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Editorial on the Research Topic
The application of multi-omics analysis in translational medicine

The primary goal of translational medicine is to convert fundamental biological
discoveries into tangible improvements in human health. Achieving this requires a holistic
understanding of the complex molecular networks governing disease. Multi-omics analysis
has become an essential paradigm in this endeavor, integrating data from diverse layers
such as genomics, transcriptomics, proteomics, and metabolomics. This integration is
crucial for bridging the gap between basic research and clinical application, facilitating
precise diagnostics and personalized therapies.

However, the application of multi-omics approaches faces challenges, including
the complexity of data integration, the interpretation of high dimensional datasets,
and the standardization required for clinical implementation. This Research Topic,
“The Application of Multi-omics Analysis in Translational Medicine”, presents 14 articles
that navigate these challenges and showcase advancements in this rapidly evolving field.
The Research Topic underscores the power of integrative strategies across a spectrum of
methodological innovations and complex diseases.

Advancing computational methodologies and data
integration

The volume and complexity of multi-omics data demand sophisticated computational
tools. A significant focus within this Research Topic is the development of artificial
intelligence (AI) and machine learning frameworks, alongside the integration of diverse
data types, to enhance predictive accuracy.
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Predicting drug response is central to precision oncology.
Miao et al. introduced an innovative drug response prediction
model (NMDP) to address challenges in feature extraction and
data fusion. Their model utilizes an interpretable semi supervised
weighted SPCA module and integrates convolution methods
with Kolmogorov Arnold Networks, demonstrating superior
performance in predicting drug sensitivity.

Prioritizing actionable drug targets from vast genomic
landscapes remains a significant hurdle. Gu and Chen developed
GETgene Al
prioritization, machine learning, and automated literature analysis

a framework that combines network-based
powered by advanced language models. Applied to pancreatic
cancer, GETgene AI successfully prioritized high priority
targets, illustrating how AI driven approaches can accelerate
drug discovery.

The integration of molecular data with imaging modalities
represents another critical frontier. Huang Y. et al. explored
the predictive potential of quantitative histopathological image
features (HIF) in glioblastoma. By integrating HIF with genomics,
transcriptomics, and proteomics, they found that the integrated
multi-omics model significantly enhanced prognostic accuracy
compared to single omics approaches.

Similarly, Li et al. developed a radiomics model for predicting
chemoradiotherapy response in advanced non-small cell lung
cancer. They integrated radiomic features from both the primary
lesion and nodal disease with clinical data. This multimodal
composite model demonstrated superior predictive performance,
emphasizing the value of comprehensive data integration in clinical
decision making.

Multi-omics insights into molecular
mechanisms of oncological and
chronic diseases

Multi-omics research continues to deepen our understanding
of tumorigenesis, classification, and the interplay with systemic
conditions and chronic diseases.

Loganathan and Doss investigated the interconnected
molecular mechanisms between breast cancer and diabetes.
Utilizing transcriptomic and exomic analyses across different
cohorts, they identified shared pathways related to extracellular
matrix organization and immune regulation. Their analysis
highlighted the TNF pathway as a central link connecting chronic
inflammation, insulin resistance, and tumor growth.

Pugazenthi et al. provided a review of the application of multi-
omics analysis for pituitary neuroendocrine tumors (PitNETs).
They summarized how integrated approaches have contributed to a
deeper understanding of PitNET pathogenesis, revealing molecular
subtypes and regulatory networks that inform classification and
advance personalized medicine.

The power of multi-omics analysis extends to degenerative and
inflammatory diseases. Zhang et al. aimed to identify novel risk
genes for intervertebral disc disorder by integrating large scale
multi-omics analyses, including transcriptome wide association
studies and proteome wide association studies. Their integrative

analysis and experimental validation confirmed the pathogenic
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roles of TMEM190, CILP2, and FOXO3, highlighting CILP2 as a
potential druggable target.

Jin et al. focused on periodontitis by integrating transcriptomic
and DNA methylation profiles. Their analysis explored the
immune microenvironment and utilized machine learning to
identify nine key diagnostic biomarkers. Subsequent network
pharmacology analysis identified potential targeted drugs, offering
new therapeutic avenues.

The nexus of microbiome,
metabolism, and host response

The integration of microbiome and metabolomic data with
host multi-omics profiles is rapidly emerging as a critical area of
translational research, revealing intricate interactions between host
metabolism, immune function, and microbial communities.

The connection between gut microbiota and systemic disease
is an area of intense investigation. Liu L. et al. reviewed the
emerging evidence surrounding the gut microbiota lung axis in
lung cancer. They synthesized data indicating that gut dysbiosis
is associated with worse prognosis and impacts the efficacy of
immune checkpoint blockade, suggesting potential adjunctive
therapeutic strategies through microbiome modulation.

The microbiome’s role extends to neuroscience. Wang et al.
employed a multi-omics approach to unravel the mechanisms
of propofol induced psychological dependence. By integrating
transcriptomics, metabolomics, and gut microbiome sequencing
in a mouse model, they identified significant changes in
neuroactive ligand receptor interaction pathways and gut
microbial composition, suggesting a complex bidirectional
signaling mechanism.

In the context of musculoskeletal health, Liu Y. et al. conducted
an integrative analysis of serum microorganisms and serum
metabolomics in osteoporosis patients. Their findings revealed
distinct microbial compositions and significant differences in
lipid metabolism pathways associated with osteoporosis, providing
candidate biomarkers for early diagnosis.

Metabolomics also proved valuable in elucidating the
mechanisms of traditional therapies. Sun et al. investigated the
protective mechanisms of Angelica sinensis polysaccharide (ASP)
against recurrent spontaneous abortion. Through metabolomic
analysis and assessment of autophagy levels, they found that ASP
restores diminished autophagy activity and regulates key metabolic
pathways, including glycolysis/gluconeogenesis.

Emerging modalities and perspectives

The Research Topic also highlights the potential of novel
biological entities and advanced analytical modalities. The
diagnostic and therapeutic potential of exosomes was reviewed by
Odehnalova et al.. As carriers of disease specific biomarkers, these
extracellular vesicles offer opportunities for non-invasive detection,
targeted drug delivery, and regenerative medicine in cancer and
neurodegenerative diseases.

Furthermore, Huang F. F. et al. provided neuroimaging
evidence for the central mechanisms of acupuncture in non-specific
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low back pain through a systematic review and meta-analysis.
Utilizing functional neuroimaging data, this study demonstrated
that acupuncture modulates pain processing through the insula
and limbic system, validating its clinical efficacy and exploring its
underlying mechanisms.

The studies compiled in this Research Topic collectively
demonstrate the profound impact of multi-omics analysis on
translational medicine. By embracing integrative approaches,
novel computational methods, and the inclusion of diverse data
types such as microbiome profiles and imaging features, these
investigations are significantly advancing the field. The insights
generated here not only enhance our understanding of complex
diseases but also pave the way for more precise diagnostics
and personalized therapeutic strategies, bringing us closer to the
realization of personalized healthcare.
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Introduction: Recurrent spontaneous abortion (RSA) represents a significant clinical
challenge, with its underlying mechanisms yet to be fully elucidated. Despite
advances in understanding, the precise pathophysiology driving RSA remains
unclear. Angelica sinensis, a traditional herbal remedy, is frequently used as an
adjunctive treatment for miscarriage. However, it remains uncertain whether
its primary active component, Angelica sinensis polysaccharide (ASP), plays a
definitive role in its therapeutic effects. The specific function and mechanism of
ASP in the context of RSA require further investigation.

