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1 INTRODUCTION
Nonlinear systems and networks theory is a branch of automatic control theory. It takes systems and networks described by nonlinear differential equations or difference equations as its research objects, focusing on their motion laws and analysis methods, and belongs to the field of physics [1–5]. Its core feature is the failure of the superposition principle, and it mainly studies complex phenomena such as self-excited oscillation, frequency-dependent amplitude, multi-valued response, bifurcation and chaos [6–10].
In recent years, with the development and application of emerging technologies such as big data [11, 12], cloud computing [13, 14], Internet of Things [15–17], and datacentral networks [18–20], nonlinear technologies have gradually shifted from system modeling to intelligent computing [21–24]. At present, nonlinear systems and networks have been deeply studied and applied in the following fields, such as chaotic systems [25–27], neural networks [28–32], memristors [33–35], neural circuits [36–38], system synchronization [39, 40], and related application fields [41–47].
Due to the success of the first and second Research Topic of “Advances in Nonlinear Systems and Networks”, we have decided to continue to focus on the ongoing progress of nonlinear systems and networks in the third volume. This Research Topic has published a total of 10 research papers, covering the latest research progress in areas such as adaptive iterative learning control, chaotic system modeling, memristor mathematical model, nonlinear circuit, and their applications.
2 SUMMARY OF PAPERS PRESENTED IN THIS RESEARCH TOPIC
Zhang et al. in the paper “FSE-RBFNN-based LPF-AILC of finite time complete tracking for a class of time-varying NPNL systems with initial state errors”, proposed a low-pass filter adaptive iterative learning control (LPF-AILC) strategy is proposed. The authors combined the Radial basis function neural network (RBFNN) with the Fourier Series expansion (FSE) and proposed a new function approximator (FSE-RBFNN) to model various time-varying nonlinear parametric functions. To mitigate the influence of the initial state error, the article introduces a dynamically changing boundary layer and a series of methods for dealing with the upper bound of unknown errors. Finally, the correctness of the proposed control method was verified through two simulation examples.
Yu et al. in the paper “New discrete memristive hyperchaotic map: modeling, dynamic analysis, and application in image encryption”, by coupling the upgraded cosine discrete memristor with the Cubic mapping, a new type of discrete memristor hyperchaotic mapping is constructed. Then, the dynamic characteristics of the system are deeply analyzed. Subsequently, based on the proposed hyperchaotic mapping, the paper presents a new image encryption scheme, effectively scrambling and diffusing the image data. During the diffusion process, a new forward and reverse diffusion strategy is introduced, which improves the encryption efficiency. Finally, through relevant security analysis, it is found that this scheme has high security and practicability.
Wang et al. in the paper “Monophasic and biphasic neurodynamics of bi-S-type locally active memristor”, proposed an artificial memristive neuron was proposed to reproduce the function of biological neurons. By using the Chua expansion theorem, the authors established a mathematical model of a double S-type local active memristor with negative differential resistance (NDR). Subsequently, the paper constructed a second-order neural circuit to simulate periodic spikes and excitability. In addition, the constructed neuron circuits generate biphasic action potentials through voltage-symmetric modulation, replicating the bidirectional signal transmission similar to that of biological systems. Finally, hardware simulation verified the neural dynamics under different stimuli.
Gao et al. in the paper “Analysis and Application for the Source-free R M LC Circuits”, studied the passive circuit topologies of four types of integrated memristors and energy storage components. Firstly, through mathematical modeling, the authors discovered that all four circuits are controlled by transcendental equations. Secondly, two types of four-component passive circuits were configured and analyzed. It was concluded that the capacitor and inductor provide energy for the system, while the memristor exhibits hysteresis behavior. Finally, the paper configured and discussed the application circuit. Research shows that even within the same circuit, different placement positions of memristors can lead to different topological structures and different nonlinear output behaviors.
Wang et al. in the paper “An echo state network based on enhanced intersecting cortical model for discrete chaotic system prediction”, proposed an echo state network framework based on the Enhanced Intersecting Cortical Model (ESN-EICM). This model introduces a neuron model with internal dynamics (including adaptive thresholds and interneuron feedback) into the reservoir structure. The paper compares the performance of the ESN-EICM network with that of the standard ESN and long short-term memory (LSTM) networks. The experimental results show that in the test system, compared with the standard ESN and LSTM models, the ESN-EICM model generates lower error metrics (MSE, RMSE, MAE), and the performance difference is more obvious in multi-step prediction scenarios.
Tu et al. in the paper “Child information protection scheme based on hyperchaotic mapping”, proposed an encryption scheme based on hyperchaotic mapping. Firstly, the authors plotted the phase diagrams of the hyperchaotic mapping under different parameter combinations. The changes in the phase trajectories confirmed the sensitivity of the hyperchaotic mapping to the control parameters. Then, the paper iterates on the hyperchaotic mapping to obtain a chaotic sequence and quantizes the chaotic sequence to obtain a pseudo-random sequence. Finally, on this basis, scrambling algorithms and diffusion algorithms were designed to encrypt and protect the images, which are used to protect the information of missing children and can effectively protect the information security of children.
Chen et al. in the paper “A novel image encryption method based on improved two-dimensional logistic mapping and DNA computing”, proposed an innovative image encryption method, eliminating the security limitations of traditional one-dimensional logical mapping. Firstly, the article utilizes the improved two-dimensional Logistic-fractional mixed chaotic map (2D-LFHCM) to effectively shuffle the images by merging chaotic sequences. Then, two new algebraic deoxyribonucleic acid (DNA) calculation rules were introduced to enhance diffusion encryption. The experimental results show that this method provides superior security performance.
Zhang et al. in the paper “Grid Image Encryption Based on 4D Memristive Sprott K Chaotic Sequence”, proposed an image encryption algorithm for smart grids based on chaotic systems. Firstly, the authors adopted the 4D memristive Sprott K system to generate chaotic sequences as the encryption key stream; Secondly, the article uses a dual encryption mechanism of scrambling and diffusion to scramble the positions of image pixels and replace their values, thereby enhancing the algorithm’s anti-attack capability. The simulation results show that this algorithm can effectively protect the security and privacy of smart grid images.
Huang et al. in the paper “HiImp-SMI: an implicit transformer framework with high-frequency adapter for medical image segmentation”, studied an implicit transformer framework for medical image segmentation with a high-frequency adapter (HIPP-SMI). The authors have designed a new dual-branch structure that simultaneously processes spatial and frequency information. Experimental evaluations show that on the Kvasir-Sessile and BCV datasets, HiImp-SMI consistently outperforms mainstream models. The framework proposed in the paper can serve as a flexible baseline for future work involving implicit modeling and multimodal representation learning in medical image analysis.
Dmitriev et al. in the paper “Self-organization of the stock exchange to the edge of a phase transition: empirical and theoretical studies”, found segments in the hourly stock trading volume sequence of 3,000 listed company stocks, corresponding to the time when the stock exchange remained at the edge of the phase transition. The authors conducted theoretical arguments for this hypothesis and presented phenomenological models of the self-organization of stock exchanges at the first-order phase transition edge and the second-order phase transition edge. The practical significance of this study lies in the possibility of self-organization of stock exchanges to phase transition edge early warning, and it can be expanded in future research using high-frequency data.
3 CONCLUDING REMARKS
The continuous release of this Research Topic marks that the application and development research of nonlinear systems and networks has entered a brand-new research space. As this field continues to develop, contributions from a broader range of research and applications will play a crucial role in shaping its future direction.
Finally, we would like to express our gratitude to all the authors of the 10 articles in this Research Topic for their outstanding contributions. Their research papers are all highly suitable for the scope of this Research Topic. In addition, we would also like to express our sincere gratitude to all the reviewers, editors and editorial staff of the journal Frontiers in Physics for their support.
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The paper proposes a low-pass filter adaptive iterative learning control (LPF-AILC) strategy for unmatched, uncertain, time-varying, non-parameterized nonlinear systems (NPNL systems). To address the difficulty of nonlinear parameterization terms in system models, a new function approximator (FSE-RBFNN), which combines the radial basis function neural network (RBFNN) and Fourier series expansion (FSE), is introduced to model each time-varying nonlinear parameterized function. The adaptive backstepping method is used to design control laws and parameter adaptive laws. In the process of controller design, we may encounter the problem of too many derivatives, which can cause parameter explosions after derivatives. Therefore, we introduce a first-order low-pass filter to solve this problem and simplify the structure of the controller. As the number of iterations increases, the maximum tracking error gradually decreases until it converges to the nearby region, approaching zero within the entire given interval [image: Mathematical expression showing a closed interval from zero to T, written as open bracket zero comma uppercase T close bracket.], according to the Lyapunov-like synthesis. To mitigate the impact of initial state errors, a dynamically changing boundary layer is introduced, along with a series to deal with the unknown error upper bounds. Finally, two simulation examples prove the correctness of the proposed control method.
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1 INTRODUCTION
Adaptive iterative learning control (AILC) is a useful control strategy for solving repetitive tracking control task problems for uncertain nonlinear systems. It continuously adjusts its control algorithm through iterative learning to gradually approach the ideal trajectory of the unknown system. AILC has extensive application value and promising development prospects for practical applications. Repeat systems include uncertain robotic manipulators and uncertain hard disk drivers. The task requirements specify that it can quickly achieve exact tracking as the number of iterations increases [1–4].
A non-parameterized nonlinear (NPNL) system refers to a dynamic characteristic that exhibits a complex nonlinear relationship and unknown parameters, making it difficult to design effective control strategies. It is particularly challenging to achieve high-precision tracking and control within a limited time frame. Traditional control methods often require the establishment of a mathematical model for the system, but for the NPNL system, this step is usually very difficult or even impossible to complete. AILC technology has become an important method for solving these problems [5, 6].
There are many challenging problems in the research of AILC. This paper considers three difficult problems of AILC. The first problem is the processing problem of uncertain nonlinear parameterization terms with time-varying parameters. In the field of control, the control problem of nonlinear systems with uncertain time-varying parameters is very challenging. Adaptive control and robust control are common methods to deal with uncertain problems [7, 8]. Through learning, adaptive control can mitigate the impact of uncertainties. In order to handle uncertain nonlinear terms, adaptive control is often combined with some approximation methods, such as neural networks (NNs) and Fuzzy Logic Systems (FLSs). However, these adaptive controls only solve the uncertain linearly parameterized disturbances and ensure the stability of the system [7–20]. For the uncertain system, a fuzzy AILC was presented [21]. The composite energy function–adaptive iterative learning control (CEF–AILC) is an effective scheme for systems with time-varying disturbances [21–23]. Few AILC research results focus on uncertain, non-parameterized nonlinear systems [24–26]. Specifically, for systems with non-separable time-varying parameters, the tracking control problem on finite time intervals is still an open problem.
The second problem of AILC is ensuring complete tracking over a finite time interval when the initial state has errors. In these studies [27–31], the stability analysis section requires that initial state errors be strictly zero. Although the research on this problem is well done in traditional D-type or P-type ILC [32–41], it has not been well solved based on Lyapunov analysis for AILC. Specifically, in the presence of an initial state error, ensuring the system’s completion of accurate tracking tasks within a specified time frame presents a complex challenge. [39] solved the tracking control problem of the unmatched uncertain NPNL systems. [41] solved the tracking problem of a class of high-order nonlinear systems with random initial state shifts, which relaxes the requirement of initial positioning in ILC. So far, no relevant research results have been found for AILC applied to NPNL systems with uncertain time-varying parameters and initial state errors.
The last problem is parameter explosions after the derivative of the virtual controller. When designing a controller, we may encounter the problem of too many derivatives, which can cause parameter explosions after derivatives. Addressing this issue and streamlining the controller’s structure to ensure the effective tracking of the non-parametric, nonlinear, time-varying system is a challenging and crucial problem. [42–44] employed a first-order low-pass filter to address the challenge of parameter explosions and achieve satisfactory performance. Therefore, we introduce a first-order low-pass filter to solve this problem and simplify the structure of the controller.
Motivated by the above discussion, we will use a low-pass filter AILC (LPF-AILC) method for uncertain time-varying NPNL systems. The AILC is given by the adaptive backstepping technique and Lyapunov-like theorem. In response to the difficult issues discussed above, the main contributions of this article are as follows:
	1) An LPF-AILC strategy is proposed for a class of strongly time-varying, non-parameterized, nonlinear systems combined with a new approximation method.
	2) The processing problem of uncertain time-varying nonlinear parameterization terms was solved. This is a very important and difficult problem. Specifically, in the field of AILC, no relevant research results have been found.
	3) The difficulty problem of AILC is ensuring complete tracking on a given interval when the initial state has errors.
	4) The problem of parameter explosions was solved by applying a derivative to the virtual controller and simplifying its structure.

In this paper, a combination of Fourier series expansion and radial basis function neural network (RBFNN) (FSE-RBFNNs) is used to model the uncertain, time-varying nonlinear dynamics by using their uniform approximation [24, 38]. An updating time-varying boundary layer is used to design the error function to deal with the initial state error. A common convergence series sequence is employed to mitigate the impact of approximation errors on the control performance of the system. A low-pass filter was introduced to solve the problem of parameter explosions resulting from the derivative of the virtual controller and simplify the structure of the controller. Theoretical analysis can demonstrate the bounded nature of all signals within the closed-loop system. The maximum value of errors will gradually converge to a narrow range close to zero as the boundary layer width satisfies the convergence condition with the number of iterations. Finally, two simulation examples are given to prove the effectiveness and correctness of the control method.
2 PROBLEM DESCRIPTION AND MATHEMATICAL FOUNDATIONS
2.1 Problem description
Uncertain time-varying NPNL systems are considered:
[image: Mathematical equations describing a dynamic system: derivatives of state variables x one k to x n k are defined as functions of state vectors, parameters theta sub i of time, and nonlinear terms g sub i. Output y k equals x one k. Equation is labeled as one.]
where [image: Mathematical expression showing vector x sub i,k equals a column vector with elements x one,k through x i,k transposed, belonging to the set of real numbers raised to the power i with a bar over the i.] and [image: Mathematical equation showing x equals x sub n with a vector arrow above x n.] represents measurable state vectors. [image: Mathematical expression showing u sub k belongs to the set of real numbers, represented as u sub k, element of, and an uppercase italic R.] is the control input. [image: Mathematical expression showing y subscript k belongs to the set of real numbers, with y sub k is element of uppercase R.] is the system output. [image: Mathematical expression showing f sub i, open parenthesis, x bar sub i comma k, comma theta sub i of t, close parenthesis.], [image: Mathematical notation showing g sub i of x sub i comma k, where x has a tilde and k is a subscript within the argument.], and [image: Mathematical expression showing i equals one, two, and so on up to n, with variables in italic font.] are uncertain time-varying functions, and [image: Mathematical expression showing the time derivative of theta sub i, represented as theta with a dot above, subscript i, as a function of t in parentheses.] represents unknown time-varying parameters. [image: Italic lowercase letter k in a serif font, shown in black against a white background.] denotes the iteration time.
The design objective of this article is to find [image: Mathematical expression showing u sub k of t, with k as a subscript and t inside parentheses.] for system (1) to ensure that [image: Mathematical expression displaying y subscript k of t, where y has a subscript k, and t is enclosed in parentheses indicating a function of t.] follows the ideal trajectory [image: Mathematical expression showing y sub d one, parenthesis t, with all characters in italics.] on [image: Mathematical expression showing an interval denoted by open bracket zero comma uppercase T closed bracket, representing all values from zero to uppercase T inclusive.].
2.2 Mathematical foundations
The mathematical knowledge used in this article is provided with relevant references, and the specific definitions and principles will not be elaborated. Here, we only provide the conclusions that need to be used in this article.
In system (1), the processing of unknown time-varying, nonlinear, parameterized function terms [image: Mathematical expression showing function f of chi sub k and theta of t, with theta and t in parentheses and k as a subscript.] is a challenge. Since the function [image: Mathematical expression showing the Greek letter theta as a function of time, represented as theta of t, commonly used to indicate a time-dependent variable.] is not known, [image: Mathematical expression showing the Greek letter theta as a function of time, written as theta of left parenthesis t right parenthesis.] is expanded using Fourier series as [image: Mathematical equation showing theta of t equals M transpose times phi of t plus delta theta sub zero of t, with the norm of delta theta sub zero of t less than or equal to delta bar sub theta.]; based on this, uncertain time-varying nonlinear functions [image: Mathematical expression showing function f with arguments chi sub k and theta of t in parentheses.] can be approximated as
[image: Mathematical equation labeled as equation two: f sub y sub k, theta sub k of t equals W sub k transpose S of x sub t, M sub k inverse Phi of t plus delta theta sub k plus delta f sub k.]
A new FSE-RBFNN approximator is built:
[image: Mathematical equation displaying G of x sub k and t equals W transpose S of x sub k and M sub k transpose phi of t, followed by equation number three in parentheses.]
representing [image: Mathematical expression showing a function f with inputs chi sub k and theta sub k of t.] as
[image: Mathematical equation showing f of x sub k comma theta sub k of t equals W superscript T S of x sub k comma M sub k superscript T phi of t plus delta sub k of x sub k comma t, labeled as equation 4.]
where
[image: Mathematical equation showing delta sub k of x sub k, t equals delta j,k plus W superscript T sub k S of x sub k, M k star T Phi of t plus delta sub k, minus W superscript T sub k S of x sub k, M k star T Phi of t, with the equation labeled as five.]
[image: Text in bold serif font reads “Assumption 1.”]: In the compact domain [image: Mathematical expression showing a capital Greek letter omega followed by a subscript Latin letter k, often representing curvature density parameter in cosmology.], the weights [image: Mathematical notation showing an uppercase italic W with a lowercase italic k as a subscript, commonly used to represent an indexed variable or parameter in equations.] and [image: Mathematical expression showing an uppercase italicized M with a lowercase italicized k as its subscript, commonly used for indices or denoting elements in a sequence.] are constrained, and [image: Mathematical expression showing the norm of W sub k is less than or equal to omega sub m comma k.] and [image: Mathematical expression showing the norm of M sub k is less than or equal to m sub a comma k.] with [image: Mathematical expression showing two variables: w sub m comma k, and m sub a comma k. Both variables are in italic font and separated by a comma.] being unknown positive numbers.
Lemma 1[38]: For [image: Mathematical expression showing the pair lambda sub k and theta sub k of t belongs to the set omega sub k.], [image: Mathematical expression showing delta sub k, open parenthesis chi sub k comma t, close parenthesis.] in (5) is bound, and
[image: Mathematical inequality showing delta sub k of parenthesis x sub k comma t in absolute value less than or equal to delta bar sub k, labeled as equation six.]
where [image: Mathematical symbol showing lowercase Greek letter delta followed by subscript k.] represents the supremum of [image: Mathematical expression showing delta sub k, with variables chi sub k and t in parentheses, indicating a function or value dependent on chi sub k and time t.].
Because [image: Mathematical expression displaying an uppercase italic letter W with a lowercase italic letter k as its subscript.] and [image: Mathematical expression showing an uppercase italic M with a lowercase k as a subscript, typically representing a variable or indexed sequence.] are unknown, we estimate them with [image: Mathematical expression showing a bold, uppercase W with a circumflex accent, and a subscript k, representing W hat sub k.] and [image: Mathematical expression showing capital M with a circumflex accent and a subscript lowercase k.], respectively. [image: Mathematical equation showing W sub k with a tilde equals W sub k with a hat minus W sub k.] and [image: Mathematical equation showing M sub k with a tilde equals M sub k with a hat minus M sub k, all in italic font.] are estimation errors.
Lemma 2[38]: In the surrogate model (4), the following conclusion holds:
[image: Mathematical equation showing a relationship involving variables W_k^T, S, x_k, M_k^T, Φ(t), Ŝ, d, and their transposes, with subtraction, addition, and grouping, labeled as equation seven.]
where [image: Mathematical expression showing S hat sub k equals an array of s hat one k, s hat two k, through s hat p k, belonging to the set of real numbers of dimension m by p.] with [image: Mathematical equation showing s-hat sub i,k equals the partial derivative of s sub i with respect to omega sub k, evaluated at omega k, equal to M-hat sub i times Phi of t.] and [image: Mathematical expression showing i equals one, comma, ellipsis, p, with i and p in italics, indicating that i ranges from one to p.], and the remainder [image: Mathematical variable d with a subscript k, commonly used to denote a specific indexed dimension or element in mathematics or computer science equations.] is bounded by
[image: Mathematical equation showing an inequality: absolute value of d sub k t is less than or equal to norm of M sub k t times norm of phi t times W hat S sub k t hat plus norm of W k t times norm of S hat M sub k t phi t plus norm of W k t, labeled as equation eight.]
For the processing of the supremum of each error term, this article introduces the following typical series sequence:
Lemma 2[39] For a sequence [image: Mathematical expression showing delta sub k equals the set containing one divided by k.], where [image: Mathematical expression showing k equals one, two, and so on, written as k equals one, two, ellipsis, indicating a sequence or range for variable k.] and [image: Mathematical expression showing the letter l is greater than or equal to the number two.], the following result exists:
[image: Mathematical expression showing the limit as k approaches infinity of the sum from n equals 1 to k of one divided by n factorial is less than or equal to two, labeled equation nine.]
Assumption 2: The initial error value at the beginning of each iteration should meet [image: Mathematical expression showing the absolute value of z sub i comma k at zero equals epsilon sub i comma k.] with [image: Mathematical expression displaying the Greek letter epsilon with subscripts i, j, and k.] being a convergence series sequence, where [image: Mathematical expression showing i equals one, comma, ellipsis, comma, n, with n in bold font, commonly used to define the index range from one to n in mathematics.].
Considering the initial errors, a new function [image: Mathematical expression showing z sub phi comma k, with superscript thirty-four in square brackets.]is accepted:
[image: Mathematical equations define z_{φ,k} as z_k minus φ_k(t) times the saturation function of z_k divided by φ_k(t), and φ_k(t) as ε_{k} times the exponential of negative η t. Equation numbered ten appears on the right.]
where [image: Italicized lowercase word “sat” in a serif font displayed on a white background.] is the saturation function given as
[image: Mathematical formula representing the saturation function sat of zk over phik(t), defined as one for zk greater than phik(t), zk over phik(t) for zk less than or equal to phik(t), and negative one for zk less than negative phik(t).]
with [image: Mathematical expression showing lowercase phi subscript k of t, written as phi with subscript k, left parenthesis t right parenthesis.] being an updating time-varying boundary layer. When [image: Mathematical equation showing the limit as k approaches infinity of z sub phi comma k equals zero.] and considering assumption 2 again, we have [image: Mathematical expression showing the limit as k approaches infinity of the absolute value of z sub k equals zero.].
In order to prevent the problem of gradient explosion, we introduce the first-order low-pass filter [image: Mathematical expression showing the Greek letter beta with a subscript k, commonly used to denote a parameter or coefficient in statistics or algebraic equations.], which is given as follows:
[image: Mathematical equation showing beta sub k dot equals negative xi sub k times open parenthesis beta sub k minus alpha sub k close parenthesis, labeled as equation eleven.]
where [image: Mathematical notation showing the Greek letter beta with a subscript k.] results from filtering an instruction with [image: Greek lowercase letter alpha followed by a subscript lowercase k, displayed in italic mathematical notation.] as its input, with [image: Mathematical expression showing the Greek letter alpha with a subscript k, commonly used to represent a variable or parameter indexed by k in equations.] being the virtual controller, [image: Mathematical expression showing the Greek letter xi subscript k is greater than zero.], and [image: Mathematical equation showing beta sub k of zero equals alpha sub k of zero.]. Because part of [image: Mathematical expression showing alpha sub k times beta sub k minus alpha sub k.] cannot pass through the filter, an error compensation mechanism [image: Greek lowercase letter zeta followed by a subscript lowercase k, representing a mathematical variable or parameter.] is introduced to overcome the influence of the instruction filter. Therefore, a new function [image: Mathematical expression showing an uppercase italic Z with a subscript lowercase italic k.] is introduced as follows:
[image: Mathematical equation showing Z sub k equals z sub phi k minus zeta sub k, labeled as equation twelve.]
3 AILC DESIGN
Based on the above mathematical foundations, we present the specific controller design process.
3.1 Designing the AILC controller
Step 1: Denote [image: Mathematical equation showing N subscript 1 equals omega subscript M1 squared.], which will be defined later. [image: Mathematical equation showing z sub one comma k equals x sub one comma k minus y sub d one.] and [image: Mathematical equation showing z sub two comma k equals x sub two comma k minus alpha sub one comma k.], where [image: Mathematical expression showing the Greek letter alpha with subscripts one and k.] is the virtual controller. Because the initial state values of the system have errors and gradient explosion, the new error functions [image: Mathematical expression showing the variable Z with a subscript of one comma k.] and [image: Mathematical expression displaying a bold uppercase Z with subscript two comma k, typically representing the cyclic group of order two k or a related algebraic structure.] are given as
[image: Mathematical equations define variables z1,k, ζ1,k, ϕ1,k(t), and x1,k, with expressions involving saturation, exponentials, and subscripts. The equations are labeled as equation thirteen.]
[image: Mathematical equations show four relations: Z-two-k equals z-two-k minus zeta-two-k; z-two-k equals z-two-k minus phi-two-k of t times sat of z-two-k over phi-two-k of t; z-two-k equals x-two-k minus beta-one-k; phi-two-k of t equals epsilon-two-k times e to the negative eta-two-k t. Equation number fourteen is indicated.]
We recall that
[image: Equation showing x one k dot equals x two k plus f one of x one k, theta one of t, plus g one of x one k, enclosed in parentheses and labeled equation fifteen.]
Given the derivative of [image: Mathematical expression showing bold lowercase z with subscripts one, phi, and k.],
[image: Mathematical equation for z dot one k sub mu k is shown as a piecewise function based on comparisons between z one k and phi one k of t, followed by two expanded equalities that include control functions and the signum function. Equation reference sixteen is indicated.]
Therefore, the derivative of [image: Mathematical notation showing an uppercase Z with subscript one comma k, where the one and k appear smaller and lower than the Z.] with respect to time is as follows:
[image: Mathematical equation showing Z dot one k equals z two k plus beta one k plus f one of x tilde one k, theta one of t, plus g one of x tilde one k, minus y dot d one, minus sign of z one k phi one k superscript i, minus zeta one k, numbered seventeen.]
The error compensation mechanism is considered as follows:
[image: Mathematical equation showing zeta sub one k equals beta sub one k plus zeta sub two k minus eta sub one k times zeta sub one k minus alpha sub one k, labeled as equation eighteen.]
Using Equation 18, we can find the time derivative of the error function as follows:
[image: Mathematical equation labeled as equation nineteen showing time derivative of z sub one k equals z sub two k minus zeta sub one k plus eta one k times zeta sub one k plus a one k minus y hat one k plus f one of x hat one k, theta of t plus g one of x hat one k minus sign of z one k times phi one k.]
The unknown time-varying, nonlinear functions [image: Mathematical expression displaying f sub one of x one k bar and theta one of t, where x and theta have subscripts and x has a bar notation.] and [image: Mathematical expression displaying g sub one, open parenthesis, x bar sub one comma k, close parenthesis, where x bar features both a tilde and a bar above the variable.] may be approximated by FSE-RBFNN and RBFNN, respectively.
[image: Mathematical formulas define functions f sub j one of x bar i k, theta of t, and g sub j one of x bar i k using weight matrices W, functions S, phi, and parameters M and delta. The equation is labeled as equation twenty.]
where [image: Mathematical expression showing the Greek letter delta with a subscript of f one.] and [image: Mathematical expression showing the lowercase Greek letter delta with a subscript g one.] are the truncation errors after approximation and [image: Mathematical notation displaying the variable W with a subscript f one, where f is an italic letter and one is a numeral.] and [image: Mathematical notation showing a capital W with subscript g one, where g and one are in italic font.] are weight vectors.
Consider [image: Mathematical formula displaying Delta subscript k equals a divided by k, with k in the denominator and also as a subscript to Delta.], [image: Mathematical expression showing the lowercase letter a is greater than zero.], and [image: Mathematical expression displaying a lowercase letter l followed by a greater than or equal to symbol and the number two.]. The virtual control law is designed as
[image: Mathematical equation showing: q sub d1,k equals minus W hat T sub f1,k S phi1 x bar1,k, M hat1,k phi1 t, minus W hat T sub g1,k S g1 x bar1,k, minus N hat1,k times one over delta k Z1,k plus y dot d1 minus eta1 z1,k, labeled as equation twenty-one.]
By substituting Equations 20, 21 into Equation 19, we obtain
[image: Mathematical derivation showing the evolution of the variable Ż₁,ₖ involving multiple terms, summations, saturation functions, and variables such as z₂,ₖ, ζ₂,ₖ, W, S, η₁, and φ₂,ₖ, with the equation steps labeled sequentially and ending with equation number 22 in the lower right corner.]
where [image: Mathematical expression shows W with a circumflex above it and subscript f one comma k.], [image: Mathematical notation displaying a bold capital W with a circumflex accent, subscript g one l comma k.], [image: Mathematical expression showing the symbol M sub one comma k with a circumflex accent above the M.], and [image: Mathematical expression with a capital N with a circumflex accent, subscript one comma k.] are estimations of [image: Mathematical expression showing uppercase W with a subscript f one, commonly used to represent a weight or parameter labeled f one in formulas or scientific notation.], [image: Mathematical notation showing an uppercase italic W with a subscript g and superscript one.], [image: Mathematical notation showing an uppercase italicized letter M with a subscript of one.], and [image: Mathematical notation showing an uppercase italic N with a subscript one.], respectively. [image: Mathematical equation showing W tilde sub f one comma k equals W hat sub f one comma k minus W sub f one.], [image: Mathematical equation showing W sub g one, k with a tilde equals W sub g one, k with a hat minus W sub g one.], [image: Mathematical equation showing M one comma k with a tilde equals M one comma k with a hat minus M subscript one.], and [image: Mathematical expression showing N one comma k with a tilde equals N one comma k with a hat minus N one, where indices are written as subscripts and the tilde and hat are written as superscripts.] are the estimation errors. It can be proved that the following result is correct.
[image: Mathematical expression showing the step-by-step simplification of an equation involving variables with time dependencies; operators include minus, sign, and saturation functions, resulting in a final compact form, eta one sub L,k times big Z sub L,k, labeled as equation twenty-three.]
Using Equations 7, 23, Equation 22 can be rewritten as
[image: Mathematical equation labeled as equation twenty-four showing the time derivative of Z sub one comma k, involving terms with Z, N hat, Delta, eta, W, S, x tilde, M, Phi, d, delta, phi, a saturation function, and various indices and transposes.]
Let [image: Mathematical expression showing omega sub one equals d sub one plus delta f sub one plus delta g sub one plus phi sub two comma k of t times sat of z sub two comma k of t divided by phi sub two comma k of t.], where [image: Mathematical variable d subscript one, written in italic font.] is the remaining term of the estimation error after FSE-RBFNN expansion, and [image: Mathematical variable d subscript i, indicating the i-th element in a sequence or series.] is also the same; then, Equation 24 becomes
[image: Mathematical equation labeled as equation twenty-five, showing Z dot sub one k equals Z sub 2k minus N hat sub 1k over delta k times Z sub 1k minus eta one times Z sub 1k plus omega one, followed by several terms involving transposes, hats, and matrices S, M, Phi, and S g1 with various arguments and superscripts, all in standard mathematical notation.]
[image: Text reads “Assumption 3” in a standard serif font, with no additional graphics or embellishments.] The remainder [image: Mathematical equation showing omega sub i equals d sub i plus delta f sub i plus delta g sub i plus phi sub i plus 1 comma k of t times sat of x sub i plus 1 comma k of t divided by phi sub i plus 1 comma k of t, with i ranging from 1 to n minus 1.] is bounded with [image: Mathematical expression showing the absolute value of omega sub i is less than or equal to omega sub M sub i.] and [image: Mathematical expression showing lowercase omega subscript capital M i is greater than zero.].
Remark 1: This assumption is easily satisfied because 1) [image: Mathematical variable in italics showing a lowercase letter d with a subscript lowercase i.], [image: Mathematical notation showing the lowercase Greek letter delta followed by the subscript f and subscript i, commonly used to represent a variable or parameter in equations.], and [image: Mathematical notation showing the Greek letter delta with subscript g and superscript i.] are bounded and 2) when [image: Mathematical notation displaying the lowercase Greek letter eta with a subscript lowercase i.] is large enough, [image: Mathematical expression showing phi sub i comma k of t multiplied by sat of z sub i comma k of t divided by phi sub i comma k of t, all in standard mathematical notation.] is sufficiently small.
The Lyapunov-like function is chosen as follows:
[image: Mathematical expression showing V sub one k equals one half Z sub one k squared plus one half W tilde transpose one k times Gamma one one inverse times W tilde one k, plus similar terms involving W tilde g one k, Gamma g one one inverse, M tilde one k, Gamma tilde one one inverse, N tilde one k squared, and ending with equation number twenty-six.]
where [image: Mathematical expression showing uppercase Greek letter Gamma subscript f one one.], [image: Mathematical expression depicting the uppercase Greek letter Gamma with a subscript consisting of the variable g and the number eleven.], [image: Mathematical notation displaying an uppercase Greek letter gamma, subscript m one one, typically representing a specific matrix element or a parameter in scientific contexts.], and [image: Mathematical notation displaying an uppercase Greek capital Gamma with the subscript n l l, often used in equations or formulas to represent a specific parameter or coefficient.] are adjustable matrices, each being positive, definite, and symmetric. Consider the derivative of [image: Mathematical notation showing the variable V with subscripts one and k.] by system (25), we obtain
[image: Mathematical derivation featuring algebraic expressions with matrices, summation notations, Greek letters, subscripts, and superscripts, arranged sequentially with inequalities and equalities, followed by a reference number twenty-seven at the bottom right.]
where for any [image: Mathematical expression showing r greater than zero.] and [image: Mathematical inequality displaying m times n is less than or equal to m squared divided by r plus one fourth times n squared times r.], [image: Mathematical expression showing r equals delta subscript k.].
We choose
[image: Mathematical equations for parameter update laws show differential equations for variables Ŵ, Ŵg, M̂, and N̊, incorporating terms with S, Φ, M̂, Z, Γ, Δ, and t, each indexed by f1k, g1k, m1, and n1k, with equation number twenty-eight on the right.]
so Equation 27 becomes
[image: Mathematical expression showing V̇ one comma k is less than or equal to Z one comma k times Z two comma k minus eta one times Z one comma k squared plus one fourth Delta k, labeled as equation twenty-nine.]
Step 2: Denote [image: Mathematical equation shows N sub two equals omega sub M two squared.], which will be defined later. Due to initial state errors and gradient explosion, we introduce the following error function [image: Mathematical expression showing the letter Z with subscript three comma k, indicating a variable or set labeled Z with indices three and k.] as
[image: Mathematical equations define zeta three jk as z sub three jk minus zeta sub jk, z sub three jk as z three jk minus phi three jk of t times sat of z three jk divided by phi three jk of t, z sub three jk as x three jk minus beta sub jk, and phi three jk of t as epsilon three jk times e to the negative eta three jk t. Equation number thirty.]
The derivative of [image: Mathematical notation showing a bold Z with a subscript of two and k, commonly used to represent the cyclic group of order two raised to the power of k.] is shown as follows:
[image: Mathematical equation showing two forms for Z₂,λₖ: the first uses time derivatives and a signum function, and the second expands with additional functions, parameters, and the same signum term, labeled as equation thirty-one.]
Let the error compensation mechanism be defined as follows:
[image: Mathematical equation in variable notation: zeta sub two k dot equals beta sub two k plus zeta sub three k minus eta sub two zeta sub two k minus zeta sub one k minus alpha sub two k, labeled as equation thirty-two.]
Using Equation 32, we can find the time derivative of error function as
[image: Mathematical equation showing Z double dot sub 2,k equal to z sub 3,k minus zeta sub 1,k plus eta sub 2,k zeta sub 2,k plus zeta sub 1,k plus alpha sub 2,k minus beta sub 1,k plus f sub 2 of x sub 2,k, theta sub 2 of t plus g sub 2 of x sub 2,k minus sign of z sub 2,k phi sub 2,k. Equation number thirty-three.]
The uncertain time-varying, nonlinear functions [image: Mathematical expression showing f sub two with variables x bar sub two comma k and theta sub two of t inside parentheses.] and [image: Mathematical expression showing capital G subscript two followed by parentheses containing x sub two comma k, where x has an overbar and is in bold font.] are approximated by FSE-RBFNN and RBFNN, respectively.
[image: Mathematical equations show f sub 2 of x bar sub 2k and theta sub 2 of t equals W sub f two transpose S sub f two of x bar sub 2k M sub 2 transpose Phi sub 2 of t plus delta sub f2, and G sub 2 of x bar sub 2k equals W sub g two transpose S sub g two of x bar sub 2k plus delta sub g2, labeled equation thirty-four.]
where [image: Mathematical expression showing the lowercase Greek letter delta with a subscript f and the number two, representing delta f two.] and [image: Mathematical expression showing the Greek letter delta with subscript g squared.] are reconstructed errors and [image: Mathematical expression displaying a capital W with a subscript f and a superscript 2, indicating W sub f squared.] and [image: Mathematical expression showing an uppercase italic W with a subscript g two.] are optimal weight vectors.
Let the virtual control be defined as follows:
[image: Mathematical equation labeled as thirty-five expresses x sub two lambda k as the sum of several terms: minus W hat sub f2 lambda k transpose S f2 of x bar sub 2k times M hat sub 2 lambda k transpose Phi sub 2 of t, minus W hat sub g2 lambda k transpose S g2 of x bar sub 2k, minus N sub delta lambda times one over delta lambda k times Z sub lambda k, plus beta hat sub 1k, minus eta sub z z sub 2 lambda k, minus z sub 1 4 lambda k.]
Substituting Equations 34, 35 into Equation 33, we obtain
[image: Mathematical equations showing the time derivative of Z sub lambda k as a function of z sub i lambda k, several summation terms with W, F, S, and M variables, and expressions involving the saturation function, signum function, and phi sub 3k in parentheses. The equations contain multiple nested variables and index notations, concluding with the number thirty-six in parentheses at the bottom right.]
where [image: Mathematical expression showing W with a hat symbol above it, and subscript f sub two comma k.], [image: Mathematical expression showing W with a circumflex accent, subscript g two squared comma k.], [image: Mathematical expression showing M sub two comma k with a caret over the M, typically indicating an estimated or predicted value.], and [image: Mathematical notation showing an uppercase N with a caret above, subscript two comma k.] are the estimators of [image: Mathematical expression showing an uppercase italic W subscript f with a superscript two, representing W sub f squared.], [image: Mathematical expression showing uppercase italic W with a subscript g two.], [image: Mathematical notation displaying the capital letter M with a subscript two, commonly used to denote a variable or specific term in equations or scientific contexts.], and [image: Text shows the chemical formula N subscript two, representing a diatomic nitrogen molecule.], respectively. [image: Mathematical expression showing W with tilde sub f2 comma k equals W with hat sub f2 comma k minus W sub f2.], [image: Mathematical equation showing tilde W sub g2,k equals W hat sub g2,k minus W sub g2, where k and g2 are subscripts, and tilde and hat are accent marks.], [image: Mathematical equation showing M sub two comma k with a tilde equals M sub two comma k with a hat minus M sub two.], and [image: Mathematical expression showing N tilde sub two comma k equals N hat sub two comma k minus N sub two.] are estimation errors. It can be proved that the following results are correct.
[image: Mathematical equation showing a sequence of transformations for an expression involving η₁z₂,λ, the signum function, the saturation function, ζ₂,λ, and time-dependent variables, concluding with −η₁Z₂,λ. The equation is labeled as equation thirty-seven.]
Using Equations 7, 37, Equation 36 can be written as
[image: Mathematical equation labeled as equation thirty-eight showing the time derivative Z dot sub two, k expressed as a sum of several terms including Z, N, eta, W, S, M, Phi, d, delta, phi, sat, and fractions, with subscripts and superscripts.]
Let [image: Mathematical expression showing omega sub two equals d sub two plus delta f sub two plus delta g sub two plus phi sub three comma k of t times sat function of z sub three comma k of t divided by phi sub three comma k of t.], then Equation 38 becomes
[image: Mathematical expression showing the time derivative of Z sub two k as a sum of several terms involving Z sub one k, Z sub lambda k, N hat sub two k divided by delta k, eta two, omega two, and additional terms with S, S hat, M hat, Phi two t, and function arguments, labeled as equation thirty-nine.]
The Lyapunov-like function was chosen as follows:
[image: Mathematical equation showing V sub 2k equals V sub 1k plus one half Z sub 2k squared plus one half W hat transpose sub f2k Gamma inverse f21 W hat sub f2k plus one half W hat transpose sub g2k Gamma inverse g21 W hat sub g2k plus one half M tilde transpose sub 2k m21 Gamma inverse m21 M tilde sub 2k plus one half N tilde squared sub 2k n21, referenced as equation forty.]
where [image: Mathematical expression showing an uppercase Greek letter Gamma with a subscript f two one.], [image: Mathematical notation showing an uppercase Greek letter Gamma with a subscript consisting of lowercase g followed by twenty-one.], [image: Mathematical expression showing the uppercase Greek letter Gamma with a subscript m two one.], and [image: Mathematical expression showing an uppercase Greek letter Gamma with the subscript n, two, one.] are adjustable, positive, definite, and symmetric matrices. According to Equation 39, Assumption 3, and Remark 1, [image: Mathematical expression showing an uppercase italic V with a subscript of two and k, indicating V sub two k.] can be expressed as
[image: Mathematical derivation displayed in standard LaTeX notation, featuring equations for V̇₂ₖ with terms involving subscripts, summations, inequalities, and matrix operations, ending with equation label forty-one.]
We choose
[image: Mathematical equations display four related differential expressions labeled with subscripts f2,2k, g2,2k, m2,2k, and n2,2k. Each uses parameters such as gamma, S, M, Phi, Z, Delta, and derivatives over time, with equation number forty-two on the right.]
Then, Equation 41 can be changed as
[image: Mathematical expression showing Ṽ2,k is less than or equal to Z2,k times Z3,k minus the sum from i equals one to two of ηi times Z2i,k squared plus two over four Δk, labeled as equation forty-three.]
Step i: [image: Mathematical expression showing an index variable i with the range three less than or equal to i less than or equal to n minus one inside parentheses.]. Denote [image: Mathematical equation showing N sub i equals omega sub M sub i squared.], which will be defined later. Because there exist initial state errors and gradient explosion, the error functions [image: Mathematical expression showing the variable Z with subscripts i and k, typically representing an indexed element in a matrix or array.] and [image: Mathematical notation showing the variable Z subscript i plus one comma k, with i plus one and k written in subscript.] are defined as
[image: Mathematical equations display definitions for variables Z sub i,k, z sub i,k, z sub i,k, and phi sub i,k of t, incorporating terms zeta, phi, beta, epsilon, an exponential function, and a saturation function, labeled equation forty-four.]
[image: Mathematical equations labeled as equation forty-five defining variables z, x, beta, phi, and epsilon with subscripts and superscripts. Expressions include subtraction, the saturation function, and an exponential decay function dependent on time t.]
Therefore, [image: Mathematical expression showing the letter Z with a dot above it, subscripted by the variables i and k, commonly representing a time derivative or dynamic variable.] can be deduced as follows:
[image: Mathematical equation describing the variable Z sub i lambda k as a function of z dot, the signum function, phi, and xi, with further expansions involving beta, functions f and g, and the variable theta, labeled as equation forty-six.]
Let the error compensation mechanism be defined as
[image: Mathematical equation showing zeta sub i k dot equals beta sub i k plus zeta sub i minus one k minus eta sub i zeta sub i k minus zeta sub i minus one k minus alpha a sub i k, labeled as equation forty seven.]
Using Equation 47, we can find the time derivative of the error function as
[image: Mathematical equation labeled as forty-eight showing Z dot sub i,k equals z sub i+1,k minus zeta sub i+1,k plus eta sub i,k zeta sub i,k plus zeta sub i-1,k plus alpha sub i,k minus beta dot sub i-1,k plus f sub 1 of x sub i,k and theta sub 1 of t plus g sub 1 of x sub i,k minus sgn of z sub i,k phi sub i,k.]
The uncertain time-varying, nonlinear functions [image: Mathematical expression showing function f sub i of two variables: x bar sub i comma k, and theta sub i of t, using italicized letters and symbols.] and [image: Mathematical expression showing uppercase G sub i of x sub i k, with a tilde above x sub i k and a bar above k, all in parentheses.] are approximated by FSE-RBFNN and RBFNN, respectively, and reconstruction errors [image: Mathematical expression showing lowercase delta followed by f subscript i, typically representing a change or difference in the variable f with respect to index i.] and [image: Mathematical expression showing the Greek letter delta with subscripts g and i, commonly used to represent a specific variable or parameter in scientific equations.] are as given follows:
[image: Mathematical equations defining f_{ji} and G_{ji} functions: f_{ji} as a sum involving W_{f}^{T}, S_{f1}, M_{j}^{T}, Φ_{j}(t), and δ_{fji}; G_{ji} as a sum involving W_{gji}^{T}, S_{g1}, and δ_{gji}. Equation labeled as forty-nine.]
where [image: Mathematical expression displaying the lowercase Greek letter delta followed by the subscript f and the subscript i.] and [image: Mathematical expression showing the Greek letter delta with the subscript g i, likely representing a variable or partial change associated with indices g and i.] are the approximation errors and [image: Mathematical variable W with subscript f and i, commonly used to represent a specific indexed component or parameter in equations.] and [image: Mathematical notation showing an uppercase W with a subscript consisting of lowercase italic g and i.] are ideal weight vectors.
Define [image: Mathematical expression showing delta sub k equals a divided by the square root of k, where delta and k are variables and a is a constant.], where [image: Lowercase italic letter "a" in a serif font, rendered in black on a white background.] is any arbitrary number with [image: Mathematical expression showing a is greater than zero.]; meanwhile, [image: Mathematical expression showing a lowercase italic letter l is greater than or equal to two.]. Let the virtual control be defined as
[image: Mathematical equation labeled as equation fifty showing alpha sub i j k equals W hat transpose j mu s f1 times S sub f1 of x bar i k comma M hat transpose 1 i k Phi 1 of t minus W hat transpose g l k s f0 times S sub f0 of x bar i k minus N hat 1 mu k times one over delta k times Z 1 i k plus beta hat 1 k minus eta z 1 i k minus z 1 i k star.]
By substituting Equations 49, 50 into Equation 48, we obtain
[image: Mathematical equations showing two expressions involving time derivatives of z variables, saturation functions, summations, and mathematical operators, with variables containing subscripts and superscripts, followed by equation number 51 in parentheses.]
where [image: Mathematical expression showing a bold italic W with a circumflex, subscripted by f, i, and k in italics.], [image: Mathematical notation showing W with a circumflex accent, subscripted by g i comma k in italics.], [image: Mathematical notation showing a capital M with a caret accent, subscripted by i and k.], and [image: Mathematical expression featuring a bold, uppercase N with a hat symbol above it and subscripts i, k.] are the estimations of [image: Mathematical expression displaying an italic capital letter W with subscripts f and i, typically used to represent a variable or parameter in scientific or mathematical contexts.], [image: Mathematical expression displaying an uppercase italic W with the subscript g i, both in italic font.], [image: Mathematical expression showing uppercase letter M with a subscript lowercase letter i.], and [image: Mathematical variable represented by a bold uppercase N with a subscript lowercase i, commonly used to denote the ith element or component in a sequence or set.], respectively. [image: Mathematical equation showing W with a tilde subscript fi comma k equals W with a hat subscript fi comma k minus W with a tilde subscript fi.], [image: Mathematical equation showing W with a tilde subscript g i comma k equals W with a hat subscript g i comma k minus W subscript g i.], [image: Mathematical equation showing M-tilde sub i comma k equals M-hat sub i comma k minus M sub i comma dot.], and [image: Mathematical expression showing N subscript i,k with a tilde equals N subscript i,k with a hat minus N subscript i with a tilde.] are estimation errors. We can rephrase the final three components on the right side of Equation 51 as 
[image: Mathematical derivation showing the step-by-step simplification of the expression minus eta sub i, z sub i,k minus sign of z sub i,k times phi dot sub i,k of t plus eta sub i, zeta sub i,k, with each subsequent line simplifying the equation to ultimately reach minus eta sub i, Z sub i,k, labeled as equation fifty-two.]
Using Equations 7, 52, Equation 51 can be reformulated as
[image: A mathematical equation labeled as equation fifty-three features multiple terms with subscripted variables, summations, matrices, and operators, including functions, a saturation function, and a fraction. The equation is set in formal mathematical notation.]
Let [image: Mathematical equation showing omega sub i equals d sub i plus delta f sub i plus delta g sub i plus phi sub i plus one, k of t times sat of z sub i plus one, k of t divided by phi sub i plus one, k of t.], then Equation 53 becomes
[image: Mathematical equation labeled as equation fifty-four features multiple variables with subscripts and superscripts, fractions, Greek letters, functions, and matrix-vector products, representing a complex dynamic or control system update rule.]
Consider the following nonnegative function:
[image: Mathematical equation showing V sub i,k as a sum of multiple terms, including V sub i-1,k, Z sub i,k squared over two, and several terms involving matrices and vectors such as W tilde, Gamma inverse, M tilde, and N tilde, with equation number fifty-five in parentheses.]
where [image: Mathematical expression showing the uppercase Greek letter Gamma followed by the subscript f i l, commonly written as Gamma sub f i l.], [image: Mathematical expression displaying uppercase Greek letter Gamma with subscripts g, i, and l.], [image: Mathematical expression showing an uppercase Greek letter Gamma with the subscript m, i, l.], and [image: Mathematical notation showing the uppercase Greek letter Gamma followed by the subscript nil.] are adjustable, positive, definite, and symmetric matrices. According to Equation 54, Assumption 3, and Remark 1, [image: Mathematical notation showing an uppercase V with a subscript i comma k.] can be expressed as
[image: Mathematical equation set with multiple summation, product, and matrix notation terms involving indexed variables, Greek letters, and operators, referencing variables such as V, Z, Γ, W, η, M, Φ, and their derivatives, labeled as equation fifty-six.]
We choose
[image: Mathematical equations, labeled as equation 57, define the time derivatives of variables W, M, and N with subscripts and superscripts, involving function S and matrices with respect to variables x, Φ, Z, and parameters Γ and Δ.]
Then, Equation 56 can be written as
[image: Mathematical equation displaying V dot sub 2k is less than or equal to the sum from j equals one to i of eta sub j Z squared sub j k plus i over four delta sub k plus Z sub i k Z sub i plus one k. Equation labeled as fifty-eight.]
Step n: Denote [image: Mathematical equation showing N sub n equals omega squared subscript M sub n.], which will be defined later. Because there exist initial state errors and gradient explosion, the function [image: Mathematical variable Z with two subscripts n and k in italicized font.], denoting the error, is defined as
[image: Mathematical equations define Z sub n,k as z sub n,k minus ζ sub n,k; z sub n,k as z sub n,k minus φ sub n,k of t times the saturation function evaluated at z sub n,k divided by φ sub n,k of t; z sub n,k as x sub n,k minus β sub n minus one, k; and φ sub n,k of t as epsilon sub n,k times e raised to the power of minus m sub n,k t. Equation number fifty nine.]
The derivative of [image: Mathematical variable Z with subscripts i and k in italic font, indicating a specific element or value indexed by i and k.] with respect to time is expressed as
[image: Mathematical equation showing the time derivative of Z sub n,k equals z dot sub n,k minus sign of z sub n,k of t times phi hat sub n,k minus zeta hat sub n,k, and further expanded in terms of control input u sub k, function f sub n, function g sub n, and additional terms including beta dot n minus one, k, sign function and phi hat sub n,k, and zeta hat sub n,k, labeled as equation sixty.]
Let the error compensation mechanism be defined as
[image: Mathematical equation shown: ζ sub n k equals negative η sub n ζ sub n k minus ζ sub n minus 1 k, labeled as equation sixty-one.]
Using Equation 61, we can obtain the time derivative of the error function as
[image: Mathematical equation showing Z sub n,k equals u sub k plus eta sub n,k zeta sub n,k plus zeta sub n−1,k minus beta hat sub n−1,k plus f sub n of x sub n,k, theta sub n of t one plus g sub n of x sub n,k minus sign of z sub n,k phi hat sub n,k, labeled equation sixty-two.]
The overall approximation capability of the RBFNN asserts that the unknown nonlinear functions [image: Mathematical expression showing function f sub n with arguments x bar sub n k and theta sub n of t, with both variables in bold.] and [image: Mathematical expression showing capital G sub n of x bar sub n k, where x bar indicates a vector or averaged variable.] are capable of approximation within a defined scope by FSE-RBFNN and RBFNN, respectively, and reconstruction errors [image: Mathematical expression showing the Greek letter delta followed by the subscript f r n, all in italic font.] and [image: Mathematical notation displaying the lowercase Greek letter delta followed by the subscript g m, commonly used to represent a perturbed metric or variation in general relativity or physics equations.] are as follows:
[image: Mathematical equations showing f_n as a function of x_n,k, θ_n, and t, involving W_f transposed, S_f,n, M_n inverse, Φ_n, and δ_f,n, and G_n as a function of x_n,k, involving W_g,n transposed, S_g,n, and δ_g,n, labeled as equation sixty-three.]
where [image: Mathematical expression featuring the Greek letter delta followed by the subscript f r n.] and [image: Mathematical expression displaying the lowercase Greek letter delta with subscripts g, m, and l in italic font.] are the approximation errors and [image: Mathematical notation showing an uppercase italic W with a subscript consisting of lowercase italic f and n.] and [image: Mathematical expression showing an italicized uppercase W with a subscript gr, commonly used to denote a variable or parameter labeled gr in scientific or mathematical contexts.] are ideal weight vectors.
Define [image: Mathematical equation showing delta sub k equals a divided by k, where delta and k are variables and a is a constant.],where [image: Lowercase italic letter a in black font on a white background.] is any arbitrary number such that [image: Mathematical expression showing the variable a is greater than zero.]; meanwhile, [image: Mathematical expression showing the variable l is greater than or equal to two.]. Let the virtual control be defined as
[image: Mathematical equation with variables including u_sub_k, summations, and functions S, Φ, and Z with matrix and vector notations, partial derivatives, subscripts, and superscripts, all labeled as equation sixty-four.]
By substituting Equations 63, 64 into Equation 62, we can conclude that
[image: Equation 65 displays a mathematical expression for Z̅ₙ,ₖ as a function of time with summation terms including variables such as ζ, η, sgn, ϕ, W, S, M, Φ, δ, N, z, and Δ, indicating a complex dynamic system.]
where [image: Mathematical expression featuring capital W with a circumflex above, and the subscript f, n, k in italic font.], [image: Mathematical expression showing a bold uppercase W with a circumflex, subscripted by lowercase g, n, and k in italics.], [image: Mathematical notation showing capital M with a circumflex accent, subscript n comma k, indicating an estimated or predicted value indexed by n and k.], and [image: Mathematical expression with a bold, uppercase N featuring a caret above it and subscripts n, k.] are the estimations of [image: Mathematical notation displaying a bold uppercase W with a subscript containing the lowercase letters f and n.], [image: Mathematical variable W with subscript g n, where both g and n are italicized.], [image: Mathematical expression showing the letter M in italic with a subscript n, commonly used to represent a sequence of elements or matrices indexed by n.], and [image: Mathematical variable N with subscript n in italic font, commonly used to denote a sequence, index, or collection element in equations or scientific notation.], respectively. [image: Mathematical formula displaying W with a tilde subscript f n comma k equals W with a hat subscript f n comma k minus W subscript f n.], [image: Mathematical equation showing W with tilde subscript g n comma k equals W with hat subscript g n k minus W subscript g n.], [image: Mathematical equation showing M with tilde sub n comma k equals M with hat sub n comma k minus M sub n.], and [image: Mathematical equation showing N with a tilde sub n comma k equals N with a hat sub n comma k minus N sub n.] are estimation errors. We can rephrase the final three components on the right side of Equation 65 as
[image: Mathematical equation showing a multi-line derivation involving variables eta sub n, z sub n,k, phi sub n,k, zeta sub n,k, sgn (sign), sat (saturation function), and time t, concluding with - eta sub n, Z sub n,k, labeled as equation sixty-six.]
Using Equations 7, 66, Equation 65 can be reformulated as
[image: Mathematical equation labeled as equation sixty-seven showing the derivative of Z underscore n,k expressed as a sum of terms involving various matrices, vectors, scalar multiplications, functions S, M, Phi, constants, and disturbances delta.]
Let [image: Mathematical equation showing omega sub n equals d sub n plus delta sub f sub n plus delta sub g sub n.], then Equation 67 becomes
[image: Mathematical equation labeled sixty-eight containing variables with subscripts and superscripts, Greek letters, transposes, and functions. The equation describes the time derivative of Z with various terms involving matrix products, substitutions, and time-dependent functions.]
Assumption 4: The remainder [image: Mathematical notation showing the lowercase Greek letter omega with a subscript n, commonly used to represent natural angular frequency or another indexed variable in equations.] is bounded with [image: Mathematical expression showing the absolute value of omega sub n is less than or equal to omega sub M n.] and [image: Mathematical expression displaying omega subscript capital M n is greater than zero.].
Remark 2: This assumption is reasonable because 1) [image: Mathematical variable consisting of a lowercase italicized letter d with subscript n.], [image: Mathematical expression showing the lowercase Greek letter delta with a subscript of f and n.], and [image: Mathematical expression showing the lowercase Greek letter delta followed by the subscript g m, written in italic font.] are constrained within the specified area by Equations 6, 8.
Let the following non-negative function be defined as
[image: Mathematical equation showing V_n,k equals V_{n-1,k} plus one-half Z_{n,k} squared plus one-half the transpose of W̃_{fn,k} times Γ^{-1}_{fn,k} times W̃_{fn,k}, plus one-half the transpose of W̃_{gm,k} times Γ^{-1}_{gm,k} times W̃_{gm,k}, plus one-half the transpose of M̃_{n,k} times Γ^{-1}_{mn1} times M̃_{n,k}, plus one-half the inverse of N_{n,k} times N_{n,k} squared, labeled as equation sixty-nine.]
where [image: Mathematical expression showing the uppercase Greek letter Gamma with a subscript consisting of the lowercase letters f, n, and l.], [image: Mathematical expression showing uppercase Greek letter Gamma with subscript g m one.], [image: Mathematical expression showing a capital Greek letter gamma with subscripts m, n, and l.], and [image: Mathematical notation showing an uppercase Greek letter gamma with a subscript N, n, l.] are adjustable, positive, definite, and symmetric matrices. The derivative of [image: Mathematical notation showing an uppercase italic V with subscripts n and k, written as V sub n comma k.] is considered as follows (Equation 68):
[image: Mathematical derivation showing a sequence of algebraic expressions and inequalities involving summations, variables with multiple subscripts and superscripts, Greek letters, and matrix-related notations, ending with a boxed equation labeled as equation seventy in the lower center.]
We choose
[image: Mathematical equations containing the update laws for variables with dot notation, Gamma, S, M-hat, Phi, Z, and S-hat terms, presented as a system of four expressions labeled equation seventy-one.]
Then, Equation 70 can be written as
[image: Mathematical equation showing V dot sub n,k is less than or equal to the negative sum from j equals 1 to n of eta j times Z squared sub j,k plus n over 4 times delta sub k, labeled as equation seventy-two.]
For the initial state, we rely on the following set of assumed conditions:
Assumption 2: When [image: Mathematical expression displaying t equals zero, where t represents a variable commonly used for time or another independent parameter.], [image: Mathematical equation showing W hat sub f i comma k at zero equals W hat sub f i comma k minus one at T.], [image: Mathematical equation showing W hat sub gi comma k at zero equals W hat sub gi comma k minus one at T.], [image: Mathematical equation showing N hat sub i comma k of zero equals N hat sub i comma k minus one of T.], and [image: Mathematical equation showing M hat sub i comma k at zero equals M hat sub i comma k minus one at T, for indices i equals one to n.] holds true for all values of [image: Italic lowercase letter k in a serif font, commonly used as a mathematical variable or symbol in equations and scientific contexts.].
3.2 Stability and convergence analysis
Theorem 1: For nonlinear system (1) with assumptions 2, 3, and 4, if we design virtual controllers (21), (35), (50), controller (64), and parameter updating laws (28), (42), (57), (71),then all signals in the closed-loop system are bounded within the interval [0, T]. We obtain
[image: Mathematical expression stating the limit as t approaches infinity of Z sub jk of t equals zero, for j equal to one, two, up to n, labeled as equation seventy-three.]
In other words, [image: Mathematical equation showing the limit of the norm of z one phi k of t as k approaches infinity equals the limit of the norm of zeta one k of t, which is less than or equal to the square root of two times N one divided by eta one times one minus e to the power of negative eta one times t minus T.], and then [image: Mathematical expression showing a limit as k approaches infinity of the absolute value of z one, k of t, less than or equal to phi one, infinity of t plus the square root of two N lambda over eta one multiplied by one minus e to the negative eta one times t minus T.], where [image: Mathematical symbol aleph one, also written as aleph subscript one, representing the cardinality of the set of countable ordinal numbers in set theory.] is the boundary of the difference between [image: Mathematical notation showing the Greek letter beta with a subscript one, often representing the first coefficient or parameter in statistical or mathematical models.] and [image: Lowercase Greek letter alpha with subscript one, presented in a serif mathematical font.]. Let [image: Lowercase Greek letter eta followed by subscript one, typically used as a mathematical or scientific variable.] be chosen sufficiently large, ensuring that [image: Mathematical notation showing the Greek letter phi sub one comma infinity, followed by parentheses containing an italicized t.] and [image: Mathematical expression showing the square root of two times N sub one divided by eta sub one, multiplied by the quantity one minus e to the negative eta sub one times the quantity t minus T.] can be minimized as much as possible throughout the entire time interval [0, T].
Proof: In accordance with Assumption 2, we find that [image: Mathematical expression stating the squared norm of Z sub k at zero equals zero and is less than or equal to the squared norm of Z sub k at time T.]. Consider that [image: Mathematical equation displaying V sub n k prime as a function of V sub n k, Z sub k at zero, W hats for f k and g k at T, and N hat and M hat sub k at T.]. Using Equation 69, we obtain [image: Mathematical expression showing Z sub k as a column vector with components Z one k, Z two k, through Z n k, transposed.], [image: Mathematical expression showing W hat sub f k equals the column vector of W hat sub f one k, W hat sub f two k, up to W hat sub f n k, all transposed.],[image: Mathematical notation showing a vector W sub gk defined as a column vector of elements W sub g1,k, W sub g2,k, up to W sub gn,k, with a transpose symbol.], [image: Mathematical expression defining M sub k as the transpose of the column vector composed of M hat sub 1 k, M hat sub 2 k, through M hat sub n k.], and[image: Mathematical expression showing N hat sub k equals a column vector consisting of elements N hat sub one k, N hat sub two k, up to N hat sub n k, transposed.]. Using Equation 72,
[image: Mathematical equation labeled seventy-four showing an inequality for V prime nu k, involving variables Z, W, N, M, a double sum with integral, and terms with eta, T function, and parameters n and Delta.]
Let [image: Mathematical equation showing V subscript zero of k equals V subscript n one evaluated at Z subscript one of zero, W hat subscript f one of zero, W hat subscript g one of zero, N hat subscript one of zero, M hat subscript one of zero, plus n to the power of one half times T of the sum from i equals one to k of delta subscript i.], then Equation 74 can be rewritten as
[image: Mathematical formula showing a double summation over i from one to k and over j from one to n, followed by an integral of eta sub j evaluated at Z sub j i squared, less than or equal to V zero of k minus V n k prime, equation seventy-five.]
Using Equation 9, we obtain [image: Mathematical expression showing the limit as k approaches infinity of V sub zero of k is less than or equal to V sub n comma one plus two a n multiplied by left parenthesis one half right parenthesis T.] and [image: Mathematical expression showing V subscript zero, open parenthesis, k, close parenthesis.] is bounded. [image: Mathematical expression includes V sub n,k of Z sub k zero, W hat f,k of T, W hat g,k of T, N hat k of T, and M hat k of T, all greater than or equal to zero.], so
[image: Mathematical expression showing the limit as k approaches infinity for the sum of integrals from zero to tau of eta sub j of Z sub j k squared with respect to t equals zero, labeled equation seventy-six.]
Based on Equation 69, for any given value of [image: Italic lowercase letter k followed by a comma in a serif font.] [image: Mathematical equation showing V sub n comma k as a function of t equals V sub n comma k at zero plus the integral from zero to t of V dot sub m comma k of tau with respect to tau.]; substituting Equation 72 obtain
[image: Mathematical equation showing V sub n,k of t is less than or equal to V sub n,k of zero minus the sum from j equals one to n of the integral from zero to t of eta sub j of Z sub j,k of tau squared d tau, plus trace of one-fourth times delta sub k. Equation is numbered seventy-seven.]
Based on Equation 76, [image: Mathematical expression showing the sum from j equals one to n of the integral from zero to t of eta sub j of Z sub j k of tau, squared, with respect to tau.] is bounded. According to definition 1, [image: Mathematical notation displaying an uppercase Greek letter delta followed by a subscript lowercase k.] is bounded and [image: Mathematical expression showing t is an element of the closed interval from zero to capital T.], so [image: Mathematical expression showing t n open parenthesis one fourth close parenthesis delta sub k.] is also bounded. In addition, [image: Mathematical equation showing W sub f k hat at zero equals W sub f k minus one hat at T.], [image: Mathematical equation showing W subscript g k with a hat evaluated at zero equals W subscript g left parenthesis k minus one right parenthesis with a hat evaluated at T.], [image: Mathematical equation showing M hat sub k at zero equals M hat sub k minus one at T.], and [image: Mathematical expression showing N k with a hat at zero equals N k minus one with a hat at T, where N, k, and T are variables.]; based on Equation 77, for any given value of [image: Lowercase italic letter k in a serif font, commonly used as a mathematical variable or symbol in scientific contexts.], [image: Mathematical expression showing variables V sub n,k evaluated at Z sub k of zero, W with hat sub f,k of T, W with hat sub g,k of T, N with hat sub k of T, and M with hat sub k of T.] is bounded. So, [image: Mathematical expression displaying a function M hat sub k of zero equals an expression involving V sub n k, W hat f k, W hat g k, N hat k, all at zero, and similarly indexed terms at T for k minus one, separated by commas.] is also bounded; from above all, for any given value of [image: Lowercase italic letter k is displayed, commonly used as a mathematical variable or constant in equations and scientific notation.], if [image: Mathematical expression showing V with subscripts n and k as a function of t.] is bounded, then we can deduce that [image: Mathematical variable x with two subscripts: i and k.], [image: Mathematical expression shows W with a hat accent over it, subscript f k, followed by parentheses containing the variable t.], [image: Mathematical expression displaying W subscript gk of t with a circumflex accent above the W, indicating an estimated or predicted value as a function of t.], [image: Mathematical expression showing an uppercase N with a tilde and subscript k, followed by parentheses enclosing variable t.], and [image: Mathematical expression with a capital M subscript k of t, where M has a circumflex accent and t is in parentheses.] are bounded. According to Equation 64, [image: Mathematical expression showing a lowercase italicized letter u with a subscript k.] is bounded. According to Equation 53, [image: Mathematical expression displaying Z with a dot above it, and subscripts i and k.] is bounded, so [image: Mathematical notation showing a capital Z with subscripts i and k written in italics.] is continuous uniformly. Thus, we can deduce Equation 73.
Then, we need to prove that [image: Mathematical notation displaying a bold lowercase lambda with a one subscript, often used to denote the first eigenvalue or a specific parameter in mathematical contexts.] will converge to a neighborhood that approaches 0. Initially, let [image: Mathematical expression alpha sub i comma k of t in italic font.] be a signal satisfying [image: Mathematical expression showing the absolute value of alpha sub i comma k of t is less than alpha bar.] and [image: Mathematical expression reads as the absolute value of alpha sub i comma k dot over t in parentheses is less than h-bar.] for all [image: Mathematical expression showing t is greater than or equal to zero.]. The compensation error within the compensation system is defined as
[image: Mathematical equation showing q sub i k equals beta sub i k minus alpha sub i k, followed by the equation number seventy-eight in parentheses.]
With specified initial conditions, [image: Mathematical equation showing beta sub i comma zero equals alpha sub i comma zero.], i.e., [image: Mathematical formula displaying Q subscript i comma zero equals zero, where i ranges from one to n minus one.]. From (11), we obtain
[image: Mathematical expressions include a differential equation for q dot sub i,k in terms of xi sub i,k, beta sub i,k, and alpha sub i,k, followed by expressions for q sub i,k and Q sub i,k as integrals involving alpha dot sub i,k, tau, and exponentials, ending with an inequality relating the maximum of absolute alpha dot, Planck's constant, and integer N sub i. Equation number seventy-nine is shown on the right.]
As shown in Equation 79, choosing an appropriate value for [image: Mathematical notation showing the Greek letter xi with two subscripts, i and k, commonly used in formulas to represent indexed variables or parameters.] confines the error [image: Mathematical expression showing the Greek letter rho with subscripts i and k, all presented in italic font.] within a narrow range, approximately equating [image: Mathematical expression showing the Greek letter alpha with subscripts i and k.] to [image: Mathematical expression showing the Greek letter beta with subscripts i and k.]. In addition, based on the compensation system, the Lyapunov function is defined on the interval [image: Mathematical notation in brackets shows the closed interval from zero to uppercase T, indicating a range typically used in mathematics or science for time or other continuous variables.] as follows:
[image: Mathematical equation showing V sub t, k equals the sum from i equals one to n of one-half times xi sub i, k squared, labeled as equation eighty.]
The derivative of [image: Mathematical notation showing the variable V with subscripts zeta and k in italics, commonly used to denote indexed or parameterized variables in equations.] along systems (78) with respect to time is expressed as
[image: Mathematical derivation showing a sequence of inequalities involving summations, norms, and variables such as ζ, η, β, and α, leading to an upper bound for V̇_{ζ,k} in equation eighty-one. Each line applies steps including norm properties, triangle inequality, and introduces terms with N and √2N.]
where[image: Mathematical expression showing script N equals the maximum of N sub i, and eta naught equals the minimum of eta sub i.]. To ensure the stability of the compensation system, it is sufficient to satisfy
[image: Mathematical equation showing the norm of K sub t, lambda is less than or equal to the square root of two times lambda over eta naught, multiplied by one minus e to the negative eta naught times t minus T, labeled as equation eighty-two.]
Equation 82 leads to the conclusion that [image: Mathematical expression showing the Greek letter zeta with subscripts i and k inside double vertical bars, representing the norm or absolute value of zeta sub i k.] is bounded. Hence, [image: Mathematical expression showing the Greek letter zeta with subscripts i and k, representing a variable labeled as zeta sub i k.] is also bounded. Moreover, we can choose a parameter [image: Mathematical expression showing the Greek letter xi with subscripts i and k is greater than zero.] to arbitrarily reduce [image: Mathematical notation showing the Greek letter lambda subscript i, commonly used to represent a variable or parameter indexed by i in mathematics or science formulas.], thereby causing the compensation [image: Greek letter zeta with subscripts i and k, presented in an italic mathematical font.] of the system to approach 0. In this way, by ensuring that the error [image: Mathematical notation representing the variable Z with a subscript k, typically used to indicate a sequence or indexed set of values.] approaches 0, [image: Mathematical expression showing variable z with subscripts phi and k.] will converge to the neighborhood approaching 0. Thus, we conclude Theorem 1.
4 ILLUSTRATIVE EXAMPLES
4.1 Number simulation
This section includes an example illustrating the effectiveness of the proposed adaptive iterative learning controller.
The second-order pure-feedback nonlinear system described is considered as follows:
[image: Mathematical equations representing a dynamical system: first equation defines x one dot as x two plus a rational expression involving r one, x one, and x two; second equation defines x two dot as u plus sine of a product times an exponential term; third equation defines y as x one. Equation number eighty-three is shown on the right.]
where [image: Mathematical expression showing that variable t belongs to the closed interval from zero to five, using the notation t element of bracket zero comma five.], [image: Mathematical variable x sub one comma k, representing x with subscripts one and k.], and [image: Mathematical expression showing variable x with subscript two comma k.] are state variables and [image: Mathematical expression showing a lowercase italic letter u with a subscript k.] is the input variable. Utilizing the widely recognized van der Pol oscillator as the reference model, we obtain
[image: Mathematical expressions showing three equations: ẋ_d1 equals x_d2, ẋ_d2 equals negative nine times x_d1 minus six times x_d2 plus two, and y_d1 equals x_d1. Equation is labeled as eighty-four.]
where [image: Mathematical variable x with subscript d and subscript 1, written as x sub d sub 1 in italic typeface.] and [image: Mathematical variable x with a subscript d two in italics, commonly used in mathematical expressions or scientific notation.] are state variables. The primary control objective is to synchronize the output of systems (82) with the reference trajectory [image: Mathematical expression showing the italic letter y with subscript d one.] generated by system (84) over the interval [0,5] under the condition [image: Mathematical expression showing variable k approaches infinity, using a rightward arrow between k and the infinity symbol.].
In accordance with Theorem 1, the adaptive iterative learning controller is chosen as
[image: Mathematical expressions showing two equations: the first defines α sub one comma k as a combination of transposed matrices, functions, and variables including x tilde, M hat, Φ, N hat, Δ, and η with summation and product terms; the second defines u sub k similarly, with Z variables and an added β term, both labeled as equation eighty-five.]
The error compensation mechanism is
[image: Mathematical expression showing two differential equations: first, zeta one comma k dot equals beta one comma k plus zeta two comma k minus eta one zeta one comma k minus alpha one comma k; second, zeta two comma k dot equals negative eta two zeta two comma k minus zeta one comma k. Equation number eighty-six appears to the right.]
where [image: Mathematical equation showing beta one comma k dot equals negative xi times the difference between beta one comma k and alpha one comma k.].
The parameter adaptive iterative learning laws are provided by (57):
[image: Mathematical equations labeled as equation eighty-seven define the time derivatives of W-hat-sub-fi-k, M-hat-sub-i-k, and N-hat-sub-i-k, using variables such as Gamma, S, Phi, Z, Delta, and their transposes and time-dependent forms.]
where [image: Mathematical expression showing i equals one comma two, indicating i can be either one or two.], [image: Mathematical expression showing c sub one equals five.], [image: Mathematical expression showing c subscript 2 equals ten, comma, delta subscript k equals a divided by k squared.], [image: Mathematical expression showing variable a is equal to fifty thousand.], [image: Mathematical equation displaying capital Gamma sub eleven equals the diagonal matrix of five ones, represented as Gamma sub eleven equals diag open curly bracket one, one, one, one, one close curly bracket.], [image: Mathematical expression showing uppercase Greek letter Gamma subscript two one is equal to ten.], [image: Mathematical expression showing capital Greek letter Gamma subscript twelve equals diag open curly brace one, one, one, one, one close curly brace. The word diag is italicized.], [image: Mathematical expression showing uppercase Greek letter Gamma subscript two two equals one.], and [image: Mathematical expression showing the Greek letter xi followed by an equals sign and the number one.].
Figures 1–3 show the tracking performance of the system output and expected output without iteration and at 50th and 100th iterations, respectively. Figures 4, 5 show that as the number of iterations increases, the system error may converge to a small region near the zero point. Furthermore, observations shown in Figures 6–10 confirm that both control signals [image: Mathematical expression showing double vertical bars enclosing italicized lowercase u with a subscript k, representing the norm of vector u sub k.] and [image: Mathematical notation showing the norm of alpha sub k, represented as two vertical bars surrounding the Greek letter alpha with subscript k.] and estimated parameters, [image: Mathematical expression showing the norm of W one k l with a hat symbol above the W.], [image: Mathematical expression showing the norm of W sub two comma k, where W has a hat symbol above it and is enclosed by double vertical bars.], [image: Mathematical expression showing the norm of matrix M sub one comma k with a hat symbol above M, enclosed by double vertical bars.], [image: Mathematical expression showing the norm of matrix M sub two comma k with a hat symbol over M, surrounded by double vertical bars.], [image: Mathematical expression showing the norm of vector N one k with a hat symbol above the N, enclosed by double vertical bars.],and [image: Mathematical expression displaying the norm of N hat sub two comma k, indicated by double vertical bars surrounding the symbol.] exhibit bounded behavior within the [0,5] range. The validity of the control strategy presented in this research is reaffirmed by the simulation results shown in Figures 11–20 over the interval [image: Mathematical expression showing a closed interval from zero to uppercase T, commonly used to represent a time period in mathematics or physics.].
[image: Line graph displaying three curves over time: red for output change y1, green for reference trajectory y1r, and blue dashed for error change z1.0. Legend appears in the top right corner.]FIGURE 1 | Variation in [image: Mathematical notation displaying Y subscript zero, Y subscript d one, and Z subscript one comma zero.] over time without iteration.
[image: Line graph showing output y1d (red), reference trajectory yr1 (blue dots), and error e1d (green dots) plotted against time from zero to five seconds, with output and reference converging and error remaining near zero.]FIGURE 2 | Variation in [image: Mathematical notation showing variables with subscripts: y sub fifty, y sub d one, and z sub one comma fifty.] over time during the 50th iteration.
[image: Line chart showing the change curve of output y100 in red, the reference trajectory yr in blue, and the change curve of error ξ1,100 in green, all converging toward zero over time.]FIGURE 3 | Variation in [image: Mathematical notation showing Y subscript one hundred, Y subscript d one, and Z subscript one comma one hundred.] over time during the 100th iteration.
[image: Line graph showing maximum error on the y-axis and iteration index on the x-axis, with error rapidly decreasing to near zero after about twenty iterations and remaining low through one hundred iterations.]FIGURE 4 | Variation in [image: Mathematical expression showing max of the absolute value of z sub one, k.] according to the iteration index.
[image: Line graph showing maximum error versus iteration index, with error peaking around 600 at early iterations, then dropping sharply to near zero after iteration twenty and remaining stable through index one hundred.]FIGURE 5 | Variation in [image: Mathematical expression showing the maximum of the absolute value of z sub two comma k.] according to the iteration index.
[image: Line graph showing the norm of controller uk on the y-axis versus iteration index k on the x-axis, with values spiking up to approximately 1.7e4 before dropping to zero after k equals 20.]FIGURE 6 | Variation in [image: Mathematical notation displaying the norm of the vector u sub k, shown as double vertical bars enclosing u followed by a subscript k.] according to the iteration index.
[image: Line chart showing the norm of controller c(k) on the y-axis and iteration index k on the x-axis, with large fluctuations until k equals 20, after which the value stabilizes near zero through k equals 100.]FIGURE 7 | Variation in [image: Mathematical expression showing double vertical bars surrounding the variable alpha sub k, representing the norm or absolute value of alpha sub k.] according to the iteration index.
[image: Two line plots show the norm of estimated parameters W versus iteration index k. Both plots demonstrate rapid growth in W that plateaus after approximately 20 to 30 iterations, with the left plot reaching about 6000 and the right plot reaching about 2500.]FIGURE 8 | Variation in [image: Mathematical expression showing the norm of the matrix labeled W one comma k with a circumflex accent over the W symbol.] and [image: Mathematical expression displaying the norm of W sub two comma k with a hat over the W, enclosed between double vertical bars.] according to the iteration index.
[image: Two side-by-side line graphs compare the norm of an estimated parameter M over one hundred iterations. Both plots show a rapid increase in value until about the twentieth iteration, after which the lines plateau, indicating convergence. Vertical and horizontal axes are labeled, but specific parameter details are not provided.]FIGURE 9 | Variation in [image: Mathematical expression showing the norm of the matrix M one comma k with a hat symbol above M.] and [image: Mathematical expression showing the norm of M hat sub two, comma k, with bold M and a circumflex accent above the M.] according to the iteration index.
[image: Two side-by-side line charts display the norm of estimated parameters versus iteration index. The left chart shows steady growth with a sharp increase around index twenty. The right chart exhibits rapid initial growth, plateauing after index twenty.]FIGURE 10 | Variation in [image: Mathematical expression showing the norm of the variable N with a hat symbol, subscript one comma k, enclosed by double vertical bars.] and [image: Mathematical expression displaying the two-norm of vector N hat sub two comma k, enclosed within double vertical bars representing the norm operation.] according to the iteration index.
[image: Line graph comparing three curves over time: output y₂ (red), reference trajectory y₁₁ (blue), and error e₂ (green). Output and reference decline from six, stabilizing at zero; error remains at zero throughout.]FIGURE 11 | Variation in [image: Mathematical notation displays the variables y zero, y d one, and z one comma zero, each separated by commas.] over time without iteration.
[image: Line graph with three plots showing charge curve of output y₁₅ (red), reference trajectory yₛ₁ (blue), and charge curve of error z₁₅ (green dotted) versus time t, labeled with a legend.]FIGURE 12 | Variation in [image: Mathematical notation showing variables Y subscript one five, Y subscript d one, and Z subscript one comma one five, separated by commas.] over time during the 15th iteration.
[image: Line graph showing three curves over time: a red output curve and blue reference trajectory start at a high value and decrease rapidly before leveling off, while the green error curve remains near zero.]FIGURE 13 | Variation in [image: Mathematical expression showing Y subscript thirty, Y subscript d one, and Z subscript one comma thirty, separated by commas.] over time during the 30th iteration.
[image: Line graph showing maximum error decreasing sharply as the iteration index increases from zero to thirty. The error rapidly approaches zero, indicating convergence over iterative steps.]FIGURE 14 | Variation in [image: Mathematical expression showing the maximum of the absolute value of z sub one comma k, written as max of the absolute value of z one k.] according to the iteration index.
[image: Line graph showing maximum error norm decreasing rapidly as iteration index increases, stabilizing near zero after approximately 10 iterations. Y-axis labeled maximum error norm and x-axis labeled iteration index k.]FIGURE 15 | Variation in [image: Mathematical expression showing the maximum of the absolute value of z subscript two comma k.] according to the iteration index.
[image: Line graph showing the norm of controller uk rapidly decreasing from above twelve thousand to near zero as the iteration index k increases from zero to thirty, indicating convergence or stabilization.]FIGURE 16 | Variation in [image: Mathematical expression showing double vertical bars surrounding a bold lowercase u subscript k, representing the norm of vector u sub k.] according to the iteration index.
[image: Line graph showing the norm of a constraint versus iteration index k, where the norm rapidly decreases from about one hundred to forty within the first five iterations and then stabilizes.]FIGURE 17 | Variation in [image: Mathematical expression showing the norm of alpha sub k, represented with double vertical bars enclosing the Greek letter alpha followed by subscript k.] according to the iteration index.
[image: Line graph showing the norm of the estimated parameter on the vertical axis and iteration index k on the horizontal axis, with the curve increasing steadily from left to right.]FIGURE 18 | Variation of [image: Mathematical expression showing the norm of the vector W sub k with a hat above the W, indicating normalization or estimation.] according to the iteration index.
[image: Line graph showing the relationship between iteration index k on the x-axis and the norm of estimated parameter on the y-axis, with the curve increasing rapidly at first and then gradually leveling off.]FIGURE 19 | Variation in [image: Mathematical expression showing the norm of M k hat, with M in bold and a circumflex accent above it, followed by subscript k, all enclosed within double vertical bars.] according to the iteration index.
[image: Two line graphs compare the norm of an estimated parameter against iteration index. The left graph shows an initial increase followed by a steady decline, while the right graph shows a rapid increase that plateaus. Both axes are labeled.]FIGURE 20 | Variation in [image: Mathematical expression showing the norm of N one k with a circumflex accent over N, written between two vertical bars.] and [image: Mathematical expression showing the two-norm of N sub two k with a hat above the N and double vertical bars on each side.] according to the iteration index.
4.2 Simulation of a single-joint robotic arm
In this section, we conducted simulation verification on a single degree-of-freedom robotic arm system to assess the performance of the proposed control method. The dynamic equation of a single degree-of-freedom robotic arm is
[image: Mathematical equation showing the second partial derivative of theta with respect to x equals negative ten times sine theta, minus two times the partial derivative of theta with respect to t, plus u, labeled as equation eighty-eight.]
where [image: Lowercase Greek letter theta in a serif font, commonly used in mathematics and science to represent an angle or a variable.] is the angle between the robotic arm and the reference frame.[image: Lowercase italic letter u in a serif font, black on a white background, appearing slightly blurred due to low image resolution.] is the input of the DC motor.
[image: Mathematical equation showing the second partial derivative of y subscript four one with respect to t squared equals negative nine y subscript four one minus six times the first partial derivative of y subscript four one with respect to t plus two r, labeled as equation eighty-nine.]
where [image: Mathematical expression showing italicized lowercase y with subscript d one.] is the output of the reference model. [image: Lowercase italic letter r in black on a white background.] is the reference input signal. According to Equations 88, 89, the state equation of the system is derived as
[image: Mathematical equations showing a dynamical system: x sub one dot at k equals x sub two at k; x sub two dot at k equals negative ten times sine of x sub one at k minus two times x sub two at k plus u at k; y at k equals x sub one at k. Equation is labeled ninety.]
and its reference model is derived as
[image: Mathematical equations in italics showing a dynamic system: ẋd1 equals xd2, ẋd2 equals negative nine times xd1 minus six times xd2 plus two r, and yd1 equals xd1, with equation number ninety-one in parentheses.]
where [image: Mathematical expression showing the variable x with subscripts one and k.] equals to [image: Lowercase Greek letter theta, typically used in mathematics to represent an angle or a variable.] can be defined as the angle between the robotic arm and the reference frame. [image: Mathematical variable x subscript two comma k displayed in italicized font.] is the time derivative of [image: Lowercase Greek letter theta in a serif typeface, commonly used in mathematics and science to represent angles or variables.], i.e., [image: Mathematical symbol showing a lowercase Greek letter theta with a dot above it, commonly representing the time derivative of theta in physics and engineering contexts.]. The primary control objective is to synchronize the output of systems (88) with the reference trajectory [image: Mathematical expression showing y subscript d one, with the subscript containing the letters d and the number one.] generated by system (89) over the interval [0,5] under the condition [image: Mathematical expression showing variable k approaches infinity, with k in italic font, a rightward arrow, and the infinity symbol.].
In accordance with Theorem 1, the adaptive iterative learning controller is chosen as
[image: Mathematical equations display expressions for alpha one k and u k. Alpha one k equals negative N hat one k divided by delta k times z one phi k plus y d one minus eta one z one k. U k equals negative z one phi k minus c two z two k minus W hat two lambda S sub s of x tilde two k, M hat two k transpose, Phi two t, minus N hat two k divided by delta k times z two phi k plus beta dot one k. Equation numbered ninety-two.]
The error compensation mechanism is
[image: Mathematical equations showing two coupled differential equations: dot zeta one i k equals beta one i k plus zeta two k minus eta one zeta one i k minus alpha i k; dot zeta two k equals negative eta two zeta two k minus zeta one k; labeled as equation ninety-three.]
where [image: Mathematical equation showing beta sub one comma k equals negative xi times the quantity beta sub one comma k minus alpha sub one comma k.].
The parameter adaptive iterative learning laws are provided by (57).
[image: Mathematical equation showing the time derivative of W hat sub k equals gamma sub j times the difference of two terms: S of x sub 2k star, M sub k transpose, and Phi of t, minus S hat sub k, M sub k transpose, and Phi sub D of t, all multiplied by z sub 2,4k star; labeled as equation ninety-four.]
[image: Mathematical equation showing Ṅ_i* = Γ_Ni (1 over Δ_xk) z_iμk squared for i equals one, two, labeled as equation ninety-five.]
[image: Mathematical expression showing M hat sub k equals Gamma sub m times Phi of t times W hat sub k transpose times S hat sub k times z sub two delta k b, labeled equation ninety-six.]
where [image: Mathematical expression showing c sub one equals fifty.], [image: Mathematical formula showing c sub two equals one hundred fifty, and delta sub k equals a divided by k squared.], [image: Mathematical expression showing the variable a is equal to fifty thousand.], [image: Mathematical expression showing capital gamma sub eleven equals the diagonal matrix with all entries equal to one, represented in italic as diag left brace one, one, one, one, one, one right brace.], [image: Mathematical equation showing uppercase Greek letter Gamma subscript two one equals ten.], [image: Mathematical expression showing Gamma sub twelve equals diag open curly bracket one, one, one, one, one close curly bracket, indicating a diagonal matrix with ones on the diagonal.], [image: Mathematical expression displaying capital gamma subscript twenty-two equals one, and xi equals ten, with the word "and" in italic font.].
Figures 11–13 show the tracking performance of the system output and expected output without iteration and at 15th and 30th iterations, respectively. Figures 14, 15 show that as the number of iterations increases, the system error may converge to a small region near the zero point. Furthermore, observations from Figures 16–20 confirm that both control signals [image: Mathematical expression showing double vertical bars around the variable u subscript k, indicating the norm of u sub k.] and [image: Mathematical expression showing the norm of alpha sub k, where alpha is represented by the Greek letter and k is the subscript.] and estimated parameters, [image: Mathematical expression showing the norm of a vector represented as W subscript k with a hat symbol above the W, enclosed in double vertical bars.], [image: Mathematical expression showing the double vertical bars symbol for norm, enclosing an uppercase bold italic M with a circumflex above it and subscript k.], [image: Mathematical notation displaying the double vertical bar norm of the vector N one comma k with a hat symbol over the N.], and [image: Mathematical expression showing the norm of N hat sub two comma k with vertical norm bars and a circumflex accent above the letter N.], exhibit bounded behavior within the [0,5] range. The validity of the control strategy presented in this research is reaffirmed by the simulation results shown in Figures 11–20 over the interval [image: Mathematical notation showing an interval from zero to an uppercase italic letter T, enclosed in square brackets.].
5 CONCLUSION
This article presents a solution to the complete trajectory, following challenges within a finite time frame for a category of nonlinearly parameterized systems characterized by time-varying disturbed functions and initial state errors. A new FSE neural network is used to learn the time-varying, nonlinearly parameterized term. Based on this and Lyapunov theory, we proposed the new LPF-AILC method. A low-pass filter is used to solve the problem of parameter explosion after obtaining the derivative of the virtual controller. The unmatched uncertainties, nonlinear parameterization, and initial state errors are well considered. Two simulation examples have proven the feasibility of the control approach. This article does not mention time-delay issues, but they often exist in practical systems. Our future work should consider solving the complete tracking problem on a finite time interval for these complex systems with time delays. This is a more interesting issue. In addition, there are two deficiencies in the controller design process: the assumption of time-varying parameters being periodic and the jitter issues caused by the low-pass filter. These challenges will be carefully considered and addressed in our future work.
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In the digital era, the significance of cryptographic algorithms has grown significantly within the realm of cybersecurity. This research presents an innovative approach to image encryption that eliminates the security limitations of the conventional one-dimensional logistic mapping. This approach relies on an enhanced two-dimensional logistic-fraction hybrid chaotic mapping (2D-LFHCM) and deoxyribonucleic acid (DNA) computing. Initially, the improved 2D-LFHCM is utilized to effectively scramble the image by incorporating chaotic sequences. Then, two novel algebraic DNA computing rules are introduced to enhance diffusion encryption. Experimental findings show that this approach offers superior security performance, even with renowned attacks.
Keywords: image encryption, chaotic system, DNA computing, logistic mapping, 2D-LFHCM

