relationships to other factors in addition to subjective perceptions. This implies that the method considers the possible consequences of altering one of the factors on others, resulting in a more accurate and comprehensive depiction of the decision problem. Decision-makers estimate every criterion’s relative importance to all other factors by comparing them pairwise, creating an inter-criteria correlation matrix. After that, the ultimate weights for the criteria are obtained by subjecting this matrix to a number of mathematical operations, many of which include dynamic investigation.

Furthermore, all the chosen factors in the proposed work are beneficial. The chosen factors impact the alternatives more, which we can find after determining their weightage. The weights were assigned to every criterion based on their importance, according to expert opinion, using a scale ranging from one (1) to nine (9). The one value illustrates the equal significance of one factor over another. In contrast, the nine values state the extreme significance of one factor over another while comparing them against each other using the CRITIC approach. A 7 * 7 matrix has been constructed using Equation 1, and weights are distributed among criteria as per expert opinion. These factors have been properly comprehensively compared against each other to determine the precise weightage of each criterion and determine their significance and impacts on the required alternatives. The evaluation matrix has been designed for eight alternatives based on specific factors. The maximum and minimum values have also been determined from every column, which states that every maximum value is the highest and the minimum is the lowest due to the beneficial nature of all the criteria. The alternatives have been set in rows, while the criteria have been set in columns, as depicted in Table 4.

Table 4 | Evaluation matrix.


[image: Table showing criteria (C1 to C7) and alternatives (Meth 1 to Meth 8) with corresponding values. Each method is scored across criteria, with MAX and MIN values provided: MAX values are 9, 7, 8, 7, 9, 8, 6, and MIN values are 2 for all criteria.]
[image: Matrix notation representing \( X = [X_{ij}] \), illustrating a matrix with elements \( X_{11}, X_{12}, \ldots, X_{1n} \) in the first row, continuing in a similar pattern, with dots indicating continuation down to \( X_{m1}, X_{m2}, \ldots, X_{mn} \) in the last row.] 

Here, the original matrix has been normalized through the utilization of Equation 2, as given below;

[image: A mathematical formula is displayed: \(\overline{X}_{ij} = \frac{X_{ij} - \min(X_{ij})}{\max(X_{ij}) - \min(X_{ij})}\). It is identified as equation number 2.] 

Where, [image: Italicized lowercase "x" with a horizontal line over it, followed by subscript "i" and "j".]  indicates the normalized outputs, and it is essential to realize that normalization does not account for the kind of criterion.

The constructed matrix has been undergone to normalize original values by utilizing Equation 2 to reduce subjectivity and remove errors. The outcomes obtained from the entire calculation of the normalization process are listed in Table 5.

Table 5 | Normalized matrix.


[image: Table displaying values across seven columns labeled C1 to C7 and rows labeled Meth 1 to Meth 8. Each cell contains a numerical value, indicating various metrics associated with each method.]
Equation 3 has been applied to the normalized matrix to obtain the standard deviation outputs. The entire calculation and obtained outputs are listed in Table 6.

Table 6 | Calculation of standard deviation.


[image: Table showing values for methods one to eight across columns C1 to C7, with each cell containing a numerical value. The bottom row displays the standard deviation for each column, ranging from 0.327 to 0.377.]
[image: Standard deviation formula: sigma equals the square root of the sum of squared differences between each data point and the mean, divided by n minus one.] 

Figure 8 plots the calculated standard deviation values for every criterion. The correlation coefficient outputs have been obtained by comparing two pairs of criteria in the normalized matrix. The required values of the correlation coefficient between pairs of criteria have been identified, as listed in Table 7 and Figure 9.

[image: Area chart showing data values from C1 to C7. Values start at 0.35 in C1, peak at 0.377 in C3, and decline to 0.327 in C7.]
Figure 8 | Standard deviation outputs.

Table 7 | Calculation of correlation coefficient between criteria.


[image: A table displaying correlation values between seven criteria labeled C1 to C7. The diagonal values are all one, indicating perfect correlation with themselves. The table includes both negative and positive correlations among the criteria, such as C1 and C2 with -0.339, and C4 and C3 with -0.613.]
[image: Heatmap showing correlation coefficients between variables C1 to C7. Strong positive correlations are in red, negative correlations in blue. The scale ranges from negative one to one, indicating correlation strength.]
Figure 9 | Correlation coefficients.

[image: The formula represents the Pearson correlation coefficient, denoted as ρ subscript j k. It is expressed as the sum from i equals one to m of (r subscript i j minus r bar j) times (r subscript i k minus r bar k), divided by the square root of the product of the sum from i equals one to m of (r subscript i j minus r bar j) squared and the sum from i equals one to m of (r subscript i k minus r bar k) squared.] 

The required values have been achieved through the use of Equation 5. Every correlation coefficient value mentioned above has been subtracted from one, and then these values are added in a row-wise manner to get the required values according to the equation. The calculated outputs of the measure of conflict are outlined in Table 8.

Table 8 | Calculation of measure of conflict.


[image: A table titled "Measure of Conflict" displays values for comparisons among seven categories labeled as C1 to C7. Each cell contains a numerical value representing the measure of conflict between corresponding pairs, or within the same category, from C1 to C7. The final column lists aggregated measures for each row, ranging from 5.825 to 7.063.]
[image: Mathematical equation showing the measure of conflict as a summation from i equals one to n of one minus t sub i, denoted as expression five.] 

The calculated outcomes, known as the measure of conflict of every criterion, are plotted in Figure 10. The required outputs, known as the quantity of information, have been achieved through the application of (Equation 6). These values are obtained by multiplying the measure of conflict outputs with the standard deviation scores as per the quantity of information formula. The calculated outcomes of the quantity of information are listed in Table 9.

[image: Heatmap titled "Calculation of Measure of Conflict" showing conflict values between components C1 to C7. The color gradient represents conflict measure from zero to seven, with darker shades indicating higher values. Each component pair has specific conflict values ranging from zero to 1.82, with an additional column indicating the Measure of Conflict (MoC) for each component, ranging from 5.82 to 7.06.]
Figure 10 | Measure of conflict outcomes.

Table 9 | Calculation of quantity of information.


[image: Table displaying three columns: Standard Deviation, Measure of Conflict, and Quantity of Information (Cj). Rows labeled C1 to C7 include respective data: C1 (0.350, 7.034, 2.462), C2 (0.362, 7.058, 2.552), C3 (0.377, 6.987, 2.636), C4 (0.370, 7.063, 2.616, with a cross mark), C5 (0.350, 6.096, 2.133), C6 (0.339, 6.821, 2.309), C7 (0.327, 5.825, 1.907).]
[image: Quality of information \(C_j\) equation: \(C_j = \sigma_j \times \left(\sum_{i=1}^{n}(1 - r_{ij})\right)\). Equation number is six, enclosed in parentheses.] 

The calculated scores of the quantity of information have been plotted in Figure 11, which improves visibility and understanding of the calculated outcomes.

[image: 3D pie chart with seven segments labeled C1 to C7. C4 and C3 have the largest segments at 16% each. C1 and C2 are 15% each, C6 is 14%, C5 is 13%, and C7 is 11%.]
Figure 11 | Quantity of information values.

According to Equation 7, every single value of the quantity of information has been divided by the total of the values of the quantity of information in order to get the required weights of every criterion to determine the relative importance of the factors and identify their effects on the numerous essential alternatives. The calculated weightage of each criterion in the study is displayed in Table 10.

Table 10 | Calculation of weights.


[image: Table displaying columns for "Quantity of Information," "Weights," and "Weights in Percent (%)" with rows labeled C1 to C7. The "Quantity of Information" ranges from 1.907 to 2.636. Weights vary from 0.115 to 0.159, and percentages from 11.48% to 15.87%. The sum row totals 16.614 for quantity, 1.000 for weights, and 100% for percentages.]
[image: Formula for criteria weights (Wj) equals Cj over the sum of Cj from i equals 1 to n, labeled as equation 7.] 

The weightage of each criterion calculated by the CRITIC procedure is plotted in graphical form, as shown in Figure 12 to increase the readability and clarity for the user to easily understand the relative importance of numerous essential criteria chosen and evaluated in the study. A criterion with the highest weight indicates a greater significance and high effect on the chosen alternatives, as followed by the remaining criteria in a sequence.

[image: Horizontal bar chart labeled "Weights" with categories C1 to C7. Values are C1: 0.148, C2: 0.154, C3: 0.159, C4: 0.157, C5: 0.128, C6: 0.139, C7: 0.115. Each bar is orange.]
Figure 12 | Illustration of criteria weights.

The CRITIC technique will prioritize the primary characteristics of submersible vehicles, enabling decision-makers to optimize vessel deployment. The appropriate vehicles will be selected, and tasks will be assigned to them, leading to higher success rates, enhanced security measures, efficient resource allocation, and improved underwater operations accuracy. The technique is valuable for investigating subsea technologies and enhancing vessel deployment in the undersea IoT.

Comparing the proposed work with previous systems shows notable differences in important performance measures, such as the distribution of trust values, the time it takes for data to go from one end to another, the lifespan of individual nodes, and the time it takes for the system to reach a stable state, see Table 11. The proposed technique showcases the most minimal end-to-end latency of 50 ms, suggesting very efficient data transfer, whereas the other alternatives display the highest delay of 65 ms. The proposed work exhibits the highest trust value distribution (0.95), indicating a greater level of reliability among network nodes. In contrast, the other approach demonstrates the lowest trust value distribution (0.85), implying inferior trust management. The suggested work has the greatest node lifespan, lasting for 200 hours, compared to the other job with a shorter node lifetime of 175 hours. This emphasizes the energy efficiency of the proposed work. In addition, the suggested work demonstrates the fastest convergence time of 30 seconds, which indicates a rapid stabilization of the network. In contrast, the comparison work has the slowest convergence time of 37 seconds, highlighting the superior performance of the proposed work. The data demonstrates that the suggested methodology surpasses other methods in all measurable dimensions, emphasizing reducing delay and maximizing trust, node lifetime, and speedy convergence.

Table 11 | Comparison with other approaches.


[image: Comparison table of network performance across different works shows four metrics: end-to-end delay, trust value distribution, node lifetime, and convergence time. The proposed method shows improvements with a delay of 50 ms, trust value of 0.95, node lifetime of 200 hours, and convergence time of 30 seconds compared to previous works.]




5 Conclusion

The impact of 5G and 6G communication networks on underwater technology drives rapid growth in the IoT market. As a result, underwater automobiles, vessels, tracking devices, and surveillance devices, such as s, environmental sensitivity observation equipment and advanced aquatic study instruments, have emerged. These technologies have the potential to transform our understanding of the underwater oceanic environment and contribute to the long-term management of ocean resources. The Internet of underwater vehicles is an exciting breakthrough in the IoT area that is transforming sub-aquatic operations and communications. It has energy-efficient communication modules, quick data processing, flexible sensors, remote sensing capability, and better mobility. The Internet of underwater vehicles enhances sub-aquatic vehicle communication capabilities while also accelerating job completion, resulting in a more productive, automatic, and adaptive sub-aquatic network. These advancements in technology bring up new avenues for subaquatic applications, environmental surveillance, and marine exploration. In this study, the CRITIC technique is proposed to examine and evaluate appropriate UIoT characteristics such as localization, sensing, positioning security, privacy, resource allocation, and optimization. These multi-characteristics will assist decision-makers in assessing correlations and interdependencies between various characteristics, which is critical for effective and well-informed decision-making in dynamic UIoT environments and for modifying Vehicles with multi-features to achieve specific objectives in undersea operations. Developing an integrated approach to submerged technology, ensuring the effectiveness and safety of underwater remote sensing systems, and developing energy-saving solutions to increase the lifespan of underwater vehicles are various domains that need further research and exploration to achieve the objectives of ocean and marine engineers.
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Coastal waters require monitoring of chlorophyll-a concentration (Chl-a) in a wide range of Chl-a from a few mg/m3 to hundreds of mg/m3, which is of interest to the fisheries industry, evaluation of climate change effects, ecological modeling and detection of Harmful Algal Blooms (HABs). Monitoring can be carried out from the Visible Infrared Imaging Radiometer Suite (VIIRS) and Ocean and Land Colour Instrument (OLCI) Ocean Color (OC) satellite sensors, which are currently on orbit and are expected to be the main operational OC sensors at least for the next decade. A Neural Network (NN) algorithm, which uses VIIRS M3-M5 reflectance bands and an I1 imaging band, was developed to estimate Chl-a in the Chesapeake Bay, for the whole range of Chl-a from clear waters in the Lower Bay to extreme bloom conditions in the Upper Bay and the Potomac River, where Chl-a can be used for bloom detection. The NN algorithm demonstrated a significant improvement in the Chl-a retrieval capabilities in comparison with other algorithms, which utilize only reflectance bands. OLCI NIR/red 709/665 nm bands red edge 2010 algorithm denoted as RE10 was also explored with several atmospheric corrections from EUMETSAT, NOAA and NASA. Good consistency between the two types of algorithms is shown for the bloom conditions and the whole range of waters in the Chesapeake Bay (with RE10 switch to OC4 for lower Chl-a) and these algorithms are recommended for the combined VIIRS-OLCI product for the estimation of Chl-a and bloom monitoring. The algorithms were expanded to the waters in Long Island Sound, demonstrating good performance.
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1 Introduction

In estuaries and adjacent coastal waters, algal blooms are both a key water quality indicator and a potential hazard (Tango and Batiuk, 2016; Karlson et al., 2021). High biomass blooms have implications for reducing water clarity and are indicators of eutrophication in coastal systems (Bricker et al., 2008; Le et al., 2013). Reduced water clarity and depleted oxygen in bottom waters can have deleterious effects on essential fish habitats such as submerged aquatic vegetation in estuaries, leading to a shift from benthic to pelagic-dominated system productivity (Bricker et al., 2008). Harmful Algal Blooms (HABs), pertaining to a class of phytoplankton that often contain toxins, occur in various coastal areas and have a strong impact on fisheries, tourism, and recreation industries, requiring improved monitoring of HABs by environmental and health programs. HABs are often difficult to locate through routine monitoring programs because of their patchiness, physical circulation of the water, and vertical migration of algal particles. As a first approximation, typically, the concentration of chlorophyll-a (Chl-a) is considered as a proxy for the strength of the algal bloom, while bloom effects can vary depending on the type of algal species (IOCCG, 2021). Satellites can support the monitoring of HABs if they provide frequent coverage and retrieve Chl-a over a wide range of concentrations. Improved temporal resolution, which could be provided by using remote sensing products from multiple satellite sensors, can improve efforts of monitoring and forecasting HABs in coastal and estuarine waters. Data should come from multiple ocean color sensors to improve coverage during periods of cloud cover or sun glint (a problem especially in spring and summer), and to provide multiple views of blooms within a day.

Ocean color algorithms are based on remote sensing reflectance, Rrs spectra with Chl-a dominating Rrs spectra in the blue in clear waters. These algorithms often fail in optically complex coastal and estuarine waters where HABs occur, due to the high absorption of colored dissolved organic matter (CDOM) and scattering from sediments. Therefore, it is important to develop Chl-a algorithms that are minimally influenced by CDOM and/or high sediment concentrations. Efforts have been made to improve Chl-a retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors operated by National Oceanic and Atmospheric Administration (NOAA) and from Sentinel-3 Ocean and Land Colour Instrument (OLCI) sensors processed by NOAA in collaboration with the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) (Wang and Son, 2016; Mikelsons and Wang, 2019; Liu and Wang, 2022; Mikelsons et al., 2022; Wynne et al., 2022). Currently, there are three VIIRS sensors (on the SNPP, NOAA-20 and NOAA-21 platforms) and two OLCI sensors on the Sentinel-3A and 3B in space with 750 m and 300 m spatial resolution (at nadir), respectively. With additional launches of VIIRS planned, these two groups of sensors are expected to provide reliable and stable multi-spectral Ocean Color (OC) data for the next decade and beyond. The NASA Phytoplankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission (Werdell et al., 2019), which was successfully launched in February 2024, has a main hyperspectral Ocean Color Instrument (OCI), but with a relatively coarse spatial resolution of 1.0 km (at nadir), which is not often sufficient for many coastal areas. The availability of consistent data in a wide range of Chl-a, with appropriate temporal resolution, will expand the number of applications and agencies, which utilize remote sensing data to complement the field data they use for decision-making regarding HABs. While the definition of HABs can be different for different water bodies, for this work we only consider high biomass blooms with Chl-a above 25-30 mg/m3, which require the attention of coastal managers. This does not imply anything related to toxicity or deleterious effects to wildlife or public health and relies on in situ sampling to determine phytoplankton species.

Large uncertainties in remote sensing reflectance (Rrs) retrieval in blue bands remain a major problem for OC satellite sensors in coastal areas because of difficulties in atmospheric correction and low Rrs at this part of the spectrum (Ransibrahmanakul and Stumpf, 2006; IOCCG, 2019). In addition, due to the inability to see through clouds with OC sensors, daily imagery from current satellite sensors may be obscured. When monitoring blooms in coastal areas the combination of insufficient atmospheric correction in coastal and estuarine waters, and missing imagery due to clouds and sun glint, can often hinder the use of satellites in monitoring and forecasting efforts. Large uncertainties make an estimation of Chl-a concentration unreliable using standard OCx algorithms, which include the 443 nm band. A Neural Network (NN) Chl-a algorithm (Ioannou et al., 2014), which avoids blue bands at 412 and 443 nm for VIIRS demonstrated good performance in variable water areas (El-Habashi et al., 2016, 2017, 2019). Specifically, based on field measurements and matchups with satellite data, it has been shown that the NN Chl-a algorithm is valuable for the detection of Karenia brevis (KB) algal blooms near the West Florida coast (El-Habashi et al., 2016, 2017). The algorithm performs similarly to the standard OCx algorithms in the open ocean and coastal waters for Chl-a < 10 mg/m3 (El-Habashi et al., 2019), but usually cannot detect accurately for Chl-a > 10-15 mg/m3. A near-infrared (NIR)/red Chl-a algorithm applied to the bands available on MEdium Resolution Imaging Spectrometer (MERIS) and OLCI sensors performs well at Chl-a > 5 mg/m3 in the field (Stumpf and Tyler, 1988; Gitelson, 1992; Moses et al., 2009; Gilerson et al., 2010; Smith et al., 2018; Neil et al., 2020). Unfortunately, applying the NIR/red algorithm to VIIRS is impossible, since it lacks a 709 nm band. A special AC has been developed by the NOAA’s National Centers for Coastal Ocean Science (NCCOS) group for OLCI and has been applied to top-of-atmosphere reflectance corrected for molecular scattering (Wynne et al., 2018). Thus, an accurate estimation of high Chl-a values remains elusive from VIIRS and even from other multi-spectral sensors with a richer set of bands.

In addition to M1-M5 bands in the visible, VIIRS sensors have an imaging band I1 which integrates radiances from 600 to 680 nm, centered around 640 nm with an almost rectangular spectral transmission function. Utilization of this band on VIIRS opens additional possibilities. This 640 nm band covers Rrs features related to the increase of specific phytoplankton absorption from small values at 600 nm to high at 675 nm and thus can be sensitive to high Chl-a. This band as 638_ag (aggregated to 750 m spatial resolution as all M reflective bands) on SNPP VIIRS and as 642_ag on NOAA-20 was added to the images using the Multi-Sensor Level-1 to Level-2 (MSL12) data processing system (Wang and Jiang, 2018) and distributed through the NOAA CoastWatch (https://coastwatch.noaa.gov/).

NN and Machine learning algorithms are based on the training of large datasets of synthetic, field, or satellite data and have recently been developed to estimate Chl-a and other water parameters on the global and regional scales (Hieronymi et al., 2017; Pahlevan et al., 2020; Liu and Wang, 2022; Werther et al., 2022; Cao et al., 2024). Their performance also depends on the applied atmospheric correction (Hieronymi et al., 2017).

The Chesapeake Bay and Long Island Sound (LIS) are large US estuaries on the US East Coast, where Chl-a needs to be monitored synoptically due to the often-occurring algal blooms and hypoxia events (Aurin et al., 2010; Wolny et al., 2020; Wynne et al., 2022). They are highly variable environments. Algal blooms are patchy and small-scale changes in Chl-a occur rapidly, making synoptic measurements essential to resolve phytoplankton biomass (Anderson and Taylor, 2001; Harding et al., 2005). While well-established monitoring programs, such as the Chesapeake Bay Program, Save the Sound, and state-lead monitoring provide routine monthly sampling at select stations, daily synoptic satellite Chl-a covering the entire estuary provide a better estimate of biomass and capture transient blooms, often missed by routine sampling.

Multiple studies characterized well water optical properties in these estuaries from field measurements and satellite observations (Stumpf and Pennock, 1989; Magnuson et al., 2004; Tzortziou et al., 2006; Aurin et al., 2010; Shi and Wang, 2013; Zheng et al., 2015; Turner et al., 2022; Menendez and Tzortziou, 2024), atmospheric correction algorithms have been assessed (Windle et al., 2022; Sherman et al., 2023; Cao and Tzortziou, 2024) and algorithms for the retrieval of Chl-a were developed (Gitelson et al., 2007; Le et al., 2013; Freitas and Dierssen, 2019; Sherman et al., 2023) for the specific sensors in these waters beyond standard OC3 and OC4 algorithms (O'Reilly et al., 1998, 2019).

The goal of this work is to extend the previously developed VIIRS NN-Chl-a algorithm for higher Chl-a by including the I1 imaging band data (600-680 nm) on VIIRS, investigate different processing schemes for the optimal use of the NIR/red (red edge) algorithm (Gilerson et al., 2010) on OLCI and develop a field validated combined OLCI-VIIRS products to improve detection and surveillance of algal blooms in complex estuarine waters such as the Chesapeake Bay and Long Island Sound. A more reliable estimation of Chl-a over the range seen along the U.S. East Coast is expected to enhance satellite coverage to improve ecological models, fisheries applications, and provide early and reliable detection of various blooms to support coastal managers in aiding aquaculture activities and protecting public health.

OLCI passes the US East Coast around 10 am EST and VIIRS around 1:30 pm EST. Data from several sensors increase coverage, however, the benefits are beyond simple statistics because bloom conditions can change in several hours with changes in tide conditions and biological processes. Multiple observations per day were the main incentive for the launch of GOCI sensors, and the development of geostationary GLIMR and Geo-XO sensors (Schaeffer et al., 2023). The product described in this paper creates a capability that would allow an approximation of the multi-scene capability offered by the geostationary satellites.

In Section 2, the bio-optical model is discussed, which is used for the generation of a large dataset for NN training and testing, different NN approaches are evaluated, and the development of the NN Chl-a algorithm for VIIRS based on M3-M5 reflectance bands and I1 imaging band is described. In Section 3, validation of the NN algorithm on field and satellite data is provided together with the comparison of VIIRS NN and OLCI RE10 algorithms for a broad range of conditions with different OLCI atmospheric correction processing schemes, and expansion of the NN-OLCI product to LIS, validation on field data. A discussion and conclusions are in Section 4.




2 Materials and methods



2.1 Field data

Field data, which were used in bio-optical modeling, comparisons of modeled and field Chl-a and other parameters, included data from several Chesapeake Bay cruises. A very comprehensive dataset was acquired by the CCNY-NOAA group in August 2013 at 43 stations, which included Chl-a, inherent optical properties (IOPs) and reflectance spectra. Attenuation and absorption of water and CDOM spectra were measured by the ac-s instrument; backscattering at 5 wavelengths was measured by the bb-9 instrument, both included in the WETLABS (Philomath, OR) package. At each station, upwelling radiance Lu(λ,0-) was measured using a fiber bundle placed just beneath the water surface and connected to a GER spectroradiometer (SpectraVista, NY). The downwelling radiance above the surface Ld(λ,0+) was measured by pointing the same probe bundle onto a Spectralon plate and the downwelling irradiance was determined as Ed(λ,0+) = A·π·Ld(λ,0+), where A = 0.99 is the reflectance factor of the Spectralon plate (Labsphere, NH), constant for the spectrum in the range of wavelengths from 400 to 800 nm. The underwater remote sensing reflectance Rrs- is then calculated as Lu(λ,0-)/Ed(λ,0-) sr-1, which was adjusted for the propagation through the water-air interface to calculate above surface Rrs. Chl-a from the samples that were collected during the field campaign were determined according to NASA protocol for fluorometric Chl-a determination (Ocean Optics Protocols, 2003).

Capturing the timing and location of a bloom is difficult, and often missing in routine monitoring datasets. An opportunistic sampling event occurred on May 18, 2021, during a high biomass (reaching up to 50 million cells/L) bloom of Prorocentrum minimum. Rrs and water samples for Chl-a were collected at 5 stations in the Upper Bay. Chl-a concentrations were measured in the range of 73–161 mg/m3 and coincided in time with VIIRS and OLCI overpasses. Additional Rrs spectra and Chl-a were acquired in the Chesapeake Bay sporadically from 2014–2016, capturing a range of Chl-a of 9–48 mg/m3. In all these measurements, Rrs were determined from below water HyperOCR depth profiles.

There was also a large dataset of NCCOS Rrs measurements but without corresponding Chl-a. All four Rrs datasets are shown below in Figure 1 in the discussion of the bio-optical model. Ranges of many parameters, necessary for the model and absorption spectra were taken from the previous Chesapeake Bay cruises (Magnuson et al., 2004) and NASA bio-Optical Marine Algorithm Dataset (NOMAD) database (Werdell and Bailey, 2005). Finally, Chl-a data from the Chesapeake Bay program (https://www.chesapeakebay.net/) at multiple stations were used for the validation of the satellite and in-situ data, where most of Chl-a fell below 20 mg/m3.

[image: Six graphs display reflectance spectra and chlorophyll-a concentration data from various studies between 2011 and 2021. Panels (a) to (f) show data with varying chlorophyll-a concentrations, suspended particulate matter, and absorption coefficients at a wavelength of 443 nanometers. Each graph demonstrates peaks at different wavelengths, representing different studies or locations over the years. The values for chlorophyll-a, suspended particulate matter, and absorption coefficients are noted for comparisons.]
Figure 1 | Available field Rrs datasets (A–D) and examples of simulated datasets (E) with main water parameters; based specific phytoplankton absorption [image: The expression shows a superscripted variable a, subscripted with "ph," and a superscripted asterisk, followed by the Greek letter lambda in parentheses.]  (Magnuson et al., 2004) used in the model (F). Unshaded parameters are measured (A, C, D) or simulated (E). Shaded parameters are estimated from different algorithms.

Concurrent water samples to extract Chl-a and hyperspectral Rrs were collected throughout LIS in 2018–2022 in collaboration with the Connecticut Department of Environmental Protection (CTDEEP) (Turner et al., 2022; Sherman et al., 2023). Additional data were collected from small boats. Hyperspectral Rrs were measured using a HR512-I spectroradiometer (SpectraVista, NY).




2.2 Satellite data and processing schemes



2.2.1 VIIRS data

The Level-2 science-quality data for SNPP VIIRS and near-real-time (NRT) for NOAA-20 VIIRS with the MSL12 processing were obtained from the NOAA CoastWatch site, featuring a pixel resolution of 750 meters at the nadir. This dataset included normalized water-leaving radiance spectra nLw(λ), which were converted to remote sensing reflectance, Rrs(λ), across visible wavelengths at 410, 443, 486, 551, 638, and 671 nm on SNPP VIIRS, and 411, 445, 489, 556, 642, and 667 nm on NOAA-20 VIIRS, and Level-2 quality flags. Flag exclusion criteria were applied to pixels meeting any of the following conditions: land, cloud, sea ice, atmospheric correction failure, stray light (except for LISCO), bad navigation quality, high or moderate glint, viewing angles exceeding 60°, and solar zenith angles exceeding 70°. Selection of files required at least > 50% valid pixels in a given set, i.e., to be free of flagged conditions. Additionally, pixels with negative water-leaving radiance were excluded from averaging. In matchups of satellite to in-situ data from 1 pixel closest to in-situ measurements was considered and a 3×3-pixel grid box (2250 m × 2250 m) centered at the AERONET-OC site for the comparison with AERONET-OC data (Hlaing et al., 2013; Gilerson et al., 2022). The average Rrs(λ) and standard deviation (STD) between pixels, along with their geometric and radiometric properties, were recorded. The bidirectional reflectance distribution function (BRDF) have been applied to the MSL12-derived VIIRS ocean color data as well as to OLCI data with MSL12 processing (Gordon, 2005; Wang, 2006; IOCCG, 2010).




2.2.2 OLCI data

The OLCI S3A and S3B Level-2 full-resolution data with 300-meter spatial resolution per pixel (EUMETSAT, 2021; Mikelsons et al., 2022) with the Operational Baseline Collection-3 (OBC-3) processing (Zibordi et al., 2022) were acquired from the NOAA CoastWatch website (https://coastwatch.noaa.gov/cwn/index.html), focusing on the Chesapeake Bay area and Long Island Sound. Each Level-2 file encompasses various geophysical products related to the atmosphere and ocean, including aerosol optical thickness, Angstrom exponent at 865 nm, water-leaving reflectance at 413, 443, 490, 560, 665, 681, and 709 nm, sensor zenith angle, solar zenith angle, and quality flags. The remote sensing reflectance, Rrs (λ), is computed by dividing the reflectance spectra by π.

OLCI Level-2 operational water reflectance products do not include BRDF correction. This omission is due to historical usage patterns, with primary interest focusing on coastal and inland waters where the standard open-ocean BRDF approach is not applicable. Mikelsons et al. (2022) showed that there are some significant BRDF effects, both on the surface (Gordon, 2005; Wang, 2006) and in water BRDFs (IOCCG, 2010), over open oceans. However, because there are no established BRDF correction algorithms for a wide range of coastal waters considered in this work, BRDF correction was not applied.

Pixels flagged under any of the following conditions were excluded: invalid flag, land, cloud (including ambiguous and marginal), coastline, solar zenith angle exceeding 70°, saturated flag, moderate or high glint, whitecaps, and failed atmospheric correction. It is important to note that this flag set differs slightly from the set recommended by EUMETSAT for OLCI (EUMETSAT, 2022). A file was selected if at least 50% of valid pixels in the set were free of flags. As for VIIRS, a comparison with measured in-situ Chl-a was carried out for 1 closest pixel and for comparison with AERONET-OC 7×7 (2100 m × 2100 m) pixel box was considered.

Rrs uncertainties from OLCI in the blue part of the spectra in EUMETSAT atmospheric correction processing are higher than those from VIIRS, especially in coastal waters (Zibordi et al., 2022; Mikelsons et al., 2022; Gilerson et al., 2023). NOAA NCCOS considered a special atmospheric correction (Wynne et al., 2018) using SeaDAS and the subtraction of the Rayleigh component from the TOA radiance. Later, OLCI TOA data were processed using NOAA MSL12 and NASA l2gen algorithm. All these processing schemes were considered with a focus on Rrs(λ) at the red/NIR bands necessary to apply the RE10 algorithm for the detection of algal blooms.





2.3 AERONET-OC data

Remote sensing reflectance (Rrs) for VIIRS and OLCI satellite sensors were assessed through comparisons with SeaPRISM instrument (CIMEL Electronique, France) data at the Chesapeake Bay and Long Island Sound (LISCO) stations, where SeaPRISM radiometers are deployed on offshore fixed platforms and are part of AERONET-OC network (Zibordi et al., 2009, 2021). Normalized water-leaving radiances, nLw(λ), following AERONET-OC protocols and incorporating BRDF correction based on open ocean approaches (Zibordi et al., 2009, 2021), were acquired from the AERONET-OC website for the designated sites. These radiances were transformed into remote sensing reflectance at specific wavelengths. The Long Island Sound Coastal Observatory (LISCO) site (Harmel et al., 2011) upgraded its sensor head in August 2021 to match OLCI sensors with bands at 412, 443, 490, 510, 560, 620, 667, 681, and 709 nm, for detailed comparisons with OLCI data.

The ocean color data employed in this analysis were derived from version 3 level 1.5 data, which underwent cloud screening and quality control measures to ensure data accuracy. All satellite-to-in situ matchups were conducted within a ±2-hour window around the satellite overpass time (Zibordi et al., 2009, 2021).




2.4 Bio-optical model

To develop the NN algorithm, datasets, which connect Chl-a, IOPs and Rrs(λ), water reflectance spectra were simulated based on the bio-optical model (Gilerson and Huot, 2017) with Rrs(λ) including the sum of elastic Rrse(λ) component and fluorescence component Rrsf(λ); the latter was included because it is a part of the reflectance detected by the broad I1 600-680 nm band. Rrs(λ) spectra were simulated with 1 nm resolution in the range of 400–750 nm. The maximum of the peak of the fluorescence emission was assumed at 685 nm, fluorescence quantum yield was assumed 1%; the spectral shape of fluorescence was modeled as a Gaussian spectral profile centered at 685 nm, having a full width at half maximum (FWHM) of 25 nm (Mobley, 1994; Gower et al., 2004).

Above water elastic Rrse(λ) was calculated following Lee et al. (2002):

[image: Mathematical equation depicting the reflectance ratio \( R_f(\lambda) = 0.52 \times \frac{R_T(\lambda)}{1 - 1.7R_T(\lambda)} \), labeled as equation \( (1) \).]

where [image: Mathematical notation showing the letter "R" with subscripts "rs", indicating a specific element or component within a matrix or tensor.] (λ) is the remote sensing reflectance due to elastic scattering just below the surface, which is calculated as:

[image: The image contains a mathematical equation displaying \(R_f(\lambda) = g_1u(\lambda)^2 + g_2u(\lambda)\), labeled as equation (2).]

[image: Mathematical equation showing \(d(\lambda)\) equals \(b_{\text{b}}(\lambda)\) divided by the sum of \(a(\lambda)\) and \(b_{\text{b}}(\lambda)\), labeled as equation (3).]

where a(λ) (m-1) and bb(λ) (m-1) are the total absorption and backscattering coefficient spectra, respectively. Broadly used empirically derived parameters (Lee et al., 2009) g1 = 0.125 and g2 = 0.089, which work well for moderate open ocean and coastal waters were replaced with g1 = 0.23 and g2 = 0.089 equivalent to the relationship based on our previous studies for a broader range of water parameters (Gilerson et al., 2007, 2015).

The total spectral absorption coefficient, [image: The image shows a mathematical function notation, specifically "a" with a variable in parentheses, represented by the Greek letter lambda, indicating a parameter or variable dependency.] , is modeled as

[image: Mathematical equation showing the total absorption coefficient \(a(\lambda)\) as the sum of individual coefficients: \(a_{w}(\lambda)\), \(a_{ph}(\lambda)\), \(a_{g}(\lambda)\), and \(a_{NAP}(\lambda)\), labeled as Equation 4.]

where the water absorption spectrum [image: Mathematical notation showing the function \(a_w(\lambda)\), where \(a_w\) is a function of the variable \(\lambda\).]  was obtained from (Pope and Fry, 1997).

In coastal waters, [image: The expression "a subscript p l n (four hundred forty-three)" is shown.] , [image: The image shows a mathematical expression: \( a_g(443) \).]  and [image: The image shows the mathematical expression "a subscript NAP (443)" in italicized font.]  typically have some correlation (even often weak) with each other (IOCCG, 2006). Based on the data from the NOMAD Chesapeake Bay field campaigns (Gilerson et al., 2015) and [image: Mathematical notation depicting \( a_{ph}^* (443) \).]  spectra in the Upper Chesapeake Bay (Magnuson et al., 2004) the following relationships at 443 nm were used in the model:

[image: Equation displaying a relationship for determining chlorophyll-a concentration: \( \rho_{w}(443) = a_{ph}(443)Chl-a = 0.031Chl-a^{-0.12}Chl-a = 0.031Chl-a^{0.88} \) for \( Chl-a < 60 \) milligrams per cubic meter.]

[image: Equation labeled (5b) shows the relationship \(q_{\text{ph}}(443) = \tilde{a}_{\text{ph}}(443)\text{Chl-a} = 0.019\text{Chl-a}\) for \(\text{Chl-a} > 60 \, \text{mg/m}^3\).]

[image: Equation showing that the absorption at a wavelength of 443 nanometers is equal to 1.14 times the absorption at a reference wavelength of 443 nanometers.]

[image: Equation displayed shows a mathematical formula: \( a_{\text{NAP}}(443) = 1.32 \times 0.04 \text{Chl}^{-0.65} \) with the number seven in parentheses, possibly indicating it is the seventh equation in a series.]

According to Equation 5, [image: Mathematical expression displaying \( a_{ph}^{*} (443) \).]  gradually decreases with Chl-a and remains constant after 60 mg/m3. [image: The image shows the mathematical expression \( a_{g}(443) \).]  mostly followed [image: Mathematical expression showing "a subscript ph of (443)".]  and [image: The expression shows "a" with the subscript "NAP" followed by the number 443 in parentheses.]  increases with Chl-a, but less fast than Chl-a itself.

Chl-a were randomly distributed between 0.5 and 200 mg/m3. The spectral phytoplankton absorption coefficient was obtained by multiplying the Chl-a by a specific absorption coefficient ([image: Mathematical notation showing \( a_{\text{ph}}^{\ast}(\lambda) \).] , m2 mg-1),

[image: The formula shown is \( a_{\phi} (\lambda) = Chl-a \times a_{\phi}^* (\lambda) \). It is labeled as equation 8.]

The choice of [image: Mathematical expression showing "a subscript ph superscript asterisk, with lambda in parentheses."]  strongly influences the corresponding remote sensing reflectance and the emission of fluorescence and was modeled as the specific phytoplankton absorption coefficient in the Upper Chesapeake Bay (Magnuson et al., 2004), shown in Figure 1F with a gradual decrease with increasing Chl-a consistent with Equation 5.

To simulate natural variability, [image: Mathematical expression showing a subscript "ph" with a superscript asterisk, parenthesis enclosing the number four hundred forty-three.]  were multiplied by a random number drawn from a normal distribution ([image: The expression "N(μ, σ²)" represents a normal distribution with mean μ and variance σ².] ) with a mean μ=1 and a variance [image: The Greek letter sigma (σ) followed by the numeral two as a superscript, representing the concept of variance in statistics.] =0.04: [image: Mathematical expression showing a random variable \( X_1 \) distributed normally with a mean of 1 and a variance of 0.04.] . In a similar manner, [image: The expression "a sub g of 443" written in mathematical notation.]  and [image: The equation displays "a_sub_NAP(443)".]  in Equations 6 and 7 were multiplied by [image: Random variable \(X_2\) is distributed normally with a mean of 1 and variance of 0.09.] . The ranges of variability here and below were based primarily on the published values from IOCCG (2006), NOMAD and the authors’ data for the Chesapeake Bay (Gilerson et al., 2015).

The spectral absorption coefficients of both CDOM and NAP were modeled as having an exponentially decreasing shape with wavelength and referenced to 443 nm (Bukata et al., 1995; Stramski et al., 2001):

[image: Mathematical expression showing an equation. It reads: \( a_g(\lambda) = a_g(443) e^{-\xi(\lambda - 443)} \), marked as equation number 9.]

[image: The image contains a mathematical equation: \( a_{NAP}(\lambda) = a_{NAP}(443)e^{-S_{NAP}(\lambda - 443)} \), labeled as equation (10).]

[image: It seems there might have been a mistake. Could you please upload the image or provide a URL? Additionally, you can include a caption for more context.]  was modeled as a normal distribution [image: Mathematical expression depicting 0.017 times a normal distribution with a mean of 1 and a variance of 0.02 squared.]  and [image: Text in a stylized font reads "S" with "NAP" in a smaller subscript, creating the term "S_subscript NAP."]  as [image: Mathematical expression depicting a normal distribution: \(0.010 N(1, 0.01^2)\), indicating a normal distribution with a mean of \(1\) and a variance of \(0.01^2\), scaled by \(0.010\).] . Equation 7 was also used to determine the concentration of NAP, [NAP] (g m-3):

[image: An equation is shown: NAP equals \( a_{\text{NAP}}(443) / a_{\text{NAP}}^* (443) \), labeled as equation (11).]

where [image: Mathematical expression displaying "a" with an asterisk above it, subscript "NAP" with value 443 in parentheses.]  (m2 g-1) is the mass-specific absorption coefficient of NAP at 443 nm, which was simulated as a uniformly distributed random number [image: The equation displays an inequality: 0.03 is less than or equal to a-star sub NAP at 443, which is less than or equal to 0.05.]  (m2 g-1). The [NAP] was typically in the range of 0–30 g m-3.

The total scattering coefficient ([image: The image shows the mathematical expression \( b(\lambda) \), where \( b \) is a function dependent on the variable \(\lambda\).] , m-1) was simulated as a sum of three components:

[image: Equation (12) shows \( b(\lambda) = b_w(\lambda) + b_{ph}(\lambda) + b_{NAP}(\lambda) \), representing a mathematical expression with components \( b_w \), \( b_{ph} \), and \( b_{NAP} \) as functions of wavelength \( \lambda \).]

Scattering by NAP was modeled using a power law function (Stramski et al., 2001; Twardowski et al., 2001) as follows:

[image: The equation presented is \( b_{\text{NAP}}(\lambda) = b_{\text{NAP}}(550) \left(\frac{550}{\lambda}\right)^{\eta} \), labeled as equation (13).]

[image: The image shows a mathematical equation: \( b_{\text{NAP}}(550) = b^*_{\text{NAP}}(550) [\text{NAP}] \), labeled as equation (14).]

where [image: The formula depicts the absorption coefficient \( b_{\text{NAP}}^*(550) = 0.5N(1, 0.04) \).]  (m2 g-1) is the mass-specific scattering of non-algal particles at 550 nm, and [image: The formula shows gamma sub two equals zero point eight times N, with parameters one and zero point zero zero four nine.] .

The scattering by phytoplankton was calculated as the difference between their attenuation and absorption coefficients (Voss, 1992; Roesler and Boss, 2003):

[image: Equation depicting \(\varphi_{\mathrm{ph}}(\lambda) = c_{\varphi}(\lambda) - a_{\varphi}(\lambda)\), labeled as equation (15).]

The attenuation coefficient itself was modeled as a power law function (Voss, 1992),

[image: Equation showing spectral radiant flux efficiency, represented as \( c_{\phi}(\lambda) = c_{\phi}(550)(\frac{550}{\lambda})^{n} \), followed by the number sixteen in parentheses.] 

where [image: Equation displaying \( c_{ph}(550) = 0.3 \times Chl\,a^{0.57} \).]  and [image: The mathematical expression displays gamma subscript one equals 0.8.] .

In the simulations, the backscattering coefficient ([image: Mathematical notation depicting the function \( b_{b}(\lambda) \), where the variable is represented by the Greek letter lambda.] , m-1) was modeled as the sum of the contributing components,

[image: Mathematical equation illustrating light absorption: \(b_b(\lambda)\) equals \(b_{bw}(\lambda)\) plus \(b_{bc}b_{bp}(\lambda)\) plus \(b_{b\_NAP}b_{NAP}(\lambda)\), labeled as equation seventeen.]

where [image: Formula containing \( b_{bw}(\lambda) \), representing a variable or function dependent on the wavelength, lambda.]  is obtained according to Morel, 1974 and [image: Mathematical expression shows a vector notation with the symbol "b" in subscript, labeled "b plus."]  and [image: The image shows the mathematical notation: a lowercase letter b with a tilde accent, subscript "b," and subscript "NAP."]  are backscattering ratios for phytoplankton and non-algal particles assumed to be independent of the wavelength (Twardowski et al., 2001; Sydor and Arnone, 1997). Typical values were used as [image: Mathematical expression showing b subscript b, p subscript h, left parenthesis, lambda, right parenthesis equals 0.006.]  and [image: Equation showing \( \bar{b}_{\text{b\_NAP}}(\lambda) = 0.02 \), where the term involves optical backscattering not attributed to phytoplankton, indicative of a constant value across a wavelength \( \lambda \).] .

120000 different conditions were simulated using this model with 70% used in generation and 30% in testing and validation.

As was discussed above, several field Rrs datasets were available for analysis together with (or without) some measurements of water parameters. Four Rrs sets are shown in Figure 1 with corresponding water parameters; some of these parameters (shown in grey) were not measured directly but estimated using available algorithms. Examples of simulated Rrs spectra are also shown in this figure. It should be noted that there was a relatively small flexibility in the selection of parameters described above, which produce spectra similar to the ones in the bloom areas with typical high CDOM and corresponding low Rrs in the blue, spectral features in green-red and a very strong peak around 700 nm comparable with the peak in the green.

In the model development, Rrs(λ) spectra were supposed to be similar not only to the field spectra in Figure 1, but there were also supposed to be consistent with the good performance of blue-green algorithms for Chl-a retrievals. This should be true at least in the waters with low to moderate Chl-a and RE10 NIR/red bands algorithm for a broad range of waters and Chl-a concentrations, which were observed previously for the Chesapeake Bay (Gilerson et al., 2015).

The ranges of water parameters in the Chesapeake Bay are Chl-a = 0.06–165 mg/m3, CDOM absorption at 443 nm ag(443) = 0.015–2.0 m-1, absorption of non-algal particles aNAP(443) = 0.001–3.0 m-1, scattering at 443 nm b(443) = 0.3–40.3 m-1 with the lowest value typically in the Lower Bay and the highest in the Upper Bay (Magnuson et al., 2004). For LIS Chl-a = 1–25 mg/m3, ag(440) = 0.012–0.5 m-1, aNAP(440) = 0.02–0.42 m-1, particulate backscattering at 650 nm bbp = 0.005–0.06 m-1 with the lowest value in the eastern part of the Sound and the highest in the western part (Aurin et al., 2010). In the model Chl-a values were randomly distributed between 0.5 and 200 mg/m3, ag(443) were mostly in the range of 0–3 m-1 with decreasing quantities till 6.5 m-1 and aNAP(443) = 0–2.5 m-1.

Several metrics were used in the evaluation of Chl-a algorithms performance which includes a coefficient of determination R2, root mean square error (RMSE), relative error e = RMSE/mean as well as recently suggested metrics (Seegers et al., 2018) mean absolute error

[image: Mathematical formula for mean absolute error (MAE): MAE equals ten raised to the power of the sum from i equals one to n of the absolute difference between the base ten logarithms of observed data M sub i and predicted data Q sub i, divided by n.]

and bias

[image: Formula for calculating bias: bias equals ten raised to the power of the sum from i equals 1 to n of the logarithm base 10 of M sub i minus the logarithm base 10 of Q sub i, all divided by n.]

It should be noted that in some figures Chl-a values are shown in the logarithmic scale, while RMSE and e were calculated based on the linear scale.




2.5 NN algorithm development, analysis of the optimized structure and validation

In continuation of the approach used by (El-Habashi et al., 2016), their simple one-hidden layer multilayer perceptron (MLP) structure was first applied to a newly developed synthetic dataset, to produce a minimum benchmark against which to improve with the introduction of the VIIRS imaging I1 band to complement the 486, 551 and 671 nm band inputs as well as with modifications to the neural network itself. Variables aph(443), ag(443), ad(443) and bb(443) were kept as outputs. Chl-a was determined also as an independent output parameter. Performance results are visible in Table 1. The introduction of the imaging I1 band immediately provided a large performance boost on all four output parameters. However, changes in the neural network structure with the introduction of more neurons in the single hidden layer and the introduction of Rectified Linear Units (ReLU) as the activation function produced a negligible change in the network performance. Similarly, the introduction of a second hidden layer also produced a negligible change in the network performance, indicating that the simpler neural network utilized in previous studies is already capable of capturing the relationships between inputs and outputs well.

Table 1 | Performance summary in R2 of the neural networks tested on the synthetic dataset, original (final) bio-optical model.


[image: Table comparing different neural network configurations. Columns: Description, Network Structure, Activation, aₚₕ(443), aₐ(443), a_d(443), b_b(443). Rows: Original MLP, I1 band, More neurons, 2 hidden layers. Values are given with some in parentheses.]
In original tests, the bio-optical model was slightly different from the one described above (specific phytoplankton absorption consisted of the micro- and picoplankton absorption with a weighting factor from Ciotti and Bricaud, 2006). In the final version, R2 coefficients were higher as shown in Table 1 in parentheses. Figure 2 contrasts the performance of the NNs in the 3-band and 4-band versions against the expected values for aph(443), ag(443), ad(443), and bb(443) as measured during the CCNY 2013 cruise in the Chesapeake Bay. In all cases, including the VIIRS imaging I1 band noticeably improves the retrieval quality. In these tests, Chl-a were determined from aph(443). When Chl-a were used directly as one of the retrieval parameters, R2 for Chl-a became 0.984.

[image: Eight scatter plots compare predicted versus expected values for different models using three and four bands. Metrics like R-squared, RMSE, bias, and MAE are shown, with each plot containing data points clustered around a central line indicating perfect prediction.]
Figure 2 | Results of a and bb retrievals in m-1 using NN with 3 bands (top) and 4 bands (bottom) based on field data from CCNY 2013 cruise.

If large datasets of Chl-a and Rrs are available for relevant water conditions, the training can be carried out directly to retrieve Chl-a and other water parameters from Rrs spectra (Hieronymi et al., 2017; Pahlevan et al., 2020). While only 70 points of the field data were available for the Chesapeake Bay, the training gave results quite similar to the ones from the bio-optical modeling, however, some additional tuning was still required, and this option was not further explored.





3 Results



3.1 Preliminary studies



3.1.1 Performance of different Chl-a algorithms

A Satlantic HyperSAS (Halifax, Canada) system was installed from 2009 to 2014 at the LISCO site (Harmel et al., 2011) together with the SeaPRISM instrument on top of a retractable tower at approximately 12 m above the water surface. Three spectrometers observed downwelling irradiance Ed, sky radiance Ls, and total radiance Lt in the wavelength range of 305–905 nm with 180 equally spaced channels. HyperSAS data were processed by the 3C model (Groetsch et al., 2017, 2020) to minimize the impact of the sky reflectance from the windy surface and to produce reliable Rrs data. Several algorithms to determine Chl-a were applied to analyze water conditions in the area of LISCO during the year of 2013, which included conditions of algal blooms. Algorithms included standard 3 bands OC3V algorithm (based on 443, 486 and 551 nm), 6 bands OC6P algorithm (O'Reilly and Werdell, 2019), NN algorithm (El-Habashi et al., 2019), and NIR/red (red edge) (Gilerson et al., 2010), further referred to as RE10, based on Rrs(709)/Rrs(665) ratio. The latter algorithm proved to perform well in a very broad range of Chl-a > 5 mg/m3 and other water components (Smith et al., 2018; Pahlevan et al., 2022). All algorithms except RE10 performed similarly at Chl-a < 10 mg/m3 and substantially underestimated Chl-a in bloom conditions in 2013, where only RE10 indicated Chl-a up to 40 mg/m3.




3.1.2 Rrs uncertainties

It has been well known for a long time that main Rrs uncertainties over coastal waters occur at the blue bands 412 and 443 nm (IOCCG, 2019), which motivated the development of other algorithms avoiding the 443 nm band on VIIRS sensors (Ioannou et al., 2014; Gilerson et al., 2015; El-Habashi et al., 2016) and NIR/red algorithms on MERIS and OLCI sensors, which have 709 nm band (Gitelson, 1992; Moses et al., 2009; Gilerson et al., 2010). While main uncertainties in the blue were usually attributed to inaccurate aerosol models in the atmospheric correction process (IOCCG, 2019), a recent analysis based on the decomposition of Rrs uncertainties spectra showed that some uncertainties may be associated with Rayleigh-type components and thus might be related to small variability (about 1.5%) of the Rayleigh radiance (Gilerson et al., 2022, 2023) or Rayleigh noise (Malinowski et al., 2024). It was also shown that OLCI uncertainties in coastal waters in EUMETSAT processing are about 50% higher than uncertainties for VIIRS in the blue (Mikelsons et al., 2022; Zibordi et al., 2022; Gilerson et al., 2023) due to the different atmospheric correction schemes (Mikelsons et al., 2022) with NOAA MSL12 OLCI processing having Rrs uncertainties about the same as for VIIRS. Further, NASA OLCI processing also showed the same level of uncertainties as those from VIIRS and NOAA MSL12 OLCI. These effects are additionally demonstrated in Figure 3, where matchups are shown for VIIRS, OLCI EUMETSAT, and OLCI MSL12 data processing at the LISCO AERONET-OC site.

[image: Multiple scatter plot graphs compare VIIRS-SNPP and AERONET, and S2A and AERONET readings at various wavelengths, labeled from (a) to (c). Each section shows individual plots, highlighting bias, mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient (R²) for different wavelengths in distinguishing colors. Larger plots in each section illustrate overall trends with combined data points, showing statistical measures. Sections (a), (b), and (c) focus on VIIRS-SNPP, S2A, and another S2A dataset respectively, for comparative analysis.]
Figure 3 | Satellite and AERONET-OC matchups at the LISCO site for the matching wavelengths available on the SeaPRISM and on the sensor: (A) SNPP VIIRS, (B) S3A OLCI with EUMETSAT (OBC-3), and (C) S3A OLCI with NOAA MSL12 data processing.

High uncertainties can be clearly seen at the 443 nm band for VIIRS with a much more stable 490 nm band. Results are similar in OLCI MSL12 data processing. In EUMETSAT data processing, all bands below 560 nm show high uncertainties. Uncertainties at 665 nm and 709 nm are also high but these Rrs are related to low Chl-a < 10 mg/m3 conditions in LIS, they are not of the main interest for the application of the NIR/red algorithm, which works reliably mostly for higher Chl-a. At the Chesapeake Bay AERONET-OC station with waters clearer around the AERONET-OC station than at the LISCO site, correlations were higher for OLCI (not shown).




3.1.3 Evaluation of the performance of Chl-a algorithms in algal bloom conditions

Blooms often occur near salinity fronts in the Upper Bay and Potomac River. Satellite imagery for the Chesapeake Bay with bloom conditions in the Upper Bay, processed with OC3V for VIIRS, with RE10 using EUMETSAT OLCI imagery with default and NCCOS atmospheric corrections together with the Chl-a distributions received with an additional band ratio algorithm. Chl-a in the bloom areas from different algorithms were 27–140 mg/m3 for the Upper Bay and 30–200 mg/m3 for the Potomac River. These data had to be reconciled between different satellite sensors and algorithms to develop a combined VIIRS-OLCI product for bloom detection.

At the beginning, Chl-a were estimated in the bloom areas in the Chesapeake Bay and in the Potomac River for May 13, 2020, using four different algorithms, including the standard three bands OC algorithm for VIIRS OC3V, the band ratio VIIRS algorithm with I1 band (chlC) (Gilerson et al., 2021) described below in Section 3.1.4, OLCI RE10 algorithm with standard OLCI AC and with NCCOS AC (Wynne et al., 2018). Two bloom areas have been identified: in the Upper Bay and in the Potomac River. While the shapes of the bloom areas on satellite images looked similar, it was found that OC3V had the lowest Chl-a values around 30 mg/m3 and RE10 = 50 – 140 mg/m3 in the Upper Bay and above 200 mg/m3 in the Potomac River with chlC values were in the middle of these ranges. The focus of this work was a more detailed evaluation of these algorithms and the newly developed NN algorithm in various bloom conditions.




3.1.4 Band ratio algorithm with I1 band

The first tests (Gilerson et al., 2021) proved the utility of I1 band in detecting higher concentrations of Chl-a values. Because of the complexity of water IOPs spectra in the I1 range, including variability of CDOM and mineral concentrations in various areas, it was clear that the algorithm eventually needs to be implemented in a NN format. But, it appeared useful to evaluate a multi-band algorithm for the estimation of Chl-a in a wide range of water conditions. The algorithm was developed using available band ratios, which include I1 band. A proper band combination was determined by tests on the synthetic dataset discussed above.

Application of the first version of the algorithm with I1 band, which was calibrated on the field data showed a strong dependence of the estimated Chl-a on the concentration of suspended particulate matter (SPM) with sediment concentrations estimated from (Nechad et al., 2010) based on Rrs at 671 nm. In the next iteration, the algorithm was corrected for the impact of SPM concentration. It was also found that the algorithm often underestimates Chl-a at Chl-a < 10–15 mg/m3 and it was therefore combined with the standard OC3V algorithm at Chl-a ≤ 15 mg/m3.

The algorithm was tuned using MATLAB curve fitting toolbox on 43 Rrs-Chl-a combinations from the CCNY 2013 cruise and then further on field data from M. Ondrusek’s measurements in 2014-2021 (see Figures 4D and F) with a total of 70 points. It was implemented with the final result as chlC:

[image: Scatter plot grid illustrating chlorophyll-a prediction performance using field data. Panels a-f show predicted vs. expected values for different models and parameters, including statistical metrics like R², RMSE, bias, and MAE. Each panel uses seventy data points and presents distinct evaluation metrics.]
Figure 4 | Test of algorithms on the field data: (A) 3 bands NN; (B) 4 bands NN; (C) OC3 VIIRS; (D) chlC vs in-situ Chl-a; (E) RE10 vs in-situ Chl-a, (F) chlC vs RE10.

[image: Equation showing SPM equals 384.11 multiplied by pi subscript R subscript f of 671 divided by 1 minus pi subscript R subscript f of 671 in parentheses multiplied by 0.1747, plus 1.44.]

[image: Formula for calculating the ratio is shown as: \((R_{r}(486) + R_{s}(551)) / R_{s}(638) \times SPM^{0.3}\), labeled as equation 21.]

[image: Formula for calculating ChlC, given as \(ChlC = k \times 4604 \times ratio^{-4.252}\), labeled as equation 22.]

[image: A mathematical expression states that "chlC equals ChlC if ChlC is greater than ten milligrams per cubic meter," labeled as equation 23a.]

[image: Equation displaying dCHC equals OCSV if CHC is less than or equal to ten milligrams per cubic meter, annotated as equation 23b.]

Coefficient k in Equation 22 is a tuning parameter, which can be further changed. In this version, coefficients are different from the original version (Gilerson et al., 2021), when the algorithm was tuned only on the data from the CCNY 2013 cruise. The performance of the algorithm with k =1.0 is demonstrated below in Figures 4D, F.

[image: Three scatter plots compare predicted versus expected chlorophyll-a concentrations using different models: 3 bands NN, 4 bands NN, and OC3 VIIRS. Each plot includes a line of best fit with statistical metrics. The models show varying degrees of correlation, with R-squared values of 0.568, 0.687, and 0.826, respectively. The root mean square errors are 12.213, 9.052, and 6.847, indicating improved prediction accuracy from left to right. Dashed lines represent confidence intervals, and numerical biases and mean absolute errors are provided.]
Figure 5 | Comparison of satellite and in-situ data for the Chesapeake Bay. Expected and predicted Chl-a as determined by the one-hidden layer MLP in both its 3-band and 4-band versions and OC3 VIIRS algorithms.





3.2 Validation of VIIRS algorithms on satellite and field data

A total of 70 matchups were included in the tests (43 from CCNY 2013, 22 from Ondrusek 2014-16, and 5 from Ondrusek 2021 measurements) for the validation of NN3, NN4 and VIIRS standard OC3V algorithms on the field data collected across the Chesapeake Bay. Results are shown in Figures 4A–C. The performance of chlC and RE10 on the same field dataset is shown in Figures 4D–F. Among the first three algorithms in Figure 4 the NN4 algorithm shows better performance, although it is worse than the performance of chlC, where all points were used in the tuning and RE10, for which 709 nm band is not available on VIIRS. In Figures 4D–F chlC is plotted against field Chl-a and against RE10; RE10 against Chl-a is also shown for the comparison. High correlations exist for all comparisons in a broad range of conditions in the Chesapeake Bay, but these relationships are not always valid for other types of waters. RE10 was also considered as OC3 VIIRS if RE10 <10 mg/m3.

RE10 was used with the expression (24), which matches the original version in Gilerson et al., 2010, but does not produce complex numbers at low Chl-a

[image: Formula labeled as equation twenty-four: \( RE_{10} = 46.0676 \times (R_8(709) / R_7(665))^{1.2760} - 22.6012 \).]

Further tests were performed on SNPP VIIRS data 2012–2022 (NOAA MSL12 data processing) compared with in-situ data from the Chesapeake Bay program (https://www.chesapeakebay.net) and there were 2021 measurements at 5 locations. Results are shown in Figure 5. The stray light flag was on, HIGLINT and MODGLINT flags were suspended since they did not change the algorithm performance significantly. Most of the points are in the Chl-a range below 20 mg/m3. However, all algorithms, including the OC3 algorithm, retrieve high Chl-a values reasonably well; good performance of OC3 is most likely due to the specific combination of the water parameters in bloom areas, which is not typical for coastal waters with high Chl-a. The time window between satellite and in-situ measurements was ±4 hours. Based on our studies in the Chesapeake Bay, stricter time limits would reduce the number of points but would not improve statistics.

Here and in the figures below the solid grey line marks the 1:1 relationship, while the upper and lower dashed lines mark the limit of Y = X*2 and Y = X/2, respectively, where Y are predicted values and X are expected values.




3.3 Comparison of Chl-a retrievals by VIIRS and OLCI algorithms

Performance of the RE10 algorithm for OLCI sensors was evaluated with NCCOS, EUMETSAT, MSL12 and NASA atmospheric correction by the comparison with VIIRS Chl-a in bloom areas with a very broad range Chl-a from 2 mg/m3 to over 100 mg/m3. Because the RE10 algorithm does not provide accurate retrievals for low Chl-a and the OC4 algorithm for OLCI was found not to be always reliable in the waters of the Chesapeake Bay, comparisons were carried out using the RE10M algorithm, where RE10 was replaced with OC3V Chl-a for Chl-a < 6 mg/m3. It was found that the most consistent matchups between VIIRS and OLCI retrievals come from EUMETSAT and MSL12 processing. Examples of such matchups for the Upper Bay and Potomac River bloom areas are shown in Figure 6. NN4 versus RE10M shows better results than other algorithms. For low Chl-a < 6 mg/m3, OC3V and chlC matchups with RE10M are along 1:1 line because OC3V retrievals are used in all these cases. Since VIIRS algorithms matchups vs RE10M in EUMETSAT and MSL12 matchups produce similar results, both processing approaches from EUMETSAT and MSL12 were recommended for the combined OLCI product. It should be noted that, according to Mikelsons et al. (2022), EUMETSAT processing is more sensitive to the sun glint, which was shown in our comparisons.

[image: Scatter plots comparing predicted and observed chlorophyll-a concentrations for Upper Bay and Potomac River. Two rows for each location show data from EUMETSAT (OBC-3) and MSI.12, with different models: 3 and 4 bands NN, OC3 VIRS, and chlaIC. The plots include statistical metrics like R-squared, RMSE, BIAS, and MAE, indicating the model performance. Axes are logarithmically scaled.]
Figure 6 | Matchups between VIIRS and OLCI Chl-a retrievals in bloom areas.




3.4 Combined products, and satellite imagery

Based on the whole study, NN4 VIIRS and OLCI RE10 algorithms were recommended for the combined VIIRS-OLCI product. RE10 was used in combination with OC4 (with OC4 if RE10< 10 mg/m3 and OC4 <10 mg/m3 or OC4 < 10 mg/m3 and clear water conditions based on the diffuse attenuation coefficient threshold Kd(490) < 0.25 m-1). Examples of the imagery from both algorithms are shown in Figure 7 for May 18, 2021, when field measurements were also available at 5 locations with the coordinates shown in Table 2, together with measured Chl-a at these points and retrieved from OC3, chlC, NN3, and NN4 algorithms from VIIRS and RE10 from OLCI. Note that part of the area on the OLCI image is masked because of clouds. As before, a slight overestimation of Chl-a is seen in both images in very turbid waters in the Upper Bay, Delaware Bay, and some tributaries. Adjustment coefficients for chlC, NN3, and NN4 are also given in Table 2. Relative spectral response (RSR) functions were not taken into account in the NN algorithms development to simplify tuning of the algorithms based on the bio-optical model only and comparison with field measurements; for the same reason RSR for the I1 band was considered as RSR = 1.0 for the whole range of wavelengths 600–680 nm. The actual RSR for this band is close to RSR ≈ 0.9, which matches the adjustment coefficient for NN4. The NN3 and chlC algorithms provided similar images but with some adjustments of coefficients, which were less stable than those from the NN4 algorithm. Other examples of images from VIIRS and OLCI for bloom conditions on May 21, 2021, and non-bloom conditions on April 4, 2024, are shown in Figure 8.

[image: Three maps show chlorophyll-a concentrations in Chesapeake Bay during different years. Colored gradients indicate varying levels, from low (blue) to high (red) concentrations. A vertical color bar on the right displays chlorophyll-a levels in milligrams per cubic meter.]
Figure 7 | OC3 VIIRS (left panel), NN4 VIIRS (middle panel) and OLCI (right panel) Chl-a retrievals in bloom areas on May 18, 2021.

Table 2 | Chl-a measurements and retrieval comparison for May 18, 2021.


[image: Table displaying data with columns for Lat/Lon (West), Ondrusek, SNPP VIIRS, OLCI, and N20 VIIRS. Latitude/Longitude pairs are listed alongside various measurement readings, including OC3V, chlC, NN3, NN4, RE10, and others. Some entries are marked as NaN.]
[image: Six-panel chart showing chlorophyll-a concentration in Chesapeake Bay. The top row compares Chl-a estimations via OC3 VIIRS, NN4 VIIRS, and another method. The bottom row shows similar data. Concentration scale ranges from 0.1 mg/m³ (purple) to 135 mg/m³ (red).]
Figure 8 | OC3 VIIRS, NN4 VIIRS and OLCI Chl-a retrievals with bloom conditions on May 21, 2021 (top row) and non-bloom conditions on April 15, 2024 (bottom row).

The distribution of absorption and backscattering coefficients at 443 nm retrieved from NN4 together with the SPM concentration based on Equation 20 for May 18, 2021, are shown in Figure 9, providing additional information about water parameters in the Chesapeake Bay and specifically in the bloom areas, which helps to understand bloom conditions in more details. As can be expected, ad(443), bb(443) and SPM have similar patterns since they are mostly proportional to the concentrations of non-algal particles, aph(443) and ag(443) are high in the bloom areas.

[image: Five heat maps display different datasets over a coastal region. Each map uses a color gradient from blue to red, indicating varying intensities. Top maps are labeled "aph443" and "ag443," middle maps "ad443" and "bb443," and the bottom map displays "SPM." The color bars indicate numerical scales for data interpretation.]
Figure 9 | Distributions of absorption, backscattering coefficients (m-1), in the Chesapeake Bay from NN4 VIIRS algorithm, SPM (g/m3) from (NeChad et al., 2010).

The NN4 algorithm was developed based on SNPP VIIRS bands, VIIRS on NOAA-20 has several slightly different bands as was shown above, specifically for the NN algorithm there are M3–M5 bands centered at 489, 556, and 667 nm, and I1 band centered at 642 nm and NN4 algorithm required additional tuning. While the effects of spectral differences between VIIRS-SNPP and VIIRS-NOAA-20 at the blue bands are negligible (e.g., within ~0.1% at M2 band), there are large differences at M4 (green) and M5 (red) bands (e.g., ~16% at M4 band for open oceans) (Wang et al., 2020). Over coastal regions, there are important effects of M4 band difference between VIIRS-SNPP and VIIRS-NOAA-20, because Rrs from NOAA-20 (at 556 nm) is usually much closer to the Rrs peak than that from SNPP (at 551 nm). The same NN4 algorithm was used for VIIRS NOAA-20 bands but with the coefficient 0.65. Images for OC3V and NN4 for NOAA-20 VIIRS are shown in Figure 10 and Chl-a are added to Table 2. Chl-a from OC3V and NN4 in the same scale looks similar to SNPP Chl-a distributions. For OC3V Chl-a values at in-situ measured points match less accurately with a strong overestimation at two points and were not processed at three other points. NN4 for NOAA-20 is less accurate than for SNPP but can be also recommended for the joint product.

[image: Side-by-side maps comparing chlorophyll concentration near a coastline. The left map titled "Chl VIIRS OC3" and the right map "Chl NN 4 bands" both use a color scale from purple (low) to red (high) to indicate chlorophyll levels, ranging from 0.1 to 135 milligrams per cubic meter.]
Figure 10 | Comparison of NOAA-20 VIIRS images retrieved with OC3V and NN4 algorithms.




3.5 Applications of the developed algorithms to the waters in Long Island Sound

The performance of the NN4 algorithm was validated on the field data in Long Island Sound. Field data were acquired during cruises in 2018–2023 and included radiometric measurements and Chl-a (Sherman et al., 2023). Results for different algorithms are shown in Figure 11. Most of Chl-a values are below 25 mg/m3, the range that was not the main focus of the NN4 algorithm. The best performing algorithm is OC4 followed by OC3 and NN4. However, all these algorithms perform quite well for Chl-a > 2 mg/m3 and much worse below this value. The NN4 algorithm was used with a coefficient of 0.6, while it was 0.9 in the Chesapeake Bay for SNPP VIIRS. The difference in coefficients might be explained by differences in [image: Mathematical expression showing \(a_{ph}^{*}(\lambda)\).]  with shifts in phytoplankton species (including size and Chl-a packaging), between the time periods in LIS and in the Chesapeake Bay. Optical differences in the water may also influence the bio-optical model. More details about this difference should be further studied.

[image: Four scatter plots compare predicted versus expected chlorophyll-a concentrations using different models. Each plot includes a 1:1 line, data points, and statistics such as \(R^2\), RMSE, bias, and MAE. The models analyzed are "3 bands NN," "4 bands NN," "OC3 VIIRS," and "OC4." Plots indicate varying prediction accuracies, with "OC4" showing the highest \(R^2\) and lowest RMSE, suggesting better prediction performance.]
Figure 11 | Performance of algorithms on Rrs and Chl-a data in LIS.

There were few matchups with VIIRS for field data used in Figure 11. Sherman et al. (2023) had OLCI retrievals corrected with the Polymer atmospheric correction algorithm and a bio-optical model for moderately turbid waters (Steinmetz et al., 2011), which resulted in good agreement with field observation across the Sound. The performance of algorithms was evaluated at the LISCO site for the period of August 2021–May 2022. The SeaPRISM instrument has bands similar to OLCI bands, and there were no direct field Chl-a measurements. Chl-a were estimated by the OC4 algorithm and compared with those from the NN4 and OC3 algorithms with VIIRS bands, with Rrs determined from the SeaPRISM bands using an adjustment based on the relationship between bands from the synthetic dataset. The NN4 and OC3 algorithms perform very consistently in the whole range of Chl-a from 2–25 mg/m3 as shown in Figure 12. However, there were no in-situ Chl-a data to confirm these retrievals. Images of Chl-a in LIS based on OC3 and NN4 retrievals for VIIRS and OC4 for OLCI are shown in Figure 13 and are very consistent with each other generally confirming the good performance of algorithms in Figure 12. Both NN4 and OC3 algorithms for VIIRS can be recommended for the joint product with OLCI OC4.

[image: Three scatter plots compare predictive performance for chlorophyll-a concentration using different methods. The left plot uses a three-band neural network with \(R^2 = 0.38\) and RMSE of 2.978. The middle plot uses a four-band neural network with \(R^2 = 0.628\) and RMSE of 2.073. The right plot uses the OC3 VIIRS method with \(R^2 = 0.863\) and RMSE of 1.229. All plots show predicted versus observed values, with varying biases and mean absolute errors indicated in each panel.]
Figure 12 | Performance of several VIIRS algorithms in comparison with OC4 based on the LISCO radiometric data.

[image: Three side-by-side maps show chlorophyll-a concentration in ocean waters near coastlines. Each map uses different algorithms: OC3 VIIRS, NN4 VIIRS, and OC4 OLCI. Colors range from dark blue (low concentration) to red (high concentration), with a scale from 0.1 to 135 units on the right.]
Figure 13 | OC3, NN4 Chl-a from VIIRS and OC4 from OLCI in LIS on April 16, 2024.





4 Discussion and conclusions

Satellite data and imagery from SNPP and NOAA-20 VIIRS sensors and Sentinel-3A and 3B OLCI sensors were analyzed together with field data to develop the combined product for the estimation of Chl-a in two large US estuaries: the Chesapeake Bay and Long Island Sound to improve detection of algal blooms. The bio-optical model was developed to satisfy a broad range of conditions in waters from low Chl-a and corresponding absorption and backscattering coefficients in fresher reaches of the estuaries, with a switch for higher values in areas with high Chl-a and phytoplankton bloom conditions. The neural network (NN4) algorithm was developed for the retrieval of Chl-a and other water parameters from VIIRS in the Chesapeake Bay, which reasonably matches in-situ data. All VIIRS imagery used was from NOAA processing using MSL12 atmospheric correction. Based on the long-time knowledge about the vulnerability of the Rrs at 412 and 443 nm bands over coastal turbid waters, these bands were excluded from potential algorithms. The NN4 algorithm utilizes SNPP VIIRS four bands centered at 486, 551, 638, and 671 nm, which includes data from the imaging I1 600-680 nm band centered at 638 nm. It is demonstrated that the inclusion of this band data significantly improved retrieval of Chl-a and other water parameters in comparison with the previous versions of similar algorithms, which utilized only three 486, 551, and 671 nm bands. Analysis of several atmospheric correction and processing approaches from EUMETSAT (OBC-3), NOAA (MSL12), and NASA (L2gen) for OLCI for the application of the NIR/red RE10 Chl-a algorithm that requires accurate Rrs values at 665 and 709 nm bands showed that both MSL12 and OBC-3 data can be recommended for the combined product.

The NN4 and RE10 algorithms were analyzed in various water types demonstrating consistency during algal bloom conditions. These algorithms were selected for the multi-sensor product to support algal bloom detection in the Chesapeake Bay. The OC4 algorithm replaces RE10 for Chl-a < 10 mg/m3, so VIIRS and OLCI Chl-a retrievals are consistent for the broad range of conditions in the Chesapeake Bay. The Rrs from the bio-optical model were re-trained to develop a NN4 algorithm for NOAA-20 VIIRS, which showed mostly Chl-a similar to those from the NN4 for SNPP VIIRS. In LIS during the whole period of study, there were no in-situ Chl-a above 30 mg/m3. The NN4, OC3 and OC4 algorithms showed approximately the same performance and can be recommended for the estimation of Chl-a in LIS with the switch to RE10 for OLCI in case of higher Chl-a.

Further examination is recommended to determine if the combined NN4, OLCI with a switch to OC4 under low Chl-a conditions is accurate and provides the best estimate of Chl-a when switching water classes from coastal to offshore. This ability to provide consistent Chl-a from coastal to offshore, with improved cloud clearing capability through a multi-sensor approach, would support improved fisheries modeling capability, improved bloom monitoring, and the development of an improved long-time-series data of Chl-a to determine changes in primary productivity under changing climate conditions and in response to managing nutrient loading into coastal systems.
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Mesoscale eddies are the most important mesoscale phenomena in the oceans, and determining how to predict their spatial and temporal characteristics is a very challenging task. Most previous studies focused on the accuracy of full-domain prediction and ignored the accuracy of single-eddy prediction. To solve this problem, in this paper, we first apply multi-year sea surface height data to produce a spatiotemporal sequence sample dataset with a bidirectional prediction mechanism. Then, we introduce an adversarial generative mechanism through stacked spatiotemporal prediction blocks and rely on the strong generative ability of the generative adversarial network models to construct an adversarial bidirectional long- and short-term memory model (AB-LSTM). Next, the mesoscale eddy mixing algorithm is used to extract the matching eddy pair features from the real and predicted data, and several evaluation metrics are used to conduct error analysis. The experiments yield the following results. Prediction sequence days 1–7: the root mean square error (RMSE) values are 1.97–7.70 cm, the structural similarity index (SSIM) values are >0.61, the accuracy is >54.6%, and the eddy centre distance error is 6.34 km. The result is 11.61 km, which is consistent with many spatiotemporal prediction models and passes the generalisation test in many different sea areas. Finally, we carry out single eddy prediction on the basis of the evaluation of the entire prediction of the sea surface height and also obtain a more satisfactory experimental effect. This method has a better prediction ability than the original spatiotemporal method and has a certain reference significance for mesoscale eddy spatiotemporal feature prediction technology and subsequent underwater reconstruction.
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1 Introduction

Mesoscale eddies (MEs) are a special phenomenon that widely occurs in the oceans. Their spatial scales are usually tens and hundreds of kilometres, and their lifetimes vary from tens of days to hundreds of days (Chelton et al., 2011). MEs are widely distributed in the global oceans and have become an important topic in research on ocean dynamics. According to the rotational direction of the eddy, mesoscale eddies can be divided into two categories: cold eddies (cyclonic eddies) and warm eddies (anticyclonic eddies). In the Northern Hemisphere, cyclonic eddies (CEs) rotate counterclockwise and anticyclonic eddies (AEs) rotate clockwise. In the Southern Hemisphere, these two types of eddies rotate in opposite directions (Zhang et al., 2013). These types of eddies are widely distributed in the global oceans. This rotation not only affects the fluid motion inside the eddy but also has a significant impact on the ocean’s thermohaline properties. Mesoscale eddies have an all-encompassing effect on the marine environment. By adjusting local water masses, they cause a huge difference in the thermohaline properties inside and outside of their area. This difference not only affects the pattern of ocean circulation but also influences the exchange of materials and energy transfer in the ocean (Dong et al., 2014). In addition, mesoscale eddies have a significant impact on marine environment variability and are important drivers of dynamic changes in marine ecosystems. The characteristics of mesoscale eddies are particularly evident in specific oceanic regions, such as the Kuroshio Extension (KE) region. Detailed statistics presented by Itoh et al. (Itoh and Yasuda, 2010) indicate that the northern side of the KE is dominated by a large number of anticyclonic eddies, and these eddies usually have long life cycles. However, on the southern side of the KE and near the flow axis, there are more CEs, and these eddies usually have stronger intensities. Further analysis has revealed that more than 85% of the anticyclonic eddies have high-salt warm cores, whereas only 15% of the anticyclonic eddies have cold cores. These features not only reveal the unique nature of the mesoscale eddies in the KE region but also provide important clues for understanding dynamic ocean processes in this region.

With the launch of ocean observation satellites, abundant large-scale, long time-series, and high-precision ocean remote sensing observation data have been obtained and processed, among which long time-series observation data accumulated through many years of observations have been widely used in analyses and forecasts of oceanic phenomena (Oka and Qiu, 2012; Qiu and Chen, 2013). Liu et al. (Liu et al., 2012) conducted a multi-year statistical analysis of the number, life cycle, amplitude, and radius of mesoscale eddies in the North West (NW) Pacific Ocean. Wang et al. (Wang et al., 2016) found that the interannual characteristics of the KE region may be affected by the instability of the main flow axis of the KE under the effect of the topography, and the results of their experiment were also affected by the instability of the main flow axis of the Kuroshio under the effect of the topography. Qiu et al. (Qiu and Chen, 2005) used the linear vorticity dynamics method to back-project the high- and low-pressure signals and reached the conclusion that the changes in the circulation characteristics of the KE are associated with the high- and low-pressure anomalies in the eastern North Pacific Ocean. In terms of prediction of the characteristics of mesoscale eddies, roughly classified, most scholars have adopted two approaches. The first is to make predictions using ocean numerical prediction models. Shriver et al. (Shriver et al., 2007) successfully improved the resolution of the prediction system by combining the Naval Layered Ocean Model (NLOM) with the optimal interpolation method, which in turn enhances the accuracy of the ME prediction. Trott et al. (Trott et al., 2023) used the hybrid coordinate ocean model (HYCOM) to simulate future sea-level anomaly (SLA) data and then adopted an SLA-based identification technique to identify MEs and predict their future distribution. The second method is to make predictions that are purely data-driven. This type of method can be subdivided into the direct prediction of ME features (often multi-feature one-dimensional sequence prediction). For example, Ashkezari et al. (Ashkezari et al., 2016) successfully predicted ME lifetimes under stable evolutionary conditions by employing an extreme random forest regression method. Wang et al. (Wang et al., 2020) combined extreme random trees and a long short-term memory (LSTM) network based on mesoscale eddy trajectory and feature datasets to predict several key features, including the latitude and longitude coordinates. Wang et al. (Wang et al., 2021) incorporated meso-historical latitude and longitude sequence data, sea surface height data, sea surface temperature data, and other additional information using a gated recurrent unit (GRU) network combined with a temporal attention mechanism to improve the prediction accuracy of the future centre coordinates of the ME. Ge et al. (Ge et al., 2023) developed a neural network for predicting the trajectory of an ME in compliance with the physical constraints, providing a more reliable and comprehensible method for the prediction of the trajectories of MEs. Another prediction method is to reconstruct a large sea surface height field (2-D) and accordingly to use a mesoscale eddy identification algorithm to obtain mesoscale eddy features in the predicted spatiotemporal sequence. For example, Ma et al. (Ma et al., 2019) obtained an accuracy higher than that of HYCOM for predicting the 7-day sea surface height field using a more mature convolutional LSTM. Nian et al. (Nian et al., 2021) proposed a neural network equipped with a Memory In Memory (MIM) model and a spatial attention module and obtained higher experimental results than those of many spatiotemporal prediction methods. However, according to the current state of research, the limitations of numerical modelling methods in terms of prediction performance should not be ignored. These limitations mainly stem from the nonlinear nature of MEs and the sensitivity of numerical models to initial conditions. Furthermore, these models mainly focus on the prediction of the marine environment rather than directly targeting the ME, so it is difficult to achieve a direct prediction. However, the pure data-driven approach has a lower demand for the initial field, and the current sea surface height observation data have the natural advantages of being large, continuous, and accurate, making the data sufficient to support the model computation. This also lays a solid foundation for the pure data-driven deep learning network prediction model.

The spatial and temporal smoothing properties of mesoscale eddy trajectory and feature prediction enable continuous observations with a high accuracy, which often causes the spatial and temporal properties between sequence units to have a nonlinear correlation. However, previous studies tended to focus on the predecessor sequence to the successor sequence prediction, which inevitably leads to the propagation of the errors generated by the predecessor prediction resulting in backward cumulative propagation. Although Nian et al. (Nian et al., 2021) utilized corresponding improvement measures for the non-stationary state and error accumulation problems in sea surface height anomaly (SLA) prediction, including optimising the memory and planned sampling methods, and achieved lower prediction errors, the error accumulation effect still occurred and was significant. This was due to the fact that the planned sampling method is only used to correct the weights via jump verification during the learning process, thus turning the continuous error into the accumulation of the stage error, rather than considering the entire range of errors in the prediction sequence as a whole. In addition, since most long-lived mesoscale eddies (more than 7 days) have strong continuity and physical interpretability of the sea surface height field with and without eddy features, we can make predictions from past measurements and can also make predictions from past measurements in the reverse direction. However, the related work has not been carried out so far. Currently, the models commonly used for spatiotemporal prediction are generally based on stacked recurrent neural network (RNN) models or LSTM models. Thus, the former links the correlation between the temporal and spatial attributes, while the latter is more prominent in solving the challenge of gradient explosion, leading to its wider use compared with the RNN. However, native LSTM models tend to focus more on non-Markovian attributes in the time series rather than spatial feature variations in dealing with long time-series prediction problems. For mesoscale eddy prediction tools that are time-varying and highly dependent on variations in spatial feature attributes (Yunbo Wang et al., 2017), one or the other is important. Second, the mesoscale eddy prediction process is often accompanied by eddy generation and elimination, as well as fusion, and existing prediction tools pay more attention to the description of high-value features rather than those of low-level features, which is acceptable in semantic recognition-related applications, but neither of them can be neglected in mesoscale eddy prediction. To solve the problem of the continuity of the prediction caused by unidirectional inputs and the problem of complex spatiotemporal feature description, in this paper, we propose an adversarial bidirectional LSTM (AB-LSTM) and a set of evaluation criteria for mesoscale eddy prediction, which obtained a good comparison effect compared with various spatio-temporal prediction models and numerical ocean prediction models.




2 Data and methods



2.1 Data



2.1.1 AVISO satellite altimeter data

The SLA data used in this paper were obtained from a gridded product provided by the Satellite Ocean Archive Data Centre (AVISO) of the Centre national d’études spatiales (CNES). This dataset combines altimetry data from several satellites, such as Jason-1, Topex/Poseidon, Envisat, GFO, and ERS-1&2, interpolated to a 1/4°×1/4° grid spatial resolution on the Mercator projection. The temporal resolution is interpolated from the original resolution of 7 d to 1 d, the spatial range of the selected data is 25–45°N, 150–170°E, and the time span is from January 1993 to December 2022. These data have been widely used by many scholars (Dong et al., 2014; Duo et al., 2019; Eden and Dietze, 2009), are the most important sample and training data used in this paper, and are also an important indicator for evaluating the quality of the prediction data.




2.1.2 Marine model data

The HYCOM is a data-assimilated hybrid isodensity sigma pressure (generalised) coordinate ocean model (Chassignet et al., 2009, 2007). The subset of HYCOM global sea surface height forecasts hosted in GEE (Google Earth Engine) has been plugged into a 1/12 degree latitude/longitude grid and has been widely used in several previous studies (Metzger et al., 2010; Wallcraft et al., 2007).





2.2 Research methods



2.2.1 Mesoscale eddy identification methods

Since the launch of the T/P satellite on 25 September 1992 and the output of data, the study of ocean mesoscale phenomena using ocean altimetry data has been taking place for more than 30 years. Mesoscale eddy identification algorithms have attracted the attention of several scholars, who have successively proposed physical parameters (Isern-Fontanet et al., 2004), flow field geometry (McWilliams, 2016; Nencioli et al., 2010), and machine vision algorithms (Franz et al., 2018; Xu et al., 2019). Each of the above-described algorithms has its own advantages, and in combination with the reality of this paper, in this paper, we refer to Ma et al (Ma et al., 2024).’s hybrid algorithm that combines flow field geometry and closed contours as the mesoscale eddy identification algorithm. Before carrying out the identification process of the hybrid algorithm, we need to convert the SLA data into the geostrophic flow field, which is calculated as follows:

[image: The image shows two mathematical equations related to fluid dynamics. The first equation is \( u = -\frac{g}{f}\frac{\partial h}{\partial y} \) and the second equation is \( v = \frac{g}{f}\frac{\partial h}{\partial x} \), both labeled as equation (1).] 

where u and v are the latitudinal and longitudinal components of the geostrophic anomalies, respectively, g is gravitational acceleration, f is the Koch parameter, and h is the height of the sea surface anomaly.

The flow field geometry method is based on the geometric characteristics of mesoscale eddies, which are defined as regions with rotating velocity vectors, a centre at the velocity extremum, and symmetrically rotating surrounding vectors. The SLA closure curve method focuses on the detection of sea surface altitude closure curves, which reduces the likelihood of non-closed eddies. To reduce the effect of the subjectivity of the sea surface height difference threshold and to balance the identification effect with the subjective threshold sensitivity, a hybrid algorithm that combines the two methods is used to analyse the sea surface flow field and the SLA data. When the goal is to detect mesoscale eddy pairs with the largest overlapping boundaries, the stable identification of the same eddy using both identification methods is determined by setting generic custom thresholds (intersecting area more than 50% and eddy centre distance of less than 1/12°). The eddy centre of this eddy determined using the flow field geometry method is considered the actual centre (Figure 1).

[image: Topographic map showing contour lines of varying colors from red to blue, indicating temperature or pressure variations across latitudes 30°N to 40°N and longitudes 130°E to 170°E. Red areas indicate higher values, while blue areas indicate lower values.]
Figure 1 | Schematic diagram of mesoscale eddy extraction in KE region utilizing the hybrid recognition algorithm.

In addition, in order to demonstrate the advantages of the recognition effect of the hybrid algorithm, 1000 days were randomly selected from the sample data set (daily sea surface height data within the time span of the data), and the flow field geometry method, closed contour method and hybrid recognition algorithm were respectively adopted for recognition. In addition, most experts and scholars in this field conducted artificial recognition and judged the recognition effect. The recognition accuracy and the proportion that should be recognized but not recognized were evaluated by horizontal comparison. The results are shown in Table 1.

Table 1 | Results of horizontal comparison of recognition effects of various recognition methods.


[image: Table comparing recognition accuracy and failure to recognize percentages across different methods. Methods are flow field geometry, physical parameter, closed profile, and a hybrid. The hybrid method shows the highest recognition accuracy with 88.32% for AE and 80.17% for CE and has a failure to recognize rate of 1.97% for AE and 2.34% for CE. Bold numbers indicate better values. An asterisk notes eddies that should be detected but are not.]



2.2.2 Determination of input frame data resolution

For the identification of a mesoscale eddy, since all the current data-driven mesoscale eddy identification algorithms are based on feature identification of grid point data, the selection of the region and the determination of the data resolution play crucial roles, and too large or too small a resolution will have a great impact on the eddy identification results. Thus, in this paper, to ensure that the steps of the data extraction, model training, metric evaluation, and testing of the generalisation capability are characterised by continuity and referability, we fixed the study area as 25–45°N, 150–170°E. Since the resolution of the original altimetry data is 1/4°×1/4°, i.e., the dimension of the data in this part of the region is 80×80, to retain the details of the original data and facilitate the construction of the model, we interpolate all of the input–output data to 128×128 using the Akima (Akima, 1970) interpolation algorithm.




2.2.3 Evaluation metrics for predicting mesoscale eddy features

In previous mesoscale eddy predictions, most scholars have tended to use the sea surface height forecast error and the mesoscale eddy trajectory prediction as the evaluation metrics and have achieved better experimental results, but these two metrics cannot evaluate the sea surface height prediction in a complete way. Thus, in this subsection, we propose a mesoscale eddy prediction evaluation framework to evaluate the mesoscale eddy prediction metrics in a complete way. It should be noted that the evaluation metrics introduced in this subsection need to be predicated based on the basic information about the eddies obtained using the mesoscale eddy mixing identification algorithm described in Section 2.2.1, except for the root mean square error (RSME) and structural similarity index (SSIM), which is a metric for regional prediction results.

The characteristics of mesoscale vortices in the prediction can be expressed in a variety of ways, and the most important ones that can be obtained from the sea surface information field can be divided into three categories: The first type is the numerical error index of eddy prediction, which is reflected as the RSME index of sea surface height information, which intuitively reflects the overall error level of the predicted results and the real results. The second category is the representation of the number of vortices, because deep learning network is the best solution generated based on probability theory in two-dimensional space-time prediction process, while the application of mesoscale vortices may result in low numerical error and high distortion. For this reason, Num index, [image: The word "Accuracy" is written in italic serif font.]  index and [image: The image displays the word "Dist" in italics.]  index are introduced. These three indexes can directly show whether the number and location of vortices in the prediction sequence can be accurately expressed without losing the target. The third category is the performance of the overall similarity. We use the [image: Text "SSIM" in italicized font on a white background.]  index to show the structural similarity of the whole selection area. This consideration is that not only the prediction level of the eddy itself needs to be reflected, but also the complex interaction field around it needs to be well predicted and expressed.

The first metric is the sea surface height prediction error. We use the two-dimensional [image: The text "RMSE" in italic font, representing the abbreviation for Root Mean Square Error.]  as the standard for this metric:

[image: Root Mean Square Error (RMSE) formula: RMSE is the square root of the sum of squared differences between observed \( O(i, j) \) and predicted \( P_a(i, j) \) values, divided by the product of height \( H \) and width \( W \). The indices \( i \) and \( j \) range from one to \( H \) and one to \( W \), respectively.] 

where H and W are the length and width of the data, respectively, and [image: Lowercase letter "p" with a subscript "a".]  and [image: Letter "O" subscripted with the letter "a".]  are the predicted and original data, respectively.

The second metric is the mesoscale eddy prediction hit rate ([image: The word "Accuracy" is displayed in italic serif font.] ) and mesoscale eddy trajectory error (Dist). We take the distance of the same eddy centre (km) in the eddy identification results corresponding to the real dataset and the prediction dataset as the daily prediction trajectory error, in which the same eddy hit is discriminated by the fact that the area inside the two eddy profiles matches 75% or more of both the prediction results and real data in the same day. Then, we sum and average the matched eddy centre distances on that day to obtain the trajectory error indicator for that day, which is calculated as follows:

[image: Formula for average Euclidean distance: Dist equals one over n times the sum from m equals one to n of the square root of the quantity x sub o of m minus x sub p of m squared plus y sub o of m minus y sub p of m squared.]	

[image: Accuracy equation shown as: Accuracy equals N subscript P divided by N subscript zero, multiplied by one hundred percent. Equation is numbered three.] 

Where n is the total number of identified matching eddies on that day, [image: Text displaying variables \(x_0\) and \(y_0\).]  [image: Mathematical expression showing "x" with subscript "p".]  and [image: The image shows the mathematical notation "y" with a subscript "p".]  are the horizontal and vertical coordinates in the real data identified eddy results, and [image: \(N_p\), which typically represents a mathematical or scientific variable with a subscript 'p'.]  and [image: Subscript notation of the letter "N" with the subscript "0", often used in mathematics or physics to denote an initial value or constant.]  are the number of predicted eddies in the region and the number of real eddies, respectively.

The third metric is the sea surface prediction SSIM, which is one of the indicators used to measure the structural similarity of the data. When we have two datasets x, y, the structural similarity can be defined as follows:

[image: Formula for Structural Similarity Index (SSIM) between images \(x\) and \(y\), showing a fraction. Numerator: \((2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)\); Denominator: \((\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)\).]	

[image: Formulas displaying \(c_1 = (k_1 L)^2\) and \(c_2 = (k_2 L)^2\), labeled as equation (4).] 

where [image: The Greek letter mu with a subscript x.]  is the mean of [image: Variables displaying "x, mu subscript y," with the Greek letter mu symbolizing a statistical mean for the variable y.]  is the mean of y, [image: Symbol representing the variance of x, denoted as sigma squared subscript x.]  is the variance of x, [image: The image shows the mathematical notation for the variance of a variable \( y \), represented as \(\sigma_y^2\).] is the variance of y, and [image: Greek letter sigma with subscript x y.]  is the covariance of x and y. L is the dynamic range of the pixel value, which is set to 100 in this paper, and [image: Lowercase "k" with a subscript "1" in a serif font, often used in mathematical or scientific contexts.]  and [image: Mathematical notation showing the letter "k" with a subscript "2".]  are constants, which are set to 0.01 and 0.03, respectively, in this paper.





2.3 Data cleaning

Both ocean observation data and model prediction data have the advantages of wide coverage and clear grid, but they also often contain uncontrollable abnormal data. Due to the various data sources used in this paper, in order to ensure the quality of the data when forming the deep learning sample dataset, We will perform data cleaning on the data used for training, testing, verification and evaluation in this paper. Drawing on the experience of several atmospheric and oceanic researchers, we used the Mahalanobis denoising method (Eq. 5). First, the sequence data of sea surface height is obtained, and the Mahalanobis Distance ([image: The image shows the mathematical notation "D" with a subscript "M."] ) of each two-dimensional grid point in the sequence is calculated. When [image: The image shows the mathematical notation \(D_M\) with the subscript "M" slightly smaller and positioned lower than the letter "D".]  is greater than three standard deviations of the average distance, the grid point data is considered as “abnormal”; when the number of “abnormal” grid points exceeds 1% of the total grid points, the entire sequence including the two-dimensional grid point data is discarded.

[image: The formula depicts the calculation of the mean, represented by the Greek letter mu, equal to one over n times the sum of x sub i, where i is equal to one through n.]	

[image: Covariance matrix formula: \( S = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T \), where \( S \) is the covariance matrix, \( n \) is the number of observations, \( x_i \) is each observation, \( \mu \) is the mean vector, and \( T \) indicates the transpose.]	

[image: Formula depicting the Mahalanobis distance \(D_M(x_i)\) equals the square root of \((x_i - \mu)^T S^{-1} (x_i - \mu)\), where \(x_i\) represents the vector, \(\mu\) is the mean, and \(S^{-1}\) is the inverse covariance matrix. Equation number five.] 





3 Model



3.1 Spatiotemporal Long Short-Term Memory Model

Suppose we are monitoring a dynamic system in which each measurement is recorded at all locations in a spatial region represented by an [image: The mathematical expression "M times N" using capital letters M and N separated by a multiplication symbol.]  grid. From a spatial point of view, these P measurements observed at any time can be represented by the tensor [image: \( X \in \mathbb{R}^{P \times M \times N} \) indicates that X is a tensor in a three-dimensional real-valued space with dimensions P, M, and N.]  (Liu et al., 2018; Wang et al., 2021). From a temporal point of view, the observations at t time steps form a tensor sequence of [image: Sequence of mathematical variables labeled as X subscript one, X subscript two, X subscript three, X subscript four, and so on, up to X subscript t.] . The spatiotemporal predictive learning problem is to predict the most probable [image: The image shows the text "length minus K" in italics.]  sequence in the future given the two previous length-J sequences, including the current observation:

[image: Mathematical expression displaying a sequence from \( \hat{X}_{t+1} \) to \( \hat{X}_{t+k} \) equals arg max over variables \( X_{t+1} \) to \( X_{t+k} \), given \( X_{1} \) to \( X_{t} \).] 