Methods: In this study, we sought to evaluate autophagy levels at the maternal-
fetal interface in RSA patients and in an RSA mouse model treated with ASP,
complemented by a comprehensive metabolomic analysis. Autophagy flux in the
decidua was compared between eight RSA patients and eight healthy pregnant
women. Additionally, changes in autophagy flux were assessed in an RSA mouse
model following ASP treatment, with embryos and placental tissues collected for
subsequent metabolomic profiling.

Results: Our results revealed a significant reduction in Beclin 1 protein levels in the
decidua of RSA patients compared to the normal pregnancy group. Conversely, ASP
treatment in the RSA mouse model restored autophagy-related protein expression,
including ATG7, ATG16L, and Beclin 1, to levels higher than those observed in the
untreated RSA group. Metabolomic analyses further identified significant changes
in phosphatidylethanolamine levels between ASP-treated and control groups, with
differential metabolites enriched in pathways related to glycolysis/gluconeogenesis,
glycerolipid metabolism, and glycine, serine, and threonine metabolism. Functional
assays revealed that ASP enhances trophoblast cell proliferation, migration, and invasion.
Conclusion: In summary, our findings demonstrate diminished autophagy activity
in RSA patients, while ASP appears to restore autophagy and regulate key metabolic
pathways, including glycolysis/gluconeogenesis. These results provide new
insights into the protective mechanisms of ASP in RSA, suggesting its potential
as a therapeutic intervention for this condition.

KEYWORDS

recurrent spontaneous abortion, Angelica sinensis polysaccharide, autophagy,
metabolomics, Beclin 1
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1 Introduction

Recurrent spontaneous abortion (RSA) is a prevalent and
clinically significant obstetric complication, defined by the occurrence
of two or more consecutive pregnancy losses prior to the 28th week of
gestation (1). The known causes of RSA are diverse, including
infectious agents, chromosomal abnormalities, hormonal and
metabolic disorders, antiphospholipid syndrome, and structural
abnormalities of the uterus (2-6). However, approximately 50% of
RSA cases are classified as idiopathic, with no clearly identifiable
underlying cause (7). Emerging evidence suggests that autophagy
levels in trophoblast cells of RSA patients are dysregulated (8-11).
However, whether RSA is driven by autophagy deficiency or excessive
autophagy activation remains poorly understood, necessitating
further investigation.

Autophagy is a fundamental cellular process that mediates the
transport of intracellular components to lysosomes for degradation
and recycling, ensuring cellular homeostasis and adaptation to stress
(12). This highly orchestrated pathway is regulated by a network of
autophagy-related genes (ATGs) and their associated proteins. Beyond
its role in cellular maintenance, autophagy plays a pivotal role in early
embryonic development and implantation (11). Dysregulated
autophagy has been implicated in various pregnancy complications,
including preeclampsia and fetal growth restriction (13, 14), However,
investigations into the role of autophagy in RSA remain scarce, and
existing findings are often inconsistent, highlighting the need for
further focused research.

Angelica sinensis, a cornerstone of traditional Chinese medicine,
has been historically employed for the treatment of gynecological
disorders (15). Its primary bioactive components include Angelica
sinensis polysaccharide (ASP), along with sugars such as xylose,
galactose, glucose, arabinose, rhamnose, fucose, and galacturonic acid,
with ASP recognized as the most significant therapeutic constituent
(16). A growing body of research has highlighted the diverse
pharmacological properties of ASP, including hepatoprotective effects
(17, 18), anti-cancer activity (19, 20), anti-aging benefits (21-23),
antioxidant capacity (24), and immune modulation (25).

Emerging evidence further supports the role of Angelica sinensis
extracts in modulating autophagy (26, 27) and restoring immune
balance in abortion-prone models (28, 29). Specifically, ASP have been
shown to significantly suppress the expression of autophagy-related
proteins, including microtubule-associated protein 1 light chain 3
(LC3)II/LC3I, thereby mitigating excessive mitochondrial autophagy
(30, 31). Despite these promising findings, the precise regulatory
effects of ASP on autophagy, particularly within the context of RSA,
and its underlying mechanisms remain inadequately understood.

Thus, this study aims to elucidate whether ASP contributes to the
adjunctive treatment of RSA through modulation of autophagy
pathways and to identify the associated signaling pathways. Our
findings demonstrate a significant reduction in Beclin 1 expression at
the maternal-fetal interface in RSA patients, indicating impaired
autophagy activity. In contrast, ASP treatment in RSA mice led to a
marked upregulation of autophagy-related proteins, including ATG?7,
ATGI6L, and Beclin 1, accompanied by alterations in the glycolysis/
gluconeogenesis metabolic pathway. Furthermore, ASP was shown to
enhance the proliferation, migration, and invasion of HTR-8/SVneo
trophoblast cells, highlighting its

potential to support

trophoblast function.
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2 Materials and methods
2.1 RSA animal model

The CBA/J and DBA/2 mouse strains are well-established models
for investigating immune-mediated RSA. In this study, female CBA/]
mice were mated with male DBA/2 mice (CBA/J] x DBA/2) to induce
RSA-like phenotypes, as previously described (1). A total of 30 female
CBA/] mice (20 + 2 g), 10 male DBA/2 mice (22 £ 2 g), and 5 male
BALB/c mice (20 + 2 g), all aged 9 weeks, were obtained from Beijing
Huafukang Biotechnology Co., Ltd. During the experimental
procedures, female mice were paired with male mice at a 2:1 mating
ratio. During the experimental procedures, female mice were paired
with male mice in a 2:1 mating ratio. The detection of a vaginal plug
was designated as embryonic day 1 of pregnancy. The pregnant
females were randomly divided into three experimental groups: a
normal control group, a RSA control group and an ASP intervention
group. The ASP group received daily oral gavage of ASP at a dose of
400 mg/kg (32), while the control groups were administered an
equivalent volume of saline. Treatments commenced on the first day
of pregnancy and continued for 2 weeks. At the end of the treatment
period, all mice were anesthetized and euthanized in accordance with
humane protocols. All experimental procedures were conducted
under the approval of the Ethics Committee of Shanghai First
Maternity and Infant Hospital.

2.2 Sample collection

Embryos and placentas were carefully harvested from the
experimental mice and immediately rinsed with ice-cold phosphate-
buffered saline (PBS) to remove residual blood and debris. The cleaned
samples were then subjected to rapid flash-freezing in liquid nitrogen
to preserve molecular integrity and stored at —80°C until
further analysis.

2.3 Sample preparation

Frozen embryo and placenta samples, each weighing 15
milligrams, were carefully transferred into 1.5 mL Eppendorf tubes.
To optimize the extraction process, two small steel beads were added
to each tube, along with 0.3 mL of a methanol-to-water solution (4:1,
vol/vol). Additionally, a reference solution containing 0.3 mg of
L-2-chlorophenylalanine dissolved in methanol was included in each
tube. The samples were subsequently incubated at —20°C for 30 min
to enhance the extraction efficiency.

Following the initial storage period, the samples were subjected to
ultrasonic extraction in an ice-water bath for 10 min to ensure
thorough processing. They were then briefly stored at —20°C for 2 min
before being ground at 60 Hz for 2 min to achieve a uniform mixture.
Subsequently, the samples were centrifuged at 4°C and 13,000 rpm for
10 min, facilitating the separation of the supernatant. The collected
supernatant was concentrated and dried using a freeze-drying
centrifuge, yielding a final volume of 250 pL.

Each dried sample was processed with 300 pL of a methanol-
water mixture (1:4, vol/vol). The mixture was vortexed for 30 s and
subjected to ultrasonic extraction in an ice-water bath for 3 min. The
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samples were then incubated at —20°C for 2 h to ensure thorough
extraction. Following incubation, the samples were centrifuged at
13,000 rpm for 10 min at 4°C. A 150 pL aliquot of the supernatant was
carefully collected with a crystal syringe, passed through a 0.22 pm
microfilter, and transferred to LC vials. These vials were subsequently
stored at —80°C to maintain sample integrity prior to liquid
chromatography-mass spectrometry (LC-MS) analysis.

To ensure the reliability and consistency of the LC-MS analysis, a
pooled sample derived from equal portions of each individual sample
was prepared and utilized as a quality control (QC) sample.

2.4 LC—MS analysis

Metabolic profiling of the collected samples was conducted using
a cutting-edge UPLC i-Series system (Waters Corporation, Milford,
United States) coupled with the advanced VION IMS QTOF mass
spectrometer (Waters Corporation, Milford, United States).
Chromatographic separation was achieved on a high-resolution UPLC
BEH CI18 column (1.7 pm, 2.1 x 100 mm) in both positive and
negative ionization modes. The mobile phase comprised water with
0.1% formic acid as solvent A and a 2:3 (vol/vol) acetonitrile/methanol
mixture containing 0.1% formic acid as solvent B. A linear gradient
elution program was employed as follows: 0 min, 1% B; 1 min, 30% B;
2.5 min, 60% B; 6.5 min, 90% B; 8.5 min, 100% B; 10.7 min, 100% B;
10.8 min, 1% B; and 13 min, 1% B. The column was maintained at a
constant temperature of 45°C, with a flow rate of 0.4 mL/min. To
ensure sample integrity, all samples were stored at 4°C throughout the
analysis, with an injection volume precisely set to 1 pLs.

Mass spectrometry data acquisition was conducted using both
full-scan mode (m/z range: 50-1,000) and MSE mode to ensure
comprehensive coverage and enhanced fragmentation information. In
MSE mode, alternating low- and high-energy scans were performed,
enabling simultaneous acquisition of precursor and fragment ion data.
The low-energy scans were conducted with a fixed collision energy of
4 eV, while high-energy scans employed a collision energy ramp
ranging from 20 to 45eV. Collision-induced dissociation was
facilitated using high-purity argon gas (99.999%), with optimized
instrument settings as follows: source temperature set to 115°C,
desolvation gas temperature maintained at 450°C, cone voltage at
40V, desolvation gas flow rate at 900 L/h, a scan interdelay of 0.02 s,
and a scan time of 0.2 s.

To ensure data reproducibility and evaluate analytical repeatability,
QC samples were systematically injected at regular intervals
throughout the analysis, typically after every three sample injections.
The QC samples, prepared as pooled extracts from all experimental
samples, were used to monitor the relative standard deviations of both
retention times and peak areas.

The specifications and details of the primary instruments utilized
in this study are available in Supplementary material S1.

2.5 Data preprocessing

The raw LC-MS data were processed using Progenesis QI V2.3
software (Nonlinear Dynamics, Newcastle, United Kingdom),
incorporating a comprehensive workflow that included baseline
filtering, peak detection, integration, retention time correction, peak

Frontiers in Medicine

10.3389/fmed.2025.1522503

alignment, and normalization. The data processing pipeline utilized
stringent parameters, including a 5% production threshold, 10 ppm
product tolerance, and 5 ppm precursor tolerance, to ensure high
fidelity and reproducibility. Compound identification was performed
through a qualitative analysis using multiple reference databases,
including the Human Metabolome Database (HMDB), LipidMaps
(V2.3), Metlin, EMDB, PMDB, and a custom in-house database.
Accurate mass-to-charge ratios (m/z), secondary fragment patterns,
and isotopic distributions were employed as definitive criteria for
compound  annotation, reliable

ensuring  precise and

metabolite identification.

2.6 Statistical analysis

The acquired data underwent rigorous preprocessing to ensure
reliability and accuracy. Peaks with more than 50% missing values
across groups (ion intensity = 0) were excluded. Zero values were
imputed with half of the minimum detected value, and compounds
were filtered based on qualitative criteria. Specifically, compounds
scoring fewer than 36 points on a 60-point scale were deemed
invalid and subsequently removed. Data from both positive and
negative ion modes were integrated into a unified data matrix. To
evaluate the overall distribution and confirm the stability of the
analytical workflow, the consolidated matrix was subjected to
principal component analysis (PCA) wusing the R
programming environment.

To identify differential metabolites between experimental groups,
we applied orthogonal partial least squares discriminant analysis
(OPLS-DA) and partial least squares discriminant analysis (PLS-DA).
Model quality was rigorously evaluated through 7-fold cross-
validation and 200 response permutation tests to mitigate the risk of
overfitting. The variable importance in projection (VIP) scores derived
from the OPLS-DA model were utilized to quantify each variable’s
contribution to group separation. Metabolites were considered
differentially expressed if they met the criteria of a VIP score greater
than 1.0 and a p-value less than 0.05, determined using a two-tailed

Student’s ¢-test.

2.7 Kyoto encyclopedia of genes and
genomes enrichment analysis

Pathway enrichment analysis of differential metabolites was
conducted using their KEGG IDs, leveraging the KEGG database' and
the analytical platform developed by Shanghai Oebiotech Co., Ltd.?
Enrichment of metabolic pathways was determined using a
hypergeometric test, with a significance threshold set at p < 0.05. A
lower p-value indicated a higher degree of significance in the
differences observed across metabolic pathways. Detailed calculation
formulas and

methodologies are provided in

Supplementary material S2.

1 https://www.kegg.jp/
2 https://cloud.oebiotech.cn/task/
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2.8 Ethical approval and clinical sample
collection

This study was conducted with the approval of the Ethics
Committee of the Obstetrics and Gynecology Hospital Affiliated to
Tongji University (Ethical Approval Number: 22Y11922400). Clinical
samples, including villi and decidual tissues, were collected from
January 2024 to May 2024 at Shanghai First Maternity and Infant
Hospital (also known as the Obstetrics and Gynecology Hospital
Affiliated to Tongji University). The study population consisted of 8
patients diagnosed with RSA (RSA group) and 8 women with normal
pregnancies (NC group).

The inclusion criteria for the RSA group comprised patients with
a history of two or more consecutive unexplained spontaneous
miscarriages occurring prior to 28 weeks of gestation. For the control
group, participants were individuals undergoing elective termination
of normal pregnancies, carefully matched to the RSA group based on
baseline characteristics and with no prior history of
spontaneous miscarriage.

Exclusion criteria encompassed any history of infections,
reproductive tract abnormalities, endocrine disorders, or other
identified causes of miscarriage. Baseline clinical characteristics for
both groups are presented in Table 1, with additional details available

in Supplementary material S3.

2.9 Western blotting

Total protein was extracted using RIPA lysis buffer (WB6001,
Shanghai Wayo Biotechnology, Shanghai, China), and protein
concentrations were quantified using the bicinchoninic acid (BCA)
method (23,235, Thermo Scientific, Waltham, United States). Equal
amounts of protein samples were resolved on SDS-PAGE gels and
subsequently transferred onto PVDF membranes (IPVH00010,
Millipore, Massachusetts, United States). Membranes were blocked
with 5% non-fat milk at room temperature for 1h, followed by
overnight incubation at 4°C with primary antibodies (42,867, Cell
Signaling Technology, Boston, United States). The following day,
membranes were incubated with secondary antibodies for 1 h at room
temperature. Immunoreactive proteins were visualized using the
Tanon 5,200 imaging system (Tanon, Shanghai, China).

Grayscale intensities of protein bands were quantified using
Image] software (NIH, Manassas, MD, United States). The relative
expression of target proteins was normalized to internal controls, and
mean values along with standard deviations were calculated for each
group. Statistical comparisons were performed using two-tailed
t-tests, with statistical significance defined as p < 0.05. All antibodies

TABLE 1 Clinical characteristics of the RSA group and NC group.

10.3389/fmed.2025.1522503

used in this experiment were obtained from the autophagy antibody
kit supplied by Cell Signaling Technology.

2.10 Cell culture

HTRS8-Svneo cells, a human chorionic trophoblast-derived cell
line, were procured from the cell bank of Shanghai First Maternity and
Infant Hospital. The cells were maintained in DMEM/F12 medium
(C3130-0500, Biological Industries, Kibbutz Beit Haemek, Israel)
supplemented with 10% fetal bovine serum and 1% penicillin—
streptomycin  (15140-122, Grand Island Biological Company,
Montana, United States). Cultures were incubated in a humidified
atmosphere of 95% air and 5% carbon dioxide at 37°C to ensure
optimal growth conditions.

2.11 Drug preparation

ASP (Yuanye, Shanghai, China) was dissolved in complete culture
medium to prepare a series of concentrations: 0 pg/mL, 0.001 pg/mL,
0.01 pg/mL, 0.1 pg/mL, 1 pg/mL, and 10 pg/mL. The solutions were
then sterilized by filtration through a 0.22 pm pore-sized membrane
filter to ensure sterility prior to subsequent experiments.

2.12 Assessment of cell proliferation
capacity

HTRS cells were seeded into 96-well plates at a density of 3,000
cells per well, with 100 pL of culture medium supplemented with
specified concentrations of ASP. Each group included six replicates.
After cell adhesion, the Cell Counting Kit-8 (CCK8, MedChemExpress,
New Jersey, United States) reagent was added to the wells following
the manufacturer’s protocol. A blank control, containing culture
medium and CCKS8 reagent without cells, was included to account for
background absorbance. The optical density (OD) at 450 nm was
measured using a microplate reader, with the first measurement
recorded as Day 1. Subsequent measurements were performed at 24 h
intervals to monitor cell proliferation dynamics.

The net OD was determined by subtracting the OD value of the
blank control from that of the experimental wells. Comparative
analysis of OD values across groups was conducted, and proliferation
curves were generated using GraphPad Prism (version 8.0.2).
Statistical significance was assessed via repeated measures analysis,
followed by the least significant difference (LSD) method for
post-hoc comparisons.

NC group RSA group 95% ClI
(Mean + SEM) (Mean + SEM)
Down
Count 8 8
Age (year) 3225+ 1.61 3275+ 1.16 0.805 —4.761 3.761
BMI (kg/m?) 21.53 + 1.00 2279+ 1.18 0.443 —4.738 2222
Gestational age (week) 7.75+0.53 9.13+£0.61 0.110 —3.104 0.354
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2.13 Wound healing assay

To evaluate cell migration, a wound healing assay was performed.
Cells were seeded into 6-well plates at a density of 600,000 cells per
well and cultured in serum-free medium containing varying
concentrations of the tested drug. Once the cell monolayer reached
approximately 90% confluence, a sterile 200-pL pipette tip was used
to create a uniform, vertical scratch across the well. Detached cells and
debris were carefully removed by washing the wells 2-3 times with
PBS. Images of the wound area were captured using an inverted
microscope (Leica, Wetzlar, Germany) at predefined time intervals. At
each time point, the culture medium was replenished to maintain
optimal conditions. The wound area was quantified using Image]J
software to assess the rate of wound closure over time.

2.14 Transwell migration assay

To assess cell migration, 800 pL of medium containing 20% serum
and the respective drug treatment was added to the lower chamber of
the Transwell system, which was then placed in a 24-well plate. A total
of 200 pL of cell suspension (containing 100,000 cells per well) was
seeded into the upper chamber. The system was incubated at 37°C in
a humidified incubator with 5% CO, for 16 h. Following incubation,
cells that had migrated to the lower surface of the membrane were
fixed with 4% paraformaldehyde at room temperature for 20 min. The
fixed cells were stained with 0.1% crystal violet solution for 30 min.
Non-migrated cells on the upper surface of the membrane were
carefully removed using a cotton swab. The membranes were then
rinsed with PBS to eliminate excess stain. Migrated cells were
visualized and imaged under an inverted microscope for
quantitative analysis.

2.15 Transwell invasion assay

In contrast to the migration assay, the invasion assay incorporates
an additional step to assess cell invasive capabilities. The upper
chamber is pre-coated with 100 pL of medium containing 10%
Corning matrigel matrix (Corning, New York, United States) to mimic
the extracellular matrix. The chamber is incubated at 37°C for 1 h to
allow the Matrigel to solidify, after which the supernatant is carefully
removed. The subsequent procedures, including cell seeding and
incubation, follow the same protocol as described for the
migration assay.

2.16 Data acquisition and statistical analysis

Image analysis was conducted using Image] software, while data
visualization and statistical evaluations were performed with
GraphPad Prism (version 8.0.2). Results are presented as the
mean + standard error of the mean. Statistical comparisons between
groups were performed using one-way analysis of variance. Post hoc
analyses were carried out using either the LSD or Bonferroni multiple
comparison tests to assess the significance of intergroup differences.
Statistical significance was defined as follows: p < 0.05 (*), p < 0.01
(**), or p < 0.001 (***).
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2.17 Transmission electron microscopy

Cells were harvested via centrifugation and promptly fixed in a
2.5% glutaraldehyde solution at 4°C for a minimum of 3 h to preserve
cellular structures. Following fixation, samples were washed three
times with 0.1 M phosphate buffer and subsequently post-fixed in 1%
osmium tetroxide at 4°C for 3 h. The specimens were then subjected
to three additional washes with phosphate buffer, sequentially
dehydrated in graded ethanol, and embedded in Epon 812 resin to
ensure optimal preservation and sectioning quality.

Ultrathin sections, approximately 70 nm in thickness, were
prepared using an ultramicrotome (Leica UC6) and carefully mounted
onto copper grids coated with formvar support films. The sections
were stained with uranyl acetate for 30 min to enhance contrast,
followed by counterstaining with lead citrate for 15 min. Finally, the
stained sections were visualized and imaged using a transmission
electron microscope (Thermo Fisher Talos 120) operated at 120 kV.

3 Results

3.1 Clinical characteristics of the RSA and
NC groups

The diagnostic criteria for RSA were defined according to the
ESHRE guidelines (33, 34). The clinical characteristics of participants
in the RSA group and the NC group are summarized in Table 1 and
Supplementary material S3. No significant differences were observed
between the two groups in terms of age (30-34 years), body mass
index (BMI, 20-24), or gestational age (7-10 weeks) (p > 0.05).

3.2 Reduced autophagy levels at the
maternal-fetal interface of RSA patients

To investigate autophagy activity at the maternal-fetal interface,
we examined decidual tissues from RSA patients and compared them
to those of the NC group. As illustrated in Figure 1, autophagy flux
was assessed across 8 samples from the NC group and 8 samples from
the RSA group. Western blot analysis revealed a significant reduction
in the expression levels of autophagy-related proteins, including
ATG5, ATG7, and ATG16L, in the RSA group. Notably, Beclin 1 levels
were significantly decreased (p-value <0.05). Although the expression
of several other proteins implicated in the autophagy pathway did not
show significant differences, the overall autophagy levels in the RSA
group displayed a clear downward trend.

3.3 ASP elevate autophagy levels at the
maternal-fetal Interface in RSA model mice

Previous studies have demonstrated that ASP promotes autophagy
activation (35) and improves outcomes in RSA animal models (36).
Furthermore, ASP has been reported to confer protective effects
during pregnancy (32). Based on these findings, we hypothesize that
ASP may mitigate RSA by activating protective autophagy pathways.
Data presented in Supplementary material 54 illustrate the miscarriage
status of mice in the RSA model. WB analysis revealed that the
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expression levels of autophagy-related proteins, including ATG7,
ATGI16L, and Beclin 1, were significantly elevated in the ASP-treated
group compared to the untreated RSA group (Figures 1C,D).
Additionally, our previous metabolomic analysis highlighted
enrichment of differential metabolites in the autophagy pathway, with
pathway activity upregulated in the ASP-treated group relative to
controls (Supplementary material S5).

3.4 Metabolite profiling of ASP and control
groups

To investigate the metabolic alterations induced by ASP in the
context of RSA, a metabolomic analysis was conducted comparing
samples from the ASP-treated and control groups (Figure 2A). An
OPLS-DA model revealed a clear and optimized class separation,
demonstrating robust model fitting and effectively capturing the
metabolic changes induced by ASP exposure (Figure 2B). Among the
identified metabolites, 55 were significantly downregulated, and 42
were upregulated in the ASP group compared to the control group
(Figure 2C; Supplementary materials S6, S7). Supporting our
hypothesis, phosphatidylethanolamine (PE) was prominently altered
between the two groups. The differential metabolites identified belong
to several chemical classes, including benzene and substituted
derivatives, carboxylic acids and derivatives, and fatty acyls, etc.
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(Supplementary materials S8, S9). Pathway enrichment analysis using
the KEGG database highlighted significant enrichment of these
metabolites in pathways such as glycolysis/gluconeogenesis,
glycerolipid metabolism, glycine, serine, and threonine metabolism,
nicotinate and nicotinamide metabolism, glyoxylate and dicarboxylate
metabolism, Fc gamma R-mediated phagocytosis, and the Apelin
signaling pathway (Figure 2D; Supplementary material S10).
Subsequently, autophagosomes were observed by TEM. TEM further
provided direct evidence of autophagic activity. Autophagosomes were
visualized in the decidual tissues of the normal mouse model
(Figure 2E), the RSA mouse model (Figure 2F), and the ASP-treated
RSA mouse model (Figure 2G).

3.5 ASP enhances proliferation, migration
and invasion of human chorionic
trophoblast cells

The impact of ASP on the proliferation of HTR8 cells was
assessed using the CCK-8 assay, revealing that ASP significantly
promoted cell proliferation in a dose-dependent manner
(Figure 3A). Consistently, transwell migration and scratch wound
healing assays demonstrated a marked enhancement in the
migratory capacity of HTR8 «cells upon ASP treatment
(Figures 3B,C,F,G). Additionally, the transwell invasion assay
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(E) TEM revealed autophagosomes in the decidual tissues of mice. Autophagosomes in the decidua of mice from the normal control group.

(F) Autophagosomes in the decidua of mice from the RSA control group. (G) Autophagosomes in the decidua of mice from the ASP intervention RSA
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FIGURE 3

The effects of different concentrations of ASP (0, 0.001, 0.01, 0.1, 1, 10, 100 pg/mL) on the phenotype of HTR8 cells. (A) CCK8 assay showing the effect
of ASP treatment at concentrations of 0, 0.1, and 100 pg/mL on the proliferation of HTR8 cells. (B,C) Transwell migration assay evaluating the effect of
ASP treatment at concentrations of 0.001, 0.01, 0.1, and 1 pg/mL on the migration ability of HTR8 cells. (D,E) Transwell invasion assay showing the
effect of ASP treatment at concentrations of 0, 0.001, 0.01, 0.1, 1, and 10 pg/mL on the invasion ability of HTR8 cells. (F,G) Scratch wound assay
evaluating the effect of ASP treatment at concentrations of 0, 0.01, and 10 pg/mL on the migration ability of HTR8 cells.
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further confirmed that ASP significantly facilitated the invasive
ability of HTRS cells (Figures 3D,E). Collectively, these findings
indicate that ASP serves as a potent enhancer of trophoblast cell
proliferation, migration, and invasion, underscoring its potential
role in promoting function in dose-

trophoblast a

dependent manner.

4 Discussion

The relationship between RSA and autophagy remains an area
of limited investigation, with findings to date presenting
inconsistencies. Most research has predominantly focused on
autophagy and its upstream and downstream signaling pathways,
while metabolic aspects remain underexplored. Some studies have
reported elevated autophagy levels in the chorionic tissues of RSA
patients (11). Conversely, other investigations have observed a
downregulation of autophagy-related genes in the chorion of RSA
patients (9, 37, 38), suggesting that suppressed autophagy may lead
to aberrant alterations in decidual natural killer (dNK) cell
phenotypes, potentially contributing to pregnancy loss (10).
Further studies investigating the immune microenvironment at the
maternal-fetal interface have highlighted significant upregulation
of autophagy-related proteins, such as Beclin 1, LC3B II/I, and
BNIP3, in decidual macrophages of RSA patients (8). Impaired
decidualization, a key factor influencing RSA, has been associated
with
decidualization in RSA patients (39). Moreover, preclinical

reduced autophagy levels and disrupted uterine
research indicates that hypericin, a bioactive compound, exerts
protective effects against abortion in a rat model by enhancing
autophagy (40). These findings collectively underscore the complex
and multifaceted role of autophagy in RSA. However, the precise
interplay between autophagy, immune regulation, and metabolism
at the maternal-fetal interface remains to be fully elucidated.
Further studies are warranted to clarify the mechanistic links
between autophagy and RSA pathogenesis, which may pave the
way for novel therapeutic strategies targeting this pathway.

Our experimental findings reveal a significant reduction in
Beclin-1 levels in RSA patients compared to those with normal
pregnancies, accompanied by a decreasing trend in ATG5, ATG7,
and ATG16L expression. The autophagy pathway is initiated by the
unc-51-like autophagy-activating kinase (ULK) complex, which
orchestrates upstream signals to activate downstream processes.
Beclin-1, a pivotal component of the autophagy-specific vacuolar
protein sorting 34 (VPS34) complex I, plays a critical role in
catalyzing the production of phosphatidylinositol-3-phosphate
(PI3P) (PI3P). The generation of PI3P facilitates the recruitment
of autophagy-related machinery, including the ATGI6LI-
ATG5-ATGI12 complex, ATG3, and ATG7. These components
work synergistically to conjugate ATG8 family members—
encompassing the LC3 and GABARAP subfamilies—with PE, a key
step in promoting autophagosome maturation and subsequent
autophagic flux (12, 41).

Therefore, our findings indicate that autophagy levels at the
maternal-fetal interface are diminished in RSA patients compared
to those with normal pregnancies, aligning with previously
reported observations (9, 37, 38). Importantly, in the RSA mouse
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model, treatment with ASP partially restored autophagy activity,
suggesting a potential mechanism by which ASP confers protective
effects in RSA. Beyond its influence on autophagy, ASP has
demonstrated broader benefits in pregnancy-related contexts. For
example, ASP has been shown to mitigate iron-deficiency anemia
in pregnant rats by modulating the hepcidin-FPN1 axis (32).
Furthermore, Angelica sinensis extracts, such as Ligustilide, have
been reported to enhance pregnancy outcomes by improving
endometrial receptivity and promoting angiogenesis within the
endometrium (42). Additionally, Angelica sinensis has been
implicated in alleviating metabolic disturbances in abortion-prone
mice through the regulation of glycerolipid metabolism and has
been shown to exert immunomodulatory effects (29, 43).

Simultaneously, ASP has demonstrated the ability to regulate
autophagy through diverse signaling pathways. In the context of
osteoarthritis, ASP has been reported to induce autophagy via
activation of the ERK1/2 pathway (35). Similarly, ASP can mitigate
chemotherapy-induced hepatotoxicity by enhancing autophagy
through the MEK/ERK signaling cascade (44). Additionally,
studies in a rat model of idiopathic pulmonary fibrosis revealed
that Angelica sinensis exerts its autophagy-inducing effects via
modulation of the mammalian target of rapamycin (mTOR)
pathway (45).

In summary, ASP provide a degree of protection during
pregnancy and can influence autophagy levels through different
signaling pathways. Despite extensive evidence supporting the
protective role of Angelica sinensis in pregnancy, research
specifically investigating the contribution of ASP in miscarriage
remains limited. The phytochemical composition of Angelica
sinensis is highly complex, encompassing various bioactive
compounds such as ASP, ligustrazine, laurene, ferulic acid, and
vanillic acid (46). This complexity underscores the need for
targeted studies to identify whether ASP represents the primary
active component responsible for its therapeutic effects and to
elucidate the molecular mechanisms involved. Our findings
provide preliminary evidence suggesting that ASP may mitigate
RSA by activating autophagy. However, further comprehensive
investigations are required to validate these observations and
explore the precise mechanisms underlying this protective effect.

Metabolomics has emerged as a robust and unbiased analytical
approach, offering a comprehensive overview of an individual’s
metabolic profile (47). In this study, a metabolomic analysis was
performed to compare the metabolic profiles of the ASP-treated
group and the control group, revealing significant differences in PE
levels between the two. PE plays a critical role in the autophagy
pathway, serving as an essential lipid for the conjugation of LC3-1,
facilitating its conversion into the autophagosome-associated form,
LC3-II (48). These findings highlight the potential mechanistic link
between ASP treatment and autophagy regulation.

KEGG pathway analysis highlighted significant alterations in
metabolic pathways, including Glycolysis/Gluconeogenesis,
Glycerolipid metabolism, and Glycine, serine, and threonine
metabolism. Glycolysis/Gluconeogenesis has been implicated in
impaired decidualization in pregnant rats (49) and is associated
with defective trophoblast invasion in preeclampsia patients, as
previously reported (50). Similarly, disruptions in Glycerolipid
metabolism have been identified as potential biomarkers for
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idiopathic infertility in in vitro fertilization (IVF) patients (51) and
are linked to an increased risk of gestational diabetes in pregnant
women (52). Consistent with our findings, metabolomic analyses
of plasma from RSA patients have also revealed changes in
Glycolysis/Gluconeogenesis and Glycerolipid metabolism (53).
Both pathways have been further associated with preterm birth
(54) and gestational diabetes risk (55). These studies collectively
underscore the critical impact of metabolic dysregulation on
pregnancy, highlighting the intricate connection between altered
metabolic states and pregnancy complications.

However, there is a lack of relevant research when it comes to
trends in the levels of specific metabolites within these pathways
or whether intervention leads to reversals of these trends,
particularly in RSA. Our findings reflect the possible metabolic
mechanisms through which ASP exerts protective effects against
RSA by regulating autophagy, providing a comprehensive overview
of the metabolic profile changes induced by ASP at the maternal-
fetal interface. Although these discoveries do not delve into deeper
metabolic explorations, they lay a foundation and perspective for
further investigation into the pathogenesis of RSA and
its treatment.

However, this study has some limitations. Firstly, although
our study initially found that ASP exerts protective effects on
RSA by regulating autophagy, we did not further conduct
dynamic validation to comprehensively observe autophagic flux.
Instead, we focused only on autophagy levels at specific time
points. This verification is crucial for establishing the reliability
and applicability of the research findings. In future projects,
we plan to perform additional experiments to observe autophagic
flux in RSA and ASP intervention. These experiments may
include observing LC3-labeled cells under a fluorescence
microscope, using lysosome-specific fluorescent dyes to assess
lysosomal function, measuring sequestosome 1 levels at different
time points after intervention, and combining lysosomal
inhibitors to validate autophagic flux activity. Secondly, the
sample size in our study is relatively small, with only 8
participants in each clinical group, and the mouse experiments
included only 6 and 3 samples from the ASP and control groups,
respectively. This limitation restricts the generalizability of the
findings and may affect the applicability of the results. Before
ASP can be considered a protective factor for RSA, more in-depth
validation in larger independent cohorts is necessary. Although
our current metabolomics sequencing results indicate that PE is
an important differential metabolite and that ASP affects key
metabolic pathways, we have not yet conducted further
experiments to explore how the metabolic changes induced by
ASP specifically contribute to the pathological mechanisms of
RSA. In future studies, we plan to exogenously add PE and other
key metabolites to evaluate their effects on cell functions.
Furthermore, in an RSA animal model with ASP intervention,
we aim to measure the activity of key metabolic enzymes and
lipid metabolic enzymes in critical pathways to investigate
whether ASP improves RSA by regulating these enzyme activities
and influencing metabolic pathways. At the same time, we will
utilize specific inhibitors or gene knockout or knockdown
methods to study the expression of key metabolic enzymes in cell
models and assess their effects on cellular functions and the
autophagy pathway.
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5 Conclusion

In summary, we studied the levels of autophagy in the maternal-
fetal interface of RSA patients and healthy pregnant individuals, and
examined the changes in autophagy levels in ASP-treated RSA model
mice, followed by a metabolomic analysis and cell phenotype assays.
Our findings suggest that ASP may exert protective effects against RSA
by activating autophagy while influencing pathways such as
Glycolysis/Gluconeogenesis, Glycerolipid metabolism, and Glycine,
serine, and threonine metabolism. However, further research and
validation are necessary. Our results may provide insights for
exploring the pathogenesis of RSA and offer evidence for the
therapeutic effects of ASP in treating RSA.
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Exosomes, nanosized extracellular vesicles released by various cell types, are
intensively studied for the diagnosis and treatment of cancer and neurodegenerative
diseases, and they also display high usability in regenerative medicine. Emphasizing
their diagnostic potential, exosomes serve as carriers of disease-specific biomarkers,
enabling non-invasive early detection and personalized medicine. The cargo
loading of exosomes with therapeutic agents presents an innovative strategy for
targeted drug delivery, minimizing off-target effects and optimizing therapeutic
interventions. In regenerative medicine, exosomes play a crucial role in intercellular
communication, facilitating tissue regeneration through the transmission of
bioactive molecules. While acknowledging existing challenges in standardization
and scalability, ongoing research efforts aim to refine methodologies and address
regulatory considerations. In summary, this review underscores the transformative
potential of exosomes in reshaping the landscape of medical interventions, with
a particular emphasis on cancer, neurodegenerative diseases, and regenerative
medicine.
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GRAPHICAL ABSTRACT

The figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

1 Introduction

Extracellular vehicles (EVs) are cellular structures released by cells
into the extracellular space and have recently become a focal point of
research due to their multifunctional role in many biological processes
(1, 2). According to the new classification, EV's are divided into several
types based on their biogenesis (e.g., exosome, microvesicle,
apoptosome, and autophagic EVs), concept (e.g., oncosome, matrix
vesicle, stress EVs, and migrasome), and size (e.g., small EVs and large
EVs) (3). In general, EVs were divided into three types including
apoptotic bodies (apoptosomes), which are the largest EVs with a size
range between 1 and 5 pm and are released during programmed cell
death (apoptosis). They contain cellular organelles and fragmented
DNA and are cleared by phagocytic cells. Microvesicles, typically
100-1,000 nm in diameter, are shed directly from the plasma
membrane through outward budding, a process in which a portion of
the cellular membrane protrudes outward from the cell surface. They
contain proteins, lipids, polysaccharides, and nucleic acids and are
involved in intercellular communication and signaling (2, 3). Exosomes
(Figure 1), the smallest EV's ranging in size from 30 to 150 nm, are lipid
bilayer vesicles and were discovered three decades ago by Pan and
Johnstone during investigations of reticulocyte maturation (2-5).
Recent studies discovered small exosomes (Exo-S) and large exosomes
(Exo-L). Exo-S are in the size range 40-80 nm and contain exosomal
tetraspanin marker CD63, while Exo-L (80-150 nm) contain CD9 (3).
Initially perceived as cellular waste products responsible for eliminating
unnecessary cellular components, our understanding of exosomes has
undergone a paradigm shift over the years, revealing their multifaceted
functions in cellular communication and signaling (1, 2).

Exosomes not only represent a promising material for the diagnosis
of serious pathological states but can also be effectively utilized for
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medicinal applications and drug transport. Given their significance, this
review presents the medicinal potential of exosomes, encompassing areas
such as regenerative medicine, early diagnosis, and drug treatment. In
addition, to provide a more comprehensive understanding, the review
rigorously assesses exosome biogenesis, isolation, and characterization.

2 Biogenesis of exosomes

Understanding the biogenesis of exosomes is crucial for advancing
the knowledge of their biological functions, their roles in diseases, and
potential applications in therapeutics (1, 3). Their life cycle is a
complex process involving three main steps: biogenesis, transport, and
release (2, 3). The whole process is illustrated in Figure 2 and is
initiated by an inward cell membrane budding (6). During this
invagination of the plasma membrane, a portion of a cellular
membrane undergoes inward folding, and a cup-shaped structure
containing extracellular proteins, lipids, metabolites, and cell
membrane proteins is formed. This leads to the formation of early
endosomes (EEs), which subsequently mature and transform into late
endosomes (LEs). Maturation involves the inward budding of the EEs
membrane, leading to the sequestration of EE cytoplasmic contents
and intraluminal vesicle (ILVs) formation within the endosomal
lumen. During ILV formation, specific cargo molecules such as
proteins, lipids, and nucleic acids are selectively sorted into the ILVs.
LEs containing ILVs are called multi-vesicular bodies (MVBs). The
fate of MVBs is determined by the specific proteins present on their
surface, which in turn influence various intracellular pathways
involved in cargo sorting and trafficking. The MVBs can either fuse
with lysosomes or autophagosomes to be degraded or fuse with a
plasma membrane to release the contained ILVs as exosomes (2, 6).
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FIGURE 1

Structure of exosomes. From a structural perspective, exosomes can be defined as lipid nanoparticles characterized by a phospholipid bilayer
membrane. The exosomal membrane is enriched with a diverse array of proteins and saccharide markers, including immunomodulatory molecules,
such as PD-1 and PD-L1, and hormone receptors, such as EGFR, tetraspanins, and glypicans. The internal composition of exosomes comprises a
variety of biomolecules, including intracellular and cytoskeletal proteins, nucleic acids, growth factors, and cytokines. The figure was partly generated
using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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3 Isolation and characterization
methods of exosomes

Isolation of exosomes is challenging due to the complexity of
biological fluids (7, 8). The most common isolation methods include
ultracentrifugation, ultrafiltration, size exclusion chromatography,
polymer precipitation, tangential flow filtration, and immunoaffinity
approaches. A comparison of these methods is provided in Table 1.
The optimal isolation strategy should be selected based on the
application field, as well as the volume and number of biological
samples (7-9). Furthermore, the application of exosomes directly
influences the use of subsequent characterization methods (9, 10).
This chapter does not aim to provide a detailed explanation of the
principles behind individual isolation and characterization methods
of exosomes but rather to offer a comprehensive overview that assists
researchers in selecting the most appropriate approaches based on
considering the specific requirements of different experimental and
application contexts.

For diagnostic purposes, exosomes from various biological fluids,
including blood (serum and plasma), saliva, and urine, are used in
non-invasive diagnostics due to their ability to carry specific molecular
information (9, 11). Blood-derived exosomes provide systemic
insights, reflecting the physiological and pathological state of the
entire body, making them ideal for detecting various diseases such as
cancer, neurodegenerative, cardiovascular, and autoimmune diseases
(12-16). Salivary exosomes, primarily originating from the salivary
glands and the oral cavity, are valuable for diagnosing oral diseases
and gastrointestinal tract disorders (17-19). Urinary exosomes,
secreted by epithelial cells of the urinary tract, are effective in
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diagnosing renal diseases, bladder cancer, and prostate conditions
(20-22).

When utilizing exosomes for diagnostic purposes, the primary
goal is to identify disease-specific exosomal markers. To determine
disease-specific markers, it is essential to identify markers that differ
in presence or expression level between samples from diseased and
healthy patients. This requires the comparison and processing of a
large number (tens to hundreds) of biological samples for statistical
relevance (23, 24). This procedure thus involves processing large
numbers of samples with small volume, typically in the maximum of
a few milliliters. For limited numbers of samples, typically in the range
of lower tens, differential ultracentrifugation (DUC) is considered the
gold standard and is the most widely used method. It usually involves
several consecutive rounds of centrifugation with increasing
centrifugal force and centrifugation time to remove cells, cell debris,
and larger microvesicles. The final step at 100,000 g or higher serves
to precipitate the exosomes (12, 25-27).