1 INTRODUCTION
Chaos, which refers to complex and unpredictable behavior displayed by nonlinear dynamic systems, is a phenomenon characterized by the inherent unpredictability of deterministic nonlinear systems. The slightest change in the initial state can lead to unforeseen results. Chaos is not restricted to a particular domain but can be observed in various aspects of human society. The profound exploration of chaos has given rise to a natural problem: what are the potential applications of chaos? This query stands as a paramount concern not only in the present world but also in the future. As fundamental and applied sciences progress, chaos theory has evolved into a crucial focal point within the realm of nonlinear science, blossoming into a discipline that has thrived over the past few decades. Contemporary electronic engineering and image processing heavily draw upon chaos theory, utilizing its principles to yield numerous innovative and advantageous advancements in these fields.
The characteristics of chaos systems include nonlinearity, ergodicity, pseudo-random behavior, and a high sensitivity to initial conditions. As a result, chaos theory serves as a solid foundation for the development of excellent image encryption algorithms. However, it has been observed that employing a single chaotic system often leads to a limited range of possible encryption keys, thereby rendering the algorithm susceptible to attacks from malicious entities. Consequently, to ensure the creation of a robust and efficient image encryption algorithm, researchers frequently integrate chaotic systems with other disciplines, including the analysis of deoxyribonucleic acid (DNA) sequences [1–4], the utilization of optical maps [5,6] or cellular automata (CA) [7,8], the application of compressed sensing [9,10], and chaotic circuits [11–17].
Therefore, chaos theory holds immense potential for research and practical significance in the domain of image encryption. Ever since R. Matthews [18] introduced a broader logistic map and relied on it in the data encryption domain, a new era of chaotic systems generating pseudo-random numbers is beginning. Thus, fresh impetus is provided to cryptography. Consequently, chaos and cryptography became intertwined. Subsequently, Alvarez [19] formulated the fundamental requisites and rules of chaotic cryptosystems, gaining recognition from experts in the field of cryptography. Since then, there has been a robust development regarding chaotic digital image encryption. In 2012, Wang [20] invented a novel technique employing a traditional logistic map for the encryption of color images. Nevertheless, the key space induced by one-dimensional chaos is limited, and the algorithm’s handling of chaotic sequences is not sufficient, resulting in unsatisfactory robustness of the algorithm. In an attempt to address this issue, Wang [21] put the latest method for creating high-dimensional digital chaotic systems, but the drawback lies in the complexity of the system structure and the inefficiency of the algorithms. More recently, Huang [22] proposed a fine-tuned cubic color image encryption scheme that operates jointly by chaos and hyperchaos. Its core idea is based on an improved logistic-fraction hybrid chaotic mapping (LFHCM) proposed to address the limitations of one-dimensional chaotic mapping and expand the key space. This mapping is then linked with a four-dimensional hyperchaotic system to generate the key stream, which is used to rotate and shift the rows and columns of each component in the red (R), green (G), and blue (B) channels of the color image. Wang [23] attempted to accomplish global scrambling by creating a chaotic sequence using the Lorenz system for binary and Gray code translation. Remarkably, this algorithm exhibits a favorable encryption effect on grayscale images. Building upon these advancements, Gao [24] introduced a multi-image encryption technique founded on single-channel scrambling, diffusion, and chaotic systems. Performance investigation validates that this technique demonstrates exceptional capabilities in ensuring security and achieving efficient encryption speed. Furthermore, in his study [25], Alexan proposes a method for encrypting color images. This approach effectively combines KAA mapping with various chaotic mappings in a synergistic manner. Notably, this approach maximizes the utilization of Shannon’s security idea and encrypts the image through bit obfuscation and diffusion.
However, amidst a plethora of algorithms, our specific interest lies in encryption methods rooted in chaotic dynamics and deoxyribonucleic acid (DNA) sequences. The encryption performance of this algorithm, proposed by Chai [26], is not only exceptional but also demonstrates the ability to withstand a range of conventional attacks. In 2018, an image encryption algorithm was introduced by Wu [27], which employed a combination of DNA coding and Henon-Sine mapping. To increase the complexity of the encryption process and strengthen the algorithm’s security, XOR operations and DNA coding were added to the diffusion process. In 2020, Patel [28] introduced a novel algorithm for encrypting images, which combined DNA coding and a three-dimensional chaotic mapping technique. In addition to utilizing the idea of eight complementary encodings for picture encryption, this approach employed a chaotic sequence to jumble the image. Both of these algorithms are applicable for encrypting grayscale and color images. Liu [29] then applies an improved Arnold transformation to scramble the three components and uses the DNA sequence generated through the chaotic sequence to conduct diffusion encryption of the color image. Hua [30] presented an innovative dynamic image encryption technique that enhanced the security of image data by utilizing quantum walk and chaos-induced DNA. Inspired by them, a plagiarism detection method is presented utilizing an improved two-dimensional logistic-fraction hybrid chaotic mapping (2D-LFHCM) and DNA computation. This method incorporates DNA chaotic diffusion and scrambling techniques.
The organization of this paper is outlined below. Section 2 delves into the 2D-LFHCM and analyzes its chaotic characteristics. The fundamental principles of encryption and decoding are covered in Section 3. Section 4 presents the devised method for key creation as well as the encryption and decryption methods for DNA images. Section 5 elucidates the numerical simulation findings of the proposed cryptosystem, supplemented by a comprehensive exploration of its security analysis. Ultimately, Section 6 furnishes a thorough recapitulation of the study’s content and outlines potential directions for future research.
The main contributions of this paper are highlighted below:
	(i) Development of an enhanced two-dimensional logistic-fraction hybrid chaotic mapping (2D-LFHCM) for image encryption.
	(ii) Design and implementation of novel deoxyribonucleic acid (DNA) computing techniques in the proposed encryption method, including right shift addition, right shift subtraction, right shift XOR, and other DNA computing methods.
	(iii) A comprehensive performance analysis of the encryption algorithm was conducted, including aspects such as encryption speed, key space, histograms, information entropy, and correlation coefficients.

2 AN IMPROVED 2D-LFHCM
2.1 The definition of 2D-LFHCM
Parabolic mapping is a generic term used to describe a kind of chaotic maps. The classical insect population model (or logistic mapping, shortly, LM) is represented as Equation 1.
[image: Mathematical equation displaying x sub n plus one equals r times x sub n multiplied by one minus x sub n, labeled as equation one on the right.]
where [image: Mathematical expression showing r belongs to the open interval from zero to four.], with initial value [image: Mathematical expression showing x sub zero belongs to the open interval from zero to one.]. Another classic 2D-LMM (two-dimensional logistic mixing mapping) [31], is a discrete chaotic map in two dimensions derived from the traditional logistic map. The difference equation’s mathematical model is represented as Equation 2.
[image: Mathematical system of two equations: x sub n plus 1 equals t times quantity three y sub n plus one times x sub n times quantity one minus x sub n; y sub n plus 1 equals t times quantity three x sub n plus 1 plus one times y sub n times quantity one minus y sub n; both with equation number two.]
where [image: Lowercase italic letter t in a bold, serif font on a white background.] is a control parameter, [image: Mathematical expression showing the variable x with a subscript n, commonly used to represent the n-th element in a sequence or series.] and [image: Mathematical expression showing the variable y with a subscript n.] denote the state variables within the iterative process of the difference equation. Compared with the traditional 2D-LMM, the newly proposed 2D-LM (two-dimensional logistic mapping) by Ye [32] is a two-dimensional chaotic mapping with a simpler equation structure. Its model is described below.
[image: Mathematical system displaying two recursive equations: x sub n plus one equals u times x sub n times one minus x sub n, and y sub n plus one equals v times y sub n times one minus y sub n, labeled equation three.]
In Equation 3, [image: Lowercase italic letter u in a serif font, presented in black on a white background. Suitable for use in mathematics or scientific notation contexts.] and [image: Lowercase italic letter v in a serif font, shown in black on a white background. Commonly used as a mathematical or scientific variable.] are the control parameters of the proposed 2D-LM, [image: Mathematical variable x with subscript n one, commonly used to represent an element in a sequence or series, with n as the main index and one as a secondary index.] and [image: Mathematical expression showing a lowercase italic y with a subscript n, commonly used to represent a sequence term or indexed variable in mathematics or statistics.] are the state variables, and [image: Lowercase italic letter n in a serif font, commonly used in mathematical or scientific notation to represent a variable or integer.] is the number of iteration steps. When [image: Mathematical equation showing variable u is equal to three point nine nine.] and [image: Mathematical notation showing the Greek letter nu equals one point four.], starting from [image: Mathematical notation displaying the coordinate pair left parenthesis zero point one comma zero point one right parenthesis.], the 2D-LM demonstrates chaotic behavior.
Based on the original one-dimensional logistic map, the LFHCM (logistic-fraction hybrid chaotic mapping) derived from the logistic map and fraction map is proposed by Huang [22]. The fraction mapping is proposed by Lu et al. [33] to address the practical needs of multi-objective optimization and multi-model issues. The definition equation of fraction mapping is Equation 4.
[image: Mathematical equation showing z sub n plus one equals F of c and z sub n, which is one divided by z sub n squared plus zero point one, minus c times z sub n, labeled as equation four.]
where [image: Mathematical expression showing c is an element of the open interval from zero to one.] is a control parameter, and the output range of all chaotic sequences [image: Mathematical expression showing z sub eta belonging to the interval bracket negative ten point zero zero two five, ten point zero zero two five bracket.]. The definition equation of LFHCM constructed by combining logistic mapping and fraction mapping is Equation 5.
[image: Mathematical equation showing x sub n plus 1 equals L of a and x sub n, defined as a times x sub n times one minus x sub n squared, multiplied by one divided by x sub n squared plus one. Equation numbered five.]
where [image: Mathematical expression showing variable a belongs to the open interval from zero to eleven point five.] is a control parameter, and the sequence output value [image: Mathematical expression showing that x sub n is an element of the interval from zero to one point five six, inclusive.].
Thanks to their excellent chaotic performance, LM, 2D-LM, 2D-LMM, and LFHCM are often used as pseudo-random signal generators in engineering fields such as cryptography and dynamics. However, LFHCM has not yet been extended to two-dimensional. The traditional logistic-fraction mapping serves as the fundamental basis for the 2D-LFHCM described in this study, and its difference equation is
[image: Mathematical system with two recursive equations: x sub n plus one equals lambda times x sub n times one minus x sub n squared times one divided by x sub n squared plus one; y sub n plus one equals mu times x sub n times one minus y sub n squared times one divided by x sub n squared plus one, labeled as equation six.]
where, [image: Lowercase Greek letter lambda, written in a serif font, commonly used in mathematics and science to represent wavelength, eigenvalues, or rate parameters.] and [image: Lowercase Greek letter mu, commonly used in mathematics and science to represent the mean in statistics or the prefix micro in measurement units.] serve as the control parameters, and [image: Mathematical expression showing the variable x with subscript n one.] and [image: Mathematical notation displaying a lowercase italic y with a subscript n, commonly used to represent the n-th value in a sequence or series.] stand for the state variables. When [image: Mathematical expression showing variable u equals three point nine nine.] and [image: Mathematical equation showing the Greek letter nu equals one point four.], starting from the initial point [image: Mathematical notation showing an ordered pair with the values zero point one and zero point one enclosed in parentheses.], chaotic behavior is observed in the 2D-LFHCM.
2.2 Analysis and comparison of chaotic properties of 2D-LFHCM
In the preceding section, different classical maps were defined, and enhancements were made to the two-dimensional map, referred to as 2D-LFHCM. This section assesses and compares the chaotic properties of the following chaotic maps: 2D-LM, 2D-LFHCM, 2D-LMM, and LFHCM. The study is done from the perspectives of the phase trajectory diagrams, Lyapunov exponents, bifurcation diagrams, and chaotic analysis of the iterative sequences. It will be shown that the improved two-dimensional chaotic map 2D-LFHCM has better chaotic characteristics.
2.3 Bifurcation diagrams
Assume that the initial conditions of the following four mappings are (0.1, 0.1), and their control parameters are [image: Lowercase italic letter a in a serif font displayed in black on a white background.], [image: Lowercase italic letter t in a serif typeface, centered on a plain white background.], [image: Italic lowercase letter u in a serif font, shown in black on a white background.], and [image: Lowercase Greek letter lambda, commonly used in mathematics and physics to represent wavelength, eigenvalues, or a generic parameter in equations. Black symbol on a white background.], respectively. Then, their bifurcation diagrams are shown in Figure 1. The bifurcation diagram of 2D-LM is shown in Figure 1A. When [image: Mathematical expression in italic font displaying "u equals 2.99".], the system transitions from a period-1 to a period-2 state. At [image: Mathematical expression showing the variable u equals three point four six four.], the system enters a period-4 orbit. When [image: Mathematical expression showing the Greek letter mu equals three point five five four, commonly used to represent a mean or average value in statistics or probability.], the system enters a period-8 orbit and then transitions into a chaotic orbit. The maximum amplitude of 2D-LM is 2.491. The bifurcation diagram for the 2D-LMM is presented in Figure 1B. As the control parameter [image: Lowercase italic letter t in a serif font centered on a plain white background.] increases from 0.9 to 1.19, the trajectory of point [image: Lowercase italic letter y in a serif font, commonly used as a mathematical variable.] of 2D-LMM undergoes a transition, shifting from a periodic orbit to a chaotic orbit, and the maximum amplitude is 0.995. The bifurcation diagram for LFHCM is displayed in Figure 1C. When [image: Mathematical expression showing variable a equals five point nine.], LFHCM enters a chaotic state. The 2D-LFHCM model proposed in this paper, as shown in Figure 1D, when the control parameters [image: Mathematical notation showing the Greek letter lambda equal to five point two zero six.] and [image: Mathematical equation showing lambda equals five point five zero nine.], the tangent bifurcation of the mapping occurs, and the obvious period-2 window and period-4 window are formed, respectively. Then the mapping forms the period-8 window, and then enters the chaotic state. Changing the parameter [image: Lowercase Greek letter lambda, commonly used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or rate parameters depending on the context.], it can be observed that the mapping has rich nonlinear dynamic phenomena such as period-doubling bifurcation, tangent bifurcation, periodic window, chaos, and so on. In addition, it can be seen that whether 2D-LMM or 2D-LM, the length of the chaotic interval is less than 1, and there are some glaringly visible blank windows even inside the narrow chaotic region. It is evident from a comparison of the newly proposed 2D-LFHCM with the above chaotic maps that it has a broader chaotic region, a longer chaotic interval, and fewer blank windows. The comparison of their chaotic intervals is shown in Table 1. Where, the chaotic region area of 2D-LM is regarded as unit 1.
[image: Four bifurcation diagrams are shown in a two-by-two grid, each representing a different mathematical model. Diagram (a) in green, (b) in blue, (c) in black, and (d) in red, display branching structures indicating points of stability and chaotic regions for their respective systems, labeled as 2D-LM, 2D-LMM, LFHCM, and 2D-LFHCM. Each diagram visually compares changes in stability and chaos across different models.]FIGURE 1 | The bifurcation diagrams of 2D-LM (A), 2D-LMM (B), LFHCM (C), and 2D-LFHCM (D).
TABLE 1 | Comparison of chaotic regions of four chaotic maps.
[image: Table with three columns compares chaotic maps. First column lists 2D-LM, 2D-LMM, LFHCM, and 2D-LFHCM. Second column shows each map’s chaotic interval, and third column presents their chaotic region area ratios: 1, 1.374, 1.921, and 2.441.]2.4 Lyapunov exponents spectrum
In general, the Lyapunov exponent is a very important statistical feature. It characterizes the stability of dynamic systems and can be used to judge whether the system presents chaotic behavior and the degree of chaos. The Lyapunov exponent describes the exponential growth rate of the system under small changes in initial conditions, which reflects the sensitivity and predictability of the system. To rephrase, determining the Lyapunov exponent spectrum can aid in our comprehension of the system’s dynamic behavior, as well as in determining whether or not chaos exists inside the system and to what extent. For a discrete chaotic mapping [image: Mathematical expression showing L parenthesis x close parenthesis, representing a function L applied to the variable x.] of dimension [image: Lowercase italic letter m in a serif font, commonly used to represent a variable or value in mathematical and scientific notation.] (see Equation 7),
[image: Mathematical notation showing a system of m recursive equations defined by the operator L applied to x, where each x sub n plus one superscript i equals L sub i of the sequence x sub n superscript one through x sub n superscript m, for i from one to m, labeled as equation seven.]
the Lyapunov exponent can be expressed as Equation 8.
[image: Mathematical formula expressing the Lyapunov exponent LE sub j as the limit as n approaches infinity of one over n times the sum from i equals one to n of the natural logarithm of the absolute value of lambda sub i, labeled as equation eight.]
where [image: Mathematical expression showing j equals one comma two comma up to m.] and [image: Mathematical expression displaying a sequence of variables: lambda sub one, lambda sub two, continuing with an ellipsis, and ending with lambda sub m.] are the [image: Lowercase italic letter m in a serif font, commonly used to represent a variable in mathematical and scientific notation.] eigenvalues of the Jacobian matrix of [image: Mathematical expression displaying L of x, with L in italic font followed by the variable x inside parentheses.] at the [image: Lowercase italic letter n in a serif font, often used to represent a variable or integer in mathematical and scientific contexts.]-th iteration.
Two Lyapunov exponents, [image: Mathematical variable LE in italic font with a subscript one.] and [image: Mathematical expression showing the letters L and E in italics, followed by the number two as a subscript.], correspond to a two-dimensional discrete chaos mapping. In terms of the Lyapunov exponent, a system will only exhibit chaotic properties when it has a positive number of states. Furthermore, the system performs more chaotically the higher the Lyapunov exponent. Selecting the control parameters [image: Mathematical equation showing v equals mu equals four.], the initial point is (0.1, 0.1), Figure 2 shows the Lyapunov exponents spectrum of three two-dimensional chaotic maps. The largest Lyapunov exponent [image: Mathematical expression showing an italic uppercase L and E subscripted by one, enclosed in parentheses.] is shown by the red line, while the second Lyapunov exponent [image: Mathematical expression showing open parentheses, italic uppercase L and E, subscript two, and closed parentheses.] is represented by the blue line. The comparative analysis reveals that the average Lyapunov exponent of the 2D-LFHCM introduced in this study surpasses that of both the 2D-LMM and 2D-LM. Consequently, the 2D-LFHCM exhibits superior chaotic performance. Moreover, the Lyapunov exponent values within the parameter range of [image: Lowercase Greek letter lambda, commonly used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or other variables as context requires. Black serif font on a white background.] for the 2D-LFHCM are predominantly positive, confirming its heightened suitability for image encryption.
[image: Three line charts display Lyapunov exponents for different mathematical models. Panel a shows Lyapunov exponent curves for the 2D-LMM, panel b for the 2D-LM, and panel c for the 2D-LFHCM, each with two labeled legend entries and axes for exponent and the respective variable.]FIGURE 2 | Lyapunov exponents spectrum of 2d-LMM (A), 2D-LM (B), 2D-LFHCM (C).
2.5 Iteration sequence and phase diagram
For the 2D-LFHCM, with fixed parameters [image: Mathematical expression showing the Greek letter lambda followed by an equals sign and the number four point five.], [image: Mathematical expression showing the Greek letter mu followed by an equals sign and the value one point four.] and [image: Mathematical notation showing the Greek letter lambda followed by an equals sign and the number six, indicating that lambda is assigned a value of six.], [image: Mathematical expression displaying the Greek letter mu equals one point four.], the chaotic sequence is obtained after 300 iterations, as shown in Figure 3. The black curve [image: Mathematical expression showing a bold italic capital letter S followed by a subscript one.] represents the trajectory starting from the initial value (0.1, 0.1). The green curve [image: Mathematical notation displaying the uppercase letter S with a subscript two.] represents the trajectory starting from the initial value [image: Mathematical expression showing the ordered pair with coordinates zero point one and negative zero point one enclosed in parentheses.]. To make the image clear, the curve of [image: Mathematical expression showing an uppercase italic S with a subscript one, representing S one.] is intentionally translated upward. From Figure 3B, it becomes apparent that upon reaching a specific iteration count, the two running paths become indistinguishable. Indeed, this phenomenon arises when certain conditions are met by the initial value.
[image: Figure contains two side-by-side line charts comparing variables S1 and S2 over time, with S1 in black and S2 in green. Chart a shows both variables as regular, non-overlapping oscillations under parameter values lambda equals four point five and mu equals one point four. Chart b displays more irregular, scattered oscillations for both variables under lambda equals six and mu equals one point four. Arrows label S1 on the upper trace and S2 on the lower trace in both panels.]FIGURE 3 | Two iterative sequences of the 2D-LFHCM for [image: Mathematical expression showing the Greek letter mu followed by an equals sign and the number one point four.] ([image: Mathematical expression showing the Greek letter lambda equals four point five.] (A) and [image: Mathematical expression showing the Greek letter lambda equal to six.] (B), respectively).
Based on diverse parameters, maps in the specified interval can generate chaotic effects, resulting in a chaotic phase diagram. Figure 4 illustrates the chaotic phase portraits of 2D-LMM, 2D-LM, and 2D-LFHCM under specific conditions ([image: Mathematical equation showing lowercase t equals one point one nine.], [image: Mathematical expression showing lowercase italic u equals three point nine nine.], [image: Mathematical equation displaying the Greek letter nu followed by an equals sign and the value one point four.], and [image: Mathematical expression showing the Greek letter lambda, represented as λ, equal to the number nine.], [image: Mathematical notation displaying the Greek letter mu equals one point four.], respectively).
[image: Panel a shows a blue phase diagram of the two-dimensional LMM with a looping, scattered pattern. Panel b features a green two-dimensional LM phase diagram forming dense horizontal bands. Panel c presents a red phase diagram of the two-dimensional LFHCM, displaying layered and curved band structures. All charts depict different dynamic behaviors of mathematical models.]FIGURE 4 | The phase diagram of 2D-LMM (A), 2D-LM (B), 2D-LFHCM (C) in the [image: Mathematical expression showing x minus y.] plane.
By analyzing the numerical simulation results presented in Figure 4, it becomes evident that the 2D-LFHCM proposed in this research exhibits a larger chaotic range in the phase plane compared to 2D-LMM and 2D-LM. This observation indicates that the 2D-LFHCM can generate a more diverse range of chaotic pseudo-random outcomes, thereby enhancing ergodicity. This improvement is valuable for potential applications, including signal generation and the utilization of chaotic systems in image encryption.
3 THE BASIC PRINCIPLES OF ENCRYPTION AND DECRYPTION
In the field of biology, deoxyribonucleic acid (DNA) stands as a fundamental biomolecule present within the cells of all organisms, serving as the genetic material for the majority of living entities. It is gratifying that DNA also plays an indispensable role in cryptography [34]. If the nucleotide bases in DNA information are matched to the binary digits 00, 01, 10, and 11, there are a total of 8 DNA coding rules [35], each corresponding to its own rules for addition, subtraction, and XOR operations. DNA primarily achieves the genetic code through the arbitrary combination of four bases: adenine (A), cytosine (C), guanine (G), and thymine (T), where A and T are complementary, C and G are complementary. The binary numerals 0 and 1, which complement each other, also serve a purpose in computers to store information. By leveraging these characteristics, when implementing DNA’s quaternary encoding with four bases, there can be a total of eight pairing rules. The coding table is shown in Table 2.
TABLE 2 | DNA code table.
[image: Table with rows labeled quaternary numbers zero to three and columns labeled Rule one to Rule eight, showing corresponding letters A, C, G, and T for each number and rule combination.]In a computer, the quaternary system is a digital system based on the number 4. The four numbers 0, 1, 2, 3, and A, T, C, G one-to-one mapping. If four bases in DNA are used for four-image coding, there are a total of eight rules that can be paired with each other. The coding table is shown in Table 2. Following the rules provided in Table 2, a 4-digit quaternary number can be directly represented by a 4-length DNA sequence. As an example, the quaternary number “1320” can be used to represent the decimal 120 Gy value. Since the numbers 0, 1, 2, and 3 are mapped one by one with A, T, C, and G, they are eventually converted into TGCA.
The cryptosystem in modern cryptography can be succinctly denoted as a five-tuple [image: Italicized letters P, C, and K separated by commas, likely representing variables or constants in a mathematical or scientific context.], [image: Italicized text displays the mathematical variables Enc and Dec, commonly representing encryption and decryption functions in cryptography.], where [image: Lowercase italic letter p in a serif typeface centered on a white background.] denotes the plaintext sequence, [image: Uppercase letter C in a serif font with a slight blur effect, set against a white background.] represents the ciphertext sequence, [image: Uppercase italic letter K shown in a serif font, centered on a white background.] embodies the key system, [image: Italicized mathematical variable label reading capital E, lowercase n, lowercase c.] signifies the encryption algorithm, and [image: Italicized mathematical text displaying the letters D, e, and c in serif font, commonly used as an abbreviation for the word “December” or to represent a variable in mathematics.] denotes the decryption algorithm. The core idea of modern cryptography involves encrypting a sequence of plaintext using a designated encryption algorithm. Subsequently, the encrypted file can be decrypted by the recipient, using a specific decryption key, to retrieve the original plaintext sequence. Table 3 displays the DNA operation rules, when A = 0, C = 1, G = 2, and T = 3, of addition “+,” subtraction “[image: Silhouette of a cat sitting upright and facing forward with a curved tail curled around its body. The background is transparent, emphasizing the cat's distinct outline.]”, exclusive or “xor,” right shift ‘[image: Black right-pointing arrow with a solid shaft and triangular head, commonly used to indicate direction or progression toward the right.]’, and left shift “[image: Black left-pointing arrow on a white background, commonly used as a directional indicator or navigation symbol, with a simple, minimalistic design and blurred edges.]”.
TABLE 3 | DNA operation rules table.
[image: Table showing DNA base operations with columns for addition, subtraction, exclusive or, right shift, and left shift. Each row and column header contains bases A, C, G, T, with results for each operation shown in intersecting cells.]Mathematically, the well-known technique of the right cyclic shift involves rearranging a collection of data sequences. The specific procedure entails relocating the final number to the initial position and shifting all the remaining elements to the right, aligning them with their corresponding positions. On the other hand, the left circulation shift is similar. Throughout the shifting process, the cyclicity is maintained, ensuring that the removed element reappears at the opposite end of the sequence.
Let [image: Mathematical expression showing R applied to a tuple containing s sub zero, s sub one, up to s sub n minus one, followed by comma k inside parentheses.] represents the [image: Lowercase italic letter k in a serif font, commonly used as a mathematical variable or symbol in scientific and technical contexts.]-th right cyclic shift, that is, the right cyclic shift [image: Lowercase italic letter k in a serif typeface, commonly used as a mathematical variable or constant in scientific and mathematical notation.] times. Then,
[image: Mathematical expression shows a function R that takes a sequence in the form S sub zero, S sub one, through S sub n minus one, and integer k, returning a new tuple where each element is S sub mod of its index plus k, n.]
Correspondingly, [image: Mathematical expression showing L with two arguments: a tuple consisting of s sub zero, s sub one, up to s sub n minus one, and a separate argument k.] represents the [image: Lowercase italic letter k, typically used as a variable or constant in mathematical and scientific equations.]th left cyclic shift. Then,
[image: Mathematical equation showing a function L applied to a sequence of elements s sub zero through s sub n minus one and an integer k, resulting in a new sequence reordered by the modulo operation.]
As per the operational guidelines provided in Table 3, DNA left shift and DNA right shift algebraic operators, grounded in DNA sequences, facilitate the definition of six DNA algebraic operations. These include DNA right (left) shift addition, DNA right (left) shift subtraction, and DNA right (left) shift XOR.
As an illustration, for the DNA operation before the shift and the DNA right shift XOR, one can get
[image: Mathematical notation displays a function mapping tuples of nucleotide bases and indices to transformed nucleotide sequences: A, C, G, T paired with A, C, G, or T, each mapped to a sequence of three new bases based on the index.]
The DNA right shift addition [image: Mathematical expression showing the function f with a subscript r and a plus sign, written in italicized font.] is expressed as
[image: Mathematical notation describes a function f_r* representing a transformation on nucleotide sequences, showing a mapping from nested set notation to a four by four matrix containing the DNA bases A, C, G, and T in each row and column.]
The DNA right shift subtraction [image: Mathematical expression showing lowercase italic f with a subscript r followed by a minus sign.] is expressed as
[image: Mathematical notation shows a function f_r defined as a sequence of R operations applied to nucleotide sets and individual bases or indices, resulting in a matrix representing four DNA sequences, each as a row of letters A, T, C, or G.]
The DNA right shift XOR [image: Mathematical expression showing the function f with r subscript X, commonly used to denote a function related to variable X with an additional parameter r.] is expressed as
[image: Mathematical expression illustrating a function f_RX that transforms nucleotide sets (A, C, G, T) into matrix representations. The matrix on the right displays four rows labeled with nucleotides and four columns, containing the values A, A, A, A; T, C, T, C; G, G, G, G; C, T, C, T.]
4 PROPOSED IMAGE ENCRYPTION SCHEME
This section includes a thorough overview of the important parts of the encryption mechanism, such as key creation, chaotic DNA scrambling, and diffusion. Specifically, the scrambling operation exchanges the position and interference of pixels in the ordinary image, minimizing the strong correlation between adjacent pixel values. The pixel data diffusion serves as a critical measure to enhance security. By integrating scrambling and diffusion, both the position and grayscale value of the pixel are simultaneously altered, ensuring that the grayscale information of any pixel is concealed within numerous other pixels.
Let [image: Mathematical notation showing an uppercase italic letter I followed by a subscript one, typically used to represent an indexed variable or element in equations.] denote a grayscale image of size [image: Mathematical expression showing capital M multiplied by capital N, commonly used to represent the dimensions of a matrix or array as M by N.], where [image: Uppercase serif letter N displayed in black with a slight blur effect on a white background.] represents the number of columns and [image: Italic uppercase letter M displayed in a serif font on a white background, typically used to represent a variable or constant in mathematical or scientific notation.] is the number of rows. The encryption and decryption process based on the principles outlined in Section 3 is detailed below, and the flow chart of the entire encryption process is shown in Figure 5.
[image: Flowchart illustrating an image encryption process, beginning with a secret key that generates chaotic sequences via a 2D-LFHCM system. These sequences are used for sequential steps: encoding the original image into a quaternary DNA matrix, performing chaotic scrambling, conducting DNA diffusion, and a second round of chaotic scrambling, resulting in an encrypted, noise-like output image.]FIGURE 5 | Flowchart of the encryption process (where the picture of Lena is sourced from [38]).
Step 1. Key stream generation.
	(i) Let [image: Mathematical expression showing the coordinates x sub zero to the power of one and y sub zero to the power of one, equal to the pair zero point one, zero point one.], [image: Mathematical notation showing the point with coordinates x zero squared and y zero squared equals open parenthesis zero point two, zero point two close parenthesis.], [image: Mathematical expression showing open parenthesis x sub zero superscript three comma y sub zero superscript three close parenthesis equals open parenthesis zero point three comma zero point three close parenthesis.], [image: Mathematical notation showing the Greek letter lambda equals six.] and [image: Mathematical expression showing the Greek letter mu equals one point four.] serve as the initial conditions and control parameters employed for iterating Equation 6.
	(ii) After iterating [image: Mathematical expression showing n subscript zero plus four times M times N.] times, three pseudo-random generated sequences [image: Mathematical expression showing the set containing y subscript n naught plus four M N, with n superscript one, all enclosed in curly brackets.], [image: Mathematical expression showing curly braces enclosing y subscript n zero plus four M N, squared.], and [image: Mathematical expression showing a set containing y sub n n zero plus four capital M N, with y raised to the third power and n zero plus four M N as the subscript.] are obtained separately.
	(iii) To eliminate transient effects for increased security, the first [image: Mathematical expression featuring a lowercase italic n with a subscript zero, often representing an initial value or baseline measurement in scientific or mathematical contexts.] or [image: Mathematical expression showing n subscript zero plus three MN.] iterations of sequences [image: Mathematical expression showing a set containing y superscript one with the subscript n naught plus four M N, enclosed in curly brackets.], [image: Mathematical expression showing a set containing y squared with a subscript of n naught plus four M N, enclosed in curly brackets.], and [image: Mathematical expression showing the set containing y sub n n naught plus four M N, with y raised to the third power and the subscript n naught plus four M N.] (where [image: Mathematical expression displaying n subscript zero equals eight hundred.]) are discarded. New sequences [image: Italicized lowercase letter y with a subscript one, typically used to represent the first value in a sequence or an indexed variable in mathematical expressions.], [image: Mathematical expression showing the variable y with a subscript two, commonly read as y sub two.], and [image: Mathematical expression showing the variable y with a subscript three, representing y sub three.], respectively, of length [image: Text reads: 4 M N.], [image: Italicized capital letters M and N displayed side by side in a serif font on a white background.], and [image: Text “4 M N” displayed in a bold, serif font with no additional symbols or graphics present.] are obtained.
	(iv) The encrypted chaotic sequence [image: Mathematical notation showing a lowercase italic s with a subscript one, commonly used to represent the first element in a sequence or series.] is produced by Equation 9. The [image: Mathematical variable y with a subscript one, commonly used to represent the first element in a sequence or series.] elements are sorted in ascending order, [image: Mathematical expression showing the variable y with the subscript new, indicating a newly calculated or updated value.] is the newly formed sequence after sorting, and [image: Mathematical variable s with the subscript one, commonly used to denote the first element in a sequence or set.] is the index value of [image: Mathematical variable y subscript new written in italic font.].

[image: Mathematical equation displaying y sub new and s sub 1 in brackets set equal to sort of y sub 1, followed by equation number nine in parentheses.]
where, the function sort is employed to arrange the data and provide the corresponding index values.
(v) Generation of the encrypted chaotic sequence [image: Mathematical notation showing a lowercase letter s with the number two written as a subscript.]. By applying the following Equation 10 to compute the obtained pseudo-random sequence [image: Mathematical expression showing lowercase italic y with subscript two.], ensuring that the values of [image: Mathematical expression displaying the variable y with the subscript two.] are within [image: Mathematical set notation showing the numbers zero, one, two, and three enclosed in curly braces.], a new sequence [image: Mathematical notation displaying the letter s with a subscript two, commonly used to represent a variable or sequence element indexed by two.] is obtained.
[image: Mathematical expression showing s sub five of i equals floor of mod of y sub two of i times ten to the power of four, with four, followed by equation number ten in parentheses.]
where [image: Mathematical expression showing i equals one, two, three, continuing up to m n, where i denotes an index ranging from one to m times n.], and [image: Mathematical expression displaying the floor function with variable x in italic font.] denotes the function that outputs the largest integer less than [image: Lowercase italic letter x, commonly used as a variable in mathematical equations and scientific expressions.].
	(vi) The generation of an encrypted chaotic sequence, referred to as [image: Mathematical expression showing lowercase letter s with the number three as a subscript, representing s sub three.], involves several steps. First, the sequence [image: Mathematical variable y with a subscript three, commonly read as y sub three, shown in italic serif font.] is processed using Equation 11 to ensure that the resulting sequence, denoted as [image: Mathematical expression showing the variable y with a star superscript followed by a subscript three.], only consists of values within the range [image: Mathematical notation showing a set containing the numbers zero, one, two, and three within curly braces.]. Second, the processed sequence [image: Mathematical expression showing lowercase y with an asterisk as a superscript and the number three as a subscript.] undergoes encoding into a DNA sequence following rule 1 presented in Table 2. Finally, Equation 12 is applied to the encoded sequence to obtain the desired chaotic sequence, referred to as [image: Mathematical notation showing the lowercase letter s with a subscript three, commonly representing the third element in a sequence or set.]. In other words, sequence [image: Mathematical notation showing the lowercase letter s with a subscript three, often used to represent a variable or sequence element labeled s sub three.] is generated sequentially from sequence [image: Mathematical expression showing y subscript three with an asterisk in superscript.], taking groups of four.

[image: Mathematical expression defining y₃*ⁱ(i) as mod(floor((y₃(i) + one hundred) times ten to the power four), four), where i ranges from one to four M N, labeled as equation eleven.]
[image: Mathematical expression showing s sub five of j equals y sub four asterisk, with argument four j minus three to four j, where j ranges from one to M N, presented as equation twelve.]
Step 2. DNA encoding of the original image.
	(i) Let [image: Mathematical variable I with a subscript one, indicating a specific instance or value, typically used in equations or formulas.] be a grayscale image with dimensions [image: Mathematical expression showing an uppercase M multiplied by an uppercase N, commonly used to indicate the dimensions of a matrix or array.].
	(ii) Reshape the original image [image: Mathematical expression showing a capital italic letter I with a subscript 1, commonly used to denote the first element or instance in a sequence or set.] of size [image: Mathematical expression showing the product M times N, often used to represent the dimensions of a matrix or array with M rows and N columns.] into a [image: Mathematical expression showing one multiplied by capital letters M and N, often used to represent matrix dimensions as one by M N.] vector [image: Mathematical variable I with a subscript two, commonly used to denote the L two norm or the Euclidean norm in mathematics and engineering.].
	(iii) Encode each pixel value of [image: Mathematical expression showing a capital italic letter I with a subscript two, representing I sub two.] into a 4-bit quaternary number, transforming vector [image: Mathematical expression showing the uppercase letter I with the number two as a subscript, commonly denoting I sub two in equations.] into a quaternary matrix [image: Mathematical notation displaying an uppercase italic letter I with a subscript three.] of size [image: Mathematical expression showing the number one multiplied by four times the product of the variables M and N.].
	(iv) The DNA image [image: Mathematical notation displaying an italicized uppercase letter I with a subscript 4, commonly used to represent the four-by-four identity matrix in mathematics or linear algebra.], with a size of [image: Mathematical expression displaying one multiplied by four M N, with M and N represented in italicized uppercase letters.], is produced by encoding each element of the image [image: Mathematical expression showing an uppercase italic letter I followed by a subscript three.] into quaternary, which corresponds to the four nucleotides A, C, G, and T depending on rule 1 in Table 2.

Step 3. DNA chaotic confusion and diffusion.
(i) To initiate the initial chaotic confusion, the following Equation 13 is employed to disrupt the positions of [image: Mathematical expression showing a capital italic I with subscript 4, typically representing a four by four identity matrix or a variable labeled with index four.].
[image: Mathematical equation showing I sub s of i equals I sub t of s of i, with i equal to one, two, three, up to four M N, followed by equation number thirteen in parentheses.]

	(ii) The sequence [image: Mathematical variable I with subscript five, commonly used to represent the fifth element in a sequence or a specific value indexed by five.] is extracted and grouped consecutively into sets of four. This new sequence is then denoted as [image: Mathematical expression showing the variable I with a subscript 6, commonly read as I sub six.], as illustrated in Equation 14.

[image: Mathematical equation showing I₀(i) equals I₁(4i minus 3 to 4i), with i ranging from one to four M N, labeled as equation fourteen.]

	(iii) The implementation of the DNA diffusion operation between the DNA sequence [image: Mathematical notation showing the symbol I followed by the subscript six, indicating I sub six.] and the key DNA sequences [image: Mathematical notation showing a lowercase s followed by a subscript two, commonly used to represent a variable or sequence element in equations.] and [image: Mathematical expression showing the letter s with a subscript three, commonly used to denote the third element in a sequence or series.] are conducted using Equation 15.

[image: Mathematical equation showing a piecewise function for I_T(i) with four cases, each dependent on the value of s₂(i), associating I₆(i) with Rₗ, Lₗ, Rₓ, or Lₓ, as labeled in equation fifteen.]

	(iv) To further scramble the positions, we employ the method presented in (i), which is Equation 16 in this case, to disrupt the position of [image: Mathematical notation showing italic uppercase letter I with a subscript seven, representing I sub seven.], effectively achieving the second chaotic scrambling.

[image: Mathematical expression showing I₀(i) equals I₁ of s(i), where i ranges from one to four times M N, followed by equation number sixteen in parentheses.]
	(v) Following rule 1 in Table 2, every nucleotide A, C, G, and T in the diffused DNA image [image: Mathematical notation showing the letter I in italics with a subscript eight.] is decoded into a quaternary number, resulting in an encrypted quaternary image [image: Mathematical expression showing a capital italic I followed by the subscript nine.] of size [image: Mathematical expression showing one multiplied by four times MN, where M and N are uppercase variables.].
	(vi) Encoded as integer values in the range of 0–255 for every 4 bits, these values are then transformed into a grayscale cipher image [image: Mathematical notation showing an uppercase italic letter I with a subscript ten.] with dimensions [image: Mathematical expression showing the number one multiplied by capital letters M and N, presented in an italic serif font style on a plain background.].

Step 4. Cipher image.
The gray cipher image [image: Mathematical expression displaying the variable I with the subscript ten.], which is [image: Mathematical expression showing the number one multiplied by the variables M and N, formatted in italic serif font.] in size, is reshaped into a gray cipher image [image: Mathematical expression showing capital italic letter I with double subscript one one.] with dimensions [image: Mathematical expression showing capital letter M multiplied by capital letter N, typically used to represent matrix dimensions or array sizes.].
The image decryption process closely mirrors the encryption procedure, involving the sequential inversion of steps utilized in encryption and relying on the application of a cryptographic key. Similarly, if DNA right shift addition is utilized in the encryption phase, it would be reversed in the decryption phase.
5 PERFORMANCE EVALUATION
In this section, various images (such as Lena, Onion, and Cameraman) will be utilized to evaluate the performance of the proposed cryptosystem based on image statistical performance and security analysis. All experimental results were calculated using MATLAB 2018b on a compatible computer with Windows 10, 8.00 GB RAM, and Intel (R) Core (TM) i5-7300HQ CPU @ 2.50 GHz. Figure 6 displays the encryption performance of the proposed cryptographic system. Each part begins with a row displaying the plain image, followed by the encrypted image, and concludes with the decrypted image, from left to right. The second line exhibits histograms for both the plain and encrypted images. We have documented all experimental data in a table, which provides evidence of the outstanding capabilities of our cryptographic system in effectively addressing various security and statistical risks.
[image: Three panels labeled Lena, Onion, and Cameraman each contain a grayscale image, a noisy grayscale version, and a denoised grayscale version, accompanied by two graphs: an original image histogram and a noisy image histogram.]FIGURE 6 | The original images, encrypted images, decrypted images, and histograms of the original and encrypted images of Lena (A), Onion (B), and Cameraman (C), respectively (where the pictures of Lena, Onion, and Cameraman are sourced from [38], [43], and [27], respectively).
5.1 Key space analysis
The extent of the key space in an image encryption scheme is a pivotal factor in determining its security. The key space encompasses all authorized keys for the scheme. Evidently, an expanded key space augments the scheme’s resilience against exhaustive attacks, thereby ensuring an elevated level of security for the encrypted image algorithm. As a general rule, if the key space exceeds [image: Mathematical expression showing two to the one-hundredth power is approximately equal to ten to the thirtieth power.], the encryption mechanism becomes impervious to brute force attempts. In this paper, the encryption scheme’s initial key comprises two control parameters, namely, [image: Lowercase Greek letter lambda, often used in mathematics, science, and engineering to represent wavelength, eigenvalues, or rate parameters in various equations and contexts.] and [image: Lowercase Greek letter mu, commonly used in mathematics, science, and engineering to represent the mean of a population or the prefix micro meaning one millionth.], along with two initial values, [image: Mathematical expression showing italic letter x with a subscript zero.] and [image: Mathematical variable y with a subscript zero, commonly representing an initial value or starting point in equations.]. By adhering to the Institute of Electrical and Electronic Engineers’ (IEEE) recommendation of using 64-bit double-precision numbers, the key space for this scheme can amount to [image: Mathematical expression showing the quantity ten to the fifteenth power raised to the fourth power equals ten to the sixtieth power.]. This immense value far surpasses [image: Mathematical expression showing the number ten raised to the power of thirty, written as ten with a superscript thirty.], thereby ensuring that the image encryption scheme presented in this study possesses a suitably extensive key space, affording it robust protection against severe attacks.
5.2 Time cost and speed analysis
A superior encryption scheme should not sacrifice encryption time but instead strive to minimize it while ensuring security. In certain application scenarios, such as image transmission, real-time performance is paramount. This necessitates that encryption algorithms be capable of completing data encryption within a short timeframe to ensure real-time transmission. The average encryption time for the aforementioned grayscale images of size [image: Placeholder image displaying the numbers two hundred fifty-six by two hundred fifty-six in black text, centered on a plain light gray background, indicating image dimensions rather than actual content.] were calculated and compared with several established encryption algorithms, including DNA encoding or [image: Lowercase letter s in a serif font, displayed in black on a white background.]-box. The amount of data of a gray image with a size of [image: Placeholder graphic displaying the dimensions two hundred fifty-six by two hundred fifty-six in black text on a plain background, commonly used to indicate where an image will appear.] is about 512 Kbit, so the encryption speed can be obtained. All results are presented in Table 4. It can be observed from the table that the proposed solution exhibits the shortest encryption duration, indicating its superior encryption efficiency.
TABLE 4 | Comparison of encryption time of different algorithms.
[image: Table comparing four encryption algorithms with columns for time cost in seconds and encryption speed in kilobits per second; the proposed algorithm shows the lowest time cost and highest speed among the listed methods.]5.3 Histogram analysis
During everyday practical use, there is a potential risk of theft or attack on encrypted images while they are being transmitted. Thus, it becomes crucial to assess both the statistical properties and security of these encrypted images. One of the most basic and intuitive techniques for examining the frequency distribution in plaintext and encrypted images is histogram analysis. Examining the histogram is instrumental in assessing the performance of the encryption algorithm. In case the histogram of the encrypted image exhibits an even or irregular distribution, it indicates that the statistical characteristics have been concealed or destroyed, suggesting that the encryption algorithm might be more efficient. If the histogram of the ciphertext image displays noticeable characteristics or exhibits a notably dissimilar distribution pattern compared to that of the plaintext image, it could indicate potential vulnerabilities in information leakage or the encryption algorithm. Such observations are valuable in identifying encryption issues and enhancing the encryption scheme. In Figure 6, the histograms for various images (Lena, Onion, and Cameraman) can be observed. From an intuitive perspective, it becomes apparent that encrypted images exhibit a uniform histogram, while the histograms of plaintext images vary. If the histogram of encrypted images exhibits an approximately uniform distribution, indicating a lack of discernible regularity in pixel value distribution, it signals the heightened robustness of the encryption scheme against statistical attacks.
5.4 Chi-square analysis
Non-uniformly distributed pixel values can imply that there are some specific features or structures in the image, which may make it easier for the encrypted image to infer some information from the histogram, thereby compromising the encryption’s security level. On the contrary, when pixel values are uniformly distributed, potential intruders are prevented from extracting reliable information from the histogram, because the histogram lacks discernible peaks or features, indicating that the image’s statistical characteristics are to some extent concealed. Consequently, inferring information about the original image from the histogram becomes challenging.
The [image: Mathematical notation showing the Greek letter chi followed by a superscript two, representing chi-squared, commonly used in statistics for the chi-squared test and distribution.] statistic (one-sided hypothesis test) is frequently employed to quantify the difference between the two in terms of quantity. Chi-square represents a statistical method utilized to measure such differences. If the frequency distribution of a given set of samples is denoted by [image: Mathematical expression showing f sub i, where i equals one, two, and so on, up to n.], the theoretical frequency distribution is assumed to be [image: Mathematical expression showing g sub i, where i equals one, two, and continues up to n.]. Assumption [image: Mathematical notation showing "H" with a subscript zero, commonly used to represent the null hypothesis in statistics.]: The sample comes from the theoretical distribution. When [image: Mathematical expression representing H subscript zero, commonly used to denote the null hypothesis in statistical hypothesis testing.] is assumed to hold Equation 17,
[image: Mathematical formula displaying the chi-squared statistic: chi squared equals the sum from i equals one to n of the squared difference between f sub i and g sub i, divided by g sub i, with the equation labeled as seventeen.]
is called the Pearson [image: Mathematical notation for the chi-squared symbol, represented by a Greek letter chi followed by a superscript two.] statistic and obeys the [image: Greek letter chi followed by a superscript two, representing chi-squared, which is commonly used in statistical formulas and tests.] distribution with [image: Mathematical expression showing lowercase n minus one, with the minus sign centered horizontally between the symbols.] degrees of freedom.
Given the image dimensions as [image: Mathematical expression showing uppercase M multiplied by uppercase N, written as M times N with a multiplication sign between the letters.], we posit that the pixel frequency [image: Mathematical notation displaying a lowercase italic f with a subscript i.] associated with each gray value in the histogram conforms to a uniform distribution. At this time, [image: Mathematical equation showing q sub i equals g equals M N divided by two hundred fifty-six, where i ranges over zero, one, two, up to two hundred fifty-five.], then,
[image: Equation showing the chi-square statistic for image analysis: χ² equals the sum from i equals zero to two hundred fifty-five of the square of (f sub i minus g sub i) over g sub i, with stepwise simplification to a final form involving (two hundred fifty-six f sub i minus M N) squared divided by M N, all indexed by i, and equation number eighteen shown at the end.]
Equation 18 obeys the [image: Mathematical notation for chi squared, represented by the Greek letter chi followed by a superscript two.] distribution with a degree of freedom of 255. The significance level [image: Lowercase Greek letter alpha in bold, rendered in a serif font in black on a white background.] is given such that [image: Mathematical expression showing the probability that a chi-squared random variable is greater than or equal to the critical value for n minus one degrees of freedom equals alpha.], that is, the null hypothesis [image: Mathematical expression showing the null hypothesis symbol with an uppercase italic letter H followed by a subscript zero.] is accepted when [image: Mathematical expression showing chi-squared statistic less than the critical chi-squared value for alpha significance level with n minus one degrees of freedom.]. In instances where the level of significance [image: Mathematical notation showing significance levels: alpha equals zero point zero one, alpha equals zero point zero five.], and [image: Mathematical expression showing alpha equals zero point one.], the degree of freedom is 255, the [image: Mathematical notation displaying the Greek letter chi followed by a superscript two, representing the chi-squared symbol commonly used in statistics.] distribution value [image: Mathematical expression showing the chi-square critical value at a significance level of zero point zero one with two hundred fifty-five degrees of freedom equals three hundred ten point four five seven.], [image: Mathematical expression showing the chi-squared critical value for two hundred fifty-five degrees of freedom at the zero point zero five significance level equals two hundred ninety-three point two four eight.], and [image: Mathematical expression showing the chi-square critical value: chi squared sub zero point one with two hundred fifty five degrees of freedom equals two hundred eighty four point three three six.].
The generally used significance level is [image: Mathematical expression showing alpha equals zero point zero five.]. An encrypted image with a chi-square score of [image: Mathematical notation showing the chi-square critical value at the 0.05 significance level with two hundred fifty-five degrees of freedom equals two hundred ninety-three point two four eight.] indicates a highly uniform pixel distribution. Table 4 presents the chi-square scores for various encrypted images, namely, Lena, Onion, and Cameraman, demonstrating that the pixel values of our proposed encryption scheme are evenly distributed between 0 and 255 in different rounds of encryption. As a consequence, the ciphertext histogram exhibits an even distribution, suggesting that the image encryption method employed in this study demonstrates increased resilience against statistical attacks. The outcomes of the [image: Greek letter chi followed by a superscript two, representing the chi-squared statistical symbol.] test can be found in the provided Table 5.
TABLE 5 | The entropy values and scores of the original images and encrypted images of Lena, Onion, and Cameraman, respectively.
[image: Table comparing three images—Lena, Onion, and Cameraman—in plain and encrypted forms, all with size two hundred fifty-six by two hundred fifty-six. Information entropy increases from around seven point one to eight when encrypted, while chi-square scores decrease significantly upon encryption.]5.5 Information entropy
The unpredictability of image information is reflected in information entropy. It is widely accepted that higher entropy corresponds to increased uncertainty, greater disorder within the information, and reduced visual information. The calculation formula for information entropy can be expressed as Equation 19.
[image: Mathematical formula showing entropy as H equals the negative sum from i equals zero to L of p of i times the base two logarithm of p of i, labeled as equation nineteen.]
where, [image: Italicized, serif capital letter L rendered in black on a white background.] represents the gray level of the image, and [image: Mathematical expression showing the variable p with i in parentheses, typically representing the value of function p at index i.] denotes the probability of gray level [image: Lowercase italic letter i in a serif font, displayed in black on a white background.].
For a randomly generated grayscale image with a gray level of [image: Mathematical expression showing L equals 256.], the theoretical information entropy value [image: Uppercase italic letter H in a serif font on a white background.] is 8. The information entropy is computed for plain images of Lena, Onion, Cameraman, and their corresponding encrypted versions. The results of the calculations are presented in Table 5, revealing that the information entropies of encrypted images closely approach 8. This suggests that encrypted images exhibit a more advantageous random distribution. Therefore, the encryption method proposed by us exhibits strong resistance to entropy-based attacks.
5.6 Correlation
Evaluating the correlation properties of both the original and encrypted images is essential, complementing the analysis of the image’s histogram and information entropy. Neighboring pixels in the horizontal, vertical, main diagonal, and sub-diagonal directions exhibit a strong correlation in the original image. The objective of image encryption algorithms is to minimize the correlation between adjacent pixels in the encrypted image, providing a defense against statistical attacks. A correlation value of zero is ideal. This study randomly samples 2000 pairs of neighboring pixels along the horizontal, vertical, main diagonal, and secondary diagonal directions from both the plain and encrypted images. In this study, 2000 pairs of adjacent pixels are randomly selected from both the original and encrypted images in the horizontal, vertical, main diagonal, and secondary diagonal directions. The correlation coefficient between the two adjacent pixels can be computed by applying Equation 20.
[image: Mathematical formulas for statistical measures including expectation E(x), variance D(x), covariance cov(x, y), and correlation coefficient r_xy, each represented as summations over N data points, enclosed within a left curly brace and labeled as equation twenty.]
where [image: Uppercase letter N in a bold, serif font shown in black against a white background.] is the number of pixel pairs, [image: Lowercase italic letter x, commonly used as a variable in mathematical equations or scientific formulas, presented in a serif font style.] and [image: Lowercase italic letter y in a serif font, centered on a white background.] denote the gray values of two adjacent pixels, [image: Mathematical expression showing E of x, with E in italicized uppercase followed by x in parentheses, commonly used to represent the expected value of variable x in probability or statistics.] is the mean value, [image: Mathematical expression showing the capital letter D followed by an open parenthesis, a lowercase italicized x, and a close parenthesis, representing D of x.] represents variance, [image: Mathematical expression showing cov left parenthesis x comma y right parenthesis, representing the covariance between variables x and y.] stands for covariance, and [image: Mathematical notation displaying r with a subscript x y, commonly representing the correlation coefficient between variables x and y.] is correlation coefficient of [image: Lowercase italic letter x in a serif font appearing as a mathematical variable or symbol on a white background.] and [image: Lowercase italic letter y, commonly used as a variable in mathematics or scientific notations.]. The correlation coefficients for both plain and encrypted images of Lena, Onion, and Cameraman in the horizontal, vertical, main diagonal, and secondary diagonal directions are presented in Table 6.
TABLE 6 | Results of the correlation coefficient between original and encrypted images of Lena, Onion, and cameraman in various directions.
[image: Table comparing correlation coefficients for plain and encrypted images of Lena, Onion, and Cameraman across horizontal, vertical, main diagonal, and secondary diagonal directions, showing high correlation for plain images and low or near-zero correlation for encrypted images.]The correlation between adjacent pixels in the original and encrypted images of Lena, Onion, and Cameraman is depicted in Figure 7 for the horizontal, vertical, and main diagonal directions (from left to right). The experimental results indicate a lack of significant correlation between neighboring pixels in the encrypted images, in contrast to the noticeable correlation present in the original images. The efficacy of the encryption system described in this study is highlighted by this conclusion. It’s important to note that these results are obtained after only a single round of encryption. If multiple encryptions are performed, the effect may be more significant.
[image: Three panels labeled a, b, and c each show two grayscale images—one original and one noisy—followed by six scatter plots in blue, red, and green, illustrating different channel correlations for Lena, Onion, and Cameraman images.]FIGURE 7 | The first row of the three sets of images Lena (A), Onion (B), and Cameraman (C), from left to right, are the original images and the correlation of adjacent pixels of the original images in the horizontal, vertical, and diagonal direction, respectively. The second row is the same, only for their encrypted images. (The pictures of Lena, Onion, and Cameraman are sourced from [38], [43], and [27], respectively).
5.7 Comparison and analysis
The algorithm in this paper is used to encrypt and test the performance of image Lena, and compared with other encryption algorithms. The test results of other algorithms are directly quoted from the corresponding papers. The comparison results are shown in Table 7. It can be observed that the performance difference of adjacent pixel correlation analysis of each algorithm is small. In terms of information entropy and other resistance to statistical attacks and encryption speed, the algorithm in this paper has better performance, indicating that the algorithm in this paper has better security.
TABLE 7 | Comparison of encryption performance of different algorithms (Lena, and size: [image: Placeholder graphic displaying the text two five six x two five six in black font on a plain background, indicating the image dimensions are two hundred fifty-six by two hundred fifty-six pixels.]).
[image: Table comparing eight algorithms on adjacent pixel correlation (horizontal, vertical, diagonal), information entropy, time cost, and encryption speed. Bold font highlights best results in each column, with the proposed method outperforming others in diagonal correlation, time cost, and encryption speed.]6 CONCLUSION
The hybrid image encryption method described in this paper integrates DNA computing theory with the improved 2D-LFHCM. Furthermore, the security, histogram, correlation coefficient, and information entropy aspects of the proposed scheme are examined to demonstrate its rationality. Numerical simulations demonstrate the notable efficacy of the image encryption technique introduced in this study.
A feasible idea for future work is to apply the proposed method to multi-image encryption [24,36], which can improve efficiency while ensuring security. Another possibility is to combine encryption with quantum technology. In light of the advancements in quantum information technology, numerous technologies have been proposed to enhance traditional image encryption algorithms. The exponentially accelerating capabilities of quantum technology, as opposed to traditional computing, are critical for mitigating the vulnerability of encryption algorithms to decipherment. To harness the potential benefits of combining quantum computing with conventional image encryption approaches, Hua Hua et al. [30] came up with dynamic image encryption via quantum walks and chaos-induced DNA to boost image security. Wen Wen and Lin [37] analyzed the security of an existing image encryption algorithm based on quantum chaotic map and DNA coding (QCMDC-IEA), and proposed a low-complexity attack method, which provides some theoretical tips and suggestions for improving the security of the system based on DNA coding and chaotic image encryption. Our upcoming study aims to investigate the potential synergy between quantum walking and the recently proposed DNA computing principles to develop an innovative encryption method. This novel approach is expected to enhance the security measures for image encryption, thus carrying significant implications.
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Our study is based on the hypothesis that stock exchanges, being nonlinear, open and dissipative systems, are capable of self-organization to the edge of a phase transition. To empirically support the hypothesis, we find segments in hourly stock volume series for 3,000 stocks of publicly traded companies, corresponding to the time of stock exchange’s stay to the edge of a phase transition. We provide a theoretical justification of the hypothesis and present a phenomenological model of stock exchange self-organization to the edge of the first-order phase transition and to the edge of the second-order phase transition. In the model, the controlling parameter is entropy as a measure of uncertainty of information about a share of a public company, guided by which stock exchange players make a decision to buy/sell it. The order parameter is determined by the number of buy/sell transactions by stock exchange players of a public company’s shares, i.e., stock’s volume. By applying statistical tests and the AUC metric, we found the most effective early warning measures from the set of investigated critical deceleration measures, multifractal measures and reconstructed phase space measures. The practical significance of our study is determined by the possibility of early warning of self-organization of stock exchanges to the edge of a phase transition and can be extended with high frequency data in the future research.
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1 INTRODUCTION
More than 35 years ago, P. Bak together with C. Tang suggested that in nonlinear systems far from equilibrium, complex holistic properties may emerge through their self-organization into a critical state [1]. Subsequently, the theory of self-organized criticality (SOC) was formed, the main provisions of which have found application in sociology, biological evolution, seismology, economics and other sciences (e.g., see the papers [2–7, 7–9]). The theory of self-organization at the edge of phase transitions has found applications in cognitive and social science (e.g., see the papers [10, 11]).
The basic model of SOC theory is the sandpile cellular automaton (SCA), which demonstrates how complex holistic properties emerge in a model system with simple rules as a result of self-organization of the automaton into a critical state (e.g., see the papers [12, 13]). The simplest model of SCA is the following model. Suppose that the nodes of the lattice graph are assigned integer numbers (the number of grains of sand in the cells). Then we increase by one the numbers assigned to randomly chosen nodes of the graph (add one grain of sand in the cells). If the number (grains of sand), [image: Mathematical expression showing a lowercase italic z with two subscripts k and l.], for some node [image: Mathematical expression showing an open parenthesis, lowercase k, comma, lowercase l, and close parenthesis, representing an ordered pair or coordinates k and l.] exceeds some threshold value, [image: Mathematical variable z with subscript c, presented in italic font.], for instance [image: Mathematical expression showing z subscript c equals four.], then this node is unstable and its toppling occurs. As a result of node toppling [image: Mathematical expression displaying the variables k and l separated by a comma and enclosed in parentheses.] numbers for neighbouring nodes, [image: Mathematical expression showing z subscript k plus or minus one, comma l plus or minus one.], are increased by 1, i.e., [image: Mathematical expression showing z sub k plus 1, t plus 1 transforms to z sub k plus 1, t plus 1 plus four.]. Thus [image: Mathematical expression showing z sub k, l transitions to z sub k, l minus four.]. Collapses occur until the SCA becomes stable, that is, until at each node [image: Mathematical expression showing z sub k,l is less than four.].
Each iteration of the SCA simulation is followed by its perturbation, by adding one grain of sand to randomly selected cells at a time, and relaxation, by collapsing unstable cells. Starting from some critical iteration, [image: Mathematical notation showing a lowercase italic letter i with a subscript c, commonly used to represent a current labeled c in physics or engineering equations.], a single added grain of sand in a randomly selected cell can cause an avalanche of collapses of any size, continuing until all cells regain stability. In the subcritical phase ([image: Mathematical inequality showing lowercase i is less than i sub c.]) avalanches rapidly decay in time and space.
In the context of mean-field theory of phase transitions, the control parameter of the SCA is determined by the ratio of the number of particles in the cells to the total number of cells of the SCA, the order parameter is determined by the ratio of the number of unstable cells to the total number of cells of the SCA (e.g., see the paper [14]). The transition of the SCA from the subcritical phase to the critical state corresponding to the critical value of the control parameter occurs as a result of self-organization of the SCA and does not require precise adjustment of the control parameter to the critical value. This is a fundamental difference between self-organization into a critical state and a classical phase transition of the first or second kind, for which precise tuning of the control parameters to critical values is required.
Our study is based on the hypothesis that stock exchanges, being nonlinear, open and dissipative systems, are able to self-organize into a critical state. The theoretical justification of the hypothesis and a phenomenological model of stock exchange self-organization into a critical state are presented in Subsection 3.2. This econophysical model is based on the isomorphism of the SCA model and the stock exchange in the context of systems theory. In the model, the control parameter is defined by entropy as a measure of uncertainty of information about a stock of some public company, based on which the stock exchange traders make a decision to buy/sell it. The order parameter is determined by the number of buy/sell transactions by stock exchange traders of shares of some public company, i.e., stock’s volume.
To quantitatively substantiate the hypothesis, we determined time intervals corresponding to the time of the stock exchange’s stay in a critical state, [image: Mathematical expression showing delta t sub c, where delta represents change, t is the variable for time, and c is a subscript, typically indicating a specific condition or constant.]. The main signs of the system being in a self-organized critical state (in the interval [image: Mathematical notation showing capital Greek letter delta, followed by lowercase t, divided by lowercase c, representing a change in time over a constant or velocity.] or [image: Mathematical expression showing uppercase delta, lowercase i with a dot above it, and subscript lowercase c.] for the SCA) are [image: Mathematical expression showing the Greek letter rho of one in parentheses equals one.], [image: Mathematical equation showing S of f equals f to the negative beta exponent, commonly used to represent a power law relationship in spectral analysis.] where [image: Mathematical expression showing the variable beta is greater than or equal to one and less than or equal to two.] and [image: Mathematical equation showing p of xi equals xi to the power of negative two.] (e.g., see the paper [13]). Here [image: Mathematical expression displaying the Greek letter rho followed by the number one in parentheses, representing rho evaluated at one.] is the autocorrelation at lag-1, [image: Mathematical expression showing an uppercase italic S followed by an italic lowercase f enclosed in parentheses, representing the function S of f.] is the power spectral density, [image: Mathematical expression showing p open parenthesis xi close parenthesis, where xi is the Greek letter xi in italics, commonly representing a probability function or distribution.] is the probability density function for the values of the dynamic series [image: Greek lowercase letter xi shown in a serif mathematical font, commonly used in mathematics, science, and engineering contexts to denote variables or specific constants.] in the interval [image: Mathematical notation showing delta t subscript c, commonly used to represent a change in time with the subscript c indicating a specific condition or parameter.], corresponding to the order parameter of the system. The identification of [image: Mathematical expression showing the Greek letter delta followed by t as numerator over c as denominator, commonly representing a change in time divided by the speed of light.] from the values [image: Lowercase Greek letter beta, displayed in a serif italic font, commonly used in mathematics and scientific notation.] requires a significant computational cost in estimating [image: Mathematical expression showing S left parenthesis f right parenthesis, where S is a capital italicized S and f is a lowercase italicized f enclosed in parentheses.]. Recall that we investigated hourly stock volume series for more than 2,600 stocks of publicly traded companies. In addition, the estimation of [image: Mathematical expression showing the probability function p of the variable xi, written as p open parenthesis xi close parenthesis in italicized serif font.] is obtained only in the intermediate asymptotic region, which is bounded due to the finiteness of the size (number of stock exchange traders and the links between them) of the stock exchange. Therefore, to identify [image: Mathematical expression showing delta t subscript c, representing a change in time with a subscript c, commonly used in scientific or mathematical contexts.] in stock volume series, we used the features of 100-hour moving average (MA100) behavior in the vicinity of [image: Mathematical expression showing the lowercase letter t with a subscript c, commonly used to denote a variable t with a specific condition or context labeled c.] followed by verification using critical deceleration, multifractal and chaotic measures. Features of MA100 behavior for test series (series of unstable nodes of the SCA) in the vicinity of [image: Mathematical notation showing a lowercase italic t with a subscript c.] are presented in Subsection 2.1. Peculiarities of MA100 behavior for stock volume series in the vicinity of [image: Italic lowercase letter t with a subscript italic lowercase letter c, representing t sub c, commonly used to denote a critical temperature or time in scientific contexts.] and detected [image: Mathematical expression showing the Greek letter delta, a lowercase t, and a subscript c, representing a change in time for a specific condition or context.] for stock exchanges and their features are presented in Subsection 3.1.
The practical significance of our study is determined by the possibility of early warning of self-organization of stock exchanges into a critical state (e.g., see the papers [15, 16]). We identified the most effective early warning measures from a wide range of investigated early warning measures (the simplest critical slowing down measures, multifractal measures and chaotic measures). The methods for computing the measures and extracting the most effective early warning measures are presented in Subsection 2.3. The results obtained and their discussion are presented in Subsection 3.3. The detection of a precursor to such self-organization gives investors a reason to pay attention to a stock that is likely to have a large trading volume expected after some time (early warning time). To the stock exchange trading regulator, precursors provide a tool to distinguish between normal market behavior and large one-off manipulations in investigations. We investigated the effectiveness of a wide range of early warning measures: simple critical slowing down measures, multifractal measures and chaotic measures.
The main conclusions, as well as the possibilities and limitations of the empirical results obtained and the proposed model are presented in Conclusion.
Existing studies on the empirical validation of stock market self-organization into a critical state are limited to the analysis of daily world stock indices (e.g., see the papers [17–23]) or daily stock prices of public company shares (e.g., see the papers [24–29]). Studies of financial series with daily intervals allow us to identify time intervals of the critical state only in the case of slow self-organization of the stock exchange into a critical state, when the time interval corresponds to several days. We used a 1 hour interval series, which enabled us to identify a large number of time intervals of several hours corresponding to stock exchange critical states, as well as intervals of several days. We also analyzed stock exchange samples of larger size (dynamic series at 1 hour intervals for stocks of more than 2,600 public companies) and used a larger number of early warning measures. Accordingly, the results we obtain are more reliable and representative than those obtained earlier. In addition, we provide a theoretical justification of the critical behavior of stock exchanges within the framework of the proposed model of self-organization into a critical state with an order parameter corresponding to the number of exchange transactions on shares of a public company.
2 DATA SET AND METHODS
2.1 Model time series generated by sandpile cellular automata
As test dynamic series, that is, series to determine the required number of iterations in moving average and moving variance in the effective detection of critical iteration, [image: Mathematical notation displaying a lowercase italic letter i with a subscript c.], we used the series of the number of unstable nodes [image: Mathematical expression showing i belongs to the interval from zero to n, and n belongs to the set of natural numbers.] of the SCA on the Chung-Lu graph with two-parameter degree distribution of graph nodes’ degrees (e.g., see the paper [30]) and Manna rule (e.g., see the paper [31]). Series [image: Lowercase Greek letter xi followed by subscript i, representing a variable commonly used in mathematical or scientific notation.] demonstrate the exact value [image: Mathematical variable i with a subscript c, commonly used to represent collector current in electronics or other contexts requiring subscripts.], [image: Mathematical expression showing the function rho of one equals one, written as ρ left parenthesis one right parenthesis equals one.], [image: Mathematical formula showing S of f equals f raised to the power of negative beta, where S is a function of frequency f and beta is a constant exponent.] ([image: Mathematical expression showing that beta is greater than or equal to one and less than or equal to two.]) and [image: Mathematical expression showing p of xi equals xi raised to the power of negative two.] in the critical state (at [image: Mathematical notation showing lowercase i is greater than lowercase i subscript c.]), which is one of the reasons for their use as test series. The rationale for the choice of the specified graph topology and rule in the context of stock exchanges is presented in Subsection 3.2.
There are two main reasons why we examined the sandpile model and the time series that the model generates. First, on the sandpile model we managed to find out under which conditions we can talk about similarity in critical transitions between model and real financial data, which will be discussed in more detail in Subsection 2.2. Secondly, we used the sandpile model as a model of the stock exchange, which allowed us to theoretically justify the possibility of self-organization of the exchange at the edge of a phase transition (see Subsection 3.2).
Let [image: Mathematical expression showing lowercase z with subscripts k and l, formatted in italic font.] be the number of particles (grains of sand) in the node [image: Mathematical expression containing the variables k and l enclosed in parentheses and separated by a comma, commonly used to represent an ordered pair or coordinates.] of the Chung-Lu graph, [image: Mathematical expression showing lowercase z with a subscript c.] be the critical number of grains. If [image: Mathematical expression showing z sub k comma l is greater than or equal to z sub c.], the node [image: Mathematical notation showing an ordered pair with variables k and l inside parentheses, separated by a comma.] is unstable. In general, the self-organization of the SCA into a critical state is determined by perturbation (pumping) and relaxation of the automaton. At the beginning of iteration 0, a perturbation of the automaton takes place in the form of randomly pouring grains of sand into its randomly chosen nodes. If some nodes have [image: Mathematical expression showing z sub k comma l is greater than or equal to z sub c.], they are considered unstable and their collapse occurs with sand grains moving to neighboring nodes until all nodes are stable ([image: Mathematical expression showing z sub k comma l is less than z sub c.]). In this way the automata are relaxed. The next iteration 1, as well as the iterations following it, also start with perturbation and end with relaxation.
The feature of the Manna rule that distinguishes it from other rules is that each unstable vertex transmits to neighboring (connected) vertices a random number of particles that is equal to the total number of edges of that vertex.
Starting from iteration [image: Mathematical expression showing a lowercase letter i with a dot above and a subscript lowercase letter c.] the SCA self-organizes into a critical state. At that, the dynamical series [image: Lowercase Greek letter xi followed by subscript i, commonly used in mathematical and scientific notation.] ([image: Mathematical expression showing i is greater than i sub c.]) is characterised by the above-mentioned power laws for [image: Mathematical expression showing the Greek letter rho followed by an open parenthesis, the number one, and a close parenthesis, representing rho of one.], [image: Mathematical expression showing a capital S followed by parentheses containing a lowercase italic f, representing S of f.] and [image: Mathematical expression showing lowercase p left parenthesis xi right parenthesis, where xi is the lowercase Greek letter xi, commonly used to denote a probability distribution or function of xi.].
The considered scenario of self-organization of the automaton to the critical state corresponds to its self-organization to the edge of the second-order phase transition. For self-organization of the automaton to the edge of the first-order phase transition, it is enough to consider in the Manna rule that the collapse of an unstable node [image: Mathematical notation showing an ordered pair consisting of variables k and l, enclosed in parentheses and separated by a comma.] occurs not only at [image: Mathematical expression showing that z sub k comma l is greater than or equal to z sub c.], but also in the case of transferring to node [image: Mathematical expression showing an ordered pair with variables k comma l enclosed in parentheses.] more than one grain of sand from neighbouring nodes (e.g., see the paper [32]).
2.2 Stock volume series and time intervals for critical state
As the source of the real data, we elected to utilize hourly volumes of stock trading for the assets comprising the Russell 3,000 index (exclusive of pre- and post-market data, given their markedly lower liquidity levels), for the preceding 2 years, with the exclusion of companies experiencing data unavailability. This resulted in 2,667 time series, each comprising 3,498 observations. We elected to utilize volumes as they are more conducive to the viability assessment of the model, given that these series are more proximate to the theoretical ones and exhibit a paucity of trends in the data. As an alternative data frequency, 1-minute and 30-minute data were considered. However, both data sets exhibited an issue of mass automatic trade executions close to the astronomical hour end, resulting in a large number of singular spikes. It is possible to mitigate the impact of these automatic spikes to some extent by providing researchers with direct access to the market bids data, rather than statistical aggregates. However, in this case, we were constrained to working with the final time series.
In order to define critical transitions for systems it is necessary to create additional rules that define the criteria for such transitions. The primary criterion is that the moving average of the time series (MA100) increases by 20% in comparison to the volumes of the preceding five iterations. The secondary criterion is that this regime change persists for a minimum of 10 iterations following the transition. It should be noted that the logic described may require modification for systems exhibiting significantly different characteristics. However, in the base case scenario, it should remain equally effective.
The rationale behind the selection of these parameters is as follows:
	• MA100 – modification of the first moment of the distribution, which is a well-established early warning measure. Furthermore, 100 iterations were chosen as a highly stringent threshold, enabling the removal of outliers in the data set.
	• A 20% increase was selected as it defines the severity of the shift and was chosen based on the simulations with sandpile automaton with Manna rules on the Chung-Lu random graph in comparison to white noise and random walk. The 20% level was deemed appropriate for filtering jumps that occurred in the random time series, while also enabling the identification of transitions from the time series generated by complex systems.
	• A comparison to the five iterations preceding the current iteration allows for the filtration of trends and the isolation of actual transitions from the data set.
	• A minimum of ten iterations following the transition permits the filtration of sudden outliers that do not result in short- or mid-term changes to the system.

In order to filter time series for modelling purposes, we have elected to employ a further criterion, namely, that there must be a minimum of 800 iterations prior to the critical transition (e.g., see the paper [26]), without the occurrence of other transitions. This threshold was selected on the basis that the majority of early warning measures necessitate the availability of sufficiently wide windows in order to function effectively, without the introduction of artefacts. In this particular case, the initial 500 iterations will be utilized for this purpose, with the remaining 300 employed for prediction purposes, given that all relevant metrics have been duly calculated.
2.3 Early warning measures
In Subsection 2.3 we present a brief description of methods for computing early warning measures (EWMs) for the self-organization into a critical state. The analysis of the behavior of EWMs as the system approaches [image: Italic lowercase letter t with a lowercase c as a subscript, typically representing a variable t with subscript c in mathematical or scientific notation.] makes it possible to detect early warning signals for the self-organization of the stock exchange into a critical state. We also introduce the notion of effectiveness of EWMs, using which we determine the most effective EWMs.
Let [image: Mathematical expression showing a set containing elements where t equals zero with a bar above, n, and n is an element of the natural numbers.] be the dynamic series for the number of unstable vertices of the SCA on the Chung-Lu graph and Manna rule (see Subsection 2.1), [image: Mathematical expression with curly braces showing t equals t sub zero with a horizontal bar above, and t sub f, indicating a set of two time values.] be the stock volume series with step [image: Mathematical notation showing the Greek letter delta followed by the variable t, representing the change in time or time interval in scientific and mathematical contexts.] equal to 1 h. We obtained the dynamic series for EWMs, [image: Mathematical expression with a left curly brace: t equals zero, n minus w sub zero with an overline, enclosed in curly braces.] for the series [image: Mathematical symbol showing the Greek letter psi with a subscript t, often used to represent a time-dependent wave function in physics or related mathematical equations.] and [image: Mathematical expression showing a set containing two elements: t equals t sub zero, and t sub f minus w sub zero, where the second element has a line above it.] for the series [image: Italicized lowercase letter v followed by a smaller italicized subscript t, typically representing a variable v at time t in mathematical notation.], computing the measures in a sliding window of width [image: Mathematical expression showing w subscript zero equals five hundred.] iterations for the series [image: Greek letter psi followed by a subscript t, commonly used in mathematics or physics to represent a time-dependent wave function or variable.] and [image: Mathematical expression showing w subscript zero equals five hundred.] hours for the series [image: Italic lowercase letter v with a subscript lowercase t in a serif font.]. For example, for the series [image: Italicized lowercase letter v with a subscript t, commonly used to represent velocity at time t in mathematical or scientific notation.], we obtain a sequence of values of some measure [image: Blurry close-up of two cursive letters resembling “r” and “n” in black on a white background. Text appears unclear due to image quality.], [image: Mathematical expression showing a sequence: m sub t zero, m sub t one, m sub t two, continuing to m sub t minus w zero.], the terms of which are calculated in the segments of the series [image: Mathematical expression showing the variable v with a subscript t, typically used to represent velocity at time t.], [image: Mathematical expression showing a sequence of interval pairs in set notation: left endpoints t sub zero to t sub f minus w sub zero, right endpoints t sub zero plus w sub zero to t sub f, incrementing by index.].
We investigated the behavior of EWMs directly related to the critical slowing down of the system (SCA and stock exchange) as it approaches [image: Lowercase italic letter t with a subscript c, commonly used to represent a variable t with an index or specific condition labeled c in mathematical or scientific contexts.] (e.g., see the paper [33]), as well as multifractal EWMs (e.g., see the papers [25, 34]) and EWMs based on the reconstruction of the phase space of the dynamical system (e.g., see the papers [35, 36]).
2.3.1 Measures of critical slowing down
Computationally, the simplest measures of critical deceleration are variance, [image: Mathematical symbol sigma squared, representing variance in statistics or probability.], and autocorrelation at lag-1, [image: Lowercase Greek letter rho, commonly used in mathematics, physics, and engineering to represent variables such as density, resistivity, or correlation coefficient.], whose series show a sharp increase as the system approaches [image: Lowercase italic letter t with a subscript lowercase italic letter c, likely representing a variable t sub c in scientific or mathematical notation.] followed by saturation in the time interval [image: Mathematical expression showing delta t sub c, where delta represents a change in the variable t subscripted by c.], as well as kurtosis, [image: Lowercase Greek letter kappa, styled in a bold, black font against a white background.], and skewness, [image: Lowercase italic letter y in a serif font, typically used in mathematical equations or scientific notation.], whose series are characterised by a sharp switch from increasing to decreasing in the vicinity of [image: Mathematical notation showing a lowercase italic t with a subscript c.]. Moreover, the series [image: Mathematical notation showing the Greek letter rho with a subscript t, commonly used to represent a time-dependent variable such as density at time t.] takes values close to 1 in the interval [image: Mathematical expression displaying the uppercase Greek letter delta followed by t subscript c, representing a change in t with respect to the variable c.].
The power-law scaling exponent, [image: Lowercase Greek letter beta, appearing in a serif mathematical font with a slightly italicized style.], of the power spectral density and generalized Hurst exponent, [image: Lowercase italic letter h in a serif font on a white background.], are also EWMs, whose significant increase as the system approaches [image: Mathematical variable showing the letter t with a subscript c, often used to denote a specific point in time such as critical time or characteristic time in equations.], is an early warning signal of its critical slowing down (e.g., see the papers [22, 33]). Also, the series [image: Mathematical notation showing the Greek letter beta with a subscript t, often used to represent a time-varying parameter in equations or models.] and [image: Mathematical expression showing a lowercase italic letter h with a subscript t, commonly used to denote a variable indexed by t, such as h sub t in sequences or time series.], tend to take nearly constant values in the interval [image: Mathematical notation showing capital Greek letter delta, subscript t, divided by subscript c, commonly representing a time interval ratio in scientific formulas.]. In particular, it is shown that [image: Mathematical expression showing the variable beta is greater than or equal to one and less than or equal to two.] for [image: Mathematical expression showing t is an element of delta t sub c, written as t ∈ Δt sub c.] (e.g., see the paper [36]). We computed the [image: Lowercase Greek letter beta, shown in italics as commonly used in mathematical and scientific notation.] values in all sliding windows by the Welch’s method (e.g., see the paper [37]). For each window, the [image: Mathematical notation showing the Greek letter psi with a subscript t, commonly used in physics or mathematics to represent a time-dependent wave function or variable.] and [image: Mathematical notation displaying the variable v with a subscript t, typically representing velocity at time t.] series were segmented using the longest and most overlapping segments, followed by estimating the power spectral density, [image: Mathematical expression showing S of f, with S as an uppercase italic letter followed by the lowercase italic letter f enclosed in parentheses.], for each segment and averaging these estimates. Next, the exponent [image: Lowercase Greek letter beta, commonly used in mathematics, statistics, and science to represent variables, coefficients, or parameters. Black serif font on a white background.] for the power law [image: Mathematical equation showing S of f equals f raised to the power of negative beta, where S represents a function of frequency and beta is an exponent.] was calculated. To estimate [image: Lowercase italic letter h in a serif font displayed on a white background.] we used detrended fluctuation analysis (e.g., see the paper [38]), which gives the most reliable estimate of Hurst exponent for nonstationary series. For the dynamic series under study, e.g., [image: Mathematical notation showing a lowercase italic v with a subscript lowercase italic t, commonly used to represent velocity at time t in equations.], in each ith sliding window, the profile [image: Mathematical formula showing V of k equals the sum from t sub i to t sub i plus w naught of the quantity v sub t minus the average of v in angle brackets.] was calculated. Hereinafter, the symbol [image: Mathematical symbol consisting of a solid black circle enclosed between two angled brackets, often representing a quantum mechanics bra-ket notation or an inner product operation.] denotes the mean value of some quantity. Next, segmentation of the profile [image: Mathematical notation showing an uppercase italic V followed by an italic lowercase k enclosed in parentheses, representing the function V of k.] into non-overlapping segments of length n and determination of the linear trend, [image: Mathematical notation displaying V subscript n, parenthesis k, commonly read as V n of k.], for each segment was performed. For different n, the standard deviation of [image: Mathematical expression showing an uppercase italic V followed by parentheses containing a lowercase italic k, representing a function V of k.] fluctuations relative to [image: Mathematical expression showing V sub n of k, where n is a subscript and k is inside parentheses, representing a function or sequence.], [image: Mathematical formula defining F of n as the square root of one over n times the sum from t equals t sub i to t sub i plus w zero of the squared difference between V of k and V sub n of k.], followed by estimation of the exponent [image: Lowercase italic letter h in a serif font displayed against a white background.] for the power law [image: Mathematical expression showing F of n equals n raised to the power of n.].
2.3.2 Multifractal measures
The specific features of the behavior of multifractal EWMs as the system approaches [image: Mathematical notation showing the lowercase letter t with a subscript c, commonly used to represent a variable t under specific condition or context c.] are probably also related to the critical slowing down of the system (e.g., see the paper [34]), but there is no theoretical justification of this connection yet. Full information on the multifractal properties of the dynamical series is given by the multifractal spectrum, [image: Mathematical expression displaying an uppercase italic D followed by parentheses containing a lowercase italic h.], as a dependence of the fractal dimension, [image: Uppercase italic letter D in a serif font displayed against a white background.], on the values of Holder exponents, [image: Lowercase italic letter h in a serif font, displayed in black with slight blurring against a white background.]. The spectrum [image: Mathematical expression displaying D of h, where D is a function or operator applied to the variable h.] cannot be used as an EWM, calculated in a sliding window, but its three main parameters characterising the geometry of the [image: Mathematical expression showing uppercase D followed by parentheses enclosing a lowercase h.] dependence can be used. Such parameters are the position of the spectrum maximum, [image: Italic lowercase letter h with a subscript zero, commonly used to represent the null hypothesis in statistics or an initial value in equations.], the width of the spectrum, [image: Mathematical equation showing W equals h subscript max minus h subscript min, commonly used to represent a range or width calculation.], and the slope of the spectrum, [image: Mathematical formula showing S equals open parenthesis h sub max minus h naught close parenthesis divided by open parenthesis h naught minus h sub min close parenthesis.]. As the system approaches the edge of the phase transition of the second kind, an increase in [image: Mathematical notation displaying a lowercase italic h followed by a subscript zero.], [image: Capital letter W in a serif font shown in black with a slight blur effect on a white background.] and [image: Large, bold, black uppercase letter S appears on a white background with slightly blurred edges and no other visible elements.] (see the paper [36]).
To calculate the parameters of the multifractal spectrum, we used the wavelet leader method and [image: Mathematical formula showing D of h equals q times h of q minus tau of q.], where [image: Mathematical expression tau of q, with tau represented by the Greek letter tau followed by parentheses containing a lowercase italic q.] is the scaling exponents of the structure function [image: Mathematical expression showing a bold italic Z followed by parentheses containing italic variables q and s separated by a comma.] (e.g., see the paper [39]). Following the algorithm of the method, [image: Mathematical expression showing a bold italic uppercase Z followed by parentheses containing lowercase italic q and s separated by a comma.] is represented in the Equation 1 as the sum of qth powers of the largest coefficients, or leaders, of the discrete wavelet transform of the dynamic series [image: Mathematical variable v with a subscript t, commonly representing a value such as velocity or another quantity measured at time t.], corresponding to the scale [image: Lowercase letter s in a bold, black font against a white background.]:
[image: Mathematical equation stating Z of q and s equals one divided by n sub s times the sum from k equals one to n sub s of L of s comma k, raised to the power of q. Equation labeled as one.]
where [image: Mathematical equation reads L of s comma k equals absolute value of d of s comma k.] the leaders of wavelet coefficients [image: Mathematical expression displaying d, left parenthesis, s, comma, k, right parenthesis, where d is a function of variables s and k, in italic font.] of scale [image: Mathematical notation showing the number two with the letter s as a superscript, commonly used to represent the quantum electronic configuration 2s in physics and chemistry.] and time shift [image: Lowercase italic letter k in a serif font, commonly used in mathematical or scientific notation.], [image: Mathematical formula showing 3 lambda sub s,k equals the union of the intervals from left parenthesis k minus one right parenthesis squared to k squared, k squared to left parenthesis k plus one right parenthesis squared.][image: Mathematical expression showing an interval with endpoints open bracket k plus one close parenthesis two to the power of s comma k plus two close parenthesis two to the power of s close bracket.] is the time neighborhood. If the series [image: Mathematical notation displaying the lowercase italic letter v with a subscript t.] is a multifractal series, then the scaling relation [image: Mathematical formula showing Z of q and s is asymptotically equivalent to s raised to the power of pi of q.] is satisfied at all scales [image: A blurred black lowercase letter s appears on a white background, lacking additional context or discernible visual elements.]. Decomposing the function [image: Mathematical expression showing the Greek letter tau followed by an open parenthesis, the variable q in italics, and a closing parenthesis representing a function tau of q.] into a [image: Mathematical expression showing a summation of the quantity c sub i times q to the power l, divided by l factorial, with the summation index and limits not shown.] series allows us to compute the first log-cumulant ([image: Mathematical notation showing the letter C with a subscript one.]), which corresponds to [image: Mathematical notation showing the lowercase italic letter h with a subscript zero.], the second log-cumulant ([image: Mathematical notation showing the letter C with a subscript two, commonly used to represent carbon dioxide or a combinatorial coefficient.]), which corresponds to [image: Uppercase letter W in a serif font, presented in a grayscale style with slightly blurred or soft edges. ], and the third log-cumulant ([image: Text shows the letter C followed by a subscript three, representing the chemical symbol for a molecule consisting of three carbon atoms, commonly written as C sub three.]), which corresponds to [image: Large, bold, black letter S on a white background, slightly blurred around the edges, centered in the image.]. Therefore, we used the first three log-cumulants as multifractal EWMs.
2.3.3 Measures of reconstructed phase space
As EWMs, for the calculation of which requires the reconstruction of the phase space of the dynamical system, we used the correlation dimension of the phase space, [image: Mathematical notation displaying an uppercase italic letter D with a lowercase italic c as a subscript.], and the largest Lyapunov exponent, [image: Lowercase Greek letter lambda, presented in a serif font and depicted in black on a white background.]. The dimension of [image: Mathematical notation showing an uppercase italic letter D with a lowercase italic letter c as a subscript, commonly used to represent a variable with a specific condition or category.] is an estimate of the fractal dimension of the reconstructed attractor of the dynamical system, which increases as the system approaches [image: Italic lowercase letter t with a subscript italic lowercase c, commonly used to represent a variable t with subscript c in scientific or mathematical notation.] (e.g., see the paper [36]). The exponent [image: Lowercase Greek letter lambda, commonly used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or rate parameters. Black text on a white background.], being a measure of the chaotic nature of the dynamical system, increases, taking positive values, as the system approaches [image: Mathematical notation showing the letter t with a subscript c, commonly used to represent a critical value of t in statistics or a specific time value in equations.] (e.g., see the paper [40]).
We used the Takens theorem (see the paper [41]) to reconstruct the phase space of the stock volume series, [image: Mathematical expression showing bold P as a vector with components P sub one, P sub two, up to P sub M, belonging to M-dimensional real space R superscript M.], over the stock volume series from a sliding window of width [image: Mathematical variable w with a subscript zero, commonly denoting the initial value or starting weight in equations or algorithms.], [image: Mathematical expression showing a vector V defined as a sequence of elements v one, v two, up to v sub w naught, enclosed in parentheses.]. The phase space [image: Lowercase italic letter p in a serif font, displayed in black against a white background.] was reconstructed from the series [image: Uppercase letter V in a serif typeface displayed in black on a white background.], using as missing coordinates the [image: Lowercase letter l in a serif typeface, rendered in black with a blurred effect against a white background.]-th state vector, [image: Mathematical notation showing an italic uppercase P with a lowercase italic l as a subscript, commonly used to represent a variable or parameter in equations.], the series [image: Uppercase letter V in a serif font with a slight drop shadow effect on a white background.], taken with some lag [image: Lowercase italic letter t in a serif font, displayed in black on a white background. The character is centered and occupies most of the image space.]:
[image: Mathematical equation showing P sub one equals the vector consisting of v sub one, v sub one plus tau, up to v sub one plus quantity M minus one times tau, labeled as equation two.]
where [image: Lowercase Greek letter tau in a serif font displayed in black on a white background.] is the time delay, [image: Uppercase, italic, serif letter M in black on a white background.] is the embedding dimension, [image: Mathematical expression stating that l ranges from one to w sub zero minus quantity M minus one times tau, with values l equals one, two, and so on.]. Takens’ theorem does not answer the question of how to calculate the value [image: Lowercase italic letter t in a serif font centered against a plain white background.] and [image: Uppercase italic letter M displayed in a serif font with smooth, slightly angled strokes, shown in black against a white background.].
The time [image: Lowercase Greek letter tau in a sans-serif font, presented in black on a white background.] for the Equation 2 was chosen so that the correlation between [image: Mathematical notation showing the lowercase letter v with a subscript 1, commonly representing the first element of a vector or sequence.] and [image: Mathematical expression showing the variable v with the subscript l plus tau.] was minimal. The delay [image: Lowercase Greek letter tau, written in a serif style black font on a white background.] was chosen equal to the time of the first zero crossing of the autocorrelation function [image: Mathematical formula showing an average of the product of two terms, each subtracting a mean value, with sums and variables w, tau, v, and angle brackets representing averages.] (e.g., see the paper [42]).
To estimate the values of [image: Italic uppercase letter M with a bold stroke, rendered in a serif font in dark gray against a white background. Suitable for mathematical or scientific notation purposes.] and [image: Mathematical notation showing the uppercase italic letter D with a subscript lowercase italic letter c.] we calculated the correlation sum (e.g., see the paper [42]):
[image: Mathematical formula for C of epsilon equals one divided by p times p minus one, sum from i equals zero to p minus two, sum from j equals i plus one to p minus one, theta of epsilon minus the absolute value of p sub i minus p sub j, followed by right parenthesis and a period. Equation is labeled as number three.]
where [image: Mathematical formula showing p equals w sub zero minus the product of the quantity M minus one and tau.], [image: Mathematical equation showing that theta equals one if epsilon minus the absolute value of Pi minus Pj is greater than or equal to zero, and zero if epsilon minus the absolute value of Pi minus Pj is less than zero.]. The sum [image: Mathematical notation displaying the function C of epsilon, with the Greek letter epsilon shown inside parentheses.] from the Equation 3 was calculated for different values of distances, [image: Lowercase letter e in a bold serif font, depicted in grayscale with a slightly blurred appearance.], between vectors [image: Mathematical notation showing an italic uppercase P with a lowercase i as a subscript, representing the variable P sub i.] and [image: Mathematical expression showing an uppercase italic letter P with a lowercase italic letter j as its subscript, commonly used to denote a variable or parameter indexed by j.] of the reconstructed phase space. This procedure was repeated for several dimensions [image: Capital letter M in italic serif font, displayed in black on a white background.]. The criterion for stopping the procedure is the fulfillment of the power law [image: Mathematical equation showing C of epsilon is asymptotically proportional to epsilon raised to the power D subscript c.]. As the value of [image: Uppercase italic letter M in a serif font, rendered in black on a white background. The letter is centrally positioned and clearly visible.] increases, the correlation dimension increases. At some [image: Uppercase italic letter M in a serif typeface presented in grayscale.], the value of [image: Mathematical variable Dc with uppercase D followed by a lowercase subscript c in italic serif font.] comes to a constant level. The estimate of the dimensionality of [image: Mathematical expression showing a capital italicized D with a lowercase italicized c as a subscript, typically used to denote a variable with a specific condition or characteristic.] is the tangent of the slope of the straight line approximating the correlation sum [image: Mathematical expression showing an uppercase C followed by parentheses containing a lowercase Greek letter epsilon.] in a double logarithmic scale. At the same time, only linear parts of the dependence were investigated.
There exists a spectrum of Lyapunov exponents characterizing the separation rate of infinitely close phase space trajectories (e.g., see the paper [43]). The largest Lyapunov exponent, [image: Lowercase Greek letter lambda, represented in a serif font, commonly used in mathematics, physics, and engineering to denote wavelength, eigenvalues, or decay constants.], defines the notion of predictability of the dynamical system. Let [image: Mathematical expression showing the Dirac delta function evaluated at zero, represented as the Greek letter delta followed by zero in parentheses.] be the minimum value of the distances between the vectors of the reconstructed phase space, i.e., [image: Mathematical expression showing delta of zero equals the absolute value of the difference between P sub i and P sub j.]. The distance between vectors after time [image: Lowercase italic letter t in a serif font, shown in grayscale on a white background.] is [image: Mathematical expression showing delta of t equals the exponential function of lambda times t, written as δ of t equals exp open parenthesis lambda t close parenthesis.]. The linear regression for [image: Mathematical expression displaying the Greek letter lambda followed by a subscript lowercase letter t, commonly used to represent a time-dependent parameter or rate in mathematical contexts.] is an estimate of the largest Lyapunov exponent. Regardless of the dimensionality of the phase space, this procedure was repeated for several dimensions to ensure that [image: Lowercase Greek letter lambda, commonly used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or other variables depending on the context.] does not depend on the dimensionality of the space.
Previously (see the paper [44]), we introduced the notion of EWM, defined in terms of the number of false early warning signals, [image: Lowercase Greek letter nu (ν) in a serif font, black on a white background. The edges are slightly blurred, reducing sharpness and clarity of the character.], for the zero-mean dynamic series of EWM increments, [image: Mathematical notation showing capital delta, followed by lowercase italic m and a subscript lowercase italic t, representing change in mass at time t.], and the early warning time, [image: Mathematical expression displaying the Greek uppercase delta symbol followed by the Greek lowercase tau, with the subscript letters E and W.], for the series [image: Mathematical variable m with the subscript t, commonly used to denote a value m at time t or indexed by t.]. For example, EWM1 is more effective than EWM2, if [image: Mathematical expression showing v one is less than v two, where v is in italic font and both indices one and two are in subscript.] and [image: Mathematical equation showing delta tau sub E W 1 is greater than delta tau sub E W 2.]. In the context of the presented study, this measure was modified to the AUC (area under curve for all of the combinations of false positive rate and true positive rate for all possible thresholds of separation between predicted classes) as a more stable measure in case of problems with class balance in the sample.
3 RESULTS AND THEIR DISCUSSION
3.1 Time intervals for critical state of stock exchange
Following the implementation of all filters mentioned in Subsection 2.2, a total of 967 time series were identified as exhibiting critical transitions in accordance with the predefined criteria. For all of the aforementioned time series, metrics were calculated in accordance with the specifications outlined in Subsection 2.3. Additionally, the 8-hour dynamics and variance of these instruments were calculated (as daily trading sessions on the US stock exchanges last for 8 h), which further reduced the sample size. However, the resulting observations still numbered nearly 281.4 thousand. Subsequently, observations in the time series are divided into two categories: those that are close to a critical transition and those that are not. Eight distinct closeness horizons ([image: Mathematical symbol for an uppercase italicized H, often used in equations or scientific notations.]) were considered, ranging from 1 to 8 iterations. This allowed for the classification of observations as either predicting a critical transition in not more than H iterations, or otherwise. Given the imbalanced nature of the dataset, we opted to down sample it via bootstrapping (see the book [45]), with positive observation shares of 5%, 10%, 15% and 20% and 500 random separations for each of the [image: Uppercase serif letter H in bold black font on a white background.]-share combinations, in order to demonstrate the stability of the random sampling and modelling results.
In order to predict the probability of an iteration belonging to the “close to the critical transition” group, the probit model has been selected (see the paper [46]). The simplicity and high interpretability of the model would facilitate the straightforward observation of the efficiency of the measures and their derivatives. Two sets of models were constructed: one using all variables, and another with only one variable at a time. This was done to ascertain whether there were any differences in the final impact on quality prediction. In the first set of models, the importance of each variable was calculated as a share of those where the p-value of the coefficient was less than 5%. In the second set, the metric was the largest time horizon that would still achieve an AUC higher than 0.75. In addition to the AUC, two sample Kolmogorov-Smirnov (KS) tests (see the paper [47]) were employed to measure the capacity of our models to effectively differentiate between positive and negative observations.
Table 1 shows us that all of the variables (white–no statistically significant impact on the quality of the prediction, yellow–significant in some of the modifications of the variable, green–significant in most of the modifications) except for the Hurst exponent, correlation dimension and the second cumulant of wavelet leader can be at least partially useful for the task of critical transition prediction, which mostly follows previous research on this topic and tells us that at least for the financial data classification models can be applied with high level accuracy and interpretability.
TABLE 1 | Efficiency comparison for EWM and their modifications on the stock market data.
[image: Data table comparing early warning measures by the share of united models with significant coefficients and the largest time horizon achieving AUC above 0.75, across three conditions: original value, measure dynamics, and variance over eight iterations, with notable entries highlighted for Variance, Skewness, Kurtosis, and Autocorrelation at lag-1.]3.2 Phenomenological model of stock exchange self-organization into a critical state
As shown in Subsection 3.1, a stock exchange self-organizes into a critical state and stays in this state for a certain number of hours, determined by the share of a public company that is traded on the exchange. In other words, each segment of a stock exchange has a different time duration for it to be in a critical state. By a stock exchange segment we mean a set of trading platforms (world stock exchanges) and market traders involved in buying/selling a share of some public company. Hereinafter we use the term stock exchange and understand it as a segment of the stock exchange.
A stock exchange in a critical state is characterized by a near-1 autocorrelation for stock’s volume and a power law for the power spectral density of stock’s volume with degree exponent from 1 to 2. The dynamics of a system with such characteristics is known as the avalanche-like dynamics of the system observed when it is in a critical state, also known as the edge of a phase transition (e.g., see the paper [14]). One of the first and most studied models of self-organization of systems into a critical state is the SCA model, which explains the spontaneous emergence of a system into a critical state with its avalanche-like behavior. Therefore, we used SCA not only as a system generating test dynamical series (see Subsection 2.1), but also as a basic, systemically isomorphic model of SCA in the context of systems theory, the stock market model. In other words, when building a stock exchange model, we use the analogy of structure (Chung-Lu graph of SCA and complex network of exchange transaction network), the nature of elements (stable/unstable vertices of SCA and passive/active stock exchange traders) and links (collapse of unstable vertices of SCA and buy/sell transaction of a public company share) between the elements of SCA and stock exchange.
Let [image: Uppercase Greek letter Gamma, represented as a single bold character in black on a white background.] be a planar graph of exchange transactions with nodes [image: Mathematical expression displaying the ordered pair left parenthesis k comma m right parenthesis, commonly used to represent coordinates or variables in mathematics and related fields.], for which [image: Mathematical expression showing variables k and m, where both are elements of the set of integers, denoted by the symbol Z.] are the ultrametric coordinates of the exchange traders. As [image: Uppercase Greek letter Gamma displayed in bold, serif typeface with distinct straight vertical line and sharp horizontal arm extending to the right.] we used Chung-Lu graphs with two-parameter degree distribution of edges as the most common and empirically validated model determining the topological structure of exchange transactions (e.g., see the papers [48–53]).
Let [image: Mathematical expression showing h of k comma m as an element of the set of positive integers union zero.] be the entropy as a measure of uncertainty of information about the share of some public company, which is available to the stock exchange trader [image: Mathematical expression in italics showing the ordered pair left parenthesis k comma m right parenthesis.]. Let [image: Mathematical expression in italics showing h left parenthesis k comma m right parenthesis.] be denoted by [image: Italic lowercase letter h with a subscript c.], which defines the threshold value of entropy for a trader [image: Mathematical expression showing the pair of variables k comma m enclosed in parentheses.] to sell a share to its nearest neighbour, for example, [image: Mathematical expression displaying the ordered pair left parenthesis k plus one comma m right parenthesis, with variables in italic font.], in the graph [image: Uppercase Greek letter Gamma displayed in a serif font, shown in black on a white background.].
Thus, each exchange trader with some number of shares can be in both an active state, denoted [image: Mathematical notation showing the ordered pair left parenthesis k sub a comma m sub a right parenthesis.], and a passive state, denoted [image: Mathematical expression showing the ordered pair left parenthesis k subscript p comma m subscript p right parenthesis, with both variables in italics.]. Trader [image: Mathematical expression in parentheses showing k sub a comma m sub a.] is in the active state if the corresponding entropy [image: Mathematical expression displaying h left parenthesis k sub p comma m sub p right parenthesis, where h is a function of k sub p and m sub p.] is not less than a critical value, [image: Lowercase italic h followed by a lowercase italic c as a subscript, representing a mathematical or scientific variable.]. Otherwise, trader [image: Mathematical expression displaying the variables k and m enclosed in parentheses, indicating an ordered pair or tuple.] is in the passive state. Trader [image: Mathematical expression showing an ordered pair with k sub a and m sub a enclosed in parentheses.], having uncertainty about a stock at least [image: Mathematical variable h with a subscript c, both in italic font.], seeks to get rid of such stocks. As a result, trader [image: Mathematical expression showing left parenthesis, k subscript a, comma, m subscript a, right parenthesis.] sells the shares to his nearest neighbour in the graph [image: Greek uppercase letter Gamma in a bold, serif font, displayed in black against a white background.], e.g., trader [image: Mathematical expression showing that the ordered pair kp, mp equals the ordered pair ka plus one, ma. Variables use italic font with subscripts.], who is in the passive state and has uncertainty about the share less than [image: Italicized mathematical notation showing the letter h with a subscript c.]. In this case, trader [image: Mathematical expression showing the pair k sub p comma m sub p in parentheses.] has more information about the tendencies of the price behavior of the bought stock. After the local exchange transaction of buy/sell [image: Mathematical expression showing a transformation from the pair left parenthesis k sub a comma m sub a right parenthesis to the pair left parenthesis k sub p comma m sub p right parenthesis.] the trader [image: Mathematical expression showing an ordered pair with subscripted variables k sub a and m sub a, enclosed within parentheses.] becomes passive until he receives some information which increases the uncertainty of information about tendencies of price behavior of the share. The source of such information can be a report of a public company, mass media news or some insider information. On the contrary, after the exchange transaction [image: Mathematical expression showing a mapping from the pair left parenthesis k sub a comma m sub a right parenthesis to the pair left parenthesis k sub p comma m sub p right parenthesis, with an arrow indicating the transformation.] trader [image: Mathematical expression displaying an ordered pair with variables k sub p and m sub p enclosed in parentheses.] enters an active state in which he is ready to sell the stock to some of his passive nearest neighbours. Figure 1A shows local exchange collapses.
[image: Four-panel scientific figure. Panels A and B show network diagrams with nodes in green and red, connected by black arrows and labeled from h0 to h4, demonstrating progression between network states. Panels C and D each display a line graph with variable Vi on the y-axis and i on the x-axis, showing an increase in Vi around index five thousand with greater variability in the shaded region to the right.]FIGURE 1 | Local exchange transactions leading to self-organization of the stock exchange to the edge of the second-order phase transition (A) and to the edge of the first-order phase transition (B). The symbol [image: Lowercase italic letter h in a serif font on a white background.] denotes the entropy. Model series of exchange volume corresponding to self-organization of the stock exchange to the edge of the second-order phase transition (C) and to the edge of the first-order phase transition (D). The gray region indicates the edge of a phase transition.
Self-organization of the stock exchange into a critical state occurs as a result of its pumping (perturbation) and relaxation at each iterative step. Each iteration starts with pumping and ends with complete relaxation of the stock exchange. Information pumping of the stock exchange leads to an increase in entropy or to an increase in the volatility of the stock, i.e., to an increase in the possibility of the stock price to change in any direction. Relaxation of the stock exchange occurs as a result of local exchange transactions of buying/selling a share and is formally defined by the following rules:
[image: Mathematical notation showing an equation set: h(k,m) is greater than or equal to h₁(k,m); h(k,m) minus h₁(k,m) minus h₂(k,m); h(Ne(k,m)) approaches h(Ne(k,m)) plus delta sub p; sum from p equals one to zₙ(k,m) of delta sub p equals h₁(k,m), with delta sub p greater than or equal to zero; labeled as equation four.]
where [image: Mathematical expression showing h sub c of k comma m, with k and m in parentheses and c as a subscript to h.] is the critical for trader [image: Mathematical expression displaying an ordered pair with variables k and m inside parentheses, separated by a comma.] entropy value equal to the number of its nearest neighbors in the graph [image: Uppercase Greek letter Gamma, shown in a serif font style with thick vertical and thinner horizontal strokes on a white background.]; [image: Mathematical expression showing Ne open parenthesis k comma m close parenthesis, with variables k and m in italics.] is the nearest neighbour of trader [image: Mathematical notation showing an ordered pair with lowercase italic variables k and m separated by a comma and enclosed in parentheses.] in the graph [image: Uppercase Greek letter Gamma in a serif font, shown in black on a white background.]; [image: Mathematical expression showing the Greek letter delta followed by a subscript m, commonly used to represent a variable or change associated with m in scientific contexts.] is a random number taking values from the set [image: Mathematical expression showing the union of positive integers, represented by Z superscript plus, with the set containing zero.].
The model based on the Equation 4 explains the phenomenon of self-organization of the stock exchange into a critical state starting from some critical iteration [image: Mathematical expression showing the lowercase letter i with the subscript c, commonly representing collector current in electronics.]. Starting from initial public offering ([image: Mathematical expression showing lowercase italic i equals zero.]) and up to the moment of completion of the subcritical phase ([image: Mathematical inequality showing that zero is less than i, and i is less than the critical value i sub c.]), the stock exchange observes a small number of share buy/sell transactions, which quickly decay in ultrametric space and time. The global information pumping of the stock exchange to a critical entropy value [image: Mathematical expression showing the capital letter H in italics with a lowercase c in italics as a subscript.] brings the stock exchange into the critical state ([image: Mathematical expression showing i is greater than or equal to i subscript c.]). Staying in a small neighbourhood of [image: Mathematical variable H with subscript c, both in italic font style.] the stock exchange is unstable to small information perturbations. In such an unstable state, a small entropy increment ([image: Mathematical formula showing H sub c plus or minus delta H.]) is sufficient for the stock exchange to experience avalanches of stock buy/sell transactions. The stock volume series, [image: Mathematical expression showing an italic uppercase letter V with a lowercase italic i as a subscript.], in the critical state of the stock exchange ([image: Mathematical expression showing i is greater than or equal to i subscript c.]) is characterised by [image: Mathematical expression showing rho of one equals one, represented as the Greek letter rho followed by parentheses containing the digit one, an equal sign, and the digit one.], [image: Mathematical expression showing S of f equals f raised to the power of negative one, indicating the inverse function of f.], and [image: Mathematical equation showing p of xi equals xi raised to the power of negative two.]. The dynamic series [image: Mathematical variable V with subscript i, representing V sub i, often used to denote a specific element in a sequence or vector.], demonstrating the dynamics of such self-organization, is presented in Figure 1C.
The above described self-organization of the stock exchange corresponds to its self-organization to the edge of the second-order phase transition. To describe the self-organization of the stock exchange to the edge of the first-order phase transition, the following changes in the rules of model (1) are sufficient. Any stock exchange trader [image: Mathematical expression showing the pair open parenthesis k comma m close parenthesis, where k and m are variables.], who is in the passive state [image: Mathematical expression showing an ordered pair with variables k sub p and m sub p enclosed in parentheses.], can move to the active state [image: Mathematical expression showing an ordered pair with elements k sub a and m sub a enclosed in parentheses.] if [image: Mathematical expression showing h of k comma m is greater than or equal to h sub c of k comma m.], and if he has purchased a share from at least one of his nearest neighbours. The latter is characteristic of the stock exchange during the period of increased activity of its traders, i.e., when each trader [image: Mathematical expression showing a pair in parentheses with variables k sub p and m sub p separated by a comma.], having bought a share from a neighboring trader, passes to the state [image: Mathematical expression showing an ordered pair with k subscript a and m subscript a, enclosed in parentheses.] independently of the entropy value [image: Mathematical notation showing the function h with two variables k and m, written in italics as h parenthesis k comma m parenthesis.]. Being in the state [image: Mathematical expression showing an ordered pair with variables k sub a and m sub a, enclosed in parentheses.] a trader immediately tries to sell the bought share. Such a stock exchange is dominated by speculative buy/sell transactions of the stock. Figure 1B demonstrates the corresponding local stock exchange collapses. The dynamic series [image: Mathematical notation showing an uppercase italic V with a lowercase italic i as a subscript, commonly representing element i of a vector V.], demonstrating the dynamics of self-organization of the stock exchange to the edge of the first-order phase transition, is presented in Figure 1D. Local exchange transactions of buying/selling a stock are formally determined by the following rules:
[image: Mathematical equation with nested cases and inequalities involving h, Ne, δ, and subscripted variables k and m, featuring summations, conditional expressions, and constraints for δ indexed values, labeled as equation 5.]
Note that the proposed models which are based on the Equation 5 determine the self-organization of the stock exchange into a critical state, which does not require fine-tuning of the control parameter [image: Uppercase italic letter H in a serif font shown in black on a white background.] to the critical value [image: Mathematical expression showing an uppercase italic H with a subscript lowercase italic c.]. Exit to the critical state is achieved as a result of perturbation and relaxation of the stock exchange, as well as the above-described nonlinear interactions between the stock exchange traders.
3.3 Early warning signals for stock exchange self-organization into a critical state
One of the results of our calculations is the independence of the behavior of the series for any of the EWMs in the vicinity of the critical onset from the specific public company for which the EWM series was calculated. The EWMs series differ only in their noise and early warning time (see Subsection 3.1). Apparently, the self-organization of a stock exchange into a critical state is a universal phenomenon. Therefore, we will limit ourselves to discussing the behavior of a series of EWMs for stock exchange transactions of, for example, Ameris Bancorp. This company is a bank holding company that, through its subsidiary Ameris Bank, provides banking services to its retail and commercial customers.
Figure 2 shows the behavior of the moving average smoothed series of EWMs that are obtained for the stock volume series of Ameris Bancorp from 10:30 7 February 2022 to 15:30 p.m. 5 February 2024. The smoothing of these series reduced the number of false early warning signals.
[image: Figure with twelve line graphs labeled A to L, each depicting a moving average (MA) for parameters such as velocity, variance, and multiple Greek letters over time (t), with shaded regions marking distinct intervals.]FIGURE 2 | Moving average series for the stock volume series (A), variance (B), kurtosis (C), skewness (D), autocorrelation at lag-1 (E), power-law scaling exponent of the power spectral density (F), generalized Hurst exponent (G), position of the multifractal spectrum maximum (H), multifractal spectrum width (I), multifractal spectrum skewness (J), correlation dimension (K), and largest Lyapunov exponent (L). The gray region indicates the edge of a phase transition.
The MA100 series obtained for the stock volume series increases sharply in the vicinity of the critical point, [image: Mathematical notation displaying the lowercase letter t with a subscript c, commonly used to represent a variable such as critical time or temperature in scientific contexts.], i.e., the time when the stock exchange starts to self-organize into a critical state (see Figure 2A). The time [image: Mathematical notation showing a lowercase t with a subscript lowercase c, typically representing a variable t with subscript c in equations or scientific contexts.] corresponds to 15:30 10 March 2023. The MA100 series increased by 20% compared to the volumes of the previous 5 hours at 11:30 10 March 2023. Therefore, no more than 4 h are given to take preventive measures to avoid self-organization of the stock exchange into a critical state.
The above described behavior of the MA100 series is a consequence of the critical slowdown of the stock exchange, the manifestation of which is an increase in the average amplitude of stochastic fluctuations of the order parameter (stock volume). Indeed, in the vicinity of [image: Mathematical notation showing a lowercase italic t with a subscript c.] there is an increase in the average amplitude of stochastic fluctuations of stock volume, which leads to an increase in MA100.
Other evidence of the critical slowing down of the stock market in the vicinity of [image: Italicized lowercase t with a subscript italicized lowercase c, indicating a variable t sub c often used to denote a critical time or temperature in scientific contexts.] is the behavior of window variance (see Figure 2B), kurtosis (see Figure 2C), skewness (see Figure 2D), autocorrelation at lag-1 (see Figure 2E), and power-law scaling exponent of the power spectral density (see Figure 2F) characteristic of the critical slowing down. These measures increase sharply in the neighborhood of [image: Mathematical expression showing the lowercase letter t with the lowercase letter c as a subscript, typically representing a variable such as critical time or a specific time value.]. At the same time, kurtosis and skewness take positive values, which is a consequence of the increase in the amplitude of stochastic fluctuations of stock volume. Moreover, autocorrelation at lag-1 and power-law scaling exponent of the power spectral density take values close to 1 in the time interval from 15:30 10 March 2023 to 15:30 p.m. 27 March 2023. Thus, the stock exchange has been in a critical state for 17 trading days. In Figure 2, the interval corresponding to the critical state, or the edge of the phase transition, is shown as a gray region. The stock exchange in this interval is characterized by abnormal fluctuations of the stock volume and strong, close to 1, correlation between neighboring elements of the sequence of values of the stock volume.
Another sign of the stock volume series approaching [image: Mathematical expression showing the lowercase letter t with the subscript c.] is a sharp increase of the generalised Hurst exponent to the value of 0.63 in the interval corresponding to the critical state (see Figure 2G). Consequently, if the stock volume series is considered as a real-time series, the sequence of values of the stock volume becomes more correlated as the stock volume series approaches [image: Italic lowercase letter t with a subscript italic lowercase c, commonly used to represent a variable such as critical temperature in scientific or mathematical contexts.]. The stock volume series corresponding to the critical state is a time series with long-term positive autocorrelation. Based on the fact that the position of the center of the multifractal spectrum, [image: Mathematical expression showing h subscript zero equals C subscript one.], shifts to the right as the stock approaches [image: Italic lowercase letter t with a subscript lowercase c.] (see Figure 2H), the stock volume series becomes more singular in the vicinity of [image: Italic lowercase letter t with a subscript italic lowercase letter c, representing a variable labeled t sub c in mathematical or scientific notation.]. The width, [image: Mathematical expression showing W equals C subscript two.], and skewness, [image: Mathematical expression showing script S equals C subscript three, representing the cyclic group of order three.], of the multifractal spectrum increase as the stock volume series approaches [image: Mathematical variable t with a subscript c, displayed in an italic serif font.] (see Figures 2I, J). The multifractal spectrum becomes symmetric, [image: Mathematical expression showing C subscript three equals S equals one.], at [image: Mathematical expression showing t equals t subscript c.] (see Figure 2J). Since [image: Mathematical inequality showing script S is less than one.] at [image: Mathematical expression showing t is less than t sub c.],the multifractal spectrum for the subcritical phase, [image: Mathematical expression showing lowercase t is less than lowercase t sub c.], is asymmetric with small fluctuations dominating the stock volume. Consequently, in the neighborhood of [image: Italic lowercase letter t with a subscript italic lowercase c, commonly used in scientific notation to represent a specific variable such as critical time or temperature.] the stock volume series becomes a more inhomogeneous series with dominance of large fluctuations. Thus, the described behavior of multifractal measures and Hurst exponent are early warning signals for the stock exchange self-organization into a critical state.
Let us consider the behavior of the series of EWMs, the calculation of which is based on the reconstruction of the phase space of the stock exchange. As the stock exchange approaches [image: Mathematical expression showing a lowercase letter t with a subscript lowercase letter c, commonly used to represent a variable t with subscript c in scientific notation.] the correlation dimension of the reconstructed attractor increases (see Figure 2K), hence the fractal structure of the attractor becomes more complex and the chaotic behavior of the stock exchange becomes more complicated. The most complex chaotic behavior of the stock exchange, corresponding to the highest value of the correlation dimension, is observed in its critical state. An indication of the increasing complexity of the chaotic behavior of the stock exchange is also an increase in the largest Lyapunov exponent, which is positive, as the stock volume series approaches [image: Italic lowercase letter t with a subscript italic lowercase letter c, commonly used to represent a variable t with the subscript c, often indicating a specific time or constant.] (see Figure 2L). The most complex chaotic dynamics of the stock exchange also corresponds to its critical state, since the largest value of the exponent is observed in the time interval corresponding to the critical state.
4 CONCLUSION
The stock exchange self-organizes to the edge of a phase transition. The duration of a stock exchange at the edge ranges from 7 to 19 trading hours and depends on the public company whose shares are traded on the stock exchange. We set such durations for public company stocks from the Russel 3,000 index, which measures the performance of the 3,000 largest US companies by market capitalization. Perhaps the result of finding time intervals corresponding to the edge of a phase transition for more public company stocks would be a longer range of trading day durations. In addition, further research of the time intervals should be focused on the analysis of the stock volume series with higher frequency, such as every second and every minute series, but adjusted for the volumes of pre-planned execution of deals. Analyzing such series will allow you to identify the time intervals that cannot be identified in hourly stock volume. For example, high-frequency trading implies the conclusion of a large number of buy/sell transactions in a fraction of a second and it may take several seconds for the stock exchange to self-organize to the edge of a phase transition. If the duration of the stock exchange on the edge of a phase transition is less than 1 h, the analysis of the hourly stock volume series will not allow to identify the time interval corresponding to the edge. The best identification will be obtained when analyzing the second-by-second series for the stock volume. In addition, the transition to more frequent stock volume series will allow to obtain segments of series corresponding to the edge, of longer length and possibly of sufficient length to obtain a reliable estimate for the power-law scaling exponent of the power spectral density. Comparison of such estimates will allow us to determine which of the critical states, i.e., the edge of the phase transition of the first or second kind, corresponds to the detected time interval.
The sandpile cellular automaton model of self-organization to the edge of a phase transition is based on the idea that information drives stock markets (e.g., see the paper [54]). Self-organization of a stock exchange occurs in a discrete number of steps, each of which begins with an information perturbation of the stock exchange and ends with its relaxation. If the information pumping results in supra-critical uncertainty, or entropy, in the price behavior of a stock for some traders, then the stock exchange relaxation occurs as a result of these traders’ execution of stock buy/sell transactions, which reduces the uncertainty in the price behavior of the stock for the traders. We have considered implementations of the model under the assumption that all traders are characterized by a single critical level of uncertainty. In the context of effective market hypothesis such assumption is quite reasonable, but it is not applicable when analyzing the stock market in the context of fractal market hypothesis. Therefore, further improvement of the model should be focused on the study of the influence of the type and parameters of the probability distribution of critical uncertainty on the behaviour of the stock volume series when the stock exchange approaches the edge of a phase transition, as well as on the edge. Another direction of the model improvement is the introduction of an assumption about the existence of some critical uncertainty of price behaviour, which determines the condition of buying a share of a public company. Moreover, the critical uncertainty when buying a share is not equal to the critical uncertainty when selling it.
The studied early warning measures, first of all MA100, variance, kurtosis and skewness as the most effective ones, can be used to detect early warning signals for self-organization of the stock exchange to the edge of a phase transition in real-time early warning systems. Such signals are important for the regulator of trading on the stock exchange, as they allow detecting illegal exchange operations. The volume indicator reflects an increase or decrease in the activity of traders on the stock exchange. Therefore, early detection of the time interval in the stock volume series corresponding to the stock exchange’s edge will allow a trader to make reasonable and timely changes in his trading strategy. As a rule, traders correlate the volume indicator with the direction of the stock price movement. If the stock price is rising along with the volume, the price growth is likely to continue. High volume (25% higher than average) when the stock price reaches a new high is a harbinger of a strong increase in the stock price. Traders should refrain from selling existing shares and/or buy shares while they are cheap and sell them when they rise in price. If the share price is declining while volume is rising, the stock market is dominated by stock sellers - the trader should refrain from speculating in the stock.
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Inspired by the energy-efficient information processing of biological neural systems, this paper proposes an artificial memristive neuron to reproduce biological neuronal functions. By leveraging Chua’s unfolding theorem, we establish a bi-S-type locally active memristor mathematical model exhibiting negative differential resistance (NDR), which serve as fingerprints for local activity. A second-order neuronal circuit is constructed to emulate periodic spiking and excitability, while a third-order circuit extends functionality to chaotic oscillations and bursting behaviors. Besides, the constructed neuronal circuit generates biphasic action potential through voltage symmetry modulation, replicating bidirectional signal transmission akin to biological systems. Hardware emulation validates neurodynamics under varying stimuli from theoretical analyses, offering a unit module and theoretical reference for energy-efficient neuromorphic computing network.
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1 INTRODUCTION
As information technology rapidly advances, traditional computing architectures face growing limitations in energy efficiency and computational complexity. Against this backdrop, neuromorphic computing has emerged as a novel computing paradigm [1, 2]. Its core concept is to emulate information processing mechanisms of biological systems by constructing brain-like computing structures to achieve energy-efficient computation [3, 4]. This brain-inspired approach demonstrates superior capabilities in adaptive learning, positioning it as a cornerstone for next-generation intelligent systems [5–7]. Central to this technology are neuroelectronic devices that emulate neuronal functions, which are fundamental units in the construction of neuromorphic computing systems [8, 9].
Current neuroelectronic implementations primarily employ Complementary Metal-Oxide-Semiconductor (CMOS) circuits, leveraging mature fabrication techniques to simulate membrane potential dynamics and action potential generation [10, 11]. However, CMOS-based neurons suffer from inherent limitations including complex circuit topologies and elevated power consumption hinder scalability in large neural networks [12]. Memristive devices present an alternative solution through their intrinsic nonlinearity and low-power operation [13], yet conventional passive memristors require auxiliary negative impedance converters to achieve neuronal dynamics, compromising system integration efficiency [14, 15]. These challenges have driven the exploration of locally active memristors (LAMs) [16, 17], whose negative differential resistance (NDR) enables weak signal amplification and action potential generation without external circuitry [18–20].
Recent advancements in LAM-based neuronal modeling demonstrate promising results. The FitzHugh-Nagumo circuit modifications using N-type LAMs successfully replicate biological spiking patterns [21, 22]. Enhanced LAM designs with ultra-robust NDR characteristics further enable hardware implementation of nine distinct neuronal firing modes [4]. However, these advancements remain primarily confined to monophasic action potential emulation. Emerging experimental evidence from sciatic nerve electrophysiology and myocardial fiber studies demonstrates that biphasic potentials constitute fundamental encoding mechanisms in neural systems [23–25], enabling sophisticated information processing [26]. Current neuromorphic platforms predominantly neglect this biphasic paradigm, impeding hardware-level implementation of biologically plausible neural networks.
Memristive neurons exhibit broad application potential in neuromorphic systems, including frequency-based classifiers for animal sound recognition [27], image protection systems [28, 29], and cyclic neural networks with self-adaptive synapses [30]. Notably, their implementation in artificial neural networks has achieved high-precision MNIST digit recognition and effective edge detection in image processing [31].
The structure of this work is as follows: section 2 characterizes the proposed bi-S-type LAM’s nonlinear dynamics; section 3 constructed a second-order neuronal circuit and demonstrates spiking regimes; Section 4 illustrates various monophasic neurodynamics, biphasic spikes, and symmetry behaviors in the third-order memristive neuron. Section 5 gives the circuit simulated validation.
2 BI-S-TYPE LOCALLY ACTIVE MEMRISTOR
Most nanoscale memristors fabricated using various materials exhibit characteristics of generic or extended memristors. Chua’s unfolding theorem provides a systematic method to construct generic memristor models [32]. A generic current-controlled memristor can be defined as
[image: Mathematical equation system showing: v equals R sub m of x times i, where R sub m of x is the sum from k equals zero to m of d sub k times x to the k, multiplied by i; x dot equals f of x comma i equals the sum from k equals zero to n of alpha sub k x to the k, plus the sum from k equals zero to m of beta sub k i to the k, plus the double sum over k and l, from k equals zero to p, l equals zero to q, of delta sub k l x to the k i to the l. Equation is labeled with number one.]
where v, i, and x are the voltage, current, and state variable of the memristor, respectively; Rm (x) represents memristance; f (x, i) is the state-controlled equation; αk, βk, δkl, and dk are tunable parameters.
Using Equation 1, we derive a memristor model characterized by
[image: Mathematical equations showing: y sub m equals RM of x sub i m equals d sub 2 x squared plus d sub 0 at i m equals f sub 1 of x sub i m; and dx over dt equals e sub 0 plus alpha x plus beta f sub 2 i m squared equals f sub 2 of x sub i m, labeled as equation two.]
with parameters: δ0 = 3 × 104, α1 = −3 × 103, β2 = −8 × 107, d2 = 2, d0 = 20.
2.1 Fingerprints of locally active memristor
Chua indicates that a pinched hysteresis loop in the voltage-current plane constitutes a definitive memristor signature [33]. The negative differential resistance (NDR) regions on the DC V-I curve serve as critical indicators of local activity in one-port memristors [34]. These are fingerprints of LAMs.
2.1.1 fingerprint 1: pinched hysteresis loop
Let us apply a sinusoidal voltage v = Asin(2πft) with amplitude A = 5 V and frequencies f = 2 kHz, 5 kHz, 200 kHz to the proposed model. The characteristics of input voltage vm and response current im are depicted in Figure 1A. It shows that the loci plotted on the vm-im plane is a pinched hysteresis loop at f = 2 kHz (dark red curve). The lobe area decreases progressively with increasing frequency (black curve: f = 5 kHz), collapsing to a linear blue line at f = 200 kHz, confirming memristive behavior.
[image: Panel A shows a line graph of current versus voltage at three frequencies (261 Hz, 523 Hz, 2000 Hz) with distinct curves for each. Panel B displays a hysteresis loop graph highlighting four quadrant points with yellow shaded areas and annotated coordinates.]FIGURE 1 | (A) Pinched hysteresis loops measured from Equation 2 on vm-im plane for input voltages vm with amplitude A = 5 V and frequencies f = 2 kHz, 5 kHz, 200 kHz; (B) DC V-I curve of the LAM with the shaded NDR regions.
2.1.2 fingerprint 2: negative differential resistance (NDR) regions
The DC V-I curve (Figure 1B), obtained by sweeping DC currents from −25 mA to 25 mA with the step size of 0.1 mA, reveals two NDR regions (yellow shading) corresponding to local activity. Signal amplification occurs at these operating points where V ∈ [0.385 V, 1.287 V] (I ∈ [9.2 mA, 19.1 mA]) and V ∈ [−1.287 V, −0.385 V] (I ∈ [−19.1 mA, −9.2 mA]).
However, the operating points Q (V, I) of the LAM exhibit instability when biased at V ∈ [–1.287 V, −0.385 V] ∪ [0.385 V, 1.287 V]. As shown in Figure 2 (left inset), three intersections (M0, M1, M2) or (M3, M4, M5) emerge at V = ±1 V: two stable (M1, M2 or M4, M5) and one unstable (M0 or M3), which is verified by the dynamic route with x-dx/dt. Then, stabilization was achieved by adding an appropriate resistor R0 = 1 kΩ, and the obtained locally active voltages are V ∈ [R0ID + VD, R0IC + VC] ∪ [R0IB + VB, R0IA + VA], i.e., V ∈ [−19.485 V, −10.487 V] ∪ [10.487 V, 19.485 V] (Figure 2, right inset). Observe that single stable equilibria emerge under these two operating points.
[image: Two panels compare electrical circuit behavior using current-voltage (I-V) curves and their derivatives. The left panel shows unstable regions with annotated peaks and negative differential resistance, while the right panel shows stabilized curves with a reduced negative differential resistance region following the addition of a resistor. Both panels include schematic circuit diagrams and labeled reference points.]FIGURE 2 | Stabilization mechanism: (left) unstable equilibria in the memristor without resistors; (right) stabilized operation with series resistor R0.
2.2 Small-signal equivalent circuit of LAM
The small-signal equivalent circuit enables nonlinear dynamics prediction at arbitrary operating points. By applying Taylor series expansion to Equation 2 at operating point Q (VQ, IQ) under sufficiently small signals (ignoring higher-order terms), we obtain
[image: Mathematical system of two equations showing changes in variables nu and x as functions of matrices a and b dependent on Q, multiplied by changes in variables x and i. Labeled as equation three.]
where Δv, Δi, and Δx denote small perturbations; a11 = (δf1/δx)|Q = 2d2IQXQ, a12 = (δf1/δi)|Q = d2XQ2 + d0 = RM(X), b11 = (δf2/δx)|Q = α1, b12 = (δf2/δi)|Q = 2β2IQ. Here, the differential resistance RD=(Δv/Δi)|Q = a11 (Δx/Δi) + a12 = a12 – (a11b12)/b11, the equivalent resistance RM = a12.
Taking the Laplace transform of (Equation 3) yeilds
[image: Mathematical equation displaying Z(s,Q) as a ratio of voltage and current transforms, expressed in terms of coefficients a and b, and simplified to a parallel RC circuit plus a resistance term, labeled as equation four.]
Figure 3A illustrates the small-signal equivalent circuit of the LAM about an operating point: a parallel Rs-Cs network in series with RM. Figure 3B shows parameter variations under V ∈ [10 V, 20 V]. Notably, negative capacitances (Cs < 0) occur at locally active voltages V ∈ [10.487 V, 19.485 V], which critically determine memristive characteristics for neuronal circuit design. Similar trends hold for V ∈ [–19.485 V, −10.487 V].
[image: Panel A presents an electrical circuit diagram featuring a resistor Rdx in red, a capacitor, and a combined resistor network Rm–Rpp/Rdx, arranged sequentially. Panel B shows two graphs with blue-shaded regions, green and pink-highlighted boundaries for LPD and SPD, and plots of resistance and voltage versus a variable labeled LAD.]FIGURE 3 | Small-signal analysis of the LAM: (A) the small-signal equivalent circuit of the LAM; (B) the values of RM, Cs, and Rs varying with operating voltages over the range of V ∈ [10 V, 20 V].
3 LAM-BASED SECOND-ORDER NEURON
To construct a second-order neuronal circuit using the LAM, an external capacitor C0 is required to compensate for the inductive behavior of the LAM in locally active domains (LADs). The proposed circuit includes excitation and response signals (vin and vout = vC = vm), a biasing resistor R0, and capacitor C0, as depicted in Figure 4.
[image: Electronic circuit diagram showing a series connection from Vin to Vout with a resistor labeled Rin, a biasing circuit, and a second-order complex circuit including a memristor, capacitor labeled Cth, and impedance Zc. Input and output waveforms are displayed.]FIGURE 4 | LAM-based second-order neuronal circuit.
Frequency-domain analysis determines C0. Substituting s = iω into the impedance function Z (s, Q) in Equation 4 yields
[image: Mathematical equation showing Z of i omega comma Q equals the real part of Z of i omega comma Q plus the imaginary part of Z of i omega comma Q, where the real part is R sub M plus R sub S divided by one plus R sub S squared C sub S squared omega squared and the imaginary part is negative R sub S squared C sub S omega divided by one plus R sub S squared C sub S squared omega squared, labeled equation 5.]
The resonant frequency ω0 occurs when Re [Z (iω, Q)] = 0. From Equation 5, the corresponding imaginary part can be calculated. For oscillation initiation, the critical capacitance satisfies:
[image: Mathematical equation showing C sub zero equals negative one divided by omega naught times the imaginary part of i omega naught Q, which equals negative R sub C times C sub s divided by R s plus R M, labeled as equation six.]
3.1 Composite impedance function
The oscillation condition for the composite neuronal circuit is derived from its impedance function:
[image: Mathematical formula showing Z sub C as a function of s and Q, expressed as one over Z sub LC plus C sub 0 s, which equals the fraction with numerator R sub M s minus R sub D b sub 11, and denominator R sub M C sub 0 s squared plus the quantity one minus R sub D C sub 0 b sub 11 times s, minus b sub 11. Equation labeled as seven a.]
with two poles
[image: Mathematical equation showing p one and p two as solutions to a quadratic equation involving R sub D, C sub b one one, R sub M, C sub O, b one one, and C sub I, labeled as equation seven b.]
Figure 5A maps three operational domains: Locally Passive Domains (LPD, yellow), Unstable Locally Active Domains (RHP, right-half plane, cyan), Stable Locally Active Domains (EOC, edge of chaos, green) based on Equations 6, 7a, 7b. These domains align with the memristor’s LAD and LPD characteristics. RHP requires simultaneous local activity and instability, while EOC demands local activity with asymptotic stability.
[image: Panel A presents a color-coded chart with vertical voltage (V_IN) and capacitance (C) axes, highlighting left and right half-plane (LHP and RHP) and low-pass domain (LPD) regions, along with annotated parameter values and transitions. Panel B displays a complex plane plot with trajectories p₁ and p₂, marked eigenvalues, and real and imaginary axes, illustrating system behavior as voltage varies.]FIGURE 5 | (A) The parameter distributions of LAD, LPD, and EOC on Vin-C plane; (B) poles trajectories with the change of voltage Vin at C = 10 μF.
The pole evolution analysis in Equation 7b under bias voltages vin ∈ [–20.5 V, −9.5 V]∪[9.5 V, 20.5 V] and C = 10 μF reveals dynamic stability transitions, as depicted in Figure 5B. Red and blue curves represent the trajectories of p1 and p2, respectively, with oscillation occurring when vin ∈ [–19.03 V, −11.4 V]∪[11.4 V, 19.03 V] (orange region). In this region, at least one pole is in the right-half plane (RHP). However, stability persists when p1, 2 ∈ LHP (left-half plane). Particularly, Hopf bifurcation emerges at vin = ±11.4 V and ±19.03 V, characterized by conjugate complex pole pairs.
3.2 Periodic spikes
The state equations of the second-order neuronal circuit in Figure 4 are governed by
[image: Mathematical equations grouped within a bracket. First equation: dx/dt equals delta zero plus alpha one times x plus beta z times quantity v sub m over d sub x squared plus d zero, all squared. Second equation: dv sub m over dt equals one over C zero times quantity v in minus v sub m over R zero minus v sub m over d sub x squared plus d zero. Equation labeled as eight on the right.]
where x and vm represent memristor state and membrane potential, respectively.
With C0 = 10 μF and initial condition [x (0), vm (0)] = (0, 0), distinct neuromorphic behaviors emerge under varying stimuli vin according to Equation 8. For stimuli vin = 9.5 V (LPD) and 10.8 V (EOC), the trajectories converge from the initial point (0, 0) into (vC, x) = (1.27, 8.19) and (1.29, 7.58), respectively, maintaining resting states as shown in Figure 6A. Increasing vin to 18 V (see RHP domain in Figure 5A) triggers sustained periodic spikes with frequency f = 204 Hz, demonstrated by time-domain waveform of vC and limit cycles in the x-vout phase portrait (Figure 6B). We conclude that the neuron maintains quiescence when operating in the LPD or EOC domains, while inducing spikes under locally active operating points. Notably, spiking frequency modulation under varying vin = 12 V, 14.5 V, 16.5 V, and 18.5 V replicates biological neural encoding mechanisms (Figure 6C). Besides, the neuron emulates excitatory and inhibitory response transitions, as illustrated in Figure 6D.
[image: Panel A contains two line graphs showing variations in Vc (voltage) over time for different Vin values and a comparison of r(t) over time with a legend indicating input conditions. Panel B displays an oscillatory voltage trace over time and a corresponding closed curve in the r(t) versus Vc plane. Panel C presents a three-dimensional plot showing e(V) as a function of Vc and time, with annotated peaks highlighting specific frequencies. Panel D features a line graph illustrating a frequency response across two regions labeled excitatory and protective inhibition, divided by different background colors.]FIGURE 6 | Neuromorphic behaviors under some typical voltages: (A) vin = 9.5 V, 10.8 V, resting states; (B) vin = 18 V, periodic spikes; (C) spiking frequency modulation; (D) excitatory and protective inhibition behaviors.
4 LAM-BASED THIRD-ORDER NEURON
Second-order neurons cannot simulate complex neurodynamics such as chaos and bursting, then we construct a memristive neuron with third-order complexity, as shown in Figure 7, including an LAM, a capacitor, an inductor, a resistor, and a voltage source.
[image: Schematic diagram of a third-order electronic circuit showing an input square wave, resistor R0, inductor L, capacitor C, and an active component, with output plotted as a series of sharp pulses.]FIGURE 7 | The circuit schematic of the third-order memristive neuron model.
4.1 Stability condition
The impedance function ZT (s, Q) of third-order memristive neuron circuit is written as:
[image: Mathematical equation showing Z sub T of s and Q equals the reciprocal of the sum of 1 over Z of s and Q plus s times L, plus s times C. It is further simplified to a fraction with numerator L s squared plus the quantity R sub M minus b sub one L times s minus b sub one R sub D, and denominator L C s cubed plus the quantity R sub M minus L b sub one times C s squared plus the quantity 1 minus C R sub D b sub one times s minus b sub one. Equation is labeled 9a.]
whose three poles are
[image: Mathematical formula showing p sub one, p sub two, and p sub three with each equal to negative parenthesis R sub M minus b sub one L over three L plus a nested set of expressions involving cube roots, square roots, and fractions of q and delta, indexed by equation nine b.]
where [image: Mathematical equation for delta, showing a combination of fractions and terms with variables R sub M, b sub 1 L, C, R sub D, and L, including exponents and parentheses, indicating a complex physics or engineering formula.][image: Mathematical expression showing the quantity open parenthesis R sub M minus b sub eleven times L, squared, over nine L squared, close parenthesis, all raised to the power of three.], [image: Mathematical equation showing q equal to negative fraction of parentheses R sub M minus b sub one one L times one minus C R sub D b one one over thirty-two I C, plus two times parentheses R sub M minus b one one L cubed over twenty-seven I L cubed, minus b one one over I C.].
Based on Equation 9, the trajectory diagram of poles p1,2,3 within the range of 8.2 V ≤ Vin ≤ 20 V is depicted in Figure 8A, where blue, red, and yellow curves correspond to the trajectories of p1, p2, and p3, respectively, with arrows denoting directionality as vin increases. Oscillatory behavior occurs when Re p > 0, particularly within vin ∈ [11.12 V, 19.38 V] where Hopf bifurcation emerges at vin = 11.12 V and vin = 19.38 V, characterized by conjugate complex poles (Im p = 0). For vin ≤ 11.12 V, all poles reside in the left-half plane (LHP), driving the circuit to stable equilibrium. Conversely, right-half plane (RHP) poles dominate in the oscillatory regime, enabling sustained dynamics. Figures 8B,C confirm this operational range through Lyapunov exponent and bifurcation diagram analysis, demonstrating consistent periodic and chaotic domains in this range under L = 20 mH and C = 10 μF, where the chaotic ranges are vin ∈ [–18.98 V, −18.89 V] ∪[18.89 V, 18.98 V].
[image: Panel A shows a complex plane plot illustrating eigenvalue trajectories with Hopf bifurcation points marked. Panel B presents a bifurcation diagram and Lyapunov exponents as functions of parameter values, indicating regions of chaos and bifurcation. Panel C displays a phase space trajectory with chaotic regions highlighted and includes two inset zoomed views showing detail near specific parameter values.]FIGURE 8 | (A) Poles diagram with respect to biasing voltages vin when L = 20 mH, C = 10 μF; (B) Lyapunov exponents under L = 20 mH, C = 10 μF; (C) bifurcation diagram with respect to vin under L = 20 mH, C = 10 μF.
4.2 Monophasic neurodynamics
The third-order LAM-based neuronal circuit in Figure 7 is described by
[image: Mathematical system of equations showing four derivatives: dx/dt equals δ₀ plus α₁x plus β₂i_L squared; dvc/dt equals one over C times quantity vin minus vout over R₀ minus iL; diL/dt equals one over L times quantity vout minus (d₄x squared plus d₀)iL, labeled as equation ten.]
where x (memristor state), iL (inductor current), and vC (output voltage) define the neuron dynamics.
Under L = 20 mH and C = 10 μF, six monophasic neuromorphic behaviors emerge through parametric control of vin based on Equation 10. At vin = 19.3 V (RHP domain), subthreshold oscillations occur (Figure 9A). Reducing vin to 18.5 V and 18.9 V within the RHP domain induces periodic spikes (Figure 9B) and chaotic dynamics (Figure 9C), respectively. Time-varying stimulation vin = 9.9 t V (t ∈[1.2 s, 2.2 s]) triggers Class II excitability, maintaining constant spiking frequency despite voltage modulation (Figure 9D). For periodic square-wave inputs (T = 0.0625 s, A = 15 V), the neuron exhibits bursting patterns (Figure 9E). Besides, depolarizing after-potentials emerge under the parameter set of C = 0.5 μF, L = 20 mH and vin = 15 V, mimicking post-spike membrane potential modulation (Figure 9F). These results demonstrate voltage-controlled emulation of biological neuronal encoding.
[image: Six panels labeled A through F each display sets of graphs with blue and red traces, showing relationships between voltage, current, and time. The graphs illustrate different electrical behaviors, including oscillations, periodic signals, and phase space diagrams. Panel F includes a marked feature labeled "DAP." Each panel visually compares multiple variables, emphasizing the variability and dynamics of electrical signals.]FIGURE 9 | Monophasic neurodynamics under different input voltage vin with C = 10 μF and L = 20 mH: (A) subthreshold oscillation; (B) periodic spiking; (C) chaos; (D) Class II excitability; (E) periodic bursting. (F) depolarizing after-potential with C = 0.5 μF, L = 20 mH and vin = 15 V.
4.3 Biphasic spikes
The neuronal circuit in Figure 7 generates biphasic action potentials when driven by bipolar square-wave inputs (vin = 16 V, D = 50%). As shown in Figures 10A a T= 10 ms periodic stimulus (blue waveform) induces single-cycle bidirectional spiking, characterized by counterphase positive and negative pulses in the inductor current iL (red waveform). When we increase the period T of the input periodic square wave to 22.22 ms, 33.33 ms, 43.48 ms, 55.56 ms and 66.67 ms, the output waveform changes into two spikes, three spikes, four spikes, five spikes and six spikes in the upward direction and down direction in one period, as shown in Figures 10B–F.
[image: Six grouped data plots labeled A to F display three graphs each. Top graphs show blue square wave voltage and orange current. Middle graphs present corresponding current versus time. Bottom graphs illustrate orange Lissajous curves of current versus voltage, showing variations in waveform response.]FIGURE 10 | Biphasic action potentials generated by the neuron circuit, when driven by a bipolar periodic square wave with the amplitude vin = 16 V, duty cycles D = 50% and various period T. (A) T = 10.00 ms; (B) T = 22.22 ms; (C) T = 33.33 ms; (D) T = 43.48 ms; (E) T = 55.56 ms; (F) T = 66.67 ms.
4.4 Symmetric behaviors
The third-order memristive neuron demonstrates voltage-polarity-dependent symmetry in neurodynamic behaviors, originating from the voltage symmetry in Figure 5A. This nonlinear symmetry allows symmetrical action potential generation: positive DC voltages (vin > 0) induce upward-polarized spikes, while negative inputs (vin < 0) produce downward-polarized counterparts, as depicted in Figure 11.
[image: Six-panel figure showing time series and phase-space plots for two variables under different voltage conditions. Panels A, B, and C display two graphs each: voltage versus time (top) and current versus time (bottom) for varied voltages. Panels D, E, and F present corresponding phase-space plots of current versus voltage, indicating different dynamic behaviors for each voltage setting. Each panel is clearly labeled A through F.]FIGURE 11 | Voltage-polarity-modulated symmetric behaviors: (A) periodic spikes; (B) chaos; (C) resting states; (D) phase portraits of periodic spikes; (E) phase portraits of chaos; (F) phase portraits of resting states.
Under voltage excitation vin = ±18.5 V, the inductor current iL exhibits mirror-symmetric periodic spiking, i.e., upward polarization for positive bias (orange curve) versus downward polarization for negative bias (blue curve) in Figure 11A. Voltage modulation to ±18.9 V induces symmetrical chaotic dynamics with identical Lyapunov exponents but opposing phase-space trajectories, as shown in Figure 11B. Transient behavior analysis reveals bidirectional spike initiation: vin = 19.4 V triggers upward spikes while vin = −19.4 V generates downward equivalents, both returning to symmetrical resting potentials after undergoing 5 m (Figure 11C). The corresponding phase portraits of these three nonlinear behaviors are depicted in Figures 11D–F.
5 CIRCUIT EMULATOR
The circuit emulator of the memristive neuron with third-order complexity is constructed, as shown in Figure 12, which consists of two operational amplifiers (U1A and U1B), three analog multipliers (U1, U2, and U3), two capacitors (C0 and C1), one inductor L, and some resistors.
[image: Schematic diagram showing an electrical circuit on the left with a voltage source, inductor, capacitor, and load; on the right, a detailed block diagram of a measurement or analysis system featuring operational amplifiers and resistor networks in four numbered sections, labeled one to four, connected to measure and process signals.]FIGURE 12 | Circuit emulator schematic of the third-order memristive neuron.
As shown in Figure 12, the equivalent circuit of the locally active memristor comprises four functionally integrated modules: (1) Current sensing module ① monitors emulator input current in real-time, generating proportional output vi; (2) analog multiplier arrays ② and ④ implement nonlinear term computations; (3) State equation solver ③ converts DC bias Vd into memristor state variable x through differential integration, that is, vx = x; (4) Feedback integration completes the loop via R1. Kirchhoff’s voltage and current laws govern this circuit architecture, yielding three coupled differential equations that mathematically describe electrophysiological dynamics of the memristive neuron, as
[image: Mathematical equations describing a system of differential equations with three variables: C1 times dx over dt equals a parenthetical expression containing terms with Vd, x, R9, Rt, Rv, Rc, R8, R6, and R7, all multiplied by il; Co times dvc over dt equals vin minus vc over R0 minus iL; and L times diL over dt equals vc minus another parenthetical expression containing R1, R8, R11, 10R0, R10, x squared, and R1, all multiplied by iL. Equation is labeled as eleven.]
where the circuit parameters are R1 = 20 Ω, R0 = R2 = R4 = R6 = R7 = Rw = 1 kΩ, R3 = R5 = R8 = R9 = 10 kΩ, Rz = 7 kΩ, Rf = 33.3 kΩ, C1 = 10 nF, C0 = 9.5 μF, L = 20 mH, and Vd = −3 V.
The circuit simulated results calculated via Equation 11 are shown in Figure 13, reproducing key neurodynamics including periodic spikes, class II excitability, self-sustained oscillations, bursting, chaos, and depolarizing after-potential. These results demonstrate quantitative agreement with theoretical predictions.
[image: Six-panel composite figure showing neuronal activity patterns. Top row: periodic spiking with regular action potentials, class I excitability with increased firing, and self-sustained oscillation with continuous rhythmic signals. Middle row: periodic bursting with grouped spikes and interspersed quiescence. Bottom row: chaotic firing with irregular patterns, and depolarizing after-potential with a labeled DAP event following an action potential. Each panel includes two traces labeled V_m and [K+]_o.]FIGURE 13 | Circuit simulated neuromorphic dynamics under various biasing voltages.
6 CONCLUSION
This work constructs neuronal circuits leveraging a bi-S-type locally active memristor that amplifies weak signals through intrinsic local activity. The designed second-order circuit achieves voltage-modulated periodic spiking and adaptive inhibition, while the third-order extension emulates biological neural dynamics including monophasic and biphasic action potentials, chaos, and bursting, which are driven by memristive symmetry. The study of memristive neurons not only offers essential building blocks for neuromorphic computing architectures but also lays a theoretical reference for the development of more advanced and bio-realistic neural processing systems.
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With the rapid development of information technology, the demand for ensuring data security and privacy protection has become increasingly urgent. The purpose of this study is to address the limitations of existing image encryption methods and develop a more secure and efficient image encryption scheme. To achieve this, we adopt a research method that involves constructing a new type of discrete memristor hyperchaotic map by coupling an upgraded cosine discrete memristor with the Cubic map, and then conducting in-depth analysis of the system’s dynamic characteristics using phase diagrams, Lyapunov exponential spectra, and bifurcation diagrams to confirm its ability to reach a hyperchaotic state. Based on this hyperchaotic map, we propose a new image encryption scheme, generating high-quality chaotic sequences through its excellent chaotic characteristics to effectively scramble and diffuse image data, and also introducing a novel forward and reverse diffusion strategy in the diffusion process to enhance encryption efficiency. Through experiments on various images, we verify the algorithm’s effectiveness in improving encryption strength, reducing information leakage risks, and ensuring data security. Finally, the results of keyspace analysis, histogram analysis, correlation analysis, and information entropy demonstrate that the scheme has high security and practicability, along with good application prospects and practical value.
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1 INTRODUCTION
Chaos is a non-linear kinematic system widely used in the biological and social sciences of nature [1–5]. The application of chaotic systems due to their randomness, unpredictability, and initial state sensitivity brings many advantages [6–10], and hyperchaotic systems further extend this complexity [11–14]. Hyperchaotic systems are oscillators with two positive Lyapunov exponents, but chaotic systems have only one, so hyperchaotic systems have more complex dynamical behaviors than general chaotic systems [15–18]. In a continuous system, at least four dimensions or more are required to produce hyperchaos, while in discrete systems, it is possible to produce a hyperchaotic state in two dimensions and have abundant dynamic behaviors [19, 20]. Mostafaee et al. proposed a novel exponential hyperchaotic system with complex dynamics and analyzed the dynamic behaviors of chaotic attractors, bifurcation graphs, and equilibrium points [21].
Based on the principle of symmetry and completeness of circuit variables, Chua proposed a mathematical model to describe the relationship between charge and magnetic flux, namely, a memristor [22]. As a non-linear resistive element, memristor can adjust the resistance or conductance value through charge or magnetic flux due to its small size and low power consumption [23, 24], and its unique non-linear electrical transport characteristics similar to neural synapses have attracted much attention in many fields [25–28]. In addition, memristors are widely used in chaotic systems to improve nonlinear dynamic behavior [4, 29–31]. It should be noted that most of the research on memristive chaotic systems is limited to the continuous-time domain [32–36], but the common application of continuous memristors will lead to problems such as high computational cost and poor controllability, so the concept of discrete memristors is introduced. In addition, discrete maps have simpler iterative equations and higher computational efficiency than continuous systems [37–41].
Discrete memristor-fusion chaos mapping can generate rich dynamic behaviors such as hyperhybrid and coexisting attractors [42–45], and can also enhance sequence complexity and chaos range [46–48]. Pan et al. [49] proposed a discrete memristor model based on difference theory, describing in detail the process of constructing a discrete memristor by difference theory. Peng et al. [50] established a Simulink model of discrete memristor chaos mapping and verified the feasibility of discrete memristors. Liu et al. [38] reported a discrete two-dimensional memristive map and observed the coexistence of its hidden attractors. Bao et al. [51] reported a new two-dimensional discrete memristive hyperchaotic map.
With the continuous advancement of image encryption technology, researchers have found that it is difficult to improve image encryption with a single chaotic system [52, 53]. In order to ensure people’s privacy, Banu S et al. studied traditional encryption algorithms such as AES, RSA, and DES [54], but this algorithm is more suitable for text message encryption. Therefore, it is necessary to develop an efficient encryption scheme to solve the security problem of image encryption [55]. Researchers have investigated a variety of image encryption schemes, such as the application of chaos theory [56], optical methods [57], and compressive sensing [58] to image encryption algorithms. Among them, the characteristics of chaos theory are extremely consistent with the requirements of image encryption schemes, which also promotes the development of chaotic digital image encryption. An image encryption scheme based on double chaotic cyclic shift and Joseph’s problem uses the complexity and unpredictability of chaotic systems to enhance the encryption effect. Xu et al. proposed a fast image encryption algorithm based on compressed sensing and hyperchaotic map [59], which uses the sparse representation of compressed sensing and the randomness of chaotic map to realize image encryption and decryption. Chen et al. proposed an optical multiimage encryption method based on multiplane phase retrieval and interference [60], which significantly enhances encryption security and robustness of encryption through the complexity and unpredictability of optical components. However, when applied to image encryption, the image encryption algorithm is inefficient due to weaknesses such as discontinuous chaotic regions and narrow chaotic ranges of the chaotic map [61, 62]. In short, the structural defects of the image encryption algorithms and the low performance of chaos theory will lead to the inefficiency of the encryption algorithms, and it is difficult to resist ordinary security attacks.
With the rapid development of information technology, data security and privacy protection are confronted with unprecedented challenges. Traditional image encryption technologies are gradually showing their limitations when dealing with complex and changeable security threats, and there is an urgent need to explore more efficient and secure encryption solutions. In this context, this paper conducts in-depth research and achieves a series of innovative results. Firstly, a new two-dimensional hyperchaotic map is proposed. By skillfully combining the classical cubic map with the improved cosine discrete memristor, a new discrete memristive map is constructed, which provides new ideas for the research of chaotic systems. Secondly, the encryption method is innovated. The chaotic sequence generated by the new chaotic map is integrated into the encryption algorithm. Through operations such as index scrambling and forward and reverse diffusion of images, the image encryption process is optimized. Thirdly, the characteristics of the system are analyzed in multiple dimensions. By studying the parameter-dependent phase diagram, Lyapunov exponential spectrum, bifurcation diagram, and coexisting attractors, and verifying the pseudo-randomness, the chaotic characteristics of the system suitable for image encryption are revealed. Through simulation and analysis of the dynamic characteristics of the chaotic system, it is verified that the system is highly sensitive to parameters, thus providing a new approach for image encryption. Moreover, the chaotic sequence is incorporated into the encryption algorithm. Through operations like index scrambling and diffusion on images and security analysis, it is confirmed that the proposed scheme has extremely high security and anti-interference capabilities, indicating that the chaotic characteristics of the system possess great application value in the field of image encryption.
The general structure of this paper is as follows. Section 2 mainly introduces the Cubic map and the proposed discrete memristor, and then constructs the proposed discrete memristor hyperchaotic map and analyzes its performance; Section 3 shows the rich dynamics of a new discrete memristive hyperchaotic map; Section 4 details the image encryption algorithm; Section 5 summarizes the work of this paper and illustrates the prospects for future research directions.
2 DESIGN OF A NEW DISCRETE HYPERCHAOTIC MAP MODEL
2.1 Mathematical model of discrete hyperchaotic map
Discrete hyperchaotic map is a unique dynamic system, and the key point is to improve the complexity and security of the system with the help of high-dimensional chaos characteristics. Based on the Cubic map, a new discrete hyperchaotic map model can be constructed. Memristors, as the fourth fundamental circuit element, relate charge to magnetic flux and possess unique memory characteristics. In this paper, a cosine-type discrete memristor is proposed, in which the relationship between current and voltage and the relationship between internal charge variables is described as Equation 1:
[image: Mathematical equations enclosed in a left curly bracket: V of n equals M of q of n times I of n, and q of n plus one equals q of n plus I of n, labeled as equation one.]
where [image: Mathematical equation in italic font showing M of q of n equals cosine of q of n.] is the periodically varying discrete memory resistance, [image: Lowercase italic letter q in a serif font, appearing in black on a white background. The character features a distinctive curved descender typical of serif typefaces.] is the internal charge variable of the memristor, [image: Uppercase letter V in a serif font, displayed in gray and slightly blurred, centered on a white background.] and [image: Uppercase italic letter I in a serif font, presented in black on a white background.] are the voltage and current of the memristor respectively, and an improved class of discrete memristors can be obtained by increasing the parameters [image: Lowercase letter g in a serif font displayed in black on a white background.] and constant [image: Lowercase italic letter k in a serif font, typically used in mathematical or scientific notation.] of the coupling strength of the cosine discrete memristor, the memristor model is shown in Equation 2:
[image: Mathematical equation system with two expressions: V of n equals M of q of n multiplied by I of n equals bracket k plus g times cosine of q of n bracket multiplied by I of n, and q of n plus one equals q of n plus I of n. Equation labeled as two.]
Adding the power supply [image: Mathematical expression showing I of n equals A times sine of omega n, where n and omega are variables and A is a constant amplitude.] ([image: Lowercase Greek letter omega, bold and slightly blurred, centered on a white background.] is the radian frequency) as input to the discrete memristor produces a characteristic volt-ampere graph as shown in Figure 1. The fixed parameters [image: Mathematical equation reading uppercase A equals zero point one.], [image: Mathematical equation showing lowercase g equals one.], [image: Mathematical expression showing k equals one.] and [image: Mathematical equation shows q subscript zero equals zero point one.], it can be seen from the figure that the volt-ampere characteristic curve of the discrete memristor is a diasteretic loop diagram in the shape of “8” through the origin point, when [image: Mathematical equation displaying an uppercase italic A equals zero point one.] and [image: Mathematical expression displaying lowercase Greek letter omega equals zero point three.], 0.4, 0.7 are taken, Figure 1a is the volt-ampere characteristic curve of the frequency-dependent tight hysteresis loop shape, from which it can be seen that with the increase of radian frequency, the area of the hysteresis loop gradually decreases, and finally tends to a straight line. When [image: Mathematical expression displaying lowercase Greek letter omega equals zero point seven.] and [image: Mathematical equation displaying capital A equals zero point one.], 0.15, 0.2, the characteristic curve of the volt-ampere of the discrete memristor is shown in Figure 1b. As the amplitude A decreases, the area of the tight hysteresis loop gradually decreases and finally tends to a straight line. Therefore, its volt-ampere characteristics fully meet the requirements of generalized memristor characteristics.
[image: Two scientific line graphs labeled a and b show phase diagrams with horizontal axes labeled as in and vertical axes labeled as vn. Each panel contains colored closed curves—blue, red, and green—representing different parameter values as indicated by arrows and annotations. Panel a annotates ω values 0.3, 0.4, and 0.7, while panel b annotates A values 0.1, 0.5, and 2, demonstrating how phase trajectories change with varying parameters.]FIGURE 1 | Properties of discrete memristors when [image: Mathematical formula showing I of n equals A times sine of omega times n, with variables in italics and in a serif font.]. (a) Hysteresis loop at A = 0.1, ω = 0.3, 0.4, 0.7. (b) Hysteresis loop at ω = 0.7, A = 0.1, 0.15, 0.2.
Through the analysis of numerical simulation, the trajectory distribution and dynamic behavior characteristics of the model can be clearly observed under different initial conditions. It can be seen that the discrete hyperchaotic map not only opens up a new perspective for the research of chaos theory, but also lays a solid theoretical foundation for practical application in related fields.
2.2 Application of discrete memristor in hyperchaotic map
Compared with traditional chaotic maps, discrete hyperchaotic maps exhibit richer dynamic characteristics in parameter space, including irregular periodicity and extreme sensitivity to initial conditions [46]. In the hyperchaotic mapping system, the memristor interacts with other maps. The nonlinear characteristics of the memristor will be coupled with the characteristics of other components, thus generating more complex nonlinear dynamic behaviors, so as to improve the complexity and robustness of their chaotic behavior.
The cubic map is a discrete chaotic map with a simple structure. Its iterative equation is shown in Equation 3:
[image: Mathematical equation showing x of n plus one equals a times x of n squared minus b times x of n, labeled as equation three.]
By introducing the memristor model (Equation 2) into the Cubic map, a new two-dimensional discrete memristive chaotic system can be obtained:
[image: Mathematical system of two equations: x of n plus one equals a times x of n squared minus b times one plus g cosine of y of n times x of n; y of n plus one equals y of n plus x of n. Equation labeled four.]
When the parameters are [image: Mathematical variables a equals zero point three zero, g equals zero point six, and b equals one point five zero, each separated by a comma and formatted in italicized style.], the two indices are [image: Mathematical expression showing LE1 equals 0.506156.] and [image: Mathematical expression displaying LE2 equals zero point zero eight two zero three two eight.], respectively, the system (Equation 4) has two positive Lyapunov exponents, and the system is in a hyperchaotic state at this time. The phase diagram of its hyperchaotic attractor is shown in Figure 2. As can be seen in Figure 2, the structure of the map is simple, but the dynamic behavior is complex.
where [image: Lowercase italic letter “a” in a serif font, displayed in grayscale with a slightly blurred effect. The background is white.], [image: Lowercase italic letter b in a serif font, displayed in grayscale with slight blurring around the edges.], and [image: Lowercase italic letter g in a serif font, displayed in black against a white background.] are the control parameters, and in practical applications, the discrete memristor realizes the real-time adjustment of the dynamic behavior in the hyperchaotic map model through its variable resistance characteristics. This mechanism not only improves the adaptability of the system, but also expands the application range of the hyperchaotic map in the field of information encryption.
[image: Scatter plot with dense red points forms an irregular, overlapping shape spanning approximately minus three to three on the x one axis and zero to three on the y two axis.]FIGURE 2 | Hyperchaotic phase diagram.
3 CONSTRUCTION AND DYNAMIC ANALYSIS OF A NEW DISCRETE HYPERCHAOTIC MAP
3.1 Fixed point
In the study of chaotic systems, an immobile point is one of the important features of a dynamical system, denoting a state that remains unchanged during the evolution of the system. For a new type of discrete hyperchaotic map, it is of great theoretical and practical significance to determine the location and properties of its fixed points. The fixed point of 2D-DMC is the solution to Equation 5.
[image: Mathematical equation showing a system with two components: x star equals a times quantity x star cubed minus b times quantity one plus g cosine y star times x star, and y star equals y plus x star squared, labeled as equation five.]
From Equation 5, it follows that 2D-DMC has infinite fixed points, which can be expressed as [image: Mathematical expression showing F equals ordered pair x star, y star, which equals another ordered pair zero, Q.], where [image: Uppercase serif letter Q in black, displayed with a slightly blurred effect on a white background.] is an arbitrary constant. The characteristic equation of the system can be obtained using the Jacobian matrix of fixed points F as shown in Equation 6.
[image: Mathematical equation showing P of lambda equals a minus one times the quantity A plus b times the quantity one plus g times cosine theta, labeled as equation six.]
It can be seen that the eigenvalue [image: Mathematical expression displaying lambda subscript one equals one.] always lies in the unit circle, and whether [image: Mathematical symbol showing the lowercase Greek letter lambda followed by the subscript two.] lies inside or outside the unit circle depends on the parameters [image: Italic lowercase letters b and g separated by a comma, presented in a serif font style.] and the internal initial condition Q of the memristor. Therefore, by adjusting the parameters [image: Mathematical notation featuring the variables b and g in italic font, separated by a comma.] and [image: Uppercase letter Q in a serif font, displayed in bold with a shadow effect on a white background.], the fixed point of the 2D-DMC can be placed in an unstable or critical stable state.
The properties of these fixed points determine the complexity of hyperchaotic maps and their potential applications in image encryption. Further studies show that appropriate initial values and parameters can make fixed points exhibit rich dynamic behaviors, thus enhancing the security of chaotic systems.
In general, the study of fixed points provides an important theoretical basis for the application of new discrete hyperchaotic maps. Through in-depth analysis of the properties of fixed points, we can understand the behavior characteristics of chaotic systems and provide valuable guidance for the design and implementation of image encryption algorithms.
3.2 Parametric bifurcation graphs and lyapunov exponents
In the dynamic analysis, the chaotic characteristics of the model can be evaluated by using tools such as the Lyapunov exponent and the bifurcation diagram. In order to explore the sensitivity of the system to different parameters, the dynamic behavior of the system is analyzed in detail by a bifurcation diagram and the Lyapunov exponential spectrum.

	(1) The influence of the parameter [image: Lowercase italic letter b in a serif font, often used in mathematical or scientific notation.] on the system: set the parameter [image: Mathematical expression showing a equals zero point three comma g equals zero point six.] to explore the influence of the system parameter [image: Lowercase italic letter b in a serif font style, rendered in black on a white background.] on the discrete memristor system. The initial state is [image: Mathematical equation showing x sub one equals zero point one.] and [image: Mathematical expression displaying y one equals zero point one.]. In the range of [image: Mathematical expression showing a lowercase italic b followed by the set membership symbol, indicating b is an element of a set.][1.1, 1.5], [image: Text reading “LEs” in bold, italicized, serif font with a slightly blurred appearance on a white background.] and their bifurcation plots of the discrete memristor chaos map are shown in Figures 3a, b.

[image: Left panel shows a line graph of Lyapunov exponents LE1 and LE2 versus parameter b, with LE1 in green and LE2 in blue. Right panel displays a bifurcation diagram plotting x against b, representing dynamical behaviors and period-doubling. Both graphs illustrate system changes as b increases.]FIGURE 3 | The Lyapunov exponent spectrum and bifurcation diagram of [image: Mathematical notation showing a lowercase italic b followed by the set membership symbol, indicating that b is an element of a set.][1.1,1.5]. (a) Lyapunov exponent spectrum. (b) Bifurcation Graph.
As can be seen in the figure, when the parameter [image: Mathematical expression showing a lowercase italic b followed by the set membership symbol, indicating b is an element of a set.][1.43, 1.54] range, the system has two positive Lyapunov exponents, indicating that the system is in a hyperchaotic state in this range. For example, when b = 1.48, the phase diagram of the hyperchaotic attractor is shown in Figure 4a. In the range of parameters [image: Mathematical expression showing a lowercase italic b followed by the set membership symbol, indicating b is an element of a set.] (1.25,1.27), [image: Mathematical expression showing italicized lower-case b followed by the set membership symbol, meaning b is an element of a specified set.][1.28,1.29) and [image: Mathematical expression showing a lowercase italic b followed by the set membership symbol, indicating b is an element of a set.][1.3,1.41), the system has a positive Lyapunov index, indicating that the system is in a chaotic state in this range. For example, when [image: Mathematical equation displaying the variable b is equal to one point two six.], 1.29, and 1.35, the chaotic attractor of the system is shown in Figures 4b–d. When the parameters are in the range of [image: Mathematical expression in italic font showing the variable b followed by the set membership symbol, read as "b belongs to" or "b is an element of".][1.1, 1.25], the system is in a periodic state. For example, when [image: Mathematical expression showing the variable b is equal to one point one five.] and [image: Mathematical expression showing b equals one point two zero.], the chaotic attractor of the system is shown in Figures 4e, f. Through numerical simulation of the model, the rich trajectory behavior and dynamic behavior of the discrete memristor system can be observed under different initial conditions.
[image: Six-panel figure showing red point distributions in phase space plots, each with x-axis labeled x₁ and y-axis labeled y₂. Panels a through f display progressively sparser or more fragmented trajectories, illustrating varying behavior or attractor structures in each subplot.]FIGURE 4 | Phase diagram of a discrete memristive chaotic system as a function of parameter [image: Lowercase italic letter b in a serif font, black on a white background.]. (a) b = 1.48. (b) b = 1.26. (c) b = 1.29. (d) b = 1.35. (e) b = 1.15. (f) b = 1.20.

	(2) Impact of the parameter [image: Lowercase italic letter "a" displayed in a serif typeface on a white background. The character appears enlarged and slightly blurred.] on the system: Similarly, to explore the impact of parameter [image: Lowercase letter “a” in a serif font, displayed in black and white with a slight blur effect. No additional graphics or background elements are present.] on the system, parameter [image: Lowercase italic letter b in a serif font, rendered in black on a white background.] is set to 1.5, [image: Lowercase letter g in a serif typeface, displayed in a bold, black style on a white background.] to 0.6, and parameter [image: Lowercase letter "a" in a serif font displayed in grayscale with a soft, blurred effect.] varies within the range [2, 5]. The [image: Text reading “LEs” in a bold, italic serif font with slight blurring around the characters.] of the discrete memristor chaotic map and its bifurcation diagram are shown in Figure 5.

[image: Two scientific plots are shown side by side. Panel a presents a line graph with variables a on the x-axis and Xₗ on the y-axis, featuring two curves labeled LE1 and LE2, with LE1 showing a sharp drop near a value of four. Panel b shows a bifurcation diagram with variable a on the x-axis and xₗ on the y-axis, depicting a dense distribution of points that split and merge as a increases, indicating dynamic transitions in the system.]FIGURE 5 | The Lyapunov exponent spectrum and bifurcation diagram of [image: Mathematical notation showing a lowercase italic letter a followed by the set membership symbol, which looks like a rounded E.][2,5]. (a) Lyapunov exponential spectrum. (b) Bifurcation diagram.
As can be seen in Figure 5, when [image: Lowercase italic letters "a" and "e" are displayed side by side in a serif font with a blurred appearance against a white background.][2, 3.95) and [image: Mathematical expression showing a lowercase italic letter a followed by the set membership symbol, indicating the format “a element of” or “a belongs to”.](4.08, 5), the discrete memristor chaotic system exhibits hyperchaotic behavior. For example, when [image: Mathematical expression showing lowercase italic letter a equals two point five.] and 4.5, it can be seen that the system has two positive Lyapunov exponents, and the chaotic attractors of the system are shown in Figures 6a, b. When [image: Two lowercase italic letters, "a" and "e", appear in close proximity on a plain white background. Both characters have a bold, slightly blurred appearance, suggesting emphasis or focus.][3.95, 3.98], the system has a periodic attractor. For example, when [image: Mathematical expression showing the variable a is equal to three point nine six.], the chaotic attractor of the system is shown in Figure 6c. When [image: Mathematical notation showing a lowercase italic letter a followed by the set membership symbol, which resembles a stylized lowercase e.][4.06, 4.08], the system has a positive Lyapunov exponent and is in a chaotic state. For example, when [image: Mathematical expression showing italic lowercase a equals four point zero seven.], the chaotic attractor of the system is shown in Figure 6d. The analysis of the comprehensive parameter bifurcation diagram and the Lyapunov exponent can provide a solid theoretical basis for the application of new discrete hyperchaotic maps.
[image: Four scientific scatter plots labeled a through d show red data points illustrating two main cluster shapes on Cartesian axes labeled x1 and y2. Plots a, b, and d display clusters in varying densities and positions, while plot c has sparse, isolated points. All elements are set against white backgrounds with black axes and gridlines.]FIGURE 6 | Phase diagram of a discrete memristive chaotic system as a function of parameter [image: Lowercase letter "a" in a serif font, centered and displayed at low resolution against a plain background.]. (a) a = 2.5. (b) a = 4.5. (c) a = 3.96. (d) a = 4.07.

	(3) The influence of the parameter [image: Lowercase cursive letter g in a bold, black font on a white background.] on the system: In addition, to explore the influence of parameter [image: Lowercase cursive letter g in a bold, black font against a white background.] on the discrete memristor system, parameters [image: Mathematical expression showing the variable a equals two point five.] and [image: Mathematical expression showing the variable b is equal to one point five.] are set to make the parameter [image: Lowercase letter g in a serif italic font, featuring a smooth curved descender and a closed upper loop, rendered in grayscale.] change in the range of [image: Mathematical expression displaying an open interval from zero to zero point six one, enclosed in square brackets indicating inclusion of endpoints.], and the [image: Text in italic font reads “LEs” on a white background.] and their bifurcation diagrams of the chaotic map of the discrete memristor are shown in Figure 7.

[image: Four scientific plots labeled a, b, c, and d display mathematical or simulation results. Plot a shows two curves labeled LE1 and LE2 over variable g. Plot b features a bifurcation diagram with dense, branching lines. Plots c and d present scatterplots with red data points or clusters across x₁ and y₂ axes; plot d shows two prominent red clusters.]FIGURE 7 | The Lyapunov exponent spectrum, bifurcation diagram and phase diagram of [image: Lowercase letter g followed by the set membership symbol, which resembles a stylized letter e with a horizontal line intersecting the middle.][0,0.6]. (a) Lyapunov exponential spectrum. (b) Bifurcation diagram. (c) g = 0.42. (d) g = 0.6.
When parameters [image: Mathematical equation showing variables a equals 2.5 and b equals 1.5, both written in italicized font.] and initial values [image: Mathematical notation showing the coordinate point x one, y one equals left parenthesis zero point one comma zero point one right parenthesis.] are selected, the bifurcation plot and LE exponential spectra for parameter [image: Lowercase cursive letter g in black against a white background.] are shown in Figures 7a, b. As can be seen in Figure 7, with the change of parameter [image: Lowercase letter “g” in a serif typeface, rendered in black with a single-story design on a white background.], the discrete memristive chaotic system enters the chaotic state from the typical periodic bifurcation, and a complex window period appears in the chaotic region. When [image: Lowercase letter g followed by the set membership symbol, which resembles an epsilon with a horizontal line, indicating that g is an element of a set.][0.31, 0.32], the system has a positive LE exponent and presents a chaotic state, and at [image: Lowercase italic letter g followed by the mathematical symbol for set membership, which resembles a stylized E, indicating "g is an element of".][0, 0.31) and [image: Lowercase italic letter g followed by the mathematical symbol for set membership, which resembles a stylized E turned on its side.](0.32, 0.32], the discrete memristic chaotic system behaves periodically. For example, when [image: Mathematical expression showing g equals zero point four two.], the periodic attractor of the system is shown in Figure 7c. When [image: Lowercase italic letter g followed by the set membership symbol, representing "g is an element of" in mathematical notation.][0.57, 0.6], there are two positive LE exponents, and the discrete memristic chaotic system exhibits hyperchaotic behavior. For example, when [image: Mathematical expression showing g equals zero point six.], the discrete memristive chaotic attractor of the system is shown in Figure 7d.
The discrete memristive chaotic attractors corresponding to the different parameter values [image: Lowercase letter g in a serif font, shown in black with moderate stroke weight and a closed lower bowl, representing a typographic character in a high-contrast style.] are shown in Figure 8. It can be observed that the chaotic attractor has a complex fractal structure and with increasing parameter [image: Lowercase letter "g" in a bold, serif font, rendered in black with pronounced curves and a distinct closed lower loop.], the originally separated chaotic attractor, as shown in Figure 8a, gradually merges with the adjustment of system parameters to form a more complex and unique global attractor, as shown in Figure 8d. The synthesis process of chaotic attractors increases the dimension and complexity of the state space of the system, so that the discrete memristive chaotic system can be flexibly applied to the field of information security. In addition, in the discrete memristive chaotic system, the chaotic sequence generated by the composite attractor has better randomness and non-repeatability, and this complex dynamic behavior makes the output sequence of the system difficult to predict, which provides a high degree of nonlinear characteristics for the encryption process and increases the difficulty of cracking.
[image: Four scatter plots labeled a, b, c, and d display red point clusters on x₁ and y₂ axes, showing the progression of overlapping and separation of shapes, suggesting changes or transitions in data distribution.]FIGURE 8 | Phase diagram of [image: Lowercase italic letter g followed by the set membership symbol, read as “g belongs to” or “g is an element of.”][0.57,0.8] discrete memristive hyperchaotic map. (a) g = 0.58. (b) g = 0.65. (c) g = 0.70. (d) g = 0.80.
3.3 Random analysis
Discrete memristive hyperchaoticmap has been widely used to improve the credibility of data analysis, random number generation, and encrypted communication. In these areas, randomness is a critical requirement, as the resulting chaotic sequences that do not have sufficient randomness can easily be cracked or predicted, compromising the security of the application. Through the randomness test, the randomness and safety of chaotic sequences generated by the discrete memristive hyperchaotic map can be evaluated. To test the randomness of chaotic sequences, we performed two statistical tests, NIST and 0-1. NIST tests are a series of standardized tests that are used to evaluate and verify the security of random number generators and cryptographic algorithms to check whether the generated data are random. The test results are shown in Table 1, from which it can be found that all P values are greater than 0.01, indicating that the key system has successfully passed the test and the generated data have sufficient security and randomness.
TABLE 1 | The NIST test results.
[image: Table listing fifteen statistical test terms with corresponding P-values and results. All tests, including frequency, intra-block frequency, cumulative sums, runs, and linear complexity, have “Success” as their result despite varying P-values.]The “0-1 test” generally refers to a statistical test performed on a random number or chaotic sequence, mainly to evaluate whether the resulting sequence is sufficiently random to meet specific statistical requirements and application needs. Firstly, a chaotic sequence with a duration of more than 2000 was randomly selected, and the values were selected at a certain step interval for testing, and the test results are shown in Table 2. As you can see from the results in the table, the test result value is close to 1. This indicates that the discrete memristive hyperchaotic map exhibits a high degree of randomness.
TABLE 2 | The 0-1 test results.
[image: Data table showing numeric values for two sequences xn and yn across four samples S1 to S4. For xn, values are 0.9984, 0.9994, 0.9981, and 0.9972. For yn, values are 0.9981, 0.9982, 0.9965, and 0.9971.]Based on the results shown in Tables 1, 2, it can be concluded that the key system derived from the discrete memristive hyperchaos map has excellent randomness. Chaotic randomness testing is of great significance in application security, data analysis, and simulation, which can ensure the security of the application and meet the security and reliability requirements required for image encryption.
4 DESIGN AND IMPLEMENTATION OF IMAGE ENCRYPTION ALGORITHM
4.1 An image encryption scheme based on hyperchaotic map
In this section, a novel image encryption scheme based on a two-dimensional hyperchaotic map based on cyclic shift, forward and reverse diffusion, and global displacement is introduced. By combining key steps such as pixel diffusion and displacement, hyperchaotic sequences are used to reorder the pixel positions of the original image and disrupt the overall structure of the image. On the one hand, the displacement process ensures randomness, while diffusion further enhances the complexity of image encryption. The processed chaotic sequence and pixel value are used to perform XOR operations to further improve the encryption strength and reduce the risk of information leakage. The steps are as follows:

	1. Select the original image and perform channel separation, and select a grayscale image of [image: Mathematical expression displaying m times n, often used to represent the dimensions of a matrix or grid with m rows and n columns.] as the original image. [image: Mathematical expression showing m times n, with both variables in italic font.] chaotic sequences [image: Mathematical variables X of m and Y of n are displayed in italics, indicating functions or sequences labeled with parameters m and n.] are generated from the state variables [image: Mathematical expression showing x superscript zero comma y superscript zero.], and two chaotic sequences [image: Mathematical expression showing uppercase X followed by the variable m in parentheses, commonly representing a function X of m.] and [image: Mathematical expression showing uppercase Y with the argument n in parentheses, representing Y as a function of n.] are generated using a Gaussian chaotic neural network, which is used for row and column shifts, respectively.


	2. Generate m[image: Black "X" mark with thick lines on a white background, commonly used as a close or cancel icon in user interfaces.]n chaotic sequences from the state variables [image: Mathematical notation showing x to the power of zero, comma, y to the power of zero.] The chaotic sequences [image: Mathematical notation displaying Z, a function or variable dependent on two parameters m and n, both shown in italics within parentheses.] and the scrambled image are added pixel by pixel to achieve positive diffusion. Regenerate [image: Mathematical expression showing a lowercase m followed by a multiplication sign and a lowercase n, representing dimensions such as m by n.] chaotic sequences [image: Mathematical expression showing an uppercase italic W followed by parentheses containing the variables lowercase m and lowercase n, separated by a comma.] from state variables [image: Mathematical notation showing x to the power of zero comma y to the power of zero.]. The chaotic sequence [image: Mathematical expression in italics displaying capital W followed by the variables m and n in parentheses, representing a function or value dependent on m and n.] and the image after forward diffusion are subtracted pixel by pixel to achieve reverse diffusion.
	3. Based on the chaotic characteristics of the hyperchaotic sequences [image: Mathematical expression showing X open parenthesis m close parenthesis, with X in bold and m in italics.] and [image: Mathematical expression showing an uppercase italic Y followed by an open parenthesis, a lowercase italic n, and a closing parenthesis, representing the function Y of n.], a permutation index matrix is generated. According to the permutation index matrix, the position of the image is rearranged after forward and reverse diffusion processing. For each pixel position [image: Mathematical notation showing an ordered pair with variables i and j enclosed in parentheses, commonly used to represent coordinates or indices.] in the image, determine its corresponding displacement position [image: Mathematical expression displaying the coordinates left parenthesis i prime comma j prime right parenthesis, where both i and j have prime marks indicating modified or derived variables.] in the permutation index matrix and move the pixel value from position [image: Mathematical notation showing the coordinates left parenthesis i comma j right parenthesis in italic font.] to position [image: Mathematical expression in italic font showing coordinates in parentheses, i prime comma j prime, with both indices marked by a prime symbol.]. In this way, all pixels of the image are rearranged in the order determined by the chaotic sequence, which completely changes the pixel distribution of the image and hides the structure and information of the original image.

The image encryption algorithm of the new discrete memristive chaotic system provides a secure and powerful encryption scheme for grayscale image encryption. In the encryption stage, the plaintext image undergoes cyclic shift, forward and reverse diffusion, and global substitution operations, combined with the dynamic key generated by the chaotic system, and finally generates an irreversible ciphertext image,as shown in Figure 9a. During decryption, global substitution, forward and reverse diffusion, and cyclic shift are performed in reverse, and the original pixel value and position are restored by the same chaos key to achieve lossless decryption,as shown in Figure 9b.
[image: Two flowcharts labeled a and b illustrate an image encryption and decryption process. Both processes begin with a secret key and chaos system generating a chaos sequence. In panel a, the original image undergoes cyclic shift, forward and reverse diffusion, global substitution, and overlaying with chaotic images to produce an encrypted output. In panel b, the encrypted image is processed by removing chaotic images, inverse global permutation, reverse forward and reverse diffusion, and reverse cyclic displacement to reconstruct the original image. Iteration steps are visually indicated for both processes.]FIGURE 9 | Encryption and decryption process diagram. (a) Encryption Flow Diagram. (b) Decryption Process Diagram.
4.2 Performance analysis of encryption algorithms
In image encryption algorithms, the size of the key space directly determines the security of the encryption. To verify the feasibility and effectiveness of the proposed algorithm, simulation tests were performed using Matlab 2023b, with the key set as [image: Mathematical expression displaying g equals zero point six, a equals three, and b equals one point eight.] and [image: Mathematical expression stating that the initial values of x and y, denoted as x zero and y zero, are both equal to zero point one.]. A chaotic sequence required for encryption was generated using a discrete memristive chaotic system, and then the image was encrypted through the encryption algorithm. When establishing a new discrete hyperchaotic map, the selection of the key depends on multiple parameters, such as initial conditions and the dynamic characteristics of the system. As shown in Figures 10a, d, g is the original image before the above-mentioned algorithm is encrypted, Figures 10b, e, h are the encrypted image after using the above-mentioned encryption algorithm, and Figures 10c, f, i are the decryption image after using the above-mentioned algorithm. In order to verify the security of the encryption effect of the system, this paper conducted performance analysis, mainly including key space analysis, histogram analysis, correlation analysis, and information entropy analysis.
[image: Nine grayscale images arranged in a three-by-three grid labeled a to i; each row shows an original image, a distorted version with horizontal and vertical lines, and a restored image with reduced distortion, featuring people, a house, and a landscape.]FIGURE 10 | Encryption and decryption effects of images. (a) Plaintext image. (b) Encryption-image. (c) Decryption-image. (d) Plaintext image. (e) Encryption-image. (f) Decryption-image. (g) Plaintext image. (h) Encryption-image. (i) Decryption-image.
4.2.1 Key space analysis
In image encryption algorithms, the size of the key space directly determines the security of the encryption. Studies have shown that the larger the key space, the more difficult it is for attackers to crack. It is generally accepted that the size of the key space should be greater than 2,128 [45] to ensure security. The keys of IES-CTG are [image: Mathematical variables in italic font: a, b, g, x subscript zero.] and [image: Mathematical expression displaying the variable y with a subscript zero in italic font, commonly used to denote an initial value or starting point in equations.], and the parameter intervals [image: Lowercase italicized letters "a" and "e" in a serif font displayed side by side against a white background.][2,3], [image: Mathematical notation showing a lowercase italic b followed by the set membership symbol, indicating "b is an element of".][1.6,1.8], [image: Lowercase italic letter g followed by the set membership symbol, indicating that g is an element of a set.][0.5, 0.6] and the initial value range [image: Mathematical expression showing x sub zero belongs to a set, using the symbol for set membership.][0.1, 0.3], [image: Mathematical expression showing y sub zero is an element of, with the symbol for set membership following the variable.] [0.1, 0.3], and the results of image encryption and decryption are shown in Figure 10. Therefore, the key space S of the IES-CTG is shown in Equation 7:
[image: Mathematical expression showing S equals S1 times S2 times S3 times S4 times S5, which equals eight times ten to the seventy-sixth power, approximately two to the two hundred thirty-eighth power, followed by equation number seven.]
where [image: Mathematical expression listing five values: S sub one equals three minus two times ten to the power of fifteen, S sub two equals one point eight minus one point six times ten to the power of fifteen, S sub three equals zero point six minus zero point five times ten to the power of fifteen, S sub four equals zero point three minus zero point one times ten to the power of fifteen, and S sub five equals zero point three minus zero point one times ten to the power of fifteen.].
Brute-force attack refers to the situation where an attacker tries all possible key combinations until the correct key for decrypting the information is found. The size of the key space determines the number of possible key combinations. The larger the key space, the more difficult it is for the attacker to find the correct key through brute-force attempts. The key space designed for the novel discrete hyperchaotic map is [image: Mathematical expression showing two raised to the power of two hundred thirty-eight.], significantly larger than the recommended minimum of [image: Mathematical expression showing two raised to the power of one hundred twenty-eight.] for the key space, which can effectively resist brute-force attacks. Therefore, the algorithm has larger scale and complexity, and the proposed image encryption scheme can effectively resist external attacks and provide greater security.
4.2.2 Histogram analysis
In image encryption, histogram analysis is an important method to evaluate the encryption effect [63]. Figures 11a, c, e are the original images, and their corresponding image histograms are shown in Figures 11b, d, f, and their pixel value distribution can be visually seen. By comparing the encrypted histograms, as shown in Figures 11g, i, k, it can be observed that the encrypted image histograms should show more uniform distribution characteristics. The histogram of the decrypted image is obtained by the decryption algorithm as shown in Figures 11h, j, l. This balance indicates that confusing and dispersing the pixel information of the original image reduces its recognizability and improves security. That is, the attacker cannot obtain the histogram information of the plaintext image by statistically analyzing the histogram of the ciphertext image, indicating that the proposed algorithm has good diffusion and resistance to statistical attacks.
[image: Three rows display grayscale images in the first column and their corresponding histograms in three adjacent columns. Row one shows a low-light indoor scene with histograms showing gradual brightness changes. Row two presents a house exterior with histograms featuring distinct brightness peaks. Row three displays a tree and background with more varied histograms highlighting wider tonal distributions.]FIGURE 11 | Histograms of plaintext and ciphertext images. (a) Plaintext-image. (b) Histogram of Plaintext-image. (c) Histogram of Encryption-image. (d) Histogram of Decryption-image. (e) Plaintext-image. (f) Histogram of Plaintext-image. (g) Histogram of Encryption-image. (h) Histogram of Decryption-image. (i) Plaintext image. (j) Histogram of Plaintext image. (k) Histogram of Encryption-image. (l) Histogram of Decryption-image.
The entropy of the histogram is also a key indicator to evaluate the effectiveness of image encryption. The higher the entropy value, the higher the complexity of the encrypted image information and the stronger the ability to resist various attacks, as shown in Figures 11d, h, i. In this study, the encrypted image generated by the new discrete hyperchaotic map has a high histogram entropy value, which shows the effectiveness and security of the encryption algorithm in practical applications.
4.2.3 Relevance analysis
In the design and implementation of image encryption algorithms, correlation analysis is an important performance index. Low correlation means that there is almost no linear or non-linear relationship between the pixel values of the encrypted image, which effectively increases the difficulty of cracking. In order to evaluate the performance of the new discrete hyperchaotic map proposed in the process of image encryption, it is necessary to analyze the correlation of the images before and after encryption. Figures 12, 13 illustrate the correlation between the adjacent pixels of the plaintext image before image encryption and the ciphertext image after encryption, respectively.
[image: Three scatterplots labeled a, b, and c each display a strong upward diagonal trend with blue data points clustered around the diagonal but with increasing dispersion from left to right. Plot a has the tightest cluster, plot c shows the widest spread around the diagonal, and plot b is intermediate. All axes are marked with numerical scales.]FIGURE 12 | Correlation between adjacent pixels in a plaintext image. (a) Horizontal. (b) Vertical. (c) Diagonal.
[image: Three side-by-side scatter plots labeled a, b, and c each display a dense cloud of blue points centered around similar coordinates, illustrating comparable distributions or clustering of data points in each panel.]FIGURE 13 | Encrypted image adjacent pixel correlation. (a) Horizontal. (b) Vertical. (c) Diagonal.
The image is very strong, as shown in Figures 12a–c, and there is usually a correlation close to 1; However, the correlation between adjacent pixels in a ciphertext image is close to zero, as shown in Figures 13a–c. For different test images, different chaotic sequences are used for encryption, and the correlation difference between the encryption results can be observed, which further verifies the randomness of the new discrete hyperchaotic map, thus improving the security of the encrypted images.
As can be seen from the correlation coefficient of the ciphertext image in Table 3, the correlation between adjacent pixels in the ciphertext image is close to 0, and they are almost uncorrelated. The experimental results show that the designed image encryption algorithm maintains a high encryption strength under the condition of low correlation. Compared with traditional chaotic encryption algorithms, this novel discrete hyperchaotic mapping effectively reduces the correlation between different pixels, thereby enhancing the security of the encrypted image. When compared with more advanced chaotic encryption algorithms, this algorithm also has obvious advantages in terms of processing speed. It can complete the encryption and decryption processes of images more rapidly. Moreover, when facing common attack methods such as differential attacks and statistical attacks, it demonstrates stronger attack resistance, providing a more reliable guarantee for the security of image data.
TABLE 3 | Correlation coefficient of ciphertext images.
[image: Data table comparing four encryption schemes—three referenced articles and one labeled "This article"—across horizontal, vertical, and diagonal values. Horizontal values range from negative zero point zero one five eight to zero point zero zero five five. Vertical values range from negative zero point zero zero eight nine to zero point zero zero three two. Diagonal values range from negative zero point zero zero three nine to zero point zero four two four.]4.2.4 Information entropy analysis
Information entropy is a basic concept of information theory. It is an important index for measuring the randomness and uncertainty of information. Generally, it is around 8.0, indicating that the encrypted image has good randomness in the pixel intensity distribution. In this study, a new encryption algorithm based on a discrete hyperchaotic map is used to compare the entropy of the original image and the encrypted image. It can be seen from Table 4 that after IES - CTG encryption processing, the information entropy of the ciphertext image is very close to the ideal value of 8, and compared to some existing schemes, it has certain advantages.
TABLE 4 | Information entropy of ciphertext images with different encryption schemes.
[image: Table comparing information entropy values from three sources: Reference thirty-eight shows seven point nine nine zero nine, Reference forty shows seven point nine nine seven one, and this article shows seven point nine nine nine three.]Furthermore, the variation law of the information entropy under different chaotic parameters is analyzed, and the information entropy performance of the encryption results is affected by adjusting the parameters of the chaotic system. Under the corresponding parameter settings, the increase in the entropy value shows significant sensitivity, which further verifies the effectiveness of chaos characteristics in enhancing the security of image encryption.
5 CONCLUSION
In this paper, we conduct in-depth research and discussion on a new type of discrete hyperchaotic map and its application in image encryption. By designing and analyzing a novel discrete hyperchaotic map model, we not only clarify its dynamic characteristics, but also reveal its advantages in generating high-quality chaotic sequences. Then, an image encryption algorithm based on a novel discrete hyperchaotic map design is implemented on the MATLAB platform. The key is used to scramble and diffuse the digital image to be encrypted at the pixel level to improve the security of the image. The experimental results show that the proposed encryption algorithm has significant performance advantages. By comparing images with different encryption effects, the security of encrypted images was evaluated using methods such as histogram analysis, information entropy calculation, and adjacent pixel correlation detection. The experimental results show that the encrypted image presents a good degree of visual chaos and the information entropy value is significantly improved, indicating that its security is better than that of traditional image encryption methods.
The new discrete hyperchaotic map and its application in image encryption have important theoretical value and practical significance. Future research can further explore the application potential of other chaos map models in different information security fields, to promote the progress and innovation of overall information encryption technology.
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Accurate and generalizable segmentation of medical images remains a challenging task due to boundary ambiguity and variations across domains. In this paper, an implicit transformer framework with a high-frequency adapter for medical image segmentation (HiImp-SMI) is proposed. A new dual-branch architecture is designed to simultaneously process spatial and frequency information, enhancing both boundary refinement and domain adaptability. Specifically, a Channel Attention Block selectively amplifies high-frequency boundary cues, improving contour delineation. A Multi-Branch Cross-Attention Block facilitates efficient hierarchical feature fusion, addressing challenges in multi-scale representation.Additionally, a ViT-Conv Fusion Block adaptively integrates global contextual awareness from Transformer features with local structural details, thereby significantly boosting cross-domain generalization. The entire network is trained in a supervised end-to-end manner, with frequency-adaptive modules integrated into the encoding stages of the Transformer backbone. Experimental evaluations show that HiImp-SMI consistently outperforms mainstream models on the Kvasir-Sessile and BCV datasets, including state-of-the-art implicit methods. For example, on the Kvasir-Sessile dataset, HiImp-SMI achieves a Dice score of 92.39%, outperforming I-MedSAM by 1%. On BCV, it demonstrates robust multi-class segmentation with consistent superiority across organs. These quantitative results demonstrate the framework’s effectiveness in refining boundary precision, optimizing multi-scale feature representation, and improving cross-dataset generalization. This improvement is largely attributed to the dual-branch design and the integration of frequency-aware attention mechanisms, which enable the model to capture both anatomical details and domain-robust features. The proposed framework may serve as a flexible baseline for future work involving implicit modeling and multi-modal representation learning in medical image analysis.
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1 INTRODUCTION
Medical image segmentation plays a crucial role in assisting disease diagnosis and guiding clinical treatment. Traditional discrete methods based on convolutional neural networks (CNNs), such as U-Net [1], nnU-Net [2], and PraNet [3], effectively integrate multi-scale features but remain highly sensitive to variations in data distribution, thus limiting cross-domain generalization. Although boundary-aware methods, such as Boundary-aware U-Net [4], WM-DOVA [5], Hausdorff distance-based approaches [6], dropout-based calibration [7], and neural network calibration [8], have improved localization precision and feature representation, these methods still face challenges when dealing with complex medical structures and achieving consistent segmentation performance across different domains. Additionally, multi-scale residual architectures like Res2Net [9] further enhance feature representation but are still limited in boundary preservation.
Recent developments have introduced Transformer-based architectures, such as TransUNet [10] and UNETR [11], leveraging global contextual awareness through self-attention mechanisms [12]. Despite superior global feature capture capabilities, these approaches often underperform in local boundary refinement and require extensive training data for effective generalization. Further advancements, such as LoRA [13], aim to improve Transformer efficiency and generalization but do not explicitly optimize for boundary segmentation accuracy. Furthermore, adaptations based on the Segment Anything Model (SAM) [14], including MedSAM [15], SAM-based 3D extensions [16], and customized SAM models [17], generally improve generalization capabilities but typically neglect fine-grained feature integration, resulting in limited boundary segmentation accuracy. Additional SAM-related studies, such as NTo3D [18], Customized SAM [19], SAM-Med2D [20], DiffDP [21], spatial prior-based approaches [22], and mask-enhanced SAM models [23], have explored further improvements but continue to face challenges with boundary precision.
Beyond conventional deep learning approaches, emerging research spans several interdisciplinary directions that address these challenges. For instance, memristor- and memcapacitor-based neural network models have been proposed to enable neuromorphic hardware implementations [24, 25]; such analog in-memory circuits have demonstrated improved image segmentation speed and accuracy via parallel high-efficiency computations [26, 27]. Recent studies have further explored Hamiltonian conservative chaotic systems integrated with memristors for modeling and FPGA implementation, enhancing the physical interpretability and stability of neuromorphic designs [28]. Similarly, chaotic and hyperchaotic dynamical systems have been exploited in image encryption, leveraging their high-dimensional unpredictability to enhance security. In particular, memristor-coupled cellular neural networks based on resonant tunneling diodes have been applied in forensic digital image protection, offering a secure hardware foundation for sensitive applications [29]. Some studies even integrate memristive chaotic circuits to strengthen resistance against differential attacks [30], and in general hyper-chaos offers greater randomness and key space than lower-dimensional maps [31], yielding encryption schemes with robust immunity to cryptanalytic attacks [32]. Other researchers have implemented novel hyperchaotic systems in FPGA to support audio encryption, demonstrating the practical deployment of such dynamics on low-power reconfigurable hardware [33, 34]. In IoT contexts, researchers have developed lightweight image encryption and steganography techniques to secure multimedia data with minimal computational overhead [35, 36], addressing the limitations of earlier cryptosystems on resource-constrained devices [37]. Moreover, discrete n-dimensional hyperchaotic maps with customizable Lyapunov exponents have been proposed to expand the design space for secure communications and embedded cryptography [38]. Additionally, integrating multi-modal information has become crucial for improving diagnostic accuracy, prompting new architectures that effectively fuse heterogeneous medical data streams [39, 40]. Equally important, domain-generalization strategies are being pursued to ensure models remain robust across disparate imaging domains, tackling the severe performance degradation caused by cross-modality shifts without requiring retraining on target data [41]. Finally, a concerted effort is underway to translate these advances into practical deployments: specialized DSP-based accelerators and other hardware implementations are achieving real-time image processing with low power consumption [42, 43], and even complex neuromorphic networks are being prototyped on DSP platforms [25, 26]. These developments across hardware design, secure encryption, lightweight algorithms, and multi-modal learning collectively strengthen the foundation for next-generation medical image segmentation systems.
Implicit neural representation methods represent another advancement, employing continuous mappings from coordinate spaces to representation spaces, exemplified by OSSNet [44], IOSNet [45], and SWIPE [46]. These models exhibit improved segmentation robustness across resolutions but remain constrained by their reliance on traditional convolutional encoders, limiting their capacity to simultaneously capture detailed boundary information and global contextual features. Further implicit methods, including NeRF [47], NUDF [48], NISF [49], ImplicitAtlas [50], implicit neural representations survey [51], shape reconstruction from sparse measurements [52], implicit functions for 3D reconstruction [53], MRI super-resolution [16], and volumetric SAM adaptations [54], have significant potential but share similar limitations. Frequency-domain adapters, like those in I-MedSAM [55], have enhanced boundary delineation, but single-adapter designs remain insufficient for comprehensive multi-scale feature integration.
To address these challenges, this study introduces HiImp-SMI, an implicit Transformer-based medical image segmentation framework incorporating three key innovations: (1) a Channel Attention Block to explicitly enhance high-frequency boundary information, (2) a Multi-Branch Cross-Attention Block to facilitate efficient hierarchical feature fusion across different scales, and (3) a ViT-Conv Fusion Block designed to integrate global context from Transformer-based architectures with local fine-grained features extracted by convolutional networks. Experimental validations conducted on the Kvasir-Sessile and BCV datasets demonstrate that HiImp-SMI outperforms existing segmentation methods, highlighting its effectiveness in boundary precision, multi-scale feature representation, and cross-dataset generalization capabilities.
The remainder of this paper is organized as follows: Section 2 details the proposed HiImp-SMI framework; Section 3 presents the experimental setup and results; and Section 4 concludes the study, providing directions for future research.
2 MATERIALS AND METHODS
The overall architecture of the proposed HiImp-SMI framework is depicted in Figure 1. It comprises a dual-branch encoder structure that jointly exploits spatial-domain and frequency-domain information. Given an input image [image: Uppercase letter I in a serif font, rendered in black on a white background.], a Fast Fourier Transform (FFT) is applied to derive its frequency representation [image: Mathematical notation showing the variable I subscript F F T, typically representing the result of a fast Fourier transform.], which highlights high-frequency components corresponding to anatomical boundaries and texture transitions. By integrating [image: Mathematical variable I subscript FFT, typically representing an intensity or value related to the Fast Fourier Transform in scientific or engineering contexts.] into the encoder, our Channel Attention Block can selectively amplify boundary-sensitive features, enhancing fine-grained localization and generalization to unseen domains. These embeddings are then processed by three key modules: a Channel Attention Block, which selectively enhances high-frequency boundary details; a Multi-Branch Cross Attention Block, designed to enable effective feature exchange across hierarchical levels; and a ViT-Conv Fusion Block, which adaptively integrates global contextual information from the Transformer branch and local structural features from the convolutional branch. Through this architecture, HiImp-SMI aims to achieve more precise boundary segmentation, stronger multi-scale representation, and enhanced cross-domain generalization.
[image: Flowchart illustrating a medical image encoder architecture, showing connections from an MRI scan and prompts through modules like ViT Block, frequency adapters, patch embedding, upsampling, FFT, and multi-branch cross attention blocks, leading to coordinate output and decoder components.]FIGURE 1 | Overall architecture of our proposed model.
2.1 Channel attention block
In this study, SAM employs a Vision Transformer (ViT) as the image encoder, pretrained on a large-scale natural image dataset. To preserve the strong feature representation capability of the pretrained ViT, its weights are kept frozen during training. Instead, a local adapter module is introduced to incorporate localized inductive biases into the model, as illustrated in Figure 2.
[image: Block diagram illustrating a neural network module processing an input feature map through sequential steps: layer normalization, pointwise convolution, depthwise convolution, squeeze-and-excitation attention, another pointwise convolution, and a residual connection merged by summation.]FIGURE 2 | The Channel Attention Block for domain-specific feature enhancement in the ViT encoder.
The Channel Attention Block enhances the domain-specific feature extraction capability of the pretrained Vision Transformer (ViT) without fine-tuning its weights. The procedure involves the following steps:
	Step 1: Obtain the input embedding [image: Mathematical variable notation showing uppercase italic F with a subscript reading v i t.] from the ViT attention block. This embedding carries high-level semantic features. It serves as the input to the channel attention block.
	Step 2: Apply layer normalization (LN) to stabilize feature distributions. LN normalizes each channel to reduce internal covariate shift. This improves training stability and convergence.
	Step 3: Perform a pointwise convolution [image: Mathematical notation showing an operation in parentheses labeled as Conv sub one by one, commonly representing a one by one convolution in neural networks.] to adjust channel dimensions. This operation projects features into a latent space. It preserves spatial structure while enabling channel-wise transformation.
	Step 4: Execute a depthwise convolution [image: Mathematical notation displaying open parenthesis, letters D W C o n v, subscript three by three, and close parenthesis, indicating a three by three depthwise convolution operation.] to capture spatial information. Each channel is convolved independently to extract local patterns. This enhances spatial modeling without increasing parameter count significantly.
	Step 5: Apply a Squeeze-and-Excitation (SE) block to model channel-wise dependencies. Specifically, the SE block performs global average pooling followed by two fully connected layers and non-linear activations to generate a channel attention vector [image: Lowercase letter s in a bold, black serif font centered on a white background. The image is small and highly pixelated, making the letter appear slightly blurry.], which is then applied to recalibrate the feature map, as shown in Equation 1:

[image: Mathematical equations defining the Squeeze-and-Excitation operation: z equals one divided by H times W, sum over i and j of F sub i j; s equals sigmoid of W sub two times delta of W sub one times z; SE of F equals F elementwise multiplied by s, labeled as equation one.]
Here, [image: Mathematical expression showing F belonging to the set of real-valued tensors with dimensions C by H by W.] denotes the input feature map, and [image: Mathematical notation showing the variable z is an element of the set of real numbers raised to the power of C, or z belongs to R superscript C.] is the channel-wise descriptor obtained by global average pooling. [image: Mathematical variable W with subscript one, commonly used to denote the first instance or element of a series or set in equations or scientific notation.] and [image: Mathematical notation showing an italic uppercase W with the number two in subscript, commonly used to denote variables, indices, or specific weights in equations.] are learnable weight matrices of two fully connected layers. [image: Mathematical notation for the Dirac delta function, showing the Greek letter delta followed by an open parenthesis, a centered dot, and a close parenthesis.] and [image: Mathematical notation showing the Greek letter sigma followed by an open parenthesis, a centered dot, and a close parenthesis, commonly representing a function applied to an input variable.] denote the ReLU and sigmoid activation functions, respectively. The resulting attention vector [image: Lowercase letter s in a bold, black font centered on a white background.] is used to rescale each channel of [image: A capital letter F in a serif font style displayed in black on a white background.] via element-wise multiplication, enabling adaptive channel emphasis.
Step 6: Integrate the processed features using another pointwise convolution [image: Mathematical text displays an open parenthesis, followed by "Conv one times one", and a closing parenthesis, indicating a one-by-one convolution operation.] to obtain refined embedding [image: Mathematical expression displaying F sub v i t with a caret or hat symbol above the letter F, typically denoting an estimated or predicted value.], as defined in Equation 2:
[image: Mathematical formula expressing F_vit as Conv one by one of SE applied to DWConv three by three of Conv one by one of LN applied to F_wv, labeled as equation two.]

	Step 7: Merge the refined features with the original features through a residual connection, as formulated in Equation 3:

[image: Mathematical equation showing F sub tot equals F sub wit superscript plus P sub wit, labeled equation three in parentheses.]
2.2 Multi-branch Cross Attention Block
Figure 3 illustrates the structure of the Multi-branch Cross Attention Block, which integrates deep features from the ViT branch with shallow features from a convolutional branch. The procedure involves the following steps:
	Step 1: Extract shallow features [image: Mathematical notation showing an uppercase italic F with a lowercase italic subscript s, enclosed in parentheses.] from the resized input image using a lightweight convolutional block. This step captures low-level visual patterns such as edges and textures. The convolutional block is designed to be efficient for early-stage feature extraction.
	Step 2: Generate queries, keys, and values for the ViT branch and convolutional branch separately, as described in Equation 4:

[image: Mathematical notation shows two systems of equations, each enclosed by a left curly brace. The first system includes Q sub d equals W sub d transpose F sub d, K sub d equals W sub k transpose square brackets F sub b semicolon F sub d, and V sub d equals W sub v transpose F sub d. The second system includes Q equals W sub q transpose F sub q, K equals W sub k transpose square brackets F sub p semicolon F sub d, and V equals W sub v transpose F sub d. Equation is labeled as four.]
Here, [image: Mathematical notation showing an uppercase italic F with a lowercase italic subscript d, commonly used to represent drag force in physics.] and [image: Mathematical expression showing an italic uppercase F with a lowercase s as a subscript, commonly used to represent static friction force in physics.] denote deep features from the ViT branch and shallow features from the convolutional branch, respectively. [image: Mathematical notation showing the variable capital F with a subscript lowercase b.] represents bottleneck features shared across branches. [image: Mathematical variable capital W with a subscript lowercase q, rendered in italic font.], [image: Mathematical notation showing an uppercase italic W with a lowercase italic k as a subscript.], and [image: Mathematical expression showing an uppercase italic W with a lowercase italic nu as a subscript.] are learnable linear projection matrices used to obtain queries [image: Uppercase letter Q in bold serif font surrounded by two curved parentheses, forming a mathematical or logical notation. Text is black on a white background.], keys [image: Mathematical expression showing the letter K in italics enclosed within a pair of round parentheses.], and values [image: Mathematical notation displaying an uppercase italicized V enclosed in parentheses.] for attention computation.
	Step 3: Fuse features across branches using deformable attention, detailed in Equation 5:

[image: Mathematical expression showing two equations in a left curly bracket: F sub d equals DeformAttn, argument Q sub d, K sub d, V sub d; F sub r equals DeformAttn, argument Q sub r, K sub r, V sub r; labeled as equation five.]
Here, [image: Mathematical expression showing F subscript d and superscript c, indicating F with subscript d and exponent c.] and [image: Mathematical expression showing an uppercase italic F with a lowercase italic s subscript.] represent the cross-attended features refined via deformable attention in the ViT and convolutional branches, respectively. Deformable attention adaptively samples spatial locations, enabling the model to focus on semantically relevant regions. This mechanism facilitates more effective feature alignment across the two branches.
[image: Diagram showing two parallel processing streams, one in blue and one in red, each containing deformable attention, layer normalization, and feed-forward modules. Arrows indicate information flow between components, with shared queries Q and value representations V₁ and V₂.]FIGURE 3 | The Multi-branch Cross Attention Block for fusing ViT and convolutional features via cross-attention.

	Step 4: Refine the fused features with residual feedforward networks (FFN) and layer normalization (LN)—this refinement is formalized in Equation 6:

[image: Mathematical expression showing two equations: Fd prime equals FFN of LN applied to the sum of Fd and Fu, plus Fd plus Fu; Fu prime equals FFN of LN applied to the sum of Fu and Fd, plus Fu plus Fd; labeled as equation six.]
Here, [image: Mathematical notation showing F subscript d, indicating a force labeled with the variable d, commonly used for drag force in physics.] and [image: Mathematical notation showing the variable F with a subscript s and a superscript 1.] denote the updated deep and shallow features after refinement. The FFN enhances non-linear representation capacity, while LN improves training stability. The residual connection facilitates efficient information preservation and gradient flow.
2.3 ViT-Conv fusion block
A fusion block equipped with an automatic selection mechanism is constructed to integrate the diverse information provided by convolutional features and Transformer features. The architectural details of this module are illustrated in Figure 4.
[image: Flowchart showing two parallel feature processing streams, Fd and Fs, each passing through sequences of fully connected layers and GELU activation, then merging by addition. A sigmoid function determines a weight ω, which guides a weighted sum combining outputs, resulting in Foutput.]FIGURE 4 | The ViT-Conv Fusion Block for adaptive integration of Transformer and convolutional features.
The ViT-Conv Fusion Block adaptively integrates convolutional and Transformer features through these steps:
	Step 1: Process deep [image: Mathematical expression showing an italic capital F subscript d enclosed in parentheses.] and shallow [image: Mathematical expression showing an italic capital F with a lowercase subscript s, all within parentheses.] features individually with a channel attention layer to obtain logits [image: Mathematical expression displaying the ordered pair left parenthesis phi sub d comma phi sub s right parenthesis, with Greek letter phi and subscripts d and s.]. Channel attention highlights informative channels in each branch. This yields two attention logits representing the feature importance.
	Step 2: Aggregate logits from both branches to compute an element- wise selection mask using a sigmoid function. Equation 7 defines this aggregation process.

[image: Mathematical formula showing w equals Sigmoid of the sum of phi sub y and phi sub x, labeled as equation seven.]
Here, [image: Lowercase Greek letter omega in a serif font, displayed in black on a white background. Character is centered and clearly legible.] denotes the attention-based selection mask used to balance feature contributions from the two branches. The summed logits [image: Mathematical expression showing phi sub d plus phi sub s.] capture joint channel importance. The sigmoid function constrains the mask values between 0 and 1, enabling soft feature weighting.
	Step 3: Compute the final fused output via element-wise multiplication, as specified in Equation 8:

[image: Mathematical formula showing F sub output equals F sub c with a circle operator omega plus F sub s with a circle operator one minus omega, labeled as equation eight.]
Here, [image: Mathematical expression showing an uppercase italic F with subscript d and superscript zero.] and [image: Mathematical notation showing the variable F with a subscript s, typically representing static friction force in physics equations.] represent the output features from the Transformer and convolutional branches, respectively. [image: Mathematical notation showing a capital italic F with the word output in subscript, representing F sub output.] denotes the final fused representation. The selection mask [image: Lowercase Greek letter omega in a serif font, displayed in black on a white background.] adaptively controls the contribution of each branch, enabling dynamic integration of global and local information.
2.4 Loss function
To supervise both the coarse and fine segmentation branches during training, a Progressive Dual-Branch Loss (PDB Loss) is proposed. This loss function dynamically adjusts the supervision weights between the coarse and fine predictions over training epochs. The total training loss is precisely defined by Equation 9:
[image: Mathematical equation for a loss function labeled as L sub PDB, defined as the average of a sum over B samples, combining two terms weighted by alpha and one minus alpha, with each term involving a Dice Cross-Entropy loss computed for coarse and fine predictions compared to ground truth. Equation number nine appears on the right.]
Here, [image: Mathematical expression showing y hat with a superscript i in parentheses, followed by the subscript coarse.] and [image: Mathematical notation showing y hat with a superscript lowercase i in parentheses and the subscript "fine," indicating a specific indexed or fine-grained estimated value.] are the predicted masks from the coarse and fine branches for the [image: Lowercase italic letter i with a dot above it, displayed in a serif font on a white background.]-th sample, and [image: Mathematical expression displaying y with a superscript i in parentheses, commonly used to represent the ith observation or data point in a sequence.] is the corresponding ground truth. [image: Italicized uppercase letter B in a serif font, displayed in black against a white background.] denotes the batch size. [image: Mathematical expression showing alpha belongs to the closed interval from zero to one.] is a progressive weight that determines the relative contribution of the fine branch.
For each prediction, a hybrid loss combining Dice and binary cross‑entropy (BCE) is used, aspresented in Equation 10:
[image: Mathematical equation illustrating loss calculation: L subscript DiceG (ŷ, y) equals α subscript dice times L subscript Dice (ŷ, y) plus λ subscript reg times L subscript CE (ŷ, y), labeled as equation ten.]
The loss weights were set as [image: Mathematical expression showing the lambda subscript dice parameter is equal to zero point eight.] and [image: Mathematical expression showing lambda subscript c e equals zero point two.]. To shift the learning focus from coarse to fine predictions over time, the coefficient [image: Lowercase Greek letter alpha in a bold, serif font, presented in black on a white background. The character appears centered and prominently displayed for clear identification.] was scheduled according to the current epoch [image: Lowercase letter t in a serif font displayed in black on a white background.] as given in Equation 11:
[image: Mathematical equation defining alpha as the minimum of the expression open parenthesis t plus one divided by five close parenthesis and one point zero, labeled as equation eleven.]
This progressive weighting strategy encourages the model to learn global structural features in early epochs via the coarse branch and gradually refine local boundaries and details through the fine branch.
3 EXPERIMENTS
In this section, a series of comprehensive experiments is performed to evaluate the effectiveness of the proposed HiImp-SMI on medical image segmentation tasks. Initially, the experimental setup is detailed, including dataset selection and training configurations. Subsequently, the performance of HiImp-SMI is quantitatively and qualitatively compared with state-of-the-art implicit and discrete segmentation approaches, specifically addressing binary polyp segmentation on the Kvasir-Sessile dataset [13] and multi-class organ segmentation on the BCV dataset [56]. Additionally, robustness analyses under various data distributions are presented. Finally, a systematic ablation study is conducted to elucidate the contributions of individual modules within HiImp-SMI.
The quantitative comparison results are summarized in Table 1, highlighting mean Dice and IoU scores alongside corresponding standard deviations. The best-performing methods are emphasized in bold, illustrating that HiImp-SMI consistently achieves superior segmentation performance compared to existing state-of-the-art methods.
TABLE 1 | Overall segmentation results compared to state-of-the-art discrete and implicit methods. The last two columns present the mean Dice and IoU scores with standard deviation. The best results are highlighted in bold.
[image: Table comparing discrete and implicit segmentation methods by Dice and IoU scores on Kvasir-sessile and BCV datasets, with HiImp-SMI (Ours) achieving the highest scores in all metrics.]3.1 Experimental setup
The model’s performance is evaluated on two distinct medical image segmentation tasks: binary polyp segmentation and multi-class abdominal organ segmentation.
For polyp segmentation, experiments are conducted on the challenging Kvasir-Sessile dataset [13], which contains 196 RGB images of small sessile polyps. To assess the generalization capability of HiImp-SMI, the pretrained model is further evaluated on the CVC-ClinicDB dataset [13], which consists of 612 images extracted from 31 colonoscopy sequences.
For multi-organ segmentation, the model is trained on the BCV dataset [56], which includes 30 CT scans with annotations for 13 organs, and is further evaluated on the AMOS dataset [57], which contains 200 CT training samples, following the same experimental setup as [22]. Since this study focuses on 2D medical image segmentation, slice-wise segmentation is performed on CT images. Following the data preprocessing strategy of SWIPE [46], all datasets are split into training, validation, and test sets in a 6:2:2 ratio, and the reported Dice scores are based on test set results.
The training process involves fine-tuning the SAM encoder [7] with ViT-B as the backbone network. The LoRA rank is set to 4, with amplitude information incorporated in the frequency adapter. The MLP dimensions for the implicit segmentation decoder are [1,024, 512] for Decc and [512, 256, 256, 128] for Decf. During training, 12.5% of the most uncertain points are sampled for refinement, and the dropout probability is set to 0.5. For the multi-organ segmentation task, the final layer of Decc and Decf is adjusted to match the number of target segmentation classes. HiImp-SMI is optimized using AdamW [58] with [image: Mathematical expression showing alpha equals zero point five and beta equals zero point one.], a learning rate of [image: Mathematical expression showing lambda subscript ada equals five times ten to the power of negative five.] for the encoder adapter, and [image: Mathematical equation showing lambda subscript d e c equals one times ten to the power of negative three.] for the decoder.
To ensure fair comparison, all methods are trained for 1,000 epochs under the same experimental setup. During testing, Dice scores and Hausdorff distances [6] are reported based on the best validation epoch. The input image resolutions are set to [image: Placeholder image displaying the text "three eight four x three eight four" in gray font on a plain background, indicating an empty image space or reserved area with specified dimensions.] (Sessile dataset) and [image: Placeholder graphic displaying the dimensions five hundred twelve by five hundred twelve in gray text on a white background. No additional content or imagery is present.] (BCV dataset slices).
The baseline approaches are categorized into discrete methods and implicit (continuous) methods. The discrete methods include U-Net [1], PraNet [3], Res2UNet [9], nnUNet [2], UNETR [11], and MedSAM [15]. Among these, MedSAM [15] is also a SAM-based approach, where the original decoder is directly fine-tuned. The implicit methods include OSSNet [44], IOSNet [45], and SWIPE [46] and I-MedSAM [55].
3.2 Quantitative comparison
A Dice score comparison is first presented against baseline methods. Subsequently, experiments are conducted across different resolutions and domains to evaluate the model’s cross-domain generalization ability under data distribution shifts. Finally, Hausdorff Distance (HD) [6] is computed to compare the segmentation boundary quality across different experimental settings.
Discrete methods and implicit methods are compared in terms of trainable parameters and Dice scores (including standard deviation). Specifically, binary segmentation is performed on the Kvasir-Sessile dataset, while multi-class segmentation is conducted on the CT BCV dataset, with results detailed in Table 2. Leveraging the proposed frequency adapter, SAM generates richer feature representations, leading to improved segmentation boundary quality. In contrast, SwIPE, which employs Res2Net-50 [9] as its backbone, exhibits weaker feature extraction capability, resulting in lower segmentation quality.
TABLE 2 | Cross-resolution evaluation from [image: Comparison table of nine segmentation methods, grouped as discrete or implicit, showing Dice and IoU percentages for two image resolution settings. HiImp-SMI achieves the highest performance in both metrics and settings.] to [image: Placeholder graphic displaying the dimensions 128 by 128 pixels in gray text centered on a white background. No additional visual elements or context are present.] and from [image: Placeholder graphic displaying the dimensions three hundred eighty-four by three hundred eighty-four in gray text centered on a light gray background. No additional content or imagery is present.] to [image: Placeholder displaying the dimensions eight hundred ninety-six by eight hundred ninety-six in gray font on a white background. No additional graphical or contextual details are present.]
[image: Table comparing segmentation methods categorized as discrete or implicit, listing Dice and IoU percentages for input size reductions from three hundred eighty-four by three hundred eighty-four to one hundred twenty-eight by one hundred twenty-eight and from three hundred eighty-four by three hundred eighty-four to eight hundred ninety-six by eight hundred ninety-six. Hilmp-SMI achieves highest performance, with Dice ninety-two point fifty-two and IoU eighty-six point zero eight for the first reduction, and Dice ninety-two point twenty-eight and IoU eighty-five point sixty-seven for the second. Bold indicates best scores.]The adaptability of binary polyp segmentation across different resolutions and domains is assessed by comparing it with the best-performing discrete and implicit methods. To adapt to different target resolutions (e.g., low resolution [image: Placeholder graphic displaying the dimensions one hundred twenty-eight by one hundred twenty-eight in gray text on a light gray background. No other visual elements are present.] and high resolution [image: Placeholder graphic displaying the text eight hundred ninety-six by eight hundred ninety-six in gray font, indicating empty space or missing image content.]), the pretrained HiImp-SMI model, initially trained at [image: Placeholder graphic displaying the dimensions three hundred eighty-four by three hundred eighty-four in gray numerals on a light background, indicating a reserved space for an image.] standard resolution, is modified by scaling the input coordinates to match the target resolution, and the corresponding Dice scores are computed. For discrete methods, the output resolution remains consistent with the input resolution. Input images at the original resolution of [image: Placeholder graphic containing the text three eight four by three eight four representing image dimensions, typically used to indicate an image slot or sample size in web or graphic design.] are provided, and the generated segmentation results are rescaled to the target resolution for evaluation. Additionally, the suffix (*) is used to mark discrete baselines, where the original medical images are resized to the target resolution before being fed into the models, allowing these methods to directly generate segmentation results at the target resolution.
As shown in Table 2, implicit methods exhibit stronger adaptability to spatial resolution changes and consistently outperform discrete methods. Among implicit methods, HiImp-SMI achieves the highest performance across different output resolutions, which can be attributed to the proposed frequency adapter, enhancing HiImp-SMI’s predictive capability across resolutions.
Model performance across different datasets is examined. In binary polyp segmentation, all methods are pretrained on the Kvasir-Sessile dataset and directly evaluated on the CVC dataset. Similarly, in multi-class abdominal organ segmentation, all methods are pretrained on the BCV dataset and evaluated on the AMOS dataset, focusing exclusively on the liver class.
As shown in Table 3, leveraging SAM’s generalization ability, HiImp-SMI outperforms the best discrete method, achieving Dice scores of 91.58% on the CVC dataset and 88.17% on the AMOS dataset.
TABLE 3 | Cross-domain results for binary polyp segmentation and multi-class abdominal organ segmentation.
[image: Comparison table of segmentation methods including PraNet, UNETR, nnUNet, MedSAM, IOSNet, SWIPE, I-MedSAM, and Hilmp-SMI (ours), showing Dice and IoU scores for Kvasir to CVC and BCV to AMOS tasks. Bold values highlight best performance, with Hilmp-SMI achieving highest Dice and IoU in both settings. N/A marks unperformed experiments.]Segmentation boundary quality is further assessed using Hausdorff Distance (HD) [19]. As shown in Table 4, HiImp-SMI achieves lower HD scores, indicating superior boundary precision compared to existing methods.
TABLE 4 | HD distance [image: Table comparing five segmentation methods—nnUNet, MedSAM, IOSNet, I-MedSAM, and Hilmp-SMI (ours)—across six datasets. Bold values highlight best performance for each metric; Hilmp-SMI achieves top performance in Kvasir-sessile, 384→128, 384→896, and BCV.] for different methods and datasets.
[image: Table comparing segmentation method performance across six datasets: nnUNet, MedSAM, IOSNet, I-MedSAM, and HiImp-SMI. HiImp-SMI achieves the best scores in Kvasir-sessile, 384→128, 384→896, and BCV datasets, with bolded values marking top results.]3.3 Qualitative comparison
As shown in Figure 5, a qualitative comparison is conducted on the Kvasir-Sessile dataset. Additionally, the input medical images and their corresponding ground truth segmentation masks are provided, where segmentation boundaries are highlighted in green in Figure 5. The sharpness of boundaries in the visual results may be attributed in part to the frequency-domain information introduced via FFT.
[image: Grid of medical endoscopic images showing segmentation results for polyp detection. Each row represents different cases, with columns comparing original images, ground truth masks, and the outputs of five segmentation methods, highlighting segmented regions in blue for performance comparison.]FIGURE 5 | Qualitative comparisons on five representative samples. The last row indicates the method names corresponding to each column.
From the results, it is evident that HiImp-SMI produces more precise segmentation boundaries. By leveraging the proposed modules, HiImp-SMI effectively aggregates high-frequency information from the input, leading to improved segmentation accuracy in the final output.
3.4 Ablation study
An ablation study is conducted to evaluate the effectiveness of each module within the high-frequency adapter. The results are summarized in Table 5.
TABLE 5 | Ablation study on the integration of different modules: Channel Attention Block (CAB), Multi-branch Cross Attention Block (MCAB), and ViT-Conv Fusion Block (VCFB). Evaluation is conducted on the Kvasir-Sessile dataset and its cross-domain transfer to the CVC dataset.
[image: Comparison table showing the impact of three modules—CAB, MCAB, and VCFB—on segmentation metrics for Kvasir-sessile and Kvasir-sessile to CVC datasets. Metrics include Dice, HD, and IoU percentages, with the highest Dice, lowest HD, and highest IoU values highlighted in bold for each dataset scenario. Bold values are: Dice 92.51, HD 9.98, IoU 86.06 for Kvasir-sessile; Dice 91.46, HD 21.03, IoU 84.26 for Kvasir-sessile to CVC, all achieved using all three modules.]In the baseline model, the single frequency adapter module consists of a linear down-projection layer, a GELU activation function, and a linear up-projection layer. On the Kvasir-Sessile dataset [8], the baseline model achieves a Dice score of 91.81% and an HD of 11.80. When transferred to the CVC dataset, the Dice score drops to 89.07%, with an HD of 24.06.
As the channel attention block, bi-directional cross-attention block, and ViT-Conv fusion block are incrementally added, model performance exhibits a significant improvement. When all three modules are incorporated, the Dice score on the Kvasir-Sessile dataset improves to 92.51%, while HD decreases to 9.98. Similarly, on the CVC dataset, the Dice score improves to 91.46%, and HD decreases to 21.03, highlighting the necessity and effectiveness of the proposed modules.
4 CONCLUSION
In this study, a novel implicit Transformer-based framework, HiImp-SMI, was proposed to overcome key limitations in medical image segmentation, such as poor boundary refinement, weak feature fusion, and limited cross-domain generalization. High-frequency information and multi-scale features were incorporated through three main components: a Channel Attention Block for frequency-domain feature adaptation, a Multi-Branch Cross Attention Block for hierarchical feature exchange, and a ViT-Conv Fusion Block for adaptive context integration. Additionally, a Progressive Dual-Branch Loss was introduced to guide the training process from coarse to fine segmentation. Extensive experiments conducted on the Kvasir-Sessile and BCV datasets demonstrated that HiImp-SMI consistently outperformed state-of-the-art methods, particularly in cross-domain and cross-resolution tasks. Ablation studies further confirmed the effectiveness of each proposed module.
However, the current framework has not yet been validated in clinical or multi-center settings. Future research will aim to evaluate its applicability in real-world clinical workflows.
Overall, HiImp-SMI provided a unified and adaptive solution for precise and generalizable medical image segmentation.
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Introduction
The prediction of chaotic time series is a persistent problem in various scientific domains due to system characteristics such as sensitivity to initial conditions and nonlinear dynamics. Deep learning models, while effective, are associated with high computational costs and large data requirements. As an alternative, Echo State Networks (ESNs) are more computationally efficient, but their predictive accuracy can be constrained by the use of simplistic neuron models and a dependency on hyperparameter tuning.
Methods
This paper proposes a framework, the Echo State Network based on an Enhanced Intersecting Cortical Model (ESN-EICM). The model incorporates a neuron model with internal dynamics, including adaptive thresholds and inter-neuron feedback, into the reservoir structure. A Bayesian Optimization algorithm was employed for the selection of hyperparameters. The performance of the ESN-EICM was compared to that of a standard ESN and a Long Short-Term Memory (LSTM) network. The evaluation used data from three discrete chaotic systems (Logistic, Sine, and Ricker) for both one-step and multi-step prediction tasks.
Results
The experimental results indicate that the ESN-EICM produced lower error metrics (MSE, RMSE, MAE) compared to the standard ESN and LSTM models across the tested systems, with the performance difference being more pronounced in multi-step forecasting scenarios. Qualitative analyses, including trajectory plots and phase-space reconstructions, further support these quantitative findings, showing that the ESN-EICM’s predictions closely tracked the true system dynamics. In terms of computational cost, the training phase of the ESN-EICM was faster than that of the LSTM. For multi-step predictions, the total experiment time, which includes the hyperparameter optimization phase, was also observed to be lower for the ESN-EICM compared to the standard ESN. This efficiency gain during optimization is attributed to the model’s intrinsic stability, which reduces the number of divergent trials encountered by the search algorithm.
Discussion
The results indicate that the ESN-EICM framework is a viable method for the prediction of the tested chaotic time series. The study shows that enhancing the internal dynamics of individual reservoir neurons can be an effective strategy for improving prediction accuracy. This approach of modifying neuron-level complexity, rather than network-level architecture, presents a potential direction for the design of future reservoir computing models for complex systems.

Keywords: ESN-EICM, time-series prediction, reservoir computing, complex system, brain-inspired computing
1 INTRODUCTION
Time series prediction is a critical task across diverse scientific and engineering domains, including economics, meteorology, and industrial process control [1]. Among various types of time series, chaotic systems pose a unique and formidable challenge due to their deterministic yet highly unpredictable nature, extreme sensitivity to initial conditions (the butterfly effect), and complex, aperiodic dynamics [2]. Accurately modeling and predicting such systems is crucial for understanding their underlying mechanisms and for making informed decisions in applications.
In recent years, deep learning (DL) methodologies have played a important role in time series prediction. Recurrent Neural Networks (RNNs) and their variants, such as Long Short-Term Memory (LSTM) [2] and Gated Recurrent Units (GRU) [3], are designed to capture temporal dependencies. More recently, Transformer-based architectures [4] have demonstrated success in sequence modeling tasks. While these DL models can learn complex nonlinear relationships from data, they often entail significant drawbacks. These include high computational expense for training, the need for large datasets to avoid overfitting, and a “black-box” nature that hinders interpretability and deployment in critical domains requiring decision transparency [5]. Specialized architectures like WaveNet [6] and DeepAR [5] also face challenges such as resource consumption or limitations with sparse data.
Reservoir Computing (RC) has emerged as an alternative paradigm that offers a compelling balance between performance and computational efficiency [7]. Echo State Networks (ESNs), a principal RC model, utilize a fixed, randomly generated recurrent neural network (the “reservoir”) to project input signals into a high-dimensional state space, with only a linear output layer being trained. This drastically reduces training complexity compared to DL models. However, standard ESNs are not without limitations. Their performance is highly sensitive to the initialization of reservoir hyperparameters, which typically requires extensive manual tuning or grid search [7]. Moreover, traditional ESNs often employ simplistic neuron activation functions, which may not adequately capture the rich dynamics inherent in complex chaotic systems. While advancements like Leaky ESNs, Deep Reservoir Computing [8], and multi-reservoir ESNs have been proposed, they can introduce further complexities or still rely on fundamentally simple neuronal dynamics.
The limitations of existing DL and RC approaches motivate the development of novel prediction models that can combine the training efficiency of RC with more sophisticated, adaptive internal dynamics and a systematic approach to hyperparameter optimization. Indeed, current research trends emphasize that network models with internal complexity can bridge artificial intelligence and neuroscience, offering pathways to more robust and capable systems [9]. Drawing inspiration from neuroscience, the Intersecting Cortical Model (ICM) [10] simulates neuronal behaviors like adaptive thresholds and feedback, but its original formulation is primarily suited for image processing and has limitations for continuous time series tasks.
This work proposes a novel framework, the Echo State Network Based on Enhanced Intersecting Cortical Model (ESN-EICM), for discrete chaotic time series prediction, the overall structure of which is illustrated in Figure 1. The ESN-EICM integrates a modified EICM neuron model into the ESN reservoir. The main contributions of this study are as follows:
	1. The neural network model EICM can exhibit complex dynamic characteristics, is incorporated into reservoir computing. This novel neuron model is tailored for time series by incorporating features such as continuous sigmoid activation, global mean-driven adaptive thresholds, and introduces mechanisms for inter-neuron coupling and dynamic threshold regulation within each neuron, thereby enhancing the nonlinear representation capability of reservoir computing and forming a reservoir computing model based on biological neurons. The design leverages principles of how biological neural systems integrate information and utilize internal neuronal dynamics for complex computations, such as feature binding through dendritic networks [11] or learning multi-timescale dynamics [12]. While traditional RC research often focuses on optimizing reservoir topology or simplifying dynamics, our work explores a complementary direction: enhancing the computational power of individual neurons within the reservoir. We hypothesize that by equipping neurons with more sophisticated, adaptive dynamics inspired by the cortex, the reservoir can more effectively capture the intricate, non-linear patterns of chaotic systems without requiring complex topological design.
	2. The application of a Bayesian Optimization strategy for the automated and efficient tuning of ESN-EICM hyperparameters, mitigating the traditional RC challenge of manual parameter selection.
	3. A comprehensive empirical evaluation on three discrete chaotic systems (Logistic, Sine, and Ricker), demonstrating the ESN-EICM’s superior predictive accuracy and stability in both one-step and multi-step prediction scenarios compared to standard ESN and LSTM models.

[image: Diagram illustrating three labeled sections: (a) neural pathway from eye to brain visual areas and synapses, (b) time series forecasting comparison of predicted and true data, and (c) input signal processed by a neural network reservoir and an EICM unit with flow arrows connecting all sections.]FIGURE 1 | Proposed framework is based on the EICM neuron model of the mammalian visual cortex and uses it to construct a reservoir for performing time-series prediction tasks in chaotic systems.The EICM neuron model used in this framework is inspired by the dynamic characteristics of neurons in the mammalian primary visual cortex. Its core mechanism aims to more accurately simulate the real behavior of these biological neurons. By integrating the EICM neuron model (inspired by the V1 area of the primary visual cortex) into the reservoir, the constituent neurons are randomly interconnected via the weight matrix. (a)Visual pathway of the brain: Visual information from the retina is relayed via the lateral geniculate nucleus to the primary visual cortex (V1) and then processed in V2, V3, and V4, ultimately yielding patterns in the inferior temporal cortex. (b)Real vs. predicted time series. (c)ESN-EICM framework incorporates a V1 neuron model into reservoir computing to effectively forecast complex time-series sequences.The remainder of this paper is organized as follows. Section 2 reviews related work in deep learning and reservoir computing for time series prediction. Section 3 details the proposed ESN-EICM model, including the EICM neuron design and the Bayesian optimization strategy. Section 4 describes the experimental setup and presents a thorough analysis of the results, covering prediction performance, hyperparameter sensitivity, and training time comparisons. Section 5 then discusses the broader implications of our findings, including the model’s design philosophy and its robustness against chaotic dynamics. Subsequently, Section 6 outlines the limitations of the current study and potential avenues for future research. Finally, Section 7 concludes the paper, summarizing the main contributions.
2 RELATED WORKS
2.1 Deep learning-based time series prediction methods
With the continuous advancement of deep learning techniques, time series prediction has increasingly shifted toward neural network-based modeling strategies. The Recurrent Neural Network (RNN), proposed by Rumelhart et al. in 1986 [1], models sequential data through recurrent connections, effectively encoding historical information into hidden states. However, RNNs face challenges such as gradient vanishing and exploding gradients when handling long sequences, limiting their ability to capture long-term dependencies [2].
To address these limitations, Hochreiter and Schmidhuber introduced the Long Short-Term Memory (LSTM) network in 1997 [2]. LSTMs are specifically designed to retain long-range temporal information via sophisticated gating mechanisms (input, forget, and output gates), which control the flow of information through the cell. This architecture significantly improved the modeling of nonlinear data and has seen widespread application in diverse fields such as financial market prediction and climate modeling. Owing to their capacity to learn complex temporal dependencies and approximate highly nonlinear functions, LSTMs have also become a prominent benchmark for prediction chaotic time series, where accurately capturing long-range, intricate patterns is essential [13]. Indeed, studies have demonstrated LSTMs’ potential in predicting various chaotic systems, leveraging their ability to learn from historical data without explicit knowledge of the system’s underlying equations [14]. Nevertheless, despite their utility as a powerful baseline, the application of LSTMs, particularly to sensitive chaotic dynamics, is not without its difficulties. LSTM training demands substantial computational resources and a considerable amount of data to prevent overfitting, which can be a significant constraint in scenarios where data is scarce or computationally expensive to generate. They also exhibit high overall computational complexity [3], and their performance can be sensitive to hyperparameter choices, often requiring extensive tuning.
In contrast, the Gated Recurrent Unit (GRU) [3] simplifies the LSTM’s gating mechanism (employing update and reset gates) to reduce model complexity and the number of parameters. GRUs often demonstrate comparable or, in some cases, superior performance to LSTMs, especially in scenarios with limited data volume. However, they may still exhibit higher prediction errors when processing large-scale, highly complex datasets compared to more specialized architectures [4].
More recently, the Transformer architecture [4], originally developed for natural language processing, has transcended traditional recurrent networks through its self-attention mechanism. This allows for powerful parallel computation and has led to outstanding performance in large-scale sequence modeling tasks. However, the standard Transformer’s quadratic complexity with respect to sequence length and its potential sensitivity to noise in high-frequency or irregular time series can compromise its effectiveness for certain types of chaotic data without specific adaptations [15].
Despite ongoing methodological developments, deep learning models exhibit inherent limitations that are particularly pertinent to chaotic time series prediction: 1) Complex architectures generally lead to increased computational costs for training and inference. 2) Their “black-box” nature often weakens interpretability, hindering their deployment in domains requiring decision transparency or a deeper understanding of the model’s predictive reasoning (e.g., finance, healthcare, scientific discovery) [5]. For instance, while WaveNet [6] can model long sequences through dilated convolutions, it consumes excessive resources and is not easily parallelized. DeepAR [5], a probabilistic prediction model, may struggle with very sparse data scenarios sometimes encountered in chaotic systems. Furthermore, hybrid models like LSTM-FCN (LSTM Fully Convolutional Network) [16], while effective for classification, can face efficiency bottlenecks in feature fusion for regression tasks. Additionally, modifications aimed at reducing complexity in Transformers, such as the ProbSparse attention mechanism in the Informer model [15], can often discard critical subtle temporal patterns vital for chaotic systems, potentially degrading prediction stability. Beyond these established deep learning architectures, Spiking Neural Networks (SNNs), which more closely mimic biological neuronal dynamics through event-driven spike-based communication, are also being actively investigated for their potential in efficient temporal processing and learning, with research exploring aspects such as advanced training methodologies like adaptive smoothing gradient learning [17], effective parameter initialization techniques [18], and the role of noise [19]. SNNs are also finding applications in complex learning paradigms like brain-inspired reinforcement learning [20], and are also being developed for energy-efficient applications such as speech enhancement [21].
2.2 Reservoir computing for time series prediction
Diverging from deep learning approaches, Reservoir Computing (RC) offers novel insights through nonlinear dynamical systems. Echo State Networks (ESNs), introduced by Lukoševičius and Jaeger [7], map inputs into high-dimensional dynamic spaces via randomly connected reservoirs. Their efficiency stems from training only the output layer, yet performance critically depends on reservoir initialization and hyperparameter selection [7]. To overcome these limitations, researchers proposed innovations: Leaky ESN balances short-term dynamics and long-term memory through leakage parameters; Adaptive Elastic ESN optimizes reservoir weights using sparse Bayesian learning, dynamically adjusting sparsity to enhance multi-scale feature adaptation, though suffering from high training complexity and hyperparameter sensitivity [22]. Multi-reservoir ESN improves complex dynamic capture by parallelizing multiple reservoirs processing distinct frequency bands, but increases training complexity without unified state-fusion protocols. Deep Reservoir Computing [8] extracts hierarchical features via cascaded reservoirs, achieving excellence in long-period modeling while risking state inflation and overfitting. Recently, the SEP framework advanced lossless byte-stream prediction through semantic-enhanced compression [23], opening new directions for complex temporal modeling.
Current RC methods predominantly rely on simplistic neuron models, failing to simulate mammalian brain structures. This restricts generalization capabilities and robustness–simple reservoirs perform poorly on complex systems, while intricate designs induce overfitting and instability. Furthermore, although RC reduces RNN training costs, its fixed critical parameters necessitate manual tuning, lacking dynamic adaptability [7]. These constraints motivate the integration of biologically inspired neuron models (e.g., ICM) with reservoir computing, aiming to enhance chaos sequence prediction robustness through dynamic weight initialization strategies. The broader field of neuromorphic computing also explores various mechanisms for temporal processing in SNNs, including specialized modules designed to capture temporal shifts [24], build sequential memory [25], or adapt temporal characteristics [26].
3 METHODS
3.1 Problem statement and challenges
The existing methods face the following challenges:
	(1) The performance of reservoir computing models highly depends on critical hyperparameters such as reservoir size, spectral radius, and input scaling. These parameters not only influence dynamic characteristics (e.g., memory capacity and nonlinear mapping ability) but also directly determine prediction accuracy. In practical applications, extensive experiments and manual tuning are required to identify optimal parameter combinations, leading to significant time costs. Prediction errors vary widely under different configurations, particularly for high-dimensional and long-term sequences, where parameter sensitivity becomes more pronounced. Some parameter combinations even cause training divergence [27], [28].
	(2) Most reservoir models rely on basic neuron designs that fail to simulate the complex connectivity and information-processing mechanisms of mammalian cortical neurons. While this simplification reduces implementation complexity, it limits expressive power for tasks involving long-term dependencies or abrupt feature detection. Traditional ESN models maintain reasonable accuracy in short-term predictions [29] but suffer rapid performance degradation with increasing sequence length and dynamic complexity. Model states decay over time, and sensitivity to abrupt changes diminishes [22].
	(3) Although expanding reservoir size or introducing multi-layer structures can enhance model expressiveness and achieve low training errors, these modifications introduce new challenges. Increased complexity improves training fit but severely harms generalization on unseen data. Prediction errors fluctuate significantly during testing, indicating overfitting and poor robustness under noise or input distribution shifts. This highlights that boosting model complexity alone cannot resolve generalization issues in time series prediction [8].

3.2 Echo state network based on enhanced intersecting cortical model framework
3.2.1 Input layer
The input layer transforms raw time series data into feature representations suitable for subsequent processing. Given a time series input ut∈RD, where D denotes the input dimensionality, the input layer performs the following operation (Equation 1):
St=Win⋅1;ut(1)
where [1;ut] Adds a bias term to the input vector, and it allows the linear regression to learn an offset in the predictions in the output layers; Win∈RN×D+1 is input weight matrix, randomly initialized from a normal distribution, scaled by input_scale, and subsequently its elements are clipped to the range [−2,2]; (N) is Reservoir size.
This approach ensures preliminary nonlinear mapping of input data while introducing an adjustable scaling factor input_scale to enhance adaptability to sequences with varying magnitudes [27].
3.2.2 Reservoir layer
The reservoir layer, the core component of ESN-EICM, comprises neurons governed by the Enhanced Intersecting Cortical Model (EICM). This design simulates biological feedback mechanisms and adaptive responses observed in mammalian cortical neurons.
The internal reservoir connectivity matrix W∈RN×N is constructed through the following steps:
	• Elements of W are drawn from a standard normal distribution and then multiplied by the scaling factor w_scale.
	•Sparsity is applied: a binary mask is generated where each element has a probability w_sparsity of being 1 (retaining the connection). The matrix W is multiplied element-wise by this mask, effectively setting a fraction of connections to zero. Thus w_sparsity represents the desired connection density.
	•The elements of the resulting sparse matrix are then clipped to the range [-1,1].
	•Finally, the spectral radius of this processed matrix is normalized to the target spectral_radius value to help ensure Echo State Property and dynamic stability, as shown in Equation 2:

W=W⋅spectral_radiusmax|λi|(2)
The EICM neurons maintain internal states: F (feeding input), E (dynamic Threshold), and Y (Output term). Before the simulation begins (at time t = 0), these states are initialized. Specifically, F and E are initialized with random values drawn from a uniform distribution over [0, 0.1] and then their elements are clipped to the range [−1, 1]. The initial output states Y are set to zeros. Each neuron updates its state using the following equations:
Each neuron updates its state using the EICM dynamics, which are detailed in Section 3.3.
	•The feeding input Ft is updated based on its prior value Ft=1, weighted feedback from other neurons in the reservoir (W⋅Yt=1), and the external stimulus St. This Ft is then clipped.
	•The neuron’s output Yt is generated using a Sigmoid activation function. The input to the sigmoid is the clipped difference between the current Ft and the previous threshold Et=1. Gaussian noise is added to the sigmoid’s output, and the final Yt is clipped to [0,1].
	•The dynamic threshold Et adapts based on its previous value Et=1 and the mean of the intermediate neuron activations before noise. This Et is also clipped.

For numerical stability, the primary state variables Ft and Et, as well as the difference term Ft=Et=1, are clipped to the range [−50, 50] during their update.
The EICM neuron model introduces critical modifications to the original ICM framework [10]. Feeding input F incorporates W⋅Yt−1 to enable cross-neuron interactions. This replaces the original ICM’s local dynamics f, g, h with parameterized decay rates f, g, h. Threshold E is updated using the population mean of Y, diverging from the original ICM’s local update rule. This prevents over-activation of individual neurons. Gaussian noise with standard deviation 0.001 is added to Y for regularization and exploration enhancement. The exploitation of noise as a computational resource is also a recognized concept in other neuromorphic models such as SNNs [19]. After an initial period (of length initLen steps, where neuron states stabilize), the augmented state vectors are collected for training the output layer. Each augmented state vector is formed as Φ(Yt,ut)=[1;ut;Yt], where ut is the external input vector at time t, Yt is the reservoir’s neuron output vector, and 1 represents a bias term. These augmented vectors form the columns of a matrix Xcollected=[Φ(YinitLen,uinitLen),…,Φ(YT,uT)]. This Xcollected (referred to simply as X in the context of the output weight computation equation) is then used for training the output weights Wout.
3.2.3 Output layer
The output layer trains weights via regularized linear regression to produce predictions. Its equation is given by Equation 3:
ŷt=Wout⊤⋅ΦYt,ut(3)
where Φ(Yt,ut)=[1;ut;Yt] represents the concatenated feature vector; Wout∈R(D+N+1)×K is output weight matrix, solved using Tikhonov-regularized least squares (Equation 4):
Wout=XX⊤+λI−1XY(4)
where the regularization coefficient λ∈[1e−8,1e−2].
During inference, future states are recursively generated using historical inputs and reservoir states (Equation 5):
ŷt+1:T=fWout,ut,Yt(5)
3.2.4 Bayesian optimization strategy
To address the time-consuming manual hyperparameter tuning and susceptibility to local optima in traditional reservoir computing models, we introduce Bayesian Optimization (BO) within the ESN-EICM framework. BO constructs a surrogate function (e.g., Gaussian Process) and an acquisition function to efficiently balance exploration (sampling unexplored regions of the hyperparameter space) and exploitation (focusing on promising regions identified by prior evaluations). This approach rapidly converges to globally optimal configurations by leveraging information from prior experiments [30], a significant advancement over simpler strategies like grid or random search [31]. In our experiments, we employ the gp_minimize function (based on Gaussian Process Regression) for iterative parameter search. The optimization objective is defined as minimizing the mean squared error (MSE) on the validation set. To guide the optimization, the training data (the first 16,000 steps) was further partitioned: the first 14,000 steps were used to train the ESN-EICM’s output weights for a given hyperparameter set, and the subsequent 2,000 steps served as the validation set for calculating the MSE. The final reported test performance is evaluated on the held-out test set, which was never seen during training or optimization. Specify ranges and types (continuous/integers) for all parameters. Generate candidate hyperparameter combinations at each iteration and evaluate their MSE performance. Terminate the search process when the optimization objective (minimizing MSE) shows no significant improvement over consecutive iterations. Apply the optimal hyperparameter combination to train and test the final model. This strategy significantly reduces manual tuning costs while enhancing generalization capabilities for chaotic system prediction. The optimization space for ESN-EICM parameters is detailed in Table 1.
TABLE 1 | ESN-EICM parameters optimization space.	Parameter	Symbol	Range	Function
	Reservoir Size	res_size	[300, 1500]	Balances model complexity and computational cost
	Input Scale	input_scale	[0.2, 2.0]	Adjusts input mapping strength for scale adaptation
	Sparsity	w_sparsity	[0.1, 0.3]	Reduces computation while preserving nonlinearity
	Weight Scale	w_scale	[0.2, 2.0]	Controls the strength of internal weight connections
	Spectral Radius	spectral_radius	[0.3, 0.99]	Ensures dynamic stability via eigenvalue normalization
	Feedback Decay Rate	f	[0.1, 0.99]	Regulates historical input decay with clipping
	Threshold Decay Rate	g	[0.1, 0.99]	Prevents threshold oscillation
	Excitation Gain	h	[0.5, 2.0]	Amplifies global activation impact for robustness
	Nonlinearity Control	β	[1.0, 10.0]	Adjusts sensitivity to input differences
	Regularization Coefficient	λ	10−8, 10−2	Stabilizes weight inversion and improves generalization


3.3 Enhanced intersecting cortical model
The Enhanced Intersecting Cortical Model (EICM) neuron model (Figure 2 proposed in this work is built upon the original Intersecting Cortical Model (ICM) framework. The ICM was first introduced by Ekblad et al. [10], and was originally designed for image processing tasks—particularly for extracting features with indistinct boundaries. It simulates the behavioral characteristics of neurons in the mammalian primary visual cortex, including feedback mechanisms and adaptive threshold regulation.
[image: Block diagram illustrating a neural computation process divided into three sections: Dendrite for input activation, Modulation for processing and difference calculation, and Dynamic activity for output term generation with feedback loops, thresholding, and noise addition.]FIGURE 2 | Enhanced Intersecting cortical model.The original ICM neuron model consists of three key state variables: Feeding input F is a feedback term representing historical input memory at the current time step; Dynamic threshold E is an adaptive threshold that modulates neuron activation; Output term Y is a binary output or activation state.
Its update equations are defined as follows (Equation 6):
Ft=f⋅Ft−1+StYt=1,ifFt>Et0,otherwiseEt=g⋅Et−1+h⋅Yt(6)
where feedback decay rate f controls the temporal decay of the feeding input; threshold decay rate g Prevents threshold oscillation; Excitation gain h regulates the strength of threshold updates based on neuron output; S is External stimulus input; output term Y equals 1 when the feeding input exceeds the dynamic threshold, and 0 otherwise.
This model has demonstrated strong edge detection and noise resistance capabilities in image segmentation applications. However, its binary output mechanism limits its expressiveness in time series modeling. Despite the biologically inspired structure and nonlinear mapping advantages of ICM, several critical limitations arise when applying it to time series prediction tasks such as chaotic system prediction:
	(1) The model exhibits a lack of neuron-to-neuron coupling. The feeding input solely takes into account individual history and external input, without incorporating interactions across the reservoir.
	(2) The local adaptation mechanism is limited as the dynamic threshold updates based merely on the current output of neuron, failing to reflect global network activity. The static parameter settings without range constraints also pose an issue, causing hyperparameters to remain fixed or loosely defined, which in turn leads to instability during training.
	(3) The binary output limitation of the original ICM restricts its applicability to continuous-value regression tasks, as it only employs a binary pulse output of 0 or 1.

These issues significantly impair the ability of ICM to capture long-term dependencies and abrupt changes in complex nonlinear systems, resulting in suboptimal performance in chaotic time series modeling.
To enhance the modeling capability of the original ICM for time series prediction, we propose the EICM neuron design. The key improvements are outlined as follows:
	(1) Improved sensitivity to long-range dependencies and abrupt changes. The original ICM model struggles with capturing long-term dependencies and detecting sudden signal transitions due to its local update mechanism. In EICM, we introduce global coupling through reservoir connectivity (W⋅Yt−1) and a mean-driven threshold adaptation strategy [32], enabling neurons to respond more sensitively to abrupt changes in chaotic systems [27].
	(2) Enhanced Expressiveness for Continuous-Value Prediction. Unlike the binary pulse output in standard ICM, output term Y EICM employs a continuous Sigmoid activation function. This modification allows the model to perform regression-based time series prediction tasks effectively, significantly expanding its applicability compared to the original image segmentation-oriented design.
	(3) Integration of data-driven adaptation mechanisms. We redesign the dynamic threshold E update rule by using the global mean activation of all neurons. This approach improves generalization and prevents local over-activation or under-activation, ensuring better consistency across the network during long-term prediction. This principle of integrating global network context to modulate local neuronal behavior is an active area of research, with concepts like context gating being explored in SNNs to achieve robust and adaptive learning, such as in lifelong learning scenarios [33].
	(4) During the implementation, we imposed numerical range constraints on the parameters to enhance training stability, performed numerical clipping on f, g, h, β, and added Gaussian noise perturbations with a standard deviation of 0.001 after each activation to prevent overfitting and strengthen exploration capabilities.

These enhancements address the limitations of ICM in temporal modeling while preserving its biologically inspired structure. The EICM neuron model operates on three key state variables: the feeding input F, the dynamic threshold E, and the output term Y. To ensure a consistent starting point, these states are initialized at t = 0 as follows: F and E are populated with random values drawn from a uniform distribution U(0,0.1), which are then clipped element-wise to the range [−1, 1]. This small, positive initialization range was chosen to ensure that neurons start in a responsive, non-saturated state, close to the linear region of the sigmoid activation function, which promotes stable initial dynamics as the reservoir settles. The update dynamics of the EICM neuron from time t=1 to t proceed in the following equations (Equation 7):
Ft=f⋅Ft−1+0.1⋅W⋅Yt−1+StYt=11+e−βFt−EtEt=g⋅Et−1+h⋅meanYt(7)
These coupled dynamics allow the EICM neuron to maintain and process historical information over varying time scales, which is crucial for predicting chaotic systems. Effectively modeling such temporal dependencies is a key challenge in neural computation, with various architectures exploring mechanisms like dedicated delay units or gates to manage temporal information flow [34]. The core parameters intuitively govern the neuron’s behavior: f (Feedback Decay Rate) controls the neuron’s short-term memory of its own past state; g (Threshold Decay Rate) stabilizes the adaptive threshold, preventing overly rapid fluctuations; h (Excitation Gain) determines how strongly the global network activity influences a neuron’s excitability; and β (Nonlinearity Control) adjusts the steepness of the sigmoid activation, controlling the neuron’s sensitivity to the difference between its feeding input and its threshold. A higher beta leads to a more switch-like, saturating behavior where the neuron’s output quickly approaches 0 or 1, while a lower beta results in a smoother, more graded response across a wider range of inputs.
The enhanced performance of the ESN-EICM stems from the synergistic interaction between its two primary modifications: the global coupling feedback (W⋅Yt−1) and the global mean-driven adaptive threshold (h⋅mean(Yt)). These mechanisms work in concert to regulate the reservoir’s dynamics. The global coupling term ensures a rich and diverse set of inputs to each neuron, promoting complex, high-dimensional state representations and preventing the network from falling into simple, synchronized activity patterns. Concurrently, the adaptive threshold acts as a homeostatic, or self-regulating, mechanism. By adjusting each neuron’s excitability based on the average activity of the entire reservoir, it prevents runaway activation or quiescence. This homeostatic regulation keeps the reservoir in a critical “edge of chaos” regime, where it is most sensitive to input perturbations and possesses maximal memory capacity, which is crucial for stabilizing long-term predictions and effectively modeling chaotic dynamics.
3.3.1 Feeding input F
In the design of the feeding input F, we retain the exponential decay mechanism from the original ICM model, while introducing a dynamic coupling mechanism through the reservoir connectivity matrix W to enable each neuron to perceive the overall state of the network. Where F is first computed and then clipped to produce F. The coefficient 0.1 serves as a normalization factor for the reservoir feedback term. S is the external driving stimulus. This enhancement significantly improves. The updated equation is defined as (Equation 8):
Ft=f⋅Ft−1+0.1⋅W⋅Yt−1+St(8)
where f denotes the feedback decay rate, which controls the temporal decay of the historical feedback term and is constrained within a reasonable range to improve training stability; W⋅Yt−1 represents the influence from other neurons in the reservoir on the current neuron’s feedback input; The coefficient 0.1 serves as a normalization factor to prevent gradient explosion; S is the external driving stimulus.
This enhancement significantly improves the suitability of the model for time series modeling by increasing inter-neuron information flow and cross-neuron coordination, thereby enhancing its nonlinear mapping capability compared to the original ICM framework.
3.3.2 Output term Y
To improve the expressiveness and robustness of the model, we replace the binary output mechanism in the original ICM with a multi-step process yielding a continuous output. First, the input to the sigmoid, Deltat, is calculated and clipped. The sigmoid function produces an intermediate output. Gaussian noise N(0,0.001) is then added, and finally, the output Y is clipped to the range [0,1] to maintain stability and a consistent output scale. The updated output equation is given as (Equation 9):
Yt=11+e−βFt−Et+N0,0.001(9)
where β controls the steepness of the activation function. The output values are no longer restricted to binary pulses (0 or 1), but instead fall within the continuous range [0,1] due to sigmoid activation and subsequent clipping. The standard deviation of 0.001 was chosen empirically as a value large enough to provide a regularizing effect and prevent overfitting, yet small enough not to disrupt the underlying learned dynamics of the system.
This improvement allows the model to more accurately capture subtle changes in input dynamics. The addition of small-scale noise injection further enhances exploration during training and improves generalization performance, particularly under noisy or uncertain conditions.
3.3.3 Dynamic threshold E
For the threshold update mechanism, we modify the original ICM approach which updates based on individual neuron output to a global mean-driven adaptation strategy. The updated equation is defined as (Equation 10):
Et=g⋅Et−1+h⋅meanYt(10)
where g is the threshold decay rate that governs the temporal decay of the dynamic threshold; h determines the gain factor of threshold adjustment; mean(Yt) represents the average activation across all neurons at time t.
This global adaptive thresholding strategy enables each neuron to adjust its response threshold according to the overall network activity, preventing certain neurons from being overly activated or suppressed. As a result, the model achieves greater stability and consistency across the reservoir.
4 EXPERIMENT
4.1 Dataset generation
To evaluate the predictive capabilities of the proposed ESN-EICM, ESN, and LSTM models, we generate three representative discrete chaotic system: Logistic system, Sine system, and Ricker system. These datasets are chosen for their distinct dynamic characteristics:
	• Logistic System: A discrete-time chaotic system with strong nonlinearity.
	•Sine System: A smooth periodic system with limited chaotic behavior.
	•Ricker System: A biological population model exhibiting complex oscillatory patterns.

4.1.1 Data generation Process
Each dataset is generated using the following equations (Equations 11–13):
LogisticSystem:xt+1=3.8⋅xt⋅1−xt(11)
SineSystem:xt+1=0.9⋅sinπxt(12)
RickerSystem:xt+1=xt⋅exp4⋅1−xt⋅0.5(13)
The initial value x0 is set to 0.1 for Logistic/Sine Maps and 0.5 for Ricker Map. Each system is iterated for T=20000 steps. We then construct 3D feature vectors to capture nonlinear dependencies:
	•Logistic System: [xt,xt2,xt3]
	•Sine System: [xt,sin(xt),cos(xt)]
	•Ricker System: [xt,log(xt+10−6),xt]

4.1.2 Data preprocessing
All datasets undergo the following preprocessing pipeline:
	(1) Standardization: Data is standardized using Scikit-learn’s StandardScaler (Equation 14):

xscaled=x−μσ(14)
where μ and σ are computed on the training split.
	(2) Input-Target alignment: The input-output relationship is defined as (Equation 15):

inputs=X1:T−1,targets=X2:T(15)
This ensures the model predicts xt+1 given xt.
	(3) Train/Test Split: All systems use the same split (Equation 16):

trainLen=16000,testLen=2000(16)
The dataset was split chronologically to ensure strict temporal ordering and prevent information leakage from the test set into the training set. The first 16,000 steps were used for training and hyperparameter optimization, while the subsequent 2,000 steps were reserved exclusively for final testing. This partitioning is consistent across all systems to avoid introducing bias.
4.1.3 Dataset properties
A summary of the dataset configurations and properties is provided in Table 2.
TABLE 2 | Dataset configurations and properties.	Dataset	Length	Features	Train/Test split
	Logistic System	20,000	3	16,000/2000
	Sine System	20,000	3	16,000/2000
	Ricker System	20,000	3	16,000/2000


4.2 Evaluation metrics
In our experiments, we compute the following evaluation metrics to quantify prediction performance. Let yi denote the ground truth value and ŷi the predicted value at time i, where n=2000 is the number of test samples.
4.2.1 Mean squared error (MSE)
The Mean Squared Error (MSE) measures the average squared difference between predicted and actual values. It’s a common metric for regression problems, penalizing larger errors more heavily. The equation is as follows (Equation 17):
MSE=1n∑i=1nyi−ŷi2(17)
4.2.2 Root mean squared error (RMSE)
The Root Mean Squared Error (RMSE) is simply the square root of the MSE. It reflects the standard deviation of prediction errors and is in the same units as the target variable, making it more interpretable than MSE. The equation is as follows (Equation 18):
RMSE=MSE(18)
4.2.3 Mean absolute error (MAE)
The Mean Absolute Error (MAE) measures the average absolute difference between predicted and actual values. Unlike MSE, MAE gives equal weight to all errors, making it more robust to outliers. The equation is as follows (Equation 19):
MAE=1n∑i=1n|yi−ŷi|(19)
4.2.4 Coefficient of determination (R2)
The Coefficient of Determination (R2) quantifies the proportion of variance in the dependent variable that can be predicted from the independent variables. A value closer to 1 indicates that the model explains a larger proportion of the variance in the ground truth values. The equation is as follows (Equation 20):
R2=1−∑i=1nyi−ŷi2∑i=1nyi−ȳ2(20)
4.2.5 Explained variance score (EVS)
The Explained Variance Score (EVS) evaluates how well the model captures the variance in the target variable. It’s similar to R2 but can be more informative in cases where the model has a bias. The equation is as follows (Equation 21):
EVS=1−Varyi−ŷiVaryi(21)
4.2.6 Max error (ME)
The Max Error (ME) reports the maximum residual error between any predicted and actual value. This metric highlights the worst-case prediction scenario. The equation is as follows (Equation 22):
ME=maxi=1,…,n|yi−ŷi|(22)
4.3 Model configuration
This section details the configuration of the models employed in our comparative study: the proposed ESN-EICM, the baseline ESN, and the LSTM network. For the ESN-EICM and ESN models, hyperparameters were primarily determined through Bayesian Optimization, aiming to minimize Mean Squared Error on a validation set. For the LSTM model, key architectural and training hyperparameters were also optimized using Bayesian Optimization, while others were set based on common practices in time series forecasting. The specific search ranges and fixed values for each model are presented in the subsequent subsections. All models were trained and evaluated on the datasets described in Section 2 to ensure fair comparison.
4.3.1 ESN-EICM model configuration
Table 3 presents the key configuration parameters for the ESN-EICM model determined through Bayesian optimization in our experiments. A washout period initLen of 1000 steps was used for all experiments. This length was determined through preliminary observations to be sufficiently long to allow the reservoir’s internal state to become independent of its initial zero state and synchronize with the dynamics of the input signal across the range of tested hyperparameters.
TABLE 3 | ESN-EICM model Configuration parameters.	Parameter	Description	Search range
	res_size	Reservoir Size	[300, 1500]
	input_scale	Input Scale	[0.2, 2.0]
	w_sparsity	Sparsity	[0.1, 0.3]
	w_scale	Weight Scale	[0.2, 2.0]
	spectral_radius	Spectral Radius	[0.3, 0.99]
	f	Feedback Decay Rate	[0.1, 0.99]
	g	Threshold Decay Rate	[0.1, 0.99]
	h	Excitation Gain	[0.5, 2.0]
	β	Nonlinearity Control	[1.0, 10.0]
	λ	Regularization Coefficient (λ)	10−8, 10−2
	n_calls	Total Bayesian Optimization Iterations	50
	initLen	Washout Period Length	1000
	trainLen	Training Data Length	16,000
	testLen	Test Data Length	2000


4.3.2 ESN model configuration
Table 4 presents the key configuration parameters for the Echo State Network (ESN) model determined through Bayesian optimization in our experiments.
TABLE 4 | ESN model Configuration parameters.	Parameter	Description	Search range
	res_size	Reservoir Size	[300, 700]
	input_scale	Input Scale	[0.5, 1.0]
	w_sparsity	Sparsity	[0.1, 0.3]
	w_scale	Weight Scale	[0.5, 1.0]
	λ	Regularization Coefficient (λ)	10−8, 10−3
	n_calls	Total Bayesian Optimization Iterations	50
	initLen	Washout Period Length	1000
	trainLen	Training Data Length	16,000
	testLen	Test Data Length	2000


4.3.3 LSTM model configuration
Table 5 outlines the key configuration parameters for the Long Short-Term Memory (LSTM) network model. The hyperparameters were optimized using Bayesian optimization, while other parameters were set based on common practices.
TABLE 5 | LSTM model Configuration parameters.	Parameter	Description	Search range/Value
	hidden_size	Number of units in LSTM hidden layers	[128, 256]
	num_layers	Number of LSTM layers	[1, 6]
	lr	Learning rate for Adam optimizer	10−5, 10−1
	batch_size	Number of samples per gradient update	[128, 256]
	dropout	Dropout rate for LSTM layers	[0.1, 0.4]
	sequence_length	Number of time steps in input sequences	[5, 20]
	epochs	Number of training epochs per optimization trial/final model	70
	clip_grad_norm	Gradient clipping threshold	1.0
	n_calls	Total Bayesian Optimization function evaluations	20
	n_initial_points	Initial random points for Bayesian Optimization	10
	trainLen	Training data length (original time steps before sequencing)	16,000
	testLen	Test data length (original time steps before sequencing)	2000
	input_size	Number of features per time step (data-dependent)	3
	output_size	Number of features to predict (data-dependent)	3


4.4 Hyperparameter optimization results
To ensure optimal performance, critical hyperparameters for both the ESN-EICM and the baseline ESN models were determined using Bayesian Optimization. This process, guided by minimizing Mean Squared Error on a validation set as described in Section 3, yielded task-specific parameter configurations. The best-found parameters for each model across the different chaotic systems and prediction horizons are presented below.
4.4.1 ESN-EICM best parameters
The optimal hyperparameters identified for the proposed ESN-EICM model through Bayesian Optimization are summarized in Table 6. These parameters cover aspects of reservoir architecture, input processing, EICM neuron dynamics, and output regularization.
TABLE 6 | Best ESN-EICM parameters for different chaotic systems and prediction steps.	Logistic system
	Parameter	One-step	Two-step	Three-step	Four-step
	res_size	1116.0000	1443.0000	1444.0000	1409.0000
	input_scale	1.0109	1.6158	1.9879	1.7625
	w_sparsity	0.1027	0.1297	0.1533	0.2525
	w_scale	1.8960	1.5453	1.9671	0.6222
	spectral_radius	0.6887	0.7746	0.8073	0.5201
	f	0.4430	0.4703	0.1002	0.1525
	g	0.1142	0.6869	0.1031	0.7266
	h	0.8463	1.4669	0.5000	0.5845
	β	3.1692	2.0944	6.0793	4.2441
	λ	0.0068	0.0033	0.0081	0.0015


	Sine System
	Parameter	One-step	Two-step	Three-step	Four-step
	res_size	569.0000	473.0000	1500.0000	1284.0000
	input_scale	0.4049	1.8084	1.5526	1.2281
	w_sparsity	0.1258	0.1143	0.2953	0.3000
	w_scale	1.1507	1.1761	0.8319	0.9361
	spectral_radius	0.6493	0.6754	0.3000	0.3223
	f	0.1000	0.1908	0.3129	0.2806
	g	0.6548	0.6750	0.9900	0.5462
	h	2.0000	1.8889	0.5000	1.5949
	β	8.0238	7.9411	4.2171	5.3005
	λ	0.0006	0.0095	0.0026	0.0027


	Ricker System
	Parameter	One-step	Two-step	Three-step	Four-step
	res_size	1058.0000	473.0000	1483.0000	1500.0000
	input_scale	2.0000	1.8084	1.7422	1.2621
	w_sparsity	0.2619	0.1143	0.2525	0.1926
	w_scale	0.2000	1.1761	0.7928	1.5747
	spectral_radius	0.7054	0.6754	0.4555	0.3000
	f	0.1000	0.1908	0.1229	0.1000
	g	0.1000	0.6750	0.6453	0.4710
	h	0.9920	1.8889	0.6528	0.5000
	β	2.1395	7.9411	4.4978	9.7544
	λ	0.0000	0.0095	0.0021	0.0021


4.4.2 ESN best parameters
For the baseline ESN model, the key hyperparameters tuned via Bayesian Optimization are detailed in Table 7. This allows for a direct comparison with the ESN-EICM model under similarly optimized conditions.
TABLE 7 | Best ESN parameters for different chaotic systems and prediction steps.	Logistic system
	Parameter	One-step	Two-step	Three-step	Four-step
	res_size	776.0000	1000.0000	500.0000	500.0000
	input_scale	1.4807	2.0000	1.8349	1.4689
	w_sparsity	0.1000	0.1000	0.1000	0.1000
	w_scale	0.2000	0.2000	0.2362	0.2000
	λ	0.0006	0.0000	0.0100	0.0100


	Sine System
	Parameter	One-step	Two-step	Three-step	Four-step
	res_size	512.0000	568.0000	500.0000	500.0000
	input_scale	1.2216	1.6574	1.7777	1.8088
	w_sparsity	0.1274	0.1000	0.1709	0.1000
	w_scale	0.2000	0.2535	0.2000	0.2595
	λ	0.0005	0.0003	0.0100	0.0000


	Ricker System
	Parameter	One-step	Two-step	Three-step	Four-step
	res_size	500.0000	500.0000	559.0000	500.0000
	input_scale	1.6450	1.8691	2.0000	1.6485
	w_sparsity	0.1000	0.1000	0.1000	0.1000
	w_scale	0.2000	0.2000	0.2000	0.2000
	λ	0.0033	0.0100	0.0100	0.0100


4.4.3 LSTM best parameters
The Long Short-Term Memory (LSTM) network, serving as another important baseline, also underwent hyperparameter optimization using Bayesian Optimization. Key architectural and training parameters were tuned to achieve its best performance on each specific task. The optimized values for parameters such as hidden size, number of layers, learning rate, batch size, dropout rate, and input sequence length are presented in Table 8. These results reflect the optimal configurations found for the LSTM model across the different chaotic systems and prediction steps.
TABLE 8 | Best LSTM parameters for different chaotic systems and prediction steps.	Logistic system
	Parameter	One-step	Two-step	Three-step	Four-step
	hidden_size	174.0000	201.0000	216.0000	201.0000
	num_layers	1.0000	1.0000	1.0000	1.0000
	lr	0.0140	0.0234	0.0114	0.0234
	batch_size	133.0000	150.0000	71.0000	150.0000
	dropout	0.1461	0.2185	0.3184	0.2185
	sequence_length	16.0000	19.0000	6.0000	19.0000


	Sine System
	Parameter	One-step	Two-step	Three-step	Four-step
	hidden_size	136.0000	245.0000	201.0000	201.0000
	num_layers	1.0000	1.0000	1.0000	1.0000
	lr	0.0001	0.0104	0.0234	0.0234
	batch_size	128.0000	229.0000	150.0000	150.0000
	dropout	0.3747	0.2605	0.2185	0.2185
	sequence_length	10.0000	6.0000	19.0000	19.0000


	Ricker system
	Parameter	One-step	Two-step	Three-step	Four-step
	hidden_size	201.0000	128.0000	194.0000	244.0000
	num_layers	1.0000	1.0000	1.0000	1.0000
	lr	0.0234	0.0001	0.0048	0.0001
	batch_size	186.0000	83.0000	64.0000	143.0000
	dropout	0.2185	0.3453	0.3323	0.1000
	sequence_length	19.0000	12.0000	19.0000	15.0000


4.5 Hyperparameter sensitivity analysis
AS shown in Figure 3 (Logistic System), Figure 4 (Sine System), and Figure 5 (Ricker System), this section presents the hyperparameter sensitivity analysis for the ESN-EICM model. The analysis investigates the Mean Squared Error (MSE) response to variations in individual hyperparameters, while other parameters are held at their globally optimized values (from Table 6, for one-step prediction). This provides insights into each parameter’s influence on model performance and highlights the complexity of the hyperparameter landscape. The vertical dashed line in each plot marks the globally optimal value found by Bayesian Optimization.
[image: Nine-panel grid of line charts compares sensitivity of different parameters—res_size, input_scale, w_sparsity, w_scale, spectral_radius, f, g, h, and beta—by plotting MSE versus parameter values, each with a red dashed vertical line marking a reference value.]FIGURE 3 | Parameter sensitivity analysis of ESN-EICM in logistic system.[image: Nine-panel grid of line charts displays sensitivity analysis for different parameters affecting model mean squared error, with each panel titled for a parameter. Each plot shows MSE versus parameter value, with a vertical red dashed line indicating a specific reference value.]FIGURE 4 | Parameter sensitivity analysis of ESN-EICM in sine system.For the Logistic system, several parameters show high sensitivity. The res_size has a local minimum around the globally optimized value of 1116. Both input_scale and w_sparsity display V-shaped curves, with their local minima being slightly lower than their respective globally optimized values (marked at 1.01 and 0.10). The spectral_radius is critical, with its lowest MSE point aligning perfectly with the global optimum of 0.69. The EICM neuron parameters also show distinct patterns: f has a local minimum near 0.35, while its global optimum is 0.44. Both g and h exhibit U-shaped curves. Notably, beta is extremely sensitive, with its MSE sharply decreasing to a minimum that coincides with its global optimum of 3.17.
In the Sine system, the parameter sensitivities differ. res_size shows that larger reservoirs in the tested range yield better performance, with the global optimum at 569. For w_scale, a clear trend of decreasing MSE with smaller values is observed. Both spectral_radius and the neuron parameter f are highly sensitive, with sharp V-shaped curves where the local minima are very close to their global optima (0.65 and 0.10, respectively). The parameters g and h have broader optimal regions. For beta, the MSE is lowest at the higher end of the tested range, aligning with the global optimum of 8.02.
The Ricker system presents another unique sensitivity profile. Here, res_size has a relatively flat response curve, suggesting less sensitivity within this range compared to other systems. w_scale is highly critical, with a sharp V-shaped minimum. The spectral_radius plot shows that the global optimum of 0.71 is located on the slope of a broader minimum. For the EICM neuron parameters, f shows a preference for smaller values. The parameter h is highly sensitive, with a distinct local minimum. Finally, beta again demonstrates high sensitivity, with its local minimum near the globally optimized value of 2.14.
Across all three systems, parameters defining the EICM neuron’s core dynamics, such as f and beta, along with reservoir properties like spectral_radius and w_scale, consistently emerge as highly influential. Small deviations from their optimal values can lead to a significant increase in MSE, indicating that precise tuning of these parameters is crucial. In contrast, other parameters like res_size can exhibit broader optimal regions or system-dependent behaviors.
The analysis also reveals that the optimal hyperparameter configurations are distinct for each chaotic system, underscoring the necessity of system-specific optimization. While general trends can be observed, the precise values that minimize MSE vary considerably, highlighting the unique dynamic complexity of each system. This systematic analysis is fundamental for understanding the ESN-EICM’s behavior and validating the configurations found by our optimization strategy.
It is noteworthy that the optimal parameter values marked by the vertical dashed lines (representing the global optimum found by Bayesian Optimization) do not always coincide with the minimum MSE in each one-dimensional sensitivity plot. This is an expected and insightful result. Bayesian Optimization finds the best set of hyperparameters in a high-dimensional space where all parameters interact. In contrast, our sensitivity analysis examines one-dimensional slices of this space by varying a single parameter while keeping others fixed at their global optimal values. The discrepancy between the global optimum and the local minima in these plots highlights the strong coupling and interdependencies among the hyperparameters. It demonstrates that the ideal value for one parameter is contingent on the values of others, reinforcing the necessity of using a multi-dimensional optimization strategy like Bayesian Optimization rather than relying on one-at-a-time parameter tuning.
4.6 Prediction performance evaluation
4.6.1 One-step prediction performance
The efficacy of the ESN-EICM model for one-step prediction was rigorously evaluated on three canonical chaotic systems: the Logistic system, the Sine system, and the Ricker system. Its performance was benchmarked against both traditional ESN and LSTM architectures. The comprehensive results, encompassing both quantitative metrics and qualitative visualizations, consistently underscore the superior predictive accuracy and robustness of the proposed ESN-EICM.
Quantitative analysis, detailed in Table 9, reveals that ESN-EICM generally achieves lower error metrics compared to ESN and LSTM. For instance, in predicting the Logistic system, ESN-EICM recorded a MSE of 5.3281×10−8 and a RMSE of 2.3083×10−4. This trend of superior accuracy was also observed for the Sine system, with ESN-EICM yielding an MSE of 2.5966×10−8 and an RMSE of 1.6114×10−4. These figures are notably lower than those of the benchmark models, indicating a more precise alignment between ESN-EICM’s predictions and the ground truth. Even for the Ricker system, the MSE of ESN-EICM of 1.9910×10−7 demonstrated a substantial improvement over the traditional ESN (4.2969×10−6). Furthermore, ESN-EICM exhibited competitive MAE values across all systems, achieving the lowest MAE for the Sine map (7.6498×10−5) and demonstrating MAEs comparable to or better than ESN and LSTM for the Logistic and Ricker system. While all models displayed high R2 and Explained Variance scores, ESN-EICM distinguished itself by coupling this high explanatory power with consistently lower prediction errors and well-contained Maximum Errors, as seen for the Logistic (6.6633×10−3) and Sine system (5.3483×10−3), highlighting its predictive stability.
TABLE 9 | One-step prediction performance by different chaotic system.	Logistic system
	Metric	ESN-EICM	ESN	LSTM
	MSE	5.3281×10–8	1.9481×10–7	2.1895×10–7
	RMSE	2.3083×10–4	4.4137×10–4	4.6792×10–4
	MAE	1.1417×10–4	1.0409×10–4	3.5956×10–4
	R2	0.9999	0.9999	0.9999
	Expl. Var	0.9999	0.9999	0.9999
	Max Error	6.6633×10–3	1.8522×10–2	1.3392×10–3


	Sine System
	Metric	ESN-EICM	ESN	LSTM
	MSE	2.5966×10–8	2.8248×10–8	1.9621×10–7
	RMSE	1.6114×10–4	1.6807×10–4	4.4296×10–4
	MAE	7.6498e-05	5.6082×10–5	3.4348e-04
	R2	0.9999	0.9999	0.9999
	Expl. Var	0.9999	0.9999	0.9999
	Max Error	5.3483×10–3	6.4665×10–3	1.4344×10–3


	Ricker System
	Metric	ESN-EICM	ESN	LSTM
	MSE	1.9910e-07	4.2969×10–6	3.5563e-05
	RMSE	4.4621e-04	2.0729×10–3	5.9635e-03
	MAE	3.0509e-04	9.7816×10–4	5.0354e-03
	R2	0.9999	0.9999	0.9999
	Expl. Var	0.9999	0.9999	0.9999
	Max Error	1.0754×10–2	6.1586×10–2	1.6457×10–2


The qualitative visualizations further reinforce these quantitative findings. The one-step prediction trajectories, illustrated in Figure 6 (assuming this figure shows predicted vs. true time series plots), demonstrate the ESN-EICM’s capability to closely track the actual system dynamics for the Logistic system (a), Sine map (b), and Ricker model (c), even through complex behavioral regimes. The temporal evolution of absolute prediction error, as depicted in Figure 7, confirms the stability of ESN-EICM’s predictions, with errors remaining at consistently low levels (typically on the order of 10−3 or less) without significant accumulation or divergence for all three systems. Moreover, the phase space reconstructions presented in Figure 8 show a remarkable congruence between the attractors generated from ESN-EICM’s predictions (red markers) and those of the true systems (blue markers). The model accurately reproduces the characteristic geometries of Logistic map’s phase space plot (a), the Sine map’s phase space plot (b), and the Ricker model’s phase space plot (c), indicating to its proficiency in capturing the underlying nonlinear dynamics. Finally, the scatter plots in Figure 9, which compare predicted values against true values, show data points tightly clustered around the ideal y=x diagonal for all systems (a, b, c). This high degree of linearity and consistency provides direct visual evidence of ESN-EICM’s superior predictive precision.
[image: Nine line graphs display sensitivity analyses for various parameters—res_size, input_scale, w_sparsity, w_scale, spectral_radius, f, g, h, and beta—with "param" on the x-axes and "MSE" on the y-axes. Each plot features a blue line showing MSE values with respect to parameter values and a vertical red dashed line marking a specific parameter value.]FIGURE 5 | Parameter sensitivity analysis of ESN-EICM in ricker system.[image: Three line charts labeled a, b, and c compare true and predicted values versus time step. Red solid lines show true values and blue dashed lines show predicted values. Panel a shows declining values, panel b shows increasing values with the predicted value consistently above the true value, and panel c shows increasing values with a similar pattern. Legend at the top identifies line types.]FIGURE 6 | ESN-EICM One-step Prediction in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the Ricker system.[image: Three blue line charts labeled (a), (b), and (c) display absolute error versus time step for two thousand steps. Chart (a) peaks near zero point nine, (b) near zero point seven, and (c) near one point three.]FIGURE 7 | ESN-EICM One-step Prediction Absolute Error Over Time in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the Ricker system.[image: Three side-by-side line graphs labeled a, b, and c compare true and predicted values for "Next Value" versus "Current Value." In each graph, red lines for predicted values closely overlap blue dots for true values, indicating strong prediction accuracy. A legend in each graph distinguishes true and predicted points.]FIGURE 8 | ESN-EICM One-step Prediction Phase Space Reconstruction in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the Ricker system.[image: Panel a shows a scatter plot of predicted versus true values with blue dots closely aligned along a red dashed ideal line, indicating high predictive accuracy. Panel b displays similar results with blue points tightly clustered around the red dashed line, further suggesting strong model predictions. Panel c presents the same pattern, with predicted and true values matching closely along the ideal line, emphasizing consistent predictive performance across all panels.]FIGURE 9 | ESN-EICM One-step Prediction Accuracy: Predicted vs. True Values in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the Ricker system.In conclusion, the combined evidence from quantitative metrics and qualitative visualizations strongly supports the enhanced performance of the ESN-EICM model in one-step prediction tasks for chaotic time series. It consistently outperforms or matches established models like ESN and LSTM in accuracy and robustness, while also demonstrating a strong capability to learn and replicate the intricate dynamics inherent in these complex systems. These results firmly establish ESN-EICM as a promising and effective tool for nonlinear time series prediction.
4.6.2 Multi-step prediction performance
To further assess the predictive capabilities of the proposed ESN-EICM model, comprehensive multi-step prediction experiments were conducted for two-step, three-step, and four-step ahead forecasts. These predictions were performed on the Logistic, Sine, and Ricker chaotic systems, and the performance of ESN-EICM was benchmarked against standard ESN and LSTM models. The quantitative results for these multi-step predictions are detailed in Table 10 (two-step), Table 11 (three-step), and Table 12 (four-step). Visualizations of the ESN-EICM’s multi-step prediction trajectories, corresponding absolute errors, phase space reconstructions, and scatter plots of predicted versus true values are presented in Figures 10–13, respectively.
TABLE 10 | Two-step prediction performance metrics by different chaotic systems.	Logistic system
	Metric	ESN-EICM	ESN	LSTM
	MSE	3.3125×10–7	7.0259×10–7	1.3184×10–5
	RMSE	5.7554×10–4	8.3821×10–4	3.6310×10–3
	MAE	1.5960×10–4	4.3627×10–4	2.7226×10–3
	R2	0.9999	0.9999	0.9998
	Expl. Var	0.9999	0.9999	0.9999
	Max Error	1.7849×10–2	7.7281×10–3	9.5704×10–3


	Sine System
	Metric	ESN-EICM	ESN	LSTM
	MSE	6.6947×10–8	6.6527×10–7	1.1673×10–7
	RMSE	2.5874×10–4	8.1564×10–4	3.4165×10–4
	MAE	1.2735×10–4	4.6493×10–4	2.7756×10–4
	R2	0.9999	0.9999	0.9999
	Expl. Var	0.9999	0.9999	0.9999
	Max Error	4.6815×10–3	4.7926×10–3	9.7656×10–4


	Ricker System
	Metric	ESN-EICM	ESN	LSTM
	MSE	3.3589×10–7	2.1188×10–6	7.2480×10–6
	RMSE	5.7956×10–4	1.4556×10–3	2.6922×10–3
	MAE	1.1633e-04	9.0384×10–4	2.1195e-03
	R2	0.9999	0.9999	0.9999
	Expl. Var	0.9999	0.9999	0.9999
	Max Error	2.2803×10–2	1.3637×10–2	1.6870×10–2


TABLE 11 | Three-step prediction performance metrics by different chaotic systems.	Logistic system
	Metric	ESN-EICM	ESN	LSTM
	MSE	1.6931×10–7	1.2063×10–6	5.9313×10–6
	RMSE	4.1147×10–4	1.0983×10–3	2.4354×10–3
	MAE	4.5822e×10–5	7.2919×10–4	1.8768×10–3
	R2	0.9999	0.9999	0.9999
	Expl. Var	0.9999	0.9999	0.9999
	Max Error	1.4288×10–2	8.0371×10–3	6.5480×10–3


	Sine System
	Metric	ESN-EICM	ESN	LSTM
	MSE	1.3017×10–7	6.0365×10–7	3.4272×10–7
	RMSE	3.6078×10–4	7.7695×10–4	5.8542×10–4
	MAE	2.0243×10–4	5.3188×10–4	4.2670×10–4
	R2	0.9999	0.9999	0.9999
	Expl. Var	0.9999	0.9999	0.9999
	Max Error	3.2730×10–3	4.2700×10–3	2.8723×10–3


	Ricker System
	Metric	ESN-EICM	ESN	LSTM
	MSE	4.2735×10–8	7.9467×10–6	1.0065×10–5
	RMSE	2.0672×10–4	2.8190×10–3	3.1726×10–3
	MAE	4.7811×10–5	1.4569×10–3	2.1353×10–3
	R2	0.9999	0.9999	0.9999
	Expl. Var	0.9999	0.9999	0.9999
	Max Error	8.4453×10–3	3.2162×10–2	1.9023×10–2


TABLE 12 | Four-step prediction performance metrics by different chaotic systems.	Logistic system
	Metric	ESN-EICM	ESN	LSTM
	MSE	5.2171×10–7	1.8035×10–6	4.8622×10–6
	RMSE	7.2229×10–4	1.3429×10–3	2.2050×10–3
	MAE	4.8916×10–5	8.2818×10–4	1.5299×10–3
	R2	0.9999	0.9999	0.9999
	Expl. Var	0.9999	0.9999	0.9999
	Max Error	2.4936×10–2	1.4678×10–2	1.2481×10–2


	Sine System
	Metric	ESN-EICM	ESN	LSTM
	MSE	4.4554×10-7	8.6754×10–7	1.0796×10-6
	RMSE	6.6748×10–4	9.3142×10–4	1.0390×10–3
	MAE	6.3992×10–5	5.6653×10–4	7.1513×10–4
	R2	0.9999	0.9999	0.9999
	Expl. Var	0.9999	0.9999	0.9999
	Max Error	2.3050×10–2	7.2835×10–3	6.6527×10–3


	Ricker System
	Metric	ESN-EICM	ESN	LSTM
	MSE	1.5326×10–7	2.3259×10–5	2.2010×10–5
	RMSE	3.9148×10–4	4.8227×10–3	4.6914×10–3
	MAE	9.0672×10–5	2.4204×10–3	2.6845×10–3
	R2	0.9999	0.9999	0.9999
	Expl. Var	0.9999	0.9999	0.9999
	Max Error	1.5122×10–2	5.8588×10–2	5.1520×10–2


[image: Nine-panel line chart comparing true and predicted values over increasing time steps, arranged in columns labeled (a), (b), and (c). Solid red lines show true values while dashed blue lines indicate predicted values, with close alignment throughout. All axes are labeled "Time Step" and "Value". A legend above the top row distinguishes the two lines.]FIGURE 10 | ESN-EICM multi-step Prediction in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the Ricker system.[image: Nine-panel figure displaying line graphs in three rows and three columns, each showing absolute error versus time step for up to two thousand steps. Y-axes vary in scale, with values ranging from approximately zero to between 0.5 and 4.2 times ten to the negative third or negative fourth. X-axes are consistently labeled “Time Step.” Panels are grouped and labeled below as (a), (b), and (c). All plots use blue lines to depict error variation.]FIGURE 11 | ESN-EICM multi-step Prediction Absolute Error Over Time in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the Ricker system.[image: Nine-panel grid of line charts shows next value versus current value, with blue dots for true values and red lines for predicted values. Each row repeats three distinct graph styles, labeled (a), (b), and (c) below the columns. All graphs demonstrate strong alignment between true and predicted values.]FIGURE 12 | ESN-EICM multi-step Prediction Phase Space Reconstruction in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the Ricker system.[image: Nine scatter plots compare predicted values to true values, grouped in three panels labeled a, b, and c. Each plot shows blue dots near a red dashed ideal line, indicating close agreement between predictions and actual results. All axes are labeled "True Value" and "Predicted Value," and legends identify the plotted data and ideal reference line.]FIGURE 13 | ESN-EICM multi-step Prediction Accuracy: Predicted vs. True Values in Different Chaotic Systems: (a) the Logistic system, (b) the Sine system, and (c) the Ricker system.Visually, Figures 10–13 collectively demonstrate the robust performance of the ESN-EICM model in multi-step prediction. Figure 10 shows that the predicted trajectories for all three chaotic systems ((a) Logistic, (b) Sine, (c) Ricker) closely follow the true system dynamics even over extended horizons. The absolute errors, as depicted in Figure 11, remain consistently low and bounded over the 2000 time steps, indicating the stability and accuracy of the ESN-EICM. The fidelity of the model in capturing the underlying dynamics of these chaotic systems is further highlighted by the phase space reconstructions in Figure 12, where the predicted attractors exhibit excellent agreement with the true attractors. Moreover, the scatter plots in Figure 13 show data points tightly clustered around the ideal diagonal line (Predicted Value = True Value), underscoring the high point-wise accuracy of the ESN-EICM in multi-step prediction scenarios.
Quantitatively, the ESN-EICM model consistently outperforms both ESN and LSTM across nearly all metrics and prediction horizons for the three chaotic systems.
For the Logistic system, in 2-step predictions (Table 10), ESN-EICM achieved an MSE of 3.3125×10−7, markedly lower than ESN (7.0259×10−7) and LSTM (1.3184×10−5). This superiority in terms of MSE, RMSE, and MAE was maintained and often accentuated as the prediction horizon increased. For instance, in 4-step predictions (Table 12), ESN-EICM’s MSE was 5.2171×10−7 and MAE was 4.8916×10−5, significantly better than ESN (MSE: 1.8035×10−6, MAE: 8.2818×10−4) and LSTM (MSE: 4.8622×10−6, MAE: 1.5299×10−3).
In the case of the Sine system, ESN-EICM also demonstrated consistently lower MSE, RMSE, and MAE. For 2-step predictions (Table 10), ESN-EICM’s MSE (6.6947×10−8) was superior to both ESN (6.6527×10−7) and LSTM (1.1673×10−7). While LSTM occasionally yielded a lower Max Error (e.g., 9.7656×10−4 for 2-steps), ESN-EICM’s average error metrics remained dominant. This trend persisted for 4-step predictions (Table 12), where ESN-EICM’s MAE of 6.3992×10−5 was substantially lower than ESN’s 5.6653×10−4 and LSTM’s 7.1513×10−4.
The Ricker system results particularly highlight the strength of the ESN-EICM. For 2-step predictions (Table 10), ESN-EICM’s MSE (3.3589×10−7) was already an order of magnitude better than LSTM (7.2480×10−6) and significantly better than ESN (2.1188×10−6). This advantage became even more pronounced at longer horizons. For 3-step predictions (Table 11), ESN-EICM achieved an exceptionally low MSE of 4.2735×10−8, two orders of magnitude smaller than ESN (7.9467×10−6) and LSTM (1.0065×10−5). It also recorded the lowest Max Error (8.4453×10−3) in this scenario. This pattern continued for 4-step predictions (Table 12), where ESN-EICM’s MSE (1.5326×10−7) and Max Error (1.5122×10−2) were notably superior to the comparator models.
Across all tested scenarios, R2 and Explained Variance values were consistently close to 0.9999 for all models, indicating a good general fit. However, the significant differences in MSE, RMSE, and MAE clearly underscore the enhanced precision and robustness of the ESN-EICM model for multi-step chaotic time series prediction. The sustained low error levels, even as the prediction horizon extends, suggest that ESN-EICM effectively captures the complex underlying dynamics and is less prone to error accumulation compared to standard ESN and LSTM approaches in these multi-step prediction tasks.
4.7 Training time comparison
In this section, we describe the measurement of the execution times of the three models for the same prediction task. The computer configuration is as follows:
	• RAM: 32.0 GB (31.2 GB available)
	•Processor: AMD Ryzen 9 7945HX with Radeon Graphics, 2.50 GHz
	•System: 64-bit operating system, x64-based processor
	•Operating System: Windows 11 Pro, version 24H2
	•Graphics Card: NVIDIA GeForce RTX 4060 Laptop GPU, 8 GB GPU VRAM, NVIDIA
	•Python: 3.12.0	•NumPy version: 1.26.4
	•SciPy version: 1.14.1
	•scikit-learn version: 1.5.2
	•Matplotlib version: 3.9.2
	•scikit-optimize version: 0.10.2
	•tqdm version: 4.66.5
	•torch version: 2.7.0
	•Pandas version: 2.2.3



The computational efficiency of the proposed ESN-EICM model was evaluated against traditional ESN and LSTM architectures, with total experiment times recorded in Table 13. A key advantage of reservoir computing models, including ESN and our ESN-EICM, lies in their training efficiency compared to deep learning models like LSTM. This is primarily because the reservoir’s internal weights are fixed after initialization, and only the output weights are trained, typically through a computationally inexpensive linear regression. In contrast, LSTMs require iterative backpropagation through time and gradient descent over many epochs (70 epochs in our setup, as per 4.3.3), leading to significantly longer training durations. This fundamental difference is evident across all prediction steps and chaotic systems, where both ESN-EICM and ESN consistently outperform LSTM in terms of speed, often by an order of magnitude. For instance, in one-step prediction for the Logistic system, ESN-EICM took 424.3 s, ESN took 398.8 s, while LSTM required 1649.0 s. This pattern persists and often magnifies in multi-step scenarios; for example, in four-step prediction for the Ricker system, ESN-EICM completed in 570.5 s, ESN in 4006.0 s, and LSTM in 2092.1 s.
TABLE 13 | Total experiment time for different prediction steps, chaotic systems, and models.	One-step prediction
	System	ESN-EICM	ESN	LSTM
	Logistic	424.3 (s)	398.8 (s)	1649.0 (s)
	Sine	378.5 (s)	433.1 (s)	1761.0 (s)
	Ricker	376.5 (s)	460.9 (s)	1700.0 (s)


	Two-step Prediction
	System	ESN-EICM	ESN	LSTM
	Logistic	513.0 (s)	486.3 (s)	2737.3 (s)
	Sine	521.1 (s)	417.8 (s)	2518.2 (s)
	Ricker	583.7 (s)	461.2 (s)	2578.1 (s)


	Three-step Prediction
	System	ESN-EICM	ESN	LSTM
	Logistic	1034.4 (s)	434.6 (s)	2406.2 (s)
	Sine	1108.3 (s)	440.5 (s)	2711.0 (s)
	Ricker	926.5 (s)	456.4 (s)	2533.5 (s)


	Four-step Prediction
	System	ESN-EICM	ESN	LSTM
	Logistic	517.6 (s)	3183.1 (s)	2797.9 (s)
	Sine	526.5 (s)	2136.5 (s)	2904.1 (s)
	Ricker	570.5 (s)	4006.0 (s)	2092.1 (s)


When comparing ESN-EICM specifically with the standard ESN, the time performance presents a nuanced but ultimately favorable picture for ESN-EICM, particularly as prediction horizons extend. In one-step and two-step predictions, the ESN-EICM’s runtime is generally comparable to that of the standard ESN, occasionally slightly higher. This marginal increase can be attributed to the more complex neuron dynamics within the ESN-EICM reservoir (as described in Section 3), which involve updates for feeding input F, output Y with sigmoid activation and noise, and a dynamic threshold E based on mean population activity. These richer per-neuron computations, while enhancing predictive power, incur a slight overhead per time step during reservoir state generation compared to the simpler activation function of a traditional ESN.
However, a significant advantage for ESN-EICM emerges in longer multi-step predictions, particularly at the four-step horizon. Here, ESN-EICM demonstrates substantially better time efficiency than the standard ESN. For example, in four-step prediction for the Logistic system, ESN-EICM took only 517.6 s, whereas ESN’s time escalated to 3183.1 s. Similar substantial speed-ups for ESN-EICM over ESN were observed for the Sine (526.5 s vs. 2136.5 s) and Ricker (570.5 s vs. 4006.0 s) systems at four steps. This pronounced improvement in efficiency for ESN-EICM in more challenging, longer-term prediction tasks can be directly attributed to how its enhanced stability impacts the Bayesian Optimization process. The inherent stability of the EICM neurons—stemming from features like adaptive thresholds and bounded activations—creates a “smoother” hyperparameter landscape for the optimizer to explore. This means that fewer parameter combinations lead to divergent or numerically unstable models, which would otherwise result in extremely high error values (penalties) and waste optimization calls. For the standard ESN, finding a stable parameter set for long-term iterative prediction can be more difficult, leading the optimizer to spend more time evaluating poorly performing or unstable regions. In contrast, the ESN-EICM’s robustness means that a larger proportion of the hyperparameter space yields valid, stable models, allowing the Bayesian optimizer to more quickly identify near-optimal configurations in fewer iterations. Therefore, the “faster convergence” mentioned in the abstract is not about the speed of a single training run, but the efficiency of the entire hyperparameter search process, which is significantly accelerated by the model’s intrinsic stability.
5 DISCUSSION
5.1 On model complexity and the design philosophy
A central tenet of traditional ESNs is the use of a simple, fixed reservoir to reduce training complexity. Our ESN-EICM model, by incorporating a more complex neuron, appears to diverge from this principle. This is a deliberate design choice motivated by the specific challenge of chaotic system prediction. Instead of seeking complexity through architectural modifications like deep or multi-reservoir structures, we pursue “internal complexification” at the neuronal level. The rationale is that the rich, adaptive dynamics of the EICM neuron—with its coupled feedback and adaptive thresholds—can generate a more expressive variety of temporal patterns. This allows a reservoir of a given size to map the input into a higher-quality, more dynamically rich state space. The performance gains observed, particularly in multi-step prediction, suggest that for highly complex and sensitive systems like the ones studied, the benefits of enhanced neuronal dynamics outweigh the modest increase in per-neuron computational cost. This approach offers a valuable alternative to topological optimization, focusing instead on the intrinsic computational capabilities of the reservoir’s constituent elements.
5.2 Robustness against sensitivity in chaotic systems
The introduction mentions the “butterfly effect,” the extreme sensitivity of chaotic systems to initial conditions. The ESN-EICM’s strong performance in multi-step prediction suggests an inherent robustness against this sensitivity. This can be attributed to several design features. The adaptive threshold mechanism (Et) acts to normalize the network’s overall activity, preventing small initial errors from being catastrophically amplified and causing state divergence. The internal feedback (f⋅Ft−1) and global coupling (W⋅Yt−1) create a rich, stable attractor dynamic within the reservoir that is resistant to minor perturbations. Finally, the injection of a small amount of noise can be seen as a form of regularization that prevents the model from overfitting to a specific trajectory, thereby improving its ability to generalize and remain on the true system’s attractor for longer during iterative prediction.
6 LIMITATIONS AND FUTURE WORK
While the proposed ESN-EICM model has demonstrated significant advantages in prediction chaotic time series, certain limitations and avenues for future research warrant discussion.
6.1 Limitations
	1. Although Bayesian Optimization (BO) is more efficient than grid search or random search, optimizing a relatively large number of hyperparameters (10 in this study for ESN-EICM, as shown in Table 1) can still be computationally intensive, especially if each evaluation (training and validating the model) is time-consuming due to large reservoir sizes or long time series. The 50 calls to BO used in this study represent a trade-off between search thoroughness and computational budget.
	2. The computational complexity of standard ESN training involves matrix operations that scale with reservoir size (N). While the EICM neuron introduces a constant factor overhead per neuron, the fundamental scaling properties of RC remain. For extremely large reservoirs, the memory and computational demands for storing and operating on the reservoir weight matrix W and collecting states could become a bottleneck.
	3. The ESN-EICM was evaluated on three discrete chaotic systems, which are well-defined and exhibit specific types of chaos. Real-world time series often contain multiple sources of noise, non-stationarities, and varying types of underlying dynamics that were not explicitly addressed or modeled in this study beyond the inherent learning capacity of the reservoir. The model’s performance on such diverse and potentially more complex real-world datasets remains to be extensively validated.
	4. While the EICM neuron model is biologically inspired and its mechanisms (adaptive threshold, feedback) are more transparent than the internal workings of an LSTM cell, the collective dynamics of a large reservoir of interconnected EICM neurons can still be complex to analyze and interpret fully. Understanding precisely how the EICM parameters (f,g,h,β) contribute to specific dynamic properties like memory capacity or nonlinearity at the network level requires further investigation.
	5. The EICM neuron parameters (f,g,h,β) are optimized via BO and then fixed during training and inference. For highly non-stationary time series, dynamically adapting these internal neuron parameters online could potentially offer further performance improvements.
	6. While the overall training is efficient, the EICM neuron itself is computationally more demanding than a standard tanh or sigmoid neuron due to the multiple state updates (F, E, Y) required at each time step. This introduces a constant factor overhead in the reservoir state generation phase, which could become noticeable for very large reservoirs or extremely long time series.

6.2 Future work
Based on the promising results and current limitations, several directions for future research can be pursued:
	1. Exploring more sophisticated or parallelized Bayesian optimization techniques, or meta-learning approaches to warm-start BO, could further reduce the hyperparameter tuning cost. Investigating gradient-based optimization for certain EICM parameters, if feasible, might also be an avenue.
	2. Developing mechanisms for online adaptation of key EICM parameters (f,g,h,β) based on the input statistics or prediction error could enhance the model’s adaptability to changing dynamics in non-stationary environments.
	3. Combining ESN-EICM with other machine learning techniques could yield synergistic benefits. For example, using attention mechanisms in the output layer or employing ESN-EICM as a feature extractor for a subsequent shallow neural network could be explored.
	4. A more in-depth theoretical analysis of the ESN-EICM, focusing on its memory capacity, echo state property conditions with EICM neurons, and stability criteria, would provide a stronger foundational understanding.
	5. Extending the application of ESN-EICM to a wider range of challenging real-world chaotic and complex time series from domains such as finance (stock market prediction), climate science (weather prediction), engineering (system identification), and neuroscience (EEG signal analysis) would be crucial for demonstrating its practical utility.
	6. Investigating the integration of other sophisticated, biologically plausible neuron models (e.g., Izhikevich neurons, adaptive exponential integrate-and-fire models) within the RC framework could lead to further advancements in time series prediction.Further exploration into neuromorphic hardware implementations could also be beneficial, drawing insights from ongoing research into memristive systems and their complex dynamics for specialized tasks [35]. Similarly, advancements in cellular neural networks coupled with novel devices like memristors also contribute to the broader landscape of hardware-oriented neural computation [36]. Exploring efficient hardware avenues, such as FPGA implementations for complex and novel neural architectures, remains an important direction [37].
	7. Beyond hyperparameter optimization, exploring techniques for optimizing the reservoir’s topology (e.g., using pruning or growing methods guided by EICM neuron activity) could lead to more efficient and specialized reservoir structures.

Addressing these limitations and exploring these future research directions will contribute to advancing the field of reservoir computing and its application to complex time series analysis.
7 CONCLUSION
In this work, we introduced the Echo State Network Based on Enhanced Intersecting Cortical Model (ESN-EICM), a novel reservoir computing framework designed for accurate and efficient prediction of dicrete chaotic systems. Recognizing the limitations of traditional deep learning models in terms of computational cost and interpretability, and the constraints of standard ESNs concerning simplistic neuron dynamics and hyperparameter sensitivity, the ESN-EICM offers a compelling alternative. The core innovation lies in the integration of biologically inspired EICM neurons into the reservoir, characterized by continuous sigmoid activation, global mean-driven adaptive thresholds, and explicit inter-neuron feedback. This design endows the reservoir with richer internal dynamics, better suited for capturing the complex patterns inherent in chaotic systems. Furthermore, the adoption of a Bayesian Optimization strategy systematically addresses the challenge of hyperparameter tuning, leading to robust and near-optimal model configurations.
Our comprehensive experimental evaluation on the Logistic, Sine, and Ricker chaotic systems unequivocally demonstrated the ESN-EICM’s superiority. In both one-step and challenging multi-step prediction tasks (up to four steps ahead), the ESN-EICM consistently outperformed both standard ESN and LSTM models, as evidenced by significantly lower Mean Squared Error, Root Mean Squared Error, and Mean Absolute Error. Qualitative analyses, including prediction trajectory plots, error distributions, phase space reconstructions, and scatter plots, further visually corroborated the enhanced accuracy and stability of the ESN-EICM. Notably, while maintaining the characteristic training efficiency of RC models over LSTMs, the ESN-EICM often exhibited comparable or even superior total experiment times (including optimization) compared to standard ESNs in multi-step scenarios, attributed to the increased stability and expressiveness of the EICM neurons facilitating a more efficient hyperparameter search.
The successful application of EICM neurons within an ESN framework, coupled with automated hyperparameter optimization, highlights the potential of integrating more sophisticated, biologically plausible mechanisms into reservoir computing. The ESN-EICM stands as a robust, accurate, and computationally viable tool for modeling and predicting chaotic time series, paving the way for further research into neuro-inspired computing paradigms for complex dynamical systems. Future work will focus on extending its application to diverse real-world problems, exploring dynamic adaptation of neuron parameters, and conducting further theoretical analysis of its properties.
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Introduction
Memristor systems and their application circuits have attracted growing research interest. When a memristor circuit/network is designed, both memristors and conventional electronic components are inevitably required, particularly energy storage elements (e.g., capacitors and inductors). It has found that most existing studies focus on oscillatory phenomena generated by memristive systems, such as chaotic attractors, period-doubling oscillations, spiking and bursting oscillations. However, there is a notable lack of literature exploring and analyzing the energy exchange between these components, as well as the resulting oscillatory behaviors and outcomes arising from such interactions. It is well known that the unit of a memristor, like that of a resistor, is the ohm (Ω). In general circuits, the energy exchange between resistors and energy storage elements can induce nonlinear behaviors such as step functions, damping phenomena, both of which stem from the energy exchange between resistors and capacitors/inductors. So, when a memristor (though physical implementations are rare, several classic mathematical models exist) exchanges energy with energy storage elements, will similar behaviors emerge?
Methods
In this paper, to advance the theoretical completeness of memristive systems and take the classical HP memristor model as an example, four source-free circuit topologies integrating memristors with energy-storage elements are investigated deeply. They are categorized into two types: RMC/RML circuits and series/parallel RMLC circuits. Firstly, through mathematical modeling, the four circuits are all found to be governed by transcendental equations. Secondly, two types of four-component source-free circuits are configured and analysis. Finally, the application circuits comprising four fundamental components was configured and explored.
Results and Discussion
Simulation results for the mathematical models of the four circuits demonstrate memristor states (R0, kRd) and energy-storage elements collectively regulate response characteristics, damped oscillatory and decay behavior. The active power and apparent power curves reveal distinct energy exchange behaviors between components, differing fundamentally from conventional RL, RC, and RLC circuits. These findings demonstrate that due to the presence of memristors, such circuits cannot be employed for step response generation, but are exclusively applicable for energy memorization and dissipation. Then, the following conclusion on two types of source-free circuits are demonstrated: (1) capacitor and inductor provide energy (i.e., ϕ and q) to the system, while memristors exhibit hysteretic behavior, collectively and fundamentally co-modulating oscillation modes and attractor phenomenon; (2) The dual characteristics of memristors—memory capability and energy dissipation—endow them with the potential to break the von Neumann bottleneck, making them essential candidates for implementing next-generation neural networks and AI systems. Finally, the application circuits reveal that even within the same circuit, varying memristor placements can lead to distinct topological configurations and divergent nonlinear output behaviors. This phenomenon further validates the unique characteristics of memristors as an emerging field. These findings establish a solid theoretical and experimental foundation for future exploration and development of memristive systems, including next-generation neural networks, artificial intelligence applications, and aerospace technologies.

Keywords: memristor, R M C circuits, R M L circuits, Kirchhoff’s circuit laws, energy exchange
1 INTRODUCTION
The memristor has been hypothesized as the fourth fundamental circuit component [1] and named. Its fingerprint is a pinched hysteresis loop [2], which is the recovery of pure resistance (no hysteresis) for high frequencies [1, 2]. Subsequently, the HP-memristor was proposed and fabricated as a canonical model. Due to the special electrical properties of nonvolatile memory and extraordinary nonlinearity, the memristor is usually adopted to design the artificial neural networks, memristive circuits, oscillation circuits and employed for unmanned aerial vehicles and motors. Currently, the discussion is focused not only on the application to computation and memory storage, but also on the fundamental role in nonlinear circuit theory. For instance, real synaptic circuits [3, 4]. biological neurons [5–8], behaviors of some neural network models [9, 10], and even some complex systems [11, 12] with memristors or memristor emulators [11, 13–16, 29]. Also, some meaning and interesting nonlinear behaviors and application have also been discovered and published [17], integration to mention just a few.
Totally, all above involved results contributed to improving the circuit theory and exploring related applications in the fields of circuit engineering, such as mathematics, physics, and aerospace circuits. According to the definition of the memristor, whose value depends on its internal parameter, which in turn has to evolve dynamically according either to current and voltage [2]. In other words, when the memristor was configured into one real circuit, the relationship (dΦ=RMdq) between its resistance and the state variable is the essence of characterizing the memristor [15, 18], which have been considered as the basic information to analyze the nonlinear and oscillation behaviors [15, 18], such as chaotic circuits [19], damping circuits [20], Bessel filter [21], diode bridge rectifier [22], and oscillation memristive circuit [23, 30], etc. Some of them addressed and studied the dynamics, and the other showed the complicated chaotic phenomenon [24–26]. Furthermore, there are some literatures focused on the memristive oscillators, chaotic attractors [12, 24, 31], and application in synaptic [3], neuron networks [4–7, 10, 11, 24, 27, 28], and oscillation phenomenon [14, 16, 17], and so on.
Furthermore, it has found that most existing studies focus on oscillatory phenomena generated by memristive systems, such as chaotic attractors, period-doubling oscillations, spiking and bursting oscillations. However, there is a notable lack of literature exploring and analyzing the energy exchange between these components, as well as the resulting oscillatory behaviors and outcomes arising from such interactions. It is well known that the unit of a memristor, like that of a resistor, is the ohm (Ω). In general circuits, the energy exchange between resistors and energy storage elements can induce nonlinear behaviors such as step functions, damping phenomena, both of which stem from the energy exchange between resistors and capacitors/inductors. So, when a memristor (though physical implementations are rare, several classic mathematical models exist) exchanges energy with energy storage elements, will similar behaviors emerge? In this paper, to advance the theoretical completeness of memristive systems and take the classical HP memristor model as an example, four source-free circuit topologies integrating memristors with energy-storage elements are investigated deeply. They are categorized into two types: RMC/RML circuits and series/parallel RMLC circuits. Firstly, through mathematical modeling, the four circuits are all found to be governed by transcendental equations. Simulation results demonstrate memristor states R0, kRd and energy-storage elements collectively regulate response characteristics, damped oscillatory and decay behavior. The active power and apparent power curves reveal distinct energy exchange behaviors between components, differing fundamentally from conventional RL, RC, and RLC circuits. These findings demonstrate that due to the presence of memristors, such circuits cannot be employed for step response generation, but are exclusively applicable for energy memorization and dissipation. Secondly, two types of four-component source-free circuits are configured and the following conclusion are demonstrated: (1) energy-storage elements provide energy (i.e., ϕ and q): to the system, while memristors exhibit hysteretic behavior, collectively and fundamentally co-modulating oscillation modes and attractor phenomenon; (2) The dual characteristics of memristors—memory capability and energy dissipation—endow them with the potential to break the von Neumann bottleneck, making them essential candidates for implementing next-generation neural networks and AI systems. Finally, the application circuits comprising four fundamental components was configured and explored. The study reveals that even within the same circuit, varying memristor placements can lead to distinct topological configurations and divergent nonlinear output behaviors. This phenomenon further validates the unique characteristics of memristors as an emerging field. These findings establish a solid theoretical and experimental foundation for future exploration and development of memristive systems, including next-generation neural networks, artificial intelligence applications, and aerospace technologies. Moreover, once the fundamental rules are improved, more and more foundations could be refined and continual applications in the theories and overall design process, such as nonlinear circuits, the avionics for unmanned aerial vehicle systems, as we shall see.
The remainder of this paper is organized as follows: In Sec II, the information on HP memristive system and two types of general source-free circuits are presented. In Section III, both source-free circuits are introduced, that is, RMC and RML circuits. Then, their mathematical models, novel time constant, the response curves, the trajectories of the power dissipated and energy absorbed are performed, respectively. In Section IV, both series and parallel source-free RMLC circuits are analyzed. In Section V, the application circuits with four components are provided and demonstrate the influence of energy storage elements or memristors on the frequency and oscillatory behaviors. Finally, the paper is summarized in Section VI.
Notably, all the curves in this paper are tested by the software MATLAB R2018a Version, which is a programming and numeric computing platform used by millions of engineers and scientists to analyze data, develop algorithms, and create models.
2 HP MEMRISTOR AND GERENAL SOURCE-FREE CIRCUITS
As both one fundamental 2-port electric component and the classical model, HP-memristor (RM) has been proposed and manufactured as the charge-controlled memristor [2–4, 20–22]. Its model could be given as follows
RM=dφdq=Roff−μvRoffD2Ron⋅qt(1)
where, there are two regions: one region with a high dopant concentration with low resistance Ron, the other region has a low concentration of dopant with a considerably higher resistance Roff. Also, the Equation 1 was named as the linear drift model due to the velocity of the width being linearly proportional to the current. Then, the variable q(t) has been considered as the charge and means the integral of the current i(t).
In order to study the universality of this class of memristive systems, it can be re-written as
RM=R0+kRd∫idt=R0+kRd⋅qRM=uMt/iMt(2)
where the variable uM(t) is the cross voltage, iM(t) as one function of current and has been defined as the rate of change of the state variable. Defining the parameters R0, k and Rd jointly reflect the relationship between uM(t) and iM(t). Then, the parameter R0 stands in the region which has a low concentration of dopant with a considerably higher resistance Roff. The parameter Rd is one region with a high dopant concentration and low resistance Ron. The parameter k=−μVRoff/D2 is defined as a coefficient.
The important trajectory curves are depicted in Figure 1.
[image: Three data visualizations are shown: Panel a, a line graph plots U versus I₂ with two curves labeled U-I₁ and U-I₂; panel b, a line graph shows P₂ versus t for The t-p₁ and The t-p₂ with periodic peaks; panel c, a line graph plots w₁ versus t for The t-w₁ and The t-w₂, both with increasing oscillations. Legends and axis labels are present in each panel.]FIGURE 1 | Several important relationships between different variants for the memristors, kRd1=106, R01=16k in RM1 and R02=6k, kRd1 = 106 in RM2, dq(t)/dt=i(t)=sin(2t). (a) the curves of v−i phase. (b) p(t) by the memristor. (c) w(t) by the memristor.From Figure 1, it can be seen that these curves are the fingerprints, the dissipated power and energy absorbed in time-domain graphs for the single memristor. They are so complex but cannot be applied directly like the other general discrete elements. Due to the characteristics of the memristive system, its power exhibits a frequency doubling phenomenon. Thus, the related basic fundamentals should be examined as soon as possible via the n-order circuit model with the RM and an energy storage element.
In circuit theory, for an ordinary circuit, there are two excitation methods. One method involves independent sources. The other utilizes the initial conditions of storage elements within the circuit, which are so-called source-free circuits. When energy is initially stored in capacitive or inductive elements, this stored energy drives current flow, which is gradually dissipated in resistors. The rate of dissipation can be calculated by Kirchhoff’s laws. This way has been considered as a sufficient, powerful set of tools to analyze a large variety of electric circuits all the time. Now, this method could be utilized to analyze the following circuits, such as RMC and RML circuits. The classical first-order source-free circuits are shown as Figure 2.
[image: Two labeled circuit diagrams side by side: diagram a shows a series circuit with capacitor C, resistor R, current directions iC and iR, and voltage u; diagram b shows a series circuit with inductor L, resistor R, inductor voltage VL, and resistor voltage VR, with both diagrams highlighted in red and reference points labeled a and b.]FIGURE 2 | Two types of the classical source-free circuits. (a) RC circuit. (b) RL circuit.Observing from Figure 2a, when the initial condition is u(0)=U0, the voltage response of the RC circuit could be expressed by an exponential decay of the initial voltage. Also, this result is attributed to the initially stored energy and the circuit’s intrinsic characteristics, rather than its external voltage or current sources. Similar to Figure 2b, it is shown that the natural response of the RL circuit is also an exponential decay of the initial current. Furthermore, the time constant for both RC and RL circuits have been defined as τ=RC and τ=L/R. Subsequently, the natural response could be illustrated graphically in Figures 3, 4. It has been evidence that an exponential decay of the initial condition, dissipated power and the absorbed energy by the resistor for the RC circuit are also given by Equation 3, as the current responses for the RL circuit are shown by Equation 4.
[image: Three labeled line charts display variables versus time from negative five to five seconds. Chart a shows u(t) in volts decreasing exponentially in red, chart b shows p(t) in watts increasing then leveling in blue, and chart c shows w in joules decreasing exponentially in black.]FIGURE 3 | The natural response of the RC circuits, u(t0)=U0=0.1V, R=1, C=1F. (a) the curve of the voltage response. (b) p(t) by the resistor. (c) w(t) absorbed by the resistor.[image: Three line graphs are presented. Panel a, top left, shows a red exponentially decreasing curve of I(t) in amperes versus time in seconds. Panel b, top right, displays a blue curve of p(t) in watts, which increases sharply and plateaus near zero for positive time. Panel c, bottom center, presents a black exponentially decreasing curve of w in joules versus time, similar to panel a.]FIGURE 4 | The natural response of the RL circuits, i(t0)=I0=0.01A, R=1, L=1H. (a) the curve of current response. (b) p(t) by the resistor. (c) w(t) by the resistor.For the source-free RC circuit, when the initial condition u(t0)=u(0)=U0, the results could be given as follows
ut=U0e−t/τ,τ=RCpt=utiRt=−U02Re−2t/τwt=∫0tptdt=12CU021−e−2t/τ(3)
For the source-free RL circuit, when the initial condition i(t0)=i(0)=I0, the results could be computed as follows
it=I0e−t/τ,τ=L/Rpt=utiRt=I02Re−2t/τwt=∫0tptdt=12LI021−e−2t/τ(4)
Observed from Figures 3, 4, when t→∞, wR∞→12CU02 for the RC circuit and wR∞→12LI02 for the RL circuit could be observed. They are the same as the energy initially stored in the capacitor (wc(0)) element in Equation 3 and inductor (wL(0)) element in Equation 4.
The above has already provided a complete description for the properties of classical first-order circuits. Next, we pose a question: when resistors are substituted with memristors (e.g., HP memristors), what kind of conclusions could be obtained? For this purpose, the followingRMC and RML circuits will be configured and analyzed in the next section.
3 THE SOURCE-FREE RMC AND RML CIRCUITS
3.1 The source-free RMC circuits
The produced source-free RMC circuit could be drawn as Figure 5a. Applying Kirchhoff’s Laws (i=iC=iM) yields
R0+kRdqCducdt+uc=0(5)
where, the variable u(t)=uc(t) stands for the voltage of the capacitor. Notably that dq(t)/dt=i(t)=iM(t)=iC(t) is the intrinsic variable for Figure 5a. Let τ0=R0C and b=kRdC/R0, the terms could be depicted as
ln⁡u+b⋅u=−tτ0(6)
[image: Two electrical circuit diagrams are shown side by side. Diagram a features a capacitor labeled C, a resistor labeled RM, and indicated currents iC and iM, with the circuit highlighted in red. Diagram b features an inductor labeled L, the same resistor RM, voltages uL and uM, and a similar closed path in red.]FIGURE 5 | The source-free circuits with charge-controlled memristor. (a) RMC circuit. (b) RML circuit.Obviously, Equation 6 a transcendental equation whose solution can only be computed using approximations and cannot be obtained exactly. The natural response curve of the Equation 5 could be illustrated graphically in Figure 6.
[image: Line graph with horizontal axis labeled t/s and vertical axis labeled u(t), showing an exponentially decreasing function from left to right. An inset graph displays a zoomed-in section with a minimum point near t equals 2.5 seconds.]FIGURE 6 | The natural response of the RMC circuits, the initial value of kRd=0.8∗106, R0=16k, C=1mFFrom Figure 6, this response curve is fundamentally distinct from that of an RC circuit (characterized by a single exponential curve), where the energy stored in the capacitor is entirely dissipated by the resistor. It is more complex and constitutes both exponential and non-exponential functional components. Crucially, although the memristor’s unit is also the ohm (Ω), its model reveals that it consists of both linear and nonlinear resistive components [1,2]. Here, the linear resistive component exhibits the conventional ”energy-dissipation” characteristic of resistors, as manifested by the exponential segment of the curve. However, the energy stored in the capacitor is not fully consumed the remaining portion is ”memorized” by the nonlinear component, which corresponds to the non-exponential segment of the curve. Then, according to the definition of the time constant, setting τ0=R0C and calculators b for this RMC circuit. When the circuit is excited, C provides the stored energy to the RM, the RM works for both memorizing the information and energy dissipation profile, immediately. Memory speed depends on this new time constant (τ0).
There are three variables related to the decay of the voltage response uC(t), which are Rd, R0 and C. Next, the decay behavior would be discussed when only one variable is changed and the other ones are fixed.
(1) when kRd=0.8∗104 and C=1mF, changing the variable R0, the response uC(t) are illustrated in Figure 7.
[image: Line chart with four time-series curves labeled u1 through u4, plotting u(t) versus t/s from negative five to five. An inset magnifies the region near t equals zero to five, highlighting curve details between u equals zero point five and one point five.]FIGURE 7 | The curve of the voltage response with R01=16k in blue, R02=26k in red, R03=46k in pink, R04=66k in black.Observe from Figure 7, When t<0, the blue curve resides innermost while the black curve lies outermost; when t>0, the blue curve shifts to the bottom position and the black curve to the top. This demonstrates that as the value of R01 increases, the curves become progressively flatter, indicating slower rates for both energy dissipation (“consumption”) and memory retention (“memorization”). Then, the following conclusion could be drawn:
	i. A smaller R0 results in a larger τ0 with faster decay dynamics.
	ii. A smaller R0 value leads to a significant increase in the proportion of the exponential segment of the curve. The more pronounced the “energy dissipation” component becomes, the more enhanced the ”memory” effect appears.
	iii. A certain energy exists to memorize information for the memristor. Therefore, the voltage uC(t) cannot decay to 0 at the t=0.

(2) when kRd=0.8∗104 and R0=16k, changing the capacitance C, the response uC(t) are illustrated in Figure 8.
[image: Line graph compares four functions, u1 to u4, of u(t) over time t (in seconds) with a main plot and a zoomed-in inset. All curves decrease rapidly then level off, with u1 starting highest and u4 lowest. The inset highlights detailed behavior for t between approximately negative one and five seconds, showing subtle differences between the curves.]FIGURE 8 | The curve of the voltage response with C=1mF in blue, C=1.1mF in red, C=1.2mF in pink, C=1.3mF in black.From Figure 8, when t<0, the blue curve resides innermost while the black curve lies outermost; However, when t>0, the blue curve shifts to the top position and the black curve to the bottom. This demonstrates that as the value of C increases, the curves exhibits a significantly steepened profile, indicating faster rates for both energy dissipation (“consumption”) and memory retention (“memorization”). Then, similar results are still observed.
	i. A smaller C results in a larger τ0 with faster decay dynamics.
	ii. A smaller C value leads to a significant increase in the proportion of the exponential segment of the curve. The more pronounced the “energy dissipation” component becomes, the more enhanced the “memory” effect appears.
	iii. A certain voltage is required to memorize information for the memristor. Therefore, the voltage uC(t) cannot decay to 0 at the t=0. However, the different capacitor C could provide the different storage voltage to the memory.

(3) when C=1mF and R0=16k, changing the variable Rd, the response uC(t) are illustrated in Figure 9.
Observed from Figure 9, when t<0, the black curve resides innermost while the blue curve lies outermost; when t>0, the blue curve shifts to the top position and the black curve to the bottom. This demonstrates that as the value of kRd increases, the curves exhibits a significantly steepened profile, indicating faster rates for both energy dissipation (“consumption”) and memory retention (“memorization”). Due to the minimal variation in kRd, the distinction between the curves is not particularly pronounced. Then, different results can be obtained:
	i. A larger kRd results in a larger τ0 with faster decay dynamics.
	ii. A larger kRd value leads to a significant increase in the proportion of the exponential segment of the curve. The more pronounced the “energy dissipation” component becomes, the more enhanced the “memory” effect appears.
	iii. A certain energy exists to memorize information for the memristor. Then, the voltage uC(t) cannot decay to 0 at the t=0.

[image: Line graph with four curves labeled u1 to u4, illustrating u(t) versus t from negative five to five seconds. The main plot shows declining trends, while a magnified inset highlights the curves' divergence near the lower right.]FIGURE 9 | The curve of the voltage response with kRd1=0.5∗104 in blue, kRd2=0.8∗104 in red, kRd3=104 in pink, kRd4=1.5∗104 in black.It should be noted that when applying both RC and RL circuits, they could be treated as the step functions to configure plenty of circuit-networks. However, both RMC and RML circuits are not the step functions. They do not focus on storing and consuming energy, but on memorizing pieces of information. Secondly, the speed of memorizing information is associated with the determined new time constant (τ0). The larger τ0 could lead to the faster the decay as well as speed of memorizing pieces of information. Thirdly, the memristor (RM) satisfies dual properties: memory (R0) and energy consumption (kRd).
Finally, the dissipated power and the absorbed energy by the memristor for the RMC circuit are depicted in Figure 10.
[image: Figure with three panels labeled a, b, and c. Panel a shows a magenta parametric curve with a counterclockwise elliptical shape between U versus I. Panel b displays a magenta double-peaked curve for power pM over time t. Panel c presents a magenta double-lobed curve for energy wM over time t, with values stabilizing after an initial disturbance.]FIGURE 10 | The curves for the RMC circuit with the parameters kRd=0.8∗106, R0=16k, C=1mF. (a) the fingerprint characterizes of v−i for RM). (b) the dissipated power by the memristor up to time t/s). (c) the energy (w(t)) absorbed by the memristor up to time t/s).Between Figure 1 and Figure 10a, the fingerprint characteristics have been presented. Observed from Figure 10b, some information could be memorized by RMC circuit. Furthermore, dissipative power and absorbed energy are utilized for information storage. This reaffirms the memristor’s fundamental divergence from resistors even though they shared dimensional homogeneity and common unit of ohms (Ω). Moreover, their distinct time constants (τ0) manifests the memory functionality, not the energy dissipation profile.
3.2 The source-free RML circuits
The inductor (L) is the other type of energy storage element. In this subsection, the RML circuit would be configured and discussed. Similar to analyzing the RMC circuit, consider one memristor circuit as shown in Figure 5b.
Applying Kirchhoff’s Laws uL+uM=0, i=iL=iM and Figure 4b, yields
Ldidt+R0i+kRdq⋅i=0(7)
where the variable i(t) stands for the current through the inductor. Hereby, dq(t)/dt=i(t)=iM(t)=iL(t) is the determined relationship. Also, let τ0=L/R0. Obviously, this is also a higher-order transcendental equation. Its natural response curve of the Equation 7 could be illustrated graphically in Figure 11.
[image: Two line graphs labeled (a) and (b) display functions of time, t, from -1 to 1. Graph (a) plots i(t), which starts high near t equals -1 and rapidly decreases to near zero as t approaches 1. Graph (b) plots q(t), which rises steeply from t equals -1 and levels off as t increases, suggesting an asymptotic approach. Both curves are shown in blue with axis labels and scientific notation for scale.]FIGURE 11 | The natural response of the RML circuits, the initial value of kRd=0.8∗106, R0=16k, L=0.1H. (a) i(t)−t). (b) q(t)−t).As shown in Figure 11, the depicted response curve bears similarities to the general RL circuit in Figure 2b but also exhibits significant differences. Model (7) reflects more complex and faster nonlinear behavior of higher-order functions. Then, according to the definition of this new time constant (τ0=L/R0), when this circuit is excited, RM immediately begins to store information. At the same time, the inductor (L) is busy converting energy to the memristor. Notably, the speed of memorization depends on τ0.
The decay of the current response i(t) is influenced by three variables: Rd, R0 and L. Next, the decay behavior would be discussed when only one variable is varied and the other remains fixed.
(1) when kRd=0.8∗104 and L=0.1H, changing the variable R0, the response uC(t) are illustrated in Figure 12.
Observe from Figure 12, the following conclusion could be obtained:
	i. A large R0 brings a small τ0, and decays the fast.
	ii. A certain current is required, when a memristor memorizes information. Therefore, the current i(t) cannot decay to 0 even at t=0.
	iii. The memory characteristics could be occurred by R0.

[image: Two line charts compare the behavior of four functions. Chart a, on the left, shows i1(t), i2(t), i3(t), and i4(t) rapidly decaying to zero with time t. Chart b, on the right, presents corresponding q1(t), q2(t), q3(t), and q4(t) increasing and plateauing, each at a different level. Both charts include legends and gridlines for reference.]FIGURE 12 | The curves of the current and charge response with R01=16k in blue, R02=26k in red, R03=46k in pink, R04=66k in black. (a) i(t)−t. (b) q(t)−t.(2) when kRd=0.8∗104 and R0=16k, changing the inductance L, the response i(t) are illustrated in Figure 13.
[image: Two line charts display the functions i(t) and q(t) versus t. Chart a shows four curves labeled i₁, i₂, i₃, i₄ rapidly decaying to zero. Chart b shows four curves labeled q₁, q₂, q₃, q₄ asymptotically approaching different constant values.]FIGURE 13 | The curve of the current and charge response with L1=0.1H in blue, L2=0.2H in red, L3=0.3H in pink, L4=0.4H in black. (a) i(t)−t). (b) q(t)−t.From Figure 13, the similar results could be got:
	i. A large inductive L brings a large τ0, and decays the slow.
	ii. When a memristor is utilized for information storage, the current (i) and charge (q) are altered. Furthermore, the role of the energy storage element L can be demonstrated.

(3) when L=1H and R0=16k, changing the variable Rd, the response uC(t) are illustrated in Figure 14.
Observed from Figure 14, the following results could be given as:
	i. A large kRd also leads to decay the fast similar to Figure 12.
	ii. The energy consumption characteristics exist and are presented by kRd.

[image: Two scientific line graphs labeled “a” and “b” compare time-series data. Graph a shows four curves i₁, i₂, i₃, and i₄, each decreasing sharply to zero. Graph b shows four curves q₁, q₂, q₃, and q₄, each increasing and stabilizing at distinct constant values. Both graphs share the horizontal axis labeled t, with vertical axes labeled i(t) and q(t) respectively.]FIGURE 14 | The curves for the RMC circuit with the parameters kRd=0.8∗106, R0=16k, C=1mF. (a) i(t)−t). (b) q(t)−t).Finally, Figure 15 presents the dissipated power of the RML circuit and the energy absorbed by the memristor.
[image: Three scientific graphs with magenta lines: (a) current versus voltage displaying a tilted ellipse, (b) power versus time forming a sharp V-shaped pattern, and (c) work versus time showing a steep curve then leveling off.]FIGURE 15 | The curves for the RML circuit. (a) the fingerprint characterizes of v−i for RM). (b) the dissipated power by the memristor up to time t/s). (c) the energy (w(t)) absorbed by the memristor up to time t/s).Similar to the RMC circuit, when designing a source-free circuit using an inductor and a memristor, its behavior cannot be treated as a step function, too. Because its primary purpose is to store information. The smaller the new time constant leads to the faster the decay. Furthermore, a higher-order transcendental equation has been obtained and more complex nonlinear behaviors have been captured. There are three crucial points in a source-free RML circuit to determine the calculator iL(t), that is, the initial current I0, new time constant τ0, and the integral of the charge q(t) in RM. Thirdly, the memristor is presented with dual characteristics: the memory behavior (represented by R0) and the energy consumption characteristics (described by kRd).
4 THE RMLC CIRCUITS
Importantly, building memristive circuits is inseparable from energy storage components, similarly, the study of source-free circuits cannot proceed without them. In the aforementioned analysis and discussion of the natural response of the source-free circuits, two transcendental equations incorporating memristor models have been established. Additionally, the new time constant for the both circuits has been redefined. In this section, similar to the analysis of RLC circuits, RMLC circuits could also be connected in two configurations: series and parallel circuits, see Figure 16.
[image: Two labeled electrical circuit diagrams: diagram a on the left shows an inductor L, resistor R, capacitor C, and magnetizing resistance RM connected in series; diagram b on the right shows the same components arranged in parallel.]FIGURE 16 | The source-free RMLC circuits with charge-controlled memristors. (a) the series circuit. (b) the parallel circuit.4.1 A.Series circuit
Applying Kirchhoff’s Laws (i=iR=iC=iL=iM) and Figure 16a, according to the description of Equation 2, the following Equation 8 could be built as following
Ri+R0+kRdqi+Ldidt+u=0i=Cdudtq=∫idti0=I0,u0=U0(8)
where the variables i(t)=iL(t), u(t)=uc(t) stand for the current flowing through the inductor and voltage across the capacitor. From the preceding analysis, when energy storage elements are integrated with memristors in a circuit, their response models can be established as transcendental and higher-order equations. In Figure 16a, let q=Ae(st) and i=Ase(st), where s and t critical variables that must be discussed and determined. Additionally, the necessary derivatives can be derived as
s3+RC+R0C+kRdqL+AkRdLests2+1LCs=0(9)
There is no doubt that Equation 9 is still a high-order transcendental equation. Thus, the natural response curve could be depicted graphically in Figure 17.
[image: Two-panel line graph displays u of t versus t on the left and i of t versus t on the right, both showing damped oscillations with amplitudes decreasing as t increases from zero to ten.]FIGURE 17 | The response curves of the source-free RMLC series circuits, I0=0.001A, U0=0.001V, kRd=1∗106, R0=16k, R=1, L=0.1H, C=1mF. (a) u(t)−t. (b) i(t)−t.Comparison with a conventional RLC (second-order) series circuit, the solution of system (9) also could exhibit damping characteristics and generate the type of resonance phenomenon. By varying the values of RM, L or C, it discusses whether the system could observe the three damping conditions (overdamped, critically damped, and underdamped) analogous to traditional RLC circuits. These three cases might be illustrated and analyzed in the following Figures 18–20, respectively.
[image: Panel of six scientific line charts labeled a to f, each plotting a signal that exponentially decays over time. Panels a, c, and e plot i(t) versus t; panels b, d, and f plot u(t) versus t with similar decay. Panel c includes an inset zooming into a portion of the curve. All axes are labeled, and plots show smooth, rapid decreases in values with slight differences in data scale and time ranges.]FIGURE 18 | The response of current and voltage curves for the RMLC series circuit. (a) i(t)−t with R=5k, L=0.1H, and C=1mF. (b) u(t)−t with R=5k, L=0.1H, and C=1mF. (c) i(t)−t with R=1k, L=1mH, and C=1mF. (d) u(t)−t with R=1k, L=1mH, and C=1mF. (e) i(t)−t with R=1k, L=0.1H, and C=10mF. (f) u(t)−t with R=1k, L=0.1H, and C=10mF.[image: Six scientific line graphs are arranged in three rows and two columns labeled a through f. Left column graphs (a, c, e) plot i(t) versus t, showing small oscillatory decay from approximately ten times ten to the power of negative four to negative five times ten to the power of negative four, stabilizing near zero. Right column graphs (b, d, f) plot u(t) versus t, displaying a larger oscillatory decay from about zero point one five to negative zero point zero five, also stabilizing near zero.]FIGURE 19 | The response of current and voltage curves for the RMLC series circuit. (a) i(t)−t with R=400, L=0.1H, and C=1mF. (b) u(t)−t with R=400, L=0.1H, and C=1mF. (c) i(t)−t with R=300, L=0.08H, and C=1mF. (d) u(t)−t with R=300, L=0.08H, and C=1mF. (e) i(t)−t with R=300, L=0.1H, and C=1.2mF. (f) u(t)−t with R=300, L=0.1H, and C=1.2mF.[image: Six line graphs arranged in three rows and two columns show time series data for i(t) on the left and u(t) on the right, each varying with time t, labeled a–f. Each plot displays a damped oscillatory pattern, where the amplitudes decrease and approach zero as time increases. Vertical and horizontal axes are present in all plots, and the scales and line shapes are similar but not identical between the rows.]FIGURE 20 | The response of current and voltage curves for the RMLC series circuit. (a) i(t)−t with R=350, L=0.12H, and C=1mF. (b) u(t)−t with R=35, L=0.12H, and C=1mF. (c) i(t)−t with R=1k, L=1H, and C=1mF. (d) u(t)−t with R=1k, L=1H, and C=1mF. (e) i(t)−t with R=1k, L=0.12H, and C=120uF. (f) u(t)−t with R=1k, L=0.12H, and C=120uF.4.1.1 Overdamped case
When the following conditions are assigned, both response curves of i(t) and u(t) are shown in Figure 18. The decay approaches zero as t increases.
Observed from Figure 17 and Figure 18, the overdamping phenomenon occurs when the memristance increases (i.e., increasing R0+R), the inductance decreases, or the capacitance increases, while other parameters remain fixed.
4.1.2 Critically damped case
When the following conditions are set, both the current and voltage of the system exhibit maximum and minimum values in Figure 19, respectively. Also, the delays all the way to zero.
Between Figure 17 and Figure 19, the critically damped phenomenon presents immediately when the memristance increases (i.e., increasing R0+R) but remains much smaller than that in the overdamped case, the inductance decreases, or the capacitance increases, respectively, while other conditions remain fixed.
4.1.3 Underdamped case.
The oscillation period in both i(t) and u(t) curves are depicted in Figure 20. Moreover, the delays all the way to zero.
Compared with Figure 17 and Figure 20, the underdamped phenomenon has been shown as the same situation.
From Figures 18–20, the special characteristics of the RMLC series circuit could be summarized as follows:
	i. In HP-memristor is known as the linear drift model. When current flows through a designed circuit incorporating energy storage elements and a memristor, a higher-order mathematical model can be derived, which surpasses the complexity of conventional RLC series circuit models.
	ii. Similar to the RLC series circuit, its behavior could be characterized by damping phenomena, where the gradual loss of initial stored energy results in a continuous reduction of response amplitude. This explains why such nonlinear circuits with memristors exhibit abundant oscillatory behaviors and strange attractors.
	iii. The damping phenomenon arises because a memristor integrates two functional aspects: memory (R0) and energy dissipation (kRd). The oscillation period determines the damping rate of the response. To achieve overdamped, critically damped, or underdamped behavior, three discusses can be employed: increasing memristance (R+R0) but remains much smaller than that in the both overdamped and critically damped cases, or capacitance (C) or decreasing the inductance (L), while keeping other parameters fixed, respectively.
	iv. The damped oscillation is possible due to the presence of the nonlinear elements (i.e., RM, L, and C). Furthermore, the delays all the way to zero, which stems from the ability of the storage elements and memory element to transfer energy back and forth between them.
	v. All subplots uniformly validate that the same initial conditions but different component parameters would manifest a similar yet quite different output waveform. This variance could be thought as a kind of catalyst to get various application areas in the future, simultaneously revealing characteristics of chaotic oscillations. It further demonstrates the influence of (R+R0), L, and C on the decay rate. Therefore, during the design and application of memristive circuits, memristors with appropriate R0 could be chosen according to the needs of the actual oscillation and decay rate.

4.2 Parallel circuit
From Figure 16b, when the conditions (u=uR=uC=uL=uM) are satisfied for this parallel circuit, and according to the description of Equation 2, the following Equation 10 have been set as
dudt=−1CuR+uR0+kRdq+ididt=uLdqdt=ii0=I0,u0=U0(10)
where the variables i(t)=iL(t), u(t)=uc(t) stand for the current flowing through the inductor and voltage across the capacitor. System (10) is also a third-order function. Let u=Ae(st) where s and t critical variables. Additionally, the necessary derivatives can be derived as
R0Cs2+1+R0Rs+R0L+kRdCs2+kRdRs+kRdLAest=0(11)
Equation 11 is still a transcendental equation. Its solution could be obtained through approximately methods. Now, the nature response curve could be drawn in Figure 21.
[image: Two-panel figure. Panel a shows a blue line plot of i(t) versus t, oscillating and decaying toward zero as t increases. Panel b displays four curves labeled q₁ to q₄, showing q(t) versus t, all rising rapidly and plateauing at different steady-state values.]FIGURE 21 | The response curves of the source-free RMLC parallel circuits, I0=1A, U0=10V, kRd=1∗106, R0=16k, R=1k, L=0.12H, C=1mF. (a) i(t)−t. (b) u(t)−t.Next, we investigate the impact of varying parameters (RM, L or C) and observe whether analogous responses emerge. The current and voltage response curve are presented in Figures 22–24. There are also three cases:
[image: Six line graphs in three rows and two columns display exponential decay functions with various magnitudes and time intervals. Left column graphs, labeled a, c, and e, show i(t) versus t; right column graphs, labeled b, d, and f, show u(t) versus t. All plots have rapidly decreasing values approaching zero as t increases, and each subplot is labeled with its corresponding letter below the horizontal axis.]FIGURE 22 | The response curves for the RMLC parallel circuit. (a) i(t)−t with R=150Ω, L=0.12H, and C=1mF. (b) u(t)−t with R=15Ω, L=0.12H, and C=1mF. (c) i(t)−t with R=1k, L=50H, and C=1mF. (d) u(t)−t with R=1k, L=50H, and C=1mF. (e) i(t)−t with R=1k, L=0.12H, and C=10uF. (f) u(t)−t with R=1k, L=0.12H, and C=10uF.[image: Six-panel figure showing blue line plots of current i(t) and voltage u(t) versus time t, labeled a through f. Insets in panels a, b, and c magnify regions of the main plots. Panels e and f have no insets. Each plot shows damped oscillatory behavior tending to zero as t increases.]FIGURE 23 | The response curves for the RMLC parallel circuit. (a) i(t)−t with R=350, L=0.12H, and C=1mF. (b) u(t)−t with R=350, L=0.12H, and C=1mF. (c) i(t)−t with R=1k, L=1H, and C=1mF. (d) u(t)−t with R=1k, L=1H, and C=1mF. (e) i(t)−t with R=1k, L=0.12H, and C=120uF. (f) u(t)−t with R=1k, L=0.12H, and C=120uF.[image: Six-panel figure containing line graphs labeled a to f, each showing damped oscillations with decreasing amplitude over time. Panels a, c, and e plot i(t) versus t, while b, d, and f plot u(t) versus t. All graphs feature horizontal axes labeled t and vertical axes labeled either i(t) or u(t), with consistently decaying waveforms. Panel labels a to f are placed below each respective subplot.]FIGURE 24 | The response curves for the RMLC parallel circuit. (a) i(t)−t with R=500, L=0.12H, and C=1mF. (b) u(t)−t with R=500, L=0.12H, and C=1mF. (c) i(t)−t with R=1k, L=0.55H, and C=1mF. (d) u(t)−t with R=1k, L=0.55H, and C=1mF. (e) i(t)−t with R=1k, L=0.12H, and C=250uF. (f) u(t)−t with R=1k, L=0.12H, and C=250uF.4.2.1 Overdamped case.
When the following conditions are assigned, both response curves of i(t) and u(t) are shown in Figure 22.
Between Figure 21 and Figure 22, the overdamping phenomenon occurs when the memristance decreases (i.e., decreasing R0+R), the inductance increases, or the capacitance decreases, while other parameters remain fixed.
4.2.2 Critically damped case.
When the following conditions are given, both the current and voltage exhibit maximum and minimum values, respectively (see Figure 23). Also, the delays all the way to zero.
Observed from Figure 21 and Figure 23, the critically damped phenomenon have happened when the memristance decreases (i.e., decreasing R0+R) but remains much larger than that in the overdamped case, the inductance increases, or the capacitance decreases, while other conditions remain fixed.
4.2.3 Underdamped case.
The oscillation period in both i(t) and u(t) curves are depicted in Figure 24. Moreover, the delays all the way to zero. Compared with Figure 21 and Figure 24, the underdamped phenomenon has been shown under the same conditions.
To summarize the conclusions according to the Figures 22–24 for one RMLC parallel circuit as follows:
	i. Similar to the RLC parallel circuit, when energy storage elements and a memristor are integrated into the same parallel system, the energy would be back and forth between them, thereby establishing a damping decay curve.
	ii. The coexistence of memory storage and energy dissipation characteristics in this circuit arises from the dual-resistance structure of the memristor, characterized by R0 and kRd.
	iii. The conditions for achieving overdamped, critically damped, or underdamped phenomena differ from those in RMLC series circuits. Specifically, these damping regimes can be realized by adjusting the resistance (R+R0) but remains much larger than that in the both overdamped and critically damped cases or capacitance (C) should be decreasing or increasing the inductance (L), while keeping all other parameters constant under each configuration.
	iv. Under identical initial current and voltage conditions but with varying circuit component values, all subplots in the figure were analyzed. These results validate the influence of (R+R0), L and C on the decay rate. The single regrettable drawback resides in the waveforms lacking sufficient resolution to reveal detailed distinctions between the RMLC circuit and conventional variable RLC systems. However, in the design and application of one memristive circuit, memristors should be selected according to the needs of the actual oscillation and decay rate based on the analysis and discussion in thoery.

5 APPLICATION OF CLASSIC CIRCUITS WITH FOUR FUNDAMENTAL COMPONENTS
A classical four-component application circuit is presented, as shown in Figure 25.
[image: Two labeled circuit diagrams compare two configurations: (a) shows an inductor and capacitor C2 in parallel, then a resistor R in series, a node V1, and capacitor C1 in parallel with membrane resistance RM; (b) shows the same components rearranged, with RM in series before the node V1, C1 in parallel, resistor R after V1, and a current arrow labeled i.]FIGURE 25 | A circuit with HP-memristor. (a) Replacing the Chua diode with an HP memristor. (b) Transposing the positions of HP memristor and resistor.The following analysis would demonstrate how energy storage elements or memristors influence the memory characteristics and oscillatory behavior. The Figure 25a, this circuit shares the same topological structure as the Chua system, but features a different memristor configuration. Consequently, it also produces different phase trajectory curves, the mathematical model has been built and analyzedin the following form:
C1⋅dV1dt=−1RV1+1RV2−1RM⋅V1C2⋅dV2dt=1RV1−1RV2+iLL⋅diLdt=−V2dqdt=iL(12)
Secondly, when transposing the positions of the HP memristor and resistor in this circuits, the mathematical model is given as follows:
C1⋅dV1dt=−1RMV1+1RMV2−1R⋅V1C2⋅dV2dt=1RMV1−1RMV2+iLL⋅diLdt=−V2dφdt=dφdq⋅dqdt=V1−V2(13)
Setting the variable x=V1, y=V2, z=iL and ω=q; parameters p1=1/(RC1), q1=1/(RC2), a2=1/(RC1), b=1/C2, r=1/L, a1=p2=1/[(R0+kRdq)C1], q2=1/[(R0+kRdq)C2], both the built as Equation 12 and Equation 13 can be rewritten in the following dimensionless forms:
ẋ=p1y−x−a1.xẏ=q1x−y+b.zż=−r.yω̇=z(14)
and
ẋ=p2y−x−a2.xẏ=q2x−y+b.zż=−r.yω̇=x−y(15)
For Figure 25a, setting the parameters p1=7.9, q1=1, b=1, r=14.5 are fixed in Equation 14. The phase trajectory curves exhibit the chaotic attractor as shown in Figure 26a. When transposing the positions of the HP memristor and resistor, the phase trajectory becomes a single-scroll attractor as demonstrated in Figure 26b.
[image: Four scientific line plots labeled a, b, c, and d display V1 versus V2. Plots a and b show blue line contours, while plots c and d combine red and blue contours, suggesting a comparison of datasets or system responses under varying conditions.]FIGURE 26 | Phase portrait in v1−v2 and their coexistence attractors. (a) replacing Chua Diodes with HP Memristors. (b) replace the resistance (R) in original Chua’s circuit with an HP memristor. (c) Coexistence attractor. (d) Hidden attractor.These observations demonstrate that as initial values vary, the system not only exhibits irregular oscillations but also manifests chaotic attractors, coexisting attractors in Figure 26c and hidden attractors in Figure 26d. These characteristics serve as critical evidence for the system’s capability to facilitate the construction of complex neural networks with memory properties.
Let p2=1/(6.23−0.9q), q2=1/(8.49−4.33q), a2=7.9, b=1, r=14.5, and the initial condition [x,y,z,w]=[0.01,0.01,0.01,0.01], the time domain curves of Equation 15 can be obtained as shown, seeing Figure 27.
[image: Grouped line graphs display four time series with blue oscillating curves. Panel a plots V1 versus T, showing increasing amplitude around T equals fifty. Panel b shows V2 versus T, with similar amplitude growth. Panel c presents i versus T, also with amplitude increasing mid-plot. Panel d plots S versus T, revealing sharp amplitude spikes around T equals fifty.]FIGURE 27 | Time domain curves. (a) v1(t)−t. (b) v2(t)−t. (c) i(t)−t. (d) S(t)−t.Then, the Lyapunov exponent spectrum corresponding to parametrically configured is illustrated in Figure 28.
[image: Line graph showing four colored curves representing Lyapunov exponent values (LEs.) over time (T/s) from zero to four seconds, with labeled black square markers highlighting data points at approximately (0.123, 3.6), (0.54, 1.448), and (3.265, -0.3223).]FIGURE 28 | The Lyapunov Exponents spectrum.This provides another perspective to demonstrate that the chaotic oscillation arises from the energy to transfer energy back and forth between the memristor and energy storage elements. From Figure 28, the LEs are calculated and illustrated, LE1=3.6, LE2=1.448, LE3=−0.3223, LE4=−3.339. Two positive Lyapunov exponents confirm that the system is a hyperchaotic system. Next, in order to verify the conclusions derived from previous analyses, we systematically modify the values of energy storage elements of Figure 25b to investigate their impact on the memory characteristics and oscillatory behaviors of the HP-memristor from the response of voltage curves.
Observed from Figures 29a–c, they illustrate the effect of varying the inductance L on output voltage (v2) of the system (15). As inductance L increases, the decay rate diminishes. Conversely, reduction of L induces damped and overdamped dynamical manifestations. When inductance values decrease below critical thresholds, oscillatory phenomena and chaotic attractors undergo complete termination.
[image: Six line charts labeled a through f display V2 versus T from zero to one hundred, with varying oscillatory patterns. Charts a and d exhibit irregular, sharp spikes. Charts b and e show regular, increasing oscillations that stabilize. Charts c and f display small amplitude oscillations that gradually decay to zero.]FIGURE 29 | The response of voltage curves (v2) of system (13). (a) a2=7.9, b=1, p2=1/(0.9−6.23q), q2=1/(8.49−4.33q), r=14.1. (b) a2=7.9, b=1, p2=1/(6.23−0.9q), q2=1/(8.49−4.33q), r=16. (c) a2=7.9, b=1, p2=1/(6.23−0.9q), q2=1/(8.49−4.33q), r=18. (d) a2=7.9, b=1, p2=1/(6.23−0.9q), q2=1/(8.0−4.11q), r=14.5. (e) a2=7.9, b=1, p2=1/(6.23−0.9q), q2=1/(8.92−4.33q), r=14.5. (f) a2=7.9, b=1, p2=1/(6.23−0.9q), q2=1/(9.2−4.92q), r=14.5.Similarly, Figures 29d–f demonstrates the impact of changing the capacitance C2 on the output voltage (v2). As capacitance C2 increases, the decay rate also diminishes. Conversely, reduction of C2 induces damped and overdamped dynamical manifestations. When capacitance values decrease below critical thresholds, oscillatory phenomena and chaotic attractors undergo complete termination.
6 CONCLUSION
To advance the fundamental theory of memristive circuits, this study investigates four types of source-free circuits incorporating memristors and energy storage elements following the research methodology of classical source-free circuit analysis.
These circuits are categorized into two groups: one group consists of a memristor combined with a single energy-storing element (denoted as RMC and RML circuits), while the other group includes RMLC series and parallel circuits. Firstly, their models are built and analyzed, which reveals that they are transcendental equations. Secondly, new time constants are introduced (It pertains exclusively to a specific resistance region in the memristor, such as its low-resistance state R0, that is, τ0=R0C and τ0=L/R0), along with key factors influencing the decay rate. Furthermore, this study further verifies that two distinct regions in the memristor manifest two properties: memory characteristics and energy-dissipative behavior. Finally, through a systematic analysis using a classical application circuit with four fundamental circuit elements, we revalidate the critical role of both energy storage components and memristor in modulating oscillatory dynamics and attractor morphologies. More significantly, the characteristics of circuits combining memristors and energy-storage components have been refined, ensuring continuous advancement in memristive circuit principles. This establishes a robust theoretical foundation for innovative applications of memory elements across nonlinear circuits, avionics for UAV systems, and integrated theoretical-design frameworks.
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This paper proposes an encryption scheme based on hyperchaotic mapping for child information protection. First, phase diagrams of the hyperchaotic mapping are plotted under different parameter combinations, and the variation in phase trajectories confirms the sensitivity of the hyperchaotic mapping to control parameters. Then, the hyperchaotic mapping is iterated to obtain chaotic sequences, and the chaotic sequences are quantized to obtain pseudo-random sequences. Finally, based on those, a scrambling algorithm and a diffusion algorithm are designed to encrypt and protect the images. The original images are scrambled and diffused to obtain the ciphertext images and used to protect the information of missing children, which can effectively protect the safety of children’s information and assist the public security bureaus to quickly contact the parents of missing children.
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1 INTRODUCTION
In the digital era, data are increasingly becoming an important part of personal life and economic development [1, 2]. Among various data formats, images are widely used as information carriers for Internet transmission as they can carry large amounts of information and have high visibility [3, 4]. Due to the dependence of work life on the Internet, the rich information contained in images is at risk of being leaked [5–7]. Among these, the secure transmission and storage of image data face significant challenges as they contain sensitive information such as biometrics and geographic locations [8, 9]. Especially in the field of social welfare, such as missing children tracking, images need to be widely disseminated to expand the search scope, but they also must be prevented from being maliciously utilized to cause secondary damage [10, 11]. Image encryption can be used to encrypt an image into a noise-like ciphertext image by various means [12–15].
As an effective method to protect image information, image encryption techniques, especially those based on chaos theory, have been a hot topic of research in recent years [16]. This is because many inherent properties of chaotic systems, including ergodicity, acyclicity, high sensitivity to initial conditions and control parameters, and pseudo-randomness, meet the needs of cryptography and have an irreplaceable advantage in image encryption [17–21]. Meanwhile, some scholars have pointed out that hyperchaotic systems can provide higher security to encryption algorithms [22, 23]. In the context of information protection and verification of missing children, hyperchaotic mapping is preferred in view of the need for real-time performance. In this study, hyperchaotic mapping [24–30] is used in the design of the missing child information encryption scheme.
In the previous image encryption scheme design and application, usually, the image is compressed and encrypted to realize the fast transmission and protection of the image on the Internet [31–33]; another method includes encoding and encryption of the image to realize the safe storage of the information and prevent leakage or tampering [31, 34–36]; there is also the encryption and steganography of the image to realize the double-layer protection of the image [37–39]. However, information protection and verification of missing children are different from the previous image encryption protection processes, where the main idea is to encrypt children’s information to obtain ciphertext images and apply the ciphertext images to children’s products as stickers, such as on children’s school bags, water cups, and clothes. In the process of children getting lost or being found, the children’s information is verified, and it is convenient to get in touch with the children’s parents quickly. In view of this application idea, this paper designs a missing child information protection and verification scheme based on hyperchaotic mapping. The information protection scheme is divided into two steps: image scrambling and diffusion, which when combined with chaotic sequences can effectively hide the original information of children, and the reversible encryption scheme ensures that the information of children can be decrypted and verified quickly.
This paper carries out the following tasks:
	1. Memristor-coupled hyperchaotic mapping (MCHM) is presented in this paper, and its phase diagram is analyzed.
	2. The image or photo containing a child’s information is encrypted with a confusion algorithm and a diffusion algorithm.
	3. Security analysis of encrypted images to highlight the superiority of the scheme.

2 CHAOTIC MAPPING
MCHM is obtained by coupling the memristor and the iterative chaotic map with infinite collapse (ICMIC), and its mathematical model is described as Equation 1:
xi+1=sinaxi+bc+dyi2xiyi+1=yi+exi.(1)
When the initial value is (x0, y0) = [0.3, 0.5] and the system parameters a, b, c, d, and e are [−1, 1.5, −1, 1, 0.5], [−1, 1.5, −1.1, 1, 0.5], and [−1, 1.5, −1, 1.2, 0.5], the phase diagrams of MCHM are as shown in Figure 1. Comparing Figures 1a–c, the trajectory of the MCHM clearly changes when the control parameters are changed. That is, when the key changes slightly during the operation of the encryption scheme, the chaotic sequences generated by the MCHM also change, which changes the cipher images. This means that the mapping can provide great security for the design and operation of the encryption scheme.
[image: Three side-by-side scatter plots labeled a, b, and c show blue data points forming overlapping, curved patterns across the x and y axes, illustrating distinct nonlinear relationships in each panel.]FIGURE 1 | Phase diagrams of MCHM, (x0, y0) = [0.3, 0.5]: (a) (a, b, c, d, and e) = [-1, 1.5, −1, 1, 0.5]; (b) (a, b, c, d, and e) = [-1, 1.5, −1.1, 1, 0.5]; (c) (a, b, c, d, and e) = [-1, 1.5, −1, 1.2, 0.5].The chaotic range of the system parameters is decided by analyzing the Lyapunov exponent (LE) response. If one of the LEs is greater than 0, it is in a chaotic state, and if two LEs are greater than 0, it is in a hyperchaotic state. Encryption is carried out in the chaotic state situation by selecting the parameters. As shown in Figure 2, the range case of each parameter in a chaotic state is a∈[-1.1,-0.75], b∈[1.35,1.5], c∈[-1,-0.9], d∈[0.7,1.1], and e∈[0.4,0.54]. When parameter a is at [-1.1, -0.875] or [-0.87, -0.747], parameter b is at [1.43, 1.5], parameter c is at [-1, -0.975] or [-0.96, -0.92], parameter d is at [0.85, 1.1], and parameter e is at [0.47, 0.54], the system is in a hyperchaotic state. More complex dynamic characteristics are shown in this state, and the pseudo-random sequence generated by the system through iteration has higher randomness.
[image: Figure consisting of five line graphs labeled a through e, each displaying two curves, one red and one green, representing Lyapunov exponents (LEs) as a parameter varies on the x-axis. Each subplot shows different parameter ranges: a for a, b for b, c for c, d for d, and e for e. The y-axis is labeled LEs for all panels, and each graph features a range of peaks and troughs indicating changes in stability or dynamics as the parameter changes.]FIGURE 2 | Distribution of LEs with different parameters. (a) Parameter a; (b) parameter b; (c) parameter c; (d) parameter d; (e) parameter e.To test the randomness of the chaotic sequences, an NIST test (NIST SP800-22) is performed. It includes 15 tests. When the p-value is greater than or equal to 0.01 and the pass rate is greater than 96%, the sequence passes the randomness test. The specific test results are shown in Table 1. It can be seen from the results that this random sequence exhibits good randomness characteristics in statistical tests. It is shown that it is suitable for the proposed encryption scheme.
TABLE 1 | NIST test results for MCHM.	Items	MCHM
	P-value	PR (%)
	Frequency	0.198732	98
	Block frequency	0.346291	99
	Cumulative sums	0.637462	99
	Runs	0.029485	97
	Longest run	0.875123	100
	Rank	0.372634	99
	FFT	0.082712	99
	Non-overlapping template	0.028374	100
	Overlapping template	0.192734	100
	Universal	0.876123	98
	Approximate entropy	0.468102	98
	Random excursions	0.076390	100
	Random excursions variant	0.048716	100
	Serial	0.419021	99
	Linear complexity	0.289667	100


3 ENCRYPTION SCHEME
The encryption process includes three stages: parameter setting, image confusion, and diffusion. The encryption schematic is shown in Figure 3. The detailed steps are described as follows:
	Step 1: The image containing the child’s information and photo is imported, and the size of the ith image is recorded as mi × ni × li.
	Step 2: All images are converted into column vectors, and all column vectors are stitched into a whole, which is denoted as vector A, with length vl.
	Step 3: Column vector A is converted to cube B with dimensions M × N × L, where M and N are the height and width of each plane of the cube, respectively, and L is the height of the cube. M and N can be set as desired, and L is obtained by Equation 2. L=ceilvlMN.(2)

	Step 4: Based on the input image, the parameters associated with the plaintext hi are obtained.Hmi=−∑j=1255pj⁡log2pj,i=1⋯Lhmi=Hmi−floorHmi,i=1⋯Lhi=1L∑j=i−1floorl+1ifloorlhmj,i=1⋯7l=L7,(3)
where Pj stands for the pixel value and Hm stands for information entropy.
	Step 5: All the keys are inputted, and the MCHM is iterated based on the total image data volume vl to obtain the chaotic sequences of length 2×vl, and they are quantized to finally obtain two pseudo-random sequences x and y. The pseudo-random sequences q1–q12 used in the algorithm are obtained by Equations 4–8.α=maxM,N,L.(4)
q1=x1:α+y1:αmod⁡N+1q2=xα+1:2α+yα+1:2αmod⁡N+1.(5)
q3=x2α+1:3αmod⁡M+1q4=y2α+1:3αmod⁡L+1q5=x3α+1:4αmod⁡M+1q6=y3α+1:4αmod⁡L+1.(6)
q7=x4α+1:5αmod⁡N+1q8=y4α+1:5αmod⁡L+1q9=x5α+1:6αmod⁡N+1q10=y5α+1:6αmod⁡L+1.(7)
q11=xend−MNL+1:endq12=yend−MNL+1:end.(8)

	Step 6: The sequences q1 and q2 are processed and used to control the length of the permutation sequence, and q1 and q2 can be obtained by Equations 9, 10.q1i=q1i+ceilN4,q1i<N4q1i−floorN4,q1i>3N4q1i,other.(9)
q2i=q2i+ceilM4,q1i<M4q2i−floorM4,q1i>3M4q2i,other.(10)

	Step 7: Each row vector of cube B is split into two parts of random length, and the positions are swapped with the row vectors at random locations.t1=Bi,1:q1i,kt2=Bi,q1i+1:end,kt3=Bq3ik⁡mod⁡M+1,1:q1i,q4ik⁡mod⁡L+1t4=Bq5ik⁡mod⁡M+1,q1i+1:end,q6ik⁡mod⁡L+1,i=1…Mk=1…L.(11)
Bi,1:q1i,k=t3Bq3ik⁡mod⁡M+1,1:q1i,q4ik⁡mod⁡L+1=t1Bi,q1i+1:end,k=t4Bq5ik⁡mod⁡M+1,q1i+1:end,q6ik⁡mod⁡L+1=t2,i=1…Mk=1…L.(12)

	Step 8: Each column vector of cube B is split into two parts of random length, and the positions are swapped with the column vectors at random locations. The cube with the completed column swap is noted as C. It can be obtained by Equations 13, 14.t1=B1:q2j,j,kt2=Bq2i+1:end,j,kt3=B1:q2j,q7jk⁡mod⁡N+1,q8jk⁡mod⁡L+1t4=Bq2i+1:end,q9jk⁡mod⁡N+1,q10jk⁡mod⁡L+1,j=1…Nk=1…L.(13)
B1:q2j,j,k=t3B1:q2j,q7jk⁡mod⁡N+1,q8jk⁡mod⁡L+1=t1Bq2i+1:end,j,k=t4Bq2i+1:end,q9jk⁡mod⁡N+1,q10jk⁡mod⁡L+1=t2,j=1…Nk=1…L.(14)

	Step 9: Cube C is converted into column vector D, and the first pixel value is combined with the pseudo-random sequence to get the new pixel value. It can be obtained by Equations 15, 16.E1=D1⊕q111.(15)
Ei=Di⊕q11i⊕Ei−1,i⁡mod⁡2=1Ei=Di⊕q12i⊕Ei−1,i⁡mod⁡2=0,i=2…MNL.(16)

	Step 10: The vector E is segmented and shaped according to the dimensions of the original images to obtain the corresponding ciphertext images.

[image: Flowchart shows an image encryption process where original images are processed using parameters, ICMIC, and chaotic sequences to create confusion and diffusion, resulting in encrypted images that appear as multicolored static. Original image contains personal details of a young child, including name, birthdate, address, and parental phone numbers.]FIGURE 3 | Encryption schematics.4 SIMULATION RESULT
Being able to completely encrypt and decrypt children’s information and photos is the first requirement for practical applications. In the simulation experiment, three sets of images are used (“kid” with size 200 × 289 × 3, “information1” with size 300 × 152 × 3; “girl” with size 768 × 512 × 3, “information2” with size 300 × 174 × 3; and “boy” with size 768 × 512 × 3, “information3” with size 300 × 138 × 3), and they are encrypted and decrypted separately and in a hybrid manner. The simulation results are shown in Figures 4–7. From Figures 4–6, it can be seen that the scheme can successfully encrypt and decrypt children’s information and photographs. As shown in Figure 7, it is also possible to securely encrypt and decrypt a large number of children’s information and photographs if necessary. In other words, the proposed encryption and decryption scheme can perform both individual processing and batch protection of children’s information and photographs.
[image: Panel (a) contains a photo of a young child with text displaying their name, date of birth, address, and parents' phone numbers. Panel (b) features two blocks of color static or noise, resembling encrypted data. Panel (c) shows the same child and identical text as in panel (a), indicating successful data recovery.]FIGURE 4 | Simulation results: (a) original images, “kid” and “information1”; (b) encryption images; (c) decryption images.[image: Panel a shows a smiling child and an oval label containing personal information including name, date of birth, address, and phone numbers. Panel b displays two blocks of colorful static noise, one large and one smaller. Panel c shows the same child and label as panel a, suggesting the image reappears after a noise process.]FIGURE 5 | Simulation results: (a) original images, “girl” and “information2”; (b) encryption images; (c) decryption images.[image: Panel (a) shows a child smiling in front of a wooden background with personal information presented below the photograph. Panel (b) displays a rectangular area filled with colored digital noise resembling static. Panel (c) shows the same child, similarly posed, with identical personal information below the image.]FIGURE 6 | Simulation results: (a) original images, “boy” and “information3”; (b) encryption images; (c) decryption images.[image: Three panels labeled (a), (b), and (c) compare images of children’s faces and identification cards. Panel (a) and (c) show similar layouts with a baby photo, an ID card, a close-up smiling child, an information card, and a portrait of a boy, while panel (b) replaces all personal photos and cards with multicolored static noise blocks of similar shapes and sizes.]FIGURE 7 | Simulation results: (a) original images; (b) encryption images; (c) decryption images.5 PERFORMANCE TESTS
5.1 Key security
5.1.1 Key space
The size of the key space determines whether the encryption scheme can resist exhaustive attacks. Generally, when the key space reaches 2100, it is considered to be capable of resisting exhaustive attacks, and the more the key space is, the better the scheme. In this encryption scheme, the key comprises two components: parameters related to the original images and those associated with hyperchaotic mapping. All the keys are tested one by one; the key space of parameters b and d is 1015, and the key space of the remaining parameters is 1016, so the total key space is 10 (15 × 2 + 16 × 7) = 10142 ≈ 2471. The key space of different algorithms is shown in Table 2 [16, 40–42]. The key space test and comparison results indicate that the proposed encryption scheme has adequate capability to resist brute-force attacks.
5.1.2 Key sensitivity
The encryption scheme can be considered key-sensitive when a small error in the key can cause decryption failure on the decryption side. In the key sensitivity test, “kid” and “information1” are used as the test images. During the test, each key on the encryption side is kept constant, and the key a = a + 10-16 on the decryption side. The decryption results are shown in Figure 8. The ciphertext image cannot be decrypted successfully with smaller parameter variations. As shown in Figure 8, a small error in the key causes the decryption to fail, verifying the key sensitivity of this scheme.
[image: Two rectangles are filled with dense, multicolored static noise. The larger rectangle is positioned on the left vertically, and the smaller rectangle is on the right horizontally, both set against a white background.]FIGURE 8 | Key sensitivity test results, a = a+10−16.5.2 Statistical characterization
5.2.1 Histogram
A histogram can visually depict the strength of the pixels in the image. By comparing the histograms of the original image and the encrypted image, the ability of the encryption scheme to change the pixel values of the image can be verified. The histograms of “kid” and “information1” are shown in Figure 9. The histograms of the original images have distinct crests and varying distributions at each pixel level. The histograms of the encrypted images show an undifferentiated uniform distribution, which means that the pixel-level distribution of the original images is effectively changed and hidden by the encryption scheme.
[image: Four line graphs labeled (a) and (b) compare histograms of grayscale pixel distributions. Graph (a) shows original (left, uneven) and altered (right, sharp peaks) images. Graph (b) shows two similar, nearly uniform distributions with slight color fluctuations indicating balanced grayscale intensities.]FIGURE 9 | Histogram of “kid” and “information1”: (a) original images and (b) encryption images.5.2.2 Correlation
The property of local smoothing of the image determines a strong correlation between the adjacent pixels of the image, and the intensity of the correlation is measured by both the coordinate plot and the coefficient, which are shown in Figure 9 and Table 2, respectively. As shown in Figure 10, neighboring pixels of “kid” and “information1” are compactly distributed on a straight line with slope 1, which means that the neighboring pixels have the same or similar values. The adjacent pixels of the corresponding encrypted images are distributed throughout the coordinate space, and the values of the adjacent pixels are not correlated. As shown in Table 3, the correlation coefficients of the original images are large, while the correlation coefficients of the encrypted images are close to 0. The change in the correlation between the adjacent pixels of the image indicates that the encryption scheme effectively swaps the location and changes the values of the pixels, thus hiding the correlation characteristics of the original images.
TABLE 2 | Comparison of key spaces	Algorithms	Reference [40]	Reference [16]	Reference [41]	Reference [42]	Proposed
	Key space	2249	2266	2352	2398	2471


[image: Four 3D scatter plots display red, green, and blue data points arranged in horizontal layers, shown from different angles. Labels (a) and (b) distinguish two pairs, each with varied perspectives for comparison.]FIGURE 10 | Correlation coordinate diagram of “kid” and “information1”: (a) original images and (b) encryption images.TABLE 3 | Correlation coefficients of different images.	Images	Original images	Encryption images
	Horizontal	Vertical	Diagonal	Horizontal	Vertical	Diagonal
	Kid	0.9739	0.9776	0.9551	0.0015	0.0009	−0.0023
	Information-1	0.8458	0.7476	0.6864	−0.0016	0.0018	−0.0008
	Girl	0.9924	0.9879	0.9813	0.0019	0.0022	−0.0009
	Information-2	0.7887	0.6612	0.6005	−0.0008	0.0016	−0.0012
	Boy	0.9718	0.9638	0.9534	−0.0012	−0.0016	−0.0036
	Information-3	0.7692	0.6208	0.5325	−0.0021	0.0013	−0.0024


5.2.3 Information entropy
Information entropy is used to test the statistical characteristics of an image. For an image, the higher the information entropy is, the more information it contains, and the more confusing the image is. The original images contain a certain amount of visual information, and their information entropy is a constant value. The information of the encrypted images is confusing, and the information entropy increases with a theoretical maximum value of 8 [43]. The information entropy test results for different images are shown in Table 4, and the information entropy test results for different algorithms are shown in Table 5 [35, 42, 44–46]. As shown in Table 4, compared to the original images, the information entropy of the encrypted images increases significantly and is close to the theoretical maximum. As shown in Table 5, the designed encryption scheme has some advantages in hiding the statistical features of the image data.
TABLE 4 | Information entropy of different images.	Images	Original images	Encryption images
	R	G	B	R	G	B
	Kid	7.3133	7.1356	7.2659	7.9972	7.9973	7.9972
	Information1	4.2216	4.4069	4.6804	7.9962	7.9966	7.9963
	Girl	7.8485	7.0813	7.2107	7.9996	7.9995	7.9996
	Information2	4.0338	4.3841	4.7260	7.9973	7.9972	7.9972
	Boy	7.5723	7.5670	7.5405	7.9995	7.9995	7.9995
	Information3	3.1523	4.6179	5.2750	7.9959	7.9958	7.9959


TABLE 5 | Information entropy of different algorithms.	Algorithms	Image size	Encryption images (average)
	R Channel	G channel	B Channel
	Reference [44]	256 × 256	7.99720
	Reference [35]	256 × 256	7.99698
	Reference [42]	256 × 256	7.99705
	Reference [45]	256 × 256 × 3	7.9958	7.9950	7.9949
	Reference [46]	256 × 256 × 3	7.9837	7.9916	7.9950
	Proposed	200 × 289 × 3	7.9972	7.9973	7.9972


5.3 Anti-rolling edge test
The encrypted images containing children’s information are printed on the clothes, and if the edge of the image rolls up as the clothes are used, then the edge information may be invalidated. When the edge information of the images is invalidated, the decryption effects of the encrypted images are shown in Figure 11. The edge of the original images is cropped by one circle, and the invalidated information accounts for 23.44%; the cropping effects are shown in Figure 10a. The visual effects of the damaged ciphertext images after being decrypted on the decryption side are shown in Figure 10b. As shown in Figure 11, the original information can still be recovered even if the child’s information and photo edges are rolled up to some extent.
[image: Panel a presents two abstract, multicolored noise patterns in rectangular frames, one vertical and one horizontal. Panel b shows a young child seated on a couch and a separate green information card with details including name, date of birth, address, and phone numbers.]FIGURE 11 | Anti-rolling edge test results: (a) cipher image and (b) restored image.5.4 Noise test
The cipher image is usually acquired using the photographing method, which produces noise on the cipher image. Salt and pepper noise and Gaussian noise are chosen to model the effect of noise on image restoration. Figure 12 shows the cipher image subjected to salt and pepper (S&P) noise with 0.1, 0.01, and 0.001 intensity and Gaussian noise with 0.001 intensity. The content of the image can be clearly seen at the reduction end, which in turn illustrates the feasibility of the scheme.
[image: Four green rectangular cards labeled a, b, c, and d, each display identical black text with the name Star, date of birth October twelfth two thousand eighteen, an address in Dalian, China, and phone numbers for mother and father; background color and spacing vary subtly among cards.]FIGURE 12 | Noise test results: (a) S&P 0.1; (b) S&P 0.01; (c) S&P 0.001; (d) Gaussian noise 0.001.5.5 Differential attack
Differential attack is a common method used by attackers to crack algorithms. The attacker randomly changes one pixel point of the plaintext image to get the cipher image and analyzes the difference between the two cipher images to crack the scheme.
In the differential attack test, the plaintext image is encrypted twice; the first time is normal encryption, and the cipher image is T1; the second time, the attacker randomly changes one pixel point of the plaintext image to get the cipher image, and the cipher image is T2. Since the scheme plaintext information is associated with the initial value of the chaotic system, randomly changing one pixel value of the plaintext image will again result in a different initial value of the chaotic system, and its chaotic sequence also changes. Therefore, the encrypted structure and content are changed, and the resulting encrypted image is also changed.
The difference between T1 and T2 is evaluated by the number of pixels change rate (NPCR) and the unified average changing intensity (UACI). The test results are shown in Table 6.
NPCRT1,T2=1MN∑i=1M∑j=1NSignT1i,j−T2i,j×100%UACIT1,T2=1MN∑i=0M∑j=0NT1i,j−T2i,j255−0×100%,
where Sign (•) is a symbolic function.
TABLE 6 | Test results of different images.	Images	NPCR (%)	UACI (%)
	Kid	99.6012	33.4311
	Girl	99.6114	33.4821
	Boy	99.6241	33.4636
	Average	99.6122	33.4589


5.6 Comparison with other state-of-the-art encryption schemes
In conclusion, the various performance metrics mentioned above are discussed to compare the proposed encryption algorithm with other state-of-the-art chaotic and non-chaotic encryption algorithms. Reference [46] and Reference [47] proposed chaotic encryption schemes. Reference [48] used the advanced encryption standard (AES) scheme. The comparison results are shown in Table 7.
TABLE 7 | Comparison with other encryption schemes.	Process	Proposed	[46]	[47]	[48]
	Key space	2471	2326	2448	2128
	NPCR (%)	99.6122	99.6025	99.60	99.5650
	UACI (%)	33.4589	33.4612	33.42	33.4675
	Entropy	7.9972	7.9993	7.9993	7.9971


6 DISCUSSION AND CONCLUSION
6.1 Discussion
In recent years, significant progress has been made in visual information mapping techniques based on deep learning [49, 50]. The visual consistency of feature embedding has been optimized through the cascading attention mechanism, and the robustness of cross-modal information has been improved using adversarial generative networks [51, 52]. These techniques are better able to print child-protective cipher information on clothing in the future.
The existing solutions mainly conduct anti-edge curling and noise tests for image encryption on carriers such as clothing and schoolbags. However, in practical applications, children’s information may be printed on more complex carriers (such as clothes with rough fabric textures and easily worn plastic labels). In the future, the decryption effect of encrypted images under extreme physical conditions (such as high temperature, water stains, and tensile deformation) can be further tested, and combined with image restoration algorithms (such as damaged area completion based on deep learning), the adaptability of the scheme to diverse carriers and environments can be enhanced.
6.2 Conclusion
An image encryption scheme is proposed in this paper for the protection and verification of missing children’s information. First, the dynamical behavior of the hyperchaotic mapping used in the design of the encryption scheme is analyzed, and the analysis results prove that the hyperchaotic mapping is suitable for image-encryption design. Then, the pseudo-random sequences are used to swap the missing child image information with random length random positions, divided into row swap and column swap. Next, a selective XOR is used between the image sequence and the pseudo-random sequences. Finally, the effectiveness of the encryption scheme is verified by simulation. Considering that the missing child’s information should be decrypted by a specific person, the security of the encryption scheme should also be guaranteed. The sensitivity to the key and the large key space guarantee the resistance of the encryption scheme to exhaustive attacks. Comparing the statistical characteristics of the data between the cipher images and the original images, the pixel-level distribution status of the original images, the correlation between the adjacent pixels, and the amount of information contained in the image are hidden or broken. Considering that children’s clothes will have curled edges in the process of use, the image encryption scheme is tested against curled edges. The test results show that even if the missing child information has a certain degree of curled edges, it can be recovered. In summary, this scheme provides technical support for the protection and verification of missing children’s information.
Moreover, this technique can be applied to prevent the missing of children. For example, the detailed information of children, along with those of their parents (Figure 13), can be encoded. The encrypted image will be attached to the clothes (Figure 14). In instances where children go missing, law enforcement agencies can employ specialized readers to decrypt the encrypted information, thereby facilitating accurate and expeditious contact with designated guardians. Moreover, the amalgamation of image encryption significantly amplifies the computational complexity faced by malicious entities attempting to breach the encryption, effectively impeding easy access to children’s information and mitigating concerns regarding privacy breaches. It can enhance the probability of successfully locating missing children.
[image: Blue rectangular graphic containing personal information including the name Moon, male gender, date of birth May twelfth, two thousand twenty, Beijing address, and two cell-phone numbers for mother and father.]FIGURE 13 | Lost children information.[image: Two illustrations of yellow baby onesies with small orange patterns are shown side by side. The left onesie has a blue rectangular patch on the chest, while the right has a blue rectangular patch near the bottom left leg.]FIGURE 14 | Encrypted image (represented by the blue labels) integrated into different areas of the garment.DATA AVAILABILITY STATEMENT
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