Sequence prediction has been a popular research topic in the field of machine learning, and LSTM, as an emerging RNN model with long- and short-term memory, has led to a breakthrough in dealing with the solution of long-term-dependent problems. Shi et al. (Shi et al., 2015) creatively used the input-to-state and state-to-state methods to visually extract the inputs using stacked LSTM layers and achieved pioneering research results in this field. However, the current problem is that this model needs to continue learning and predicting from the previous state. This means that the continuity prediction will be based on the previous prediction result, which will lead to the accumulation of error and feature bias. To solve this problem, several scholars have improved this model (Kalchbrenner et al., 2017; Patraucean et al., 2015; Villegas et al., 2017). In this paper, we utilize a spatiotemporal long- and short-term memory model (ST-LSTM) (Wang et al., 2022) as the basis of the generation of the model. Based on the stacking technique of the convolutional LSTM (Conv-LSTM), the model obtains higher experimental results than other models by proposing spatiotemporal memory flow and memory transfer across layers in several prediction results. The model’s architecture is shown in Figure 2.

[image: Diagram depicting a neural network structure with two main sections. The left section illustrates a recurrent unit with inputs \(X_t\) and \(H_{t-1}\), producing outputs \(C_t\), \(M_t\), and \(H_t\) through gates \(I_t\), \(F_t\), \(G_t\), and \(O_t\). The right section shows sequential transformations via weights \(W1\) to \(W4\) leading to output \(H_t\). Arrows indicate data flow and operations.]
Figure 2 | Schematic diagrams of the ST-LSTM model (left) and the stacked sequence monolayer (the dark blue marks are space-time fluid cells different from the original Conv-LSTM).

The formulas are as follows:

[image: The equation shown is \( G_t = \tanh(W_{xG} \cdot X_t + W_{hG} \cdot H_{t-1} + b_G) \).]	

[image: Equation for an input gate in a recurrent neural network: \( I_t = \sigma(W_{xi} \ast X_t + W_{Hi} \ast H_{t-1} + b_i) \).]	

[image: Equation representing the forget gate in an LSTM neural network: \( F_t = \sigma(W_{fX} \times X_t + W_{fH} \times H_{t-1} + b_f) \).]	

[image: The image shows a mathematical equation used in recurrent neural networks: \(C_t = F_t \odot C_{t-1} + I_t \odot G_t\). Here, \(C_t\) represents the cell state, \(F_t\) the forget gate, \(I_t\) the input gate, \(G_t\) the cell candidate, and \(\odot\) denotes element-wise multiplication.]	

[image: Equation showing: \( g_t = \tanh(W_{xg} \cdot X_t + W_{Mg} \cdot M_{t-1} + b_g) \).]	

[image: Equation showing an LSTM input gate formula: \( i_t = \sigma(W_{xi} \ast X_t + W_{Mi} \ast M_{t-1} + b_i) \), where \( \sigma \) is the sigmoid function.]	

[image: The formula \( f_t = \sigma(W_{yf} \ast X_t + W_{Myf} \ast M_{t-1} + b_f) \) represents the forget gate operation in an LSTM cell.]	

[image: Mathematical equation: \( M_t = f_t \odot M_{t-1} + i_t \odot g_t \).]	

[image: Mathematical formula for calculating the output gate in a neural network: \( O_t = \sigma(W_{XO}*X_t + W_{HO}*H_{t-1} + W_{CO}*C_t + W_{MO}*M_t + b_O) \).]	

[image: Mathematical equation showing the expression for \(H_t\), defined as the element-wise product of \(O_t\) and the hyperbolic tangent function applied to \(W_{1 \times t}\) concatenated with \(C_t\) and \(M_t\), enclosed in parentheses, followed by a comma and numbered as equation (7).] 

where σ is the activation function, W corresponds to the process weight of the corner scale, b is the bias term (distinguished by the corner scale), X is the input sequence, C is the output cell, and H is the hidden state. The most important feature of the ST-LSTM model is that the memory cell is divided into two parts, namely, the classical Ct temporal cell and the Mt spatio-temporal cell, and they are distinguished in the level of the data flow. The Ct stream is passed continuously between the same corresponding layers of different stacks according to the classical Conv-LSTM. The Mt stream is first passed layer by layer in the same stack, repeated as the input of the next stack, and finally reduced to the same dimension by a 1×1 convolutional gate and outputted as Ht. This is different from the spatiotemporal memory transfer method of the classical Conv-LSTM to a large extent.




3.2 Generative adversarial network models

The main idea of the basic model of the generative adversarial network (GAN) is to make the two neural networks continuously play the binary extremely large and extremely small game, during which the model gradually learns the real sample distribution. In general, the training is considered complete when the two networks reach a Nash equilibrium in their want confrontation (Goodfellow et al., 2014).

The basic GAN model is shown in Figure 3. The input of the generator network (denoted as G) is a random variable (denoted as z) from the hidden space (denoted as [image: The mathematical notation "p subscript xi" is displayed.] ) and the output of the generator samples, the training goal of which is to improve the similarity between the generator samples and real samples, so that they are indistinguishable from those of the discriminator (denoted as D) network, i.e., to make the distributions of the generator samples (denoted as [image: Lowercase letter "p" followed by a subscript "g".] ) and real samples (denoted as [image: The mathematical notation shows "p" with a subscript "data".] ) as identical as possible. The training objectives of the native GAN network can be summarized as follows: to minimize the distance between [image: The image shows the mathematical symbol \( p_s \), with the letter 'p' in normal font and the letter 's' as a subscript.]  and [image: Italic lowercase letter "p" followed by the subscript "data".]  and to maximize the accuracy of the samples discriminated by D, i.e., the value of [image: Mathematical notation showing "D of x" in italic font, representing a function or operation applied to the variable x.]  tends to be 1 and the value of [image: The mathematical expression "D" of "x prime" is shown.]  tends to be 0. This leads to the basic GAN network objective function expression:

[image: Flowchart illustrating a Generative Adversarial Network (GAN) with components: Real Data Sets, Generator, Generated Data, and Discriminator. Real and generated data are evaluated as "Real or Fake?" The outcome updates the Generator and Discriminator.]
Figure 3 | Schematic diagram of the basic GAN model.

[image: Minimax equation for Generative Adversarial Networks: \(\min_G \max_D \mathbb{E}_{x \sim p_{data}}[\log D(x)] + \mathbb{E}_{z \sim p_z}[\log(1 - D(G(z)))]\).] 




3.3 Adversarial bidirectional long- and short-term memory models

To solve the problems of the LSTM, namely, unidirectional prediction error and continuous accuracy of the spatiotemporal prediction, we embed a 4-layer stacked ST-LSTM model as the generative unit into the adversarial network model as the core of the generator. Then, we divide the generator inputs into forward spatiotemporal sequence inputs and inverse spatiotemporal sequence inputs and control the input streams of the two according to the discriminative results of the discriminators in a training cycle to achieve effective bi-directional training (Figure 4). To increase the learning ability of the overall trend, we train a global discriminator (Iizuka et al., 2017) to discriminate whether the output is true. The purpose of constructing the global discriminator is to strengthen the ability of the discriminator to identify the overall characteristics of the input region and to emphasise the importance of guiding the model to pay more attention to the overall trend of the sea surface data. The global discriminator consists of five consecutive convolutional layers, each of which has a step size of 2. It uses a fully connected layer and a sigmoid output layer to process the input data of size 128 × 128 into a high-dimensional vector, which is then transformed into a continuous and normalised real probability distribution by a fully connected layer and a sigmoid transfer function.

[image: Diagram explaining a data generation process with a sequence of blurred images labeled as "Real Data Sets." The process starts with "Input Data," divided into "p_forward" and "p_backward," and proceeds through multiple steps involving matrices labeled \( M_{t-1}, X_t, H_{t-1}, W_1, W_2, W_3, W_4 \), leading to outputs \( X_{t+1}, M_t \). This feeds into "Generated Data" boxes for \( X'_{\text{forward}} \) and \( X'_{\text{backward}} \). A "Discriminator" determines "Real or Fake" through "Forward" and "Backward" processes, concluding with "Update G & D."]
Figure 4 | Overall schematic diagram of the AB-LSTM model.

In this paper, we use a total of 10,000 days of sea surface altimetry data from 1 January 1993 to 19 May 2020 as the training (first 90%) and validation datasets (second 10%), and the sea surface altimetry data from 20 May 2020 to 20 May 2022 as the model generalisation test datasets (validation and testing sets). We process each of the three datasets into time-series blocks with a length of 10 days (structure 3-4-3: the first number is the length of the forward input sequence, the second number is the length of the target prediction sequence, and the third number is the length of the reverse input sequence, as shown in [image: Mathematical notation featuring the variable \( p \) with the subscript "data".]  in Figure 4), with 3 days of forward prediction input ([image: Italicized text reading "p" followed by "forward".] ) in each block, 7 days (including 3 days of reverse input) of target prediction data (x), and 3 days of reverse prediction input [image: The image displays the text "P backward" in an italic font.] , corresponding to the generation results denoted as [image: Text graphic showing "x forward" in a stylized font.]  and [image: Text displaying "x backward" in a serif font.] . The next batch of inputs in the generator is updated after the discriminator decides whether it is true or false and updates the current batch of generators (ST-LSTM cells) and the discriminator weights. The corresponding objective function is updated to

[image: Mathematical expression for a minimax problem: minimize over G and maximize over D of the sum of three terms. Each term is an expectation with respect to a certain distribution: the first is over the log of D(x), the second over the log of one minus D of G forward, and the third over the log of one minus D of G backward. Labeled as equation nine.]

In the model proposed in this paper, we use the L1+L2 loss function and the Adam optimiser (Kingma and Ba, 2014) for the training, and in the actual training process we pre-train the GAN network and then access the ST-LSTM module. Regarding the setting of the hyperparameters, in general, the learning rate is set within 0.0001–0.1. A learning rate that is too high will make the model training effect poor, while a learning rate that is too low will make the model training convergence slow. Thus, through many adjustments, we determine the learning rate to be 0.0001, the batch is determined to be eight, and the corresponding epoch is appropriately increased to 100,000. If the dataset has a large amount of noise, we should try to minimise [image: Greek letter beta with a subscript one.]  and [image: Greek letter beta subscript two.] . Although the average coefficients converge faster, they are more susceptible to noise. In this paper, we set [image: The Greek letter beta with a subscript one.]  = 0.9 and [image: The Greek letter beta with a subscript two.]  = 0.999. All of the experiments are implemented in Pytorch = 3.10 (Paszke et al., 2019) and trained on an NVIDIA RTX4080. Additionally, it should be emphasized here that the parameter Settings of the Adam optimizer in this paper are determined by many attempts in the experiment process and previous experience of Adam optimizer parameters when applying deep learning models in the Marine field.





4 Model evaluation

In this subsection, first, we discuss the effect of different prediction lengths on prediction accuracy to confirm the optimal prediction range of the proposed model. Then, we conduct a multi-criteria comparison with the two modal datasets and a variety of existing spatiotemporal prediction models. Finally, we test the generalisation ability of the model using the day-by-day prediction history data from HYCOM. It should be noted that all input and output data used in this process are first interpolated to 128 × 128 using the interpolation method described in Section 2.2.2. Based on the conclusion of Ma et al. (Ma et al., 2019), the polarity of the mesoscale eddies has a limited effect on the smoothness, as well as the accuracy of the prediction process, so we do not take the issue of eddy polarity into account during the training process, but we do discuss it in the evaluation process.



4.1 Prediction effect

Figure 5 shows the trend of the training loss after 100,000 iterations. The black solid line in the figure is the real value of the training loss from iteration to iteration, and the red line is the higher-order smoothing curve of the black real loss. It can be seen from Figure 5 that the training loss of the model decreases rapidly during the initial training and stabilises at 10,000 iterations. After a long period of small and slow increase, it continues to decrease slowly after 40,000 iterations and finally converges slowly after 90,000 iterations.

[image: A line graph shows training loss decreasing over 100,000 epochs. The y-axis represents the log base ten of train loss, and the x-axis represents epochs. The black line with fluctuations indicates loss, while a red line represents a smoothed trend. Loss decreases sharply initially, then gradually declines, leveling off towards the end.]
Figure 5 | Plot of training loss versus number of iterations for the AB-LSTM and the AVISO sea surface height dataset. Due to the large span of the original training loss (Y-axis), to better show the trend of the change, we present it in logarithmic form, which results in the absence of some of the magnitude (the original magnitude is in cm), The black line is the original value of the training loss, and the red line is the error smoothing curve after 5-order Fourier fitting).

Figure 6 shows the effect of the prediction experiment for 7 days for different numbers of iterations. Intuitively, the prediction effect is good. As the number of iterations increases, the model prediction effect continues to improve. The effect tends to stabilise at 50,000 iterations, and the subsequent prediction results are not easily distinguished by the human eye. In addition, it can be seen that the prediction sequences for the different numbers of iterations exhibit good continuity of the overall trend, and the mesoscale eddy characteristics are more obvious, except for the test with 5000 iterations. This indicates that the training process is effective. Figure 7 shows the change trends of the RMSE and SSIM metrics for the AB-LSTM for the AVISO sea surface height dataset with increasing iteration numbers. It can be clearly seen that the results shown in Figure 7 are highly consistent with the prediction effect shown in Figure 6. This also shows that the selected metrics can accurately reflect the actual performance of the model in terms of the prediction process.

[image: A grid of black and white pixelated images, mostly uniform with some variations. The third row features darker, high-contrast images outlined by a red box, indicating a possible emphasized section.]
Figure 6 | Schematic representation of the effect of the prediction experiment with different numbers of iterations. The predicted values are shown in the red boxes.

[image: Line graphs displaying SSIM and RMSE values against iterations for different forecasting days. The SSIM plot (top) shows values stabilizing over 80,000 iterations for all forecasts. The RMSE plot (bottom) shows values decreasing rapidly before stabilizing. Forecasts range from one to seven days, each represented by a different color.]
Figure 7 | Plots of RMSE and SSIM metrics versus number of iterations for the AB-LSTM and the AVISO sea surface height dataset.

To discuss the effect of the forward and backward inputs on the model training in the AB-LSTM model, in this subsection we set up control experiment groups A (forward and backward) and B (forward only), randomly select 500 sets of experimental data from the sample dataset, which all have 3-4-3 structures, and make a 7-day prediction. The obtained results are averaged within each group according to the day-by-day prediction results (Table 2).

Table 2 | Quantitative analysis of the effect of the forward and backward input conditions on the prediction.


[image: Table displaying assessment indicators over seven forecasting days. Indicators include RMSE in centimeters, Accuracy in percentage, SSIM, and Distance in kilometers. Two methods, A and B, are compared. RMSE for method A ranges from 1.97 to 7.70, while B ranges from 2.42 to 9.39. Accuracy for A decreases from 90.0% to 54.6%, and for B from 85.7% to 41.3%. SSIM for A ranges from 0.91 to 0.61, and for B from 0.88 to 0.57. Distance for A increases from 6.34 km to 11.61 km, and for B from 6.88 km to 12.96 km.]



4.2 Model comparison validation

In this subsection, to demonstrate the feasibility and the advantages of the model, we compare the AB-LSTM with the HYCOM model forecast and the FC-LSTM (Srivastava et al., 2015), PredRNN (Wang et al., 2022), and Conv-LSTM (Shi et al., 2015) spatiotemporal prediction methods under the 3-4-3 input block conditions described in Section 4.1 and using the evaluation metrics described in Section 2.2.3. It is worth emphasizing that the horizontal comparison verification of the model should be discussed in different scenarios. For mesoscale vortices, the different properties of vortices and the setting of the research area are very important elements for scene division. Therefore, we will reflect the model verification effect under different research areas in the subsequent regional generalization verification. The model generalization test for differentiating AE and CE in a single eddy prediction scenario is also presented.

Since the prediction results of AE and CE are similar, we consider the polarity of the eddy to be less influential on the comparison experiments, so we will not distinguish between them in this subsection. To avoid the high prediction effect caused by the use of the sample dataset and the inability to effectively compare the results of the experiments, we conduct the experiments on 1000 sets of sea-surface height data that are not included in the sample data. Data structure is still 3-4-3, and the metrics are averaged within the groups. We set the prediction area to the KE region of 25–45°N and 150–170°E. The results are shown in Figure 8.

[image: A four-panel line graph comparing six forecasting models over seven days: AB-LSTM (back and forward), AB-LSTM (forward-only), Predrnn, FC-LSTM, Conv-LSTM, and HYCOM. Panel (a) shows Global RMSE in centimeters, increasing over time. Panel (b) displays SSIM, which generally decreases. Panel (c) illustrates accuracy percentage, which declines. Panel (d) shows distance in kilometers, increasing over time.]
Figure 8 | Plots of the (A) RMSE, (B) SSIM, (C) accuracy, and (D) Dist metrics for a 7-day forecast series for multiple forecasting methods and models.

As can be seen from Figure 7, according to all the computational indexes, the AB-LSTM yields better results. The AB-LSTM’s RMSE index increases from 1.97 cm on the first day to 7.70 cm on the seventh day, which is the same trend as the other methods, but the values are significantly lower than those of the other prediction methods. The AB-LSTM yields lower RMSE values than the unidirectional model in the control group, which distinguishes between positive and bidirectional inputs. Regarding the SSIM index, the AB-LSTM method has values similar to several of the prediction methods, except that the numerical prediction is within the range of 0.6–0.9 and only differs from the other prediction methods by about 0.05. This is since several of the deep learning-based spatial-temporal prediction models utilized as the control group in this paper are able to achieve very good results in terms of structural similarity, so it is not possible for this metric to clearly reflect the superiority of the AB-LSTM. The AB-LSTM has a much higher Accuracy, with a hit rate of more than 50% during the prediction sequence (days 1–7). This is 10–20% better than those of the other methods. On average, it achieves a 5% higher Accuracy in the control experiments and can distinguish between forward and reverse inputs. This suggests that the forward and reverse inputs are important for the model in the long mesoscale eddy time series prediction. The AB-LSTM model has a slightly better Dist value. The prediction distance error ranges from 6.34 to 11.61 km, which is generally 1–10 km lower than those of the other prediction methods for the 7-day prediction series. The AB-LSTM model with bidirectional input is more accurate in terms of the prediction results after the fourth day compared with the model with only forward input. After the fourth day, the prediction results of the AB-LSTM model with bi-directional inputs are lower, which suggests that the bi-directional inputs have a positive effect on the model in the long-term prediction of mesoscale eddies. Overall, compared with the traditional numerical prediction models’ results, the spatial and temporal prediction models that use deep learning algorithms have a greater advantage in terms of the overall prediction error and mesoscale eddy-related prediction indexes. For the sample dataset introduced in this paper, according to all the metrics, the AB-LSTM has the best performance, which directly proves the superiority of the AB-LSTM. In addition, by analysing the experimental results of the control experiment group, it was found that the two-way input training of the confrontation has more advantages and positive significance compared with the one-way input.




4.3 Model generalisation test

Model generalisability refers to the model’s ability to adapt to new data, i.e., whether the model can make accurate predictions for data that does not appear in the training set. A model with a strong generalisability can perform well on different datasets, not just on the training set. In summary, generalisability concerns the model’s ability to adapt to unknown situations (Liu and Aitkin, 2008). To explore the generalisability of our model, we experimentally validate the AB-LSTM using data from the same region as the data in the training sample set but that are not included in the training and testing sets. We also test the model on data for other sea areas. In this paper, we take the Oyashino Extension (OE, 35–45°N, 140–150°E) region and the North Pacific Subtropical Countercurrent (STCC, 15–25°N, 130–140°E) as the validation areas. It should be noted that in this subsection, the sea surface height data for the OE and STCC regions are processed into 128×128 grids using the data processing method described in Section 2.2.2, and the data span from January 1993 to 31 December 2022. The experimental data for the KE region, which are not included in the training and testing datasets, span from 1 to 30 October 2023 and are processed in the same manner.

As can be seen from Figure 8, the prediction results of the tested models are slightly poorer than the prediction results presented in Section 4.2, but the overall effects are similar, and all of the models yield more stable and good prediction results. The AB-LSTM is still better than the other models in terms of several metrics. For the prediction results for the three regions, the RMSE index remains within the range of 2.25–9.41 cm, which is slightly higher than the prediction results of 1.97–7.70 cm obtained in Section 4.2. The SSIM indicator remains within the range of 0.52–0.85, which is slightly lower than the range of 0.61–0.90 obtained in Section 4.2. The Accuracy remains within the range of 48.35–84.03%, which is slightly lower than the range of 54.60–90.00% obtained in Section 4.2. The Dist remains within the range of 6.71–12.89 km, which is slightly higher than the range obtained in Section 4.2. The possible reason for this result is that the OE region and STCC region are not within the region of the training set, and there may be motion features that are not fully fitted by the model, which may lead to the result that the AB-LSTM fits the KE region data better and the data for the other two regions slightly worse in terms of the prediction effect. The mesoscale eddy recognition algorithm used in this paper has a better recognition ability, but it still has a slightly worse recognition ability. In addition, it still has the possibility of identification error, and the mesoscale eddies identified from the predicted sea surface height data may have the intermittent appearance or disappearance of error, which would lead to problems in estimating the distance deviation of the centre of the mesoscale eddy and will make the error falsely high.

Based on the prediction results presented in Figure 9, several of the models achieve better prediction results in several sea areas, but the performance of the AB-LSTM is the best, which proves that the AB-LSTM model has an acceptable generalization ability for different sea surface height datasets.

[image: Graphs showing forecasting performance over seven days using different models: AB-LSTM (back and forward), AB-LSTM (forward-only), Predrnn, FC-LSTM, Conv-LSTM, and HYCOM. Metrics include Global RMSE in centimeters, Accuracy in percentage, SSIM, and Distance in kilometers. Three charts labeled (a), (b), and (c) each show the metrics' changes across the forecasting days, illustrating varying performance trends for the models.]
Figure 9 | Generalisation test of the AB-LSTM model using data for the (A) OE region, (B) STCC region, and (C) KE region.




4.4 Single eddy prediction effect

Although regional sea surface prediction can reflect the overall prediction effect better, the prediction effect on single eddies is not fully reflected, so in this subsection, we predict multiple single eddies and use the strength at the centre of the eddy (denoted as the SSH in the centre of the eddy in this paper) and the eddy radius to describe them. Thus, the prediction effect of single eddies will be more clearly reflected in the form of data. Figure 10 shows a schematic representation of the evolution of a typical dipole pair over the course of its evolution.

[image: A series of contour plots showing ground truth and predictions over seven days. Each plot has a color gradient from red to blue, with red indicating higher values. The top row represents the ground truth, and the bottom row represents predictions, labeled 1d to 7d. A grey arrow illustrates the transition from prediction to ground truth.]
Figure 10 | Schematic of the 7-day evolution of a pair of dipoles located in the KE region on 1 September 2017. To make the dipole evolution visually clearer, we converted the sea surface height data into a pseudo-colour map with an intercept area of 28–32°N, 146–150°E.

We randomly select 1000 days of data in the sea surface height sample dataset used in this paper as experimental samples, and then we use the AB-LSTM model to make predictions for a period of 7 days according to the 3-4-3 structure. We use the mesoscale eddy mixing identification algorithm to identify the matched eddy pairs (real vs. predicted). Then, we extract their centre eddy strengths and eddy radii as the control group for the experiments. To avoid the unmatched vortices and matching errors caused by the identification algorithms (described in the previous section) and thus to more effectively reflect the prediction effect, we exclude the matching error terms. Table 3 presents the single eddy prediction errors in the form of within-group averages and the distinction between AEs and CEs.

Table 3 | Quantification of single eddies during the 7-day forecast period.


[image: Table showing assessment indicators for forecasting days. Indicators include amplitude and radius in centimeters and kilometers, measured by AE and CE. Amplitude values range from 1.12 to 7.86. Radius values range from 6.82 to 21.54. Data is listed for days one to seven.]
The Radius metric is the equivalent radius of the identified eddy. As can be seen from Table 4, the AB-LSTM model also achieves relatively good prediction results in single-eddy prediction. In terms of the eddy centre height errors, the AE centre height errors are within the range of 1.12–6.59 cm, and the CE centre height errors are within the range of 1.31–7.86 cm. Overall, both increase as the prediction time increases. However, under the condition of distinguishing between the AEs and CEs, there is not a large difference in the overall errors of the two, which is similar to the conclusion of Wang et al (Wang et al., 2020). In terms of the eddy radius error, it also exhibits an overall prediction result with a trend similar to that of the eddy centre height error, which indicates that the model is more stable in the prediction process. In order to reflect the advantages of the AB-LSTM model in the single-eddy experiment, we conducted experiments according to the same sample collection method, and the results are shown in Table 4.

Table 4 | Quantification of single eddies during the 7-day forecast period (different models and no distinction between AE and CE).


[image: Table showing assessment indicators for amplitude and radius over seven forecasting days. For amplitude in centimeters, AB-LSTM ranges from 1.21 to 7.23, PredRNN from 1.52 to 8.64, Conv-LSTM from 2.99 to 12.21. For radius in kilometers, AB-LSTM ranges from 7.30 to 19.39, PredRNN from 8.15 to 21.10, Conv-LSTM from 12.98 to 26.54.]
From Table 3, AB-LSTM is significantly better than the primary Conv-LSTM in single-eddy prediction results, and the experimental results of the AB-LSTM model are continued by the experimental results in Table 2. It is worth emphasizing that we have obtained the horizontal comparison results among multiple models above, so in the horizontal comparison experiment of single eddy prediction, we only compared the two models with similar performance as the AB-LSTM model.




4.5 Additional experiment

In the first few sections of this chapter, the AB-LSTM model proposed by us has achieved a small advantage in the image numerical evaluation index (SSIM, RMSE), and an even greater advantage in the feature prediction of mesoscale vorticity. However, its performance in the prediction error analysis results on the 7th day still makes us worried: Whether the trend of error change shown by AB-LSTM during the 7-day forecast will lead to more drastic changes over a longer forecast time horizon, making the prediction model worse than other spatio-temporal prediction models over a longer time horizon. Since the data input format we selected in the previous paper is 3-4-3 mode, which is not fully applicable for a longer prediction time, we use a longer data input mode here: 3-7-3. As a comparison, we still use RMSE, Accuracy, SSIM and Dist for error quantification (for longer forecast time series, a longer input should be selected).

After comparing the results of the two data input modes, we can find from Table 5 that there is no significant increase in prediction error on the whole. The 3-4-3 input mode has better prediction effect within 3 days, while the 3-7-3 input mode has better lasting prediction ability within a longer prediction period. This error is generally reversed on the fourth or fifth day of prediction, which also shows a relatively easy to understand trend, that is, different input data models are generated under different deep network models, and with the change of its application scenario, its prediction effect will also change.

Table 5 | Quantification of eddies over a 7-day forecast period (No distinction is made between AE and CE).


[image: Table comparing assessment indicators for forecasting days one to ten. Indicators include RMSE in centimeters, SSIM, and Dist in kilometers for formats A (3-4-3) and B (3-7-3). RMSE for A ranges from 1.97 to 11.01, for B from 2.04 to 10.67. SSIM for A ranges from 0.91 to 0.43, for B from 0.88 to 0.49. Dist for A ranges from 6.34 to 15.97, for B from 7.15 to 14.76.]




5 Summary and outlook

In this study, we acquired AVISO satellite altimeter data and HYCOM ocean model forecast data as the basis of our work. These data not only provide rich ocean information but also provide the necessary data support for the identification and characterization of mesoscale eddies. Then, we effectively identified and extracted the features of mesoscale eddies utilizing the hybrid mesoscale eddy identification algorithm, which has a better identification effect. We combined it with the sea surface height data and established an evaluation system for mesoscale eddy prediction, which includes four test metrics, namely, the RMSE, SSIM, Dist, and Num.

Subsequently, we combined the time-series prediction advantages of the LSTM model with those of previous studies, utilized the ST-LSTM model as the base generative model, and stacked them to form a prediction network in the same way as the Conv-LSTM. In addition to introducing the generative adversarial network model, which has a strong generative capability, the AB-LSTM model was constructed by embedding the ST-LSTM module into the generator therein. Considering that previous studies have mostly focused on unidirectional sequence prediction without using backward-assisted prediction, we incorporated backward sequence prediction into the input sequences based on the AB-LSTM model and obtained better results than when only unidirectional inputs were utilized. The RMSE was 1.97–7.70 cm, the SSIM was ≥0.61, the Accuracy was ≥54.6%, and the Dist was 6.34–11.61 km. All of the above indicators were better than those of the other models and numerical prediction products, thus achieving the goal of this study. In the training process, we used the Adam optimizer as the hyperparameter container, and through many experiments, we determined that the number of iterations should be 100,000 times and the number of batches should be 8. The experimental results show that the relevant parameters were set reasonably, and a relatively smooth trend was maintained in the training iteration loss. Then, we tested the model’s generalization ability using data for a different sea area and new data for the same sea area to achieve data expansion of the non-training testing set. The experimental results show that the AB-LSTM also has a good prediction ability for data that are different from the training test sample dataset. Its prediction ability is only slightly lower than the training sample prediction results according to the indicators, and it is still able to maintain a large improvement compared with the other models. Therefore, the results of the generalization test prove that the AB-LSTM has an acceptable generalization ability. Finally, to address the problem that the full-domain prediction error cannot directly describe the single-eddy prediction effect, we conducted single-eddy prediction analyses using randomly selected pairs of identified vortices. The results show that the eddy polarity has little effect on the prediction effect and that the single-eddy prediction error tends to be smaller than the full-domain prediction error.

Although the AB-LSTM model developed in this study preforms better than other prediction models in terms of the prediction error, it still has some shortcomings. First, the mesoscale eddy identification algorithm used in this paper was found to have discrepancies in terms of matching the real eddy with the predicted eddy, and there is no matching criterion that can be adopted, which leads to the fact that we have no choice but to eliminate the eddy pairs that are incorrectly matched in our single-eddy prediction analysis. To a certain extent, this is not possible in a single eddy prediction analysis. This may make our experimental results better than the real results to a certain extent. Second, more physical parameters should be introduced into the single-eddy prediction instead of only using the eddy centre height and radius to evaluate the error. In the future, we plan to introduce vorticity, shear deformation, and tensile deformation to improve the evaluation of the single-eddy prediction effect. Third, the computational redundancy of the AB-LSTM model is greater than those of several of the prediction models cited in the paper. To achieve better results, the AB-LSTM takes longer to run, occupies more memory, and has more training iterations, which means that our model still needs to be improved in terms of performance. In the next step, we will try to introduce more mesoscale eddy physics information to improve the prediction effect while improving the model.





Data availability statement

Publicly available datasets were analyzed in this study. This data can be found here: AVISO,JCOPE.





Author contributions

XM: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. LZ: Conceptualization, Investigation, Software, Writing – review & editing. WX: Data curation, Methodology, Supervision, Writing – review & editing. ML: Formal analysis, Project administration, Validation, Writing – review & editing.





Funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.




Acknowledgments

We are grateful for the provision of the mesoscale eddy dataset from archiving, validation, and interpretation of satellite oceanographic data (AVISO) (https://www.aviso.altimetry.fr/en/data/products/value-added-products/global-mesoscale-eddy-trajectory-product.html) and the reanalysis data from the hybrid coordinate ocean model (HYCOM) (https://www.hycom.org/), We thank Wang et al. for providing the spatial–temporal long short-term memory (ST-LSTM) model, and other scholars and organizations that helped in the research process (https://github.com/thuml/predrnn-pytorch).





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



References
	 Akima, H. (1970). A new method of interpolation and smooth curve fitting based on local procedures. J. ACM (JACM) 17, 589–602. doi: 10.1145/321607.321609
	 Ashkezari, M. D., Hill, C. N., Follett, C. N., Forget, G., and Follows, M. J. (2016). Oceanic eddy detection and lifetime forecast using machine learning methods. Geophysical Res. Lett. 43, 12,234–212,241. doi: 10.1002/2016GL071269
	 Chassignet, E. P., Hurlburt, H. E., Metzger, E. J., Smedstad, O. M., Cummings, J. A., Halliwell, G. R., et al. (2009). US GODAE: global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography 22, 64–75. doi: 10.5670/oceanog.2009.39
	 Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J., Wallcraft, A. J., et al. (2007). The HYCOM (hybrid coordinate ocean model) data assimilative system. J. Mar. Syst. 65, 60–83. doi: 10.1016/j.jmarsys.2005.09.016
	 Chelton, D., Schlax, M. G., and Samelson, R. M. (2011). Global observations of nonlinear mesoscale eddies. Prog. Oceanography 91, 167–216. doi: 10.1016/j.pocean.2011.01.002
	 Dong, C., McWilliams, J., Liu, Y., and Chen, D. (2014). Global heat and salt transports by eddy movement. Nat. Commun. 5, 3294. doi: 10.1038/ncomms4294
	 Duo, Z., Wang, W., and Wang, H. (2019). Oceanic Mesoscale Eddy detection method based on deep learning. Remote. Sens. 11, 1921. doi: 10.3390/rs11161921
	 Eden, C., and Dietze, H. (2009). Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy. J. Geophysical Research: Oceans 114. doi: 10.1029/2008JC005129
	 Franz, K., Roscher, R., Milioto, A., Wenzel, S., and Kusche, J. "Ocean Eddy Identification and Tracking Using Neural Networks," IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. (Valencia, Spain: IEEE). (2018) pp. 6887–6890. doi: 10.1109/IGARSS.2018.8519261
	 Ge, L., Huang, B., Chen, X., and Chen, G. (2023). Medium-range trajectory prediction network compliant to physical constraint for oceanic eddy. IEEE Trans. Geosci. Remote Sensing. 61, 1–14, 2023. doi: 10.1109/TGRS.2023.3298020
	 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27.
	 Iizuka, S., Simo-Serra, E., and Ishikawa, H. (2017). Globally and locally consistent image completion. ACM Trans. Graphics (ToG) 36, 1–14. doi: 10.1145/3072959.3073659
	 Isern-Fontanet, J., Font, J., García-Ladona, E., Emelianov, M., Millot, C., and Taupier-Letage, I. (2004). Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo–Weiss parameter. Deep Sea Res. Part II: Topical Stud. Oceanography 51, 3009–3028. doi: 10.1016/j.dsr2.2004.09.013
	 Itoh, S., and Yasuda, I. (2010). Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the subarctic North Pacific. J. Phys. oceanography 40, 2624–2642. doi: 10.1175/2010JPO4475.1
	 Kalchbrenner, N., Oord, A., Simonyan, K., Danihelka, I., Vinyals, O., Graves, A., et al. (2017). “Video pixel networks,” in Proceedings of the 34th International Conference on Machine Learning, PMLR 70:1771–1779.
	 Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
	 Liu, C. C., and Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizability. J. Math. Psychol. 52, 362–375. doi: 10.1016/j.jmp.2008.03.002
	 Liu, J., Zhang, T., Han, G., and Gou, Y. (2018). TD-LSTM: Temporal dependence-based LSTM networks for marine temperature prediction. Sensors 18, 3797. doi: 10.3390/s18113797
	 Liu, Y., Dong, C., Guan, Y., Chen, D., McWilliams, J., and Nencioli, F. (2012). Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep Sea Res. Part I: Oceanographic Res. Papers 68, 54–67. doi: 10.1016/j.dsr.2012.06.001
	 Ma, C., Li, S., Wang, A., Yang, J., and Chen, G. (2019). Altimeter observation-based eddy nowcasting using an improved Conv-LSTM network. Remote Sens. 11, 783. doi: 10.3390/rs11070783
	 Ma, X., Zhang, L., Xu, W., Li, M., and Zhou, X. (2024). A mesoscale eddy reconstruction method based on generative adversarial networks. Front. Mar. Sci. 11, 1411779. doi: 10.3389/fmars.2024.1411779
	 McWilliams, J. C. (2016). Submesoscale currents in the ocean. Proc. R. Soc. A: Mathematical Phys. Eng. Sci. 472, 20160117. doi: 10.1098/rspa.2016.0117
	 Metzger, E. J., Hurlburt, H., Xu, X., Shriver, J. F., Gordon, A. L., Sprintall, J., et al. (2010). Simulated and observed circulation in the Indonesian Seas: 1/12 global HYCOM and the INSTANT observations. Dynamics Atmospheres Oceans 50, 275–300. doi: 10.1016/j.dynatmoce.2010.04.002
	 Nencioli, F., Dong, C., Dickey, T., Washburn, L., and McWilliams, J. C. (2010). A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. atmospheric oceanic Technol. 27, 564–579. doi: 10.1175/2009JTECHO725.1
	 Nian, R., Cai, Y., Zhang, Z., He, H., Wu, J., Yuan, Q., et al. (2021). The identification and prediction of Mesoscale Eddy variation via memory in memory with scheduled sampling for sea level anomaly. Front. Mar. Sci. 8, 753942. doi: 10.3389/fmars.2021.753942
	 Oka, E., and Qiu, B. (2012). Progress of North Pacific mode water research in the past decade. J. Oceanography 68, 5–20. doi: 10.1007/s10872-011-0032-5
	 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32.
	 Patraucean, V., Handa, A., and Cipolla, R. (2015). Spatio-temporal video autoencoder with differentiable memory. arXiv.
	 Qiu, B., and Chen, S. (2005). Eddy-induced heat transport in the subtropical north pacific from Argo, TMI, and altimetry measurements. Gayana 68, 499–501. doi: 10.1175/JPO2696.1
	 Qiu, B., and Chen, S. (2013). Concurrent decadal mesoscale eddy modulations in the western North Pacific subtropical gyre. J. Phys. oceanography 43, 344–358. doi: 10.1175/JPO-D-12-0133.1
	 Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-c. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 28.
	 Shriver, J., Hurlburt, H. E., Smedstad, O. M., Wallcraft, A. J., and Rhodes, R. C. (2007). 1/32 real-time global ocean prediction and value-added over 1/16 resolution. J. Mar. Syst. 65, 3–26. doi: 10.1016/j.jmarsys.2005.11.021
	 Srivastava, N., Mansimov, E., and Salakhudinov, R. (2015). “Unsupervised learning of video representations using lstms,” in Proceedings of the 32nd International Conference on Machine Learning, PMLR 37:843–852.
	 Trott, C. B., Metzger, E. J., and Yu, Z. (2023). Luzon strait mesoscale eddy characteristics in HYCOM reanalysis, simulation, and forecasts. J. Oceanography 79, 423–441. doi: 10.1007/s10872-023-00686-5
	 Villegas, R., Yang, J., Hong, S., Lin, X., and Lee, H. (2017). Decomposing motion and content for natural video sequence prediction. arXiv.
	 Wallcraft, A., Hurlburt, H., Metzger, E., Chassignet, E., Cummings, J., and Smedstad, O. M. (2007). “Global ocean prediction using HYCOM,” in Paper presented at the 2007 DoD High Performance Computing Modernization Program Users Group Conference. (Pittsburgh, PA, USA). 259–262. doi: 10.1109/HPCMP-UGC.2007.36
	 Wang, X., Wang, H., Liu, D., and Wang, W. (2020). The prediction of oceanic mesoscale eddy properties and propagation trajectories based on machine learning. Water 12, 2521. doi: 10.3390/w12092521
	 Wang, X., Wang, X., Yu, M., Li, C., Song, D., Ren, P., et al. (2021). MesoGRU: Deep learning framework for mesoscale eddy trajectory prediction. IEEE Geosci. Remote Sens. Lett. 19, 1–5. doi: 10.1109/LGRS.2021.3087835
	 Wang, Y., Long, M., Wang, J., Gao, Z., and Yu, P. S. (2017). Predrnn: Recurrent neural networks for predictive learning using spatiotemporal lstms. Adv. Neural Inf. Process. Syst. 30.
	 Wang, Y., Wu, H., Zhang, J., Gao, Z., Wang, J., Philip, S. Y., et al. (2022). Predrnn: A recurrent neural network for spatiotemporal predictive learning. IEEE Trans. Pattern Anal. Mach. Intell. 45, 2208–2225. doi: 10.1109/TPAMI.2022.3165153
	 Wang, Y., Yang, X., and Hu, J. (2016). Position variability of the Kuroshio Extension sea surface temperature front. Acta Oceanologica Sin. 35, 30–35. doi: 10.1007/s13131-016-0909-7
	 Xu, G., Cheng, C., Yang, W., Xie, W., Kong, L., Hang, R., et al. (2019). Oceanic eddy identification using an AI scheme. Remote Sens. 11, 1349. doi: 10.3390/rs11111349
	 Zhang, Z., Zhang, Y., Wang, W., and Huang, R. X. (2013). Universal structure of mesoscale eddies in the ocean. Geophysical Res. Lett. 40, 3677–3681. doi: 10.1002/grl.v40.14




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2024 Ma, Zhang, Xu and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 17 December 2024

doi: 10.3389/fmars.2024.1520775

[image: image2]


Two-decade variability and trend of chlorophyll-a in the Arabian Sea and Persian Gulf based on reconstructed satellite data


Mengmeng Yang 1, Faisal Ahmed Khan 2, Hua Fang 1, Elígio de Raús Maúre 3†, Joji Ishizaka 4, Dong Liu 5* and Shengqiang Wang 6*


1 School of Information Science and Technology, Taishan University, Tai’an, China, 2 Institute of Environmental Studies, University of Karachi, Karachi, Pakistan, 3 Independent Researcher, Osaka, Japan, 4 Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Nagoya, Japan, 5 Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China, 6 School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, China




Edited by: 

Chao Chen, Suzhou University of Science and Technology, China

Reviewed by: 

Mengquqn Wu, Ludong University, China

Shaojie Sun, Sun Yat-sen University, China

*Correspondence: 

Dong Liu
 dliu@niglas.ac.cn 

Shengqiang Wang
 shengqiang.wang@nuist.edu.cn

†ORCID: 
Elígio de Raús Maúre
 orcid.org/0000-0003-0505-3796


Received: 31 October 2024

Accepted: 25 November 2024

Published: 17 December 2024

Citation:
Yang M, Khan FA, Fang H, Maúre EdR, Ishizaka J, Liu D and Wang S (2024) Two-decade variability and trend of chlorophyll-a in the Arabian Sea and Persian Gulf based on reconstructed satellite data. Front. Mar. Sci. 11:1520775. doi: 10.3389/fmars.2024.1520775



The spatiotemporal variability of chlorophyll-a (Chl-a) in the Arabian Sea (AS) and Persian Gulf (PG) has been widely studied, but long-term trends and influencing factors remain less understood due to data gaps. This study investigates Chl-a variability and trends from 2001 to 2019 using reconstructed MODIS-Terra monthly Chl-a and sea surface temperature (SST) data, employing the Data Interpolating Empirical Orthogonal Functions (DINEOF) method for high-accuracy reconstruction. Results reveal pronounced seasonal variability, with Chl-a peaks exceeding 3 mg m-3 during southwestern monsoons and ranging between 1–3 mg m-3 during northeastern monsoons, with the lowest levels in transitional months. Spatially, the highest Chl-a concentrations were observed in the western and northeastern AS, influenced by summer southwestern (SW) and winter northeastern (NE) monsoons. Trend analysis using Sen’s slope and the Mann-Kendall test indicates significant Chl-a declines (-0.002 to 0) along ASPG coasts, with slight increases (~0.005) in the southeastern AS and southern PG. Rising SST anomalies (SST_A) correlated with reduced Chl-a anomalies (Chl-a_A) in the western AS, while increased wind anomalies (Wind_A) enhanced Chl-a_A in the western AS but decreased it in the southern PG. These findings enhance our understanding of the complex environmental dynamics shaping the ASPG ecosystems.
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1 Introduction

Chlorophyll-a (Chl-a) concentration serves as a key bioindicator of phytoplankton biomass and marine productivity, making it crucial for monitoring the health of marine ecosystems. The Arabian Sea (AS) and Persian Gulf (PG) is recogonized as one of the most productive regions in the world (Sathyendranath et al., 1996). Understanding Chl-a variability and trends over the AS and PG (ASPG) is crucial for predicting marine ecosystem health, managing fisheries sustainably, and providing early warnings for harmful algal blooms. Satellite remote sensing has proven to be an effective tool for examining the spatiotemporal dynamics of Chl-a in the ASPG (Goes et al., 2005; Prakash et al., 2012; Moradi, 2020; Sarma et al., 2012; Jayaram et al., 2018; Moradi and Moradi, 2020; Bordbar et al., 2024), thanks to its broad coverage and real-time observation capabilities.

Previous research in these areas has revealed distinct seasonal and interannual patterns in Chl-a variability, which are often associated with factors such as sea surface temperatures (SST), monsoonal winds, upwelling events, and large-scale climate phenomena like the Indian Ocean Dipole and El Niño (Jayaram et al., 2018; Nezlin et al., 2007; Sarma et al., 2012; Seelanki et al., 2022). Furthermore, some studies have reported trends in Chl-a that either increase or decrease over different time periods, typically related to changes in SST, monsoonal winds, and sea level anomalies (Prakash et al., 2012; Goes et al., 2005; Prasanna Kumar et al., 2010). However, many of these studies in the ASPG region have been limited by their relatively short time frames or their focus on specific regional areas, which may restrict the generalizability of their findings. Expanding research to cover longer time periods and broader regions could provide a more comprehensive understanding of Chl-a variability and its underlying drivers. Additionally, it has been observed that satellite-derived products in the ASPG are often affected by suboptimal conditions, such as sun-glint and cloud cover. These factors can lead to gaps in the satellite-derived geographical data, which may result in incomplete information for subsequent analyses.

Data Interpolating Empirical Orthogonal Function (DINEOF) has emerged as a powerful method for reconstructing missing geophysical data, such as SST and Chl-a. Compared to traditional methods like linear interpolation and optimal interpolation, DINEOF offers significant advantages, including faster computation, parameter-free processing, and the ability to handle multiple correlated data types without prior de-correlation scales (Miles and He, 2010). These attributes make DINEOF particularly suitable for oceanographic applications where satellite observations are often hindered by clouds, sun-glint, and aerosols, leading to data gaps. Despite alternatives like machine learning showing promise, it often requires extensive in-situ data for training, which limits their scalability, particularly in regions like the ASPG. DINEOF has demonstrated success in various marine environments worldwide, including the South Atlantic Bight, the coastal Gulf of Alaska, the Gulf of Maine, the Gulf of Mexico, as well as the Sargasso Sea, and is currently employed in global ocean color products by NOAA (Li and He, 2014; Shropshire et al., 2016; Liu and Wang, 2018). However, in the ASPG region, the application of DINEOF is still underexplored, with issues such as limited studies on its efficacy and its primary focus on Chl-a reconstruction (Jayaram et al., 2018), highlighting the need for further research to assess its potential in filling satellite-derived data gaps across different oceanographic parameters.

This study has two primary objectives: (1) to investigate long-term trends and associated spatiotemporal variability in Chl-a from 2001 to 2019 across the ASPG, and (2) to assess the influence of SST and wind on Chl-a variability and trends. To achieve these goals, DINEOF was employed to reconstruct missing MODIS-Terra Chl-a and SST data over the study period. Subsequently, we investigated the monthly Chl-a variability and conducted a trend analysis across the entire ASPG. Additionally, we investigated the correlation between Chl-a anomalies (Chl-a_A) and SST anomalies (SST_A), as well as between Chl-a_A and wind anomalies (wind_A), providing deeper insights into the environmental drivers of marine productivity in the ASPG.




2 Data and methods



2.1 Study area and its subregions

The AS and PG, both located in the northwestern Indian Ocean (Figure 1), exhibit distinct oceanic and atmospheric processes that are critical for regional climate regulation and marine productivity. The AS, spanning 5°N to 25°N and 55°E to 77°E, is characterized by monsoon-driven ocean dynamics, influenced by the seasonal reversal of monsoon winds and the region’s unique geography. These winds generate variations in mixed layer depth, thermocline shifts, and nutrient upwelling, particularly along the coasts of Somalia and Oman during the Southwestern Monsoon, resulting in high phytoplankton biomass and biological productivity (Goes et al., 2005; Khan et al., 2023; Wiggert et al., 2005; Prasanna Kumar et al., 2010). Additional factors influencing biological activity include wind mixing, Ekman pumping, mesoscale eddies, and large-scale climate events like the Indian Ocean Dipole (IOD) and El Niño, which impact both phytoplankton blooms and surface biomass distribution (Seelanki et al., 2022; Keerthi et al., 2013; Shafeeque et al., 2021). In contrast, the PG, situated between 24°N and 30°N and 48°E to 57°E, is a shallow, semi-enclosed sea marked by extreme salinity, temperatures, and limited water exchange. Despite these harsh conditions, it sustains a productive ecosystem, influenced by seasonal wind stress, tidal turbulence, and human activities such as coastal development and pollution (Swift and Bower, 2003; Moradi and Moradi, 2020; Khan et al., 2019). Understanding the differing productivity patterns of the ASPG is vital for assessing long-term environmental changes and the broader impact of climate change on these ecosystems.

[image: Map depicting the Arabian Sea and surrounding regions, including parts of Iran, Pakistan, India, Oman, and Yemen. Labeled locations include Bandar Bushehr, Abu Dhabi, Qishn, Gwadar, Karachi, Mumbai, and Kochi. Triangular markers indicate different zones and stations. The map uses shades of blue to represent water depth, ranging from 1000 to 6000 meters. A legend differentiates coastal waters from open sea. Latitude and longitude coordinates are marked along the axes.]
Figure 1 | A bathymetry map of the ASPG region, showing the distribution of 21 stations across seven zones. Each station, represented by a filled triangle, is assigned to a specific zone. Z1 through Z7 represent zones 1 to 7, respectively, while S1, S2, and S3 represent stations 1, 2, and 3 within each zone. The yellow unfilled circles indicate the stations selected for calculating the upwelling index.

The study area was divided into seven zones, each containing three stations strategically positioned based on geographical and oceanographic significance (Figure 1). Zone 1, along the Pakistan coastline, is crucial for its upwelling, supporting rich fisheries in the northern AS. Zone 2, along the Indian coast, is influenced by monsoons driving nutrient inflow and boosting productivity. Zone 3, near Oman, is shaped by Arabian coastal currents, while Zone 4, along southern India, is affected by monsoon-driven currents impacting nutrient dynamics. Zone 5, off Yemen, benefits from upwelling, supporting marine biodiversity. Zone 6, in the equatorial region, experiences equatorial currents and upwelling influencing Chl-a variability. Zone 7, the PG, is notable for its unique hydrological conditions and proximity to oil-producing nations. This division enabled a region-specific analysis of the factors driving Chl-a dynamics, offering insights into how geographic and climatic factors influence marine productivity across the ASPG.




2.2 Satellite data and preprocessing

The monthly composite Level-3 MODIS-Terra (hereafter referred to as MODIS) Chl-a and SST data, with a 4 km spatial resolution for 2001–2019, were obtained from NASA’s Ocean Biology Processing Group (https://oceancolor.gsfc.nasa.gov/). MODIS-Terra data were selected over MODIS-Aqua due to their longer temporal coverage. A comparison of the accuracy between MODIS-Terra and MODIS-Aqua data was conducted in our subsequent research, revealing consistent seasonal variability and trends in Chl-a across the ASPG, thus confirming the reliability of MODIS-Terra for this study.

Due to factors such as cloud cover, sun glint, and other atmospheric issues, the ASPG region experiences significant gaps in the data, particularly during the summer monsoon season. For instance, a previous study reported that the missing data rate for MODIS-Aqua daily Chl-a between 2020 and 2021 fluctuated significantly in the northern AS, with an overall rate ranging from 65% to 100% (Yan et al., 2023). These data gaps can result in the loss of important local information. Therefore, it is essential to reconstruct missing Chl-a and SST data. In this study, the DINEOF method was employed to fill in the missing data over the ASPG (Section 2.4 below). Before reconstruction, all Chl-a and SST data were filtered, and images with more than 95% cloud coverage were discarded to maintain accuracy. Additionally, Chl-a data were log-transformed before reconstruction to meet DINEOF’s assumption of normality, given the wide range of Chl-a values.

Once the data were reconstructed, the MODIS Chl-a and SST values at each station were obtained by averaging values from a 3 × 3 window centered on the station’s location. To eliminate the seasonal cycle influence, the long-term monthly mean for each month across all years was subtracted from the corresponding monthly time series. This process generated monthly anomalies of Chl-a and SST for each station, which were then used to compute Chl-a_A and SST_A trends over the entire study period. Furthermore, correlation statistics were calculated for the time series of Chl-a_A and SST_A at each station to quantitatively analyze the relationship between these anomalies.




2.3 Reanalysis data and preprocessing

From 2001 to 2019, weekly wind data at a spatial resolution of 0.12° × 0.12° and a height of 10 meters above the surface were obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). To represent monthly climatological patterns, these weekly wind data were averaged for each of the 12 months, spanning from January 2001 to December 2019. ERA-Interim is a global atmospheric reanalysis product that combines model-based predictions with observations from various sources to provide a consistent, comprehensive estimate of numerous atmospheric and oceanic parameters. Furthermore, the wind data were used to compute the Ekman transport components for each month during the study period, based on the formulas provided by Kok et al. (2017) in Equations 1, 2.

[image: The equation shows \(ET_x = \frac{{\rho_{\text{air}} e^{(u^2 + v^2)^{1/2} v}}}{{\rho_{\text{water}} f}}\), labeled as equation (1).] 

[image: Alternate text: An equation labeled (2) reads: ET_y equals the fraction with the numerator rho_air times the square root of u squared plus v squared times v_y, and the denominator is rho_water f.] 

where u corresponds to the wind coming from the west (with positive values indicating eastward wind) and v corresponds to the wind coming from the south (with positive values indicating northward wind). The parameter ρair represents the density of air, valued at 1.22 kg m-3, while ρwater​ represents the density of water, valued at 1025 kg m-3. Additionally, c is the drag coefficient, and f is the Coriolis parameter. The calculated components of Ekman transport, ETx and ETy​, were used to generate monthly plots of Ekman transport, providing a visual representation of its variability over time.

The analysis of Ekman transport is critical for understanding upwelling processes. This involves decomposing the movement of water masses into perpendicular components to calculate the Coastal Upwelling Index (CUI). Specifically, a “coast angle” is formed between a northward vector and the landward side of the shoreline, which is determined through geometric measurements at each coastal station. Using geometric tools, these angles are measured and incorporated into the computation of the CUI. Specifically, θ represents the angle perpendicular to the oceanward unit vector relative to the mean shoreline location. The CUI quantifies coastal upwelling by factoring in the strength and direction of Ekman transport in relation to the coastline. In this study, the study area is divided into eight stations (as shown in Figure 1) to assess the upwelling intensity across the region. The effective angles of the coastline are calculated by averaging the angles of arbitrary coastal lines with respect to the equator at each of the eight coastal stations. The formulas used for CUI calculation is provided in Equations 3 (Kok et al., 2017).

[image: Equation showing UI equals negative sine of the quantity phi minus pi over two times ET sub y plus cosine of the quantity phi minus pi over two times ET sub x.] 

where ϕ represents the angle between the coastline and the equator. According to the definition of CUI, a positive CUI indicates regions where upwelling conditions are favorable, while a negative CUI suggests that upwelling is unfavorable.




2.4 DINEOF reconstruction

DINEOF was employed to reconstruct missing data in the MODIS Chl-a and SST datasets over the ASPG from 2001 to 2019. We utilized the DINEOF 3.0 package (Alvera-Azcárate et al., 2005; Beckers and Rixen, 2003), available for download from the GeoHydrodynamics and Environment Research (GHER) website. The reconstruction process followed these key steps:

	Each dataset was organized into a 3D matrix (y × x × t), where y and x represent the latitude and longitude dimensions of each image, and t is the total number of images, ensuring that y×x> t. For Chl-a data, the natural logarithm was applied to prevent negative values during reconstruction, while raw SST data were used without transformation.

	The mean value across both spatial and temporal dimensions was subtracted from the matrix, and missing data points were initialized to zero to minimize bias in the initial guess.

	Iterative singular value decomposition (SVD) (Toumazou and Cretaux, 2001) and cross-validation using 3% of randomly selected valid data were employed to identify the optimal empirical orthogonal function (EOF) modes.

	The optimal EOF modes were then used to reconstruct the entire dataset. For further details on the DINEOF methodology, see Alvera-Azcárate et al. (2005) and Beckers and Rixen (2003).



To verify the accuracy of the DINEOF reconstruction, we randomly selected 1% of the valid pixels from the original Chl-a and SST datasets, treating them as “missing values” (Yang et al., 2021). The remaining valid pixels were left unchanged to ensure that only invalid pixels were involved in the reconstruction process. After performing the DINEOF method, the reconstructed values for the 1% of randomly selected pixels were compared with their original values to evaluate the accuracy of the reconstruction.




2.5 Trend calculation

The Mann-Kendall test and Sen’s slope trend analysis are widely employed to assess the magnitude and significance of trends in Chl-a and SST using long-term satellite-derived datasets. The Mann-Kendall test is a non-parametric statistical method used to identify trends in time series data and is based on the variance of the data (Solidoro et al., 2009). Sen’s slope (Sen, 1968), another non-parametric method, estimates the magnitude of monotonic trends over time and detects their presence at a chosen significance level. Non-parametric tests, such as these, offer higher statistical power when dealing with non-normally distributed data, which is often the case for Chl-a, and are resistant to the influence of outliers. In this study, a significance level of 95% was used to determine trend significance. Both the Mann-Kendall test and Sen’s slope were calculated using MATLAB.

To further investigate relationships among Chl-a_A, SST_A, and Wind_A, Pearson’s correlation coefficients (r) were calculated, and their significance was tested using Student’s t-test at a 5% significance level (p < 0.05). Regression analyses were also conducted for each variable pair, with statistical performance evaluated through slope, coefficient of determination (R²), bias, and root mean square error (RMSE).





3 Results



3.1 DINEOF reconstruction and validation for Chl-a and SST

MODIS monthly log-transformed Chl-a and linear SST data from 2001 to 2019 were reconstructed using the DINEOF technique. The reconstruction statistics are presented in Table 1, where the missing data rates for Chl-a and SST are 24.67% and 1.26%, respectively. This highlights the critical role of DINEOF in reconstructing Chl-a data, which has a significantly higher missing data rate. Additionally, the means of the input and output data for both Chl-a (-0.42 for input and -0.428 for output) and SST (27.27 for both input and output) are almost identical. Similarly, the standard deviations for input and output data are very close for both Chl-a (0.41 for input and 0.405 for output) and SST (1.96 for input and 1.958 for output). These similarities indicate that the distribution of the reconstructed Chl-a and SST data closely matches that of the original data, suggesting a high accuracy of the reconstruction.

Table 1 | Statistics of the DINEOF computations.


[image: Table comparing data for Log (Chl-a) and SST. Both have dimensions of 480x600x228. Missing data: Log (Chl-a) 24.67%, SST 1.26%. Number of cross-validation points: 373975. Mean input: Log (Chl-a) -0.42, SST 27.27. Standard deviation input: Log (Chl-a) 0.41, SST 1.96. Mean output: Log (Chl-a) -0.428, SST 27.27. Standard deviation output: Log (Chl-a) 0.405, SST 1.958.]
To evaluate the quality of the reconstructed data, we selected one image of the reconstructed Chl-a from August and one image of the reconstructed SST from June for comparison with the original SST and Chl-a images (see Figure 2). The original images exhibited numerous spatial gaps, particularly in the Chl-a data. In contrast, the reconstructed images were more continuous and displayed a more coherent spatial distribution.

[image: Four-panel map showing chlorophyll-a concentration and sea surface temperature in the northern Indian Ocean. Panels A and B display chlorophyll-a concentration with a color scale from blue (low) to red (high). Panels C and D show sea surface temperature using a scale from blue (cool) to red (warm). Latitude ranges 12° to 28°N and longitude 50° to 75°E.]
Figure 2 | MODIS Chl-a in August and MODIS SST in June: (A, C) original cloudy data, and (B, D) data reconstructed using the DINEOF method.

We further conducted a cross-validation of the reconstructed Chl-a and SST data using the method described earlier. The results of the comparison between the reconstructed and original Chl-a/SST data are presented in the density plots shown in Figure 3. Both reconstructions showed strong correlations with the original data, as evidenced by favorable metrics: slope (0.86 for Chl-a, 0.95 for SST), R² (0.84 for Chl-a, 0.96 for SST), bias (0.002 for Chl-a, 0.04 for SST), and RMSE (0.16 for Chl-a, 1.52 for SST). Additionally, the density plots, which represent the number of data points within each 4 km × 4 km grid bin, show an increasing trend towards the 1:1 line. This suggests that the data reconstructed using the DINEOF method are both accurate and reliable.

[image: Scatter plots compare reconstructed data with MODIS data. Plot A shows reconstructed log(Chl-a) versus MODIS log(Chl-a), with a regression line, R² of 0.84, and RMSE of 0.16. Plot B shows reconstructed SST compared to MODIS SST, with R² of 0.96 and RMSE of 1.52. Color scale indicates data density.]
Figure 3 | Density plots: (A) log(Chl-a) (reconstructed) vs Chl-a (original) and (B) SST (reconstructed) vs SST (original). The black solid lines are the 1:1 line.




3.2 Monthly climatology of Chl-a in the ASPG

Based on the reconstructed data, the interannual monthly climatology of Chl-a from 2001 to 2019 was generated. Hovmöller diagram (Figure 4) displays monthly Chl-a time series along latitudinal sections at 17°N, 21°N, and 25°N, as well as longitudinal sections at 61°E, 64°E, and 67°E. The interannual variability of Chl-a across both latitudinal and longitudinal gradients is further detailed in the Supplementary Materials (Supplementary Figures 1, 2). This study focuses on the monthly variability of Chl-a, with all plots in Figure 4 consistently capturing the well-established seasonal cycle in the ASPG. Chl-a concentrations peak during summer, with a secondary peak in winter, and reach their lowest levels during the transitional months. Spatially, the highest concentrations are observed near the western and northern coastlines. This seasonal cycle is driven primarily by the SW monsoon during summer and the NE monsoon in winter.

[image: Heatmaps showing chlorophyll-a concentrations (mg m^-3) at different latitudes and longitudes in the Northern Hemisphere, with data spanning January to December. Colors range from blue (low) to red (high).]
Figure 4 | A Hovmöller diagram illustrating the monthly variability of reconstructed MODIS Chl-a from January to December at 17°N, 21°N, and 25°N, as well as at 61°E, 64°E, and 67°E.

Along the latitudinal sections, chlorophyll-a (Chl-a) exhibited two annual peaks: a major peak in summer and a minor peak in winter (Figure 4). At 17°N, which is closer to the equator, Chl-a concentrations remain consistently lower throughout the year. Nevertheless, two distinct peaks are observed, one in summer (August and September) and the other in winter (February and March). As latitude increases to 21°N, Chl-a concentrations rise significantly during both seasons, with the summer peak occurring between July and September and the winter peak between February and March. Further north at 25°N, a coastal region forming the northern boundary of the AS, Chl-a levels remain high and productive throughout most of the year, with pronounced peaks during the summer (August to October) and winter (February to March). Additionally, Chl-a concentrations increase gradually with longitude. Overall, the AS is heavily influenced by monsoonal dynamics, impacting both coastal regions and open ocean waters.

Similarly, along the longitudinal sections, Chl-a exhibited two seasonal peaks, with the exception of the northeastern region (Figure 4). At 61°E, closer to the western coast, Chl-a levels remain consistently higher throughout the year, particularly in the northern regions. Two seasonal peaks are apparent, occurring during summer (July to September) and winter (February to March). At 64°E, while the temporal and spatial patterns of Chl-a are similar, the overall concentration is slightly lower. Moving further east to 67°E, distinct spatial and temporal distribution patterns emerge. Specifically, between 21°N and 23°N, Chl-a exhibits two peaks in summer (August) and winter (February), while between 23°N and 24°N, Chl-a increases markedly and remains elevated throughout the year. These spatial variations highlight the complex interplay between monsoonal forces and the unique oceanographic characteristics of different regions within the AS.




3.3 Long-term trends of Chl-a associated with SST and wind

To analyze long-term trends in Chl-a and SST, the interannual monthly anomaly data were used to compute Sen’s slope for each pixel, where positive and negative values indicate increasing and decreasing trends, respectively, and a value of zero denotes no trend. The statistical significance of Sen’s slope was assessed using the Mann-Kendall (MK) test, with results coded as 1 for significant trends and 0 for non-significant trends. Non-significant Sen’s slope values were masked, indicated by white areas. The spatial distributions of Sen’s slope, along with the MK test results for Chl-a_A and SST_A, are illustrated in Figures 5A, B, respectively.

[image: Four-panel map visualization showing data analysis on chlorophyll-a and sea surface temperature (SST) across different regions. Panel (A) displays the Sen’s slope for chlorophyll-a. Panel (B) depicts the Sen’s slope for SST. Panel (C) shows the correlation coefficient between chlorophyll-a and SST, while panel (D) illustrates the correlation between chlorophyll-a and wind. Color gradients represent varying data values, with key provided. Geographic coordinates are marked with latitudes and longitudes.]
Figure 5 | Spatial distributions of Sen’s slopes and MK-test results for (A) Chl-a_A and (B) SST_A over the ASPG from 2001 to 2019, along with the spatial distributions of r values between (C) Chl-a_A and SST_A, as well as (D) Chl-a and Wind_A over the same period.

The Sen’s slope values for Chl-a_A with statistically significant MK-test results were primarily concentrated in the coastal areas of the ASPG. Most values were negative across the entire ASPG, indicating a declining trend in Chl-a levels. In the AS, the lowest Sen’s slope values were observed along the Arabian coasts, gradually increasing towards open sea waters, with some positive values in the southeastern region. In contrast, in the PG, Sen’s slope values increased from the northern to the southern coasts. For SST_A, Sen’s slope values with significant MK-test results were widespread across the ASPG, with all values being positive, reflecting a rising trend in SST. In the AS, larger Sen’s slope values were observed along the Arabian coasts, decreasing towards open sea waters. In the PG, the highest Sen’s slope values were found in the northwestern region, diminishing towards the southern part of the gulf. The detailed statistical summaries of Sen’s slope values for both Chl-a_A and SST_A are presented in the Supplementary Materials (Supplementary Table 1).

For the 21 selected stations shown in Figure 1, significant Sen’s slope values were identified at only four stations: Z3-S1 (open sea waters near the Oman coast), Z5-S2 (open sea waters near the Yemen coast), Z5-S3 (coastal waters near the Oman coast), and Z7-S2 (southern PG). The Sen’s slope values for these stations are detailed in the Supplementary Materials (Supplementary Table 2). Additionally, Sen’s slope values for SST_A and Wind anomalies (Wind_A) were calculated for these stations, as they are two key factors influencing Chl-a variability. The calculation of Wind_A followed the same methodology used for Chl-a_A and SST_A. As shown in Supplementary Table S2, all four stations exhibited a decreasing trend in Chl-a_A. The trends for SST_A were significantly positive at Z3-S1, Z5-S2, and Z5-S3, but there was no significant trend at Z7-S2. For Wind_A, significant positive trends were observed at Z5-S2 and Z7-S2, while no significant trends were found at Z3-S1 and Z5-S3. These results highlight the complex interplay between Chl-a, SST, and wind patterns across different regions of the ASPG.

To assess the impact of SST and wind on the long-term trends of Chl-a, correlation coefficients (r) between Chl-a_A and SST_A, as well as Chl-a_A and Wind_A, were calculated for each pixel (Figures 5C, D). The r values between Chl-a_A and SST_A were predominantly negative across the ASPG, indicating an inverse relationship between these variables, with a few positive values in the southern PG suggesting localized positive correlations. Additionally, the majority of these correlations were statistically significant throughout the ASPG. In contrast, the r values between Chl-a_A and Wind_A were mostly positive in the AS, signifying a positive correlation, while in the PG, the r values were generally negative. Significant correlations between Chl-a_A and Wind_A were primarily observed along the Oman coast, northeastern Arabian coast, and western Indian coast in the AS, as well as in the southern PG. The detailed statistical summaries of r values between Chl-a_A and SST_A, as well as Chl-a_A and Wind_A are presented in the Supplementary Materials (Supplementary Table 3).

Since significant trends in Chl-a_A were only detected at four stations—Z3-S1, Z5-S2, Z5-S3, and Z7-S2—the time series of Chl-a_A, SST_A, and Wind_A were extracted for these locations to further examine temporal variability and the correlations between Chl-a_A and SST_A, as well as Chl-a_A and Wind_A. A detailed statistical summary of these correlations, covering the entire study period, the southwestern monsoons, the northeastern monsoons, and the transitional months (pre- and post-southwestern monsoons), is presented in Table 2. At Z3-S1, no significant correlations between Chl-a_A and either SST_A or Wind_A were observed for any time frame. At Z5-S2, two significant correlations were found between Chl-a_A and Wind_A: one positive correlation for the entire study period and the other positive correlation during the northeastern monsoons. At Z5-S3, three significant correlations were identified between Chl-a_A and SST_A—one for the entire study period, one for the northeastern monsoons, and another during the transitional months. At Z7-S2, two significant correlations emerged between Chl-a_A and Wind_A: one for the entire study period and the other during the southwestern monsoons. These results underscore the regional differences in the relationships between Chl-a_A and SST_A, as well as Chl-a_A and Wind_A.

Table 2 | Statistical summary of the significance of r values between Chl-a_A and SST_A, as well as Chl-a_A and Wind_A, at the four stations for the entire study period, southwestern monsoon seasons, northeastern monsoon seasons, and transitional months from 2001 to 2019.


[image: A table displays correlations between chlorophyll-a anomalies (Chl-a_A) and sea surface temperature anomalies (SST_A) or wind anomalies (Wind_A) across different stations and time periods. Stations Z3-S1, Z5-S2, and Z5-S3 have varying correlations noted as 0, 1+, or 1-, where 1 indicates a significant correlation, and "+" or "-" indicates positive or negative correlations, respectively. Time periods include all months, southwestern monsoons, northeastern monsoons, and transitional months. Correlation details are provided for each station and time period.]
The time series of Chl-a_A, SST_A, and Wind_A at four stations (Z3-S1, Z5-S2, Z5-S3, and Z7-S2) are presented in Figure 6. The coefficient of variation (CV) was used to quantify variability, revealing the highest Chl-a_A variation at Z5-S3 (6.50E+16), followed by Z5-S2 (-1.77E+16), Z3-S1 (-1.47E+16), and Z7-S2 (-3.49E+15). SST_A variation was highest at Z5-S3 (-4.24E+15), followed by Z3-S1 (-2.54E+15), Z7-S2 (-1.34E+15), and Z5-S2 (1.04E+15). Wind_A exhibited the most variation at Z3-S1 (6246.99), followed by Z7-S2 (152.20), Z5-S2 (-93.41), and Z5-S3 (-93.41). Due to the low spatial resolution of wind data, Z5-S2 and Z5-S3 shared the same dataset. Large Chl-a_A outliers were observed at Z3-S1 (e.g., August 2003, February 2017), Z5-S2 (e.g., September 2001, February 2008), and Z5-S3 (e.g., August 2002, 2009, 2017). Although not fully explored, some anomalies were linked to specific oceanographic events. For example, the high Chl-a_A value in August 2003 coincided with a cold-core eddy near the Somali coast, which likely contributed to elevated Chl-a_A concentrations during this period (Prakash et al., 2012). These findings highlight the complex dynamics influencing Chl-a_A variability.

[image: Eight line graphs comparing Chl-a_A changes over time with SST_A and Wind_A across four zones (Z3-S1, Z5-S2, Z5-S3, Z7-S2). Graphs A-D show monthly Chl-a_A and SST_A from October 2000 to June 2020. Graphs E-H display Chl-a_A and Wind_A for the same period. The red lines represent SST_A or Wind_A, and blue lines represent Chl-a_A.]
Figure 6 | Time series of Chl-a_A and SST_A at four stations—(A) Z3-S1, (B) Z5-S2, (C) Z5-S3, and (D) Z7-S2—spanning the period from January 2001 to December 2019 are shown. The blue and red lines represent the respective trendlines for Chl-a_A and SST_A. Similarly, time series of Chl-a_A and Wind_A at the same four stations—(E) Z3-S1, (F) Z5-S2, (G) Z5-S3, and (H) Z7-S2—are presented for the same period, with blue and red lines depicting the trendlines for Chl-a_A and Wind_A, respectively.





4 Discussion



4.1 Advantages of using the DINEOF to fill in the data gaps

In this study, the DINEOF method was employed to reconstruct MODIS datasets of Chl-a and SST over the ASPG from 2001 to 2019. The primary source of missing data in the original datasets was adverse weather conditions, such as cloud cover and rainfall. Specifically, 24.67% of the Chl-a data and 1.26% of the SST data were missing, as shown in Table 1. The relatively high percentage of missing Chl-a data underscores the significance of applying DINEOF for accurate reconstruction in this region. The comparison between the original and reconstructed datasets demonstrated that the mean and standard deviation values were closely aligned (Table 1), confirming the precision and reliability of the DINEOF reconstruction. Additionally, visual comparisons of the original and reconstructed Chl-a and SST data for specific dates, illustrated in Figures 2, 3, reveal smooth and plausible patterns in the reconstructed outputs. Further validation, through cross-correlation analysis (Figure 4), shows strong agreement between the reconstructed and original datasets for both Chl-a and SST, reinforcing the robustness of the reconstruction method. In future research, we aim to integrate field observations to further enhance the validation of our reconstructed data.

To the best of our knowledge, only a limited number of studies have utilized the DINEOF method to reconstruct satellite-derived Chl-a datasets in specific regions like the AS or PG. Even fewer have applied DINEOF to simultaneously reconstruct both Chl-a and SST datasets over the entire ASPG. For instance, Jayaram et al. (2018) employed DINEOF to reconstruct MODIS-Aqua Chl-a data over the AS for the period 2002–2015. This study primarily investigated the seasonal and interannual variability of Chl-a, highlighting the method’s utility in regions with frequent data gaps due to cloud cover. Similarly, Huang et al. (2022) used DINEOF to reconstruct Chl-a datasets from the Ocean Colour Climate Change Initiative (OC-CCI) by the European Space Agency (ESA) over the AS from 1998 to 2017. In contrast, Khan et al. (2019) and Khan et al. (2022) extended the application of DINEOF by reconstructing both MODIS-Terra monthly Chl-a and SST datasets from 2001 to 2017. Their studies analyzed the seasonal variability and explored the correlations between Chl-a and SST over the entire study area. However, while they provided valuable insights into the seasonal dynamics of Chl-a and SST, their work did not examine the long-term trends in Chl-a.

In light of these gaps, the present study offers a more comprehensive approach by not only reconstructing both Chl-a and SST datasets using DINEOF but also performing an in-depth analysis of the spatio-temporal variability and long-term trends of Chl-a across the entire ASPG from 2001 to 2019. This extended temporal range allows us to assess the potential impacts of climate variability and oceanographic changes on Chl-a dynamics in the region. Additionally, by reconstructing both Chl-a and SST, we are able to investigate their interactions and correlations over time, providing a more holistic view of the region’s marine ecosystem dynamics. Our study contributes to the broader field of oceanography by demonstrating the effectiveness of DINEOF in reconstructing multi-variable datasets and its potential application in other regions where satellite data is frequently compromised by missing observations.




4.2 Impact of SST and wind on the spatiotemporal variability of Chl-a

The seasonal variability of Chl-a, as revealed in Figure 4, aligns with findings from previous studies (Lévy et al., 2007; Sarma et al., 2012; Piontkovski et al., 2013; Jayaram et al., 2018; Khan et al., 2022), where monsoon-driven wind reversals were identified as the main drivers of phytoplankton blooms. These wind shifts significantly impact mixed-layer dynamics and promote upwelling, bringing nutrient-rich waters from the deeper ocean to the surface, which fuels phytoplankton growth during both the SW and NE monsoon seasons (Goes et al., 2005; Jayaram et al., 2018). This is further supported by the monthly climatology of wind patterns from 2001 to 2019 (Figure 7), which reveals stronger southwestern winds during the SW monsoon and weaker northeastern winds during the NE monsoon, with the weakest winds observed during the transitional periods.

[image: Twelve-panel vector map depicting monthly wind patterns in the Arabian Sea from January to December. Each panel shows wind direction and speed with arrows overlaid on a map, with latitude and longitude labeled on axes.]
Figure 7 | Monthly climatology of wind vectors over the ASPG from January to December (A–L). Vectors in all panels have the same scaling to allow for direct comparison of wind intensity across different months. Quantitative values of wind speeds are also provided for reference.

Ekman transport, derived from wind data, exhibits distinct seasonal variability across the ASPG, as illustrated in the Supplementary Materials (Supplementary Figure 3). In the AS, it peaks during the summer monsoon, driving surface water offshore and promoting upwelling, with a maximum value of approximately 2 m³ s-1 m-1 in July. In winter, the transport shifts southeast, resulting in downwelling. In contrast, Ekman transport in the PG remains minimal throughout the year, with the highest values observed in June, directed northeast.

To further investigate upwelling dynamics, an upwelling index was calculated using wind vectors at eight coastal stations (Figure 1). These coastal stations were strategically selected for their proximity to known upwelling regions, such as Kochi, Duqm, and Qishn, which are significantly influenced by seasonal monsoonal winds. Additional stations were chosen based on their alignment with nearshore data points within each zone to ensure comprehensive coverage. Spanning a wide latitudinal range across the ASPG, these stations provide a thorough spatial representation of upwelling zones. This selection forms a robust foundation for analyzing upwelling dynamics and their influence on regional Chl-a variability.

The time series of the monthly upwelling indices (Figure 8) reveals that upwelling was most pronounced along the western and southeastern coasts of the AS (Duqam, Qishn, Kochi), followed by the northern PG (Bandar Bushehr) and northeastern AS (Karachi) during the SW monsoon. Higher Chl-a concentrations in the western and northern AS (Figure 4) suggest that upwelling is a key driver of Chl-a variability in these regions during the SW monsoon. Notably, the monthly Chl-a data for the southeastern AS and northern PG are not depicted in Figure 4. However, a prior study by Khan et al. (2019) reported elevated Chl-a levels in the southeastern AS during the SW monsoon, whereas the northern PG did not exhibit similar increases during this period; instead, higher Chl-a concentrations were noted during the NW monsoon. This discrepancy suggests that the effects of upwelling on Chl-a variability differ between the AS and PG.

[image: Four panels illustrate monthly upwelling indices for regions around the Arabian Sea and Persian Gulf. Panel A shows upwelling in the Western Arabian Sea at Duqm and Qishn, peaking in July. Panel B displays minimal upwelling in the Northern Arabian Sea at Gawada and Karachi. Panel C indicates moderate upwelling in the Eastern Arabian Sea at Mumbai and Kochi, peaking in July. Panel D shows varying upwelling in the Persian Gulf at Bandar Bushehr and significant decline at Abu Dhabi, bottoming in September. The data is represented with blue and red lines for different locations.]
Figure 8 | Time series of monthly averaged coastal upwelling indices from 2001 to 2019 for (A) Duqm and Qishn stations along the western AS coast, (B) Gawada and Karachi stations along the northern AS stations, (C) Mumbai and Kochi stations along the eastern AS stations, and (D) Bandar Busher and Abu Dhabi stations along the PG coast. Error bars in each plot represent one standard deviation.

We also observed that the timing of Chl-a peaks varies across different regions of the AS (Figure 4). A previous study by Jayaram et al. (2018) reported that the northern AS was more productive during the winter monsoon, while the southern coastal regions were less productive, and vice versa. Our findings refine this observation, indicating that the southwestern AS is more productive during the summer monsoon, with reduced productivity in the northern coastal regions, except for the northeastern area. Their study also identified intra-seasonal variability, with a primary productivity peak during the onset phase of the summer monsoon and a secondary peak during the withdrawal phase in the northern AS, in addition to a single dominant peak during the winter monsoon, based on Wavelet analysis. In contrast, our results show that the timing of Chl-a peaks varies across regions in both summer and winter in the northern AS. This regional variability aligns with the findings of Lévy et al. (2007), who similarly reported that the timing of peak productivity differs between regions within the northern AS, due to differences in local physical and oceanographic processes. These variations highlight the intricate relationship between large-scale monsoon patterns and local environmental conditions, showing that a detailed, region-specific analysis is essential for a complete understanding of Chl-a variability in this area.

Additionally, we examined the influence of SST on the spatiotemporal variability of Chl-a in the ASPG in our previous research. Khan et al. (2019) applied the DINEOF method to reconstruct monthly MODIS-Terra Chl-a and SST data from 2001 to 2017, revealing that the majority of the study area (96%) exhibited a significantly negative correlation between SST and Chl-a. Only a small portion (4%), including certain coastal areas, the PG, and parts of the southeastern AS, showed a significant positive correlation. This negative correlation is primarily driven by wind-induced upwelling, where cooler, nutrient-rich water is brought to the surface, resulting in higher Chl-a concentrations (Goes et al., 2005). Building on this, in our recent study (Khan et al., 2022), we utilized the same reconstructed MODIS-Terra Chl-a and SST datasets and found that regions with elevated Chl-a were associated with lower SST and strong Ekman transport, further validating the connection between upwelling and the negative correlation between Chl-a and SST. Our findings suggest that both SST and wind are key factors influencing the seasonal variability of Chl-a in the ASPG, with upwelling playing a critical role in regulating surface productivity in response to local wind patterns.




4.3 Influence of SST_A and wind_A trends on the Chl-a_A trend

Previous studies have revealed conflicting trends in Chl-a for the AS. Goes et al. (2005) reported a more than 350% increase in Chl-a off the Somali coast during the summer, attributed to the strengthening of southwestern monsoon winds. In contrast, Prasanna Kumar et al. (2010) observed a weak basin-wide increasing trend in the monthly Chl-a during September-October and the winter monsoon, but a decreasing trend during the summer monsoon from 1997 to 2007. They linked the Chl-a increase in September-October to dust-induced iron fertilization, which enhanced productivity when sufficient nitrate accumulated in the upper ocean. During winter, intensified evaporative cooling, driven by stronger winds, promoted convective mixing and the upward transport of nutrients from deeper layers, further supported by increased dust deposition, which together explained the Chl-a increase. Prakash et al. (2012) found an increasing Chl-a trend from 1997 to 2003, similar to Goes et al. (2005), but attributed it to a cold-core eddy in 2003, which enhanced Chl-a. However, from 2004 to 2010, they observed a decline in Chl-a off the Somali coast, suggesting that SLA, rather than SST or wind, were likely the main drivers. These studies highlight the spatial and temporal variability in Chl-a trends across the AS. Given the significant seasonal-to-interannual variability in this region, identifying long-term, climate-driven trends requires an extended dataset of at least a decade or more (McClain, 2009). Therefore, we used two decades of Chl-a data in this study. We also found a decreasing trend in the western AS (Figure 5A), consistent with Prakash et al. (2012).

Our results for the Persian Gulf align with previous studies, but with some differences. Moradi (2020) reported a mostly decreasing trend in annual Chl-a from 2002 to 2018 across the Persian Gulf, except for small areas in the southern and central regions, while SST showed an increasing trend throughout the Gulf, with the exception of the Strait of Hormuz. In contrast, we found non-significant trends in Chl-a in the central Persian Gulf and similarly non-significant trends in SST in the Strait of Hormuz (Figure 5B). Bordbar et al. (2024) observed an increasing SST trend in the entire Persian Gulf from 2003 to 2021, which differs slightly from our findings. This discrepancy could be attributed to differences in datasets or trend calculation methods. Regarding the correlation between Chl-a and SST, Bordbar et al. (2024) found an inverse relationship between SST and Chl-a throughout the Gulf, except in the southern region, which is consistent with our results (Figure 5C). Concerning surface winds, the northwesterly Shamal wind, prevalent year-round in the Persian Gulf (Perrone, 1979; Pous et al., 2013; Yu et al., 2016), has shown a positive trend over the past decades (Aboobacker and Shanas, 2018), consistent with the increasing wind trend observed at station Z7-S2 (Supplementary Table 2). Moreover, as Chl-a_A at Z7-S2 exhibited a decreasing trend (Supplementary Table 2), this led to a negative correlation between Chl-a_A and Wind_A at this station (Figure 5D).





5 Conclusion

In this study, we conducted a comprehensive analysis of the spatiotemporal variability and long-term trends of Chl-a across the ASPG using reconstructed MODIS monthly Chl-a and SST data from 2001 to 2019. The validation of the reconstructed dataset confirmed its high accuracy and reliability, ensuring the robustness of our findings. Our analysis revealed significant seasonal variability in Chl-a, with distinct regional differences. Generally, a pronounced Chl-a peak occurred in summer, followed by a secondary peak in winter, with the lowest levels observed during the transitional months. Chl-a concentrations were highest in the western and northeastern Arabian Sea. This seasonal pattern is primarily driven by the SW monsoon in summer and the NE monsoon in winter. Additionally, we observed regional variability in the timing of Chl-a peaks in both summer and winter, likely due to differences in local physical and oceanographic processes, such as wind patterns, vertical mixing, and nutrient availability.

Over the two decades from 2001 to 2019, Chl-a_A exhibited a significant decreasing trend along the coasts of the ASPG, with only small areas showing increasing trend in the southeastern AS and southern PG. At the regional level, an analysis of 21 stations identified significant Chl-a trends at four locations: Z3-S1, Z5-S2, and Z5-S3 in the western AS, and Z7-S2 in the southern PG. Correlation analysis revealed predominantly negative correlations between Chl-a_A and SST_A in the western AS, while correlations between Chl-a_A and Wind_A were positive in the western AS and negative in the southern PG. Significant correlations were found in specific cases: For Z5-S2, we observed a significant positive correlation between Chl-a_A and Wind_A throughout the study period and during the northeastern monsoon. For Z5-S3, significant negative correlations between Chl-a_A and SST_A were found over the entire study period, during the northeastern monsoon, and the transitional monsoons. Similarly, Z7-S2 exhibited significant negative correlations between Chl-a_A and SST_A over the entire period and during the southwestern monsoon. These three stations also displayed significant positive trends in both SST_A and Wind_A.

This research advances our understanding of the complex dynamics of marine ecosystems in the ASPG, shaped by both local physical processes and broader climate variability. Future studies should investigate additional factors, such as sea level anomalies (SLA), wind stress curl (curlτ), and the horizontal (u) and vertical (v) components of wind vectors, and their influence on Chl-a trends, as well as explore the underlying mechanisms driving these changes. Such research will deepen our knowledge of marine productivity trends in the ASPG and their broader ecological implications.
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The complex convergence of cold and warm ocean currents in the Nordic Seas provides suitable conditions for the formation and development of eddies. In the Marginal Ice Zones (MIZs), ice eddies contribute to the accelerated melting of surface sea ice by facilitating vertical heat transfer, which influences the evolution of the marginal ice zone and plays an indirect role in regulating global climate. In this paper, we employed high-resolution synthetic aperture radar (SAR) satellite imagery and proposed an oriented ice eddy detection network (OIEDNet) framework to conduct automated detection and spatiotemporal analysis of ice eddies in the Nordic Seas. Firstly, a high-quality RGB false-color imaging method was developed based on Sentinel-1 dual-polarization (HH+HV) Extra-Wide Swath (EW) mode products, effectively integrating denoising algorithms and image processing techniques. Secondly, an automatic ice eddy detection method based on oriented bounding boxes (OBB) was constructed to identify the ice eddy and output features such as horizontal scales, eddy centers and rotation angles. Finally, the characteristics of the detected ice eddies in the Nordic Seas during 2022-2023 were systematically analyzed. The results demonstrate that the proposed OIEDNet exhibits significant performance in ice eddy detection.
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1 Introduction

Ocean eddies are a pervasive oceanic phenomenon that plays a significant role in the transport and distribution of material, energy, heat, and freshwater in the global ocean (Chelton et al., 2011; Zhang et al., 2020). The observational advantages of SAR satellites, which operate in all weather conditions and at all times of the day, and offer high spatial resolution, make them an important data source for the refined study of oceanic eddies. SAR satellites are essential for the study of submesoscale eddies that remain unobservable by altimeter satellites. The remote sensing imaging mechanism of SAR ocean eddies is mainly influenced by two mechanisms (ZHENG et al., 2018; Fu and Holt, 1983; Karimova et al., 2012): the wave-current interaction mechanism and the sea surface floating tracer mechanism, such as bio-oil films and ice floes. In the MIZs, surface sea ice is driven by ocean eddies, exhibiting spiral motion and eddy characteristics (Manucharyan and Thompson, 2017). This paper refers to the ice-water mixing pattern formed by surface sea ice and ocean eddies as an ice eddy (Johannessen et al., 1987; Dumont et al., 2011). The melting of surface ice is facilitated by ice eddies through the vertical transfer of heat, which affects the development of MIZs and indirectly influences global climate regulation.

Data acquisition for ice eddies relies on both in situ instruments and satellite sensors. In general, in situ observations are characterized by their high quality and reliability and include moorings (Cassianides et al., 2021; von Appen et al., 2018), ice-tethered profilers (Toole et al., 2011), and under-ice gliders. However, due to the high cost of observations and poor weather conditions, the amount and coverage of in situ observational data may not adequately support experimental demands. Satellite sensors theoretically possess the capability to acquire vast amounts of data, supporting ice eddy detection and characterization tasks with high spatial resolution and wide-area global observation. In the Arctic Ocean, the detection of submesoscale and small-scale eddies using satellite altimetry data is challenging due to the limited spatial and temporal coverage of both altimetry and in situ data. The Rossby radius of deformation in the Arctic Ocean is significantly smaller than in mid- and low-latitude seas (Bashmachnikov et al., 2020; Nurser and Bacon, 2013). Due to the presence of sea ice, the complexity of using altimeter data in the Arctic Ocean renders it nearly unsuitable for detecting ice eddies. Observational costs and adverse weather limit the quantity and coverage of in situ data, which may be insufficient to meet experimental demands. In contrast, SAR satellites with high spatial resolution, full-time, and all-weather capability are better suited for detecting mesoscale and submesoscale oceanic phenomena in the Arctic Ocean (Kozlov et al., 2019). SAR satellites have become essential in in-depth studies of oceanic eddies, particularly submesoscale eddies challenging to detect with altimeter satellites. The unique advantages of SAR satellites are illustrated in Figure 1.

[image: Satellite image showing two labeled ice eddies in the Beaufort Sea, located among swirling sea ice patterns. The right side shows open water, with coordinates marked around the image border.]
Figure 1 | S1 EW HH-polarized SAR image, 6 August 2022,07:47 UTC.

The detection of eddies using SAR imagery has been the focus of numerous studies (Cassianides et al., 2021; Kozlov and Atadzhanova, 2021; Manucharyan and Thompson, 2017). However, most studies rely on manual visual interpretation methods for the detection of eddies from SAR images (Toole et al., 2011; Gupta and Thompson, 2022). The accumulation of massive SAR images has rendered it time-consuming and laborious to recognize ocean eddies solely through manual visual interpretation, highlighting the growing importance of automated ocean eddy detection. In recent years, several researchers have applied deep learning methods to ocean eddy detection on synthetic aperture radar (SAR) images (Zhang et al., 2023; Xia et al., 2022; Huang et al., 2017; Du et al., 2019b; Zhang et al., 2020). Du et al. (2019a) attempted to fuse a variety of features to automatically identify ocean eddies and proposed an eddy identification method based on adaptive weighted multi-feature fusion for SAR images. Considering the different importance of different features for eddy recognition, an adaptive weighted feature fusion method based on multiple kernel learning (MKL) is also proposed. Although MKL demonstrates excellent performance in addressing heterogeneous data, the method exhibits low detection efficiency. Du et al. (2019b) proposed DeepEddy, a deep learning-based ocean eddy detection method consisting of a hierarchical feature learning model and a simple Support Vector Machine (SVM) classifier. Eddy features are learned using two principal component analysis convolutional layers. Additionally, DeepEddy employs Spatial Pyramid Pooling (SPP), which addresses the complex structure and morphology of ocean eddies by fusing multi-scale features. However, this method fails to localize eddies on SAR images. Zhang et al. (2023) proposed EddyDet, a deep framework based on the Mask RCNN framework utilizing Convolutional Neural Networks for eddy detection on SAR images. Khachatrian et al. (2023) applied the YOLOv5 network to SAR ocean eddy detection and realized the automatic detection of ice eddies in the MIZs. Zi et al. (2024) proposed an EOLO network to enhance the feature fusion method by introducing a channel attention mechanism and employing an upsampling operator with a larger receptive field. Xia et al. (2022) constructed a context and edge association network (CEA-Net) based on the YOLOv3 backbone network for identifying ocean eddies in S1 interferometric wide (IW) swath mode data. While the automatic detection of eddies in SAR images using deep learning has shown promising results, current research emphasizes the detection of eddies in ice-free areas within mid- and low-latitude waters through the use of co-polarization SAR images. HH-polarized images make small-scale features more visible, while HV-polarization provided more stable large-scale features related to sea-ice morphology (Korosov and Rampal, 2017). The HV-polarized images were less sensitive to surface scattering from open water but were very sensitive to body scattering from sea ice. As a result, the contrast between sea ice and open water is higher in HV-polarized images, making ice eddy features more visible (Qiu and Li, 2022). The advantages of HH-polarized images in detecting ice eddies are due to its high sensitivity to surface scattering, its strong contrast with open water, and its high signal-to-noise ratio, particularly under low wind speed or rough surface conditions, where HH polarization can offer precise and reliable ice eddy detection results. Combining HH-polarization and HV-polarization features for ice eddy detection, compared to using a single polarization, is beneficial for reducing detection errors and improving accuracy.

Although the aforementioned methods have achieved superior results in eddy detection in SAR images, they all utilize the conventional horizontal bounding box (HBB) and still exhibit notable limitations. HBBs are not optimal for representing oceanic ice eddies with arbitrary orientations and large aspect ratios, as they provide only a rough location without accurate directional and scale information. Additionally, the HBB representation often includes excessive background or nearby object interference, which can lead to misidentification of ice eddies. Unlike HBBs, OBBs are capable of flexibly adjusting the orientation of detection boxes, allowing for the accurate enclosure of inclined or rotated ice eddies. This capability addresses issues related to redundant and overlapping detection boxes, thereby significantly reducing detection errors. The field of target detection has made remarkable progress over the past decade. Directional target detection, as an extended branch of target detection, has attracted significant attention due to its wide range of applications (Li et al., 2020; Liu et al., 2020; Han et al., 2021; Xia et al., 2018; Ma et al., 2018; Ding et al., 2019; Yang et al., 2019). Ice eddies have distinct rotational characteristics and directionality, and directional target detection can not only detect the position of eddies but also accurately estimate their rotational direction, which is highly significant for ocean dynamics research, marine environment monitoring, and marine resource development.

To address the above challenge, in this paper, we proposed OIEDNet, which is a oriented ice eddy detection network based on the Sentinel-1 dual-polarization data. The remainder of this paper is structured as follows. Section 2 provides an overview of the dataset. Section 3 describes the methodology employed in this study. Section 4 presents the experimental results and discussion. Finally, conclusions are outlined in Section 5.




2 Materials

We utilize Sentinel-1A Level-1 EW mode Ground Range Detected (GRD) product. The swath width for the EW Mode is approximately 400 km, with an incidence angle ranging from 18.9° to 47° and a pixel spacing of 40 m × 40 m. We selected 702 Sentinel-1 SAR images containing ice eddies in the marginal ice area of the Nordic Seas during January 2022-December 2023 as shown in Table 1 and Figure 2.

Table 1 | SAR data statistics for Nordic ice eddy detection (S1).


[image: Table comparing monthly data between 2022 and 2023. For 2022: Jan 18, Feb 13, Mar 12, Apr 28, May 39, Jun 41, Jul 48, Aug 35, Sept 33, Oct 46, Nov 45, Dec 28. For 2023: Jan 23, Feb 9, Mar 6, Apr 20, May 29, Jun 28, Jul 45, Aug 30, Sept 23, Oct 46, Nov 30, Dec 27.]
[image: Map illustrations of a region encompassing northeast Greenland and the surrounding seas. Panel (a) shows red, overlapping rectangular grids indicating survey areas. Panel (b) presents a colored heat map with a range from blue to red, depicting varying data intensity or concentration, likely bathymetric or oceanographic data. The scale bar at the bottom ranges from one to two hundred eight.]
Figure 2 | The distribution of experimental SAR images collected in the marginal ice zone of the Nordic Seas from January 2022 to December 2023. (A) Spatial coverage of SAR images. (B) The number of SAR images is represented by color intensity. The gray lines indicate the 200 m and 2000 m isobaths, derived from IBCAOv4.0.

The bathymetric product is the 200m resolution version 4.0 of the International Bathymetric Chart of the Arctic Ocean (IBCAOv4.0) (Jakobsson et al., 2020). The relationship between the intensity of ice eddy production and the background wind velocity was analyzed using 10m u and v hourly means from the ERA-Interim reanalysis. The validation was conducted using the Level 3 (L3) products from the Surface Water and Ocean Topography (SWOT) mission, the Mesoscale Eddy Trajectory Atlas Product (META3.1exp DT), the situ data collected from OpenMetBuoys-v2021 (OMBs) deployed in the marginal ice zone (Rabault et al., 2024) and drifters 15m drogue.




3 Methods

The pipeline of the proposed OIEDNet framework is depicted in Figure 3. From this figure, it is evident that the proposed framework consists of three components: the Polarization Combination Enhancement Module, the Neural Network Module, and the Feature Statistical Analysis Module.

[image: Flowchart illustrating a method for polarization data enhancement and neural network processing of satellite imagery. The left side shows steps for data preprocessing, angle correction, noise removal, and RGB false-color composite generation. The right side features a neural network with layers P1 to P5 for feature fusion and prediction, highlighting object bounding box calculations and feature statistics. A bar chart at the bottom right depicts the number of ice eddies by month. Arrows indicate the flow of data through the process.]
Figure 3 | The structure of the proposed OIEDNet framework.

Firstly, the Sentinel-1 satellite’s HH and HV dual-polarized ice eddy SAR images undergo data preprocessing, HH-polarized incidence angle correction (IAC), HV-polarized thermal noise removal (TNR), and dual-polarized false-color image synthesis to generate dual-polarized SAR false-color ice eddy images. Secondly, the ice eddy sample library is created using the data expansion method. Finally, based on the dual-polarized SAR false-color ice eddy images, a rotating frame ice eddy auto-detection model is developed and trained to achieve the automatic detection of ice eddies in the Nordic Seas MIZs.



3.1 Polarization combination enhancement method

The polarization combination enhancement method includes (1) data preprocessing; (2) HH-polarized IAC; (3) HV-polarized TNR; (4) polarized data enhancement, and (5) RGB false-color composite. Figure 4 illustrates the flowchart of the polarization combination enhancement process. Data preprocessing mainly involves orbit correction, radiometric calibration, filtering, conversion to dB values, and geocoding processing.

[image: Flowchart illustrating the process of creating an RGB false-color image from Sentinel-1 EW HV and HH polarization data. Steps include data preprocessing, angle correction, noise removal, and polarization enhancement. Channels for red, blue, and green layers are generated, combined using an RGB false-color composite, adjusted with gamma correction, and processed with contrast-limited adaptive histogram equalization to produce the final RGB false-color image.]
Figure 4 | Flowchart of the polarization combination enhancement method.

In the process of ice eddy detection, the variation in the backward scattering coefficient caused by changes in the incidence angle may introduce significant errors, necessitating the correction of the incidence angle for HH-polarized data. In this study, the IAC algorithm (Qiu and Li, 2022; Li et al., 2020) is utilized, and the calculation formula is presented in Equation 1.

[image: The equation shows \(\sigma = \sigma^0 + 0.200 \times (\theta - \theta_0)\), labeled as equation (1).]

where σ is the corrected backward scattering coefficient (in dB), [image: A symbol representing the male gender with a superscript zero at the top right.]  is the backward scattering coefficient before correction, θ is the incidence angle of the pixel, and [image: Greek letter theta with a subscript zero.]  is the corrected standard incidence angle, which is taken as 34.5°. Figure 5D illustrates the effects following the correction of the HH polarization incidence angle.

[image: Four grayscale images labeled (a), (b), (c), and (d), depicting different stages of image processing on geographical data. Image (a) shows a satellite view with visual artifacts. Image (b) displays a gradient pattern, possibly for calibration. Image (c) presents a partially corrected view with reduced artifacts. Image (d) shows a clear, corrected satellite image with visible geographical features and swirling patterns. Each image is bordered by a grid with longitude and latitude markings.]
Figure 5 | Effect of HV TNR and HH IAC. (A) Original HV polarized image. (B)The thermal noise in HV polarized images. (C) HV polarized image after TNR, (D) HH polarized image after IAC (S1 EW image taken on 1 November 2023 at 08:21:44 UTC).

In Sentinel-1 EW-mode SAR images that are strongly affected by scallop stripe noise in the azimuth direction and by noise gradients in the distance direction, especially in HV-polarized images, thermal noise is particularly prominent as displayed in Figures 5A, B. Although ESA provides a standard method of noise vector correction, the effect of residual noise cannot be ignored due to the narrow distribution of HV polarization backscatter.

The denoising algorithm (Park et al., 2017; Sun and Li, 2020) was improved for the removal of thermal noise. The average noise power was added to the denoised results. This adjustment enabled the conversion of noise power from a linear scale to a logarithmic scale (dB) sigma zero conversion, ensuring that these pixels did not become invalid values. By appropriately scaling and balancing the noise vectors given by ESA, the algorithm can approximate the actual noise values as much as possible by using the azimuthal antenna element pattern in the azimuthal direction, so that the effects of the scallop stripe and the noise gradient in the distance direction can be effectively eliminated. The specific processing steps are as follows.

To eliminate the noise step phenomenon between sub-bands, it can be assumed that the denoising process model satisfies a linear relationship. It is calculated using Equation 2.

[image: The image shows a mathematical equation labeled as equation (2). It is expressed as s(k) equals sigma underscore o S subscript o_N minus a quantity that includes K subscript Kk, comma 1 times G times theta subscript o_N plus K subscript o,poly,N.]

where [image: The equation "s(k)" is shown.]  is the denoised [image: Symbol of a circle with an arrow pointing diagonally outward to the top right, often representing the male gender.]  value. [image: Mathematical symbol representing \(\sigma^0_{\text{SN}}\), which may indicate a specific notation or parameter in a scientific context.]  is the uncorrected original [image: Mathematical notation showing the symbol sigma raised to the power of zero.]  value. [image: Mathematical notation showing the standard deviation symbol, a lowercase sigma, with a subscript "0" and "N", indicating a specific standard deviation calculation.]  is the [image: Mathematical notation showing the standard deviation symbol, sigma (\( \sigma \)), raised to the power of zero.]  calculated by bilinear interpolation using the thermal noise vector provided by ESA. [image: Mathematical notation of \( K_{\text{rs},n} \).]  is the optimal noise scaling factor. [image: Mathematical notation showing the symbol \( K^{0}_{Pb,n} \).]  is the interstrip noise power balance factor. n is the number of sub-bands, n = 1, 2, 3, 4, 5. [image: The formula \( K_{ns,n} \) is displayed, indicating a subscript notation used in mathematical expressions or equations.]  can be obtained by least squares solution using a large amount of HV polarized data. [image: Mathematical notation displaying \( K_{pb,n}^{0} \).]  can be calculated using Equation 3.

[image: Mathematical equation showing \( K_{p_{0,t}}^0 = (\alpha_{n-1,i} + \beta_{n-1}) - (\alpha_{i} + \beta_{n}) \) labeled as equation (3).]

where [image: Lowercase Greek letter alpha with a subscript n.]  and [image: The image shows the Greek letter beta (β) with a subscript "n".]  are the slopes and intercepts, respectively, of the linear models for the different sub-strips. i is the number of image elements in the range direction at the boundary between the strips n = 2, 3, 4, 5. Since there are only four interstrip boundaries. [image: Mathematical notation depicting \( K_{pb,1}^{0} \).]  is set to 0.

When the original image is subtracted from the thermal noise acquired using the described method, some image element points become negative. To eliminate the effect of negative noise power, noise compensation is required. By appropriately scaling and balancing the noise vectors provided by ESA, the algorithm can closely approximate the actual noise values using the azimuthal antenna element pattern, effectively eliminating the effects of scallop stripes and noise gradients in the range direction.

First, the Signal-Noise Ratio (SNR) is defined as the ratio of the [image: A small, stylized symbol resembling a male gender sign with an additional superscript zero.]  value [image: The notation represents a mathematical expression in parenthesis, featuring the subscript "zero" attached to the variable "s."]  after Gaussian filtering to the noise equivalent sigma zero (NESZ). The SNR is calculated using Equation 4.

[image: SNR equals sigma zero divided by NESZ, labeled as equation four.]

Subsequently, further calculations were conducted to obtain the power compensated using Equation 5.

[image: Mathematical equation labeled as equation (5). The equation is: s subscript 0 equal to fraction with numerator weight times s subscript 0 g plus SNR times s subscript 0 and denominator weight plus SNR, followed by plus s subscript 0 offset.]

where [image: Mathematical notation showing "s" with a subscript of "zero, zero".]  is the residual noise power compensated [image: Symbol of the Mars gender sign with a superscript zero next to it.] . [image: Mathematical notation showing the letter "s" with a subscript zero followed by the word "offset".]  is the noise field compensation value, which can be taken as the average value of the reconstructed noise field.

Finally, the HV polarization grayscale image with thermal noise removed can be obtained. Figure 5C illustrates the effects after the removal of thermal noise from the HV polarization.

In this paper, a high-quality dual-polarization SAR RGB false-color ice eddy image production method is proposed, compositing HH and HV polarizations into a single false-color image. Since the ice eddy information in the Sentinel-1 EW model is primarily contained in the HH-polarized data, the HH-polarized image is used for the blue channel and the HV-polarized image for the red channel. To optimize the visual quality, the square root is applied to the HH and HV channels, with a slight offset added to mitigate the effect of grain noise on the data. The calculation formula is presented in Equation 6 and Equation 7.

[image: \( HH_B = \sqrt{HH + 0.002} \). Equation number six.]

[image: Equation labeled as number 7. HV subscript R equals the square root of HV plus 0.002.]

The green channel image is produced by combining the offset-processed HH and HV polarization data, as shown Equation 8.

[image: Equation labeled as eight: G equals HV subscript R times the quantity two times HH subscript B plus HV subscript R times the quantity one minus two times HH subscript B.]

Finally, the SAR image was enhanced using SAR image stretching and contrast-limited adaptive histogram equalization (CLAHE). Figure 6 illustrates a comparison the RGB false color images before and after denoising.

[image: Four satellite images labeled (a), (b), (c), and (d) show a coastal region. Each image features swirling patterns of land and water with varying color contrasts, including shades of blue and brown. The images are bordered with latitude and longitude markings, indicating changes or variations in the landscape across different conditions or times.]
Figure 6 | Comparison of the RGB false-color images before and after denoising. A comparison of the RGB false-color images before and after denoising is presented. (A, C) represent the RGB images prior to denoising, while (B, D) represent the RGB images following denoising. (A, B) correspond to the S1 EW image acquired on 28th September 2023 at 08:03:22 UTC, while Figures (C, D) correspond to the data acquired on 1st November 2023 at 08:21:44 UTC.

The data expansion of 702 dual-polarized false-color ice eddy images was achieved through noise perturbation transformations, rotations (90°, 180°, 270°), and up-down flip transformations, resulting in dual-polarized ice eddy samples. Eddies that rotate clockwise in the northern hemisphere are referred to as anticyclonic eddies, while those that rotate counterclockwise are referred to as cyclonic eddies. Figure 7 illustrates examples of anticyclonic and cyclonic ice eddies.

[image: Six satellite images depict swirling ocean patterns caused by algal blooms and ocean currents. Each square image, labeled from (a) to (f), shows distinct intricate flowing formations of lighter material against a dark blue ocean backdrop, highlighting natural phenomena.]
Figure 7 | Examples of ice eddies photographed by S1. (A–C) are anticyclonic eddies and (D–F) are cyclonic eddies.




3.2 Neural network

In this paper, we propose the neural network component of OIEDNet, a multiscale rotating frame model designed for the automatic detection of ice eddies. The model structure is illustrated in Figure 8. Traditional target detection algorithms typically utilize HBB, assuming that object positions in the image are calculated relative to the image center. However, this assumption is not always accurate, particularly for objects with distinct directional features, as the HBB often fails to accurately locate the true position of such objects. OIEDNet addresses this limitation by introducing OBB, which allow bounding boxes to be positioned at any arbitrary angle, making it more adaptable for detecting target objects with various orientations.

[image: Flowchart of an object detection model architecture with three sections. The left section illustrates the backbone with convolutional layers and a C2f module for feature extraction. The middle shows multi-scale feature fusion leading to P3, P4, and P5 stages. The right depicts a decoupled head focusing on bounding box, angle, and classification losses with an example map and chart showing ice eddies over months.]
Figure 8 | The detailed structure of the neural network part of OIEDNet.



3.2.1 Feature spatial pyramid module

The backbone of OIEDNet consists of the CSPDarknet53 feature extractor, which is followed by a C2f module. The C2f module is succeeded by two segmentation heads designed to predict the semantic segmentation masks of the input images. Submesoscale ice eddies (approximately 0.1 to 10 km) and mesoscale ice eddies (approximately 10 to 100 km) can be detected by SAR satellites. To address the wide range of ice eddy target scales in SAR images, a feature fusion module is integrated into CSPDarknet53 to fuse feature maps of varying scales, enhancing the detection of ice eddies of different sizes. OIEDNet incorporates the Spatial Pyramid Pooling Faster (SPPF) module in the feature-enhanced Neck layer, which is optimized from the original SPP module structure. To obtain high-level semantic information from multiscale features and further improve detection accuracy and speed, The SPPF module is inserted between the convolutional and fully connected layers. The SPPF module integrates multiscale local feature information, providing the network with a global perspective and facilitating the extraction of rich multiscale feature representations, as illustrated in Figure 9. The original SPP module generates a final feature map by connecting three feature maps processed in parallel with 5 × 5, 9 × 9, and 13 × 13 max pooling kernels. However, this approach is time-intensive. To improve operational efficiency and detection speed, the SPPF module optimizes this process by merging the feature map processed by a mixed layer (convolutional layer + BatchNorm layer + SiLU layer) with three feature maps derived from a single 5 × 5 max pooling operation. This concatenation enables efficient extraction of the final feature map.

[image: Diagram of an SPPF module featuring MaxPool2d layers with kernel size 5, stride 1, and padding 2. A ConvBNSiLU layer with kernel size 1, stride 1, padding 0, and 512 channels is connected to a Concat layer. The output is processed by another ConvBNSiLU layer with 1024 channels. Arrows indicate data flow.]
Figure 9 | The structure of the Spatial Pyramid Pooling Faster module.

Traditional Feature Pyramid Networks (FPNs) enhance the representation of low-level features by transferring high-level features downwards through a top-down pathway (Lin et al., 2017). Nonetheless, traditional FPNs face challenges in effectively managing scale variations. To compensate for this deficiency, OIEDNet introduces the Progressive Asymmetric Feature Pyramid Network (PAFPN) structure (Liu et al., 2018), which enhances the performance of the target detection task by fusing features from neighboring levels and incorporating higher-level features into the fusion process in an incremental manner, enabling direct interaction between non-neighboring levels. PAFPN is applied between a feature extraction network (backbone) and a neck network (neck module). Specifically, different levels of feature maps are first extracted by the backbone, and then feature fusion is performed using PAFPN. The fused feature maps are fed into OIEDNet’s head network (head module) for object classification and bounding box regression. PAFPN incorporates the Path Aggregation Network (PAN) into the Feature Pyramid Network (FPN) by employing a bottom-to-top fusion approach. OIEDNet replaces the Context Enhancement Module (C3) in PAN with a Context Enhancement Module with feature fusion (C2f) and removes the 1×1 convolution prior to upsampling. OIEDNet directly inputs the feature output from various stages of the backbone into the upsampling operation. The PAFPN network structure enables the construction of multi-scale feature maps from a single image, ensuring that each layer of the pyramid produces feature maps with robust semantic information. This approach provides richer spatial detail and high-level semantic features for detecting marine ice eddies, which exhibit complex structures, varying scales, and rapid, continuous changes.




3.2.2 Rotation bounding box

Five variables [image: Text showing a set of parameters: \(cx, cy, w, h, \theta\).]  are used to define the bounding box with an arbitrary orientation. As shown in Figure 10, cx and cy represent the coordinates of the center point, and the rotation angle θ indicates the angle between the horizontal axis and the first edge of the rectangle after counterclockwise rotation. Here, the first edge defines the width of the bounding box, while the other edge defines its height, with the angle ranging from -90° to 0°.

[image: The image consists of two parts. The left side shows a satellite image with a red circle and green square overlaid, intersected by yellow arrows pointing outward from the center. The right side is a diagram featuring a red circle inside a green diamond within a dashed blue square, labeled with points A, B, C, and D. The circle's center is marked with coordinates (cx, cy) and lines denoting width (w), height (h), and angle (θ).]
Figure 10 | Oriented bounding boxes(green solid lines).The red ellipse represents the eddy edge, while yellow arrows show the distance from the eddy center to any point on the ellipse. A red dot marks the center of the ice eddy.





3.3 Feature statistical analysis module

Based on the obtained location information, the center and diameter of the ice eddy in the predicted box can be determined, laying the foundation for subsequent ice eddy studies. The center of the tangent ellipse inside the rotating frame was used as the eddy center, and the average distance from the center of the ice eddy to all points on the fitted ellipse is used as the radius of the ice eddy. According to the ice eddy automatic detection model, the rotating frame parameters [image: Text displaying the formula: (cx, cy, w, h, θ), indicating parameters such as center coordinates (cx, cy), width (w), height (h), and rotation angle (θ).]  of the ice eddy are obtained. Using the eddy center [image: Text showing mathematical coordinates "(cx, cy)".]  as the starting point, the coordinate positions of the four vertices A,B,C,D can be calculated.

During the data preprocessing stage, SAR images are geocoded using the WGS1984 standard, transforming pixel coordinates (rows and columns) into geographic coordinates (longitude and latitude). Consequently, it becomes possible to calculate the location of the ice eddy center and the eddy diameter. The Feature Statistical Analysis Module primarily facilitates the extraction of ice eddy center and diameter information, and performs statistical analyses to produce thematic maps of ice eddies for any time period and any region. These maps depict the spatial distribution of ice eddies and related scale histograms (see Chapter 4.4). These analyses support researchers in examining the generative mechanisms and evolutionary processes of ice eddies.





4 Experimental results and discussion



4.1 Experimental environment

The experimental setup configuration is provided in Table 2. Computation was performed on GPUs with 16 multithreads, and the training data share was configured to 0.75. The RGB ice eddy training set and S1 annotations were employed for training, and the model’s parameters were fine-tuned based on experience and experimental results to attain optimal performance.

Table 2 | Experimental setup configuration.


[image: Table displaying server specifications. Server type: Bare Metal (GPU). Configuration includes an NVIDIA TESLA-A-1002 GPU card with 32 gigabytes per card and memory of 1024 gigabytes. Single memory module size is 128 gigabytes. Operating system: Kunpeng kC1.]
YOLOX is an open-source high-performance detector that builds upon YOLOv3 by introducing decoupled heads, data augmentation, anchor-free detection, and the SimOTA sample matching method, thus constructing an end-to-end anchor-free object detection framework (Zheng et al., 2021). YOLOv8 is a real-time object detection model that utilizes advanced techniques such as anchor-free detection and multi-scale feature fusion within a HBB framework (Varghese and Sambath, 2024). We conduct comparative experiments on OIEDNet, YOLOX and YOLOv8. In addition, we conduct multi-model comparison experiments to evaluate performance before and after denoising, and between single polarization and dual polarization.

The precision evaluation of the model is based on the validation set, and the evaluation metrics include the precision rate (P), the recall rate (R) and the F1-Score (F1), as shown in Equations 9–11.

[image: Formula for precision: P equals TP divided by the sum of TP and FP, where TP is true positives and FP is false positives. Equation number nine.]

[image: Equation for recall (R) shown as R equals TP divided by the sum of TP and FN, where TP stands for true positives and FN stands for false negatives. Equation number ten.]

[image: F1 score formula: F1 equals two times the product of precision P and recall R, divided by the sum of P and R.]

TP denotes the number of correctly detected ice eddies, FP denotes the number of false positive detections of ice eddies, and FN denotes the number of missed ice eddies.




4.2 Comparison

The results of OIEDNet,YOLOX and YOLOv8 were compared using the same test set, as presented in Table 3. Both YOLOv8 and YOLOX are traditional HBB detection models. The experimental results indicate that the OIEDNet model exhibits a precision of 94.40% and a recall of 93.65%, while YOLOv8 and YOLOX exhibit precisions of 93.50% and 87.90%, as well as recalls of 92.00% and 86.51%. In comparison to YOLOv8 and YOLOX, the OIEDNet model demonstrates superior performance in detecting dense eddy regions. The rotational detection of OIEDNet more accurately detects eddies with irregular shapes and changing directions, and the inspection frame fits the eddies more closely, significantly reducing the redundancy of the horizontal inspection frame, as shown in Figure 11. For eddies with large differences in scales and similar locations, there is obvious overlapping of inspection frames in horizontal detection, while rotational detection effectively avoids overlapping of inspection frames (Figure 11B). The interaction between ocean circulation and ocean currents is accompanied by the splitting and fusion of ocean eddies, leading to the multinucleated structure of ice eddies, which the rotational detection method can detect more accurately (Figure 11D). The IEDNet model reduces the leakage and false alarms of ice eddies to a certain extent. The OIEDNet model has obvious advantages in the precision and recall of ice eddy detection, and it can effectively detect submesoscale and mesoscale ice eddies.

Table 3 | Accuracy evaluation of different models.


[image: Comparison table of models OIEDNet, YOLOv8, and YOLOX. It outlines the use of data types HH IAC, HV TNR, HH, HV, and RGB. Performance metrics P, R, and F1 are listed, with OIEDNet showing the highest F1 score of 0.9402. Annotations clarify data usage, with "✓" indicating data utilization and "×" indicating non-utilization.]
[image: Satellite images showing oceanic and coastal areas with swirling patterns and highlighted sections in various colors. Each panel, labeled (a) through (d), displays distinct geographic features and color-coded markings, possibly indicating data points or phenomena of interest, set against varying backgrounds of land and sea.]
Figure 11 | The comparison of ice eddy detection results between OIEDNet and YOLOv8 is shown in (A–D) where the red HBB is used to represent YOLOv8 detection results, and the green OBB is used to represent OIEDNet detection results.

This study evaluates the enhancement effects of IAC, TNR, and dual-polarization RGB false color synthesis in the OIEDNet model. Comparison of four sets of ice eddy detection results for the same OIEDNet model (Figure 12). Before and after the denoising of dual-polarized false-color images, the detection accuracy increases from 88.71% to 94.40%, reflecting an improvement of 5.69%. In contrast, the detection accuracy of ice eddies in HV-polarized images without TNR is 85.04%, while the detection accuracy in HH-polarized images without IAC is 89.06%. This indicates that thermal noise significantly reduces the detection accuracy of ice eddies, whereas the incidence angle has a relatively minor effect on detection accuracy. The detection performance of the proposed model shows significant improvement with the adoption of the Polarization Combination Enhancement, resulting in an approximate 8.65% increase in the F1 score. This enhancement effectively boosts detection accuracy in noise-heavy environments.

[image: Four satellite images of a coastal region, each labeled a, b, c, and d. Images a and b are grayscale with orange boxes highlighting specific areas. Image b has vertical lines on the right side. Images c and d are in false color, with image d having green outlines on the regions of interest. Each image shows geographic coordinates on the borders.]
Figure 12 | Comparison of four sets of ice eddy detection results using the OIEDNet model: (A) detection results without HH-polarized IAC, (B) detection results without HV-polarized thermal noise reduction, (C) detection results of dual-polarized RGB images before denoising, and (D) detection results of dual-polarized RGB images after denoising.




4.3 Validation

Altimeters and SWOT satellites rely on radar echo signals for measuring sea surface height. However, sea ice leads to attenuation and scattering of radar signals, rendering the echo signals unstable, which makes it difficult to obtain accurate sea surface height data and, therefore, makes it unable to accurately detect ice eddies, as shown in Figures 13, 14. SAR, on the other hand, can clearly detect ice eddies in this environment due to its high-resolution imaging and penetration capabilities. Mesoscale eddies can be identified from sea level height data using altimetry, but the daily mesoscale eddy dataset is identified by measuring different time trajectories, which results in low spatial and temporal resolution. Figures 13B, 14B shows a comparison of eddies identified by OIEDNet and altimeters. It is clear that SAR is able to detect more submesoscale ice eddies and that SAR is even more advantageous in detecting high-latitude ice eddies.

[image: Satellite images show a coastal region with two panels. The left panel (a) features color-coded bands with arrow vectors and a legend indicating sea surface height anomalies. The right panel (b) displays annotated areas with green squares and yellow circles on the coast. Both panels include latitude and longitude markings.]
Figure 13 | Comparison of the ice eddy identification results from OIEDNet (green) with those obtained from SWOT, drifting buoys(yellow), and the mesoscale eddy track atlas product META3.1exp DT (red). (A, B) data time are S1: 2023-10-15 08:13:37 UTC. SWOT: 2023-10-15 03:43:56 UTC, META3.1exp DT: 2023-10-15 UTC. drifting buoys(5801987): from 2023-10-1 to 2023-10-15 UTC. The orange arrow in (B) indicates the trajectory of the drifting buoy.

[image: Two satellite images of a coastal region illustrate sea surface height anomalies. Image (a) includes color-coded height data ranging from low to high, indicated by a gradient bar. Image (b) highlights specific whirlwind patterns with green and red outlines. Both images show geographical coordinates on their borders.]
Figure 14 | Comparison of the ice eddy identification results from OIEDNet (green) with those obtained from SWOT and the mesoscale eddy track atlas product META3.1exp DT (red). (A, B) data time are S1: 2023-11-03 08:05:21 UTC. SWOT: 2023-11-03 16:46:19 UTC, META3.1exp DT: 2023-11-03 UTC.

The ice eddies detected by OIEDNet were compared and validated against in situ data collected from OpenMetBuoys-v2021 (OMBs) deployed in the marginal ice zone. Figure 15 illustrates the movement trajectories of two ice buoys in the marginal ice zone around Svalbard from August 18, 2022, to August 26, 2022. Red triangles are used to denote the starting positions of the buoys, while pentagrams indicate the ending positions of their trajectories. The ice buoy trajectories exhibit a counterclockwise rotation consistent with the direction of the ice eddy, indicating a cyclonic ice eddy.

[image: Satellite image depicting swirling sea ice patterns in the Fram Strait, marked by colored lines indicating drift paths. A green border frames the central area with geographical coordinates.]
Figure 15 | Comparison of the ice eddy identification results from OIEDNet (green) with those obtained from OMBs (red and yellow). The acquisition time for Sentinel-1 occurred on August 23, 2022, at 07:53:58 UTC. OMBs data collection spanned from August 18, 2022, to August 26, 2022, between 07:53:58 and 07:55:02 UTC. Red triangles are used to denote the starting positions of the buoys, while pentagrams indicate the ending positions of their trajectories.




4.4 Spatial and temporal distribution of ice eddies

Using the OIEDNet ice eddy detection framework, ice eddy identification and scale information extraction were performed on 702 SAR images containing ice eddies in the Nordic Seas from January 2022 to December 2023. To ensure the accuracy of the statistical feature information of the ice eddies, the detected ice eddy types were annotated using a manual visual inspection method. A total of 2283 ice eddies were identified, including 1724 cyclonic eddies (CEs) and 559 anticyclonic eddies (AEs). The number of cyclonic ice eddies is 3.08 times that of anticyclonic eddies, which may be related to the mechanism of anticyclonic eddy generation and the interaction between the two (McWilliams, 2016).

The spatial density distribution of ice eddies was calculated using a 0.1° × 0.1° grid, as shown in Figure 16A, revealing that the densest distribution of ice eddies is located in the north-central Greenland Sea, which exhibits a high number of both cyclonic and anticyclonic ice eddies. The monthly variation is shown in Figure 16B, indicating that Nordic Seas ice eddies are present throughout the year, with two peaks in the total number of ice eddies in May and October, and a low in March. Overall, May to November is the period when ice eddies are most frequent. The formation of ice eddies in the Nordic Seas results from a combination of dynamical and thermal forces (Perovich and Jones, 2014). Spatially, areas of high ice eddy occurrence are often closely linked to the Arctic Current, with the East Greenland Cold Current flowing along the east coast of Greenland. Temporally, with the onset of the Arctic summer polar day, sea surface temperatures (SSTs) rise, and glacier melting causes the expansion of marginal ice areas, leading to high ice eddy occurrence. In contrast, the Nordic Seas ice cover decreases rapidly to reach a minimum at the beginning of October, after which the ice area starts to expand rapidly. Thus, the thermodynamic factors in the Nordic Seas are more complex in October, which is conducive to the formation of ice eddies.

[image: Map and bar graph depicting oceanographic data. (a) Map of the Arctic region shows ice eddy locations in varying colors from blue to red, indicating density. (b) Stacked bar graph shows the monthly distribution of cyclonic eddies (CE) and anticyclonic eddies (AE) from January to December. CE is denoted in blue and AE in orange, with peaks in months 5 and 10.]
Figure 16 | Spatial distribution of ice eddies with histograms of months. (A) The spatial distribution of ice eddy frequency (gray lines represent the 200 m and 2000 m bathymetry lines of IBCAOv4.0). (B) Monthly variation in the number of ice eddies detected during 2022-2023.

Figure 17A shows that the sizes of ice eddies in the Nordic Seas are primarily concentrated in the mesoscale and submesoscale intervals. The diameters of these eddies are mostly in the range of 10-100 km. The diameter of cyclonic ice eddies is mainly between 10-60 km, while the diameter of anticyclonic ice eddies is mostly between 30-70 km, indicating that anticyclonic ice eddies tend to be larger than cyclonic ice eddies. Large ice eddies are primarily located in the north-central Greenland Sea.

[image: Two histograms compare the number of ice eddies by type: CE (blue) and AE (orange). Panel (a) shows the distribution by ice eddy diameter in kilometers, with most CE eddies between 0 and 40 kilometers. Panel (b) depicts distribution by wind velocity in meters per second, where CE eddies peak around 3 meters per second. Both panels indicate a higher frequency of CE eddies compared to AE eddies across measured ranges.]
Figure 17 | Histogram distributions of ice eddy number, ice eddy diameter, and wind velocity. (A) Distributions of the number and diameter of ice eddies, with cyclones shown in blue and anticyclones in orange. (B) Distributions of the number of ice eddies and wind velocity (m/s), based on data from the ERA5 Interim Reanalysis.

From Figure 17B, we observe that the proposed model maintains detection performance despite increasing wind velocity. Although the number of ice eddy detections decreases with higher wind speeds, this does not indicate a decline in model performance; instead, it reflects the inherent difficulty of eddy formation in areas with strong winds, resulting in a reduced number of eddies. The lack of a sharp downward trend in detections further illustrates the robustness of the proposed model across varying wind speeds. Regarding wind velocity, 79.7% of the detected ice eddies formed under low wind conditions of 1-4 m/s, while about 20.3% occurred under medium wind conditions. Similarly, from Figure 18, as ice concentration increases, the number of ice eddies decreases. The rate of detected ice eddies shows a gradual decline, which further demonstrates the robustness of the proposed model under varying ice concentrations.

[image: Bar and line graph illustrating the relationship between ice concentration and the number and diameter of ice eddies. The x-axis represents ice concentration in percentages. The left y-axis shows the number of ice eddies, with blue bars for CE and orange bars for AE. The right y-axis indicates the eddy diameter in kilometers, with blue and orange lines representing CE and AE eddy diameters, respectively. CE lines show a moderate increase, while AE lines show a higher value throughout.]
Figure 18 | Distribution of the number of ice eddies and their average diameter (km) across ice concentration (%) for cyclonic (blue) and anticyclonic (orange) ice eddies.





5 Conclusions

To accurately detect MIZs ice eddies, denoising algorithms and image processing techniques are combined to propose a high-quality RGB false-color image production method and to create a dual-polarization synthetic aperture radar false-color ice eddy dataset. Simultaneously, the OIEDNet ice eddy detection model was developed and trained, achieving a precision rate of 94.4% and a recall rate of 93.65%, highlighting significant advantages in ice eddy detection. The OIEDNet effectively detects dual-polarized SAR ice eddies with a small sample size, identifying Submesoscale and mesoscale ice eddies in SAR images quickly and accurately. The experimental results demonstrate that the ice eddies detected in SAR images are not as large as previously indicated. The experimental results show that the OIEDNet model excels at detecting dense eddy regions in ice eddy detection. The rotating detection frame of OIEDNet better fits the eddy, effectively avoiding overlap. The interaction between ocean circulation and currents involves the splitting and fusion of ocean eddies, leading to the multinuclear structure of ice eddies, which can be more accurately detected by the rotational detection method. The OIEDNet also significantly reduces the leakage of ice eddies and false detections, especially in dense eddy regions. The OIEDNet not only accurately detects ice eddies in the Arctic MIZs but also addresses the traditional HBB’s limitations in identifying ice eddies of different scales and forms. This work lays a solid foundation for future research on the automatic detection and quantification of ice eddies.

Despite the OIEDNet model’s high performance in ice eddy detection, certain limitations persist. For instance, minor changes in the rotation angle can lead to significant alterations in the detection frame, increasing instability and difficulty in the detection and regression process. Exploring new angle representations could reduce ambiguity. Furthermore, we will incorporate multi-polarization and multi-frequency SAR images for model training to enhance the accuracy of ice eddy detection. The identification of ice eddy drift using Synthetic Aperture Radar (SAR) images holds significant potential for enhancing the understanding of sea ice eddy dynamics.
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Sea fog is a severe marine environmental disaster that significantly threatens the safety of maritime transportation. It is a major environmental factor contributing to ship collisions. The Himawari-8 satellite’s remote sensing capabilities effectively bridge the spatial and temporal gaps in data from traditional meteorological stations for sea fog detection. Therefore, the study of the influence of sea fog on ship collisions becomes feasible and is highly significant. To investigate the spatial and temporal effects of sea fog on vessel near-miss collisions, this paper proposes a general-purpose framework for analyzing the spatial and temporal correlations between satellite-derived large-scale sea fog using a machine learning model and the near-miss collisions detected by the automatic identification system through the Vessel Conflict Ranking Operator. First, sea fog-sensitive bands from the Himawari-8 satellite, combined with the Normalized Difference Snow Index (NDSI), are chosen as features, and an SVM model is employed for sea fog detection. Second, the geographically weighted regression model investigates spatial variations in the correlation between sea fog and near-miss collisions. Third, we perform the analysis for monthly time series data to investigate the within-year seasonal dynamics and fluctuations. The proposed framework is implemented in a case study using the Bohai Sea as an example. It shows that in large harbor areas with high ship density (such as Tangshan Port and Tianjin Port), sea fog contributes significantly to near-miss collisions, with local regression coefficients greater than 0.4. While its impact is less severe in the central Bohai Sea due to the open waters. Temporally, the contribution of sea fog to near-miss collisions is more pronounced in fall and winter, while it is lowest in summer. This study sheds light on how the spatial and temporal patterns of sea fog, derived from satellite remote sensing data, contribute to the risk of near-miss collisions, which may help in navigational decisions to reduce the risk of ship collisions.
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1 Introduction

Sea fog is a frequent and dangerous meteorological phenomenon, significantly threatening marine activity safety. This phenomenon drastically reduces the horizontal visibility of the sea surface to less than one kilometer (Gultepe et al., 2007). Unlike land-based scenarios, reduced visibility at sea poses a heightened risk due to the intricate nature of maritime navigation (Sim and Im, 2023), substantially increasing the likelihood of ship collisions and thus endangering lives, property, and the environment. Ship collisions, as one of the primary maritime accidents, can inflict substantial eco-nomic losses and adverse social impacts. Using non-accident information to understand maritime transportation safety is an effective strategy. This often involves identifying near-miss collision events from Automatic Identification System (AIS) data. Since near-miss collisions occur more frequently than actual accidents, near-miss collisions can provide richer insights for maritime traffic risk analysis than actual accident data (Zhou et al., 2021). Due to sea fog on 22 May 1922, the Peninsular & Oriental Steam Navigation Company’s Egypt collided with the French cargo ship Seine en route from London to Bombay, India. The ship sank, killing 86 passengers and crew members. Because sea fog occurs geographically heterogeneously and temporally seasonally, it is crucial to analyze how it affects near-miss collisions over time and space.

In 2000, the International Maritime Organization (IMO) adopted a new requirement for all ships to carry an Automatic Identification System (AIS) that automatically communicates information among ships and coastal authorities. The AIS system transmits the ship’s static, dynamic, and voyage information to the surrounding ships and AIS base stations via a specific Very High Frequency (VHF). Because of the rich positional and temporal information provided by AIS, it has become a valuable tool in maritime studies, including maritime traffic (Harun-Al-Rashid et al., 2022; Yang et al., 2024; Zhang et al., 2019), marine observing (Almunia et al., 2021; Wright et al., 2019), and ship collisions (Cai et al., 2021; Liu et al., 2023; Zhang et al., 2016), etc. The AIS is popular because of its ability to conduct in-depth studies of ship near-miss collisions.

Nowadays, water traffic safety studies are focusing on incidents narrowly susceptible to collisions, often termed “near-miss collisions”. In the maritime sector, a near-miss collision refers to a scenario where two vessels pass each other in close proximity (Du et al., 2020). A prevalent method for detecting near-miss collisions involves using navigation information from AIS data (Zhang et al., 2015, 2016). The few maritime accidents so far limit the possibility of conducting large-scale collision studies. However, near-miss collisions studies can help overcome this limitation (Prastyasari and Shinoda, 2020). To prevent ship collisions more effectively, numerous studies have been conducted on the spatial geographic distribution of near-miss collisions to identify high-risk areas (Du et al., 2021; Zhixiang et al., 2019; Zhou et al., 2021). However, previous studies have primarily focused on visualizing the spatial distribution of near-miss collisions without delving deeply into the relevant influencing factors. From the maritime traffic safety perspective, the factors contributing to collisions can be categorized into human, vessel, and environment domains. Among these, environmental factors are the primary causes of accidents (Zhang and Hu, 2009). Variations in environmental conditions can significantly increase collision risks. Given that marine environmental factors exhibit stability, regularity, and spatial heterogeneity, it is crucial to optimally use the rich geographic information associated with near-miss collisions. Integrating these marine environmental factors into the research framework for near-miss collisions would enable more comprehensive and insightful studies.

Among various marine environmental factors, sea fog is a frequently occurring catastrophic weather. Studies have shown that poor visibility, often associated with fog, exerts the most significant impact on maritime traffic safety, predisposing vessels to collision accidents (Bye and Aalberg, 2018; Gultepe et al., 2006). Approximately 70% of ship collisions are attributed to foggy conditions (Wu et al., 2015). Moreover, the consequences of ship collisions are most severe during the foggy season (Zhang and Hu, 2009). Investigating the influence of sea fog on near-miss collision risk is essential for enhancing the supervision and management of critical maritime areas and periods to ensure secured marine navigation.

Traditional sea fog detection methods rely on meteorological stations and buoys, which are sparse in spatial and temporal distributions (Kim et al., 2020). In recent years, remote sensing technology has been widely applied in ocean environment monitoring (Ullah et al., 2024; Khan et al., 2023). And, the advent of satellite remote sensing technology enables long-term and large-scale sea fog detection results. Using remote sensing for sea fog detection started in the 1970s when Hunt (Hunt, 1973) discovered significant differences in brightness temperatures between the mid-infrared (MIR) channel of 3.7 μm and the thermal infrared (TIR) channel of 11 μm for low clouds or fog with small particle size. Based on this theory, several studies have explored sea fog detection techniques, leveraging the difference between mid-infrared and thermal infrared channels (Cermak, 2012; Eyre et al., 1984; Wu and Li, 2014; Yibo et al., 2016; Zhang and Yi, 2013). Also, the sea fog detection accuracy can be enhanced with spectral indices, such as Normalized Snow Deposition Index, NDSI (Ryu and Hong, 2020), Normalized Difference Water Index, NDWI (Wu and Li, 2014), and Normalized Difference Flow Index, NDFI (Shi et al., 2023) and environmental factors such as air–sea temperature difference (Han et al., 2022). Due to the challenges of determining optimal thresholds with traditional methods, various machine-learning techniques are also widely employed in sea fog detection. With its unique vertically resolved measurement capability that provides accurate sea surface cloud information, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (Calipso) has been widely used for sea fog detection (Badarinath et al., 2009; Cermak, 2012; Wu et al., 2015; Xiao et al., 2023; Xiaofei et al., 2021). Sea fog based on remote sensing satellites can conduct spatial analyses of ship near-miss collisions.

Many studies have examined ship near-miss collisions to achieve a safe and reliable maritime transportation system (Chai et al., 2017; Rawson and Brito, 2021; Szlapczynski and Szlapczynska, 2016). Most recent studies infer that sea fog positively affects collisions (Heo et al., 2014; Rømer et al., 1995). However, sea fog occurrences are spatially heterogeneous and temporally seasonal. Therefore, it is necessary to explore the impact of sea fog on near miss-collision risk in time and space. Conventional global regression analysis methods, such as least squares regression, assume independence and identical distribution of observations, rendering them unsuitable for analyzing spatially unevenly distributed data. Geographically weighted regression (GWR), a local linear regression method based on spatial variation relationships, is widely applied in various fields, such as meteorology (Li et al., 2024; Wahiduzzaman et al., 2022), ecology (Wang et al., 2021; Xiao et al., 2023), and economics (Cellmer et al., 2020; Shang and Niu, 2023). The model generates a regression equation at each local location, enabling spatial analysis of sea fog’s impact on near-miss collisions (Yongtian et al., 2023).

However, few studies have focused on the spatial and temporal variations in the relationship between ship near-miss collisions and sea fog because traditional ocean observation data are usually in point form, which limits studying the relationship between sea fog and ship near-miss collisions in terms of spatial and temporal variations. To address the issue, this paper presents a novel approach of exploring the spatial and temporal variations in the relationship between ship near-miss collisions and sea fog. The primary contribution of the paper lies in proposing a framework for measuring spatial and temporal variation in the correlations between large-scale sea fog, which is detected using satellite remote sensing data instead of traditional point-based data from meteorological stations, and near-miss collisions which are derived from AIS data by the VCRO model. The GWR model measures the spatial variation of near-miss collisions influenced by sea fog while an average coefficient analysis of monthly data is used to describe the temporal variation of those collisions. The Bohai Sea is chosen as a case study to illustrate the approach. This study provides insights into the spatial heterogeneity and intra-annual seasonal variations of near-miss collisions influenced by sea fog. The approach can support decision-making for navigation and enhance maritime safety.




2 Study area and datasets



2.1 Study area

This study selected the Bohai Sea area (37°07′~41°00′N117°35′~121°10′E) as the study area (Figure 1). This region represents the northernmost offshore area of China, surrounded by land on three sides, characterized as an almost enclosed inland sea. The Bohai Sea is particularly susceptible to sea fog. Sea fog in the Bohai Sea primarily occurs during spring and less frequently in summer. Renowned for its abundance of fisheries and mineral resources and its dense concentration of ports and harbors, the Bohai Sea emerges as one of the busiest maritime regions for shipping activities.

[image: Map of Bohai Sea showing ports categorized by size. Large ports include Tianjin, Tangshan, Dalian, Yantai, and Yingkou. Medium ports are Qinhuangdao, Huludao, and Weifang. Small ports are Jinzhou, Panjin, Huanghua, Binzhou, and Laizhou. The map includes latitude and longitude coordinates and a scale bar.]
Figure 1 | Overview of the study area.

In 2018, the major ports in the Bohai Sea (including Tangshan, Tianjin, Dalian, Yantai, Yingkou, and Huanghua) ranked among the world’s top 20 ports in terms of cargo throughput. The total port throughput size reflects a port’s transport capacity. According to the 2018 port data from the China Port Yearbook, the annual throughput (in million tons) of Tianjin, Tangshan, Huanghua, Qinhuangdao, Dalian, Yantai, Yingkou, Jinzhou, Huludao, Panjin, Binzhou, Dongying, Weifang, and Laizhou Ports was 507, 637, 288, 231, 468, 443, 370, 110, 31.9, 40.91, 12, 58.25, 46.57, and 22.7, respectively. The total throughput of each port is categorized into large, medium, and small sizes based on mean and standard deviation breakpoints. Large ports include Tangshan, Tianjin, Dalian, and Yantai Ports; medium ports include Yingkou, Huanghua, and Qinhuangdao Ports; and small ports include Jinzhou, Huludao, Panjin, Dongying, Binzhou, Weifang, and Laizhou Ports.




2.2 Data



2.2.1 Himawari-8

This study’s remote sensing satellite data were obtained from the Himawari-8 satellite, a third-generation geostationary meteorological satellite operated by the Japanese Meteorological Office and equipped with Advanced Himawari Imager (AHI). It covered sixteen spectral bands, including three visible light channels, three near-infrared channels, and ten infrared channels (Table 1). Its quality of cloud imagery, number of spectral bands, and clarity were substantially improved over those of previous generations. Additionally, its full-disk observation frequency of every 10 min provided excellent time resolution, thereby facilitating the study of time-series sea fog events.

Table 1 | AHI observation bands details on Himawari-8 satellite.


[image: Table listing channels with parameters for spatial resolution, central wavelength, and main detection category. Channels range from one to sixteen, with spatial resolutions of one or two micrometers. Central wavelengths vary from zero point four seven to thirteen point three micrometers. Detection categories include vegetation, aerosol, cloud detection, water vapor, ozone content, sulfur dioxide, and cloud characteristics.]



2.2.2 The AIS data

The Automatic Identification System (AIS) is a shipboard monitoring system that provides vital information about a ship’s position, speed, heading, and other relevant data. Being less impacted by meteorological conditions, sea surface states, and other environmental factors, AIS has gradually become a mainstream data source for ship trajectory research. The primary data used in this study is the ship’s position, timestamp, direction toward the earth, and sailing speed.

This paper used the 42.6 GB of 2018 Bohai Sea area AIS data, containing a substantial data volume. To ensure the usability of the data, we initially performed preliminary cleaning to remove records with abnormal critical information, such as speed, heading, longitude, and latitude. Since analyzing the encounter process is unpractical when the shipping speed is low or in a moored state, we filtered out low-speed data and data indicating a moored sailing state. The remaining trajectory data were then divided into several sub-trajectories for detailed analysis.






3 Methodologies

Figure 2 provides the study workflow. We explored the effect of sea fog on collision risk and the key factors influencing the collision risk as explanatory variables, such as ship density. As shown in Figure 2, the main steps include identifying sea fog, calculating collision risk, dividing the sea area to be studied into grids, counting the monthly frequency of sea fog and the total collision risk, and performing spatial analyses. The main steps are further described in detail.

[image: Flowchart depicting processes for detecting sea fog and analyzing near-miss collisions. The sea fog detection process involves Himawari-8, Calipso VFM, and SVM, leading to spatial analysis using gridded statistics and models like GWR and OLS. The near-miss collision process uses AIS data, processed through VCRO. The diagram includes maps visualizing results and emphasizes grid division for data analysis.]
Figure 2 | Workflow of the analytical procedure.



3.1 Sea fog detection

The advantages of remote sensing satellite data include wide coverage and continuous observation, enabling constant monitoring of sea fog over a wide range and an extended period. In this study, we used Himawari-8 satellite data, which is equipped with the Advanced Himawari Imager (AHI), a next-generation sensor with 16 spectral bands ranging from visible to infrared wavelengths. The spectral characterization of Himawari-8 data identified the bands B1, B2, B3, and B14 as the most suitable for the task. To enhance the differentiation between sea fog and other features, the Normalized Snow Deposition Index (NDSI) was constructed as follows:

[image: Formula for the Normalized Difference Soil Index (NDSI): NDSI equals the difference between B3 and B5, divided by the sum of B3 and B5.] 

where B3 is the third-band reflectance and B5 is the fifth-band reflectance. Figure 3 shows the spatial distribution of NDSI index, and it can be found that most of the sea fog pixels in the Bohai Sea and Yellow Sea can be distinguished according to the NDSI index. The selected feature bands are normalized to address the varied data magnitudes in each band, which could induce low accuracy and slow computation.

[image: Satellite images displaying two panels: (a) shows a color-satellite view of a coastal region with cloud cover and land features; (b) presents a color-coded analysis of the same region using a legend for interpretation, with blue, pink, and other colors indicating different data values.]
Figure 3 | Himawari-8-image NDSI index distribution chart (A) Original image of Himawari-8 (B) NDSI calculation results shown in graded classes.

In this study, only sea fog is dichotomized, i.e., into fog and non-fog categories. In sea fog remote sensing detection, visual interpretation is the conventional approach to sample selection. It involves analyzing the texture or spectral characteristics of features on satellite remote sensing images to identify those that meet the pre-defined interpretation criteria. Among the visual interpretation criteria for sea fog, the following features are essential: uniform, smooth, and delicate texture, milky white color, darker and less variable brightness, and more apparent and precise boundaries. Nevertheless, low-altitude stratocumulus clouds and sea fog are essentially clouds, with no significant difference in their physical properties. Therefore, selecting sea fog samples solely based on visual interpretation of satellite remote sensing images is subjective.

Vertical Feature Mask (VFM) data, a secondary product of CALIOP data, can differentiate among several feature types, including cloud, sea surface, subsurface, stratosphere, aerosol, and no-signal data, within the range of satellite subsurface points. The data is widely used in cloud and fog detection research. Based on the CALIOP VFM data, those connected to the sea surface were considered sea fog. The synchronized transit of CALIOP VFM data and Himawari-8 satellite images are taken. Here, synchronization is a transit time difference between the two data sets of no more than 10 minutes. Samples of sea fog and non-fog conditions have been identified through visual interpretation and are further corroborated with CALIOP Vertical Feature Mask (VFM) data. Four types of feature samples, sea fog, medium-high clouds, low clouds, and sea surface, were selected through visual interpretation and in combination with CALIOP VFM data. The samples were selected by the following cases: 1) Sea fog samples are clouds in contact with the sea surface or anomalous sea surface above sea level in the VFM data. 2) Low cloud samples are clouds with cloud base heights lower than 2 km in the VFM. 3) Medium-high cloud samples are clouds with cloud base heights greater than 2 km in the VFM. The sample selection process resulted in the following types and corresponding pixel counts: 6725 pixels for sea fog, 7267 pixels for sea surface, 6961 pixels for low-level clouds, and 9367 pixels for mid-high level clouds.

The classification model in the study is the Support Vector Machine (SVM), a novel pattern recognition method initially proposed by Vapnik and Cortes in 1995 (Vapnik, 1995). The SVM is widely used in numerous domains, including feature extraction, pattern recognition, and regression analysis. Additionally, the SVM exhibits several advantageous characteristics, such as its suitability for small-sample training, robustness, stability, and automation. It has been extensively adopted, demonstrating high efficacy in remote sensing image classifications. The system randomly generates a hyperplane in the binary classification of linearly divisible data. It moves it until the points belonging to different categories in the training set are precisely on both sides of the hyperplane, thus achieving the optimal classification with the minimum difference between similar categories and vice versa. In the case of nonlinear problems, it is necessary to map the input samples to a high-dimensional feature space and construct the optimal classification surface in this feature space. As the dimensionality of the feature space increases exponentially, computing the optimal classification plane directly in this high-dimensional space becomes challenging. The SVM addresses this issue by defining a kernel function, which translates the problem to the input space. SVM can effectively divide sea fog and non-sea fog regions in high-dimensional feature space, especially suitable for complex data features in sea fog detection. SVM can accurately capture the distribution features of different regions by constructing the decision hyperplane to improve the classification accuracy. Unlike deep learning methods that usually rely on a large amount of labeled data, SVM can still provide good classification performance with limited sample size. In view of the difficulty and high cost of acquiring sea spray labeled data, CALIPSO data is used for labeling in this study, and SVM is able to give full play to its classification advantages with limited labeled samples. SVM has strong robustness to noise and outliers, which effectively improves the stability of the detection of sea spray, and reduces the classification error of the traditional methods in complex environments. Therefore, the SVM method can realize efficient processing while ensuring accuracy, and is an ideal choice for the sea fog detection task in this study.

This study selected the radial basis function (RBF) as the kernel function, with 70% of the samples used as training data and 30% as test data.

[image: Mathematical equation showing \( k(x, x') = \phi(x)^T \phi(x') = \sum_{{i=1}}^M \phi_i(x) \phi_i(x') \), labeled as equation (2).] 




3.2 Near miss collisions

There are two main approaches for calculating collision risk based on historical AIS data. The first method utilizes Distance at Closest Point of Approach (DCPA) and Time to Closest Point of Approach (TCPA). The technique identifies near-miss collisions by establishing criteria for DCPA and TCPA within a defined vessel domain (Fukuto and Imazu, 2013; Langard et al., 2015; Yoo, 2018). Nevertheless, collision risk assessment, solely based on DCPA/TCPA, ignores the heading information between ship pairs and thus cannot detect the collision risk during head-on encounters. The second method involves constructing a model to calculate the near-miss collisions based on factors that directly influence ship collisions.

The Vessel Conflict Ranking Operator (VCRO) model assessed the collision risks between ships, with the input variables including distance, relative speed, and phase difference between the two ships (Zhang et al., 2015). The equation is as follows:

[image: A mathematical formula displayed, showing an equation: VCRO(x, y, z) = ((kx^−1)y) (m·sin(z) + n·sin(2z)). The equation is labeled with the number three in parentheses.] 

where [image: Please provide an image or a URL so I can generate the alternate text for you.]  is the distance between the two ships, [image: A grayscale, stylized letter "y" is displayed, featuring a textured, wavy pattern. The design gives the impression of depth, with shadows enhancing its three-dimensional appearance.]  is the relative speed, [image: It seems there's an issue with the image upload. Please try again by ensuring the file is attached correctly. If you need assistance with uploading, let me know!]  is the phase, [image: Lowercase letters \(k, m, n\) in italics.]  are the model parameters. The parameter values used in this study are based on Zhang, with k;=3.87, m=1, and n=0.386.

The relative distance between ships is calculated using Equation 4, where [image: The expression \((x_1, y_1)\) represents coordinates in a two-dimensional plane, indicating a specific point with x-coordinate \(x_1\) and y-coordinate \(y_1\).]  represents the coordinates of ship A, [image: The text shows mathematical notation for a coordinate point labeled as \((x_2, y_2)\).]  is the coordinates of ship B, and [image: A lowercase italic letter "a".]  is the distance between the centers of the two ships.

[image: The formula for the Euclidean distance \(d\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is shown as \(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\).] 

The relative velocity between ships is calculated using Equation 5, where [image: The image shows the mathematical notation for a voltage denoted as "V" with the subscript "a."]  and [image: A lowercase letter "v" followed by a subscript "b", likely representing a variable in a mathematical or scientific context.]  represent the speed of ship A and ship B, respectively, [image: The image shows the mathematical notation "H D G" with a subscript "v."]  and [image: Stylized text displaying the characters "HDG" followed by the subscript "b".]  represent the heading of ship A and ship B, and [image: It seems there was an error when trying to upload the image. Could you please try uploading the image again or provide a URL if it's hosted online?]  represents the heading angle of the ship.

[image: The equation shows \( V_{(a, b)} = \sqrt{V_a^2 + V_b^2 - 2V_aV_b \cos \alpha} \), labeled as equation (5).] 

The phase describes the relative position of the ships, denoted by angle and direction. The phase range is [-π, π], where a negative value indicates a concluded encounter and the two ships move away from each other, posing no collision risk. Conversely, a positive value indicates that the ships are approaching each other, heightening their collision risks.

To analyze the law governing ship collision risk on spatial and temporal scales, the study area must be gridded. Considering its size, the Bohai Sea is divided into grid cells of 0.125°, and the sum of near-miss collisions of each grid cell is counted as the value of this grid near-miss collisions:

[image: Mathematical formula showing the risk sum is equal to the summation of VCRO sub n, followed by equation number six in parentheses.] 




3.3 Global Moran’s I

Global Moran’s I is the most frequently employed statistic in global correlation analysis. It is a comprehensive measure of spatial autocorrelation across the study area (Moran, 1948). It is expressed as Equation 7, where [image: The image shows the symbol "w" with subscripts "i" and "j" indicating an element of a matrix or array typically used in mathematical or computational contexts.]  represents the weight between observations [image: Please upload an image so I can help generate the alternate text for it.]  and [image: It seems there was an error in uploading the image. Please try uploading the image again, and I’ll be glad to help with the alt text.] , and [image: Please upload the image so I can generate the alternate text for you.]  denotes the total sum of [image: The image contains a mathematical representation of a variable denoted as \( w_{ij} \), often used in matrices or equations to indicate a specific element at row \( i \) and column \( j \).] , given as Equation 8

[image: Mathematical equation for Moran's I is shown: I equals n divided by S0 times the sum from i equals 1 to n of the sum from j equals 1 to n of wij times (yi minus ȳ) times (yj minus ȳ) divided by the sum from i equals 1 to n of (yi minus ȳ) squared. Equation number seven.] 

[image: Mathematical equation showing \( s_0 = \sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} \), labeled as equation 8.] 

A Moran’s I > 0 indicates a positive spatial correlation, described as a “high-high, low-low” aggregation trend between neighboring elements. The larger the value, the more pronounced the spatial correlation. Conversely, Moran’s I< 0 signifies a negative spatial correlation, characterized as a “high-low, low-high” distribution trend among neighboring elements. However, there is a random distribution when Moran’s I = 0, indicating spatial randomness. After calculating Moran’s I index, it is impossible to judge the spatial correlation directly based on its positive or negative value. The significance of the index must be assessed in combination with the p-value and Z-score.




3.4 Geographically weighted regression

According to the first law of geography, anything is spatially correlated. Geographically weighted regression is a local linear regression method that involves modeling spatially varying relationships to solve spatial heterogeneity of the variables by assigning weights to different locations (Brunsdon et al., 1996). Its Equation 9 is as follows:

[image: Mathematical equation depicting a linear regression model: \( y_i = \beta_0(\mu_i, \nu_i) + \sum \beta_k(\mu_i, \nu_i)x_{ki} + \varepsilon_i \), labeled as equation (9).] 

where [image: The image shows the mathematical notation for a point represented by the coordinates \((\mu_i, \nu_i)\), where \(\mu_i\) and \(\nu_i\) are variables or parameters.]  denotes the position of grid cell [image: I can't view the image you uploaded. Please try uploading it again, and I'll be happy to help generate alt text for it.] , [image: Lowercase beta subscript zero, function of mu subscript i and nu subscript i, in parentheses.]  is the intercept term, [image: Mathematical expression displaying the function beta sub k of mu sub i and v sub i, written as βₖ(μᵢ, vᵢ).]  is the regression coefficient of the parameter [image: Please upload the image or provide a URL so I can generate the alternate text for you.]  on the grid cell, and [image: It seems there might have been an error while trying to upload the image. Please try uploading the image again or provide a URL.]  is the model random error. The parameter vector at location [image: I can’t view images directly. Please upload the image or provide a URL for me to generate the alt text.]  is estimated using the weighted least square approach as follows Equation 10:

[image: Mathematical equation showing \(\hat{\beta}(u_t, v_t) = (X^T W(u_t, v_t) X)^{-1} X^T W(u_t, v_t) y\). It is labeled as equation (10).] 

The GWR model is adjusted using a distance decay weighted function modified by a bandwidth. The three most commonly used weighting functions are Gaussian-based, bi-square, and tri-cube kernels. Bandwidth includes fixed and adaptive types. We used a geographically weighted regression model with the dependent variable as near-miss collisions, while the explanatory variables were the frequency of sea fog, ship density. We employed a Gaussian kernel spatial weight matrix, where the weight between observation points [image: A weathered paper with mathematical problem solutions and equations written in neat handwriting. The sheet contains diagrams, calculations, and annotations, suggesting a detailed study or problem-solving process.]  and [image: It seems there wasn't an image uploaded. Please try uploading the image again, and I can help generate the alternate text for it.]  is calculated as Equation 11, where [image: Mathematical notation showing the variable \(d_{ij}\), with subscript \(ij\).]  represents the geographical distance between the two points and [image: Please upload the image so I can generate appropriate alt text for it.]  is the bandwidth parameter. We used the adaptive bandwidth specified by the Akaike information criterion (AICc) due to the uneven distribution of the near-miss collision data.

[image: Equation showing \( w_{ij} = \exp\left(-\frac{d_{ij}^2}{2b^2}\right) \), labeled as equation (11).] 

Further, the AICc and R2 values evaluated the performance of the developed models. Higher R2 indicates a better fit, while lower AICc indicates a poorer fit. The GWR model has significant advantages over the OLS model in its ability to optimize the global model on a local scale and to visualize the spatial distribution of the local regression coefficients. It enables the analyses of each factor’s local contribution and non-stationarity characteristics through local coefficient variations, which are unavailable in the OLS model.





4 Result and discussion



4.1 Spatial and temporal differences in near-miss collision

Figure 4 displays the grid statistics for near-miss collisions in 2018. The value for each grid represents the total values for all near-miss collisions occurring within that grid as calculated using Eq (6). Areas of high near-miss collision are concentrated around ports because of the confined navigable space and the high density of ships in these areas (Figure 5), while fewer near miss collisions were observed in the central waters of Bohai Sea. Notably, the Laotieshan Channel, located at the northernmost end of the Bohai Strait, is a major maritime transport hub in the Bohai Sea. It experiences substantial maritime traffic, resulting in a heightened risk of near-miss collision risks in the area.

[image: Map depicting a region with pixelated color gradients from light to dark red, indicating values from zero to one. The map includes latitude and longitude markers, a directional arrow pointing north, and a scale bar in miles.]
Figure 4 | Spatial distribution of near-miss collisions in 2018.

[image: Map depicting a grid of varying shades of orange representing values from zero to one, overlaid on a geographic region with coordinates ranging from 118° to 122°E and 38° to 40°N. A scale is provided in miles.]
Figure 5 | Spatial distribution of vessel density in 2018.

In addition, Figure 6 shows the spatial distribution of near-miss collisions from January to December 2018. We observed that the fishing moratorium in the Bohai Sea, lasting from May to August, results in fewer near-miss collisions during this period. The number of near collisions starts to increase in September. By January, vessel activity decreases as the temperature drops and the icing period begins, leading to a corresponding decline in near collisions.

[image: Twelve maps arranged in a grid, labeled (a) to (l), depict varying intensities of a value across a geographic region. Intensity is shown using a color gradient from white to red. A scale bar indicating distances in miles and a color scale for the values are included below the maps. Each map shows changes in distribution, with darker red indicating higher values. Latitude and longitude are marked along the edges.]
Figure 6 | Spatial distribution of near-miss collisions, (A–I) represent the spatial distribution of near-miss collisions for each month from January to December 2018 respectively.




4.2 Spatial and temporal differences in sea fog

The spatial distribution of sea fog in the Bohai Sea is significantly heterogeneous, with most occurrences concentrated in the southwestern and northern regions (Figure 7).

[image: Map showing a geographical area within coordinates 118°E to 122°E and 38°N to 40°N. The map uses a gradient of blue shades to represent values from 0 to 0.3. The land is colored in white, while varying intensities of blue depict the values on the map. A scale bar indicates distances from 0 to 120 miles. A north arrow is in the upper right corner.]
Figure 7 | Spatial distribution of sea fog occurrence days in 2018.

Figure 8 illustrates the monthly distribution of sea fog frequency in the Bohai Sea in 2018. The data indicate that sea fog is significantly higher in winter and spring. Despite this seasonal peak, the overall frequency of sea fog remained relatively low, with almost no occurrences in summer.

[image: Twelve-panel map series showing sea fog frequency over a region from 118 to 122 degrees east longitude and 37 to 41 degrees north latitude. Each panel represents different data sets or times. Darker blue areas indicate higher fog frequency, while lighter areas show less. A legend illustrates frequency range from zero to one. North is indicated with an arrow.]
Figure 8 | Spatial distribution of the frequency of sea fog occurrence, (A–I) represent the spatial distribution of the frequency of sea fog occurrence  in each month from January to December 2018, respectively.

In summary, the sea fog in the Bohai Sea in 2018 has obvious spatial and temporal distribution differences, showing the characteristics of “high in spring, low in summer, high along the coast, and low in the distant sea”. Spring is the high incidence of sea fog, with a wide spatial distribution; while in summer, sea fog is significantly reduced and concentrated in local coastal areas. Understanding the spatial and temporal variability in the distribution of sea fog is critical to maritime safety and the development of effective navigation strategies.




4.3 Spatial autocorrelation

Before performing the GWR model, a spatial autocorrelation analysis of sea fog occurrence was conducted using the Moran’s I index, along with z-scores (indicating the distance from the mean in standard deviations) and p-values (assessing the statistical significance of the index). Table 2 presents these results for each month of 2018, as well as for the entire year. All the Moran’ I index values (bounded by 1.0 and 1.0) are positive and high (> 0.25), indicating a high degree of spatial positive autocorrelation. Also, the p-values are all less than 0.01 (reaching 99% confidence level), and the z-scores are significantly higher than 2.58, indicating that the spatial autocorrelation results are statistically significant. Consequently, the linear regression model is inadequate for analyzing the impact of sea fog on collision risk. In contrast, the GWR model is well-suited to address these spatial dependencies. Using the GWR model enables an in-depth analysis, better capturing the spatial impact of sea fog on near-miss collision risks across the region.

Table 2 | The spatial autocorrelation test results obtained using moran’ I index combined with the z-score and p-value of sea fog (as GWR-independent variables).


[image: Table showing monthly and yearly Moran's I, Z, and P values for 2018. Monthly Moran's I ranges from 0.258 to 0.524, with corresponding Z values and all P values at zero. Yearly Moran's I is 0.406, Z is 14.98, and P is zero.]



4.4 GWR model diagnosis

The GWR models were constructed for 2018 and each month therein, with near-miss collisions as the dependent variable, while sea fog frequency and ship density were explanatory variables. Prior to constructing the GWR models, all values were normalized to ensure consistent scale and improve model accuracy. To assess the effectiveness of the GWR model, an OLS model was also established for comparison. The model results (Table 3) showed that the R2 values of the OLS model are generally lower than 0.6, indicating that it explains less than 60% of the variance in near-miss collision incidents. For instance, in January, February, and March, the OLS R2 values are low at 0.10, 0.21, and 0.19, respectively, suggesting limited explanatory power. In contrast, the GWR model significantly outperforms the OLS model with R2 values above 0.7 for most months, indicating that its effectiveness in dealing with spatially heterogeneous data. Similarly, the Akaike Information Criterion corrected (AICc) values further validate the GWR model’s superiority. AICc is a measure of model quality where lower values indicate better fit. The AICc values of the GWR model are lower than those of the OLS model. These results indicate that the GWR model, which accounts for spatial heterogeneity, fits the data more effectively and provides more accurate regression analyses. The seasonal patterns also suggest that the GWR model performs especially well in winter and spring, when sea fog occurrences are more frequent. For example, in February through May, when sea fog events are prevalent, the GWR model R2 values range from 0.87 to 0.95. This result reinforces that sea fog, as an environmental factor, has a significant spatially variable impact on near-miss collisions during these months.

Table 3 | Performance evaluation of the GWR and OLS model.


[image: Table comparing OLS and GWR models across months and year 2018. Columns include R² and AICC for both models. Monthly R² values for OLS range from 0.10 to 0.76, while for GWR they range from 0.71 to 0.95. AICC values for OLS range from -1596.99 to -4550.58, and for GWR from -1035.79 to -4689.05. Yearly data shows R² values of 0.265 for OLS and 0.82 for GWR, with AICC values of -2084.45 and -2729.98, respectively.]
Figure 9 shows the spatial distribution of local R2 values of GWR for the 2018 annual data. The values generally exceed 0.4, indicating that the sea fog and ship density can fit the GWR model well. Notably, the areas with higher R2 (> 0.8) are concentrated in large port areas, such as Tianjin Port, Tangshan Port, Yantai Port, and Dalian Port. In contrast, the rest of the medium ports, such as Qinhuangdao and Yingkou Port, also have R2 between 0.6 and 0.8. Suggests that sea fog and ship density are more strongly correlated with ship near-miss collisions in ports areas.

[image: Map showing spatial distribution of local R-squared values across a region. Colors range from light yellow (0.00-0.20) to dark red (0.80-1.00), indicating varying statistical correlations. Legend and scale in miles are included. North is indicated with an arrow.]
Figure 9 | Spatial distribution of the local R2 values by GWR model in 2018.

Figure 10 displays the local R2 values for different locations in the GWR model over the 12 months of 2018, highlighting temporal variation in the model’s performance across different locations. The GWR model performs well in essentially all months, with local R2 values generally exceeding 0.6, although it varies monthly for different locations. This temporal variability suggests that the influence of sea fog and ship density on collision risks may shift over time, potentially due to seasonal changes in weather conditions, maritime traffic, or operational patterns in these port areas.
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Figure 10 | Spatial distribution of the local R2 values by GWR model, (A–I) represent the spatial distribution of the local R2 values in each month from January to December 2018, respectively.

Overall, the R2 values are consistently high for most regions of the Bohai Sea. This deduction indicates that the driving factors used in the model effectively explain the spatial heterogeneity in near-miss collision risk.




4.5 Spatial relationship between sea fog and collision

The local regression coefficients of the GWR model (Figure 11) highlight the spatial variation in the effect of sea fog on near-miss collisions. The regression coefficients are generally greater than 0, indicating that sea fog positively affects near-miss collisions, thus the occurrence of sea fog contributing to collision risk. Generally, the impact of sea fog on near-miss collisions shows significant spatial inhomogeneity. The areas with the highest impact by sea fog are predominantly near the ports in the western part of the Bohai Sea, mainly concentrated around Tianjin Port and Tangshan Port. The high density of ships and heavy traffic in these harbors increase the likelihood of collision accidents when encountering sea fog due to reduced visibility and increased difficulty in ship handling. Further from these large ports, the coefficients decrease, indicating a relatively lower but still positive effect of sea fog on near-miss incidents. The areas with moderate coefficients (0.3 to 0.5) include regions around medium ports, where the collision risk remains elevated during fog but to a lesser extent than in the large ports. Therefore, near-miss collisions at key shipping nodes, such as ports, significantly increase during sea fog scenarios. Consequently, port authorities in large ports, such as Tianjin and Tangshan, should enhance navigation monitoring and optimize ship scheduling during foggy conditions to mitigate the increased risk of collisions. Implementing real-time navigation assistance and optimizing traffic flow in these key nodes can further reduce the risk of incidents under low-visibility conditions.
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Figure 11 | Spatial distribution of regression coefficient values of sea fog in 2018 using GWR models.

Figure 12 illustrates the monthly spatial distribution of local regression coefficients from the GWR model. Throughout the year, sea fog consistently shows a positive effect on near-miss collision risk, but the intensity and spatial distribution of this impact fluctuate significantly. Specifically, the contributions of sea fog were more significant in January, February, March, April, and June, with high-impact areas concentrated near the large, medium-sized ports in the western Bohai Sea, such as Tianjin and Yingkou Port. In contrast, May, July, and September display a more even distribution of lower local coefficients, with values generally below 0.1. This pattern suggests that during these months, the effect of sea fog on near-miss collisions is less severe across the region. In August, some changes occurred in the geographical distribution of the contribution of sea fog, with Dongying and Huludao harbors being more affected in localized areas. The effect of sea fog in the Bohai Sea intensified again from October to December, with several high-impact zones. Particularly in October, the effect was more significant, affecting the ports of Tianjin, Qinhuangdao, Laizhou, and Dongying. In November, Tianjin and Qinhuangdao ports were more affected, while in December, the port of Tianjin experienced the most significant impact.
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Figure 12 | Spatial distribution of regression coefficient values of sea fog by GWR models, (A–I) represent the spatial distribution of regression coefficient values of sea fog in each month from January to December 2018, respectively.




4.6 Temporal relationship between sea fog and collision

Here, we present line plots of the average regression coefficients for each month in Figure 13, providing a visual comparative time-series analysis of how much the Bohai Sea area is affected by sea fog in different months. The results demonstrate that sea fog in autumn and winter most significantly impacts ships’ near-miss collisions, while spring has the second-highest impact. In contrast, the effect of sea fog on near misses is minimal in summer. The seasonal difference can be explained in two ways. First, sea fog is less frequent in summer, which directly reduces the adverse effects of sea fog on navigational conditions. Secondly, the fishing moratorium in the Bohai Sea area coincides with summer, and the reduced activity of fishing vessels leads to a relative decrease in the number of vessels, thus reducing the risk of collision due to sea fog. Nevertheless, it is crucial to note that, although May and June also fall within the fishing moratorium period, commercial vessel activity is higher at this time than from January to April. This increased activity can still contribute to collision risks, even with the reduced traffic of fishing vessels.

[image: Line graph showing the average regression coefficient over 12 months. The trend decreases from January to March, stabilizes through June, then significantly rises from July to November, peaking in December.]
Figure 13 | Average regression coefficients for January-December 2018.

Specifically, May to August is the closed season for fishing in the Bohai Sea, so the mean regression coefficient increases from September (Figure 13 red line), indicating that sea fog has started to affect ship collisions significantly. However, as winter approaches (December-March), the number of active ships decreases due to the lowering of temperatures and the freezing period, and the mean regression coefficient starts to decrease, indicating less impact by sea fog (Figure 13 green line). The regression coefficients remain smoother but slowly increase in spring and summer (March-August) (Figure 13 yellow line). In July, sea fog had almost no effect on collision risk because it hardly occurred, and the number of vessels was low during the fishing moratorium in the Bohai Sea. Collisions are more significantly affected by sea fog when vessel traffic is high. This observation suggests that navigation safety strategies should focus on periods with high vessel traffic and frequent sea fog to mitigate collision risks effectively.





5 Conclusions

This paper presents a new framework for analyzing the spatial and temporal effects of sea fog on ship near-miss collisions. Data from the Himawari-8 satellite is used to detect sea fog, with a Support Vector Machine (SVM) model applied for identification. Near-miss collisions between vessels are analyzed using the Vessel Conflict Ranking Operator (VCRO) model, which is based on Automatic Identification System (AIS) data. Spatial autocorrelation analysis by Moran ‘s I index reveals significant spatial heterogeneity in the distribution of sea fog. To account for this variability, a geographically weighted regression model (GWR) is employed, which enables measuring the spatial variation of sea fog’s effect on ship near-miss collisions through local regression coefficients. Additionally, further conduct regression analysis on the monthly time series data to investigate the intra-annual seasonal dynamics and variations by calculating the mean regression coefficients. This temporal analysis can help us understand how the sea fog factor influences ship near-miss collisions over time. The proposed framework is implemented in a case study focused on the Bohai Sea, and the results are as follows.

According to the performance metrics (AICc and R2), the GWR model performs much better than the OLS model. The R2 of the GWR model ranges from 0.70 to 0.95, suggesting that GWR is more suitable for data where spatial non-stationarity exists. Regression coefficients generally greater than 0 indicate a positive influence of sea fog on ship near-miss collisions. Visualizing the local regression coefficients can intuitively reveal the spatial differences in the contribution of sea fog to ship near-miss collisions. Overall, sea areas near large and medium ports along the coast of the Bohai Sea with high ship densities, such as Tangshan Port and Tianjin Port, are more susceptible to sea fog. However, the impact on the central Bohai Sea is minimal due to the vast expanse of the water area. We estimate the mean regression coefficients for each month to explore temporal differences. It reveals that the contribution of sea fog intensifies in the autumn after the end of the fishing moratorium. In winter, the contribution of sea fog decreases due to the low number of vessel activities. However, the contribution rises steadily by spring, while it is lowest in summer due to its low occurrence frequency. Future studies should explore the spatial and temporal correlation between sea fog and ship near-miss collisions in more detail in response to multi-year data analysis. This research demonstrates that sea fog data derived from remote sensing satellite observations allows for a more comprehensive understanding of relationships and patterns in space and time.
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Chlorophyll-a (Chl-a) plays a vital role in assessing environmental health and understanding the response of marine ecosystems to physical factors and climate change. In situ sampling, remote sensing, and moored buoys or floats are commonly employed methods for obtaining Chl-a in marine science research. Although in situ sampling, buoys, and floats could provide accurate data, they are limited by the spatial and temporal resolution. Remote sensing offers continuous and broad spatial coverage, while it is often hindered by cloud cover in the South China Sea (SCS). This study discussed the feasibility of a predictive model by linking the physical factors [e.g., wind field, surface currents, sea surface height (SSH), and sea surface temperature (SST)] with surface Chl-a in the SCS based on the ResUnet. The ResUnet architecture performs well in capturing non-linear relationships between variables, with the model achieving a prediction accuracy exceeding 90%. The results indicate that (1) the combination of oceanic dynamical and meteorological data could effectively estimate the Chl-a based on deep learning methods; (2) the combination of meteorological and SST effectively reproduces Chl-a in the northern SCS, while adding surface currents and SSH improves model performance in the southern SCS; (3) With the addition of surface currents and SSH, the model effectively captures the high Chl-a patches induced by eddies. This research presents a viable method for estimating surface Chl-a concentrations in regions where they are highly correlated with dynamic factors, using deep learning and comprehensive oceanic and atmospheric data.
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1 Introduction

Phytoplankton chlorophyll-a (Chl-a) is a key indicator of marine phytoplankton biomass and primary productivity (Fernández-González et al., 2022). The SCS is characterized by diverse biogeochemical regimes, which is related to the dynamical process over the SCS. Nutrients from rivers such as the Pearl River and the Mekong River typically dominate the shelf regions (Dai et al., 2022). While the central SCS exhibits oligotrophic conditions with low productivity and depths exceeding 5000 m (Chen, 2005). The East Asian monsoon largely drives the circulation in the South China Sea (SCS), forming the South China Sea Western Boundary Current influencing the distribution of nutrients (Fang et al., 2012). Under northeasterly monsoon and stronger Kuroshio intrusion, a cyclonic circulation prevails in the upper layer during winter (Qu, 2000; Gan et al., 2006). However, some studies indicate an anticyclonic circulation pattern (Chu et al., 1999; Xue et al., 2004; Fang et al., 2009), while others describe a cyclonic circulation in the northern SCS (NSCS) and an anticyclonic circulation in the southern SCS (SSCS) (Figure 1; we recreated it based on the Shu et al., 2018; Liu et al., 2008).

[image: Map illustrating ocean currents and depth contours in the South China Sea region. Red and green arrows indicate the directions of various currents like SCSWBC, LCE, VCE, and KC. Depths range from zero to negative eight thousand meters, represented by color gradients from light to dark blue. Hainan Island, Luzon Island, and the Luzon Strait are labeled for geographic reference.]
Figure 1 | Diagram of the surface current patterns (based on data from Shu et al., 2018; Liu et al., 2008). Red (Green) means current pattern in winter (summer). LCE, Luzon Cold Eddy; SCSWBC, South China Sea Western Boundary Current; VCE, Vietnam Cold Eddy; KC, Karimata Current.

In the NSCS, Chl-a concentrations display a marked seasonal cycle, with high levels in winter and low levels in summer (Ning et al., 2004; Xian et al., 2012). The SCS connects to the Pacific Ocean through the Luzon Strait, allowing the Kuroshio to intrude into the SCS and contribute to its circulation (Xue et al., 2004; Qian et al., 2018; Cai et al., 2020). Winter phytoplankton blooms in Luzon Strait are often attributed to the interaction between monsoon-driven or current-induced upwelling, vertical mixing, meso-scale eddies, and fronts (Peñaflor et al., 2007; Shen et al., 2008; Wang et al., 2010, 2023; Shang et al., 2012; Lu et al., 2015; Xiu et al., 2016; Guo et al., 2017; Chang et al., 2022; Lao et al., 2023). The Luzon Cold Eddy, generally prevailed in winter and spring near the northwestern coast of Luzon Island, would alter the distribution of the Chl-a near the Luzon Island (Lu et al., 2015; Huang et al., 2019; Sun et al., 2023). During the summer, when the southwest monsoon prevails, upwelling and a northeastward jet are induced along the coast of Vietnam (Kuo, 2000; Fang et al., 2002; Xie et al., 2003; Lin et al., 2009; Ma et al., 2012). The upwelling elevates nutrients into shallow layers, supporting phytoplankton growth, resulting in the surface high Chl-a (Yang et al., 2012; Chen et al., 2021). With the transport of this jet in nutrients and biomass, the Chl-a off the east of the Vietnam significantly was enhanced. The interaction between cyclonic and anticyclonic eddies with the jet stream formed a high Chl-a belt (Liang et al., 2018).

There are several methods to measure Chl-a concentrations in the ocean, each with its own limitations. Traditionally, in situ ship-based, autonomous profiling float, and remote sensing satellites are the primary means of acquiring Chl-a data in the ocean (Kishino et al., 1997; Wright, 1997; Dierssen, 2010; Rykaczewski and Dunne, 2011; Boyce et al., 2012; Wernand et al., 2013). In situ ship-based and floats generally have low spatial or temporal resolution. Remote sensing satellite, offering high spatial and temporal resolution data, is easily affected by cloud cover (Shropshire et al., 2016). Considering the difficulties in acquiring the Chl-a, simulating the Chl-a or phytoplankton with marine ecological numerical model was an excellent method. However, the accuracy of numerical model results depends on the parameterization scheme of ecological (or biogeochemical) processes and the optimization of parameters. Developing a robust ocean ecological model requires substantial time for construction, calibration, and computation.

Recently, machine learning techniques, particularly deep learning, have advanced rapidly. The application of machine learning in ocean science has provided new insights into predicting key environmental or hydrodynamic indicators (Jouini et al., 2013; Aleshin et al., 2024; Krestenitis et al., 2024). Due to its strong capabilities in nonlinear regression, deep learning has been extensively utilized in oceanography, for tasks such as predicting sea surface temperature (SST), eddies, waves, and Chl-a (Liu et al., 2021; Liu and Li, 2023; Roussillon et al., 2023; Zhao et al., 2024). Ding and Li (2024) compared the performance of CNN, LSTM, and hybrid CNN-LSTM models for Chl-a prediction, concluding that the hybrid CNN-LSTM model outperformed standalone models with an R-squared, R² = 0.72. Similarly, Zhou et al. (2024) contributed further insights into the application of machine learning for ecological predictions. However, in some cases, machine-learning was not performed well than empirical algorithms. Bygate and Ahmed (2024) combined observational data and Landsat 8 surface reflectance to evaluate empirical and machine learning models for retrieving water quality indicators in Matagorda Bay, highlighting the limitations of traditional machine learning models in water quality inversion. Yang et al. (2024) developed a self-attention mechanism-based deep learning model to estimate nine phytoplankton pigment concentrations within the upper 300 m of the ocean, achieving R² > 0.8 and revealing a positive correlation between the maximum phytoplankton layer location and the Niño 3.4 index in the Equatorial Pacific Niño 3.4 region. Roussillon et al. (2023) introduced a multi-mode CNN to globally reconstruct phytoplankton biomass by learning region-specific responses to physical forcing. Their model achieved an R² > 0.87, highlighting the capacity of multi-mode approaches to uncover spatially consistent responses to ocean dynamic.

On the one hand, previous studies have revealed various complex dynamical processes related with the surface Chl-a in the SCS (Dai et al., 2022; Xian et al., 2012; Wang et al., 2023; Guo et al., 2017; Ma et al., 2012; Yu et al., 2019). On the other hand, machine learning has the advantage of finding complex nonlinear relationship among variables in an environmental setting (Song and Jiang, 2023). Hence, machine learning can provide a powerful support in elucidating the complex quantitative relationship between the physical factors (such as wind, SST) and the surface Chl-a. A few studies have used machine learning or deep learning to build a model link the physical factors and surface Chl-a with monthly data (Li et al., 2023; Roussillon et al., 2023). However, the possibility and performance by using the atmospheric and oceanic physical data to predict surface Chl-a with daily data remains unclear. This study discussed the feasibility of a predictive model based on the ResUnet architecture (Diakogiannis et al., 2020) to predict daily Chl-a concentrations in the SCS (100°E-124°E, 0°N-25°N) by atmospheric and oceanic dynamic factors. The ResUnet model enables the capture of the effects of multiple ocean dynamical processes on Chl-a evolution from the data. This approach yields accurate results while significantly reducing computational costs compared to traditional ocean ecological modeling methods.




2 Data and methods



2.1 Data

The dataset used in this study was derived from the atmosphere and ocean reanalysis datasets, European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA-5; https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5) and Hybrid Coordinate Ocean Model (HYCOM; https://www.hycom.org/). The 10 m wind fields were derived from the ERA-5, with spatial resolution as 0.25°×0.25° and the temporal resolution as 1-hourly. We calculated the mean value per 24 hours for acquiring the daily air forcing data to keep the same temporal resolution in our study. The SST, surface currents (eastward and northward velocity) and sea surface height (SSH) were derived from the HYCOM. The original spatial resolution is 0.08° and temporal resolution is 3-hourly. We interpolated the original data to the ERA-5 resolution and calculated the daily data every 8 times layer. These physical factors, such as wind, current, SSH, and SST, have been shown to be closely related to the variation in surface Chl-a in previous studies (Yu et al., 2019; Xiu et al., 2016; Geng et al., 2019).

This study focuses on discussing feasibility of a predictive model capable of forecasting future Chl-a concentrations by establishing a link between oceanic and atmospheric dynamic variables (e.g., wind fields, sea surface temperature, and current fields) and surface Chl-a. The predictive model requires complete and valid Chl-a as the label to ensure the effectiveness of the model. However, there is a number of missing values in the SCS from the remote sensing satellite data. Therefore, the Chl-a data used as the target variable (True) was derived from the Ye et al. (2024). The data covers the period from January 1, 2013, to December 31, 2017, with a temporal resolution of daily averages. This dataset was reconstructed using a combination of satellite and observational data, employing optimal interpolation and the SwinUnet method. Ye et al. (2024) successfully reconstructed a high-quality surface Chl-a dataset; however, the approach relies heavily on satellite remote sensing data, which limited the application in short-term prediction. In contrast, numerical models, such as HYCOM and ERA5, could provide oceanic and atmospheric dynamic factors, which can be leveraged to predict short-term variations in surface Chl-a. For this purpose, we considered the datasets from Ye et al. (2024) as the true Chl-a to train a model with physical factors. More information is listed in Table 1.

Table 1 | Introduction of the datasets used in this study.


[image: A table displays data sets with units, minimum and maximum values, spatial resolution, time period, and data sources. Variables include Chl-a, wind speed, wind stress curl, 10m v wind, 10m u wind, sea surface temperature, u-velocity, v-velocity, and sea surface height. Spatial resolution ranges from 0.0105 to 0.25 degrees. The time period is from January 2013 to December 2017. Data sources include ERA5 and HYCOM.]



2.2 Methods



2.2.1 Data pre-processing

In order to achieve spatial resolution consistency across all predictor variables, we employed linear interpolation to adjust predictor variables from HYCOM to a resolution of 0.25° × 0.25°. Each predictor variable contained 97 × 101 data grid points, covering the period from 2013 to 2017. To maintain consistency among the variables, data standardization was applied. The daily predictor variables, represented as two-dimensional arrays of 97 × 101, were then concatenated to form a three-dimensional array with dimensions N × 97 × 101, with each variable occupying a separate channel within the data structure. In our experimental design, the predictors include data points for all available variables on a given day, which are subsequently used to forecast the Chl-a concentration (predictand) for that same day. To align the predictand data with the model output, Chl-a data was resampled to 0.25° × 0.25° before model training and was standardized thereafter. Following training, the model outputs were denormalized to retrieve the predicted Chl-a values. The experimental results demonstrated that this methodology effectively enhances the model’s fitting performance. The wind stress and wind stress curl in Table 1 are calculated as follows:

[image: The image shows an equation: \(\bar{v} = \rho C \bar{u} \cdot |\bar{i}|\), labeled as equation (1).]

[image: The image shows a mathematical equation: the curl of vector \(\vec{z}\) is equal to the partial derivative of \(z_y\) with respect to \(x\) minus the partial derivative of \(z_x\) with respect to \(y\), denoted by \(\nabla \times \vec{z} = \frac{\partial z_y}{\partial x} - \frac{\partial z_x}{\partial y}\). It is labeled as equation (2).]

The [image: Please upload the image or provide a URL, and I can help create the alt text for you.]  is the wind vector, and [image: Please upload the image or provide a URL so I can help generate the appropriate alt text for it.]  is the wind stress. [image: Mathematical expression of a Greek letter tau with a subscript x.]  and [image: It seems there was an issue with displaying the image. Please try uploading the image again or provide a URL, so I can help create the alternate text for you.]  represent the eastward and northward component of the wind stress. The [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL link to it. Additionally, you can add a brief caption for context if needed.]  and C are the air density and drag coefficient, respectively. The C is estimated based on Large and Pond (1981).




2.2.2 Residual U-Net model

The UNet is a deep learning architecture for image segmentation that utilizes a symmetric encoder-decoder structure with skip connections to effectively capture and preserve detailed spatial information (Ronneberger et al., 2015). In this study, we employed a modified UNet architecture to enhance effectiveness, as shown in Figure 2. The model features a U-shaped structure with four encoder-decoder modules. To enhance the model’s ability to handle non-linear relationships, the traditional ReLU activation function was replaced with the Sigmoid Linear Unit (SiLU) activation function due to its advantage in smooth activation (Elfwing et al., 2017). To address overfitting and mitigate issues of exploding or vanishing gradients, Batch Normalization (BN) was applied after the convolutional layers. Furthermore, the AdamW optimizer was employed to improve training stability and performance by effectively managing weight decay (Loshchilov and Hutter, 2019). Consistent with most regression tasks, Mean Squared Error Loss (MSELoss) was utilized as the loss function. These modifications were implemented to collectively improve the model’s performance, accuracy, and computational efficiency.

[image: Flowchart illustrating a neural network process. The input, labeled "Physical variables," with dimensions \(N \times 97 \times 101\), undergoes transformations through layers labeled with dimensions. Paths include residual blocks, max pooling, up convolution, skip connections, and convolutions. The output is labeled "Output" with dimensions \(1 \times 97 \times 101\). A legend explains the color-coded operations: blue arrows for residual blocks, gray for max pooling, yellow for up convolution, orange for skip connections, and purple for 1x1 convolution. A residual block diagram shows Conv 3x3, batch normalization, and SiLU activation.]
Figure 2 | An illustration of the ResUNet architecture. Each colored cube symbolizes a feature map, with the numbers within the parentheses indicating the (width × height × channels).

The basic module of the UNet network is a residual module, each of which consists of two 3 × 3 two-dimensional convolutional layers, two BatchNorm2d layers, and two SiLU activation functions. The encoder part (left half of Figure 2) consists of a residual module and a max pooling layer. This configuration gradually reduces the feature mapping dimensions in length and width, thereby enhancing higher-order features. Following the encoder, the same number of decoders (right half of Figure 2) decode the features, including up-sampling to double the size of the feature map and skip connections. This process produces a feature map of size [64, 97, 101]. The final layer of the model is a 1 × 1 convolutional layer that reduces the number of channels to 1, producing the final 97 × 101 Chl-a outputs of the model. Definitions of deep learning terms, including Residual Block, SiLU, and max pooling, are provided in the Appendix.




2.2.3 Data split and model accuracy metrics

In this study, Chl-a data from 2013 to 2016 were allocated for model training, testing, and validation at proportions of 70%, 20%, and 10%, respectively. Data from 2017 was subsequently utilized to evaluate the model’s effectiveness in applications. There are some extremely large anomalies (> 1010) in Chl-a data from Ye et al. (2024). Therefore, during data preprocessing, we conducted thorough data cleaning and identified anomalies in the Chl-a data for a total of 26 days, which were removed to maintain the accuracy and consistency of the dataset. To comprehensively evaluate model performance, we employed three key metrics: the correlation coefficient (r), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). These metrics offer a quantitative assessment of the correlation and discrepancies between predicted and True data, thus providing valuable insights into the model’s performance and reliability.

	1. Correlation Coefficient (r): It measures the strength and direction of the linear relationship between predicted and True values, calculated as:



[image: Correlation coefficient formula: \( r = \frac{\sum (y_i - \bar{y})(\hat{y}_i - \bar{\hat{y}})}{\sqrt{\sum (y_i - \bar{y})^2} \sqrt{\sum (\hat{y}_i - \bar{\hat{y}})^2}} \).]	

	2. Root Mean Square Error (RMSE): RMSE quantifies the average deviation of predictions from actual values, given by:



[image: Formula for Root Mean Square Error (RMSE): RMSE equals the square root of the sum of squared differences between observed values (y sub i) and predicted values (y hat sub i), divided by n, where n is the number of observations.]	

	3. Mean Absolute Error (MAE): MAE provides a straightforward interpretation of the average prediction error:



[image: Formula for Mean Absolute Error (MAE): MAE equals one over n multiplied by the sum from i equals one to n of the absolute difference between y subscript i and y hat subscript i.]	

The symbols used in the equations are defined as follows: [image: It seems like there's a technical issue with the image upload. Please try uploading the image again, and I will be happy to help generate the alternate text for you.]  represents the True value, [image: The image displays the mathematical notation "y hat subscript i," indicating a predicted value for the i-th observation in a dataset.]  denotes the predicted value, [image: A mathematical notation showing the symbol "y" with a bar over it, often used to represent the mean or average value in statistics.]  is the mean of the True values, [image: The image displays a mathematical symbol, \( \overline{y} \), which represents the mean or average value of a set of numbers.]  is the mean of the predicted values, and n refers to the number of observations. It is already known that there is a certain correlation between atmospheric and oceanic dynamic data and surface Chl-a in the SCS (Yu et al., 2019). The temporal and spatial variation of Chl-a are influenced by factors such as wind fields, ocean currents, and SST. To test the accuracy of model in different predictors, we conducted two sets of experiments: (1) using 10 m wind field, wind speed, wind stress curl, and SST (Exp1), and (2) using 10 m wind field, wind speed, wind stress curl, SST, surface current, and SSH (Exp2). In the SCS, wind fields and SST are strongly correlated with surface Chl-a (Yu et al., 2019). Therefore, the goal of the Exp1 was to explore the feasibility of building a robust model. On the other hand, surface current and SSH are related to the horizontal advection process and vertical structure of density to some extent (e.g., mesoscale eddies), which, to some extent, influence the distribution of nutrients and phytoplankton (Xiu et al., 2016). The goal of the Exp2 was to explore the performance of the model when considering the currents and SSH.






3 Results and discussion



3.1 Model evaluation using statistical indicators

The comparisons between predicted and true Chl-a concentrations of two experiments based on the Chl-a from 2013 to 2016, separated into three parts (training, testing, and validation sets), are shown in Figure 3. In general, the data points are primarily distributed along the 1:1 line, with correlation coefficients between predicted and true Chl-a exceeding 0.9 across all datasets (Figure 3). It indicated that both Exp1 and Exp2 could well predict the surface Chl-a in the SCS. However, there were some discrepancies in performances between these two experiments. The Exp2 showing higher correlation coefficient (Figures 3a–f) among training (0.929 in Exp1 versus 0.935 in Exp2), testing (0.911 in Exp1 vs 0.918 in Exp2) and validation datasets (0.913 in Exp1 versus 0.925 in Exp2). And the RMSE of Exp2 were 0.1, 0.112, and 0.107 for the training, testing, and validation datasets, respectively (Figures 3d–f). It also indicated that the deviation between the predicted values and the true values of the model is smaller. The comparison of MAE between Exp1 and Exp2 also denoted the Exp2 might be better. Li et al. (2023) employed four machine learning methods to predict the Chl-a using physical factors with Random Forests demonstrating the best performance (R2 ~ 0.8). Aleshin et al. (2024) applied LightGBM and ResNet-18 to predict the Chl-a with an R2 ~ 0.7. Roussillon et al. (2023) used a multi-mode convolutional neural network to reconstruct satellite-derived Chl-a with monthly physical drivers, such as SST, with R2 ~ 0.85. In comparison, our model exhibited superior performance in predicting the Chl-a in the SCS.

[image: Six scatter plots comparing predicted versus true values for training, test, and validation datasets. Panels (a) and (d) show training data with r values of 0.929 and 0.935, RMSE of 0.1 and 0.096, and MAE of 0.059 and 0.057. Panels (b) and (e) show test data with r values of 0.911 and 0.918, RMSE of 0.112 and 0.106, and MAE of 0.066 and 0.063. Panels (c) and (f) show validation data with r values of 0.913 and 0.925, RMSE of 0.107 and 0.1, and MAE of 0.065 and 0.062. A color bar indicates density.]
Figure 3 | Scatter plots between predicted and the counterpart locations of the True Chl-a in training (a, d), testing (b, e), and validation (c, f). The first (second) row represents Exp1 (Exp2).

Further, the residuals between predicted and true Chl-a, separated into training, testing, and validation sets, from 2013 to 2016 were calculated and shown in Figure 4. The results showed that frequency of the residuals shown normal distribution (Figure 4). The average of the residuals is -0.00039, -0.00095, -0.00045 for training, testing, and validation datasets in Exp1, respectively (Figures 4a–c). While the averages of the residuals are -0.00015, -0.00163, and -0.00061 for training, testing, and validation datasets in Exp2, respectively (Figures 4d–f). Although the mean residuals in Exp2 was less than Exp1, both Exp1 and Exp2 had small mean residuals (< 1%), which indicated a good performance of the model without significant systematic bias. This reflected the robustness and reliability of the model in capturing the surface Chl-a. In addition, the [image: It seems there’s a mistake in your request, possibly due to a special character. Please provide an image or a URL for which you need alternate text.]  were about 0.14, 0.22, and 0.21 for training, testing, and validation datasets in Exp1, respectively (Figures 4a–c). They were slightly higher than the corresponding parts in Exp2 (Figures 4d–f). It denotes the results of Exp2 are more stable compared to the result of Exp1.

[image: Six histograms display the distribution of residuals for different datasets: (a) Train with mean -0.00039 and standard deviation 0.14, (b) Test with mean -0.00095 and standard deviation 0.22, (c) Validation with mean -0.00045 and standard deviation 0.21, (d) another Train with mean -0.00015 and standard deviation 0.12, (e) another Test with mean -0.00163 and standard deviation 0.21, and (f) another Validation with mean -0.00061 and standard deviation 0.2. All histograms have a similar normal distribution shape centered around zero.]
Figure 4 | Frequency plots with x-axis as residuals (model results – True value) in training (a, d), testing (b, e), and validation (c, f). The first (second) row represents Exp1 (Exp2).




3.2 Model evaluation in terms of Chl-a temporal and spatial distributions

The model performance was evaluated using correlation coefficients, RMSE, and MAE, all of which indicated good performance for this deep learning model. Experimental results suggested that surface currents (eastward and northward velocities) and SSH slightly enhance the model’s performance. The model’s ability to predict the spatial distribution and seasonal variation of surface Chl-a requires further evaluation.

To represent seasonal variations (Spring, Summer, Autumn, and Winter), surface Chl-a values from the validation dataset on the dates 2013/03/05, 2013/06/15, 2013/09/28, and 2013/12/11 were selected. Figure 5 illustrates the spatial distributions of Chl-a for these selected dates across the true, Exp1, and Exp2. Generally, surface Chl-a exhibits high concentrations on the shelf, particularly along the coast, and low concentrations in the basin of the SCS (Liu et al., 2002, 2012; Shen et al., 2008; Fang et al., 2014). The high Chl-a on the shelf is typically attributed to riverine inputs, such as nutrients, biomass, terrestrial transport, and upwelling (Li et al., 2018; Lu and Gan, 2015). Both the Exp1 and Exp2 effectively captured the prominent feature of the higher Chl-a along the coast and lower Chl-a in the basin (Figures 5e–l).

[image: Twelve-panel grid of chlorophyll-a concentration maps from the year 2013, covering dates March 5, June 15, September 28, and December 11, at coordinates ranging from 4°N to 24°N latitude and 102°E to 116°E longitude. Each date has three panels labeled (a to l), showing color gradients from red (highest concentration, 0.79 mg/m³) to blue (lowest concentration, 0.1 mg/m³). Panels (a) and (d) include arrows indicating specific regions of interest.]
Figure 5 | Spatial distributions of Chl-a in 2013/03/05 (a, e, i), 2013/06/15 (b, f, j); 2013/09/28 (c, g, k); 2013/12/11 (d, h, l). The first column is the true Chl-a, while the second and third column represent Chl-a in Exp1 and Exp2, respectively.

Meanwhile, seasonal Chl-a variation were exhibited significantly (Figures 5a–d). Along the coast, the area with high Chl-a (e.g., > 0.4) were more prominent in the Spring and Winter (Figures 5a, d), while they were lower in the Summer and Autumn (Figures 5b, c). And the Chl-a in the basin were lowest during the Summer (Figures 5b). This feature was also captured by the model in both Exp1 and Exp2 (Figures 5f, j). Additionally, the Luzon Strait, as a major pathway between the Pacific and the SCS, shows significant blooms in winter and spring when northeasterly winds prevail (Peñaflor et al., 2007; Shen et al., 2008). The true Chl-a data includes a notable phytoplankton bloom on the western side of the Luzon Strait (see arrow in Figures 5a, d). Both Exp1 and Exp2 predicted similar phytoplankton blooms, although the area might be slightly larger.

In terms of the overall Chl-a distribution, both Exp1 and Exp2 successfully captured the high Chl-a on the shelf and low Chl-a in the basin, and the seasonal variation of the surface Chl-a. They also reproduced the relatively high Chl-a concentration on the northwest side of Luzon Island (Figures 5e, h, i, l) in Spring and Winter. Based on the evaluation of the Chl-a spatial pattern and seasonal variation, the two experiments demonstrated good performance.




3.3 Spatial distribution of temporal correlation coefficients

The model well captured the spatial pattern and seasonal variation of the Chl-a in both Exp1 and Exp2. However, the temporal correlation between true Chl-a and model predicted Chl-a was unclear. To evaluate the model’s performance in capturing Chl-a temporal variation, the Pearson correlation coefficients between true Chl-a and model predicted Chl-a for each grid were calculated (Figure 6). Figure 6 illustrates the spatial distribution of correlation coefficients in training (Figures 6a, d), testing (Figures 6b, e), and validation (Figures 6c, f).

[image: Nine-panel map series depicting geographic data across Southeastern Asia, focusing on coordinates from 102°E to 122°E and 4°N to 24°N. Panels (a) to (f) feature maps with color scales from blue to red, representing values from zero to one. Panels (g) to (i) use a different color scale from blue to red, indicating values from negative 0.08 to positive 0.08. Specific areas are labeled A, B, and C in panel (i). Black dots indicate key data points in each map.]
Figure 6 | Spatial distributions of Pearson correlation coefficients (with p < 0.05) in training (a, d), testing (b, e), and validation (c, f) datasets. The (g–i) were, [image: If you upload an image, I can help generate the alternate text for it. Please provide the image or a URL, and optionally, you can add a caption for additional context.] , calculated by (d) minus (a), (e) minus (b), and (f) minus (c), respectively. The first column represents Exp1 (Exp2). Boxes A, B, and C in (i) covered the NSCS, central SCS, and Sunda Shelf.

In general, the correlation coefficients in the training dataset (Figures 6a, d) were the highest, which is reasonable given that the training dataset was used to train the model. Regarding the spatial pattern of the correlation coefficients, whether in the Exp1 or Exp2, the values to the north of 16°N were notably higher than those to the south of 16°N in training, testing, and validation (Figures 6a–f). Specifically, the correlation coefficients in the NSCS were generally above 0.8, while in the SSCS, they typically ranged from 0.6 ~ 0.8, with the highest values observed in the training dataset (Figures 6a, d). This discrepancy might be caused by the strength of the relationship between physical factors and surface Chl-a in the NSCS and SSCS. Significant seasonal and inter-seasonal variability of Chl-a is observed in the NSCS (Shen et al., 2008; Palacz et al., 2011; Tang et al., 2014), which is generally associated with the seasonal dynamics of factors such as the monsoon and Kuroshio intrusion (Xue et al., 2004; Xian et al., 2012; Chang et al., 2022; Sun et al., 2023). Previous studies have shown a high correlation between SST and Chl-a (Shen et al., 2008; Tang et al., 2014; Yu et al., 2019). In summer, the mixed layer depth (MLD) is shallow, and the presence of strong stratification due to high SST and weaker winds inhibits the supply of nutrient-rich subsurface water. However, in winter, the MLD usually deepens due to intensified northeasterly monsoons and buoyancy flux, accompanied by a reduction in SST (Tang et al., 2003). As the MLD deepens, nutrient-rich water from the subsurface is transported to the surface layer. With sufficient nutrient support, phytoplankton flourishes during winter. Consequently, Exp1 performs well in capturing the temporal variability of surface Chl-a in NSCS (Figures 6a–c). However, in the SSCS, Geng et al. (2019) revealed that wind- and buoyancy-induced mixing are less intense in the central SCS than in the NSCS, limiting vertical nutrient transport to above the subsurface Chl-a maximum layer. This may explain the lower correlation coefficients in the SSCS (Figures 6a–f).

In respect of the comparison between Exp1 and Exp2, the correlation coefficients in the Exp2 were generally slightly higher than that in the Exp1 in the SCS (Figures 6g–i). However, in the Exp1, the correlation coefficients in the NSCS were comparable with those of Exp2, especially in the training dataset, with increasing correlation coefficients less than 0.03 (Figures 6g–i). It indicated that atmospheric data and SST are crucial factors for simulating the Chl-a in the NSCS. However, between 12°N and 16°N, Exp2 performed well in capturing the temporal variation of Chl-a, with [image: Delta r, represented by the Greek letter Delta followed by the lowercase letter r, typically symbolizes a change or difference in the variable r in mathematical or scientific contexts.]  ([image: Mathematical expression showing two variables: r with subscript "Exp2" is equal to r with subscript "Exp1".] ) exceeding 0.04 (Figures 6h, i). Generally, Exp2 performed better than Exp1, although there were small areas with decreased correlation coefficients to the south of 16°N. In the basin of SSCS, the correlation coefficients were higher than that on the shelf. For Exp1, the correlation coefficient in the Sunda Shelf were not as strong as in Exp2, with r < 0.7 (Figure 6c). However, the Exp2 showed slightly improvement in the Sunda Shelf with slightly higher r (Figure 6i). Comparisons between Exp1 and Exp2 demonstrated that the model achieved the best performance when SSH and currents were included as an input variable, especially in the SSCS.




3.4 Model performance in capturing local important features

We evaluated the model based on spatial distribution of Chl-a and the temporal correlation by Pearson correlation coefficients between true Chl-a and model predicted Chl-a. It denoted the performance of the model was excellent, especially for the NSCS. However, the model’s ability to reproduce local spatial characteristics of Chl-a required further assessment. We selected typical high surface Chl-a patches near the Luzon Strait, Hainan Island, and Vietnam (see red arrows in Figures 7a, d, g) to validate the model’s ability in capturing details from validation datasets (2014/01/30, 2013/10/20, 2014/7/23). Figures 7a, d showed a high surface Chl-a patch surrounded by low surface Chl-a. Previous studies have demonstrated that cold eddies contribute to this phenomenon (Wang et al., 2010; Lu et al., 2015; Sun et al., 2023). In fact, these high Chl-a patches were generally closed to the cold eddies, as indicated by SSH (0.4 contours in Figures 7a, d). Off the coast of Vietnam, high Chl-a concentrations usually followed the jet during the summer (Liang et al., 2018), as shown in Figure 7g (see red arrow). The high Chl-a patch off the Vietnam closely matched the location of the strengthened current velocity.

[image: Nine-panel image showing oceanographic data maps with chlorophyll concentration gradients in milligrams per cubic meter for specific dates in 2013 and 2014. Each panel includes contour lines, color bars indicating concentration levels from 0.4 to 1.58, and geographic coordinates. Arrows and circles highlight specific areas.]
Figure 7 | Spatial distributions of Chl-a snapshots in the True (a, d, g) and Validation datasets (b, c, e, f, h, i). The second and third columns show surface Chl-a in Exp1 and Exp2, respectively. The gray contours represent SSH (0.1 m interval between solid and dashed contours), and the black arrows indicate velocity, exceeding 0.4 m s−1, vectors in HYCOM.

Both Exp1 and Exp2 captured the main features of these high Chl-a patches. To the northwest of Luzon Island, while Exp1 predicted high Chl-a patch (Figure 7b), the Chl-a concentration was not as high as in Figure 7a. However, Exp2 performed better in simulating this patch with higher Chl-a concentration closed to the 0.4 contour (Figure 7c), although it was still lower than that in Exp1. In addition, to the northwest of the high Chl-a patch, the Chl-a concentration was higher than in the True Chl-a (Figures 7a, b). Nonetheless, Exp2 provided a better prediction of Chl-a distribution (Figure 7c) in this area as True Chl-a (Figure 7a). Similarly, the high Chl-a patches near 112°E, 16°N, predicted by the Exp1 and Exp2, were different (Figures 7e, f). The Chl-a concentration in Exp1 was higher than in the True Chl-a (Figure 7d) and Exp2 (Figure 7f). The high Chl-a derived from Exp2 was more comparable to that in the true Chl-a (Figures 7d, f). East of Vietnam, high surface Chl-a is generally induced by upwelling and a southwesterly wind-driven jet (Qiu et al., 2011; Liu et al., 2012; Gao et al., 2013; Chen et al., 2014, 2021). A snapshot of high Chl-a extending from the coast to the east of Vietnam, aligned with the jet (indicated by the strengthened velocity), was shown in Figure 7g. Our model successfully reproduced the high Chl-a along the jet (Figures 7h, i), although the concentrations were not as pronounced as those in the true Chl-a (see red arrow in Figure 7g). Exp2 demonstrated a better prediction of Chl-a along the jet, with higher Chl-a concentrations (see red circles in Figure 7h, i).

This comparison between Exp1 and Exp2 demonstrated that additional variables, SSH and currents, are beneficial to predict the details of the Chl-a distribution. To some extent, the spatial distribution of SSH reflects vertical information, such as the thermocline. Approximately 28.7 cyclonic eddies and 27.9 anticyclonic eddies occur annually in the SCS, which significantly influence the ecosystem of the SCS (Xiu et al., 2010). Mesoscale eddies played a significant role in modulating surface Chl-a through eddy advection, eddy pumping, eddy trapping, and eddy-induced Ekman pumping in the SCS (Gaube et al., 2014; Xiu et al., 2016). Eddy pumping played an important role in controlling surface Chl-a variability to the west of the Luzon Strait and northwest of Luzon Island (Xiu et al., 2016). Yu et al. (2019) found that sea level anomalies are highly correlated with surface Chl-a. Meanwhile, Xiu et al. (2016) revealed that horizontal eddy advection highly influenced the Chl-a off the Vietnam coast. Therefore, including SSH and advection as model inputs enabled the predicted data to more effectively reproduce surface Chl-a.




3.5 Application of the model in 2017

The model trained in Exp2 was further applied to predict surface Chl-a in 2017. Based on model performance in the NSCS and SSCS (Figure 6), spatially averaged Chl-a in Boxes A, B, and C was used to assess temporal variability. The predicted Chl-a largely captured the magnitude and temporal variability of surface Chl-a across Boxes A, B, and C (Figures 8a-1, b-1, c-1). Model performance, as measured by correlation coefficients, was highest in the NSCS, followed by the Sunda Shelf and the central SCS (Figures 8a-2, b-2, c-2). Although the model effectively reproduced the temporal variability of surface Chl-a, particularly the seasonal cycle, its performance was relatively less accurate for daily-scale Chl-a variations, as indicated by the distribution of observed Chl-a (Figures 8a-1, b-1, c-1). To improve model validation, we further calculated 8-day averaged surface Chl-a and compared predicted values with observed Chl-a. On the 8-day scale, correlation coefficients between predicted and observed Chl-a were higher than those on the daily scale (Figures 8d-2, e-2, f-2). Observed Chl-a data aligned more closely with predicted values, and both RMSE and MAE indicated reduced errors in 8-day averaged results (Figures 8d-1, e-1, f-1).

[image: Twelve graphs showing comparisons between predicted and true chlorophyll-a (Chla) concentrations. Each row consists of a time series plot on the left (labeled a-1 to f-1) and a scatter plot on the right (labeled a-2 to f-2). Time series charts exhibit seasonal variations in predicted and true Chla levels. Scatter plots demonstrate correlation, with metrics including correlation coefficient (r), root mean square error (RMSE), and mean absolute error (MAE) displayed. Each panel reflects distinct statistical parameters, indicating various levels of prediction accuracy across different models or datasets.]
Figure 8 | Time series of daily spatially averaged Chl-a (units: mg m-3) in Box A (a-1), B (b-1), and C (c-1), along with their corresponding scatter plots of true versus predicted Chl-a in Box A (a-2), B (b-2), and C (c-2). Panels (d-1), (e-1), and (f-1) represent the 8-day averaged Chl-a and their corresponding scatter plots of true versus predicted Chl-a [(d-2), (e-2), and (f-2)] in Boxes A, B, and C, respectively. The location of boxes is in Figure 6i.

One possible reason for the reduced daily-scale accuracy was that daily variations in surface Chl-a were more complex than those on longer timescales. Small-scale dynamic processes, such as fronts and submesoscale eddies, played an essential role in vertical nutrient transport (Callbeck et al., 2017; Jing et al., 2021; Zheng and Jing, 2022). However, the horizontal resolution of model inputs may limit the model’s ability to capture these small-scale features, affecting day-scale performance. Additionally, surface Chl-a is often associated with vertical nutrients distribution (Geng et al., 2019; Liu et al., 2020), but obtaining continuous, widespread data on nutrient distribution in the vertical direction remains challenging. These factors constrain the model’s precision in predicting daily-scale Chl-a variability.





4 Conclusion

In this study, we developed a statistical model based on the ResUnet architecture to predict daily Chl-a in the SCS through atmospheric and oceanic physical data. The strong correlation between the model-predicted and true Chl-a demonstrates that the model performed well in estimating surface Chl-a. It supported the feasibility of predicting surface Chl-a based on atmospheric and oceanic data.

The model performed better in the NSCS than in the SSCS. In the NSCS, the combination of atmospheric factors and SST was sufficient to reproduce the temporal variability in Chl-a. This superior performance can likely be attributed to the strong correlation between SST and surface Chl-a in this region. In the SSCS, the model-predicted variability of Chl-a had better performance in Exp2, which denoted that the oceanic dynamic factors, such as surface currents and SSH, played a vital role in estimating the Chl-a in the SSCS using deep learning methods.

While the model moderately captured the spatial distribution features in Chl-a when considering only wind-related variables and SST, its performance improved significantly when oceanic dynamic data were included. The addition of surface currents and SSH enabled the model to accurately represent areas with elevated Chl-a due to eddies, particularly around the Luzon Strait and the southeastern side of Hainan Island. The SSH is generally associated with eddies, which enhances the ability of model to predict elevated Chl-a resulting from eddies. In conclusion, the incorporation of ocean dynamics into ecological prediction models based on deep learning technology offers effectively ways and enhances the accuracy of Chl-a predictions in the SCS.
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Appendix A. terms in deep learning method used in this study

	Feature: In the context of deep learning, a feature represents an individual measurable attribute or characteristic that can be used to describe and analyze an observation or phenomenon.

	Batch Normalization (BatchNorm) Layer: This layer standardizes the inputs of each minibatch, which enhances the stability and efficiency of the training process by reducing internal covariate shift.

	Convolutional Layer: The convolutional layer applies a set of filters to the input data, producing feature maps that capture spatial hierarchies and patterns. This layer performs the convolution operation by sliding the filters over the input and computing the dot product between the filter and the input data, which is fundamental for feature extraction in convolutional neural networks.

	Max Pooling Layer: This layer decreases the spatial dimensions of the input feature maps by extracting the maximum value from each sub-region. Max pooling aids in minimizing computational complexity and mitigating overfitting.

	Sigmoid Linear Unit (SiLU) Activation Function: The SiLU activation function, also known as the Swish function, is defined as:



[image: The formula for the SiLU (Sigmoid Linear Unit) function is shown: SiLU(x) equals x multiplied by σ(x), where σ(x) represents the sigmoid function.]	

where [image: Greek letter sigma followed by an "x" in parentheses, representing a function notation: sigma of x.]  is the sigmoid function, given by:

[image: Mathematical expression showing the sigmoid function: sigma of x equals one divided by one plus e raised to the power of negative x.]	

It combines the properties of linear and sigmoid functions, allowing for smooth, non-linear transformations that can improve the training dynamics of neural networks. The SiLU function has been shown to perform well in various deep learning tasks due to its ability to enhance gradient flow and adaptively control the output.

	Residual Connection: A residual connection bypasses one or more intermediate layers, directly feeding the output of one layer to subsequent layers. This technique aids in training deeper networks by alleviating the vanishing gradient problem.

	Skip Connection: A skip connection, also known as a shortcut connection, involves bypassing one or more layers in the neural network and directly passing the output from an earlier layer to a deeper layer.

	Up-Sampling: In the UNet architecture, up-sampling is employed in the expansive path to restore the resolution of the feature maps. This step is essential for reconstructing high-resolution outputs from lower-resolution feature representations.

	Down-Sampling: Down-sampling decreases the spatial dimensions of the input feature maps, commonly used in the contracting path of the UNet. This process simplifies the information, enabling the model to capture more global features in the earlier layers.

	AdamW Optimizer: The AdamW optimizer is an extension of the Adam optimization algorithm that incorporates weight decay directly into the optimization process. Unlike traditional Adam, which applies weight decay as part of the regularization term added to the loss, AdamW decouples weight decay from the optimization steps, leading to better regularization and improved training dynamics.
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Underwater images captured by Remotely Operated Vehicles are critical for marine research, ocean engineering, and national defense, but challenges such as blurriness and color distortion necessitate advanced enhancement techniques. To address these issues, this paper presents the CUG-UIEF algorithm, an underwater image enhancement framework leveraging edge feature attention fusion. The method comprises three modules: 1) an Attention-Guided Edge Feature Fusion Module that extracts edge information via edge operators and enhances object detail through multi-scale feature integration with channel-cross attention to resolve edge blurring; 2) a Spatial Information Enhancement Module that employs spatial-cross attention to capture spatial interrelationships and improve semantic representation, mitigating low signal-to-noise ratio; and 3) Multi-Dimensional Perception Optimization integrating perceptual, structural, and anomaly optimizations to address detail blurring and low contrast. Experimental results demonstrate that CUG-UIEF achieves an average peak signal-to-noise ratio of 24.49 dB, an 8.41% improvement over six mainstream algorithms, and a structural similarity index of 0.92, a 1.09% increase. These findings highlight the model’s effectiveness in balancing edge preservation, spatial semantics, and perceptual quality, offering promising applications in marine science and related fields.
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1 Introduction

Underwater images, captured in aquatic environments using remotely operated vehicles (ROVs), are crucial for marine exploration, underwater archaeology, and fishery monitoring, providing visual representations of underwater scenes and objects. However, underwater imaging environments are complex. The images obtained by ROVs are limited by aggravated color distortion, objects with the same color in the background, and difficulty in edge distinction.

Underwater image enhancement (UIE) improves the quality of underwater images by mitigating their characteristic degradation features and bringing images closer to their true color and clarity, as observed in normal lighting environments. This enables more effective extraction and utilization of valuable features (Alsakar et al., 2024). High-quality underwater image data help reveal unknown marine life and geological features in the deep sea and provide critical information for biodiversity protection (Nazir and Kaleem, 2021), marine environmental monitoring (Wang et al., 2007), and resource sample collection (Mazzeo et al., 2022).

UIE techniques can be divided into two categories: traditional and deep learning-based methods. Traditional UIE techniques include color correction and image restoration methods. Color correction methods such as color balancing can improve color distortion but cannot address blurring and detail loss. Image restoration methods that incorporate physical models, such as light transmission or dehazing models, improve image clarity and optical effects more effectively (Hu et al., 2022). Common color correction methods often perform pixel-level restoration of image colors. For instance, Banik et al. (2018) used gamma correction in the value channel of the hue, saturation, value space to enhance low-light image contrast but introduced problems such as over-enhancement and halos. Garg et al. (2018) applied CLAHE and percentile methods to enhance underwater images and obtained good results in specific scenes but limited improvement in certain water environments. Image-restoration methods typically integrate physical models. Zhu (2023) proposed an enhancement algorithm based on graph theory that improves contrast and color using CIELab and red, green, blue (RGB) spaces combined with CLAHE. However, owing to the independent operations in each color space, the method lacks robustness in complex scenes. Drews et al. (2016) enhanced blue-green channels using a light propagation model but introduced red color distortion. Xiong et al. (2020) applied a linear model and nonlinear adaptive weighting strategy based on the Beer–Lambert law (Swinehart, 1962) to adjust underwater image colors. Recent studies have developed enhanced methods based on conventional algorithmic frameworks to address imaging degradation in specific scenarios. Zhang et al. (2025) proposes a cascaded restoration algorithm grounded in quadtree search-guided background region classification and cross-domain synergy, which integrates dynamic channel discrepancy compensation, S-curve-optimized homomorphic filtering, and chromatic space fusion, thereby significantly improving underwater image fidelity and object recognition robustness. Li et al. (2025) proposes a cascaded restoration algorithm integrating quadtree search-guided background region classification and a cross-domain collaboration mechanism, which effectively addresses color distortion and detail blurring in underwater optical imaging through dynamic channel discrepancy compensation and S-curve-optimized homomorphic filtering, thereby significantly enhancing object detection robustness and visual task performance. However, the methods do not perform well with foggy and low-light underwater images. In general, traditional methods based on fixed underwater priors perform well in specific scenes but are limited by the unpredictability of underwater environments and thus lack general applicability.

Deep learning-based UIE methods use large datasets to train models that adaptively handle various problems, such as color distortion, blurring, and low contrast. These methods can restore image details more accurately and adapt to diverse underwater scenarios. Among the deep learning methods, generative adversarial networks (GANs) have gained prominence in the early stages of UIE for their ability to address limited data availability (Goodfellow et al., 2014). Li et al. (2017) proposed WaterGAN, which corrects underwater image colors by training on both aerial and underwater real images. However, the aerial image model introduces unrealistic background colors. Fabbri et al. (2018) proposed UGAN, which uses CycleGAN generated paired datasets and a Pix2Pix-like structure for UIE. However, CycleGAN generates artifacts under certain scenarios. Despite the requirement of high-quality training data, their proposed method struggles with low-quality underwater images. These methods effectively restore color but often face challenges such as over-enhanced contrast, information loss, instability, and convergence difficulties.

Convolutional neural network (CNN)-based methods (Wang et al., 2021; Lyu et al., 2022; Yang et al., 2023) are particularly effective for UIE tasks owing to their strong feature extraction capabilities and nonlinear feature mapping, which enable them to adapt to various underwater scenes. Wang et al. (2017) designed an end-to-end CNN-based network for color correction and deblurring by employing a pixel disturbance strategy to improve model convergence speed and accuracy. However, their method overfocuses on local features while neglecting the overall semantic information, global color, and light–shadow relationships in the image. Li et al. (2019) developed a paired underwater image enhancement benchmark (UIEB) dataset and proposed Water-Net, a CNN-based model that serves as a benchmark for CNN applications in UIE. Li et al. (2020) trained their proposed UWCNN on synthetic underwater images of various scenes, which resulted in different model parameters. However, owing to the singularity of the training data scenes, the model is overly sensitive to subtle changes in underwater environments and thus, performs poorly. Islam et al. (2020) proposed the UFO-120 dataset and a residual nested CNN called Deep SESR, which has a multimodal objective function for both enhancement and super-resolution of images. However, the shared feature space in this model can cause significant features from the super-resolution task to interfere with the color performance of image enhancement. The aforementioned CNN-based models have powerful feature-learning capabilities and can adapt to complex underwater environments; however, CNNs primarily extract features through local receptive fields, which renders fully capturing global information challenging. Consequently, enhanced images often show a marked locality with coordination problems among objects in complex underwater environments.

To address this limitation, several studies have used Swin Transformers (Liu et al., 2021) for UIE. Sun et al. (2022) enhanced the underwater image contrast by inputting images into a Swin Transformer following gamma and white balance corrections. However, white balance and gamma correction cannot fully resolve the complex problems of underwater images, particularly in foggy and blurry scenes. Peng et al. (2023) constructed a large-scale underwater image dataset and proposed a channel multi-scale fusion transformer and spatial global feature transformer to enhance severely attenuated color channels and spatial regions. However, the sensitivity of different color spaces to various colors varies, which degrades model stability in scenarios with strong color contrast. Transformer architecture, with its unique mechanisms and processing methods, has tremendous potential and value as a primary framework for UIE. Zhu et al. (2024) proposed an adaptive multi-scale image fusion cascaded neural network that integrates polarization-based multi-dimensional features to improve image enhancement quality under low-quality imaging conditions. Concurrently, the team establishing a standardized evaluation framework for polarization-aware visual restoration algorithms. Zhu et al. (2025) proposed a Fourier-guided dual-channel diffusion network, enhances underwater images via phase-based edge refinement and amplitude mapping, coupled with a lightweight transformer denoiser, outperforming leading methods in generalization and visual quality on real underwater datasets. Wang et al. (2025) proposed a SAM-powered framework for underwater image enhancement, integrating precise foreground-background segmentation, region-specific color correction, adaptive contrast enhancement, and high-frequency detail reconstruction to mitigate crosstalk and blurring, thereby significantly improving restoration fidelity and visual quality. Considering that underwater images exhibit inconsistent attenuation characteristics across different color channels and spatial regions and that the object edges in these images degrade, the proposed network focuses on these characteristics to restore underwater image information and achieve high-quality underwater image data.

The main contributions of this paper are as follows:

	We propose a network model, CUG-UIEF, based on U-Net and a multi-feature cross-fusion module, which greatly improves the quality of underwater images.

	We introduce a multi-feature cross-fusion module that enhances the feature representation of images at different scales, thereby improving the overall quality and accuracy of the final output.

	We evaluate the proposed CUG-UIEF model on the UIEB, low-light and super-resolution underwater image (LSUI), and U45 datasets and compared its performance with that of six other mainstream models. The experimental results show that CUG-UIEF achieves substantial improvements in the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). The results also demonstrated excellent performance in both underwater image quality metrics and underwater color image quality assessments, indicating that the CUG-UIEF effectively overcomes underwater environmental interference and can be applied in related fields.






2 Proposed method



2.1 Network structure

The overall structure of the CUG-UIEF is shown in Figure 1; it can be divided into three parts: an encoder, a multi-feature cross-fusion module (DDEM), and decoder. The encoder converts the input image into a deep feature representation. The decoder gradually fuses the features and performs upsampling to reconstruct an underwater image. In this study, the multi-scale features extracted by the encoder were input into the DDEM, and its output was fused with the upsampling results at each stage of the decoder. An enhanced underwater image was obtained after the final upsampling step.

[image: Diagram of a deep learning model architecture for image processing. It includes components like convolution, feature embedding, and Swin-Transformer layers. The DDEM module with Sobel-Edge Extraction and cross-attention operations processes multi-scale features through direct connections, downsampling, and upsampling steps. Legends explain colors and symbols for each component and process step.]
Figure 1 | Architecture of the proposed network, featuring an encoder–decoder structure enhanced with the addition of a multi-feature cross-fusion module.

Encoder stage: This module extracts multi-scale features through the Swin Transformer layer and performs downsampling to capture the details and global information in the image. The deep feature representation provides rich semantic information for the subsequent DDEM module and decoder, which facilitates the final image reconstruction and enhancement.

DDEM module: Uses the Sobel operator to extract edge information from the multi-scale features extracted in the four stages of the encoder and inputs the edge and multi-scale features together into the channel cross-attention (CCA) module to fuse the feature information across channels. Subsequently, the output of the CCA is passed to the spatial cross-attention module to capture the long-distance dependencies among the multi-scale features. Following layer normalization and GeLU activation, the final features are sent to the decoder to gradually restore the spatial resolution and reconstruct the enhanced image.

Decoder stage: The decoder first upsamples the output of the final stage of the encoder and inputs it into the Swin Transformer block. Subsequently, the output of the DDEM is fused with the upsampled results of each decoder stage. The decoder restores the spatial resolution through gradual upsampling to reconstruct an enhanced image. The parameters of the Swin Transformer layer are adjusted at this stage to maintain the integrity of the features, whereas the upsampling layer is used to restore the size of the feature maps. The final upsampling restores the features to the resolution of the original input and projects them onto the RGB channels through the convolutional layer to generate an enhanced underwater image.




2.2 Multi-feature cross-fusion module (DDEM)

The proposed multi-feature cross-fusion module fuses the features extracted from the four multi-scale encoder stages (Figure 2). It generates enhanced feature representations and connects these enhanced features to the corresponding decoder stages. The module can be further divided into attention-guided edge fusion and spatial information enhancement modules.

[image: Diagram titled "Multi-feature Cross Fusion" showing two sections: Channel Cross Attention (A) and Spatial Cross Attention (B). Both sections display feature processing using Layer Norm, SoftMax, and Projection blocks. Features from different encoders (C1 to C4) are normalized, concatenated, processed through attention mechanisms, and output into separate channels. Color coding indicates matrix multiplication, edge features, and various encoder features.]
Figure 2 | Proposed multi-feature cross-fusion module. (A) Attention-guided edge fusion module; (B) Spatial information enhancement module.

The specific operations performed by the module are as follows: The edge features are extracted from the multi-scale features output by the encoder and then input layer by layer together with the multi-scale features into the edge fusion and spatial information enhancement modules. Attention maps are constructed by fusing the features of the multi-scale encoder, enabling them to capture long-distance dependencies across different stages to achieve more accurate and comprehensive modeling of complex scenes and dynamic changes.

Through this series of operations, the output results are processed by layer normalization and subjected to nonlinear mapping via the GeLU activation function to establish dynamic correlations between the feature maps at different levels and edge feature maps.



2.2.1 Attention-guided edge fusion module

This module promotes information interactions between features at different levels in the channel dimension. In this study, the edge features are gradually fused in multiple stages. The weights of the weighted edge features are adjusted using CCA to ensure that detailed information, such as colors and textures, can be accurately transmitted. Upon being output to the decoder stage, as the decoding process proceeds, the weighting coefficients are dynamically adjusted based on the local information of the image; thus, the edge features are enhanced in detailed areas while minimizing interference in the background or smooth regions. In this manner, the edge information is strengthened in key areas (such as object boundaries and detailed parts), while the global consistency and natural appearance of the image are preserved.

The Sobel operator is applied for edge feature extraction. It identifies edge information by calculating the gray gradient of the area around each pixel in the image. The core of this algorithm lies in its elaborately designed convolution kernels, which perform convolution operations on the horizontal and vertical features of the image, thereby effectively capturing the edge changes in the image in different directions.

The change in the x-axis direction in the Sobel operator is

[image: Matrix \( G_x \) is a three-by-three array with values: first row -1, 0, +1; second row -2, 0, +2; third row -1, 0, +1.]	

The change in the y-axis direction is

[image: Matrix \( G_y \) is a 3x3 matrix used for edge detection in image processing. It consists of the values: top row \(-1, -2, -1\); middle row \(0, 0, 0\); bottom row \(1, 2, 1\).]	

Approximate gradient values of the image in the horizontal and vertical directions can be obtained by performing convolution operations on the image using these two sets of convolution kernels. The gradient magnitude of each pixel point can then be obtained by calculating the square root of the sum of the squares of these two gradient values (or the sum of their absolute values) to determine the intensity of the edge.

[image: Mathematical equation showing gradient magnitude: \( G = \sqrt{G_x^2 + G_y^2} \).]	

The Sobel operator extracts edge information across different scales, performs layer normalization along the channel dimension, and conducts weighted fusion with the multi-scale feature output from the encoder stage.

[image: Mathematical equation for fused feature: fused_feature = α · edge_feature + (1 - α) · encoder_feature.]	

Subsequently, the fused features automatically adjust the attention distribution by calculating the similarity between channels to strengthen key features in the image. At this stage, layer normalization is first performed on each token to stabilize the training process. Subsequently, all tokens are concatenated along the channel dimension to create unified keys and values while retaining each token as an independent query. The linear projection in the self-attention mechanism is replaced with a 1 × 1 depthwise convolutional projection. This enables cross-channel information integration and interaction and enhances its nonlinear characteristics. The process formula is as follows:

[image: K and V are obtained by applying a one-dimensional convolution to the concatenation of T sub one, T sub two, up to T sub i.]	

[image: Formula showing: \(Q_l = \text{conv1D}(T_1, T_2, \ldots, T_t)\).]	

[image: Formula for cross-covariance attention (CCA) with queries \(Q_i\), keys \(K\), and values \(V\): CCA\((Q_i, K, V) = \text{Softmax}(Q_i^T K S)V^T\).]	

[image: Mathematical expression showing italicized letters Q, K, and V.]  and [image: A stylized letter "V" with a glossy, metallic appearance, positioned against a white background. The letter has a slight shadow, giving it a three-dimensional effect.]  are matrices that represent the queries, keys, and values, respectively, which are obtained by concatenating the tokens along the channel dimension. S is the scaling factor. Once the output of the CCA is connected to the original tokens, the enhanced features are input into the spatial information enhancement module.




2.2.2 Spatial Information Enhancement Module

This module dynamically adjusts the feature weights of different regions of the image by calculating the correlations among different spatial positions, thereby enhancing the key features in the image. Edge features provide essential structural cues for the image, enabling the model to focus more on the detailed areas of the image while reducing attention allocation to smooth areas, thus avoiding excessive enhancement. Combined with enhanced multi-scale features, the module can capture the details of the image at different levels, effectively restoring the detail loss in underwater images caused by light attenuation and blurring. At this stage, all the tokens are first subjected to layer normalization along the channel dimensions and then concatenated. In contrast to the edge-fusion module, this module uses concatenated tokens as queries and keys; each token is used as a value. Moreover, 1 × 1 depthwise convolutions are also used for projection onto the queries, keys, and values. This design enables the spatial information enhancement module to focus on information integration in the spatial dimension, thereby complementing the edge fusion module to collaboratively establish a comprehensive and enhanced feature representation. The process is defined by the following formulas:

[image: Text states an equation: \( K, Q = \text{conv1D}(\text{concat}(T_1, T_2, \ldots, T_l)) \).]	

[image: \( V_1 = \text{conv1D}(T_1, T_2, \ldots, T_t) \).]	

[image: Single-head self-attention formula: \( \text{SCA}(Q_i, K, V) = \text{Softmax}(Q_i^T K S) V^T \), where \( Q_i \), \( K \), and \( V \) are query, key, and value matrices, respectively.]	

[image: Text showing "Q, K," likely representing variables or elements in a mathematical equation or a context like chess.]  and [image: The image shows a mathematical expression represented by the letter "V" with a subscript "t".]  are matrices that represent queries, keys, and values, respectively. S is the scaling factor.

To ensure that the generated enhanced features can effectively serve the decoder, the following processing steps are adopted. First, layer normalization and the GeLU activation function are applied to the output to stabilize the features and introduce nonlinear transformations. Subsequently, through a combined sequence of an upsampling layer, a 1 × 1 convolution, batch normalization, and GeLU activation function, necessary size adjustments and enhancements are made to the features, which are fused with the features in the decoder stage. The upsampling layer is used to restore the spatial resolution of the feature maps, ensuring that the details of the image can be better reconstructed in the decoding stage. The 1 × 1 convolution is used for channel compression and feature fusion, enhancing the expressive ability of the model, while batch normalization ensures the consistency of features among different layers. The GeLU activation function introduces nonlinear transformations that aid in handling complex feature relationships. This method ensures the continuity and consistency of information and greatly improves the decoding efficiency and performance of the entire network.





2.3 Loss function

We propose a multi-dimensional perceptual loss function for training the CUG-UIEF to align the enhanced images with human visual perception and improve detail reconstruction.

1) Perceptual Loss.

Deep features capture high-level semantic information from images. By comparing the feature maps of the two images in a pretrained network, their perceptual similarity can be evaluated.

[image: Mathematical expression showing a distance measurement: \( l_{\text{per}} = |x - y| \).]	

[image: Please upload the image or provide a URL so I can generate the alternate text for you.]  represents the predicted image, and [image: Please upload the image or provide a URL so I can generate the alternate text for it.]  represents the real image.

2) Multi-scale Structural Similarity Loss.

Multi-Scale Structural Similarity (MSSSIM) is an image quality assessment metric that evaluates brightness, contrast, and structural features across multiple scales, providing a measure more aligned with human visual perception.

[image: The image shows a complex mathematical equation for the Index of Micro-Scale Similarity (Iᵢₘ₋ₛᵢₘ), involving a product notation from m equals one to M. The equation includes variables such as uₘₙ, uₚ, c₁, βₘ, σₚg, c₂, and υ, with mathematical operations including multiplication, addition, and exponentiation.]	

Here, [image: It appears there was no image attached. Please try uploading the image again, and I will be happy to help you with the alternate text.]  represents different scales. [image: The image depicts a mathematical symbol with a lowercase "u" and subscript "g" in a serif font, likely representing a variable or unit in a technical context.]  and [image: Lowercase letter "u" with a subscript "p" in black font, indicating a variable or symbol often used in mathematical or scientific contexts.]  represent the means of the predicted image and ground truth, respectively. [image: Lowercase Greek letter sigma followed by a subscript letter P, possibly representing standard deviation of a portfolio in finance or related context.]  and [image: Lowercase Greek letter sigma (σ) with a subscript "g" in a stylized, serif font.]  represent the standard deviations between the predicted and real images. [image: The Greek letter sigma, subscript "P" and "G".]  represents the covariance between the predicted and real images. [image: A mathematical expression displaying the Greek letter beta, subscripted with the letter m, symbolizing a specific parameter or variable in an equation.]  and [image: Greek letter gamma in italics followed by subscript letters "m" and "n."]  represent the relative importance constants between the two items. [image: Mathematical expression showing the letter “c” with subscript “1.”]  and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.]  are constants.

3) Charbonnier Loss.

The Charbonnier loss function is a variant of the L1 loss function. It prevents the denominator from reducing to zero by introducing a small positive number ϵ and ensures smoother changes when the gradient is large. It maintains the sharpness of an image while reducing noise.

[image: Charbonnier loss function equation: \(L_{\text{charbonnier}} = \sqrt{x^2 + \epsilon^2}\), where \(x\) is the input variable and \(\epsilon\) is a small constant for numerical stability.]	

[image: Please upload the image or provide a URL so I can help generate the alternate text for it.]  represents the difference between the predicted image and ground truth. ϵ is a small positive number used for numerical stability.

Finally, the loss function is expressed as

[image: Equation showing a linear combination: \( I = \lambda_1 I_{per} + \lambda_2 I_{ms-sim} + \lambda_3 I_{charbonnier} \).]	

Hyperparameters [image: The image shows the Greek letters lambda sub one and lambda sub two, followed by a comma.]  and [image: Lowercase Greek letter lambda with subscript three.]  determine the balance between the overall performance and the local texture details. Following experimental analysis the parameters were set to 1, 2, and 1, respectively.





3 Experiments and analyses



3.1 Experimental environment and parameter settings

The proposed model was implemented using PyTorch 2.4.0. It was trained on an NVIDIA RTX 2080Ti GPU without a pretrained network. During the training process, the Adam optimizer was adopted, and the initial learning rate was set to 0.0005, with the β parameter pair being (0.9, 0.999). Training was performed for 700 epochs, and the number of samples in each batch was four.




3.2 Datasets

This study uses three datasets.

	UIEB Dataset (Li et al., 2019): This dataset included 950 real underwater images. Among them, 890 images had corresponding reference images, and another 60 underwater images without reference images were used as the challenging data. In this study, 90 pairs of challenging images in multiple scenes with corresponding reference images from the UIEB were selected as the test set Test-U90, and 60 images without reference images were used as the test set Test-C60. The remaining images were divided into training and validation sets at a 8:2 ratio. The training data were enhanced using random cropping, size adjustment, and random rotation.

	LSUI Dataset (Peng et al., 2023): This is a large-scale underwater image dataset that contains 5,004 underwater images with reference images. It contains richer underwater scenes. Forty-five images were selected from this dataset as the test set, Test-L45. The remaining images were divided into training and validation sets at a 8:2 ratio. The training data were enhanced through random cropping, size adjustment, and random rotation.

	U45 Dataset: The U45 dataset is a publicly available underwater image test dataset that contains 45 underwater images in different scenes and involves underwater degradation phenomena, such as color shift, low contrast, and fogginess. Forty-five images were used as the test set, Test-U45.






3.3 Evaluation metrics and comparative algorithms

Reference Evaluation Metrics: To quantify the performance of each model on the dataset with reference images, this study adopted two measurement standards: PSNR and SSIM. These two indicators help measure the similarity between the restored and reference images. PSNR is an objective quality metric calculated based on the mean squared error between the original image and the enhanced image, with the unit of decibel (dB). In UIE, a higher PSNR value indicates that the enhanced image has a smaller error than the original image and, thus, better quality. SSIM is an index used to measure the similarity between two images. It considers luminance, contrast, and structural information, and its value ranges from –1 to 1. In UIE, the closer the SSIM value is to one, the more similar the enhanced image to the original image in terms of structure, luminance, and contrast, suggesting a higher image quality.

No-reference Evaluation Metrics: For the test sets of images without reference images, we adopted three evaluation methods: underwater color image quality evaluation (UCIQE), underwater image quality measure (UIQM) and Underwater Ranker(URanker) (Guo et al., 2023). UCIQE focuses on the color density, saturation, and contrast of images and uses a linear combination of these three aspects as the quantitative form of color cast, blurring, and low contrast. UIQM includes color (UICM), sharpness (UISM), and contrast measurements (UIConM). As the scores of these methods increase, the image processing results become more aligned with the visual perception preferences of human beings.

Comparative Algorithms: The comparative algorithms adopted in this experiment are representative algorithms among traditional UIE methods and deep-learning-based UIE methods, which can verify the effectiveness and advancement of the proposed method, including the UIE algorithm based on color correction: Fusion (Ancuti et al., 2012); UIE algorithms based on image restoration: IBLA (Wang et al., 2013); HL (Berman et al., 2021); WWPF (Zhang et al., 2023); CBLA (Jha and Bhandari, 2024); UIE algorithms based on deep learning: UWCNN (Li et al., 2020), Shallow-UWnet (Naik et al., 2021), USUIR (Fu et al., 2022), URSCT (Ren et al., 2022), DiffWater (Guan et al., 2023).




3.4 Experimental results

All experimental results are presented with the best outcomes bolded and the second-best outcomes highlighted in blue font. This section first presents the test results of the model based on the UIEB training set on the Test-U90 dataset. As indicated in Table 1, CUG-UIEF outperformed the other algorithms in terms of the PSNR and SSIM. Moreover, compared to the second-best performance, CUG-UIEF achieved percentage gains of 8.41% and 0.1% in PSNR and SSIM, respectively. This study also conducted a no-reference evaluation comparison of Test-C60 and Test-U45. Table 2 presents all the statistical results. Both UIQM and UCIQE have specific feature biases and are relatively sensitive to the contrast of images. Therefore, results based on visual priors and physical models can yield higher scores. Our experimental results align with this conclusion. And the proposed method achieves the best performance on the URanker evaluation metric, with an average improvement of 12.21% over the second-best model. Therefore, the results cannot indicate whether the processed images are the best in all aspects. However, by combining the results of the two parameters, the images performed well in terms of contrast and color. CUG-UIEF obtained the second-best result among the models that were used in the experiment, only lower than that of the fusion method. Combined with the previous results, this shows that the generalization ability and actual performance of the CUG-UIEF are the best.

Table 1 | PSNR and SSIM scores of different methods on the test set Test-U90.


[image: Table comparing traditional and deep-learning methods on TEST-U90 using PSNR and SSIM metrics. The highest PSNR and SSIM scores are from "Ours" with 24.4952 and 0.9262, respectively. Second-best scores are from URSCT at 22.5976 and 0.9171, highlighted in blue.]
Table 2 | UIQM and UCIQE scores of different methods on test sets C60 and U45.


[image: A table comparing traditional and deep-learning methods using UCICQE, UIQM, and URanker metrics for Test-C60 and Test-U45. Fusion has the highest scores in traditional methods for Test-C60, while WWPF achieves the best UIQM for Test-U45. Deep-learning methods show "Ours" with the best UCICQE score for Test-C60 and UIQM for Test-U45. Bold indicates best scores, blue denotes suboptimal values.]



3.5 Comparative mechanism analysis of algorithms

The fusion algorithm addresses underwater color cast and low-contrast degradation through adaptive weight mapping, yet exhibits critical limitations when confronting specific technical challenges. Its edge restoration capability deteriorates in low signal-to-noise ratio (SNR) regions, producing blurred textures and artificial transitions around fine structural details, while contrast optimization remains suboptimal under non-uniform illumination caused by suspended particulates. Furthermore, the water-quality-dependent input generation mechanism demonstrates unstable color correction performance across chromatic water types, particularly failing to compensate for wavelength-specific absorption in turbid greenish waters where waterborne noise amplifies color inconsistency along depth gradients. These limitations stem from the algorithm’s inherent constraints in decoupling overlapping degradation patterns and adapting to spatially variant underwater optical conditions.

The IBLA algorithm decomposes images via luminance-ordering error metrics and bright-pass filtering to separately regulate reflectance and illumination, dynamically adjusting their weights through dual-logarithmic transformations. While effective for uniform scenes, the framework suffers from edge-texture mismatches in areas with overlapping illumination-reflectance gradients, where low-SNR conditions exacerbate erroneous boundary segmentation and nonlinear illumination transitions degrade fine details. The logarithmic weight adaptation further struggles to resolve high dynamic range conflicts, causing halo artifacts near specular highlights and contextual inconsistency in shadowed low-contrast regions. These limitations arise from inadequate noise-robust disentanglement of radiometrically coupled components under complex degradation patterns.

The HL algorithm frames color restoration as a single-image dehazing task by estimating attenuation ratios for the blue-red and blue-green color channels, with a color distribution screening mechanism to identify optimal parameter combinations. However, this approach faces three critical limitations in addressing underwater-specific degradation: Its unified attenuation coefficient oversimplifies spectral interactions, failing to resolve edge blurriness caused by wavelength-dependent scattering anisotropy. The channel-agnostic model amplifies noise in low-SNR scenarios, particularly in red-dominated deep-water regions where backscatter varies disproportionately. Linear color compensation ignores depth-related contrast attenuation gradients, leading to inaccurate recovery in shaded seabed areas with nonlinear illumination decay. These simplifications fundamentally disregard the photometric complexity of real underwater environments, where multi-band light refraction and particulate scattering create spatially varying attenuation patterns.

The color-balanced locally adjustable (CBLA) algorithm targets underwater color distortion and contrast degradation through dual-space hierarchical enhancement, yet reveals critical vulnerabilities when addressing complex photometric interactions. Its RGB-space color restoration mechanism struggles to decouple chromatic shifts from suspended particulate backscattering in high-turbidity environments, occasionally overcompensating blue-green dominance while neglecting wavelength-specific absorption residuals. The CIELAB-space contrast optimization demonstrates limited adaptivity to illumination gradients across depth-varying scenes, where aggressive luminosity adjustments in localized regions may amplify noise patterns and induce halo artifacts near high-frequency textures. Furthermore, the separate processing pipelines for color correction and contrast enhancement fail to maintain spectral consistency in transitional zones between adjusted and unprocessed areas, particularly under abrupt optical density changes caused by marine snow or biological layers. These deficiencies originate from the method’s sequential processing framework that insufficiently models the nonlinear coupling between wavelength attenuation and turbidity-induced light diffusion.

The weighted wavelet visual perception fusion (WWPF) method tackles underwater color distortion and contrast degradation through multi-strategy hierarchical optimization, yet reveals critical constraints when handling complex photonic interactions. Its attenuation-map-guided color correction exhibits incomplete spectral separation in high-turbidity greenish waters, where particulate backscattering interferes with wavelength-specific absorption estimation, occasionally preserving residual cyan dominance while overcompensating red-channel artifacts. The maximum entropy optimized global contrast enhancement demonstrates limited dynamic range adaptation across depth-varying illumination fields, where uniform intensity stretching may amplify noise in low-transmission regions while compressing texture details in high-clarity zones. Furthermore, the wavelet-based multi-scale fusion mechanism shows inadequate edge preservation at high-frequency subbands when processing particulate-laden scenes, as directional filter banks struggle to differentiate between authentic structural contours and suspended particle clusters, resulting in oversmoothed textures near marine snow interfaces. These limitations stem from the method’s implicit assumption of linear degradations and insufficient modeling of nonlinear light-particle-camera interactions in turbid aquatic environments.

The UWCNN algorithm constructs a synthetic degradation dataset using spectral-attenuation priors to train a lightweight CNN for direct underwater image restoration, thereby reducing error propagation. While effective for general color cast correction, its wavelength-agnostic framework introduces spectral bias by oversimplifying depth-dependent chromatic shifts and angular illumination variations inherent in real underwater environments. Specifically, the model fails to address nonlinear wavelength absorption caused by suspended particulates and depth-varying water types, leading to color channel imbalance in scenes with multi-spectral artificial lighting or bioluminescent interference. Furthermore, its static prior integration neglects photometric divergence between shallow and deep-water zones, resulting in inconsistent color constancy when reconstructing red-depleted regions or high-turbidity sediments. These limitations stem from inadequate modeling of spectrally asymmetric degradation and ​cross-domain generalization across heterogeneous underwater optical conditions.

The Sha-UWnet employs a parameter-efficient architecture to optimize underwater image enhancement, leveraging prioritized feature extraction to balance computational cost and restoration quality. While its streamlined design effectively addresses global color shifts, the constrained network depth impedes hierarchical abstraction of multi-scale edge contexts, resulting in blurred boundary delineation and textural discontinuities in low-contrast turbid waters. Specifically, the shallow structure fails to resolve edge-texture conflicts caused by suspended particle scattering, often miscalculating gradient magnitudes in regions with overlapping foreground-background chromaticity. Furthermore, its limited receptive field struggles to suppress waterborne noise while preserving high-frequency details, leading to artificial sharpening artifacts near bioluminescent features or sediment-rich zones. These limitations highlight the inherent trade-off between model efficiency and multi-scale degradation disentanglement in underwater optical environments.

The USUIR algorithm reformulates unsupervised restoration through homology-driven cycle consistency between original and synthetically re-degraded images, theoretically circumventing the need for paired training data. While effective for global error minimization, the framework exhibits edge gradient confusion in low signal-to-noise ratio regions, failing to resolve sub-pixel boundary discontinuities caused by suspended particle scattering or nonlinear light attenuation. This manifests as blurred bio-structural contours and textural oversmoothing in turbid waters where foreground-background chromatic similarity exacerbates edge ambiguity. Furthermore, its spectrally insensitive homology constraints inadequately model wavelength-dependent absorption, inducing color channel crosstalk that amplifies greenish hue bias in deep pelagic zones and artificial saturation spikes under multi-spectral artificial lighting. These limitations stem from insufficient physical priors to disentangle spatially coupled degradation patterns across heterogeneous underwater optical domains.

The URSCT algorithm integrates Swin Transformer into a U-Net framework to enhance global context modeling for structural and chromatic restoration, while its RSCTB module employs convolutional layers to refine local features. Although this hybrid design improves cross-scale feature aggregation in uniform underwater scenes, the global attention mechanism in Swin Transformer induces boundary erosion when processing low-contrast edges or suspended particle-induced textures, where multi-scale edge ambiguity arises from nonlinear light scattering. Concurrently, the convolutional RSCTB module exhibits limited texture-edge decoupling capacity, failing to recover high-frequency boundary cues lost during transformer-based global smoothing, particularly in high-turbidity regions with overlapping bio-optical signals. This synergistic deficiency manifests as gradient reversal artifacts along complex seabed contours and chromatic offsets in shadowed areas, highlighting the algorithm’s inadequate fusion of spectral-spatial priors to address depth-variant degradation patterns in dynamic underwater environments.

The DiffWater method addresses underwater color distortion and quality degradation through conditional diffusion modeling, yet demonstrates critical vulnerabilities when confronting nonlinear photometric interactions in complex aquatic scenarios. Its channelwise color compensation mechanism in RGB space shows incomplete chromatic separation in turbid greenish waters, where wavelength-dependent scattering interferes with particulate density estimation, occasionally preserving blue-green dominance while introducing artificial magenta casts in shadow regions. The conditional DDPM framework exhibits unstable noise prediction capabilities under dynamic illumination fields, where conditional guidance from color-compensated inputs may misdirect the denoising trajectory, generating texture-inconsistent hallucinated details near high-particle-concentration zones. Furthermore, the sequential integration of color correction and diffusion processes demonstrates spectral incoherence in transitional depth layers, particularly failing to preserve wavelength attenuation gradients when processing scenes with abrupt optical density changes caused by algal blooms or sediment plumes. These limitations stem from the method’s simplified assumption of additive degradation patterns and insufficient physical modeling of the nonlinear correlation between waterborne light scattering and depth-dependent chromatic absorption.

The proposed UIE algorithm in this study employs edge feature attention fusion to address critical problems, such as edge blurriness, low SNR, and low contrast in underwater images. It integrates three innovative modules: (1) Edge operators extract edge information through gradient-sensitive feature learning, while CCA fuses multi-scale features using cross-channel coherence analysis, restoring object edge details by jointly optimizing high-frequency components and improving visual performance.(2) A spatial cross-attention mechanism strengthens spatial structure information via edge-guided attention propagation, preserving details under low signal-to-noise ratio conditions through noise-adaptive feature reinforcement.(3) A multi-dimensional perception optimization method enhances semantic understanding, structural integrity, and local contrast using frequency-aware adversarial learning, while mitigating the effects of outliers through multi-scale degradation disentanglement. Collectively, these modules establish hierarchical edge-texture synchronization, where edge restoration and feature fusion are systematically coordinated to resolve cross-scale degradation conflicts in turbid underwater environments.




3.6 Component ablation and fusion validation

The excellent performance of the CUG-UIEF proposed in this study for UIE mainly benefits from the multi-feature cross-fusion module and the redesigned loss function. To verify the effectiveness of the modules proposed in this study, we conducted ablation studies using the UIEB dataset as the training set on Test-U90 and by selecting 45 challenging images from the LSUI dataset as Test-L45. The original model selected in this study has been described in the literature (Ren et al., 2022). The specific experimental settings were consistent with those used in a previous experiment. Table 3 presents the results of this index. DDEM-1 represents CUG-UIEF with the edge fusion module removed, and DDEM-2 represents CUG-UIEF with the spatial information enhancement module removed.

Table 3 | Statistical results of the ablation study on the modules and loss functions.


[image: Table comparing PSNR and SSIM values for different modules under Test-U90 and Test-L45 conditions. Modules include Origin, DDEM-1, DDEM-2, and CUG-UIEF. CUG-UIEF shows the highest PSNR and SSIM in both tests, indicated in bold. Loss metrics and alternative loss configurations are also listed with their respective values.]
As indicated in Table 3, the proposed model achieved the best quantitative performance on the two test datasets, reflecting the effectiveness of the combination of multi-feature cross-fusion and multidimensional perceptual loss function modules.

As shown in Figure 3, compared with the original model, the added multi-feature cross-fusion module better address the problem of cyan-green color casts. When processing images, the cross-attention mechanism can adaptively focus on the interactions between cyan-green channels and other channels, avoiding excessive or insufficient utilization of cyan-green channel information. It emphasizes local details than on the convolution in the original model. The color distribution in real scenes was better matched adjusting the weights and contributions of the cyan-green channels in the image to a more reasonable level, thus effectively correcting the cyan-green color cast and improving the accuracy and naturalness of the image colors. Moreover, after adding edge features, the attention mechanism can focus on the structural information in the image and avoid wasting resources in unimportant areas. Following the addition of edge features, the details of the stones and creatures in the two comparison images became clearer. As we can observe in Figure 4, owing to the multidimensional perceptual loss function, the obtained images exhibit enhanced details, improved color restoration, vivid object edges, high contrast, and clear boundaries.

[image: Panel A shows a hand holding a device under water, with varying levels of clarity and color in different sections. Panel B depicts a school of vibrant yellow fish swimming over a reef, with each section displaying different color enhancements and clarity.]
Figure 3 | Ablation study on the contribution of cross-fusion. Each panel includes the original image (RAW), the results of the original method, the results of DDEM-1, the results of DDEM-2, and the results of CUG-UIEF. (A) Test-U90, (B) Test-L45.

[image: Two panels labeled A and B display color-corrected underwater images. Panel A shows a diver swimming among fish in a clear, blue environment, progressively correcting colors from left to right. Panel B depicts a person holding a smartphone underwater with rocky ground visible, also correcting colors from a yellow tint to clearer tones.]
Figure 4 | Multi-dimensional ablation study. Each panel includes the original image (RAW) and the results of the original method. The results of using only Lp, the results of using both Lp and Lm, and the results of using Lp, Lm, and Lc simultaneously. (A) Test-U90, (B) Test-L45.




3.7 Qualitative comparison through visualization

First, the image comparison results of the UIEB dataset are presented. A comprehensive training was conducted using the UIEB dataset. The test data selected for this study were sampled according to six scenes with distinct characteristics: shadow, texture, blur, blue, yellow, and green. The images that best represented each type of scene and were to some extent challenging were chosen. Figure 5 presents the enhancement results of the different methods.

[image: A grid of underwater images labeled A through L, displaying various ocean subjects such as coral reefs, fish, divers, and sea creatures. Each column features different filters or lighting effects, altering the color and visibility of the scenes. The diverse hues range from blue and green to red and yellow, enhancing different aspects of the underwater environment.]
Figure 5 | Comparison of the underwater images sampled from the Test-U90 dataset. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-UWnet (H) UWCNN (I) USUIR (J) URSCT (K) Diff-Water (L) Ours (M) Ground truth.

In the green scene, color casts occurred in the results of HL, Sha-UWnet, and UWCNN. Only Fusion, USUIR, URSCT, and CUG-UIEF showed color restoration similar to that of the real image. However, CUG-UIEF achieved the closest color restoration effect to the real image, and the details in the shadowed parts were the clearest and most distinguishable. In the blue scene, except for USUIR, URSCT, and CUG-UIEF, none of the methods restored the real illumination effect, and only CUG-UIEF truly restored the color texture of the fish in the upper left corner. In foggy and textured scenes, only the proposed URSCT and CUG-UIEF achieved good effects in defogging and enhancing textures and object edges. However, compared to real situations, both methods had some deficiencies. In the final yellow scene, only CUG-UIEF retained delicate edge information during defogging. Overall, CUG-UIEF was visually superior to the other methods.

This section also presents the image results of CUG-UIEF on no-reference datasets. The tests were performed on two test sets, Test-C60 and Test-U45.

Test-C60 includes five underwater environments—red, yellow, green, blue, and foggy scenes—all of which were affected by high backscattering and color deviation. The most representative images of each type were selected for visual comparison. As shown in Figure 6, HL, CBLA, WWPF, Sha-UWnet, UWCNN, and URSCT exhibited obvious color deviations in some cases. In the yellow scene, HL, IBLA, and USUIR restored the paddle blade to purple, whereas UWCNN and CUG-UIEF restored it to yellow, which is closer to the normal visual perception of humans. Moreover, CUG-UIEF can better restore blurred details in the original image. In the green and blue scenes, only URSCT and CUG-UIEF achieved good restoration of the background and surfaces of the creatures. In the foggy scene, URSCT had a significant defogging effect but overly enhanced the red color in the original image. CUG-UIEF attempted to retain the information of the original image while defogging, and the color restoration at the bottom background was more in line with normal perception. In the shadow and texture scenes, all the methods except USUIR, URSCT, and CUG-UIEF, exhibited color restoration deviations. These three methods could restore the details in the shaded parts while retaining the natural illumination, but only CUG-UIEF could retain sufficient light–dark contrast and object details while providing improved color for the seawater background.

[image: A series of images depicts underwater scenes with various color filters labeled A to L. The scenes include a scuba diver holding an object, a fish near coral, two divers exploring, a school of fish swimming, and a coral reef with marine life. Each column represents the same scene with a different color adjustment, showcasing variations in hue and lighting for each scenario.]
Figure 6 | Visual comparison of the underwater images sampled from the Test-C60 dataset. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-UWnet (H) UWCNN (I) USUIR (J) URSCT (K) Diff-Water (L) Ours.

TEST-U45 contains multiple scenes, such as color deviation and foggy scenes. Multiple scenes were selected for the experiments, and representative scenes were selected for display. As is shown Figure 7, except for HL, UWCNN, CBLA, WWPF and Sha-UWnet, the methods exhibited a lower degree of color deviation. In the shadow and texture scenes, Fusion, USUIR, URSCT, and CUG-UIEF performed well in color restoration and texture information preservation. However, in the blue scene, only the URSCT and CUG-UIEF restored colors that were more in line with normal visual perception and preserved the texture information of the objects well. In the green scene, only CUG-UIEF could better reflect the natural illumination environment and delicate details.

[image: A collage of underwater photos arranged in a matrix with rows and columns labeled A through M. Each section features different scenes and color tones, showing marine life including fish and coral, divers, and underwater landscapes. The photos exhibit a variety of lighting conditions and visual effects, creating a diverse and vibrant depiction of underwater exploration.]
Figure 7 | Visual comparison of the underwater images sampled from the Test-U45 dataset. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-UWnet (H) UWCNN (I) USUIR (J) URSCT (K) Diff-Water (L) Ours.

In summary, HL, UWCNN, WWPF and Sha-UWnet were prone to color-cast phenomena. The IBLA improved the quality of underwater images using local adaptive methods but performed poorly in yellow, foggy, and some blue scenes. Fusion greatly increased artificial colors to enhance contrast but could not adapt well to the changes caused by foggy scenes. USUIR performed well in most scenes but often exhibited a red-shift phenomenon in blue scenes. URSCT had good robustness and strong defogging ability; however, when restoring objects in foggy scenes, it was prone to red-shift phenomena. CUG-UIEF had good robustness and performed well in yellow, blue, green, foggy, shadowed, and textured scenes.




3.8 Application and inference efficiency

As feature extraction-matching and edge detection constitute core technical pillars in underwater image analysis, this study systematically validated the necessity of the proposed method as a preprocessing module for feature matching and edge detection. In feature matching tasks, the SIFT algorithm was utilized to extract feature points, complemented by the RANSAC algorithm for false match elimination. Feature matching was performed on preprocessed 256×256 pixels underwater stereo image pairs from the SQUID dataset. Figure 8 revealed that the proposed approach significantly optimized matching performance while concurrently improving visual quality. Table 4 demonstrates that compared to baseline methods, our scheme ranked second in both initial and valid matches, yet achieved the highest matching precision. Integrative qualitative-quantitative analyses corroborated the critical utility of this method for underwater feature matching tasks.

[image: Two rows of underwater images annotated with lines and points illustrating various features. Each row contains two initial images labeled 'LImg1' and 'RImg1' (top row) and 'LImg2' and 'RImg2' (bottom row). Subsequent images in both rows contain blue line annotations with some images showing dense clusters of lines. The images are labeled from A to H in the first set and I to N in the second set. The annotations indicate relational or measurement data.]
Figure 8 | Application examples of underwater feature matching. (A) RAW-Left (B) RAW-right (C) RAW (D) HL (E) IBLA (F) Fusion (G) CBLA (H) WWPE (I) Sha-UWnet (J) UWCNN (K) USUIR (L) URSCT (M) Diff-Water (N) Ours.

Table 4 | Mean evaluation results of underwater feature matching on the SQUID dataset.


[image: Table comparing methods with columns for Initial matches, Valid matches, and Precision. Traditional methods include HL, IBLA, Fusion, CBLA, WWP- F. Deep-learning methods include Sha-UWnet, UWCNN, USUIR, URSCT, Diff-Water, and Ours. Bold numbers indicate best data: WWP- F with 198.58, 166.21; Ours with 172.68, 155.81, 90.23% precision. Blue indicates suboptimal data: Diff-Water with 89.51% precision.]
Regarding edge detection tasks, all images in the Test-C60 and Test-U45 datasets underwent enhancement prior to edge extraction and evaluation via the Canny operator. Detection performance was quantified using three metrics: Precision, F1 (harmonic mean of precision and recall), and Edge Pixel Ratio (EPR). Table 5 indicated that our method ranked first in accuracy and second in EPR relative to state-of-the-art approaches. Figure 9 demonstrates the experimental findings: In Test-U45 fish samples, the enhanced edge detection preserves intact morphological contours while precisely discriminating target-background depth disparities, revealing underwater spatial hierarchy. In Test-C60 columnar targets, the algorithm achieves complete extraction of artificial structures' geometric edges with enhanced low-light gradient responses, where continuous seagrass blade edges further validate optical attenuation compensation. Convergent qualitative and quantitative evidence validated the significant contribution of this method to underwater edge detection tasks.

[image: A grid with two rows of twelve images each, labeled A to L. The first row shows photographs of a fish in different color tones and corresponding edge detection maps below each. The second row displays images of a coral reef in various color distortions with edge maps underneath. Each column pairs an image with its edge abstraction, highlighting variations in texture and color.]
Figure 9 | Application examples of canny edge detection. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-UWnet (H) UWCNN (I) USUIR (J) URSCT (K) Diff-Water (L) Ours.

Table 5 | Mean evaluation results of underwater feature matching on the Test-C60 and Test-U45 dataset.


[image: Table comparing traditional and deep learning methods based on Precision, F1, and EPR metrics. Best data is in bold, and suboptimal data is in blue. Traditional methods include HL, IBLA, Fusion, CBLA, and WWPF. Deep-learning methods include Sha-UWnet, UWCNN, USUIR, URSCT, Diff-Water, and Ours, with Ours having the highest Precision of 0.6719.]
To evaluate the practical applicability of underwater image enhancement algorithms, we conducted a systematic comparison of inference efficiency among competing methods. The experiments were performed using the UIEB dataset as the benchmark, with average inference times calculated across all test samples. Traditional algorithms were executed in batch processing mode, while deep learning approaches employed pre-trained models on the UIEB training set for inference. Owing to significant architectural variations among deep learning algorithms, substantial discrepancies in inference times were observed across different models. As demonstrated in Table 6, conventional algorithms maintain absolute superiority in computational speed, whereas the proposed framework achieves the second-highest efficiency among deep learning methods while demonstrating a competitive advantage over structurally complex traditional approaches. These findings validate the proposed method’s significant advantages in balancing computational complexity with practical deployment feasibility.

Table 6 | Inference Efficiency Comparison.


[image: A table comparing traditional and deep-learning methods by per-image inference time. Traditional methods and their times: HL (0.284s), IBLA (0.622s), Fusion (1.756s), CBLA (0.199s), WWPF (0.652s). Deep-learning methods and times: Sha-UWnet (3.643s), UWCNN (2.911s), USUIR (1.876s), URSCT (1.061s), Diff-Water (44.322s), Ours (1.083s). CBLA is the fastest overall, indicated in bold. HL is suboptimal, marked in blue.]




4 Conclusion

This study presented a deep learning model for UIE that improves blurring and color distortion caused by light scattering and attenuation. The proposed model integrates a multi-feature cross-fusion module, which combines edge features with encoder features and utilizes a channel-cross attention mechanism, effectively enhancing the clarity of blurred areas and improving edge detail capture. Additionally, the spatial information enhancement module strengthens feature interactions across different locations, enabling more natural restoration of color-distorted regions, thereby bringing the image closer to true colors and clarity. Through multi-dimensional perception optimization, the model further improves clarity, color accuracy, and edge details. Experimental results confirm the superior ability of the model to restore image details and correct color distortion. Ablation studies highlight the effectiveness of both the multi-feature cross-fusion module and multi-dimensional perception optimization in enhancing detail and overall color consistency. However, the dehazing performance of the model in large-scale foggy underwater images requires further improvement. Future work will incorporate multispectral data to address the limitations, enhance dehazing performance, and improve the overall robustness and generalizability of the model in complex scenarios, ultimately providing more reliable image enhancement solutions for practical underwater operations and deep-sea exploration.
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Although side-scan sonar can provide wide and high-resolution views of submarine terrain and objects, it suffers from severe interference due to complex environmental noise, variations in sonar configuration (such as frequency, beam pattern, etc.), and the small scale of targets, leading to a high misdetection rate. These challenges highlight the need for advanced detection models that can effectively address these limitations. Here, this paper introduces an enhanced YOLOv9(You Only Look Once v9) model named SOCA-YOLO, which integrates a Small Object focused Convolution module and an Attention mechanism to improve detection performance to tackle the challenges. The SOCA-YOLO framework first constructs a high-resolution SSS (sidescan sonar image) enhancement pipeline through image restoration techniques to extract fine-grained features of micro-scale targets. Subsequently, the SPDConv (Space-to-Depth Convolution) module is incorporated to optimize the feature extraction network, effectively preserving discriminative characteristics of small targets. Furthermore, the model integrates the standardized CBAM (Convolutional Block Attention Module) attention mechanism, enabling adaptive focus on salient regions of small targets in sonar images, thereby significantly improving detection robustness in complex underwater environments. Finally, the model is verified on a public side-scan sonar image dataset Cylinder2. Experiment results indicate that SOCA-YOLO achieves Precision and Recall at 71.8% and 72.7%, with an mAP50 of 74.3%. It outperforms the current state-of-the-art object detection method, YOLO11, as well as the original YOLOv9. Specifically, our model surpasses YOLO11 and YOLOv9 by 2.3% and 6.5% in terms of mAP50, respectively. Therefore, the SOCA-YOLO model provides a new and effective approach for small underwater object detection in side-scan sonar images.
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1 Introduction

Side-scan sonar (何勇光, 2020) is an extensively utilized underwater sensing technology, mainly applied in underwater terrain mapping, object detection, and exploration tasks. In contrast to conventional downward-looking sonar, side-scan sonar transmits acoustic waves at horizontal or inclined angles, thereby covering a larger area of seabed features and improving detection performance. As a result, side-scan sonar is widely utilized in areas such as maritime archaeology, submerged pipeline monitoring, and wreck exploration (Gomes et al., 2020; Tian et al., 2007; Fengchun et al., 2002; Sun et al., 2021; Jinhua et al., 2016). Nevertheless, the intricate underwater environment often introduces multiple sources of noise and blurring in side-scan sonar images, including scattering noise, multipath artifacts, noise streaks, and acoustic shadow distortions. Furthermore, instrumental noise arises from the sensor’s inherent electronic noise and the transducer’s non-ideal properties, potentially leading to image signal degradation. The interaction of these noise factors results in considerable difficulties in processing side-scan sonar images for real-world applications.

The unique properties of side-scan sonar images introduce significant difficulties in target detection. Firstly, sonar imagery often exhibits considerable background noise and spurious objects, including natural seabed formations and acoustic backscatter from sediment particles, which frequently resemble real targets and result in an elevated false alarm rate in detection models. Secondly, targets in sonar images generally manifest as small, diffuse high-intensity reflections with vague edges and uneven signals, making them indistinguishable from surrounding textures and increasing the difficulty of segmentation from the background. Furthermore, side-scan sonar image data exhibit substantial distribution discrepancies across different scenarios. Given the high cost and inefficiency of underwater data acquisition, labeled datasets are often scarce. This non-uniformity and data insufficiency severely hinder the generalization capability of algorithms, posing a formidable challenge for achieving accurate target detection in complex underwater settings. The rapid progress in artificial intelligence and machine learning has facilitated the fusion of advanced image processing techniques with target detection models, substantially enhancing side-scan sonar image quality and improving the precision of seabed target detection (Yasir et al., 2024; Cheng et al., 2023; Wen et al., 2024; Fan et al., 2022; Yu et al., 2021; Fayaz et al., 2022).

Among existing underwater target detection methods for side-scan sonar images, some object detection models have become relatively outdated and struggle to meet the current diversified underwater application requirements. Although some studies have improved traditional deep learning models, these enhancements often fail to adequately consider the inherent structural characteristics of side-scan sonar images. This neglect of sonar image characteristics makes targeted model optimization challenging, resulting in subpar detection performance in practical applications. Furthermore, while some modified models have enhanced detection capabilities to some extent, their parameter counts have also increased substantially, leading to higher computational costs. Therefore, developing an effective underwater target detection method tailored to the specific requirements of side-scan sonar images is particularly crucial. As shown in Figure 1, by improving existing object detection models with greater emphasis on the structure and characteristics of side-scan sonar images, we can significantly enhance detection performance while effectively controlling model parameters and computational complexity, thereby providing more reliable metrics for underwater detection tasks.

[image: Flowchart illustrating a process with an input image leading through various stages to an output image. The stages include Feature Extraction, Image Reconstruction, and SOCA-YOLO. Above, YOLOv9 connects to SPDCONV-Adown Replacement, and then to CBAM-Augmented Feature Enhancement, integrating into the flow. Both the input and output images appear similar, with a vertical pattern.]
Figure 1 | SSS object detection architecture.

This paper is structured into four main sections: The first section provides a literature review, systematically summarizing the current research status in underwater side-scan sonar image target detection. The second section focuses on methodology, providing a detailed explanation of the proposed detection model and its theoretical framework. The third section presents experimental validation, where multiple comparative and ablation experiments empirically analyze the performance advantages of the proposed model. The fourth section provides conclusions and future perspectives, discussing in depth the future research directions and trends in underwater side-scan sonar image processing based on an evaluation of the model’s practical performance.

The main contributions of this paper are as follows:

	SwinIR-based sonar image enhancement method: To address the issues of low quality and high noise interference in traditional sonar images, the SwinIR super-resolution reconstruction network is introduced into the field of sonar image preprocessing. This method can more effectively enhance image quality, providing clearer input features for subsequent target detection.

	Optimal model selection for small target detection in images: In the task of small target detection in side-scan sonar images, a comparison of existing object detection network models reveals that YOLOv9, through its auxiliary reversible branch, retains critical feature information, significantly enhancing the model’s ability to detect small targets, particularly improving target recognition accuracy in complex backgrounds.

	CBAM-enhanced detection model: Building upon the standard YOLOv9 network, the convolutional block attention module (CBAM) is innovatively incorporated. Unlike the original model’s reliance solely on convolutional feature extraction, this method adaptively focuses on key target features, significantly improving target detection accuracy in complex underwater environments.

	SPDConv replacement for ADown downsampling scheme: To address the challenges of small target detection in sonar images, the original ADown module in YOLOv9 is replaced with the SPDConv (Space-to-Depth Convolution) module. Compared to traditional downsampling methods, this improvement effectively mitigates the issue of small target feature loss.

	Sonar image dataset reconstruction and evaluation: Existing public sonar datasets are systematically restructured, and a data partitioning standard more aligned with practical application scenarios is proposed. Experimental results demonstrate that the proposed improvements outperform traditional methods across all metrics.






2 Related work

As deep learning technology advances, various effective approaches have been introduced in image enhancement. The goal of image enhancement is to enhance image visual quality and interpretability using different algorithms, spanning from basic filtering to sophisticated color adjustment and detail refinement. Methods based on Convolutional Neural Networks (CNNs), such as Du (Du et al., 2023), employ four conventional CNN models for training and predicting on the same submarine SSS dataset. A comparative analysis was conducted on the predictive accuracy and computational efficiency of the four CNN models. Generative Adversarial Networks (GANs) employ adversarial learning between a generator and a discriminator to produce highly detailed images. Jiang (Jiang et al., 2020), for example, introduced a GAN-based semantic image synthesis model that can efficiently generate high-quality SSS images with reduced computational cost and time. Swin Transformer (Liu et al., 2021) serves as a versatile vision model designed mainly for image classification, object detection, and semantic segmentation (Lin et al., 2022; Gao et al., 2022; He et al., 2022; Jannat and Willis, 2022), with potential applications in image enhancement and video processing. It is specifically designed for efficient high-resolution image processing and has demonstrated superior performance in multiple visual tasks. SwinIR (Liang et al., 2021), built upon Swin Transformer, is a deep learning framework tailored for image restoration, encompassing super-resolution, noise reduction, and deblurring, among other tasks. Retaining the strengths of Swin Transformer, it integrates task-specific optimizations for image restoration, leading to improved processing efficiency and output quality. SwinIR has demonstrated significant performance improvements across various fields. For instance, in medical imaging, its application in low-dose PET/MRI restoration achieves a mean SSIM of 0.91 at a 6.25% dose level, substantially enhancing image quality (Wang et al., 2023b). In the domain of remote sensing, experiments on benchmark datasets show that SwinIR can enhance the resolution of satellite and aerial images—at a 2× scaling factor, its PSNR reaches 35.367dB and its SSIM increases to 0.9449, thereby facilitating more accurate topographic monitoring and mapping (Ali et al., 2023). Moreover, in video enhancement and facial recognition (Zheng et al., 2022; Lin, 2023), SwinIR’s robust feature extraction and reconstruction capabilities significantly improve detail recovery and overall performance, as evidenced by its competitive results in multiple top-tier challenges. These advancements in deep learning have propelled significant innovations in image enhancement techniques.

In the field of computer vision, object detection and image enhancement are two complementary and important research directions. Image enhancement techniques aim to improve image quality, providing more accurate inputs for object detection, while object detection techniques focus on identifying and localizing objects of interest within images. Deep learning-based object detection methods are primarily divided into two categories: one-stage methods and two-stage methods. One-stage detection models directly predict target locations and categories through a single network forward pass, offering faster speed but potentially slightly lower accuracy. Representative works include the SSD (Single Shot Detector) series (Liu et al., 2016) and the YOLO (You Only Look Once) family (Redmon, 2016; Redmon and Farhadi, 2017; Redmon, 2018; Bochkovskiy et al., 2020; Li et al., 2022; Wang et al., 2023a, 2025, 2024). Two-stage detection models first generate candidate regions and then classify and regress these regions, achieving higher accuracy but at a relatively slower speed. Representative works include the R-CNN family (Girshick et al., 2014; Ren et al., 2016; He et al., 2017). Currently, these methods have been widely applied in underwater object detection tasks using sonar images and have achieved significant results (Heng et al., 2024; Yang et al., 2025; Ma et al., 2024; Yulin et al., 2020; Polap et al., 2022).

Deep learning-based side-scan sonar image enhancement and object detection technologies have achieved significant progress in both theoretical research and practical applications. Burguera et al (Burguera and Oliver, 2016) employed a probability model-based high-resolution seabed mapping method, correcting sonar data using physical models to generate high-precision images surpassing the device’s resolution, laying the foundation for scientific applications. Tang et al. (2023) proposed a deep learning-based real-time object detection method, incorporating lightweight network design to address the challenges of detection efficiency and accuracy in complex underwater terrains. Li et al. (2024) designed an image generation algorithm for zero-shot and few-shot scenarios by combining UA-CycleGAN and StyleGAN3, significantly enhancing the generalization performance of deep learning-based object detection models. Yang et al. (2023) employed diffusion models to generate high-fidelity sonar images and validated the effectiveness of these enhanced data in practical object detection tasks. Zhu et al. (2024) significantly improved the stability and global information extraction capabilities of generative models by introducing CC-WGAN and CBAM modules, while also enhancing the accuracy of object detection. Yang et al. (2024) generated full-category sonar image samples using diffusion models combined with transfer learning, and trained object detection and semantic segmentation models with these samples, significantly improving model performance and data diversity. Aubard et al. (2024) proposed the YOLOX-ViT model, effectively compressing the model size using knowledge distillation while maintaining high detection performance, particularly reducing false alarm rates in underwater environments. Peng et al. (2024) designed a single-image enhancement method based on the CBL-sinGAN network, incorporating CBAM modules and L1 loss functions to enhance the construction capability of small-sample object detection models while preserving sonar image style.




3 Method

This section introduces the proposed SOCA-YOLO model, which integrates the image restoration model SwinIR, the CBAM (Woo et al., 2018) attention mechanism, the SPDConv (Sunkara and Luo, 2022) convolution module, and the YOLOv9 object detection model.



3.1 SwinIR

Image restoration is the process of transforming low-quality images into high-quality versions. SwinIR, a model based on the Swin Transformer, is primarily used for image super-resolution, denoising, and JPEG compression artifact reduction.

SwinIR combines the strengths of both Transformers and CNNs, outperforming traditional CNNs in handling large images due to its local attention mechanism. SwinIR employs a sliding window approach, dividing the input image into multiple small windows and processing each window separately, while retaining the Transformer’s ability to manage long-range pixel relationships within the image. As illustrated in Figure 2, SwinIR is designed based on the Swin Transformer and comprises three modules: Shallow Feature Extraction, Deep Feature Extraction, and High-Quality Image Reconstruction.

[image: Flowchart of an image processing model. It starts with shallow feature extraction, followed by deep feature extraction with repeated RSTB blocks. The process includes STL modules, convolutional layers, and multi-layer perceptrons (MLP) with layer normalization. The final step is high-quality image reconstruction.]
Figure 2 | SwinIR transformer architecture.

The Shallow Feature Extraction module extracts initial features through convolutional layers, preserving lowfrequency information and passing it to the reconstruction module. The Deep Feature Extraction module incorporates Residual Swin Transformer Blocks (RSTB), which achieve local attention and cross-window interactions through multiple Swin Transformer layers. Residual connections provide a shortcut for feature aggregation, and convolutional layers further enhance the features. Finally, the High-Quality Image Reconstruction module combines shallow and deep features to produce high-quality images. Each module is detailed below.

Shallow Feature Extraction Module: This module uses a 3×3 convolution to extract shallow features. The main purpose of this process is to retain low-frequency information, leading to better and more stable results. A low-quality imageis ILinput at the input stage, and after passing through the shallow feature extraction module HS, the shallow feature F0 is obtained as shown in Equation 1:

[image: Please upload the image or provide a URL, and I can help generate the alt text for you.] 

Deep Feature Extraction Module: This module consists of several RSTBs (Residual Swin Transformer Blocks) and a 3×3 convolution. Each RST is composed of an even number of Swin Transformer Layers (STL) and a convolution layer. This module further processes the shallow features, resulting in its deep feature FD, as shown in Equation 2.

[image: It appears you're referencing an equation rather than providing an image. If you have an image you'd like me to assist with, please upload it or provide a URL.] 

Here, HD represents the deep feature extraction module.

High-Quality Image Reconstruction: The shallow and deep features are aggregated, transferring both the lowfrequency and high-frequency information of the image to the reconstruction layer. The high-quality image reconstruction module uses a sub-pixel convolution layer to upsample the feature map, resulting in the reconstructed high-quality image [image: Mathematical expression with an uppercase letter "I" followed by a subscript uppercase letter "H".] , as shown in Equation 3:

[image: It seems there was no image attached. Please try uploading the image again, and I will assist you in creating the alt text.] 

Here, HRE represents the high-quality image reconstruction module.




3.2 CBAM

The Convolutional Block Attention Module (CBAM) is an efficient attention module for feedforward convolutional neural networks, proposed by Sanghyun Woo et al, as illustrated in Figure 3a. CBAM enhances the model’s perceptive capability by incorporating a Channel Attention Module (CAM) (Figure 3b) and a Spatial Attention Module (SAM) (Figure 3c) into CNNs, thereby improving performance without adding significant network complexity. As a lightweight and versatile module, CBAM can be seamlessly integrated into any CNN architecture, adding minimal parameters and enabling end-to-end training with YOLOv9 models.

[image: Diagram illustrating an attention mechanism with three sections. (a) Combines channel attention and spatial attention modules, transforming input F to output F''. (b) Uses MaxPool and AvgPool on input F, passing through an MLP to generate vectors that are summed and activated. (c) Applies MaxPool and AvgPool to F', processed through a convolutional layer and activation function.]
Figure 3 | (a) Convolutional Block Attention Module (CBAM) architecture, (b) Channel Attention Module (CAM) architecture, (c) Spatial Attention Module (SAM) architecture.

The input feature map F first passes through the CAM, where the channel weights are multiplied with the input feature map to produce [image: Mathematical notation showing a variable \( F \) with a prime symbol, indicating a derivative or modified form of the variable.] . Then, [image: Mathematical notation showing an italicized capital letter "F" with a prime symbol.]  is fed into the SAM, where the normalized spatial weights are multiplied with the input feature map of the spatial attention mechanism, resulting in the final weighted feature map [image: Mathematical notation showing \( F'' \), indicating the second derivative of a function with respect to a variable.] .




3.3 Space-to-Depth Convolution

The fundamental principle of SPDConv (Space-to-Depth Convolution) is to enhance the performance of convolutional neural networks (CNNs) when processing low-resolution images and small objects, as illustrated in Figure 4. This improvement is achieved through the following key steps:

	Replacing Strided Convolutions and Pooling Layers: SPDConv is designed to replace traditional strided convolution and pooling layers, which often cause the loss of fine-grained information when dealing with low-resolution images or small objects.

	Space-to-Depth (SPD) Layer: This transformation layer converts the spatial dimensions of the input image into the depth dimension, increasing the feature map depth without information loss. The SPD layer is critical for retaining spatial information, especially when processing low-resolution images and small objects. By converting spatial information into the depth dimension, the SPD layer mitigates the information loss typically associated with traditional strided convolutions and pooling operations.

	Non-strided Convolution Layer: A convolutional layer with a stride of 1, applied after the SPD transformation, preserves fine-grained information by avoiding size reduction of the feature map. This non-strided convolution enables feature extraction while maintaining the full resolution of the feature map, which is essential for enhancing recognition performance on low-resolution images and small objects.



[image: Diagram illustrating a space-to-depth transformation on a feature map followed by a convolution. Initially, a feature map of dimensions \(S \times S \times C_1\) is divided into smaller blocks. These blocks are rearranged into a depth-concatenated tensor of size \(\frac{S}{2} \times \frac{S}{2} \times 4C_1\). This tensor is then combined with another tensor of size \(\frac{S}{2} \times \frac{S}{2} \times C_2\) through convolution with stride one, resulting in multiple feature maps.]
Figure 4 | SPDConv architecture.

SPDConv effectively processes low-resolution images and small objects by combining space-to-depth transformations with non-strided convolutions. This method addresses the fine-grained information loss commonly caused by traditional strided convolutions and pooling layers during downsampling. By preserving spatial information through the SPD layer and converting it into depth features, combined with non-strided convolutions to capture finer details, SPDConv excels in small object detection tasks. It significantly enhances detection accuracy and adaptability to low-resolution images, offering a novel solution for small object detection and related tasks.




3.4 YOLOv9

Proposed in 2024, YOLOv9 is an object detection network that excels in both detection accuracy and processing speed. The model introduces Programmable Gradient Information (PGI), as illustrated in Figure 5. Through auxiliary reversible branches, PGI allows deep features to retain essential object characteristics, enabling the network to preserve crucial visual features of the target without sacrificing important information. This approach enhances YOLOv9’s ability to maintain high performance even in complex detection scenarios.

[image: Flowchart illustrating a neural network architecture with multi-level auxiliary information. It features three main components: main branch (red squares), auxiliary branch (green squares), and prediction heads (white squares). Dotted arrows indicate data flow, with auxiliary reversible branch interconnecting elements. A key explains the color coding.]
Figure 5 | YOLOv9 architecture.

PGI consists of three components: the main branch, multi-level auxiliary information, and the auxiliary reversible branch. Each component is detailed below:

Main Branch: The main branch includes the backbone network, neck network, and head network, which are common components in the YOLO series. The backbone network primarily uses Conv and RepNCSPELAN4 layers for feature extraction. The neck network comprises Upsample, Conv, and RepNCSPELAN4 layers, utilizing an FPN+PAN structure for multi-scale target detection. The head network processes features from the neck network to predict and classify large, medium, and small objects.

Auxiliary Reversible Branch: This branch addresses information loss that occurs as network depth increases, leading to information bottlenecks that hinder reliable gradient generation from the loss function. It introduces an additional network between the feature pyramid layers and the main branch to integrate gradient information from multiple prediction heads.

Multi-level Auxiliary Information: Multi-level auxiliary information involves inserting an integrated network between the feature pyramid’s sub-layers and the main branch under auxiliary supervision. This network aggregates gradient information from various prediction heads and passes it to the main branch for parameter updates. Consequently, the feature pyramid in the main branch is not dominated by specific objects, enabling the main branch to retain comprehensive information necessary for learning target features.




3.5 SOCA-YOLO

In this study, we have improved upon the YOLOv9 object detection framework to address challenges such as noise interference, small target size, and edge blurring in side-scan sonar images. Due to the unique imaging mechanism of side-scan sonar, the images often exhibit high noise and low contrast, which can hinder traditional detection models from effectively extracting fine-grained features. Although YOLOv9 demonstrates notable advantages in real-time performance and multi-scale feature fusion, its standard convolutional layers and global feature extraction strategies still exhibit certain limitations when handling such specialized scenarios. Therefore, we propose two main improvements: the introduction of the CBAM attention mechanism into the model and the replacement of some standard convolutional layers with SPDConv modules, thereby achieving more precise feature extraction and fusion for small targets. The modified network model is illustrated in Figure 6.

[image: Flowchart of an advanced neural network architecture with multiple modules connected through arrows. It includes sections labeled Auxiliary Reversible Branch, Multi-level Auxiliary Information, Backbone, Main Branch, Neck, and Head. Components like DualDetect, CBAM, SPDConv, RepNCSEPLAN4, and others are depicted in different colors. The bottom section contains detailed module breakdowns, including CB, CBS, RepConvN, RepNCSPLAN4, and others, showing internal architectures like Conv, BN, SiLU, MaxPool, and Concat. The flowchart illustrates a complex machine learning model with various interconnected sub-modules.]
Figure 6 | SOCA-YOLO architecture.

In our improved model, the overall architecture still adheres to the core design principles of YOLOv9, divided into three components: Backbone, Neck, and Head. However, novel modules have been strategically incorporated at each stage to adapt to the characteristics of side-scan sonar images. First, the Backbone section integrates SPDConv modules alongside traditional convolutional layers to enhance multi-scale representation capabilities in feature extraction. Specifically, the SPDConv module performs spatial reorganization of input feature maps. This operation can be formally described as follows: let the input feature map be defined in Equation 4.

[image: Mathematical notation displaying \( X \in \mathbb{R}^{C \times H \times W} \), indicating that X is a tensor or matrix with dimensions C by H by W, representing data in a multi-dimensional array format.] 

Initially, SPDConv samples [image: Please upload the image or provide a URL for me to generate the alternate text.]  to derive four sub-regions, as shown in Equation Equation 5.

[image: Equation labeled as (5) showing variables: \( x_1 = x[:, :, 2, :, 2] \), \( x_2 = x[:, :, 1, 2, :, 2] \), \( x_3 = x[:, :, 2, 1, :, 2] \), and \( x_4 = x[:, :, 1, :, 2, 1, :, 2] \).] 

The four sub-features are concatenated in the channel dimension, resulting in a new feature map, as shown in Equation 6.

[image: Equation six depicts a mathematical expression for a variable \( x_{\text{SPD}} \) defined as the concatenation of four components \( x_1, x_2, x_3, \) and \( x_4 \). The result is part of the real number space \( \mathbb{R}^{4C \times H \times W} \).] 

Subsequently, a [image: Please upload the image or provide a link to it, and I can help generate the alternate text for it.]  convolutional layer (denoted as [image: The image contains a mathematical expression: "Conv" with a subscript of "3 x 3".] ) is employed for fusion, producing the output features, as shown in Equation 7:

[image: If you upload the image or provide a URL, I can help generate the alt text for it.] 

This spatial reorganization and downsampling strategy not only reduces the size of the feature maps and computational load but also effectively captures fine-grained information through channel expansion, offering significant advantages for detecting small, blurry targets in side-scan sonar images.

In the Backbone and some Head modules, we also embed the CBAM to apply dual attention weighting to the features. Specifically, let the input feature be [image: Mathematical notation depicting \( F \in \mathbb{R}^{C \times H \times W} \), indicating that F is an element of the real numbers in a tensor with dimensions C, H, and W.] , and first, channel statistics are computed through global average pooling and max pooling along the channel dimension, as shown in Equation 8:

[image: Mathematical expressions are displayed. The first equation defines \( f_{\text{avg}}(c) \) as the average value of \( F(c,i,j) \), calculated as the sum of \( F(c,i,j) \) divided by \( H \times W \). The second equation defines \( f_{\text{max}}(c) \) as the maximum value of \( F(c,i,j) \).] 

These two sets of statistics are processed through a shared multi-layer perceptron (MLP) and a Sigmoid activation to generate the channel attention vector [image: Mathematical notation showing \(M_c \in \mathbb{R}^c\), indicating that \(M_c\) is an element of the real number space with dimension \(c\).] , which is then multiplied with the original features on a per-channel basis to obtain the intermediate feature [image: Mathematical equation showing \( F' = M_c \otimes F \).] . Next, average and max pooling are applied along the channel dimension of [image: The image shows the mathematical function notation "F prime", represented by the letter "F" followed by a superscript apostrophe symbol.] , followed by concatenation, a [image: If you have an image you'd like me to describe, please upload it. If you need assistance with how to do that, let me know!]  convolution, and Sigmoid activation to generate the spatial attention map [image: Mathematical notation showing \( M_s \in \mathbb{R}^{H \times W} \), indicating that \( M_s \) is an element of the real number space with dimensions H by W.] , which is then used to output the spatially weighted feature, as shown in Euqation 9:

[image: The formula shown is \( F_{\text{att}} = M \otimes F' \), labeled as equation (9).] 

This process allows the network to automatically focus on the target regions, effectively suppress background noise, and further enhance the discriminative ability for small target features.

In the overall architecture, the multi-scale features extracted by the Backbone are strengthened by the SPDConv and CBAM modules and then passed to the Neck section. The Neck employs an FPN and PAN-style multi-scale feature fusion strategy, merging features from different levels in an abstract formulation, as shown in Euqation 10:

[image: Mathematical equation representing \( F_{\text{neck}} \), calculated as the sum from \( n = 1 \) to \( N \) of \( w_n \) multiplied by a function \( f(F_{\text{ant}}) \), labeled equation ten.] 

Here, fi(·) denotes the feature transformation function for each scale branch, and wi represents the corresponding weight. This fusion not only retains fine-grained information from each layer but also enriches the global semantics, making it particularly suitable for detecting small targets in side-scan sonar images.

In the Head section, the improved features are processed through a series of modules such as SPPELAN, RepNCSPELAN4, and CBAM, and then further integrated using upsampling and cross-layer concatenation (Concat) to merge multi-scale information. It is worth mentioning that in the subsequent design of the Head, we also introduce multi-level reversible auxiliary branches (through CBLinear and CBFuse modules), which re-fuse features from different levels of the Backbone, providing stronger discriminative signals for final target detection. Finally, after passing through the DualDDetect module, the network outputs detection results containing target categories, bounding box coordinates, and confidence scores, as shown in Equation 11:

[image: The image shows a mathematical equation: Y-hat equals function of subscript head applied to F subscript neck, formatted as equation number 11.] 

The network is then trained end-to-end using a multi-task loss function, composed of localization loss, classification loss, and confidence loss, as shown in Equation 12:

[image: Mathematical formula showing L equals lambda times L_loc plus lambda times L_ncls plus lambda times L_conf, denoted as equation twelve.] 

This improvement strategy fully integrates the advantages of SPDConv for spatial reorganization and downsampling, CBAM’s dual attention weighting ability for features, and the overall design of multi-scale fusion. It significantly enhances the model’s detection performance for small targets in side-scan sonar images, while balancing real-time processing and efficiency, providing a solid theoretical and technical foundation for future practical deployment.

During model training, the original images are first uniformly resized to a standard dimension of 640×640×3. This standardization ensures consistency in input data. Subsequently, the images undergo a series of convolution and pooling operations, through which the network generates feature maps of varying scales. Shallow feature maps retain finer details for detecting small targets, while deep feature maps capture global information for large target detection. This multi-scale feature extraction mechanism effectively enhances the network’s capability to detect targets of varying sizes.





4 Experiments and analysis

To validate that our SOCA-YOLO network achieves superior results on public side-scan sonar images compared to other methods, we designed the following experiments. First, we applied SwinIR to preprocess the original dataset, generating a high-resolution dataset. We then compared various object detection models, demonstrating that our network exhibits a certain level of superiority. Additionally, we conducted comparative experiments using different convolution modules and attention mechanisms to verify the effectiveness of the SPDConv module and the CBAM attention mechanism. Finally, ablation experiments confirmed that each of our proposed improvements contributes positively to the overall performance.



4.1 Environment and dataset

To comprehensively assess the effectiveness of the proposed method, we conduct experiments in a high-performance computing environment and evaluate the model on a publicly available side-scan sonar image dataset. This section provides a detailed description of the experimental setup and dataset used in our study.



4.1.1 Environment

To ensure the reproducibility of experiments and the efficiency of computational performance, the experimental environment in this study is built on the mainstream deep learning framework PyTorch, fully meeting the computational requirements for model training and inference. Detailed configuration information is presented in Table 1.

Table 1 | System configuration.


[image: Table displaying software and hardware configurations. Python version 3.9.18, PyTorch version 1.12.0, CUDA version 11.3, CPU is Intel Core i5-13600KF at 3.50 GHz, and GPU is NVIDIA GeForce RTX 4070 Ti with 12 GB.]



4.1.2 Dataset

The experimental dataset used in this paper is the publicly available Cylinder2 ([Dataset] yeesonmin@naver.com, 2022), utilized to evaluate the model’s performance. Released in 2022, this dataset contains 478 side-scan sonar images categorized into two classes: cylinders and manta rays, with each image containing exactly one object. Each object occupies a relatively small pixel area compared to the full image, making this dataset suitable for underwater small object detection tasks. We excluded the portion containing manta rays (140 images), retaining only the 338 cylinder images. The dataset was subsequently split into training, validation, and test sets in an 8:1:1 ratio, which was then used to train the network. The basic configuration of the dataset is shown in Table 2.

Table 2 | Dataset split settings.


[image: Table showing dataset distribution with two columns: "Dataset" and "Images." "Train" has 270 images, "Val" has 34 images, and "Test" has 34 images.]




4.2 Evaluation metrics

During the image restoration stage using SwinIR, the image quality was evaluated using standard metrics, including Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM).

PSNR: Given a clean image and a noisy image of size m×n, the Mean Squared Error (MSE) is defined, as shown in Equation 13:

[image: The image shows the formula for Mean Squared Error (MSE), given by MSE equals one over m times n, the double sum from i equals zero to m minus one and from j equals zero to n minus one of the square of the difference between I(i, j) and K(i, j).] 

At this point, PSNR is defined as shown in Equation 14:

[image: Formula for Peak Signal-to-Noise Ratio (PSNR): \( \text{PSNR} = 10 \cdot \log_{10} \left(\frac{\text{MAX}^2}{\text{MSE}}\right) \). Equation number (14).] 

Here, [image: The expression "MAX sub i squared" is shown, indicating the maximum value in a set raised to the power of two.]  represents the maximum possible pixel value in the image. If each pixel is represented by 8-bit binary, then the maximum value is 255. Typically, if the pixel value is represented in B-bit binary, then [image: The formula depicts MAX subscript I equals two raised to the power of B minus one.] .

SSIM: The SSIM formula is based on three comparison measures between samples x and y: luminance (Equation 15), contrast (Equation 16), and structure (Equation 17).

[image: Equation showing \( (x, y) = \frac{2\mu_{x}\mu_{y} + c_{1}}{\mu_{x}^{2} + \mu_{y}^{2} + c_{1}} \) with the reference number 15 on the right.] 

[image: Mathematical equation representing a function c of variables x and y, defined as two times the product of sigma x and sigma y plus c sub two, all over the sum of sigma x squared, sigma y squared, and c sub two.] 

[image: Mathematical expression for s(x, y) equals the fraction \((\sigma_{xy} + C_3)\) divided by \((\sigma_x \sigma_y + C_3)\), followed by equation number 17 in parentheses.] 

Typically, [image: Equation showing \( c_3 = \frac{c_2}{2} \).] , where [image: Greek letter mu with subscript x.]  represents the mean of x, [image: It seems there was an error with the image. Please upload the image file directly or provide a URL to the image.]  represents the mean of y, [image: Mathematical notation of sigma squared sub x, representing variance in statistical formulas.]  is the variance of x, [image: Greek lowercase letter sigma with a squared y subscript.]  is the variance of y, and [image: Mathematical symbol for the shear stress component, sigma sub xy, denoting the stress acting parallel to the plane in a coordinate system.]  is the covariance between x and y. Thus SSIM can be expressed, as shown in Equation 18:

[image: Mathematical equation for the Structural Similarity Index (SSIM) is shown: SSIM(x, y) equals l(x, y) to the power of alpha, multiplied by c(x, y) to the power of beta, and s(x, y) to the power of gamma.] 

Setting, [image: The equation shows the Greek letters alpha equals beta equals gamma equals one.]  we obtain Equation 19:

[image: SSIM equation for comparing images: SSIM(x, y) equals the fraction with numerator (2μₓμᵧ + c₁)(2σₓᵧ + c₂) and denominator (μₓ² + μᵧ² + c₁)(σₓ² + σᵧ² + c₂), as in equation 19.] 

During the training and testing phases, the model’s performance is evaluated according to the PASCAL VOC 2010 standard, which includes Precision (P), Recall (R), and Mean Average Precision (mAP). P represents the proportion of samples correctly predicted as positive out of all samples predicted as positive by the model. R represents the proportion of correctly predicted positive samples out of all true positive samples. mAP is used to comprehensively assess the model’s performance across all categories by calculating the average precision at various recall thresholds. Since this paper focuses on detecting a single target type, the AP value is equivalent to the mAP value. Ideally, a higher mAP value indicates better model performance. The formulas for calculating P, R, and mAP are provided in equations Equations 20–23.

[image: The image shows a mathematical equation for precision: \( P = \frac{TP}{TP + FP} \), where \( TP \) represents true positives and \( FP \) represents false positives. The equation is labeled as equation 20.] 

[image: The image presents a mathematical formula for recall, denoted as R, which is the ratio of true positives (TP) to the sum of true positives (TP) and false negatives (FN).] 

[image: Mathematical equation showing average precision (AP) as the integral from zero to one of the precision-recall function, P(R), with respect to R. Equation is labeled as 22.] 

[image: Formula for mean Average Precision (mAP) is shown as the sum of individual average precisions (AP) from one to N, divided by N. The formula is labeled 23.] 

Here, TP represents true positives, where positive samples are correctly predicted as positive; FP represents false positives, where negative samples are incorrectly predicted as positive; and FN represents false negatives, where positive samples are incorrectly predicted as negative.




4.3 Experimental results

To validate the effectiveness of the proposed method, we conduct a series of comparative experiments. First, we apply SwinIR for image restoration and analyze its impact on the quality of side-scan sonar images. Then, we perform multiple comparative studies, including object detection model comparison, attention mechanism comparison, and convolution module comparison. These experiments provide a comprehensive evaluation of the contributions of different components to the overall detection performance.



4.3.1 Using SwinIR for image processing

In this paper, we employ the SwinIR model as a preprocessing step to enhance the quality of original side-scan sonar images. The enhanced images are subsequently used to train and validate the SOCA-YOLO model, which is designed for small object detection. Pretrained weights from the official SwinIR GitHub repository (Liang et al., 2021) are utilized to leverage the architecture’s robust super-resolution capabilities. The application of SwinIR results in processed side-scan sonar images with sharper edges, reduced noise, and improved fine details—key factors for accurate detection. Figure 7 presents comparative examples of the original and enhanced images, illustrating the effectiveness of this preprocessing step.

[image: Sonar imaging displays four identical side-scan sonar images arranged in a grid, each showing a detailed underwater terrain with a dark central channel. Red rectangles highlight specific areas with magnified views on the right, revealing texture and potential objects on the seafloor. The overall color scheme is gold and black.]
Figure 7 | Partial results of SwinIR preprocessing, with the first row showing the original images, the second row showing the restored images, and the red boxes indicating a zoomed-in view of the target region.

To intuitively assess the effectiveness of SwinIR in enhancing image clarity, we used PSNR and SSIM to compare the experimental results. The findings indicate that, compared to the original images, the processed images achieved average PSNR and SSIM values of 36.14 and 0.9807, respectively. These results demonstrate that SwinIR not only improves the visual quality and resolution of the images but also yields higher PSNR and SSIM values. Consequently, this enhancement facilitates more accurate detection of small objects, with notable improvements across various detection metrics.




4.3.2 Comparative experiment

1. Comparison of SOCA-YOLO with mainstream object detection networks.

To verify the performance of this method, we conducted comparative experiments with several mainstream object detection models, including SSD, Faster R-CNN, and various YOLO series models. Table 3 presents the experimental results of each model on the side-scan sonar dataset.

Table 3 | Comparison of SOCA-YOLO with mainstream object detection networks.


[image: Table comparing object detection methods: SSD has 48.6% precision, 51.5% recall, and 44.8% mAP50. Faster-RCNN and YOLOv9 both have 42.4% precision, 52.9% recall, and 45.5% mAP50. YOLOv10 shows 70.6% precision, 65.3% recall, and 71.4% mAP50. YOLO11 scores 75.8% precision, 66.7% recall, and 72.0% mAP50. SOCA-YOLO achieves 71.8% precision, 72.7% recall, and 74.3% mAP50.]
As shown in Table 3, the proposed method outperforms the original YOLOv9 and other object detection algorithms across multiple metrics. Specifically, compared to the original YOLOv9, P increases by 4.2%, R by 7.2%, and mAP50 by 6.5%. In comparison with SSD, Faster R-CNN, and the latest YOLO models, the proposed algorithm demonstrates superior performance in metrics such as P, R, and mAP. Although YOLO11 achieves a higher P of 75.8% compared to SOCA-YOLO’s 71.8%, SOCA-YOLO surpasses YOLO11 in both recall and mAP50, highlighting its balanced and robust detection capabilities.

These results indicate that the algorithm significantly enhances the detection capability for small underwater targets. Figure 8 displays sample results of SOCA-YOLO target detection, illustrating noticeable improvements in both detection metrics and practical detection outcomes. However, some instances of missed and false detections remain in the detection process.

[image: A grid of eight sonar images displaying underwater cylindrical objects marked with colored labels. The images exhibit varying textures and patterns, suggesting different sea floor compositions and object positioning.]
Figure 8 | Partial results of SOCA-YOLO detection, with red boxes representing correctly detected targets, yellow boxes representing false detections, and green boxes representing missed detections.

Furthermore, to provide a more comprehensive comparison of our model’s superiority, we also compared the P-R curves. Figure 9 presents the P-R curve of the original YOLOv9 and the P-R curve of SOCA-YOLO.

[image: Panel A shows a precision-recall curve with a mean Average Precision (mAP) of 0.678 for the class "cylinder" and all classes at 0.5. Panel B displays a precision-recall curve with a mAP of 0.743 for the class "cylinder" and all classes at 0.5. Both curves illustrate the trade-off between precision and recall.]
Figure 9 | P-R curves. (A) shows the P-R curve of the original YOLOv9. (B) shows the P-R curve of SOCA-YOLO.

In summary, for small object detection in underwater side-scan sonar images, the proposed method significantly outperforms mainstream object detection algorithms. Figure 10 compares the detection results of SOCA-YOLO with other models for the same target. As shown in the Figure 10, while other models produce false positives and missed detections, SOCA-YOLO accurately identifies the target, demonstrating its robustness and precision.

[image: Five sets of side-scan sonar images labeled (a) to (e), each divided into four panels. Images depict underwater environments with cylindrical objects highlighted in various colors and labeled with numerical values, such as 0.81 and 0.65. The dark central strip represents the sonar path, with surrounding areas showing textured patterns in gold and black tones.]
Figure 10 | Detection results from different object detection models for four targets, with each image containing exactly one target: (a) Original image, (b) Faster-RCNN, (c) YOLOv9, (d) YOLOv10, (e) SOCA-YOLO. Red boxes indicate correctly detected targets, yellow boxes indicate false detections, and green boxes indicate missed detections.

2. Comparison of SPDConv with other convolutional methods.

To verify the contribution of the introduced convolution module SPDConv to our model’s improvements, we replaced the original YOLOv9 convolution module ADown with AConv, AKConv, and SPDConv, respectively. ADown is the default convolution module in YOLOv9; AConv is a standard convolution module consisting of a pooling layer and a convolution layer; AKConv (Zhang et al., 2023) is a variable kernel convolution module that allows the kernel to dynamically adjust its shape and size based on target characteristics; SPDConv is the proposed convolution module in our SOCA-YOLO network, designed for superior detection capability on low-resolution images and small objects. We tested each module replacement on side-scan sonar images without SwinIR preprocessing. The experimental results are shown in Table 4.

Table 4 | Comparison of SPDConv with other convolutional methods.


[image: Table comparing models with metrics: ADwon (Precision: 67.6%, Recall: 65.5%, mAP50: 67.8%), AConv (Precision: 66.7%, Recall: 65.7%, mAP50: 67.8%), AKConv (Precision: 68.1%, Recall: 69.4%, mAP50: 69.1%), SPDConv (Precision: 70.4%, Recall: 71.0%, mAP50: 72.6%).]
As show in Table 4, SPDConv demonstrates significant advantages in object detection tasks, outperforming other convolutional modules across all key metrics. Specifically, SPDConv achieves a P of 70.4%, a R of 71%, and a mAP50 of 72.6%. These results represent improvements of 2.8%, 5.5%, and 4.8%, respectively, compared to those obtained using the original YOLOv9 convolution module, ADown. Compared to traditional convolutional modules, these improvements are particularly important for enhancing the overall performance of the YOLOv9 network. SPDConv not only improves precision but also significantly enhances the network’s detection consistency (i.e., the balanced performance of P and R), making it especially suitable for small object detection in side-scan sonar images.

3. Comparison of CBAM with other attention mechanisms.

To validate the effectiveness of the attention mechanism in our network model, we conducted comparative experiments incorporating various popular attention modules, including the SE module (Hu et al., 2018), CA module (Hou et al., 2021), ECA module (Wang et al., 2020), CBAM module, and the baseline YOLOv9 network without any attention mechanism. Each attention module was integrated into the same position within the YOLOv9 network to ensure the comparability of results. Consistent training and validation datasets were used throughout the experiments to maintain fairness. The experimental results are presented in Table 5.

Table 5 | Comparison of CBAM with other attention mechanisms.


[image: Table comparing different models based on three metrics: Precision, Recall, and mAP50. YOLOv9 has 67.6% precision, 65.5% recall, and 67.8% mAP50. YOLOv9+SE shows 65.6% precision, 67.4% recall, and 67.2% mAP50. YOLOv9+CA exhibits 66.4% precision, 70.7% recall, and 68.8% mAP50. YOLOv9+ECA has 69.5% precision, 70.3% recall, and 66.3% mAP50. YOLOv9+CBAM achieves 69.9% precision, 72.2% recall, and 73.3% mAP50.]
The results demonstrate that the performance improvements provided by attention mechanisms depend on the specific module design. Among these, CBAM achieved the best performance, significantly enhancing both detection P and R. This outcome highlights the effectiveness of CBAM’s dual-branch design in capturing feature correlations at multiple levels, thereby improving the model’s ability to locate and classify targets. In comparison, the SE module, which focuses on channel attention, shows notable classification improvements in specific scenarios but offers relatively limited gains in complex environments. The CA module, by incorporating coordinate information, improves the locality of feature representations and performs well in scenarios with targets of varying aspect ratios. The ECA module strikes a balance by reducing the computational cost of attention but delivers limited improvements in small object detection.

Table 5 shows that the CBAM module achieved the best performance, with a P of 69.9%, R of 72.2%, and mAP50 of 73.3%. These values represent improvements of 2%, 6.7%, and 5.5%, respectively, compared to the baseline YOLOv9 network. However, the results also indicate that while certain attention modules provide performance enhancements, not all attention mechanisms positively impact object detection tasks. The selection and design of attention modules should be carefully adjusted and optimized to align with the specific characteristics of the task.





4.4 Ablation study

To evaluate the impact of each proposed innovation on network performance, we conducted ablation experiments on different modules. This study primarily examines the effects of using SwinIR for preprocessing the original images, replacing the original YOLOv9 convolution module with SPDConv, and adding the CBAM attention mechanism. These three enhancements were gradually incorporated into the YOLOv9 network. The experiments were conducted on the side-scan sonar image dataset, and the experimental outcomes are presented in Table 6.

Table 6 | Ablation study.


[image: Experimental results table displaying configurations and performance metrics for YOLOv9, SwinIR, SPDConv, and CBAM. Symbols indicate inclusion (✓) or exclusion (×). Precision, Recall, and mAP50 percentages are detailed for each configuration, with values ranging from 67.6% to 74.3%.]
As shown in Table 6, preprocessing the original dataset using SwinIR and applying the resulting high-quality images for SOCA-YOLO training and testing increased the mAP50 by 0.3%. Replacing the convolution module in the original YOLOv9 network resulted in a 5.6% increase in mAP50 compared to the original YOLOv9 results. Finally, adding the CBAM module to the YOLOv9 network with the replaced convolution module further increased the mAP50 by 0.6%. These experimental results demonstrate that each improvement is meaningful. Compared to the original network, the cumulative mAP50 increase of 6.5% significantly reduces missed detections and false detections of small objects in the original YOLOv9 network.




4.5 Generalization experiment

To validate the generalization capability of the object detection method proposed in this paper under different data distributions, we selected another publicly available side-scan sonar image dataset as the test platform (Santos et al., 2024). This dataset differs significantly from the data used during training, with marked variations in the capture environment, target types, and noise interference, thereby thoroughly assessing the model’s adaptability and robustness in new scenarios. The dataset primarily comprises 1170 high-resolution side-scan sonar images and includes two types of targets—NOn-Mine-like BOttom Objects (NOMBO) and MIne-Like COntacts (MILCO)—with varying sizes and shapes. The experimental results are presented in Table 7. It can be seen that the method proposed in this paper outperforms traditional detection approaches across evaluation metrics, demonstrating strong generalization ability.

Table 7 | Performance of YOLO9 and SOCA-YOLO.


[image: Comparison table of two methods: YOLO9 with precision 82.1%, recall 65.3%, mAP50 74.3%, and SOCA-YOLO with precision 93.7%, recall 76.2%, mAP50 83.7%.]
Additionally, to further analyze the detection performance across different target categories, the P-R curves for each category were plotted, as shown in Figure 11.

[image: Precision-recall curve comparing three datasets: MILCO, NOMBO, and an aggregate class. MILCO (light blue line) scores 0.836, NOMBO (orange line) scores 0.838, and all classes (bold blue line) have an mAP of 0.837 at a threshold of 0.5. Precision is plotted against recall.]
Figure 11 | Performance of different target categories.

From the above experimental results, it is evident that the proposed method effectively adapts to noise and interference issues in public side-scan sonar image data across different marine environments, achieving high detection accuracy and recall.





5 Conclusions

In this paper, we introduced the object detection algorithm YOLOv9 with several modifications. The specific improvements are as follows: (1) Using the SwinIR model to preprocess the original dataset and generate a re-divided high-resolution image dataset. (2) Adding the CBAM attention mechanism to the original YOLOv9 model to enhance focus on regions of interest. (3) Replacing the original ADown module with the SPDConv convolution module, which is more effective for small object detection. The resulting SOCA-YOLO model was applied for small object detection in underwater side-scan sonar images, achieving a Precision of 71.8%, Recall of 72.7%, and mAP50 of 74.3% on the enhanced dataset. These results indicate that the method significantly improves target detection performance in side-scan sonar images.

In future work, expanding the dataset is a crucial research direction. Although the current dataset has demonstrated the feasibility of our method, its limited scope may constrain the model’s robustness and generalization ability. By incorporating additional datasets from different environments, operational conditions, and various sonar devices, we can capture a broader range of image features and noise characteristics. Such dataset expansion not only enables more comprehensive model training but also allows fine-tuning and validation of the model across various real-world scenarios. Furthermore, given the inherent unique noise characteristics of side-scan sonar images, developing specialized image processing techniques is particularly crucial. Future research can focus on designing denoising and image enhancement algorithms tailored to issues such as speckle noise and signal interference in sonar data. Exploring the integration of multimodal data is also a highly promising direction. For example, combining side-scan sonar data with optical or hyperspectral imaging data can provide complementary information, thereby improving the overall performance of detection and classification tasks. Such data fusion is expected to lead to the development of more robust and accurate models, ultimately driving new methodologies and applications in underwater imaging and analysis.





Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.





Author contributions

XC: Conceptualization, Methodology, Software, Validation, Writing – review & editing, Project administration, Resources, Supervision. JZ: Validation, Writing – review & editing, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original draft. LZ: Resources, Validation, Writing – review & editing, Supervision. QZ: Project administration, Validation, Writing – review & editing. JH: Resources, Validation, Writing – review & editing.





Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This project was supported by the National Natural Science Foundation of China (Grant No.62271397 and Grant No.62171384).





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.



References
	 [Dataset] yeesonmin@naver.com (2022). cylider2 dataset. Available online at: https://universe.roboflow.com/yeesonmin-naver-com/cylider2 (Accessed December 2, 2024).
	 何勇光 (2020). 海洋侧扫声呐探测技术的现状及发展[J]. 工程建设与设计. 2020 (04), 275–276. doi: 10.13616/j.cnki.gcjsysj.2020.02.328
	 Ali, A. M., Benjdira, B., Koubaa, A., Boulila, W., and El-Shafai, W. (2023). Tesr: two-stage approach for enhancement and super-resolution of remote sensing images. Remote Sens. 15, 2346. doi: 10.3390/rs15092346
	 Aubard, M., Antal, L., Madureira, A., and Ábrahám, E. (2024). Knowledge distillation in yolox-vit for side-scan sonar object detection. arXiv preprint arXiv:2403.09313. doi: 10.48550/arXiv.2403.09313
	 Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. doi: 10.48550/arXiv.2004.10934
	 Burguera, A., and Oliver, G. (2016). High-resolution underwater mapping using side-scan sonar. PloS One 11, e0146396. doi: 10.1371/journal.pone.0146396
	 Cheng, C., Hou, X., Wen, X., Liu, W., and Zhang, F. (2023). Small-sample underwater target detection: a joint approach utilizing diffusion and yolov7 model. Remote Sens. 15, 4772. doi: 10.3390/rs15194772
	 Du, X., Sun, Y., Song, Y., Sun, H., and Yang, L. (2023). A comparative study of different cnn models and transfer learning effect for underwater object classification in side-scan sonar images. Remote Sens. 15, 593. doi: 10.3390/rs15030593
	 Fan, X., Lu, L., Shi, P., and Zhang, X. (2022). A novel sonar target detection and classification algorithm. Multimedia Tools Appl. 81, 10091–10106. doi: 10.1007/s11042-022-12054-4
	 Fayaz, S., Parah, S. A., and Qureshi, G. (2022). Underwater object detection: architectures and algorithms–a comprehensive review. Multimedia Tools Appl. 81, 20871–20916. doi: 10.1007/s11042-022-12502-1
	 Fengchun, L., Dianlun, Z., and Haitao, G. (2002). Image segmentation based upon bounded histogram and its application to sonar image segmentation. J. Harbin Eng. Univ. 2002, 1–3.
	 Gao, L., Zhang, J., Yang, C., and Zhou, Y. (2022). Cas-vswin transformer: A variant swin transformer for surface-defect detection. Comput. Industry 140, 103689. doi: 10.1016/j.compind.2022.103689
	 Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA. 2014, 580–587. doi: 10.1109/CVPR.2014.81
	 Gomes, D., Saif, A. S., and Nandi, D. (2020). “Robust underwater object detection with autonomous underwater vehicle: A comprehensive study,” in Proceedings of the International Conference on Computing Advancements, Dhaka, Bangladesh. (New York, NY, USA: Association for Computing Machinery), 1–10. doi: 10.1145/3377049.3377052
	 He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask R-CNN,” 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2980–2988. doi: 10.1109/ICCV.2017.322
	 He, X., Zhou, Y., Zhao, J., Zhang, D., Yao, R., and Xue, Y. (2022). Swin transformer embedding unet for remote sensing image semantic segmentation. IEEE Trans. Geosci. Remote Sens. 60, 1–15. doi: 10.1109/TGRS.2022.3230846
	 Heng, Z., Shuping, H., Jiaying, G., Yubo, H., and Honggang, L. (2024). “Research on the automatic detection method of side-scan sonar image of small underwater target,” in 2024 IEEE 7th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 1567–1573. doi: 10.1109/ITNEC60942.2024.10733067
	 Hou, Q., Zhou, D., and Feng, J. (2021). “Coordinate attention for efficient mobile network design,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 13708–13717. doi: 10.1109/CVPR46437.2021.01350
	 Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, 1 Aug. 2020, 42, pp. 2011–2023. doi: 10.1109/TPAMI.2019.2913372
	 Jannat, F.-E., and Willis, A. R. (2022). Improving classification of remotely sensed images with the swin transformer. SoutheastCon 2022, 611–618. doi: 10.1109/SoutheastCon48659.2022.9764016
	 Jiang, Y., Ku, B., Kim, W., and Ko, H. (2020). Side-scan sonar image synthesis based on generative adversarial network for images in multiple frequencies. IEEE Geosci. Remote Sens. Lett. 18, 1505–1509. doi: 10.1109/LGRS.2020.3005679
	 Jinhua, L., Jinpeng, J., and Peimin, Z. (2016). Automatic extraction of the side-scan sonar imagery outlines based on mathematical morphology. 海洋学报 38, 150–157. doi: 10.3969/j.issn.0253-4193.2016.05.014
	 Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., et al. (2022). Yolov6: A single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976. doi: 10.48550/arXiv.2209.02976
	 Li, L., Li, Y., Wang, H., Yue, C., Gao, P., Wang, Y., et al. (2024). Side-scan sonar image generation under zero and few samples for underwater target detection. Remote Sens. 16, 4134. doi: 10.3390/rs16224134
	 Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., and Timofte, R. (2021). “Swinir: Image restoration using swin transformer,” in 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 2021, pp. 1833–1844. doi: 10.1109/ICCVW54120.2021.00210
	 Lin, H. (2023). Adversarial training of swinir model for face super-resolution processing. Front. Computing Intelligent Syst. 5, 87–90. doi: 10.54097/fcis.v5i1.11846
	 Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G., and Zhang, D. (2022). Ds-transunet: Dual swin transformer u-net for medical image segmentation. IEEE Trans. Instrumentation Measurement 71, 1–15. doi: 10.1109/TIM.2022.3178991
	 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al. (2016). SSD: Single Shot MultiBox Detector. In:  B. Leibe, J. Matas, N. Sebe, and M. Welling (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, 9905. Springer, Cham. doi: 10.1007/978-3-319-46448-0_2
	 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021). “Swin transformer: Hierarchical vision transformer using shifted windows,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada., 9992–10002. doi: 10.1109/ICCV48922.2021.00986
	 Ma, Q., Jin, S., Bian, G., and Cui, Y. (2024). Multi-scale marine object detection in side-scan sonar images based on bes-yolo. Sensors 24, 4428. doi: 10.3390/s24144428
	 Peng, C., Jin, S., Bian, G., Cui, Y., and Wang, M. (2024). Sample augmentation method for side-scan sonar underwater target images based on cbl-singan. J. Mar. Sci. Eng. 12, 467. doi: 10.3390/jmse12030467
	 Polap, D., Wawrzyniak, N., and Włodarczyk-Sielicka, M. (2022). Side-scan sonar analysis using roi analysis and deep neural networks. IEEE Trans. Geosci. Remote Sens. 60, 1–8. doi: 10.1109/TGRS.2022.3147367
	 Redmon, J. (2016). “You only look once: Unified, real-time object detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 779–788. doi: 10.1109/CVPR.2016.91
	 Redmon, J. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767. doi: 10.48550/arXiv.1804.02767
	 Redmon, J., and Farhadi, A. (2017). “Yolo9000: better, faster, stronger,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 6517–6525. doi: 10.1109/CVPR.2017.690
	 Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149. doi: 10.1109/TPAMI.2016.2577031
	 Santos, N. P., Moura, R., Torgal, G. S., Lobo, V., and de Castro Neto, M. (2024). Side-scan sonar imaging data of underwater vehicles for mine detection. Data Brief 53, 110132. doi: 10.1016/j.dib.2024.110132
	 Sun, C., Wang, L., Wang, N., and Jin, S. (2021). Image recognition technology in texture identification of marine sediment sonar image. Complexity 2021, 6646187. doi: 10.1155/2021/6646187
	 Sunkara, R., and Luo, T. (2022). No more strided convolutions or pooling: A new cnn building block for low-resolution images and small objects. In:  M. R. Amini, S. Canu, A. Fischer, T. Guns, P. Kralj Novak, and G. Tsoumakas (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science. (Cham: Springer). 13715. doi: 10.1007/978-3-031-26409-2_27
	 Tang, Y., Wang, L., Jin, S., Zhao, J., Huang, C., and Yu, Y. (2023). Auv-based side-scan sonar real-time method for underwater-target detection. J. Mar. Sci. Eng. 11, 690. doi: 10.3390/jmse11040690
	 Tian, X., Liu, Z., and Zhou, D. (2007). Mine target recognition algorithm of sonar image. Sys. Eng. Electron 7, 1049–1052.
	 Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2023a). “Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 7464–7475. doi: 10.1109/CVPR52729.2023.00721
	 Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., et al. (2024). Yolov10: Real-time end-to-end object detection. Advances in Neural Information Processing Systems 37, 107984–108011.
	 Wang, Y.-R., Wang, P., Adams, L. C., Sheybani, N. D., Qu, L., Sarrami, A. H., et al. (2023b). Low-count whole-body pet/mri restoration: an evaluation of dose reduction spectrum and five state-of-the-art artificial intelligence models. Eur. J. Nucl. Med. Mol. Imaging 50, 1337–1350. doi: 10.1007/s00259-022-06097-w
	 Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., and Hu, Q. (2020). “ECA-Net: Efficient channel attention for deep convolutional neural networks,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 11534–11542. doi: 10.1109/CVPR42600.2020.01155
	 Wang, C.-Y., Yeh, I.-H., and Mark Liao, H.-Y. (2025). Yolov9: Learning what you want to learn using programmable gradient information. In:  A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, and G. Varol (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science. (Cham: Springer), 15089. doi: 10.1007/978-3-031-72751-1_1
	 Wen, X., Zhang, F., Cheng, C., Hou, X., and Pan, G. (2024). Side-scan sonar underwater target detection: Combining the diffusion model with an improved yolov7 model. IEEE J. Oceanic. Eng. 49, 976–991. doi: 10.1109/JOE.2024.3379481
	 Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). CBAM: Convolutional Block Attention Module. In:  V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, (Cham: Springer). vol 11211. doi: 10.1007/978-3-030-01234-2_1
	 Yang, N., Li, G., Wang, S., Wei, Z., Ren, H., Zhang, X., et al. (2025). Ss-yolo: A lightweight deep learning model focused on side-scan sonar target detection. J. Mar. Sci. Eng. 13, 66. doi: 10.3390/jmse13010066
	 Yang, Z., Zhao, J., Yu, Y., and Huang, C. (2024). A sample augmentation method for side-scan sonar full-class images that can be used for detection and segmentation. IEEE Trans. Geosci. Remote Sens. 62, 1–11. doi: 10.1109/TGRS.2024.3371051
	 Yang, Z., Zhao, J., Zhang, H., Yu, Y., and Huang, C. (2023). A side-scan sonar image synthesis method based on a diffusion model. J. Mar. Sci. Eng. 11, 1103. doi: 10.3390/jmse11061103
	 Yasir, M., Liu, S., Pirasteh, S., Xu, M., Sheng, H., Wan, J., et al. (2024). Yoloshiptracker: Tracking ships in sar images using lightweight yolov8. Int. J. Appl. Earth Observation Geoinformation 134, 104137. doi: 10.1016/j.jag.2024.104137
	 Yu, Y., Zhao, J., Gong, Q., Huang, C., Zheng, G., and Ma, J. (2021). Real-time underwater maritime object detection in side-scan sonar images based on transformer-yolov5. Remote Sens. 13, 3555. doi: 10.3390/rs13183555
	 Yulin, T., Shaohua, J., Gang, B., Yonzhou, Z., and Fan, L. (2020). “Wreckage target recognition in side-scan sonar images based on an improved faster r-cnn model,” in 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Bangkok, Thailand, 348–354. doi: 10.1109/ICBASE51474.2020.00080
	 Zhang, X., Song, Y., Song, T., Yang, D., Ye, Y., Zhou, J., et al. (2023). Akconv: Convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters. arXiv preprint arXiv:2311.11587. doi: 10.48550/arXiv.2311.11587
	 Zheng, M., Xing, Q., Qiao, M., Xu, M., Jiang, L., Liu, H., et al. (2022). “Progressive training of a two-stage framework for video restoration,” 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 1023–1030. doi: 10.1109/CVPRW56347.2022.00115
	 Zhu, J., Li, H., Qing, P., Hou, J., and Peng, Y. (2024). Side-scan sonar image augmentation method based on cc-wgan. Appl. Sci. 14, 8031. doi: 10.3390/app14178031




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2025 Cui, Zhang, Zhang, Zhang and Han. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 16 April 2025

doi: 10.3389/fmars.2025.1539371

[image: image2]


Sonar-based object detection for autonomous underwater vehicles in marine environments


Zhen Wang 1,2, Jianxin Guo 1, Shanwen Zhang 1* and Yucheng Zhang 3


1 College of Electronic Information, Xijing University, Xi’an, China, 2 College of Computer Science, Northwestern Polytechnical University, Xi’an, China, 3 College of Computer Science, Xijing University, Xi’an, China




Edited by: 

Muhammad Yasir, China University of Petroleum (East China), China

Reviewed by: 

Tao Xu, Henan Institute of Science and Technology, China

Chen Congcong, Southeast University, China

*Correspondence: 

Shanwen Zhang
 wjdw716@163.com


Received: 04 December 2024

Accepted: 18 March 2025

Published: 16 April 2025

Citation:
Wang Z, Guo J, Zhang S and Zhang Y (2025) Sonar-based object detection for autonomous underwater vehicles in marine environments. Front. Mar. Sci. 12:1539371. doi: 10.3389/fmars.2025.1539371



Sonar image object detection plays a crucial role in obstacle detection, target recognition, and environmental perception in autonomous underwater vehicles (AUVs). However, the complex underwater acoustic environment introduces various interferences, such as noise, scattering, and echo, which hinder the effectiveness of existing object detection methods in achieving satisfactory accuracy and robustness. To address these challenges in forward-looking sonar (FLS) images, we propose a novel multi-level feature aggregation network (MLFANet). Specifically, to mitigate the impact of seabed reverberation noise, we designed a low-level feature aggregation module (LFAM), which enhances key low-level image features, such as texture, edges, and contours in the object regions. Given the common presence of shadow interference in sonar images, we introduce the discriminative feature extraction module (DFEM) to suppress redundant features in the shadow regions and emphasize the object region features. To tackle the issue of object scale variation, we designed a multi-scale feature refinement module (MFRM) to improve both classification accuracy and positional precision by refining the feature representations of objects at different scales. Additionally, the CIoU-DFL loss optimization function was constructed to address the class imbalance in sonar data and reduce model computational complexity. Extensive experimental results demonstrate that our method outperforms state-of-the-art detectors on the Underwater Acoustic Target Detection (UATD) dataset. Specifically, our approach achieves a mean average precision (mAP) of 81.86%, an improvement of 7.85% compared to the best-performing existing model. These results highlight the superior performance of our method in marine environments.
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1 Introduction

As an important underwater exploration means, sonar technology is widely used in the field of marine resource development (Zhang et al., 2022b), marine scientific studies (Grzadziel, 2020), and national defense security (Hansen et al., 2011). A forward-looking sonar (FLS) system can realize the positioning, imaging, and recognition of underwater targets by transmitting sound waves and receiving echo information (Liu et al., 2015), so it has significant advantages in underwater object detection and monitoring tasks. FLS image object detection (Karimanzira et al., 2020) refers to using computer vision and signal processing technology to perform object detection and recognition on the image data obtained by sonar devices to achieve the classification, positioning, and tracking of underwater objects. Different from natural scene images, sonar images are affected by the underwater environment and terrain. As shown in Figure 1, there are serious interferences, such as seabed reverberation noise, sediment shadow region, and background clutter information, in the sonar image. Moreover, FLS images commonly contain underwater objects with different scales and weak feature information, which presents great challenges for sonar object detection.

[image: Sonar image analysis and robot depiction. Left: sonar image with labels indicating shadow interference, object regions, reverberation noise, and clutter information in a blue color scheme. Right: an orange underwater robot with a forward-looking sonar sensor, indicating a sonar wave pattern nearby.]
Figure 1 | Example of a forward-looking sonar image containing object region, seabed reverberation noise, clutter information, and shadow interference.

Compared to object detection in natural scene images, sonar image object detection faces unique challenges due to severe noise interference, complex environments, substantial variations in object scales, and weak saliency of object features. These factors often lead to low detection accuracy, missed detections, and false positives. To address these issues, many methods based on hand-crafted feature extraction combined with classifiers have been proposed. These approaches rely on algorithms for extracting features such as edges, contours, and textures from sonar image regions of interest, followed by classifiers such as support vector machine (SVM) (Chandra and Bedi, 2021), AdaBoost (Collins et al., 2002), and K-nearest neighbors (KNN) (Zhang and Zhou, 2007) for object recognition. For example, Abu and Diamant (2019) developed an object detection framework for synthetic aperture sonar (SAS) images based on unsupervised statistical learning. In the context of FLS images, Zhou et al. (2022b) combined fuzzy C-means and K-means clustering to extract target features through global clustering. Kim and Yu (2017) employed multi-scale feature extraction to obtain Haar-like features from sonar target regions, leveraging AdaBoost to cascade weak classifiers for detection. In efforts to address noise interference, Xinyu et al. (2017) applied fast curve transforms to filter noise and K-means clustering for object region pixel extraction. Zhang et al. (2023) used non-local mean filtering to remove speckle noise and applied super-pixel segmentation to delineate object contours. Although these hand-crafted feature-based methods combined with classifiers have been widely used in sonar object detection, they are limited by their applicability to simple underwater scenes or single-object detection. In more complex underwater acoustic environments and multi-class object detection scenarios, these methods exhibit shortcomings such as insufficient robustness, poor real-time performance, and limited ability to meet high-precision detection requirements.

Benefiting from the robust feature extraction and representation capabilities of convolutional neural networks (CNNs) (Gu et al., 2018), CNN-based methods have gained widespread use in object detection tasks, achieving significantly improved detection performance (Li et al., 2021). These methods leverage frameworks similar to those used in natural scene object detection, such as Faster R-CNN (Ren et al., 2016), You Only Look Once, Version 3 (YOLOv3) (Redmon and Farhadi, 2018), and FPN (Lin et al., 2017a), to detect various types of sonar images, including forward-looking sonar, side-scan sonar, and synthetic aperture sonar. For example, based on the FPN framework, Li et al. (2024) proposed a dual spatial attention network that utilizes a multi-layer convolutional structure to extract features at different scales, with the attention mechanism enhancing feature representation to improve sonar object detection accuracy. To address sonar object detection in complex underwater acoustic environments, Zhao et al. (2023) introduced a composite backbone network that extracts multi-level feature information. Their method uses the shuffle convolution block attention mechanism and multi-scale feature fusion module to suppress redundant feature interference. Inspired by the two-stage object detection network architecture, Wang et al. (2022d) developed the sonar object detection model, which includes multi-level feature extraction and fusion modules to handle both forward-looking and side-scan sonar detection challenges. Building on the YOLO series of detectors, Zhang et al. (2022a) incorporated the coordinate attention mechanism to extract spatial position features from sonar image regions. They also employed model pruning and compression techniques to enhance the real-time performance of their detector. Yasir et al. (2024) proposed the YOLOShipTracker for ship detection, which has achieved better results in tiny object detection in complex scenes. For tiny object detection, Wang et al. (2022c) introduced the multi-branch shuffle module to reconstruct features at different scales, along with a mixture attention mechanism to strengthen feature representation of small object regions and mitigate clutter interference. Combining CNNs with transformer models, Yuanzi et al. (2022) proposed the TransYOLO detector, which integrates a cascade structure to capture texture and contour features from sonar images, utilizing the attention mechanism for multi-scale feature fusion. Kong et al. (2019) developed the YOLOv3-DPFIN, which achieves effective sonar object detection in complex underwater environments. Their approach employs dense connections for multi-scale feature transmission and the cross-attention mechanism to enhance object region features while reducing reverberation noise interference.

Although CNN-based sonar object detection methods have shown significant improvements over traditional hand-crafted feature extraction techniques, they still face challenges in certain difficult scenarios, such as seabed reverberation noise, shadow interference, object scale variation, and tiny object detection. It is well established that CNN-based object detection methods achieve excellent performance primarily due to their powerful feature extraction capabilities. However, the inherent characteristics of sonar images, such as noise and interference, significantly hinder the feature extraction process of CNN models, making it difficult to fully capture the valuable information necessary for effective sonar image object detection. As illustrated in Figure 2, we provide visualization results of convolution feature heatmaps in challenging scenarios involving seabed reverberation noise interference, shadow interference, clutter, and multi-scale object transformations. These visualizations clearly demonstrate how these interference factors disrupt the feature extraction process of CNN models, leading to a notable decline in detection accuracy across different categories of sonar objects. To address the challenge of sonar image object detection in complex marine acoustic environments, we propose a multi-level feature aggregation network (MLFANet) for FLS image detection. Different from traditional CNN-based methods, MLFANet is specifically designed for challenging sonar detection tasks. The main contributions of this study are as follows:

	Low-Level Feature Aggregation Module (LFAM): We introduce the LFAM, a novel module that enhances low-level features and suppresses the impact of seabed reverberation noise, improving feature extraction and object detection in noisy underwater environments. The LFAM significantly enhances the robustness of sonar object detection in the presence of acoustic interference.

	Discriminative Feature Extraction Module (DFEM): To handle large-scale shadow regions, we designed the DFEM, which filters redundant features and refines object region representations. The DFEM improves the accuracy of object localization and classification, making MLFANet more efficient in detecting objects even in highly cluttered or shadowed regions.

	Multi-Scale Feature Refinement Module (MFRM): We developed the MFRM to address the challenge of object scale variation. The MFRM extracts and fuses fine-grained multi-scale features, enabling the network to handle objects of various sizes more effectively, ensuring that small, medium, and large objects are all accurately detected.

	CIoU-DFL Loss Function: To address the issue of object category imbalance in sonar datasets, we propose the CIoU-DFL loss function. This loss function optimizes the model by improving the accuracy of bounding box predictions and reducing computational complexity, particularly for challenging sonar image datasets with skewed category distributions.

	Extensive Experimental Validation: We perform extensive experiments on the Underwater Acoustic Target Detection (UATD) dataset, demonstrating that MLFANet outperforms existing state-of-the-art methods in terms of both efficiency and accuracy. Our results highlight the effectiveness of MLFANet in real-world sonar object detection tasks, particularly in complex underwater environments.



[image: Five panels labeled (a) to (e) show different heat maps, with varied patterns in blue, red, and yellow hues. Panel (a) shows minimal variation with predominantly blue shades. Panel (b) has a mix of red and blue areas with more defined structures. Panels (c) and (d) display distinct red-focused regions surrounded by blue, while panel (e) has a red spot in the center of a blue area.]
Figure 2 | Visualization of convolution feature heat map under different interference scenes. (a) Two original FLS images. (b) Seabed reverberation noise interference. (c) Shadow interference. (d) Clutter information interference. (e) Multi-scale object transformation.

The article is organized as follows. Section 2 presents an overview of related works. Section 3 introduces the proposed MLFANet framework and related components. Section 4 presents the experimental results and analysis. Finally, the conclusion is drawn in Section 5.




2 Related works



2.1 Multi-scale feature extraction

For CNN-based object detection methods, multi-scale features play an important function in improving model detection accuracy, fusing global context information, and enhancing model robustness and generalization. Currently, widely used multi-scale feature extraction methods include constructing multi-scale convolution structures (Mustafa et al., 2019), using feature pyramid networks (Lin et al., 2017a), and designing adaptive extraction strategies (Zhou et al., 2022a). Guo et al. (2020) constructed AugFPN to obtain semantic multi-scale features and used residual feature augmentation to highlight the object region feature information. Ma et al. (2020) used the cascade structure to extract multi-scale context information and used feature parameter sharing to establish the correlation of different scale features. To reduce the detail information loss in the multi-scale feature extraction process, Kim et al. (2018b) achieved feature restoration by constructing the global relationship between channel and spatial features. Jiang et al. (2024) used the dense feature pyramid network for small object detection, which uses the multi-scale parallel structure to obtain different scale feature information of the multi-scale object region. MFEFNet (Zhou et al., 2024) uses the efficient spatial feature extraction module to obtain context semantic information and uses a progressive feature extraction strategy to obtain multi-scale features of context information. Tang et al. (2022) constructed a scale-aware feature pyramid structure to obtain multi-scale feature information of the object deformation region and used the feature alignment module to solve the feature offset problem. However, these multi-scale feature extraction methods focus on the extraction of spatial and semantic features, ignoring the important contribution of low-level feature information. Especially for FLS image object detection, low-level features can effectively improve the positioning precision of the object detection model. In this article, we construct the LFAM to obtain low-level multi-scale feature information of the FLS image to improve positioning and recognition accuracy for the sonar object region.




2.2 Contextual feature fusion

Since the contextual information can provide more object region and background information, it can effectively improve the detection accuracy of the object detection model for small object categories. FLS image object detection is a typical small object detection scene, so it is essential to fully mine and fuse the global context feature information. Currently, the commonly used context feature fusion methods include the context feature pyramid (Kim et al., 2018a), global context model (Du et al., 2023), and multi-scale context structure (Wang et al., 2022a). Liang et al. (2019) used the feature pyramid structure to obtain multi-scale context feature information and performed context feature fusion using a spatial-channel reconstruction strategy. Cheng et al. (2020) constructed a cross-scale feature fusion framework to extract local context features and used the region feature aggregation module to achieve context feature fusion. Lu et al. (2021) used the multi-layer feature fusion module to obtain context feature information and introduced a dual-path attention mechanism and multi-scale receptive field module for context feature fine-grained fusion. CANet (Chen et al., 2021) uses a patch attention mechanism to obtain context patch spatial feature information and uses feature mapping and semantic enhancement modules to filter the valuable information of context features. Dong et al. (2022) used deformable convolution and feature pyramids to obtain multi-scale global information and the multi-level feature fusion module is used to fuse local-global context features. These aforementioned context feature fusion methods can effectively fuse feature information of different scales to improve the feature representation for the object region. However, for FLS image object detection, due to the interference of shadow region and clutter information, the existing context feature fusion method cannot solve the feature redundancy problem. In this article, we design the DFEM to suppress redundant feature representation and achieve context feature fusion.




2.3 Visual attention mechanism

An important component of an object detection model, the visual attention mechanism enhances feature representation, solving object deformation and feature correlation modeling. Currently, the attention modules widely used in object detection models include the spatial attention mechanism (Zhu et al., 2019), channel attention mechanism (Wang et al., 2020), and self-attention mechanism (Shaw et al., 2018). Gong et al. (2022) used the self-attention mechanism to obtain the robust invariant feature information of the object region to enhance the small object region feature representation. Wang et al. (Wang and Wang, 2023) constructed a pooling and global feature fusion self-attention mechanism to obtain the feature correlation and used the feature adaption module for fine-grained feature fusion. Zhu et al. (2018) constructed a cascade attention mechanism to obtain global receptive field information and used dual encoder-decoder attention to reduce feature information loss. Miao et al. (2022) used cross-context attention to obtain local-global feature information and used a spatial-channel attention module to enhance different scale features. To accurately detect multi-scale objects with complex backgrounds, Xiao et al. (2022) designed a pixel attention mechanism to model the pixel correlation information of different object regions and used the self-attention mechanism to enhance the pixel region feature representation. Although the existing visual attention mechanism can effectively enhance the model feature representation and solve the object scale variable problem, for FLS image object detection, due to the serious interference of clutter information and underwater terrain in the object region, the existing attention mechanism struggles to fine-grain enhance the object region feature information, so it cannot obtain satisfactory detection results for small object categories. To solve this problem, inspired by the deformable convolution and attention mechanism, we construct the MFRM to improve the detection accuracy for multi-scale sonar objects by extracting the robust invariant feature information of the object region.





3 Methodology

To solve the problem of object detection in FLS sonar images, based on the YOLOX (Ge et al., 2021) detector, we constructed MLFANet to detect different object categories in sonar images. As shown in Figure 3, the proposed MLFANet introduces the LFAM, DFEM, and MFRM on the basis of the YOLOX detector. Specifically, to improve the object detection performance in complex seabed reverberation noise interference scenes, the LFAM is used to enhance the shallow feature information (C1, C2, and C3) of the backbone network, so that the model can obtain more feature information that is conducive to improving the object positioning precision. Then, to suppress redundant feature representation in deep feature information (C4 and C5), the DFEM is used to obtain valuable information on deep features to optimize the sonar object detection effect under shadow interference conditions. Moreover, to improve the recognition accuracy of the detector for different categories of sonar objects, we introduce the DFEM into the neck structure, which performs fine-grained fusion of multi-scale feature maps by generating attention weights to further enhance the representation ability of the feature maps and alleviate clutter noise information interference. For the model parameter optimization, we combine CIoU (Zheng et al., 2020) and the DLF (Li et al., 2020) loss function to solve the problem of sample category imbalance and model computational complexity.

[image: Diagram displaying a network structure for object detection with sections labeled Backbone Network and Neck Structure. It includes stages C1 to C5, various modules like LFAM, DFEM, and MFRM, and shows processes resulting in classification, regression, and Intersection over Union (IoU). It is accompanied by an FLS image on the left and a detection result image on the right, indicating objects with bounding boxes.]
Figure 3 | The overall architecture of the proposed multi-level feature aggregation network (MLFANet), including the low-level feature aggregation module (LFAM), discriminative feature extraction module (DFEM), and multi-scale feature refinement module (MFRM).



3.1 Low-level feature aggregation module

Since the interference of signal intensity difference and reverberation noise, there are many dark areas in sonar images, which makes it difficult for the existing feature extraction network (Elharrouss et al., 2022) to obtain low-level feature information such as texture, edge, and contour of sonar object regions, and the obtained low-level features lead to serious loss in the process of convolutional feature transmission. To solve this problem, we designed the LFAM and embedded it into the backbone network to compensate for the feature information loss of deep convolution by mining the low-level features obtained in the shallow convolution stages. The LFAM is designed to enhance low-level feature information, such as texture, edges, and contours, while suppressing seabed reverberation noise that commonly disrupts the feature extraction process.

The specific structure of the LFAM is shown in Figure 4, where the backbone network consists of five convolution stages, and denotes the feature map obtained in the lth convolution stage and l ∈ [1, 5]. The proposed LFAM takes the feature maps C1, C2, and C3 obtained in the shallow convolution stage as input features, and performs feature fusion in turn to generate the aggregation feature map [image: Mathematical expression depicting tensor notation, showing "G" belonging to the set of real numbers with dimensions C by H by W, indicating the channels, height, and width.] , so that it can retain more low-level feature information. The specific fusion process is as follows:

[image: Diagram of a neural network architecture featuring a Backbone Network with interconnected layers. It includes operations like convolution (3x3, 3x1, 1x3, and 1x1 Conv), strip pooling, and spatial pooling. The structure involves aggregation and output feature maps with residual and parallel pooling connections.]
Figure 4 | The specific structure of the low-level feature aggregation module (LFAM) includes 3×3 convolution, 1 × 1 convolution, 3 × 1, 1 × 3 one-dimensional convolution, element-by-element summation, channel stitching, and bilinear interpolation operation.

[image: Mathematical expression showing \( G = K_{X,A_1}(K_{X,A_2}(C_1) \oplus C_3) \oplus C_2 \).]

where [image: Text displaying the mathematical notation \( K_{3 \times 3}(\cdot) \).]  represents the 3 × 3 convolution function for feature map resolution and feature channel adjustment, and ⊕ denotes the element-by-element summation operation. The aggregate feature map is used as the output of parallel pooling, which uses different pooling layers to obtain the context information of the aggregate feature map to extract more discriminative low-level features. The parallel pooling consists of different pooling functions, namely 1 × W strip pooling, H × 1 strip pooling, and S × S spatial pooling and residual connection. For the aggregate feature map G with a size of H × W, the feature map is averaged using strip pooling with a pooling range of (1,W) and (H, 1), which compresses the feature map and encodes feature information along the vertical and horizontal directions. Furthermore, the use of strip pooling establishes long-distance dependencies between discretely distributed feature regions for spatial dimension information in the vertical and horizontal directions and obtains low-level feature information such as edges and contours of the object region in the global dimension. The calculation of strip pooling is as follows:

[image: Mathematical expression representing y subscript w equals one divided by H, multiplied by the summation of G subscript i comma W over parameters o subscript i and k, equation number two.]

[image: Equation labeled as (3): \( y_h = \frac{1}{H} \sum_{0 \leq k} G(H, j) \).]

where [image: Mathematical expression displaying \( y_w \in \mathbb{R}^{C \times 1 \times W} \).]  and [image: Mathematical notation showing \( y_h \in \mathbb{R}^{C \times H \times 1} \), indicating a variable \( y_h \) that belongs to the set of real numbers with dimensions \( C \) by \( H \) by \( 1 \).]  represent the feature tensors obtained by strip pooling with sizes of 1 × 1 and 3 × 3, respectively. The one-dimensional convolution is used to integrate the adjacent feature information inside the feature tensor, and the bilinear interpolation operation is used to recover the spatial information of feature tensor yw and yℎ. To generate low-level features with rich edges and contours, the feature tensor is fused by using the element-by-element multiplication operation. The calculation process is as follows:

[image: The image displays a mathematical equation: \( z_i = \mathcal{F}_{E_x}(f_{x_i}(y_i)) \oplus \mathcal{F}_{E_x}(f_{x_i}(y_j)) \), labeled as equation \( (4) \).]

where [image: The image shows a mathematical function notation: script capital F with a subscript "ex" and a centered dot inside parentheses, representing a function of a variable.]  represents the bilinear interpolation operation, and [image: Mathematical notation showing a function, denoted as \( f_{3 \times 1}(\cdot) \).]  and [image: Mathematical notation of a function, denoted as \( f_{1 \times 3}(\cdot) \), indicating a function with specific parameters.]  represent the one-dimensional convolution operation with the size of [image: It seems there's an issue with the image upload. Please try uploading the image again or provide a link if possible.]  and [image: It seems there might have been an error in uploading the image. Please try uploading it again or provide a description or URL so I can help generate the alt text.] , respectively. Moreover, the parallel pooling introduces spatial pooling with a range of [image: It seems there was an issue with displaying the image or image description. Please try uploading the image again or provide additional context.] , which can use rectangular pooling windows to detect densely distributed object region feature information and obtain texture feature information of sonar objects in the local receptive field range. The residual connection is used to preserve the original spatial information of the aggregate feature map [image: It seems there is an issue with the image upload. Please try again by uploading the image file directly or pasting a URL if it's online. Let me know if you need further assistance!] , and it is fused with the spatial pooling feature to generate low-level texture feature tensor [image: The image shows a lowercase letter "z" followed by a subscript number "2", representing a mathematical or scientific notation.] . The specific calculation process is as follows:

[image: Mathematical expression showing \( Z = p_{xxx}(G) \oplus G \), labeled as equation (5).]

where [image: Mathematical notation showing \( P_{s \times s}(\cdot) \), indicating a function or expression with unspecified content within the parentheses.]  denotes the spatial pooling with a size of [image: An empty, transparent image of 1 by 1 pixel size.] . For feature tensors [image: Please upload the image or provide a URL so I can help generate the alternate text for it.]  and [image: A small, italicized lowercase letter "z" with a subscript "2".] , the [image: Please upload the image or provide a URL so I can generate the alt text for you.]  convolution is used to further extract detailed information, and the feature stitching operation is used to generate feature map [image: The mathematical expression shows \( z_3 \in \mathbb{R}^{C \times H \times W} \), indicating that \( z_3 \) is an element of a multidimensional real number space with dimensions \( C \), \( H \), and \( W \).]  with more discriminative information. The calculation is as follows:

[image: Mathematical equation showing \( z_3 = K_{Y_1}(K_{X_3}(z_2); K_{X_4}(z_3)) \), followed by the number six in parentheses, indicating it as the sixth equation in a sequence.]

where [image: Mathematical notation showing \( K_{1 \times 1}(\cdot) \), which represents a function or transformation with a kernel size of one by one.]  and [image: Mathematical notation showing a function \( K_{3 \times 3}(\cdot) \), likely representing a three by three kernel operation in a mathematical or computational context.]  represent convolution operations with sizes of 1×1 and 3×3, respectively, and [·; ·] denotes the feature stitching operation on the channel dimension. The feature map z3 is fused with the features C3 and C4 in the deep convolution stage of the backbone network, and input to the subsequent convolution stage to compensate for low-level feature information loss. The feature maps [image: Stylized letter "C" with a subscript "3" and a superscript prime symbol, often used to denote a mathematical or chemical term.] , [image: Mathematical notation showing "C" with a superscript of "prime" and a subscript of "4".] , and [image: It seems there was a misunderstanding. I need the image uploaded or a URL provided to generate alternate text. Please try uploading the image again.]  generated by the fuse operation can retain more effective edge, contour, and texture feature information, which is beneficial for improving the positioning precision for different object categories. The generation process of feature maps [image: The equation shows C subscript 3 raised to the power of prime.] , [image: Mathematical notation of the set of integers modulo four, represented by a capital letter C with a prime symbol and a subscript four.] , and [image: Please upload the image or provide a URL so I can generate the alternate text for you.]  is calculated as follows:

[image: Mathematical equation where \( C_s' = C_0 \oplus z_s \). The operation denoted by \(\oplus\) typically represents an XOR operation. The equation is labeled with a reference number (7).]

[image: Equation displaying \( C_1 \) as the result of \( K_{512}(z_3) \) XOR with \( F_{\text{conv}}(G_1) \), followed by equation number eight in parentheses.]

[image: Mathematical equation displaying \( C_s = F_{\text{conv}}(C_i) \), labeled as equation nine.]

where [image: Mathematical notation displaying \( K_{3 \times 3}(\cdot) \), representing a function or operation applied to a three-by-three kernel.]  represents the convolution operation with a size of 3 × 3, and [image: Stylized symbol with the letter "F" followed by a superscript "l" and a subscript "conv." The script style gives a mathematical or scientific appearance.] (·) denotes the lth convolution stage. The LFAM leverages feature aggregation and parallel pooling operations to extract discriminative low-level feature information. By preserving key spatial details and reducing noise interference, LFAM enhances the model’s ability to detect object boundaries and localization precision.




3.2 Discriminative feature extraction module

Due to the redundant feature interference in the feature extraction process of the convolution operation (Qin et al., 2020), it is difficult to retain valuable tiny object region information. To solve this problem, we propose the DFEM, as shown in Figure 5. The DFEM improves the robustness of feature extraction in shadowed and cluttered regions by suppressing redundant features and enhancing salient object features. For the deep feature information (C4 and C5) obtained by the backbone network, given the specific feature mapping [image: Mathematical expression depicting \( X \in \mathbb{R}^{C \times W \times H} \), indicating that variable X is an element of a three-dimensional real-valued tensor with dimensions C, W, and H.] , where C, H, and W represent the number of channels, width, and height of the feature map, respectively. To mine the local regions with discriminative attributes in convolution features, the obtained deep features are divided into k regions along the W dimension, where each region feature is defined as [image: Mathematical expression depicting \( X_i \in \mathbb{R}^{C \times W/k \times H} \), indicating a tensor \( X_i \) belonging to a real number space with dimensions scaled by factors \( C \), \( W/k \), and \( H \).] . The feature description importance factor corresponding to each region is calculated as

[image: Flowchart depicting a process starting with an input feature. It progresses through saliency region discrimination, producing global feature information. This separates into a saliency feature vector, leading to two paths: saliency enhancement and suppression. Both paths result in differentiated outputs marked as \( X_e \) and \( X_s \).]
Figure 5 | The specific structure of the discriminative feature extraction module (DFEM) includes saliency region discrimination, global feature information extraction, saliency region selection, and saliency feature enhancement and suppression.

[image: Certainly! Please upload the image you'd like me to provide alternate text for.]

where [image: The image shows a mathematical notation representing a function or operation \( K_{1 \times 1}(\cdot) \).]  represents the convolution operation with a size of 1 × 1, [image: Mathematical expression representing a function notation: script letter F subscript GAP applied to a variable or argument indicated by a dot within parentheses.]  denotes the global average pooling function, and the softmax function is used for feature normalization. The high importance factor indicates that the region feature significance is strong. By comparing the importance factor of different regions, the region with strong discrimination feature description in W dimension can be located. We use the descriptor Y to denote the positioning region and separate it from the initial feature X. The region Y is uniformly split into n sub-regions along the H dimension, and [image: Mathematical notation showing \( Y_j \in \mathbb{R}^{C \times W/k \times H/n} \).]  is used to denote the feature information of each sub-region, where [image: Mathematical expression showing "j" is an element of the set containing integers from one to "n".] . The calculation of the importance factor for sub-region feature description is as follows:

[image: Equation depicting the output \(y_t\) as the SoftMax of the function \(F_{GPA}\) applied to the key \(K\) at index \(i\) with the input \(Y_t\). This is labeled as equation 11.]

The normalized importance factor of each sub-region can be used to discriminate the sub-region [image: Mathematical notation showing \( \mathbf{Y}_j' \in \mathbb{R}^{C \times W/k \times H/n} \).]  with important feature information in the feature mapping X. By using the above feature discrimination process, it can effectively solve the deviation problem of feature extraction and enhance the localization ability for the discriminant feature region. To further mine the valuable information in the feature map, we use the discriminative feature enhancement-suppression strategy to preprocess the sub-region feature [image: The image shows the mathematical notation for Y subscript j prime, indicating a derivative or modified form of a variable Y with a subscript j.] , and obtain the feature maps [image: Mathematical expression indicating that \( Y_e \) belongs to the space of real numbers \(\mathbb{R}\) with dimensions \( C \times W/k \times H \).]  and [image: Mathematical expression showing \( Y_s \in \mathbb{R}^{C \times W / k \times H} \).] . The calculation is as follows:

[image: Equation (12) displays a mathematical expression: \( Y_t = Y + \alpha \times (E \otimes Y) \).] 

[image: It seems like the content provided is a mathematical equation, not an image. If you meant to describe or upload an image, please try again by providing the image file or a URL to it.]

where [image: Please upload the image or provide a URL to generate the alternate text.]  represents the element-by-element multiplication, and the specific calculation for features [image: Please upload the image or provide a URL so I can generate the alt text for you.]  and [image: Please upload the image or provide a URL to generate the alternate text.]  are as follows:

[image: Mathematical formula showing a vector \( E = (e_1, e_2, \ldots, e_n)^T \). Element \( e_i \) is equal to \( b_i \) if \( b_i \) is the maximum of \( b_1, b_2, \ldots, b_n \), and zero otherwise. Labeled equation 14.]

[image: Equation illustrating a variable \( S \) as a tuple \((s_1, s_2, \ldots, s_n)\). The value \( s_j \) is defined as \( 1 - \beta \) if \( b_j \) is the maximum among \((b_1, b_2, \ldots, b_n)\), otherwise it is 1. Equation number (15) is shown.] 

where [image: Please upload the image or provide a URL so I can generate the alternate text for you.]  and [image: The Greek letter beta, represented in a stylized, slanted script.]  denote the coefficients used to control feature enhancement and suppression, respectively. The original feature [image: Please upload the image so I can generate the appropriate alt text for you.]  is replaced by feature maps [image: A pixelated mathematical symbol, likely denoting a variable or parameter with a subscript "c", which is commonly used in equations.]  and [image: Lowercase "s" subscript to the uppercase letter "Y" in a mathematical notation.] , and fused with feature [image: Mathematical notation of the variable X sub i, where X is a capital letter and the subscript i is in a smaller font size.]  along the [image: Black lowercase letter "w" in serif font on a white background.]  dimension to generate the discriminative enhancement feature [image: Mathematical notation showing \( X_e \in \mathbb{R}^{C \times W \times H} \).]  and the discriminative suppression feature [image: Mathematical expression showing \( X_s \in \mathbb{R}^{C \times W \times H} \).] , respectively. By using a discriminative enhancement operation, it can effectively suppress redundant feature representation to improve the detection accuracy for tiny object categories in sonar images. The DFEM improves the robustness of feature extraction in shadowed and cluttered regions by suppressing redundant features and enhancing salient object features.




3.3 Multi-scale feature refinement module

Due to interference in underwater environments, FLS images contain serious object deformation problems, which makes it difficult for the object detection network to extract fine-grained feature information from the object region, and it is prone to lose the valuable feature information in the shadow region. To solve this problem, we constructed the MFRM and embedded it into the neck structure of the detector to enhance the feature extraction capacity for the deformation object regions. The MFRM consists of region location branch and feature refinement branch, and the specific structure is shown in Figure 6. The MFRM addresses the challenge of detecting objects at varying scales by extracting robust, scale-invariant features and refining multi-scale feature representations. The region location branch is used to position the range of object region, which uses 7 × 7 convolution to obtain local feature information and extract the valuable feature region information for the input feature map [image: Mathematical expression showing \( \mathbf{X} \in \mathbb{R}^{C \times W \times H} \), indicating that the variable \( \mathbf{X} \) belongs to a space of real numbers with dimensions \( C \) by \( W \) by \( H \).] . The 7 × 7 convolution kernel provides a larger receptive field compared to smaller kernels (e.g., 3 × 3 or 5 × 5), enabling the extraction of richer local feature information. Parallel dilated convolution with different dilation coefficients is used to expand the range of receptive fields and stitch the dilated convolution features to aggregate fine-grained context information. To generate the region attention map, the 3 × 3 convolution is used to encode the context information to obtain the object region features. The calculation is as follows:

[image: Diagram of a neural network feature refinement process with two branches: Region Location and Feature Refinement. The Region Location Branch uses dilated convolutions and convolutional layers to extract object region features. The Feature Refinement Branch employs global adaptive pooling and a shared multilayer perceptron for feature enhancement. Both branches merge through operations involving a sigmoid function to produce the refined feature output.]
Figure 6 | The specific structure of the multi-scale feature refinement module (LFAM) includes a region location branch and feature refinement branch.

[image: Mathematical expression showing \( U_1 = \mathcal{K}_{3\times3} (F^{c^o}_{\text{int}}(K_{7\times7}(X)), F^{1\times1}_{\text{int}}(K_{7\times7}(X))) \) with equation number (16).]

where [image: Mathematical expression showing \(K_{3 \times 3}(\cdot)\), representing a kernel function operating on a matrix or data set.]  and [image: Mathematical expression showing a kernel function notation, \(K_{7 \times 7}(\cdot)\), typically used in computations or algorithms involving a seven by seven matrix or grid.]  represent convolution operations with sizes of 3 × 3 and 7 × 7, respectively; [image: Mathematical expression showing a function notation with superscript six, written as F with superscript six, subscript "atr", and argument represented by a dot within parentheses.]  and [image: Stylized mathematical expression showing script F subscript atr superscript twelve, followed by parentheses with a dot inside.]  denote the dilation coefficients of 6 and 12; [·; ·] represents the feature splicing operation on the spatial dimension. The feature refinement branch obtains the fine-grained feature information of the object region through the feature cross-dimensional interaction. This branch performs different global adaptive pooling operations on the input feature map [image: Mathematical notation illustrating that X belongs to a real number space with dimensions C by H by W.]  to obtain global spatial feature information and perform feature space compression. Specifically, 1 × 1 global adaptive average pooling is used to compress the global feature spatial information, 3×3 global adaptive average pooling is used to enhance the global feature representation, and 2 × 2 global adaptive maximum pooling is used to enhance the feature structure information and refine the global feature information obtained by the global adaptive average pooling. The feature tensor obtained by the different pooling operations is converted into vector representation using feature reconstruction to achieve a cross-dimensional interaction of feature information on the spatial dimension and fuse it with the object region features retained on the channel dimension to generate one-dimensional feature vectors [image: Mathematical expression showing \( x_1 \) as an element of the set of real numbers, denoted as \( \mathbb{R}^C \).] , [image: Mathematical notation showing \( x_2 \in \mathbb{R}^{4c} \).]  and [image: \( x_3 \in \mathbb{R}^{9 \times C} \)] . The one-dimensional feature vector is spliced to obtain the feature vector [image: Mathematical notation showing \(x_4\) belongs to the set of real numbers raised to the power of fourteen, denoted as \(\mathbb{R}^{14}\).]  that aggregates rich cross-dimensional interaction feature information. The specific calculation of this process is as follows:

[image: The image shows a mathematical equation, \(x_1 = F_{\text{resize}}(P_{\text{avg}}(X))\), labeled as equation (17).]

[image: Mathematical formula showing \( x_2 = F_{\text{resize}}(P_{\text{avg}}(X)) \), labeled as equation (18).]

[image: The equation shown is: \( x_3 = F_{\text{resize}}(P_{\text{max}}(X)) \) labeled as equation number 19.]

[image: It seems you've included text instead of an image. Please provide the actual image or a link to it, and I'll be happy to help with the alt text.]

where [image: Mathematical expression showing P subscript \text{avg} to the power of n, followed by an open dot in parentheses.]  represents the global adaptive average pooling function with a size of n×n, [image: Mathematical expression showing "P max" with "n" as a superscript and a function of a dot in parentheses.]  represents the global adaptive maximum pooling function with a size of n×n, and [image: Mathematical notation representing a function labeled as "F underscore resize" with parentheses containing a dot inside.]  feature reconstruction operation. The multi-layer perceptron composed of the fully connected layer and non-linear activation function is used to encode the feature vector Xc to generate the feature descriptor [image: Mathematical notation showing "U subscript 2" belongs to the set of real numbers with dimensions C by 1 by 1.] . The specific calculation process is as follows:

[image: It seems there was an error, as no image was uploaded. Please provide the image or a URL to the image you want described.]

where [image: Mathematical expression showing script capital F subscript 1 is an element of the set of real numbers raised to the power C divided by r times C.]  and [image: Mathematical notation showing \( \mathcal{F}_2 \in \mathbb{R}^{C \times C / r} \).]  represent different fully connected functions, and set [image: Equation showing "r equals 32" to represent a constant or a variable, often used in mathematical contexts to define the radius of a circle or a sphere.] ; [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.]  denotes the ReLU activation function. Element-by-element multiplication is used to fuse the region attention mapping [image: It seems there was an issue in uploading or describing the image. Please try uploading the image again or provide additional context so I can assist you further.]  and the feature descriptor [image: I'm sorry, I can't view the image you're referring to. Could you please upload the image or provide a URL, and I'll assist you in generating the alternate text?] , and the Sigmoid function is used to normalize the feature values to the range of [image: I'm sorry, I can't view or interpret the image you're referring to due to the way it was inserted. Please try uploading the image again or provide a description, and I'll be happy to help with alt text.]  to generate the attention weight [image: Please upload the image or provide a URL, and I'll help generate the alternate text for it.] . The original feature map [image: It looks like the image was not properly uploaded. Please try uploading the image again, or provide a URL if it is hosted online.]  is weighted to achieve object feature adaptive optimization to highlight the object region feature information and reduce the seabed reverberation noise interference. The specific calculation is as follows:

[image: Equation showing M equals sigma of U sub 1 tensor U sub 2, denoted with equation number 22 on the right.]

[image: Mathematical formula: \(Y = X \oplus (X \otimes M)\), where \(X\) and \(M\) are variables, \(\oplus\) indicates addition, and \(\otimes\) represents multiplication.]

where ⊗ represents element-by-element multiplication, σ denotes the Sigmoid activation function, ⊕ denotes element-by-element summation, and Y represents the multi-scale refinement feature map. The MFRM uses a dual-branch architecture to effectively model object regions at different scales. The region location branch focuses on coarse object localization, while the feature refinement branch enhances fine-grained feature details through cross-dimensional feature interactions. This ensures that objects of different sizes, from small to large, are accurately detected and classified.




3.4 Loss function optimization

To optimize the proposed MLFANet detector, we combined CIoU (Zheng et al., 2020) and DLF (Li et al., 2020) to calculate the regression loss of the bounding box. The constructed loss function uses DLF loss to obtain the loss probability of the bounding box and object label by calculating the cross-entropy function. The distribution probability of the bounding box is restored as the prediction box, and CIoU is used to calculate the loss value of the prediction box and truth box to achieve the optimization of the prediction box generation process. The calculation of CIoU is as follows:

[image: The image shows a mathematical equation labeled as \(L_{CIoU}\) with equation number (24). The equation is:  \[ L_{CIoU} = 1 - IoU + \frac{\rho^2(b, b^{gt})}{(c_w^2) + (c_h^2)} + \frac{4}{\pi} \left( \arctan \frac{w_{gt}}{h_{gt}} - \arctan \frac{w}{h} \right)^2 \]  This equation involves variables and functions such as IoU, \(\rho\), \(\arctan\), \(w\), \(h\), \(c_w\), and \(c_h\).]

where IoU represents the intersection in the union of the prediction bounding box and truth bounding box; [image: Mathematical expression showing rho squared, denoted as ρ squared, with the arguments b and b raised to the power of beta t.]  denotes the Euclidean distance between the prediction box and the truth box; ℎ and w represent the height and width of the prediction box; [image: The image depicts the mathematical symbol for \( h_{gr} \), where "h" is the variable and "gr" is the subscript.]  and [image: Mathematical notation showing a variable "w" with a subscript "gr".]  represent the height and width of the truth box; [image: Stylized text displaying the letters "c_h" in italic font.]  and [image: It looks like the provided content is not an image. Please upload the actual image file, and I will help generate the alt text.]  denote the height and width of the minimum bounding box consisting of the prediction box and truth box. Since CIoU ignores the problem of sample imbalance, smaller positional offsets lead to significant decreases in IoU values for small object regions in sonar images, while large size object regions will produce an IoU difference. Moreover, since the calculation process involves the solution of inverse trigonometric function, it increases the model computational complexity. To solve this problem, we introduce the normalized Wasserstein distance (NWD) position regression loss function, which uses the two-dimensional Gaussian distribution to calculate the similarity between the prediction box and truth box. The loss calculation process can reflect the true distance between the prediction box and object region distribution, and it has strong robustness to the object scale scaling, so it is more suitable for solving the tiny object detection problem. The specific calculation of the NWD position loss function is as follows:

[image: A mathematical expression for a vector \( N_a \) equals a matrix of variables: \( [c_{x_a}, c_{y_a}, w_a/2, h_a/2]^T \), followed by the equation number (25).]

[image: Mathematical expression displaying \(N_s = \frac{c_{55}A_s}{W_s/2 \cdot h_s/2}\), with the reference number (26) at the end.]

[image: Equation showing \(W_2^2(N_m, N_l) = \| (N_m, N_l) \|_2^2\), labeled as equation (27).]

[image: Equation depicting the loss function L sub NWD of N sub a, N sub b as the exponential of the negative square root of W squared of N sub a, N sub b divided by C, labeled equation twenty-eight.]

where C denotes the number of object categories; [image: Mathematical notation displaying the squared Wasserstein distance between distributions \(N_a\) and \(N_b\), denoted as \(W_2^2(N_a, N_b)\).]  denotes the distance measure; [image: Stylized letter "N" with a subscript "a" indicating a specific notation or value related to "N".]  and [image: Mathematical notation showing "N" with a subscript "b".]  denote the Gaussian distributions modeled by [image: The image shows a mathematical expression: A equals (cx sub a, cy sub a, w sub a, h sub a).]  and [image: Text showing the equation: \(B = (cx_b, cy_b, w_b, h_b)\), representing a bounding box with center coordinates \(cx_b\), \(cy_b\), width \(w_b\), and height \(h_b\).] , respectively. Since CIoU is suitable for large size object categories, we combine CIoU and NWD to construct the loss optimization function. The specific calculation is as follows:

[image: Mathematical formula showing \( L_{\text{CIoU\_NWD}} = \alpha \cdot L_{\text{CIoU}} + (1 - \alpha) \cdot L_{\text{NWD}} \) followed by equation number (29).]

where α represents the adaptive weight adjustment coefficient, [image: The image shows the mathematical notation "L" with a subscript "ClOu." The "L" is stylized, and the text appears in an italicized font, typically used in academic or scientific contexts.]  and [image: Stylized script letter "L" followed by the subscript "NWD" in a mathematical or scientific context.]  denote the CIoU loss function and the NWD loss function, respectively.





4 Experiments and analysis

In this section, we present a detailed description of the forward-looking sonar image dataset, model training strategy, experimental parameter setting, evaluation metrics, ablation studies, and robustness analysis.



4.1 FLS image dataset

To verify the effectiveness and feasibility of the proposed method, we conducted experimental verification on the UATD dataset (Qin et al., 2020) in a real-scene underwater acoustic environment. The dataset was released in 2022 and was provided by Peng Cheng Laboratory, Shenzhen, China. It used Tritech Gemini 1200ik multi-beam forward-looking sonar for image collection. The sonar operates at two acoustic frequencies, 720kHZ for lone-range object detection, and 1,200kHz for enhanced high-resolution imaging at shorter ranges. The data collection sites were located in Golden Pebble Beach in Dalian (39.0904292°N, 122.0071952°E) and Haoxin Lake in Maoming (21.7011602°N, 110.8641811°E).

The dataset contains 9,200 high-resolution original forward-looking sonar images and corresponding manual annotation information. To improve the readability of the sonar images, we performed Gaussian filtering and pseudo-color enhancement on the original images, as shown in Figure 7. The annotation object categories provided by the dataset contain a cube, ball, cylinder, human body model, tire, circle cage, square cage, metal bucket, plane model, and ROV, and the corresponding physical entities and sizes are shown in Figure 8. We present the statistical information of the number of different object categories in Figure 9a, from which it can be seen that the dataset has a serious category imbalance problem. To further analyze the dataset, we calculated the area and aspect ratio of the rectangular label boxes of different object categories, and drew the corresponding histogram, as shown in Figures 9b, c. It can be seen that the different object category sizes were diverse, as the minimum area covered 12 pixels, and the maximum area included 38,272 pixels; the rectangle minimum ratio of length/width was 0.22, and the maximum ratio was 7.95. From the above statistical information, it can be shown that the dataset poses a great challenge to the sonar image object detection task.

[image: Side-by-side comparison of two images: the left is a dim, mostly black original image with faint details, and the right is a preprocessed image using a blue filter, enhancing visibility of the features.]
Figure 7 | The original forward-looking sonar image and the preprocessed image from the UATD dataset. (a) original image. (b) preprocessed image.

[image: A collage of ten objects, each labeled with dimensions. From top left to bottom right: a cube, a black ball, a red cylinder, a yellow human body figure, a model plane, a circular cage, a square cage, a metal bucket, a tire, and a BlueROV. Each object displays specific measurements for length, width, height, or radius.]
Figure 8 | The physical sonar target entities and their corresponding size in the UATD dataset. The size is measured in meters.

[image: Three-panel chart showing statistical information. Panel (a) is a bar chart detailing object category distribution, with 'Ball' and 'Cube' being the most frequent. Panel (b) is a histogram of object region pixel statistics, with a peak around a ratio of one. Panel (c) is a histogram of label box length-width ratios, with most values below a ratio of one. Maximum, minimum, mean, and variance values are provided for panels (b) and (c).]
Figure 9 | An overview of the detailed statistical information of the UATD dataset. (a) Object categories distribution statistics. (b) Object region pixel statistics. (c) Label box length-width ratio statistics.




4.2 Training strategies and implementation details

The specific details of the dataset and hyperparameters in the experiment are described as follows.



4.2.1 Dataset setting

For the 9,200 forward-looking sonar images contained in the UATD dataset, we randomly split them into the training, verification, and testing sets based on the ratio of 7:2:1. Specifically, the training set contained 6,440 images, the verification set contained 1,840 images, and the testing set contained 920 images. To further improve the model robustness and generalization performance, data augmentation methods including random rotation, image deformation, brightness transformation, image sharpening, and adding noise were used to supplement the number of training set samples. The use of data augmentation can also alleviate the overfitting problem in the model training process. Moreover, limited by the device memory, we uniformly scaled the original sonar image to 512×512 pixels in the training process and maintained the original image size for the verification and testing sets.




4.2.2 Training strategies

The experiments were conducted on a workstation equipped with an Intel i9-12900T CPU, 64GB RAM, an NVIDIA GeForce RTX 4090 GPU, and the Ubuntu 18.04 operating system. The code was implemented using the PyTorch 2.1.0 and MMDetection 3.2.0 frameworks. All models were trained and evaluated on the UATD dataset using the same training, validation, and testing splits to ensure fairness. During training, input images were resized to 512×512 pixels, and data augmentation techniques, including random horizontal flipping, random rotation, and color jittering, were applied equally to all models to improve robustness and prevent overfitting. Mixed precision training was employed to enhance training speed and memory efficiency.

For the proposed MLFANet, we used a ResNet-50 or ResNet-101 backbone pre-trained on ImageNet. The batch size was set to 8, and the optimizer was SGD with momentum (0.9) and a weight decay of 0.0001. The initial learning rate was set to 0.02 and reduced by a factor of 10 at epochs 8 and 11, with a total of 12 training epochs (1× schedule). To further optimize performance, we adopted a three-stage training strategy: (1) pre-training the backbone on ImageNet with a batch size of 32 and an initial learning rate of 0.001, decayed every 1,000 iterations; (2) fine-tuning the pre-trained backbone on the sonar image dataset with a batch size of 8, an initial learning rate of 0.001, and decay applied every 500 iterations; and (3) training the entire model with a batch size of 16, an initial learning rate of 0.0001, and decay applied every 2,000 iterations. This staged strategy ensured optimal parameter learning and mitigated overfitting.

For the baseline models, we used their standard configurations as described in their original implementations. For example, Faster R-CNN, RetinaNet, Cascade R-CNN, Dynamic R-CNN, and DH R-CNN were trained with a ResNet-50 backbone, a batch size of 8, an initial learning rate of 0.02 (reduced by a factor of 10 at epochs 8 and 11), and 12 training epochs. CenterNet was trained with a ResNet-101 backbone, a batch size of 16, an initial learning rate of 0.01 (reduced at epochs 30 and 45), and 50 training epochs. The DETR-based models (e.g., DETR, DAB-DETR, Sparse R-CNN, and CO-DETR) used AdamW optimizers, with a batch size of 4 and an initial learning rate of 0.0001 for the transformer and 0.00001 for the backbone. These models were trained for 50 epochs, with learning rate reductions at epoch 40. ViTDet used a ViT-B backbone, a batch size of 8, an initial learning rate of 0.0001, and was trained for 36 epochs, with learning rate reductions at epochs 24 and 30. By using consistent preprocessing, training splits, and hyperparameters tailored to each model, we ensured a fair and comprehensive comparison across all methods.





4.3 Evaluation metrics

To quantitatively evaluate the effectiveness and advantages of the proposed sonar object detection model, we used the precision, recall, average precision (AP), false alarm rate (FAR), F1 score, and frames-per-second (FPS) metrics commonly used in natural scene image object detection tasks as the evaluation metrics. First, we defined TP, FP, TN, and FN as true positive, false positive, true negative, and false negative. Specifically, TP indicates the model correctly detects the sonar object, FP denotes a non-object is falsely detected as the object region, TN indicates the model correctly predicts the non-object category, and FN denotes the object region is mistakenly predicted as a non-object. The calculation of different evaluation metrics is as follows.

	1) The precision is defined as the proportion of the model’s correct object detection to overall detection results.



[image: Precision formula: Precision equals true positives divided by the sum of true positives and false positives, shown as TP over TP plus FP.]

	2) The recall is defined as the proportion of model correct object detection to the truth annotation object.



[image: Recall is defined as TP divided by the sum of TP and FN, where TP stands for true positives and FN stands for false negatives. Equation labeled as 31.]

	3) The AP is defined as the area under the precision-recall (PR) curve used to evaluate the model performance.



[image: Expression for average precision involves integral calculation. AP subscript IOU equals the integral from zero to one of P of R with respect to R. This is equation thirty-two.]

where IoU denotes the intersection-over-union threshold used to determine whether the detection result belongs to TP or FP. For the sonar object detection task, we set the IoU to 0.5. Additionally, the evaluation metrics APs, APm, and APl of the Microsoft COCO dataset (Lin et al., 2014) were used to further refine the evaluation and analyze model performance.

	4) The FAR evaluates the prediction result credibility by calculating the proportion of FP in all the results.



[image: Formula for False Alarm Rate (FAR) shown as FAR equals false positives (FP) divided by the sum of true positives (TP) and false positives (FP). Equation number thirty-three is referenced.]

	5) The F1 score is defined as the harmonic mean of precision and recall and can assess the comprehensive performance of the object detection model.



[image: F1 score formula showing F1=2 times Precision times Recall, divided by Precision plus Recall, with equation numbered thirty-four on the right.]

	6) The FPS represents the speed of the object detection model to process a single frame image per second.



[image: Equation showing frames per second (FPS) as the inverse of the single frame time, denoted as \( FPS = 1/T_{\text{single}} \), with the equation number (35).]

where [image: Lowercase "T" with subscript "single."]  denotes the time taken to process a single forward-looking sonar image.




4.4 Comparison experiments and analysis

To demonstrate the advantages of the proposed forward-looking sonar object detector MLFANet, we compared it with 11 state-of-the-art object detection models on the UATD dataset. The compared methods can be classified into CNN-based methods and Transformer-based methods. Specifically, the CNN-based methods included Faster R-CNN (Girshick, 2015), RetinaNet (Lin et al., 2017b), Cascade R-CNN (Cai and Vasconcelos, 2019), CenterNet (Duan et al., 2019), Dynamic R-CNN (Zhang et al., 2020), DH R-CNN (Wang et al., 2022b), and Spare R-CNN (Sun et al., 2023); the Transformer-based methods included DETR (Carion et al., 2020), ViTDet (Li et al., 2022), DAB-DETR (Liu et al., 2022) and CO-DETR (Zong et al., 2023). To ensure experiment fairness, the compared methods were retrained on the UATD dataset and used the same training strategy and parameter settings as the proposed methods. The comparative analysis included quantitative comparison, qualitative comparison, and model complexity analysis. The details are as follows:



4.4.1 Quantitative analysis

The quantitative comparison of different object detection methods was performed on the testing set of the UATD dataset. The performance quantitative analysis results of different methods are shown in Table 1. From the analysis results, compared with other object detection models, the proposed MLFANet obtained the optimal results on multiple evaluation metrics. Additionally, for metrics APl, APm, and APs, the proposed method reached 62.79%, 58.24%, and 45.36%, respectively, which further explains the comprehensive performance advantages of our MLFANet. Specifically, compared with the CNN-based optimal model CenterNet (Duan et al., 2019) and Transformer-based optimal model CO-DETR (Zong et al., 2023), the proposed method was 6.53% and 2.85% higher for the AP metric, respectively. For the CNN-based methods, such as Faster R-CNN (Girshick, 2015), RetinaNet (Lin et al., 2017b), and Cascade R-CNN (Cai and Vasconcelos, 2019), the AP values only reached 32.53%, 29.75%, and 34.97%, respectively, and were accompanied by higher FAR values. The reason for this phenomenon is that the seabed reverberation noise and clutter information contained in the sonar image seriously interfere with the feature extraction process of the CNN model, and the use of a simple convolution operation cannot fully extract the valuable feature information. Moreover, the weak and dark light characteristics of the sonar image object region diminish the positioning and recognition of the CNN-based methods, so they cannot achieve the ideal detection accuracy. Since the Transformer model has better global feature extraction and modeling effect, compared with the CNN-based method, the Transformer-based method has a slight advantage for the sonar image object detection task. For example, compared with Dynamic R-CNN (Girshick, 2015), ViTDet (Li et al., 2022) was 8.40% and 6.86% higher for the AP and F1 score, respectively. Furthermore, for the metrics APl and APm, the optimal Transformer-based model CO-DETR (Zong et al., 2023) reached 58.93% and 54.68%, indicating that the method can accurately detect large/medium size objects in sonar images. However, the imaging characteristics of sonar images cause redundant information interference in the global information correlation modeling process of the Transformer-based method, which makes it difficult to achieve satisfactory results for small object detection. For instance, the APs values of ViDet (Li et al., 2022), DAB-DETR (Liu et al., 2022), and CO-DETR (Zong et al., 2023) were only 41.32%, 39.76%, and 42.18%, and these methods have high false alarm rates. The reason for this problem is that the Transformer model only focuses on global feature information extraction, ignoring the important value of local feature information, resulting in false discrimination of small object region features as background information features. To verify the detection accuracy of different object detection models for different object categories in sonar images, we randomly selected 1,200 images from the UATD dataset as experimental data. As shown in Table 2, the mean AP (mAP) value of the proposed MLFANet was 81.86%, which is better than all the compared methods. The quantitative results further illustrate the superior detection performance of the proposed method compared to other object detection models. For the AP value of each sonar object category, we can conclude that for the tiny object categories, i.e. the ball, circle cage, and tire, the optimal CNN-based model CenterNet (Duan et al., 2019) only reached 61.28%, 39.78%, and 30.12%, and the optimal Transformer-based model CO-DETR (Zong et al., 2023) only reached 62.85%, 45.63%, and 35.92%. For the large-size object categories, i.e., the cube, plane, and metal bucket, the experimental results in Table 2 show that these compared object detection models still cannot achieve satisfactory detection accuracy. In contrast, the proposed MLFANet obtained AP values of 95.84%, 98.14%, and 95.26% for the large-size object categories, respectively. Additionally, for the other object categories such as cylinder, human body, square cage, and ROV, the proposed method achieved AP values of 92.03%, 83.06%, 80.14%, and 86.15%, which are the optimal results for all compared methods. The quantitative analysis results in Tables 1 and 2 show that the proposed method has significant advantages in solving sonar image object detection tasks. The reason is that MLFANet fully considers the interference of seabed reverberation noise, shadow region, and clutter information in the sonar images, and proposes corresponding solutions, so it can obtain better object detection accuracy. To further intuitively compare the performance of different object detection models, we drew the PR curve of different object detection models for comparison. The PR curve in Figure 10 demonstrates the performance of MLFANet compared to baseline models across various classification thresholds. The PR curve of MLFANet exhibits a higher AUC, indicating its ability to achieve both high precision and high recall. This is particularly important for FLS images, where the presence of noise, shadows, and reverberation can lead to false positives or missed detections. Compared to baseline models, MLFANet maintains a more gradual decline in precision as recall increases, reflecting its robustness to challenging underwater conditions. This is attributed to the integration of the LFAM, DFEM, and MFRM, which together enhance feature representation and reduce noise interference. Additionally, the CIoU-DFL loss function contributes to this improved performance by addressing class imbalance and refining object localization and classification. The precision value of MLFANet was the highest among all models, further supporting the superior performance of the proposed framework. This analysis highlights the effectiveness of MLFANet in achieving a favorable precision-recall trade-off, making it well-suited for underwater object detection.

Table 1 | Performance comparison of different object detection methods on the testing set of the UATD dataset, where the score in bold is the highest score.


[image: A table comparing the performance of various object detection models. Metrics include Precision, Recall, F1 score, and various AP measures (AP, AP50, AP75, APl, APm, APs, FAR). Models like ML FANet (Ours) exhibit the highest metrics overall, especially in Precision (0.9521), Recall (0.9716), F1 score (0.9617), AP (0.4611), and AP50 (0.9602), with the lowest FAR (0.0479).]
Table 2 | Comparison of category detection accuracy of different object detection methods, where the score in bold is the highest score.


[image: Comparison table of different models with ResNet-50, ResNet-101, ViT-B, and Swin-L backbones. Metrics include Cube, Ball, Cylinder, Human Body (HB), Plane, Circle Cage (CC), Square Cage (SC), Metal Bucket (MB), Tire, and mAP scores. Notably, MLFANet achieves the highest mAP of 0.8161.]
[image: PR curve graph comparing multiple detectors including Faster R-CNN, RetinaNet, Cascade R-CNN, CenterNet, Dynamic R-CNN, DH R-CNN, DETR, Sparse R-CNN, ViTDet, DAS-DETR, CO-DETR, and MLFANet. The x-axis represents recall, and the y-axis represents precision. MLFANet shows a consistently high precision across different recall levels, outperforming other models.]
Figure 10 | Comparison of PR curves for different object detection models.




4.4.2 Qualitative analysis

To further demonstrate the effectiveness of the proposed MLFANet, we visualized the prediction results of sonar images under different scene conditions contained in the UATD dataset. As shown in Figures 11–13, these scenes include seabed reverberation noise interference, shadow region interference, and object scale variation. It can be seen from the prediction results that the proposed method can accurately locate and recognize the different categories of sonar objects in the test images with high confidence scores. In contrast, the compared methods suffer from location deviation, high false alarm rate, and recognition failures. Additionally, as shown in Table 3, we present the confidence scores of different object detection models for the object categories in the test images. Following this, we present a detailed analysis of the different object detection model prediction results under three underwater scene conditions and the advantages of the constructed sonar object detector. The qualitative comparison results effectively illustrate the advantages of the proposed method for sonar object detection.

[image: Twelve blue-tinged thermal images display the detection performance of various neural network models, each labeled below: Faster R-CNN, RetinaNet, Cascade R-CNN, CenterNet, Dynamic R-CNN, DH R-CNN, DETR, Sparse R-CNN, ViTDet, DAB-DETR, CO-DETR, and MLFANet (Ours). Each image features colored boxes highlighting detected objects.]
Figure 11 | Visualization detection results of different object detection models in seabed reverberation noise interference scenes.

[image: Twelve panels compare object detection results from different algorithms: Faster R-CNN, RetinaNet, Cascade R-CNN, CenterNet, Dynamic R-CNN, DH R-CNN, DETR, Sparse R-CNN, ViTDet, DAB-DETR, CO-DETR, and MLFANet. Each panel uses colored boxes to highlight detected objects on a blue background.]
Figure 12 | Visualization detection results of different object detection models on shadow region interference scenes.

[image: Twelve images display object detection results using different models on a blue background. Each model, like Faster R-CNN, RetinaNet, and DETR, shows boxes around detected objects with labels. Models are named below each image.]
Figure 13 | Visualization detection results of different object detection models on object multi-scale transformation scenes.

Table 3 | Comparison of the confidence scores of different object detection methods.


[image: A table comparing various models across three conditions: reverberation noise, shadow interference, and object scale transformation scenes. Each condition lists NA and NO values with associated confidence percentages. Models include Faster R-CNN, RetinaNet, Cascade R-CNN, and others. Confidence levels vary, with Dynamic R-CNN showing high confidence in reverberation scenes and ML FANet displaying strong performance across scenarios. The table notes that HB, CC, SC, and MB denote the human body, circle cage, square cage, and metal bucket, respectively.]


4.4.2.1 Superiority in scenes with seabed reverberation noise interference

The irregularity of underwater terrain seriously affects the propagation and reflection of sound waves on the seabed, so a forward-looking sonar image is disturbed by seabed reverberation noise. As shown in Figure 11, under the interference of seabed reverberation noise, it is difficult for the compared object detection models to obtain satisfactory detection results. For example, for CNN-based object detection models, Faster R-CNN (Girshick, 2015) and RetinaNet (Lin et al., 2017b) could not correctly detect all object categories in sonar images, resulting in false detection and missing detection. The reason is that the non-linear characteristics of seabed reverberation noise interfere with the detection and recognition process of CNN-based methods. For the Transformer-based object detection models, ViTDet (Li et al., 2022) and CO-DETR (Zong et al., 2023) obtained relatively better detection results. However, the results in Figure 11 show that these methods still struggle to accurately detect small-size object categories. In contrast, MLFANet effectively suppress the seabed reverberation noise interference on the feature extraction process, successfully detects different object categories and obtains the higher confidence score. Moreover, in environments with strong seabed reverberation noise, MLFANet occasionally misclassifies noise patterns as objects due to their similar intensity and texture. Future work could focus on integrating advanced noise suppression or training with adversarial noise augmentation to mitigate this issue.




4.4.2.2 Superiority in scenes with shadow region interference

Since the underwater object has the characteristics of absorption, reflection, and scattering of sonar signal, it is difficult for the acoustic wave to directly penetrate the object entity, so the shadow interference region is formed in the reverse of the object region. The existence of the shadow region causes object occlusion, so it is difficult for the object detection model to accurately extract the edge, contour, and detail feature information. As shown in Figure 12, in the shadow interference scene, the compared sonar object detection models struggled to accurately locate and identify the object category and obtained a lower confidence score. Among the competitors, for CNN-based methods, CenterNet (Duan et al., 2019) obtained relatively better detection results. The reason is that the model uses a center point detection strategy to locate the object region, which can effectively alleviate the shadow region interference on the object feature extraction process. For the Transformer-based methods, CO-DETR obtained the optimal detection results. The reason is that it suppresses the representation of redundant feature information in the shadow region through global context modeling, and uses the position encoder mechanism to improve the object positioning accuracy. The proposed method obtains the optimal detection effect, which suppresses and filters the shadow feature interference by focusing on the discriminative feature information of the object region to improve the location and recognition accuracy. In addition, the objects located in regions with strong shadow interference are sometimes missed due to low contrast and insufficient discriminative features. Introducing adaptive contrast enhancement or attention mechanisms could help improve detection in such regions.




4.4.2.3 Superiority in scenes with object multi-scale transformation

Due to the influence of different object entities, object distance transformation, sonar beam angle, and object motion state, there are complex object scale transformation phenomena in the forward-looking sonar image. The variable object scale puts forward higher requirements for the multi-scale feature extraction capability of the object detection model. However, the existing object detection methods can only solve the multi-scale feature extraction problem of natural scene images, while multi-scale feature extraction for sonar images still cannot achieve satisfactory performance. As shown in Figure 13, for sonar images with different scale objects, the compared methods had false alarms and missing detection problems. Among competitors, Cascade R-CNN (Cai and Vasconcelos, 2019) and Dynamic R-CNN (Zhang et al., 2020), which use multi-scale feature extraction strategies, achieved relatively better results. The reason is that these methods construct a multi-scale feature extraction structure, which can alleviate the influence of object scale transformation. In contrast, we can observe from Figure 12 that the Transformer-based object detection models were less effective for object scale variable scenarios. Taking the DAB-DETR (Liu et al., 2022) detector as an example, it only focuses on the efficient modeling of global information and ignores the extraction of scale-invariant features, which leads to missing detection and false alarm problems. The proposed MLFANet can effectively detect the different scale object categories in sonar images and obtain a higher confidence score. The reason is that the multi-scale feature refinement module can accurately locate sonar objects with different scales and obtain the robust invariant feature information in sonar image. Moreover, MLFANet struggles with extreme scale variations, leading to missed detections of very small objects or fragmented detections of very large targets. Developing more robust multi-scale feature fusion techniques or scale-invariant detection mechanisms could address this limitation.





4.4.3 Performance in small sample scenarios

To evaluate the potential of MLFANet for small sample learning, we conducted experiments by reducing the training dataset size to simulate limited data conditions. Specifically, 50%, 25%, and 10% of the original training data were used, while the test set remained unchanged. The performance of MLFANet and four representative baseline models (Faster R-CNN, RetinaNet, DETR, and CO-DETR) under these conditions is summarized in Table 4. The results in Table 4 demonstrate that MLFANet consistently outperforms the baseline models across all training data fractions. Notably, in extremely small sample conditions (10% training data), MLFANet achieved an AP of 30.85%, significantly surpassing Faster R-CNN (18.57%), RetinaNet (16.42%), DETR (24.17%), and CO-DETR (26.58%). This highlights the robustness and effectiveness of MLFANet in low-data conditions.

Table 4 | Model performance verification under small sample conditions.


[image: Table comparing the performance of different models at various data fractions. Metrics include AP, AP50, AP75, AP for different object sizes (large, medium, small), and FAR. Models evaluated are Faster R-CNN, RetinaNet, DETR, CO-DETR, and MLFANet. Data fractions are 100%, 50%, 25%, and 10%. MLFANet consistently achieves the highest AP across all data fractions.]



4.4.4 Computational complexity analysis

Since the sonar image object detection task has high requirements for algorithm real-time performance, we compared and analyzed the computational complexity of different object detection models, and the specific results are shown in Figure 14. Table 5 presents the number of parameters, FLOPs (Floating Point Operations), and FPS for each model on a workstation equipped with an NVIDIA RTX 4090 GPU. It can be seen from the comparison results that the CNN-based methods have advantages in computational complexity and real-time performance compared with the Transformer-based object detection models. To take the Transformer-based method ViTDet (Li et al., 2022) as an example, its calculation parameter reached 5,792 MB, and the inference speed was only 19.7 FPS. The reason is that the self-attention mechanism used in the Transformer model requires the calculation of the correlation of each pixel spatial position information, which increases the model inference time and calculation parameters. For the CNN-based methods, to take the Cascade R-CNN (Cai and Vasconcelos, 2019) as an example, the number of calculation parameters was 3,854 MB, and the inference speed reached 35.3 FPS. Although this method outperforms several Transformer-based object detection models, it still fails to address the real-time requirements of the sonar object detection task. In contrast, the computational parameter of the proposed MLFANet reached 3,157 MB, and the inference speed was 82.3 FPS, which was significantly better than the other object detection models. The proposed method can achieve an advantage because it constructs the corresponding feature extraction and fusion module for the sonar image, and effectively alleviates the influence of redundant feature and noise information on the inference process of the object detection model. To further validate the feasibility of MLFANet for deployment on embedded devices, experiments were conducted on an NVIDIA Jetson Xavier NX. The model was optimized using quantization techniques to reduce memory consumption and computational overhead. After optimization, MLFANet achieved an inference speed of 27.4 FPS with a memory footprint of 2.60 GB on the Jetson Xavier NX. These results demonstrate that MLFANet meets the real-time requirements of embedded systems, making it practical for AUV applications such as obstacle avoidance and object tracking.

[image: Scatter plot comparing computational complexity of object detection models. The horizontal axis shows parameters in megabytes, and the vertical axis shows frames per second (FPS). Models like RetinaNet and MLFANet achieve higher FPS with fewer parameters, while CO-DETR and DAB-DETR have more parameters with moderate FPS. Different models are marked as colored circles.]
Figure 14 | Comparison of our method with other object detection models in calculation parameters and inference speed.

Table 5 | Comparison of the computational complexity of different object detection models.


[image: Comparison table of various models showing parameters in megabytes (MB), FLOPs in gigaflops (G), and frames per second (FPS) for a 512x512 image size. Models listed include Faster R-CNN, RetinaNet, Cascade R-CNN, CenterNet, Dynamic R-CNN, DH R-CNN, DETR, Sparse R-CNN, ViTDet, DAB-DETR, CO-DETR, and MLFANet (Ours), with MLFANet showing the highest FPS at 82.3.]




4.5 Ablation study and analysis

To demonstrate the effectiveness of the important components LFAM, DFEM, and MFRM in the constructed MLFANet, we performed an ablation study on the UATD testing set, and the specific quantitative analysis results are shown in Table 6. In the experiment, we used the YOLOX detector (Ge et al., 2021) as the baseline model and verified the detector performance improvement by adding different components. Additionally, since the different constructed components are mainly for feature extraction and fusion of sonar images, we present the feature map visualization results of the different component modules in Figure 15. The specific analysis of the ablation study is as follows.

Table 6 | Quantitative evaluation of the ablation study with different components, where the score in bold is the highest score.


[image: Table comparing object detection methods across various objects. Methods include Baseline, +LFAM, +DFEM, +MFRM, +LFAM+DFEM, and +LFAM+DFEM+MFRM. Each row lists performance scores for Cube, Ball, Cylinder, HB, Plane, CC, SC, MB, Tire, ROV, and mAP. Highest scores are bolded for each object category, showing improved detection with combined methods.]
[image: Heatmap series labeled from (a) to (e). Image (a) shows predominantly blue with faint lines, (b) has concentrated red and yellow areas in the center, (c) to (e) display varying shapes with central red and surrounding blue, indicating intensity differences.]
Figure 15 | Visualizing the feature extraction effects of the LFAM, DFEM, and MFRM. (a) original forward-looking sonar images. (b) Feature extraction results from baseline. (c) Feature extraction results with the LFAM. (d) Feature extraction results with the DFEM. (e) Feature extraction results with the MFRM.



4.5.1 Effect of the LFAM

The constructed LFAM aims to fully exploit the low-level feature information such as texture, edge, and contour in the sonar image to improve the discriminating ability of the model for object region and background information. As shown in Table 6, when the LFAM was embedded into the baseline model, it achieved 68.74% (18.5% ↑) mAP on the testing set. Additionally, each object category experienced a corresponding increase in AP value, for example, the ball category had an increase of 25.58%, and the circle cage category had an increase of 22.13%. The feature visualization results corresponding to Figure 15 further show that the LFAM can make the model focus on feature extraction in the sonar object region and significantly enhance the model’s feature representation ability for low-level feature information.




4.5.2 Effect of the DFEM

To filter the redundant feature information interference in the feature extraction process, the DFEM was constructed, which obtains the discriminative attributes of the object region by enhancing the local feature information representation in deep convolution. As shown in Table 6, when the DFEM was introduced into the baseline model, its mAP on the testing set reached 70.60%. Moreover, the DFEM enhanced the small object region feature representation, so that the AP values of the ball, circle cage and tire small object categories increased by 30.74%, 25.59%, and 9.60% respectively, and the AP values of the cube, plane and metal bucket large-size object categories increased by 15.69%, 11.47%, and 12.87% respectively. Combined with the LFAM and DFEM, the baseline model achieved significant performance improvement. Compared with the initial results, the mAP increased by 24.61%, and the AP values for the cylinder, human body, square cage, and ROV increased by 26.71%, 34.65%, 24.64%, and 29.45%, respectively. The feature visualization results in Figure 15 show that DFEM can effectively filter the redundant feature information interference to improve the sonar object detection accuracy in clutter and shadow information interference scene.




4.5.3 Effect of the MFRM

To solve the problem of multi-scale feature extraction in seabed reverberation noise and shadow region interference scene, the MFRM was constructed, which obtains the scale-invariant features of sonar images by region location branch and feature refinement branch. Different from placing the LFAM and the DFEM in the feature extraction stage, we embedded the MFRM into the neck structure of the detector. As shown in Table 6, when placing the MFRM in the baseline model, it increased the mAP by 19.59%. Additionally, the model obtained a significant boost in AP values for object categories with different scales, for example, it increased by 26.88%, 16.08%, and 12.13% for the ball, circle cage, and tire, respectively. From the results shown in Figure 15, it can be observed that the use of the MFRM effectively improved the model’s receptive field deformation ability, so that it could obtain the discriminative feature information of object regions with different scales. Notably, when combining the LFAM, DFEM, and MFRM, the baseline model performance was optimized, and the mAP value on the UATD testing set reached 78.64%, which further demonstrates the effectiveness of the different components in improving the detector performance.






5 Conclusion

To solve the problem of forward-looking sonar image object detection in complex underwater acoustic environment, in this article, we propose a novel multi-level feature aggregation network (MLFANet) to achieve an underwater sonar image object detection task. The proposed MLFANet contains three innovative modules, the LFAM, DFEM, and MFRM. Specifically, the LFAM is used to enhance the low-level feature information representation of sonar images to alleviate the influence of seabed reverberation noise on the feature extraction process. The DFEM enhances the saliency of object region features in deep convolution by constructing the correlation of local-global features to filter shadow and clutter information interference. The MFRM uses the region location and feature refinement branches to extract robust invariant feature information of different scale objects to solve the problem of underwater object multi-scale variation. To demonstrate the effectiveness and advantages of the proposed method, we conducted a series of experiments on a real-scene sonar image dataset, and MLFANet achieved better performance than the existing state-of-the-art methods. The ablation studies further validate the effectiveness and feasibility of the proposed different innovation modules. Although the proposed method can obtain better detection performance, it requires more training samples. Therefore, in future work, we intend to explore the forward-looking sonar image object detection method in small sample conditions.
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Rip currents present a significant safety risk to beach tourists and coastal communities, resulting in hundreds of annual drownings all over the world. A key contributing factor to this danger is the lack of awareness among beachgoers about recognizing and avoiding these rip currents. In response to this issue, we introduce RipFinder, a mobile app equipped with machine learning (ML) models trained to detect two types of rip currents. Users can leverage the app’s computer vision capabilities to use their phone’s camera to identify these hazardous rip currents in real time. The amorphous and ephemeral nature of rip currents makes it challenging to detect them with high accuracy using object detection models. To address this, we propose a client-server ML model-based computer vision system designed specifically to improve rip current detection accuracy. This novel approach enables the app to function with or without internet connectivity, proving particularly beneficial in regions without lifeguards or internet access. Additionally, the app serves as an educational resource, offering in-app information about rip currents. It also promotes citizen science involvement by encouraging users to contribute valuable information on detected rip currents. This paper presents the app’s overall design and discusses the challenges inherent to the rip current detection system.
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1 Introduction

Rip currents are dangerous, strong, fast-moving currents that pull swimmers away from the shore, often leading to drownings and fatalities. They pose a significant hazard to beachgoers and can easily overpower even strong, experienced swimmers. Rip currents are a global issue, affecting coastlines around the world (Zhang et al., 2021; Retnowati et al., 2012; Mucerino et al., 2021). In the United States alone, they account for an estimated 100 drownings a year (Gensini and Ashley, 2010). Rip currents can form suddenly and without obvious signs, which can catch swimmers off guard. While there are general conditions that can lead to their formation, predicting exactly when and where they will appear is challenging. Furthermore, rip currents are created through various mechanisms and, as a result, exhibit different visual characteristics. This complexity of occurrence and variability in appearance makes them difficult to identify (Castelle et al., 2016). Consequently, many beachgoers lack the essential knowledge and awareness needed to recognize and avoid these perilous currents.

Rip current detection techniques are significantly important because of their potential to save lives. As a public safety issue, the implications extend beyond swimmers. Lifeguards, rescue teams, and even bystanders who try to help can also be put in danger. If rip currents could be detected reliably, then beachgoers and lifeguards could be alerted to the dangers in real-time. This would likely result in a significant decrease in the number of rip current-related incidents and fatalities. By providing more accurate information about rip currents, the general public could make more informed decisions about when it is safe to enter the water, thereby enhancing overall public safety. The development and deployment of tools, such as rip current prediction models (Dusek and Seim, 2013) or mobile apps that can detect and provide real-time alerts and tips about rip currents could be instrumental in these efforts.

While rip currents can often be visually identified by experienced swimmers, surfers, lifeguards, and coastal scientists, traditional detection and data collection methods typically involve in-situ instrumentation, such as GPS-equipped drifters and current meters (Leatherman, 2017; MacMahan et al., 2011). However, recent studies have demonstrated that images and video can also be used to detect rip currents. These approaches leverage computer vision and machine learning (ML) models for object detection to spot and identify these potentially dangerous phenomena (de Silva et al., 2021; Silva et al., 2023; Dumitriu et al., 2023; Maryan et al., 2019; Mori et al., 2022; Philip and Pang, 2016; Rampal et al., 2022; Rashid et al., 2021). However, detecting and segmenting rip currents with high accuracy using ML methods presents unique challenges due to their amorphous and ephemeral nature. Given the potentially fatal nature of dangerous rip currents, their detection is a matter of life and death. Thus, high accuracy and reliability are crucial for any rip current detection tool to issue warnings and take preventive actions to decrease the number of rip current-related incidents. Providing such capability for real-world use, i.e., on mobile platforms, adds another layer of technical challenge.

Many object detection ML models can detect rip currents, but the challenge lies in deploying these models in real-time on mobile devices with limited power and computational resources. More accurate yet computationally resource-intensive, ML models cannot run directly on mobile devices. By sending the visual input for object detection to a remote server, it can be achieved on mobile devices. However, this approach is not always feasible, especially in beach locations where server connectivity is unavailable. Alternatively, mobile-optimized ML models can feasibly run using the limited computational resources of portable devices without server connectivity but at the cost of sacrificing accuracy.

To address these challenges, we introduce a mobile application, or app, designed to detect rip currents using ML models for computer vision. Users can identify potential rip currents in real-time by simply aiming their phone’s camera toward the ocean. We propose a client-server system of object detection models to balance the trade-off between computational speed and accuracy. Depending on the mobile device’s available computational resources and internet connectivity, this app employs one or more ML models to identify rip currents. If the device is relatively new and has adequate computational resources, our app runs two different types of mobile-optimized ML models to enhance the reliability of rip current detection. For older, resource-constrained devices, only one ML model is used. Moreover, when internet connectivity is available, part of the visual data is transmitted to a server for further verification of the detection using a more accurate large model. Our system combines client-server architecture with multiple ML model-based computer vision to enhance the accuracy and reliability of rip current detection. The novelty of our solution lies in its implementation of this combined system, allowing the app to function both with and without internet connectivity. Our app’s versatility is especially invaluable in areas where lifeguards are absent or internet access is limited, establishing it as a crucial tool for public safety.

In addition to rip current detection, our app places a strong emphasis on educating users about the dangers of rip currents through informative in-app content and links to additional resources. Our aim is to empower beach enthusiasts with the knowledge necessary to make informed decisions, protecting themselves and others from these hazardous rip currents. Moreover, our app includes a citizen science feature, enabling users to contribute to scientific knowledge. This is done by encouraging them to record and share data, such as geotagged images and videos, along with additional information about detected rip currents. Harnessing the collective power of app users, we can gather valuable data that improves our understanding of rip currents and helps verify existing rip current forecast models. Ultimately, this leads to the development of more effective safety measures and strategies.

The contributions of this paper are as follows:

	Introduction of RipFinder: a mobile app designed for real-time, vision-based rip current detection.

	Development of a client-server system tailored for the ML models utilized in the rip current detection app.

	A comprehensive analysis and comparison of state-of-the-art ML models for rip detection.






2 Related work



2.1 Real-time object detection

Developing a mobile application for effectively and reliably identifying rip currents necessitates real-time object detection capabilities. Deep learning has revolutionized the field of object detection, as well as other computer vision tasks. Convolutional neural networks (CNNs) have become the standard method for these applications. Numerous large and intricate models, such as Faster R-CNN—a two-stage regionbased detector (Ren et al., 2015)—and DETR (Detection Transformers)—an object detector based on the Transformer architecture (Carion et al., 2020)—offer remarkable accuracy in object detection tasks. For instance, Faster R-CNN has been adeptly used for real-time object detection in drones by connecting to a remote GPU server (Lee et al., 2017). However, these detectors often bear significant computational complexity, rendering them difficult to deploy on mobile or embedded platforms for real-time performance. An earlier server-based system named Glimpse, offering continuous, real-time object recognition for mobile devices, was introduced by Chen et al. (2015). Nonetheless, server-reliant systems prove impractical in locations devoid of internet connectivity.

Achieving accurate and reliable real-time object detection on mobile devices without depending on servers presents inherent challenges. Numerous efforts have been directed toward integrating deep learning methods on mobile devices by creating compact, mobile-optimized ML models. Typically, streamlined architectures, like one-stage CNNs, render the models lightweight, allowing them to function swiftly on mobile devices—making them an ideal choice for real-time object detection. The primary compromise for such efficiency is a minor decrease in accuracy relative to their more elaborate counterparts (Huang et al., 2017). We scrutinized a range of mobile-optimized ML models to ascertain the best fit for our system. SSD-MobileNetV2 (Sandler et al., 2018) stood out as one of the earliest trustworthy models tailored for mobile platforms. Among the contemporary one-stage models refined for mobile devices are variants of RT-DETR (Lv et al., 2023), EfficientDet (Tan et al., 2020), and YOLO (Jocher et al., 2022). Our investigation encompassed a comprehensive evaluation of potential ML models suitable for real-time rip current detection using computer vision on mobile platforms.




2.2 Rip current detection with ML

Given its impact on public safety, the problem of automated rip current detection has been approached using various methods, some of which predate the emergence of deep learning techniques. For example, Philip and Pang (2016) utilized optical flow on video sequences to discern the predominant flow towards the sea, aiding human observers in rip current detection. Maryan et al. (2019) employed modified Haar cascade methods to detect rip currents from time-averaged images. The concept of rip current detection via deep learning-based methods is not entirely new either. de Silva et al. (2021) were among the early adopters of deep learning methods for rip current detection, employing Faster R-CNN, a large model that achieved high accuracy. They introduced a frame aggregation technique that bolstered detection accuracy for fixedposition cameras, but this technique was not suitable for moving cameras. Mori et al. (2022) offered a flow-based method to accentuate and depict rip currents for human observers. However, this approach also demands a stationary camera and serves as a visualization tool rather than an automated detection system. In recent years, there have been several scholarly works about new deep learning model-based rip current detection techniques. For instance, Rashid et al. (2021) and Zhu et al. (2022) presented RipDet and YOLO-Rip, respectively. These lightweight rip current detection models, rooted in Tiny-YOLOv3 and YOLOv5s, belong to the smaller members of the YOLO family and are adept for environments with limited computational power. Rampal et al. (2022) showcased that the mobile-optimized, single-stage model SSD-MobileNetV2 can achieve performance metrics comparable to Faster R-CNN. Furthermore, Dumitriu et al. (2023) explored and compared various iterations of YOLOv8 for rip current segmentation. Silva et al. (2023) unveiled RipViz, an innovation that examines 2D vector fields and interprets pathline behaviors to pinpoint rip currents. Like that of Dumitriu et al. (2023), this method highlights the rip region’s shape but identifies currents based on water movement rather than water appearance. Yet, while there is an assortment of effective rip current detection methods employing ML, a real-world application—such as a mobile app—primed for public safety and enhancing awareness for tangible societal impact remains elusive. This work endeavors to fill that void by devising a deployable mobile device-based real-time system for rip current detection.





3 System design and methods



3.1 System architecture

Figure 1 presents an overview of the RipFinder system architecture. Our comprehensive system, designed to effectively identify and alert users of rip currents, is organized into two primary components:

	The client mobile app serves as the primary user interface. Within this app, we have integrated four ML models, each tailored specifically for mobile devices. As the device processes real-time visual input, these models evaluate the data and issue warnings if rip currents are detected. Depending on the device’s processing power, the app can deploy either one or two ML models for detection. More modern devices with substantial resources can utilize two types of mobile-optimized ML models simultaneously, enhancing the reliability of rip current detection. In contrast, older devices with limited resources might default to a single model. Nevertheless, the ultimate decision to use one or two models rests with the user. When feasible, the app suggests users employ two models for optimal detection, but they retain the freedom to choose only one from the available options if preferred.

	Our system’s server-side employs complex ML models that demand significant computational resources and GPU capabilities, ensuring rip currents are detected with high accuracy. When a user captures an image or video via our mobile app, this data is sent to the server for in-depth analysis. After the server-side models process the data, the detection results are relayed back to the mobile app.



[image: Flowchart depicting a machine learning setup for rip current detection. A smartphone shows a beach image with marked areas. Arrows indicate data flow between client-side ML models, a server, and server-side ML models. The server processes visual data and detection results, with inference occurring at both client and server sides.]
Figure 1 | The high-level system architecture of RipFinder.

Additionally, we offer the option to execute multiple models on the server, depending on its capabilities (number of CPUs and GPUs, system memory, etc.), enhancing reliability through redundancy.

Our system attempts to improve the reliability of rip current detection in a two-fold way. The use of two models enhances detection reliability on the client app, even though it demands more computational resources. Server-side models, being complex and larger, boast superior accuracy, thus ensuring that server-aided rip current detection is more reliable when internet access is available. The client-side model, meanwhile, operates using the on-device computational resources without the need for an internet connection. The results section further elaborates on the justification behind these two design choices. Thus, our system’s design allows it to operate both online and offline.

Training datasets are essential for training both client-side and server-side ML models. We developed our dataset by utilizing the existing dataset from de Silva et al. (2021) and supplementing it with a large amount of our own data. Further details on the dataset and the ML model training process are explained in the implementation section.




3.2 Mobile apps

Figure 2 provides a visual representation of our mobile app’s user interface, offering an intuitive, user-friendly environment. We created both Android and iOS versions of the mobile app. The application’s design caters to a variety of user needs and includes the following features:

[image: (a) Screenshot of Ripfinder mobile app main menu with options for ML Assisted Photo Mode, ML Assisted Video Mode, and Upload. Includes disclaimer about accuracy. (b) Beach image on Ripfinder app with a boxed area labeled "rip current" at 95% confidence. Message suggests pulling up for more info. (c) Beach scene on Ripfinder app showing highlighted area marked "rip_current_T1" at 99% confidence. Save, Camera, and Album options are visible. (d) Ripfinder Data Uploader screen with options to add files and enter video location information.]
Figure 2 | GUI of RipFinder App (a) Main menu, (b) Real-time detection from live camera view, (c) Detection from single image, (d) Data uploader for citizen science contribution.



3.2.1 Live camera and visualization tool

The app offers a live camera feature to capture the seashore and serves as a real-time visualizer, placing bounding boxes around detected rip currents in the view, thus acting as an immediate warning system (Figure 2b).




3.2.2 ML model selection

From the in-app menu, users can choose the ML model for real-time rip current detection. On devices with higher computational resources, users have the option to turn on or off the use of two models in parallel for increased reliability.




3.2.3 Image and video recording

The app enables real-time rip current detection and the recording of images and videos, letting users document and share potential rip currents with other beachgoers and rip current researchers.




3.2.4 Rip current detection tool for existing images

RipFinder app analyzes existing images on the phone to identify rip currents, offering retrospective insights to users (Figure 2c).




3.2.5 Educational resources

Our app features an educational hub with resources on rip currents, accessible via a pull-up menu and help menu, ensuring users always have information at hand (Figure 2b).




3.2.6 Data upload tool

We integrated a data upload tool (Figure 2d) for users to share geotagged rip current images and observations, fostering community collaboration and enhancing our dataset for improved algorithm refinement.





3.3 Client-side ML models

In our application, RipFinder, we integrate several mobile-optimized ML models, all trained on a rip current dataset for client-side detection. These models have been tailored to ensure swift and efficient performance on mobile devices, which facilitates real-time rip current detection. The current version of RipFinder incorporates the following models:



3.3.1 YOLOv8n and YOLOv8m

YOLOv8, the latest in the YOLO series known for fast object detection (Redmon et al., 2016; Jocher et al., 2023), includes variants like YOLOv8n (nano) and YOLOv8m (medium) optimized for mobile devices. Its architecture facilitates single-pass detections, making it ideal for real-time applications such as rip current detection.




3.3.2 EfficientDet D0 and EfficientDet D2

EfficientDet, known for its object detection prowess (Tan et al., 2020), has a unique scalable architecture that adjusts to computational resources, making it ideal for mobile use; it offers eight variants, D0 to D7, based on image size.

Of the four ML models at our disposal, the app selects one or two mobile-optimized models for rip current detection, contingent upon a device’s computational prowess and internet connectivity. Modern, high-end devices employ two models, while the older, resource-constrained devices resort to just one. YOLOv8n and EfficientDet D0, due to their lesser computational demand, are ideally deployed as standalone models or in conjunction with dated or less competent mobile devices. In contrast, YOLOv8m and EfficientDet D2 are better aligned with newer devices boasting significant computational strength.





3.4 Server-side ML models

Server-side, we engage a collection of high-performance ML models tailored for more resource-intensive computations. Given their demanding computational needs, these models are perfectly positioned for server-side deployment, capitalizing on robust hardware resources, including GPUs. For the server side, we’ve selected:



3.4.1 YOLOv8l and YOLOv8x

The YOLOv8 ‘l’ (large) and ‘x’ (extra-large) variants (Jocher et al., 2023) are more complex than their mobile-optimized versions, offering higher accuracy but requiring greater computational power, ideal for situations demanding utmost accuracy with ample resources.




3.4.2 Real-time detection transformer

RT-DETR, a real-time adaptation of the DETR transformer-based object detection model (Lv et al., 2023; Carion et al., 2020), maintains DETR’s accuracy while ensuring faster performance. We trained its large and extra-large versions, RT-DETR-L and RT-DETR-X, for server-side use.

By leveraging these server-side models that can deliver high accuracy, we bolster the final verification of detected rip currents, reinforcing the reliability of our rip current detection tool.






4 Implementation

Various components of our system were implemented using the latest available technology.



4.1 Dataset

Our training dataset distinguishes between two types of rip currents based on their visual features. The first, termed bathymetry-controlled rip, is characterized by areas devoid of breaking waves, presenting as darker and calmer regions flanked by brighter waves. The second, known as transient rip, is identified by water discoloration due to sediment plumes that extend beyond the breaking waves. Though both classes represent rip currents, their visual features differ significantly. Detecting one type of rip current with an ML model trained on data from another type is unfeasible. Treating these two types as a single class compromises the effectiveness of the trained model. The label correlograms in the Figure 3 illustrate the distinctions between the two classes based on the labeled regions of images from each class.

[image: Two scatterplot matrices labeled (a) and (b) compare different datasets. Each matrix includes scatterplots and histograms showing relationships between variables x, y, width, and height. Both reveal clusters and distributions, with (a) displaying more distinct clustering and (b) showing more varied distribution patterns.]
Figure 3 | The label correlograms for (a) bathymetry controller rips and (b) transient rips, depicted in the figure, illustrate the distinctions between the two classes based on the labeled regions of images from each class.

For the bathymetry-controlled rip current category, we utilized a dataset consisting of 1780 images made publicly available by de Silva et al. (2021). For the transient rip current category, we curated a new dataset comprising 7565 labeled images. These were selectively extracted from videos captured by a drone, which focused on the visual signature of transient rip currents, and a Wi-Fi camera set up specifically for monitoring rip currents. We combined both datasets to train our model in the detection of the two rip current types. This dataset was then divided into an 80:20 split for training and validation, with 80% allocated for training purposes and the remaining 20% used for validation. The efficacy of the trained models was assessed using a series of test videos. Figure 4 showcases a selection of images from our dataset.

[image: Six aerial images display ocean waves along shorelines, each outlined with green rectangles highlighting specific water formations. Waves vary in size and intensity across each scene, with beaches visible in the background.]
Figure 4 | Some examples from our training dataset. The images on the first column are from the dataset by de Silva et al. (2021). The images on the second and third columns are from the dataset we collected using a drone and a wireless rip activity monitoring camera, respectively.

It is important to include imagery from diverse geographic regions and environmental conditions to enhance model robustness. Our dataset includes images from publicly available sources, drone footage, and fixed-location cameras. We incorporated the de Silva et al. (2021) dataset, which features satellite imagery from diverse regions. To enhance generalization, we are collaborating with coastal research partners to expand data collection across varied wave conditions, lighting, and water characteristics. Additionally, our citizen science initiative allows users to contribute images, enriching the dataset. While expanding the dataset and refining models is an ongoing effort, it remains independent of RipFinder’s core architecture, as the ML models can be continuously updated with improved datasets.




4.2 ML model training and evaluation

We conducted ML model training on an AWS cloud server equipped with eight vCPUs, 61 GB of memory, and an NVIDIA Tesla V100 GPU boasting 16 GB of video memory. The EfficientDet models were trained using the TensorFlow library, while the YOLOv8 and RT-DETR models were trained with the Ultralytics library, which is based on PyTorch. All model trainings were initialized with a maximum of 500 epochs. For all versions of YOLOv8 and RT-DETR, a patience parameter of 50 was set. The patience parameter defines the number of epochs to wait before halting training via early stopping if there’s no improvement in performance on a validation dataset. Since the EfficientDet models do not allow for the definition of a patience parameter, we monitored convergence through TensorBoard and manually terminated the training once convergence was observed. All models converged within 300 epochs. We trained all models from scratch, instead of using transfer learning with MS COCO pretrained models from the ML libraries, to prevent negative transfer (Wang et al., 2019). This decision was made because our rip current class data domain is distinct from any of the classes in the MS COCO2017 dataset (Lin et al., 2014).




4.3 Client apps and server

We developed the iOS version of the app in Swift using Xcode, and wrote the Android version in Java with Android Studio. To ensure broad accessibility, we tested the RipFinder app on a wide range of mobile devices, including both high-end and low-end models. While Table 1 presents results from the iPhone 12 Pro (2020) and Google Pixel 6 (2021), which served as our primary development devices, we also validated the app’s performance on older and more budget-friendly models such as the Samsung A50 (2019), Samsung S23 (2023), LG G3 (2014), LG G5 (2016), and Xiaomi Redmi 10A (2022), and older iPhones such as the iPhone XR (2018). This extensive testing confirms that the app performs efficiently across a diverse spectrum of hardware, greatly enhancing its real-world applicability.

Table 1 | Comparison of ML models: performance metrics and resource utilization.


[image: Comparison table of ML models showing model size in megabytes and average frames per second (FPS) for EfficientDet, YOLOv8, and RT-DETR variants. Data includes server and phone metrics. Some fields are marked as "Not Applicable."]
The server-side components were programmed in Python. We evaluated the server-side ML models on a desktop server equipped with a 16-core Intel Core i9 3.2 GHz CPU, 30 GB of memory, and an NVIDIA RTX3080 GPU with 10 GB of video memory.




4.4 Data privacy and security measures

Ensuring data privacy and security is a core aspect of RipFinder, particularly for citizen science contributions. All uploaded images, videos, and metadata are encrypted to prevent unauthorized access. Personally identifiable information is anonymized before storage, and location data is collected only with user consent, then obscured or aggregated to prevent tracking. We adhere to institutional ethical guidelines and restrict data access to authorized researchers who validate contributions. Users receive clear terms of use and can request data removal. Our retention policies prevent unnecessary long-term storage, ensuring responsible data handling while supporting rip current research.




4.5 Quality control and validation of user-uploaded data

To ensure the accuracy and reliability of citizen science contributions, RipFinder employs a multi-step validation process combining automated filtering, metadata verification, and expert review.



4.5.1 Automated screening and metadata verification

All user-uploaded images and videos first undergo computer vision-based pre-screening, which filters out irrelevant or low-quality submissions. Additionally, metadata, such as location, timestamp, and environmental conditions, is cross-referenced with rip current forecasts from NOAA and other sources. Any inconsistencies flag submissions for further review.




4.5.2 Expert validation and continuous improvement

Flagged submissions undergo manual review by rip current specialists, including NOAA scientists and coastal researchers, ensuring only verified data is incorporated into the dataset. A continuous feedback loop refines detection accuracy by improving machine learning models over time. Verified contributors may also receive recognition, fostering quality participation.

By integrating automated detection with expert validation, RipFinder ensures that only high-confidence, research-grade data supports scientific analysis and rip current safety efforts.






5 Results and discussion



5.1 Performance analysis of ML models

In this section, we present a performance analysis and comparison of state-of-the-art (SOTA) object detection models tailored for rip current detection. We compared ML models including EfficientDet D0, EfficientDet D1, EfficientDet D2, YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x, RT-DETR-l, and RT-DETR-x. To gauge the accuracy of these models, we utilized nine test videos annotated with ground truth data. To ensure model generalization and robustness, we validated RipFinder using diverse test videos from independent sources. Four of these videos were selected for their relevance to our rip current detection objectives from the test set introduced by de Silva et al. (2021). Additionally, three videos were drone-captured by us, while the last two originated from a wireless camera at webcoos.org dedicated to rip current monitoring.

While our model validation primarily utilized video data captured from elevated perspectives, we acknowledge that real-world user applications will often involve videos recorded at ground level. However, rip currents exhibit distinct visual characteristics that remain detectable even from a beach-level viewpoint. Lifeguards and experienced swimmers routinely identify rip currents using precisely these visual cues. With appropriate training datasets, ML models can similarly leverage these visual indicators to detect rip currents.

To evaluate the effectiveness of our object detection models, we use Intersection over Union (IoU) as the primary performance metric. Our evaluation methodology follows the object detection benchmarking approach outlined by Padilla et al. (2020), which provides a standardized toolbox for computing IoU. This toolbox calculates the ratio of overlap between the predicted and ground truth bounding boxes, allowing for a precise and objective assessment of detection accuracy.

Unlike classification tasks that rely on confusion matrices, object detection inherently requires spatial accuracy in addition to detection presence. IoU directly accounts for true positives, false positives, and localization precision, making it a more suitable metric for this study. Given the established use of IoU in object detection benchmarks, additional metrics such as precision, recall, and F1 score are not required to support our results and would be redundant in this context.

Our accuracy assessment followed the methodology described by de Silva et al. (2021), where:

[image: Formula for accuracy, defined as the ratio of correct labels to total frames.]	

Frames were considered classified as correct if the detected bounding boxes had an Intersection over Union (IoU) score versus ground truth bounding boxes above 0.3. IoU is calculated as:

[image: Formula depicting the Intersection over Union (IoU) as a fraction: the area of intersection divided by the area of union.]	

The comparison results are presented in Table 2, and some examples of detected rip currents are shown in Figure 5. Based on these results, we can justify the following two design choices we made.

Table 2 | We compared the detection accuracy of the SOTA methods to select the best options for the client and server application.


[image: Table comparing detection accuracy of models on test videos. Client-side models include EfficientDet (D0, D1, D2) and YOLOv8 (n, s, m), while server-side models are RT-DETR (l, x, L, X). Each column shows accuracy for nine test videos, with the last row indicating average accuracy. Bold values in the last row highlight average model performance across test videos.]
[image: Six aerial images of beaches, each showing areas labeled as "Rip Current" in red boxes. These sections highlight hazardous water conditions where currents pull away from the shore. The images include waves and sandy beaches, with varying numbers of people visible onshore.]
Figure 5 | Some examples of detected rip currents from our test videos.




5.2 Statistical analysis of model performance

While the per-video accuracy results in Table 2 offer a general comparison, we further examined whether the observed accuracy differences among models are statistically meaningful. We treated each of the nine test videos as repeated measurements, one “sample” per model, yielding paired accuracy data for each model across the same videos. Below, we illustrate a straightforward method using 95% confidence intervals (CIs) for each model’s mean accuracy. These intervals help gauge whether model performance truly differs on average or if apparent differences could be due to sampling variability Rainio et al. (2024).

The mean accuracy of each model was computed by averaging the detection accuracy across all test videos. The standard deviation was calculated to measure the variability in performance across different video samples. The standard error of the mean was calculated as:

[image: SE equals the standard deviation divided by the square root of nine.]	

To quantify the uncertainty in these estimates, we determined the 95% confidence interval (CI). We used a two-sided t-distribution (given the small sample size) with 8 degrees of freedom (n − 1 = 9 − 1) and a critical value of ≈ 2.306 for 95% confidence:

[image: Formula for a 95% confidence interval: sample mean (X̄) plus or minus the t-value for a 95% confidence level and degrees of freedom of six, multiplied by the standard error (SE).]	

A higher-variance model yields a wider interval, possibly overlapping intervals of both stronger and weaker performers. Large differences in means with minimal interval overlap typically point to genuine performance gaps, but borderline cases call for further pairwise statistical testing (e.g., with multiplecomparison corrections).

Table 3 reports the mean accuracy, standard deviation, and 95% CIs for each model. Although the average accuracies match Table 2, the confidence intervals offer insight into the consistency of each model’s performance across videos.

Table 3 | Mean accuracy, standard deviation, and 95% confidence intervals (CIs) for each model.


[image: Table comparing nine models, including EffDet and YOLOv8 variants, with columns for mean, standard deviation, standard error, and ninety-five percent confidence interval. EffDet-D2, RT-DETR-L, and RT-DETR-X show highest means. Confidence intervals represent potential mean accuracy ranges from nine test videos.]


5.2.1 Findings and interpretation

From the statistical analysis, the RT-DETR-X model achieved the highest mean accuracy (µ = 0.96) with a very narrow confidence interval (CI = [0.91,1.00]), indicating consistent and highly reliable performance. Similarly, RT-DETR-L (µ = 0.93) and EffDet-D2 (µ = 0.91) demonstrated high accuracy with relatively low variability, confirming their robustness for rip current detection. Conversely, YOLOv8n, YOLOv8s, and YOLOv8m exhibited the lowest mean accuracies and the widest confidence intervals, reflecting high variability and inconsistent detection performance. The EffDet-D0 and EffDet-D1 models, while moderately accurate, showed greater performance fluctuations due to their wider confidence intervals.




5.2.2 Implications for model selection

The statistical findings reinforce the rationale behind selecting EffDet-D2 and YOLOv8n for mobile deployment, as they balance accuracy and efficiency. Meanwhile, RT-DETR-L and RT-DETR-X were the most reliable server-side models, offering superior accuracy with minimal variability. These insights confirm that our chosen client-server hybrid approach effectively optimizes both computational efficiency and real-time detection performance. By incorporating statistical validation, we ensure that model selection is based on empirical evidence rather than raw accuracy alone. This strengthens the reliability of RipFinder as a robust and scientifically validated rip current detection tool.





5.3 Other considerations



5.3.1 Running two ML models to increase accuracy

While running multiple models demands more computational resources, it enhances reliability. This design decision stems from the understanding that ML models with varying architectures possess distinct strengths and shortcomings. Research by Mekhalfi et al. (2022) indicates that models from the YOLO family tend to identify more objects, even if their precision varies. In contrast, EfficientDet provides more stable and accurate detection. In many cases, one of the models might not detect specific instances of rip currents, even if they were trained using the same data. For instance, although the rip current in “Rip test video 6” can be detected by EfficientDet D2, it isn’t identified by any other mobile models. Thus, deploying two models ensures that a challenging-to-detect rip current is more likely to be detected on a more capable device. Additionally, since rip current detection pertains to safety, minimizing false negatives is more crucial than avoiding excessive false positives. Therefore, while employing two models might seem redundant for general applications, it is beneficial for the purpose of rip current detection.




5.3.2 Two models vs. three or more

The decision to use two models on the client side balanced accuracy, computational demands, and processing time. Although running more than two models could improve detection accuracy through ensemble techniques, the benefits were minimal compared to the significant increase in resource consumption and latency.

Additional models would heavily strain server CPU and GPU resources, leading to higher costs and potential delays during peak usage. Increased latency from more models would compromise real-time detection, critical for user safety. The two-model setup already offers robust redundancy, ensuring reliable detection even if one model underperforms. The combination of YOLOv8l for broad detection and RT-DETR-L for detailed analysis provides a well-rounded solution.

After evaluating various models, EfficientDet-D2 and YOLOv8n were selected for mobile deployment due to their optimal balance of speed, accuracy, and compact size. For server-side operations, YOLOv8l and RT-DETR-L were chosen to maximize accuracy and reliability, enabling effective online and offline functionality. The findings, summarized in Table 1, highlight models that meet both hardware constraints and application needs for proficient rip current detection.




5.3.3 Running ML models on both the client and server side

More advanced and complex models, such as RT-DETR-L and RT-DETR-X, achieve higher accuracy but are limited to server execution. Thus, when an internet connection is available, server-assisted rip current detection becomes more reliable. The client-side models serve as the primary object detection mechanism, ensuring that rip current detection operates at the highest possible accuracy both with and without internet connectivity.





5.4 Evaluation and model selection



5.4.1 Addressing detection bias

Different machine learning models exhibit varying performance across rip current types, leading to detection bias in some cases. For example, EfficientDet-D0 struggles with transient rip currents, showing a higher false-negative rate. This discrepancy arises due to differences in model architectures, feature extraction capabilities, and training data distribution. Models optimized for certain visual cues, such as wave breaks in bathymetry-controlled rips, may not generalize as well to transient rips, which often exhibit diffuse, sediment-laden water patterns.

Rather than refining a single model, RipFinder employs a multi-model strategy to balance detection accuracy and computational efficiency. This approach ensures adaptability, allowing the system to leverage mobile-optimized models for real-time detection while utilizing more powerful server-side models when internet access is available. Table 2 compares model performance, highlighting trade-offs between accuracy, speed, and resource constraints.

While this work prioritizes flexibility over single-model optimization, we recognize the importance of improving individual model performance. Future efforts will focus on fine-tuning models using more diverse datasets and reducing false negatives in challenging conditions. By continuously integrating improved architectures and expanded training data, RipFinder will further enhance detection reliability for all rip current types.




5.4.2 Evaluation

Among the ten (10) models highlighted in Table 2, we chose eight (8) for further evaluation. From the less accurate EfficientDet D0 and D1 variants, we selected only D0 because of smaller size. YOLOv8s was similarly excluded due to its poor accuracy. We evaluated the chosen models on a server equipped with a single GPU, an iPhone 12 Pro, and a Google Pixel 6 to determine the best-fit models for each platform (Table 1). Our benchmarking of each model’s performance focused on two primary metrics:

	We evaluated the real-time responsiveness of each model by measuring the frames processed per second (FPS). This metric offers insights into the model’s speed and its ability to detect rip currents in real-time scenarios. EfficientDet-D0 and YOLOv8n exhibited higher FPS on mobile devices, marking them as optimal choices for devices with limited computational capabilities. Meanwhile, the enhanced accuracy of EfficientDet-D2 makes it a reliable option while still maintaining real-time performance.

	Each model’s storage footprint needs to be considered for embedding them in a mobile app, given that mobile devices have diverse storage capabilities and may also be running other apps simultaneously. Assessing a model’s storage needs ensures that the application remains streamlined and does not overtax the device’s memory. While the compactness of EfficientDet-D0 and YOLOv8n makes them as ideal for devices with resource constraints, the relatively small size and superior performance of EfficientDet-D2 make it a trustworthy option.



To further validate the practical applicability of our system, we extended our device testing to include low-end and older Android models. While certain high-end devices demonstrated superior performance, models such as the Xiaomi Redmi 10A and Samsung A50 successfully ran RipFinder, demonstrating that the app is not solely dependent on flagship devices.





5.5 Model performance evaluation



5.5.1 EfficientDet-D0 and D2

EfficientDet-D0 was notable for its high FPS, making it responsive on mobile devices, but it sometimes struggled with detecting transient rip currents in complex backgrounds, leading to occasional false negatives. On the other hand, EfficientDet-D2, while slightly slower, offered higher accuracy in distinguishing rip currents from similar water patterns, making it a more reliable choice for detailed analysis despite its larger storage requirements.




5.5.2 YOLOv8 variants

YOLOv8n excelled in real-time performance due to its compact size and speed, effectively detecting well-defined rip currents but occasionally missing subtler ones. YOLOv8m balanced speed and accuracy, handling both bathymetry-controlled and transient rip currents consistently, making it suitable for mobile deployment. The larger YOLOv8l and YOLOv8x models used server-side provided superior accuracy, detecting even faint rip currents, though their size and computational demands restricted them to server environments. YOLOv8s was excluded due to poor accuracy, particularly in complex scenarios.




5.5.3 RT-DETR variants

RT-DETR-L and RT-DETR-X, designed for server use, offered high accuracy and reliability, excelling in differentiating rip currents from similar patterns like wave shadows and sandbars. Their complex architecture required substantial computational resources, making them suitable only for server-side deployment.






6 Limitations and future work

While RipFinder is designed to improve rip current detection using diverse datasets and a hybrid clientserver architecture, certain limitations remain.



6.1 Dataset scope and generalization

Our dataset includes rip current images from multiple independent sources, such as NOAA, coastal research partners, and public sources (de Silva et al., 2021; Mori et al., 2022). However, we recognize that geographic and environmental variations may still impact model generalization, particularly in detecting rip currents under unique wave conditions or in less studied coastal regions. To mitigate these effects and improve generalization, we are:

	Expanding the dataset by incorporating images from diverse geographic locations and environmental conditions.

	Using data augmentation techniques, such as lighting adjustments, resolution scaling, and viewpoint shifts, to simulate different acquisition conditions.

	Leveraging citizen science contributions to introduce more real-world variability, ensuring models encounter a wider range of rip current appearances.



Future work will include a systematic evaluation of model generalization across different data sources and acquisition methods to further reduce bias and improve detection accuracy in real-world applications.




6.2 Server dependency and offline functionality

The client-server hybrid architecture enhances detection accuracy by leveraging more powerful models on the server. However, we acknowledge that server dependency may limit real-time detection in areas with poor or no internet connectivity. To mitigate this, RipFinder is designed to function independently using on-device models, ensuring continued usability in offline scenarios, although with a trade-off in detection accuracy.




6.3 Potential biases in model training

Training data biases may influence model performance, particularly in detecting less common rip current types. To improve fairness and generalizability, we plan to conduct further bias analysis, integrate domain adaptation techniques, and continuously refine the dataset to address potential imbalances.




6.4 Robustness in complex marine environments

Rip current detection is inherently challenging in extreme conditions, such as strong waves, light variations, and surface reflections. While multi-model detection improves reliability, some edge cases remain difficult to classify. Detection failures often occur when transient rips blend into background wave activity, making them harder to distinguish. As RipFinder is model-agnostic, future iterations can integrate more advanced models specifically trained for challenging marine conditions. Additionally, ongoing data collection through citizen science contributions will help refine model generalization, ensuring greater robustness over time.




6.5 Real-world usability from beach-level perspective

Another key consideration is the real-world usability of the app when deployed by users at beach level rather than from an elevated viewpoint. Although our current dataset primarily includes images captured from drones and other high vantage points, we recognize the importance of validating detections from ground-level perspectives. Future work will involve expanding our dataset to incorporate user-submitted images and videos captured at beach level, enabling the machine learning models to generalize more effectively across various viewing angles. Additionally, we plan to implement citizen-science feedback loops to continuously refine model accuracy based on real-world user data.





7 Conclusion

In this paper, we introduce Ripfinder, a mobile app equipped with an ML-based computer vision tool designed to mitigate the safety hazards associated with rip currents, which are a leading cause of drownings globally. Ripfinder features a sophisticated system that ensures rip current detection even in the absence of internet connectivity, making it indispensable in regions without lifeguards or reliable internet coverage. This capability is crucial for enhancing beach safety in remote and underserved areas.

Beyond its detection capabilities, Ripfinder enriches user knowledge with in-app informational content and videos about rip currents, helping users understand the dangers and how to avoid them. This educational component is vital for raising awareness and promoting safe behaviors at the beach. A standout feature of Ripfinder is its inclusion of citizen science. By inviting users to share data about identified rip currents, the app not only enhances scientific understanding but also fosters community engagement. This participatory approach leverages the collective efforts of users to contribute valuable data that can be used for further research and analysis, ultimately improving the overall understanding of rip current patterns and behaviors.

Ripfinder’s integration of public safety, education, and scientific progress underscores its multifaceted approach to ensuring safer beach outings. By combining advanced technology with user engagement and educational resources, Ripfinder aims to create a comprehensive solution that addresses both immediate safety concerns and long-term scientific goals. The app exemplifies how modern technology can be harnessed to address real-world problems, making beaches safer and more enjoyable for everyone.
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In marine ecology research, it is crucial to accurately identify the marine mammal species active in the target area during the current season, which helps researchers understand the behavioral patterns of different species and their ecological environment.  However, the difficulty and high cost of collecting marine mammal calls, coupled with limited publicly available datasets, result in insufficient data for support, making it difficult to obtain accurate and reliable identification results.  To address this problem, we propose MarGEN, a deep learning-based augmentation method for marine mammal call signal data.  This method processed the call data into Mel spectrograms, then designed a self-attention conditional generative adversarial network to generate new samples of Mel spectrograms that were highly similar to the real data, and finally reconstructed them into call signals using WaveGlow. The classification experiments on the calls of four Marine mammals show that MarGEN significantly enriches the diversity and volume of the data, increasing the classification accuracy of the model by an average of 4.7%. The method proposed in this paper greatly promotes marine ecological protection and sustainable development, while effectively advancing research progress in bionic covert underwater acoustic communication technology.
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1 Introduction

Marine mammal calls serve as important ecological signals, carrying a wealth of behavioral and environmental information. Accurately recognizing marine mammal calls not only contributes to species monitoring and conservation but also facilitates the assessment of the health of the marine environment. At the same time, accurate recognition of marine mammal calls also has important military application value, bionic covert underwater acoustic communication technology embeds secret information into marine mammal calls to improve the security of underwater communication Qiao et al. (2018); Ma et al. (2024), the working principle diagram of this technology is shown in Figure 1. The prerequisite for realizing this technique is to accurately identify the active marine mammals in the target sea area in the current season, so as to select the appropriate calls for bionic communication. Currently, deep learning-based recognition classification offers the most effective results Shi et al. (2023); Dong et al. (2020), but its training demands a large number of data samples as support Li et al. (2021). However, the current limited availability of marine mammal call data significantly reduces the performance of deep learning-based recognition and classification models. Buda et al. (2018). Therefore, increasing the number and diversity of Marine mammal call data has become the key to improving the recognition accuracy.

[image: An illustration depicting naval communication and eavesdropping. Two enemy ships are on either side with a central sending ship. Below water, there are labeled components: "Sender," "Eavesdropping equipment," and "Receiver," alongside marine mammals like orcas and dolphins. There are visual signals representing communication and eavesdropping.]
Figure 1 | Working principle diagram of bionic covert underwater acoustic communication technology.

Data augmentation is a method to expand the size of datasets Khan et al. (2024), which not only enhances the predictive ability of classification models but also provides diversity-rich call signals for bionic communication. Currently, data augmentation methods have performed well in the field of computer vision, which has attracted researchers to focus on its application in the field of audio Sun et al. (2024); Xu et al. (2024).

The cropping method Garcea et al. (2023) obtains multiple cropped sub-data by sliding the audio sequence over a sliding window. Scaling methods Lie and Chang (2006) are implemented by adjusting the audio amplitude or frequency, amplitude scaling is achieved by multiplying all the elements of the time series by some constant, and frequency scaling is achieved by changing the sampling rate of the audio signal. Adding some random noise to the original data can also increase data diversity Kishk and Dhillon (2017), but inappropriate noise may mask important signal features and lead to degradation of model performance. The random oversampling technique Wei et al. (2022) achieves data augmentation by randomly selecting samples for replication. The Synthetic Minority Oversampling Technique (SMOTE) Azhar et al. (2023) generates new samples by interpolating the minority class sample, which improves the problem of unbalanced data distribution. SpecAugment Kim et al. (2024) is a data augmentation method that operates on the audio spectrum. By distorting or masking the spectrogram of the speech signal, the data diversity during model training is increased. Experiments have demonstrated that this method can significantly reduce the word error rate and improve the robustness of the model in speech recognition tasks. This method performs data augmentation on individual sequences, utilizing only the nature of the sequence itself and not taking the overall distribution of the dataset into account.

In the wake of rapid advancements in artificial intelligence, researchers have started to apply deep learning techniques to data augmentation. Yan employed a convolutional neural network model for data augmentation of music in a rhythm game. He took the first 30 seconds of 16 piano arrangements as input, generated additional material that mimicked the original styles through Jukebox and extended them to 60 seconds for data enhancement. However, this method is time-consuming because it generates only one sample at a time Yan (2024). The adversarial training model of Generative Adversarial Networks (GANs) Goodfellow et al. (2020); Wu et al. (2020) gives them excellent generative results. Significant advancements and outcomes have been achieved in the generation of high-resolution and realistic images, which has a wide range of potentials in the field of computer vision and image generation, which also encourages researchers to apply GANs In the field of audio generation. Some researchers have applied GANs to environmental sounds and footstep signal generation with better results Bahmei et al. (2022); Chakraborty and Kar (2023). At present, among the published methods, no researcher has applied the data augmentation method based on GANs to marine mammal call signals.

We proposed MarGEN, a data augmentation method for marine mammal call signals based on audio transformation and a Self-Attention Conditional Generative Adversarial Network (SACGAN). It can effectively enrich the number and diversity of marine mammal call signals and greatly improve the recognition accuracy of the model. The main contributions of this paper are as follows.

	1. We proposed a novel method for generating marine mammal call signals, marking the first application of generative adversarial networks in the field of marine mammal call signal data augmentation.

	2. We designed a self-attention conditional generation adversarial network for generating new samples that are highly similar to the Mel spectrograms Hong and Suh (2023); Ustubioglu et al. (2023) of real marine mammal calls. The network innovatively added conditional variables representing marine mammal species and self-attention modules and replaced some of the convolutional layers with improved Inception blocks, which significantly improved the model performance and the quality of the generated samples.

	3. In order to analyze the performance of our generated call signals, we performed classification experiments and compared them with baseline datasets, which demonstrated the superiority of our method in terms of prediction accuracy.

	4. The proposed method can effectively extend the existing marine mammal sound database. It greatly advances the research progress in marine mammal conservation and bionic covert underwater acoustic communication technology. It also provides a reference method for the generation of other types of sound.






2 Data preprocessing

The dataset used in this study comes from the Watkins Marine Mammal Sound Database Sayigh et al. (2016), which provides a variety of call clips of marine mammals recorded in real marine environments. In this study, four marine mammal calls, which are widely distributed in China’s sea area and have a relatively large amount of data, were selected for downloading. After clipping, denoising, resampling, and other operations, 4190 samples with a duration of 1 second are finally obtained and labeled. The distribution and characteristics of the samples are shown in Table 1.

Table 1 | Distribution and characteristics of samples.


[image: Table listing marine species information: Killer Whale (KW) sample size 1394, Humpback Whale (HW) 908, Pilot Whale (PW) 1165, Bottlenose Dolphin (BND) 723. Sampling rate for all species is 48000 Hz.]



3 MarGEN method

The overall flowchart of the MarGEN method is illustrated in Figure 2, consisting of three main steps. In the first step, due to the large number of audio sampling points of marine mammal calls, resulting in many network parameters and training difficulties, and given that generative adversarial networks are more mature in the image generation domain, we converted the marine mammal call audio files into the form of spectrograms that are more suitable for machine learning to understand the characterization. In the second step, we innovatively designed the SACGAN, whose generator and discriminator engaged in continuous adversarial training until Nash equilibrium Lv et al. (2024) was reached, thereby generating new samples that closely resembled the original images. In the final step, the generated spectrogram was converted into audio signals using WaveGlow Prenger et al. (2019).

[image: Schematic of a SACGAN framework for audio processing. Original calls are converted to spectrograms using STFT. These are input into a generator for adversarial training with a discriminator, producing generated spectrograms. WaveGlow reconstructs signals from these spectrograms.]
Figure 2 | Flowchart of MarGEN Method.



3.1 Feature extraction

The features of different call samples behave similarly in the time domain but differ significantly in the frequency domain. Therefore, the feature representations chosen in this study were mainly frequency domain features. First, the original signal is analyzed in time-frequency by Short-Time Fourier Transform (STFT) to extract its local frequency domain information. The STFT can effectively capture the spectral changes of the signal in the time dimension. On this basis, Mel frequency cepstrum coefficient (MFCC) based analysis can be further frequency transformed according to the auditory perception of the human ear, thus preserving the key features of the signal. Its accuracy and computational efficiency are better than other representations in the speech recognition task. Therefore, the Mel spectrogram was chosen as the feature representation in this study. The expression for the MEL frequency is shown in Equation 1:

[image: Mathematical formula displaying \( M = 2595 \log_{10} \left( 1 + \frac{f}{700} \right) \), with the number 1 in parentheses indicating the equation reference.] 

Where M is the frequency in Mel and f is the frequency in Hz, 128 Meier filters are used in this study.




3.2 Self-attention conditional generative adversarial network

GANs consist of a generator and a discriminator. The generator receives random noise and outputs newly generated data samples, while the discriminator is responsible for determining whether the received data is real or generated by the generator. The generator and discriminator engage in adversarial training, which ultimately generates new data that closely resembles real data.

We innovatively designed SACGAN, which introduced conditional variables representing marine mammal species and self-attention modules based on generative adversarial networks. Additionally, traditional convolutional neural networks consist of multiple layers of convolutional layers stacked on top of each other, which tends to lead to overfitting as well as difficulty in updating the gradient. The network we designed utilized improved Inception blocks, a structure that combines convolutional kernels of various sizes within the same layer to capture multi-scale information, thereby enhancing the capability of feature extraction.

The specific network structure of SACGAN is shown in Figure 3A. In the generator network structure, the discrete labeled variables were converted to continuous vectors through the Embedding layer, which were spliced with random noise to help the model better understand the input data. The network structure of the Inception block is shown in Figure 3B. We improved its second branch by decomposing a 3x3 convolution into a 1x3 convolution and a 3x1 convolution, further reducing the number of parameters and computational complexity. The residual block consisted of the deconvolution layer, the batch normalization layer, and the activation layer. In the residual block, the gradient information was propagated by means of skip connections to help the generator better recover the image details. A self-attention module was added between two residual blocks to enhance the generator’s ability to produce specific content under given conditions, thereby improving generation precision. In the discriminator network structure, the residual block consisted of the convolution layer, the batch normalization layer, and the activation layer. The pooling layer was responsible for reducing the feature dimensions and extracting the main information of the features. We added a self-attention module after the pooling operation to help the model compensate for information loss, ensuring that the model retained some detailed information while capturing the main features. The formula expression of the self-attention mechanism is shown as Equation 2:

[image: Diagram A shows a generative adversarial network with a generator and discriminator. The generator uses embedding, dense, and Inception blocks, producing fake images. The discriminator processes real and fake images through dense, self-attention, and Inception blocks. Diagram B illustrates a convolutional network with multiple convolutional layers, pooling, and connections from input to output.]
Figure 3 | (A) Network structure of the self-attention conditional generative adversarial network; (B) structure of the inception block.

[image: Mathematical formula for attention mechanism: Attention(Q, K, V) equals softmax of Q times K transposed, divided by the square root of d sub k, times V.] 

Where Q denotes the query matrix, K denotes the key matrix, V denotes the value matrix, KT is the transpose matrix of K, and dk denotes the dimension length.

In addition, the model used the loss function of WGAN-GP Pu et al. (2022); Zhu et al. (2023) to prevent the pattern collapse problem during training. A gradient penalty term was added to the discriminator loss function to ensure that the discriminator function satisfied the Lipschitz continuity constraint, avoiding the problem of gradient explosion or gradient disappearance during the training process and enhancing the convergence speed of the model. The generator loss function is shown as Equation 3:

[image: The image shows a mathematical expression representing a loss function L(G) for a generative adversarial network. The equation is L(G) = -E[z~pz] [D(G(z))] with reference to formula (3).] 

Where Pz denotes the data distribution of samples generated by the generator, z is the randomly sampled noise vector in Pz, and y is the condition variable.

The discriminator loss function is shown as Equation 4:

[image: Mathematical equation representing a loss function: \( L(D) = \mathbb{E}_{x \sim p_r} [D(x|y)] - \mathbb{E}_{z \sim p_z} [D(G(z|y))] + \lambda \mathbb{E}_{x \sim p_r} \left(\left\| \nabla_x D(x) \right\|_2 - 1 \right)^2 \). It includes expectations, gradient norms, and terms related to discriminator and generator functions.] 

Where pr denotes the data distribution of the real sample, x is the sample in pr, λ is the gradient penalty term weight, [image: Mathematical expression depicting a regularization term: \(\lambda E_{\tilde{x} \sim p_{\tilde{x}}}((\| \nabla_{\tilde{x}} D(\tilde{x}) \|_{2} - 1)^{2})\).]  is the gradient penalty term, [image: It seems there was an issue displaying the image. Please upload the image again or provide a URL for accurate alt text generation.]  is the stochastic interpolation between the real sample and the generated sample, [image: Mathematical notation showing the symbol "p" with a circumflex accent and subscript "x".]  denotes the sampling distribution of the gradient penalty term, and [image: Mathematical expression displaying the L2 norm of the gradient of a function \( D \) with respect to \( \hat{x} \), denoted as \( \|\nabla_{\hat{x}} D(\hat{x})\|_2 \).]  denotes the gradient parameter of [image: No image was provided. Please upload the image or provide a URL for me to generate the alt text.] , which ensures that the gradient paradigm of the discriminator function is close to 1 and satisfies the Lipschitz constraint.




3.3 Audio signal reconstruction

We used WaveGlow to reconstruct the Mel spectrogram samples generated by SACGAN into audio signals. The model can accurately learn the probability distribution of the audio data and acquire longrange information, resulting in better generation quality and generalization ability. In addition, WaveGlow supports GPU parallel operation, significantly accelerating the audio synthesis speed.





4 Experiment

We designed generation experiments and classification experiments. The generation experiments were used to increase the number and diversity of existing datasets. The classification experiments were used to validate the effectiveness of the MarGEN method.



4.1 Generation experiment

The experimental programming language was Python 3.9, and the network construction was built using Pytorch 1.10 deep learning framework. We trained SACGAN with 4,190 Mel spectrograms of marine mammal calls, setting the labels for killer whale calls to 0, humpback whale calls to 1, pilot whale calls to 2, and bottlenose dolphin calls to 3. The experimental dataset was divided into a training set and a test set in an 8:2 ratio, with a learning rate set at 1e-4; the batch size was 64; the number of training epochs was 2000. An alternating training strategy was adopted, in which the discriminator was trained six times corresponding to the training of the generator once.

Figure 4 shows an example of Mel spectrograms generated using the SACGAN. As shown, SACGAN can generate high-quality Mel spectrograms. In this experiment, a total of 1755 samples of Mel spectrograms of marine mammal calls were generated using the SACGAN.

[image: Four Mel spectrograms display frequency over time, each showing different patterns of color intensity. The horizontal axis is time in seconds, while the vertical axis is Mel frequency ranging from zero to four thousand ninety-six. Various shades of purple, orange, and black indicate differing frequency intensities.]
Figure 4 | Mel spectrograms generated using SACGAN.




4.2 Classification experiment

To verify the effectiveness and superiority of the MarGEN method, this experiment trained the same ResNet classification model on two datasets separately for performance evaluation. Table 2 presents the number of samples in the two datasets and their specific distribution. Among them, OD is a dataset consisting of the original marine mammal call signals. MD is a mixed dataset consisting of the original marine mammal call signals and the call signals obtained using the MarGEN method. The ‘Factor’ column indicates the ratio between the total number of samples after data enhancement (original samples plus generated samples) and the number of original samples. For example, for bottlenose dolphin, a factor of 2.0 indicates that after augmentation, the dataset contains twice as many samples as the original dataset (original: 723 samples, augmented: 1,446 samples). The dataset was divided using 5-fold cross-validation, in which the entire sample was randomly divided into five non-overlapping subsets, each of which accounted for approximately 20% of the entire dataset. In each round of cross-validation, four of them were selected as the training set. The remaining one as the validation set, and a total of five rounds were executed, with a different validation subset being used in each round. The final results are aggregated by the average of the metrics obtained from the 5 rounds of experiments to ensure the stability and generalization ability of the model. At the same time, it is necessary to make sure that the ratio of original data and generated data in the training and validation sets is consistent. The learning rate for the experiments was set to 1e-4; the batch size was 32; and the training epochs were 150.

Table 2 | The number of samples and their specific distribution for the two datasets.


[image: Table showing species names, abbreviations, OD, Factor, and MD. Killer Whale: KW, 1394, 1.1, 1533. Humpback Whale: HW, 908, 1.6, 1452. Pilot Whale: PW, 1165, 1.3, 1514. Bottlenose Dolphin: BND, 723, 2.0, 1446.]
Figure 5A illustrates the confusion matrix of the classification model trained using OD, while Figure 5B illustrates the confusion matrix of the classification model trained using MD. In these matrices, the diagonal elements represent the correct classification rate for each category, while the off-diagonal elements reflect the misclassifications between species. Through comparison, it can be found that killer whales showed high classification accuracy in both confusion matrices, probably due to the even spacing between fundamental and harmonic frequencies in their calls, regular frequency bands, often accompanied by high-energy dominant frequency components, and clear transverse stripe structure on Mel spectrograms, which had good discriminability, and thus were easy to be accurately recognized by the model. The classification effect of the bottlenose dolphin was significantly improved after the data enhancement. However, the classification accuracy was still at the lowest level, which may be attributed to the following reasons: on the one hand, broad-snouted dolphin calls are complex and diverse, with a large frequency span, which increases the difficulty of identification; On the other hand, broad-snouted dolphins have the smallest number of original samples among the four categories, and the model does not learn enough of its features at the early stage of training. Although data augmentation greatly mitigates the training bias caused by the uneven samples, there are still some recognition challenges.

[image: Confusion matrices labeled A and B. Matrix A (Confusion Matrix-OD) shows high accuracy for true labels KW, HW, and PW, with the highest value for KW at 0.9137. Matrix B (Confusion Matrix-MD) similarly shows high accuracy for these labels, with the highest value for KW at 0.9608. The heatmaps use a color gradient from light to dark blue indicating values from 0 to 1.]
Figure 5 | (A) Confusion matrix of the classification model trained with OD; (B) Confusion matrix of the classification model trained with MD.

In general, the model trained using the MD dataset achieves a higher recognition accuracy for marine mammal calls and exhibits a significantly reduced gap in classification performance between species. These results demonstrate that the proposed MarGEN data augmentation method effectively enhances the model’s generalization ability and mitigates the problem of class imbalance.

We selected four classical deep learning models for classification experiments to demonstrate that the MarGEN method can optimize the performance of multiple models. In the experiments, we calculated the Accuracy, Precision, Recall, and F1 Score of the models to comprehensively evaluate their classification performance. We calculated the accuracy, precision, recall, and F1 score of these models in the experiments. The corresponding formulas are as shown in Equations 5–8:

[image: The formula for accuracy is shown as the ratio of the sum of true positives and true negatives to the sum of true positives, false positives, true negatives, and false negatives.] 

[image: Precision is calculated as the ratio of true positives to the sum of true positives and false positives, labeled as equation six.] 

[image: The formula for recall is shown as Recall equals True Positives divided by the sum of True Positives and False Negatives, labeled as equation seven.] 

[image: Equation for F1 Score, shown as: F1 Score equals two times the product of Precision and Recall, divided by the sum of Precision and Recall, labeled as equation eight.] 

Where the F1 score is the reconciled average of precision and recall, which can comprehensively evaluate the classification performance.

Table 3 shows that the accuracy of the classification models trained using MD increased by an average of 4.7%, in which the accuracy of the ResNetSE model increased by 5.7% from 90.93% to 96.63%; the F1 score increased by an average of 5.75%, proving that the MarGEN method can significantly improve the performance of multiple deep learning models on the marine mammal call signal recognition task.

Table 3 | Comparison of performance evaluation indexes for two datasets applied to different classification models.


[image: Table comparing four models: CNN, Res2Net, ResNetSE, and RNN. Metrics include Accuracy, Precision, Recall, and F1 Score, each with OD/MD percentages. Notably, Res2Net shows highest precision at 94.42/96.39%.]




5 Conclusion

We have innovatively presented MarGEN, which can effectively realize the high similarity generation of marine mammal call signals and improve their recognition accuracy. First, we designed SACGAN, which can generate Mel spectrograms that are highly similar to the original data, and then we converted the Mel spectrograms into call signals using WaveGlow. The experimental results demonstrated that after using the MarGEN method, the recognition accuracy of different classification models is improved by 4.7% on average, and the F1 score is improved by 5.75% on average. The proposed method in this paper greatly promotes marine ecological protection and sustainable development, and at the same time, it also greatly promotes the research progress of bionic covert hydroacoustic communication technology, which is of great strategic significance. In the future, we will further extend the applicability of the study. On the one hand, we will extend the MarGEN method to more marine species to verify its generalizability in multi-species identification tasks; on the other hand, we will also explore the migration ability of the model under fewer samples to enable the identification and study of data-scarce species.
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As an important technology for eliminating redundant data, data deduplication significantly impacts today’s era of explosive data growth. In recent years, due to the rapid development of a series of related industries, such as ocean observation, ocean observation data has also shown a speedy growth trend, leading to the continuous increase in storage costs of ocean observation stations. Faced with the constant increase in data scale, our first consideration is to use data deduplication technology to reduce storage costs. While using duplicate data deletion technology to achieve our goals, we also need to pay attention to some of the actual situations of ocean observation stations. The fingerprint retrieval process in duplicate data deletion technology plays a key role in the entire process. Therefore, this paper proposes a fast retrieval strategy based on locally sensitive hashing. The fast retrieval algorithm based on locally sensitive hashing can enable us to quickly complete the retrieval process in duplicate data deletion technology and achieve the goal of saving computing resources. At the same time, we proposed a bucket optimization strategy for retrieval algorithms based on locally sensitive hashing. We utilized visual information to address the bottleneck problem in duplicate data deletion technology. At the end of the article, we conducted careful experiments to compare hash retrieval algorithms and concluded the strategy’s feasibility.
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1 Introduction

As is well known, today’s society is filled with a large amount of data and has entered the era of big data. At the same time, the scale of data generated by various industries has also exploded. According to current research reports, IDC estimates that the storage capacity of the global market will grow exponentially from 33ZB to 173ZB from 2018 to 2025 (Reinsel et al., 2017) As various industries enter the era of big data, the scale of data generated by marine-related industries is unprecedentedly large. The existing marine data includes marine surveying, island monitoring, underwater exploration marine fishery operations, marine fishery operations, marine buoy monitoring, marine scientific research, oil and gas platform environmental monitoring, satellite remote sensing monitoring, etc., forming a wide range of marine observation and monitoring systems, accumulating a large amount of marine natural science data, including on-site observation and monitoring data, marine remote sensing data, numerical model data, etc. With the rapid advancement of ocean informatization and the increasing sophistication of sensing technologies, ocean data volumes have grown exponentially. For instance, since the launch of the Argo program, over 10,000 profiling floats have been deployed, with approximately 3,800 currently operational in global oceans (Riser et al., 2016) By 2016, Argo-generated data had already surpassed the cumulative ocean observation dataset of the entire 20th century, and both its sampling density and vertical coverage continue to expand. Similarly, as of 2012, the U.S. National Oceanic and Atmospheric Administration (NOAA) hosted annual data archives exceeding 30 petabytes, aggregating over 3.5 billion daily observations from a diverse array of sensor systems (Huang et al., 2015) In recent years, revolutionary changes have occurred in the observation equipment used for observing ocean data. The scale of ocean data represented by satellite remote sensing data is exploding, and the growth rate of ocean observation data is also much faster than most industries. At present, when ordinary people face data growth, they tend to think of increasing storage capacity to solve the problem. However, when we face huge amounts of data, it is unrealistic to solve the problem by increasing storage capacity. Therefore, people usually choose to improve storage efficiency so that more data can be stored in limited storage space. When faced with such problems, people usually think of compression technology first. However, compression technology retrieves the same data block through string matching, mainly using string matching algorithms and their various variants, which achieve precise matching. Implementing precise matching is more complex but more accurate and effective for eliminating fine-grained redundancy.

Data deduplication (Nisha et al., 2016) technology uses the data fingerprint of data blocks to find identical data blocks, and the fingerprint of data blocks is calculated using a fuzzy matching hash function. Fuzzy matching is relatively simple and more suitable for large granularity data blocks, but its accuracy is lower. If we want to save storage space on datasets obtained through ocean observation, we should prioritize duplicate data deletion technology. Data deduplication technology eliminates redundant data in a dataset by removing duplicate data and retaining only one copy. Therefore, data deduplication technology can bring huge practical benefits when facing such problems, such as effectively controlling the rapidly growing data scale, saving sufficient storage space, improving storage efficiency, saving total storage and management costs, and meeting ROI, TCO, etc (Nisha et al., 2016).

The entire process of data deduplication technology is to cut the input file into data blocks and determine whether the data block is a duplicate by querying the fingerprint table in memory. Data deduplication technology can be divided into five stages, including data block segmentation, fingerprint calculation of data blocks, indexing of hash tables, compression techniques, and data management in various storage systems. The compression stage is an optional operation, as it is only applicable to some more traditional compression methods. Data deduplication plays a crucial role in the final stage of storage management. The above explanation shows us that block segmentation and retrieval are the two core stages in data deduplication technology. How to segment data blocks reasonably will seriously affect the final data deduplication rate. However, the focus of this article is on another aspect - retrieval. How to quickly retrieve whether there are data blocks in the fingerprint table will greatly affect the efficiency of the entire data deduplication system. We will save much time if we can achieve fast retrieval. At the same time, reducing the number of comparisons within the fingerprint table will directly affect the computational resource consumption of the entire data deduplication system when facing large-scale data.

At present, there are many research studies on retrieval in duplicate data deletion technology, including Bloom filters, which are used to address challenges in the retrieval process (Lu et al., 2012) HT Indexing accelerates the process by selecting champions, or Sparse Indexing solves real-world problems (Lillibridge et al., 2009).

In this study, we aim to save more resource consumption in the retrieval process of data deduplication technology. Therefore, to address the existing challenges, we propose a fast retrieval algorithm based on locally sensitive hashing (Bucket index), which can reduce the number of comparisons while saving computational resources. B-index is a fast retrieval algorithm based on locally sensitive hashing, which puts similar data blocks into the same bucket. When a data block is passed in, it only needs to be retrieved from the bucket to which the data block belongs without the need to retrieve the entire fingerprint table, thus reducing resource consumption during the retrieval process. The contributions of this article are as follows:

	We propose a fast retrieval algorithm based on locally sensitive hashing, which achieves fast retrieval by splitting and storing many data blocks during the retrieval process.

	We propose a bucket optimization strategy under locally sensitive hashing, which continuously optimizes retrieval efficiency by adjusting the number of buckets when facing different problems.

	Finally, we proposed a strategy for selecting fingerprint tables when faced with ocean observation data.



The content of the remaining chapters of this article is as follows: In Chapter 2, we will provide a detailed introduction to the background of duplicate data deletion technology and the motivation behind this paper. In Chapter 3, we will elaborate on various research related to this paper. Chapter 4 will focus on the fast retrieval algorithm based on locally sensitive hashing. In Chapter 5, we will verify our hypothesis through detailed experiments. In the final chapter, we will make plans for future research.




2 Background and motivation

In the second part, we will briefly introduce the process of data deduplication technology, focus on the importance of retrieval, and briefly introduce other retrieval algorithms. At the end of this section, we will introduce the motivation behind our work.



2.1 The dilemma of duplicate data deletion technology in the retrieval process

When analyzing a problem, the first thing we need to do is to understand where the problem lies. When a data stream is fed into a data deduplication system, we first need to perform a chunk operation on the data stream, cutting it into data blocks of different sizes. How to chunk is based on the content of the data stream, so we can understand that the same content will produce the same data blocks. The first definition of this part was mentioned in the sliding window-based chunk algorithm 1. After the data blocks are cut, we assign fingerprints to each. Each different data block has a different fingerprint. After that, the duplicate data deletion system will compare the fingerprints of each data block with the existing fingerprints in the memory table. In a duplicate data removal system, querying whether a data block is duplicate is done by storing the fingerprint of the data block in a fingerprint table in memory. After cutting out a new data block, the fingerprint of the new data block is searched in the fingerprint table. When the fingerprint of the new data block exists in the fingerprint table, it will be judged as a duplicate data block. Conversely, if the data block does not appear in the fingerprint table, the fingerprint of the data block will be stored in the fingerprint table, and the data block will be saved as shown in Figure 1. While we understand the basic process, we must also be aware of the disk bottleneck issue in data deduplication technology.

Assuming the average size of data blocks is 8KB, the generated fingerprints are approximately 20GB. For 8TB of data, nearly 20GB of fingerprint storage will be required. If all these fingerprints are stored in memory, it will bring a very serious memory burden. At the same time, in a system with an average throughput of 100MB/s, each retrieval will bring a huge burden and increase the system overhead. Even if you use cache memory to accelerate index access, there will not be much change. This is because fingerprint generation is random, and traditional cache memory has a low hit rate and work efficiency. Therefore, in response to the above issues, some people store the fingerprint table in external storage. However, this approach will lead to frequent access to external storage, thereby reducing efficiency. Some people also choose to put some fingerprint tables in memory and some in external storage, but choosing which ones to put in memory and which to put in external storage is not appropriate. Therefore, to improve efficiency, it is better to accelerate the indexing speed directly. Because no matter which method is chosen to avoid the disk bottleneck, it cannot escape the need to retrieve the fingerprint table.

[image: Illustration of a data processing flowchart. Data streams are split into blocks by the Data Block Chunking Engine. Blocks are colored blue, red, and green. The Hash Calculation Engine generates hash numbers. Data checks occur in DRAM and HDD/SSD. The decision nodes "Did it hit" determine data storage or blocking, directing to the appropriate libraries, including a Data Block Library and Fingerprint Point Index Library. Arrows indicate the flow of data and decisions throughout the process.]
Figure 1 | Process diagram of duplicate data deletion system.




2.2 The particularity of ocean observation data

At this point, we can foresee the problem we are facing. If the fingerprint table becomes larger, we will face great difficulties retrieving it. As a result, if the fingerprint table continues to grow, it will also greatly burden the memory if we keep it in memory. Considering the actual situation we will face, that is, the storage method of ocean observation stations, ocean observation data differs from ordinary data, and most ocean observation data is time series data. Some characteristics need to be understood.

One of them is the existence of non-renewable primitiveness; as the ocean constantly changes, the elemental data of ocean surveys has distinct characteristics of non-renewable primitiveness. Ocean measurement data is a first-hand source of original information obtained from on-site measurements, organization, and calibration by ocean survey ships. The data of ocean remote sensing, whether it is infrared or visible light observations of scanning imaging or microwave measurements, the measured data (including element data inverted according to a certain pattern) is specific in time and space, reflecting the characteristics of ocean elements under specific spatiotemporal conditions; Other data such as ship reports also have similar characteristics; Although numerical simulation product data can be obtained repeatedly under certain conditions, a certain type of product data can still be considered as special original obtained data, and therefore also considered as having originality. Moreover, certainty, this characteristic is easy to understand. Certainty refers to the very accurate observation of ocean element data, such as the measurement accuracy of water temperature and depth and the measurement time and space, which are all very precise. There are also many categories included in ocean observation data, such as the inferential, fuzzy, and multi-level nature of ocean element data. We mentioned the characteristics of ocean observation data, and ultimately, the most important point is that ocean observation data may contain non-renewable data after observation. Therefore, storing each observation is crucial, and the disk space challenge caused by storing a large amount of data must be addressed. So, when facing practical problems, we need to consider the various bottlenecks of duplicate data deletion technology and improve duplicate data deletion technology according to the characteristics of ocean observation data.




2.3 Motivation

On this occasion, we have learned about the principle of data deduplication technology and the particularity of ocean observation data. Therefore, we consider applying data deduplication technology to ocean observation stations. Of course, we have also done this. Before this research, we optimized the segmentation module of data deduplication technology and finally applied it to the data deduplication system of ocean observation stations. However, the research at that time mainly aimed to improve the data deduplication rate and neglected some retrieval efficiency. Therefore, we will make up for this overlooked efficiency in this article. The data deduplication system is coherent, so we hope to recover the efficiency lost when we segment it in the subsequent retrieval process. At the same time, we learned about the conflicting issues in the retrieval process, such as how to choose between fingerprint tables in memory and whether to store them in memory or external storage. Of course, no matter how we choose, improving the efficiency of retrieval is crucial because, no matter where it is placed, improving the efficiency of retrieval will accelerate the operation efficiency of the entire system. Therefore, this article chooses algorithms that can accelerate indexing efficiency, and regardless of which method is chosen, the ultimate goal is to improve efficiency. At the same time, we consider that a portion of the fingerprint tables can be stored in memory and another portion in external storage, and how to make a decision is also the main research direction of this article. This article will divide the ocean observation data based on certain characteristics to ensure that the fingerprint tables in memory can receive more access times to improve the efficiency of the entire system. In summary, to address the various problems in the retrieval process of existing duplicate data removal systems, this paper proposes a fast indexing method based on locally sensitive hashing to solve the problem, which can accelerate the efficiency of the entire duplicate data removal system through fast indexing. At the same time, in-depth research has been conducted on the storage of fingerprint tables to ensure the improvement of the speed of duplicate data deletion technology in the retrieval process.





3 Related work

When we learn about data deduplication technology, we first need to understand that the original purpose of CDC was to reduce network traffic consumption when transferring files. Spring and Wetherall (2000) designed the first block-based algorithm using the Border method (Broder, 1997) with the aim of better identifying redundant network traffic and reducing consumption. Muthitacharoen et al. (Spring and Wetherall, 2000) proposed a CDC-based file system called LBFS, which enriches the CDC chunk algorithm to reduce and eliminate duplicate data in lowbandwidth network file systems. You et al. (2005) used the CDC algorithm to reduce data redundancy in archive storage systems. However, due to the time-consuming calculation of Rabin fingerprints in the CDC algorithm, which results in a waste of computing resources, many methods have been proposed to replace Rabin to accelerate the speed of CDC (Xia et al., 2014; Agarwal et al., 2010; Zhang et al., 2015) The encryption function required in the fingerprint recognition process (such as Rabin) can be accelerated through parallel strategies (Xia et al., 2019) Moreover, using the modified version of AE (Zhang et al., 2016) to accelerate the time required for calculating fingerprints.

The retrieval problem in the face of duplicate data deletion technology can be roughly divided into global and partial indexing. The global index maintains the metadata of all stored data blocks. Searching for the fingerprint of each new data block in the index can identify all duplicates and achieve the best data de-duplication rate. Due to the requirement for high search throughput, many studies have focused on improving the read performance of full indexes. With the help of Bloom filters and index segment caching, DDFS (Zhu et al., 2008) reduces the large amount of storage reads required for data block fingerprint lookup. SkimpyStash (Debnath et al., 2011) stores the metadata of data blocks in a flash and indexes them in a memory hash table. Bloom filters are used to improve reading performance. Considering the location of data deletion in the duplicate data removal system, ChunkStash (Debnath et al., 2010) buffers index metadata in memory until it reaches the size of a flash page. Index lookup can benefit from page-based IO, which preserves the location of de-duplicated data blocks. BloomStore (Lu et al., 2012) focuses on improving memory efficiency by using bloom filters to eliminate unnecessary flash reads. Due to the read-intensive search workload in the index of data de-duplication, BloomStore can avoid the flash reading of non-existent data block fingerprints by caching Bloom filters and parallel checking Bloom filters.

Although this technology uses different optimizations to reduce storage reads of global indexes, the efficiency of storage reads increases with the size of stored data. To address this issue, partial indexing is proposed, effectively reducing storage reads by searching only a small portion of the storage block. Another direction for global indexing is partial indexing, whose basic idea is to search for new data block fingerprints on a selected subset of stored data blocks, thereby reducing the number of storage reads and increasing throughput. According to observations, backup data from the same source are usually highly similar (Wallace et al., 2012; Park and Lilja, 2010) The new data block is deduplicated using a batch processing method called Data Deduplication Window (DW). If we store the metadata of stored data blocks in groups (called tuples) in a “log” manner to maintain locality, we can find tuples that share a certain number of blocks with tuples in DW. These shared blocks are duplicated; the remaining data blocks are considered’ unique’. The main goal of partial indexing is to index tuples in memory and quickly select tuples that may overlap highly with tuples in DW. Studies indicate that backup data from the same source generally have highly similar characteristics (Wallace et al., 2012; Park and Lilja, 2010) Therefore, partial indexing techniques are proposed. In order to index all tuples using pure memory structures, partial indexing selects a small portion of data block fingerprints from each tuple as a representative (hook).

The memory’s fingerprint table (hook index) maintains the mapping from hooks to their corresponding tuple addresses. After accumulating a new batch of data blocks in DW, check the fingerprint of the new data blocks in the hook index. If it matches one or more hooks (hook hits), there is a high possibility that some data blocks from the same tuple may also appear in the DW due to the excellent positional location of the backup data. Sparse indexing (Lillibridge et al., 2009) extreme binary (Bhagwat et al., 2009) SiLo (Xia et al., 2011) and LIPA (Xu et al., 2019) all use data segments as tuples. The duplicate data removal system generates a recipe based on the order in which data blocks are generated in the input data stream, strictly preserving the order of data blocks during duplicate data removal, regardless of whether the data blocks are duplicates. Sparse indexing calculates the hook hit rate for each tuple and selects the tuple with the highest hook hit rate based on the calculation. Extreme Binning (Bhagwat et al., 2009) is designed for backup based on a single file. It uses the overall recipe of each file as a tuple. When performing duplicate data deletion on a new file, Extreme Binning selects recipe segments from the most similar files and performs duplicate data deletion on the data blocks of the new file based on the data blocks in the selected similar files. SiLo (Xia et al., 2011) further extends extreme boxing by simultaneously considering the similarity of files and the locality of blocks.

SiLo concatenates similar small files together as one data block and divides large files into several data blocks. To perform duplicate data deletion on a new data block, SiLo identifies the most similar data block among existing data blocks. It performs duplicate data deletion based on the data blocks in the block. LIPA (Xu et al., 2019) uses reinforcement learning-based algorithms to determine the similarity between recipe segments and data blocks in DW, thereby achieving higher data deduplication rates. Meanwhile, in recent years, countless technologies have combined distributed systems with data deduplication. Among them, cluster-based sharding methods have achieved considerable data deduplication efficiency on a single system while supporting high throughput (Zhou et al., 2022) Moreover, a system proposed to simultaneously perform client and server duplicate data deletion when faced with forced duplicate data deletion of many concurrent backup streams during peak backup loads (Ammons et al., 2022) In recent years, there has also been a problem of pushing duplicate data removal to the network edge. A new distributed edge-assisted duplicate data removal (EF dedup) framework has been proposed. Maintain a duplicate data removal index structure between them using distributed key-value storage and perform duplicate data removal within these clusters (Li et al., 2022) These frameworks can effectively solve the contradictions of current data deduplication technology. However, this project aims to shift the focus back to the retrieval problem in data deduplication technology, using machine learning-assisted fingerprint table retrieval in combination with distributed operating systems and data deduplication technology. To lay the foundation for subsequent ocean observations in data storage.

Meanwhile, with the vigorous development of various industries in recent years, the application of duplicate data deletion technology is becoming increasingly widespread. The most notable among them is the data deduplication technology in cloud storage (Mahesh et al., 2020) However, there are also more security issues in cloud computing, as PraJapanese et al. (Prajapati and Shah, 2022) made a stunning statement about the security issues in data deduplication technology. Even Yuan et al. (2020) proposed blockchain-based duplicate data removal technology in the popular field of blockchain. In addition to the challenges proposed by Azad et al. At the same time, PG et al. (Shynu et al., 2020) proposed a solution to the network edge problem (Al Azad and Mastorakis, 2022).




4 Fast retrieval algorithm based on locally sensitive hash

This chapter will explore the retrieval part of the duplicate data removal system. The retrieval part is the second most important focus of the entire duplicate data removal system, and the retrieval speed will directly determine the entire system’s efficiency. Therefore, this article introduces a fast retrieval method aimed at improving the entire system’s efficiency in terms of retrieval. In this chapter, we will provide a detailed introduction to implementing a retrieval algorithm based on locally sensitive hashing and the optimization strategy for buckets. Finally, we will discuss how to choose the storage of fingerprint tables based on the characteristics of ocean observation data.



4.1 Fast retrieval algorithm based on locally sensitive hash

In order to address the existing problems in the retrieval process of the duplicate data removal system, this section proposes a fast retrieval technique based on locally sensitive hashing. By extracting the similarity of data blocks and constructing multiple data buckets, when similar data blocks appear, the data bucket can be quickly selected and retrieved within the bucket, achieving a fast retrieval function. In this section, we will first introduce the application of locally sensitive hashing, then propose solutions based on existing situations, and finally explain the entire idea of retrieval based on locally sensitive hashing.



4.1.1 Local sensitive hashing strategy

Firstly, local sensitive hashing is an approximate nearest neighbour fast search technique applied in the face of massive high-dimensional data. In many different application fields, we often face an astonishing amount of data that needs processing and generally has high dimensions. Quickly finding the data or a set closest to certain data from a massive high-dimensional data set has become a challenging problem. If the data we face is a small, low-dimensional dataset, we can solve this problem using linear search. However, for the current situation, most of them are high-dimensional and large datasets that need to be processed. If we still use linear search, it will waste much time. Therefore, to solve the problem of dealing with massive high-dimensional data, we need to adopt some indexing techniques to accelerate the search process and speed. This technique is usually called nearest neighbour search, and local sensitive hashing is precisely this technique as shown in Figure 2.

[image: Abstract illustration featuring overlapping yellow and green circles with labeled points: "q?" at the center, "r" as the radius, and "(1+ε)r". Black dots, connected by lines, extend from the circles to three images of barrels arranged in a row.]
Figure 2 | Schematic diagram of locally sensitive hash.

Traditional hashing maps initial data to corresponding buckets, while locally sensitive hashing, compared to traditional hashing, maps or projects two adjacent data points in the initial data space through the same transformation. These two adjacent points in the original space still have a high probability of being close to the new data space. The probability of two non-adjacent data points in the original space being mapped or projected to the same bucket is very low. In summary, if we perform some hash mapping on the initial data, locally sensitive hashing can help us map two adjacent data points to the same bucket with a high probability of having the same bucket number. In ocean observation stations, the daily amount of data generated is astonishing. In duplicate data removal systems, the data blocks cut by data streams are also massive amounts of data, making them very suitable for the application scenario of locally sensitive hashing. We hope to achieve fast retrieval when fingerprints are used in the data deduplication system. We hope that the searched data block can be mapped through local sensitive hashing to find the same data block in its bucket, thus achieving the goal of fast retrieval and saving computing resources. However, to determine whether two data blocks are similar, we have to mention a concept, the Jaccard coefficient. It is expressed as Formula 1, where the larger the Jaccard coefficient, the greater the similarity, and vice versa.

[image: Formula for the Jaccard Index: J(A, B) equals the size of the intersection of sets A and B divided by the size of the union of sets A and B, denoted as equation one.] 

As shown in Figure 3. The method of local sensitive hashing is to perform a hash mapping on all the data in the initial dataset, and then we can obtain a hash table. These initial datasets will be scattered and shuffled into buckets in the hash table, and each bucket will load some initial data. However, there is a high probability that data belonging to the same bucket will be adjacent, although this is not absolute, and there may also be situations where non-adjacent data is mapped to the same bucket. Therefore, if we can find some hash functions that enable data to fall into the same bucket after being hashed and transformed by these hash functions in the original space, it becomes much simpler for us to perform the nearest neighbour search in the data set. We only need to hash map the data to be retrieved to obtain its mapped bucket number, then extract all the data inside the bucket corresponding to that bucket number, and perform a linear search on these data to find the data adjacent to the query data. As shown in the figure below, after a position-sensitive hash function hashed it for q, its rNN may be hashed to the same bucket (such as the first bucket). The probability of hashing to the first bucket is relatively high, which will be greater than a certain probability threshold p1. However, objects outside of its (1 + ϵ)rNN are unlikely to be hashed to the first bucket, meaning the probability of hashing to the first bucket is small and will be less than a certain threshold p2. It is expressed as Equations 2 and 3.

[image: Diagram illustrating data hashing of an ocean observation dataset. Circles labeled P1 through Pn represent dataset parts. An arrow marks the data hashing process, connecting to three separate storage units. Below each unit, corresponding dataset parts (P1, P6, P4, P5, P3, and P2) are indicated.]
Figure 3 | Diagram 1 of fast retrieval technology based on local sensitive hash.

[image: \( p_1 = Pr[I(p) = I(q)] \) is "high" if \( p \) is "close" to \( q \). Equation (2).] 

[image: The image displays a mathematical equation: \( p_2 = \Pr[I(p) = I(q)] \) is "low" if \( p \) is "far" from \( q \), annotated as equation (3).] 

In other words, after the mapping transformation operation of the hash function, we divide the initial data set into many sub-datasets. The data in each sub-data set are close to each other, and the number of elements in the sub-data set is relatively small. Therefore, the problem of finding neighbouring elements in a large set is transformed into the problem of finding neighbouring elements in a relatively small data set, which reduces the computational cost. Alternatively, it can be understood as converting high-dimensional data into low-dimensional data while maintaining the similarity characteristics of the original data within a certain range. However, locally sensitive hashing cannot guarantee determinism. It is probabilistic, or it is possible to map two originally similar data into two completely different hash values or to map originally dissimilar data into the same hash value. High-dimensional data is inevitable in dimensionality reduction, as there will inevitably be some degree of data loss during the operation. However, fortunately, the design of locally sensitive hashing can adjust the corresponding parameters to control the probability of such errors as much as possible. This is also an important reason why locally sensitive hashing is widely used in various fields. The logic of locally sensitive hashing in this article is shown in the following figure. All similar data blocks in the fingerprint table will be divided into the same bucket. When retrieving a new data block, only the bucket where the data block should be stored must be searched. There is no need to traverse the entire fingerprint table for searching, which greatly reduces the time and computational consumption in the data block retrieval process and can accelerate the retrieval efficiency.

As shown in Figure 4, when a data block needs to be retrieved during the retrieval process, we can see that the local sensitive hash will calculate the bucket number that the data block should be placed in and perform the retrieval within that bucket. Regardless of whether the data block is previously stored, it can achieve the goal of fast retrieval.

[image: Flowchart illustrating a data hashing process for an ocean observation dataset. Data points labeled P1 through P6 are hashed into three buckets. A query trajectory, labeled Q, is hashed to find the expected bucket. The process calculates similarity between Q and the bucket data to identify the most similar result. Arrows indicate the flow of data through each step.]
Figure 4 | Diagram 2 of fast retrieval technology based on local sensitive hash.




4.1.2 Local sensitive hash implementation

In this article, the first step is to abstract the actual problem to achieve fast retrieval based on locally sensitive hashing. In practical problems, this article aims to achieve that when a data block’s fingerprint is passed in, it can be linearly searched within the range of its similar fingerprints by searching for similar fingerprints rather than retrieving the entire fingerprint table. Therefore, the corresponding local sensitive hash directly searches for the bucket corresponding to a data block fingerprint after inputting it. At the same time, we need to understand several concepts: Euclidean distance, Jaccard distance, Hamming distance, and. The Euclidean distance in locally sensitive hashing refers to Equation 4:

[image: The image shows a mathematical equation: \( H(V) = \frac{V \cdot R + b}{a} \), labeled as equation (4).] 

R is a random vector, a is the bucket width, and b is a random variable uniformly distributed between [0, a]. It can also be understood that all vectors are mapped to a straight line through a hash function, and the mapped line is composed of many line segments of length a. Each vector V will be randomly mapped to a different line segment. Jaccard distance is a formula used to calculate the similarity between two data blocks. Hamming distance refers to the number of times the values at the corresponding positions in two vectors of the same length differ. We have completed the integration of practical problems and locally sensitive hashing. Next, we will provide a detailed introduction to the specific implementation process:

	Step 1: Data Preprocessing. Before completing feature extraction, we need to perform a preprocessing step on the data, which may include data cleaning, supplementing missing data, and standardizing the data. However, we only need to supplement the missing data in this article. In addition, the dataset used in this article is the chunking technique explained in the previous chapter, which uses the chunking technique to chunk the data and obtain the hash value of the data block. Finally, the data block size is applied as the second feature.

	Step 2: Feature Extraction. In this section, we need to convert various data items in the dataset into feature vectors. This step is based on buckets, where each bucket contains multiple data blocks. The feature λ of each data block is composed of multiple parameters, including the data block identifier DID, data block size [image: Italicized text showing "Chunk" with a subscript "size".] , and feature λ as shown in Formula 5:



[image: Lambda equals the tuple D sub ID and Chunk sub size, labeled as equation five.] 

	Data Block Identification: The numerical value obtained by hashing the content of a data block (such as SHA-1) is used as the unique identifier for that data block.

	Data block size: Different sizes of data blocks are obtained based on different data block segmentation methods.



	Step 3: Create a locally sensitive hash model. First, in offline mode, map all the vectors completed in the previous step to their respective index positions using the determined hash function. Then, input a vector to be searched and calculate the hash value using the same function as in the previous step. Find all the vectors in that vector’s corresponding hash value positions, and calculate the Euclidean distance using the corresponding Euclidean distance calculation method. Finally, select the n vectors with the smallest Euclidean distance as the n results that are closest or most similar to the input vector.

	Step 4: Optimize the number of hash buckets. When facing different practical problems, if the data volume is small, we can choose to optimize the number of hash buckets. By increasing or decreasing the number of hash tables for locally sensitive hashes, we can reduce the number of buckets to cope with different situations and practical problems. If the data volume is too large and the features are obvious, we can appropriately increase the number of hash buckets. Conversely, if the features are not obvious and the data volume is small, we can reduce the number of hash buckets to speed up the retrieval process.



Below we will provide pseudocode for local sensitive hashing as shown in Algorithm 1.


 Algorithm 1 Locality-sensitive hashing.

[image: Code snippet showing a Python implementation involving local sensitive hashing (LSH). The code defines a class for generating hash tables to find data block fingerprints similar to a given input. Key functions include `def_hash` for computing hash values and `query` for retrieving candidates based on proximity. The script concludes with a demonstration of inserting data, querying, and calculating the Euclidean distance.]



We can obtain a set of data block fingerprints through the above code, similar to the input data block fingerprint. If we can search for the input data block fingerprint within this set of data block fingerprints, we can save the need to search for the fingerprint of the data block to be retrieved from the entire fingerprint table. It can be simply finding the bucket number to which the data block to be retrieved belongs, making the number of data blocks in the entire bucket much simpler and more convenient than the entire hash table. It can be understood as simplifying large problems into small ones, achieving global optimization through local optimization. At the same time, it is emphasized that the fast retrieval based on locally sensitive hashing proposed in this section is aimed at saving computational resources when dealing with large-scale data. The purpose is to save the time wasted by linear retrieval, but it does not mean it can achieve fast retrieval in any scenario. The rough flowchart of fast retrieval and computation based on locally sensitive hashing is shown in Figure 5.

[image: Flowchart illustrating a process starting with data preprocessing, followed by feature extraction, then creating a locally sensitive hash model. It asks if the number of hash buckets is reasonable. If yes, the process is completed. If no, it moves to optimize the number of hash buckets.]
Figure 5 | Local sensitive hash flowchart.





4.2 Bucket optimization strategy

Before discussing this issue, we need to think about why we need to optimize the number of buckets. In practical applications, if we initially designed 5 buckets, as the amount of data that needs to be stored continues to increase, if we still scatter the data in five buckets, our retrieval efficiency will become lower and lower. Suppose we can continuously optimize the number of buckets according to the changes in the amount of data that needs to be stored. In that case, the entire duplicate data removal system will have a reasonable usage method. At the same time, we also need to consider another situation. Our initial design still had 5 buckets, but the storage device has just been replaced, and the amount of data we store is small. Therefore, we need to consider whether it is still necessary to use 5 buckets. In these two real-life situations, we need to make changes according to our different needs to achieve a satisfactory state of our duplicate data deletion system.

Implementing this is not difficult. We only need to visualize the number of buckets in various
states to intuitively understand whether the number of buckets we are currently using is reasonable.
The specific implementation algorithm is as follows as shown in Algorithm 2:


 Algorithm 2 Bucket optimization algorithm.

[image: Code snippet showing a series of Spark operations for data processing and visualization. It includes commands to create a Spark session, read a CSV file, transform data with a VectorAssembler, and apply MinHashLSH for hashing. The final steps involve fitting a model, transforming data, and grouping the results by hashes to display the output.]



We can solve existing problems intuitively through visual results. At the same time, we can make other optimizations based on the situation inside the bucket, such as the fingerprint table selection strategy under the ocean observation dataset mentioned in our next section. Through intuitive data, we can change the number of buckets for locally sensitive hashes based on storage requirements and analyze the dataset’s characteristics through result graphs. However, in this article, we focus more on applying it to optimizing the number of buckets. At the same time, with continuous optimization, we can even analyze within which range the amount of data and how many buckets are more reasonable, laying a solid foundation for future work.




4.3 Fingerprint table selection strategy in ocean observation datasets

Before facing this problem, we need to understand why we need to make a decision strategy for fingerprint tables. Let us imagine that in the storage system of an ocean observation station, we use a duplicate data deletion system to achieve the goal of storing more data. As the amount of data increases, the fingerprint table in our memory will continue to grow. Just like the simple example we gave in our article, assuming the average size of a data block is 8KB, the generated fingerprints will be about 20GB. If we store 8TB of data, we will generate nearly 20GB of fingerprints, which means we need to store nearly 20GB of fingerprint tables in our memory. The continuous increase of data will undoubtedly bring a huge memory burden.

The strategy of this article is to store a portion of the fingerprint tables in memory and another in external storage. The obvious purpose of this is to reduce the burden on memory. There are many advantages to doing this: 1. Save memory: Storing a portion of the hash table in external storage can effectively save memory resources, allowing the system to process larger datasets without being limited by memory size. 2. Improve performance: By storing hotspot data in memory, the search process for common data blocks can be accelerated without loading from disk every time. 3. Higher scalability: When processing very large amounts of data, the storage capacity of memory is limited, while external storage can provide almost unlimited expansion space, ensuring that the system can handle larger-scale deduplication tasks.

The benefits of doing so are self-evident, but the more important issue is deciding which part of the data to store in memory and which part to store in external storage. Since we only focus on ocean observation data in this article to solve the problem of storage devices for ocean observation stations, can we understand it this way? When facing time series datasets such as ocean observation, as long as there are more similar data blocks, we can understand that the probability of them appearing in the future observation process is also greater, which is what we understand as hot data. In other words, if there are many similar data blocks in some buckets generated by locally sensitive hashing, these data blocks can be defined as hotspot data. So we can store the fingerprint table of this bucket in memory and the rest in external storage if we divide the data into 5 buckets through local sensitive hashing, namely bucket 1, bucket 2, bucket 3, bucket 4, and bucket 5. Briefly introduce the meanings of a few characters: assuming that the access frequency of each data block is the same, the access frequency of each bucket is ai, the number of data blocks in each bucket is ni, and the average size of each data block is kl,S represents the saved memory space size,m is the number of buckets stored in external storage, Ah represents the total required space size, and At represents the external storage space size. As shown in Equation 6:

[image: Equation with the notation for a sum: S equals A sub h minus A sub f, which equals k sub f times n minus the sum from i equals one to m of n sub i times k sub i.]	(6)

So, the consumption of external storage access mainly depends on each bucket’s data volume and the pain’s access frequency. At this point, we assume that the delay of external storage is the constant time [image: Stylized letter "T" with the subscript "ext" in small font size, resembling a mathematical notation or equation.] , and each external storage access consumes a fixed time. The consumption of accessing external storage is proportional to the bucket’s data volume and access frequency. For bucket i, the external storage access consumption Qi is Equation 7:

[image: Equation showing \( Q_i = a_i \cdot n_i \cdot k_i \cdot T_{\text{ext}} \) with label (7) on the right.]	(7)

Therefore, the total access consumption Q is Equation 8:

[image: Mathematical equation showing \( Q = \sum_{{i=1}}^m a_i \cdot n_i \cdot k_i \cdot T_{\text{ext}} \), labeled as equation (8).]	(8)

Usually, we can choose buckets that are painful to put into memory and have high access frequency based on the following criteria: buckets with higher access frequency ai are usually chosen to put into memory because they will bring higher performance improvement. The bucket in memory should be the largest bucket of ai. Memory capacity limitation: Due to limited memory, storing some high-frequency access buckets in memory may only be possible. Usually, the storage capacity of memory Mmemis limited, so only buckets with high occupancy and access frequency can be selected until the memory capacity is filled.





5 Experimental results and discussion

Next, we will introduce the experimental results based on locally sensitive hashing. In this section, we will present the experiments based on local sensitive hashing in three directions: the impact of hash tables on the number of buckets, whether the goal of retrieving data blocks can be achieved, and retrieval efficiency. The specific details are as follows.



5.1 Experimental environment and data set source

The computers used in this experiment are shown in Table 1, and the data set used in this experiment is shown in Table 2. The datasets 1–4 used in this article are all from ocean observation datasets, which are a set of time series data sets generated by time changes, while the data set 5–8 is a data set generated by public daily network life. The more important reason for listing different data sets is to observe whether DSW is more suitable for deleting data generated by time series.While the proposed data partitioning framework effectively leverages temporal correlations in ocean observation datasets, its current implementation is tailored to the spatially constrained nature of the target private datasets, which originate from fixed-location sensors. These proprietary datasets exhibit dense temporal sampling but limited spatial coverage, spanning no more than 500 km2 in targeted zones—contrasting with global-scale datasets like Argo or satellite remote sensing products. As a result, the framework prioritizes temporal partitioning to exploit intra-site time-series dependencies, which are critical for applications such as localized anomaly detection or short-term environmental forecasting in these confined environments as shown in Table 3.

Table 1 | Specific operating environment of the experiment.


[image: Table detailing the specifications of a Dell XPS 8950. It lists the processor as a 12th Gen Intel Core i7-12700 at 2.10 GHz, RAM at 64.0 GB with 63.7 GB available, system type as Windows 11/Ubuntu 22.04, and display adapter as NVIDIA GeForce RTX 3060 with 12 GB.]
Table 2 | Details of all data sets used in this experiment.


[image: Table listing datasets with columns for Name, Source, Size, and Specific Content. Rows include Ocean observation datasets 1-4 from the Ocean observation station collection, sizes from 1.01GB to 1.94GB, covering voyage, buoy, hidden target, and remote sensing data. General Datasets 1-4 from networkrepository.com, sizes from 57.3MB to 878MB, all noted as web document data.]
Table 3 | Data features algorithm adaptation comparison table.


[image: Table outlining data attributes in marine observation, contexts, and algorithm adjustments. Time-series dependency involves high-frequency sampling and sliding time window. Non-renewable nature addresses in situ sensor failure, requiring CRC verification. Large volume involves over ten gigabytes daily, needing distributed storage and space-time grid indexing.]



5.2 The relationship between hash table and bucket

Firstly, we examined the impact of mapping the hash table on the number of buckets. As shown in the Figure 6, we can indirectly optimize the number of buckets by changing the hash table. This operation can be applied to different environments, as shown in Figure 6. We can see that when we change the number of hash tables, the number of buckets will decrease as the number of hash tables decreases. Through experiments, we can see the relationship between the hash table and the number of buckets, so we can control the number by changing the number of hash tables. When faced with large-scale data, such as the storage environment of ocean observation stations, we can reduce the number of comparisons and thus reduce the computational cost of retrieval by increasing the number of buckets and dispersing the data into more buckets.

[image: Two pie charts comparing LSH hash bucket distributions. The left chart shows three buckets with Bucket1 dominating at ninety-three point eight percent. The right chart displays sixteen buckets with Bucket1 also dominating at eighty-eight percent, followed by Bucket13 with five point five percent. Both charts are color-coded with legends.]
Figure 6 | Visualization of the impact of bucket count.




5.3 Retrieve test results

On the other hand, we check whether the local sensitive hash model can provide us with a set of fingerprints similar to the fingerprint being queried by inputting the fingerprint to be queried. This section of the experiment mainly tests whether we can obtain the hash value we want through locally sensitive hashing. Therefore, in this experiment section, we added a test data block from the training set to test whether this algorithm can accurately find the data block when it reappears. We continuously input 1000 randomly selected sets of data blocks for testing. These 1000 data blocks are all from the data block groups in the

As shown in Table 4, when we input the fingerprint to be queried, the local sensitive hash model can provide us with a set of fingerprints similar to the queried fingerprint. The table shows that after each input, there is an accurate data block in memory with an Euclidean distance of 0 from the input data block fingerprint, which is the backup of the data block in memory. This also indicates that the model can accurately identify whether the data block exists in memory and that the retrieval function is intact and can be applied. After this round of experiments, we can proceed to the next section of the experiment to further verify how much computational consumption can be reduced by the retrieval technology based on locally sensitive hashing in practical applications and to improve the subsequent work.

Table 4 | Algorithm provides a schematic table of results.


[image: Table comparing similar results provided by LSH with input data block fingerprints. Each row pairs a fingerprint from the LSH results with a corresponding input fingerprint, both consisting of alphanumeric strings. Multiple rows are present, with ellipses indicating continuation.]



5.4 Mixed test results

Next, we will mix the data blocks in the training set with those that do not exist in the training set. In this experiment, we will prepare four sets of data, with a total of 1000 data blocks present in the training set, accounting for 20%, 40%, 60%, and 80%, respectively, as inputs to test the optimization ratio of the local sensitive hash based retrieval technique compared to traditional linear search in reducing the number of comparisons. As shown in Figure 7, as the proportion of the training set continues to increase, the retrieval technique based on local sensitive hashing also becomes increasingly effective in reducing the number of comparisons. This proves that in the practical application scenario of ocean observation stations, the retrieval technique based on local sensitive hashing will improve more over time compared to traditional linear search. This also greatly saves computational costs.

[image: Bar chart showing the optimization ratio across different proportions of a training set: 20%, 40%, 60%, and 80%. The optimization ratio increases significantly from about 5% at 20% of the training set to 140% at 80%.]
Figure 7 | Optimization ratio result chart.




5.5 Comparison of differences between internal and external storage fingerprint tables

In the Figure 8, for the convenience of comparison and viewing, we have subtracted the memory consumption from LSH’s memory consumption of LSH, aiming to make the comparison clearer. From the figure, we can see that under the same dataset type, the memory consumption of LSH is significantly lower than that of ordinary retrieval algorithms. This is because we store a part of the fingerprint table externally. Under the same LSH algorithm, memory consumption is lower due to the particularity of ocean observation data. Compared to the normal retrieval algorithm LSH, storing a portion of the fingerprint table externally reduces memory consumption.

[image: Line graph showing used memory against dataset size for four methods: OD+LSH (gray), GD+LSH (red), OD+Ind (blue), GD+Ind (green). All lines demonstrate an upward trend with increasing dataset size.]
Figure 8 | Memory usage comparison chart.




5.6 Data duplication removal ratio

As shown in Figure 9, the comparison between the double sliding window segmentation algorithm and the content-based segmentation algorithm in the figure shows the disadvantages of LSH. Due to its occasional errors, the proportion of duplicate data deletion may be slightly reduced. However, reducing the duplicate data deletion ratio is within our acceptable range as it can accelerate retrieval speed. This is an abandonment problem, and we can tolerate abandoning a small portion of the duplicate data deletion ratio to improve the overall system efficiency.

[image: Bar chart comparing four methods: LSH+DSW, Ind+DSW, LSH+BSW, and Ind+BSW in terms of delete bytes on the y-axis, labeled in megabytes. Ind+BSW has the highest value over 1000, while LSH+DSW and Ind+DSW show similar, lower values around 800.]
Figure 9 | Duplicate data deletion ratio result chart.





6 Conclusions and future prospects

This article proposes a fast retrieval strategy for ocean observation data based on locally sensitive hashing, aiming to reduce the computational consumption of the duplicate data deletion system during the retrieval process. In order to achieve fast retrieval, similar data blocks are placed in similar buckets. In this way, when searching for the data block, only the corresponding bucket needs to be searched for the data block, without the need to search for all the data blocks. This can achieve the goal of saving computing resources and accelerate the retrieval speed. Finally, this article demonstrates through reasonable and rigorous experiments that as the amount of data in the storage device increases, the efficiency of fast retrieval algorithms based on local sensitive hashing also increases compared to other retrieval algorithms.

In future work, we will strive to apply fast retrieval algorithms based on locally sensitive hashing to other data, making them more widely applicable.
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1 Introduction


Rivers and lakes serve as critically important water bodies on Earth’s surface. Currently, freshwater algal blooms have become a global ecological phenomenon, occurring in diverse water bodies such as lakes, rivers, and reservoirs across temperate and tropical regions, and have increased significantly over the past several decades. Since the 1980s, around 68% of the world’s lakes have undergone a persistent rise in algal bloom intensity (Ho et al., 2019; Sukharevich and Polyak, 2020). The degradation of water quality and eutrophication in global freshwater systems have emerged as significant environmental challenges, predominantly driven by anthropogenic activities and accelerating climate change (Suresh et al., 2023; Van Vliet et al., 2023; Liu et al., 2020; Wang et al., 2020). The occurrence of algal blooms in inland waters poses a serious threat to aquatic ecosystems and public health and safety (Brooks et al., 2016). Waters affected by algal blooms often exhibit high levels of eutrophication, and the subsequent death of blooms can deplete dissolved oxygen, resulting in black bloom events. Beyond degrading water aesthetics and severely damaging aquatic ecosystems, algal blooms also pose health risks to humans and animals through their associated toxins.


Remote sensing demonstrates distinct advantages in aquatic environmental monitoring through its comprehensive spatial information acquisition, operational efficiency, and cost-effectiveness. It enables the timely detection of marine environmental risks such as algal blooms and oil spills, and supports the rapid identification of water quality anomalies in coastal bays and estuarine rivers, as well as pollution source tracking. These capabilities have established novel research pathways for forecasting river-to-ocean pollution events through enhanced spatiotemporal monitoring frameworks. For example, Chen et al. (2023) used 30 years (1990–2019) of data to analyze the spatial and temporal characteristics of the Harmful algal blooms (HABs) along the Chinese coasts. To assess the feasibility of remote sensing for detecting HABs in small to medium-sized waterbodies, Liu et al. (2022) applied data from three satellites—Planetscope, Sentinel-2 and Landsat-8—to analyze the impacts of spatial resolution, spectral band availability, and waterbody size on detection accuracy. Similarly, Binding et al. (2018) investigated algal bloom dynamics in Lake Winnipeg using satellite-derived chlorophyll-a (Chl-a) and metrics of bloom intensity, spatial extent, severity, and duration over the MERIS mission period. Current remote sensing monitoring of algal blooms, however, predominantly targets large water bodies (e.g., oceans, lakes, and reservoirs), while riverine algal blooms have received disproportionately less attention. This disparity is primarily attributed to the lower bloom frequency in river systems compared to lentic ecosystems, coupled with the heightened requirements for retrieval accuracy and stability imposed by complex river hydrodynamics (Rolim et al., 2023).


Algal bloom retrieval models with remote sensing are primarily classified into three categories: empirical, semi-empirical, and physical models (Li et al., 2025; Yang et al., 2025; Vasilakos et al., 2020; Lu et al., 2020; Chen et al., 2022; Yang et al., 2022; Chang et al., 2015). Empirical and semi-empirical models primarily rely on statistical analysis to establish relationships between remote sensing signals and Chl-a concentrations through extensive field-measured datasets (EI-Rawy et al., 2020; Yang et al., 2023; Xiao et al., 2022). These models demonstrate operational simplicity and computational efficiency, but exhibit limited generalizability beyond specific study areas. In contrast, physical models are grounded in rigorous radiative transfer theory, which quantitatively describes the relationship between aquatic components and satellite-derived irradiance through specific absorption coefficients and scattering coefficients of water constituents (Li et al., 2025; Guo et al., 2022). These models simulate light propagation processes in both atmospheric and aquatic environments using radiative transfer equations, enabling quantitative inversion of water quality parameter from remote sensing data. In recent years, the rapid advancement of artificial intelligence (AI) has facilitated the successful application of machine learning algorithms, particularly Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and Random Forest (RF), in remote sensing-based monitoring of organic pollutants in aquatic environments (Vinothkumar and Karunamurthy, 2023; Zhang et al., 2022; Ruescas et al., 2018; Deng et al., 2019). Furthermore, emerging deep learning architectures have demonstrated enhanced capabilities in water color remote sensing for retrieving concentrations of critical water quality parameters (Arshad et al., 2024, 2023; Khan et al., 2023; Ullah et al., 2024). The integrated application of multi-model approaches enables complementary advantages among different methodologies, significantly enhancing the accuracy and stability of water environment remote sensing monitoring.


This study proposes an integrated approach combining satellite remote sensing with in situ measurements to establish a multi-technique collaborative monitoring framework for algal blooms in sea-reaching rivers. The framework addresses the challenges of cross-system ecological transitions and salinity gradients in river-to-sea transitional zones. A seasonal algal bloom event in the Qiantang River Basin from July to September 2016 was documented, with its complete phenological cycle (initiation, evolution, and senescence) through multi-temporal remote sensing data at a 30m resolution. The results demonstrate that the Chl-a remote sensing physical mechanism model offers advantages of robust adaptability and algorithm stability, enabling large-scale synchronous monitoring of river algal blooms. Furthermore, the integration of extensive synchronous remote sensing observations with conventional in situ point monitoring significantly enhances the spatiotemporal resolution and efficiency of river bloom surveillance.






2 Study area


The Qiantang River Basin is situated between latitude 28°N and 30.5°N and longitude 117.5°E and 120.5°E. Its main stream spans 668 kilometers, encompassing tributaries such as the Xin’an River and Fuchun River, with an average annual runoff of 43.458 m3 and a drainage area of approximately 60,000 km2 (Sun et al., 2016). The construction of multistage hydrojunction projects along the mainstem and tributaries of the Qiantang River has induced flow attenuation in certain reaches. Compounded by rapid regional socioeconomic development in recent decades, this anthropogenic modification of hydrological regimes has facilitated the persistent accumulation of nutrients (e.g., nitrogen and phosphorus) within aquatic systems. Such conditions create a critical threshold whereby algal blooms can be rapidly triggered when meteorological and hydrological parameters reach conducive levels. Seasonal algal blooms in the Qiantang River Basin were initially documented as early as the late 20th century, with particularly extensive outbreaks occurring in 2004 and 2010 that triggered severe deterioration of water quality across the watershed (Gao et al., 2025; Reinl et al., 2020; Zhou et al., 2022).






3 Data and methods





3.1 Satellite data sources and ground-based observational data


The HJ-1A/B satellites, China’s first domestically developed civilian satellites dedicated to environmental monitoring and disaster mitigation/emergency response, were launched on September 6, 2008. The HJ-1A/B satellites were each equipped with two wide-coverage multispectral CCD cameras, covering four broad spectral bands in the visible and infrared ranges. When operated jointly, these dual-camera systems achieve a 4-day revisit cycle, enabling push-broom imaging with a swath width of 720 km, a spatial resolution of 30 m, and four spectral bands. The HJ-1A/B satellites adopt a band configuration modeled after the U.S. Landsat series, featuring medium spatial resolution and broad spectral coverage, while achieving a wider swath width and shorter revisit cycle compared to their counterparts. One single image of the HJ-1A/B satellites can achieve complete coverage of the Qiantang River Basin, fulfilling the temporal resolution requirements of the study. The key parameters of the HJ-1A/B satellites’ CCD sensors are presented in 
Table 1
.



Table 1 | 
The CCD data parameters of HJ-1A/B satellites.




	ID

	Band (μm)

	Spatial 
Resolution (m)

	Swath Width (km)

	Revisit Period (day)






	1
	0.43–0.52
	30
	360 (single imager)
700 (two imagers)
	4



	2
	0.52–0.60
	30



	3
	0.63–0.69
	30



	4
	0.76–0.90
	30









Satellite imagery acquired over the Qiantang River system from July to September 2016 was screened according to the cloud cover threshold of<20%, with the final selected images presented in 
Table 2
.



Table 2 | 
Satellite data employed in this study.




	Satellite data

	Acquisition time (2016)




	July

	Aug

	Sep

	Nov






	HJ-1A/B
	22
	15
	9
	3



	25
	20
	26
	6



	26
	24
	 
	11









In addition, synchronized field investigations of algal blooms and emergency water quality monitoring were conducted from July to August 2016. Ground-based investigations employed a dual-mode approach: (1) Fixed-point instrumentation for regular monitoring of water quality parameters and algal bloom occurrence; (2) Event-driven manual sampling with laboratory quantification during bloom episodes in affected areas. Field sampling and analysis were conducted in strict compliance with applicable water quality monitoring standards. The spatial distribution of in situ fixed sampling locations is illustrated in 
Figure 1
. The monitored parameters included conventional physicochemical indicators as well as biological indicators such as Chl-a, algal density, and algal species composition and so on.


[image: Map of People's Republic of China with a detailed inset of river systems in the southeastern region. The inset highlights the Qiantang, Fenshui, Puyang, Fuchun, Xinan, Lan, Qu, and Jinhua rivers. Triangles mark fixed locations in situ.]
Figure 1 | 
Schematic diagram of river reach distribution in the Qiantang River.








3.2 Development of remote sensing retrieval model for algal blooms


The water-leaving radiance captured by satellite remote sensing sensors results from the combined effects of: (1) air-water interface reflectance and refraction, (2) water column absorption and scattering processes, and (3) benthic substrate absorption and reflectance. The spectral characteristics of water bodies are predominantly characterized by volume scattering, resulting from the combined effects of water molecules and suspended impurities within the water. The primary pollutants in the water body are suspended sediments, oxygen-consuming organic matter, and Chl-a. The inherent optical parameters (IOPs), such as absorption and scattering coefficients, exhibit wavelength-independent characteristics across the light spectrum.


The radiative transfer process in water bodies can be expressed as follows (Li et al., 2022; Lu et al., 2020): The water-leaving radiance (Lw) is composed of upwelling scattered radiance from the entire water column (Ls) and the bottom substrate-reflected radiance (Lb), as mathematically represented by Equation 1:




L
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+

L
b



(1)


Based on the radiative scattering characteristics and radiative transfer processes in aquatic environments, the determination of the total radiative transfer model for water bodies requires two essential components: 1) solution of upwelling scattering throughout the entire water column, and 2) calculation of substrate reflectance at the water bottom.


For upwelling scattering, the incident light intensity differs across varying water depths. When considering the scattering contribution from a thin water layer of thickness dh at depth h (Equation 2).
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E is the downwelling irradiance at water depth h, which can be expressed as by Equation 3
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In the equation, 
α

 denotes the total absorption coefficient of the water body, while 

β
&#x4E3A;


. represents the total scattering coefficient (Equations 4, 5).
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The symbols w, s, u and v represent pure water, suspended sediment, oxygen-consuming organic matter, and Chl-a, respectively, while d denotes the unknown concentrations of each constituent to be solved.


The incident light is first attenuated by the thin water layer. The upward scattered light then undergoes secondary attenuation through the upper water layer before emerging from the water surface. The expression is given as follows by Equation 6:
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The upwelling scattered radiance Ls of the entire water column can be derived by integrating Equation 6, as represented by Equation 7.
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, the extinction coefficient 
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Assuming the water bottom substrate is a Lambertian surface, the radiance exiting the water body is represented by Equation 8.
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The conversion from radiance to surface reflectance (Rw) is expressed as Equation 9:
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(9)


Substituting (7) and (8) into (1) and transforming to reflectance via (9) yields the general radiative transfer equation for water bodies represented by Equation 10.
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The scattering and absorption coefficients of suspended sediment, colored dissolved organic matter (CDOM), and Chl-a can be experimentally determined. The unknowns to be resolved by the model include Ds, Dv
, Du
 and water depth H and benthic substrate reflectance Rb
 (Equations 4, 5).


For the underdetermined system of equations where the number of unknowns exceeds the number of spectral bands, the Chl-a concentration in water bodies can be solved by analyzing the optical properties of the study area and selecting sensitive bands to construct the equations (Li et al., 2025; Yang et al., 2025; Liang et al., 2024). In this study, since HJ-1A/B employed consist of four spectral bands, the Chl-a concentration in water bodies was derived by solving a system of four simultaneous equations.


After a series of data processing steps, including geometric correction, radiometric calibration, radiometric correction, atmospheric correction, land-water separation, and remote sensing inversion of water quality parameters—followed by calibration using sampled laboratory measurements—the remote sensing monitoring results of Chl-a concentration and algal bloom status in the Qiantang river were finally obtained.






3.3 Geometric correction and radiometric calibration


Radiometric calibration is the process of converting the digital number (DN) values in raw imagery into radiance using calibration parameters provided in satellite data files. Radiometric correction is performed to derive planetary reflectance for all bands at each pixel from radiance using solar spectral irradiance per band, with corrections applied for solar incidence angle and viewing geometry effects.






3.4 Atmospheric correction and land-water separation


Atmospheric correction aims to remove/minimize the influence of atmospheric scattering and absorption in remote sensing data. Atmospheric correction analyzes atmospheric factors, constructs and solves models to maximally mitigate atmospheric interference. The dark target method was employed to derive the relevant atmospheric parameters in this study. To mitigate water vapor effects, clear/deep water pixels were employed as dark targets. After measuring the reflectance of clear water, the atmospheric optical thickness and transmittance were calculated to achieve atmospheric correction.


Following atmospheric correction, water-land separation was performed using a simple threshold approach with the modified Normalized Difference Water Index (NDWI) (Liang et al., 2023; Rad et al., 2021; Mcfeeters, 1996).






3.5 Retrieval of chlorophyll-a concentration in surface water


Given that phytoplankton predominantly accumulate at the air-water interface during extensive bloom events, the sensor-reaching radiance in red and near-infrared bands is mainly representative of surface water characteristics. The reflectance and absorption characteristics of Chl-a lead to a significant enhancement of spectral features in both the red and near-infrared bands, thereby providing more favorable conditions for the retrieval of Chl-a concentration. The study adopts the Chl-a water quality remote sensing physical model described in Section 2 to retrieve water Chl-a concentration through simultaneous inversion using both red and shortwave near-infrared band data (Equations 4, 5). Since the penetration depth of shortwave near-infrared radiation is approximately 25 cm, the retrieved Chl-a concentration primarily represents the surface water Chl-a level, with minimal influence from bottom reflectance.






3.6 Remote sensing index-based classification of algal blooms


Chl-a concentration thresholds serve as critical indicators for classifying algal bloom severity in aquatic ecosystem monitoring standards. Adhering to established in situ monitoring protocols and accounting for regional hydrological characteristics, this study implemented the following threshold-based classification: a mild algal bloom corresponds to Chl-a concentrations of 15–25 μg/L, a moderate algal bloom to 25–50 μg/L, and a severe algal bloom to concentrations exceeding 50 μg/L.







4 Results and discussion





4.1 Validation of accuracy


To validate the accuracy of remote sensing inversion for Chl-a concentration in water bodies, ground-based synchronous observations were collected, yielding a total of 49 paired synchronous ground observation points during satellite overpasses. 
Figure 2
 shows a comparison between the remote sensing inversion results of the algal bloom index and the in situ measured Chl-a concentrations on August 15 and August 20, 2016, during the algal bloom event in the Qiantang River. 
Figure 3
 shows the accuracy comparison between the remote sensing inversion results of Chl-a and the measured values.


[image: Two maps show algal bloom conditions in a river system on August 15 and August 20, 2016. Both include the Qiantang, Fuchun, Xinan, Lan, Jinhua, and Wuyi rivers. Color coding indicates water conditions: blue for normal water, green for mild algal blooms, yellow for moderate blooms, and red for severe blooms. Map (a) on August 15 shows multiple moderate and severe blooms. Map (b) on August 20 shows a slight reduction in severe blooms, with more areas in moderate and mild bloom states, especially around the Dongyang River. Legends and scale bars are included for reference.]
Figure 2 | 
Validation of Qiantang river algal bloom remote sensing inversion against in situ measurements with (a) (August 15, 2016) and (b) (August 20, 2016).




[image: Scatter plot showing the relationship between chlorophyll-a in situ and chlorophyll-a from remote sensing. The equation of the trend line is y equals 1.856x minus 25.847. The R-squared value is 0.6375 with a sample size of 49. The trend line indicates a positive correlation.]
Figure 3 | 
Accuracy validation of remote sensing retrieval for chlorophyll-a (Chl-a) in the Qiantang River.




As shown in 
Figure 3
, the remotely sensed Chl-a concentration exhibits good linear agreement with in situ measurements (r=0.7984), demonstrating the capability of remote sensing to capture relative Chl-a concentration trends. The field-measured data exhibit significant fluctuations, whereas the remote sensing results demonstrate more gradual variations. The possible reason is that the water sampling collects data from a single point, while the remote sensing result represents the average concentration over a 30×30 meter pixel area of the water surface. This leads to a relatively smoother variation in the remote sensing data, analogous to a low-pass filtering effect.






4.2 Spatial distribution characteristics of algal blooms


Through the aforementioned remote sensing methodology, the spatial distribution of algal blooms in the Qiantang River during satellite overpass can be accurately obtained. Unlike ground-based monitoring which can only obtain data at discrete sampling points, satellite-derived results provide the spatial distribution of Chl-a in water bodies during satellite overpasses, enabling rapid identification of the most severe algal bloom areas. Through statistical analysis methods, the occurrence area and proportion of algal blooms in each river section can be obtained. Taking the remote sensing inversion results on August 20, 2016, as an example, the algal bloom area in the main reaches of the Qiantang River within the study region was 138.93 km². Among this, the areas of mild, moderate, and severe algal blooms were 41.72 km², 51.79 km², and 45.42 km², respectively, with moderate algal bloom exhibiting the highest proportion. The results are presented in 
Figure 4
.


[image: Two pie charts depict algal bloom data. The first chart shows 71% of areas with algal blooms and 29% without. The second chart details algal bloom severity: 27% moderate, 23% severe, and 21% mild.]
Figure 4 | 
Areal percentage of algal blooms in key reaches of the Qiantang River.




Calculate the proportional area coverage of algal blooms at different severity levels for each river segment separately. On August 20, 2016, the Qiantang River mainstream section had the lowest proportion of algal bloom coverage. The Wuyi River and Xin’an River segments accounted for the largest proportion of severe algal bloom coverage, with approximately half of their water areas affected by intense blooms, as shown in 
Figure 5
.


[image: Bar chart depicting algal bloom severity across nine rivers. Each bar is divided into sections representing normal water, mild, moderate, and severe algal blooms. Fuchun River exhibits the highest levels across all categories, while Puyang River shows predominantly normal water conditions.]
Figure 5 | 
Distribution of algal bloom area in the main reaches of the Qiantang River water system.








4.3 Remote sensing monitoring of algal bloom evolution processes


Statistics and comparative analysis of multi-temporal remote sensing inversion results can elucidate the temporal evolution of algal blooms. Remote sensing analysis reveals that the algal bloom dynamics in the Qiantang River system, occurring from July to September 2016, exhibited four characteristic phases: incipient stage, proliferation stage, climax stage, and regression stage, as shown in 
Figure 6
.


[image: Satellite images showing algal blooms in different regions from July to September 2016. Each panel displays the changes over time with a legend indicating water conditions: blue for normal water, green for mild algae, yellow for moderate algae, and red for severe algal blooms. Locations labeled include Hangzhou, Fuchun River, Xinan River, Lan River, Jinhua, Quzhou, and surrounding rivers.]
Figure 6 | 
Satellite remote sensing of algal blooms of 2016 in the Qiantang river: (a) July 22, (b) July 25, (c) July 29, (d) August 15, (e) August 20, (f) September 26.




	
In the initial stage of algal bloom occurrence, as shown in the satellite remote sensing results of the Qiantang River water system on July 22, 2016, the bloom intensity was predominantly mild. A large area of moderate to severe algal blooms occurred in the river section between Lan river and Xin’an river and the confluence of the Fuchun river and Fenshui river. Meanwhile, the algal bloom area in major tributaries such as the Xin’an river further expanded, with increased bloom intensity.


	
During the algal bloom development phase, as shown by the satellite remote sensing results of the Qiantang River system on July 25, the spatial distribution of blooms in the main channel had expanded from the lower reaches of the Lan river to the Fuyang city section in the upper reaches of the Fuchun River, though the bloom intensity remained predominantly mild. A large area of moderate to severe algal blooms occurred in the river section between at the confluence of the Lan river and Xin’an river and the confluence of the Fuchun river and Fenshui river. Meanwhile, the algal bloom area in major tributaries such as the Xin’an River further expanded, with increased bloom intensity.


	
The peak bloom period, as demonstrated by the satellite remote sensing results of the Qiantang river water system on July 29, 2016. The distribution range of algal blooms in the main channel had covered the river section from the lower reaches of Lan river to the upper reaches of Fuchun river (Fuyang City segment). Meanwhile, large-scale severe algal blooms in other river sections further intensified with continued expansion in coverage area. After August 15th, the intensity of algal blooms in the Qiantang river water system began to intensify again. The satellite remote sensing results of algal blooms in the Qiantang river system on August 20 show that the distribution of algal blooms has spread throughout the main river channel upstream of the Qiantang river, as well as major tributaries such as the Xin’an river and Jinhua river. Moreover, severe algal blooms in the main channel have covered the Fuchun river and Lan river. The algal blooms in major tributaries such as the Xin’an river were also predominantly severe, reaching the peak of both distribution area and intensity during this bloom event. The algal bloom in the Qiantang river on August 24 maintained the outbreak status observed on August 20, with similar distribution patterns and coverage extent. The bloom had spread across the main channel upstream of Qiantang river, as well as major tributaries including the Xin’an river and Jinhua river.


	
The algal bloom decline phase, as demonstrated by the satellite remote sensing results of the Qiantang River water system on September 26, both the intensity and spatial distribution of the bloom gradually diminished after early September. By mid-to-late September, specifically around September 25, the river conditions had essentially returned to their original state.










5 Conclusion and prospects


Grounding in radiative transfer mechanisms, this research established a physics-driven model for Chl-a concentration retrieval from pixel reflectance of remote sensing. The model explicitly accounts for Chl-a, delivering transparent inversion mechanisms and physically interpretable parameters. By exclusively retrieving the surface Chl-a concentration, this approach can effectively reflect the actual conditions of algal blooms. Validation shows a good linear relationship (R=0.7984) between the remote sensing retrieval results and in situ measurements, confirming the reliability of satellite data in monitoring algal bloom dynamics in the Qiantang River.


Given the vast area of the Qiantang River Basin (approximately 50,000 km²), high-resolution satellites with limited swath width were inadequate for complete coverage. The study employed HJ-1A/B satellite data (Environment Satellite) which provides single-scene coverage of the entire study area. However, data availability was constrained by adverse weather conditions and satellite imaging schedules, with particularly scarce acquisitions during early-mid September and October when no usable data were available. Therefore, for emergency water quality monitoring of inland rivers and lakes, multi-source satellites such as Gaofen-1 (GF-1) or Sentinel can be employed to compensate for the temporal coverage limitations of single satellite. With the advancement of deep learning theory, integrating deep learning into quantitative remote sensing physical models is expected to improve the accuracy of remote sensing inversion as well as enhance the model’s dynamic predictive capabilities. This will achieve a transition from status monitoring to early warning of algal blooms for river systems.
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Synthetic aperture radar (SAR) images have all-weather observation capabilities and are crucial in ocean surveillance and maritime ship detection. However, their inherent low resolution, scattered noise, and complex background interference severely limit the accuracy of target detection. This paper proposes an innovative framework that integrates super-resolution reconstruction and multi-scale maritime ship detection to improve the accuracy of marine ship detection. Firstly, a TaylorGAN super-resolution network is designed, and the TaylorShift attention mechanism is introduced to enhance the generator’s ability to restore the edge and texture details of the ship. The Taylor series approximation is combined to optimize the attention calculation, and a multi-scale discriminator module is designed to improve global consistency. Secondly, a hierarchical multi-scale Mask R-CNN (HMS-MRCNN) detection method is proposed, which significantly improves the multi-scale maritime ship detection problem through the cross-layer fusion of shallow features (small targets) and deep features (large targets). Experiments on SAR datasets show that TaylorGAN has achieved significant improvements in both peak signal-to-noise ratio and structural similarity indicators, outperforming the baseline model. After adding super-resolution reconstruction, the average precision and recall of HMS-MRCNN are also greatly improved.
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1 Introduction


Synthetic aperture radar (SAR) as an active microwave remote sensing imaging technology, with its all-weather, all-day capability, and low dependence on weather and lighting conditions, has important applications in the fields of marine surveillance, ship detection, etc (Gao et al., 2024; Meng et al., 2024; Wu et al., 2024). SAR imagery is able to provide high-resolution data under complex weather conditions, which makes it an ideal tool for monitoring ship activities at sea. However, low-resolution SAR images can have an adverse effect on the identification of marine vessels. Due to the low resolution of the equipment and the complex imaging environment, low-resolution images often lack sufficient details, especially in complex backgrounds, and are often affected by scattering noise, background clutter, etc (Li et al., 2023; Cao et al., 2024). Using super-resolution reconstruction technology, more image details can be restored without increasing the hardware costs. Therefore, the development of a method that combines image super-resolution reconstruction with target detection can not only improve the utilization value of SAR images but also provide more efficient technical support for ensuring maritime safety and monitoring maritime traffic (Tang et al., 2024).


Super-resolution (SR) technology, as an effective means to improve image quality, has received widespread attention in SAR image processing (Jiang et al., 2024). SR algorithms for images are mainly categorized into two types: traditional methods and methods of deep learning. In traditional methods, interpolation methods predict unknown pixel information based on known pixel points to improve image resolution. Common interpolation methods include nearest neighbor interpolation (Blu et al., 2004), bilinear interpolation (Tong and Leung, 2007), and bicubic interpolation (Chang et al., 2004). Although the interpolation method is faster in reconstruction, it does not utilize a priori knowledge in the low-resolution image, so the reconstructed high-resolution image lacks the main texture information, whereas in reconstruction-based methods a priori information is introduced as constraints to reconstruct the image. The main reconstruction-based methods are the convex set projection method (Tom and Katsaggelos, 1996), the iterative inverse projection method (Irani and Peleg, 1991), and the maximum a posteriori probability estimation method (Liu and Sun, 2013). Reconstruction-based methods have limited utilization of prior knowledge, and learning-based methods, in order to improve this problem, introduce external datasets for training in order to learn more information about the image so that the reconstruction results contain more high-frequency details. Learning-based methods can be categorized into shallow learning methods and deep learning methods. Shallow learning methods mainly include based sample learning (Freeman et al., 2002), based neighborhood embedding (Chang et al., 2004), and based sparse representation methods (Xu et al., 2019). Shallow learning methods can achieve better results when trained on small-scale datasets, but the learning ability of the model needs to be improved. In recent years, deep learning-based methods have made great breakthroughs in the work of super-resolution reconstruction of images, and the deep learning methods are mainly based on three types of baseline networks: convolutional neural networks, generative adversarial networks, and attention mechanism networks. In 2014, Dong et al. proposed a super-resolution convolutional neural network (SRCNN), which is firstly applied to SR reconstruction, and the network convolves the input image through three layers (feature extraction and representation layer, nonlinear mapping layer, and reconstruction layer), it realizes the mapping from low resolution to high resolution, and the reconstruction effect on image resolution is better than the traditional reconstruction methods (Dong et al., 2014). In 2017, Legid et al. proposed the super-resolution generative adversarial network (SRGAN), which is the first time that generative adversarial networks (GANs) have been applied to the field of SR reconstruction. The network makes good use of the generative-adversarial properties of GAN networks, the generator and discriminator are trained alternately until convergence, the output shows more realistic texture details compared to traditional reconstruction methods, and the resolution is significantly improved visually (Ledig et al., 2017). In 2018, Zhang et al. proposed the residual channel attention network (RCAN), introduced the channel attention mechanism into the SR reconstruction task, and designed a deep residual channel convolutional network (Zhang et al., 2018). The network can learn the information of different channels of the feature map, set different weights for each channel, and finally reconstruct a high-resolution image. In recent years, with the excellent performance of Transformer in other image processing fields, scholars have begun to pay attention to the combination of Transformer and SR tasks. In 2020, Yang et al. proposed a texture transformation network (TTSR) for image super-resolution, which can combine low-frequency and high-frequency information to learn the deep correspondence of images, thereby stacking texture details in high-resolution images across scales and enhancing the reconstruction results (Yang et al., 2020). Due to the excellent performance of deep learning in optical image super-resolution, deep learning-based methods have been applied to SAR image super-resolution reconstruction in recent years. In 2018, Wang et al. directly applied the SRGAN network to the Terra-SAR dataset and achieved excellent results in reconstruction accuracy and computational efficiency (Wang et al., 2018). In 2019, Gu et al. proposed a DGAN network for the super-resolution reconstruction of pseudo-high-resolution SAR images, which effectively removed noise from SAR images and improved the resolution of SAR images (Gu et al., 2019). In 2020, Shen et al. used residual convolutional neural networks to improve the spatial resolution of polarimetric SAR images, which was superior to traditional methods in terms of image detail preservation (Shen et al., 2020). In 2022, Smith et al. proposed a SAR image super-resolution reconstruction method based on residual convolutional neural networks, which was superior to traditional methods in terms of reconstruction accuracy and computational efficiency. This method combines ViT with CNN for the super-resolution reconstruction of near-field SAR images, enhancing the details of the generated images (Smith et al., 2022). In 2023, Zhang et al. proposed a learnable probabilistic degradation model, which introduces SAR noise before the cycle-GAN framework, learns the relationship between low-resolution and high-resolution SAR images, and improves the resolution of SAR images (Zhang et al., 2023a). In 2024, Jiang et al. proposed a lightweight super-resolution generative adversarial network (LSRGAN), which improved the resolution of SAR images by introducing deep separable convolution (DSConv) and SeLU activation function, and constructed a lightweight residual module (LRM) to optimize the GAN network for SAR images (Jiang et al., 2024). In addition, the feature learning capability of the model is significantly improved by combining the optimized coordinated attention (CA) module.


The biggest feature of the traditional SAR image ship detection algorithm is manual extraction. The manual extraction process first preprocesses the image to reduce the image noise; secondly, sea and land segmentation is performed to prevent the near-coastal land area from interfering with the ship detection; finally, the ship is detected. The constant false alarm rate (CFAR) algorithm (Baldygo et al., 1993) is one of the most classical methods in traditional SAR target detection. The algorithm models the ocean background clutter and distinguishes between target ships and background noise. CFAR algorithm does not apply to complex ocean backgrounds or ship targets with different directions, lengths, and widths, and its generalization performance is poor. With the development of artificial intelligence technology, target detection methods based on deep learning are applied by researchers in the field of SAR ship detection, which can be divided into one-stage and two-stage methods. One-stage methods treat all regions of the image as potential target regions and use only one deep convolutional network to recognize the target, which is faster, such as the YOLO series (Redmon, 2016; Ge, 2021). Two-stage methods use region suggestion module or selective search method to localize and recognize targets with higher accuracy (Su et al., 2022), such as R-CNN (Girshick et al., 2014), Faster R-CNN (Ren, 2015), Cascade R-CNN (Cai and Vasconcelos, 2018), Grid R-CNN (Lu et al., 2019), etc. Girshick et al. applied a convolutional neural network (CNN) for the first time to the target detection task and built an R-CNN network, thus achieving good results. Faster R-CNN extracts candidate frames by regional recommendation networks (RPN) and introduces a multi-task loss function, which shows good performance in target detection. In addition, researchers have proposed a large number of methods for the problem of target detection in SAR images. In the same year, Sun et al. (2021) proposed an anchor-free ship detection framework named CP-FCOS, which employs a category-position module to improve localization accuracy by guiding the position regression branch using semantic classification features. Zhang et al. (2021) proposed a novel quadruple pyramid network consisting of four FPNs and conducted experiments on five common SAR datasets, achieving good results. The authors also verified that Quad-FPN has good transferability. In 2022, Tang et al. proposed an algorithm based on Faster R-CNN for target detection in SAR images by using the Bhattacharyya distance (BD) instead of intersection over union (IoU) to avoid the limitations of the commonly used intersection over union ratio in target detection networks for small target recognition, which was evaluated on the LS-SSDD-v1.0 dataset and achieved significant detection results (Tang et al., 2022). In 2023, Zhang et al. proposed the SCSA-Net to address the effects of complex noise and land background interference on target detection in SAR images and also proposed the global average precision loss (GAP loss) to solve the “fractional bias” problem (Zhang et al., 2023b). In 2024, Yasir et al. (2024a) proposed the lightweight YOLOShipTracker model, which was optimized for YOLOv8n via the HGNetv2 reconciliation header and combined with a novel multi-target tracking technique (C-BIoU) to enable efficient, real-time tracking of ships in short-duration SAR image sequences. In the same year, Yasir et al. (2024b) also developed SwinYOLOv7, which combines YOLOv7 with the Swin Transformer and the CBAM Attention Module to demonstrate excellent performance in a variety of SAR datasets, especially in cluttered and near-shore environments. In addition, MGSFA-Net, a multi-scale global scattering feature association network for SAR ship identification, is introduced by Zhang et al. (2024). Their method can effectively capture the intrinsic physical scattering features and significantly improve the identification performance even with limited training data. However, the SAR image itself has limited resolution, which makes it difficult to present key details such as ship contours and deck structures, which will affect the detection algorithm’s complete identification of targets. At the same time, the existing target detection methods still have the problem of lack of balance when facing multi-scale targets, which makes it difficult to take into account the small and large targets, resulting in some scale targets being missed.


In order to solve the abovementioned problems, this paper proposes a hierarchical multi-scale marine ship detection method based on Mask R-CNN to accurately detect ships and combines the TaylorGAN super-resolution reconstruction algorithm to enhance the resolution of SAR images.


The main contributions of this paper are as follows:


	
The TaylorGAN super-resolution reconstruction algorithm is proposed by introducing the TaylorShift attention mechanism in the GAN network to improve the resolution of ship image details, especially to enhance the sharpness of ship edges;


	
A hierarchical multi-scale marine ship detection method based on Mask R-CNN is proposed. Different convolutional layers are used to extract the large and small target features of SAR images, respectively. The extracted features are introduced into the RoI Align layer. The multi-scale features are balanced through L2 normalization to improve the detection accuracy.


	
The problem of insufficient detection of small targets is solved by fusing multi-scale feature information to avoid the degradation of detection accuracy due to low resolution.





The subsequent sections of the paper are organized as follows: Section 2 presents a detailed description of the proposed framework, including the TaylorGAN-based super-resolution reconstruction method and the HMS-MRCNN multi-scale ship detection architecture. Section 3 introduces the SAR datasets used in this study, elaborates on the experimental setup, outlines the evaluation metrics, analyzes the detection performance across various models, and reports results from comprehensive ablation studies. Section 4 concludes the paper by summarizing the major findings and highlighting potential directions for future research.







2 Methodology


This section first describes the TaylorGAN super-resolution reconstruction network. Secondly, the hierarchical multi-scale Mask R-CNN architecture proposed in this study is described in detail.





2.1 Super-resolution reconstruction network architecture


Existing super-resolution reconstruction algorithms are often faced with the problems of blurred edges and degraded structures when directly applied to SAR images, which make it difficult to meet the needs of fine reconstruction. For this reason, this paper proposes a network structure called TaylorGAN to improve the super-resolution quality of SAR images, and the overall architecture is shown in 
Figure 1
, including a generator and a discriminator.


[image: Flowchart illustrating a neural network architecture for image processing. It starts with a low-resolution (LR) image, processed through convolutional (Conv) and ReLU layers, followed by multiple TaylorShift blocks and upsampling. A series of processing steps, including linear operations, concatenation, and more TaylorShift blocks, culminate in generating high-resolution (HR) and super-resolution (SR) images. The steps involve downsampling, heads, and CLS connections. The diagram uses different shapes and colors to represent various operations in the network.]
Figure 1 | 
TaylorGAN network architecture.




The generator takes a low-resolution SAR image as inputs and gradually restores the resolution of the image through the multilayer TaylorShift attentional module and the step-by-step upsampling structure while enhancing the ability to model the global structure and local details of the image. Although the TaylorShift mechanism itself does not directly enhance the image details, the model can effectively capture the high-frequency regions such as hull contours and edges with the help of the hierarchical upsampling and feature fusion structure so as to realize high-quality detail reproduction.


The discriminator adopts a multi-scale structure design, combined with the TaylorShift attention module, to extract features at multiple spatial resolutions, perceive the differences between local details and the global structure of the image, and ultimately output the true/false prediction results through the classification header and to effectively optimize the training direction of the generator.





2.1.1 Generator


The upper part of 
Figure 1
 is the generator of TaylorGAN, which can be divided into three main modules: input module, feature extraction module, and image reconstruction module. The low-resolution SAR image is used as input, denoted as 
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, where C represents the number of image channels, and H and W represent the height and width of the image, respectively. First, the initial features are extracted by the embedding module composed of convolutional layers and ReLU activation function, and it is represented as 
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. Subsequently, the embedded features are processed by the layer Grid TaylorShift Block, and the attention mechanism is used to capture the long-distance dependencies in the image and model the local semantic information. The TaylorShift attention mechanism replaces the Softmax function by Taylor series expansion, greatly reducing the computational complexity until the resolution is increased to 
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. In order to gradually improve the image resolution, the generator designs multiple upsampling modules to improve the reconstruction accuracy by gradually expanding the spatial scale. After each level of upsampling, the TaylorShift attention module is stacked to further enhance the feature representation ability, especially the modeling ability of high-frequency details such as edges and contours, thereby improving the clarity and structural consistency of the generated image. Finally, through a set of convolutional layers and Tanh activation functions, the feature map is mapped to the output image at the target resolution 
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, and r is the magnification factor.






2.1.2 Discriminator


The lower part of 
Figure 1
 shows the discriminator of TaylorGAN, whose input is the super-resolution SAR image generated by the generator. To achieve multi-scale discrimination, the image is divided into three blocks of different scales (P, 2P, and 4P), corresponding to the feature sequences of 
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, respectively. Each set of sequences is sent to the corresponding TaylorShift block through linear mapping to extract semantic features at different scales. Finally, the discriminator uses a downsampling module to reduce the resolution of the feature map, and the connection block fuses features of different scales so that the model can perceive the global structure and local details of the image at the same time. To evaluate the overall authenticity of the image, a [CLS] tag is added at the end of the discriminator. This tag interacts with all image tokens through a multi-layer attention mechanism, and only the output features of this tag are used as the classifier input so that the discriminator can comprehensively judge the global consistency and detail rationality of the image. Finally, the real/generated discrimination result is output through the classification head to assist the generator in optimizing the image quality.






2.1.3 TaylorShift attention mechanism


The traditional self-attention mechanism has a computational bottleneck, and its time and space complexity are both 

O
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, where N is the length of the token sequence (that is, the number of patches in the image). When processing high-resolution images (such as 256 × 256), the memory usage and inference time increase dramatically, which seriously restricts the scalability of the model. TaylorShift (Nauen et al., 2025) Attention Mechanisms is a variant of Transformer that approximates the exponential operations in a Softmax function by Taylor series expansion. The TaylorShift attention mechanisms are categorized into direct TaylorShift and efficient TaylorShift.


1. Direct-TaylorShift


The Taylor approximation is applied to Softmax in Taylor-Softmax to avoid the computation of the exponential function, and the k-order (kth) Taylor expansion formula is Equation 1:
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The Taylor-Softmax formula is Equation 2:
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In Direct-TaylorShift, Taylor-Softmax is used directly instead of Softmax to compute the attention weights and multiply the computed result with the value matrix V. The formula is Equation 3:
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 is the same Taylor expansion operation performed on each line of 
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, and normalization is performed on each line. The denominator ensures that the output is normalized across tokens, making the weights valid for each token. This expression is suitable for scenarios with a small number of tokens (such as 32 × 32 and below). It significantly reduces the reliance on exponential functions and is faster to calculate, but the computational complexity is 
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2. Efficient-TaylorShift


For further optimization, TaylorShift introduced an efficient implementation form Efficient-TaylorShift. If the length of the feature sequence exceeds a certain threshold, it is more appropriate to use Efficient-TaylorShift. It is performed by assigning Taylor-Softmax values to the matrices Q and K and moving the normalization operation after multiplying it with the value matrix V. The formula for normalization is Equations 4–6:
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⊙

 denotes Hadamard multiplication (element-level multiplication), 


1
N



 denotes a vector of length N with all ones. 
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 denotes the weighted attention score, and 
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 denotes the value used for normalization.


By changing the calculation order, Efficient-TaylorShift reduces the computational complexity of traditional attention from 
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, which is suitable for processing tens of thousands of tokens in high-resolution images. The reduction in computational complexity enables the model to better capture global dependencies and improve the integrity and consistency of image structure.


In this paper, the TaylorShift attention mechanism is integrated into two different module structures: TaylorShift Block and Grid TaylorShift Block, which correspond to two application scenarios of sequence modeling and spatial modeling, respectively. TaylorShift Block is suitable for processing flattened image patch token sequences. The input is a one-dimensional token sequence. The module calculates the long-distance dependencies between different tokens through TaylorShift attention to model the overall semantic information of the image. In contrast, Grid TaylorShift Block is designed for feature map input that retains the spatial structure of two-dimensional images. The module calculates self-attention along the row and column directions of the image, respectively, to more efficiently capture local spatial relationships in the image, such as edge and texture information.








2.2 HMS-MRCNN


The paper proposed a hierarchical multi-scale SAR image marine ship detection method based on Mask R-CNN as shown in 
Figure 2
, which is mainly divided into three parts, i.e., the feature extraction module, the region suggestion network, and the prediction module. The feature extraction and fusion module is used to extract the multiscale features of the ship in the SAR image and fuse the different features. The region suggestion network is used to identify potential regions of interest. The prediction module classifies and regresses the candidate boxes and outputs the final bounding box.


[image: Diagram of a convolutional neural network architecture for object detection. It includes multiple convolutional layers (Conv1 to Conv5) with pooling and L2 normalization, followed by an RPN (Region Proposal Network) for generating bounding boxes. The network uses ROI alignment and concatenation, proceeds through fully connected layers and 1x1 convolution operations, and applies a Softmax function for classification. The output includes bounding boxes and a result image.]
Figure 2 | 
HMS-MRCNN network architecture.







2.2.1 Feature extraction module


In the feature extraction module, the SAR images are fed into the network, and the features are first extracted by a backbone network consisting of five convolutional layers that capture the multi-scale features of the ship. Conv1 and Conv2 are feature preprocessing modules in the initial stage of the model. They are mainly used for preliminary feature encoding and spatial downsampling of the input SAR images, helping the model to extract clearer local structural information from the original images. The two middle layers are shallow convolution layers (Conv3–Conv4), which mainly capture the local structural information of small-scale ships. The last layer is a deep convolution layer (Conv5) used to obtain high-level semantic features and contextual relationships of the image. The output feature maps of Conv3 and Conv4 are subjected to 2 × 2 maximum pooling operations to reduce their spatial size so that they maintain the same spatial resolution as the large-scale ship feature maps (such as the feature maps of Conv5). In order to eliminate the numerical differences between feature maps of different layers, the spliced feature maps need to be L2-normalized to ensure that the numerical range of each feature is consistent.


The pooled small-scale feature map, together with the deep feature map (Conv5 output), is input into RoI Align for further processing.






2.2.2 Regional recommended networks—RPNs


The feature maps extracted by the convolutional layers are fed into the RPN, where the small ship feature maps are sequentially passed through cascading convolutional layers of sizes 1 and 3 to ensure that the feature maps can be matched with the output features of the backbone network. The RPN recognizes the ship features of the SAR image for bounding box regression and generates a set of RoI that are considered as possible ship locations, which include the ship regions in the SAR image of the SAR image for the bounding box regression values. In addition, the RPN needs to determine whether each RoI contains a ship and the precise location of the ship.


RPN uses a 3 × 3 convolutional filter to scan the entire feature map. At each ship location in the feature map, RPN generates multiple anchor boxes with different aspect ratios, which are used to capture ship targets of different sizes and shapes. After generating the anchor boxes, RPN performs two steps: target discrimination and bounding box regression. In the target discrimination task, RPN determines whether the anchor box contains a ship target or not and applies a binary classification method to marine ship detection, i.e., whether the anchor box contains a ship or not, and scores it. RPN performs an accurate bounding box regression task (Bbox) on the anchor boxes that are judged to be ships, adjusting the sizes and shapes of the boxes to better fit the ship targets.






2.2.3 Forecasting module


The low-level feature map and the output results of the five-layer convolution are fused through RoI Align. RoI Align first divides each RoI into a fixed number of sub-regions. In each sub-region, RoI Align uses bilinear interpolation to extract image features. These feature blocks are spliced together to form a unified feature map. On this basis, L2 normalization is performed to ensure that the features between different RoI are numerically consistent. The spliced and normalized feature maps are further processed through a 1 × 1 convolution layer. The processed feature maps will be used for target classification (Softmax) and bounding box regression (Bbox) tasks. The classification task is responsible for determining whether each RoI contains a target, and the bounding box regression further accurately adjusts the position of the candidate box to ensure that the final output bounding box is more accurate.







2.3 Loss function





2.3.1 Super-resolution reconstruction loss function


The generated network loss function 
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 can be divided into three parts: the traditional pixel-by-pixel difference MSE-based loss 
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 based on the VGG (Mateen et al., 2018) network.


Define the low-resolution image as 
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; the super-resolution magnification is 
r

, and W×H and 

r
W
×
r
H


 are used to denote the size of the 


L

L
R




 and 


L

H
R




 images, respectively, while G denotes the super-resolution reconstruction process of the generator, and D denotes the authenticity process of the discriminator.


The formula for the MSE pixel loss 
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The formula for perceived loss 
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where 
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 denotes the feature mapping map between the i-th largest pooling layer and the j-th convolutional layer in the VGG model, and (i,j) is the corresponding feature map dimension. 


W

i
,
j




 and 


H

i
,
j




 denote the dimensions of the current layers of the VGG19 network, respectively.


Against loss 
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 The formula is Equation 9:
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Because GAN needs to play a game between the generative network and the adversarial network in training, the reconstruction results are prone to the “artifacts” phenomenon because of the poor stability of its network training and the difficulty of convergence of the model. To address the abovementioned problems, this paper combines the reconstruction quality evaluation index Structural Similarity Index (SSIM) to introduce the structural loss function 
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, whose formula is Equation 10:
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where 
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 is the structural similarity between the i-th batch of reconstructed super-resolution image 
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 of the generative network and the reference high-resolution image 
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Therefore, the loss function of TaylorGAN is Equation 11:
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λ

, 
η

, and 
ξ

 represent the weights of adversarial loss, pixel-level loss, and structural similarity loss, respectively.






2.3.2 Marine ship detection loss function


The marine ship detection loss function is Equation 12:
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where 
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 denote the classifier loss and the bounding box regression loss, respectively, and 
λ

 is the weight parameter. The focal loss function is used for the classification loss, and the formula is Equation 13:
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γ

 is used to control the weights of easily categorized samples, and 


α
i



 is used to solve the problem of category imbalance.


For the bounding box regression loss function, we use the CIoU (complete intersection over union) loss function. CIoU is an extension of IOU, which takes the center offset of the bounding box as well as the aspect ratio into account, and it is suitable for high-precision marine ship detection with Equation 14:
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where IoU is used to compute the intersection and concurrency ratio between the prediction frame 
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 and the real frame 
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3 Experimental results


This section first introduces the SAR image dataset used in this study, then describes the evaluation indicators used in the experiment, and finally gives a comprehensive analysis of the experimental results.





3.1 Datasets


The SSDD dataset (SAR Ship Detection Dataset) was originally proposed by Li et al. (2017) and contains 1,160 SAR image slices, each with a resolution of 500 × 500 pixels. The dataset uses data from multiple satellite sources such as Sentinel-1, TerraSAR-X, and RadarSat-2. In order to improve the computational efficiency, these image slices are resized to 256 × 256 pixels. The selected data is divided into three subsets: training set (70%), validation set (10%), and test set (20%).


The SAR-Ship dataset (Wang et al., 2019) contains 102 images from China’s Gaofen-3 satellite and 108 images from Sentinel-1. The dataset contains 43,819 ship slices, each with a resolution of 256 × 256 pixels. This paper selects 3,000 data slices for super-resolution and target detection experiments and divides these slices into three subsets: training set (70%), validation set (10%), and test set (20%).






3.2 Evaluation metrics


In the super-resolution experiment, this paper uses peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and MSE to evaluate the experimental effect of super-resolution reconstruction. This paper takes the original image of each dataset as a high-resolution image and obtains the corresponding low-resolution image through bicubic interpolation.


PSNR is defined by MSE, which is calculated as shown in Equation 15:
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 are high-resolution SAR images and super-resolution SAR images, respectively, both of which have the dimensions 
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The formula for PSNR is Equation 16:
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SSIM is based on three evaluation metrics: brightness, contrast, and structure, with Equations 17–20:
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γ

 are used to adjust the brightness, contrast, and structure of the weight look; when it is 1, SSIM can be simplified as shown in Equation 21:
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where 
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 are used to ensure the stability of SSIM.


In marine ship detection experiments, this paper uses accuracy, recall, and mean average precision mean (mAP) as evaluation metrics. Recall is defined as shown in Equation 22:
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TP is true positives, which denotes the number of correct positive samples, and FN is false negatives, which denotes the number of incorrect negative samples. Recall is used to measure the detection model’s rate of checking completeness. Precision is defined as shown in Equation 23:



Precision
=


TP


TP
+
FP




(23)


FP stands for false positives and denotes the number of false positive samples. Precision is used to measure the model’s checking accuracy, which is related to the false alarm probability Pf. mAP is defined as shown in Equation 24:



mAP
=



∫
0
1


p

(
r
)

d
r





(24)




r

 denotes recall, P denotes precision, and 

p

(
r
)



 denotes the precision–recall curve (P–R curve). The computational process of mAP is essentially to find the area under the PRC curve. Because mAP considers both recall and precision, it has been chosen as the sole core measure of detection accuracy.






3.3 Experimental details


In this paper, NVIDIA GTX 4090 GPU is used to train the network model. The training process parameters for the super-resolution reconstruction experiments are set as follows: the initial learning rate is 2e-4, and the learning rate decays by half after 50 iterations. The optimizer is Adam, the batch size is 8, and the total number of epochs is 100. The training process parameters for the marine ship detection experiment are set as follows: the initial learning rate is 0.01, and the final learning rate is reduced to 1e-3. The input image size is 256×256, the optimizer is Adam, and the batch size is 8, with 150 iterations. The software applications used included Pytorch version 1.12.0 with CUDA 12.4 and Python 3.9.






3.4 Experimental results of super-resolution reconstruction of SAR images


In order to evaluate the excellent performance of TaylorGAN in the super-resolution reconstruction of SAR images, we compare it with other super-resolution reconstruction models, and the results of the comparison are analyzed by evaluating the metrics and visual effects. The comparison methods include bicubic, SRCNN, SRGAN, LSRGAN, and cycle-GAN.





3.4.1 Quantitative results


As shown in 
Table 1
, the performance of six super-resolution methods is evaluated across two SAR datasets, SSDD and Ship-SAR, under an amplification factor of 4. The results indicate that TaylorGAN achieves consistent improvements across all evaluation metrics, outperforming both GAN-based and non-GAN-based baselines.



Table 1 | 
Comparison of the metrics of different methods at an amplification factor of 4.





	Method

	SSDD

	Ship-SAR




	PSNR

	SSIM

	MSE

	PSNR

	SSIM

	MSE






	Bicubic
	19.51
	0.3713
	0.2594
	20.43
	0.4065
	0.2619



	SRCNN
	22.36
	0.6176
	0.2710
	22.56
	0.6730
	0.2284



	SRGAN
	23.31
	0.7146
	0.2519
	21.68
	0.5211
	0.2405



	LSRGAN
	24.12
	0.7508
	
0.2373

	23.04
	0.6970
	0.2151



	Cycle-GAN
	21.34
	0.5175
	0.2413
	21.80
	0.5382
	0.2498



	TaylorGAN
	
25.43

	
0.7931

	0.2481
	
24.55

	
0.7721

	
0.2030








The best results are indicated in bold.




On the SSDD dataset, TaylorGAN attains the highest PSNR (25.43 dB) and SSIM (0.7931), alongside the lowest MSE (0.2481). Among GAN-based models, it surpasses LSRGAN—the second best performer—by 1.31 dB in PSNR, 0.0423 in SSIM, and a 0.0102 reduction in MSE. Compared to Cycle-GAN, TaylorGAN shows more pronounced enhancements, with a 4.09-dB gain in PSNR, 0.2766 in SSIM, and 0.0072 lower MSE. Notably, when benchmarked against non-GAN approaches such as SRCNN, TaylorGAN yields an increase of 3.07 dB in PSNR, 0.1765 in SSIM, and 0.0229 decrease in MSE, reflecting its superior capability in structure preservation and noise suppression.


On the Ship-SAR dataset, similar trends are observed. TaylorGAN has a PSNR of 24.55 dB, a SSIM of 0.7721, and an MSE of 0.2030, outperforming other methods in all indicators. Compared with GAN-based models, TaylorGAN surpasses LSRGAN by 1.51 dB, 0.0754, and 0.0121 in PSNR, SSIM, and MSE, respectively. In addition, compared with Cycle-GAN, TaylorGAN improves by 2.75 dB, 0.2339, and 0.0468 in the three indicators, respectively. Compared with the non-GAN baseline SRCNN, its improvement is also very significant, with a PSNR increase of 2.00 dB, a SSIM increase of 0.0991, and an MSE reduction of 0.0254.






3.4.2 Qualitative results




Figures 3
 and 
4
 qualitatively compare the super-resolution reconstruction results on the SSDD and SAR-Ship datasets, respectively. These figures show the visual effects of different models on improving the resolution of SAR images. As shown in the figure, TaylorGAN is able to consistently generate images with clearer textures and higher visual fidelity than other methods. In particular, TaylorGAN is able to effectively recover the structural details of the ship and suppress background noise, showing its advantage in recovering fine-grained features. In contrast, non-GAN-based models such as bicubic interpolation and SRCNN produce significantly blurred results. Although SRCNN was originally proposed for the super-resolution reconstruction of natural images, it does not generalize well on SAR data due to its simple structure and limited ability to model high-frequency components. GAN-based models, such as SRGAN, LSRGAN, and cycle-GAN, provide better performance than non-GAN baselines by generating clearer contours and richer textures. However, these methods often suffer from artifacts or excessive noise. Overall, the visual results in 
Figures 3
 and 
4
 demonstrate the superior perceptual quality of TaylorGAN across different SAR image scenarios, further confirming its effectiveness in high-fidelity SAR image reconstruction tasks.


[image: Three sets of images showing comparisons of satellite data. Each set displays different processing methods: LR (low resolution), HR (high resolution), bicubic, SRCNN, SRGAN, LSRGAN, Cycle-GAN, and TaylorGAN. The first set features image 000018, the second set features image 000068, and the third set features image 000636 from SSDD. Each processing method highlights different levels of detail and clarity in the images.]
Figure 3 | 
Comparison results of the super-resolution reconstruction of the SSDD dataset.




[image: Three rows of ship images demonstrate various enhancement techniques. Each row has eight columns labeled as LR, HR, bicubic, SRCNN, SRGAN, LSRGAN, Cycle-GAN, and TaylorGAN, showing improvements in clarity and detail using different methods.]
Figure 4 | 
Comparison results of the super-resolution reconstruction of the SAR-Ship dataset.









3.5 Experimental results of marine ship detection for SAR images


To verify the effectiveness of the proposed HMS-MRCNN method, this paper compares it with several representative object detection algorithms, including YOLO v8, Quad-FPN (Zhang et al., 2021), Faster R-CNN, Cascade R-CNN, and Grid R-CNN. In addition, this paper also tests high-resolution images without super-resolution reconstruction methods to evaluate the contribution of SR methods.





3.5.1 Quantitative results




Table 2
 presents the quantitative comparison of the proposed HMS-MRCNN framework against several object detection models on the SSDD and Ship-SAR datasets. The evaluation metrics include precision, recall, and mAP50, which comprehensively reflect the accuracy and robustness of each method.



Table 2 | 
Comparative experimental results.





	Method

	SSDD

	Ship-SAR




	Precision

	Recall

	mAP50

	Precision

	Recall

	mAP50






	YOLO v8
	87.8
	81.9
	89.9
	80.1
	85.3
	83.6



	Quad-FPN
	90.6
	88.4
	91.2
	89.3
	91.7
	90.5



	Faster R-CNN
	87.4
	86.0
	87.2
	84.5
	84.1
	83.1



	Cascade R-CNN
	91.7
	86.5
	88.3
	87.7
	83.0
	84.8



	Grid R-CNN
	88.4
	87.0
	87.9
	81.5
	82.3
	81.9



	HMS-MRCNN (HR)
	91.9
	89.7
	92.5
	90.8
	89.9
	91.3



	HMS-MRCNN (SR)
	
93.0

	
90.3

	
93.1

	
91.9

	
93.0

	
92.6








The best results are indicated in bold.




On the SSDD dataset, the proposed HMS-MRCNN (SR) achieves the highest performance in all metrics, with accuracy of 93.0%, recall of 90.3%, and mAP50 of 93.1%. These values ​​exceed those of the high-resolution input version (HMS-MRCNN (HR)) as well as other traditional detectors. Notably, the mAP50 of HMS-MRCNN (SR) is improved by 1.9% compared to Quad-FPN, demonstrating the effectiveness of integrated super-resolution reconstruction in enhancing detection results.


On the Ship-SAR dataset, the proposed method maintains its leading position, achieving an accuracy level of 91.9%, recall of 93.0%, and mAP50 of 92.6%. This performance exceeds that of Quad-FPN and other classic detectors.


Overall, the experimental results verify that the proposed HMS-MRCNN (SR) not only improves the average detection accuracy but also enhances its stability at different scales and scene complexity, making it very suitable for practical SAR-based ship detection tasks.






3.5.2 Qualitative results




Figures 5
 and 
6
 qualitatively compare the detection results of different target detection algorithms on the SSDD and SAR-Ship datasets. The methods include YOLO v8, Quad-FPN (Zhang et al., 2021), Faster R-CNN, Cascade R-CNN, Grid R-CNN, and HMS-MRCNN. Red circles indicate missed detections, and yellow circles indicate incorrectly detected target objects.


[image: Comparison of ship detection in various models. Columns show images with detection results from Ground Truth, YOLO v8, Quad-FPN, Faster R-CNN, Cascade R-CNN, Grid R-CNN, HMS-MRCNN (HR), and HMS-MRCNN (SR). Detected ships are marked with bounding boxes and confidence scores.]
Figure 5 | 
Comparison of the detection results of each model for the SSDD dataset.




[image: Side-by-side comparison of ship detection in SAR images using different models: Ground Truth, YOLO v8, Quad-FPN, Faster R-CNN, Cascade R-CNN, Grid R-CNN, HMS-MRCNN (HR), and HMS-MRCNN (SR). Each model's detection result is highlighted with labels and confidence scores in varying colors, indicating the model's recognition accuracy and differences in ship identification performance.]
Figure 6 | 
Comparison of the detection results of each model for the SAR-Ship dataset.




As can be seen from the figure, YOLO v8 and Faster R-CNN are prone to more false positives or missed detections, especially when detecting small or low-contrast ships. Quad-FPN shows higher positioning accuracy and recall rate than traditional models, but it occasionally produces false detections in complex near-shore scenes or cluttered wave backgrounds. Cascade R-CNN and Grid R-CNN also have more missed detections and false detections.


In contrast, HMS-MRCNN, proposed in this paper, shows obvious advantages in detection results. In particular, after using TaylorGAN to reconstruct the image for super-resolution, HMS-MRCNN can better detect the target ship.







3.6 Ablation experiments


To evaluate the contribution of key structural components in the proposed TaylorGAN, this paper conducts ablation experiments focusing on two core modules: the TaylorShift Attention (TSA) module and the feature fusion (FF) module. The TSA module is designed to enhance the network’s global and local modeling capability through a position-aware attention mechanism, while the FF module facilitates the integration of multi-scale features to recover high-frequency structures such as ship contours and edges.


As shown in 
Table 3
, this paper begins with a baseline configuration that excludes both TSA and FF modules. This version achieves relatively low performance (20.89 dB PSNR and 0.5852 SSIM on SSDD), indicating its limited capability in recovering structural and fine-grained details. Introducing the TSA module alone yields a noticeable improvement, increasing PSNR by 1.51 dB and SSIM by 0.0177 on SSDD. This again demonstrates the effectiveness of TaylorShift attention in enhancing feature representation, even without structural fusion.



Table 3 | 
Ablation experiment results of different blocks of TaylorGAN.





	TSA

	FF

	SSDD

	Ship-SAR




	PSNR

	SSIM

	PSNR

	SSIM






	 
	 
	20.89
	0.5852
	21.07
	0.5631



	✓
	 
	22.40
	0.6029
	22.46
	0.6234



	✓
	✓
	
25.43

	
0.7931

	
24.55

	
0.7721








The best results are indicated in bold.




When both modules are integrated, the model achieves its highest performance, with 25.43 dB PSNR and 0.7931 SSIM on SSDD and 24.55 dB PSNR and 0.7721 SSIM on Ship-SAR. This final configuration outperforms all ablated variants, confirming that the combination of attention-based modeling and feature fusion significantly improves image quality, especially in restoring high-frequency textures under complex SAR imaging conditions.


To evaluate the contribution of each module to detection performance, this paper conducts a controlled ablation study analyzing the impact of the DCR (feature imitation) and DCN (deformable convolution) modules within the HMS-MRCNN framework. The DCR module enhances semantic-level feature representation, while the DCN module improves spatial adaptability. The performance metrics of each module configuration are detailed in 
Table 4
.



Table 4 | 
Ablation experiment results of different blocks of HMS-MRCNN.





	DCR

	DCN

	SSDD

	Ship-SAR




	Precision

	Recall

	mAP50

	Precision

	Recall

	mAP50






	✓
	 
	91.4
	89.2
	91.8
	89.4
	90.8
	89.9



	 
	✓
	92.1
	88.6
	92.2
	90.0
	92.1
	91.0



	✓
	✓
	
93.0

	
90.3

	
93.1

	
91.9

	
93.0

	
92.6








The best results are indicated in bold.




As shown in 
Table 4
, the DCR module alone yields notable improvements in recall, while the DCN module contributes more to precision and localization. However, the combination of DCR and DCN achieves higher overall performance than either module individually, demonstrating their complementary strengths. The full model, integrating both modules, significantly enhances detection accuracy on both SSDD and Ship-SAR datasets.


These results indicate that fusing semantic feature imitation with spatially adaptive convolution can effectively enhance network robustness and accuracy under complex SAR imaging conditions.







4 Conclusion


Given the challenges of low resolution of SAR images and the susceptibility of marine ship detection to noise and multi-scale target interference, this paper proposes a “super-resolution reconstruction-multi-scale detection” collaborative optimization solution. The main contributions are as follows:


TaylorGAN super-resolution network: It aims to recover high-frequency detail information from low-resolution SAR images. The method works by feeding the low-resolution image into the generator taking the corresponding high-resolution image as the target of discriminator learning and continuously optimizing the generator through adversarial training so that its output image is closer to the real high-resolution image in terms of structural clarity and detail restoration. In order to enhance the detail modeling ability, TaylorGAN introduces the TaylorShift attention mechanism, replacing the traditional Softmax operation with Taylor series expansion, which improves the ability to recover high-frequency details (e.g., ship contours, deck structures). Experiments prove that TaylorGAN significantly outperforms mainstream models such as SRGAN and cycle-GAN in terms of PSNR, SSIM, and subjective visual quality.


HMS-MRCNN multi-scale detection framework: HMS-MRCNN is designed for marine ship detection, extracting small target details from shallow layers (Conv3-4) and capturing global semantic context from deep layers (Conv5). Through feature map downsampling and L2 normalization, the model achieves accurate cross-scale feature alignment. Experiments show that HMS-MRCNN (SR) achieves 93.1% mAP50 accuracy on SSDD and 92.6% mAP50 accuracy on Ship-SAR, outperforming traditional detectors such as Faster R-CNN and Grid R-CNN.


End-to-end performance verification: The combination of super-resolution reconstruction and marine ship detection improves the mAP50 of ship image detection by 0.6% and 1.3% on the SSDD and Ship-SAR datasets, indicating that the resolution improvement directly improves the performance of downstream tasks.
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Seamounts play a crucial role in marine ecosystems, ocean circulation, and plate tectonics, yet most remain unmapped due to limitations in detection methods. While satellite altimetry provides large-scale coverage, its resolution is insufficient for detecting smaller seamounts, necessitating high-resolution multibeam bathymetry. This study introduces a deep-learning-based framework for automated small seamount detection in multibeam bathymetry, combining a CNN-based filtering step with U-Net segmentation to enhance accuracy and efficiency. Using multibeam bathymetric data from the SO305–2 expedition, the proposed approach successfully identified 30 seamounts, many of which were undetectable using satellite altimetry. A hyperparameter optimization study determined the optimal U-Net configuration, achieving a Dice Coefficient of 0.8274 and a Mean IoU of 0.7514. While the model performed well within the training dataset, cross-regional generalization remains challenging, with reduced accuracy observed in areas of highly variable seafloor morphology. The results highlight the limitations of satellite altimetry, as only 14 of the 30 detected seamounts were visible in satellite-derived datasets. This underscores the necessity of high-resolution multibeam surveys for capturing fine-scale seafloor features. In contrast to time-intensive manual annotation—which can require several hours to accurately delineate each individual seamount—the automated U-Net-based segmentation approach analyzed 146,060 km² of multibeam data within seconds, offering substantial time savings and scalability for large-scale mapping efforts. Beyond geological mapping, automated seamount detection has broad applications in marine ecology, environmental monitoring, and plate tectonics research. Future work should focus on integrating physical principles and geological constraints, such as typical seamount morphology, size distributions, and tectonic setting, to improve classification accuracy.
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1 Introduction

Seamounts, underwater mountains formed by volcanic activity, are significant features of the ocean floor, providing important information about plate tectonics and influencing, for example, marine ecosystems, ocean circulation and global geochemical cycles. Mapping these structures is essential for advancing oceanographic and geological research. However, most seamounts remain unmapped due to limitations in detection methods.

Satellite altimetry has been widely used to detect large seamounts through gravity anomalies, but its resolution constraints hinder the identification of smaller structures. Kim and Wessel (2011) detected seamounts taller than 1,500 meters, estimating between 25,000 and 140,000 seamounts exceeding 1,000 meters in height while suggesting that up to 25 million seamounts above 100 meters remain uncharted. More recently, Gevorgian et al. (2023) expanded the global seamount catalog by identifying 19,325 new seamounts, increasing the total to 43,454. Despite these advances, the reliability of satellite altimetry in detecting small seamounts remains uncertain, particularly given the influence of data resolution and noise.

Multibeam bathymetry enables direct, high-resolution mapping of the seafloor, offering far greater detail than satellite-based methods. However, while the surveys themselves remain time-intensive and spatially constrained, the subsequent analysis and annotation of collected data present an additional bottleneck. To address this challenge, this study introduces an automated deep-learning-based framework to accelerate the detection and classification of small seamounts in multibeam datasets. The approach combines convolutional neural networks (CNNs) for initial filtering with a U-Net-based segmentation model to delineate potential seamount regions. By replacing manual annotation with a scalable two-step pipeline, the method significantly reduces the time and effort required for post-survey analysis—especially for identifying small seamounts often missed in global databases.

An additional challenge lies in understanding the morphological properties of small seamounts. Smith (1988) proposed a height-to-base radius ratio of 0.21, but it remains unclear whether this relationship holds for smaller seamounts or if geometric variations require adjustments in altimetry-based models. Addressing this question is critical for improving detection methodologies.

To systematically evaluate this approach, the study addresses the following research questions:

	How does a filtering-based approach improve the identification of small seamounts in multibeam bathymetric data compared to manual identification?

	What are the optimal hyperparameters for training a U-Net model to achieve the highest segmentation accuracy for small seamount detection?

	How well does the proposed framework generalize across different geographic regions, and what limitations arise when applying a model trained in one ocean basin to another?

	What is the effective lower detection limit of satellite altimetry for small seamounts, and how does this compare to detections from high-resolution multibeam bathymetric data?



Beyond geological mapping, automated seamount detection has broad applications in marine science. In submarine topography studies, this methodology can be extended to detect and classify other undersea features, such as ridges, trenches, and hydrothermal vent fields (Huang et al., 2024). In marine ecology, seamounts serve as biodiversity hotspots, providing habitat for deep-sea organisms; automating their detection can support conservation efforts (Clark et al., 2010). Additionally, accurate seamount mapping contributes to research on seafloor geodynamics, volcanic activity, and plate tectonics (Matabos et al., 2022). Automated bathymetric analysis also plays a critical role in environmental monitoring and deep-sea mining, assisting in landslide risk assessment and resource extraction planning (Jones et al., 2021; Usui and S, 2022).




2 Literature review

Seamount classification has been a focal point in marine geosciences, employing a range of methods from satellite altimetry to high-resolution multibeam bathymetry. Early studies, such as Smith (1988) and Mitchell (2001), primarily relied on satellite-derived gravity data to detect and classify seamounts. While effective for large-scale features, these approaches are inherently constrained by resolution limitations, as only larger seamounts generate sufficiently strong gravitational anomalies to be visible in global datasets. Multibeam bathymetry provides a higher-resolution alternative, enabling the detection of smaller features. However, its limited spatial coverage and the manual effort required for classification restrict its scalability for global mapping.

To address these challenges, machine learning techniques have been explored for automated feature extraction in bathymetric datasets. Cracknell and Reading (2014) compared various supervised learning algorithms for lithology classification, identifying Random Forests as a robust choice due to its spatial accuracy, while SVMs and k-NN exhibited computational inefficiencies and sensitivity to noise. Despite their success in broad geological classification, these methods rely on hand-engineered features, making them unsuitable for detecting complex, small-scale seamounts.

Recent advances in deep learning have significantly improved seafloor classification by automatically extracting hierarchical features from raw data. Valentine and Kalnins (2013) introduced an autoencoder-based framework to detect seamount-like features based on reconstruction errors, reducing human bias but requiring extensive training data. Similarly, Liu et al. (2024) employed YOLO V7 Tiny for detecting deepsea features under challenging imaging conditions, achieving high accuracy but struggling to generalize across diverse bathymetric terrains.

Several CNN architectures have been widely explored in geospatial and seafloor classification applications, including VGG16 (Simonyan and Zisserman, 2015), ResNet50 (He et al., 2016), InceptionV3 (Szegedy et al., 2016), and MobileNetV2 (Sandler et al., 2018). These models offer varying trade-offs in feature representation, computational efficiency, and robustness:

	VGG16 is a deep yet simple architecture, utilizing small convolutional filters to extract structured features, making it effective for hierarchical representation. However, its high computational demand limits its efficiency for large-scale datasets.

	ResNet50 introduces residual connections, allowing deeper networks while mitigating vanishing gradient issues, making it well-suited for complex pattern recognition in bathymetric data.

	InceptionV3 employs multi-scale convolutions, enhancing adaptability to seamounts of varying size and morphology.

	MobileNetV2, optimized for computational efficiency, uses depthwise separable convolutions but lacks the necessary depth and architectural components for detailed segmentation.



Given the need for efficient large-scale filtering in seamount detection, we conduct a comparative analysis of these models in Section 4.1 to evaluate their effectiveness in generating feature vectors for clustering and classification.

For detailed bathymetric segmentation, U-Net (Ronneberger et al., 2015) was selected as the core architecture due to its proven ability to combine high segmentation accuracy with computational feasibility. Originally developed for biomedical imaging, U-Net’s encoder-decoder design, augmented with skip connections, ensures that both contextual and spatial information is preserved—critical for detecting small, irregularly shaped seamounts in multibeam bathymetric data. Unlike classification models that provide a single output per image or object detectors that require bounding boxes, U-Net performs dense pixel-wise labeling, which is particularly suited for the continuous and ambiguous topography of the seafloor. Its relatively low data requirements and efficient training regime further make it a practical solution for seafloor mapping tasks where labeled data is limited.

Other segmentation architectures, though effective in image processing, exhibit notable limitations:

	DeepLabV3+: Chen et al. (2018), while capturing multi-scale context through atrous convolutions, is computationally expensive.

	Mask R-CNN: He et al. (2017) excels in instance segmentation but relies on predefined object boundaries, making it less suitable for the continuous, often ambiguous topographies of seamounts.

	YOLO-based models: Wang and Bochkovskiy (2022), while optimized for real-time object detection, lack the granularity required for detailed segmentation.



Given these considerations, U-Net provides the best balance between segmentation accuracy and computational efficiency. Its architecture is uniquely suited for small seamount segmentation, enabling robust detection even under conditions of sparse training data and morphologically complex targets.

The increasing availability of high-resolution bathymetric datasets has led to a surge in the application of deep learning across marine geosciences, environmental monitoring, and geospatial data fusion. Chitre et al. (2024) demonstrated machine learning applications in bathymetric data processing, while Cherubini et al. (2024) utilized Copernicus Marine Service and EMODnet data for marine habitat modeling. Similarly, Deng et al. (2024) applied deep learning to analyze the environmental impact of floating offshore wind turbines.

Beyond environmental modeling, deep learning has also been applied in geospatial data fusion and numerical homogenization. Khalil et al. (2024) integrated airborne electromagnetic and borehole data with bathymetric analysis to enhance coastal mapping, while Qin et al. (2024) developed multi-scale satellite-derived bathymetry models to improve spatial resolution.

Despite these advancements, detecting small seamounts remains challenging due to:

	Limited labeled training data for small-scale features.

	High variability in seafloor morphology, making classification difficult.

	Distinguishing true seamounts from noise in multibeam bathymetry.



Many models, including Random Forests, SVMs, and XGBoost, struggle to generalize across diverse regions. Unsupervised clustering techniques, though useful in segmenting bathymetric images, often fail to distinguish small seamounts from background noise.

To address these challenges, this study introduces a two-step deep learning framework combining CNN-based feature filtering with U-Net segmentation:

	Feature Clustering: The dataset is first filtered to pre-select seamount candidates using CNN-generated feature vectors.

	Seamount Segmentation: The U-Net model is then applied to refine the classification, ensuring robust detection.



Additionally, this study explicitly tests cross-regional generalization, training on Atlantic Ocean bathymetry and evaluating on Indian Ocean datasets to assess model adaptability.

By integrating these innovations, this study presents a scalable, high-accuracy framework for small seamount detection, addressing the key limitations in machine learning-based seafloor classification. The following sections outline the methodology, experimental setup, and results to demonstrate the effectiveness of this approach.




3 Methodology



3.1 Image filtering

Our framework processes large-scale bathymetric data into manageable subsets, facilitating the efficient detection of potential seamount features. The methodology, illustrated in Figure 1, involves five key steps: image creation, segmentation, feature calculation, clustering, and manual labeling.

[image: Flowchart illustrating the sequence of image data processing steps: image creation, segmentation with a grid overlay, feature calculation using magnification, clustering of analyzed features, and final labeling with abstract patterns.]
Figure 1 | Workflow for filtering images containing potential small seamounts from multibeam bathymetric data. The process involves five key steps: (1) creation of a high-resolution seafloor map, (2) segmentation into smaller images for efficient processing, (3) feature extraction using CNNs, (4) filtering of images based on calculated feature vectors, and (5) manual labeling of filtered images to identify potential seamount candidates for further analysis.

Image Creation: The input consists of multibeam bathymetric data that has been preprocessed to correct artifacts and improve overall quality. To ensure clean input data, outlier detection and removal were performed using the optimized filtering method described by Ziolkowski et al. (2024), which enhances data reliability by eliminating spurious depth values from multibeam echo-sounder measurements. High-resolution seafloor maps were subsequently generated using Python’s Matplotlib library, applying the viridis color scheme to represent depth variations. This perceptually uniform colormap enhances contrast between flat seafloor and elevated features such as seamounts, facilitating the ability of the U-Net architecture to learn and distinguish relevant morphological patterns during the segmentation process. To ensure that every 256×256 image uses the same absolute depth-to-color mapping (and thus identical contrast), we compute a single pair of “global” depth limits (global min, global max) over the entire input survey before tiling. After interpolating each 24×24 chunk and resizing it to 256×256, we clip every pixel to [global min,global max] and linearly rescale to [0,1]. In this way, no two images from the same survey ever have different contrast ranges—each pixel’s color always maps back to the same meter-value. Segmentation: To efficiently manage the computational challenges of seafloor mapping, the data is divided into 256 × 256 pixel images with 10% overlap, ensuring that no seamount is truncated at the segment edges. This step enables efficient downstream processing while retaining critical morphological details in each region and ensuring that the image size is large enough to fully visualize entire seamount structures. We chose 256 × 256 as our image size because it is a common power-of-two input for U-Net. We briefly tested 128 × 128 (faster but lost small-feature fidelity) and 512 × 512 (higher fidelity but 4× more memory/time) and found that 256 × 256 provided the best trade-off. Pixel resolution is kept fixed across all surveys: each chunk is first interpolated to a 24 × 24 grid at 0.001° resolution—covering 0.024° × 0.024° in latitude/longitude—and then resized to 256 × 256 pixels. Hence each pixel corresponds to 9.375 × 10° (10 m, depending on latitude), both during training and application. Even if a new dataset has different raw point densities, our pipeline “forces” it onto that same 0.024°footprint per image, so the model always sees a consistent meter-per-pixel scale. In summary, by fixing grid resolution=0.001 and chunk size=24 and always resampling to 256 × 256, we guarantee identical pixel resolution from training to application, regardless of which survey file is used. Feature Calculation: CNNs compute feature vectors for each segmented image, capturing key characteristics such as texture and structure. These vectors provide a compact, descriptive representation of the seafloor features, enabling effective analysis.

Clustering: Feature vectors are clustered into 10 groups using unsupervised methods, which ensures that images with similar morphological characteristics are grouped together, significantly reducing dataset complexity and focusing attention on potential seamount regions. The choice of k=10 was not arbitrary but reflects a balance between two competing needs: capturing the major morphological variations in our CNN-derived feature space and keeping the number of clusters low enough for efficient human review. In practice, we found that ten clusters cleanly separated large, flat or gently sloping patches from steeper, seamount-like textures. Increasing k beyond 10 rarely produced qualitatively new seamount candidate groups—most extra clusters simply subdivided empty or flat-area images—while fewer than ten clusters began to merge distinct seamount morphologies with background.

Labeling: A domain expert reviews and labels the clusters. This human oversight ensures accurate identification of potential seamount candidates. Images of flat seafloor and background are excluded from further analysis, while the potential seamount cluster is retained for subsequent steps. On average, the cluster-level review takes under five minutes per survey: the expert scans a handful of thumbnails from each of the 10 clusters (100 images total) in about 2–3 minutes, discards the clearly “background” clusters, and flags only a few as “seamount candidates.” If desired, they can then page through those candidate clusters for extra confidence—but the minimal filtering step is complete in under five minutes, since no individual “yes/no” decision is made on all 5–804 images. The result of this methodology is a refined dataset of labeled clusters. Only the clusters containing potential seamounts undergo further analysis to detect the summits and extents of each seamount.




3.2 Workflow for training and evaluating a CNN for seamount detection

The workflow shown in Figure 2 outlines the process for preparing, training, and evaluating a UNet architecture to detect seamounts in multibeam data, beginning after the pre-selection of images likely to contain seamounts (Figure 1). Data Input: The workflow starts with the selected images containing regions that most likely include seamounts, as shown in Figure 2. These images serve as the input for the subsequent labeling and model training steps.

[image: Flowchart depicting a process from input data through summit detection, extent mapping, mask generation, model training, to model evaluation. Each step includes visual representations with green, yellow, and black color coding to illustrate data transformation.]
Figure 2 | Workflow illustrating the processing pipeline for training a UNet architecture to detect small seamounts in multibeam data. The pipeline begins with raw multibeam data input, followed by extent mapping to annotate seamount features. Masks are then generated to prepare training images, which are used to train the UNet model. The workflow concludes with model evaluation to assess performance and accuracy in detecting and delineating seamounts.

Summit Detection and Extent Mapping: Using labelme, seamount features are manually annotated to create masks for training. Black polygons outline the extent of each seamount. This step ensures accurate identification of key morphological features essential for the training process. Although all annotations were created by a single domain expert to maintain consistency, this introduces potential subjectivity and bias into the ground truth masks. Future work should consider inter-annotator agreement studies or collaborative labeling strategies to better quantify annotation reliability and improve robustness of training data.

Mask Generation: The annotated summit and extent data are used to generate binary masks for each seamount, where black areas represent the seamount and white areas indicate the background. These masks serve as the ground truth for training the UNet architecture, establishing the expected output for each input image.

Model Training: The UNet architecture is trained using the input images and their corresponding masks. The model learns to map the input image features to the expected output, enabling it to detect and delineate seamounts in multibeam bathymetric data accurately.

Model Evaluation: The trained model is evaluated using the mean Intersection over Union (mean IoU) metric, which measures the overlap between the predicted and manually labeled masks and ranges from 0 (no overlap) to 1 (perfect overlap). A higher mean IoU indicates better model performance in identifying and segmenting seamounts, providing a reliable assessment of its accuracy. Generally, mean IoU values between 0.75 and 0.85 are considered acceptable for complex medical segmentation tasks, particularly when segment boundaries are difficult to define, such as in tumor segmentation or vessel segmentation (Amri et al., 2025; Peng et al., 2025; Moradmand and R, 2025). In addition to mean IoU, the Dice coefficient is another widely used metric in image segmentation, particularly in medical imaging. It measures the similarity between predicted and ground-truth segmentations and ranges from 0 (no overlap) to 1 (perfect overlap). The Dice coefficient is particularly useful in imbalanced datasets, where positive class pixels (e.g., segmented structures) are much fewer than background pixels (Chamseddine et al., 2025; Yang et al., 2025; Alyahyan, 2025).

To optimize model training, the Dice loss function is employed, which is derived from the Dice coefficient. It is commonly used in medical image segmentation because it mitigates the effect of class imbalance by emphasizing the similarity of foreground structures rather than treating all pixels equally. Dice loss is especially beneficial for detecting small and irregularly shaped structures, making it a suitable choice for seamount segmentation, where feature boundaries are often ambiguous (Zhang et al., 2025; Shen et al., 2025). In future studies, implementing cross-validation labeling rounds with multiple annotators and calculating inter-annotator metrics such as Cohen’s kappa (Cohen, 1960) could further strengthen the training dataset quality and reduce the likelihood of label noise.

This workflow represents a comprehensive pipeline for training and evaluating a UNet model tailored for the automatic detection of small seamounts. It combines human expertise in labeling with advanced machine learning techniques, enabling efficient and accurate analysis of multibeam bathymetric data.





4 Results and discussion



4.1 Analysis of model performance in seamount image filtering using feature vectors

Seamount images show complex patterns and structural ambiguity, posing significant challenges for automated feature extraction. The results indicate that models with stronger feature extraction capabilities, such as VGG16 and ResNet50, produced more precise feature vectors, leading to better clustering performance and higher agreement with manual labeling.

Models that rely on lightweight architectures and reduced feature complexity, such as MobileNetV2, demonstrated lower performance, particularly in separating clusters when faced with highly uneven cluster sizes. InceptionV3, while effective in capturing variations in shape and color, exhibited reduced clustering precision when confronted with uniform textures across different clusters. Below, the performance of each model is discussed in terms of cluster separation, agreement with manual labeling, strengths, and weaknesses, as summarized in Table 1.

	VGG16: VGG16 achieved the highest agreement with manual labeling (97–100%), demonstrating robust and interpretable feature extraction, leading to clear cluster separation. Its architecture is particularly suited to datasets with clear patterns, making it ideal for applications requiring consistent and robust feature extraction. However, its tendency to over represent large clusters limited its effectiveness for highly complex or imbalanced datasets.

	ResNet50: ResNet50 performed well in scenarios requiring the extraction of more complex or abstract patterns, achieving 81–90% agreement with manual labeling. It is a viable alternative for datasets with higher structural variability or subtle morphological differences. However, its performance was less consistent than VGG16, particularly in datasets with limited textural differentiation, where it struggled to maintain stable clustering.

	InceptionV3: InceptionV3 showed strong multi-scale feature extraction but lower consistency, with agreement scores ranging from 66–94%. It is recommended for datasets with significant variability in patterns and colors, but it is less effective for uniform image distributions. Its performance was hindered when dealing with color homogeneity within clusters, leading to occasional misclassification.

	MobileNetV2: MobileNetV2 had the lowest agreement with manual labeling (18–82%), reflecting its difficulty in handling fine-grained textures and separating clusters effectively. This was especially evident in datasets where clusters varied significantly in size, ranging from single instances to over 3000 images. While computationally efficient, MobileNetV2 should be avoided in tasks requiring detailed feature extraction, such as seamount identification, due to its inability to handle complex patterns.




Table 1 | Summary of clustering results across different CNN architectures for seamount image classification.
	Model
	Total
	Selected
	% sel.
	Cluster distribution
	Matches
	Manual
	% match
	Clusters



	VGG16
	16816
	11266
	66.99
	300–2000 per cluster, good separability
	124
	127
	97.64
	15


	VGG16
	16816
	5834
	34.69
	Uniformly distributed
	127
	127
	100.00
	10


	VGG16
	16816
	6818
	40.54
	One large cluster with 10k, others balanced
	120
	127
	94.49
	5


	ResNet50
	16816
	11927
	70.93
	400–1600 per cluster, good differentiation
	103
	127
	81.10
	15


	ResNet50
	16816
	8151
	48.47
	Uniformly distributed
	86
	127
	67.72
	10


	ResNet50
	16816
	9430
	56.08
	One large (8k), others 2500 each
	115
	127
	90.55
	5


	InceptionV3
	16816
	11178
	66.47
	129–1900, not perfectly separable
	102
	127
	80.31
	15


	InceptionV3
	16816
	14404
	85.66
	Slightly uneven distribution
	120
	127
	94.49
	10


	InceptionV3
	16816
	15419
	91.69
	One larger cluster, rest uniform
	84
	127
	66.14
	5


	MobileNetV2
	16816
	6687
	39.77
	Very uneven, 1–3059 per cluster
	23
	127
	18.11
	15


	MobileNetV2
	16816
	9430
	56.08
	Very uneven distribution
	105
	127
	82.68
	10


	MobileNetV2
	16816
	9433
	56.10
	Very uneven distribution
	69
	127
	54.33
	5





The table lists the number of total and selected images, the percentage selected, and a qualitative description of cluster distribution. “Cluster Distribution” refers to how images are grouped in terms of size variation, uniformity, and dominance. The “% Match” indicates the percentage of selected images matching the manually curated seamount labels.



The analysis highlights VGG16 as the optimal model for seamount identification due to its ability to extract robust features and achieve high agreement with manual labeling. ResNet50 is a strong alternative for datasets with complex patterns but suffers from inconsistencies in cluster separation. InceptionV3 is useful for datasets with diverse features but struggles with uniform patterns, while MobileNetV2 is unsuitable for this application due to its limited feature extraction capabilities and poor clustering performance. These insights provide a clear basis for selecting appropriate models based on the specific requirements of seamount image clustering tasks.




4.2 Training of the U-Net architecture for seamount detection

The dataset used for training the U-Net architecture consists of high-resolution bathymetric and geological data collected during two research cruises, MSM75 and MSM88, in the Atlantic Ocean. These datasets provide detailed information on seafloor morphology, fault structures, and small seamounts, making them well-suited for an image-based deep learning approach.

The MSM75 cruise, conducted in 2018, focused on four key areas along the Reykjanes Ridge, a slows preading ridge influenced by the Iceland hotspot. This dataset includes 15 m resolution ship-based bathymetry, ROV-based ground-truthing, and geochemical analyses of glass samples, capturing variations in magma composition, fault density, and seamount morphology. These features are strongly influenced by factors such as distance from the hotspot and the magmatic or tectonic accretion state of axial volcanic ridges (AVRs) (Le Saout et al., 2023). Given the distinct geological and morphological variations within the dataset, it provides an excellent basis for training a segmentation model capable of distinguishing complex seafloor structures.

Complementing this, the MSM88 cruise dataset, collected using a Kongsberg EM 122 multibeam system at approximately 100 m horizontal resolution, covers a much larger area—approximately 153,121 square kilometers—spanning from the Cabo Verde Exclusive Economic Zone (EEZ) to the EEZs of Guadeloupe, Dominica, and Martinique. This dataset includes diverse Atlantic seabed morphologies, ranging from flat sedimented plains to seamounts, fracture zones, and the Mid-Atlantic Ridge. The large volume of depth soundings (86 million) ensures high spatial coverage and variability, further enhancing the robustness of the training data.

Table 2 provides an overview of the spatial extent, resolution, and depth ranges of the three datasets used for training and testing. The diversity of these datasets enhances the robustness and applicability of the model across different seafloor morphologies.


Table 2 | Summary of bathymetric datasets used for training and evaluation.
	Dataset
	Cruise ID
	Area covered (km2)
	Resolution
	Depth range (m)



	MSM75
	MSM75
	∼10,000
	15 m
	102–2,044


	MSM88
	MSM88
	∼153,000
	100 m
	1,500–6,000


	SO305/2
	SO305/2
	∼12,000
	100 m
	492–5,664







These datasets are particularly well-suited for training the U-Net model, as they provide high-resolution seafloor imagery with detailed geological labels. The combination of fine-scale bathymetry from MSM75 and the broader regional coverage of MSM88 ensures that the model learns to generalize across varying seafloor structures, improving its ability to segment and classify geological features effectively.




4.3 Hyperparameter selection and training strategy

In this section, we analyze the impact of different hyperparameter configurations on the performance of the U-Net architecture for seamount detection. The evaluation focuses on validation loss, mean Intersection over Union (IoU), and validation mean IoU, as summarized in Table 3. The goal of this analysis is to identify the optimal parameter constellation for final model training, ensuring high segmentation accuracy and robustness.


Table 3 | Hyperparameter tuning results for U-Net.
	Filters
	Kernel size
	Dropout rate
	Learning rate
	Batch size
	Val loss
	Mean IoU
	Val mean IoU



	32
	3
	0.5
	0.0001
	64
	0.403
	0.584
	0.584


	128
	3
	0.5
	0.0001
	16
	0.315
	0.513
	0.516


	128
	3
	0.1
	0.001
	16
	0.575
	0.541
	0.546


	32
	3
	0.1
	0.0001
	64
	0.298
	0.616
	0.617


	32
	3
	0.1
	0.0001
	16
	0.292
	0.606
	0.606


	32
	5
	0.1
	0.0001
	16
	0.214
	0.637
	0.636


	32
	3
	0.1
	0.001
	16
	0.301
	0.609
	0.615


	128
	5
	0.1
	0.001
	64
	0.828
	0.207
	0.101


	128
	5
	0.5
	0.0001
	16
	0.828
	0.193
	0.095


	32
	5
	0.1
	0.001
	64
	0.828
	0.299
	0.153


	128
	5
	0.1
	0.0001
	16
	0.318
	0.606
	0.628


	32
	3
	0.5
	0.001
	16
	0.828
	0.309
	0.161


	128
	5
	0.1
	0.001
	16
	0.828
	0.199
	0.094


	32
	5
	0.1
	0.0001
	64
	0.225
	0.721
	0.722


	32
	3
	0.1
	0.001
	64
	0.798
	0.463
	0.460


	32
	3
	0.5
	0.0001
	16
	0.493
	0.544
	0.548


	128
	5
	0.1
	0.0001
	64
	0.353
	0.596
	0.609


	128
	3
	0.1
	0.0001
	64
	0.275
	0.659
	0.660


	128
	5
	0.5
	0.001
	16
	0.505
	0.462
	0.469


	128
	5
	0.5
	0.0001
	64
	0.369
	0.606
	0.616


	32
	5
	0.5
	0.001
	16
	0.545
	0.427
	0.492


	128
	3
	0.5
	0.0001
	64
	0.295
	0.650
	0.652


	128
	3
	0.5
	0.001
	64
	0.828
	0.209
	0.100


	128
	3
	0.5
	0.001
	16
	0.828
	0.194
	0.094


	32
	3
	0.5
	0.001
	64
	0.828
	0.318
	0.167


	32
	5
	0.5
	0.0001
	16
	0.220
	0.696
	0.698


	128
	5
	0.5
	0.001
	64
	0.828
	0.196
	0.093


	32
	5
	0.1
	0.001
	16
	1.000
	0.343
	0.363


	128
	3
	0.1
	0.001
	64
	0.555
	0.459
	0.460


	128
	3
	0.1
	0.0001
	16
	0.291
	0.649
	0.651


	32
	5
	0.5
	0.001
	64
	0.828
	0.201
	0.095


	32
	5
	0.5
	0.0001
	64
	0.218
	0.713
	0.715





The configuration with 32 filters, kernel size 5, dropout rate 0.1, learning rate 0.0001, and batch size 64 achieved the highest validation mean IoU of 0.722 (highlighted in bold), indicating optimal performance for seamount segmentation.



Mean Intersection over Union (IoU) is a widely used metric in image segmentation, quantifying the overlap between predicted and ground truth masks. It is calculated as the ratio of the intersection to the union of both masks, ranging from 0 to 1, where higher values indicate better segmentation performance (Dwarakanath and Kuntiyellannagari, 2025).

Several key hyperparameters were varied during the grid search, including the number of filters, kernel size, dropout rate, learning rate, and batch size. One of the primary considerations is the number of filters in the convolutional layers, which defines the depth of feature extraction. A lower filter count, such as 16, may fail to capture sufficient spatial details, whereas a significantly higher count, such as 256 or more, increases computational costs and the risk of overfitting, particularly given the relatively small dataset size. To balance feature richness and computational efficiency, 32 and 128 filters were selected, following insights from prior research in biomedical segmentation tasks (Iqbal et al., 2022; Srinivasan et al., 2024).

Another crucial factor is the kernel size, which determines the receptive field of convolutional layers. Smaller kernels, such as 3 × 3, are effective for fine-grained detail extraction, while larger kernels, such as 5 × 5, allow for broader spatial pattern detection in bathymetric structures. The study focused on comparing these two kernel sizes, as excessively large kernels (e.g., 7 × 7) could introduce computational challenges and potentially over-smooth small-scale features.

To mitigate overfitting and enhance generalization, dropout rate was varied between 0.1 and 0.5. Dropout serves as a regularization technique by randomly deactivating neurons during training, preventing the model from relying too heavily on specific features. This variation allowed for an assessment of the trade-off between preventing overfitting and ensuring sufficient information retention for effective segmentation.

Additionally, the learning rate plays a vital role in determining how quickly the model updates its weights during training. A low learning rate encourages stable convergence, whereas a higher learning rate accelerates training but increases the risk of overshooting optimal weight values. To identify an optimal balance, the study compared learning rates of 0.0001 and 0.001, ensuring that the model could learn effectively without instability or divergence. We use the Adam optimizer (with the learning rate chosen via our hyperparameter search). Adam combines the benefits of momentum and adaptive learning rates, which helps stabilize training on our relatively small U-Net dataset.

Lastly, the batch size was explored to assess its effect on training efficiency and model performance. Smaller batch sizes allow for more frequent weight updates per iteration, while larger batch sizes contribute to more stable gradient estimations. To maintain a balance between computational efficiency and convergence stability, batch sizes of 16 and 64 were evaluated.

Their selection was guided by best practices in deep learning, computational efficiency, and the unique characteristics of bathymetric data. Specifically, the dataset was divided into 80% training and 20% validation sets using stratified sampling to preserve class balance and ensure a robust evaluation of model performance. We combined labeled images from both MSM75 and MSM88 into a single pool, then applied an 80/20 split with random state=42, so the training/validation split is fixed across all runs. For augmentation, we rotated each normalized 256×256 image by 90° and 180°, producing two extra images per original (three total). These practices are widely adopted in the geospatial and marine sciences communities and have been recommended for applications involving multibeam bathymetry and habitat mapping (Summers et al., 2021; Roelfsema et al., 2021). Their influence on model performance is analyzed in the following sections, with a focus on preventing overfitting and supporting generalization across diverse seafloor morphologies.

The following sections discuss the results of these hyperparameter configurations, analyzing their influence on model performance and the trade-offs they introduce in the context of seamount segmentation.



4.3.1 Number of filters

In our implementation, the number of filters doubles at each successive “down” step in the encoder and then halves again in the decoder. The results indicate that models using 32 filters generally outperform those with 128 filters in terms of mean IoU and validation mean IoU. The best-performing configuration (32 filters, kernel size 5, dropout rate 0.1, learning rate 0.0001, batch size 64) achieves a validation mean IoU of 0.722, higher than configurations with 128 filters, which generally yield IoU values below 0.66.

Models with 128 filters and a large kernel size (5) tend to perform poorly, particularly in cases where the dropout rate is high or the learning rate is large. Several configurations with 128 filters, kernel size 5, dropout rate 0.5, and a learning rate of 0.001 resulted in extremely poor performance (mean IoU < 0.21). These results suggest that larger models may overfit or fail to generalize when handling small-scale features in seamount detection.




4.3.2 Kernel size

A kernel size of 5 consistently improves model performance compared to a kernel size of 3. The best-performing models all use a 5 × 5 kernel, which appears to enhance the model’s ability to capture seamount structures in multibeam data. Notably, the highest validation mean IoU (0.722) is obtained with a 5 × 5 kernel, 32 filters, dropout rate 0.1, learning rate 0.0001, and batch size 64.

Configurations with a 3 × 3 kernel tend to yield slightly lower performance, with validation mean IoU values ranging from 0.584 to 0.660. While smaller kernels may still be effective, the data suggests that capturing larger contextual information with a 5 × 5 kernel improves segmentation quality. Larger kernels (e.g., 7 × 7) were not tested due to increased computational complexity and potential over-smoothing of small seamount features.




4.3.3 Dropout rate

The best-performing models use a dropout rate of 0.1, while higher dropout rates (0.5) lead to a decline in performance. Configurations with dropout 0.5 frequently result in unstable training, with validation mean IoU values dropping below 0.55 in most cases. This suggests that excessive regularization hinders the network’s ability to learn fine-grained features necessary for segmenting small seamounts. Lower dropout values (<0.1) were avoided to prevent potential overfitting, while higher values (>0.5) were not considered due to excessive information loss during training.




4.3.4 Learning rate

A learning rate of 0.0001 is generally more stable and results in higher mean IoU values than 0.001. Many configurations with a learning rate of 0.001 exhibit poor performance, with validation loss values reaching 0.828, indicating divergence or unstable training.

Notably, when a learning rate of 0.0001 is used in combination with a kernel size of 5 and dropout rate of 0.1, the model achieves the best performance. These findings suggest that a lower learning rate prevents the model from overshooting optimal weights, leading to better generalization. Higher learning rates (>0.01) were excluded due to the risk of divergence, while lower rates (<0.0001) were avoided as they could lead to excessively slow training.




4.3.5 Batch size

The best-performing models generally use a batch size of 64. While some configurations with batch size 16 perform well (validation mean IoU around 0.66), they do not outperform batch size 64 when combined with optimal hyperparameters.

Interestingly, several models with batch size 16 and 128 filters perform significantly worse, possibly due to instability in training. A larger batch size appears to contribute to better gradient estimation and stable convergence. Extremely large batch sizes (>128) were not tested due to GPU memory constraints and the risk of poor generalization.




4.3.6 Optimal configuration and conclusions

Based on this analysis, the best-performing configuration is:

32 filters, kernel size 5, dropout rate 0.1, learning rate 0.0001, batch size 64.

This configuration achieves the highest validation mean IoU of 0.722, suggesting that it provides the most reliable segmentation performance for small seamounts. These results emphasize the importance of choosing a balanced architecture that prevents overfitting while ensuring stable learning dynamics. The findings also reinforce that hyperparameter tuning is essential for optimizing deep learning models in seamount segmentation, as poor configurations can severely impact model accuracy and generalization ability.




4.3.7 Balancing generalization and model complexity

In deep learning applications, particularly those involving image segmentation, managing the balance between model complexity and generalization is crucial to avoid overfitting or underfitting. These phenomena directly influence a model’s ability to perform accurately on unseen data and are especially critical when working with spatially diverse and sparsely labeled bathymetric datasets.

Overfitting occurs when a model learns the training data too well, including its noise and minor fluctuations, leading to poor generalization on validation or test data. This typically manifests as a low training loss combined with a high validation loss. In contrast, underfitting arises when the model is too simplistic to capture the underlying patterns of the data, resulting in high errors on both training and validation sets.

To ensure that the U-Net model maintains a strong balance between learning capacity and generalization, we monitored validation loss, mean Intersection over Union (IoU), and validation mean IoU across training epochs (see Table 3). These metrics help assess both segmentation accuracy and model robustness. In particular, consistently high validation mean IoU values without significant divergence from training performance indicate strong generalization ability.

Additionally, to avoid overfitting, regularization strategies such as dropout, early stopping, and data augmentation were applied. Stratified sampling was used to divide the dataset into 80% training and 20% validation subsets, preserving class balance and ensuring that all seamount categories are proportionally represented.

The observed performance trends align with best practices established in machine learning literature. For example, Sivakumar et al. (2024) emphasize the trade-off between training and testing ratio and its effect on generalization in image processing. Similarly, Manikandan et al. (2024) highlight the impact of architectural complexity on overfitting and underfitting in segmentation tasks using U-Net, supporting our methodological choices for small seamount detection.

While the model demonstrates strong validation performance, a limitation remains its sensitivity to out-of-domain (OOD) data—bathymetric inputs that differ significantly from the training distribution in terms of seafloor morphology, resolution, or noise characteristics. Such domain shifts frequently occur in real-world deployments and may degrade model reliability. Future work should therefore explore strategies such as domain adaptation, transfer learning, and uncertainty quantification. These approaches can improve robustness by enabling the model to generalize to morphologically diverse regions, reducing the risk of false positives or negatives in unfamiliar tectonic settings. Transfer learning, in particular, has shown promise in segmentation tasks with sparse annotations and heterogeneous data domains, such as in medical imaging (Tajbakhsh et al., 2016).





4.4 Application of workflow to real-world data

The data shown in Figure 3 were acquired during SO305-2, a transit across the Indian Ocean after exiting the territorial waters of Indonesia and Malaysia. Using the EM122 swath mapping system, high-resolution bathymetric data were collected along this tectonically active region, which exhibits significant deformation of the oceanic plate. The dataset reveals detailed seafloor morphology, uncovering previously uncharted geological features in this underexplored area.

[image: Map showing a section of the Indian Ocean between Port Louis and Singapore, highlighting areas M2Argo and E-POLIO for a study on internal plate deformation in the Central Indian Basin. Latitude and longitude markers are visible.]
Figure 3 | Joint working area of the E-POLIO and M2Argo projects during the SO305–2 cruise, shown along the transit route from Singapore to Port Louis. The boxed area indicates the survey region focused on the ARGO fracture zone.

As the survey approached the Central Indian Ridge (CIR), it focused on the Argo transform fault and its fracture zones. The EM122 system detected numerous small seamounts, many less than 1000 meters in diameter, which remain undetectable in lower-resolution satellite altimetry. This highlights the limitations of satellite-based mapping for smaller topographic features and underscores the advantages of multibeam systems in resolving fine-scale bathymetric details.

This high-resolution dataset provides a valuable resource for developing and validating automated seamount detection algorithms. It offers detailed bathymetric imagery across varied tectonic settings, making it an ideal testbed for refining detection methods and improving our understanding of small seamount distribution and morphology.

A total of 11,139 images were generated from the SO305–2 expedition data during preprocessing, with 30 seamounts manually labeled. To prepare the dataset for seamount detection, a filtering and clustering process (Section 4.1) reduced the dataset to 6,626 images, effectively eliminating 40% of the original data. As shown in Figure 4, clusters 1, 6, and 7 were selected for further processing, as they most likely contain seamount images, while the remaining clusters primarily represent flat seafloor or other irrelevant features. Clusters 0 and 2, identified as potential artifacts likely caused by noise, were excluded from further analysis. Additionally, 30 seamounts were manually identified within the dataset, and all 30 seamounts from the original data were retained in the selected images, ensuring comprehensive coverage of the target structures for model training. For model training, we used the 256×256 images generated from the MSM75 and MSM88 datasets, in which 138 seamounts had been manually labeled. The U-Net was trained on this combined pool of MSM75/MSM88 images.

[image: Grid of small square visuals, each depicting varying patterns of yellow and blue gradients. The rows are numbered from zero to nine, with each square displaying unique geometric and color variations, suggesting possible data visualization or pattern analysis.]
Figure 4 | Clusters generated after the filtering process, highlighting distinct seafloor morphologies. Clusters 1, 6, and 7 likely contain seamount images, making them suitable for further analysis. All other clusters primarily represent flat seafloor or similar features and can be excluded from the U-Net detection process for small seamount detection.

The model was trained using the optimal hyperparameters identified in Section 4.3. To prevent overfitting and ensure optimal performance, early stopping was implemented, monitoring validation loss and halting training once no further improvements were observed. Additionally, model checkpointing was used to save the model whenever a lower validation loss was achieved, ensuring retention of the best-performing version for further evaluation. The progression of validation loss throughout training is shown in Figure 5, exhibiting a steady decline until approximately epoch 37, after which further reductions become minimal.

[image: Line graph titled "Validation Loss over Epochs" showing a decrease in validation loss over 50 epochs, with fluctuations. A red dashed line at epoch 37 indicates the best model. Yellow line represents validation loss.]
Figure 5 | Validation loss over epochs during model training. The red dashed line indicates the epoch where the best model was saved based on the lowest validation loss.

Throughout training, the model demonstrated a progressive improvement in segmentation performance, as reflected in the increasing Dice Coefficient and Mean IoU, while validation loss steadily decreased. Dice Loss, commonly used in segmentation tasks to mitigate class imbalance, is derived from the Dice Coefficient, a similarity measure evaluating the overlap between two sets. As for class imbalance, most images have no seamount pixels, and even in images that do, seamounts cover only about 10–20% of pixels—hence our use of Dice Loss. By emphasizing misclassified regions, Dice Loss helps capture fine-grained structures, making it particularly effective for segmenting objects with irregular boundaries (Zheng et al., 2025).

During the initial training phase (epochs 1–10), the model exhibited low Dice scores, ranging from approximately 0.14 to 0.21. However, validation loss dropped sharply from 0.85 to 0.26 within this period, with the first major performance improvement occurring around epoch 5, marking the transition to more stable learning. This trend is illustrated in Figure 6, which depicts the evolution of the Dice Coefficient over epochs.

[image: Line graph titled "Validation Dice Coefficient over Epochs" shows the validation Dice coefficient improving over 50 epochs. The coefficient starts below 0.2, increases steadily, and stabilizes around 0.8 after epoch 10. A red dashed line at epoch 37 indicates the best model.]
Figure 6 | Validation Dice coefficient over epochs. A higher Dice coefficient indicates better segmentation performance. The red dashed line highlights the best model.

In the mid-training phase (epochs 11–30), the model continued improving, with validation loss reaching its minimum (0.1734) at epoch 37. The Dice Coefficient rose significantly, surpassing 0.82, while the Mean IoU exhibited a steady upward trend, further indicating the model’s ability to generalize effectively. The trajectory of the Mean IoU over training epochs, as visualized in Figure 7, reflects this improvement.

[image: Graph showing Validation Mean IoU over Epochs. The blue line represents validation mean IoU increasing from approximately 0.45 to 0.75 across 40 epochs. A red dashed line indicates the best model at epoch 37.]
Figure 7 | Validation mean Intersection over Union (IoU) over epochs. The IoU metric evaluates the overlap between predicted and ground truth segmentation masks, with higher values indicating better performance.

During the late training phase (epochs 30–50), signs of overfitting emerged as validation loss plateaued. The Dice Coefficient fluctuated between 0.81 and 0.86, while the Mean IoU remained relatively stable, showing minimal gains beyond epoch 37. These observations suggest that further training did not yield additional benefits, indicating that the model had reached its optimal performance.

The best performance was recorded at epoch 37, where validation loss reached its minimum (0.1734), and the model attained a Dice Coefficient of 0.8274 and a Mean IoU of 0.7514—representing the peak segmentation accuracy observed during training. These results suggest that the model successfully learned meaningful feature representations for image segmentation, with performance stabilizing beyond this epoch. Consequently, epoch 37 was identified as the optimal balance point between learning and generalization.

After training, the U-Net model was applied to the filtered dataset to generate segmentation results for seamount detection. Model predictions were compared to manually labeled seamounts to assess performance. The U-Net successfully identified all 30 seamounts in the dataset, demonstrating high detection accuracy. The predicted outlines closely matched the ground truth, with only minor deviations in shape and boundary precision, suggesting that the model effectively captures key morphological characteristics of seamounts.

Figure 8 displays all 30 manually labeled seamounts alongside their corresponding model predictions, highlighting the robustness of the proposed workflow in accurately detecting and segmenting small seamount structures.

[image: A grid of colorized heatmap images showcasing diffused patterns. Each cell appears in pairs, with the heatmap on the left displaying gradient intensities, and a contrasting black and white segmented mask on the right.]
Figure 8 | Comparison of manually selected images containing seamounts and their corresponding U-Net model predictions. The predicted seamounts closely align with the actual seamount locations, indicating the model’s high detection performance.

To further illustrate the challenges of detecting small seamounts, Figure 9 presents examples of false predictions made by the U-Net model. The misclassification of certain regions as seamounts can be attributed to the complexity of seafloor morphology and the inherent subjectivity of manual labeling. Seafloor features vary significantly, and even human interpreters may disagree on what qualifies as a seamount. Given this subjectivity, discrepancies between model predictions and reference labels are expected due to human error or differing interpretations of the data.

[image: A series of twelve side-by-side images showing color-coded thermal or intensity maps on the left and corresponding black backgrounds with white shapes on the right, indicating highlighted regions or features. Each pair is separated by a yellow border. The maps display gradients of blue, green, and yellow shades.]
Figure 9 | Examples of false predictions made by the U-Net model. In these cases, the model incorrectly labeled certain seafloor features as seamounts, likely due to local elevation changes or elongated structures that share some morphological characteristics with true seamounts. These misclassifications highlight the challenges in distinguishing small seamounts from other topographic variations in bathymetric data.

A common characteristic among false positives is the presence of localized seafloor elevations, which appear as yellow regions in the bathymetric data. Although not actual seamounts, these features share topographic similarities with true seamount structures, making misclassification understandable. However, a key limitation of the U-Net model is its occasional inability to accurately capture the typical circular morphology of small seamounts. Instead, elongated or irregularly shaped elevations are sometimes misclassified as seamounts despite lacking the distinct topographic characteristics that define them.

These observations suggest that while the model effectively identifies seafloor elevations, it could be further improved in distinguishing true seamounts from other raised features. Future refinements could involve integrating morphological constraints during training or applying post-processing techniques to filter out elongated structures that do not conform to the expected circular shape of small seamounts.

In Section 2, this study identified three key challenges in small seamount detection: (1) the scarcity of manually labeled training data, (2) the difficulty of segmenting irregular and morphologically diverse features, and (3) the need for models that generalize across varying seafloor conditions. To address the first challenge, a training set of 138 seamounts was manually labeled using high-resolution multibeam bathymetry, providing a diverse and representative dataset for supervised learning. The second challenge was mitigated through the use of the U-Net architecture, whose encoder-decoder structure and skip connections allow for precise pixel-wise segmentation of irregular and fine-scale seafloor features. Lastly, the model’s generalization capability was enhanced by filtering the dataset with a CNN-based clustering approach, reducing noise and guiding the network’s attention to relevant regions. Together, these strategies enabled effective training and application of a robust segmentation model capable of detecting small seamounts with high accuracy in real-world data.

Figure 10 highlights the 30 seamounts identified in the SO305–2 dataset, revealing a significant number of previously undetected features. A major limitation of satellite-derived global seamount datasets, such as those based on vertical gravity gradient (VGG) data, is their inability to resolve smaller seamounts (Yesson et al., 2011). Consequently, only 14 of the 30 identified seamounts were visible in satellite altimetry data, while the remaining 16 were too small to be detected. This underscores the importance of high-resolution.

[image: A map showing the Pacific Ocean near Central America, with numerous orange dots representing data points or events. Black lines crisscross the area, possibly indicating routes or paths. A green and yellow line runs through, while white circles and outlines highlight specific regions. A scale bar shows distances in kilometers.]
Figure 10 | Map showing the 30 seamounts identified during the SO305/2 expedition. Seamounts detected by our model and also reported by Gevorgian et al. (2023) and Kim and Wessel (2011) are marked in white. Green dots indicate newly discovered seamounts that were not previously documented, while the red dot represents a location where a seamount was expected based on Gevorgian et al. (2023) and Kim and Wessel (2011), but no actual seamount was found. These findings highlight the effectiveness of multibeam systems in detecting previously unknown seamounts. The expedition started in Singapore (top right) and concluded in Mauritius (bottom left).

As shown in Table 4, 16 of the 30 identified seamounts (well-known = 2) were completely absent from global satellite datasets. In their study, Gevorgian et al. (2023) improved upon previous altimetry-based seamount detection methods, identifying seamounts as small as 421 meters in height, with most detections exceeding 700 meters due to the limitations of the VGG method. This marked a significant improvement over earlier studies, such Kim and Wessel (2011), who noted that traditional altimetry-based methods struggled to detect features smaller than 1,500 meters due to the limited resolution of gravity anomaly data. These findings underscore the limitations of satellite-derived data in detecting smaller seamounts and highlight the necessity of high-resolution multibeam bathymetric surveys for comprehensive seafloor mapping.


Table 4 | Seamount characteristics including height, altimeter-derived height, well-known status, and coordinates.
	Seamount ID
	Height (m)
	Altimeter (m)
	Well-known
	Longitude
	Latitude



	6
	111
	1078
	2
	70.788
	-11.854


	20
	124
	1260
	2
	66.558
	-13.593


	13
	148
	1430
	2
	66.968
	-13.083


	8
	151
	1578
	2
	70.373
	-11.912


	12
	176
	1755
	2
	67.013
	-13.042


	7
	180
	1888
	2
	70.663
	-11.840


	9
	190
	1833
	2
	67.860
	-12.708


	17
	193
	1969
	2
	67.224
	-13.173


	21
	243
	2410
	2
	66.444
	-13.649


	14
	248
	2532
	2
	66.724
	-13.242


	11
	249
	2429
	2
	67.063
	-13.014


	10
	252
	2584
	2
	67.177
	-12.916


	32
	308
	3046
	2
	58.736
	-19.382


	18
	315
	3164
	1
	67.022
	-13.287


	22
	345
	3434
	2
	66.102
	-13.904


	28
	357
	3641
	2
	62.755
	-17.514


	5
	402
	3953
	1
	71.005
	-11.802


	23
	454
	4567
	1
	65.905
	-14.011


	25
	512
	5097
	1
	66.207
	-15.075


	29
	548
	5555
	2
	62.293
	-17.798


	31
	571
	5704
	2
	59.426
	-19.263


	26
	625
	6308
	1
	64.703
	-16.332


	30
	632
	6274
	1
	61.429
	-18.285


	24
	662
	6667
	1
	65.720
	-14.133


	27
	789
	7880
	1
	64.504
	-16.515


	2
	824
	8317
	1
	84.125
	-2.619


	16
	998
	9927
	1
	66.325
	-13.516


	4
	1091
	10930
	1
	73.057
	-11.147


	3
	1142
	11413
	1
	83.245
	-3.324


	15
	1402
	13975
	1
	66.474
	-13.341


	19
	2005
	20124
	1
	66.710
	-13.476


	1
	–
	–
	0
	 
	 







Additionally, 10 seamounts (well-known = 1) were previously cataloged by Gevorgian et al. (2023) and Kim and Wessel (2011), but our method provided independent validation of their existence using direct multibeam observations. These seamounts, ranging from 315 to 2,005 meters in height, demonstrate that our approach can both confirm and refine existing seamount inventories through high-precision bathymetric measurements.

Interestingly, one feature predicted in previous seamount catalogs (well-known = 0) was not confirmed in our multibeam dataset. This discrepancy suggests a false positive in the satellite-derived data, potentially caused by noise, interpolation artifacts, or misclassification of other seafloor features as seamounts. Such cases highlight the importance of direct validation using high-resolution mapping to ensure the accuracy of global seamount databases.

Overall, these findings emphasize the crucial role of multibeam sonar in capturing fine-scale seafloor topography and identifying small seamounts that remain undetected in satellite altimetry data. While altimetry-based methods provide valuable large-scale global coverage, they systematically underestimate the number of small seamounts due to resolution constraints. By applying machine learning-based segmentation on high-resolution bathymetry, our approach bridges the gap between broad-scale satellite surveys and precise, localized mapping techniques.





5 Conclusion

This study introduced a deep-learning-based framework for detecting small seamounts in multibeam bathymetric data, addressing key limitations of traditional classification methods and satellite altimetry. The proposed two-step approach—combining CNN-based filtering with U-Net segmentation—significantly improved detection accuracy and efficiency. The findings provide insights into each of the research questions posed in the introduction:

	How does a filtering-based approach improve the identification of small seamounts in multibeam bathymetric data compared to direct classification methods? The results demonstrated that CNNbased filtering enhances seamount detection by pre-selecting relevant image subsets, reducing noise and improving segmentation accuracy. Unlike direct classification methods, which attempt to classify entire images, the filtering process focuses only on regions likely to contain seamounts, reducing false positives and computational complexity. This two-step strategy outperformed traditional direct classification methods, ensuring that the segmentation model processes only meaningful data.

	What are the optimal hyperparameters for training a U-Net model to achieve the highest segmentation accuracy for small seamount detection? A grid search analysis identified the best-performing hyperparameter configuration: 32 filters, a kernel size of 5 × 5, a dropout rate of 0.1, a learning rate of 0.0001, and a batch size of 64. These settings balanced feature extraction depth, regularization, and training stability, yielding the highest segmentation accuracy, with a Dice Coefficient of 0.8274 and a Mean IoU of 0.7514. Models with excessively high filter counts or dropout rates exhibited overfitting or unstable convergence, highlighting the need for a balanced architecture in seamount segmentation tasks.

	How well does the proposed framework generalize across different geographic regions, and what limitations arise when applying a model trained in one ocean basin to another? While the model performed well on the SO305–2 dataset, cross-regional generalization remains a challenge. When tested on new datasets, the model maintained high accuracy for seamounts with well-defined topographic signatures, but performance declined in regions with highly variable seafloor morphology. This suggests that further fine-tuning or domain adaptation strategies may be necessary when applying the model to seamounts formed under different tectonic and geological conditions.

	To what extent can satellite altimetry reliably detect small seamounts, and how do its results compare to high-resolution multibeam bathymetric data? The results confirmed that satellite altimetry systematically underestimates the number of small seamounts due to resolution constraints. Of the 30 seamounts detected in the SO305–2 dataset, only 14 were visible in satellite-derived data, highlighting the importance of high-resolution multibeam bathymetry for capturing fine-scale seafloor features. Additionally, satellite-derived databases contained false positives, underscoring the need for direct validation using multibeam sonar.



Beyond geological applications, the automated detection of seamounts has broader implications for marine ecology, environmental monitoring, and plate tectonics research. Future work should focus on improving cross-regional generalization, integrating morphological priors into deep-learning models, and expanding the dataset to further enhance classification accuracy. In addition, improving the annotation process through inter-annotator validation or collaborative labeling could reduce subjectivity and improve the reliability of training labels, which is particularly important in seafloor datasets where feature boundaries can be ambiguous. In particular, the integration of domain adaptation or transfer learning methods holds promise for improving model performance in morphologically diverse or OOD seafloor regions, enabling broader applicability of the framework without requiring extensive manual relabeling or retraining. To further enhance robustness in real-world applications, future models should also incorporate strategies for handling OOD inputs, including uncertainty estimation and domain-specific priors to reduce prediction errors in unfamiliar seafloor environments. By bridging the gap between machine learning and marine geosciences, this framework contributes to the advancement of automated seafloor mapping and global seamount inventories, improving our understanding of the ocean floor.
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Introduction
Monitoring Ulva prolifera blooms over the long term is crucial for maintaining marine ecological balance. MODIS images, with their wide spatial coverage, high temporal resolution, and rich historical data, are commonly used for this purpose. However, their relatively low spatial resolution may lead to inaccuracies in precisely defining the bloom extents, thereby impeding the formulation of effective management strategies.
Methods
To address this issue, our study developed the WaveNet model. This model integrates VGG16 with the Bidirectional Feature Pyramid Network (BiFPN) and is further enhanced with a Convolutional Block Attention Module (CBAM). We applied this framework to MODIS imagery for the detection and monitoring of U. prolifera.
Results
WaveNet demonstrated superior performance in long-term sea surface U. prolifera monitoring compared to traditional methods, achieving an accuracy of 97.14% and an F1 score of 93.26%. This represents a significant improvement over existing techniques.
Discussion
These results highlight WaveNet’s improved capacity for accurate spatial recognition and classification, overcoming the limitations of previous methods. Applying this approach, we analyzed the spatiotemporal distribution of U. prolifera blooms in the Yellow Sea of China from 2018 to 2024. Our framework offers valuable insights for early prevention and targeted management of green tides, contributing to the development of more effective mitigation strategies.
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1 INTRODUCTION
Green tide blooms, particularly those caused by U. prolifera (Ulva prolifera) in the Yellow Sea, have become a major environmental issue, causing significant ecological and socio-economic impacts (Ye et al., 2011; Liu et al., 2013). These blooms are fueled by U. prolifera’s remarkable tolerance to high temperatures and intense light (Cui et al., 2015), which enables rapid and persistent growth. The decomposition of these algae releases harmful gases like hydrogen sulfide and ammonia, threatening marine ecosystems, human health, and coastal economies (Ye et al., 2011; Smetacek and Zingone, 2013). This study aims to address this gap by developing a dynamic monitoring framework, which can serve as a foundation for constructing real-time monitoring systems for green tide blooms. Remote sensing, particularly satellite image analysis, offers a promising solution, but challenges remain in achieving a balance between spatial resolution, temporal coverage, and processing efficiency. This study aims to address this gap by developing a dynamic monitoring framework for real-time detection of green tide blooms. By leveraging advanced image-processing techniques, the study seeks to improve the accuracy, scalability, and efficiency of U. prolifera monitoring, providing valuable insights for timely intervention and sustainable management of green tides. This approach not only enhances monitoring but also contributes to the development of effective strategies for mitigating the environmental and socio-economic consequences of green tide blooms.
Satellite remote sensing, in contrast to field surveys, provides several advantages including wide coverage, rapid data acquisition, short update cycles, strong timeliness, and cost-effectiveness, rendering it an effective tool for monitoring and management of U. prolifera events (Hu et al., 2010; Hu et al., 2017). 10 m resolution Sentinel-2 imagery is suitable for monitoring smaller features like U. prolifera (Brisset et al., 2021), but its narrow swath width and coarse temporal resolution make it unsuitable for large areas like the Yellow Sea. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) has significantly advanced the assessment and prediction of algal bloom mechanisms (Lee et al., 2011; Cao et al., 2019; Hu et al., 2019; Xing et al., 2019). From May to June each year, U. prolifera blooms rapidly spread across the Yellow Sea. MODIS imagery, with its near-daily updates and 2,330 km2 coverage, effectively monitors the entire lifecycle of these blooms. However, the coarse resolution of MODIS images, with a maximum spatial resolution of only 250 m, introduces a degree of error in the extracted estimates of algal biomass (Hu et al., 2010; Hu et al., 2015). Minimizing this extraction error has emerged as a bottleneck in optical remote sensing for algae detection.
Various remote sensing threshold methods are used to extract U. prolifera information, utilizing the unique spectral characteristics of green algae in visible and infrared bands. Common approaches include the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Algae Index (NDAI) (Shi and Wang, 2009), applicable across multiple satellite sensors. Other methods, such as the Floating Algae Index (FAI) (Hu, 2009), Virtual-baseline Floating Macro Algae Height index (VB-FAH) (Xing and Hu, 2016), and RGB Floating Algae Index (Jiang et al., 2020), are robust to environmental variations, including thin cloud cover (Xu et al., 2016). However, these optical-based methods are hindered by challenges such as cloud interference, variable backgrounds, and the need for meticulous threshold selection, which often requires expert knowledge (Shi and Wang, 2009; Hu et al., 2010).
While deep learning methods show promise in overcoming these limitations (Schmidhuber, 2015; Li et al., 2020), existing studies, such as those utilizing ERISNet for Sargassum algae extraction in the coastal waters of Mexico and approaches employing AlexNet for large algae extraction from UAV images, have made progress in specific environments but still face challenges in achieving large-scale and accurate monitoring of green tides (Arellano-Verdejo et al., 2019; Wang et al., 2019). Recent advancements, like models designed to detect green tide information from both SAR and optical images, highlight the potential of deep learning in this domain, paving the way for more accurate, scalable, and efficient monitoring (Gao et al., 2022). This study aims to advance the application of deep learning for dynamic monitoring of U. prolifera, addressing the gap in real-time, large-scale, and precise green tide detection. It also focuses on improving the accuracy of U. prolifera extraction from low-resolution satellite imagery and enabling dynamic daily monitoring of green tides on a large scale.
The objectives of this paper includ 1) developing of a deep learning network to more effectively extract information about green tide from coarse-resolution optical imagery; 2) implementing of large-scale dynamic monitoring of green tide; and 3) extracting and analysing of the spatiotemporal distribution changes of green tide outbreaks in the Yellow Sea region from 2018 to 2024 on both interannual and intermonthly scales. The organization of the paper is as follows. Section 2 presents the study area and related datasets, including optical MODIS data, Sentinel-2 data, and the training dataset for the deep learning model. Section 3 introduces the proposed deep learning network model, encompassing physical model optimization and model performance verification methods. Section IV details the training of the model and the research findings. Discussions and conclusions are presented in Sections 4 and 5.
2 STUDY AREA AND DATASETS
2.1 Study area
The study area, situated within the Yellow Sea between 32°N and 37°N and 119°E−124°E, is shown in Figure 1. Influenced by the East Asian monsoon, the climatic regime of the region under study is characterized by cold, arid winters and warm, humid summers (Xing and Hu, 2016; Qi et al., 2017; Zhang et al., 2019). The confluence of these climatic conditions with substantial terrestrial influences results in the Yellow Sea exhibiting moderate to high levels of turbidity, which are characteristic of the region (Shi and Wang, 2009; Zhang et al., 2010; Xing et al., 2019). These environmental parameters significantly influence the proliferation of U. prolifera, as its growth dynamics are intricately tied to water temperature and nutrient availability. Since the onset of the 21st century, U. prolifera has exhibited periodic summer blooms in the region, with each event demonstrating extensive areal coverage, substantial biomass accumulation, and significant long-distance transportation (Wang et al., 2015). These phenomena have had profound negative repercussions on the coastal tourism industry, aquaculture activities, and the integrity of the ecological environment, underscoring the urgency and relevance of our research in real-time, large-scale, and precise green tide detection.
[image: Map showing the Yellow Sea between China and South Korea. The study area is highlighted in yellow and located in the eastern part of China, near the Shandong and Jiangsu Provinces. The Pacific Ocean is to the east, with a legend indicating the study area, ocean, land, and province boundaries.]FIGURE 1 | Location of the study area.Given the influence of the East Asian monsoon, the climate in this region is marked by cold, dry winters and hot, humid summers (Xing and Hu, 2016; Qi et al., 2017; Zhang et al., 2019). These climatic conditions, coupled with the significant terrestrial impact, contribute to the Yellow Sea’s moderate to high turbidity levels, which are typical of the area (Shi and Wang, 2009; Zhang et al., 2010; Xing et al., 2019). Due to these geographical and climatic reasons, the proliferation of U. prolifera, a green tide-forming macroalga, is influenced, as its growth is closely linked to water temperature and nutrient availability. Understanding these environmental factors is crucial for this study, as they provide insights into the conditions that may favor or inhibit the development of U. prolifera blooms, which are the focus of our research. Since 2007, U. prolifera has periodically erupted in this region every summer. Its characteristics, such as broad coverage, large biomass, and extensive distance transport (Wang et al., 2015), have severely impacted coastal tourism, aquaculture, and the ecological environment.
2.2 Datasets
The MODIS satellite, initiated by NASA in 1999, is a prominent space remote sensing instrument, providing surface spectral reflectance estimates for 36 bands every 1–2 days. Research indicates that the peak U. prolifera period in the South Yellow Sea spans from May to August annually (Zhou et al., 2021). To extend monitoring to March, EOS MODIS 1B (Terra/Aqua) remote sensing dataset from March to August 2018–2024 were chosen from NASA’s data repository (https://ladsweb.modaps.eosdis.nasa.gov/search). This selection included MOD02QKM and MOD02HKM products with resolutions of 250 m and 500 m, respectively. Among126 images, those with minimal cloud cover during U. prolifera blooms from 2018 to 2024 were selected. Data were processed using SNAP software for reprojection, calibration, and band synthesis, with MOD02HKM resampled to 250 m. Subsequently, sea-land separation was conducted to extract relevant sea areas.
Sentinel-2, part of the European “Copernicus” program, consists of two satellites, Sentinel-2A (launched 23 June 2015) and Sentinel-2B (launched 27 March 2017). These satellites operate on a sun-synchronous orbit with individual revisit periods of 10 days and a collective revisit period of 5 days. Sentinel-2 Level-2A (L2A) dataset, comprising atmospherically corrected bottom-of-atmosphere reflectance dataset, were acquired from the European Space Agency’s Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home). Cloud-free images with 10-m resolution overlapping with the MODIS data dates in the study area were selected. Red (R), Green (G), and Blue (B) bands were utilized to generate true-color composite images for subsequent U. prolifera extraction validation.
In this research, MODIS images were selected to create a dataset. Initially, bands 1 (red), 2 (near-infrared), and 4 (green) were chosen, corresponding to R, G, and B channels, respectively, to generate false-color composite images. Subsequently, these images were segmented into 512*512-pixel tiles using a sliding window approach. Within the MODIS images, U. prolifera exhibits more prominent green patches compared to seawater. Therefore, Lableme software was employed to label the segmented images with U. prolifera samples. Out of 608 sets of MODIS images and corresponding labels, 425 sets were allocated for training, and 183 sets were reserved for testing. During training, the dataset was divided into 70% for training and 30% for validation.
3 METHODS
3.1 The structure of the WaveNet model
Figure 2 illustrates the architecture of the proposed model, which integrates VGG16, BiFPN, and CBAM in a collaborative hierarchy.
[image: Model architecture diagram for predicting "Ulva prolifera" masks from MODIS imagery. The process involves an encoder-decoder structure with Bi-directional Feature Pyramid Network (BiFPN) and Convolutional Block Attention Module (CBAM). Layers include convolution, max pooling, and up-convolution for processing input images to generate output masks.]FIGURE 2 | The structure of the WaveNet.Firstly, the Visual Geometry Group 16-layer model (VGG16) is adopted as the backbone feature extraction network. It transforms the input MODIS image into multi-level feature maps through four convolutional and downsampling stages, effectively capturing both low-level textures and mid-level semantic patterns. Secondly, three layers of Bidirectional Feature Pyramid Network (BiFPN) are incorporated to enhance multi-scale feature fusion. BiFPN enables bidirectional information flow, allowing high-level semantic information from deep layers to guide low-level spatial details, and vice versa. This preserves fine-grained localization critical for identifying U. prolifera boundaries. Thirdly, four upsampling stages are applied to restore the spatial resolution of feature maps to match the original image dimensions. At each stage, a Convolutional Block Attention Module (CBAM) is introduced to emphasize the most relevant spatial regions and spectral channels. CBAM refines features by applying sequential channel and spatial attention, thereby improving feature saliency and reducing background noise.
This hierarchical design enables VGG16 to focus on core visual patterns, BiFPN to integrate information across scales, and CBAM to selectively enhance discriminative features. Together, they collaboratively improve the model’s accuracy in detecting green tide areas under complex oceanographic conditions.
3.2 Visual Geometry Group 16-layer model, VGG16
In our study, VGG16 was chosen as the backbone network due to its proven effectiveness in image feature extraction, particularly in tasks requiring high accuracy and localization precision, such as the ILSVRC-2014 ImageNet challenge. Its architectural design, which includes five sets of convolutional layers followed by max-pooling layers and three fully connected layers, allows for efficient feature representation and nonlinearity enhancement while preserving the perceptual field. The use of 3 × 3 convolutional kernels and 2 × 2 max-pooling layers increases the network depth, enabling the detection of intricate patterns critical for identifying U. prolifera in complex marine environments. VGG16 offers a deeper structure with more precise feature extraction, which is crucial for achieving the high accuracy (97.14%) and F1 score (93.26%) demonstrated in our green tide monitoring framework. This integration provides a robust foundation for the dynamic monitoring of U. prolifera, outperforming previous methods in large-scale green tide detection and classification.
3.3 Bidirectional feature pyramid network, BiFPN
The traditional VGG16 architecture fails to effectively utilize multiscale information from the backbone network, as it directly connects to fully connected layers after the fifth convolutional layer. To remedy this, we incorporate the BiFPN module, which processes shallow features and integrates multiscale information. BiFPN, introduced by Google in 2020 within the EfficientDet model (Tan et al., 2020), employs a weighted bidirectional feature pyramid network. This network consists of top-down and bottom-up pathways, enabling the propagation of both semantic and positional information, as shown in Figure 3.
[image: Diagram of a BiFPN structure showing multiple layers with different operations. Arrows indicate data flow through additions, convolutions, upsampling, and max pooling processes. Each path ends with a color-coded circle representing distinct outputs.]FIGURE 3 | The structure of BiFPN.To address the challenge of accurately classifying U. prolifera at the pixel level, we introduced a novel modification to the VGG16 architecture. Specifically, instead of relying on the traditional fully connected and softmax output layers, we replaced them with the fusion results generated by the BiFPN structure. This approach utilizes attribute maps extracted from multiple stages of the backbone network, capturing spatial and contextual information at different resolutions. By adaptively integrating these multi-scale features, the BiFPN structure enhances the model’s ability to preserve fine-grained details and resolve ambiguities in areas with similar spectral characteristics. This modification significantly improves the network’s feature representation capabilities, ensuring better accuracy in distinguishing U. prolifera from surrounding elements.
Mathematically, the fusion process in BiFPN can be expressed through Equations 1 and 2 as follows:
Fout=∑i=1nωiFi(1)
ωi=expαi∑j=1n⁡expαj(2)
where Fi is the feature map at the i-th scale from VGG16; ωi is the learned attention weight for scale i; αi is a trainable scalar associated with each input scale. This formulation ensures that features contributing most to discrimination are emphasized in the final output.
3.4 Convolutional Block Attention Module, CBAM
Attention mechanisms allow the network to focus on the most relevant features of the target and have been extensively capabilities of convolutional neural networks (Lian et al., 2018), and improve feature extraction efficiency and accuracy (Ma et al., 2023). In our work, attention mechanisms are central to enhancing feature deployed in deep learning applications, like natural language processing and visual recognition, to enhance the learning extraction and representation, addressing the challenge of accurately identifying U. prolifera in MODIS imagery. We employ the Convolutional Block Attention Module (CBAM), which integrates both channel and spatial attention mechanisms to refine feature representations dynamically, and its structure is illustrated in Figure 4. The channel attention component aggregates information across feature map channels, highlighting the most relevant spectral features for distinguishing U. prolifera. Simultaneously, the spatial attention mechanism focuses on critical spatial regions within each channel, enabling the model to capture localized patterns associated with green tides.
[image: Diagram illustrating a three-part attention model for deep learning. Panel (a) shows channel attention with input features processed through MaxPool, AvgPool, and shared MLP, resulting in channel attention output. Panel (b) illustrates spatial attention via a convolution and pooling process, generating spatial attention output. Panel (c) combines channel and spatial attention modules on input features to refine them, resulting in a refined feature output.]FIGURE 4 | Structure of CBAM: (a) Channel attention module; (b) Spatial attention module; (c) CBAM.To further enrich the model’s feature extraction capacity, we integrate CBAM within the last four upsampling layers of the network. By processing input feature maps and applying attention mechanisms, CBAM outputs weighted feature maps, emphasizing both channel and spatial information. This dual-focus strategy ensures the preservation of spectral and spatial nuances, significantly improving classification precision. Such an approach is particularly effective given the moderate spatial resolution and complex spectral characteristics of MODIS imagery, providing a robust framework for green tide detection.
3.5 Accuracy assessment
The U. prolifera extraction method underwent evaluation using standard metrics: accuracy, precision, recall, F1 score, mIoU, and mPA, with their calculation formulas detailed in Equation 3. Results were classified into four groups: True Positive (TP) for accurately identified U. prolifera pixels, True Negative (TN) for accurately classified background pixels, False Positive (FP) for background pixels erroneously identified as U. prolifera, and False Negative (FN) for U. prolifera pixels mistakenly classified as background. Manual determination of the true value was based on MODIS false-color images.
Accuracy=TP+TN/TP+TN+FP+FNPrecision=TP+FPRecall=TP/TP+FNF1=2 * Precision  * Recall/Precision+Recall mIoU=1/k+1 * ∑i=0kpii/∑i=0kpij+∑i=0kpji−piimPA=1/k+1 * ∑i=0kpii/∑i=0kpij(3)
where denotes predicting i as j, which is a false negative (FN); denotes predicting j as i, which is a false positive (FP); denotes predicting i as i, which is a true positive (TP).
3.6 Estimation of Ulva prolifera area
Area of U. prolifera depicts the ground area size, which can be computed by the product of spatial resolution and the corresponding number of pixels (Cui et al., 2018), as outlined in Formula 4.
Area _GT=PS * N _GT(4)
where, Area _GT represents the area of U. prolifera in km2; PS represents the ground area size corresponding to one pixel of satellite imagery in km2; N _GT represents the number of detected U. prolifera pixels.
4 EXPERIMENTS AND RESULTS
4.1 Training and experimental settings
The deep learning tasks were performed on a Windows 10 system equipped with an NVIDIA GeForce RTX 3060Ti GPU boasting 8 GB of storage. CUDA version 11.6 was utilized, alongside the PyTorch 11.0 deep learning platform for model construction. The software environment was Anaconda (Python 3.8). Throughout the training phase, the Adam optimization algorithm (Ronneberger et al., 2015) dynamically adjusted the network weights and biases. The parameters are set as follows: β1 = 0, β2 = 0.99. The learning rate (α) of the network is initialized to 0.001, and after every 40 epochs (with a total training epoch limit set to 250), α is multiplied by a decay factor of 0.1 to reduce the parameter search space.
4.2 Evaluation of model performance
This paper evaluates the detection performance of U. prolifera using the WaveNet deep learning model in comparison with the Normalized Difference Vegetation Index (NDVI) and the Adjusted Floating Algae Index (AFAI) methods, both widely applied in algae detection tasks.
The NDVI method, proposed by Rouse et al., leverages the characteristic spectral reflectance of vegetation in the near-infrared and red bands. Its adaptability to large floating algae, due to their spectral similarities with vegetation, makes it a commonly used approach for algae extraction. The calculation formula for NDVI is given in Equation 5.
NDVI=Rrc,NIR−Rrc,RED/Rrc,NIR+Rrc,RED(5)
where, and represent the reflectance of the near-infrared band (860 nm) and the red band (660 nm), respectively.
The AFAI method is designed to reduce the impact of atmospheric effects, thin clouds, and moderate solar glint. It employs a linear baseline between adjacent bands to compute near-infrared reflectance (Fang et al., 2018). It employs a linear baseline between adjacent bands to compute near-infrared reflectance. The formulas are given in Equations 6, 7:
AFAI=Rrc,NIR−Rrc,NIR1′(6)
 Rrc,NIR1′=Rrc,RED+Rrc,NIR2−Rrc,RED * λNIR1−λRED/λNIR2−λRED(7)
where, Rrc,NIR1, Rrc,RED, Rrc,NIR2 represent the reflectance in the near-infrared band (748 nm), the red band (667 nm), and the long-wave near-infrared band (869 nm), respectively.
Both NDVI and AFAI have demonstrated effectiveness in detecting floating algae using satellite imagery, such as MODIS and Landsat. However, their accuracy is limited by manual threshold selection. In this study, the WaveNet model, trained on MODIS imagery, demonstrated superior performance in U. prolifera detection. Unlike NDVI and AFAI, the fixed threshold in WaveNet (0.5) relies on the model’s optimized weights, eliminating manual adjustments (Liu et al., 2009; Qi et al., 2016a; Hu et al., 2019; Zheng et al., 2022). Results show that WaveNet not only reduces threshold dependency but also achieves significantly higher precision and coverage accuracy, highlighting its potential for dynamic green tide monitoring.
Figure 5a shows the MODIS true color image of the Yellow Sea from 5 July 2023, where U. prolifera appears in light green. Our method, alongside the two index methods (NDVI and AFAI), confirmed that these colored patches are floating U. prolifera Figures 5b-f. Through our deep learning model, 1,319,611 algal pixels were identified. When using thresholds of >0 and >0.00000433, the NDVI index method identified 8,445,635 and 921,741 algal pixels, respectively. With thresholds of (0, 0.02) and (0.0025, 0.0176), the AFAI index method identified 1,892,314 and 339,040 algal pixels, respectively. Due to differences in threshold selection, both NDVI and AFAI methods exhibit considerable uncertainty; in fact, the algal identification results could vary by orders of magnitude (Hu, 2009; Liu et al., 2009; Xu et al., 2014; Qi et al., 2016b; Hu et al., 2019). In contrast, the deep learning-based model mitigates the potential bias introduced by selecting different extraction thresholds for NDVI or AFAI.
[image: Six-panel comparison of satellite images. Panel (a) shows a MODIS image. Panel (b) displays NDVI data with threshold Th1=8445635, using a color scale from blue to green. Panel (c) shows AFAI data with Th1=1892314, also with blue to green shading. Panel (d) represents WaveNet data, highlighting areas in green. Panel (e) presents NDVI data with Th2=921741, similarly shaded. Panel (f) displays AFAI with Th2=339040 on the same color scale. Each panel includes geographic coordinates.]FIGURE 5 | Comparison result of the WaveNet model and traditional biological index methods. (a) MODIS true color; (b,e) NDVI results; (c,f) AFAI results; (d) WaveNet result.The WaveNet model achieved precision and recall metrics, as well as a comprehensive F1 score for U. prolifera extraction, all exceeding 90.0%. The accuracy reached 97.14%, which is 7.6% higher on average compared to the NDVI method and 4.3% higher on average compared to the AFAI method. In summary, our method excels at extracting U. prolifera from MODIS images, achieving the highest recognition accuracy. The outcomes are provided in Table 1.
TABLE 1 | Accuracy evaluation of the extraction effect.	Models	Precision	Recall	F1-score	Accuracy
	WaveNet	92.83	93.69	93.26	97.14
	NDVI (Th2)	82.37	88.48	85.32	90.55
	AFAI (Th1)	87.92	90.02	88.96	92.76


Four areas were randomly selected to compare the segmentation results of the WaveNet, NDVI, and AFAI methods (Figure 6). In addition to MODIS false-color images, Sentinel-2 true-color images with a resolution of 10 m were added as references. Since MODIS images have a resolution of 250 m, the U. prolifera patches derived using these methods will appear larger than those in the Sentinel-2 images. Although the selected reference images were taken on the same day, slight differences in U. prolifera patches may occur due to different transit times.
[image: Satellite imagery comparison in four rows labeled R1 to R4, showing different regions. Columns display Sentinel-2 images, MODIS images, and outputs from WaveNet, NDVI, and AFAI methods. Each image features highlighted sections in red, yellow, and orange boxes, indicating areas of interest or variance within the data. The images progress from natural to processed forms, illustrating differences detected by each method.]FIGURE 6 | The comparison of U. prolifera extraction results. R1-R4 regions: (a,f,k,p) Sentinel-2; (b,g,l,q) MODIS; (c,h,m,r) WaveNet; (d,i,n,s) NDVI (TH2); (e,j,o,t) AFAI (TH1)In Region 1 (R1), the aim was to compare the extraction performance of U. prolifera over a large area, while Regions 2 (R2), 3 (R3), and 4 (R4) focused on smaller areas. In the upper and lower parts of R1, both the NDVI and AFAI methods exhibited instances of under-segmentation, while the WaveNet method provided the most complete extraction of U. prolifera. However, in R2, both the NDVI and AFAI methods had instances of under-segmentation in the nearshore area on the upper left, and the WaveNet method showed misclassification in the central part.
In R3, both the NDVI and AFAI methods exhibited a significant amount of under-segmentation. In R4, the extraction performance of all three methods was relatively poor, with instances of under-segmentation in the NDVI and AFAI methods, and misclassification in the WaveNet model. As shown in Table 2, the pixel count and area of extracted U. prolifera using different methods were also compared, with the same conclusions as depicted in Figure 6.
TABLE 2 | The comparison of pixel count and area of extract.	Method	Pixel number of floating U. prolifera blooms	Asar/km2
	R1	R2	R3	R4	R1	R2	R3	R4
	WaveNet	533448	34977	56010	123146	333.44	21.86	35.01	76.97
	NDVI (Th2)	268537	10665	4,233	0	167.84	6.67	2.66	0
	AFAI (Th1)	315447	11159	4,233	8,283	197.16	6.97	2.66	5.18


Note: Asar represents distribution area of floating Ulva prolifera blooms.
5 DISCUSSION
5.1 Performance evaluation of different composite models
	VGG16+(BiFPN + SA). This group integrates the Spatial Attention (SA) mechanism into the BiFPN module within the VGG16 framework. The design focuses on enhancing spatial perception, improving feature fusion efficiency, and minimizing information loss. However, as shown in the heatmap comparison (Figure 7), the performance of this configuration remains limited. The mean Intersection over Union (mIoU) reaches only 86.15%, and the F1 score achieves 92.36%, both of which are lower than those of attention-enhanced dual-dimensional models. This indicates that spatial-only attention mechanisms may be insufficient for robust green tide discrimination and comprehensive feature preservation.
	VGG16+(BiFPN + CBAM). This model group substitutes the SA mechanism with CBAM while maintaining other aspects unchanged to compare the two attention mechanisms. SA emphasizes spatial information, while CBAM integrates channel and spatial attention, enhancing the model’s perception of both types of information. This adjustment aims to enhance overall model performance. As depicted in Figure 7, the replacement leads to slight improvements in mIoU, Precision, F1 score, and Accuracy, ranging from 0.5% to 1%.
	VGG16+skip (BiFPN + CBAM). This group introduces skip connections to directly transfer low-level features into upper layers, theoretically improving representation comprehensiveness. Nevertheless, the model shows decreased accuracy compared to Group 2. Specifically, the mIoU drops to 83.69%, and the F1 score declines to 90.75%. These results may stem from redundant or noisy features introduced via the skip paths, which interfere with semantic abstraction and reduce final prediction quality.
	VGG16+[BiFPN + dual (CBAM + SA)]. This model incorporates both CBAM and SA as a dual-attention mechanism. Although it expands the model’s attention diversity, the additional complexity leads to performance degradation. As shown in Figure 7, the mIoU is only 83.50%, and the F1 score is 90.61%. This suggests that overly complex attention fusion may introduce conflicts or overfitting, limiting the effectiveness of feature integration.
	VGG16 + 3*BiFPN + CBAM. As the proposed WaveNet configuration, this group employs a triple BiFPN structure for deep multi-scale fusion and integrates CBAM during the upsampling stages. According to the comparative heatmap (Figure 7), this model achieves the highest overall performance: the mIoU reaches 87.79%, and the F1 score improves to 93.26%, with an accuracy of 97.14%. These results confirm that deeper fusion layers and attention refinement significantly enhance both feature preservation and perceptual discriminability

[image: Comparison heatmap of different models showing performance metrics. Rows represent models: VGG16+(BiFPN+SA), VGG16+(BiFPN+CBAM), VGG16+skip(BiFPN+CBAM), VGG16+[BiFPN+dual(CBAM+SA)], VGG16+3*BiFPN+CBAM. Columns represent metrics: mIoU, mPA, Precision, Recall, F1-score, Accuracy. VGG16+3*BiFPN+CBAM shows highest Accuracy at 97.14. Color gradient ranges from light green to dark blue, indicating performance value from 84 to 96.]FIGURE 7 | Heatmap of accuracy metrics for different model combinations.5.2 Monthly spatial-temporal distribution characteristics of Ulva prolifera
Based on MODIS remote sensing satellite imagery, the spatial coverage area and impact scope of U. prolifera were extracted for different years from 2018 to 2024 (Figure 8).
[image: Maps showing the spread of a phenomenon over time from June 2018 to July 2024. Each map displays red dots indicating affected areas within a geographical region, marked by provinces and prefectures. The progression is depicted across multiple panels labeled (a) to (g) with dates above each mini-map, showing the increase in affected spots. Legend indicates province, prefecture, coverage area, and sphere of influence.]FIGURE 8 | Figures (a–g) present the spatiotemporal distribution patterns of U. prolifera in the Yellow Sea during the period from 2018 to 2024.In late May and early June 2018, U. prolifera was first detected in the shallow waters of northern Jiangsu Province, China. It then drifted northeastward, affecting the coastal waters of the northern Yellow Sea. Initially, its coverage area was only 80 km2, but within 11 days, it sharply increased to 164 km2. Subsequently, U. prolifera drifted northward, accumulating extensively in the coastal areas of the northern Yellow Sea by the end of June, reaching its maximum coverage area and impact range. On July 14, U. prolifera extensively landed in coastal cities in the northern Yellow Sea. Gradually, its coverage area decreased and disappeared, with only sporadic patches remaining in the region by July 18.
In 2019, U. prolifera was first spotted in the southeastern Yellow Sea on May 9, covering an area of 14 km2. Towards the end of May, it appeared in the shallow waters off the coast of northern Jiangsu Province, China, before drifting eastward and merging with the existing U. prolifera in the southeastern Yellow Sea, then moving northward. By June 23, it reached its peak coverage area of 2,127 km2. In early July, U. prolifera landed in the northern Yellow Sea, with coverage shrinking to 703 km2 before gradually fading away.
In 2020, the observation of U. prolifera was about 2 weeks later than the previous year. Initially appearing in the southeastern Yellow Sea on April 29, it covered an area of 18 km2. From late April to late May, it drifted northwestward, steadily expanding its coverage. By May 27, it reached 219 km2, growing to 302 km2 the next day. Peaking at 950 km2 on June 4, it then moved northward, landing in the northern Yellow Sea by the end of June and dissipating approximately 2 weeks earlier than in 2019. Overall, the U. prolifera bloom in 2020 was less severe than in 2019.
In 2021, U. prolifera was first spotted on April 8, initially appearing in scattered amounts in the southeastern Yellow Sea. By May 21, it had drifted northward, covering 55 km2 in the shallow waters off northern Jiangsu. Throughout June, U. prolifera proliferated extensively in the central Yellow Sea. From June 19 to July 10, a severe U. prolifera bloom affected coastal cities in the northern Yellow Sea, peaking at an extent of 3,534 km2. By mid-July, the bloom gradually dissipated, with coverage shrinking to 31 km2 by July 19. Compared to previous years, 2021 experienced the largest coverage area, longest duration, and most severe U. prolifera disaster, with the widest coverage area four times that of the previous year.
In 2022, U. prolifera was first spotted on May 27 in the southeastern Yellow Sea, a month and a half later than the previous year. By June 25, it had reached coastal cities along the northern Yellow Sea, peaking at a coverage area of 548 km2 before gradually dissipating over the following month. Compared to 2021, the U. prolifera coverage area significantly decreased in 2022, suggesting a relatively mild U. prolifera bloom overall.
On 16 May 2023, scattered U. prolifera patches were spotted in the shallow waters of northern Jiangsu, covering just 4 km2. Within 2 weeks, the area surged to 276 km2 by June 3, drifting northward thereafter. By the end of June, U. prolifera had proliferated massively in the central Yellow Sea, peaking at 2,170 km2 on June 22, four times larger than in 2021. By July 24, it had dissipated significantly, leaving only 8 km2 scattered off Qingdao and Yantai. Overall, the U. prolifera bloom in 2023 ranked second only to 2021 in severity.
On 18 May 2024, sparse patches of U. prolifera were initially detected in the shallow waters off northern Jiangsu and in the southeastern Yellow Sea, spanning an area of merely 17 km2. Within just 10 days, however, U. prolifera proliferated rapidly from the northern Jiangsu shallows to the northern Yellow Sea, with its coverage expanding by a factor of 13. By mid-June, the U. prolifera extent had decreased to approximately 128 km2. On June 26, it experienced a notable resurgence, reaching a peak area of 454 km2, before gradually dissipating by mid-July. In summary, the U. prolifera bloom in 2024 demonstrated significant improvement, with a shorter duration and the smallest maximum coverage observed in the past 7 years.
5.3 Yearly spatial-temporal distribution characteristics of Ulva prolifera
Figure 9 illustrates the temporal and spatial dynamics of green tide (U. prolifera) coverage area in the Yellow Sea from 2018 to 2024. The trends indicate that peak green tide coverage varies significantly each year. For instance, 2021 shows the highest recorded green tide coverage, with a peak area exceeding 3,500 km2, observed between June and July. In contrast, 2024 reflects a noticeable improvement, with substantially reduced peak coverage. The annual progression generally follows a similar pattern: a gradual increase in early year, peaking around late June, and decreasing in July.
[image: Bar chart showing the duration and area covered by green tide from 2018 to 2024. Each color represents a year: 2018 (purple), 2019 (blue), 2020 (light blue), 2021 (green), 2022 (yellow), 2023 (orange), 2024 (red). Duration in days is on the y-axis and area in square kilometers is on the x-axis. The longest duration and largest area are recorded in 2021.]FIGURE 9 | The changes in U. prolifera area in the Yellow Sea from 2018 to 2024.This temporal pattern, along with area fluctuations, aligns with existing research suggesting that annual environmental conditions, such as temperature, nutrient availability, and ocean currents, significantly influence the extent and duration of green tides (Qi et al., 2016a; Zhang et al., 2019). Our identification results corroborate these findings, demonstrating that years with higher peak coverage often correspond to elevated sea surface temperatures and increased nutrient inputs, potentially driven by anthropogenic activities and seasonal upwelling. Furthermore, the spatial distribution of U. prolifera mirrors the prevailing ocean currents, which likely facilitate its dispersal across the Yellow Sea. These insights underscore the interplay between biological processes and physical drivers in shaping green tide dynamics, highlighting the importance of integrating environmental monitoring with algae detection systems.
The comprehensive analysis of U. prolifera’s yearly distribution patterns from 2018 to 2024 (Figure 10) reveals significant fluctuations in the intensity and extent of U. prolifera blooms over the past 7 years. Notably, 2021 experienced the most severe bloom within the study period, with the coverage area peaking of approximately 3,534 km2on June 23. In contrast, 2022 marked a milder bloom and the lowest peak area of roughly 548 km2. However, in 2023, the bloom coverage area surged to the second-highest value in nearly 7 years, underscoring the ongoing need for robust and consistent management strategies to mitigate green tide impacts.
[image: Bar and line graph showing green tide duration and cover area from 2018 to 2024. Grey bars represent duration time in days, while a red line connects points marking peak cover areas in square kilometers. Data peaks in 2021 and 2023.]FIGURE 10 | Duration and maximum coverage area of U. prolifera in the Yellow Sea from 2018 to 2024.This consistency, along with the observed peak times, typically around late June, aligns with previous findings on U. prolifera bloom cycles and suggests that these blooms may be influenced by recurring environmental conditions, such as temperature and nutrient availability, during this period. Notably, the unprecedented bloom in 2021, with its record-high coverage, was strongly linked to the impact of typhoons. Typhoons enhance nutrient enrichment in coastal waters by stirring sediments and promoting upwelling, creating ideal conditions for U. prolifera growth. This exceptional event underscores the significance of incorporating extreme weather events into bloom analyses. The temporal alignment of peak coverage across years, including the typhoon-induced surge in 2021, highlights the importance of targeted monitoring in late June to better anticipate and manage bloom intensity. By integrating factors such as extreme weather events, more effective prediction and management strategies can be developed to mitigate the impact of green tides (Liu et al., 2009; Cui et al., 2018; Fang et al., 2018).
6 CONCLUSION
U. prolifera, known for forming green tides, poses significant ecological threats in coastal regions. We propose a tailored WaveNet deep learning model for U. prolifera detection using MODIS images, taking advantage of their extensive coverage and high data collection frequency. WaveNet employs VGG16 as its backbone feature extraction network and integrates BiFPN feature pyramid network, replacing fully connected layers and softmax outputs, to enhance feature extraction across various resolutions. We also introduce a lightweight CBAM attention mechanism to filter background noise, ensuring more accurate and efficient feature extraction. With 608 annotated sample pairs, WaveNet achieved a detection accuracy of 97.14%, precision of 92.83%, recall of 93.69%, and an F1 score of 93.26%, significantly outperforming the NDVI and AFAI methods by mitigating uncertainties arising from threshold selection discrepancies. Through analyzing U. prolifera bloom dynamics in the Yellow Sea from 2018 to 2024, we confirmed a significant increase in U. prolifera area every June. Through our analysis, we observed that the maximum coverage area of U. prolifera exhibited an oscillating trend, initially increasing and then decreasing on an interannual basis. Furthermore, our research identified the southeastern Yellow Sea as the source of U. prolifera blooms in 2019, 2020, 2021, 2022, and 2024. These findings provide valuable insights into the early detection, prevention, and control of green tide formation, especially in identifying key geographical sources and underlying factors contributing to U. prolifera.
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Reverberation noise scenes Shadow interference scenes Object scale transformation

NA NO Confidence NA NO Confidence NA NO Confidence
Faster R-CNN 3 4 80.2%, 99.3%, 64.9%, 49.0% 3 2 68.1%, 34.6% 3 2 95.2%, 45.2%
RetinaNet 3 5 42.1%, 57.3%, 99.3%, 3 5 93.8%, 67.0%, 58.3%, 3 1 98.7%
53.6%, 96.2% 30.6%, 81.2%
Cascade 3 3 61.7%, 87.5%, 68.6% 3 3 86.2%, 94.0%, 49.4% 3 3 99.0%, 94.8%, 81.1%
R-CNN
CenterNet 3 3 81.0%, 83.2%, 51.0% 3 3 97.9%, 94.8%, 75.3% 3 3 47.0%, 31.7%, 72.4%
Dynamic 3 4 97.6%, 98.2%, 34.3%, 28.6% 3 1 69.0% 3 3 98.3%, 93.9%, 91.2%
R-CNN
DH R-CNN 3 5 36.0%, 61.7%, 44.3%, 3 3 98.6%, 97.3%, 61.2% 3 1 522%
93.8%, 86.8%
DETR 3 3 87.4%, 97.0%, 95.5% 3 3 98.29%, 98.3%, 38.4% 3 3 98.0%, 87.6%, 88.8%
Sparse R-CNN 3 4 91.6%, 98.9%, 48.6%, 82.0% 3 3 89.9%, 97.8%, 50.7% 3 2 70.6%, 45.6%
ViDet 3 3 84.9%, 97.9%, 93.8% 3 3 98.3%, 98.8%, 92.0% 3 4 98.9%, 32.9%, 46.6%, 96.7%
DAB-DETR 3 3 93.9%, 93.9%, 88.2% 3 4 97.8%, 45.7%, 78.3%, 85.0% 3 4 98.0%, 43.4%, 54.2%, 61.2%
CO-DETR 3 3 96.6%, 97.4%, 94.8% 3 3 97.2%, 98.3%, 92.2% 3 6 99.8%, 99.3%, 40.2%,
83.9%, 31.2%
MLFANet 3 3 99.7%, 99.8%, 99.6% 3 3 99.0%, 99.5%, 92.3% 3 3 99.0%, 94.8%, 81.1%

HB, CC, SC, and MB denote the human body, circle cage, square cage, and metal bucket.
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Model ackbone Precisio Recall F1 score AP AP50  AP75 AP! AP™ AP® FAR
Faster R-CNN ResNet-50 0.8245 0.8547 0.8393 0.3253 0.8013 02179 0.4768 04312 03147 | 01755
RetinaNet ResNet-50 07852 0.8165 0.8005 0.2975 07928 0.1852 04573 04127 = 03052 | 02148
Cascade R-CNN ResNet-50 08564 0.8872 08715 0.3497 08417 | 02368 0.4892 04562 | 03387 | 0.1436
CenterNet ResNet-101 0.8864 0.8953 0.8908 0.3958 08736 02873 0.5579 05124 03865 | 0.1136
Dynamic R-CNN | ResNet-50 0.8426 0.8692 0.8557 0.3375 08327 | 02295 0.4936 04457 03249 | 0.1574
DH R-CNN ResNet-50 0.8647 0.8873 0.8758 0.3589 08562 02674 0.5183 04618 03621 0.1353
DETR ResNet-50 [ 0.8958 0.9267 09110 0.4122 0.8893 03275 0.5724 05218 04018 | 0.1042
Sparse R-CNN ResNet-101 0.8782 0.8879 0.8830 0.3624 08624 02587 0.5276 04835 03512 | 0.1218
ViTDet ViT-B 09128 0.9385 09255 0.4215 09032 03386 0.5597 05197 04132 | 0.0872
DAB-DETR ResNet-50 0.9067 0.9249 09157 0.4037 08924 03194 0.5482 04973 03976 | 0.0933
CO-DETR Swin-L 09273 0.9486 09378 0.4326 09162 03417 0.5893 0.5468 04218 | 0.0727
ResNet-50 09438 0.9652 09543 0.4583 09548 03578 0.6142 05679 04427 | 0.0562

MLFANet (Ours) T
ResNet-101 0.9521 0.9716 0.9617 0.4611 09602 0.3792 0.6279 05824 04536 0.0479
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Methods Cube Ball HB Plane CcC SC MB ROV P
Baseline 0.7153 0.3274 ‘ 0.5865 0.4317 0.7528 0.2154 0.5171 0.7349 0.2054 0.5366 ‘ 0.5024
+LFAM 0.8543 0.5832 ‘ 0.7941 0.7352 0.8759 0.4367 0.7185 0.8437 0.2681 0.7639 ‘ 0.6874
+DFEM 0.8722 0.6348 ‘ 0.8364 0.7281 0.8675 04713 0.6985 0.8636 03014 0.7863 ‘ 0.7061
+MFRM 0.8657 0.5962 ‘ 0.8046 0.7524 0.8854 03762 0.6735 0.8893 0.3267 0.8127 ‘ 0.6983

+LFAM+DFEM 0.8875 0.6584 ‘ 0.8536 0.7782 0.9107 0.4685 0.7639 0.9164 04172 0.8311 ‘ 0.7485
+LFAM+DFEM+MFRM 0.9318 0.7653 ‘ 0.8735 0.8094 0.9512 0.4956 0.7855 0.9381 0.4597 0.8535 ‘ 0.7864

NA denotes the number of actual objects and NO denotes the number of objects detected.
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FPS (512x512

Parameter FLOPs (G)

(MB) image size)
Faster R-CNN 4,138 207.1 32.6
RetinaNet 3,815 | 198.7 359
Cascade R-CNN 3,854 2232 35.3
CenterNet 3,384 189.2 41.2
Dynamic R-CNN 4,052 204.7 ‘ 30.1
DH R-CNN 4,327 212.3 ‘ 29.6
DETR 5,748 350.2 | 194
Sparse R-CNN 4,877 298.1 22.3
ViTDet 5,792 420.5 17.8
DAB-DETR 6,015 368.4 18.5
CO-DETR 5,674 7 324.5 19.7
MLFANet (Ours) 3,157 183.4 82.3
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Data

AP (%) AP50 (%) AP75 (%) AP (%) AP (%) AP* (%) FAR (%)

fraction
Faster R-CNN 3253 80.13 ‘ 2179 47.68 43.12 | 3147 17.55
RetinaNet 29.75 7952 18.52 45.73 41.27 30.52 21.48
100% DETR 4122 88.92 3275 57.24 52.18 40.18 10.42
CO-DETR 43.26 91.62 3417 58.92 54.68 ‘ 42.18 7.27
MLFANet (Ours) 46.11 96.02 3792 62.79 58.24 45.36 479
Faster R-CNN 29.20 76.80 18.50 43.12 39.84 28.74 19.80
RetinaNet 26.85 74.30 1567 4145 ' 37.20 26.32 23.67
50% DETR 36.80 85.20 28.90 50.72 46.10 36.40 12.80
CO-DETR 39.40 88.10 30.70 53.34 49.36 39.20 9.72
MLFANet (Ours) 42.50 93.80 34.80 57.30 53.60 42.10 6.30
Faster R-CNN 2472 63.18 14.52 37.11 32.84 23.45 23.42
RetinaNet 2217 64.82 1233 33.84 30.11 21.52 26.64
25% DETR 3125 76.41 2374 43.55 39.62 30.18 15.63
CO-DETR 33.84 80.12 2624 46.85 ‘ 12.62 33.51 1292
MLFANet (Ours) 37.58 86.74 30.66 49.25 46.13 36.35 8.87
Faster R-CNN 18.57 55.42 9.83 2517 22.52 15.68 27.92
RetinaNet 16.42 51.27 828 21.84 19.43 14.36 30.65
10% DETR 24.17 61.74 17.98 33.65 30.24 24.06 1873
CO-DETR 26,58 65.97 2042 36.84 3341 26.17 15.83
MLEANet (Ours) 30.85 74.26 2474 41.58 38.92 3174 1048
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Criteria

Alternatives

Meth 1 3 7 2 5 6 8 4
Meth 2 9 4 6 , 2 8 3 7 5
Meth 3 2 5 3 , 7 4 6 3
Meth 4 5 2 7 3 9 4 6
Meth 5 7 6 2 4 5 2 4
Meth 6 4 3 5 6 2 7 5
Meth 7 6 | 4 8 2 3 5 2
Meth 8 8 2 4 v 3 7 6 3
MAX 9 7 8 7 9 8 6
MIN 2 2 2 2 2 2 2
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C Cc2 C Cc4 C5 (e(3

Meth 1 0.142857143 1 0 0.600 0.571 i 0.500
Meth 2 1 04 0.66666667 0 0.857 0.16666667 075
Meth 3 0.000 0.600 0.16666667 1 0.28571429 0.667 0.250
Meth 4 0428571429 0.000 0.83333333 02 1 0333 1.000
Meth 5 0.714 0.800 0 0.400 0.429 0.000 05
Meth 6 0.286 0.200 05 0.800 1 0.000 0.833 0.750
Meth 7 0.571428571 0.400 1 0 0.143 0.500 0.000

Meth 8 0.857142857 0 0.33333333 0.200 0.714 0.667 0.250
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Quantity Weights Weights in

of Information Percent (%)
C1 2.462 0.148 14.82%
2 2.552 0.154 15.36%
c3 2.636 0.159 15.87%
C4 2.616 0.157 15.74%
C5 2.133 0.128 12.84%
C6 2309 0.139 13.90%
C7 1.907 0.115 11.48%
sum | 16.614 1.000 100%
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End-to-End Delay (ms) Distributi Node Lifetime (hrs) Convergence Time (s)

(Jawhar et al,, 2018) 62 0.89 195 36

(Song, 2020) 57 0.86 178 34
(Li et al., 2018) 60 0.90 190 32
(Lyu et al,, 2022) 65 0.85 175 37
(Jahanbakht et al., 2021) 55 0.88 180 35
(Heshmati-Alamdari 58 0.87 185 33
et al,, 2019)

Proposed 50 0.95 200 30
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Data Bandwidth
rate (kbps) (KHz)
Short Range <1 km 20 kbps 20-50 KHz
Medium 1-10 km 10 kbps 10 KHz
Range
Long Range 10-100 km 1 kbps 2-5 KHz
Basin-Scale 3000 km 10 bps <1 KHz
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Meth 2 asks Path Monitoring Surveillance .ea o Predictability Sensing Data Collection
Management time Monitoring
Meth 3 Positioning Navigation Localization Positioning Tracking Detection Tethered
Meth | 4 Oceanography Exploration Virtualization Seafloor mapping | Sampling Visibility Deployment
Meth | 5 Service Provision  Forecasting Multi-tasking Resomree Integration Telemetry Controllability
Management
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Real- i . . s e
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time Operation
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Technology Working Frequency Modulatio Distance (| Data Rates (kbps)
EM Waves 2.4GHz CCK 0.16m 11Mbps

2.4GHz QPSK 0.17m 2Mbps
1KHz BPSK 2m 1Kbps
10KHz BPSK 16m 1Kbps
3KHz - 40m 100bps
5MHz - 90m 500Kbps

Acoustic Waves 800KHz BPSK 1m 80Kbps
70KHz ASK 70m 0.2Kbps
24KHz QPSK 2500m 30Kbps
12KHz MIMO-OFDM - 24.36Kbps

Optical Waves - PPM 1.8m 100Kbps
- - 10m 10Mbps
- - 11m 9.69Kbps
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Measure

of Conflict
cl 0.000 1339 0.70373712 1.81892302 057142857 1.64609574 095545646 7.034
2 1339 0 1650 0.65856832 124196696 092704422 1.24142866 7.058
c3 070373712 1.650159294 0 1.61343836 0.90983304 12058396 090360746 6.987
c4 1818923025 065856832 1.61343836 0 150395263 046818398 1 7.063
cs 0.571428571 1241966959 0.90983304 1.50395263 0 1.35894208 051002106 6.096
c6 1646095738 0.927044217 1.2058396 0.46818398 1.35894208 0 121488612 6.821
c7 095545646 1241428656 0.90360746 1 051002106 121488612 0 5.825
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© Cc2 C Cc4 €5 (e

Meth 1 0.142857143 1 0 0.600 0.571 1 0.500
Meth 2 1 04 0.66666667 0 0.857 0.16666667 075
Meth 3 0.000 0.600 ' 0.16666667 1 0.28571429 0.667 0.250
Meth 4 0428571429 0.000 0.83333333 02 1 0333 1.000
Meth 5 0.714 0.800 0 0.400 0.429 0.000 0.5
Meth 6 0.286 0.200 05 0.800 0.000 0.833 0.750
Meth 7 0.571428571 0.400 1 0 0.143 0.500 0.000
Meth 8 0.857142857 0 033333333 0.200 0.714 0.667 0.250

Std deviation 0.350 0.362 0.377 0.370 0.350 0.339 0.327
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Model Mean StDev SE 95% ClI

EffDet-DO 0.73 0.36 0.12 (0.45, 1.01)
EffDet-D1 0.79 0.31 0.10 (0.55, 1.03)
EffDet-D2 091 0.13 0.04 (0.81, 1.01)
YOLOV8n 0.30 0.37 0.12 (0.02, 0.58)
YOLOVS8s 0.24 0.26 0.09 (0.04, 0.44)
YOLOv8m 0.48 0.45 0.15 (0.13, 0.83)
YOLOVSI 0.50 0.43 0.14 (0.17, 0.83)
YOLOV8x 0.49 0.43 0.14 (0.16, 0.82)
RT-DETR-L 0.93 0.09 0.03 (0.86, 1.00)
RT-DETR-X 0.96 0.07 0.02 (0.90, 1.01)

The confidence intervals indicate the range in which each model’s true mean accuracy is likely
to lie, based on nine test videos.
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Test Videos Client Side Models Server Side Models

EfficientDet RT-DETR
D1 L X
Rip_test_video_1 1.00 1.00 1.00 0.94 0.72 0.99 0.99 0.93 1.00 1.00
Rip_test_video_2 0.99 0.86 1.00 0.01 0.01 0.05 0.20 0.05 1.00 0.99
Rip_test_video_3 0.86 0.84 0.79 0.58 0.30 0.71 0.46 0.53 0.90 0.93
Rip_test_video_4 0.27 0.79 0.72 0.00 0.00 0.04 0.00 0.00 0.85 0.89
Rip_test_video_5 0.73 091 1.00 0.76 0.50 1.00 1.00 1.00 1.00 1.00
Rip_test_video_6 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.86 1.00
Rip_test_video_7 0.99 1.00 1.00 0.19 0.35 0.93 1.00 1.00 1.00 1.00
Rip_test_video_8 0.70 0.71 0.71 0.00 0.00 0.00 0.15 0.29 0.76 0.80
Rip_test_video_9 1.00 1.00 1.00 0.21 0.24 0.62 0.71 0.63 1.00 1.00
Average Accuracy 0.73 0.79 0.91 0.30 0.24 0.48 0.50 0.49 0.93 0.96

Bold values in the last row represent the average detection accuracy for each model variant across all test videos, used to evaluate overall model performance.
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lodel Properties

EfficientDet-DO

Model Size on Server (MB)
Avg. FPS on Server

Model Size on Phone (MB)
Avg. FPS on iPhone 12 Pro

Avg. FPS on Pixel 6

1370 18.50 600 49.60 8360 13040 63.00 129.00
37 21 127 106 86 79 a7 35

423 7.04 600 49.60 8360 13040 63.00 129.00
8 15 25 7 Not Applicable Not Applicable Not Applicable Not Applicable
26 8 29 18 Not Applicable Not Applicable Not Applicable Not Applicable
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Precision (OD (VA] Recall (OD/MD) (%) F1 Score (OD/

CNN 89.98/94.37 88.11/95.20 90.06/94.85 89.07/95.02
Res2Net 91.77/95.37 94.42/96.39 91.37/96.08 92.87/96.23
ResNetSE 90.93/96.63 88.03/96.65 86.81/94.29 87.42/95.46

RNN 88.90/94.03 87.08/92.68 89.70/95.34 88.37/93.99
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Species Name

Abbreviation

Killer Whale Kw 1394 1.1 1533
Humpback Whale HW 908 1.6 1452
Pilot Whale PW 1165 13 1514
Bottlenose Dolphin BND 723 20 1446
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Humpback Whale HW 908 48000Hz
Pilot Whale PW 1165 48000Hz
Bottlenose BND 723 48000Hz
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Processor ‘ 12th Gen Intel(R)Core(TM)i7-12700 2.10 GHz
RAM ‘ 64.0GB(63.7GB Available)
System type ‘ Windows11/Ubnutu 22.04
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Output : Visualization results;

1: sparksSparksession builder getorCreate()

Lheader=True,

3: datasdata.dropnal)

4: assembler=VetorAssembler(inputCols=
[*featuer1”, “featuer2”]. outputColfeatuer”)

5: datasassenbler transforn(data)

6: 1sh=HinHashLSH(inputCols="featuer”,
outputCol="hashes, nusHashTables=5)

7: nodeleleh. it (dota)
8: hashedvatasnodel transforn(data)
9: nodelesh.setiumiashTables(10) Fit(data)
10: hashedDatarmode). transforn(data)

11: hashedData. groupBy( “hashes") .count() .show( ) =@
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Input: Fingerprint of the data block to be retrieved;
Output: Fingerprint of data blocks that are sitlor to the
Fingerprint of the data block tobe retrieved;

1: def_intt_(self, tables.num:int,

int. depth:int)

2: 5e1f. tables.num = tables.num

3iselfiana

4 5e1¢.R = 0p. randam. randon( [depth, tables.num])

5: 56165 ap.randam.unifore(@, a, [1, tables_nun])

6:561fhash.tables » [41ct () for  inrange(tables.oum) do]

7: def_hash(self, inputs: UnionlListlList],
op.ndarray)):

8 hash_val «np. floor (. abs (. atewlsnputs, self )
+5e1f.0)/sel )

9: returnhash.val

10: def nser(sel., aputs)

11 toputs = np.array(snputs)

12: IF len(inputs.shape) == 1 then fnputs =

13: hash_index « se1f. hash(inputs)
16: for 1aputs_one, indexs 10 21p(1puts, hash.index) do

15: for 1, key inenumerate(indess) do self hash.
4] setdefoult(ley. (1).append(tuple(rputs.one))

bles

16 end for

17 end for

18: def query(self. inputs, nuns=20)

19: hash.val = self._hash(inpute) .ravel()

20: candidates = set()

211 for 1, key in enunerate(hash_val) do
candidates. update(sel ash. tables(1) [key])

2: enate

23 candidates = sorted(candidates. key=lonbda x:
se1f_euelidean.dis(x, inputs))

24: return candsdates :nums]

25: def euelidean dhs(x, y):

26: x=np.array(x)
22:y=mp.array(y)

28: return . sart(np.sun(np.poner (x -y, 2)))

2:

30: data = . randon. randan( (16009, 160])

31 query = np. randen.rancon( 11691

32: 1sh « Evclideant (10, 1. 100)

331 1eh. snsert (cata)

36: res = h. query(query. 20)

35: res = np.array(res)

36: print(np. sua(np.power  res - qery. 2), axis=-1))

sort = . argsor t(np.sun(np poner (data - query, 2).
)

print(np.sun(np.pover (datalsort :20]] - auery. 2)
)

39:print (np. sus(np.pover (datalsort(-20]):
axtsn-1)) =0

auery. 2).
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Chl-a_A Chl-a_A
Stations VS SST_A VS Wind_A Time period
Z3-S1 0 0 All months
Southwestern
0 0 monsoons
Northeastern
0 0 monsoons
Transitional
0 0 months
75-S2 0 1+ All months
Southwestern
0 0 monsoons
Northeastern
0 1+ monsoons
Transitional
0 0 months
75-S3 1- 0 All months
Southwestern
0 0 monsoons
Northeastern
1- 0 monsoons
Transitional
1- 0 months
Z7-S2 0 1- All months
Southwestern
0 1- monsoons
Northeastern
0 0 monsoons
Transitional
0 0 months

A value of 1 indicates a significant correlation, while 0 denotes no significance. The symbols

+” and “~” represent positive and negative correlations, respectively.
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Missing data 24.67% 1.26%
Number of cross-validation points 373975 373975
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In the results, boldface indicates the best data and blue denotes the suboptimal data.
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In the results, boldface indicates the best data and blue denotes the suboptimal data.
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