Because DUC is time-consuming, for handling tens to hundreds
of samples, the final ultracentrifugation step is often replaced with
commercial kits based on precipitation. Several commercial kits use a
polyethylene glycol precipitation technology, including the Total
Exosome Isolation Kit (Invitrogen), ExoQuick-TC Exosome
Precipitation Solution (System Biosciences), miRCURY Exosome Kits
(QIAGEN), Exo-Prep (HansaBioMed), PureExo Exosome Isolation
Kit (101Bio), ExoGAG (NasasBiotech), Exosome Precipitation
Solutions (Immunostep), and the miRCURY Exosome Isolation Kit
(Exiqon) (28-32). These methods result in the isolation of exosomes
referred to as total exosomes. In neurodegenerative diseases (NDs),
specific subpopulations of exosomes are isolated from the total
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Biogenesis of exosomes. Extracellular membranes are characterized by the presence of numerous transmembrane proteins, including various
receptors. (1) Upon ligand binding, receptor-mediated endocytosis is initiated, facilitated by actin filaments, which are integral components of the

cytoskeleton. This process results in the invagination of the membrane surrounding the receptor, leading to the formation of an early endosome within
the cell. (2) In this early endosome, the bilayer phospholipid membrane exhibits an orientation that is opposite to that of the cytoplasmic membrane,
causing the extracellular domains of the transmembrane proteins to be directed inward, toward the lumen of the endosome. (3) Within the cellular
context, endosomes are integral components of the complex endosomal-lysosomal system that interacts in a parallel manner (in both directions) with
various organelles (e.g., Golgi apparatus and endoplasmic reticulum). This interaction allows endosomes and exosomes to encapsulate biomolecules
derived from diverse cellular compartment. (4) During this process, early endosomes undergo maturation into late endosomes, which possess the
normal orientation of transmembrane proteins and (5) generate intraluminal vesicles that will ultimately become exosomes. (6) Following the fusion of

unported license.

multi-vesicular bodies containing these intraluminal vesicles with the cytoplasmic membrane, exosomes are released into the extracellular
environment. The figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0

exosome pool using immunoaffinity methods with specific antibodies,
such as anti-L1CAM, anti-NCAM, anti-MOG, or anti-GLAST. These
antibodies bind specifically neural, oligodendrocyte, or astrocyte
exosomes, which are the most relevant for identifying markers of NDs
as Alzheimer disease (AD), multiple sclerosis (MS), dementia, or
schizophrenia (33-36).

After the isolation of total exosomes or specific exosomal
subpopulations, the characterization of these exosomes and the
identification of specific disease markers are performed (10). The most
common markers include specific proteins or RNAs. For protein marker
identification, techniques such as tandem of liquid chromatography and
mass spectrometry (LC-MS) are used, while next-generation sequencing
(NGS) is used for RNA. Once specific disease markers are identified, it
is crucial to determine whether their exosomal expression differs
significantly between diseased and healthy patients in a statistically
relevant manner. To quantify markers, techniques such as enzyme-linked
immunosorbent assay (ELISA) or quantitative reverse transcription
polymerase chain reaction (QRT-PCR) are commonly used (37-42).

Currently, exosomes are being extensively investigated as drug
delivery systems. Due to their nanoscale dimensions, they can deliver
therapeutic agents specifically to tumor sites (43). Tumor tissues are

Frontiers in Medicine 23

characterized by a high absorption capacity and poor drainage (44),
which facilitates the selective accumulation of exosomes with
prolonged circulation times within these tissues. In addition, it is
noteworthy that exosomes exhibit favorable permeability across BBB
(45). Furthermore, the surface of exosomes can be effectively modified
with various ligands that are specific to target cells, thereby
significantly enhancing the selectivity of exosomes for these cells (46).
As cell-derived products, exosomes are generally considered to
be safer than conventional nanoparticles, particularly metal-based
nanoparticles (47). Their unique structure, comprising a hydrophilic
core and a lipid bilayer, allows them to transport a wide range of drug
types (46). However, a significant limitation in the clinical application
of exosomes is that cells produce only small quantities of various types
of exosomes, which restricts their usability in therapeutic contexts (48).

In regenerative medicine and therapeutic applications, exosomes
are isolated from cell culture media. The most commonly used cell
sources are mesenchymal stem cells. Similar to diagnostic applications,
where DUC is a preferred method for smaller sample quantities, DUC
is also commonly employed for isolating exosomes from cell culture
media for volumes ranging from tens to hundreds of milliliters.
However, a drawback of the final ultracentrifugation step is that the
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TABLE 1 Advantages and disadvantages of the most common isolation techniques of exosomes.

Isolation technique

Advantages

Disadvantages

10.3389/fmed.2025.1539714

References

purity, loss of exosomes, particularly problematic
for isolating from small volumes, reduced
purification efficiency due to clogging of

membrane pores

Ultracentrifugation Low cost, separation of large volumes, low operating | Time consumption, low purity, inappropriateness (8,25, 26, 216, 217)
expenses, compatibility with a wide range of samples | for small volumes, diminishing biological
activity of exosomes, high equipment cost
Ultrafiltration Simplicity, fast, absence of special equipment Potential deformation of exosomes, moderate (218-221)

Size exclusion chromatography

High purity, scalable, cost-effective for large-scale
processing, availability of commercial kits,

preservation of biological activity

Requirement of dedicated equipment, low yield,

target product dilution

(25, 218, 220, 222, 223)

Precipitation techniques

High morphological and functional quality of
exosomes, fast, simplicity, compatibility with low

sample volumes, availability of commercial kits

Low purity, contamination of precipitating agent,

not suitable for large sample volumes

(28,29, 221, 224, 225)

Immunoaffinity techniques

High purity of specific exosomes

Loss of exosomes with lower expression levels,
challenge separating exosomes from the bound

antibodies, low capacity, low yields

(216, 226)

Tangential flow filtration

Processing of large sample volumes, high recovery
rate of exosomes with minimal loss, preservation of

exosome integrity, simultaneous concentration and

High initial cost of equipment and consumables,
require pre-filtration steps to remove large

particles or debris, potential risk of membrane

(52, 53, 55, 56)

production, reduction of processing time

buffer exchange (diafiltration), scalable for industrial

fouling leading to reduced efficiency over time

high speeds lead to exosomal damage and the sedimentation of
impurities, which diminishes exosomal therapeutic activity (12, 49,
50). Therefore, the final ultracentrifugation step is often replaced by
density gradient ultracentrifugation (DGUC), utilizing sucrose or
iodixanol gradients (OptiPrep™), where the exosomal fraction is not
only less damaged but also better purified (49-51).

For larger volumes, in the range of hundreds of milliliters to liters,
a combination of other techniques is employed due to the limited
capacity of centrifuges. These primarily include ultrafiltration (UF),
utilizing polymer filters of various pore sizes to remove cells, cell
debris, and microvesicles, followed by tangential flow filtration (TFF)
to remove contaminating proteins, to concentrate the sample, and to
perform diafiltration of exosomes into the desired bufter (52-54). For
final exosome purification, size exclusion chromatography (SEC) is
employed, followed by a final TFF step to concentrate the sample and
transfer it into suitable application buffers, most commonly PBS (55-
57). The advantage of the combination of techniques such as UF, TFF,
and SEC is that they are suitable for practical use on an industrial scale
(55, 56). In addition, the isolated exosomes exhibit high purity and
preserved therapeutic activity, which is usually subsequently
confirmed by in vitro tests such as scratch or transwell assays (54, 58).

According to the recommendations of the International Society
for Extracellular Vesicles (ISEV), exosomal samples should generally
be characterized for size, concentration, and the presence of exosomes
(59, 60). The presence of exosomes is typically confirmed by detecting
at least one transmembrane protein (commonly tetraspanins: CD9,
CD63, and CD81) or a GPI-anchored protein (e.g., integrins), along
with one cytoplasmic lipid (e.g., sphingolipids, ceramides, and
cholesterol) or cytoplasmic protein (e.g., ALIX, TSG101, and HSP70)
(59, 60). These specific markers can be assayed using methods such as
Western blot or ELISA (61, 62). In addition, electron microscopy is
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often employed to provide images of typical exosomal morphology,
further confirming the presence of exosomes in the sample (63, 64).
The size and concentration of exosomes, expressed as particles per
milliliter, are commonly determined using techniques such as
dynamic light scattering (DLS), nanoparticle tracking analysis (NTA),
and resistive pulse sensing (RPS). However, these techniques are not
specific to exosomes and may overestimate their concentration (65,
66). