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s

 1 Introduction

Nonlinear systems and networks theory is a branch of automatic control theory. It takes 
systems and networks described by nonlinear differential equations or difference equations 
as its research objects, focusing on their motion laws and analysis methods, and belongs to 
the field of physics [1–5]. Its core feature is the failure of the superposition principle, and it 
mainly studies complex phenomena such as self-excited oscillation, frequency-dependent 
amplitude, multi-valued response, bifurcation and chaos [6–10].

In recent years, with the development and application of emerging technologies such 
as big data [11, 12], cloud computing [13, 14], Internet of Things [15–17], and datacentral 
networks [18–20], nonlinear technologies have gradually shifted from system modeling to 
intelligent computing [21–24]. At present, nonlinear systems and networks have been deeply 
studied and applied in the following fields, such as chaotic systems [25–27], neural networks 
[28–32], memristors [33–35], neural circuits [36–38], system synchronization [39, 40], and 
related application fields [41–47].

Due to the success of the first and second Research Topic of “Advances in Nonlinear 
Systems and Networks”, we have decided to continue to focus on the ongoing progress of 
nonlinear systems and networks in the third volume. This Research Topic has published 
a total of 10 research papers, covering the latest research progress in areas such as 
adaptive iterative learning control, chaotic system modeling, memristor mathematical 
model, nonlinear circuit, and their applications. 

 2 Summary of papers presented in This Research 
Topic

Zhang et al. in the paper “FSE-RBFNN-based LPF-AILC of finite time complete tracking 
for a class of time-varying NPNL systems with initial state errors”, proposed a low-pass filter 
adaptive iterative learning control (LPF-AILC) strategy is proposed. The authors combined 
the Radial basis function neural network (RBFNN) with the Fourier Series expansion (FSE) 
and proposed a new function approximator (FSE-RBFNN) to model various time-varying
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nonlinear parametric functions. To mitigate the influence of the 
initial state error, the article introduces a dynamically changing 
boundary layer and a series of methods for dealing with the upper 
bound of unknown errors. Finally, the correctness of the proposed 
control method was verified through two simulation examples.

Yu et al. in the paper “New discrete memristive hyperchaotic 
map: modeling, dynamic analysis, and application in image 
encryption”, by coupling the upgraded cosine discrete memristor 
with the Cubic mapping, a new type of discrete memristor 
hyperchaotic mapping is constructed. Then, the dynamic 
characteristics of the system are deeply analyzed. Subsequently, 
based on the proposed hyperchaotic mapping, the paper presents a 
new image encryption scheme, effectively scrambling and diffusing 
the image data. During the diffusion process, a new forward 
and reverse diffusion strategy is introduced, which improves the 
encryption efficiency. Finally, through relevant security analysis, it 
is found that this scheme has high security and practicability.

Wang et al. in the paper “Monophasic and biphasic 
neurodynamics of bi-S-type locally active memristor”, proposed 
an artificial memristive neuron was proposed to reproduce the 
function of biological neurons. By using the Chua expansion 
theorem, the authors established a mathematical model of a 
double S-type local active memristor with negative differential 
resistance (NDR). Subsequently, the paper constructed a second-
order neural circuit to simulate periodic spikes and excitability. In 
addition, the constructed neuron circuits generate biphasic action 
potentials through voltage-symmetric modulation, replicating 
the bidirectional signal transmission similar to that of biological 
systems. Finally, hardware simulation verified the neural dynamics 
under different stimuli.

Gao et al. in the paper “Analysis and Application for the Source-
free R M LC Circuits”, studied the passive circuit topologies of four 
types of integrated memristors and energy storage components. 
Firstly, through mathematical modeling, the authors discovered 
that all four circuits are controlled by transcendental equations. 
Secondly, two types of four-component passive circuits were 
configured and analyzed. It was concluded that the capacitor 
and inductor provide energy for the system, while the memristor 
exhibits hysteresis behavior. Finally, the paper configured and 
discussed the application circuit. Research shows that even within 
the same circuit, different placement positions of memristors can 
lead to different topological structures and different nonlinear
output behaviors.

Wang et al. in the paper “An echo state network based on 
enhanced intersecting cortical model for discrete chaotic system 
prediction”, proposed an echo state network framework based on 
the Enhanced Intersecting Cortical Model (ESN-EICM). This model 
introduces a neuron model with internal dynamics (including 
adaptive thresholds and interneuron feedback) into the reservoir 
structure. The paper compares the performance of the ESN-EICM 
network with that of the standard ESN and long short-term memory 
(LSTM) networks. The experimental results show that in the test 
system, compared with the standard ESN and LSTM models, the 
ESN-EICM model generates lower error metrics (MSE, RMSE, 
MAE), and the performance difference is more obvious in multi-step 
prediction scenarios.

Tu et al. in the paper “Child information protection scheme 
based on hyperchaotic mapping”, proposed an encryption scheme 

based on hyperchaotic mapping. Firstly, the authors plotted the 
phase diagrams of the hyperchaotic mapping under different 
parameter combinations. The changes in the phase trajectories 
confirmed the sensitivity of the hyperchaotic mapping to the control 
parameters. Then, the paper iterates on the hyperchaotic mapping 
to obtain a chaotic sequence and quantizes the chaotic sequence to 
obtain a pseudo-random sequence. Finally, on this basis, scrambling 
algorithms and diffusion algorithms were designed to encrypt and 
protect the images, which are used to protect the information of 
missing children and can effectively protect the information security 
of children.

Chen et al. in the paper “A novel image encryption method 
based on improved two-dimensional logistic mapping and DNA 
computing”, proposed an innovative image encryption method, 
eliminating the security limitations of traditional one-dimensional 
logical mapping. Firstly, the article utilizes the improved two-
dimensional Logistic-fractional mixed chaotic map (2D-LFHCM) 
to effectively shuffle the images by merging chaotic sequences. 
Then, two new algebraic deoxyribonucleic acid (DNA) calculation 
rules were introduced to enhance diffusion encryption. The 
experimental results show that this method provides superior 
security performance.

Zhang et al. in the paper “Grid Image Encryption Based on 
4D Memristive Sprott K Chaotic Sequence”, proposed an image 
encryption algorithm for smart grids based on chaotic systems. 
Firstly, the authors adopted the 4D memristive Sprott K system to 
generate chaotic sequences as the encryption key stream; Secondly, 
the article uses a dual encryption mechanism of scrambling and 
diffusion to scramble the positions of image pixels and replace their 
values, thereby enhancing the algorithm’s anti-attack capability. The 
simulation results show that this algorithm can effectively protect the 
security and privacy of smart grid images.

Huang et al. in the paper “HiImp-SMI: an implicit transformer 
framework with high-frequency adapter for medical image 
segmentation”, studied an implicit transformer framework for 
medical image segmentation with a high-frequency adapter 
(HIPP-SMI). The authors have designed a new dual-branch 
structure that simultaneously processes spatial and frequency 
information. Experimental evaluations show that on the Kvasir-
Sessile and BCV datasets, HiImp-SMI consistently outperforms 
mainstream models. The framework proposed in the paper can 
serve as a flexible baseline for future work involving implicit 
modeling and multimodal representation learning in medical 
image analysis.

Dmitriev et al. in the paper “Self-organization of the stock 
exchange to the edge of a phase transition: empirical and theoretical 
studies”, found segments in the hourly stock trading volume 
sequence of 3,000 listed company stocks, corresponding to the 
time when the stock exchange remained at the edge of the 
phase transition. The authors conducted theoretical arguments 
for this hypothesis and presented phenomenological models of 
the self-organization of stock exchanges at the first-order phase 
transition edge and the second-order phase transition edge. The 
practical significance of this study lies in the possibility of self-
organization of stock exchanges to phase transition edge early 
warning, and it can be expanded in future research using high-
frequency data.
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3 Concluding remarks

The continuous release of this Research Topic marks that the 
application and development research of nonlinear systems and 
networks has entered a brand-new research space. As this field 
continues to develop, contributions from a broader range of research 
and applications will play a crucial role in shaping its future 
direction.

Finally, we would like to express our gratitude to all the authors 
of the 10 articles in this Research Topic for their outstanding 
contributions. Their research papers are all highly suitable for the 
scope of this Research Topic. In addition, we would also like 
to express our sincere gratitude to all the reviewers, editors and 
editorial staff of the journal Frontiers in Physics for their support.
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FSE-RBFNN-based LPF-AILC of
finite time complete tracking for a
class of time-varying NPNL
systems with initial state errors

Chunli Zhang1,2, Lei Yan  1,2, Yangjie Gao  1,2,
Junliang Yao  1,2* and Fucai Qian  1,2

1School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, China,
2Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an
University of Technology, Xi’an, China

The paper proposes a low-pass filter adaptive iterative learning control (LPF-AILC)
strategy for unmatched, uncertain, time-varying, non-parameterized nonlinear
systems (NPNL systems). To address the difficulty of nonlinear parameterization
terms in system models, a new function approximator (FSE-RBFNN), which
combines the radial basis function neural network (RBFNN) and Fourier series
expansion (FSE), is introduced to model each time-varying nonlinear
parameterized function. The adaptive backstepping method is used to design
control laws and parameter adaptive laws. In the process of controller design, we
may encounter the problem of too many derivatives, which can cause parameter
explosions after derivatives. Therefore, we introduce a first-order low-pass filter
to solve this problem and simplify the structure of the controller. As the number of
iterations increases, the maximum tracking error gradually decreases until it
converges to the nearby region, approaching zero within the entire given
interval [0,T], according to the Lyapunov-like synthesis. To mitigate the
impact of initial state errors, a dynamically changing boundary layer is
introduced, along with a series to deal with the unknown error upper bounds.
Finally, two simulation examples prove the correctness of the proposed control
method.

KEYWORDS

adaptive iterative learning control, time-varying non-parameterized nonlinear systems,
backstepping method, Fourier series expansion-radial basis function neural network,
initial state errors, low-pass filter

1 Introduction

Adaptive iterative learning control (AILC) is a useful control strategy for solving
repetitive tracking control task problems for uncertain nonlinear systems. It continuously
adjusts its control algorithm through iterative learning to gradually approach the ideal
trajectory of the unknown system. AILC has extensive application value and promising
development prospects for practical applications. Repeat systems include uncertain robotic
manipulators and uncertain hard disk drivers. The task requirements specify that it can
quickly achieve exact tracking as the number of iterations increases [1–4].

A non-parameterized nonlinear (NPNL) system refers to a dynamic characteristic that
exhibits a complex nonlinear relationship and unknown parameters, making it difficult to
design effective control strategies. It is particularly challenging to achieve high-precision
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tracking and control within a limited time frame. Traditional control
methods often require the establishment of a mathematical model
for the system, but for the NPNL system, this step is usually very
difficult or even impossible to complete. AILC technology has
become an important method for solving these problems [5, 6].

There are many challenging problems in the research of
AILC. This paper considers three difficult problems of AILC.
The first problem is the processing problem of uncertain
nonlinear parameterization terms with time-varying
parameters. In the field of control, the control problem of
nonlinear systems with uncertain time-varying parameters is
very challenging. Adaptive control and robust control are
common methods to deal with uncertain problems [7, 8].
Through learning, adaptive control can mitigate the impact of
uncertainties. In order to handle uncertain nonlinear terms,
adaptive control is often combined with some approximation
methods, such as neural networks (NNs) and Fuzzy Logic
Systems (FLSs). However, these adaptive controls only solve
the uncertain linearly parameterized disturbances and ensure
the stability of the system [7–20]. For the uncertain system, a

fuzzy AILC was presented [21]. The composite energy
function–adaptive iterative learning control (CEF–AILC) is an
effective scheme for systems with time-varying disturbances
[21–23]. Few AILC research results focus on uncertain, non-
parameterized nonlinear systems [24–26]. Specifically, for
systems with non-separable time-varying parameters, the
tracking control problem on finite time intervals is still an
open problem.

The second problem of AILC is ensuring complete tracking over
a finite time interval when the initial state has errors. In these studies
[27–31], the stability analysis section requires that initial state errors
be strictly zero. Although the research on this problem is well done
in traditional D-type or P-type ILC [32–41], it has not been well
solved based on Lyapunov analysis for AILC. Specifically, in the
presence of an initial state error, ensuring the system’s completion of
accurate tracking tasks within a specified time frame presents a
complex challenge. [39] solved the tracking control problem of the
unmatched uncertain NPNL systems. [41] solved the tracking
problem of a class of high-order nonlinear systems with random
initial state shifts, which relaxes the requirement of initial

FIGURE 1
Variation in y0, yd1 , z1,0 over time without iteration.

FIGURE 2
Variation in y50 , yd1 , z1,50 over time during the 50th iteration.

FIGURE 3
Variation in y100 , yd1 , z1,100 over time during the 100th iteration.

FIGURE 4
Variation in max(|z1,k|) according to the iteration index.
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positioning in ILC. So far, no relevant research results have been
found for AILC applied to NPNL systems with uncertain time-
varying parameters and initial state errors.

The last problem is parameter explosions after the derivative of
the virtual controller. When designing a controller, we may
encounter the problem of too many derivatives, which can cause
parameter explosions after derivatives. Addressing this issue and
streamlining the controller’s structure to ensure the effective
tracking of the non-parametric, nonlinear, time-varying system is
a challenging and crucial problem. [42–44] employed a first-order
low-pass filter to address the challenge of parameter explosions and
achieve satisfactory performance. Therefore, we introduce a first-
order low-pass filter to solve this problem and simplify the structure
of the controller.

Motivated by the above discussion, we will use a low-pass filter
AILC (LPF-AILC) method for uncertain time-varying NPNL
systems. The AILC is given by the adaptive backstepping
technique and Lyapunov-like theorem. In response to the
difficult issues discussed above, the main contributions of this
article are as follows:

1) An LPF-AILC strategy is proposed for a class of strongly time-
varying, non-parameterized, nonlinear systems combined with
a new approximation method.

2) The processing problem of uncertain time-varying nonlinear
parameterization terms was solved. This is a very important
and difficult problem. Specifically, in the field of AILC, no
relevant research results have been found.

3) The difficulty problem of AILC is ensuring complete tracking
on a given interval when the initial state has errors.

4) The problem of parameter explosions was solved by
applying a derivative to the virtual controller and
simplifying its structure.

In this paper, a combination of Fourier series expansion and
radial basis function neural network (RBFNN) (FSE-RBFNNs) is
used to model the uncertain, time-varying nonlinear dynamics by
using their uniform approximation [24, 38]. An updating time-
varying boundary layer is used to design the error function to deal
with the initial state error. A common convergence series
sequence is employed to mitigate the impact of approximation
errors on the control performance of the system. A low-pass filter
was introduced to solve the problem of parameter explosions
resulting from the derivative of the virtual controller and simplify
the structure of the controller. Theoretical analysis can
demonstrate the bounded nature of all signals within the
closed-loop system. The maximum value of errors will
gradually converge to a narrow range close to zero as the
boundary layer width satisfies the convergence condition with
the number of iterations. Finally, two simulation examples are
given to prove the effectiveness and correctness of the
control method.

2 Problem description and
mathematical foundations

2.1 Problem description

Uncertain time-varying NPNL systems are considered:

FIGURE 5
Variation in max(|z2,k|) according to the iteration index.

FIGURE 6
Variation in ‖uk‖ according to the iteration index.

FIGURE 7
Variation in ‖αk‖ according to the iteration index.
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_x1,k � x2,k + f1 �x1,k, θ1 t( )( ) + g1 �x1,k( )
_xi,k � xi+1,k + fi �xi,k, θi t( )( ) + gi �xi,k( )
_xn,k � uk + fn �xm,k, θn t( )( ) + gn �xn,k( )
yk � x1,k,

(1)

where �xi,k � [x1,k, . . . , xi,k]T ∈ Ri and x � �xn represents measurable
state vectors. uk ∈ R is the control input. yk ∈ R is the system output.
fi(�xi,k, θi(t)), gi(�xi,k), and i � 1, 2, . . . , n are uncertain time-
varying functions, and θi(t) represents unknown time-varying
parameters. k denotes the iteration time.

The design objective of this article is to find uk(t) for system (1)
to ensure that yk(t) follows the ideal trajectory yd1(t) on [0, T].

2.2 Mathematical foundations

The mathematical knowledge used in this article is provided
with relevant references, and the specific definitions and principles
will not be elaborated. Here, we only provide the conclusions that
need to be used in this article.

In system (1), the processing of unknown time-varying,
nonlinear, parameterized function terms f(χk, θ(t)) is a
challenge. Since the function θ(t) is not known, θ(t) is expanded
using Fourier series as θ(t) � MTΦ(t) + δθ(t), ‖δθ(t)‖≤ �δθ ; based
on this, uncertain time-varying nonlinear functions f(χk, θ(t)) can
be approximated as

f χk, θk t( )( ) � WT
kS χk,M

T
kΦ t( ) + δθ,k( ) + δf,k. (2)

A new FSE-RBFNN approximator is built:

G χk, t( ) � WT
kS χk,M

T
kΦ t( )( ), (3)

representing f(χk, θk(t)) as

f χk, θk t( )( ) � WT
kS χk,M

T
kΦ t( )( ) + δk χk, t( ), (4)

where

δk χk, t( ) � δf,k +WT
kS χk,M

T
kΦ t( ) + δθ,k( ) −WT

kS χk,M
T
kΦ t( )( ).

(5)

Assumption 1: In the compact domain Ωk, the weightsWk and
Mk are constrained, and ‖Wk‖≤wm,k and ‖Mk‖≤ma,k with
wm,k, ma,k being unknown positive numbers.

Lemma 1[38]: For (χk, θk(t)) ∈ Ωk, δk(χk, t) in (5) is bound, and

|δk χk, t( )|≤ δk, (6)

where δk represents the supremum of δk(χk, t).
Because Wk and Mk are unknown, we estimate them with Ŵk

and M̂k, respectively. ~Wk � Ŵk −Wk and ~Mk � M̂k −Mk are
estimation errors.

Lemma 2[38]: In the surrogate model (4), the following
conclusion holds:

WT
kS χk,M

T
kΦ t( )( ) − Ŵ

T

k S χk, M̂
T

kΦ t( )( )
� ~W

T

k S χk, M̂
T

kΦ t( )( ) − Ŝk′M̂
T

kΦ t( )( ) + Ŵ
T

k Ŝk′ ~M
T

kΦ t( ) + d,

(7)
where Ŝk′ � [ŝ1,k′ , ŝ2,k′ , . . . , ŝp,k′ ] ∈ Rm×p with ŝi,k′ �
(∂si(χk,ωk))/∂ωk|ωk�M̂kΦ(t) and i � 1, . . . , p, and the remainder
dk is bounded by

|dk|≤ ‖Mk‖F‖Φ t( )ŴT

k Ŝk′‖F + ‖Wk‖‖Ŝk′M̂T

kΦ t( )‖ + |Wk|1. (8)

For the processing of the supremum of each error term, this
article introduces the following typical series sequence:

Lemma 2[39] For a sequence Δk � { 1kl}, where k � 1, 2,/ and
l≥ 2, the following result exists:

limk→∞Σk
i�1
1
il
≤ 2. (9)

Assumption 2: The initial error value at the beginning of each
iteration should meet |zi,k(0)| � ϵi,k with ϵi,k being a convergence
series sequence, where i � 1, . . . , n.

Considering the initial errors, a new function z[34]ϕ,k is accepted:

zϕ,k � zk − ϕk t( )sat zk
ϕk t( )( )

ϕk t( ) � ϵke−ηt,
(10)

FIGURE 8
Variation in ‖Ŵ1,k‖ and ‖Ŵ2,k‖ according to the iteration index.
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where sat is the saturation function given as

sat
zk

ϕk t( )( ) �
1 if zk > ϕk t( )
zk

ϕk t( ) if zk ≤ ϕk t( )

−1 if zk < − ϕk t( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
,

with ϕk(t) being an updating time-varying boundary layer. When
limk→∞zϕ,k � 0 and considering assumption 2 again, we have
limk→∞|zk| � 0.

In order to prevent the problem of gradient explosion, we
introduce the first-order low-pass filter βk, which is given as follows:

_βk � −ξk βk − αk( ), (11)
where βk results from filtering an instruction with αk as its input,
with αk being the virtual controller, ξk > 0, and βk(0) � αk(0).
Because part of αk βk − αk cannot pass through the filter, an
error compensation mechanism ζk is introduced to overcome the
influence of the instruction filter. Therefore, a new function Zk is
introduced as follows:

Zk � zϕ,k − ζk. (12)

3 AILC design

Based on the above mathematical foundations, we present the
specific controller design process.

3.1 Designing the AILC controller

Step 1: Denote N1 � ω2
M1, which will be defined later. z1,k �

x1,k − yd1 and z2,k � x2,k − α1,k, where α1,k is the virtual controller.
Because the initial state values of the system have errors and gradient
explosion, the new error functions Z1,k and Z2,k are given as

Z1,k � z1ϕ,k − ζ1,k

z1ϕ,k � z1,k − ϕ1,k t( )sat z1,k
ϕ1,k t( )( )

z1,k � x1,k − yd1

ϕ1,k t( ) � ϵ1,ke−η1t,

(13)

Z2,k � z2ϕ,k − ζ2,k

z2ϕ,k � z2,k − ϕ2,k t( )sat z2,k
ϕ2,k t( )( )

z2,k � x2,k − β1,k
ϕ2,k t( ) � ϵ2,ke−η2t.

(14)

We recall that

_x1,k � x2,k + f1 �x1,k, θ1 t( )( ) + g1 �x1,k( ). (15)
Given the derivative of z1ϕ,k,

_z1ϕ,k �
_z1,k − _ϕ1,k if z1,k > ϕ1,k t( )
0 if z1,k ≤ ϕ1,k t( )
_z1,k + _ϕ1,k if z1,k < − ϕ1,k t( )

⎧⎪⎪⎨⎪⎪⎩
� _z1,k − sgn z1ϕ,k t( )( ) _ϕ1,k

� z2,k + β1,k + f1 �x1,k, θ1 t( )( ) + g1 �x1,k( )
− _yd1 − sgn z1ϕ,k( ) _ϕ1,k.

(16)

Therefore, the derivative of Z1,k with respect to time is
as follows:

_Z1,k � z2,k + β1,k + f1 �x1,k, θ1 t( )( ) + g1 �x1,k( )
− _yd1 − sgn z1ϕ,k( ) _ϕ1,k − _ζ1,k.

(17)

The error compensation mechanism is considered
as follows:

_ζ1,k � β1,k + ζ2,k − η1ζ1,k − α1,k. (18)

Using Equation 18, we can find the time derivative of the error
function as follows:

_Z1,k � z2,k − ζ2,k + η1,kζ1,k + α1,k − _yd1

+f1 �x1,k, θ1 t( )( ) + g1 �x1,k( ) − sgn z1ϕ,k( ) _ϕ1,k.
(19)

The unknown time-varying, nonlinear functions f1(�x1,k, θ1(t))
and g1(�x1,k) may be approximated by FSE-RBFNN and RBFNN,
respectively.

f1 �x1,k, θ1 t( )( ) � WT
f1Sf1 �x1,k,M

T
1ϕ1 t( )( ) + δf1

g1 �x1,k( ) � WT
g1Sg1 �x1,k( ) + δg1,

(20)

where δf1 and δg1 are the truncation errors after approximation and
Wf1 and Wg1 are weight vectors.

Consider Δk � a
kl, a> 0, and l≥ 2. The virtual control law is

designed as

α1,k � −ŴT

f1,kSf1 �x1,k, M̂
T

1,kΦ1 t( )( ) − Ŵ
T

g1,kSg1 �x1,k( )
−N̂1,k

1
Δk

Z1,k + _yd1 − η1z1,k.
(21)

By substituting Equations 20, 21 into Equation 19, we obtain

_Z1,k � z2,k − N̂1,k
1
Δk

Z1,k − ζ2,k + η1,kζ1,k

+WT
f1Sf1 �x1,k,M

T
1Φ1 t( )( ) + δf1 − Ŵ

T

f1,kSf1 �x1,k, M̂
T

1,kΦ1 t( )( )
+WT

g1Sg1 �x1,k( ) + δg1 − Ŵ
T

g1,kSg1 �x1,k( )
−η1z1,k − sgn z1ϕ,k( ) _ϕ1,k t( )

� Z2,k − N̂1,k
1
Δk

Z1,k − ζ2,k + η1,kζ1,k

+WT
f1Sf1 �x1,k,M

T
1Φ1 t( )( ) − Ŵ

T

f1,kSf1 �x1,k, M̂
T

1,kΦ1 t( )( )
+WT

g1Sg1 �x1,k( ) − Ŵ
T

g1,kSg1 �x1,k( ) + δf1 + δg1

+ϕ2,k t( )sat z2,k
ϕ2,k t( )( ) + ζ2,k

−η1z1,k − sgn z1ϕ,k( ) _ϕ1,k t( )
� Z2,k − N̂1,k

1
Δk

Z1,k + ϕ2,k t( )sat z2,k
ϕ2,k t( )( )

+WT
f1Sf1 �x1,k,M

T
1Φ1 t( )( ) − Ŵ

T

f1,kSf1 �x1,k, M̂
T

1,kΦ1 t( )( )
+WT

g1Sg1 �x1,k( ) − Ŵ
T

g1,kSg1 �x1,k( ) + δf1 + δg1

−η1z1,k − sgn z1ϕ,k( ) _ϕ1,k t( ) + η1,kζ1,k,

(22)
where Ŵf1,k, Ŵg1,k, M̂1,k, and N̂1,k are estimations ofWf1,Wg1,

M1, and N1, respectively. ~Wf1,k � Ŵf1,k −Wf1,
~Wg1,k � Ŵg1,k −Wg1, ~M1,k � M̂1,k −M1, and ~N1,k � N̂1,k −N1

are the estimation errors. It can be proved that the following
result is correct.
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−η1z1,k − sgn z1ϕ,k( ) _ϕ1,k t( ) + η1ζ1,k � −η1z1ϕ,k − η1ϕ1,k t( )sat z1,k
ϕ1,k t( )( )

−sgn z1ϕ,k( ) _ϕ1,k t( ) + η1ζ1,k� −η1z1ϕ,k + η1ζ1,k
−sgn z1ϕ,k( ) _ϕ1,k t( ) + η1ϕ1,k t( )( )

� −η1 z1ϕ,k − ζ1,k( )
� −η1Z1,k.

(23)

Using Equations 7, 23, Equation 22 can be rewritten as

_Z1,k � Z2,k − N̂1,k
1
Δk

Z1,k − η1Z1,k

+ ~W
T

f1 Sf1 �x1,k, M̂
T

1,kΦ1 t( )( ) − Ŝf1,k′ M̂
T

1,kΦ1 t( )( )
+ŴT

f1,kŜf1,k′ ~M
T

1,kΦ1 t( ) − ~W
T

g1Sg1 �x1,k( )
+d1 + δf1 + δg1 + ϕ2,k t( )sat z2,k

ϕ2,k t( )( ).
(24)

Let ω1 � d1 + δf1 + δg1 + ϕ2,k(t)sat(z2,k(t)ϕ2,k(t)), where d1 is the
remaining term of the estimation error after FSE-RBFNN
expansion, and di is also the same; then, Equation 24 becomes

_Z1,k � Z2,k − N̂1,k
1
Δk

Z1,k − η1Z1,k + ω1

+ ~W
T

f1 Sf1 �x1,k, M̂
T

1,kΦ1 t( )( ) − Ŝf1,k′ M̂
T

1,kΦ1 t( )( )
+ŴT

f1,kŜf1,k′ ~M
T

1,kΦ1 t( ) − ~W
T

g1Sg1 �x1,k( ).
(25)

Assumption 3 The remainder ωi � di + δfi + δgi +
ϕi+1,k(t)sat(zi+1,k(t)ϕi+1,k(t)) (i � 1, 2, . . . , n − 1) is bounded with |ωi|≤ωMi

and ωMi > 0.
Remark 1: This assumption is easily satisfied because 1) di, δfi,

and δgi are bounded and 2) when ηi is large enough, ϕi,k(t)sat(zi,k(t)ϕi,k(t))
is sufficiently small.

The Lyapunov-like function is chosen as follows:

V1,k � 1
2
Z2

1,k +
1
2
~W

T

f1,kΓ−1f11 ~Wf1,k + 1
2
~W

T

g1,kΓ−1g11 ~Wg1,k

+1
2
~M

T

1,kΓ−1m11
~M1,k + 1

2
Γ−1n11 ~N

2

1,k,
(26)

where Γf11, Γg11, Γm11, and Γn11 are adjustable matrices, each
being positive, definite, and symmetric. Consider the derivative of
V1,k by system (25), we obtain

_V1,k � Z1,kZ2,k − η1Z
2
1,k

+ ~W
T

f1,kΓ−1f11 Γf11 Sf1 �x1,k, M̂
T

1,kΦ1 t( )( ) − Ŝf1,k′ M̂
T

1,kΦ1 t( )( )Z1,k(
+ _̂Wf1,k) − ~W

T

g1,kΓ−1g11 Γg11Sg1 �x1,k( )Z1,k − _̂Wg1,k( )
+ ~M

T

1,kΓ−1m11 Γm11Φ1 t( )ŴT

f1,kŜf1,k′ Z1,k + _̂M1,k( )
−N̂1,k

1
Δk

Z2
1,k + ω1,kZ1,k + Γ−1n11 ~N1,k

_̂N1,k

≤Z1,kZ2,k − η1Z
2
1,k

+ ~W
T

f1,kΓ−1f11 Γf11 Sf1 �x1,k, M̂
T

1,kΦ1 t( )( ) − Ŝf1,k′ M̂
T

1,kΦ1 t( )( )Z1,k(
+ _̂Wf1,k) − ~W

T

g1,kΓ−1g11 Γg11Sg1 �x1,k( )Z1,k − _̂Wg1,k( )
+ ~M

T

1,kΓ−1m11 Γm11Φ1 t( )ŴT

f1,kŜf1,k′ Z1,k + _̂M1,k( )
−N̂1,k

1
Δk

Z2
1,k +

1
Δk

ω2
M1Z

2
1,k +

1
4
Δk + Γ−1n11 ~N1,k

_̂N1,k

� Z1,kZ2,k − η1Z
2
1,k

+ ~W
T

f1,kΓ−1f11 Γf11 Sf1 �x1,k, M̂
T

1,kΦ1 t( )( ) − Ŝf1,k′ M̂
T

1,kΦ1 t( )( )Z1,k(
+ _̂Wf1,k) − ~W

T

g1,kΓ−1g11 Γg11Sg1 �x1,k( )Z1,k − _̂Wg1,k( )
+ ~M

T

1,kΓ−1m11 Γm11Φ1 t( )ŴT

f1,kŜf1,k′ Z1,k + _̂M1,k( )
−N̂1,k

1
Δk

Z2
1,k +

1
Δk

N1,kZ
2
1,k +

1
4
Δk + Γ−1n11 ~N1,k

_̂N1,k

� Z1,kZ2,k − η1Z
2
1,k

+ ~W
T

f1,kΓ−1f11 Γf11 Sf1 �x1,k, M̂
T

1,kΦ1 t( )( ) − Ŝf1,k′ M̂
T

1,kΦ1 t( )( )Z1,k(
+ _̂Wf1,k) − ~W

T

g1,kΓ−1g11 Γg11Sg1 �x1,k( )Z1,k − _̂Wg1,k( )
+ ~M

T

1,kΓ−1m11 Γm11Φ1 t( )ŴT

f1,kŜf1,k′ Z1,k + _̂M1,k( )
− ~N1,kΓ−1n11 Γn11

1
Δk

Z2
1,k − _̂N1,k( ) + 1

4
Δk,

(27)
where for any r> 0 and mn≤ 1

rm
2 + 1

4n
2r, r � Δk.

We choose

FIGURE 9
Variation in ‖M̂1,k‖ and ‖M̂2,k‖ according to the iteration index.
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_̂Wf1,k � −Γf11 Sf1 �x1,k, M̂
T

1,kΦ1 t( )( ) − Ŝf1,k′ M̂
T

1,kΦ1 t( )( )Z1,k

_̂Wg1,k � Γg11Sg1 �x1,k( )Z1,k

_̂M1,k � −Γm11Φ1 t( )ŴT

f1,kŜf1,k′ Z1,k

_̂N1,k � Γn11
1
Δk

Z2
1,k,

(28)

so Equation 27 becomes

_V1,k ≤Z1,kZ2,k − η1Z
2
1,k +

1
4
Δk. (29)

Step 2: Denote N2 � ω2
M2, which will be defined later. Due to

initial state errors and gradient explosion, we introduce the
following error function Z3,k as

Z3,k � z3ϕ,k − ζ3,k

z3ϕ,k � z3,k − ϕ3,k t( )sat z3,k
ϕ3,k t( )( )

z3,k � x3,k − β2,k
ϕ3,k t( ) � ϵ3,ke−η3t.

(30)

The derivative of Z2,k is shown as follows:

_Z2,k � _z2,k − sgn z2ϕ,k t( )( ) _ϕ2,k − _ζ2,k
� z3,k + β2,k + f2 �x2,k, θ2 t( )( ) + g2 �x2,k( )
− _β1,k − sgn z2ϕ,k( ) _ϕ2,k − _ζ2,k.

(31)

Let the error compensation mechanism be defined
as follows:

_ζ2,k � β2,k + ζ3,k − η2ζ2,k − ζ1,k − α2,k. (32)

Using Equation 32, we can find the time derivative of error
function as

_Z2,k � z3,k − ζ3,k + η2,kζ2,k + ζ1,k + α2,k − _β1,k
+f2 �x2,k, θ2 t( )( ) + g2 �x2,k( ) − sgn z2ϕ,k( ) _ϕ2,k.

(33)

The uncertain time-varying, nonlinear functions f2(�x2,k, θ2(t))
and G2(�x2,k) are approximated by FSE-RBFNN and RBFNN,
respectively.

f2 �x2,k, θ2 t( )( ) � WT
f2Sf2 �x2,k,M

T
2Φ2 t( )( ) + δf2

G2 �x2,k( ) � WT
g2Sg2 �x2,k( ) + δg2,

(34)

FIGURE 10
Variation in ‖N̂1,k‖ and ‖N̂2,k‖ according to the iteration index.

FIGURE 11
Variation in y0, yd1 , z1,0 over time without iteration.

FIGURE 12
Variation in y15, yd1 , z1,15 over time during the 15th iteration.
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where δf2 and δg2 are reconstructed errors and Wf2 and Wg2 are
optimal weight vectors.

Let the virtual control be defined as follows:

α2,k � −ŴT

f2,kSf2 �x2,k, M̂
T

2,kΦ2 t( )( ) − Ŵ
T

g2,kSg2 �x2,k( )
−N̂2,k

1
Δk

Z2,k + _β1,k − η2z2,k − z1ϕ,k.
(35)

Substituting Equations 34, 35 into Equation 33, we obtain

_Z2,k � −z1ϕ,k + ζ1,k + z3,k − ϕ3,k t( )sat z3,k
ϕ3,k t( )( ) − ζ3,k

+WT
f2Sf2 �x2,k,M

T
2Φ2 t( )( ) + δf2 − Ŵ

T

f2,kSf2 �x2,k, M̂
T

2,kΦ2 t( )( )
+WT

g2Sg2 �x2,k( ) + δg2 − Ŵ
T

g2,kSg2 �x2,k( )
−N̂2,k

1
Δk

z2ϕ,k + ϕ3,k t( )sat z3,k
ϕ3,k t( )( )

−η2z2,k + η2ζ2,k − sgn z2ϕ,k( ) _ϕ2,k

� −Z1,k + Z3,k − N̂2,k
1
Δk

z2ϕ,k + ϕ3,k t( )sat z3,k
ϕ3,k t( )( )

+WT
f2Sf2 �x2,k,M

T
2Φ2 t( )( ) + δf2 − Ŵ

T

f2,kSf2 �x2,k, M̂
T

2,kΦ2 t( )( )
+WT

g2Sg2 �x2,k( ) + δg2 − Ŵ
T

g2,kSg2 �x2,k( )
−η2z2,k + η2ζ2,k − sgn z2ϕ,k( ) _ϕ2,k,

(36)
where Ŵf2,k, Ŵg2,k, M̂2,k, and N̂2,k are the estimators of Wf2,

Wg2, M2, and N2, respectively. ~Wf2,k � Ŵf2,k −Wf2,
~Wg2,k � Ŵg2,k −Wg2, ~M2,k � M̂2,k −M2, and ~N2,k � N̂2,k −N2

are estimation errors. It can be proved that the following results
are correct.

−η2z2,k − sgn z2ϕ,k( ) _ϕ2,k t( ) + η2ζ2,k � −η2z2ϕ,k − η2ϕ2,k t( )sat z2,k
ϕ2,k t( )( )

−sgn z2ϕ,k( ) _ϕ2,k t( ) + η2ζ2,k� −η2z2ϕ,k + η2ζ2,k
−sgn z2ϕ,k( ) _ϕ2,k t( ) + η2ϕ2,k t( )( )

� −η2z2ϕ,k + η2ζ2,k
� −η2 z2ϕ,k − ζ2,k( )
� −η2Z2,k.

(37)
Using Equations 7, 37, Equation 36 can be written as

_Z2,k � −Z1,k + Z3,k − N̂2,k
1
Δk

z2ϕ,k − η2Z2,k

+ ~W
T

f2 Sf2 �x2,k, M̂
T

2,kΦ2 t( )( ) − Ŝf2,k′ M̂
T

2,kΦ2 t( )( )
+ŴT

f2,kŜf2,k′ ~M
T

2,kΦ2 t( ) − ~W
T

g2Sg2 �x2,k( )
+d2 + δf2 + δg2 + ϕ3,k t( )sat z3,k

ϕ3,k t( )( ).
(38)

Let ω2 � d2 + δf2 + δg2 + ϕ3,k(t)sat(z3,k(t)ϕ3,k(t)), then Equation
38 becomes

_Z2,k � −Z1,k + Z3,k − N̂2,k
1
Δk

Z2,k − η2Z2,k + ω2

+ ~W
T

f2,k Sf2 �x2,k, M̂
T

2,kΦ2 t( )( ) − Ŝf2,k′ M̂
T

2,kΦ2 t( )( )
+ŴT

f2,kŜf2,k′ ~M
T

2,kΦ2 t( ) − ~W
T

g2Sg2 �x2,k( ).
(39)

The Lyapunov-like function was chosen as follows:

V2,k � V1,k + 1
2
Z2

2,k +
1
2
~W

T

f2,kΓ−1f21 ~Wf2,k + 1
2
~W

T

g2,kΓ−1g21 ~Wg2,k

+1
2
~M

T

2,kΓ−1m21
~M2,k + 1

2
Γ−1n21 ~N

2

2,k,
(40)

where Γf21, Γg21, Γm21, and Γn21 are adjustable, positive, definite,
and symmetric matrices. According to Equation 39, Assumption 3,
and Remark 1, V2,k can be expressed as

_V2,k � _V1,k + Z2,k
_Z2,k + ~W

T

f2,kΓ−1f21
_̂Wf2,k

+ ~W
T

g2,kΓ−1g21
_̂Wg2,k + ~M

T

2,kΓ−1m21
_̂M2,k + Γ−1n21 ~N2,k

_̂N2,k

≤Z1,kZ2,k − η1Z
2
1,k +

1
4
Δk − Z1,kZ2,k + Z2,kZ3,k − η2Z

2
2,k

+ ~W
T

f2,kΓ−1f21 Γf21 Sf2 �x2,k, M̂
T

2,kΦ2 t( )( ) − Ŝf2,k′ M̂
T

2,kΦ2 t( )( )Z2,k(
+ _̂Wf2,k) − ~W

T

g2,kΓ−1g21 Γg21Sg2 �x2,k( )Z2,k − _̂Wg2,k( )
+ ~M

T

2,kΓ−1m21 Γm21Φ2 t( )ŴT

f2,kŜf2,k′ Z2,k + _̂M2,k( )
−N̂2,k

1
Δk

Z2
2,k + ω2Z2,k + Γ−1n21 ~N2,k

_̂N2,k

≤ − η1Z
2
1,k +

1
4
Δk + Z2,kZ3,k − η2Z

2
2,k

+ ~W
T

f2,kΓ−1f21 Γf21 Sf2 �x2,k, M̂
T

2,kΦ2 t( )( ) − Ŝf2,k′ M̂
T

2,kΦ2 t( )( )Z2,k(
+ _̂Wf2,k) − ~W

T

g2,kΓ−1g21 Γg21Sg2 �x2,k( )Z2,k − _̂Wg2,k( )
+ ~M

T

2,kΓ−1m21 Γm21Φ2 t( )ŴT

f2,kŜf2,k′ Z2,k + _̂M2,k( )
−N̂2,k

1
Δk

Z2
2,k +

1
Δk

ω2
M2Z

2
2,k +

1
4
Δk + Γ−1n21 ~N2,k

_̂N2,k

� Z2,kZ3,k −∑2
i�1

ηiZ
2
i,k +

1
4
Δk

+ ~W
T

f2,kΓ−1f21 Γf21 Sf2 �x2,k, M̂
T

2,kΦ2 t( )( ) − Ŝf2,k′ M̂
T

2,kΦ2 t( )( )Z2,k(
+ _̂Wf2,k) − ~W

T

g2,kΓ−1g21 Γg21Sg2 �x2,k( )Z2,k − _̂Wg2,k( )
+ ~M

T

2,kΓ−1m21 Γm21Φ2 t( )ŴT

f2,kŜf2,k′ Z2,k + _̂M2,k( )
−N̂2,k

1
Δk

Z2
2,k +

1
Δk

N2,kZ
2
2,k +

1
4
Δk + Γ−1n21 ~N2,k

_̂N2,k

� Z2,kZ3,k −∑2
i�1

ηiZ
2
i,k +

2
4
Δk

+ ~W
T

f2,kΓ−1f21 Γf21 Sf2 �x2,k, M̂
T

2,kΦ2 t( )( ) − Ŝf2,k′ M̂
T

2,kΦ2 t( )( )Z2,k(
+ _̂Wf2,k) − ~W

T

g2,kΓ−1g21 Γg21Sg2 �x2,k( )Z2,k − _̂Wg2,k( )
+ ~M

T

2,kΓ−1m21 Γm21Φ2 t( )ŴT

f2,kŜf2,k′ Z2,k + _̂M2,k( )
− ~N2,kΓ−1n21 Γn21

1
Δk

Z2
2,k − _̂N2,k( ).

(41)
We choose

_̂Wf2,k � −Γf21 Sf2 �x2,k, M̂
T

2,kΦ2 t( )( ) − Ŝf2,k′ M̂
T

2,kΦ2 t( )( )Z2,k

_̂Wg2,k � Γg21Sg2 �x2,k( )Z2,k

_̂M2,k � −Γm21Φ2 t( )ŴT

f2,kŜf2,k′ Z2,k

_̂N2,k � Γn21
1
Δk

Z2
2,k.

(42)

Then, Equation 41 can be changed as

_V2,k ≤Z2,kZ3,k −∑2
i�1

ηiZ
2
i,k +

2
4
Δk. (43)
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Step i: (3≤ i≤ n − 1). Denote Ni � ω2
Mi, which will be defined

later. Because there exist initial state errors and gradient explosion,
the error functions Zi,k and Zi+1,k are defined as

Zi,k � ziϕ,k − ζ i,k

ziϕ,k � zi,k − ϕi,k t( )sat zi,k
ϕi,k t( )( )

zi,k � xi,k − βi−1,k
ϕi,k t( ) � ϵi,ke−ηi t,

(44)

Zi+1,k � zi+1ϕ,k − ζ i+1,k

zi+1ϕ,k � zi+1,k − ϕi+1,k t( )sat zi+1,k
ϕi+1,k t( )( )

zi+1,k � xi+1,k − βi,k
ϕi+1,k t( ) � ϵi+1,ke−ηi+1t.

(45)

Therefore, _Zi,k can be deduced as follows:

_Zi,k � _zi,k − sgn ziϕ,k t( )( ) _ϕi,k − _ζ i,k
� zi+1,k + βi,k + fi �xi,k, θi t( )( ) + gi �xi,k( )
− _βi−1,k − sgn ziϕ,k( ) _ϕi,k − _ζ i,k.

(46)

Let the error compensation mechanism be defined as

_ζ i,k � βi,k + ζ i+1,k − ηiζ i,k − ζ i−1,k − αi,k. (47)

Using Equation 47, we can find the time derivative of the error
function as

_Zi,k � zi+1,k − ζ i+1,k + ηi,kζ i,k + ζ i−1,k + αi,k − _βi−1,k
+fi �xi,k, θi t( )( ) + gi �xi,k( ) − sgn ziϕ,k( ) _ϕi,k.

(48)

The uncertain time-varying, nonlinear functions fi(�xi,k, θi(t))
and Gi(�xi,k) are approximated by FSE-RBFNN and RBFNN,
respectively, and reconstruction errors δfi and δgi are as
given follows:

fi �xi,k, θi t( )( ) � WT
fiSfi �xi,k,M

T
i Φi t( )( ) + δfi

Gi �xi,k( ) � WT
giSgi �xi,k( ) + δgi,

(49)

where δfi and δgi are the approximation errors andWfi andWgi are
ideal weight vectors.

Define Δk � a
kl, where a is any arbitrary number with a> 0;

meanwhile, l≥ 2. Let the virtual control be defined as

αi,k � −ŴT

fi,kSfi �xi,k, M̂
T

i,kΦi t( )( ) − Ŵ
T

gi,kSgi �xi,k( )
−N̂i,k

1
Δk

Zi,k + _βi−1,k − ηizi,k − zi−1ϕ,k.
(50)

By substituting Equations 49, 50 into Equation 48, we obtain

_Zi,k � −zi−1ϕ,k + ζ i−1,k + zi+1,k − ϕi+1,k t( )sat zi+1,k
ϕi+1,k t( )( ) − ζ i+1,k

+WT
fiSfi �xi,k,M

T
i Φi t( )( ) + δfi − Ŵ

T

fi,kSfi �xi,k, M̂
T

i,kΦi t( )( )
+WT

giSgi �xi,k( ) + δgi − Ŵ
T

gi,kSgi �xi,k( )
−N̂i,k

1
Δk

ziϕ,k + ϕi+1,k t( )sat zi+1,k
ϕi+1,k t( )( )

−ηizi,k + ηiζ i,k − sgn ziϕ,k( ) _ϕi,k

� −Zi−1,k + Zi+1,k − N̂i,k
1
Δk

ziϕ,k + ϕi+1,k t( )sat zi+1,k
ϕi+1,k t( )( )

+WT
fiSfi �xi,k,M

T
i Φi t( )( ) + δfi − Ŵ

T

fi,kSfi �xi,k, M̂
T

i,kΦi t( )( )
+WT

giSgi �xi,k( ) + δgi − Ŵ
T

gi,kSgi �xi,k( )
−ηizi,k + ηiζ i,k − sgn ziϕ,k( ) _ϕi,k,

(51)
where Ŵfi,k, Ŵgi,k, M̂i,k, and N̂i,k are the estimations of Wfi,

Wgi, Mi, and Ni, respectively. ~Wfi,k � Ŵfi,k −Wfi,
~Wgi,k � Ŵgi,k −Wgi, ~Mi,k � M̂i,k −Mi, and ~Ni,k � N̂i,k −Ni are
estimation errors. We can rephrase the final three components
on the right side of Equation 51 as

−ηizi,k − sgn ziϕ,k( ) _ϕi,k t( ) + ηiζ i,k � −ηiziϕ,k − ηiϕi,k t( )sat zi,k
ϕi,k t( )( )

−sgn ziϕ,k( ) _ϕi,k t( ) + ηiζ i,k� −ηiziϕ,k + ηiζ i,k
−sgn ziϕ,k( ) _ϕi,k t( ) + ηiϕi,k t( )( )

� −ηiziϕ,k + ηiζ i,k
� −ηi ziϕ,k − ζ i,k( )
� −ηiZi,k,

(52)

FIGURE 13
Variation in y30 , yd1 , z1,30 over time during the 30th iteration.

FIGURE 14
Variation in max(|z1,k|) according to the iteration index.
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Using Equations 7, 52, Equation 51 can be reformulated as

_Zi,k � −Zi−1,k + Zi+1,k − N̂i,k
1
Δk

ziϕ,k − ηiZi,k

+ ~W
T

fi Sfi �xi,k, M̂
T

i,kΦi t( )( ) − Ŝfi,k′ M̂
T

i,kΦi t( )( )
+ŴT

fi,kŜfi,k′ ~M
T

i,kΦi t( ) − ~W
T

giSgi �xi,k( )
+di + δfi + δgi + ϕi+1,k t( )sat zi+1,k

ϕi+1,k t( )( ).
(53)

Let ωi � di + δfi + δgi + ϕi+1,k(t)sat(zi+1,k(t)ϕi+1,k(t)), then Equation
53 becomes

_Zi,k � −Zi−1,k + Zi+1,k − N̂i,k
1
Δk

Zi,k − ηiZi,k + ωi

+ ~W
T

fi,k Sfi �xi,k, M̂
T

i,kΦi t( )( ) − Ŝfi,k′ M̂
T

i,kΦi t( )( )
+ŴT

fi,kŜfi,k′ ~M
T

i,kΦi t( ) − ~W
T

giSgi �xi,k( ).
(54)

Consider the following nonnegative function:

Vi,k � Vi−1,k + 1
2
Z2

i,k +
1
2
~W

T

fi,kΓ−1fi1 ~Wfi,k + 1
2
~W

T

gi,kΓ−1gi1 ~Wgi,k

+1
2
~M

T

i,kΓ−1mi1
~Mi,k + 1

2
Γ−1ni1 ~N

2

i,k,
(55)

where Γfi1, Γgi1, Γmi1, and Γni1 are adjustable, positive, definite,
and symmetric matrices. According to Equation 54, Assumption 3,
and Remark 1, Vi,k can be expressed as

_Vi,k � _Vi−1,k + Zi,k
_Zi,k + ~W

T

fi,kΓ−1fi1 _̂Wfi,k + ~W
T

gi,kΓ−1gi1 _̂Wgi,k + ~M
T

i,kΓ−1mi1
_̂Mi,k

+ Γ−1ni1 ~Ni,k
_̂Ni,k ≤Zi−1,kZi,k −∑i−1

j�1
ηjZ

2
j,k +

i − 1
4

Δk − Zi−1,kZi,k + Zi,kZi+1,k − ηiZ
2
i,k

+ ~W
T

fi,kΓ−1fi1 Γfi1 Sfi �xi,k, M̂
T

i,kΦi t( )( ) − Ŝfi,k′ M̂
T

i,kΦi t( )( )Zi,k + _̂Wfi,k( )
− ~W

T

gi,kΓ−1gi1 Γgi1Sgi �xi,k( )Zi,k − _̂Wgi,k( )
+ ~M

T

i,kΓ−1mi1 Γmi1Φi t( )ŴT

fi,kŜfi,k′ Zi,k + _̂Mi,k( ) − N̂i,k
1
Δk

Z2
i,k + ωiZi,k

+ Γ−1ni1 ~Ni,k
_̂Ni,k ≤ −∑i−1

j�1
ηjZ

2
j,k +

i − 1
4

Δk + Zi,kZi+1,k − ηiZ
2
i,k

+ ~W
T

fi,kΓ−1fi1 Γfi1 Sfi �xi,k, M̂
T

i,kΦi t( )( ) − Ŝfi,k′ M̂
T

i,kΦi t( )( )Zi,k + _̂Wfi,k( )
− ~W

T

gi,kΓ−1gi1 Γgi1Sgi �xi,k( )Zi,k − _̂Wgi,k( )
+ ~M

T

i,kΓ−1mi1 Γmi1Φi t( )ŴT

fi,kŜfi,k′ Zi,k + _̂Mi,k( ) − N̂i,k
1
Δk

Z2
i,k +

1
Δk

ω2
MiZ

2
i,k

+ 1
4
Δk + Γ−1ni1 ~Ni,k

_̂Ni,k

� −∑i
j�1

ηjZ
2
j,k +

i − 1
4

Δk + Zi,kZi+1,k + ~W
T

fi,kΓ−1fi1 Γfi1 Sfi �xi,k, M̂
T

i,kΦi t( )( )((
− Ŝfi,k′ M̂

T

i,kΦi t( ))Zi,k + _̂Wfi,k) − ~W
T

gi,kΓ−1gi1 Γgi1Sgi �xi,k( )Zi,k − _̂Wgi,k( )
+ ~M

T

i,kΓ−1mi1 Γmi1Φi t( )ŴT

fi,kŜfi,k′ Zi,k + _̂Mi,k( ) − N̂i,k
1
Δk

Z2
i,k

+ 1
Δk

Ni,kZ
2
i,k +

1
4
Δk + Γ−1ni1 ~Ni,k

_̂Ni,k � −∑i
j�1

ηjZ
2
j,k +

i

4
Δk + Zi,kZi+1,k

+ ~W
T

fi,kΓ−1fi1 Γfi1 Sfi �xi,k, M̂
T

i,kΦi t( )( ) − Ŝfi,k′ M̂
T

i,kΦi t( )( )Zi,k + _̂Wfi,k( )
− ~W

T

gi,kΓ−1gi1 Γgi1Sgi �xi,k( )Zi,k − _̂Wgi,k( )
+ ~M

T

i,kΓ−1mi1 Γmi1Φi t( )ŴT

fi,kŜfi,k′ Zi,k + _̂Mi,k( )
− ~Ni,kΓ−1ni1 Γni1

1
Δk

Z2
i,k − _̂Ni,k( ). (56)

We choose
_̂Wfi,k � −Γfi1 Sfi �xi,k, M̂

T

i,kΦi t( )( ) − Ŝfi,k′ M̂
T

i,kΦi t( )( )Zi,k

_̂Wgi,k � Γgi1Sgi �xi,k( )Zi,k

_̂Mi,k � −Γmi1Φi t( )ŴT

fi,kŜfi,k′ Zi,k

_̂Ni,k � Γni1
1
Δk

Z2
i,k.

(57)

Then, Equation 56 can be written as

_V2,k ≤ −∑i
j�1

ηjZ
2
j,k +

i

4
Δk + Zi,kZi+1,k, (58)

Step n: Denote Nn � ω2
Mn, which will be defined later. Because

there exist initial state errors and gradient explosion, the function
Zn,k, denoting the error, is defined as

Zn,k � znϕ,k − ζn,k

znϕ,k � zn,k − ϕn,k t( )sat zn,k
ϕn,k t( )( )

zn,k � xn,k − βn−1,k
ϕn,k t( ) � ϵn,ke−ηnt.

(59)

The derivative of Zi,k with respect to time is expressed as

FIGURE 15
Variation in max(|z2,k|) according to the iteration index.

FIGURE 16
Variation in ‖uk‖ according to the iteration index.
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_Zn,k � _zn,k − sgn znϕ,k t( )( ) _ϕn,k − _ζn,k
� uk + fn �xn,k, θn t( )( ) + gn �xn,k( )
− _βn−1,k − sgn znϕ,k( ) _ϕn,k − _ζn,k.

(60)

Let the error compensation mechanism be defined as

_ζn,k � −ηnζn,k − ζn−1,k. (61)

Using Equation 61, we can obtain the time derivative of the error
function as

_Zn,k � uk + ηn,kζn,k + ζn−1,k − _βn−1,k
+fn �xn,k, θn t( )( ) + gn �xn,k( ) − sgn znϕ,k( ) _ϕn,k.

(62)

The overall approximation capability of the RBFNN asserts that the
unknown nonlinear functionsfn(�xn,k, θn(t)) andGn(�xn,k) are capable
of approximation within a defined scope by FSE-RBFNN and RBFNN,
respectively, and reconstruction errors δfn and δgn are as follows:

fn �xn,k, θn t( )( ) � WT
fnSfn �xn,k,M

T
nΦn t( )( ) + δfn

Gn �xn,k( ) � WT
gnSgn �xn,k( ) + δgn,

(63)

where δfn and δgn are the approximation errors and Wfn and Wgn

are ideal weight vectors.
Define Δk � a

kl,where a is any arbitrary number such that a> 0;
meanwhile, l≥ 2. Let the virtual control be defined as

uk � −ŴT

fn,kSfn �xn,k, M̂
T

n,kΦn t( )( ) − Ŵ
T

gn,kSgn �xn,k( )
−N̂n,k

1
Δk

Zn,k + _βn−1,k − ηnzn,k − zn−1ϕ,k.
(64)

By substituting Equations 63, 64 into Equation 62, we can
conclude that

_Zn,k � −zn−1ϕ,k + ζn−1,k − ηnzn,k + ηnζn,k − sgn znϕ,k( ) _ϕn,k

+WT
fnSfn �xn,k,M

T
nΦn t( )( ) + δfn − Ŵ

T

fn,kSfn �xn,k, M̂
T

n,kΦn t( )( )
+WT

gnSgn �xn,k( ) + δgn − Ŵ
T

gn,kSgn �xn,k( ) − N̂n,k
1
Δk

znϕ,k

� WT
fnSfn �xn,k,M

T
nΦn t( )( ) + δfn − Ŵ

T

fn,kSfn �xn,k, M̂
T

n,kΦn t( )( )
+WT

gnSgn �xn,k( ) + δgn − Ŵ
T

gn,kSgn �xn,k( ) − N̂n,k
1
Δk

znϕ,k

−Zn−1,k − ηnzn,k + ηnζn,k − sgn znϕ,k( ) _ϕn,k,

(65)

where Ŵfn,k, Ŵgn,k, M̂n,k, and N̂n,k are the estimations of Wfn,
Wgn, Mn, and Nn, respectively. ~Wfn,k � Ŵfn,k −Wfn,
~Wgn,k � Ŵgn,k −Wgn, ~Mn,k � M̂n,k −Mn, and ~Nn,k � N̂n,k −Nn

are estimation errors. We can rephrase the final three
components on the right side of Equation 65 as

−ηnzn,k − sgn znϕ,k( ) _ϕn,k t( ) + ηnζn,k

� −ηnznϕ,k − ηnϕn,k t( )sat zn,k
ϕn,k t( )( ) − sgn znϕ,k( ) _ϕn,k t( ) + ηnζn,k

� −ηnznϕ,k + ηnζn,k − sgn znϕ,k( ) _ϕn,k t( ) + ηnϕn,k t( )( )
� −ηnznϕ,k + ηnζn,k � −ηn znϕ,k − ζn,k( ) � −ηnZn,k.

(66)
Using Equations 7, 66, Equation 65 can be reformulated as

_Zn,k � −Zn−1,k − N̂n,k
1
Δk

znϕ,k − ηnZn,k

+ ~W
T

fn Sfn �xn,k, M̂
T

n,kΦn t( )( ) − Ŝfn,k′ M̂
T

n,kΦn t( )( )
+ŴT

fn,kŜfn,k′ ~M
T

n,kΦn t( ) − ~W
T

gnSgn �xn,k( )
+dn + δfn + δgn.

(67)

Let ωn � dn + δfn + δgn, then Equation 67 becomes

_Zn,k � −Zn−1,k − N̂n,k
1
Δk

Zn,k − ηnZn,k + ωn

+ ~W
T

fn,k Sfn �xn,k, M̂
T

n,kΦn t( )( ) − Ŝfn,k′ M̂
T

n,kΦn t( )( )
+ŴT

fn,kŜfn,k′ ~M
T

n,kΦn t( ) − ~W
T

gnSgn �xn,k( ).
(68)

Assumption 4: The remainder ωn is bounded with |ωn|≤ωMn

and ωMn > 0.
Remark 2: This assumption is reasonable because 1) dn, δfn, and

δgn are constrained within the specified area by Equations 6, 8.
Let the following non-negative function be defined as

Vn,k � Vn−1,k + 1
2
Z2

n,k +
1
2
~W

T

fn,kΓ−1fn1 ~Wfn,k + 1
2
~W

T

gn,kΓ−1gn1 ~Wgn,k

+1
2
~M

T

n,kΓ−1mn1
~Mn,k + 1

2
Γ−1Nn1

~N
2

n,k,
(69)

FIGURE 17
Variation in ‖αk‖ according to the iteration index. FIGURE 18

Variation of ‖Ŵk‖ according to the iteration index.
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where Γfn1, Γgn1, Γmn1, and ΓNn1 are adjustable, positive, definite,
and symmetric matrices. The derivative of Vn,k is considered as
follows (Equation 68):

_Vn,k � _Vn−1,k + Zn,k
_Zn,k + ~W

T

fn,kΓ−1fn1
_̂Wfn,k

+ ~W
T

gn,kΓ−1gn1
_̂Wgn,k + ~M

T

n,kΓ−1mn1
_̂Mn,k + Γ−1Nn1

~Nn,k
_̂Nn,k

≤ Zn−1,kZn,k −∑n−1
j�1

ηjZ
2
j,k +

n − 1
4

Δk − Zn−1,kZn,k − ηiZ
2
i,k

+ ~W
T

fn,kΓ−1fn1 Γfn1 Sfn �xn,k, M̂
T

n,kΦn t( )( )((
−Ŝfn,k′ M̂

T

n,kΦn t( ))Zn,k + _̂Wfn,k)
− ~W

T

gn,kΓ−1gn1 Γgn1Sgn �xn,k( )Zn,k − _̂Wgn,k( )
+ ~M

T

n,kΓ−1mn1 Γmn1Φn t( )ŴT

fn,kŜfn,k′ Zn,k + _̂Mn,k( )
−N̂n,k

1
Δk

Z2
n,k + ωnZn,k + Γ−1Nn1

~Nn,k
_̂Nn,k

≤ −∑n−1
j�1

ηjZ
2
j,k +

n − 1
4

Δk − ηnZ
2
n,k

+ ~W
T

fn,kΓ−1fn1 Γfn1 Sfn �xn,k, M̂
T

n,kΦn t( )( )((
−Ŝfn,k′ M̂

T

n,kΦn t( ))Zn,k + _̂Wfn,k)
− ~W

T

gn,kΓ−1gn1 Γgn1Sgn �xn,k( )Zn,k − _̂Wgn,k( )
+ ~M

T

n,kΓ−1mn1 Γmn1Φn t( )ŴT

fn,kŜfn,k′ Zn,k + _̂Mn,k( )
−N̂n,k

1
Δk

Z2
n,k +

1
Δk

ω2
MnZ

2
n,k +

1
4
Δk + Γ−1Nn1

~Nn,k
_̂Nn,k

� −∑n
j�1

ηjZ
2
j,k +

n − 1
4

Δk

+ ~W
T

fn,kΓ−1fn1 Γfn1 Sfn �xn,k, M̂
T

n,kΦn t( )( )((
−Ŝfn,k′ M̂

T

n,kΦn t( ))Zn,k + _̂Wfn,k)
− ~W

T

gn,kΓ−1gn1 Γgn1Sgn �xn,k( )Zn,k − _̂Wgn,k( )
+ ~M

T

n,kΓ−1mn1 Γmn1Φn t( )ŴT

fn,kŜfn,k′ Zn,k + _̂Mn,k( )
−N̂n,k

1
Δk

Z2
n,k +

1
Δk

Nn,kZ
2
n,k +

1
4
Δk + Γ−1Nn1

~Nn,k
_̂Nn,k

� −∑n
j�1

ηjZ
2
j,k +

n

4
Δk

+ ~W
T

fn,kΓ−1fn1 Γfn1 Sfn �xn,k, M̂
T

n,kΦn t( )( )((
−Ŝfn,k′ M̂

T

n,kΦn t( ))Zn,k + _̂Wfn,k)
− ~W

T

gn,kΓ−1gn1 Γgn1Sgn �xn,k( )Zn,k − _̂Wgn,k( )
+ ~M

T

n,kΓ−1mn1 Γmn1Φn t( )ŴT

fn,kŜfn,k′ Zn,k + _̂Mn,k( )
− ~Nn,kΓ−1Nn1 ΓNn1

1
Δk

Z2
n,k − _̂Nn,k( ).

(70)

We choose

_̂Wfn,k � −Γfn1 Sfn �xn,k, M̂
T

n,kΦn t( )( ) − Ŝfn,k′ M̂
T

n,kΦn t( )( )Zn,k

_̂Wgn,k � Γgn1Sgn �xn,k( )Zn,k

_̂Mn,k � −Γmn1Φn t( )ŴT

fn,kŜfn,k′ Zn,k

_̂Nn,k � ΓNn1
1
Δk

Z2
n,k.

(71)

Then, Equation 70 can be written as

_Vn,k ≤ −∑n
j�1

ηjZ
2
j,k +

n

4
Δk. (72)

For the initial state, we rely on the following set of assumed
conditions:

Assumption 2: When t � 0, Ŵfi,k(0) � Ŵfi,k−1(T),
Ŵgi,k(0) � Ŵgi,k−1(T), N̂i,k(0) � N̂i,k−1(T), and M̂i,k(0) �
M̂i,k−1(T) (i � 1, . . . , n) holds true for all values of k.

3.2 Stability and convergence analysis

Theorem 1: For nonlinear system (1) with assumptions 2, 3, and
4, if we design virtual controllers (21), (35), (50), controller (64), and
parameter updating laws (28), (42), (57), (71),then all signals in the
closed-loop system are bounded within the interval [0, T].
We obtain

limk→∞Zj,k t( ) � 0, j � 1, 2, . . . , n. (73)

In other words, limk→∞|z1ϕ,k(t)| � limk→∞‖ζ1,k(t)‖
≤

�
2

√
ℵ1

η1
(1 − e−η1(t−T)), and then limk→∞|z1,k(t)|≤ ϕ1,∞(t)

+
�
2

√
ℵ1

η1
(1 − e−η1(t−T)), where ℵ1 is the boundary of the difference

between β1 and α1. Let η1 be chosen sufficiently large, ensuring that
ϕ1,∞(t) and

�
2

√
ℵ1

η1
(1 − e−η1(t−T)) can beminimized asmuch as possible

throughout the entire time interval [0, T].
Proof: In accordance with Assumption 2, we find that

‖Zk(0)‖2 � 0≤ ‖Zk(T)‖2. Consider that Vn,k′ �
Vn,k(Zk(0), Ŵfk(T), Ŵgk(T), N̂k(T), M̂k(T)). Using Equation
69, we obtain Zk � [Z1,k, Z2,k, . . . , Zn,k]T, Ŵfk �
[Ŵf1,k, Ŵf2,k, . . . , Ŵfn,k]T,Ŵgk � [Ŵg1,k, Ŵg2,k, . . . , Ŵgn,k]T,
M̂k � [M̂1,k, M̂2,k, . . . , M̂n,k]T, andN̂k � [N̂1,k, N̂2,k, . . . , N̂n,k]T.
Using Equation 72,

Vn,k′ ≤ Vn,k Z,k 0( ), Ŵfk 0( ), Ŵgk 0( ), N̂k 0( ), M̂k 0( )( )−
Σk
i�1Σn

j�1∫T

0
ηj Zj,i( )2dt + n

1
4

( )T Σk
i�1Δi( ). (74)

Let V0(k) � Vn,1(Z1(0), Ŵf1(0), Ŵg1(0), N̂1(0), M̂1

(0)) + n(14)T(Σk
i�1Δi), then Equation 74 can be rewritten as

Σk
i�1Σn

j�1∫T

0
ηj Zj,i( )2dt≤V0 k( ) − Vn,k′ . (75)

Using Equation 9, we obtain limk→∞V0(k)≤Vn,1 + 2an(14)T and
V0(k) is bounded. Vn,k(Zk(0), Ŵfk(T), Ŵgk(T), N̂k(T), M̂k(T))≥ 0, so

limk→∞Σn
j�1∫T

0
ηj Zj,k( )2dt � 0. (76)

Based on Equation 69, for any given value of k,
Vn,k(t) � Vn,k(0) + ∫t

0
_Vm,k(τ)dτ; substituting Equation 72 obtain

Vn,k t( )≤Vn,k 0( ) − Σn
j�1∫t

0
ηj Zj,k τ( )( )2dτ + tn

1
4

( )Δk. (77)

Based on Equation 76, Σn
j�1 ∫t

0
ηj(Zj,k(τ))2dτ is bounded.

According to definition 1, Δk is bounded and t ∈ [0, T], so
tn(14)Δk is also bounded. In addition, Ŵfk(0) � Ŵf(k−1)(T),
Ŵgk(0) � Ŵg(k−1)(T), M̂k(0) � M̂k−1(T), and N̂k(0) � N̂k−1(T);
based on Equation 77, for any given value of k,
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Vn,k(Zk(0), Ŵfk(T), Ŵgk(T), N̂k(T), M̂k(T)) is bounded. So,
Vn,k(0, Ŵfk(0), Ŵgk(0), N̂k(0), M̂k(0)) � Vn,k−1(0, Ŵf(k−1)(T),
Ŵg(k−1)(T), N̂k−1(T), M̂k−1(T)) is also bounded; from above all,
for any given value of k, if Vn,k(t) is bounded, then we can deduce
that xi,k, Ŵfk(t), Ŵgk(t), N̂k(t), and M̂k(t) are bounded.
According to Equation 64, uk is bounded. According to Equation
53, _Zi,k is bounded, so Zi,k is continuous uniformly. Thus, we can
deduce Equation 73.

Then, we need to prove that ℵ1 will converge to a
neighborhood that approaches 0. Initially, let αi,k(t) be a
signal satisfying |αi,k(t)|< �α and | _αi,k(t)|< Z for all t≥ 0.
The compensation error within the compensation system is
defined as

ϱi,k � βi,k − αi,k. (78)

With specified initial conditions, βi,0 � αi,0,
i.e., ϱi,0 � 0, i � 1, 2, . . . , n − 1. From (11), we obtain

_ϱi,k � −ξ i,k βi,k − αi,k( ) − αi,k
� −ξ i,kϱi,k − _αi,k

ϱi,k t( ) � −∫t

0
_αi,ke

−ξi,k t−τ( )dτ

|ϱi,k t( )| � | − ∫t

0
_αi,k τ( )e−ξi,k t−τ( )dτ|

� | _αi,k τ( )|∫t

0
e−ξi,k t−τ( )dτ|

≤ max | _αi,k τ( )|∫t

0
e−ξi,k t−τ( )dτ|

≤
Z

ξ i,k
1 − e−ξi,kt( )

≤
Z

ξ i,k
� ℵi.

(79)

As shown in Equation 79, choosing an appropriate value for ξi,k
confines the error ϱi,k within a narrow range, approximately
equating αi,k to βi,k. In addition, based on the compensation
system, the Lyapunov function is defined on the interval [0, T]
as follows:

Vζ ,k � ∑n
i�1

1
2
ζ2i,k. (80)

The derivative of Vζ ,k along systems (78) with respect to time is
expressed as

_Vζ ,k � ∑n
i�1

ζ i,k _ζ i,k

� −∑n
i�1

ηiζ
2
i,k +∑n−1

i�1
ζ i,k βi,k − αi,k( )

≤ −∑n
i�1

ηiζ
2
i,k +∑n−1

i�1
|ζ i,k‖ βi,k − αi,k( )|

� −∑n
i�1

ηiζ
2
i,k +∑n−1

i�1
|ζ i,k‖ βi,k − αi,k( )| + 0|ζn,k|

≤ −η0 ∑
n

i�1
ζ2i,k +ℵ∑n

i�1
|ζ i,k|

≤ −η0‖ζ i,k‖2 +
�
2

√
ℵ‖ζ i,k‖,

(81)

whereℵ � maxℵi, η0 � min ηi. To ensure the stability of the
compensation system, it is sufficient to satisfy

‖ζ i,k‖≤
�
2

√
ℵ

η0
1 − e−η0 t−T( )( ). (82)

Equation 82 leads to the conclusion that ‖ζ i,k‖ is bounded. Hence,
ζ i,k is also bounded. Moreover, we can choose a parameter ξi,k > 0 to
arbitrarily reduce ℵi, thereby causing the compensation ζ i,k of the
system to approach 0. In this way, by ensuring that the error Zk

approaches 0, zϕ,k will converge to the neighborhood approaching 0.
Thus, we conclude Theorem 1.

4 Illustrative examples

4.1 Number simulation

This section includes an example illustrating the effectiveness of
the proposed adaptive iterative learning controller.

The second-order pure-feedback nonlinear system described is
considered as follows:

_x1,k � x2,k + r1x1,k + r21x
2
1,k

1 + r21x
2
1,k

_x2,k � uk + sin r2x1,kx2,k( )e−r22x21,kx22,k
yk � x1,k,

(83)

where t ∈ [0, 5], x1,k, and x2,k are state variables and uk is the input
variable. Utilizing the widely recognized van der Pol oscillator as the
reference model, we obtain

_xd1 � xd2

_xd2 � −9xd1 − 6xd2 + 2
yd1 � xd1,

(84)

where xd1 and xd2 are state variables. The primary control objective
is to synchronize the output of systems (82) with the reference
trajectory yd1 generated by system (84) over the interval [0,5] under
the condition k → ∞.

In accordance with Theorem 1, the adaptive iterative learning
controller is chosen as

α1,k � −ŴT

1,kS1 �x1,k, M̂
T

1,kΦ1 t( )( ) − N̂1,k
1
Δk

z1ϕ,k + _yr − η1z1,k

uk � −ŴT

f2,kSf2 �x2,k, M̂
T

2,kΦ2 t( )( ) − N̂2,k
1
Δk

Z2,k

+ _β1,k − ηnz2,k − z1ϕ,k.

(85)

FIGURE 19
Variation in ‖M̂k‖ according to the iteration index.
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The error compensation mechanism is

_ζ1,k � β1,k + ζ2,k − η1ζ1,k − α1,k

_ζ2,k � −η2ζ2,k − ζ1,k,
(86)

where _β1,k � −ξ(β1,k − α1,k).
The parameter adaptive iterative learning laws are provided

by (57):

_̂Wfi,k � −Γfi1 Sfi �xi,k, M̂
T

i,kΦi t( )( ) − Ŝfi,k′ M̂
T

i,kΦi t( )( )Zi,k

_̂Mi,k � −Γmi1Φi t( )ŴT

fi,kŜfi,k′ Zi,k

_̂Ni,k � Γni1
1
Δk

Z2
i,k,

(87)

where i� 1,2, c1 � 5, c2 � 10,Δk � a/k2, a� 50000, Γ11 �
diag{1,1,1,1,1}, Γ21 � 10, Γ12 � diag{1,1,1,1,1}, Γ22 � 1, and ξ � 1 .

Figures 1–3 show the tracking performance of the system output
and expected output without iteration and at 50th and 100th
iterations, respectively. Figures 4, 5 show that as the number of
iterations increases, the system error may converge to a small region
near the zero point. Furthermore, observations shown in Figures
6–10 confirm that both control signals ‖uk‖ and ‖αk‖ and estimated
parameters, ‖Ŵ1,k‖, ‖Ŵ2,k‖, ‖M̂1,k‖, ‖M̂2,k‖, ‖N̂1,k‖,and ‖N̂2,k‖,
exhibit bounded behavior within the [0,5] range. The validity of
the control strategy presented in this research is reaffirmed by the
simulation results shown in Figures 11–20 over the interval [0, T].

4.2 Simulation of a single-joint robotic arm

In this section, we conducted simulation verification on a single
degree-of-freedom robotic arm system to assess the performance of
the proposed control method. The dynamic equation of a single
degree-of-freedom robotic arm is

∂2θ

∂t2
� −10 sin θ − 2

∂θ

∂t
+ u, (88)

where θ is the angle between the robotic arm and the reference
frame.u is the input of the DC motor.

∂2yd1

∂t2
� −9yd1 − 6

∂yd1

∂t
+ 2r, (89)

where yd1 is the output of the reference model. r is the reference
input signal. According to Equations 88, 89, the state equation of the
system is derived as

_x1,k � x2,k

_x2,k � −10 sin x1,k( ) − 2x 2, k( ) + uk

yk � x1,k,
(90)

and its reference model is derived as
_xd1 � xd2

_xd2 � −9xd1 − 6xd2 + 2r
yd1 � xd1,

(91)

where x1,k equals to θ can be defined as the angle between the
robotic arm and the reference frame. x2,k is the time derivative of θ,
i.e., _θ. The primary control objective is to synchronize the output of
systems (88) with the reference trajectory yd1 generated by system
(89) over the interval [0,5] under the condition k → ∞.

In accordance with Theorem 1, the adaptive iterative learning
controller is chosen as

α1,k � −N̂1,k
1
Δk

z1ϕ,k + _yd1 − η1z1,k

uk � −z1ϕ,k − c2z2,k − Ŵ
T

2,kS2 �x2,k, M̂
T

2,kΦ2 t( )( ) − N̂2,k
1
Δk

z2ϕ,k

+ _β1,k.

(92)
The error compensation mechanism is

_ζ1,k � β1,k + ζ2,k − η1ζ1,k − α1,k

_ζ2,k � −η2ζ2,k − ζ1,k,
(93)

where β1,k � −ξ(β1,k − α1,k).
The parameter adaptive iterative learning laws are provided

by (57).
_̂Wk � Γf S �x2,k, M̂

T

kΦ t( )( ) − Ŝk′M̂
T

kΦ2 t( )( )z2ϕ,k, (94)
_̂Ni,k � ΓNi

1
Δk

z2iϕ,k, i � 1, 2, (95)
_̂Mk � ΓmΦ t( )ŴT

k Ŝk′z2ϕ,k, (96)

FIGURE 20
Variation in ‖N̂1,k‖ and ‖N̂2,k‖ according to the iteration index.
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where c1 � 50, c2 � 150,Δk � a/k2, a � 50000, Γ11 �
diag{1, 1, 1, 1, 1}, Γ21 � 10, Γ12 � diag{1,1,1,1,1}, Γ22 � 1,andξ � 10.

Figures 11–13 show the tracking performance of the system
output and expected output without iteration and at 15th and 30th
iterations, respectively. Figures 14, 15 show that as the number of
iterations increases, the system error may converge to a small region
near the zero point. Furthermore, observations from Figures 16–20
confirm that both control signals ‖uk‖ and ‖αk‖ and estimated
parameters, ‖Ŵk‖, ‖M̂k‖, ‖N̂1,k‖, and ‖N̂2,k‖, exhibit bounded
behavior within the [0,5] range. The validity of the control
strategy presented in this research is reaffirmed by the simulation
results shown in Figures 11–20 over the interval [0, T].

5 Conclusion

This article presents a solution to the complete trajectory, following
challenges within a finite time frame for a category of nonlinearly
parameterized systems characterized by time-varying disturbed
functions and initial state errors. A new FSE neural network is used
to learn the time-varying, nonlinearly parameterized term. Based on this
and Lyapunov theory, we proposed the new LPF-AILC method. A low-
pass filter is used to solve the problem of parameter explosion after
obtaining the derivative of the virtual controller. The unmatched
uncertainties, nonlinear parameterization, and initial state errors are
well considered. Two simulation examples have proven the feasibility of
the control approach. This article does not mention time-delay issues,
but they often exist in practical systems. Our futurework should consider
solving the complete tracking problem on a finite time interval for these
complex systems with time delays. This is a more interesting issue. In
addition, there are two deficiencies in the controller design process: the
assumption of time-varying parameters being periodic and the jitter
issues caused by the low-pass filter. These challenges will be carefully
considered and addressed in our future work.
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A novel image encryption method
based on improved
two-dimensional logistic
mapping and DNA computing

Yuanlin Chen1, Tianxiu Lu1*, Caiwen Chen1 and Yi Xiang1,2

1College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong, China,
2South Sichuan Applied Mathematics Research Center, Zigong, China

In the digital era, the significance of cryptographic algorithms has grown
significantly within the realm of cybersecurity. This research presents an
innovative approach to image encryption that eliminates the security
limitations of the conventional one-dimensional logistic mapping. This
approach relies on an enhanced two-dimensional logistic-fraction hybrid
chaotic mapping (2D-LFHCM) and deoxyribonucleic acid (DNA) computing.
Initially, the improved 2D-LFHCM is utilized to effectively scramble the image
by incorporating chaotic sequences. Then, two novel algebraic DNA computing
rules are introduced to enhance diffusion encryption. Experimental findings show
that this approach offers superior security performance, even with renowned
attacks.

KEYWORDS

image encryption, chaotic system, DNA computing, logistic mapping, 2D-LFHCM

1 Introduction

Chaos, which refers to complex and unpredictable behavior displayed by nonlinear
dynamic systems, is a phenomenon characterized by the inherent unpredictability of
deterministic nonlinear systems. The slightest change in the initial state can lead to
unforeseen results. Chaos is not restricted to a particular domain but can be observed
in various aspects of human society. The profound exploration of chaos has given rise to a
natural problem: what are the potential applications of chaos? This query stands as a
paramount concern not only in the present world but also in the future. As fundamental and
applied sciences progress, chaos theory has evolved into a crucial focal point within the
realm of nonlinear science, blossoming into a discipline that has thrived over the past few
decades. Contemporary electronic engineering and image processing heavily draw upon
chaos theory, utilizing its principles to yield numerous innovative and advantageous
advancements in these fields.

The characteristics of chaos systems include nonlinearity, ergodicity, pseudo-random
behavior, and a high sensitivity to initial conditions. As a result, chaos theory serves as a
solid foundation for the development of excellent image encryption algorithms. However, it
has been observed that employing a single chaotic system often leads to a limited range of
possible encryption keys, thereby rendering the algorithm susceptible to attacks from
malicious entities. Consequently, to ensure the creation of a robust and efficient image
encryption algorithm, researchers frequently integrate chaotic systems with other
disciplines, including the analysis of deoxyribonucleic acid (DNA) sequences [1–4], the
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utilization of optical maps [5,6] or cellular automata (CA) [7,8], the
application of compressed sensing [9,10], and chaotic
circuits [11–17].

Therefore, chaos theory holds immense potential for research
and practical significance in the domain of image encryption. Ever
since R. Matthews [18] introduced a broader logistic map and relied
on it in the data encryption domain, a new era of chaotic systems
generating pseudo-random numbers is beginning. Thus, fresh
impetus is provided to cryptography. Consequently, chaos and
cryptography became intertwined. Subsequently, Alvarez [19]
formulated the fundamental requisites and rules of chaotic
cryptosystems, gaining recognition from experts in the field of
cryptography. Since then, there has been a robust development
regarding chaotic digital image encryption. In 2012, Wang [20]
invented a novel technique employing a traditional logistic map for
the encryption of color images. Nevertheless, the key space induced
by one-dimensional chaos is limited, and the algorithm’s handling of
chaotic sequences is not sufficient, resulting in unsatisfactory
robustness of the algorithm. In an attempt to address this issue,
Wang [21] put the latest method for creating high-dimensional
digital chaotic systems, but the drawback lies in the complexity of
the system structure and the inefficiency of the algorithms. More
recently, Huang [22] proposed a fine-tuned cubic color image
encryption scheme that operates jointly by chaos and hyperchaos.
Its core idea is based on an improved logistic-fraction hybrid chaotic
mapping (LFHCM) proposed to address the limitations of one-
dimensional chaotic mapping and expand the key space. This
mapping is then linked with a four-dimensional hyperchaotic
system to generate the key stream, which is used to rotate and
shift the rows and columns of each component in the red (R), green
(G), and blue (B) channels of the color image. Wang [23] attempted
to accomplish global scrambling by creating a chaotic sequence
using the Lorenz system for binary and Gray code translation.
Remarkably, this algorithm exhibits a favorable encryption effect
on grayscale images. Building upon these advancements, Gao [24]
introduced a multi-image encryption technique founded on single-
channel scrambling, diffusion, and chaotic systems. Performance
investigation validates that this technique demonstrates exceptional
capabilities in ensuring security and achieving efficient encryption
speed. Furthermore, in his study [25], Alexan proposes a method for
encrypting color images. This approach effectively combines KAA
mapping with various chaotic mappings in a synergistic manner.
Notably, this approach maximizes the utilization of Shannon’s
security idea and encrypts the image through bit obfuscation
and diffusion.

However, amidst a plethora of algorithms, our specific interest
lies in encryption methods rooted in chaotic dynamics and
deoxyribonucleic acid (DNA) sequences. The encryption
performance of this algorithm, proposed by Chai [26], is not
only exceptional but also demonstrates the ability to withstand
a range of conventional attacks. In 2018, an image encryption
algorithm was introduced by Wu [27], which employed a
combination of DNA coding and Henon-Sine mapping. To
increase the complexity of the encryption process and
strengthen the algorithm’s security, XOR operations and DNA
coding were added to the diffusion process. In 2020, Patel [28]
introduced a novel algorithm for encrypting images, which
combined DNA coding and a three-dimensional chaotic

mapping technique. In addition to utilizing the idea of eight
complementary encodings for picture encryption, this approach
employed a chaotic sequence to jumble the image. Both of these
algorithms are applicable for encrypting grayscale and color
images. Liu [29] then applies an improved Arnold
transformation to scramble the three components and uses the
DNA sequence generated through the chaotic sequence to conduct
diffusion encryption of the color image. Hua [30] presented an
innovative dynamic image encryption technique that enhanced the
security of image data by utilizing quantum walk and chaos-
induced DNA. Inspired by them, a plagiarism detection method
is presented utilizing an improved two-dimensional logistic-
fraction hybrid chaotic mapping (2D-LFHCM) and DNA
computation. This method incorporates DNA chaotic diffusion
and scrambling techniques.

The organization of this paper is outlined below. Section 2
delves into the 2D-LFHCM and analyzes its chaotic
characteristics. The fundamental principles of encryption and
decoding are covered in Section 3. Section 4 presents the devised
method for key creation as well as the encryption and decryption
methods for DNA images. Section 5 elucidates the numerical
simulation findings of the proposed cryptosystem, supplemented
by a comprehensive exploration of its security analysis.
Ultimately, Section 6 furnishes a thorough recapitulation of
the study’s content and outlines potential directions for
future research.

The main contributions of this paper are highlighted below:

(i) Development of an enhanced two-dimensional logistic-
fraction hybrid chaotic mapping (2D-LFHCM) for image
encryption.

(ii) Design and implementation of novel deoxyribonucleic acid
(DNA) computing techniques in the proposed encryption
method, including right shift addition, right shift subtraction,
right shift XOR, and other DNA computing methods.

(iii) A comprehensive performance analysis of the encryption
algorithm was conducted, including aspects such as
encryption speed, key space, histograms, information
entropy, and correlation coefficients.

2 An improved 2D-LFHCM

2.1 The definition of 2D-LFHCM

Parabolic mapping is a generic term used to describe a kind of
chaotic maps. The classical insect population model (or logistic
mapping, shortly, LM) is represented as Equation 1.

xn+1 � rxn 1 − xn( ), (1)
where r ∈ (0, 4), with initial value x0 ∈ (0, 1). Another classic 2D-
LMM (two-dimensional logistic mixing mapping) [31], is a discrete
chaotic map in two dimensions derived from the traditional logistic
map. The difference equation’s mathematical model is represented
as Equation 2.

xn+1 � t 3yn + 1( )xn 1 − xn( );
yn+1 � t 3xn+1 + 1( )yn 1 − yn( ),{ (2)
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where t is a control parameter, xn and yn denote the state variables
within the iterative process of the difference equation. Compared
with the traditional 2D-LMM, the newly proposed 2D-LM (two-
dimensional logistic mapping) by Ye [32] is a two-dimensional
chaotic mapping with a simpler equation structure. Its model is
described below.

xn+1 � uxn 1 − xn( );
yn+1 � vxn 1 − yn( ).{ (3)

In Equation 3, u and v are the control parameters of the proposed
2D-LM, xn and yn are the state variables, and n is the number of
iteration steps. When u � 3.99 and v � 1.4, starting from (0.1, 0.1),
the 2D-LM demonstrates chaotic behavior.

Based on the original one-dimensional logistic map, the LFHCM
(logistic-fraction hybrid chaotic mapping) derived from the logistic
map and fraction map is proposed by Huang [22]. The fraction
mapping is proposed by Lu et al. [33] to address the practical needs
of multi-objective optimization and multi-model issues. The
definition equation of fraction mapping is Equation 4.

zn+1 � F c, zn( ) � 1
z2n + 0.1

− czn, (4)

where c ∈ (0, 1] is a control parameter, and the output range of all
chaotic sequences zn ∈ [−10.0025, 10.0025]. The definition equation
of LFHCM constructed by combining logistic mapping and fraction
mapping is Equation 5.

xn+1 � L a, xn( ) � axn 1 − xn( )2 × 1
x2
n + 1

, (5)

where a ∈ (0, 11.5] is a control parameter, and the sequence output
value xn ∈ [0, 1.56].

Thanks to their excellent chaotic performance, LM, 2D-LM, 2D-
LMM, and LFHCM are often used as pseudo-random signal
generators in engineering fields such as cryptography and
dynamics. However, LFHCM has not yet been extended to two-
dimensional. The traditional logistic-fraction mapping serves as the
fundamental basis for the 2D-LFHCM described in this study, and
its difference equation is

xn+1 � λxn 1 − xn( )2 × 1
x2
n + 1

;

yn+1 � μxn 1 − yn( )2 × 1
x2
n + 1

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(6)

where, λ and μ serve as the control parameters, and xn and yn stand
for the state variables. When u � 3.99 and v � 1.4, starting from the
initial point (0.1, 0.1), chaotic behavior is observed in the
2D-LFHCM.

2.2 Analysis and comparison of chaotic
properties of 2D-LFHCM

In the preceding section, different classical maps were defined,
and enhancements were made to the two-dimensional map, referred
to as 2D-LFHCM. This section assesses and compares the chaotic
properties of the following chaotic maps: 2D-LM, 2D-LFHCM, 2D-
LMM, and LFHCM. The study is done from the perspectives of the

phase trajectory diagrams, Lyapunov exponents, bifurcation
diagrams, and chaotic analysis of the iterative sequences. It will
be shown that the improved two-dimensional chaotic map 2D-
LFHCM has better chaotic characteristics.

2.3 Bifurcation diagrams

Assume that the initial conditions of the following four
mappings are (0.1, 0.1), and their control parameters are a, t, u,
and λ, respectively. Then, their bifurcation diagrams are shown in
Figure 1. The bifurcation diagram of 2D-LM is shown in Figure 1A.
When u � 2.99, the system transitions from a period-1 to a period-2
state. At u � 3.464, the system enters a period-4 orbit. When
u � 3.554, the system enters a period-8 orbit and then transitions
into a chaotic orbit. The maximum amplitude of 2D-LM is 2.491.
The bifurcation diagram for the 2D-LMM is presented in Figure 1B.
As the control parameter t increases from 0.9 to 1.19, the trajectory
of point y of 2D-LMM undergoes a transition, shifting from a
periodic orbit to a chaotic orbit, and the maximum amplitude is
0.995. The bifurcation diagram for LFHCM is displayed in
Figure 1C. When a � 5.9, LFHCM enters a chaotic state. The
2D-LFHCM model proposed in this paper, as shown in
Figure 1D, when the control parameters λ � 5.206 and λ � 5.509,
the tangent bifurcation of the mapping occurs, and the obvious
period-2 window and period-4 window are formed, respectively.
Then the mapping forms the period-8 window, and then enters the
chaotic state. Changing the parameter λ, it can be observed that the
mapping has rich nonlinear dynamic phenomena such as period-
doubling bifurcation, tangent bifurcation, periodic window, chaos,
and so on. In addition, it can be seen that whether 2D-LMM or 2D-
LM, the length of the chaotic interval is less than 1, and there are
some glaringly visible blank windows even inside the narrow chaotic
region. It is evident from a comparison of the newly proposed 2D-
LFHCM with the above chaotic maps that it has a broader chaotic
region, a longer chaotic interval, and fewer blank windows. The
comparison of their chaotic intervals is shown in Table 1.Where, the
chaotic region area of 2D-LM is regarded as unit 1.

2.4 Lyapunov exponents spectrum

In general, the Lyapunov exponent is a very important statistical
feature. It characterizes the stability of dynamic systems and can be
used to judge whether the system presents chaotic behavior and the
degree of chaos. The Lyapunov exponent describes the exponential
growth rate of the system under small changes in initial conditions,
which reflects the sensitivity and predictability of the system. To
rephrase, determining the Lyapunov exponent spectrum can aid in
our comprehension of the system’s dynamic behavior, as well as in
determining whether or not chaos exists inside the system and to
what extent. For a discrete chaotic mapping L(x) of dimension m
(see Equation 7),

L x( ):
x1
n+1 � L1 x1

n, . . .x
m
n( );

x2
n+1 � L2 x1

n, . . .x
m
n( );

..

.

xm
n+1 � Lm x1

n, . . .x
m
n( ),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(7)
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the Lyapunov exponent can be expressed as Equation 8.

LEj � lim
n→∞

1
n
∑n
i�1

ln |λj|, (8)

where j � 1, 2, . . . , m, and λ1, λ2, . . . , λm are them eigenvalues of the
Jacobian matrix of L(x) at the n-th iteration.

Two Lyapunov exponents, LE1 and LE2, correspond to a two-
dimensional discrete chaos mapping. In terms of the Lyapunov
exponent, a system will only exhibit chaotic properties when it has a
positive number of states. Furthermore, the system performs more
chaotically the higher the Lyapunov exponent. Selecting the control

parameters v � μ � 4, the initial point is (0.1, 0.1), Figure 2 shows
the Lyapunov exponents spectrum of three two-dimensional chaotic
maps. The largest Lyapunov exponent (LE1) is shown by the red
line, while the second Lyapunov exponent (LE2) is represented by
the blue line. The comparative analysis reveals that the average
Lyapunov exponent of the 2D-LFHCM introduced in this study
surpasses that of both the 2D-LMM and 2D-LM. Consequently, the
2D-LFHCM exhibits superior chaotic performance. Moreover, the
Lyapunov exponent values within the parameter range of λ for the
2D-LFHCM are predominantly positive, confirming its heightened
suitability for image encryption.

FIGURE 1
The bifurcation diagrams of 2D-LM (A), 2D-LMM (B), LFHCM (C), and 2D-LFHCM (D).

TABLE 1 Comparison of chaotic regions of four chaotic maps.

Chaotic map Chaotic interval Chaotic region area ratio

2D-LM [3.567, 3.738] ∪ [3.749, 3.828] ∪ [3.848, 4] 1

2D-LMM [0.999, 1.089] ∪ [1.089, 1.113] ∪ [1.128, 1.152] ∪ [1.172, 1.189] 1.374

LFHCM [5.569, 6.464] ∪ [6.577, 8.123] ∪ [8.214, 9.274] ∪ [9.461, 11] 1.921

2D-LFHCM [5.583, 6.454] ∪ [6.565, 9.274] ∪ [9.481, 11] 2.441
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2.5 Iteration sequence and phase diagram

For the 2D-LFHCM, with fixed parameters λ � 4.5, μ � 1.4 and
λ � 6, μ � 1.4, the chaotic sequence is obtained after 300 iterations,
as shown in Figure 3. The black curve S1 represents the trajectory
starting from the initial value (0.1, 0.1). The green curve S2
represents the trajectory starting from the initial value
(0.1,−0.1). To make the image clear, the curve of S1 is
intentionally translated upward. From Figure 3B, it becomes
apparent that upon reaching a specific iteration count, the two
running paths become indistinguishable. Indeed, this phenomenon
arises when certain conditions are met by the initial value.

Based on diverse parameters, maps in the specified interval can
generate chaotic effects, resulting in a chaotic phase diagram.
Figure 4 illustrates the chaotic phase portraits of 2D-LMM, 2D-
LM, and 2D-LFHCM under specific conditions (t � 1.19, u � 3.99,
v � 1.4, and λ � 9, μ � 1.4, respectively).

By analyzing the numerical simulation results presented in
Figure 4, it becomes evident that the 2D-LFHCM proposed in
this research exhibits a larger chaotic range in the phase plane
compared to 2D-LMM and 2D-LM. This observation indicates

that the 2D-LFHCM can generate a more diverse range of chaotic
pseudo-random outcomes, thereby enhancing ergodicity. This
improvement is valuable for potential applications, including signal
generation and the utilization of chaotic systems in image encryption.

3 The basic principles of encryption and
decryption

In the field of biology, deoxyribonucleic acid (DNA) stands as a
fundamental biomolecule present within the cells of all organisms,
serving as the genetic material for the majority of living entities. It is
gratifying that DNA also plays an indispensable role in cryptography
[34]. If the nucleotide bases in DNA information are matched to the
binary digits 00, 01, 10, and 11, there are a total of 8 DNA coding
rules [35], each corresponding to its own rules for addition,
subtraction, and XOR operations. DNA primarily achieves the
genetic code through the arbitrary combination of four bases:
adenine (A), cytosine (C), guanine (G), and thymine (T), where
A and T are complementary, C and G are complementary. The
binary numerals 0 and 1, which complement each other, also serve a

FIGURE 2
Lyapunov exponents spectrum of 2d-LMM (A), 2D-LM (B), 2D-LFHCM (C).
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purpose in computers to store information. By leveraging these
characteristics, when implementing DNA’s quaternary encoding
with four bases, there can be a total of eight pairing rules. The
coding table is shown in Table 2.

In a computer, the quaternary system is a digital system based on
the number 4. The four numbers 0, 1, 2, 3, and A, T, C, G one-to-one
mapping. If four bases in DNA are used for four-image coding, there
are a total of eight rules that can be paired with each other. The
coding table is shown in Table 2. Following the rules provided in
Table 2, a 4-digit quaternary number can be directly represented by a
4-length DNA sequence. As an example, the quaternary number
“1320” can be used to represent the decimal 120 Gy value. Since the
numbers 0, 1, 2, and 3 are mapped one by one with A, T, C, and G,
they are eventually converted into TGCA.

The cryptosystem in modern cryptography can be succinctly
denoted as a five-tuple P, C, K, Enc, Dec, where P denotes the
plaintext sequence, C represents the ciphertext sequence, K
embodies the key system, Enc signifies the encryption
algorithm, and Dec denotes the decryption algorithm. The core
idea of modern cryptography involves encrypting a sequence of
plaintext using a designated encryption algorithm. Subsequently,
the encrypted file can be decrypted by the recipient, using a specific
decryption key, to retrieve the original plaintext sequence. Table 3
displays the DNA operation rules, when A = 0, C = 1, G = 2, and
T = 3, of addition “+,” subtraction “−”, exclusive or “xor,” right
shift ‘→’, and left shift “←”.

Mathematically, the well-known technique of the right cyclic
shift involves rearranging a collection of data sequences. The specific
procedure entails relocating the final number to the initial position
and shifting all the remaining elements to the right, aligning them
with their corresponding positions. On the other hand, the left
circulation shift is similar. Throughout the shifting process, the
cyclicity is maintained, ensuring that the removed element reappears
at the opposite end of the sequence.

Let R((s0, s1, . . . , sn−1), k) represents the k-th right cyclic shift,
that is, the right cyclic shift k times. Then,

R s0, s1, . . . , sn−1( ), k( ) � smod 0−k,n( ), smod 0−k,n( )+1 . . . , smod n−1−k,n( )( ).
Correspondingly, L((s0, s1, . . . , sn−1), k) represents the kth left

cyclic shift. Then,

L s0, s1, . . . , sn−1( ), k( ) � smod 0+k,n( ), smod 0−k,n( )+1 . . . , smod n−1+k,n( )( ).
As per the operational guidelines provided in Table 3, DNA left

shift and DNA right shift algebraic operators, grounded in DNA
sequences, facilitate the definition of six DNA algebraic operations.
These include DNA right (left) shift addition, DNA right (left) shift
subtraction, and DNA right (left) shift XOR.

As an illustration, for the DNA operation before the shift and the
DNA right shift XOR, one can get

A,C, G, T( ), A( )4( ) � A,C, G, T( ), 0( ) → A,C, G, T( ) → A,A, A,A( ),
A, C, G, T( ), C( )4( ) � A,C, G, T( ), 1( ) → T,A, C, G( ) → T,C, T, C( ),
A, C, G, T( ), G( )4( ) � A,C, G, T( ), 2( ) → G, T,A, C( ) → G,G, G, G( ),
A, C, G, T( ), T( )4( ) � A,C, G, T( ), 3( ) → C,G, T, A( ) → C, T, C, T( ).

The DNA right shift addition fr+ is expressed as

fr+ �
R+ A,C, G, T( ), A( )4( )
R+ A,C, G, T( ), C( )4( )
R+ A,C, G, T( ), G( )4( )
R+ A,C, G, T( ), T( )4( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
R+ A,C, G, T( ), 0( )
R+ A,C, G, T( ), 1( )
R+ A,C, G, T( ), 2( )
R+ A,C, G, T( ), 3( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ →

A A C C
T C T A
G G G G
C T A T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The DNA right shift subtraction fr− is expressed as

fr− �
R− A,C, G, T( ), A( )4( )
R− A,C, G, T( ), C( )4( )
R− A,C, G, T( ), G( )4( )
R− A,C, G, T( ), T( )4( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
R− A,C, G, T( ), 0( )
R− A,C, G, T( ), 1( )
R− A,C, G, T( ), 2( )
R− A,C, G, T( ), 3( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ →

A A A A
T C G C
G G T T
C T C G

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FIGURE 3
Two iterative sequences of the 2D-LFHCM for μ � 1.4 (λ � 4.5 (A) and λ � 6 (B), respectively).
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The DNA right shift XOR frX is expressed as

frX �
RX A, C, G, T( ), A( )4( )
RX A, C, G, T( ), C( )4( )
RX A, C, G, T( ), G( )4( )
RX A, C, G, T( ), T( )4( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
RX A, C, G, T( ), 0( )
RX A, C, G, T( ), 1( )
RX A, C, G, T( ), 2( )
RX A, C, G, T( ), 3( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ →

A A A A
T C T C
G G G G
C T C T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4 Proposed image encryption scheme

This section includes a thorough overview of the important parts
of the encryption mechanism, such as key creation, chaotic DNA
scrambling, and diffusion. Specifically, the scrambling operation
exchanges the position and interference of pixels in the ordinary
image, minimizing the strong correlation between adjacent pixel
values. The pixel data diffusion serves as a critical measure to
enhance security. By integrating scrambling and diffusion, both

FIGURE 4
The phase diagram of 2D-LMM (A), 2D-LM (B), 2D-LFHCM (C) in the x − y plane.

TABLE 2 DNA code table.

Quaternary number Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

0 A A T T C C G G

1 C G C G A T A T

2 G C G C T A T A

3 T T A A G G C C
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the position and grayscale value of the pixel are simultaneously
altered, ensuring that the grayscale information of any pixel is
concealed within numerous other pixels.

Let I1 denote a grayscale image of size M × N, where N
represents the number of columns and M is the number of rows.
The encryption and decryption process based on the principles
outlined in Section 3 is detailed below, and the flow chart of the
entire encryption process is shown in Figure 5.

Step 1. Key stream generation.

(i) Let (x10, y1
0) � (0.1, 0.1), (x2

0, y
2
0) � (0.2, 0.2), (x3

0, y
3
0) �

(0.3, 0.3), λ � 6 and μ � 1.4 serve as the initial conditions
and control parameters employed for iterating Equation 6.

(ii) After iterating n0 + 4MN times, three pseudo-random
generated sequences {y1

n0+4MN}, {y2
n0+4MN}, and {y3

n0+4MN}
are obtained separately.

(iii) To eliminate transient effects for increased security, the first
n0 or n0 + 3MN iterations of sequences {y1

n0+4MN},
{y2

n0+4MN}, and {y3
n0+4MN} (where n0 � 800) are discarded.

New sequences y1, y2, and y3, respectively, of length 4MN,
MN, and 4MN are obtained.

(iv) The encrypted chaotic sequence s1 is produced by Equation 9.
The y1 elements are sorted in ascending order, ynew is the newly
formed sequence after sorting, and s1 is the index value of ynew.

ynew, s1[ ] � sort y1( ), (9)
where, the function sort is employed to arrange the data and provide
the corresponding index values.

(v) Generation of the encrypted chaotic sequence s2. By applying
the following Equation 10 to compute the obtained pseudo-
random sequence y2, ensuring that the values of y2 are within
{0, 1, 2, 3}, a new sequence s2 is obtained.

s2 i( ) � floor mod y2 i( ) × 103, 4( )( ), (10)
where i � 1, 2, 3, . . . ,MN, and floor(x) denotes the function that
outputs the largest integer less than x.

(vi) The generation of an encrypted chaotic sequence, referred to
as s3, involves several steps. First, the sequence y3 is
processed using Equation 11 to ensure that the resulting
sequence, denoted as y3*, only consists of values within the
range {0, 1, 2, 3}. Second, the processed sequence y3*
undergoes encoding into a DNA sequence following rule

1 presented in Table 2. Finally, Equation 12 is applied to the
encoded sequence to obtain the desired chaotic sequence,
referred to as s3. In other words, sequence s3 is generated
sequentially from sequence y3*, taking groups of four.

y3* i( ) � mod floor y3 i( ) + 100( )*103( ), 4( ), i � 1, 2, 3, . . . , 4MN,

(11)
s3 j( ) � y3* 4j − 3: 4j( ), j � 1, 2, 3, . . . ,MN. (12)

Step 2. DNA encoding of the original image.

(i) Let I1 be a grayscale image with dimensions M × N.
(ii) Reshape the original image I1 of size M × N into a 1 × MN

vector I2.
(iii) Encode each pixel value of I2 into a 4-bit quaternary number,

transforming vector I2 into a quaternary matrix I3 of size
1 × 4MN.

(iv) The DNA image I4, with a size of 1 × 4MN, is produced by
encoding each element of the image I3 into quaternary,
which corresponds to the four nucleotides A, C, G, and T
depending on rule 1 in Table 2.

Step 3. DNA chaotic confusion and diffusion.

(i) To initiate the initial chaotic confusion, the following
Equation 13 is employed to disrupt the positions of I4.

I5 i( ) � I4 s i( )( ), i � 1, 2, 3, . . . , 4MN. (13)

(ii) The sequence I5 is extracted and grouped consecutively into
sets of four. This new sequence is then denoted as I6, as
illustrated in Equation 14.

I6 i( ) � I5 4i − 3: 4i( ), i � 1, 2, 3, . . . , 4MN. (14)

(iii) The implementation of the DNA diffusion operation
between the DNA sequence I6 and the key DNA
sequences s2 and s3 are conducted using Equation 15.

I7 i( ) �
R+ I6 i( ), A( )4( ) � R+ I6 i( ), 0( ) if s2 i( ) � 0;
L− I6 i( ), C( )4( ) � L− I6 i( ), 1( ) if s2 i( ) � 1;
RX I6 i( ), G( )4( ) � RX I6 i( ), 2( ) if s2 i( ) � 2;
LX I6 i( ), T( )4( ) � LX I6 i( ), 3( ) if s2 i( ) � 3,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

(iv) To further scramble the positions, we employ the method
presented in (i), which is Equation 16 in this case, to disrupt

TABLE 3 DNA operation rules table.

Addition Subtraction Exclusive or Right shift Left shift

+ A C G T − A C G T xor A C G T A C G T → A C G T ←

A A C G T A A C T G A A C G T A C G T A A C G T A

C C A T G C C A G T C C A T G T A C G C T A C G C

G G T C A G G T A C G G T A C G T A C G G T A C G

T T G A C T T G C A T T G C A C G T A T C G T A T
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the position of I7, effectively achieving the second chaotic
scrambling.

I8 i( ) � I7 s i( )( ), i � 1, 2, 3, . . . , 4MN. (16)

(v) Following rule 1 in Table 2, every nucleotide A, C, G, and T in
the diffused DNA image I8 is decoded into a quaternary
number, resulting in an encrypted quaternary image I9 of size
1 × 4MN.

(vi) Encoded as integer values in the range of 0–255 for every
4 bits, these values are then transformed into a grayscale
cipher image I10 with dimensions 1 × MN.

Step 4. Cipher image.
The gray cipher image I10, which is 1 × MN in size, is reshaped

into a gray cipher image I11 with dimensions M × N.
The image decryption process closely mirrors the

encryption procedure, involving the sequential inversion of
steps utilized in encryption and relying on the application of
a cryptographic key. Similarly, if DNA right shift addition is

utilized in the encryption phase, it would be reversed in the
decryption phase.

5 Performance evaluation

In this section, various images (such as Lena, Onion, and
Cameraman) will be utilized to evaluate the performance of the
proposed cryptosystem based on image statistical performance and
security analysis. All experimental results were calculated using
MATLAB 2018b on a compatible computer with Windows 10,
8.00 GB RAM, and Intel (R) Core (TM) i5-7300HQ CPU @
2.50 GHz. Figure 6 displays the encryption performance of the
proposed cryptographic system. Each part begins with a row
displaying the plain image, followed by the encrypted image, and
concludes with the decrypted image, from left to right. The second
line exhibits histograms for both the plain and encrypted images.We
have documented all experimental data in a table, which provides
evidence of the outstanding capabilities of our cryptographic system
in effectively addressing various security and statistical risks.

FIGURE 5
Flowchart of the encryption process (where the picture of Lena is sourced from [38]).
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FIGURE 6
The original images, encrypted images, decrypted images, and histograms of the original and encrypted images of Lena (A), Onion (B), and
Cameraman (C), respectively (where the pictures of Lena, Onion, and Cameraman are sourced from [38], [43], and [27], respectively).
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5.1 Key space analysis

The extent of the key space in an image encryption scheme is a
pivotal factor in determining its security. The key space
encompasses all authorized keys for the scheme. Evidently, an
expanded key space augments the scheme’s resilience against
exhaustive attacks, thereby ensuring an elevated level of security
for the encrypted image algorithm. As a general rule, if the key space
exceeds 2100 ≈ 1030, the encryption mechanism becomes impervious
to brute force attempts. In this paper, the encryption scheme’s initial
key comprises two control parameters, namely, λ and μ, along with
two initial values, x0 and y0. By adhering to the Institute of Electrical
and Electronic Engineers’ (IEEE) recommendation of using 64-bit
double-precision numbers, the key space for this scheme can
amount to (1015)4 � 1060. This immense value far surpasses 1030,
thereby ensuring that the image encryption scheme presented in this
study possesses a suitably extensive key space, affording it robust
protection against severe attacks.

5.2 Time cost and speed analysis

A superior encryption scheme should not sacrifice encryption
time but instead strive to minimize it while ensuring security. In
certain application scenarios, such as image transmission, real-time
performance is paramount. This necessitates that encryption
algorithms be capable of completing data encryption within a
short timeframe to ensure real-time transmission. The average
encryption time for the aforementioned grayscale images of size
256 × 256 were calculated and compared with several established
encryption algorithms, including DNA encoding or S-box. The
amount of data of a gray image with a size of 256 × 256 is about
512 Kbit, so the encryption speed can be obtained. All results are
presented in Table 4. It can be observed from the table that the
proposed solution exhibits the shortest encryption duration,
indicating its superior encryption efficiency.

5.3 Histogram analysis

During everyday practical use, there is a potential risk of theft or
attack on encrypted images while they are being transmitted. Thus, it
becomes crucial to assess both the statistical properties and security
of these encrypted images. One of the most basic and intuitive
techniques for examining the frequency distribution in plaintext and
encrypted images is histogram analysis. Examining the histogram is
instrumental in assessing the performance of the encryption
algorithm. In case the histogram of the encrypted image exhibits

an even or irregular distribution, it indicates that the statistical
characteristics have been concealed or destroyed, suggesting that the
encryption algorithmmight be more efficient. If the histogram of the
ciphertext image displays noticeable characteristics or exhibits a
notably dissimilar distribution pattern compared to that of the
plaintext image, it could indicate potential vulnerabilities in
information leakage or the encryption algorithm. Such
observations are valuable in identifying encryption issues and
enhancing the encryption scheme. In Figure 6, the histograms for
various images (Lena, Onion, and Cameraman) can be observed.
From an intuitive perspective, it becomes apparent that encrypted
images exhibit a uniform histogram, while the histograms of
plaintext images vary. If the histogram of encrypted images
exhibits an approximately uniform distribution, indicating a lack
of discernible regularity in pixel value distribution, it signals the
heightened robustness of the encryption scheme against
statistical attacks.

5.4 Chi-square analysis

Non-uniformly distributed pixel values can imply that there are
some specific features or structures in the image, which may make it
easier for the encrypted image to infer some information from the
histogram, thereby compromising the encryption’s security level.
On the contrary, when pixel values are uniformly distributed,
potential intruders are prevented from extracting reliable
information from the histogram, because the histogram lacks
discernible peaks or features, indicating that the image’s
statistical characteristics are to some extent concealed.
Consequently, inferring information about the original image
from the histogram becomes challenging.

The χ2 statistic (one-sided hypothesis test) is frequently
employed to quantify the difference between the two in terms of
quantity. Chi-square represents a statistical method utilized to
measure such differences. If the frequency distribution of a given
set of samples is denoted by fi, i � 1, 2, . . . , n, the theoretical
frequency distribution is assumed to be gi, i � 1, 2, . . . , n.
Assumption H0: The sample comes from the theoretical
distribution. When H0 is assumed to hold Equation 17,

χ2 � ∑n
i�1

fi − gi( )2
gi

, (17)

is called the Pearson χ2 statistic and obeys the χ2 distribution with
n − 1 degrees of freedom.

Given the image dimensions as M × N, we posit that the pixel
frequency fi associated with each gray value in the histogram

TABLE 4 Comparison of encryption time of different algorithms.

Encryption algorithm Time cost (units in s) Encryption speed (units in Kbit/s)

Proposed in this paper 0.4753 1077.2144

Reference [38] 0.4862 1053.0646

Reference [39] 3.6240 141.2804

Reference [40] 0.5683 900.9326
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conforms to a uniform distribution. At this time,
gi � g � MN/256, i � 0, 1, 2 . . . , 255, then,

χ2 � ∑255
i�0

fi − gi( )2
gi

� ∑255
i�0

fi − MN
256( )2

MN
256

� 1
256

∑255
i�0

256fi −MN( )2
MN

.

(18)
Equation 18 obeys the χ2 distribution with a degree of freedom of
255. The significance level α is given such that
P χ2 P χ2α(n − 1){ } � α, that is, the null hypothesis H0 is accepted
when χ2 < χ2α(n − 1). In instances where the level of significance
α � 0.01, α � 0.05, and α � 0.1, the degree of freedom is 255, the χ2

distribution value χ20.01(255) � 310.457, χ20.05(255) � 293.248, and
χ20.1(255) � 284.336.

The generally used significance level is α � 0.05. An
encrypted image with a chi-square score of χ20.05(255) �
293.248 indicates a highly uniform pixel distribution. Table 4
presents the chi-square scores for various encrypted images,
namely, Lena, Onion, and Cameraman, demonstrating that the
pixel values of our proposed encryption scheme are evenly
distributed between 0 and 255 in different rounds of
encryption. As a consequence, the ciphertext histogram
exhibits an even distribution, suggesting that the image

encryption method employed in this study demonstrates
increased resilience against statistical attacks. The outcomes
of the χ2 test can be found in the provided Table 5.

5.5 Information entropy

The unpredictability of image information is reflected in
information entropy. It is widely accepted that higher entropy
corresponds to increased uncertainty, greater disorder within the
information, and reduced visual information. The calculation
formula for information entropy can be expressed as
Equation 19.

H � −∑L
i�0

p i( )log2p i( ), (19)

where, L represents the gray level of the image, and p(i) denotes the
probability of gray level i.

For a randomly generated grayscale image with a gray level of
L � 256, the theoretical information entropy value H is 8. The
information entropy is computed for plain images of Lena,
Onion, Cameraman, and their corresponding encrypted

TABLE 5 The entropy values and scores of the original images and encrypted images of Lena, Onion, and Cameraman, respectively.

Images P/E Size Information entropy Chi-square score

Lena Plain 256 × 256 7.4508 4.0523 × 104

Lena Encrypted 256 × 256 7.9997 278.7568

Onion Plain 256 × 256 7.3426 6.8641 × 104

Onion Encrypted 256 × 256 7.9971 262.9375

Cameraman Plain 256 × 256 7.1048 9.8781 × 104

Cameraman Encrypted 256 × 256 7.9984 264.9377

TABLE 6 Results of the correlation coefficient between original and encrypted images of Lena, Onion, and cameraman in various directions.

Images Direction Plain image correlation Encrypted image correlation

Lena Horizontal 0.9757 0.0021

Lena Vertical 0.9552 0.0102

Lena Main diagonal 0.9229 0.0006

Lena Secondary diagonal 0.9372 −0.0148

Onion Horizontal 0.9926 0.0032

Onion Vertical 0.9934 −0.0179

Onion Main diagonal 0.9840 0.0056

Onion Secondary diagonal 0.9892 0.0228

Cameraman Horizontal 0.9596 0.0339

Cameraman Vertical 0.9284 0.0003

Cameraman Main diagonal 0.8921 −0.0164

Cameraman Secondary diagonal 0.9076 −0.0063
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versions. The results of the calculations are presented in Table 5,
revealing that the information entropies of encrypted images
closely approach 8. This suggests that encrypted images exhibit a

more advantageous random distribution. Therefore, the
encryption method proposed by us exhibits strong resistance
to entropy-based attacks.

FIGURE 7
The first row of the three sets of images Lena (A), Onion (B), and Cameraman (C), from left to right, are the original images and the correlation of
adjacent pixels of the original images in the horizontal, vertical, and diagonal direction, respectively. The second row is the same, only for their encrypted
images. (The pictures of Lena, Onion, and Cameraman are sourced from [38], [43], and [27], respectively).
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5.6 Correlation

Evaluating the correlation properties of both the original and
encrypted images is essential, complementing the analysis of the
image’s histogram and information entropy. Neighboring pixels
in the horizontal, vertical, main diagonal, and sub-diagonal
directions exhibit a strong correlation in the original image.
The objective of image encryption algorithms is to minimize
the correlation between adjacent pixels in the encrypted image,
providing a defense against statistical attacks. A correlation value
of zero is ideal. This study randomly samples 2000 pairs of
neighboring pixels along the horizontal, vertical, main
diagonal, and secondary diagonal directions from both the
plain and encrypted images. In this study, 2000 pairs of
adjacent pixels are randomly selected from both the original
and encrypted images in the horizontal, vertical, main diagonal,
and secondary diagonal directions. The correlation coefficient
between the two adjacent pixels can be computed by applying
Equation 20.

E x( ) � 1
N

∑N
i�1

xi;

D x( ) � 1
N

∑N
i�1

xi − E x( )( )2;

cov x, y( ) � 1
N

∑N
i�1

xi − E x( )( ) yi − E y( )( );
rxy � cov x, y( )�����

D x( )√ �����
D y( )√ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

whereN is the number of pixel pairs, x and y denote the gray values
of two adjacent pixels, E(x) is the mean value, D(x) represents
variance, cov(x, y) stands for covariance, and rxy is correlation
coefficient of x and y. The correlation coefficients for both plain and
encrypted images of Lena, Onion, and Cameraman in the
horizontal, vertical, main diagonal, and secondary diagonal
directions are presented in Table 6.

The correlation between adjacent pixels in the original and
encrypted images of Lena, Onion, and Cameraman is depicted in
Figure 7 for the horizontal, vertical, and main diagonal directions

(from left to right). The experimental results indicate a lack of
significant correlation between neighboring pixels in the encrypted
images, in contrast to the noticeable correlation present in the
original images. The efficacy of the encryption system described
in this study is highlighted by this conclusion. It’s important to note
that these results are obtained after only a single round of
encryption. If multiple encryptions are performed, the effect may
be more significant.

5.7 Comparison and analysis

The algorithm in this paper is used to encrypt and test the
performance of image Lena, and compared with other encryption
algorithms. The test results of other algorithms are directly quoted
from the corresponding papers. The comparison results are shown
in Table 7. It can be observed that the performance difference of
adjacent pixel correlation analysis of each algorithm is small. In
terms of information entropy and other resistance to statistical
attacks and encryption speed, the algorithm in this paper has
better performance, indicating that the algorithm in this paper
has better security.

6 Conclusion

The hybrid image encryption method described in this paper
integrates DNA computing theory with the improved 2D-LFHCM.
Furthermore, the security, histogram, correlation coefficient, and
information entropy aspects of the proposed scheme are examined
to demonstrate its rationality. Numerical simulations demonstrate
the notable efficacy of the image encryption technique introduced in
this study.

A feasible idea for future work is to apply the proposed
method to multi-image encryption [24,36], which can improve
efficiency while ensuring security. Another possibility is to
combine encryption with quantum technology. In light of the
advancements in quantum information technology, numerous
technologies have been proposed to enhance traditional image
encryption algorithms. The exponentially accelerating

TABLE 7 Comparison of encryption performance of different algorithms (Lena, and size: 256 × 256).

Algorithm Adjacent pixel correlation Information entropy Time cost Encryption speed

Horizontal Vertical Diagonal

Proposed in this paper 0.0021 0.0102 0.0006 7.9997 0.4753 1077.2144

Reference [25] −0.0017 −0.0009 −0.0019 7.9962 0.9170 558.3424

Reference [39] −0.0031 0.0084 −0.0007 7.9971 — —

Reference [38] 0.0068 −0.0054 0.0010 7.9967 0.4862 1053.0646

Reference [41] −0.0036 0.0026 0.0012 7.9995 0.9510 538.3807

Reference [42] −0.0006 −0.0057 0.0009 7.9938 — —

Reference [43] 0.0013 0.0002 0.0033 7.9972 — —

Reference [44] 0.0105 −0.0023 0.0052 7.9997 — —

Note: Bold font indicates the best result in each column. “-” indicates that the reference did not record this test result for the Lena image.
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capabilities of quantum technology, as opposed to traditional
computing, are critical for mitigating the vulnerability of
encryption algorithms to decipherment. To harness the
potential benefits of combining quantum computing with
conventional image encryption approaches, Hua Hua et al.
[30] came up with dynamic image encryption via quantum
walks and chaos-induced DNA to boost image security. Wen
Wen and Lin [37] analyzed the security of an existing image
encryption algorithm based on quantum chaotic map and DNA
coding (QCMDC-IEA), and proposed a low-complexity attack
method, which provides some theoretical tips and suggestions for
improving the security of the system based on DNA coding and
chaotic image encryption. Our upcoming study aims to
investigate the potential synergy between quantum walking
and the recently proposed DNA computing principles to
develop an innovative encryption method. This novel
approach is expected to enhance the security measures for
image encryption, thus carrying significant implications.
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Our study is based on the hypothesis that stock exchanges, being nonlinear,
open and dissipative systems, are capable of self-organization to the edge of
a phase transition. To empirically support the hypothesis, we find segments
in hourly stock volume series for 3,000 stocks of publicly traded companies,
corresponding to the time of stock exchange’s stay to the edge of a phase
transition. We provide a theoretical justification of the hypothesis and present
a phenomenological model of stock exchange self-organization to the edge
of the first-order phase transition and to the edge of the second-order
phase transition. In the model, the controlling parameter is entropy as a
measure of uncertainty of information about a share of a public company,
guided by which stock exchange players make a decision to buy/sell it. The
order parameter is determined by the number of buy/sell transactions by
stock exchange players of a public company’s shares, i.e., stock’s volume. By
applying statistical tests and the AUC metric, we found the most effective
early warning measures from the set of investigated critical deceleration
measures, multifractal measures and reconstructed phase space measures.
The practical significance of our study is determined by the possibility of
early warning of self-organization of stock exchanges to the edge of a
phase transition and can be extended with high frequency data in the
future research.

KEYWORDS

phase transition, self-organized criticality, early warning signals, sandpile cellular
automata, stock exchange, econophysical modeling, trading

1 Introduction

More than 35 years ago, P. Bak together with C. Tang suggested that in nonlinear
systems far from equilibrium, complex holistic properties may emerge through their
self-organization into a critical state [1]. Subsequently, the theory of self-organized
criticality (SOC) was formed, the main provisions of which have found application
in sociology, biological evolution, seismology, economics and other sciences (e.g.,
see the papers [2–7, 7–9]). The theory of self-organization at the edge of phase
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transitions has found applications in cognitive and social science
(e.g., see the papers [10, 11]).

The basic model of SOC theory is the sandpile cellular
automaton (SCA), which demonstrates how complex holistic
properties emerge in a model system with simple rules as a result
of self-organization of the automaton into a critical state (e.g., see
the papers [12, 13]). The simplest model of SCA is the following
model. Suppose that the nodes of the lattice graph are assigned
integer numbers (the number of grains of sand in the cells). Then we
increase by one the numbers assigned to randomly chosen nodes of
the graph (add one grain of sand in the cells). If the number (grains
of sand), zk,l, for some node (k, l) exceeds some threshold value,
zc, for instance zc = 4, then this node is unstable and its toppling
occurs. As a result of node toppling (k, l) numbers for neighbouring
nodes, zk±1,l±1, are increased by 1, i.e., zk±1,l±1→ zk±1,l±1 + 4. Thus
zk,l→ zk,l − 4. Collapses occur until the SCA becomes stable, that is,
until at each node zk,l < 4.

Each iteration of the SCA simulation is followed by its
perturbation, by adding one grain of sand to randomly selected
cells at a time, and relaxation, by collapsing unstable cells.
Starting from some critical iteration, ic, a single added grain
of sand in a randomly selected cell can cause an avalanche of
collapses of any size, continuing until all cells regain stability.
In the subcritical phase (i < ic) avalanches rapidly decay in
time and space.

In the context of mean-field theory of phase transitions, the
control parameter of the SCA is determined by the ratio of the
number of particles in the cells to the total number of cells
of the SCA, the order parameter is determined by the ratio of
the number of unstable cells to the total number of cells of
the SCA (e.g., see the paper [14]). The transition of the SCA
from the subcritical phase to the critical state corresponding to
the critical value of the control parameter occurs as a result
of self-organization of the SCA and does not require precise
adjustment of the control parameter to the critical value. This is
a fundamental difference between self-organization into a critical
state and a classical phase transition of the first or second kind,
for which precise tuning of the control parameters to critical values
is required.

Our study is based on the hypothesis that stock exchanges, being
nonlinear, open and dissipative systems, are able to self-organize into
a critical state. The theoretical justification of the hypothesis and a
phenomenological model of stock exchange self-organization into
a critical state are presented in Subsection 3.2. This econophysical
model is based on the isomorphism of the SCA model and the stock
exchange in the context of systems theory. In the model, the control
parameter is defined by entropy as a measure of uncertainty of
information about a stock of some public company, based on which
the stock exchange traders make a decision to buy/sell it. The order
parameter is determined by the number of buy/sell transactions
by stock exchange traders of shares of some public company, i.e.,
stock’s volume.

To quantitatively substantiate the hypothesis, we determined
time intervals corresponding to the time of the stock exchange’s
stay in a critical state, ∆tc. The main signs of the system being in
a self-organized critical state (in the interval ∆tc or ∆ic for the SCA)
are ρ(1) = 1, S( f) = f−β where 1 ≤ β ≤ 2 and p(ξ) = ξ−2 (e.g., see the
paper [13]). Here ρ(1) is the autocorrelation at lag-1, S( f) is the

power spectral density, p(ξ) is the probability density function for
the values of the dynamic series ξ in the interval ∆tc, corresponding
to the order parameter of the system. The identification of ∆tc
from the values β requires a significant computational cost in
estimating S( f). Recall that we investigated hourly stock volume
series for more than 2,600 stocks of publicly traded companies. In
addition, the estimation of p(ξ) is obtained only in the intermediate
asymptotic region, which is bounded due to the finiteness of the
size (number of stock exchange traders and the links between
them) of the stock exchange. Therefore, to identify ∆tc in stock
volume series, we used the features of 100-hour moving average
(MA100) behavior in the vicinity of tc followed by verification using
critical deceleration, multifractal and chaotic measures. Features
of MA100 behavior for test series (series of unstable nodes of
the SCA) in the vicinity of tc are presented in Subsection 2.1.
Peculiarities of MA100 behavior for stock volume series in the
vicinity of tc and detected ∆tc for stock exchanges and their features
are presented in Subsection 3.1.

The practical significance of our study is determined by
the possibility of early warning of self-organization of stock
exchanges into a critical state (e.g., see the papers [15, 16]).
We identified the most effective early warning measures from a
wide range of investigated early warning measures (the simplest
critical slowing down measures, multifractal measures and
chaotic measures). The methods for computing the measures
and extracting the most effective early warning measures are
presented in Subsection 2.3. The results obtained and their
discussion are presented in Subsection 3.3. The detection of a
precursor to such self-organization gives investors a reason to
pay attention to a stock that is likely to have a large trading
volume expected after some time (early warning time). To
the stock exchange trading regulator, precursors provide a
tool to distinguish between normal market behavior and large
one-off manipulations in investigations. We investigated the
effectiveness of a wide range of early warning measures: simple
critical slowing down measures, multifractal measures and
chaotic measures.

The main conclusions, as well as the possibilities and limitations
of the empirical results obtained and the proposed model are
presented in Conclusion.

Existing studies on the empirical validation of stock market
self-organization into a critical state are limited to the analysis of
daily world stock indices (e.g., see the papers [17–23]) or daily
stock prices of public company shares (e.g., see the papers [24–29]).
Studies of financial series with daily intervals allow us to identify
time intervals of the critical state only in the case of slow self-
organization of the stock exchange into a critical state, when the
time interval corresponds to several days. We used a 1 hour interval
series, which enabled us to identify a large number of time intervals
of several hours corresponding to stock exchange critical states, as
well as intervals of several days. We also analyzed stock exchange
samples of larger size (dynamic series at 1 hour intervals for stocks
of more than 2,600 public companies) and used a larger number of
early warning measures. Accordingly, the results we obtain are more
reliable and representative than those obtained earlier. In addition,
we provide a theoretical justification of the critical behavior of
stock exchanges within the framework of the proposed model
of self-organization into a critical state with an order parameter
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corresponding to the number of exchange transactions on shares of
a public company.

2 Data set and methods

2.1 Model time series generated by
sandpile cellular automata

As test dynamic series, that is, series to determine the required
number of iterations in moving average and moving variance in
the effective detection of critical iteration, ic, we used the series
of the number of unstable nodes (i ∈ [0,n],n ∈ N) of the SCA
on the Chung-Lu graph with two-parameter degree distribution
of graph nodes’ degrees (e.g., see the paper [30]) and Manna
rule (e.g., see the paper [31]). Series ξi demonstrate the exact
value ic, ρ(1) = 1, S( f) = f−β (1 ≤ β ≤ 2) and p(ξ) = ξ−2 in the
critical state (at i > ic), which is one of the reasons for their
use as test series. The rationale for the choice of the specified
graph topology and rule in the context of stock exchanges is
presented in Subsection 3.2.

There are two main reasons why we examined the sandpile
model and the time series that the model generates. First, on the
sandpile model we managed to find out under which conditions
we can talk about similarity in critical transitions between model
and real financial data, which will be discussed in more detail in
Subsection 2.2. Secondly, we used the sandpile model as a model
of the stock exchange, which allowed us to theoretically justify the
possibility of self-organization of the exchange at the edge of a phase
transition (see Subsection 3.2).

Let zk,l be the number of particles (grains of sand) in the
node (k, l) of the Chung-Lu graph, zc be the critical number of
grains. If zk,l ≥ zc, the node (k, l) is unstable. In general, the self-
organization of the SCA into a critical state is determined by
perturbation (pumping) and relaxation of the automaton. At the
beginning of iteration 0, a perturbation of the automaton takes
place in the form of randomly pouring grains of sand into its
randomly chosen nodes. If some nodes have zk,l ≥ zc, they are
considered unstable and their collapse occurs with sand grains
moving to neighboring nodes until all nodes are stable (zk,l < zc). In
this way the automata are relaxed. The next iteration 1, as well as
the iterations following it, also start with perturbation and end with
relaxation.

The feature of the Manna rule that distinguishes it from
other rules is that each unstable vertex transmits to neighboring
(connected) vertices a random number of particles that is equal to
the total number of edges of that vertex.

Starting from iteration ic the SCA self-organizes into a critical
state. At that, the dynamical series ξi (i > ic) is characterised by the
above-mentioned power laws for ρ(1), S( f) and p(ξ).

The considered scenario of self-organization of the automaton
to the critical state corresponds to its self-organization to the edge
of the second-order phase transition. For self-organization of the
automaton to the edge of the first-order phase transition, it is enough
to consider in the Manna rule that the collapse of an unstable node
(k, l) occurs not only at zk,l ≥ zc, but also in the case of transferring
to node (k, l)more than one grain of sand from neighbouring nodes
(e.g., see the paper [32]).

2.2 Stock volume series and time intervals
for critical state

As the source of the real data, we elected to utilize hourly
volumes of stock trading for the assets comprising the Russell 3,000
index (exclusive of pre- and post-market data, given their markedly
lower liquidity levels), for the preceding 2 years, with the exclusion
of companies experiencing data unavailability.This resulted in 2,667
time series, each comprising 3,498 observations.We elected to utilize
volumes as they aremore conducive to the viability assessment of the
model, given that these series are more proximate to the theoretical
ones and exhibit a paucity of trends in the data. As an alternative data
frequency, 1-minute and 30-minute data were considered. However,
both data sets exhibited an issue of mass automatic trade executions
close to the astronomical hour end, resulting in a large number
of singular spikes. It is possible to mitigate the impact of these
automatic spikes to some extent by providing researchers with direct
access to the market bids data, rather than statistical aggregates.
However, in this case, we were constrained to working with the final
time series.

In order to define critical transitions for systems it is necessary
to create additional rules that define the criteria for such transitions.
The primary criterion is that the moving average of the time
series (MA100) increases by 20% in comparison to the volumes of
the preceding five iterations. The secondary criterion is that this
regime change persists for a minimum of 10 iterations following
the transition. It should be noted that the logic described may
require modification for systems exhibiting significantly different
characteristics. However, in the base case scenario, it should remain
equally effective.

The rationale behind the selection of these parameters
is as follows:

• MA100 – modification of the first moment of the
distribution, which is a well-established early warningmeasure.
Furthermore, 100 iterations were chosen as a highly stringent
threshold, enabling the removal of outliers in the data set.

• A 20% increase was selected as it defines the severity of the
shift and was chosen based on the simulations with sandpile
automaton with Manna rules on the Chung-Lu random graph
in comparison to white noise and random walk. The 20% level
was deemed appropriate for filtering jumps that occurred in the
random time series, while also enabling the identification of
transitions from the time series generated by complex systems.

• A comparison to the five iterations preceding the current
iteration allows for the filtration of trends and the isolation of
actual transitions from the data set.

• A minimum of ten iterations following the transition permits
the filtration of sudden outliers that do not result in short- or
mid-term changes to the system.

In order to filter time series for modelling purposes, we have
elected to employ a further criterion, namely, that there must be a
minimum of 800 iterations prior to the critical transition (e.g., see
the paper [26]), without the occurrence of other transitions. This
thresholdwas selected on the basis that themajority of early warning
measures necessitate the availability of sufficiently wide windows in
order to function effectively, without the introduction of artefacts. In
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this particular case, the initial 500 iterations will be utilized for this
purpose, with the remaining 300 employed for prediction purposes,
given that all relevant metrics have been duly calculated.

2.3 Early warning measures

In Subsection 2.3 we present a brief description of methods
for computing early warning measures (EWMs) for the self-
organization into a critical state. The analysis of the behavior of
EWMs as the system approaches tc makes it possible to detect early
warning signals for the self-organization of the stock exchange into a
critical state.We also introduce the notion of effectiveness of EWMs,
using which we determine the most effective EWMs.

Let {t = 0,n,n ∈ ℕ} be the dynamic series for the number
of unstable vertices of the SCA on the Chung-Lu graph and
Manna rule (see Subsection 2.1), {t = t0, t f} be the stock volume
series with step ∆t equal to 1 h. We obtained the dynamic series
for EWMs, {t = 0,n−w0} for the series ψt and {t = t0, t f −w0} for
the series vt, computing the measures in a sliding window of
width w0 = 500 iterations for the series ψt and w0 = 500 hours
for the series vt. For example, for the series vt, we obtain a
sequence of values of some measure m, mt0 ,mt1 ,mt2 ,…,mtf−w0

, the
terms of which are calculated in the segments of the series vt,
[t0, t0 +w0], [t1, t1 +w0], [t2, t2 +w0],…,[t f −w0, t f].

We investigated the behavior of EWMs directly related to the
critical slowing down of the system (SCA and stock exchange) as it
approaches tc (e.g., see the paper [33]), as well as multifractal EWMs
(e.g., see the papers [25, 34]) and EWMsbased on the reconstruction
of the phase space of the dynamical system (e.g., see the papers
[35, 36]).

2.3.1 Measures of critical slowing down
Computationally, the simplest measures of critical deceleration

are variance, σ2, and autocorrelation at lag-1, ρ, whose series show a
sharp increase as the system approaches tc followed by saturation
in the time interval ∆tc, as well as kurtosis, κ, and skewness, γ,
whose series are characterised by a sharp switch from increasing to
decreasing in the vicinity of tc. Moreover, the series ρt takes values
close to 1 in the interval ∆tc.

The power-law scaling exponent, β, of the power spectral
density and generalized Hurst exponent, h, are also EWMs, whose
significant increase as the system approaches tc, is an early warning
signal of its critical slowing down (e.g., see the papers [22, 33]).
Also, the series βt and ht, tend to take nearly constant values in
the interval ∆tc. In particular, it is shown that 1 ≤ β ≤ 2 for t ∈
∆tc (e.g., see the paper [36]). We computed the β values in all
sliding windows by the Welch’s method (e.g., see the paper [37]).
For each window, the ψt and vt series were segmented using the
longest and most overlapping segments, followed by estimating the
power spectral density, S( f), for each segment and averaging these
estimates. Next, the exponent β for the power law S( f) = f−β was
calculated. To estimate h we used detrended fluctuation analysis
(e.g., see the paper [38]), which gives the most reliable estimate
of Hurst exponent for nonstationary series. For the dynamic series
under study, e.g., vt, in each ith sliding window, the profile V(k) =
ti+w0

∑
t=ti
(vt − ⟨v⟩) was calculated. Hereinafter, the symbol ⟨∙⟩ denotes

the mean value of some quantity. Next, segmentation of the profile
V(k) into non-overlapping segments of length n and determination
of the linear trend, Vn(k), for each segment was performed. For
different n, the standard deviation of V(k) fluctuations relative to
Vn(k), F(n) = √(1/n)∑

ti+w0
t=ti [V(k) −Vn(k)]

2, followed by estimation
of the exponent h for the power law F(n) = nh.

2.3.2 Multifractal measures
The specific features of the behavior of multifractal EWMs as

the system approaches tc are probably also related to the critical
slowing down of the system (e.g., see the paper [34]), but there is
no theoretical justification of this connection yet. Full information
on the multifractal properties of the dynamical series is given by
the multifractal spectrum, D(h), as a dependence of the fractal
dimension, D, on the values of Holder exponents, h. The spectrum
D(h) cannot be used as an EWM, calculated in a sliding window, but
its three main parameters characterising the geometry of the D(h)
dependence can be used. Such parameters are the position of the
spectrummaximum, h0, thewidth of the spectrum,W = hmax − hmin,
and the slope of the spectrum, S = (hmax − h0)/(h0 − hmin). As the
system approaches the edge of the phase transition of the second
kind, an increase in h0, W and S (see the paper [36]).

To calculate the parameters of the multifractal spectrum, we
used the wavelet leader method and D(h) = qh(q) − τ(q), where τ(q)
is the scaling exponents of the structure function Z(q, s) (e.g., see
the paper [39]). Following the algorithm of the method, Z(q, s) is
represented in the Equation 1 as the sum of qth powers of the
largest coefficients, or leaders, of the discrete wavelet transform of
the dynamic series vt, corresponding to the scale s:

Z(q, s) = 1
ns

ns
∑
k=1

L(s,k)q, (1)

where L(s,k) = |d(s,k)| the leaders of wavelet coefficients d(s,k) of
scale 2s and time shift k, 3λs,k = [(k− 1)2

s,k2s)⋃[k2s, (k+ 1)2s)⋃
[(k+ 1)2s, (k+ 2)2s) is the time neighborhood. If the series vt is a
multifractal series, then the scaling relation Z(q, s) ≃ sτ(q) is satisfied
at all scales s. Decomposing the function τ(q) into a∑(Clq

l)/l! series
allows us to compute the first log-cumulant (C1), which corresponds
to h0, the second log-cumulant (C2), which corresponds to W, and
the third log-cumulant (C3), which corresponds to S. Therefore, we
used the first three log-cumulants as multifractal EWMs.

2.3.3 Measures of reconstructed phase space
As EWMs, for the calculation of which requires the

reconstruction of the phase space of the dynamical system, we used
the correlation dimension of the phase space, Dc, and the largest
Lyapunov exponent, λ. The dimension of Dc is an estimate of the
fractal dimension of the reconstructed attractor of the dynamical
system, which increases as the system approaches tc (e.g., see the
paper [36]). The exponent λ, being a measure of the chaotic nature
of the dynamical system, increases, taking positive values, as the
system approaches tc (e.g., see the paper [40]).

We used the Takens theorem (see the paper [41]) to reconstruct
the phase space of the stock volume series, P = (P1,P2,…,PM) ∈ R

M,
over the stock volume series from a sliding window of widthw0,V =
(v1,v2,…,vw0

). The phase space Pwas reconstructed from the series
V, using as missing coordinates the l-th state vector, Pl, the series V,
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taken with some lag τ:

Pl = (vl,vl+τ,…,vl+(M−1)τ), (2)

where τ is the time delay, M is the embedding dimension, l =
1,2,…,w0 − (M− 1)τ. Takens’ theorem does not answer the question
of how to calculate the value τ and M.

The time τ for the Equation 2 was chosen so that the correlation
between vl and vl+τ was minimal. The delay τ was chosen equal to
the time of the first zero crossing of the autocorrelation function
(w0 − τ)

−1∑w0−τ
k=1 (vk − ⟨v⟩)( v k+τ − ⟨v⟩) (e.g., see the paper [42]).

To estimate the values ofM andDc we calculated the correlation
sum (e.g., see the paper [42]):

C(ε) = 1
p(p− 1)

p−2

∑
i=0

p−1

∑
j=i+1
θ(ε − |Pi − Pj|), (3)

where p = w0 − (M− 1)τ, θ =
{
{
{

1, ε − |Pi − Pj| ≥ 0

0, ε − |Pi − Pj| < 0
. The sum

C(ε) from the Equation 3 was calculated for different values of
distances, ε, between vectors Pi and Pj of the reconstructed phase
space. This procedure was repeated for several dimensions M.
The criterion for stopping the procedure is the fulfillment of the
power law C(ε) ≃ εDc . As the value of M increases, the correlation
dimension increases. At someM, the value ofDc comes to a constant
level. The estimate of the dimensionality of Dc is the tangent of the
slope of the straight line approximating the correlation sum C(ε) in
a double logarithmic scale. At the same time, only linear parts of the
dependence were investigated.

There exists a spectrum of Lyapunov exponents characterizing
the separation rate of infinitely close phase space trajectories (e.g.,
see the paper [43]). The largest Lyapunov exponent, λ, defines
the notion of predictability of the dynamical system. Let δ(0) be
the minimum value of the distances between the vectors of the
reconstructed phase space, i.e., δ(0) = |Pi − Pj|.The distance between
vectors after time t is δ(t) = exp (λt). The linear regression for λt
is an estimate of the largest Lyapunov exponent. Regardless of the
dimensionality of the phase space, this procedure was repeated
for several dimensions to ensure that λ does not depend on the
dimensionality of the space.

Previously (see the paper [44]), we introduced the notion of
EWM, defined in terms of the number of false early warning signals,
ν, for the zero-mean dynamic series of EWM increments, ∆mt, and
the early warning time,∆τEW, for the seriesmt. For example, EWM1
is more effective than EWM2, if ν1 < ν2 and ∆τEW1 > ∆τEW2. In the
context of the presented study, this measure was modified to the
AUC (area under curve for all of the combinations of false positive
rate and true positive rate for all possible thresholds of separation
between predicted classes) as a more stable measure in case of
problems with class balance in the sample.

3 Results and their discussion

3.1 Time intervals for critical state of stock
exchange

Following the implementation of all filters mentioned in
Subsection 2.2, a total of 967 time series were identified as exhibiting

critical transitions in accordance with the predefined criteria. For
all of the aforementioned time series, metrics were calculated
in accordance with the specifications outlined in Subsection 2.3.
Additionally, the 8-hour dynamics and variance of these instruments
were calculated (as daily trading sessions on the US stock exchanges
last for 8 h), which further reduced the sample size. However,
the resulting observations still numbered nearly 281.4 thousand.
Subsequently, observations in the time series are divided into two
categories: those that are close to a critical transition and those
that are not. Eight distinct closeness horizons (H) were considered,
ranging from 1 to 8 iterations. This allowed for the classification
of observations as either predicting a critical transition in not
more than H iterations, or otherwise. Given the imbalanced nature
of the dataset, we opted to down sample it via bootstrapping
(see the book [45]), with positive observation shares of 5%, 10%,
15% and 20% and 500 random separations for each of the H-share
combinations, in order to demonstrate the stability of the random
sampling and modelling results.

In order to predict the probability of an iteration belonging to
the “close to the critical transition” group, the probit model has been
selected (see the paper [46]).The simplicity and high interpretability
of the model would facilitate the straightforward observation of the
efficiency of the measures and their derivatives. Two sets of models
were constructed: one using all variables, and another with only one
variable at a time. This was done to ascertain whether there were
any differences in the final impact on quality prediction. In the first
set of models, the importance of each variable was calculated as
a share of those where the p-value of the coefficient was less than
5%. In the second set, the metric was the largest time horizon that
would still achieve anAUChigher than 0.75. In addition to theAUC,
two sample Kolmogorov-Smirnov (KS) tests (see the paper [47])
were employed to measure the capacity of our models to effectively
differentiate between positive and negative observations.

Table 1 shows us that all of the variables (white–no
statistically significant impact on the quality of the prediction,
yellow–significant in some of the modifications of the variable,
green–significant in most of the modifications) except for the
Hurst exponent, correlation dimension and the second cumulant of
wavelet leader can be at least partially useful for the task of critical
transition prediction, which mostly follows previous research on
this topic and tells us that at least for the financial data classification
models can be applied with high level accuracy and interpretability.

3.2 Phenomenological model of stock
exchange self-organization into a critical
state

As shown in Subsection 3.1, a stock exchange self-organizes
into a critical state and stays in this state for a certain number
of hours, determined by the share of a public company that is
traded on the exchange. In other words, each segment of a stock
exchange has a different time duration for it to be in a critical
state. By a stock exchange segment we mean a set of trading
platforms (world stock exchanges) and market traders involved in
buying/selling a share of some public company. Hereinafter we use
the term stock exchange and understand it as a segment of the
stock exchange.
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TABLE 1 Efficiency comparison for EWM and their modifications on the stock market data.

Early warning
measure

Share of united models where the p-value of
the coefficient was less than 5%

Largest time horizon that would still achieve an
AUC higher than 0.75 for models with separated

variables (or AUC for horizon 1)

Original
measure
value

Dynamics of
measure over
8 iterations

Variance of
measure for 8

iterations

Original
measure
value

Dynamics of
measure over
8 iterations

Variance of
measure for 8

iterations

Hurst exponent 0.06 0.28 0.12 −(0.52) −(0.51) −(0.50)

Correlation
dimension

0.01 0.06 0.30 −(0.52) −(0.49) −(0.52)

Lyapunov exponent 0.71 0.01 0.14 −(0.65) −(0.51) −(0.68)

Variance 0.00 1.00 0.04 −(0.53) 5 1

Skewness 0.96 1.00 0.95 −(0.74) 1 5

Kurtosis 0.96 1.00 0.98 −(0.73) −(0.71) 5

Power-law scaling
exponent of power
spectral density

0.97 0.15 1.00 −(0.53) −(0.52) −(0.52)

Autocorrelation at
lag-1

0.06 0.18 0.99 −(0.54) −(0.53) 4

First log-cumulant 0.09 1.00 0.99 −(0.53) −(0.55) −(0.52)

Second
log-cumulant

0.04 0.00 0.68 −(0.52) −(0.50) −(0.52)

Third log-cumulant 0.72 0.01 0.03 −(0.50) −(0.50) −(0.50)

A stock exchange in a critical state is characterized by a near-
1 autocorrelation for stock’s volume and a power law for the
power spectral density of stock’s volume with degree exponent
from 1 to 2. The dynamics of a system with such characteristics
is known as the avalanche-like dynamics of the system observed
when it is in a critical state, also known as the edge of a
phase transition (e.g., see the paper [14]). One of the first
and most studied models of self-organization of systems into a
critical state is the SCA model, which explains the spontaneous
emergence of a system into a critical state with its avalanche-
like behavior. Therefore, we used SCA not only as a system
generating test dynamical series (see Subsection 2.1), but also as
a basic, systemically isomorphic model of SCA in the context of
systems theory, the stock market model. In other words, when
building a stock exchange model, we use the analogy of structure
(Chung-Lu graph of SCA and complex network of exchange
transaction network), the nature of elements (stable/unstable
vertices of SCA and passive/active stock exchange traders) and
links (collapse of unstable vertices of SCA and buy/sell transaction
of a public company share) between the elements of SCA and
stock exchange.

Let Γ be a planar graph of exchange transactions with nodes
(k,m), for which k,m ∈ ℤ are the ultrametric coordinates of the
exchange traders. As Γ we used Chung-Lu graphs with two-
parameter degree distribution of edges as the most common and

empirically validated model determining the topological structure
of exchange transactions (e.g., see the papers [48–53]).

Let h(k,m) ∈ ℤ+ ∪ {0} be the entropy as ameasure of uncertainty
of information about the share of some public company, which is
available to the stock exchange trader (k,m). Let h(k,m) be denoted
by hc, which defines the threshold value of entropy for a trader (k,m)
to sell a share to its nearest neighbour, for example, (k+ 1,m), in the
graph Γ.

Thus, each exchange trader with some number of shares can
be in both an active state, denoted (ka,ma), and a passive state,
denoted (kp,mp). Trader (ka,ma) is in the active state if the
corresponding entropy h(kp,mp) is not less than a critical value,
hc. Otherwise, trader (k,m) is in the passive state. Trader (ka,ma),
having uncertainty about a stock at least hc, seeks to get rid of such
stocks. As a result, trader (ka,ma) sells the shares to his nearest
neighbour in the graph Γ, e.g., trader (kp,mp) = (ka + 1,ma), who
is in the passive state and has uncertainty about the share less
than hc. In this case, trader (kp,mp) has more information about
the tendencies of the price behavior of the bought stock. After the
local exchange transaction of buy/sell (ka,ma) → (kp,mp) the trader
(ka,ma) becomes passive until he receives some information which
increases the uncertainty of information about tendencies of price
behavior of the share.The source of such information can be a report
of a public company, mass media news or some insider information.
On the contrary, after the exchange transaction (ka,ma) → (kp,mp)
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FIGURE 1
Local exchange transactions leading to self-organization of the stock exchange to the edge of the second-order phase transition (A) and to the edge
of the first-order phase transition (B). The symbol h denotes the entropy. Model series of exchange volume corresponding to self-organization of the
stock exchange to the edge of the second-order phase transition (C) and to the edge of the first-order phase transition (D). The gray region indicates
the edge of a phase transition.

trader (kp,mp) enters an active state in which he is ready to sell the
stock to some of his passive nearest neighbours. Figure 1A shows
local exchange collapses.

Self-organization of the stock exchange into a critical state
occurs as a result of its pumping (perturbation) and relaxation
at each iterative step. Each iteration starts with pumping and
ends with complete relaxation of the stock exchange. Information
pumping of the stock exchange leads to an increase in entropy
or to an increase in the volatility of the stock, i.e., to an increase
in the possibility of the stock price to change in any direction.
Relaxation of the stock exchange occurs as a result of local exchange
transactions of buying/selling a share and is formally defined by the
following rules:

h(k,m) ≥ hc(k,m)

h(k,m) → h(k,m) − hc(k,m)

h(Ne(k,m)) → h(Ne(k,m)) + δp
zc(k,m)

∑
p=1

δp = hc(k,m),δp ≥ 0

, (4)

where hc(k,m) is the critical for trader (k,m) entropy value
equal to the number of its nearest neighbors in the graph Γ;
Ne(k,m) is the nearest neighbour of trader (k,m) in the graph
Γ; δm is a random number taking values from the set ℤ+ ∪
{0}.

The model based on the Equation 4 explains the phenomenon
of self-organization of the stock exchange into a critical state
starting from some critical iteration ic. Starting from initial public
offering (i = 0) and up to the moment of completion of the
subcritical phase (0 < i < ic), the stock exchange observes a small
number of share buy/sell transactions, which quickly decay in

ultrametric space and time. The global information pumping of
the stock exchange to a critical entropy value Hc brings the
stock exchange into the critical state (i ≥ ic). Staying in a small
neighbourhood of Hc the stock exchange is unstable to small
information perturbations. In such an unstable state, a small
entropy increment (Hc ± δH) is sufficient for the stock exchange
to experience avalanches of stock buy/sell transactions. The stock
volume series, Vi, in the critical state of the stock exchange (i ≥ ic)
is characterised by ρ(1) = 1, S( f) = f−1, and p(ξ) = ξ−2. The dynamic
series Vi, demonstrating the dynamics of such self-organization, is
presented in Figure 1C.

The above described self-organization of the stock exchange
corresponds to its self-organization to the edge of the second-
order phase transition. To describe the self-organization of the
stock exchange to the edge of the first-order phase transition,
the following changes in the rules of model (1) are sufficient.
Any stock exchange trader (k,m), who is in the passive state
(kp,mp), can move to the active state (ka,ma) if h(k,m) ≥
hc(k,m), and if he has purchased a share from at least one of
his nearest neighbours. The latter is characteristic of the stock
exchange during the period of increased activity of its traders,
i.e., when each trader (kp,mp), having bought a share from a
neighboring trader, passes to the state (ka,ma) independently of
the entropy value h(k,m). Being in the state (ka,ma) a trader
immediately tries to sell the bought share. Such a stock exchange
is dominated by speculative buy/sell transactions of the stock.
Figure 1B demonstrates the corresponding local stock exchange
collapses. The dynamic series Vi, demonstrating the dynamics of
self-organization of the stock exchange to the edge of the first-
order phase transition, is presented in Figure 1D. Local exchange
transactions of buying/selling a stock are formally determined by the
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following rules:

h(k,m) ≥ hc(k,m) ∨ 2 ≤ h(k,m) < hc(k,m)

h(k,m) ≥ hc(k,m):

{{{{{{
{{{{{{
{

h(k,m) → h(k,m) − hc(k,m)

h(Ne(k,m)) → h(Ne(k,m)) + δp
zc(k,m)

∑
p=1

δp = hc(k,m),δp ≥ 0

2 ≤ h(k,m) < hc(k,m):

{{{{{{{{{
{{{{{{{{{
{

h(k,m) → h(k,m) − hc(k,m)

h(Ne(k,m)) → h(Ne(k,m)) + δp
zc(k,m)

∑
p=1

δp = hc(k,m),δp ≥ 0

h(Ne(k,m)) → h(Ne(k,m)) + 1

. (5)

Note that the proposed models which are based on the Equation
5 determine the self-organization of the stock exchange into a critical
state, which does not require fine-tuning of the control parameter
H to the critical value Hc. Exit to the critical state is achieved as
a result of perturbation and relaxation of the stock exchange, as
well as the above-described nonlinear interactions between the stock
exchange traders.

3.3 Early warning signals for stock
exchange self-organization into a critical
state

One of the results of our calculations is the independence of the
behavior of the series for any of the EWMs in the vicinity of the
critical onset from the specific public company for which the EWM
series was calculated. The EWMs series differ only in their noise
and early warning time (see Subsection 3.1). Apparently, the self-
organization of a stock exchange into a critical state is a universal
phenomenon. Therefore, we will limit ourselves to discussing the
behavior of a series of EWMs for stock exchange transactions of, for
example, Ameris Bancorp.This company is a bank holding company
that, through its subsidiary Ameris Bank, provides banking services
to its retail and commercial customers.

Figure 2 shows the behavior of the moving average smoothed
series of EWMs that are obtained for the stock volume series
of Ameris Bancorp from 10:30 7 February 2022 to 15:30 p.m. 5
February 2024. The smoothing of these series reduced the number
of false early warning signals.

TheMA100 series obtained for the stock volume series increases
sharply in the vicinity of the critical point, tc, i.e., the time
when the stock exchange starts to self-organize into a critical
state (see Figure 2A). The time tc corresponds to 15:30 10 March
2023. The MA100 series increased by 20% compared to the volumes
of the previous 5 hours at 11:30 10 March 2023. Therefore, no
more than 4 h are given to take preventive measures to avoid self-
organization of the stock exchange into a critical state.

The above described behavior of the MA100 series is a
consequence of the critical slowdown of the stock exchange, the
manifestation of which is an increase in the average amplitude
of stochastic fluctuations of the order parameter (stock volume).
Indeed, in the vicinity of tc there is an increase in the average

amplitude of stochastic fluctuations of stock volume, which leads to
an increase in MA100.

Other evidence of the critical slowing down of the stock
market in the vicinity of tc is the behavior of window variance
(see Figure 2B), kurtosis (see Figure 2C), skewness (see Figure 2D),
autocorrelation at lag-1 (see Figure 2E), and power-law scaling
exponent of the power spectral density (see Figure 2F) characteristic
of the critical slowing down. These measures increase sharply in
the neighborhood of tc. At the same time, kurtosis and skewness
take positive values, which is a consequence of the increase in
the amplitude of stochastic fluctuations of stock volume. Moreover,
autocorrelation at lag-1 and power-law scaling exponent of the
power spectral density take values close to 1 in the time interval from
15:30 10 March 2023 to 15:30 p.m. 27 March 2023. Thus, the stock
exchange has been in a critical state for 17 trading days. In Figure 2,
the interval corresponding to the critical state, or the edge of the
phase transition, is shown as a gray region. The stock exchange in
this interval is characterized by abnormal fluctuations of the stock
volume and strong, close to 1, correlation between neighboring
elements of the sequence of values of the stock volume.

Another sign of the stock volume series approaching tc is a sharp
increase of the generalised Hurst exponent to the value of 0.63
in the interval corresponding to the critical state (see Figure 2G).
Consequently, if the stock volume series is considered as a real-
time series, the sequence of values of the stock volume becomes
more correlated as the stock volume series approaches tc. The stock
volume series corresponding to the critical state is a time series
with long-term positive autocorrelation. Based on the fact that the
position of the center of the multifractal spectrum, h0 = C1, shifts
to the right as the stock approaches tc (see Figure 2H), the stock
volume series becomes more singular in the vicinity of tc. The
width, W = C2, and skewness, S = C3, of the multifractal spectrum
increase as the stock volume series approaches tc (see Figures 2I,
J). The multifractal spectrum becomes symmetric, C3 = S = 1, at t =
tc (see Figure 2J). Since S < 1 at t < tc,the multifractal spectrum for
the subcritical phase, t < tc, is asymmetric with small fluctuations
dominating the stock volume. Consequently, in the neighborhood
of tc the stock volume series becomes a more inhomogeneous series
with dominance of large fluctuations. Thus, the described behavior
of multifractal measures and Hurst exponent are early warning
signals for the stock exchange self-organization into a critical state.

Let us consider the behavior of the series of EWMs, the
calculation of which is based on the reconstruction of the phase
space of the stock exchange. As the stock exchange approaches tc
the correlation dimension of the reconstructed attractor increases
(see Figure 2K), hence the fractal structure of the attractor becomes
more complex and the chaotic behavior of the stock exchange
becomes more complicated. The most complex chaotic behavior
of the stock exchange, corresponding to the highest value of the
correlation dimension, is observed in its critical state. An indication
of the increasing complexity of the chaotic behavior of the stock
exchange is also an increase in the largest Lyapunov exponent, which
is positive, as the stock volume series approaches tc (see Figure 2L).
The most complex chaotic dynamics of the stock exchange also
corresponds to its critical state, since the largest value of the
exponent is observed in the time interval corresponding to the
critical state.
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FIGURE 2
Moving average series for the stock volume series (A), variance (B), kurtosis (C), skewness (D), autocorrelation at lag-1 (E), power-law scaling exponent
of the power spectral density (F), generalized Hurst exponent (G), position of the multifractal spectrum maximum (H), multifractal spectrum width (I),
multifractal spectrum skewness (J), correlation dimension (K), and largest Lyapunov exponent (L). The gray region indicates the edge of a phase
transition.

4 Conclusion

The stock exchange self-organizes to the edge of a phase
transition. The duration of a stock exchange at the edge ranges from
7 to 19 trading hours and depends on the public company whose
shares are traded on the stock exchange. We set such durations
for public company stocks from the Russel 3,000 index, which
measures the performance of the 3,000 largest US companies by
market capitalization. Perhaps the result of finding time intervals
corresponding to the edge of a phase transition for more public
company stocks would be a longer range of trading day durations.
In addition, further research of the time intervals should be focused
on the analysis of the stock volume series with higher frequency,
such as every second and every minute series, but adjusted for
the volumes of pre-planned execution of deals. Analyzing such
series will allow you to identify the time intervals that cannot be
identified in hourly stock volume. For example, high-frequency
trading implies the conclusion of a large number of buy/sell
transactions in a fraction of a second and it may take several
seconds for the stock exchange to self-organize to the edge of
a phase transition. If the duration of the stock exchange on the
edge of a phase transition is less than 1 h, the analysis of the
hourly stock volume series will not allow to identify the time

interval corresponding to the edge. The best identification will be
obtained when analyzing the second-by-second series for the stock
volume. In addition, the transition to more frequent stock volume
series will allow to obtain segments of series corresponding to the
edge, of longer length and possibly of sufficient length to obtain a
reliable estimate for the power-law scaling exponent of the power
spectral density. Comparison of such estimates will allow us to
determine which of the critical states, i.e., the edge of the phase
transition of the first or second kind, corresponds to the detected
time interval.

The sandpile cellular automaton model of self-organization to
the edge of a phase transition is based on the idea that information
drives stock markets (e.g., see the paper [54]). Self-organization
of a stock exchange occurs in a discrete number of steps, each
of which begins with an information perturbation of the stock
exchange and ends with its relaxation. If the information pumping
results in supra-critical uncertainty, or entropy, in the price behavior
of a stock for some traders, then the stock exchange relaxation
occurs as a result of these traders’ execution of stock buy/sell
transactions, which reduces the uncertainty in the price behavior of
the stock for the traders. We have considered implementations of
the model under the assumption that all traders are characterized
by a single critical level of uncertainty. In the context of effective
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market hypothesis such assumption is quite reasonable, but it is not
applicable when analyzing the stock market in the context of fractal
market hypothesis. Therefore, further improvement of the model
should be focused on the study of the influence of the type and
parameters of the probability distribution of critical uncertainty on
the behaviour of the stock volume series when the stock exchange
approaches the edge of a phase transition, as well as on the edge.
Another direction of the model improvement is the introduction of
an assumption about the existence of some critical uncertainty of
price behaviour, which determines the condition of buying a share
of a public company.Moreover, the critical uncertainty when buying
a share is not equal to the critical uncertainty when selling it.

The studied early warningmeasures, first of allMA100, variance,
kurtosis and skewness as the most effective ones, can be used
to detect early warning signals for self-organization of the stock
exchange to the edge of a phase transition in real-time early
warning systems. Such signals are important for the regulator
of trading on the stock exchange, as they allow detecting illegal
exchange operations. The volume indicator reflects an increase or
decrease in the activity of traders on the stock exchange. Therefore,
early detection of the time interval in the stock volume series
corresponding to the stock exchange’s edge will allow a trader to
make reasonable and timely changes in his trading strategy. As
a rule, traders correlate the volume indicator with the direction
of the stock price movement. If the stock price is rising along
with the volume, the price growth is likely to continue. High
volume (25% higher than average) when the stock price reaches
a new high is a harbinger of a strong increase in the stock price.
Traders should refrain from selling existing shares and/or buy shares
while they are cheap and sell them when they rise in price. If the
share price is declining while volume is rising, the stock market
is dominated by stock sellers - the trader should refrain from
speculating in the stock.
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Monophasic and biphasic
neurodynamics of bi-S-type
locally active memristor
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Yidan Mao1, Peipei Jin1 and Yan Liang1

1Zhejiang Key Laboratory of Intelligent Vehicle Electronics Research, Hangzhou Dianzi University,
Hangzhou, China, 2College of Computer and Information Engineering, Qilu Institute of Technology,
Jinan, Shandong, China

Inspired by the energy-efficient information processing of biological neural
systems, this paper proposes an artificial memristive neuron to reproduce
biological neuronal functions. By leveraging Chua’s unfolding theorem,
we establish a bi-S-type locally active memristor mathematical model
exhibiting negative differential resistance (NDR), which serve as fingerprints
for local activity. A second-order neuronal circuit is constructed to
emulate periodic spiking and excitability, while a third-order circuit extends
functionality to chaotic oscillations and bursting behaviors. Besides, the
constructed neuronal circuit generates biphasic action potential through
voltage symmetry modulation, replicating bidirectional signal transmission
akin to biological systems. Hardware emulation validates neurodynamics
under varying stimuli from theoretical analyses, offering a unit module
and theoretical reference for energy-efficient neuromorphic computing
network.

KEYWORDS

memristor, local activity, neuron, spikes, neuromorphic behaviors

1 Introduction

As information technology rapidly advances, traditional computing architectures face
growing limitations in energy efficiency and computational complexity. Against this
backdrop, neuromorphic computing has emerged as a novel computing paradigm [1,
2]. Its core concept is to emulate information processing mechanisms of biological
systems by constructing brain-like computing structures to achieve energy-efficient
computation [3, 4]. This brain-inspired approach demonstrates superior capabilities in
adaptive learning, positioning it as a cornerstone for next-generation intelligent systems
[5–7]. Central to this technology are neuroelectronic devices that emulate neuronal
functions, which are fundamental units in the construction of neuromorphic computing
systems [8, 9].

Current neuroelectronic implementations primarily employ Complementary Metal-
Oxide-Semiconductor (CMOS) circuits, leveraging mature fabrication techniques to
simulate membrane potential dynamics and action potential generation [10, 11]. However,
CMOS-based neurons suffer from inherent limitations including complex circuit topologies
and elevated power consumption hinder scalability in large neural networks [12].
Memristive devices present an alternative solution through their intrinsic nonlinearity
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and low-power operation [13], yet conventional passive memristors
require auxiliary negative impedance converters to achieve neuronal
dynamics, compromising system integration efficiency [14, 15].
These challenges have driven the exploration of locally active
memristors (LAMs) [16, 17], whose negative differential resistance
(NDR) enables weak signal amplification and action potential
generation without external circuitry [18–20].

Recent advancements in LAM-based neuronal modeling
demonstrate promising results. The FitzHugh-Nagumo circuit
modifications using N-type LAMs successfully replicate biological
spiking patterns [21, 22]. Enhanced LAM designs with ultra-robust
NDR characteristics further enable hardware implementation
of nine distinct neuronal firing modes [4]. However, these
advancements remain primarily confined to monophasic action
potential emulation. Emerging experimental evidence from sciatic
nerve electrophysiology and myocardial fiber studies demonstrates
that biphasic potentials constitute fundamental encoding
mechanisms in neural systems [23–25], enabling sophisticated
information processing [26]. Current neuromorphic platforms
predominantly neglect this biphasic paradigm, impeding hardware-
level implementation of biologically plausible neural networks.

Memristive neurons exhibit broad application potential in
neuromorphic systems, including frequency-based classifiers for
animal sound recognition [27], image protection systems [28, 29],
and cyclic neural networkswith self-adaptive synapses [30]. Notably,
their implementation in artificial neural networks has achieved
high-precisionMNISTdigit recognition and effective edge detection
in image processing [31].

The structure of this work is as follows: section 2 characterizes
the proposed bi-S-type LAM’s nonlinear dynamics; section 3
constructed a second-order neuronal circuit and demonstrates
spiking regimes; Section 4 illustrates various monophasic
neurodynamics, biphasic spikes, and symmetry behaviors in the
third-ordermemristive neuron. Section 5 gives the circuit simulated
validation.

2 Bi-S-type locally active memristor

Most nanoscale memristors fabricated using various materials
exhibit characteristics of generic or extended memristors. Chua’s
unfolding theorem provides a systematic method to construct
generic memristor models [32]. A generic current-controlled
memristor can be defined as

{{{{
{{{{
{

v = Rm(x)i = (
r

∑
k=0

dkx
k)i

dx
dt
= f(x, i) =

n

∑
k=0

αkx
k +

m

∑
k=0

βki
k +

p

∑
k=0

q

∑
l=0

δkli
kxl

(1)

where v, i, and x are the voltage, current, and state variable of the
memristor, respectively;Rm (x) representsmemristance; f (x, i) is the
state-controlled equation; αk, βk, δkl, and dk are tunable parameters.

Using Equation 1, we derive amemristormodel characterized by

{
{
{

vm = RM(x)im = (d2x
2 + d0)im = f1(x, im)

dx
dt
= δ0 + α1x+ β2im

2 = f2(x, im)
(2)

with parameters: δ0 = 3 × 104, α1 = −3 × 103, β2 = −8 × 107, d2 = 2,
d0 = 20.

2.1 Fingerprints of locally active memristor

Chua indicates that a pinched hysteresis loop in the voltage-
current plane constitutes a definitive memristor signature [33].
The negative differential resistance (NDR) regions on the DC V-
I curve serve as critical indicators of local activity in one-port
memristors [34]. These are fingerprints of LAMs.

2.1.1 fingerprint 1: pinched hysteresis loop
Let us apply a sinusoidal voltage v = Asin(2πft) with amplitude

A = 5 V and frequencies f = 2 kHz, 5 kHz, 200 kHz to the proposed
model. The characteristics of input voltage vm and response current
im are depicted in Figure 1A. It shows that the loci plotted on the vm-
im plane is a pinched hysteresis loop at f = 2 kHz (dark red curve).
The lobe area decreases progressively with increasing frequency
(black curve: f = 5 kHz), collapsing to a linear blue line at f =
200 kHz, confirming memristive behavior.

2.1.2 fingerprint 2: negative differential resistance
(NDR) regions

The DC V-I curve (Figure 1B), obtained by sweeping DC
currents from −25 mA to 25 mA with the step size of 0.1 mA,
reveals two NDR regions (yellow shading) corresponding to local
activity. Signal amplification occurs at these operating points where
V ∈ [0.385 V, 1.287 V] (I ∈ [9.2 mA, 19.1 mA]) and V ∈ [−1.287 V,
−0.385 V] (I ∈ [−19.1 mA, −9.2 mA]).

However, the operating points Q (V, I) of the LAM exhibit
instability when biased at V ∈ [–1.287 V, −0.385 V] ∪ [0.385 V,
1.287 V]. As shown in Figure 2 (left inset), three intersections
(M0, M1, M2) or (M3, M4, M5) emerge at V = ±1 V: two stable
(M1, M2 or M4, M5) and one unstable (M0 or M3), which is
verified by the dynamic route with x-dx/dt. Then, stabilization
was achieved by adding an appropriate resistor R0 = 1 kΩ, and
the obtained locally active voltages are V ∈ [R0ID + VD, R0IC +
VC] ∪ [R0IB + VB, R0IA + VA], i.e., V ∈ [−19.485 V, −10.487 V]
∪ [10.487 V, 19.485 V] (Figure 2, right inset). Observe that single
stable equilibria emerge under these two operating points.

2.2 Small-signal equivalent circuit of LAM

The small-signal equivalent circuit enables nonlinear dynamics
prediction at arbitrary operating points. By applying Taylor series
expansion to Equation 2 at operating point Q (VQ, IQ) under
sufficiently small signals (ignoring higher-order terms), we obtain

{
△v = a11(Q)△ x+ a12(Q)△ i
△ẋ = b11(Q)△ x+ b12(Q)△ i

(3)

where Δv, Δi, and Δx denote small perturbations; a11 = (δf 1/δx)|Q =
2d2IQXQ, a12 = (δf 1/δi)|Q = d2XQ

2 + d0 = RM(X), b11 = (δf 2/δx)|Q
= α1, b12 = (δf 2/δi)|Q = 2β2IQ. Here, the differential resistance
RD=(Δv/Δi)|Q = a11 (Δx/Δi) + a12 = a12 – (a11b12)/b11, the equivalent
resistance RM = a12.

Taking the Laplace transform of (Equation 3) yeilds

Z(s,Q) =
̂v(s)
̂i(s)
=
a11(Q)b12(Q)
s− b11(Q)

+ a12(Q)

= 1
s

b11(RM−RD)
+ 1

RD−RM

+RM =
1

Css+
1
Rs

+RM (4)
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FIGURE 1
(A) Pinched hysteresis loops measured from Equation 2 on vm-im plane for input voltages vm with amplitude A = 5 V and frequencies f = 2 kHz, 5 kHz,
200 kHz; (B) DC V-I curve of the LAM with the shaded NDR regions.

FIGURE 2
Stabilization mechanism: (left) unstable equilibria in the memristor without resistors; (right) stabilized operation with series resistor R0.

Figure 3A illustrates the small-signal equivalent circuit of the
LAM about an operating point: a parallel Rs-Cs network in series
with RM. Figure 3B shows parameter variations under V ∈ [10 V,
20 V]. Notably, negative capacitances (Cs < 0) occur at locally
active voltages V ∈ [10.487 V, 19.485 V], which critically determine
memristive characteristics for neuronal circuit design. Similar
trends hold for V ∈ [–19.485 V, −10.487 V].

3 LAM-based second-order neuron

To construct a second-order neuronal circuit using the LAM, an
external capacitor C0 is required to compensate for the inductive
behavior of the LAM in locally active domains (LADs). The
proposed circuit includes excitation and response signals (vin and

vout = vC = vm), a biasing resistor R0, and capacitor C0, as
depicted in Figure 4.

Frequency-domain analysis determines C0. Substituting s = iω
into the impedance function Z (s, Q) in Equation 4 yields

Z (iω,Q) = ReZ (iω,Q) + iImZ (iω,Q)

= (RM +
Rs

1+Rs
2Cs

2ω2)+ i
−Rs

2Csω
1+Rs

2Cs
2ω2 (5)

The resonant frequency ω0 occurs when Re [Z (iω,
Q)] = 0. From Equation 5, the corresponding imaginary part can
be calculated. For oscillation initiation, the critical capacitance
satisfies:

C0 =
1

ω0Im(iω0,Q)
= −

RsCs

Rs +RM
(6)
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FIGURE 3
Small-signal analysis of the LAM: (A) the small-signal equivalent circuit of the LAM; (B) the values of RM, Cs, and Rs varying with operating voltages over
the range of V ∈ [10 V, 20 V].

FIGURE 4
LAM-based second-order neuronal circuit.

3.1 Composite impedance function

The oscillation condition for the composite neuronal circuit is
derived from its impedance function:

ZC(s,Q) =
1

1
Z(s,Q)
+C0s
=

RMs−RDb11

RMC0s
2 + (1−RDC0b11)s− b11

(7a)

with two poles

{{{{{{
{{{{{{
{

p1 =
RDC0b11 − 1+√(1−RDC0b11)

2 + 4RMC0b11

2RMC0

p2 =
RDC0b11 − 1−√(1−RDC0b11)

2 + 4RMC0b11

2RMC0

(7b)

Figure 5A maps three operational domains: Locally Passive
Domains (LPD, yellow), Unstable Locally Active Domains (RHP,
right-half plane, cyan), Stable Locally Active Domains (EOC, edge
of chaos, green) based on Equations 6, 7a, 7b. These domains align
with the memristor’s LAD and LPD characteristics. RHP requires

simultaneous local activity and instability, while EOCdemands local
activity with asymptotic stability.

The pole evolution analysis in Equation 7b under bias voltages
vin ∈ [–20.5 V, −9.5 V]∪[9.5 V, 20.5 V] and C = 10 μF reveals
dynamic stability transitions, as depicted in Figure 5B. Red and
blue curves represent the trajectories of p1 and p2, respectively,
with oscillation occurring when vin ∈ [–19.03 V, −11.4 V]∪[11.4 V,
19.03 V] (orange region). In this region, at least one pole is in
the right-half plane (RHP). However, stability persists when p1, 2
∈ LHP (left-half plane). Particularly, Hopf bifurcation emerges at
vin = ±11.4 V and ±19.03 V, characterized by conjugate complex
pole pairs.

3.2 Periodic spikes

The state equations of the second-order neuronal
circuit in Figure 4 are governed by

{{{{
{{{{
{

dx
dt
= δ0 + α1x+ β2(

vm
d2x

2 + d0
)

2

dvm
dt
= 1
C0
(
vin − vm

R0
−

vm
d2x

2 + d0
)

(8)

where x and vm represent memristor state and membrane potential,
respectively.

With C0 = 10 μF and initial condition [x (0), vm (0)] = (0, 0),
distinct neuromorphic behaviors emerge under varying stimuli vin
according to Equation 8. For stimuli vin = 9.5 V (LPD) and 10.8 V
(EOC), the trajectories converge from the initial point (0, 0) into
(vC, x) = (1.27, 8.19) and (1.29, 7.58), respectively, maintaining
resting states as shown in Figure 6A. Increasing vin to 18 V (see
RHP domain in Figure 5A) triggers sustained periodic spikes with
frequency f = 204 Hz, demonstrated by time-domain waveform of
vC and limit cycles in the x-vout phase portrait (Figure 6B). We
conclude that the neuron maintains quiescence when operating in
the LPD or EOC domains, while inducing spikes under locally
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FIGURE 5
(A) The parameter distributions of LAD, LPD, and EOC on Vin-C plane; (B) poles trajectories with the change of voltage Vin at C = 10 μF.

active operating points. Notably, spiking frequency modulation
under varying vin = 12 V, 14.5 V, 16.5 V, and 18.5 V replicates
biological neural encoding mechanisms (Figure 6C). Besides, the
neuron emulates excitatory and inhibitory response transitions, as
illustrated in Figure 6D.

4 LAM-based third-order neuron

Second-order neurons cannot simulate complex neurodynamics
such as chaos and bursting, then we construct a memristive neuron
with third-order complexity, as shown in Figure 7, including an
LAM, a capacitor, an inductor, a resistor, and a voltage source.

4.1 Stability condition

The impedance function ZT (s, Q) of third-order memristive
neuron circuit is written as:

ZT ⁢ (s,Q) =
1

1/(Z (s,Q) + sL) + sC

=
Ls2 + (RM − b11L) s− b11RD

LCs3 + (RM − Lb11)Cs
2 + (1−CRDb11) s− b11

(9a)

whose three poles are

{{{{{{{{
{{{{{{{{
{

p1 = −
RM − b11L

3L
+ 3√−

q
2
+√Δ+ 3√−

q
2
−√Δ

p2 = −
RM − b11L

3L
+(−1+

√3i
2
) ⁢3√−

q
2
+√Δ+(−1+

√3i
2
)

2
⁢3√−

q
2
−√Δ

p3 = −
RM − b11L

3L
+(−1+

√3i
2
)

2
⁢3√−

q
2
+√Δ+ω3√−

q
2
−√Δ

(9b)

where Δ = ( (RM−b11L)·(1−CRDb11)
6L2C

− (RM−b11L)3

27L3 +
b11
2LC
)
2
+ ( 1−CRDb11

3LC
−

(RM−b11L)2

9L2 )
3
, q = − (RM−b11L)(1−CRDb11)

3L2C
+ 2(RM−b11L)3

27L3 −
b11
LC

.
Based on Equation 9, the trajectory diagram of poles p1,2,3

within the range of 8.2 V ≤ V in ≤ 20 V is depicted in Figure 8A,

where blue, red, and yellow curves correspond to the trajectories of
p1, p2, and p3, respectively, with arrows denoting directionality as vin
increases. Oscillatory behavior occurs when Re p > 0, particularly
within vin ∈ [11.12 V, 19.38 V] where Hopf bifurcation emerges at
vin = 11.12 V and vin = 19.38 V, characterized by conjugate complex
poles (Im p = 0). For vin ≤ 11.12 V, all poles reside in the left-half
plane (LHP), driving the circuit to stable equilibrium. Conversely,
right-half plane (RHP) poles dominate in the oscillatory regime,
enabling sustained dynamics. Figures 8B,C confirm this operational
range through Lyapunov exponent and bifurcation diagram analysis,
demonstrating consistent periodic and chaotic domains in this range
under L = 20 mH and C = 10 μF, where the chaotic ranges are vin ∈
[–18.98 V, −18.89 V] ∪[18.89 V, 18.98 V].

4.2 Monophasic neurodynamics

The third-order LAM-based neuronal circuit in Figure 7 is
described by

{{{{{{{
{{{{{{{
{

dx
dt
= δ0 + α1x+ β2iL

2

dvC
dt
= 1
C
(
vin − vout

R0
− iL)

diL
dt
= 1
L
(vout − (d2x

2 + d0)iL)

(10)

where x (memristor state), iL (inductor current), and vC (output
voltage) define the neuron dynamics.

Under L = 20 mH and C = 10 μF, six monophasic neuromorphic
behaviors emerge through parametric control of vin based on
Equation 10. At vin = 19.3 V (RHP domain), subthreshold
oscillations occur (Figure 9A). Reducing vin to 18.5 V and 18.9 V
within the RHP domain induces periodic spikes (Figure 9B)
and chaotic dynamics (Figure 9C), respectively. Time-varying
stimulation vin = 9.9 t V (t ∈[1.2 s, 2.2 s]) triggers Class II
excitability, maintaining constant spiking frequency despite voltage
modulation (Figure 9D). For periodic square-wave inputs (T
= 0.0625 s, A = 15 V), the neuron exhibits bursting patterns
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FIGURE 6
Neuromorphic behaviors under some typical voltages: (A) vin = 9.5 V, 10.8 V, resting states; (B) vin = 18 V, periodic spikes; (C) spiking frequency
modulation; (D) excitatory and protective inhibition behaviors.

FIGURE 7
The circuit schematic of the third-order memristive neuron model.

(Figure 9E). Besides, depolarizing after-potentials emerge under
the parameter set of C = 0.5 μF, L = 20 mH and vin = 15 V,
mimicking post-spike membrane potential modulation (Figure 9F).

These results demonstrate voltage-controlled emulation of biological
neuronal encoding.

4.3 Biphasic spikes

The neuronal circuit in Figure 7 generates biphasic action
potentials when driven by bipolar square-wave inputs (vin = 16 V, D
= 50%). As shown in Figures 10A aT= 10 ms periodic stimulus (blue
waveform) induces single-cycle bidirectional spiking, characterized
by counterphase positive and negative pulses in the inductor current
iL (red waveform). When we increase the period T of the input
periodic square wave to 22.22 ms, 33.33 ms, 43.48 ms, 55.56 ms and
66.67 ms, the output waveform changes into two spikes, three spikes,
four spikes, five spikes and six spikes in the upward direction and
down direction in one period, as shown in Figures 10B–F.

4.4 Symmetric behaviors

The third-order memristive neuron demonstrates voltage-
polarity-dependent symmetry in neurodynamic behaviors,
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FIGURE 8
(A) Poles diagram with respect to biasing voltages vin when L = 20 mH, C = 10 μF; (B) Lyapunov exponents under L = 20 mH, C = 10 μF; (C) bifurcation
diagram with respect to vin under L = 20 mH, C = 10 μF.

originating from the voltage symmetry in Figure 5A. This nonlinear
symmetry allows symmetrical action potential generation: positive
DCvoltages (vin > 0) induce upward-polarized spikes, while negative
inputs (vin < 0) produce downward-polarized counterparts, as
depicted in Figure 11.

Under voltage excitation vin = ±18.5 V, the inductor current
iL exhibits mirror-symmetric periodic spiking, i.e., upward
polarization for positive bias (orange curve) versus downward
polarization for negative bias (blue curve) in Figure 11A.
Voltage modulation to ±18.9 V induces symmetrical chaotic
dynamics with identical Lyapunov exponents but opposing
phase-space trajectories, as shown in Figure 11B. Transient
behavior analysis reveals bidirectional spike initiation: vin =
19.4 V triggers upward spikes while vin = −19.4 V generates
downward equivalents, both returning to symmetrical resting
potentials after undergoing 5 m (Figure 11C). The corresponding

phase portraits of these three nonlinear behaviors are depicted
in Figures 11D–F.

5 Circuit emulator

The circuit emulator of the memristive neuron with third-order
complexity is constructed, as shown in Figure 12, which consists of
two operational amplifiers (U1A and U1B), three analog multipliers
(U1, U2, and U3), two capacitors (C0 and C1), one inductor L, and
some resistors.

As shown in Figure 12, the equivalent circuit of the locally
active memristor comprises four functionally integrated modules:
(1) Current sensing module① monitors emulator input current in
real-time, generating proportional output vi; (2) analog multiplier
arrays ② and ④ implement nonlinear term computations; (3)
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FIGURE 9
Monophasic neurodynamics under different input voltage vin with C = 10 μF and L = 20 mH: (A) subthreshold oscillation; (B) periodic spiking; (C)
chaos; (D) Class II excitability; (E) periodic bursting. (F) depolarizing after-potential with C = 0.5 μF, L = 20 mH and vin = 15 V.

FIGURE 10
Biphasic action potentials generated by the neuron circuit, when driven by a bipolar periodic square wave with the amplitude vin = 16 V, duty cycles D =
50% and various period T. (A) T = 10.00 ms; (B) T = 22.22 ms; (C) T = 33.33 ms; (D) T = 43.48 ms; (E) T = 55.56 ms; (F) T = 66.67 ms.
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FIGURE 11
Voltage-polarity-modulated symmetric behaviors: (A) periodic spikes; (B) chaos; (C) resting states; (D) phase portraits of periodic spikes; (E) phase
portraits of chaos; (F) phase portraits of resting states.

FIGURE 12
Circuit emulator schematic of the third-order memristive neuron.
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FIGURE 13
Circuit simulated neuromorphic dynamics under various biasing voltages.

State equation solver ③ converts DC bias Vd into memristor
state variable x through differential integration, that is, vx = x;
(4) Feedback integration completes the loop via R1. Kirchhoff ’s
voltage and current laws govern this circuit architecture,
yielding three coupled differential equations that mathematically
describe electrophysiological dynamics of the memristive
neuron, as

{{{{{{{{{
{{{{{{{{{
{

C1
dx
dt
= −(

Vd

R9
+ x
Rf
+
Rw +Rz

10RwR8
(

R7R5R1

R4(R6 +R7)
iL)

2
)

C0
dvC
dt
=
vin − vC
R0
− iL

L
diL
dt
= vC −(

R1R5R11

10R4R10
x2 +R1)iL

(11)

where the circuit parameters are R1 = 20 Ω, R0 = R2 = R4 = R6 = R7
= Rw = 1 kΩ, R3 = R5 = R8 = R9 = 10 kΩ, Rz = 7 kΩ, Rf = 33.3 kΩ, C1
= 10 nF, C0 = 9.5 μF, L = 20 mH, and Vd = −3 V.

The circuit simulated results calculated via Equation 11
are shown in Figure 13, reproducing key neurodynamics including
periodic spikes, class II excitability, self-sustained oscillations,
bursting, chaos, and depolarizing after-potential. These results
demonstrate quantitative agreement with theoretical predictions.

6 Conclusion

This work constructs neuronal circuits leveraging a bi-
S-type locally active memristor that amplifies weak signals
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through intrinsic local activity. The designed second-order
circuit achieves voltage-modulated periodic spiking and
adaptive inhibition, while the third-order extension emulates
biological neural dynamics including monophasic and biphasic
action potentials, chaos, and bursting, which are driven
by memristive symmetry. The study of memristive neurons
not only offers essential building blocks for neuromorphic
computing architectures but also lays a theoretical reference
for the development of more advanced and bio-realistic neural
processing systems.
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With the rapid development of information technology, the demand for ensuring
data security and privacy protection has become increasingly urgent. The
purpose of this study is to address the limitations of existing image encryption
methods and develop a more secure and efficient image encryption scheme.
To achieve this, we adopt a research method that involves constructing a
new type of discrete memristor hyperchaotic map by coupling an upgraded
cosine discrete memristor with the Cubic map, and then conducting in-depth
analysis of the system’s dynamic characteristics using phase diagrams, Lyapunov
exponential spectra, and bifurcation diagrams to confirm its ability to reach
a hyperchaotic state. Based on this hyperchaotic map, we propose a new
image encryption scheme, generating high-quality chaotic sequences through
its excellent chaotic characteristics to effectively scramble and diffuse image
data, and also introducing a novel forward and reverse diffusion strategy in the
diffusion process to enhance encryption efficiency. Through experiments on
various images, we verify the algorithm’s effectiveness in improving encryption
strength, reducing information leakage risks, and ensuring data security. Finally,
the results of keyspace analysis, histogram analysis, correlation analysis, and
information entropy demonstrate that the scheme has high security and
practicability, along with good application prospects and practical value.

KEYWORDS

discrete memristors, hyperchaotic map, dynamical analysis, image encryption, data
security

1 Introduction

Chaos is a non-linear kinematic system widely used in the biological and social
sciences of nature [1–5]. The application of chaotic systems due to their randomness,
unpredictability, and initial state sensitivity brings many advantages [6–10], and
hyperchaotic systems further extend this complexity [11–14]. Hyperchaotic systems
are oscillators with two positive Lyapunov exponents, but chaotic systems have only
one, so hyperchaotic systems have more complex dynamical behaviors than general
chaotic systems [15–18]. In a continuous system, at least four dimensions or more are
required to produce hyperchaos, while in discrete systems, it is possible to produce
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FIGURE 1
Properties of discrete memristors when I(n) = Asin(ωn). (a) Hysteresis loop at A = 0.1, ω = 0.3, 0.4, 0.7. (b) Hysteresis loop at ω = 0.7, A = 0.1, 0.15, 0.2.

FIGURE 2
Hyperchaotic phase diagram.

a hyperchaotic state in two dimensions and have abundant dynamic
behaviors [19, 20]. Mostafaee et al. proposed a novel exponential
hyperchaotic system with complex dynamics and analyzed the
dynamic behaviors of chaotic attractors, bifurcation graphs, and
equilibrium points [21].

Based on the principle of symmetry and completeness of circuit
variables, Chua proposed a mathematical model to describe the
relationship between charge andmagnetic flux, namely, amemristor
[22]. As a non-linear resistive element, memristor can adjust the
resistance or conductance value through charge or magnetic flux
due to its small size and low power consumption [23, 24], and
its unique non-linear electrical transport characteristics similar
to neural synapses have attracted much attention in many fields
[25–28]. In addition, memristors are widely used in chaotic systems

to improve nonlinear dynamic behavior [4, 29–31]. It should be
noted that most of the research on memristive chaotic systems is
limited to the continuous-time domain [32–36], but the common
application of continuous memristors will lead to problems such as
high computational cost and poor controllability, so the concept of
discrete memristors is introduced. In addition, discrete maps have
simpler iterative equations and higher computational efficiency than
continuous systems [37–41].

Discrete memristor-fusion chaos mapping can generate rich
dynamic behaviors such as hyperhybrid and coexisting attractors
[42–45], and can also enhance sequence complexity and chaos range
[46–48]. Pan et al. [49] proposed a discrete memristor model based
on difference theory, describing in detail the process of constructing
a discretememristor by difference theory. Peng et al. [50] established
a Simulink model of discrete memristor chaos mapping and verified
the feasibility of discrete memristors. Liu et al. [38] reported
a discrete two-dimensional memristive map and observed the
coexistence of its hidden attractors. Bao et al. [51] reported a new
two-dimensional discrete memristive hyperchaotic map.

With the continuous advancement of image encryption
technology, researchers have found that it is difficult to improve
image encryption with a single chaotic system [52, 53]. In order to
ensure people’s privacy, Banu S et al. studied traditional encryption
algorithms such as AES, RSA, and DES [54], but this algorithm is
more suitable for text message encryption. Therefore, it is necessary
to develop an efficient encryption scheme to solve the security
problem of image encryption [55]. Researchers have investigated a
variety of image encryption schemes, such as the application of chaos
theory [56], optical methods [57], and compressive sensing [58] to
image encryption algorithms. Among them, the characteristics of
chaos theory are extremely consistent with the requirements of
image encryption schemes, which also promotes the development
of chaotic digital image encryption. An image encryption scheme
based on double chaotic cyclic shift and Joseph’s problem uses the
complexity and unpredictability of chaotic systems to enhance
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FIGURE 3
The Lyapunov exponent spectrum and bifurcation diagram of b ∈[1.1,1.5]. (a) Lyapunov exponent spectrum. (b) Bifurcation Graph.

the encryption effect. Xu et al. proposed a fast image encryption
algorithm based on compressed sensing and hyperchaotic map [59],
which uses the sparse representation of compressed sensing and
the randomness of chaotic map to realize image encryption and
decryption. Chen et al. proposed an optical multiimage encryption
method based on multiplane phase retrieval and interference [60],
which significantly enhances encryption security and robustness of
encryption through the complexity and unpredictability of optical
components. However, when applied to image encryption, the
image encryption algorithm is inefficient due to weaknesses such
as discontinuous chaotic regions and narrow chaotic ranges of the
chaotic map [61, 62]. In short, the structural defects of the image
encryption algorithms and the low performance of chaos theory
will lead to the inefficiency of the encryption algorithms, and it is
difficult to resist ordinary security attacks.

With the rapid development of information technology, data
security and privacy protection are confronted with unprecedented
challenges. Traditional image encryption technologies are gradually
showing their limitations when dealing with complex and
changeable security threats, and there is an urgent need to explore
more efficient and secure encryption solutions. In this context,
this paper conducts in-depth research and achieves a series of
innovative results. Firstly, a new two-dimensional hyperchaotic map
is proposed. By skillfully combining the classical cubic map with the
improved cosine discrete memristor, a new discrete memristive
map is constructed, which provides new ideas for the research of
chaotic systems. Secondly, the encryption method is innovated. The
chaotic sequence generated by the new chaotic map is integrated
into the encryption algorithm. Through operations such as index
scrambling and forward and reverse diffusion of images, the image
encryption process is optimized. Thirdly, the characteristics of
the system are analyzed in multiple dimensions. By studying
the parameter-dependent phase diagram, Lyapunov exponential
spectrum, bifurcation diagram, and coexisting attractors, and
verifying the pseudo-randomness, the chaotic characteristics of

the system suitable for image encryption are revealed. Through
simulation and analysis of the dynamic characteristics of the
chaotic system, it is verified that the system is highly sensitive
to parameters, thus providing a new approach for image
encryption. Moreover, the chaotic sequence is incorporated into the
encryption algorithm. Through operations like index scrambling
and diffusion on images and security analysis, it is confirmed
that the proposed scheme has extremely high security and anti-
interference capabilities, indicating that the chaotic characteristics
of the system possess great application value in the field of image
encryption.

The general structure of this paper is as follows. Section 2mainly
introduces the Cubic map and the proposed discrete memristor, and
then constructs the proposed discrete memristor hyperchaotic map
and analyzes its performance; Section 3 shows the rich dynamics
of a new discrete memristive hyperchaotic map; Section 4 details
the image encryption algorithm; Section 5 summarizes the work
of this paper and illustrates the prospects for future research
directions.

2 Design of a new discrete
hyperchaotic map model

2.1 Mathematical model of discrete
hyperchaotic map

Discrete hyperchaotic map is a unique dynamic system, and
the key point is to improve the complexity and security of the
system with the help of high-dimensional chaos characteristics.
Based on the Cubic map, a new discrete hyperchaotic map model
can be constructed. Memristors, as the fourth fundamental circuit
element, relate charge to magnetic flux and possess unique memory
characteristics. In this paper, a cosine-type discrete memristor is
proposed, in which the relationship between current and voltage
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FIGURE 4
Phase diagram of a discrete memristive chaotic system as a function of parameter b. (a) b = 1.48. (b) b = 1.26. (c) b = 1.29. (d) b = 1.35. (e) b = 1.15. (f)
b = 1.20.
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FIGURE 5
The Lyapunov exponent spectrum and bifurcation diagram of a ∈[2,5]. (a) Lyapunov exponential spectrum. (b) Bifurcation diagram.

and the relationship between internal charge variables is described
as Equation 1:

{
V (n) =M (q (n)) ⋅ I (n)

q (n+ 1) = q (n) + I (n)
(1)

where M(q(n)) = cos(q(n)) is the periodically varying discrete
memory resistance, q is the internal charge variable of thememristor,
V and I are the voltage and current of the memristor respectively,
and an improved class of discrete memristors can be obtained
by increasing the parameters g and constant k of the coupling
strength of the cosine discrete memristor, the memristor model
is shown in Equation 2:

{
V (n) =M (q (n)) ⋅ I (n) = [k+ g ⋅ cos (q (n))] ⋅ I (n)

q (n+ 1) = q (n) + I (n)
(2)

Adding the power supply I(n) = Asin(ωn) (ω is the radian
frequency) as input to the discrete memristor produces a
characteristic volt-ampere graph as shown in Figure 1. The fixed
parameters A = 0.1, g = 1, k = 1 and q0 = 0.1, it can be seen from
the figure that the volt-ampere characteristic curve of the discrete
memristor is a diasteretic loop diagram in the shape of “8” through
the origin point, when A = 0.1 and ω = 0.3, 0.4, 0.7 are taken,
Figure 1a is the volt-ampere characteristic curve of the frequency-
dependent tight hysteresis loop shape, from which it can be seen
that with the increase of radian frequency, the area of the hysteresis
loop gradually decreases, and finally tends to a straight line. When
ω = 0.7 and A = 0.1, 0.15, 0.2, the characteristic curve of the volt-
ampere of the discrete memristor is shown in Figure 1b. As the
amplitude A decreases, the area of the tight hysteresis loop gradually
decreases and finally tends to a straight line. Therefore, its volt-
ampere characteristics fully meet the requirements of generalized
memristor characteristics.

Through the analysis of numerical simulation, the trajectory
distribution and dynamic behavior characteristics of the model can

be clearly observed under different initial conditions. It can be
seen that the discrete hyperchaotic map not only opens up a new
perspective for the research of chaos theory, but also lays a solid
theoretical foundation for practical application in related fields.

2.2 Application of discrete memristor in
hyperchaotic map

Compared with traditional chaotic maps, discrete hyperchaotic
maps exhibit richer dynamic characteristics in parameter space,
including irregular periodicity and extreme sensitivity to initial
conditions [46]. In the hyperchaoticmapping system, thememristor
interacts with other maps. The nonlinear characteristics of the
memristor will be coupled with the characteristics of other
components, thus generating more complex nonlinear dynamic
behaviors, so as to improve the complexity and robustness of their
chaotic behavior.

The cubic map is a discrete chaotic map with a simple structure.
Its iterative equation is shown in Equation 3:

x (n+ 1) = ax(n)3 − bx (n) (3)

By introducing thememristormodel (Equation 2) into theCubic
map, a new two-dimensional discretememristive chaotic system can
be obtained:

{
x (n+ 1) = ax(n)3 − b (1+ gcos (y (n)))x (n)

y (n+ 1) = y (n) + x (n)
(4)

When the parameters are a = 0.30, g = 0.6, b = 1.50, the two
indices are LE1 = 0.506156 and LE2 = 0.0820328, respectively, the
system (Equation 4) has two positive Lyapunov exponents, and
the system is in a hyperchaotic state at this time. The phase
diagram of its hyperchaotic attractor is shown in Figure 2. As can
be seen in Figure 2, the structure of the map is simple, but the
dynamic behavior is complex.
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FIGURE 6
Phase diagram of a discrete memristive chaotic system as a function of parameter a. (a) a = 2.5. (b) a = 4.5. (c) a = 3.96. (d) a = 4.07.

where a, b, and g are the control parameters, and in
practical applications, the discrete memristor realizes the real-time
adjustment of the dynamic behavior in the hyperchaotic map model
through its variable resistance characteristics. This mechanism not
only improves the adaptability of the system, but also expands the
application range of the hyperchaoticmap in the field of information
encryption.

3 Construction and dynamic analysis
of a new discrete hyperchaotic map

3.1 Fixed point

In the study of chaotic systems, an immobile point is one of
the important features of a dynamical system, denoting a state
that remains unchanged during the evolution of the system. For
a new type of discrete hyperchaotic map, it is of great theoretical

and practical significance to determine the location and properties
of its fixed points. The fixed point of 2D-DMC is the solution to
Equation 5.

{
x∗ = a(x∗)3 − b (1+ g cos (y∗))x∗

y∗ = y∗+x∗
(5)

From Equation 5, it follows that 2D-DMC has infinite fixed
points, which can be expressed as F = (x∗,y∗) = (0,Q), where Q
is an arbitrary constant. The characteristic equation of the system
can be obtained using the Jacobian matrix of fixed points F
as shown in Equation 6.

P (λ) = (λ− 1) [λ+ b (1+ g cos Q)] (6)

It can be seen that the eigenvalue λ1 = 1 always lies
in the unit circle, and whether λ2 lies inside or outside
the unit circle depends on the parameters b,g and the
internal initial condition Q of the memristor. Therefore, by
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FIGURE 7
The Lyapunov exponent spectrum, bifurcation diagram and phase diagram of g ∈[0,0.6]. (a) Lyapunov exponential spectrum. (b) Bifurcation diagram.
(c) g = 0.42. (d) g = 0.6.

adjusting the parameters b,g and Q, the fixed point of the
2D-DMC can be placed in an unstable or critical stable
state.

The properties of these fixed points determine the complexity
of hyperchaotic maps and their potential applications in image
encryption. Further studies show that appropriate initial values and
parameters can make fixed points exhibit rich dynamic behaviors,
thus enhancing the security of chaotic systems.

In general, the study of fixed points provides an important
theoretical basis for the application of new discrete hyperchaotic
maps. Through in-depth analysis of the properties of fixed points,
we can understand the behavior characteristics of chaotic systems
and provide valuable guidance for the design and implementation
of image encryption algorithms.

3.2 Parametric bifurcation graphs and
lyapunov exponents

In the dynamic analysis, the chaotic characteristics of the model
can be evaluated by using tools such as the Lyapunov exponent and
the bifurcation diagram. In order to explore the sensitivity of the
system to different parameters, the dynamic behavior of the system
is analyzed in detail by a bifurcation diagram and the Lyapunov
exponential spectrum.

(1) The influence of the parameter b on the system: set the
parameter a = 0.3, g = 0.6 to explore the influence of the
systemparameter bon the discretememristor system.The initial
state is x1 = 0.1 and y1 = 0.1. In the range of b ∈[1.1, 1.5], LEs
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FIGURE 8
Phase diagram of g ∈[0.57,0.8] discrete memristive hyperchaotic map. (a) g = 0.58. (b) g = 0.65. (c) g = 0.70. (d) g = 0.80.

and their bifurcation plots of the discrete memristor chaos map
are shown in Figures 3a, b.

As can be seen in the figure, when the parameter b ∈[1.43,
1.54] range, the system has two positive Lyapunov exponents,
indicating that the system is in a hyperchaotic state in this
range. For example, when b = 1.48, the phase diagram of
the hyperchaotic attractor is shown in Figure 4a. In the range
of parameters b ∈ (1.25,1.27), b ∈[1.28,1.29) and b ∈[1.3,1.41),
the system has a positive Lyapunov index, indicating that the
system is in a chaotic state in this range. For example, when
b = 1.26, 1.29, and 1.35, the chaotic attractor of the system is
shown in Figures 4b–d. When the parameters are in the range
of b ∈[1.1, 1.25], the system is in a periodic state. For example,
when b = 1.15 and b = 1.20, the chaotic attractor of the system
is shown in Figures 4e, f. Through numerical simulation of the
model, the rich trajectory behavior and dynamic behavior of the
discrete memristor system can be observed under different initial
conditions.

(2) Impact of the parameter a on the system: Similarly, to explore
the impact of parameter a on the system, parameter b is set to
1.5, g to 0.6, and parameter a varies within the range [2, 5]. The
LEs of the discrete memristor chaotic map and its bifurcation
diagram are shown in Figure 5.

As can be seen in Figure 5, when a ∈[2, 3.95) and a ∈(4.08,
5), the discrete memristor chaotic system exhibits hyperchaotic
behavior. For example, when a = 2.5 and 4.5, it can be seen that
the system has two positive Lyapunov exponents, and the chaotic
attractors of the system are shown in Figures 6a, b. When a ∈[3.95,
3.98], the system has a periodic attractor. For example, when a =
3.96, the chaotic attractor of the system is shown in Figure 6c. When
a ∈[4.06, 4.08], the system has a positive Lyapunov exponent and is
in a chaotic state. For example, when a = 4.07, the chaotic attractor of
the system is shown in Figure 6d. The analysis of the comprehensive
parameter bifurcation diagram and the Lyapunov exponent can
provide a solid theoretical basis for the application of new discrete
hyperchaotic maps.
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TABLE 1 The NIST test results.

Number Statistical test terms P-values Result

1 Frequency 0.987 Success

2 Intra-block frequency 0.978 Success

3 Cumulative sums 0.765 Success

4 Runs 0.654 Success

5 Longest run 0.543 Success

6 Binary matrix order 0.432 Success

7 FFT 0.21 Success

8 Non-overlapping module
matching

0.821 Success

9 Overlapping module matching 0.109 Success

10 General statistics 0.098 Success

11 Approximate entropy 0.087 Success

12 Random deviations 0.076 Success

13 Random excursions variant 0.065 Success

14 Serial 0.054 Success

15 Linear complexity 0.043 Success

TABLE 2 The 0-1 test results.

Sequence S1 S2 S3 S4

xn 0.9984 0.9994 0.9981 0.9972

yn 0.9981 0.9982 0.9965 0.9971

(3) The influence of the parameter g on the system: In addition, to
explore the influence of parameter g on the discrete memristor
system, parameters a = 2.5 and b = 1.5 are set to make the
parameter g change in the range of [0,0.61], and the LEs and
their bifurcation diagrams of the chaotic map of the discrete
memristor are shown in Figure 7.

When parameters a = 2.5, b = 1.5 and initial values (x1,y1) =
(0.1,0.1) are selected, the bifurcation plot andLE exponential spectra
for parameter g are shown in Figures 7a, b. As can be seen in Figure 7,
with the change of parameter g, the discrete memristive chaotic
system enters the chaotic state from the typical periodic bifurcation,
and a complex window period appears in the chaotic region. When
g ∈[0.31, 0.32], the system has a positive LE exponent and presents
a chaotic state, and at g ∈[0, 0.31) and g ∈(0.32, 0.32], the discrete
memristic chaotic system behaves periodically. For example, when
g = 0.42, the periodic attractor of the system is shown in Figure 7c.
When g ∈[0.57, 0.6], there are two positive LE exponents, and the

discrete memristic chaotic system exhibits hyperchaotic behavior.
For example, when g = 0.6, the discrete memristive chaotic attractor
of the system is shown in Figure 7d.

The discrete memristive chaotic attractors corresponding to the
different parameter values g are shown in Figure 8. It can be observed
that the chaotic attractor has a complex fractal structure and with
increasing parameter g, the originally separated chaotic attractor,
as shown in Figure 8a, gradually merges with the adjustment of
system parameters to form a more complex and unique global
attractor, as shown in Figure 8d. The synthesis process of chaotic
attractors increases the dimension and complexity of the state space
of the system, so that the discrete memristive chaotic system can
be flexibly applied to the field of information security. In addition,
in the discrete memristive chaotic system, the chaotic sequence
generated by the composite attractor has better randomness and
non-repeatability, and this complex dynamic behavior makes the
output sequence of the system difficult to predict, which provides
a high degree of nonlinear characteristics for the encryption process
and increases the difficulty of cracking.

3.3 Random analysis

Discrete memristive hyperchaoticmap has been widely used to
improve the credibility of data analysis, random number generation,
and encrypted communication. In these areas, randomness is
a critical requirement, as the resulting chaotic sequences that
do not have sufficient randomness can easily be cracked or
predicted, compromising the security of the application. Through
the randomness test, the randomness and safety of chaotic sequences
generated by the discrete memristive hyperchaotic map can be
evaluated. To test the randomness of chaotic sequences, we
performed two statistical tests, NIST and 0-1. NIST tests are a series
of standardized tests that are used to evaluate and verify the security
of random number generators and cryptographic algorithms to
check whether the generated data are random. The test results
are shown in Table 1, from which it can be found that all P values
are greater than 0.01, indicating that the key system has successfully
passed the test and the generated data have sufficient security and
randomness.

The “0-1 test” generally refers to a statistical test performed on a
randomnumber or chaotic sequence,mainly to evaluatewhether the
resulting sequence is sufficiently random to meet specific statistical
requirements and application needs. Firstly, a chaotic sequence with
a duration of more than 2000 was randomly selected, and the values
were selected at a certain step interval for testing, and the test results
are shown in Table 2. As you can see from the results in the table,
the test result value is close to 1. This indicates that the discrete
memristive hyperchaotic map exhibits a high degree of randomness.

Based on the results shown in Tables 1, 2, it can be concluded
that the key systemderived from the discretememristive hyperchaos
map has excellent randomness. Chaotic randomness testing is
of great significance in application security, data analysis, and
simulation, which can ensure the security of the application and
meet the security and reliability requirements required for image
encryption.
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FIGURE 9
Encryption and decryption process diagram. (a) Encryption Flow Diagram. (b) Decryption Process Diagram.

4 Design and implementation of
image encryption algorithm

4.1 An image encryption scheme based on
hyperchaotic map

In this section, a novel image encryption scheme based on a
two-dimensional hyperchaotic map based on cyclic shift, forward
and reverse diffusion, and global displacement is introduced. By

combining key steps such as pixel diffusion and displacement,
hyperchaotic sequences are used to reorder the pixel positions of the
original image and disrupt the overall structure of the image. On
the one hand, the displacement process ensures randomness, while
diffusion further enhances the complexity of image encryption.
The processed chaotic sequence and pixel value are used to
perform XOR operations to further improve the encryption
strength and reduce the risk of information leakage. The steps are
as follows:
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FIGURE 10
Encryption and decryption effects of images. (a) Plaintext image. (b) Encryption-image. (c) Decryption-image. (d) Plaintext image. (e)
Encryption-image. (f) Decryption-image. (g) Plaintext image. (h) Encryption-image. (i) Decryption-image.

1. Select the original image and perform channel separation, and
select a grayscale image of m × n as the original image. m ×
n chaotic sequences X(m),Y(n) are generated from the state
variables x0,y0, and two chaotic sequences X(m) and Y(n) are
generated using a Gaussian chaotic neural network, which is
used for row and column shifts, respectively.

2. Generate m× n chaotic sequences from the state variables
x0,y0 The chaotic sequences Z(m,n) and the scrambled
image are added pixel by pixel to achieve positive diffusion.
Regenerate m × n chaotic sequences W(m,n) from state
variables x0,y0. The chaotic sequence W(m,n) and the image
after forward diffusion are subtracted pixel by pixel to achieve
reverse diffusion.

3. Based on the chaotic characteristics of the hyperchaotic
sequences X(m) and Y(n), a permutation index matrix is

generated. According to the permutation index matrix, the
position of the image is rearranged after forward and reverse
diffusion processing. For each pixel position (i, j) in the image,
determine its corresponding displacement position (i′, j′) in
the permutation index matrix and move the pixel value from
position (i, j) to position (i′, j′). In this way, all pixels of the
image are rearranged in the order determined by the chaotic
sequence, which completely changes the pixel distribution of
the image and hides the structure and information of the
original image.

The image encryption algorithm of the new discrete memristive
chaotic system provides a secure and powerful encryption scheme
for grayscale image encryption. In the encryption stage, the
plaintext image undergoes cyclic shift, forward and reverse
diffusion, and global substitution operations, combined with the
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FIGURE 11
Histograms of plaintext and ciphertext images. (a) Plaintext-image. (b) Histogram of Plaintext-image. (c) Histogram of Encryption-image. (d) Histogram
of Decryption-image. (e) Plaintext-image. (f) Histogram of Plaintext-image. (g) Histogram of Encryption-image. (h) Histogram of Decryption-image. (i)
Plaintext image. (j) Histogram of Plaintext image. (k) Histogram of Encryption-image. (l) Histogram of Decryption-image.

FIGURE 12
Correlation between adjacent pixels in a plaintext image. (a) Horizontal. (b) Vertical. (c) Diagonal.
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FIGURE 13
Encrypted image adjacent pixel correlation. (a) Horizontal. (b) Vertical. (c) Diagonal.

TABLE 3 Correlation coefficient of ciphertext images.

Encryption
scheme

Horizontal Vertical Diagonal

Ref. [64] 0.0055 −0.0068 −0.0032

Ref. [65] −0.0158 −0.0042 −0.0039

Ref. [38] −0.0066 −0.0089 0.0424

This article −0.0036 0.0032 0.0010

TABLE 4 Information entropy of ciphertext images with different
encryption schemes.

Scheme Ref. [38] Ref. [40] This article

Information entropy 7.9909 7.9971 7.9993

dynamic key generated by the chaotic system, and finally generates
an irreversible ciphertext image,as shown in Figure 9a. During
decryption, global substitution, forward and reverse diffusion, and
cyclic shift are performed in reverse, and the original pixel value
and position are restored by the same chaos key to achieve lossless
decryption,as shown in Figure 9b.

4.2 Performance analysis of encryption
algorithms

In image encryption algorithms, the size of the key space directly
determines the security of the encryption. To verify the feasibility
and effectiveness of the proposed algorithm, simulation tests were
performed using Matlab 2023b, with the key set as g = 0.6, a =
3,b = 1.8 and (x0,y0) = (0.1,0.1). A chaotic sequence required for
encryption was generated using a discrete memristive chaotic
system, and then the image was encrypted through the encryption

algorithm. When establishing a new discrete hyperchaotic map,
the selection of the key depends on multiple parameters, such as
initial conditions and the dynamic characteristics of the system.
As shown in Figures 10a, d, g is the original image before the
above-mentioned algorithm is encrypted, Figures 10b, e, h are
the encrypted image after using the above-mentioned encryption
algorithm, and Figures 10c, f, i are the decryption image after using
the above-mentioned algorithm. In order to verify the security of the
encryption effect of the system, this paper conducted performance
analysis, mainly including key space analysis, histogram analysis,
correlation analysis, and information entropy analysis.

4.2.1 Key space analysis
In image encryption algorithms, the size of the key space directly

determines the security of the encryption. Studies have shown that
the larger the key space, the more difficult it is for attackers to crack.
It is generally accepted that the size of the key space should be greater
than 2,128 [45] to ensure security. The keys of IES-CTG are a,b,g,x0
and y0, and the parameter intervals a ∈[2,3], b ∈[1.6,1.8], g ∈[0.5,
0.6] and the initial value range x0 ∈[0.1, 0.3], y0 ∈ [0.1, 0.3], and the
results of image encryption and decryption are shown in Figure 10.
Therefore, the key space S of the IES-CTG is shown in Equation 7:

S = S1 × S2 × S3 × S4 × S5 = 8× 10
71 ≈ 2238 (7)

where S1 = (3− 2) × 10
15,S2 = (1.8− 1.6) × 10

15,S3 = (0.6− 0.5) ×
1015,S4 = (0.3− 0.1) × 10

15,S5 = (0.3− 0.1) × 10
15.

Brute-force attack refers to the situation where an attacker tries
all possible key combinations until the correct key for decrypting
the information is found. The size of the key space determines the
number of possible key combinations. The larger the key space, the
more difficult it is for the attacker to find the correct key through
brute-force attempts. The key space designed for the novel discrete
hyperchaoticmap is 2238, significantly larger than the recommended
minimum of 2128 for the key space, which can effectively resist
brute-force attacks. Therefore, the algorithm has larger scale
and complexity, and the proposed image encryption scheme can
effectively resist external attacks and provide greater security.
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4.2.2 Histogram analysis
In image encryption, histogram analysis is an important

method to evaluate the encryption effect [63]. Figures 11a,
c, e are the original images, and their corresponding image
histograms are shown in Figures 11b, d, f, and their pixel value
distribution can be visually seen. By comparing the encrypted
histograms, as shown in Figures 11g, i, k, it can be observed
that the encrypted image histograms should show more uniform
distribution characteristics. The histogram of the decrypted image
is obtained by the decryption algorithm as shown in Figures
11h, j, l. This balance indicates that confusing and dispersing the
pixel information of the original image reduces its recognizability
and improves security. That is, the attacker cannot obtain the
histogram information of the plaintext image by statistically
analyzing the histogram of the ciphertext image, indicating that the
proposed algorithm has good diffusion and resistance to statistical
attacks.

The entropy of the histogram is also a key indicator to
evaluate the effectiveness of image encryption. The higher the
entropy value, the higher the complexity of the encrypted
image information and the stronger the ability to resist various
attacks, as shown in Figures 11d, h, i. In this study, the
encrypted image generated by the new discrete hyperchaotic
map has a high histogram entropy value, which shows the
effectiveness and security of the encryption algorithm in practical
applications.

4.2.3 Relevance analysis
In the design and implementation of image encryption

algorithms, correlation analysis is an important performance index.
Low correlation means that there is almost no linear or non-linear
relationship between the pixel values of the encrypted image, which
effectively increases the difficulty of cracking. In order to evaluate the
performance of the new discrete hyperchaotic map proposed in the
process of image encryption, it is necessary to analyze the correlation
of the images before and after encryption. Figures 12, 13 illustrate
the correlation between the adjacent pixels of the plaintext image
before image encryption and the ciphertext image after encryption,
respectively.

The image is very strong, as shown in Figures 12a–c, and
there is usually a correlation close to 1; However, the correlation
between adjacent pixels in a ciphertext image is close to zero,
as shown in Figures 13a–c. For different test images, different
chaotic sequences are used for encryption, and the correlation
difference between the encryption results can be observed,
which further verifies the randomness of the new discrete
hyperchaotic map, thus improving the security of the encrypted
images.

As can be seen from the correlation coefficient of the
ciphertext image in Table 3, the correlation between adjacent
pixels in the ciphertext image is close to 0, and they are almost
uncorrelated.The experimental results show that the designed image
encryption algorithm maintains a high encryption strength under
the condition of low correlation. Compared with traditional chaotic
encryption algorithms, this novel discrete hyperchaotic mapping
effectively reduces the correlation between different pixels, thereby
enhancing the security of the encrypted image. When compared
with more advanced chaotic encryption algorithms, this algorithm

also has obvious advantages in terms of processing speed. It can
complete the encryption and decryption processes of images more
rapidly. Moreover, when facing common attack methods such as
differential attacks and statistical attacks, it demonstrates stronger
attack resistance, providing amore reliable guarantee for the security
of image data.

4.2.4 Information entropy analysis
Information entropy is a basic concept of information theory.

It is an important index for measuring the randomness and
uncertainty of information. Generally, it is around 8.0, indicating
that the encrypted image has good randomness in the pixel
intensity distribution. In this study, a new encryption algorithm
based on a discrete hyperchaotic map is used to compare the
entropy of the original image and the encrypted image. It can
be seen from Table 4 that after IES - CTG encryption processing, the
information entropy of the ciphertext image is very close to the ideal
value of 8, and compared to some existing schemes, it has certain
advantages.

Furthermore, the variation law of the information entropy
under different chaotic parameters is analyzed, and the information
entropy performance of the encryption results is affected by
adjusting the parameters of the chaotic system. Under the
corresponding parameter settings, the increase in the entropy
value shows significant sensitivity, which further verifies the
effectiveness of chaos characteristics in enhancing the security of
image encryption.

5 Conclusion

In this paper, we conduct in-depth research and discussion
on a new type of discrete hyperchaotic map and its application
in image encryption. By designing and analyzing a novel discrete
hyperchaotic map model, we not only clarify its dynamic
characteristics, but also reveal its advantages in generating high-
quality chaotic sequences. Then, an image encryption algorithm
based on a novel discrete hyperchaotic map design is implemented
on the MATLAB platform. The key is used to scramble and diffuse
the digital image to be encrypted at the pixel level to improve
the security of the image. The experimental results show that
the proposed encryption algorithm has significant performance
advantages. By comparing images with different encryption effects,
the security of encrypted images was evaluated using methods
such as histogram analysis, information entropy calculation, and
adjacent pixel correlation detection. The experimental results
show that the encrypted image presents a good degree of visual
chaos and the information entropy value is significantly improved,
indicating that its security is better than that of traditional image
encryption methods.

The new discrete hyperchaotic map and its application in
image encryption have important theoretical value and practical
significance. Future research can further explore the application
potential of other chaos map models in different information
security fields, to promote the progress and innovation of overall
information encryption technology.
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Accurate and generalizable segmentation of medical images remains a
challenging task due to boundary ambiguity and variations across domains.
In this paper, an implicit transformer framework with a high-frequency
adapter for medical image segmentation (HiImp-SMI) is proposed. A new
dual-branch architecture is designed to simultaneously process spatial and
frequency information, enhancing both boundary refinement and domain
adaptability. Specifically, a Channel Attention Block selectively amplifies high-
frequency boundary cues, improving contour delineation. A Multi-Branch
Cross-Attention Block facilitates efficient hierarchical feature fusion, addressing
challenges in multi-scale representation.Additionally, a ViT-Conv Fusion Block
adaptively integrates global contextual awareness from Transformer features
with local structural details, thereby significantly boosting cross-domain
generalization. The entire network is trained in a supervised end-to-end
manner, with frequency-adaptive modules integrated into the encoding stages
of the Transformer backbone. Experimental evaluations show that HiImp-
SMI consistently outperforms mainstream models on the Kvasir-Sessile and
BCV datasets, including state-of-the-art implicit methods. For example, on
the Kvasir-Sessile dataset, HiImp-SMI achieves a Dice score of 92.39%,
outperforming I-MedSAM by 1%. On BCV, it demonstrates robust multi-class
segmentation with consistent superiority across organs. These quantitative
results demonstrate the framework’s effectiveness in refining boundary
precision, optimizing multi-scale feature representation, and improving cross-
dataset generalization. This improvement is largely attributed to the dual-
branch design and the integration of frequency-aware attention mechanisms,
which enable the model to capture both anatomical details and domain-robust
features. The proposed framework may serve as a flexible baseline for future
work involving implicit modeling and multi-modal representation learning in
medical image analysis.

KEYWORDS

nonlinear system, medical image segmentation, high-frequency adapter, cross-
attention, feature fusion
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1 Introduction

Medical image segmentation plays a crucial role in assisting
disease diagnosis and guiding clinical treatment. Traditional discrete
methods based on convolutional neural networks (CNNs), such
as U-Net [1], nnU-Net [2], and PraNet [3], effectively integrate
multi-scale features but remain highly sensitive to variations in data
distribution, thus limiting cross-domain generalization. Although
boundary-aware methods, such as Boundary-aware U-Net [4],
WM-DOVA [5], Hausdorff distance-based approaches [6], dropout-
based calibration [7], and neural network calibration [8], have
improved localization precision and feature representation, these
methods still face challenges when dealing with complex medical
structures and achieving consistent segmentation performance
across different domains. Additionally, multi-scale residual
architectures likeRes2Net [9] further enhance feature representation
but are still limited in boundary preservation.

Recent developments have introduced Transformer-based
architectures, such as TransUNet [10] and UNETR [11], leveraging
global contextual awareness through self-attention mechanisms
[12]. Despite superior global feature capture capabilities, these
approaches often underperform in local boundary refinement and
require extensive training data for effective generalization. Further
advancements, such as LoRA [13], aim to improve Transformer
efficiency and generalization but do not explicitly optimize
for boundary segmentation accuracy. Furthermore, adaptations
based on the Segment Anything Model (SAM) [14], including
MedSAM [15], SAM-based 3D extensions [16], and customized
SAM models [17], generally improve generalization capabilities
but typically neglect fine-grained feature integration, resulting in
limited boundary segmentation accuracy. Additional SAM-related
studies, such as NTo3D [18], Customized SAM [19], SAM-Med2D
[20], DiffDP [21], spatial prior-based approaches [22], and mask-
enhanced SAM models [23], have explored further improvements
but continue to face challenges with boundary precision.

Beyond conventional deep learning approaches, emerging
research spans several interdisciplinary directions that address
these challenges. For instance, memristor- and memcapacitor-
based neural network models have been proposed to enable
neuromorphic hardware implementations [24, 25]; such analog in-
memory circuits have demonstrated improved image segmentation
speed and accuracy via parallel high-efficiency computations
[26, 27]. Recent studies have further explored Hamiltonian
conservative chaotic systems integrated with memristors for
modeling and FPGA implementation, enhancing the physical
interpretability and stability of neuromorphic designs [28].
Similarly, chaotic and hyperchaotic dynamical systems have been
exploited in image encryption, leveraging their high-dimensional
unpredictability to enhance security. In particular, memristor-
coupled cellular neural networks based on resonant tunneling
diodes have been applied in forensic digital image protection,
offering a secure hardware foundation for sensitive applications
[29]. Some studies even integrate memristive chaotic circuits to
strengthen resistance against differential attacks [30], and in general
hyper-chaos offers greater randomness and key space than lower-
dimensional maps [31], yielding encryption schemes with robust
immunity to cryptanalytic attacks [32]. Other researchers have
implemented novel hyperchaotic systems in FPGA to support

audio encryption, demonstrating the practical deployment of
such dynamics on low-power reconfigurable hardware [33, 34].
In IoT contexts, researchers have developed lightweight image
encryption and steganography techniques to secure multimedia
data with minimal computational overhead [35, 36], addressing
the limitations of earlier cryptosystems on resource-constrained
devices [37]. Moreover, discrete n-dimensional hyperchaotic
maps with customizable Lyapunov exponents have been proposed
to expand the design space for secure communications and
embedded cryptography [38]. Additionally, integrating multi-
modal information has become crucial for improving diagnostic
accuracy, prompting new architectures that effectively fuse
heterogeneous medical data streams [39, 40]. Equally important,
domain-generalization strategies are being pursued to ensure
models remain robust across disparate imaging domains, tackling
the severe performance degradation caused by cross-modality
shifts without requiring retraining on target data [41]. Finally,
a concerted effort is underway to translate these advances into
practical deployments: specialized DSP-based accelerators and
other hardware implementations are achieving real-time image
processing with low power consumption [42, 43], and even complex
neuromorphic networks are being prototyped on DSP platforms
[25, 26]. These developments across hardware design, secure
encryption, lightweight algorithms, and multi-modal learning
collectively strengthen the foundation for next-generation medical
image segmentation systems.

Implicit neural representation methods represent another
advancement, employing continuous mappings from coordinate
spaces to representation spaces, exemplified byOSSNet [44], IOSNet
[45], and SWIPE [46].Thesemodels exhibit improved segmentation
robustness across resolutions but remain constrained by their
reliance on traditional convolutional encoders, limiting their
capacity to simultaneously capture detailed boundary information
and global contextual features. Further implicit methods, including
NeRF [47],NUDF [48],NISF [49], ImplicitAtlas [50], implicit neural
representations survey [51], shape reconstruction from sparse
measurements [52], implicit functions for 3D reconstruction [53],
MRI super-resolution [16], and volumetric SAM adaptations [54],
have significant potential but share similar limitations. Frequency-
domain adapters, like those in I-MedSAM [55], have enhanced
boundary delineation, but single-adapter designs remain insufficient
for comprehensive multi-scale feature integration.

To address these challenges, this study introduces HiImp-
SMI, an implicit Transformer-based medical image segmentation
framework incorporating three key innovations: (1) a Channel
Attention Block to explicitly enhance high-frequency boundary
information, (2) a Multi-Branch Cross-Attention Block to facilitate
efficient hierarchical feature fusion across different scales, and (3) a
ViT-Conv Fusion Block designed to integrate global context from
Transformer-based architectures with local fine-grained features
extracted by convolutional networks. Experimental validations
conducted on the Kvasir-Sessile and BCV datasets demonstrate
that HiImp-SMI outperforms existing segmentation methods,
highlighting its effectiveness in boundary precision, multi-scale
feature representation, and cross-dataset generalization capabilities.

The remainder of this paper is organized as follows: Section 2
details the proposed HiImp-SMI framework; Section 3 presents the
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experimental setup and results; and Section 4 concludes the study,
providing directions for future research.

2 Materials and methods

The overall architecture of the proposed HiImp-SMI framework
is depicted in Figure 1. It comprises a dual-branch encoder
structure that jointly exploits spatial-domain and frequency-
domain information. Given an input image I, a Fast Fourier
Transform (FFT) is applied to derive its frequency representation
IFFT, which highlights high-frequency components corresponding
to anatomical boundaries and texture transitions. By integrating
IFFT into the encoder, our Channel Attention Block can selectively
amplify boundary-sensitive features, enhancing fine-grained
localization and generalization to unseen domains. These
embeddings are then processed by three key modules: a Channel
Attention Block, which selectively enhances high-frequency
boundary details; a Multi-Branch Cross Attention Block, designed
to enable effective feature exchange across hierarchical levels;
and a ViT-Conv Fusion Block, which adaptively integrates global
contextual information from the Transformer branch and local
structural features from the convolutional branch. Through this
architecture, HiImp-SMI aims to achieve more precise boundary
segmentation, stronger multi-scale representation, and enhanced
cross-domain generalization.

2.1 Channel attention block

In this study, SAM employs a Vision Transformer (ViT) as the
image encoder, pretrained on a large-scale natural image dataset.
To preserve the strong feature representation capability of the
pretrained ViT, its weights are kept frozen during training. Instead,
a local adapter module is introduced to incorporate localized
inductive biases into the model, as illustrated in Figure 2.

The Channel Attention Block enhances the domain-specific
feature extraction capability of the pretrained Vision Transformer
(ViT) without fine-tuning its weights. The procedure involves the
following steps:

Step 1: Obtain the input embedding Fvit from the ViT attention
block. This embedding carries high-level semantic features.
It serves as the input to the channel attention block.

Step 2: Apply layer normalization (LN) to stabilize feature
distributions. LN normalizes each channel to reduce
internal covariate shift. This improves training stability and
convergence.

Step 3: Perform a pointwise convolution (Conv1×1) to adjust
channel dimensions. This operation projects features into
a latent space. It preserves spatial structure while enabling
channel-wise transformation.

Step 4: Execute a depthwise convolution (DWConv3×3) to
capture spatial information. Each channel is convolved
independently to extract local patterns. This enhances
spatial modeling without increasing parameter count
significantly.

Step 5: Apply a Squeeze-and-Excitation (SE) block to model
channel-wise dependencies. Specifically, the SE block

performs global average pooling followed by two fully
connected layers and non-linear activations to generate
a channel attention vector s, which is then applied to
recalibrate the feature map, as shown in Equation 1:

{{{{{{
{{{{{{
{

z = 1
H×W

H

∑
i=1

W

∑
j=1

Fij

s = σ (W2 ⋅ δ (W1 ⋅ z))

SE (F) = F⊗ s

(1)

Here, F ∈ ℝC×H×W denotes the input feature map, and z ∈ ℝC is the
channel-wise descriptor obtained by global average pooling. W1
and W2 are learnable weight matrices of two fully connected layers.
δ(⋅) and σ(⋅) denote the ReLU and sigmoid activation functions,
respectively. The resulting attention vector s is used to rescale each
channel of F via element-wise multiplication, enabling adaptive
channel emphasis.

Step 6: Integrate the processed features using another pointwise
convolution (Conv1× 1) to obtain refined embedding F̂vit,
as defined in Equation 2:

F̂vit = Conv1× 1(SE(DWConv3× 3(Conv1× 1(LN(Fvit))))) (2)

Step 7: Merge the refined features with the original features through
a residual connection, as formulated in Equation 3:

Fout = Fvit + F̂vit (3)

2.2 Multi-branch Cross Attention Block

Figure 3 illustrates the structure of the Multi-branch Cross
Attention Block, which integrates deep features from the ViT branch
with shallow features from a convolutional branch. The procedure
involves the following steps:

Step 1: Extract shallow features (Fs) from the resized input image
using a lightweight convolutional block. This step captures
low-level visual patterns such as edges and textures. The
convolutional block is designed to be efficient for early-stage
feature extraction.

Step 2: Generate queries, keys, and values for the ViT branch and
convolutional branch separately, as described in Equation 4:

{
Qd =W

d
qFd, Kd =W

d
k [Fb;Fs] , Vd =W

d
vFs

Qs =W
s
qFs, Ks =W

s
k [Fb;Fd] , Vs =W

s
vFd

(4)

Here, Fd and Fs denote deep features from the ViT branch and
shallow features from the convolutional branch, respectively. Fb
represents bottleneck features shared across branches. Wq, Wk, and
Wv are learnable linear projection matrices used to obtain queries
(Q), keys (K), and values (V) for attention computation.
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FIGURE 1
Overall architecture of our proposed model.
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FIGURE 2
The Channel Attention Block for domain-specific feature
enhancement in the ViT encoder.

Step 3: Fuse features across branches using deformable attention,
detailed in Equation 5:

{
Fcd = DeformAttn(Qd,Kd,Vd)

Fcs = DeformAttn(Qs,Ks,Vs)
(5)

Here, Fcd and Fcs represent the cross-attended features refined via
deformable attention in the ViT and convolutional branches,
respectively. Deformable attention adaptively samples spatial
locations, enabling the model to focus on semantically relevant
regions. This mechanism facilitates more effective feature alignment
across the two branches.

Step 4: Refine the fused featureswith residual feedforward networks
(FFN) and layer normalization (LN)—this refinement is
formalized in Equation 6:

{
F1
d = FFN(LN(Fd + F

c
d)) + (Fd + F

c
d)

F1
s = FFN(LN(Fs + F

c
s)) + (Fs + F

c
s)

(6)

Here, F1
d and F1

s denote the updated deep and shallow features
after refinement. The FFN enhances non-linear representation
capacity, while LN improves training stability. The residual
connection facilitates efficient information preservation and
gradient flow.

2.3 ViT-Conv fusion block

A fusion block equippedwith an automatic selectionmechanism
is constructed to integrate the diverse information provided by

FIGURE 3
The Multi-branch Cross Attention Block for fusing ViT and
convolutional features via cross-attention.

convolutional features and Transformer features. The architectural
details of this module are illustrated in Figure 4.

The ViT-Conv Fusion Block adaptively integrates convolutional
and Transformer features through these steps:

Step 1: Process deep (Fd) and shallow (Fs) features individually with
a channel attention layer to obtain logits (φd,φs). Channel
attention highlights informative channels in each branch.
This yields two attention logits representing the feature
importance.

Step 2: Aggregate logits fromboth branches to compute an element-
wise selection mask using a sigmoid function. Equation 7
defines this aggregation process.

ω = Sigmoid(φd +φs) (7)

Here, ω denotes the attention-based selection mask used to balance
feature contributions from the two branches. The summed logits
φd +φs capture joint channel importance. The sigmoid function
constrains the mask values between 0 and 1, enabling soft feature
weighting.

Step 3: Compute the final fused output via element-wise
multiplication, as specified in Equation 8:

Foutput = F
o
d ⊗ω+ F

o
s ⊗ (1−ω) (8)

Here, Fod and Fos represent the output features from the Transformer
and convolutional branches, respectively. Foutput denotes the final
fused representation. The selection mask ω adaptively controls the
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FIGURE 4
The ViT-Conv Fusion Block for adaptive integration of Transformer and convolutional features.

contribution of each branch, enabling dynamic integration of global
and local information.

2.4 Loss function

To supervise both the coarse and fine segmentation branches
during training, a Progressive Dual-Branch Loss (PDB Loss) is
proposed. This loss function dynamically adjusts the supervision
weights between the coarse and fine predictions over training
epochs. The total training loss is precisely defined by Equation 9:

LPDB =
1
B

B

∑
i=1
[(1− α) ⋅LDiceCE (ŷ

(i)
coarse,y(i)) + α ⋅LDiceCE (ŷ

(i)
fine,y
(i))]

(9)

Here, ŷ(i)coarse and ŷ(i)fine are the predicted masks from the coarse and
fine branches for the i-th sample, and y(i) is the corresponding
ground truth. B denotes the batch size. α ∈ [0,1] is a progressive
weight that determines the relative contribution of the fine branch.

For each prediction, a hybrid loss combining Dice and binary
cross‑entropy (BCE) is used, aspresented in Equation 10:

LDiceCE (ŷ,y) = λdice ⋅LDice (ŷ,y) + λce ⋅LCE (ŷ,y) (10)

The loss weights were set as λdice = 0.8 and λce = 0.2. To shift
the learning focus from coarse to fine predictions over time, the
coefficient α was scheduled according to the current epoch t
as given in Equation 11:

α =min( t+ 1
5
,1.0) (11)

This progressive weighting strategy encourages the model to
learn global structural features in early epochs via the coarse
branch and gradually refine local boundaries and details through the
fine branch.

3 Experiments

In this section, a series of comprehensive experiments
is performed to evaluate the effectiveness of the proposed
HiImp-SMI on medical image segmentation tasks. Initially, the
experimental setup is detailed, including dataset selection and
training configurations. Subsequently, the performance of HiImp-
SMI is quantitatively and qualitatively compared with state-of-
the-art implicit and discrete segmentation approaches, specifically
addressing binary polyp segmentation on the Kvasir-Sessile dataset
[13] and multi-class organ segmentation on the BCV dataset [56].
Additionally, robustness analyses under various data distributions
are presented. Finally, a systematic ablation study is conducted
to elucidate the contributions of individual modules within
HiImp-SMI.

The quantitative comparison results are summarized in Table 1,
highlighting mean Dice and IoU scores alongside corresponding
standard deviations. The best-performing methods are emphasized
in bold, illustrating that HiImp-SMI consistently achieves superior
segmentation performance compared to existing state-of-the-
art methods.

3.1 Experimental setup

The model’s performance is evaluated on two distinct medical
image segmentation tasks: binary polyp segmentation and multi-
class abdominal organ segmentation.

For polyp segmentation, experiments are conducted on the
challenging Kvasir-Sessile dataset [13], which contains 196 RGB
images of small sessile polyps. To assess the generalization capability
of HiImp-SMI, the pretrained model is further evaluated on the
CVC-ClinicDB dataset [13], which consists of 612 images extracted
from 31 colonoscopy sequences.

For multi-organ segmentation, the model is trained on the
BCV dataset [56], which includes 30 CT scans with annotations
for 13 organs, and is further evaluated on the AMOS dataset
[57], which contains 200 CT training samples, following the same
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TABLE 1 Overall segmentation results compared to state-of-the-art discrete and implicit methods. The last two columns present the mean Dice and
IoU scores with standard deviation. The best results are highlighted in bold.

Method type Method Kvasir-sessile BCV

Dice(%) IoU(%) Dice(%) IoU(%)

Discrete

U-Net [1] 63.89±1.30 46.94±0.65 74.47±1.57 59.32±0.79

PraNet [3] 82.56±1.08 70.3±0.54 N/A N/A

UNETR [11] N/A N/A 81.14±0.85 68.27±0.43

Res2UNet [9] 81.62±0.97 68.95±0.49 79.23±0.66 65.6±0.33

NnUNet [2] 82.97±0.89 70.9±0.45 85.15±0.67 74.14±0.34

MedSAM [15] 82.88±0.55 70.77±0.28 85.85±0.81 75.21±0.41

Implicit

OSSNet [44] 76.11±1.14 61.43±0.57 73.38±1.65 57.95±0.83

IOSNet [45] 78.37±0.76 64.43±0.38 76.75±1.37 62.27±0.69

SWIPE [46] 85.05±0.82 73.99±0.41 81.21±0.94 68.36±0.47

I-MedSAM [55] 91.49±0.52 84.31±0.26 89.91±0.68 81.67±0.34

HiImp-SMI (Ours) 92.39±0.36 85.86±0.18 91.21±0.31 83.84±0.16

Note. “N/A” indicates that the corresponding experiment was not conducted.
Bold values indicate the best performance for each metric.

experimental setup as [22]. Since this study focuses on 2D medical
image segmentation, slice-wise segmentation is performed on CT
images. Following the data preprocessing strategy of SWIPE [46],
all datasets are split into training, validation, and test sets in
a 6:2:2 ratio, and the reported Dice scores are based on test
set results.

The training process involves fine-tuning the SAM encoder [7]
with ViT-B as the backbone network.The LoRA rank is set to 4, with
amplitude information incorporated in the frequency adapter. The
MLP dimensions for the implicit segmentation decoder are [1,024,
512] for Decc and [512, 256, 256, 128] for Decf. During training,
12.5% of the most uncertain points are sampled for refinement,
and the dropout probability is set to 0.5. For the multi-organ
segmentation task, the final layer of Decc and Decf is adjusted to
match the number of target segmentation classes. HiImp-SMI is
optimized using AdamW [58] with α = 0.5,β = 0.1, a learning rate
of λada = 5× 10

−5 for the encoder adapter, and λdec = 1× 10
−3 for

the decoder.
To ensure fair comparison, all methods are trained for 1,000

epochs under the same experimental setup. During testing, Dice
scores and Hausdorff distances [6] are reported based on the best
validation epoch. The input image resolutions are set to 384× 384
(Sessile dataset) and 512× 512 (BCV dataset slices).

The baseline approaches are categorized into discrete methods
and implicit (continuous) methods. The discrete methods include
U-Net [1], PraNet [3], Res2UNet [9], nnUNet [2], UNETR [11],
and MedSAM [15]. Among these, MedSAM [15] is also a SAM-
based approach, where the original decoder is directly fine-tuned.
The implicitmethods includeOSSNet [44], IOSNet [45], and SWIPE
[46] and I-MedSAM [55].

3.2 Quantitative comparison

A Dice score comparison is first presented against baseline
methods. Subsequently, experiments are conducted across
different resolutions and domains to evaluate the model’s
cross-domain generalization ability under data distribution
shifts. Finally, Hausdorff Distance (HD) [6] is computed to
compare the segmentation boundary quality across different
experimental settings.

Discrete methods and implicit methods are compared in
terms of trainable parameters and Dice scores (including standard
deviation). Specifically, binary segmentation is performed on the
Kvasir-Sessile dataset, while multi-class segmentation is conducted
on the CT BCV dataset, with results detailed in Table 2. Leveraging
the proposed frequency adapter, SAM generates richer feature
representations, leading to improved segmentation boundary
quality. In contrast, SwIPE, which employs Res2Net-50 [9] as its
backbone, exhibits weaker feature extraction capability, resulting in
lower segmentation quality.

The adaptability of binary polyp segmentation across different
resolutions and domains is assessed by comparing it with the best-
performing discrete and implicit methods. To adapt to different
target resolutions (e.g., low resolution 128× 128 and high resolution
896× 896), the pretrained HiImp-SMI model, initially trained at
384× 384 standard resolution, is modified by scaling the input
coordinates to match the target resolution, and the corresponding
Dice scores are computed. For discrete methods, the output
resolution remains consistent with the input resolution. Input
images at the original resolution of 384× 384 are provided, and the
generated segmentation results are rescaled to the target resolution
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TABLE 2 Cross-resolution evaluation from 384×384 to 128× 128 and from 384×384 to 896×896.

Method type Method 384×384→128× 128 384×384→896×896

Dice(%) IoU(%) Dice(%) IoU(%)

Discrete

PraNet [3] 72.64 57.04 74.95 59.94

PraNet∗ [3] 68.79 52.43 43.92 28.14

nnUNet [2] 73.97 58.69 83.56 71.76

nnUNet∗ [2] 65.34 48.52 76.36 61.76

MedSAM [15] 82.39 70.05 83.56 71.76

Implicit

IOSNet [45] 78.37 64.43 78.01 63.95

SWIPE [46] 81.26 68.44 84.33 72.91

I-MedSAM [55] 91.45 84.25 91.33 84.04

HiImp-SMI (ours) 92.52 86.08 92.28 85.67

Bold values indicate the best performance for each metric.

TABLE 3 Cross-domain results for binary polyp segmentation and multi-class abdominal organ segmentation.

Method type Method Kvasir→CVC BCV→AMOS

Dice(%) IoU(%) Dice(%) IoU(%)

Discrete

PraNet [3] 68.37 51.94 N/A N/A

UNETR [11] N/A N/A 81.75 69.13

nnUNet [2] 84.91 73.78 79.63 66.15

MedSAM [15] 74.59 59.48 71.98 56.23

Implicit

IOSNet [45] 59.42 42.27 79.48 65.95

SWIPE [46] 70.1 53.96 82.81 70.66

I-MedSAM [55] 88.83 79.9 86.28 75.87

HiImp-SMI (ours) 91.58 84.47 88.17 78.84

Note.“N/A″ indicates that the corresponding experiment was not conducted.
Bold values indicate the best performance for each metric.

TABLE 4 HD distance (↓) for different methods and datasets.

Method Kvasir-sessile Kvasir→CVC 384→128 384→896 BCV BCV→AMOS

nnUNet [2] 31.30 82.31 13.69 72.31 6.50 80.39

MedSAM [15] 21.53 30.15 8.04 51.82 10.62 52.14

IOSNet [45] 51.72 81.60 35.33 87.86 21.46 61.19

I-MedSAM [55] 11.59 19.76 7.91 32.77 5.95 37.53

HiImp-SMI (ours) 10.48 20.30 3.60 24.52 4.97 38.12

Bold values indicate the best performance for each metric.
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FIGURE 5
Qualitative comparisons on five representative samples. The last row indicates the method names corresponding to each column.

TABLE 5 Ablation study on the integration of different modules: Channel Attention Block (CAB), Multi-branch Cross Attention Block (MCAB), and
ViT-Conv Fusion Block (VCFB). Evaluation is conducted on the Kvasir-Sessile dataset and its cross-domain transfer to the CVC dataset.

Modules Kvasir-sessile Kvasir-sessile→ CVC

CAB MCAB VCFB Dice (%) ↑ HD ↓ IoU (%) ↑ Dice (%) ↑ HD ↓ IoU (%) ↑

91.81 11.80 84.86 89.07 24.06 80.29

✓ 92.02 11.28 85.22 88.94 24.66 80.08

✓ ✓ 92.42 11.50 85.91 88.87 22.12 79.97

✓ ✓ ✓ 92.51 9.98 86.06 91.46 21.03 84.26

Bold values indicate the best performance for each metric.

for evaluation. Additionally, the suffix (∗) is used to mark discrete
baselines, where the original medical images are resized to the
target resolution before being fed into the models, allowing these
methods to directly generate segmentation results at the target
resolution.

As shown in Table 2, implicit methods exhibit stronger
adaptability to spatial resolution changes and consistently
outperform discrete methods. Among implicit methods, HiImp-

SMI achieves the highest performance across different output
resolutions, which can be attributed to the proposed frequency
adapter, enhancing HiImp-SMI’s predictive capability across
resolutions.

Model performance across different datasets is examined. In
binary polyp segmentation, all methods are pretrained on the
Kvasir-Sessile dataset and directly evaluated on the CVC dataset.
Similarly, inmulti-class abdominal organ segmentation, all methods
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are pretrained on the BCV dataset and evaluated on the AMOS
dataset, focusing exclusively on the liver class.

As shown in Table 3, leveraging SAM’s generalization ability,
HiImp-SMI outperforms the best discrete method, achieving
Dice scores of 91.58% on the CVC dataset and 88.17% on the
AMOS dataset.

Segmentation boundary quality is further assessed using
Hausdorff Distance (HD) [19]. As shown in Table 4, HiImp-SMI
achieves lower HD scores, indicating superior boundary precision
compared to existing methods.

3.3 Qualitative comparison

As shown in Figure 5, a qualitative comparison is conducted
on the Kvasir-Sessile dataset. Additionally, the input medical
images and their corresponding ground truth segmentation masks
are provided, where segmentation boundaries are highlighted
in green in Figure 5.The sharpness of boundaries in the visual results
may be attributed in part to the frequency-domain information
introduced via FFT.

From the results, it is evident that HiImp-SMI produces more
precise segmentation boundaries. By leveraging the proposed
modules, HiImp-SMI effectively aggregates high-frequency
information from the input, leading to improved segmentation
accuracy in the final output.

3.4 Ablation study

An ablation study is conducted to evaluate the effectiveness of
each module within the high-frequency adapter. The results are
summarized in Table 5.

In the baseline model, the single frequency adapter module
consists of a linear down-projection layer, a GELU activation
function, and a linear up-projection layer. On the Kvasir-
Sessile dataset [8], the baseline model achieves a Dice score of
91.81% and an HD of 11.80. When transferred to the CVC dataset,
the Dice score drops to 89.07%, with an HD of 24.06.

As the channel attention block, bi-directional cross-attention
block, and ViT-Conv fusion block are incrementally added, model
performance exhibits a significant improvement. When all three
modules are incorporated, the Dice score on the Kvasir-Sessile
dataset improves to 92.51%, while HD decreases to 9.98. Similarly,
on the CVC dataset, the Dice score improves to 91.46%, and HD
decreases to 21.03, highlighting the necessity and effectiveness of the
proposed modules.

4 Conclusion

In this study, a novel implicit Transformer-based framework,
HiImp-SMI, was proposed to overcome key limitations in medical
image segmentation, such as poor boundary refinement, weak
feature fusion, and limited cross-domain generalization. High-
frequency information and multi-scale features were incorporated
through three main components: a Channel Attention Block
for frequency-domain feature adaptation, a Multi-Branch Cross

Attention Block for hierarchical feature exchange, and a ViT-
Conv Fusion Block for adaptive context integration. Additionally,
a Progressive Dual-Branch Loss was introduced to guide the
training process from coarse to fine segmentation. Extensive
experiments conducted on the Kvasir-Sessile and BCV datasets
demonstrated that HiImp-SMI consistently outperformed state-of-
the-art methods, particularly in cross-domain and cross-resolution
tasks. Ablation studies further confirmed the effectiveness of each
proposed module.

However, the current framework has not yet been validated in
clinical or multi-center settings. Future research will aim to evaluate
its applicability in real-world clinical workflows.

Overall,HiImp-SMIprovided a unified and adaptive solution for
precise and generalizable medical image segmentation.
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Introduction: The prediction of chaotic time series is a persistent problem in
various scientific domains due to system characteristics such as sensitivity to
initial conditions and nonlinear dynamics. Deep learningmodels, while effective,
are associated with high computational costs and large data requirements. As
an alternative, Echo State Networks (ESNs) are more computationally efficient,
but their predictive accuracy can be constrained by the use of simplistic neuron
models and a dependency on hyperparameter tuning.

Methods: This paper proposes a framework, the Echo State Network based on
an Enhanced Intersecting Cortical Model (ESN-EICM). The model incorporates
a neuron model with internal dynamics, including adaptive thresholds and
inter-neuron feedback, into the reservoir structure. A Bayesian Optimization
algorithmwas employed for the selection of hyperparameters. The performance
of the ESN-EICM was compared to that of a standard ESN and a Long Short-
Term Memory (LSTM) network. The evaluation used data from three discrete
chaotic systems (Logistic, Sine, and Ricker) for both one-step and multi-step
prediction tasks.

Results: The experimental results indicate that the ESN-EICM produced lower
error metrics (MSE, RMSE, MAE) compared to the standard ESN and LSTM
models across the tested systems, with the performance difference being
more pronounced in multi-step forecasting scenarios. Qualitative analyses,
including trajectory plots and phase-space reconstructions, further support
these quantitative findings, showing that the ESN-EICM's predictions closely
tracked the true system dynamics. In terms of computational cost, the training
phase of the ESN-EICM was faster than that of the LSTM. For multi-step
predictions, the total experiment time, which includes the hyperparameter
optimization phase, was also observed to be lower for the ESN-EICM compared
to the standard ESN. This efficiency gain during optimization is attributed to
the model's intrinsic stability, which reduces the number of divergent trials
encountered by the search algorithm.

Discussion:The results indicate that the ESN-EICM framework is a viablemethod
for the prediction of the tested chaotic time series. The study shows that
enhancing the internal dynamics of individual reservoir neurons can be an
effective strategy for improving prediction accuracy. This approach ofmodifying
neuron-level complexity, rather than network-level architecture, presents a
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potential direction for the design of future reservoir computing models for
complex systems.

KEYWORDS

ESN-EICM, time-series prediction, reservoir computing, complex system, brain-inspired
computing

1 Introduction

Time series prediction is a critical task across diverse scientific
and engineering domains, including economics, meteorology, and
industrial process control [1]. Among various types of time series,
chaotic systems pose a unique and formidable challenge due
to their deterministic yet highly unpredictable nature, extreme
sensitivity to initial conditions (the butterfly effect), and complex,
aperiodic dynamics [2]. Accurately modeling and predicting such
systems is crucial for understanding their underlying mechanisms
and for making informed decisions in applications.

In recent years, deep learning (DL)methodologies have played a
important role in time series prediction. Recurrent Neural Networks
(RNNs) and their variants, such as Long Short-Term Memory
(LSTM) [2] and Gated Recurrent Units (GRU) [3], are designed
to capture temporal dependencies. More recently, Transformer-
based architectures [4] have demonstrated success in sequence
modeling tasks.While theseDLmodels can learn complex nonlinear
relationships from data, they often entail significant drawbacks.
These include high computational expense for training, the need
for large datasets to avoid overfitting, and a “black-box” nature
that hinders interpretability and deployment in critical domains
requiring decision transparency [5]. Specialized architectures like
WaveNet [6] and DeepAR [5] also face challenges such as resource
consumption or limitations with sparse data.

Reservoir Computing (RC) has emerged as an alternative
paradigm that offers a compelling balance between performance
and computational efficiency [7]. Echo State Networks (ESNs), a
principal RC model, utilize a fixed, randomly generated recurrent
neural network (the “reservoir”) to project input signals into a
high-dimensional state space, with only a linear output layer being
trained. This drastically reduces training complexity compared to
DL models. However, standard ESNs are not without limitations.
Their performance is highly sensitive to the initialization of
reservoir hyperparameters, which typically requires extensive
manual tuning or grid search [7]. Moreover, traditional ESNs often
employ simplistic neuron activation functions, which may not
adequately capture the rich dynamics inherent in complex chaotic
systems. While advancements like Leaky ESNs, Deep Reservoir
Computing [8], and multi-reservoir ESNs have been proposed, they
can introduce further complexities or still rely on fundamentally
simple neuronal dynamics.

The limitations of existing DL and RC approaches motivate
the development of novel prediction models that can combine
the training efficiency of RC with more sophisticated, adaptive
internal dynamics and a systematic approach to hyperparameter
optimization. Indeed, current research trends emphasize that
network models with internal complexity can bridge artificial
intelligence and neuroscience, offering pathways to more robust
and capable systems [9]. Drawing inspiration from neuroscience,

the Intersecting Cortical Model (ICM) [10] simulates neuronal
behaviors like adaptive thresholds and feedback, but its original
formulation is primarily suited for image processing and has
limitations for continuous time series tasks.

This work proposes a novel framework, the Echo State Network
Based on Enhanced Intersecting Cortical Model (ESN-EICM), for
discrete chaotic time series prediction, the overall structure of which
is illustrated in Figure 1.TheESN-EICM integrates amodified EICM
neuronmodel into the ESN reservoir.Themain contributions of this
study are as follows:

1. Theneural networkmodel EICMcan exhibit complex dynamic
characteristics, is incorporated into reservoir computing.
This novel neuron model is tailored for time series by
incorporating features such as continuous sigmoid activation,
global mean-driven adaptive thresholds, and introduces
mechanisms for inter-neuron coupling and dynamic threshold
regulation within each neuron, thereby enhancing the
nonlinear representation capability of reservoir computing
and forming a reservoir computing model based on biological
neurons. The design leverages principles of how biological
neural systems integrate information and utilize internal
neuronal dynamics for complex computations, such as feature
binding through dendritic networks [11] or learning multi-
timescale dynamics [12]. While traditional RC research often
focuses on optimizing reservoir topology or simplifying
dynamics, our work explores a complementary direction:
enhancing the computational power of individual neurons
within the reservoir.Wehypothesize that by equippingneurons
with more sophisticated, adaptive dynamics inspired by the
cortex, the reservoir can more effectively capture the intricate,
non-linear patterns of chaotic systems without requiring
complex topological design.

2. The application of a Bayesian Optimization strategy
for the automated and efficient tuning of ESN-EICM
hyperparameters, mitigating the traditional RC challenge of
manual parameter selection.

3. A comprehensive empirical evaluation on three discrete
chaotic systems (Logistic, Sine, and Ricker), demonstrating
the ESN-EICM’s superior predictive accuracy and stability in
both one-step and multi-step prediction scenarios compared
to standard ESN and LSTM models.

The remainder of this paper is organized as follows. Section 2
reviews related work in deep learning and reservoir computing
for time series prediction. Section 3 details the proposed ESN-
EICM model, including the EICM neuron design and the Bayesian
optimization strategy. Section 4 describes the experimental setup
and presents a thorough analysis of the results, covering prediction
performance, hyperparameter sensitivity, and training time
comparisons. Section 5 then discusses the broader implications
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FIGURE 1
Proposed framework is based on the EICM neuron model of the mammalian visual cortex and uses it to construct a reservoir for performing
time-series prediction tasks in chaotic systems.The EICM neuron model used in this framework is inspired by the dynamic characteristics of neurons in
the mammalian primary visual cortex. Its core mechanism aims to more accurately simulate the real behavior of these biological neurons. By
integrating the EICM neuron model (inspired by the V1 area of the primary visual cortex) into the reservoir, the constituent neurons are randomly
interconnected via the weight matrix. (a)Visual pathway of the brain: Visual information from the retina is relayed via the lateral geniculate nucleus to
the primary visual cortex (V1) and then processed in V2, V3, and V4, ultimately yielding patterns in the inferior temporal cortex. (b)Real vs. predicted
time series. (c)ESN-EICM framework incorporates a V1 neuron model into reservoir computing to effectively forecast complex time-series sequences.

of our findings, including the model’s design philosophy and
its robustness against chaotic dynamics. Subsequently, Section 6
outlines the limitations of the current study andpotential avenues for
future research. Finally, Section 7 concludes the paper, summarizing
the main contributions.

2 Related works

2.1 Deep learning-based time series
prediction methods

With the continuous advancement of deep learning techniques,
time series prediction has increasingly shifted toward neural
network-based modeling strategies. The Recurrent Neural Network
(RNN), proposed by Rumelhart et al. in 1986 [1], models sequential
data through recurrent connections, effectively encoding historical
information into hidden states. However, RNNs face challenges
such as gradient vanishing and exploding gradients when handling
long sequences, limiting their ability to capture long-term
dependencies [2].

To address these limitations, Hochreiter and Schmidhuber
introduced the Long Short-Term Memory (LSTM) network in 1997
[2]. LSTMs are specifically designed to retain long-range temporal
information via sophisticated gating mechanisms (input, forget, and

output gates), which control the flowof information through the cell.
This architecture significantly improved the modeling of nonlinear
data and has seen widespread application in diverse fields such as
financial market prediction and climate modeling. Owing to their
capacity to learn complex temporal dependencies and approximate
highly nonlinear functions, LSTMs have also become a prominent
benchmark for prediction chaotic time series, where accurately
capturing long-range, intricate patterns is essential [13]. Indeed,
studies have demonstrated LSTMs’ potential in predicting various
chaotic systems, leveraging their ability to learn from historical data
without explicit knowledge of the system’s underlying equations
[14]. Nevertheless, despite their utility as a powerful baseline, the
application of LSTMs, particularly to sensitive chaotic dynamics,
is not without its difficulties. LSTM training demands substantial
computational resources and a considerable amount of data to
prevent overfitting, which can be a significant constraint in scenarios
where data is scarce or computationally expensive to generate.
They also exhibit high overall computational complexity [3], and
their performance can be sensitive to hyperparameter choices, often
requiring extensive tuning.

In contrast, the Gated Recurrent Unit (GRU) [3] simplifies the
LSTM’s gating mechanism (employing update and reset gates) to
reducemodel complexity and the number of parameters. GRUsoften
demonstrate comparable or, in some cases, superior performance to
LSTMs, especially in scenarios with limited data volume. However,

Frontiers in Physics 03 frontiersin.org93

https://doi.org/10.3389/fphy.2025.1636357
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Wang et al. 10.3389/fphy.2025.1636357

they may still exhibit higher prediction errors when processing
large-scale, highly complex datasets compared to more specialized
architectures [4].

More recently, the Transformer architecture [4], originally
developed for natural language processing, has transcended
traditional recurrent networks through its self-attention
mechanism. This allows for powerful parallel computation and has
led to outstanding performance in large-scale sequence modeling
tasks. However, the standard Transformer’s quadratic complexity
with respect to sequence length and its potential sensitivity to
noise in high-frequency or irregular time series can compromise
its effectiveness for certain types of chaotic data without specific
adaptations [15].

Despite ongoing methodological developments, deep learning
models exhibit inherent limitations that are particularly pertinent to
chaotic time series prediction: 1) Complex architectures generally
lead to increased computational costs for training and inference. 2)
Their “black-box” nature often weakens interpretability, hindering
their deployment in domains requiring decision transparency
or a deeper understanding of the model’s predictive reasoning
(e.g., finance, healthcare, scientific discovery) [5]. For instance,
while WaveNet [6] can model long sequences through dilated
convolutions, it consumes excessive resources and is not easily
parallelized. DeepAR [5], a probabilistic prediction model, may
struggle with very sparse data scenarios sometimes encountered
in chaotic systems. Furthermore, hybrid models like LSTM-FCN
(LSTM Fully Convolutional Network) [16], while effective for
classification, can face efficiency bottlenecks in feature fusion for
regression tasks. Additionally, modifications aimed at reducing
complexity in Transformers, such as the ProbSparse attention
mechanism in the Informer model [15], can often discard critical
subtle temporal patterns vital for chaotic systems, potentially
degrading prediction stability. Beyond these established deep
learning architectures, Spiking Neural Networks (SNNs), which
more closely mimic biological neuronal dynamics through
event-driven spike-based communication, are also being actively
investigated for their potential in efficient temporal processing
and learning, with research exploring aspects such as advanced
training methodologies like adaptive smoothing gradient learning
[17], effective parameter initialization techniques [18], and the role
of noise [19]. SNNs are also finding applications in complex learning
paradigms like brain-inspired reinforcement learning [20], and are
also being developed for energy-efficient applications such as speech
enhancement [21].

2.2 Reservoir computing for time series
prediction

Diverging fromdeep learning approaches, ReservoirComputing
(RC) offers novel insights through nonlinear dynamical systems.
Echo State Networks (ESNs), introduced by Lukoševičius and Jaeger
[7], map inputs into high-dimensional dynamic spaces via randomly
connected reservoirs. Their efficiency stems from training only
the output layer, yet performance critically depends on reservoir
initialization and hyperparameter selection [7]. To overcome these
limitations, researchers proposed innovations: Leaky ESN balances
short-term dynamics and long-term memory through leakage

parameters; Adaptive Elastic ESN optimizes reservoir weights
using sparse Bayesian learning, dynamically adjusting sparsity to
enhance multi-scale feature adaptation, though suffering from high
training complexity and hyperparameter sensitivity [22]. Multi-
reservoir ESN improves complex dynamic capture by parallelizing
multiple reservoirs processing distinct frequency bands, but
increases training complexity without unified state-fusion protocols.
Deep Reservoir Computing [8] extracts hierarchical features via
cascaded reservoirs, achieving excellence in long-period modeling
while risking state inflation and overfitting. Recently, the SEP
framework advanced lossless byte-stream prediction through
semantic-enhanced compression [23], opening new directions for
complex temporal modeling.

Current RC methods predominantly rely on simplistic
neuron models, failing to simulate mammalian brain structures.
This restricts generalization capabilities and robustness–simple
reservoirs perform poorly on complex systems, while intricate
designs induce overfitting and instability. Furthermore, althoughRC
reduces RNN training costs, its fixed critical parameters necessitate
manual tuning, lacking dynamic adaptability [7]. These constraints
motivate the integration of biologically inspired neuronmodels (e.g.,
ICM) with reservoir computing, aiming to enhance chaos sequence
prediction robustness through dynamic weight initialization
strategies. The broader field of neuromorphic computing also
explores various mechanisms for temporal processing in SNNs,
including specialized modules designed to capture temporal
shifts [24], build sequential memory [25], or adapt temporal
characteristics [26].

3 Methods

3.1 Problem statement and challenges

The existing methods face the following challenges:

(1) The performance of reservoir computing models highly
depends on critical hyperparameters such as reservoir size,
spectral radius, and input scaling. These parameters not only
influence dynamic characteristics (e.g., memory capacity
and nonlinear mapping ability) but also directly determine
prediction accuracy. In practical applications, extensive
experiments and manual tuning are required to identify
optimal parameter combinations, leading to significant
time costs. Prediction errors vary widely under different
configurations, particularly for high-dimensional and long-
term sequences, where parameter sensitivity becomes more
pronounced. Some parameter combinations even cause
training divergence [27], [28].

(2) Most reservoir models rely on basic neuron designs that fail to
simulate the complex connectivity and information-processing
mechanisms of mammalian cortical neurons. While this
simplification reduces implementation complexity, it limits
expressive power for tasks involving long-term dependencies
or abrupt feature detection. Traditional ESN models maintain
reasonable accuracy in short-term predictions [29] but suffer
rapid performance degradation with increasing sequence
length and dynamic complexity. Model states decay over time,
and sensitivity to abrupt changes diminishes [22].
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(3) Although expanding reservoir size or introducing multi-layer
structures can enhance model expressiveness and achieve low
training errors, these modifications introduce new challenges.
Increased complexity improves training fit but severely
harms generalization on unseen data. Prediction errors
fluctuate significantly during testing, indicating overfitting
and poor robustness under noise or input distribution
shifts. This highlights that boosting model complexity
alone cannot resolve generalization issues in time series
prediction [8].

3.2 Echo state network based on enhanced
intersecting cortical model framework

3.2.1 Input layer
The input layer transforms raw time series data into

feature representations suitable for subsequent processing.
Given a time series input ut ∈ ℝ

D, where D denotes the input
dimensionality, the input layer performs the following operation
(Equation 1):

St =Win ⋅ [1;ut] (1)

where [1;ut] Adds a bias term to the input vector, and it allows the
linear regression to learn an offset in the predictions in the output
layers; Win ∈ ℝ

N×(D+1) is input weight matrix, randomly initialized
from a normal distribution, scaled by input_scale, and subsequently
its elements are clipped to the range [−2,2]; (N) is Reservoir size.

This approach ensures preliminary nonlinear mapping of input
data while introducing an adjustable scaling factor input_scale to
enhance adaptability to sequences with varying magnitudes [27].

3.2.2 Reservoir layer
The reservoir layer, the core component of ESN-EICM,

comprises neurons governed by the Enhanced Intersecting
Cortical Model (EICM). This design simulates biological feedback
mechanisms and adaptive responses observed in mammalian
cortical neurons.

The internal reservoir connectivity matrix W ∈ ℝN×N is
constructed through the following steps:

• Elements of W are drawn from a standard normal distribution
and then multiplied by the scaling factor w_scale.

• Sparsity is applied: a binary mask is generated where each
element has a probability w_sparsity of being 1 (retaining the
connection). The matrix W is multiplied element-wise by this
mask, effectively setting a fraction of connections to zero. Thus
w_sparsity represents the desired connection density.

• The elements of the resulting sparse matrix are then clipped to
the range [-1,1].

• Finally, the spectral radius of this processed matrix
is normalized to the target spectral_radius value to
help ensure Echo State Property and dynamic stability,
as shown in Equation 2:

W =W ⋅ (
spectral_radius

max(|λi|)
) (2)

The EICM neurons maintain internal states: F (feeding input), E
(dynamic Threshold), and Y (Output term). Before the simulation
begins (at time t = 0), these states are initialized. Specifically, F
and E are initialized with random values drawn from a uniform
distribution over [0, 0.1] and then their elements are clipped to the
range [−1, 1].The initial output statesY are set to zeros. Each neuron
updates its state using the following equations:

Each neuron updates its state using the EICM dynamics, which
are detailed in Section 3.3.

• The feeding input Ft is updated based on its prior value
Ft=1, weighted feedback from other neurons in the reservoir
(W ⋅Yt=1), and the external stimulus St. This Ft is then clipped.

• The neuron’s output Yt is generated using a Sigmoid activation
function. The input to the sigmoid is the clipped difference
between the current Ft and the previous threshold Et=1.
Gaussian noise is added to the sigmoid’s output, and the final
Yt is clipped to [0,1].

• The dynamic threshold Et adapts based on its previous value
Et=1 and themean of the intermediate neuron activations before
noise. This Et is also clipped.

For numerical stability, the primary state variables Ft and Et, as
well as the difference term Ft = Et=1, are clipped to the range [−50,
50] during their update.

The EICM neuron model introduces critical modifications to
the original ICM framework [10]. Feeding input F incorporates W ⋅
Yt−1 to enable cross-neuron interactions. This replaces the original
ICM’s local dynamics f, g, h with parameterized decay rates f,
g, h. Threshold E is updated using the population mean of Y,
diverging from the original ICM’s local update rule. This prevents
over-activation of individual neurons. Gaussian noise with standard
deviation 0.001 is added to Y for regularization and exploration
enhancement. The exploitation of noise as a computational resource
is also a recognized concept in other neuromorphic models
such as SNNs [19]. After an initial period (of length initLen steps,
where neuron states stabilize), the augmented state vectors are
collected for training the output layer. Each augmented state vector is
formed as Φ(Yt,ut) = [1;ut;Yt], where ut is the external input vector
at time t, Yt is the reservoir’s neuron output vector, and 1 represents
a bias term. These augmented vectors form the columns of a matrix
Xcollected = [Φ(YinitLen,uinitLen),…,Φ(YT,uT)]. This Xcollected (referred
to simply as X in the context of the output weight computation
equation) is then used for training the output weights Wout.

3.2.3 Output layer
The output layer trains weights via regularized linear regression

to produce predictions. Its equation is given by Equation 3:

ŷt =W
⊤
out ⋅Φ(Yt,ut) (3)

where Φ(Yt,ut) = [1;ut;Yt] represents the concatenated feature
vector; Wout ∈ ℝ

(D+N+1)×K is output weight matrix, solved using
Tikhonov-regularized least squares (Equation 4):

Wout = (XX
⊤ + λI)−1XY (4)

where the regularization coefficient λ ∈ [1e− 8,1e− 2].
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TABLE 1 ESN-EICM parameters optimization space.

Parameter Symbol Range Function

Reservoir Size res_size [300, 1500] Balances model complexity and computational cost

Input Scale input_scale [0.2, 2.0] Adjusts input mapping strength for scale adaptation

Sparsity w_sparsity [0.1, 0.3] Reduces computation while preserving nonlinearity

Weight Scale w_scale [0.2, 2.0] Controls the strength of internal weight connections

Spectral Radius spectral_radius [0.3, 0.99] Ensures dynamic stability via eigenvalue normalization

Feedback Decay Rate f [0.1, 0.99] Regulates historical input decay with clipping

Threshold Decay Rate g [0.1, 0.99] Prevents threshold oscillation

Excitation Gain h [0.5, 2.0] Amplifies global activation impact for robustness

Nonlinearity Control β [1.0, 10.0] Adjusts sensitivity to input differences

Regularization Coefficient λ 10−8, 10−2 Stabilizes weight inversion and improves generalization

During inference, future states are recursively generated using
historical inputs and reservoir states (Equation 5):

ŷt+1:T = f (Wout, {ut,Yt}) (5)

3.2.4 Bayesian optimization strategy
To address the time-consuming manual hyperparameter tuning

and susceptibility to local optima in traditional reservoir computing
models, we introduce Bayesian Optimization (BO) within the
ESN-EICM framework. BO constructs a surrogate function (e.g.,
Gaussian Process) and an acquisition function to efficiently balance
exploration (sampling unexplored regions of the hyperparameter
space) and exploitation (focusing on promising regions identified
by prior evaluations). This approach rapidly converges to globally
optimal configurations by leveraging information from prior
experiments [30], a significant advancement over simpler strategies
like grid or random search [31]. In our experiments, we employ
the gp_minimize function (based on Gaussian Process Regression)
for iterative parameter search. The optimization objective is defined
as minimizing the mean squared error (MSE) on the validation
set. To guide the optimization, the training data (the first 16,000
steps) was further partitioned: the first 14,000 steps were used to
train the ESN-EICM’s output weights for a given hyperparameter
set, and the subsequent 2,000 steps served as the validation set for
calculating theMSE.Thefinal reported test performance is evaluated
on the held-out test set, which was never seen during training or
optimization. Specify ranges and types (continuous/integers) for
all parameters. Generate candidate hyperparameter combinations
at each iteration and evaluate their MSE performance. Terminate
the search process when the optimization objective (minimizing
MSE) shows no significant improvement over consecutive iterations.
Apply the optimal hyperparameter combination to train and test
the final model. This strategy significantly reduces manual tuning
costs while enhancing generalization capabilities for chaotic system

prediction. The optimization space for ESN-EICM parameters is
detailed in Table 1.

3.3 Enhanced intersecting cortical model

The Enhanced Intersecting Cortical Model (EICM) neuron
model (Figure 2 proposed in this work is built upon the original
Intersecting Cortical Model (ICM) framework. The ICM was first
introduced by Ekblad et al. [10], and was originally designed for
image processing tasks—particularly for extracting features with
indistinct boundaries. It simulates the behavioral characteristics
of neurons in the mammalian primary visual cortex, including
feedback mechanisms and adaptive threshold regulation.

The original ICM neuron model consists of three key state
variables: Feeding input F is a feedback term representing historical
input memory at the current time step; Dynamic threshold E is an
adaptive threshold that modulates neuron activation; Output term
Y is a binary output or activation state.

Its update equations are defined as follows (Equation 6):

{{{{{{{
{{{{{{{
{

Ft = f ⋅ Ft−1 + St

Yt =
{
{
{

1, if Ft > Et
0, otherwise

Et = g ⋅Et−1 + h ⋅Yt

(6)

where feedback decay rate f controls the temporal decay of the
feeding input; threshold decay rate g Prevents threshold oscillation;
Excitation gain h regulates the strength of threshold updates based
on neuron output; S is External stimulus input; output term Y equals
1 when the feeding input exceeds the dynamic threshold, and 0
otherwise.

This model has demonstrated strong edge detection and noise
resistance capabilities in image segmentation applications. However,
its binary output mechanism limits its expressiveness in time series
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FIGURE 2
Enhanced Intersecting cortical model.

modeling. Despite the biologically inspired structure and nonlinear
mapping advantages of ICM, several critical limitations arise when
applying it to time series prediction tasks such as chaotic system
prediction:

(1) The model exhibits a lack of neuron-to-neuron coupling. The
feeding input solely takes into account individual history and
external input, without incorporating interactions across the
reservoir.

(2) The local adaptation mechanism is limited as the dynamic
threshold updates based merely on the current output of
neuron, failing to reflect global network activity. The static
parameter settingswithout range constraints also pose an issue,
causing hyperparameters to remain fixed or loosely defined,
which in turn leads to instability during training.

(3) The binary output limitation of the original ICM restricts its
applicability to continuous-value regression tasks, as it only
employs a binary pulse output of 0 or 1.

These issues significantly impair the ability of ICM to capture
long-term dependencies and abrupt changes in complex nonlinear
systems, resulting in suboptimal performance in chaotic time
series modeling.

To enhance the modeling capability of the original
ICM for time series prediction, we propose the EICM
neuron design. The key improvements are outlined as
follows:

(1) Improved sensitivity to long-range dependencies and
abrupt changes. The original ICM model struggles with
capturing long-term dependencies and detecting sudden
signal transitions due to its local update mechanism. In EICM,
we introduce global coupling through reservoir connectivity
(W ⋅Yt−1) and a mean-driven threshold adaptation strategy
[32], enabling neurons to respond more sensitively to abrupt
changes in chaotic systems [27].

(2) Enhanced Expressiveness for Continuous-Value Prediction.
Unlike the binary pulse output in standard ICM, output termY
EICM employs a continuous Sigmoid activation function. This
modification allows the model to perform regression-based
time series prediction tasks effectively, significantly expanding

its applicability compared to the original image segmentation-
oriented design.
(3) Integration of data-driven adaptation mechanisms. We
redesign the dynamic threshold E update rule by using the
global mean activation of all neurons. This approach improves
generalization and prevents local over-activation or under-
activation, ensuring better consistency across the network
during long-termprediction.This principle of integrating global
network context tomodulate local neuronal behavior is an active
area of research,with concepts like context gatingbeing explored
in SNNs to achieve robust and adaptive learning, such as in
lifelong learning scenarios [33].

(4) During the implementation, we imposed numerical range
constraints on the parameters to enhance training stability,
performed numerical clipping on f, g, h, β, and addedGaussian
noise perturbations with a standard deviation of 0.001
after each activation to prevent overfitting and strengthen
exploration capabilities.

These enhancements address the limitations of ICM in temporal
modeling while preserving its biologically inspired structure. The
EICM neuron model operates on three key state variables: the
feeding input F, the dynamic threshold E, and the output term Y.
To ensure a consistent starting point, these states are initialized
at t = 0 as follows: F and E are populated with random values
drawn from a uniform distribution U(0,0.1), which are then
clipped element-wise to the range [−1, 1]. This small, positive
initialization range was chosen to ensure that neurons start in
a responsive, non-saturated state, close to the linear region of
the sigmoid activation function, which promotes stable initial
dynamics as the reservoir settles. The update dynamics of the EICM
neuron from time t = 1 to t proceed in the following equations
(Equation 7):

{{{{{
{{{{{
{

Ft = f ⋅ Ft−1 + 0.1 ⋅ (W ⋅Yt−1) + St

Yt =
1

1+ e−β(Ft−Et)

Et = g ⋅Et−1 + h ⋅mean(Yt)

(7)

These coupled dynamics allow the EICM neuron to maintain
and process historical information over varying time scales, which
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is crucial for predicting chaotic systems. Effectively modeling such
temporal dependencies is a key challenge in neural computation,
with various architectures exploring mechanisms like dedicated
delay units or gates to manage temporal information flow [34].
The core parameters intuitively govern the neuron’s behavior:
f (Feedback Decay Rate) controls the neuron’s short-term memory
of its own past state; g (Threshold Decay Rate) stabilizes the adaptive
threshold, preventing overly rapid fluctuations; h (Excitation Gain)
determines how strongly the global network activity influences
a neuron’s excitability; and β (Nonlinearity Control) adjusts the
steepness of the sigmoid activation, controlling the neuron’s
sensitivity to the difference between its feeding input and its
threshold. A higher beta leads to a more switch-like, saturating
behavior where the neuron’s output quickly approaches 0 or 1, while
a lower beta results in a smoother, more graded response across a
wider range of inputs.

The enhanced performance of the ESN-EICM stems from
the synergistic interaction between its two primary modifications:
the global coupling feedback (W ⋅Yt−1) and the global mean-
driven adaptive threshold (h ⋅mean(Yt)). These mechanisms work
in concert to regulate the reservoir’s dynamics. The global coupling
term ensures a rich and diverse set of inputs to each neuron,
promoting complex, high-dimensional state representations and
preventing the network from falling into simple, synchronized
activity patterns. Concurrently, the adaptive threshold acts as a
homeostatic, or self-regulating, mechanism. By adjusting each
neuron’s excitability based on the average activity of the entire
reservoir, it prevents runaway activation or quiescence. This
homeostatic regulation keeps the reservoir in a critical “edge of
chaos” regime, where it is most sensitive to input perturbations and
possesses maximal memory capacity, which is crucial for stabilizing
long-term predictions and effectively modeling chaotic dynamics.

3.3.1 Feeding input F
In the design of the feeding input F, we retain the exponential

decay mechanism from the original ICM model, while introducing
a dynamic coupling mechanism through the reservoir connectivity
matrix W to enable each neuron to perceive the overall state
of the network. Where F is first computed and then clipped to
produce F. The coefficient 0.1 serves as a normalization factor for
the reservoir feedback term. S is the external driving stimulus.
This enhancement significantly improves. The updated equation is
defined as (Equation 8):

Ft = f ⋅ Ft−1 + 0.1 ⋅ (W ⋅Yt−1) + St (8)

where f denotes the feedback decay rate, which controls the
temporal decay of the historical feedback term and is constrained
within a reasonable range to improve training stability; W ⋅Yt−1
represents the influence from other neurons in the reservoir on
the current neuron’s feedback input; The coefficient 0.1 serves as a
normalization factor to prevent gradient explosion; S is the external
driving stimulus.

This enhancement significantly improves the suitability of
the model for time series modeling by increasing inter-neuron
informationflowand cross-neuron coordination, thereby enhancing
its nonlinear mapping capability compared to the original ICM
framework.

3.3.2 Output term Y
To improve the expressiveness and robustness of the model, we

replace the binary output mechanism in the original ICM with a
multi-step process yielding a continuous output. First, the input to
the sigmoid, Deltat, is calculated and clipped. The sigmoid function
produces an intermediate output. Gaussian noiseN (0,0.001) is then
added, and finally, the output Y is clipped to the range [0,1] to
maintain stability and a consistent output scale. The updated output
equation is given as (Equation 9):

Yt =
1

1+ e−β(Ft−Et)
+N (0,0.001) (9)

where β controls the steepness of the activation function.The output
values are no longer restricted to binary pulses (0 or 1), but instead
fall within the continuous range [0,1] due to sigmoid activation
and subsequent clipping. The standard deviation of 0.001 was
chosen empirically as a value large enough to provide a regularizing
effect and prevent overfitting, yet small enough not to disrupt the
underlying learned dynamics of the system.

This improvement allows the model to more accurately capture
subtle changes in input dynamics. The addition of small-scale noise
injection further enhances exploration during training and improves
generalization performance, particularly under noisy or uncertain
conditions.

3.3.3 Dynamic threshold E
For the threshold update mechanism, we modify the original

ICM approach which updates based on individual neuron output to
a global mean-driven adaptation strategy. The updated equation is
defined as (Equation 10):

Et = g ⋅Et−1 + h ⋅mean(Yt) (10)

where g is the threshold decay rate that governs the temporal decay
of the dynamic threshold; h determines the gain factor of threshold
adjustment; mean(Yt) represents the average activation across all
neurons at time t.

This global adaptive thresholding strategy enables each neuron
to adjust its response threshold according to the overall network
activity, preventing certain neurons from being overly activated or
suppressed. As a result, the model achieves greater stability and
consistency across the reservoir.

4 Experiment

4.1 Dataset generation

To evaluate the predictive capabilities of the proposed ESN-
EICM, ESN, and LSTM models, we generate three representative
discrete chaotic system: Logistic system, Sine system, and Ricker
system. These datasets are chosen for their distinct dynamic
characteristics:

• Logistic System: A discrete-time chaotic system with strong
nonlinearity.

• Sine System: A smooth periodic system with limited
chaotic behavior.
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• Ricker System: A biological population model exhibiting
complex oscillatory patterns.

4.1.1 Data generation Process
Each dataset is generated using the following equations

(Equations 11–13):

Logistic System: xt+1 = 3.8 ⋅ xt ⋅ (1− xt) (11)

Sine System: xt+1 = 0.9 ⋅ sin(πxt) (12)

Ricker System: xt+1 = xt ⋅ exp(4 ⋅ (1− xt)) ⋅ 0.5 (13)

The initial value x0 is set to 0.1 for Logistic/Sine Maps
and 0.5 for Ricker Map. Each system is iterated for T = 20000
steps. We then construct 3D feature vectors to capture nonlinear
dependencies:

• Logistic System: [xt,x
2
t ,x

3
t ]

• Sine System: [xt, sin (xt),cos (xt)]
• Ricker System: [xt, log (xt + 10

−6),√xt]

4.1.2 Data preprocessing
All datasets undergo the following preprocessing pipeline:

(1) Standardization: Data is standardized using Scikit-learn’s
StandardScaler (Equation 14):

xscaled =
x− μ
σ

(14)

where μ and σ are computed on the training split.

(2) Input-Target alignment: The input-output relationship is
defined as (Equation 15):

inputs = X1:T−1, targets = X2:T (15)

This ensures the model predicts xt+1 given xt.

(3) Train/Test Split: All systems use the same split (Equation 16):

trainLen = 16000, testLen = 2000 (16)

The dataset was split chronologically to ensure strict temporal
ordering and prevent information leakage from the test set into
the training set. The first 16,000 steps were used for training and
hyperparameter optimization, while the subsequent 2,000 stepswere
reserved exclusively for final testing. This partitioning is consistent
across all systems to avoid introducing bias.

4.1.3 Dataset properties
A summary of the dataset configurations and properties is

provided in Table 2.

TABLE 2 Dataset configurations and properties.

Dataset Length Features Train/Test split

Logistic System 20,000 3 16,000/2000

Sine System 20,000 3 16,000/2000

Ricker System 20,000 3 16,000/2000

4.2 Evaluation metrics

In our experiments, we compute the following evaluation
metrics to quantify prediction performance. Let yi denote the
ground truth value and ŷi the predicted value at time i, where n =
2000 is the number of test samples.

4.2.1 Mean squared error (MSE)
The Mean Squared Error (MSE) measures the average squared

difference between predicted and actual values. It’s a commonmetric
for regression problems, penalizing larger errors more heavily. The
equation is as follows (Equation 17):

MSE = 1
n

n

∑
i=1
(yi − ŷi)

2 (17)

4.2.2 Root mean squared error (RMSE)
The Root Mean Squared Error (RMSE) is simply the square root

of the MSE. It reflects the standard deviation of prediction errors
and is in the same units as the target variable, making it more
interpretable than MSE. The equation is as follows (Equation 18):

RMSE = √MSE (18)

4.2.3 Mean absolute error (MAE)
The Mean Absolute Error (MAE) measures the average absolute

difference between predicted and actual values. Unlike MSE, MAE
gives equal weight to all errors, making it more robust to outliers.
The equation is as follows (Equation 19):

MAE = 1
n

n

∑
i=1
|yi − ŷi| (19)

4.2.4 Coefficient of determination (R2)
The Coefficient of Determination (R2) quantifies the proportion

of variance in the dependent variable that can be predicted from the
independent variables. A value closer to 1 indicates that the model
explains a larger proportion of the variance in the ground truth
values. The equation is as follows (Equation 20):

R2 = 1−
∑n

i=1
(yi − ŷi)

2

∑n
i=1
(yi − ̄y)

2
(20)

4.2.5 Explained variance score (EVS)
The Explained Variance Score (EVS) evaluates how well the

model captures the variance in the target variable. It’s similar to R2
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but can bemore informative in cases where themodel has a bias.The
equation is as follows (Equation 21):

EVS = 1−
Var(yi − ŷi)

Var(yi)
(21)

4.2.6 Max error (ME)
The Max Error (ME) reports the maximum residual

error between any predicted and actual value. This metric
highlights the worst-case prediction scenario. The equation is
as follows (Equation 22):

ME = max
i=1,…,n
|yi − ŷi| (22)

4.3 Model configuration

This section details the configuration of the models employed
in our comparative study: the proposed ESN-EICM, the baseline
ESN, and the LSTM network. For the ESN-EICM and ESN models,
hyperparameters were primarily determined through Bayesian
Optimization, aiming to minimize Mean Squared Error on a
validation set. For the LSTM model, key architectural and training
hyperparameters were also optimized using Bayesian Optimization,
while others were set based on common practices in time series
forecasting. The specific search ranges and fixed values for each
model are presented in the subsequent subsections. All models were
trained and evaluated on the datasets described in Section 2 to
ensure fair comparison.

4.3.1 ESN-EICM model configuration
Table 3 presents the key configuration parameters for the ESN-

EICM model determined through Bayesian optimization in our
experiments. A washout period initLen of 1000 steps was used for
all experiments. This length was determined through preliminary
observations to be sufficiently long to allow the reservoir’s internal
state to become independent of its initial zero state and synchronize
with the dynamics of the input signal across the range of tested
hyperparameters.

4.3.2 ESN model configuration
Table 4 presents the key configuration parameters for the

Echo State Network (ESN) model determined through Bayesian
optimization in our experiments.

4.3.3 LSTM model configuration
Table 5 outlines the key configuration parameters for the Long

Short-Term Memory (LSTM) network model. The hyperparameters
were optimized usingBayesian optimization,while other parameters
were set based on common practices.

4.4 Hyperparameter optimization results

To ensure optimal performance, critical hyperparameters for
both the ESN-EICM and the baseline ESN models were determined
using Bayesian Optimization. This process, guided by minimizing

TABLE 3 ESN-EICMmodel Configuration parameters.

Parameter Description Search range

res_size Reservoir Size [300, 1500]

input_scale Input Scale [0.2, 2.0]

w_sparsity Sparsity [0.1, 0.3]

w_scale Weight Scale [0.2, 2.0]

spectral_radius Spectral Radius [0.3, 0.99]

f Feedback Decay Rate [0.1, 0.99]

g Threshold Decay Rate [0.1, 0.99]

h Excitation Gain [0.5, 2.0]

β Nonlinearity Control [1.0, 10.0]

λ Regularization Coefficient (λ) 10−8, 10−2

n_calls Total Bayesian Optimization
Iterations

50

initLen Washout Period Length 1000

trainLen Training Data Length 16,000

testLen Test Data Length 2000

TABLE 4 ESN model Configuration parameters.

Parameter Description Search range

res_size Reservoir Size [300, 700]

input_scale Input Scale [0.5, 1.0]

w_sparsity Sparsity [0.1, 0.3]

w_scale Weight Scale [0.5, 1.0]

λ Regularization Coefficient (λ) 10−8, 10−3

n_calls Total Bayesian Optimization
Iterations

50

initLen Washout Period Length 1000

trainLen Training Data Length 16,000

testLen Test Data Length 2000

Mean Squared Error on a validation set as described in Section 3,
yielded task-specific parameter configurations. The best-found
parameters for each model across the different chaotic systems and
prediction horizons are presented below.

4.4.1 ESN-EICM best parameters
The optimal hyperparameters identified for the proposed

ESN-EICM model through Bayesian Optimization are
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TABLE 5 LSTMmodel Configuration parameters.

Parameter Description Search range/Value

hidden_size Number of units in LSTM hidden layers [128, 256]

num_layers Number of LSTM layers [1, 6]

lr Learning rate for Adam optimizer 10−5, 10−1

batch_size Number of samples per gradient update [128, 256]

dropout Dropout rate for LSTM layers [0.1, 0.4]

sequence_length Number of time steps in input sequences [5, 20]

epochs Number of training epochs per optimization trial/final model 70

clip_grad_norm Gradient clipping threshold 1.0

n_calls Total Bayesian Optimization function evaluations 20

n_initial_points Initial random points for Bayesian Optimization 10

trainLen Training data length (original time steps before sequencing) 16,000

testLen Test data length (original time steps before sequencing) 2000

input_size Number of features per time step (data-dependent) 3

output_size Number of features to predict (data-dependent) 3

summarized in Table 6. These parameters cover aspects of reservoir
architecture, input processing, EICM neuron dynamics, and output
regularization.

4.4.2 ESN best parameters
For the baseline ESN model, the key hyperparameters tuned via

BayesianOptimization are detailed inTable 7.This allows for a direct
comparison with the ESN-EICM model under similarly optimized
conditions.

4.4.3 LSTM best parameters
The Long Short-Term Memory (LSTM) network, serving

as another important baseline, also underwent hyperparameter
optimization using Bayesian Optimization. Key architectural and
training parameters were tuned to achieve its best performance
on each specific task. The optimized values for parameters
such as hidden size, number of layers, learning rate, batch size,
dropout rate, and input sequence length are presented in Table 8.
These results reflect the optimal configurations found for
the LSTM model across the different chaotic systems and
prediction steps.

4.5 Hyperparameter sensitivity analysis

AS shown in Figure 3 (Logistic System), Figure 4 (Sine
System), and Figure 5 (Ricker System), this section presents the
hyperparameter sensitivity analysis for the ESN-EICM model. The
analysis investigates the Mean Squared Error (MSE) response to
variations in individual hyperparameters, while other parameters

are held at their globally optimized values (from Table 6, for one-
step prediction). This provides insights into each parameter’s
influence on model performance and highlights the complexity
of the hyperparameter landscape. The vertical dashed line in
each plot marks the globally optimal value found by Bayesian
Optimization.

For the Logistic system, several parameters show high
sensitivity. The res_size has a local minimum around the
globally optimized value of 1116. Both input_scale and w_

sparsity display V-shaped curves, with their local minima
being slightly lower than their respective globally optimized
values (marked at 1.01 and 0.10). The spectral_radius is
critical, with its lowest MSE point aligning perfectly with the
global optimum of 0.69. The EICM neuron parameters also
show distinct patterns: f has a local minimum near 0.35, while
its global optimum is 0.44. Both g and h exhibit U-shaped
curves. Notably, beta is extremely sensitive, with its MSE
sharply decreasing to a minimum that coincides with its global
optimum of 3.17.

In the Sine system, the parameter sensitivities differ. res_
size shows that larger reservoirs in the tested range yield
better performance, with the global optimum at 569. For
w_scale, a clear trend of decreasing MSE with smaller
values is observed. Both spectral_radius and the neuron
parameter f are highly sensitive, with sharp V-shaped curves
where the local minima are very close to their global optima
(0.65 and 0.10, respectively). The parameters g and h have
broader optimal regions. For beta, the MSE is lowest at
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TABLE 6 Best ESN-EICM parameters for different chaotic systems and prediction steps.

Logistic system

Parameter One-step Two-step Three-step Four-step

res_size 1116.0000 1443.0000 1444.0000 1409.0000

input_scale 1.0109 1.6158 1.9879 1.7625

w_sparsity 0.1027 0.1297 0.1533 0.2525

w_scale 1.8960 1.5453 1.9671 0.6222

spectral_radius 0.6887 0.7746 0.8073 0.5201

f 0.4430 0.4703 0.1002 0.1525

g 0.1142 0.6869 0.1031 0.7266

h 0.8463 1.4669 0.5000 0.5845

β 3.1692 2.0944 6.0793 4.2441

λ 0.0068 0.0033 0.0081 0.0015

Sine System

Parameter One-step Two-step Three-step Four-step

res_size 569.0000 473.0000 1500.0000 1284.0000

input_scale 0.4049 1.8084 1.5526 1.2281

w_sparsity 0.1258 0.1143 0.2953 0.3000

w_scale 1.1507 1.1761 0.8319 0.9361

spectral_radius 0.6493 0.6754 0.3000 0.3223

f 0.1000 0.1908 0.3129 0.2806

g 0.6548 0.6750 0.9900 0.5462

h 2.0000 1.8889 0.5000 1.5949

β 8.0238 7.9411 4.2171 5.3005

λ 0.0006 0.0095 0.0026 0.0027

Ricker System

Parameter One-step Two-step Three-step Four-step

res_size 1058.0000 473.0000 1483.0000 1500.0000

input_scale 2.0000 1.8084 1.7422 1.2621

w_sparsity 0.2619 0.1143 0.2525 0.1926

w_scale 0.2000 1.1761 0.7928 1.5747

spectral_radius 0.7054 0.6754 0.4555 0.3000

f 0.1000 0.1908 0.1229 0.1000

g 0.1000 0.6750 0.6453 0.4710

(Continued on the following page)
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TABLE 6 (Continued) Best ESN-EICM parameters for different chaotic systems and prediction steps.

Ricker System

Parameter One-step Two-step Three-step Four-step

h 0.9920 1.8889 0.6528 0.5000

β 2.1395 7.9411 4.4978 9.7544

λ 0.0000 0.0095 0.0021 0.0021

TABLE 7 Best ESN parameters for different chaotic systems and prediction steps.

Logistic system

Parameter One-step Two-step Three-step Four-step

res_size 776.0000 1000.0000 500.0000 500.0000

input_scale 1.4807 2.0000 1.8349 1.4689

w_sparsity 0.1000 0.1000 0.1000 0.1000

w_scale 0.2000 0.2000 0.2362 0.2000

λ 0.0006 0.0000 0.0100 0.0100

Sine System

Parameter One-step Two-step Three-step Four-step

res_size 512.0000 568.0000 500.0000 500.0000

input_scale 1.2216 1.6574 1.7777 1.8088

w_sparsity 0.1274 0.1000 0.1709 0.1000

w_scale 0.2000 0.2535 0.2000 0.2595

λ 0.0005 0.0003 0.0100 0.0000

Ricker System

Parameter One-step Two-step Three-step Four-step

res_size 500.0000 500.0000 559.0000 500.0000

input_scale 1.6450 1.8691 2.0000 1.6485

w_sparsity 0.1000 0.1000 0.1000 0.1000

w_scale 0.2000 0.2000 0.2000 0.2000

λ 0.0033 0.0100 0.0100 0.0100

the higher end of the tested range, aligning with the global
optimum of 8.02.

The Ricker system presents another unique sensitivity profile.
Here, res_size has a relatively flat response curve, suggesting
less sensitivity within this range compared to other systems. w_
scale is highly critical, with a sharp V-shaped minimum. The
spectral_radius plot shows that the global optimum of 0.71
is located on the slope of a broader minimum. For the EICM neuron

parameters, f shows a preference for smaller values. The parameter
h is highly sensitive, with a distinct local minimum. Finally, beta
again demonstrates high sensitivity, with its local minimumnear the
globally optimized value of 2.14.

Across all three systems, parameters defining the EICMneuron’s
core dynamics, such as f and beta, along with reservoir properties
like spectral_radius and w_scale, consistently emerge as
highly influential. Small deviations from their optimal values can
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TABLE 8 Best LSTM parameters for different chaotic systems and prediction steps.

Logistic system

Parameter One-step Two-step Three-step Four-step

hidden_size 174.0000 201.0000 216.0000 201.0000

num_layers 1.0000 1.0000 1.0000 1.0000

lr 0.0140 0.0234 0.0114 0.0234

batch_size 133.0000 150.0000 71.0000 150.0000

dropout 0.1461 0.2185 0.3184 0.2185

sequence_length 16.0000 19.0000 6.0000 19.0000

Sine System

Parameter One-step Two-step Three-step Four-step

hidden_size 136.0000 245.0000 201.0000 201.0000

num_layers 1.0000 1.0000 1.0000 1.0000

lr 0.0001 0.0104 0.0234 0.0234

batch_size 128.0000 229.0000 150.0000 150.0000

dropout 0.3747 0.2605 0.2185 0.2185

sequence_length 10.0000 6.0000 19.0000 19.0000

Ricker system

Parameter One-step Two-step Three-step Four-step

hidden_size 201.0000 128.0000 194.0000 244.0000

num_layers 1.0000 1.0000 1.0000 1.0000

lr 0.0234 0.0001 0.0048 0.0001

batch_size 186.0000 83.0000 64.0000 143.0000

dropout 0.2185 0.3453 0.3323 0.1000

sequence_length 19.0000 12.0000 19.0000 15.0000

lead to a significant increase inMSE, indicating that precise tuning of
these parameters is crucial. In contrast, other parameters like res_
size can exhibit broader optimal regions or system-dependent
behaviors.

The analysis also reveals that the optimal hyperparameter
configurations are distinct for each chaotic system, underscoring
the necessity of system-specific optimization. While general trends
can be observed, the precise values that minimize MSE vary
considerably, highlighting the unique dynamic complexity of each
system. This systematic analysis is fundamental for understanding
the ESN-EICM’s behavior and validating the configurations found
by our optimization strategy.

It is noteworthy that the optimal parameter values marked
by the vertical dashed lines (representing the global optimum

found by Bayesian Optimization) do not always coincide with the
minimum MSE in each one-dimensional sensitivity plot. This is
an expected and insightful result. Bayesian Optimization finds the
best set of hyperparameters in a high-dimensional space where all
parameters interact. In contrast, our sensitivity analysis examines
one-dimensional slices of this space by varying a single parameter
while keeping others fixed at their global optimal values. The
discrepancy between the global optimum and the local minima in
these plots highlights the strong coupling and interdependencies
among the hyperparameters. It demonstrates that the ideal value
for one parameter is contingent on the values of others, reinforcing
the necessity of using a multi-dimensional optimization strategy
like Bayesian Optimization rather than relying on one-at-a-time
parameter tuning.
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FIGURE 3
Parameter sensitivity analysis of ESN-EICM in logistic system.

FIGURE 4
Parameter sensitivity analysis of ESN-EICM in sine system.

4.6 Prediction performance evaluation

4.6.1 One-step prediction performance
Theefficacy of the ESN-EICMmodel for one-step predictionwas

rigorously evaluated on three canonical chaotic systems: the Logistic
system, the Sine system, and the Ricker system. Its performance was
benchmarked against both traditional ESN and LSTM architectures.
The comprehensive results, encompassing both quantitative
metrics and qualitative visualizations, consistently underscore

the superior predictive accuracy and robustness of the proposed
ESN-EICM.

Quantitative analysis, detailed in Table 9, reveals that ESN-
EICM generally achieves lower error metrics compared to ESN
and LSTM. For instance, in predicting the Logistic system, ESN-
EICM recorded a MSE of 5.3281× 10−8 and a RMSE of 2.3083×
10−4. This trend of superior accuracy was also observed for the
Sine system, with ESN-EICM yielding an MSE of 2.5966× 10−8

and an RMSE of 1.6114× 10−4. These figures are notably lower
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TABLE 9 One-step prediction performance by different chaotic system.

Logistic system

Metric ESN-EICM ESN LSTM

MSE 5.3281× 10–8 1.9481× 10–7 2.1895× 10–7

RMSE 2.3083× 10–4 4.4137× 10–4 4.6792× 10–4

MAE 1.1417× 10–4 1.0409× 10–4 3.5956× 10–4

R2 0.9999 0.9999 0.9999

Expl. Var 0.9999 0.9999 0.9999

Max Error 6.6633× 10–3 1.8522× 10–2 1.3392× 10–3

Sine System

Metric ESN-EICM ESN LSTM

MSE 2.5966× 10–8 2.8248× 10–8 1.9621× 10–7

RMSE 1.6114× 10–4 1.6807× 10–4 4.4296× 10–4

MAE 7.6498e-05 5.6082× 10–5 3.4348e-04

R2 0.9999 0.9999 0.9999

Expl. Var 0.9999 0.9999 0.9999

Max Error 5.3483× 10–3 6.4665× 10–3 1.4344× 10–3

Ricker System

Metric ESN-EICM ESN LSTM

MSE 1.9910e-07 4.2969× 10–6 3.5563e-05

RMSE 4.4621e-04 2.0729× 10–3 5.9635e-03

MAE 3.0509e-04 9.7816× 10–4 5.0354e-03

R2 0.9999 0.9999 0.9999

Expl. Var 0.9999 0.9999 0.9999

Max Error 1.0754× 10–2 6.1586× 10–2 1.6457× 10–2

than those of the benchmark models, indicating a more precise
alignment between ESN-EICM’s predictions and the ground truth.
Even for the Ricker system, the MSE of ESN-EICM of 1.9910× 10−7

demonstrated a substantial improvement over the traditional ESN
(4.2969× 10−6). Furthermore, ESN-EICM exhibited competitive
MAE values across all systems, achieving the lowest MAE for the
Sine map (7.6498× 10−5) and demonstrating MAEs comparable to
or better than ESN and LSTM for the Logistic and Ricker system.
While all models displayed high R2 and Explained Variance scores,
ESN-EICM distinguished itself by coupling this high explanatory
power with consistently lower prediction errors and well-contained
Maximum Errors, as seen for the Logistic (6.6633× 10−3) and Sine
system (5.3483× 10−3), highlighting its predictive stability.

Thequalitative visualizations further reinforce these quantitative
findings. The one-step prediction trajectories, illustrated in Figure 6

(assuming this figure shows predicted vs. true time series plots),
demonstrate the ESN-EICM’s capability to closely track the actual
system dynamics for the Logistic system (a), Sine map (b), and
Ricker model (c), even through complex behavioral regimes. The
temporal evolution of absolute prediction error, as depicted in
Figure 7, confirms the stability of ESN-EICM’s predictions, with
errors remaining at consistently low levels (typically on the order of
10−3 or less) without significant accumulation or divergence for all
three systems. Moreover, the phase space reconstructions presented
in Figure 8 show a remarkable congruence between the attractors
generated from ESN-EICM’s predictions (red markers) and those of
the true systems (blue markers). The model accurately reproduces
the characteristic geometries of Logistic map’s phase space plot
(a), the Sine map’s phase space plot (b), and the Ricker model’s
phase space plot (c), indicating to its proficiency in capturing the
underlying nonlinear dynamics. Finally, the scatter plots in Figure 9,
which compare predicted values against true values, show data
points tightly clustered around the ideal y = x diagonal for all
systems (a, b, c). This high degree of linearity and consistency
provides direct visual evidence of ESN-EICM’s superior predictive
precision.

In conclusion, the combined evidence from quantitative metrics
and qualitative visualizations strongly supports the enhanced
performance of the ESN-EICM model in one-step prediction
tasks for chaotic time series. It consistently outperforms or
matches established models like ESN and LSTM in accuracy
and robustness, while also demonstrating a strong capability
to learn and replicate the intricate dynamics inherent in these
complex systems. These results firmly establish ESN-EICM
as a promising and effective tool for nonlinear time series
prediction.

4.6.2 Multi-step prediction performance
To further assess the predictive capabilities of the proposed ESN-

EICM model, comprehensive multi-step prediction experiments
were conducted for two-step, three-step, and four-step ahead
forecasts. These predictions were performed on the Logistic, Sine,
and Ricker chaotic systems, and the performance of ESN-EICM
was benchmarked against standard ESN and LSTM models. The
quantitative results for these multi-step predictions are detailed in
Table 10 (two-step), Table 11 (three-step), and Table 12 (four-step).
Visualizations of the ESN-EICM’s multi-step prediction trajectories,
corresponding absolute errors, phase space reconstructions, and
scatter plots of predicted versus true values are presented in
Figures 10–13, respectively.

Visually, Figures 10–13 collectively demonstrate the robust
performance of the ESN-EICM model in multi-step prediction.
Figure 10 shows that the predicted trajectories for all three chaotic
systems ((a) Logistic, (b) Sine, (c) Ricker) closely follow the true
system dynamics even over extended horizons. The absolute errors,
as depicted in Figure 11, remain consistently low and bounded over
the 2000 time steps, indicating the stability and accuracy of the
ESN-EICM. The fidelity of the model in capturing the underlying
dynamics of these chaotic systems is further highlighted by the phase
space reconstructions in Figure 12, where the predicted attractors
exhibit excellent agreement with the true attractors. Moreover,
the scatter plots in Figure 13 show data points tightly clustered
around the ideal diagonal line (Predicted Value = True Value),
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FIGURE 5
Parameter sensitivity analysis of ESN-EICM in ricker system.

FIGURE 6
ESN-EICM One-step Prediction in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the Ricker system.

FIGURE 7
ESN-EICM One-step Prediction Absolute Error Over Time in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the
Ricker system.
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FIGURE 8
ESN-EICM One-step Prediction Phase Space Reconstruction in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the
Ricker system.

FIGURE 9
ESN-EICM One-step Prediction Accuracy: Predicted vs. True Values in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c)
the Ricker system.

underscoring the high point-wise accuracy of the ESN-EICM in
multi-step prediction scenarios.

Quantitatively, the ESN-EICM model consistently outperforms
both ESN and LSTM across nearly all metrics and prediction
horizons for the three chaotic systems.

For the Logistic system, in 2-step predictions (Table 10), ESN-
EICM achieved an MSE of 3.3125× 10−7, markedly lower than
ESN (7.0259× 10−7) and LSTM (1.3184× 10−5). This superiority
in terms of MSE, RMSE, and MAE was maintained and often
accentuated as the prediction horizon increased. For instance, in
4-step predictions (Table 12), ESN-EICM’s MSE was 5.2171× 10−7

and MAE was 4.8916× 10−5, significantly better than ESN (MSE:
1.8035× 10−6, MAE: 8.2818× 10−4) and LSTM (MSE: 4.8622× 10−6,
MAE: 1.5299× 10−3).

In the case of the Sine system, ESN-EICM also demonstrated
consistently lower MSE, RMSE, and MAE. For 2-step predictions
(Table 10), ESN-EICM’s MSE (6.6947× 10−8) was superior to both
ESN (6.6527× 10−7) and LSTM (1.1673× 10−7). While LSTM
occasionally yielded a lower Max Error (e.g., 9.7656× 10−4 for 2-
steps), ESN-EICM’s average error metrics remained dominant. This
trend persisted for 4-step predictions (Table 12), where ESN-EICM’s
MAE of 6.3992× 10−5 was substantially lower than ESN’s 5.6653×
10−4 and LSTM’s 7.1513× 10−4.

The Ricker system results particularly highlight the strength of
the ESN-EICM. For 2-step predictions (Table 10), ESN-EICM’s
MSE (3.3589× 10−7) was already an order of magnitude better
than LSTM (7.2480× 10−6) and significantly better than ESN
(2.1188× 10−6). This advantage became even more pronounced

at longer horizons. For 3-step predictions (Table 11), ESN-
EICM achieved an exceptionally low MSE of 4.2735× 10−8,
two orders of magnitude smaller than ESN (7.9467× 10−6) and
LSTM (1.0065× 10−5). It also recorded the lowest Max Error
(8.4453× 10−3) in this scenario. This pattern continued for 4-step
predictions (Table 12), where ESN-EICM’s MSE (1.5326× 10−7)
and Max Error (1.5122× 10−2) were notably superior to the
comparator models.

Across all tested scenarios, R2 and Explained Variance values
were consistently close to 0.9999 for all models, indicating
a good general fit. However, the significant differences in
MSE, RMSE, and MAE clearly underscore the enhanced
precision and robustness of the ESN-EICM model for multi-
step chaotic time series prediction. The sustained low error
levels, even as the prediction horizon extends, suggest
that ESN-EICM effectively captures the complex underlying
dynamics and is less prone to error accumulation compared
to standard ESN and LSTM approaches in these multi-step
prediction tasks.

4.7 Training time comparison

In this section, we describe the measurement of the execution
times of the threemodels for the same prediction task.The computer
configuration is as follows:

• RAM: 32.0 GB (31.2 GB available)
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TABLE 10 Two-step prediction performance metrics by different
chaotic systems.

Logistic system

Metric ESN-EICM ESN LSTM

MSE 3.3125× 10–7 7.0259× 10–7 1.3184× 10–5

RMSE 5.7554× 10–4 8.3821× 10–4 3.6310× 10–3

MAE 1.5960× 10–4 4.3627× 10–4 2.7226× 10–3

R2 0.9999 0.9999 0.9998

Expl. Var 0.9999 0.9999 0.9999

Max Error 1.7849× 10–2 7.7281× 10–3 9.5704× 10–3

Sine System

Metric ESN-EICM ESN LSTM

MSE 6.6947× 10–8 6.6527× 10–7 1.1673× 10–7

RMSE 2.5874× 10–4 8.1564× 10–4 3.4165× 10–4

MAE 1.2735× 10–4 4.6493× 10–4 2.7756× 10–4

R2 0.9999 0.9999 0.9999

Expl. Var 0.9999 0.9999 0.9999

Max Error 4.6815× 10–3 4.7926× 10–3 9.7656× 10–4

Ricker System

Metric ESN-EICM ESN LSTM

MSE 3.3589× 10–7 2.1188× 10–6 7.2480× 10–6

RMSE 5.7956× 10–4 1.4556× 10–3 2.6922× 10–3

MAE 1.1633e-04 9.0384× 10–4 2.1195e-03

R2 0.9999 0.9999 0.9999

Expl. Var 0.9999 0.9999 0.9999

Max Error 2.2803× 10–2 1.3637× 10–2 1.6870× 10–2

• Processor: AMD Ryzen 9 7945HX with Radeon
Graphics, 2.50 GHz

• System: 64-bit operating system, x64-based processor
• Operating System: Windows 11 Pro, version 24H2
• Graphics Card: NVIDIAGeForce RTX 4060 Laptop GPU, 8 GB

GPU VRAM, NVIDIA
• Python: 3.12.0

• NumPy version: 1.26.4
• SciPy version: 1.14.1
• scikit-learn version: 1.5.2
• Matplotlib version: 3.9.2
• scikit-optimize version: 0.10.2
• tqdm version: 4.66.5

TABLE 11 Three-step prediction performance metrics by different
chaotic systems.

Logistic system

Metric ESN-EICM ESN LSTM

MSE 1.6931× 10–7 1.2063× 10–6 5.9313× 10–6

RMSE 4.1147× 10–4 1.0983× 10–3 2.4354× 10–3

MAE 4.5822e× 10–5 7.2919× 10–4 1.8768× 10–3

R2 0.9999 0.9999 0.9999

Expl. Var 0.9999 0.9999 0.9999

Max Error 1.4288× 10–2 8.0371× 10–3 6.5480× 10–3

Sine System

Metric ESN-EICM ESN LSTM

MSE 1.3017× 10–7 6.0365× 10–7 3.4272× 10–7

RMSE 3.6078× 10–4 7.7695× 10–4 5.8542× 10–4

MAE 2.0243× 10–4 5.3188× 10–4 4.2670× 10–4

R2 0.9999 0.9999 0.9999

Expl. Var 0.9999 0.9999 0.9999

Max Error 3.2730× 10–3 4.2700× 10–3 2.8723× 10–3

Ricker System

Metric ESN-EICM ESN LSTM

MSE 4.2735× 10–8 7.9467× 10–6 1.0065× 10–5

RMSE 2.0672× 10–4 2.8190× 10–3 3.1726× 10–3

MAE 4.7811× 10–5 1.4569× 10–3 2.1353× 10–3

R2 0.9999 0.9999 0.9999

Expl. Var 0.9999 0.9999 0.9999

Max Error 8.4453× 10–3 3.2162× 10–2 1.9023× 10–2

• torch version: 2.7.0
• Pandas version: 2.2.3

The computational efficiency of the proposed ESN-EICMmodel
was evaluated against traditional ESN and LSTM architectures,
with total experiment times recorded in Table 13. A key advantage
of reservoir computing models, including ESN and our ESN-
EICM, lies in their training efficiency compared to deep learning
models like LSTM. This is primarily because the reservoir’s internal
weights are fixed after initialization, and only the output weights
are trained, typically through a computationally inexpensive linear
regression. In contrast, LSTMs require iterative backpropagation
through time and gradient descent over many epochs (70 epochs
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TABLE 12 Four-step prediction performance metrics by different
chaotic systems.

Logistic system

Metric ESN-EICM ESN LSTM

MSE 5.2171× 10–7 1.8035× 10–6 4.8622× 10–6

RMSE 7.2229× 10–4 1.3429× 10–3 2.2050× 10–3

MAE 4.8916× 10–5 8.2818× 10–4 1.5299× 10–3

R2 0.9999 0.9999 0.9999

Expl. Var 0.9999 0.9999 0.9999

Max Error 2.4936× 10–2 1.4678× 10–2 1.2481× 10–2

Sine System

Metric ESN-EICM ESN LSTM

MSE 4.4554× 10-7 8.6754× 10–7 1.0796× 10-6

RMSE 6.6748× 10–4 9.3142× 10–4 1.0390× 10–3

MAE 6.3992× 10–5 5.6653× 10–4 7.1513× 10–4

R2 0.9999 0.9999 0.9999

Expl. Var 0.9999 0.9999 0.9999

Max Error 2.3050× 10–2 7.2835× 10–3 6.6527× 10–3

Ricker System

Metric ESN-EICM ESN LSTM

MSE 1.5326× 10–7 2.3259× 10–5 2.2010× 10–5

RMSE 3.9148× 10–4 4.8227× 10–3 4.6914× 10–3

MAE 9.0672× 10–5 2.4204× 10–3 2.6845× 10–3

R2 0.9999 0.9999 0.9999

Expl. Var 0.9999 0.9999 0.9999

Max Error 1.5122× 10–2 5.8588× 10–2 5.1520× 10–2

in our setup, as per 4.3.3), leading to significantly longer training
durations. This fundamental difference is evident across all
prediction steps and chaotic systems, where both ESN-EICM and
ESN consistently outperform LSTM in terms of speed, often by an
order of magnitude. For instance, in one-step prediction for the
Logistic system, ESN-EICM took 424.3 s, ESN took 398.8 s, while
LSTM required 1649.0 s. This pattern persists and often magnifies
in multi-step scenarios; for example, in four-step prediction
for the Ricker system, ESN-EICM completed in 570.5 s, ESN
in 4006.0 s, and LSTM in 2092.1 s.

When comparing ESN-EICM specifically with the standard
ESN, the time performance presents a nuanced but ultimately
favorable picture for ESN-EICM, particularly as prediction horizons

extend. In one-step and two-step predictions, the ESN-EICM’s
runtime is generally comparable to that of the standard ESN,
occasionally slightly higher.Thismarginal increase can be attributed
to the more complex neuron dynamics within the ESN-EICM
reservoir (as described in Section 3), which involve updates for
feeding input F, output Y with sigmoid activation and noise,
and a dynamic threshold E based on mean population activity.
These richer per-neuron computations, while enhancing predictive
power, incur a slight overhead per time step during reservoir
state generation compared to the simpler activation function of a
traditional ESN.

However, a significant advantage for ESN-EICM emerges in
longer multi-step predictions, particularly at the four-step horizon.
Here, ESN-EICM demonstrates substantially better time efficiency
than the standard ESN. For example, in four-step prediction for
the Logistic system, ESN-EICM took only 517.6 s, whereas ESN’s
time escalated to 3183.1 s. Similar substantial speed-ups for ESN-
EICM over ESNwere observed for the Sine (526.5 s vs. 2136.5 s) and
Ricker (570.5 s vs. 4006.0 s) systems at four steps. This pronounced
improvement in efficiency for ESN-EICM in more challenging,
longer-term prediction tasks can be directly attributed to how
its enhanced stability impacts the Bayesian Optimization process.
The inherent stability of the EICM neurons—stemming from
features like adaptive thresholds and bounded activations—creates a
“smoother” hyperparameter landscape for the optimizer to explore.
This means that fewer parameter combinations lead to divergent
or numerically unstable models, which would otherwise result in
extremely high error values (penalties) and waste optimization calls.
For the standard ESN, finding a stable parameter set for long-term
iterative prediction can be more difficult, leading the optimizer
to spend more time evaluating poorly performing or unstable
regions. In contrast, the ESN-EICM’s robustness means that a larger
proportion of the hyperparameter space yields valid, stable models,
allowing the Bayesian optimizer to more quickly identify near-
optimal configurations in fewer iterations. Therefore, the “faster
convergence” mentioned in the abstract is not about the speed of
a single training run, but the efficiency of the entire hyperparameter
search process, which is significantly accelerated by the model’s
intrinsic stability.

5 Discussion

5.1 On model complexity and the design
philosophy

A central tenet of traditional ESNs is the use of a simple, fixed
reservoir to reduce training complexity. Our ESN-EICM model,
by incorporating a more complex neuron, appears to diverge from
this principle. This is a deliberate design choice motivated by the
specific challenge of chaotic system prediction. Instead of seeking
complexity through architectural modifications like deep or multi-
reservoir structures, we pursue “internal complexification” at the
neuronal level. The rationale is that the rich, adaptive dynamics
of the EICM neuron—with its coupled feedback and adaptive
thresholds—can generate a more expressive variety of temporal
patterns. This allows a reservoir of a given size to map the input
into a higher-quality, more dynamically rich state space. The
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FIGURE 10
ESN-EICM multi-step Prediction in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the Ricker system.

performance gains observed, particularly in multi-step prediction,
suggest that for highly complex and sensitive systems like the ones
studied, the benefits of enhanced neuronal dynamics outweigh the
modest increase in per-neuron computational cost. This approach
offers a valuable alternative to topological optimization, focusing
instead on the intrinsic computational capabilities of the reservoir’s
constituent elements.

5.2 Robustness against sensitivity in
chaotic systems

The introduction mentions the “butterfly effect,” the extreme
sensitivity of chaotic systems to initial conditions. The ESN-EICM’s
strong performance in multi-step prediction suggests an inherent
robustness against this sensitivity. This can be attributed to several
design features. The adaptive threshold mechanism (Et) acts to

normalize the network’s overall activity, preventing small initial
errors from being catastrophically amplified and causing state
divergence. The internal feedback ( f ⋅ Ft−1) and global coupling
(W ⋅Yt−1) create a rich, stable attractor dynamic within the reservoir
that is resistant to minor perturbations. Finally, the injection of a
small amount of noise can be seen as a form of regularization that
prevents the model from overfitting to a specific trajectory, thereby
improving its ability to generalize and remain on the true system’s
attractor for longer during iterative prediction.

6 Limitations and future work

While the proposed ESN-EICM model has demonstrated
significant advantages in prediction chaotic time series,
certain limitations and avenues for future research warrant
discussion.
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FIGURE 11
ESN-EICM multi-step Prediction Absolute Error Over Time in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the
Ricker system.

6.1 Limitations

1. Although Bayesian Optimization (BO) is more efficient than
grid search or random search, optimizing a relatively large
number of hyperparameters (10 in this study for ESN-
EICM, as shown in Table 1) can still be computationally
intensive, especially if each evaluation (training and validating
the model) is time-consuming due to large reservoir sizes
or long time series. The 50 calls to BO used in this
study represent a trade-off between search thoroughness and
computational budget.

2. The computational complexity of standard ESN training
involves matrix operations that scale with reservoir size (N).
While the EICM neuron introduces a constant factor overhead
per neuron, the fundamental scaling properties of RC remain.
For extremely large reservoirs, thememory and computational
demands for storing and operating on the reservoir weight
matrix W and collecting states could become a bottleneck.

3. The ESN-EICM was evaluated on three discrete chaotic
systems, which are well-defined and exhibit specific types of

chaos. Real-world time series often contain multiple sources
of noise, non-stationarities, and varying types of underlying
dynamics that were not explicitly addressed or modeled in this
study beyond the inherent learning capacity of the reservoir.
The model’s performance on such diverse and potentially
more complex real-world datasets remains to be extensively
validated.

4. While the EICM neuron model is biologically inspired
and its mechanisms (adaptive threshold, feedback)
are more transparent than the internal workings of
an LSTM cell, the collective dynamics of a large
reservoir of interconnected EICM neurons can still be
complex to analyze and interpret fully. Understanding
precisely how the EICM parameters ( f,g,h,β) contribute
to specific dynamic properties like memory capacity
or nonlinearity at the network level requires further
investigation.

5. The EICM neuron parameters ( f,g,h,β) are optimized via BO
and then fixed during training and inference. For highly non-
stationary time series, dynamically adapting these internal
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FIGURE 12
ESN-EICM multi-step Prediction Phase Space Reconstruction in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the
Ricker system.

neuron parameters online could potentially offer further
performance improvements.

6. While the overall training is efficient, the EICM neuron itself
is computationally more demanding than a standard tanh or
sigmoid neuron due to the multiple state updates (F, E, Y)
required at each time step. This introduces a constant factor
overhead in the reservoir state generation phase, which could
become noticeable for very large reservoirs or extremely long
time series.

6.2 Future work

Based on the promising results and current limitations, several
directions for future research can be pursued:

1. Exploring more sophisticated or parallelized Bayesian
optimization techniques, or meta-learning approaches to
warm-start BO, could further reduce the hyperparameter
tuning cost. Investigating gradient-based optimization

for certain EICM parameters, if feasible, might also be
an avenue.

2. Developing mechanisms for online adaptation of
key EICM parameters ( f,g,h,β) based on the input
statistics or prediction error could enhance the model’s
adaptability to changing dynamics in non-stationary
environments.

3. Combining ESN-EICM with other machine learning
techniques could yield synergistic benefits. For example, using
attention mechanisms in the output layer or employing ESN-
EICM as a feature extractor for a subsequent shallow neural
network could be explored.

4. A more in-depth theoretical analysis of the ESN-EICM,
focusing on its memory capacity, echo state property
conditions with EICM neurons, and stability criteria, would
provide a stronger foundational understanding.

5. Extending the application of ESN-EICM to a wider range
of challenging real-world chaotic and complex time series
from domains such as finance (stock market prediction),
climate science (weather prediction), engineering (system
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FIGURE 13
ESN-EICM multi-step Prediction Accuracy: Predicted vs. True Values in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c)
the Ricker system.

identification), and neuroscience (EEG signal analysis) would
be crucial for demonstrating its practical utility.

6. Investigating the integration of other sophisticated,
biologically plausible neuron models (e.g., Izhikevich neurons,
adaptive exponential integrate-and-fire models) within the
RC framework could lead to further advancements in time
series prediction.Further exploration into neuromorphic
hardware implementations could also be beneficial, drawing
insights from ongoing research into memristive systems
and their complex dynamics for specialized tasks [35].
Similarly, advancements in cellular neural networks coupled
with novel devices like memristors also contribute to the
broader landscape of hardware-oriented neural computation
[36]. Exploring efficient hardware avenues, such as FPGA
implementations for complex and novel neural architectures,
remains an important direction [37].

7. Beyond hyperparameter optimization, exploring techniques
for optimizing the reservoir’s topology (e.g., using pruning or
growing methods guided by EICM neuron activity) could lead
to more efficient and specialized reservoir structures.

Addressing these limitations and exploring these future research
directions will contribute to advancing the field of reservoir
computing and its application to complex time series analysis.

7 Conclusion

In this work, we introduced the Echo State Network Based
on Enhanced Intersecting Cortical Model (ESN-EICM), a novel
reservoir computing framework designed for accurate and efficient
prediction of dicrete chaotic systems. Recognizing the limitations of
traditional deep learningmodels in terms of computational cost and
interpretability, and the constraints of standard ESNs concerning
simplistic neuron dynamics and hyperparameter sensitivity, the
ESN-EICM offers a compelling alternative. The core innovation
lies in the integration of biologically inspired EICM neurons
into the reservoir, characterized by continuous sigmoid activation,
global mean-driven adaptive thresholds, and explicit inter-neuron
feedback. This design endows the reservoir with richer internal
dynamics, better suited for capturing the complex patterns inherent
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TABLE 13 Total experiment time for different prediction steps, chaotic
systems, and models.

One-step prediction

System ESN-EICM ESN LSTM

Logistic 424.3 (s) 398.8 (s) 1649.0 (s)

Sine 378.5 (s) 433.1 (s) 1761.0 (s)

Ricker 376.5 (s) 460.9 (s) 1700.0 (s)

Two-step Prediction

System ESN-EICM ESN LSTM

Logistic 513.0 (s) 486.3 (s) 2737.3 (s)

Sine 521.1 (s) 417.8 (s) 2518.2 (s)

Ricker 583.7 (s) 461.2 (s) 2578.1 (s)

Three-step Prediction

System ESN-EICM ESN LSTM

Logistic 1034.4 (s) 434.6 (s) 2406.2 (s)

Sine 1108.3 (s) 440.5 (s) 2711.0 (s)

Ricker 926.5 (s) 456.4 (s) 2533.5 (s)

Four-step Prediction

System ESN-EICM ESN LSTM

Logistic 517.6 (s) 3183.1 (s) 2797.9 (s)

Sine 526.5 (s) 2136.5 (s) 2904.1 (s)

Ricker 570.5 (s) 4006.0 (s) 2092.1 (s)

in chaotic systems. Furthermore, the adoption of a Bayesian
Optimization strategy systematically addresses the challenge of
hyperparameter tuning, leading to robust and near-optimal model
configurations.

Our comprehensive experimental evaluation on the Logistic,
Sine, and Ricker chaotic systems unequivocally demonstrated
the ESN-EICM’s superiority. In both one-step and challenging
multi-step prediction tasks (up to four steps ahead), the ESN-
EICM consistently outperformed both standard ESN and LSTM
models, as evidenced by significantly lower Mean Squared
Error, Root Mean Squared Error, and Mean Absolute Error.
Qualitative analyses, including prediction trajectory plots, error
distributions, phase space reconstructions, and scatter plots, further
visually corroborated the enhanced accuracy and stability of
the ESN-EICM. Notably, while maintaining the characteristic
training efficiency of RC models over LSTMs, the ESN-EICM
often exhibited comparable or even superior total experiment
times (including optimization) compared to standard ESNs in
multi-step scenarios, attributed to the increased stability and

expressiveness of the EICM neurons facilitating a more efficient
hyperparameter search.

The successful application of EICM neurons within an
ESN framework, coupled with automated hyperparameter
optimization, highlights the potential of integrating more
sophisticated, biologically plausible mechanisms into reservoir
computing. The ESN-EICM stands as a robust, accurate, and
computationally viable tool for modeling and predicting chaotic
time series, paving the way for further research into neuro-
inspired computing paradigms for complex dynamical systems.
Future work will focus on extending its application to diverse
real-world problems, exploring dynamic adaptation of neuron
parameters, and conducting further theoretical analysis of
its properties.
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Introduction: Memristor systems and their application circuits have attracted
growing research interest. When a memristor circuit/network is designed, both
memristors and conventional electronic components are inevitably required,
particularly energy storage elements (e.g., capacitors and inductors). It has
found that most existing studies focus on oscillatory phenomena generated
by memristive systems, such as chaotic attractors, period-doubling oscillations,
spiking and bursting oscillations. However, there is a notable lack of literature
exploring and analyzing the energy exchange between these components, as
well as the resulting oscillatory behaviors and outcomes arising from such
interactions. It is well known that the unit of a memristor, like that of a resistor,
is the ohm (Ω). In general circuits, the energy exchange between resistors and
energy storage elements can induce nonlinear behaviors such as step functions,
damping phenomena, both of which stem from the energy exchange between
resistors and capacitors/inductors. So, when a memristor (though physical
implementations are rare, several classic mathematical models exist) exchanges
energy with energy storage elements, will similar behaviors emerge?
Methods: In this paper, to advance the theoretical completeness of memristive
systems and take the classical HP memristor model as an example, four source-
free circuit topologies integrating memristors with energy-storage elements are
investigated deeply. They are categorized into two types: RMC/RML circuits and
series/parallel RMLC circuits. Firstly, through mathematical modeling, the four
circuits are all found to be governed by transcendental equations. Secondly,
two types of four-component source-free circuits are configured and analysis.
Finally, the application circuits comprising four fundamental components was
configured and explored.

Results and Discussion: Simulation results for the mathematical models
of the four circuits demonstrate memristor states (R0, kRd) and energy-
storage elements collectively regulate response characteristics, damped
oscillatory and decay behavior. The active power and apparent power curves
reveal distinct energy exchange behaviors between components, differing
fundamentally from conventional RL, RC, and RLC circuits. These findings
demonstrate that due to the presence of memristors, such circuits cannot
be employed for step response generation, but are exclusively applicable
for energy memorization and dissipation. Then, the following conclusion
on two types of source-free circuits are demonstrated: (1) capacitor and
inductor provide energy (i.e., ϕ and q) to the system, while memristors
exhibit hysteretic behavior, collectively and fundamentally co-modulating
oscillation modes and attractor phenomenon; (2) The dual characteristics
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of memristors—memory capability and energy dissipation—endow them with
the potential to break the von Neumann bottleneck, making them essential
candidates for implementing next-generation neural networks and AI systems.
Finally, the application circuits reveal that even within the same circuit, varying
memristor placements can lead to distinct topological configurations and
divergent nonlinear output behaviors. This phenomenon further validates the
unique characteristics of memristors as an emerging field. These findings
establish a solid theoretical and experimental foundation for future exploration
and development of memristive systems, including next-generation neural
networks, artificial intelligence applications, and aerospace technologies.

KEYWORDS

memristor, R M C circuits, R M L circuits, Kirchhoff’s circuit laws, energy exchange

1 Introduction

Thememristor has been hypothesized as the fourth fundamental
circuit component [1] and named. Its fingerprint is a pinched
hysteresis loop [2], which is the recovery of pure resistance (no
hysteresis) for high frequencies [1, 2]. Subsequently, the HP-
memristor was proposed and fabricated as a canonical model.
Due to the special electrical properties of nonvolatile memory and
extraordinary nonlinearity, the memristor is usually adopted to
design the artificial neural networks, memristive circuits, oscillation
circuits and employed for unmanned aerial vehicles and motors.
Currently, the discussion is focused not only on the application
to computation and memory storage, but also on the fundamental
role in nonlinear circuit theory. For instance, real synaptic circuits
[3, 4]. biological neurons [5–8], behaviors of some neural network
models [9, 10], and even some complex systems [11, 12] with
memristors or memristor emulators [11, 13–16, 29]. Also, some
meaning and interesting nonlinear behaviors and application have
also been discovered and published [17], integration to mention
just a few.

Totally, all above involved results contributed to improving the
circuit theory and exploring related applications in the fields of
circuit engineering, such as mathematics, physics, and aerospace
circuits. According to the definition of the memristor, whose value
depends on its internal parameter, which in turn has to evolve
dynamically according either to current and voltage [2]. In other
words, when the memristor was configured into one real circuit,
the relationship (dΦ = RMdq) between its resistance and the state
variable is the essence of characterizing the memristor [15, 18],
which have been considered as the basic information to analyze
the nonlinear and oscillation behaviors [15, 18], such as chaotic
circuits [19], damping circuits [20], Bessel filter [21], diode bridge
rectifier [22], and oscillation memristive circuit [23, 30], etc. Some
of them addressed and studied the dynamics, and the other showed
the complicated chaotic phenomenon [24–26]. Furthermore, there
are some literatures focused on the memristive oscillators, chaotic
attractors [12, 24, 31], and application in synaptic [3], neuron
networks [4–7, 10, 11, 24, 27, 28], and oscillation phenomenon [14,
16, 17], and so on.

Furthermore, it has found that most existing studies focus
on oscillatory phenomena generated by memristive systems,
such as chaotic attractors, period-doubling oscillations, spiking

and bursting oscillations. However, there is a notable lack of
literature exploring and analyzing the energy exchange between
these components, as well as the resulting oscillatory behaviors and
outcomes arising from such interactions. It is well known that the
unit of a memristor, like that of a resistor, is the ohm (Ω). In general
circuits, the energy exchange between resistors and energy storage
elements can induce nonlinear behaviors such as step functions,
damping phenomena, both of which stem from the energy
exchange between resistors and capacitors/inductors. So, when
a memristor (though physical implementations are rare, several
classic mathematical models exist) exchanges energy with energy
storage elements, will similar behaviors emerge? In this paper,
to advance the theoretical completeness of memristive systems
and take the classical HP memristor model as an example, four
source-free circuit topologies integrating memristors with energy-
storage elements are investigated deeply. They are categorized into
two types: RMC/RML circuits and series/parallel RMLC circuits.
Firstly, through mathematical modeling, the four circuits are all
found to be governed by transcendental equations. Simulation
results demonstrate memristor states R0, kRd and energy-storage
elements collectively regulate response characteristics, damped
oscillatory and decay behavior. The active power and apparent
power curves reveal distinct energy exchange behaviors between
components, differing fundamentally from conventional RL,
RC, and RLC circuits. These findings demonstrate that due to
the presence of memristors, such circuits cannot be employed
for step response generation, but are exclusively applicable for
energy memorization and dissipation. Secondly, two types of
four-component source-free circuits are configured and the
following conclusion are demonstrated: (1) energy-storage elements
provide energy (i.e., ϕ and q): to the system, while memristors
exhibit hysteretic behavior, collectively and fundamentally co-
modulating oscillation modes and attractor phenomenon; (2)
The dual characteristics of memristors—memory capability and
energy dissipation—endow them with the potential to break the
von Neumann bottleneck, making them essential candidates for
implementing next-generation neural networks and AI systems.
Finally, the application circuits comprising four fundamental
components was configured and explored. The study reveals that
even within the same circuit, varying memristor placements can
lead to distinct topological configurations and divergent nonlinear
output behaviors. This phenomenon further validates the unique
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FIGURE 1
Several important relationships between different variants for the memristors, kRd1 = 106, R01 = 16k in RM1 and R02 = 6k, kRd1 = 106 in RM2, dq(t)/dt = i(t) =
sin(2t). (a) the curves of v− i phase. (b) p(t) by the memristor. (c) w(t) by the memristor.

characteristics of memristors as an emerging field. These findings
establish a solid theoretical and experimental foundation for future
exploration and development of memristive systems, including
next-generation neural networks, artificial intelligence applications,
and aerospace technologies. Moreover, once the fundamental rules
are improved, more and more foundations could be refined and
continual applications in the theories and overall design process,
such as nonlinear circuits, the avionics for unmanned aerial vehicle
systems, as we shall see.

The remainder of this paper is organized as follows: In Sec II,
the information on HP memristive system and two types of general
source-free circuits are presented. In Section III, both source-free
circuits are introduced, that is, RMC and RML circuits. Then, their
mathematical models, novel time constant, the response curves,
the trajectories of the power dissipated and energy absorbed are
performed, respectively. In Section IV, both series and parallel
source-free RMLC circuits are analyzed. In Section V, the application
circuits with four components are provided and demonstrate the
influence of energy storage elements ormemristors on the frequency

and oscillatory behaviors. Finally, the paper is summarized in
Section VI.

Notably, all the curves in this paper are tested by the software
MATLAB R2018a Version, which is a programming and numeric
computing platform used by millions of engineers and scientists to
analyze data, develop algorithms, and create models.

2 HP memristor and gerenal
source-free circuits

As both one fundamental 2-port electric component and
the classical model, HP-memristor (RM) has been proposed and
manufactured as the charge-controlled memristor [2–4, 20–22]. Its
model could be given as follows

RM =
dφ
dq
= Roff −

μvRoff

D2 Ron ⋅ q (t) (1)

where, there are two regions: one region with a high dopant
concentration with low resistance Ron, the other region has a
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FIGURE 2
Two types of the classical source-free circuits. (a) RC circuit. (b) RL circuit.

FIGURE 3
The natural response of the RC circuits, u(t0) = U0 = 0.1V, R = 1, C = 1F. (a) the curve of the voltage response. (b) p(t) by the resistor. (c) w(t) absorbed by
the resistor.

Frontiers in Physics 04 frontiersin.org120

https://doi.org/10.3389/fphy.2025.1640293
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Gao et al. 10.3389/fphy.2025.1640293

FIGURE 4
The natural response of the RL circuits, i(t0) = I0 = 0.01A, R = 1, L = 1H. (a) the curve of current response. (b) p(t) by the resistor. (c) w(t) by the resistor.

low concentration of dopant with a considerably higher resistance
Roff. Also, the Equation 1 was named as the linear drift model due to
the velocity of the width being linearly proportional to the current.
Then, the variable q(t) has been considered as the charge and means
the integral of the current i(t).

In order to study the universality of this class of memristive
systems, it can be re-written as

{
{
{

RM = R0 + kRd∫ idt = R0 + kRd ⋅ q

RM = uM (t)/iM (t)
(2)

where the variable uM(t) is the cross voltage, iM(t) as one function
of current and has been defined as the rate of change of the
state variable. Defining the parameters R0, k and Rd jointly
reflect the relationship between uM(t) and iM(t). Then, the
parameter R0 stands in the region which has a low concentration
of dopant with a considerably higher resistance Roff. The
parameter Rd is one region with a high dopant concentration
and low resistance Ron. The parameter k = − μVRoff/D

2 is defined
as a coefficient.

The important trajectory curves are depicted in Figure 1.

From Figure 1, it can be seen that these curves are the
fingerprints, the dissipated power and energy absorbed in time-
domain graphs for the single memristor. They are so complex
but cannot be applied directly like the other general discrete
elements. Due to the characteristics of the memristive system,
its power exhibits a frequency doubling phenomenon. Thus,
the related basic fundamentals should be examined as soon as
possible via the n-order circuit model with the RM and an energy
storage element.

In circuit theory, for an ordinary circuit, there are two excitation
methods. One method involves independent sources. The other
utilizes the initial conditions of storage elements within the circuit,
which are so-called source-free circuits. When energy is initially
stored in capacitive or inductive elements, this stored energy
drives current flow, which is gradually dissipated in resistors. The
rate of dissipation can be calculated by Kirchhoff ’s laws. This
way has been considered as a sufficient, powerful set of tools to
analyze a large variety of electric circuits all the time. Now, this
method could be utilized to analyze the following circuits, such
asRMC andRML circuits.The classical first-order source-free circuits
are shown as Figure 2.
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FIGURE 5
The source-free circuits with charge-controlled memristor. (a) RMC circuit. (b) RML circuit.

FIGURE 6
The natural response of the RMC circuits, the initial value of kRd =
0.8∗ 106, R0 = 16k, C = 1mF

Observing from Figure 2a, when the initial condition is u(0) =
U0, the voltage response of the RC circuit could be expressed by an
exponential decay of the initial voltage. Also, this result is attributed
to the initially stored energy and the circuit’s intrinsic characteristics,
rather than its external voltage or current sources. Similar to
Figure 2b, it is shown that the natural response of the RL circuit is
also an exponential decay of the initial current. Furthermore, the
time constant for both RC and RL circuits have been defined as
τ = RC and τ = L/R. Subsequently, the natural response could be
illustrated graphically in Figures 3, 4. It has been evidence that an
exponential decay of the initial condition, dissipated power and the
absorbed energy by the resistor for the RC circuit are also given by
Equation 3, as the current responses for the RL circuit are shown
by Equation 4.

For the source-free RC circuit, when the initial condition u(t0) =
u(0) = U0, the results could be given as follows

{{{{{{
{{{{{{
{

u (t) = U0e
−t/τ, τ = RC

p (t) = u (t) iR (t) = −
U2

0

R
e−2t/τ

w (t) = ∫
t

0
p (t)dt = 1

2
CU2

0 (1− e
−2t/τ)

(3)

For the source-free RL circuit, when the initial condition i(t0) =
i(0) = I0, the results could be computed as follows

{{{{
{{{{
{

i (t) = I0e
−t/τ, τ = L/R

p (t) = u (t) iR (t) = I
2
0Re
−2t/τ

w (t) = ∫
t

0
p (t)dt = 1

2
LI20 (1− e

−2t/τ)
(4)

Observed from Figures 3, 4, when t→∞, wR (∞) →
1
2
CU2

0
for the RC circuit and wR (∞) →

1
2
LI20 for the RL circuit could

be observed. They are the same as the energy initially stored in
the capacitor (wc(0)) element in Equation 3 and inductor (wL(0))
element in Equation 4.

The above has already provided a complete description for
the properties of classical first-order circuits. Next, we pose a
question: when resistors are substituted with memristors (e.g., HP
memristors), what kind of conclusions could be obtained? For this
purpose, the followingRMC and RML circuits will be configured and
analyzed in the next section.

3 The source-free RMC and RML
circuits

3.1 The source-free RMC circuits

The produced source-free RMC circuit could be drawn as
Figure 5a. Applying Kirchhoff ’s Laws (i = iC = iM) yields

(R0 + kRdq)C
duc
dt
+ uc = 0 (5)
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FIGURE 7
The curve of the voltage response with R01 = 16k in blue, R02 = 26k in red, R03 = 46k in pink, R04 = 66k in black.

FIGURE 8
The curve of the voltage response with C = 1mF in blue, C = 1.1mF in red, C = 1.2mF in pink, C = 1.3mF in black.

where, the variable u(t) = uc(t) stands for the voltage of the
capacitor. Notably that dq(t)/dt = i(t) = iM(t) = iC(t) is the intrinsic
variable for Figure 5a. Let τ0 = R0C and b = kRdC/R0, the terms
could be depicted as

ln u+ b ⋅ u = − t
τ0

(6)

Obviously, Equation 6 a transcendental equation whose solution
can only be computed using approximations and cannot be obtained

exactly. The natural response curve of the Equation 5 could be
illustrated graphically in Figure 6.

From Figure 6, this response curve is fundamentally distinct
from that of an RC circuit (characterized by a single exponential
curve), where the energy stored in the capacitor is entirely dissipated
by the resistor. It is more complex and constitutes both exponential
and non-exponential functional components. Crucially, although
the memristor’s unit is also the ohm (Ω), its model reveals that it
consists of both linear and nonlinear resistive components [1,2].
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FIGURE 9
The curve of the voltage response with kRd1 = 0.5∗ 10

4 in blue, kRd2 = 0.8∗ 104 in red, kRd3 = 104 in pink, kRd4 = 1.5∗ 104 in black.

Here, the linear resistive component exhibits the conventional
”energy-dissipation” characteristic of resistors, as manifested by
the exponential segment of the curve. However, the energy stored
in the capacitor is not fully consumed the remaining portion is
”memorized” by the nonlinear component, which corresponds to
the non-exponential segment of the curve. Then, according to the
definition of the time constant, setting τ0 = R0C and calculators b
for this RMC circuit. When the circuit is excited, C provides the
stored energy to the RM, the RM works for both memorizing the
information and energy dissipation profile, immediately. Memory
speed depends on this new time constant (τ0).

There are three variables related to the decay of the voltage
response uC(t), which are Rd, R0 and C. Next, the decay behavior
would be discussed when only one variable is changed and the other
ones are fixed.

(1) when kRd = 0.8∗ 10
4 andC = 1mF, changing the variable R0,

the response uC(t) are illustrated in Figure 7.
Observe from Figure 7, When t < 0, the blue curve resides

innermost while the black curve lies outermost; when t > 0, the
blue curve shifts to the bottom position and the black curve to
the top. This demonstrates that as the value of R01 increases,
the curves become progressively flatter, indicating slower rates for
both energy dissipation (“consumption”) and memory retention
(“memorization”). Then, the following conclusion could be drawn:

i. A smaller R0 results in a larger τ0 with faster decay dynamics.
ii. A smaller R0 value leads to a significant increase in the

proportion of the exponential segment of the curve. The more
pronounced the “energy dissipation” component becomes, the
more enhanced the ”memory” effect appears.

iii. A certain energy exists to memorize information for the
memristor.Therefore, the voltage uC(t) cannot decay to 0 at the
t = 0.

(2) when kRd = 0.8∗ 10
4 andR0 = 16k, changing the capacitance

C, the response uC(t) are illustrated in Figure 8.
From Figure 8, when t < 0, the blue curve resides innermost

while the black curve lies outermost; However, when t > 0, the
blue curve shifts to the top position and the black curve to the
bottom.This demonstrates that as the value ofC increases, the curves
exhibits a significantly steepened profile, indicating faster rates for
both energy dissipation (“consumption”) and memory retention
(“memorization”). Then, similar results are still observed.

i. A smaller C results in a larger τ0 with faster decay dynamics.
ii. A smaller C value leads to a significant increase in the

proportion of the exponential segment of the curve. The more
pronounced the “energy dissipation” component becomes, the
more enhanced the “memory” effect appears.

iii. A certain voltage is required to memorize information for the
memristor. Therefore, the voltage uC(t) cannot decay to 0 at
the t = 0. However, the different capacitor C could provide the
different storage voltage to the memory.

(3) when C = 1mF and R0 = 16k, changing the variable Rd, the
response uC(t) are illustrated in Figure 9.

Observed from Figure 9, when t < 0, the black curve resides
innermost while the blue curve lies outermost; when t > 0, the
blue curve shifts to the top position and the black curve to the
bottom. This demonstrates that as the value of kRd increases, the
curves exhibits a significantly steepened profile, indicating faster
rates for both energy dissipation (“consumption”) and memory
retention (“memorization”). Due to the minimal variation in kRd,
the distinction between the curves is not particularly pronounced.
Then, different results can be obtained:

i. A larger kRd results in a larger τ0 with faster decay dynamics.
ii. A larger kRd value leads to a significant increase in the

proportion of the exponential segment of the curve. The more
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FIGURE 10
The curves for the RMC circuit with the parameters kRd = 0.8∗ 106, R0 = 16k, C = 1mF. (a) the fingerprint characterizes of v− i for RM). (b) the dissipated
power by the memristor up to time t/s). (c) the energy (w(t)) absorbed by the memristor up to time t/s).

FIGURE 11
The natural response of the RML circuits, the initial value of kRd = 0.8∗ 106, R0 = 16k, L = 0.1H. (a) i(t) − t). (b) q(t) − t).

Frontiers in Physics 09 frontiersin.org125

https://doi.org/10.3389/fphy.2025.1640293
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Gao et al. 10.3389/fphy.2025.1640293

FIGURE 12
The curves of the current and charge response with R01 = 16k in blue, R02 = 26k in red, R03 = 46k in pink, R04 = 66k in black. (a) i(t) − t. (b) q(t) − t.

FIGURE 13
The curve of the current and charge response with L1 = 0.1H in blue, L2 = 0.2H in red, L3 = 0.3H in pink, L4 = 0.4H in black. (a) i(t) − t). (b) q(t) − t.

FIGURE 14
The curves for the RMC circuit with the parameters kRd = 0.8∗ 106, R0 = 16k, C = 1mF. (a) i(t) − t). (b) q(t) − t).
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FIGURE 15
The curves for the RML circuit. (a) the fingerprint characterizes of v− i for RM). (b) the dissipated power by the memristor up to time t/s). (c) the energy
(w(t)) absorbed by the memristor up to time t/s).

FIGURE 16
The source-free RMLC circuits with charge-controlled memristors. (a) the series circuit. (b) the parallel circuit.
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FIGURE 17
The response curves of the source-free RMLC series circuits, I0 = 0.001A, U0 = 0.001V, kRd = 1∗ 106, R0 = 16k, R = 1, L = 0.1H, C = 1mF. (a) u(t) − t. (b)
i(t) − t.

pronounced the “energy dissipation” component becomes, the
more enhanced the “memory” effect appears.

iii. A certain energy exists to memorize information for the
memristor. Then, the voltage uC(t) cannot decay to 0 at the t =
0.

It should be noted that when applying both RC and RL circuits,
they could be treated as the step functions to configure plenty of
circuit-networks. However, both RMC and RML circuits are not the
step functions. They do not focus on storing and consuming energy,
but on memorizing pieces of information. Secondly, the speed of
memorizing information is associatedwith the determinednew time
constant (τ0). The larger τ0 could lead to the faster the decay as
well as speed of memorizing pieces of information. Thirdly, the
memristor (RM) satisfies dual properties: memory (R0) and energy
consumption (kRd).

Finally, the dissipated power and the absorbed energy by the
memristor for the RMC circuit are depicted in Figure 10.

Between Figure 1 and Figure 10a, the fingerprint characteristics
have been presented. Observed from Figure 10b, some information
could be memorized by RMC circuit. Furthermore, dissipative
power and absorbed energy are utilized for information storage.
This reaffirms the memristor’s fundamental divergence from
resistors even though they shared dimensional homogeneity
and common unit of ohms (Ω). Moreover, their distinct time
constants (τ0) manifests the memory functionality, not the energy
dissipation profile.

3.2 The source-free RML circuits

The inductor (L) is the other type of energy storage element. In
this subsection, the RML circuit would be configured and discussed.
Similar to analyzing the RMC circuit, consider onememristor circuit
as shown in Figure 5b.

Applying Kirchhoff ’s Laws uL + uM = 0, i = iL = iM and
Figure 4b, yields

Ldi
dt
+R0i+ kRdq ⋅ i = 0 (7)

where the variable i(t) stands for the current through the
inductor. Hereby, dq(t)/dt = i(t) = iM(t) = iL(t) is the determined
relationship. Also, let τ0 = L/R0. Obviously, this is also a higher-
order transcendental equation. Its natural response curve of the
Equation 7 could be illustrated graphically in Figure 11.

As shown in Figure 11, the depicted response curve bears
similarities to the general RL circuit in Figure 2b but also exhibits
significant differences. Model (7) reflects more complex and faster
nonlinear behavior of higher-order functions.Then, according to the
definition of this new time constant (τ0 = L/R0), when this circuit is
excited, RM immediately begins to store information. At the same
time, the inductor (L) is busy converting energy to the memristor.
Notably, the speed of memorization depends on τ0.

The decay of the current response i(t) is influenced by three
variables: Rd, R0 and L. Next, the decay behavior would be discussed
when only one variable is varied and the other remains fixed.

(1) when kRd = 0.8∗ 10
4 and L = 0.1H, changing the variableR0,

the response uC(t) are illustrated in Figure 12.
Observe from Figure 12, the following conclusion could

be obtained:

i. A large R0 brings a small τ0, and decays the fast.
ii. A certain current is required, when a memristor memorizes

information. Therefore, the current i(t) cannot decay to 0 even
at t = 0.

iii. The memory characteristics could be occurred by R0.

(2) when kRd = 0.8∗ 10
4 and R0 = 16k, changing the inductance

L, the response i(t) are illustrated in Figure 13.
From Figure 13, the similar results could be got:

i. A large inductive L brings a large τ0, and decays the slow.
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FIGURE 18
The response of current and voltage curves for the RMLC series circuit. (a) i(t) − t with R = 5k, L = 0.1H, and C = 1mF. (b) u(t) − t with R = 5k, L = 0.1H, and
C = 1mF. (c) i(t) − t with R = 1k, L = 1mH, and C = 1mF. (d) u(t) − t with R = 1k, L = 1mH, and C = 1mF. (e) i(t) − t with R = 1k, L = 0.1H, and C = 10mF. (f)
u(t) − t with R = 1k, L = 0.1H, and C = 10mF.

ii. When a memristor is utilized for information storage, the
current (i) and charge (q) are altered. Furthermore, the role of
the energy storage element L can be demonstrated.

(3) when L = 1H and R0 = 16k, changing the variable Rd, the
response uC(t) are illustrated in Figure 14.

Observed from Figure 14, the following results could
be given as:

i. A large kRd also leads to decay the fast similar to Figure 12.
ii. The energy consumption characteristics exist and are

presented by kRd.
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FIGURE 19
The response of current and voltage curves for the RMLC series circuit. (a) i(t) − t with R = 400, L = 0.1H, and C = 1mF. (b) u(t) − t with R = 400, L = 0.1H,
and C = 1mF. (c) i(t) − t with R = 300, L = 0.08H, and C = 1mF. (d) u(t) − t with R = 300, L = 0.08H, and C = 1mF. (e) i(t) − t with R = 300, L = 0.1H, and C =
1.2mF. (f) u(t) − t with R = 300, L = 0.1H, and C = 1.2mF.

Finally, Figure 15 presents the dissipated power of the RML
circuit and the energy absorbed by the memristor.

Similar to the RMC circuit, when designing a source-free circuit
using an inductor and a memristor, its behavior cannot be treated
as a step function, too. Because its primary purpose is to store
information. The smaller the new time constant leads to the faster
the decay. Furthermore, a higher-order transcendental equation

has been obtained and more complex nonlinear behaviors have
been captured. There are three crucial points in a source-free RML
circuit to determine the calculator iL(t), that is, the initial current
I0, new time constant τ0, and the integral of the charge q(t) in RM.
Thirdly, the memristor is presented with dual characteristics: the
memory behavior (represented by R0) and the energy consumption
characteristics (described by kRd).
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FIGURE 20
The response of current and voltage curves for the RMLC series circuit. (a) i(t) − t with R = 350, L = 0.12H, and C = 1mF. (b) u(t) − t with R = 35, L = 0.12H,
and C = 1mF. (c) i(t) − t with R = 1k, L = 1H, and C = 1mF. (d) u(t) − t with R = 1k, L = 1H, and C = 1mF. (e) i(t) − t with R = 1k, L = 0.12H, and C = 120uF. (f)
u(t) − t with R = 1k, L = 0.12H, and C = 120uF.

4 The RMLC circuits

Importantly, building memristive circuits is inseparable from
energy storage components, similarly, the study of source-free
circuits cannot proceed without them. In the aforementioned
analysis and discussion of the natural response of the source-

free circuits, two transcendental equations incorporatingmemristor
models have been established. Additionally, the new time constant
for the both circuits has been redefined. In this section, similar
to the analysis of RLC circuits, RMLC circuits could also be
connected in two configurations: series and parallel circuits,
see Figure 16.
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FIGURE 21
The response curves of the source-free RMLC parallel circuits, I0 = 1A, U0 = 10V, kRd = 1∗ 106, R0 = 16k, R = 1k, L = 0.12H, C = 1mF. (a) i(t) − t. (b) u(t) − t.

4.1 A.Series circuit

Applying Kirchhoff ’s Laws (i = iR = iC = iL = iM) and Figure 16a,
according to the description of Equation 2, the following Equation 8
could be built as following

{{{{{{{{{
{{{{{{{{{
{

Ri+ (R0 + kRdq) i+ L
di
dt
+ u = 0

i = Cdu
dt

q = ∫ idt

i (0) = I0, u (0) = U0

(8)

where the variables i(t) = iL(t), u(t) = uc(t) stand for the current
flowing through the inductor and voltage across the capacitor.
From the preceding analysis, when energy storage elements
are integrated with memristors in a circuit, their response
models can be established as transcendental and higher-order
equations. In Figure 16a, let q = Ae(st) and i = Ase(st), where s
and t critical variables that must be discussed and determined.
Additionally, the necessary derivatives can be derived as

s3 +(
RC+R0C+ kRdq

L
+
AkRd

L
est) s2 + 1

LC
s = 0 (9)

There is no doubt that Equation 9 is still a high-order
transcendental equation. Thus, the natural response curve could be
depicted graphically in Figure 17.

Comparison with a conventional RLC (second-order) series
circuit, the solution of system (9) also could exhibit damping
characteristics and generate the type of resonance phenomenon. By
varying the values of RM, L or C, it discusses whether the system
could observe the three damping conditions (overdamped, critically
damped, and underdamped) analogous to traditional RLC circuits.
These three cases might be illustrated and analyzed in the following
Figures 18–20, respectively.

4.1.1 Overdamped case
When the following conditions are assigned, both response

curves of i(t) and u(t) are shown in Figure 18. The decay approaches
zero as t increases.

Observed from Figure 17 and Figure 18, the overdamping
phenomenon occurs when the memristance increases (i.e.,
increasing R0 +R), the inductance decreases, or the capacitance
increases, while other parameters remain fixed.

4.1.2 Critically damped case
When the following conditions are set, both the

current and voltage of the system exhibit maximum and
minimum values in Figure 19, respectively. Also, the delays all the
way to zero.

Between Figure 17 and Figure 19, the critically damped
phenomenonpresents immediatelywhen thememristance increases
(i.e., increasing R0 +R) but remains much smaller than that in the
overdamped case, the inductance decreases, or the capacitance
increases, respectively, while other conditions remain fixed.

4.1.3 Underdamped case.
The oscillation period in both i(t) and u(t) curves are

depicted in Figure 20. Moreover, the delays all the way to zero.
Compared with Figure 17 and Figure 20, the underdamped

phenomenon has been shown as the same situation.
From Figures 18–20, the special characteristics of the RMLC

series circuit could be summarized as follows:

i. In HP-memristor is known as the linear drift model.
When current flows through a designed circuit incorporating
energy storage elements and a memristor, a higher-order
mathematical model can be derived, which surpasses the
complexity of conventional RLC series circuit models.

ii. Similar to the RLC series circuit, its behavior could be
characterized by damping phenomena, where the gradual loss
of initial stored energy results in a continuous reduction of
response amplitude. This explains why such nonlinear circuits
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FIGURE 22
The response curves for the RMLC parallel circuit. (a) i(t) − t with R = 150Ω, L = 0.12H, and C = 1mF. (b) u(t) − t with R = 15Ω, L = 0.12H, and C = 1mF. (c)
i(t) − t with R = 1k, L = 50H, and C = 1mF. (d) u(t) − t with R = 1k, L = 50H, and C = 1mF. (e) i(t) − t with R = 1k, L = 0.12H, and C = 10uF. (f) u(t) − t with R = 1k,
L = 0.12H, and C = 10uF.

with memristors exhibit abundant oscillatory behaviors and
strange attractors.

iii. The damping phenomenon arises because a memristor
integrates two functional aspects: memory (R0) and energy
dissipation (kRd). The oscillation period determines the
damping rate of the response. To achieve overdamped,

critically damped, or underdamped behavior, three discusses
can be employed: increasingmemristance (R+R0) but remains
much smaller than that in the both overdamped and
critically damped cases, or capacitance (C) or decreasing
the inductance (L), while keeping other parameters fixed,
respectively.
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FIGURE 23
The response curves for the RMLC parallel circuit. (a) i(t) − t with R = 350, L = 0.12H, and C = 1mF. (b) u(t) − t with R = 350, L = 0.12H, and C = 1mF. (c)
i(t) − t with R = 1k, L = 1H, and C = 1mF. (d) u(t) − t with R = 1k, L = 1H, and C = 1mF. (e) i(t) − t with R = 1k, L = 0.12H, and C = 120uF. (f) u(t) − t with R = 1k,
L = 0.12H, and C = 120uF.

iv. The damped oscillation is possible due to the presence of the
nonlinear elements (i.e.,RM, L, andC). Furthermore, the delays
all the way to zero, which stems from the ability of the storage
elements and memory element to transfer energy back and
forth between them.

v. All subplots uniformly validate that the same initial
conditions but different component parameters would

manifest a similar yet quite different output waveform.
This variance could be thought as a kind of catalyst to
get various application areas in the future, simultaneously
revealing characteristics of chaotic oscillations. It further
demonstrates the influence of (R+R0), L, and C on the
decay rate. Therefore, during the design and application of
memristive circuits, memristors with appropriate R0 could be

Frontiers in Physics 18 frontiersin.org134

https://doi.org/10.3389/fphy.2025.1640293
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Gao et al. 10.3389/fphy.2025.1640293

FIGURE 24
The response curves for the RMLC parallel circuit. (a) i(t) − t with R = 500, L = 0.12H, and C = 1mF. (b) u(t) − t with R = 500, L = 0.12H, and C = 1mF. (c)
i(t) − t with R = 1k, L = 0.55H, and C = 1mF. (d) u(t) − t with R = 1k, L = 0.55H, and C = 1mF. (e) i(t) − t with R = 1k, L = 0.12H, and C = 250uF. (f) u(t) − t with
R = 1k, L = 0.12H, and C = 250uF.

chosen according to the needs of the actual oscillation and
decay rate.

4.2 Parallel circuit

From Figure 16b, when the conditions (u = uR = uC = uL = uM)
are satisfied for this parallel circuit, and according to the description

of Equation 2, the following Equation 10 have been set as

{{{{{{{{{{
{{{{{{{{{{
{

du
dt
= − 1

C
( u
R
+ u
R0 + kRdq

+ i)

di
dt
= u
L

dq
dt
= i

i (0) = I0, u (0) = U0

(10)
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where the variables i(t) = iL(t), u(t) = uc(t) stand for the current
flowing through the inductor and voltage across the capacitor.
System (10) is also a third-order function. Let u = Ae(st) where s
and t critical variables. Additionally, the necessary derivatives can
be derived as

R0Cs
2 +(1+

R0

R
) s+

R0

L
+(kRdCs

2 +
kRd

R
s+

kRd

L
)Aest = 0 (11)

Equation 11 is still a transcendental equation. Its solution
could be obtained through approximately methods. Now, the nature
response curve could be drawn in Figure 21.

Next, we investigate the impact of varying parameters (RM, L or
C) and observe whether analogous responses emerge. The current
and voltage response curve are presented in Figures 22–24.There are
also three cases:

4.2.1 Overdamped case.
When the following conditions are assigned, both response

curves of i(t) and u(t) are shown in Figure 22.
Between Figure 21 and Figure 22, the overdamping

phenomenon occurs when the memristance decreases (i.e.,
decreasing R0 +R), the inductance increases, or the capacitance
decreases, while other parameters remain fixed.

4.2.2 Critically damped case.
When the following conditions are given, both the

current and voltage exhibit maximum and minimum values,
respectively (see Figure 23). Also, the delays all the way to zero.

Observed from Figure 21 and Figure 23, the critically damped
phenomenon have happened when the memristance decreases
(i.e., decreasing R0 +R) but remains much larger than that in
the overdamped case, the inductance increases, or the capacitance
decreases, while other conditions remain fixed.

4.2.3 Underdamped case.
Theoscillation period in both i(t) and u(t) curves are depicted in

Figure 24. Moreover, the delays all the way to zero. Compared with
Figure 21 and Figure 24, the underdamped phenomenon has been
shown under the same conditions.

To summarize the conclusions according to the Figures 22–24
for one RMLC parallel circuit as follows:

i. Similar to the RLC parallel circuit, when energy storage
elements and a memristor are integrated into the same parallel
system, the energy would be back and forth between them,
thereby establishing a damping decay curve.

ii. The coexistence of memory storage and energy dissipation
characteristics in this circuit arises from the dual-resistance
structure of the memristor, characterized by R0 and kRd.

iii. The conditions for achieving overdamped, critically damped,
or underdamped phenomena differ from those in RMLC series
circuits. Specifically, these damping regimes can be realized
by adjusting the resistance (R+R0) but remains much larger
than that in the both overdamped and critically damped cases
or capacitance (C) should be decreasing or increasing the
inductance (L), while keeping all other parameters constant
under each configuration.

iv. Under identical initial current and voltage conditions but
with varying circuit component values, all subplots in the

figure were analyzed. These results validate the influence of
(R+R0), L and C on the decay rate. The single regrettable
drawback resides in thewaveforms lacking sufficient resolution
to reveal detailed distinctions between the RMLC circuit and
conventional variableRLC systems.However, in the design and
application of one memristive circuit, memristors should be
selected according to the needs of the actual oscillation and
decay rate based on the analysis and discussion in thoery.

5 Application of classic circuits with
four fundamental components

A classical four-component application circuit is presented,
as shown in Figure 25.

The following analysis would demonstrate how energy storage
elements or memristors influence the memory characteristics and
oscillatory behavior. The Figure 25a, this circuit shares the same
topological structure as the Chua system, but features a different
memristor configuration. Consequently, it also produces different
phase trajectory curves, the mathematical model has been built and
analyzedin the following form:

{{{{{{{{{{{
{{{{{{{{{{{
{

C1 ⋅
dV1

dt
= − 1

R
V1 +

1
R
V2 −

1
RM
⋅V1

C2 ⋅
dV2

dt
= 1
R
V1 −

1
R
V2 + iL

L ⋅
diL
dt
= −V2

dq
dt
= iL

(12)

Secondly, when transposing the positions of the HP
memristor and resistor in this circuits, the mathematical model
is given as follows:

{{{{{{{{{{{{
{{{{{{{{{{{{
{

C1 ⋅
dV1

dt
= − 1

RM
V1 +

1
RM

V2 −
1
R
⋅V1

C2 ⋅
dV2

dt
= 1
RM

V1 −
1
RM

V2 + iL

L ⋅
diL
dt
= −V2

dφ
dt
=
dφ
dq
⋅
dq
dt
= V1 −V2

(13)

Setting the variable x = V1, y = V2, z = iL and ω = q; parameters
p1 = 1/(RC1), q1 = 1/(RC2), a2 = 1/(RC1), b = 1/C2, r = 1/L, a1 =
p2 = 1/[(R0 + kRdq)C1], q2 = 1/[(R0 + kRdq)C2], both the built as
Equation 12 and Equation 13 can be rewritten in the following
dimensionless forms:

{{{{{
{{{{{
{

ẋ = p1 (y− x) − a1.x
ẏ = q1 (x− y) + b.z
̇z = −r.y
ω̇ = z

(14)

and

{{{{{
{{{{{
{

ẋ = p2 (y− x) − a2.x
ẏ = q2 (x− y) + b.z
̇z = −r.y
ω̇ = x− y

(15)
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FIGURE 25
A circuit with HP-memristor. (a) Replacing the Chua diode with an HP memristor. (b) Transposing the positions of HP memristor and resistor.

FIGURE 26
Phase portrait in v1 − v2 and their coexistence attractors. (a) replacing Chua Diodes with HP Memristors. (b) replace the resistance (R) in original Chua’s
circuit with an HP memristor. (c) Coexistence attractor. (d) Hidden attractor.

For Figure 25a, setting the parameters p1 = 7.9, q1 = 1, b = 1,
r = 14.5 are fixed in Equation 14. The phase trajectory curves
exhibit the chaotic attractor as shown in Figure 26a. When
transposing the positions of the HP memristor and resistor, the
phase trajectory becomes a single-scroll attractor as demonstrated
in Figure 26b.

These observations demonstrate that as initial values vary, the
system not only exhibits irregular oscillations but also manifests
chaotic attractors, coexisting attractors in Figure 26c and hidden

attractors in Figure 26d. These characteristics serve as critical
evidence for the system’s capability to facilitate the construction of
complex neural networks with memory properties.

Let p2 = 1/(6.23− 0.9q), q2 = 1/(8.49− 4.33q), a2 = 7.9, b = 1,
r = 14.5, and the initial condition [x,y,z,w] = [0.01,0.01,0.01,0.01],
the time domain curves of Equation 15 can be obtained as
shown, seeing Figure 27.

Then, the Lyapunov exponent spectrum corresponding to
parametrically configured is illustrated in Figure 28.
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FIGURE 27
Time domain curves. (a) v1(t) − t. (b) v2(t) − t. (c) i(t) − t. (d) S(t) − t.

FIGURE 28
The Lyapunov Exponents spectrum.

This provides another perspective to demonstrate that the
chaotic oscillation arises from the energy to transfer energy back
and forth between the memristor and energy storage elements.

From Figure 28, the LEs are calculated and illustrated, LE1 = 3.6,
LE2 = 1.448, LE3 = − 0.3223, LE4 = − 3.339. Two positive Lyapunov
exponents confirm that the system is a hyperchaotic system.
Next, in order to verify the conclusions derived from previous
analyses, we systematically modify the values of energy storage
elements of Figure 25b to investigate their impact on the memory
characteristics and oscillatory behaviors of the HP-memristor from
the response of voltage curves.

Observed from Figures 29a–c, they illustrate the effect
of varying the inductance L on output voltage (v2) of the
system (15). As inductance L increases, the decay rate
diminishes. Conversely, reduction of L induces damped and
overdamped dynamical manifestations. When inductance
values decrease below critical thresholds, oscillatory
phenomena and chaotic attractors undergo complete
termination.

Similarly, Figures 29d–f demonstrates the impact of changing
the capacitance C2 on the output voltage (v2). As capacitance C2
increases, the decay rate also diminishes. Conversely, reduction of
C2 induces damped and overdamped dynamical manifestations.
When capacitance values decrease below critical thresholds,
oscillatory phenomena and chaotic attractors undergo complete
termination.
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FIGURE 29
The response of voltage curves (v2) of system (13). (a) a2 = 7.9, b = 1, p2 = 1/(0.9−6.23q), q2 = 1/(8.49−4.33q), r = 14.1. (b) a2 = 7.9, b = 1, p2 =
1/(6.23−0.9q), q2 = 1/(8.49−4.33q), r = 16. (c) a2 = 7.9, b = 1, p2 = 1/(6.23−0.9q), q2 = 1/(8.49−4.33q), r = 18. (d) a2 = 7.9, b = 1, p2 = 1/(6.23−0.9q), q2 =
1/(8.0−4.11q), r = 14.5. (e) a2 = 7.9, b = 1, p2 = 1/(6.23−0.9q), q2 = 1/(8.92−4.33q), r = 14.5. (f) a2 = 7.9, b = 1, p2 = 1/(6.23−0.9q), q2 = 1/(9.2−4.92q), r =
14.5.

6 Conclusion

To advance the fundamental theory of memristive circuits, this
study investigates four types of source-free circuits incorporating
memristors and energy storage elements following the research
methodology of classical source-free circuit analysis.

These circuits are categorized into two groups: one group
consists of a memristor combined with a single energy-storing
element (denoted as RMC and RML circuits), while the other group
includes RMLC series and parallel circuits. Firstly, their models

are built and analyzed, which reveals that they are transcendental
equations. Secondly, new time constants are introduced (It pertains
exclusively to a specific resistance region in the memristor, such as
its low-resistance state R0, that is, τ0 = R0C and τ0 = L/R0), along
with key factors influencing the decay rate. Furthermore, this study
further verifies that two distinct regions in the memristor manifest
two properties: memory characteristics and energy-dissipative
behavior. Finally, through a systematic analysis using a classical
application circuit with four fundamental circuit elements, we
revalidate the critical role of both energy storage components
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and memristor in modulating oscillatory dynamics and attractor
morphologies. More significantly, the characteristics of circuits
combining memristors and energy-storage components have been
refined, ensuring continuous advancement in memristive circuit
principles. This establishes a robust theoretical foundation for
innovative applications of memory elements across nonlinear
circuits, avionics for UAV systems, and integrated theoretical-design
frameworks.
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This paper proposes an encryption scheme based on hyperchaotic mapping
for child information protection. First, phase diagrams of the hyperchaotic
mapping are plotted under different parameter combinations, and the variation
in phase trajectories confirms the sensitivity of the hyperchaotic mapping to
control parameters. Then, the hyperchaoticmapping is iterated to obtain chaotic
sequences, and the chaotic sequences are quantized to obtain pseudo-random
sequences. Finally, based on those, a scrambling algorithm and a diffusion
algorithm are designed to encrypt and protect the images. The original images
are scrambled and diffused to obtain the ciphertext images and used to protect
the information of missing children, which can effectively protect the safety of
children’s information and assist the public security bureaus to quickly contact
the parents of missing children.
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child information protection, hyperchaotic mapping, image encryption, children’s
clothes, information security

1 Introduction

In the digital era, data are increasingly becoming an important part of personal life
and economic development [1, 2]. Among various data formats, images are widely used
as information carriers for Internet transmission as they can carry large amounts of
information and have high visibility [3, 4]. Due to the dependence of work life on the
Internet, the rich information contained in images is at risk of being leaked [5–7]. Among
these, the secure transmission and storage of image data face significant challenges as they
contain sensitive information such as biometrics and geographic locations [8, 9]. Especially
in the field of social welfare, such as missing children tracking, images need to be widely
disseminated to expand the search scope, but they also must be prevented from being
maliciously utilized to cause secondary damage [10, 11]. Image encryption can be used to
encrypt an image into a noise-like ciphertext image by various means [12–15].

As an effective method to protect image information, image encryption techniques,
especially those based on chaos theory, have been a hot topic of research in recent
years [16]. This is because many inherent properties of chaotic systems, including
ergodicity, acyclicity, high sensitivity to initial conditions and control parameters,
and pseudo-randomness, meet the needs of cryptography and have an irreplaceable
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FIGURE 1
Phase diagrams of MCHM, (x0, y0) = [0.3, 0.5]: (a) (a, b, c, d, and e) = [-1, 1.5, −1, 1, 0.5]; (b) (a, b, c, d, and e) = [-1, 1.5, −1.1, 1, 0.5]; (c) (a, b, c, d, and e) =
[-1, 1.5, −1, 1.2, 0.5].

FIGURE 2
Distribution of LEs with different parameters. (a) Parameter a; (b) parameter b; (c) parameter c; (d) parameter d; (e) parameter e.

advantage in image encryption [17–21]. Meanwhile, some scholars
have pointed out that hyperchaotic systems can provide higher
security to encryption algorithms [22, 23]. In the context of
information protection and verification of missing children,
hyperchaotic mapping is preferred in view of the need for real-time
performance. In this study, hyperchaotic mapping [24–30] is used
in the design of the missing child information encryption scheme.

In the previous image encryption scheme design and
application, usually, the image is compressed and encrypted to
realize the fast transmission and protection of the image on the
Internet [31–33]; anothermethod includes encoding and encryption

of the image to realize the safe storage of the information and prevent
leakage or tampering [31, 34–36]; there is also the encryption and
steganography of the image to realize the double-layer protection
of the image [37–39]. However, information protection and
verification of missing children are different from the previous
image encryption protection processes, where the main idea is to
encrypt children’s information to obtain ciphertext images and apply
the ciphertext images to children’s products as stickers, such as on
children’s school bags, water cups, and clothes. In the process of
children getting lost or being found, the children’s information is
verified, and it is convenient to get in touch with the children’s
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TABLE 1 NIST test results for MCHM.

Items MCHM

P-value PR (%)

Frequency 0.198732 98

Block frequency 0.346291 99

Cumulative sums 0.637462 99

Runs 0.029485 97

Longest run 0.875123 100

Rank 0.372634 99

FFT 0.082712 99

Non-overlapping template 0.028374 100

Overlapping template 0.192734 100

Universal 0.876123 98

Approximate entropy 0.468102 98

Random excursions 0.076390 100

Random excursions variant 0.048716 100

Serial 0.419021 99

Linear complexity 0.289667 100

parents quickly. In view of this application idea, this paper designs a
missing child information protection and verification scheme based
on hyperchaotic mapping. The information protection scheme is
divided into two steps: image scrambling and diffusion, which when
combined with chaotic sequences can effectively hide the original
information of children, and the reversible encryption scheme
ensures that the information of children can be decrypted and
verified quickly.

This paper carries out the following tasks:

1. Memristor-coupled hyperchaotic mapping (MCHM) is
presented in this paper, and its phase diagram is analyzed.

2. The image or photo containing a child’s information is
encrypted with a confusion algorithm and a diffusion
algorithm.

3. Security analysis of encrypted images to highlight the
superiority of the scheme.

2 Chaotic mapping

MCHM is obtained by coupling the memristor and the iterative
chaotic map with infinite collapse (ICMIC), and its mathematical
model is described as Equation 1:

{{
{{
{

xi+1 = sin(
a
xi
)+ b(c+ dy2i )xi

yi+1 = yi + exi

. (1)

When the initial value is (x0, y0) = [0.3, 0.5] and the system
parameters a, b, c, d, and e are [−1, 1.5, −1, 1, 0.5], [−1, 1.5, −1.1,
1, 0.5], and [−1, 1.5, −1, 1.2, 0.5], the phase diagrams of MCHM are
as shown in Figure 1. Comparing Figures 1a–c, the trajectory of the
MCHM clearly changes when the control parameters are changed.
That is, when the key changes slightly during the operation of the
encryption scheme, the chaotic sequences generated by the MCHM
also change, which changes the cipher images. This means that the
mapping can provide great security for the design and operation of
the encryption scheme.

The chaotic range of the system parameters is decided by
analyzing the Lyapunov exponent (LE) response. If one of the LEs is
greater than 0, it is in a chaotic state, and if two LEs are greater than
0, it is in a hyperchaotic state. Encryption is carried out in the chaotic
state situation by selecting the parameters. As shown in Figure 2,
the range case of each parameter in a chaotic state is a∈[-1.1,-
0.75], b∈[1.35,1.5], c∈[-1,-0.9], d∈[0.7,1.1], and e∈[0.4,0.54]. When
parameter a is at [-1.1, -0.875] or [-0.87, -0.747], parameter b is at
[1.43, 1.5], parameter c is at [-1, -0.975] or [-0.96, -0.92], parameter
d is at [0.85, 1.1], and parameter e is at [0.47, 0.54], the system is
in a hyperchaotic state. More complex dynamic characteristics are
shown in this state, and the pseudo-random sequence generated by
the system through iteration has higher randomness.

To test the randomness of the chaotic sequences, an NIST test
(NIST SP800-22) is performed. It includes 15 tests. When the p-
value is greater than or equal to 0.01 and the pass rate is greater
than 96%, the sequence passes the randomness test. The specific
test results are shown in Table 1. It can be seen from the results
that this random sequence exhibits good randomness characteristics
in statistical tests. It is shown that it is suitable for the proposed
encryption scheme.

3 Encryption scheme

The encryption process includes three stages: parameter
setting, image confusion, and diffusion. The encryption schematic
is shown in Figure 3. The detailed steps are described as
follows:

Step 1: The image containing the child’s information and photo is
imported, and the size of the ith image is recorded as mi ×
ni × li.

Step 2: All images are converted into column vectors, and all
column vectors are stitched into a whole, which is denoted
as vector A, with length vl.

Step 3: Column vector A is converted to cube B with dimensions
M × N × L, where M and N are the height and width of
each plane of the cube, respectively, and L is the height of
the cube.M andN can be set as desired, and L is obtained by
Equation 2.

L = ceil( vl
MN
). (2)
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FIGURE 3
Encryption schematics.

FIGURE 4
Simulation results: (a) original images, “kid” and “information1”; (b) encryption images; (c) decryption images.

Step 4: Based on the input image, the parameters associatedwith the
plaintext hi are obtained.

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

Hm(i) = −
255

∑
j=1

pj log2(pj), i = 1⋯L

hm(i) =Hm(i) − floor(Hm(i)), i = 1⋯L

hi =
1
L

ifloor(l)

∑
j=(i−1)floor(l)+1

hm(j), i = 1⋯7

l = L
7

, (3)

where Pj stands for the pixel value and Hm stands for
information entropy.

Step 5: All the keys are inputted, and the MCHM is iterated based
on the total image data volume vl to obtain the chaotic
sequences of length 2×vl, and they are quantized to finally
obtain two pseudo-random sequences x and y. The pseudo-
random sequences q1–q12 used in the algorithmare obtained
by Equations 4–8.

α =max (M,N,L). (4)
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FIGURE 5
Simulation results: (a) original images, “girl” and “information2”; (b) encryption images; (c) decryption images.

FIGURE 6
Simulation results: (a) original images, “boy” and “information3”; (b) encryption images; (c) decryption images.

{
{
{

q1 = ((x(1:α) + y(1:α))modN) + 1

q2 = ((x(α+ 1:2α) + y(α+ 1:2α))modN) + 1
. (5)

{{{{{{{
{{{{{{{
{

q3 = (x(2α+ 1:3α)modM) + 1

q4 = (y(2α+ 1:3α)modL) + 1

q5 = (x(3α+ 1:4α)modM) + 1

q6 = (y(3α+ 1:4α)modL) + 1

. (6)

{{{{{{{
{{{{{{{
{

q7 = (x(4α+ 1:5α)modN) + 1

q8 = (y(4α+ 1:5α)modL) + 1

q9 = (x(5α+ 1:6α)modN) + 1

q10 = (y(5α+ 1:6α)modL) + 1

. (7)

{
{
{

q11 = x(end−MNL+ 1:end)

q12 = y(end−MNL+ 1:end)
. (8)

Step 6: The sequences q1 and q2 are processed and used to control
the length of the permutation sequence, and q1 and q2 can
be obtained by Equations 9, 10.

q1(i) =

{{{{{
{{{{{
{

q1(i) + ceil(N
4
),q1(i) < N

4

q1(i) − floor(N
4
),q1(i) > 3N

4
q1(i),other

. (9)
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FIGURE 7
Simulation results: (a) original images; (b) encryption images; (c) decryption images.

FIGURE 8
Key sensitivity test results, a = a+10−16.

q2(i) =

{{{{{
{{{{{
{

q2(i) + ceil(M
4
),q1(i) < M

4

q2(i) − floor(M
4
),q1(i) > 3M

4
q2(i),other

. (10)

Step 7: Each row vector of cube B is split into two parts of random
length, and the positions are swapped with the row vectors
at random locations.

{{{{
{{{{
{

t1 = B(i,1:q1(i),k)
t2 = B(i,q1(i) + 1:end,k)
t3 = B(q3((ikmodM) + 1),1:q1(i),q4((ikmodL) + 1))
t4 = B(q5((ikmodM) + 1),q1(i) + 1:end,q6((ikmodL) + 1))

,
i = 1…M
k = 1…L

.

(11)

{{{{
{{{{
{

B(i,1:q1(i),k) = t3
B(q3((ikmodM) + 1),1:q1(i),q4((ikmodL) + 1)) = t1
B(i,q1(i) + 1:end,k) = t4
B(q5((ikmodM) + 1),q1(i) + 1:end,q6((ikmodL) + 1)) = t2

,
i = 1…M
k = 1…L

.

(12)

Step 8: Each column vector of cube B is split into two parts of
random length, and the positions are swapped with the
column vectors at random locations. The cube with the
completed column swap is noted as C. It can be obtained by
Equations 13, 14.
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FIGURE 9
Histogram of “kid” and “information1”: (a) original images and (b) encryption images.

TABLE 2 Comparison of key spaces

Algorithms Reference [40] Reference [16] Reference [41] Reference [42] Proposed

Key space 2249 2266 2352 2398 2471

{{{{
{{{{
{

t1 = B(1:q2(j), j,k)
t2 = B(q2(i) + 1:end, j,k)
t3 = B(1:q2(j),q7((jkmodN) + 1),q8((jkmodL) + 1))
t4 = B(q2(i) + 1:end,q9((jkmodN) + 1),q10((jkmodL) + 1))

,
j = 1…N
k = 1…L

.

(13)

{{{{
{{{{
{

B(1:q2(j), j,k) = t3
B(1:q2(j),q7((jkmodN) + 1),q8((jkmodL) + 1)) = t1
B(q2(i) + 1:end, j,k) = t4
B(q2(i) + 1:end,q9((jkmodN) + 1),q10((jkmodL) + 1)) = t2

,
j = 1…N
k = 1…L

.

(14)

Step 9: Cube C is converted into column vector D, and the
first pixel value is combined with the pseudo-random
sequence to get the new pixel value. It can be obtained by
Equations 15, 16.

E(1) = D(1) ⊕ q11(1). (15)

{
{
{

E(i) = D(i) ⊕ q11(i) ⊕E(i− 1), imod2 = 1

E(i) = D(i) ⊕ q12(i) ⊕E(i− 1), imod2 = 0
, i = 2…MNL.

(16)

Step 10: The vector E is segmented and shaped according to
the dimensions of the original images to obtain the
corresponding ciphertext images.

4 Simulation result

Being able to completely encrypt and decrypt children’s
information and photos is the first requirement for practical
applications. In the simulation experiment, three sets of images are
used (“kid” with size 200 × 289 × 3, “information1” with size 300
× 152 × 3; “girl” with size 768 × 512 × 3, “information2” with size
300 × 174 × 3; and “boy” with size 768 × 512 × 3, “information3”
with size 300 × 138 × 3), and they are encrypted and decrypted
separately and in a hybrid manner. The simulation results are shown
in Figures 4–7. From Figures 4–6, it can be seen that the scheme
can successfully encrypt and decrypt children’s information and
photographs. As shown in Figure 7, it is also possible to securely
encrypt and decrypt a large number of children’s information
and photographs if necessary. In other words, the proposed
encryption and decryption scheme can perform both individual
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FIGURE 10
Correlation coordinate diagram of “kid” and “information1”: (a) original images and (b) encryption images.

TABLE 3 Correlation coefficients of different images.

Images Original images Encryption images

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Kid 0.9739 0.9776 0.9551 0.0015 0.0009 −0.0023

Information-1 0.8458 0.7476 0.6864 −0.0016 0.0018 −0.0008

Girl 0.9924 0.9879 0.9813 0.0019 0.0022 −0.0009

Information-2 0.7887 0.6612 0.6005 −0.0008 0.0016 −0.0012

Boy 0.9718 0.9638 0.9534 −0.0012 −0.0016 −0.0036

Information-3 0.7692 0.6208 0.5325 −0.0021 0.0013 −0.0024

processing and batch protection of children’s information and
photographs.

5 Performance tests

5.1 Key security

5.1.1 Key space
The size of the key space determines whether the encryption

scheme can resist exhaustive attacks. Generally, when the key space

reaches 2100, it is considered to be capable of resisting exhaustive
attacks, and the more the key space is, the better the scheme. In this
encryption scheme, the key comprises two components: parameters
related to the original images and those associatedwith hyperchaotic
mapping. All the keys are tested one by one; the key space of
parameters b and d is 1015, and the key space of the remaining
parameters is 1016, so the total key space is 10 (15 × 2 + 16 × 7) = 10142

≈ 2471. The key space of different algorithms is shown in Table 2 [16,
40–42]. The key space test and comparison results indicate that the
proposed encryption scheme has adequate capability to resist brute-
force attacks.
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TABLE 4 Information entropy of different images.

Images Original images Encryption images

R G B R G B

Kid 7.3133 7.1356 7.2659 7.9972 7.9973 7.9972

Information1 4.2216 4.4069 4.6804 7.9962 7.9966 7.9963

Girl 7.8485 7.0813 7.2107 7.9996 7.9995 7.9996

Information2 4.0338 4.3841 4.7260 7.9973 7.9972 7.9972

Boy 7.5723 7.5670 7.5405 7.9995 7.9995 7.9995

Information3 3.1523 4.6179 5.2750 7.9959 7.9958 7.9959

5.1.2 Key sensitivity
The encryption scheme can be considered key-sensitive when

a small error in the key can cause decryption failure on the
decryption side. In the key sensitivity test, “kid” and “information1”
are used as the test images. During the test, each key on the
encryption side is kept constant, and the key a = a + 10-16 on
the decryption side. The decryption results are shown in Figure 8.
The ciphertext image cannot be decrypted successfully with smaller
parameter variations. As shown in Figure 8, a small error in the
key causes the decryption to fail, verifying the key sensitivity of
this scheme.

5.2 Statistical characterization

5.2.1 Histogram
A histogram can visually depict the strength of the pixels in

the image. By comparing the histograms of the original image
and the encrypted image, the ability of the encryption scheme
to change the pixel values of the image can be verified. The
histograms of “kid” and “information1” are shown in Figure 9.
The histograms of the original images have distinct crests
and varying distributions at each pixel level. The histograms
of the encrypted images show an undifferentiated uniform
distribution, which means that the pixel-level distribution of
the original images is effectively changed and hidden by the
encryption scheme.

5.2.2 Correlation
The property of local smoothing of the image determines

a strong correlation between the adjacent pixels of the image,
and the intensity of the correlation is measured by both the
coordinate plot and the coefficient, which are shown in Figure 9
and Table 2, respectively. As shown in Figure 10, neighboring
pixels of “kid” and “information1” are compactly distributed on
a straight line with slope 1, which means that the neighboring
pixels have the same or similar values. The adjacent pixels of

the corresponding encrypted images are distributed throughout
the coordinate space, and the values of the adjacent pixels are
not correlated. As shown in Table 3, the correlation coefficients
of the original images are large, while the correlation coefficients
of the encrypted images are close to 0. The change in the
correlation between the adjacent pixels of the image indicates that
the encryption scheme effectively swaps the location and changes
the values of the pixels, thus hiding the correlation characteristics of
the original images.

5.2.3 Information entropy
Information entropy is used to test the statistical characteristics

of an image. For an image, the higher the information entropy
is, the more information it contains, and the more confusing the
image is. The original images contain a certain amount of visual
information, and their information entropy is a constant value.
The information of the encrypted images is confusing, and the
information entropy increases with a theoretical maximum value
of 8 [43]. The information entropy test results for different images
are shown in Table 4, and the information entropy test results for
different algorithms are shown in Table 5 [35, 42, 44–46]. As shown
in Table 4, compared to the original images, the information entropy
of the encrypted images increases significantly and is close to the
theoretical maximum. As shown in Table 5, the designed encryption
scheme has some advantages in hiding the statistical features of the
image data.

5.3 Anti-rolling edge test

The encrypted images containing children’s information are
printed on the clothes, and if the edge of the image rolls up as the
clothes are used, then the edge information may be invalidated.
When the edge information of the images is invalidated, the
decryption effects of the encrypted images are shown in Figure 11.
The edge of the original images is cropped by one circle, and the
invalidated information accounts for 23.44%; the cropping effects
are shown in Figure 10a.The visual effects of the damaged ciphertext
images after being decrypted on the decryption side are shown in
Figure 10b. As shown in Figure 11, the original information can still
be recovered even if the child’s information and photo edges are
rolled up to some extent.

5.4 Noise test

The cipher image is usually acquired using the photographing
method, which produces noise on the cipher image. Salt and pepper
noise and Gaussian noise are chosen to model the effect of noise
on image restoration. Figure 12 shows the cipher image subjected
to salt and pepper (S&P) noise with 0.1, 0.01, and 0.001 intensity
and Gaussian noise with 0.001 intensity. The content of the image
can be clearly seen at the reduction end, which in turn illustrates the
feasibility of the scheme.
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TABLE 5 Information entropy of different algorithms.

Algorithms Image size Encryption images (average)

R Channel G channel B Channel

Reference [44] 256 × 256 7.99720

Reference [35] 256 × 256 7.99698

Reference [42] 256 × 256 7.99705

Reference [45] 256 × 256 × 3 7.9958 7.9950 7.9949

Reference [46] 256 × 256 × 3 7.9837 7.9916 7.9950

Proposed 200 × 289 × 3 7.9972 7.9973 7.9972

FIGURE 11
Anti-rolling edge test results: (a) cipher image and (b) restored image.

5.5 Differential attack

Differential attack is a common method used by attackers
to crack algorithms. The attacker randomly changes one pixel
point of the plaintext image to get the cipher image and analyzes
the difference between the two cipher images to crack the
scheme.

In the differential attack test, the plaintext image is encrypted
twice; the first time is normal encryption, and the cipher image is

T1; the second time, the attacker randomly changes one pixel point
of the plaintext image to get the cipher image, and the cipher image
is T2. Since the scheme plaintext information is associated with the
initial value of the chaotic system, randomly changing one pixel
value of the plaintext image will again result in a different initial
value of the chaotic system, and its chaotic sequence also changes.
Therefore, the encrypted structure and content are changed, and the
resulting encrypted image is also changed.

The difference between T1 and T2 is evaluated by the number
of pixels change rate (NPCR) and the unified average changing
intensity (UACI). The test results are shown in Table 6.

{{{{{
{{{{{
{

NPCR(T1,T2) =
1

MN

M

∑
i=1

N

∑
j=1
|Sign(T1(i, j) −T2(i, j))| × 100%

UACI(T1,T2) =
1

MN

M

∑
i=0

N

∑
j=0

|T1(i, j) −T2(i, j)|
255− 0

× 100%
,

where Sign (•) is a symbolic function.

5.6 Comparison with other
state-of-the-art encryption schemes

In conclusion, the various performance metrics mentioned
above are discussed to compare the proposed encryption
algorithm with other state-of-the-art chaotic and non-chaotic
encryption algorithms. Reference [46] and Reference [47] proposed
chaotic encryption schemes. Reference [48] used the advanced
encryption standard (AES) scheme. The comparison results
are shown in Table 7.

6 Discussion and conclusion

6.1 Discussion

In recent years, significant progress has been made in visual
information mapping techniques based on deep learning [49, 50].
The visual consistency of feature embedding has been optimized
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FIGURE 12
Noise test results: (a) S&P 0.1; (b) S&P 0.01; (c) S&P 0.001; (d) Gaussian noise 0.001.

TABLE 6 Test results of different images.

Images NPCR (%) UACI (%)

Kid 99.6012 33.4311

Girl 99.6114 33.4821

Boy 99.6241 33.4636

Average 99.6122 33.4589

TABLE 7 Comparison with other encryption schemes.

Process Proposed [46] [47] [48]

Key space 2471 2326 2448 2128

NPCR (%) 99.6122 99.6025 99.60 99.5650

UACI (%) 33.4589 33.4612 33.42 33.4675

Entropy 7.9972 7.9993 7.9993 7.9971

FIGURE 13
Lost children information.

through the cascading attention mechanism, and the robustness
of cross-modal information has been improved using adversarial
generative networks [51, 52]. These techniques are better able
to print child-protective cipher information on clothing in the
future.

The existing solutions mainly conduct anti-edge curling and
noise tests for image encryption on carriers such as clothing
and schoolbags. However, in practical applications, children’s
information may be printed on more complex carriers (such as
clothes with rough fabric textures and easily worn plastic labels). In
the future, the decryption effect of encrypted images under extreme
physical conditions (such as high temperature, water stains, and
tensile deformation) can be further tested, and combinedwith image
restoration algorithms (such as damaged area completion based on
deep learning), the adaptability of the scheme to diverse carriers and
environments can be enhanced.

6.2 Conclusion

An image encryption scheme is proposed in this paper for
the protection and verification of missing children’s information.
First, the dynamical behavior of the hyperchaotic mapping used in
the design of the encryption scheme is analyzed, and the analysis
results prove that the hyperchaotic mapping is suitable for image-
encryption design. Then, the pseudo-random sequences are used
to swap the missing child image information with random length
random positions, divided into row swap and column swap. Next, a
selective XOR is used between the image sequence and the pseudo-
random sequences. Finally, the effectiveness of the encryption
scheme is verified by simulation. Considering that the missing
child’s information should be decrypted by a specific person, the
security of the encryption scheme should also be guaranteed. The
sensitivity to the key and the large key space guarantee the resistance
of the encryption scheme to exhaustive attacks. Comparing the
statistical characteristics of the data between the cipher images
and the original images, the pixel-level distribution status of the
original images, the correlation between the adjacent pixels, and
the amount of information contained in the image are hidden
or broken. Considering that children’s clothes will have curled
edges in the process of use, the image encryption scheme is
tested against curled edges. The test results show that even if the
missing child information has a certain degree of curled edges,
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FIGURE 14
Encrypted image (represented by the blue labels) integrated into different areas of the garment.

it can be recovered. In summary, this scheme provides technical
support for the protection and verification of missing children’s
information.

Moreover, this technique can be applied to prevent the missing
of children. For example, the detailed information of children,
along with those of their parents (Figure 13), can be encoded. The
encrypted image will be attached to the clothes (Figure 14). In
instances where children go missing, law enforcement agencies can
employ specialized readers to decrypt the encrypted information,
thereby facilitating accurate and expeditious contact with designated
guardians. Moreover, the amalgamation of image encryption
significantly amplifies the computational complexity faced by
malicious entities attempting to breach the encryption, effectively
impeding easy access to children’s information and mitigating
concerns regarding privacy breaches. It can enhance the probability
of successfully locating missing children.

Data availability statement

The data used in this study is available from the corresponding
author upon reasonable request.

Ethics statement

Written informed consent was obtained from the minor(s)'
legal guardian/next of kin for the publication of any potentially
identifiable images or data included in this article.

Author contributions

CT: Conceptualization, Methodology, Software, Writing –
original draft. LN: Funding acquisition, Supervision, Writing –

review and editing. RC: Validation, Formal analysis, Writing –
review and editing.

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. The
research was supported by the Scientific Research Project of
Dalian Polytechnic University (KJ20250095) and the Liaoning
Provincial Department of Education Scientific Research Project
(JYTMS20230410).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Frontiers in Physics 12 frontiersin.org153

https://doi.org/10.3389/fphy.2025.1655166
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Tu et al. 10.3389/fphy.2025.1655166

References

1. Cao Y, Tan L, Xu X, Li B. A universal image compression sensing–encryption
algorithm based on DNA-triploid mutation. Mathematics (2024) 12(13):1990.
doi:10.3390/math12131990

2. Tan L, Cao Y, Banerjee S, Mou J. Multi-medical image protection: compression-
encryption scheme based on TLNN andmask cubes. J Supercomputing (2025) 81(1):96.
doi:10.1007/s11227-024-06624-6

3. Liu Z, Li P, Cao Y, Mou J. A novel multimodal joint information encryption
scheme based on multi-level confusion and hyperchaotic map. Int J Mod Phys C (2025).
doi:10.1142/S012918312550038X

4. Zhang Z, Cao Y, ZhouN, Xu X,Mou J. Novel discrete initial-boosted tabu learning
neuron: dynamical analysis, DSP implementation, and batchmedical image encryption.
Appl Intelligence (2025) 55(1):61. doi:10.1007/s10489-024-05918-9

5. Chu R, Zhang S, Gao X. A novel 3D image encryption based on the
chaotic system and RNA crossover and mutation. Front Phys (2022) 10:1–14.
doi:10.3389/fphy.2022.844966

6. Bi X, Shuai C, Liu B, Xiao B, Li W, Gao X. Privacy-preserving color image
feature extraction by quaternion discrete orthogonal moments. IEEE Trans Inf Forensics
Security (2022) 17:1655–68. doi:10.1109/tifs.2022.3170268

7. Mou J, ZhangZ, Banerjee S, ZhangY.Combining Semi-tensor product compressed
sensing and session keys for low-cost encryption of batch information inWBANs. IEEE
Internet Things J (2024) 11(20):33565–76. doi:10.1109/jiot.2024.3429349

8. Yuan S, ChenD, LiuX, ZhouX.Optical encryption based onbiometrics and single-
pixel imaging with random orthogonal modulation. Opt Commun (2022) 522:128643.
doi:10.1016/j.optcom.2022.128643

9. Mou J, Tan L, Cao Y, Zhou N, Zhang Y. Multi-face image compression encryption
scheme combining extraction with STP-CS for face database. IEEE Internet Things J
(2025) 12:19522–31. doi:10.1109/JIOT.2025.3541228

10. Liang W, Yang Y, Yang C, Hu Y, Xie S, Li KC, et al. PDPChain: a consortium
blockchain-based privacy protection scheme for personal data. IEEE Trans Reliability
(2022) 72(2):586–98. doi:10.1109/tr.2022.3190932

11. Liu Y, Hao X, Ren W, Xiong R, Zhu T, Choo KKR, et al. A blockchain-based
decentralized, fair and authenticated information sharing scheme in zero trust internet-
of-things. IEEE Trans Comput (2022) 72(2):501–12. doi:10.1109/tc.2022.3157996

12. Cai C, Cao Y, Mou J, Banerjee S, Sun B. A versatile image encryption scheme
based on optical hologram technology and chess rules. Int J Bifurcation Chaos (2024)
34(15):2450185. doi:10.1142/s0218127424501852

13. Zhang Z, Mou J, Zhou N, Banerjee S, Cao Y. Multi-cube encryption scheme for
multi-type images based on modified klotski game and hyperchaotic map. Nonlinear
Dyn (2024) 112(7):5727–47. doi:10.1007/s11071-024-09292-6

14. Han Z, Cao Y, Banerjee S, Mou J. Hybrid image encryption scheme based on
hyperchaotic map with spherical attractors. 34(3), 030503 (2025).

15. Yu F, He S, Yao W, Cai S, Xu Q. Bursting firings in memristive hopffeld neural
network with image encryption and hardware implementation. IEEE Trans Computer-
Aided Des Integrated Circuits Syst (2025) 1. doi:10.1109/tcad.2025.3567878

16. Yang F, An X, xiong L. A new discrete chaotic map application
in image encryption algorithm. Physica Scripta (2022) 97(3):035202.
doi:10.1088/1402-4896/ac4fd0

17. Ma T, Mou J, Yan H, Cao Y. A new class of hopfield neural network with
double memristive synapses and its DSP implementation. The Eur Phys J Plus (2022)
137(10):1135. doi:10.1140/epjp/s13360-022-03353-8

18. Yu F, Su D, He S, Wu 吴 Y亦, Zhang 张 S善, Yin 尹 H挥. Resonant tunneling
diode cellular neural network with memristor coupling and its application in police
forensic digital image protection. Chin Phys B (2025) 34(5):050502. doi:10.1088/1674-
1056/adb8bb

19. Ma Y, Mou J, Jahanshahi H, Abdulhameed A, Bi X. Design and DSP
implementation of a hyperchaotic map with infinite coexisting attractors and
intermittent chaos based on a novel locally active memcapacitor. Chaos, Solitons and
Fractals (2023) 173:113708. doi:10.1016/j.chaos.2023.113708

20. Ma T,Mou J, Banerjee S, CaoH. Analysis of the functional behavior of fractional-
order discrete neuron under electromagnetic radiation. Chaos, Solitons and Fractals
(2023) 176:114113. doi:10.1016/j.chaos.2023.114113

21. Chen Y, Cao Y, Mou J, Sun B, Banerjee S. A simple photosensitive circuit
based on a mutator for emulating memristor, memcapacitor, and meminductor:
light illumination effects on dynamical behaviors. Int J Bifurcation Chaos (2024)
34(6):2450069. doi:10.1142/s021812742450069x

22. Wang X, Xu X, Sun K, Jiang Z, Li M, Wen J. A color image encryption and hiding
algorithm based on hyperchaotic system and discrete cosine transform. Nonlinear Dyn
(2023) 111(15):14513–36. doi:10.1007/s11071-023-08538-z

23. Toktas F, Erkan U, Yetgin Z. Cross-channel color image encryption through
2D hyperchaotic hybrid map of optimization test functions. Expert Syst Appl (2024)
249:123583. doi:10.1016/j.eswa.2024.123583

24. Gao X, Mou J, Banerjee S, Cao Y, Xiong L, Chen X. An effective multiple-image
encryption algorithm based on 3D cube and hyperchaotic map. J King Saud Univ -
Computer Inf Sci (2022) 34(4):1535–51. doi:10.1016/j.jksuci.2022.01.017

25. Wang X, Mou J, Cao Y, Jahanshahi H. Modeling and analysis of cellular
neural networks based on memcapacitor. Int J Bifurcation Chaos (2025) 35.
doi:10.1142/S0218127425300101

26. JunM,CaoH, ZhouN, CaoY. An FHN-HRneuron network coupledwith a novel
locally active memristor and its DSP implementation. IEEE Trans Cybernetics (2024)
54(12):7333–42. doi:10.1109/TCYB.2024.3471644

27. Jun M, Zhang Z, Zhou N, Zhang Y, Cao Y. Mosaic tracking: lightweight
batch video frame awareness multi-target encryption scheme based on a novel
discrete tabu learning neuron and YoloV5. IEEE Internet Things J (2024).
doi:10.1109/JIOT.2024.3482289

28. Cao H, Cao Y, Lei Q, Mou J (2025). Dynamical analysis, multi-cavity control
and DSP implementation of a novel memristive autapse neuron model emulating brain
behaviors. Chaos, Solitons and Fractals, 191, 115857. doi:10.1016/j.chaos.2024.115857

29. Shi F, Cao Y, Xu X, Mou J. A novel memristor-coupled discrete neural network
with multi-stability and multiple state transitions. The Eur Phys J Spec Top (2025).
doi:10.1140/epjs/s11734-024-01440-8

30. Yu F, Wu C, Xu S, Yao W, Xu C, Cai S, et al. Color video encryption transmission
in IoT based onmemristive hopfield neural network. Signal Image Video Process. (2025)
19(77):77. doi:10.1007/s11760-024-03697-x

31. GanZ,ChaiX, Bi J, ChenX.Content-adaptive image compression and encryption
via optimized compressive sensing with double random phase encoding driven by
chaos. Complex & Intell Syst (2022) 8:2291–309. doi:10.1007/s40747-022-00644-6

32. Abuturab MR, Alfalou A. Multiple color image fusion, compression, and
encryption using compressive sensing, chaotic-biometric keys, and optical
fractional fourier transform. Opt & Laser Technology (2022) 151:108071.
doi:10.1016/j.optlastec.2022.108071

33. Wang X, Liu C, Jiang D. A novel triple-image encryption and hiding algorithm
based on chaos, compressive sensing and 3D DCT. Inf Sci (2021) 574:505–27.
doi:10.1016/j.ins.2021.06.032

34. Zhang J, Yang D, Ma R, Shi Y. Multi-image and color image encryption
via multi-slice ptychographic encoding. Opt Commun (2021) 485:126762.
doi:10.1016/j.optcom.2021.126762

35. Yan X, Wang X, Xian Y. Chaotic image encryption algorithm based on arithmetic
sequence scrambling model and DNA encoding operation. Multimedia Tools Appl
(2021) 80(7):10949–83. doi:10.1007/s11042-020-10218-8

36. Wang X, Su Y. Image encryption based on compressed sensing
and DNA encoding. Signal Processing: Image Commun (2021) 95:116246.
doi:10.1016/j.image.2021.116246

37. Ghanbari-Ghalehjoughi H, Eslami M, Ahmadi-Kandjani S, Ghanbari-
Ghalehjoughi M, Yu Z. Multiple layer encryption and steganography viamulti-channel
ghost imaging.Opt Lasers Eng (2020) 134:106227. doi:10.1016/j.optlaseng.2020.106227

38. Yang Y-G,Wang B-P, Yang Y-L, Zhou Y-H, ShiW-M, Liao X. Visually meaningful
image encryption based on universal embedding model. Inf Sci (2021) 562:304–24.
doi:10.1016/j.ins.2021.01.041

39. Hua Z, Zhang K, Li Y, Zhou Y. Visually secure image encryption using adaptive-
thresholding sparsification and parallel compressive sensing. Signal Process. (2021)
183:107998. doi:10.1016/j.sigpro.2021.107998

40. Zhu S, Deng X, Zhang W, Zhu C. Image encryption scheme based on newly
designed chaotic map and parallel DNA coding. Mathematics (2023) 11(1):231.
doi:10.3390/math11010231

41. Zhu S, Deng X, Zhang W, Zhu C. Secure image encryption scheme based on
a new robust chaotic map and strong S-box. Mathematics Comput Simulation (2023)
207:322–46. doi:10.1016/j.matcom.2022.12.025

42. Wu Y, Zhou Y, Saveriades G, Agaian S, Noonan JP, Natarajan P. Local shannon
entropy measure with statistical tests for image randomness. Inf Sci (2013) 222:323–42.
doi:10.1016/j.ins.2012.07.049

43. Kaur G, Agarwal R, Patidar V. Color image encryption system using combination
of robust chaos and chaotic order fractional hartley transformation. J King Saud Univ -
Computer Inf Sci (2021) 34:5883–97. doi:10.1016/j.jksuci.2021.03.007

44. Lu Q, Yu L, Zhu C. Symmetric image encryption algorithm based
on a new product trigonometric chaotic map. Symmetry (2022) 14(2):373.
doi:10.3390/sym14020373

45. KaurG,Agarwal R, PatidarV.Color image encryption schemebased on fractional
hartley transform and chaotic substitution–permutation. The Vis Computer (2021)
38(3):1027–50. doi:10.1007/s00371-021-02066-w

46. Li S-Y, Gai Y, Shih K-C, ChenC-S. An efficient image encryption algorithm based
on innovative DES structure and hyperchaotic keys. IEEE Trans Circuits Syst Regular
Pap (2023) 70(10):4103–11. doi:10.1109/tcsi.2023.3296693

Frontiers in Physics 13 frontiersin.org154

https://doi.org/10.3389/fphy.2025.1655166
https://doi.org/10.3390/math12131990
https://doi.org/10.1007/s11227-024-06624-6
https://doi.org/10.1142/S012918312550038X
https://doi.org/10.1007/s10489-024-05918-9
https://doi.org/10.3389/fphy.2022.844966
https://doi.org/10.1109/tifs.2022.3170268
https://doi.org/10.1109/jiot.2024.3429349
https://doi.org/10.1016/j.optcom.2022.128643
https://doi.org/10.1109/JIOT.2025.3541228
https://doi.org/10.1109/tr.2022.3190932
https://doi.org/10.1109/tc.2022.3157996
https://doi.org/10.1142/s0218127424501852
https://doi.org/10.1007/s11071-024-09292-6
https://doi.org/10.1109/tcad.2025.3567878
https://doi.org/10.1088/1402-4896/ac4fd0
https://doi.org/10.1140/epjp/s13360-022-03353-8
https://doi.org/10.1088/1674-1056/adb8bb
https://doi.org/10.1088/1674-1056/adb8bb
https://doi.org/10.1016/j.chaos.2023.113708
https://doi.org/10.1016/j.chaos.2023.114113
https://doi.org/10.1142/s021812742450069x
https://doi.org/10.1007/s11071-023-08538-z
https://doi.org/10.1016/j.eswa.2024.123583
https://doi.org/10.1016/j.jksuci.2022.01.017
https://doi.org/10.1142/S0218127425300101
https://doi.org/10.1109/TCYB.2024.3471644
https://doi.org/10.1109/JIOT.2024.3482289
https://doi.org/10.1016/j.chaos.2024.115857
https://doi.org/10.1140/epjs/s11734-024-01440-8
https://doi.org/10.1007/s11760-024-03697-x
https://doi.org/10.1007/s40747-022-00644-6
https://doi.org/10.1016/j.optlastec.2022.108071
https://doi.org/10.1016/j.ins.2021.06.032
https://doi.org/10.1016/j.optcom.2021.126762
https://doi.org/10.1007/s11042-020-10218-8
https://doi.org/10.1016/j.image.2021.116246
https://doi.org/10.1016/j.optlaseng.2020.106227
https://doi.org/10.1016/j.ins.2021.01.041
https://doi.org/10.1016/j.sigpro.2021.107998
https://doi.org/10.3390/math11010231
https://doi.org/10.1016/j.matcom.2022.12.025
https://doi.org/10.1016/j.ins.2012.07.049
https://doi.org/10.1016/j.jksuci.2021.03.007
https://doi.org/10.3390/sym14020373
https://doi.org/10.1007/s00371-021-02066-w
https://doi.org/10.1109/tcsi.2023.3296693
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Tu et al. 10.3389/fphy.2025.1655166

47. Zhou S, Wang X, Zhang Y. Novel image encryption scheme based
on chaotic signals with finite-precision error. Inf Sci (2023) 621:782–98.
doi:10.1016/j.ins.2022.11.104

48. Yi G, Cao Z. An algorithm of image encryption based on AES & rossler
hyperchaotic modeling. Mobile Networks Appl (2023) 29:1451–9. doi:10.1007/s11036-
023-02216-5

49. Wu Z, Sun C, Xuan H, Yan Y. Deep stereo video inpainting. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition (2023). p.
5693–702.

50. Wu Z, Sun C, Xuan H, Liu G, Yan Y. WaveFormer: wavelet transformer for
noise-robust video inpainting. Proc AAAI Conf Artif Intelligence (2024) 38(6):6180–8.
doi:10.1609/aaai.v38i6.28435

51. Zhang W, Li Z, Li G, Zhuang P, Hou G, Zhang Q, et al. GACNet: generate
adversarial-driven cross-aware network for hyperspectral wheat variety identification.
IEEE Trans Geosci Remote Sensing (2023) 62:1–14. doi:10.1109/tgrs.2023.3347745

52. Gao X, Sun B, Cao Y, Banerjee S, Mou J. A color image encryption algorithm
based on hyperchaotic map and DNA mutation. Chin Phys B (2023) 32(3):030501.
doi:10.1088/1674-1056/ac8cdf

Frontiers in Physics 14 frontiersin.org155

https://doi.org/10.3389/fphy.2025.1655166
https://doi.org/10.1016/j.ins.2022.11.104
https://doi.org/10.1007/s11036-023-02216-5
https://doi.org/10.1007/s11036-023-02216-5
https://doi.org/10.1609/aaai.v38i6.28435
https://doi.org/10.1109/tgrs.2023.3347745
https://doi.org/10.1088/1674-1056/ac8cdf
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Investigates complex questions in physics to 

understand the nature of the physical world

Addresses the biggest questions in physics, 

from macro to micro, and from theoretical to 

experimental and applied physics.

Discover the latest 
Research Topics

See more 

Frontiers in
Physics

https://www.frontiersin.org/journals/physics/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Advances in nonlinear systems and networks, volume III

	Table of contents

	Editorial: Advances in nonlinear systems and networks, volume III

	1 Introduction
	2 Summary of papers presented in This Research Topic
	3 Concluding remarks
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	FSE-RBFNN-based LPF-AILC of finite time complete tracking for a class of time-varying NPNL systems with initial state errors
	1 Introduction
	2 Problem description and mathematical foundations
	2.1 Problem description
	2.2 Mathematical foundations

	3 AILC design
	3.1 Designing the AILC controller
	3.2 Stability and convergence analysis

	4 Illustrative examples
	4.1 Number simulation
	4.2 Simulation of a single-joint robotic arm

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	A novel image encryption method based on improved two-dimensional logistic mapping and DNA computing
	1 Introduction
	2 An improved 2D-LFHCM
	2.1 The definition of 2D-LFHCM
	2.2 Analysis and comparison of chaotic properties of 2D-LFHCM
	2.3 Bifurcation diagrams
	2.4 Lyapunov exponents spectrum
	2.5 Iteration sequence and phase diagram

	3 The basic principles of encryption and decryption
	4 Proposed image encryption scheme
	5 Performance evaluation
	5.1 Key space analysis
	5.2 Time cost and speed analysis
	5.3 Histogram analysis
	5.4 Chi-square analysis
	5.5 Information entropy
	5.6 Correlation
	5.7 Comparison and analysis

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Self-organization of the stock exchange to the edge of a phase transition: empirical and theoretical studies

	1 Introduction
	2 Data set and methods
	2.1 Model time series generated by sandpile cellular automata
	2.2 Stock volume series and time intervals for critical state
	2.3 Early warning measures
	2.3.1 Measures of critical slowing down
	2.3.2 Multifractal measures
	2.3.3 Measures of reconstructed phase space


	3 Results and their discussion
	3.1 Time intervals for critical state of stock exchange
	3.2 Phenomenological model of stock exchange self-organization into a critical state
	3.3 Early warning signals for stock exchange self-organization into a critical state

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	Monophasic and biphasic neurodynamics of bi-S-type locally active memristor

	1 Introduction
	3 LAM-based second-order neuron
	3.1 Composite impedance function
	3.2 Periodic spikes

	2 Bi-S-type locally active memristor
	2.1 Fingerprints of locally active memristor
	2.1.1 fingerprint 1: pinched hysteresis loop
	2.1.2 fingerprint 2: negative differential resistance (NDR) regions

	2.2 Small-signal equivalent circuit of LAM

	4 LAM-based third-order neuron
	4.1 Stability condition
	4.2 Monophasic neurodynamics
	4.3 Biphasic spikes
	4.4 Symmetric behaviors

	5 Circuit emulator
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	New discrete memristive hyperchaotic map: modeling, dynamic analysis, and application in image encryption 
	1 Introduction
	2 Design of a new discrete hyperchaotic map model
	2.1 Mathematical model of discrete hyperchaotic map
	2.2 Application of discrete memristor in hyperchaotic map

	3 Construction and dynamic analysis of a new discrete hyperchaotic map
	3.1 Fixed point
	3.2 Parametric bifurcation graphs and lyapunov exponents
	3.3 Random analysis

	4 Design and implementation of image encryption algorithm
	4.1 An image encryption scheme based on hyperchaotic map
	4.2 Performance analysis of encryption algorithms
	4.2.1 Key space analysis
	4.2.2 Histogram analysis
	4.2.3 Relevance analysis
	4.2.4 Information entropy analysis


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	HiImp-SMI: an implicit transformer framework with high-frequency adapter for medical image segmentation

	1 Introduction
	2 Materials and methods
	2.1 Channel attention block
	2.2 Multi-branch Cross Attention Block
	2.3 ViT-Conv fusion block
	2.4 Loss function

	3 Experiments
	3.1 Experimental setup
	3.2 Quantitative comparison
	3.3 Qualitative comparison
	3.4 Ablation study

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	An echo state network based on enhanced intersecting cortical model for discrete chaotic system prediction

	1 Introduction
	2 Related works
	2.1 Deep learning-based time series prediction methods
	2.2 Reservoir computing for time series prediction

	3 Methods
	3.1 Problem statement and challenges
	3.2 Echo state network based on enhanced intersecting cortical model framework
	3.2.1 Input layer
	3.2.2 Reservoir layer
	3.2.3 Output layer
	3.2.4 Bayesian optimization strategy

	3.3 Enhanced intersecting cortical model
	3.3.1 Feeding input F
	3.3.2 Output term Y
	3.3.3 Dynamic threshold E

	4 Experiment
	4.1 Dataset generation
	4.1.1 Data generation Process
	4.1.2 Data preprocessing
	4.1.3 Dataset properties

	4.2 Evaluation metrics
	4.2.1 Mean squared error (MSE)
	4.2.2 Root mean squared error (RMSE)
	4.2.3 Mean absolute error (MAE)
	4.2.4 Coefficient of determination (R2)
	4.2.5 Explained variance score (EVS)
	4.2.6 Max error (ME)

	4.3 Model configuration
	4.3.1 ESN-EICM model configuration
	4.3.2 ESN model configuration
	4.3.3 LSTM model configuration

	4.4 Hyperparameter optimization results
	4.4.1 ESN-EICM best parameters
	4.4.2 ESN best parameters
	4.4.3 LSTM best parameters

	4.5 Hyperparameter sensitivity analysis
	4.6 Prediction performance evaluation
	4.6.1 One-step prediction performance
	4.6.2 Multi-step prediction performance

	4.7 Training time comparison

	5 Discussion
	5.1 On model complexity and the design philosophy
	5.2 Robustness against sensitivity in chaotic systems

	6 Limitations and future work
	6.1 Limitations
	6.2 Future work

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


	Analysis and application for the source-free RMLC circuits

	1 Introduction
	2 HP memristor and gerenal source-free circuits
	3 The source-free R_MC and R_ML circuits
	3.1 The source-free R_MC circuits
	3.2 The source-free R_ML circuits

	4 The R_MLC circuits
	4.1 A.Series circuit
	4.1.1 Overdamped case
	4.1.2 Critically damped case
	4.1.3 Underdamped case.

	4.2 Parallel circuit
	4.2.1 Overdamped case.
	4.2.2 Critically damped case.
	4.2.3 Underdamped case.


	5 Application of classic circuits with four fundamental components
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	A child information protection scheme based on hyperchaotic mapping

	1 Introduction
	2 Chaotic mapping
	3 Encryption scheme
	4 Simulation result
	5 Performance tests
	5.1 Key security
	5.1.1 Key space
	5.1.2 Key sensitivity

	5.2 Statistical characterization
	5.2.1 Histogram
	5.2.2 Correlation
	5.2.3 Information entropy

	5.3 Anti-rolling edge test
	5.4 Noise test
	5.5 Differential attack
	5.6 Comparison with other state-of-the-art encryption schemes

	6 Discussion and conclusion
	6.1 Discussion
	6.2 Conclusion

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	Back Cover



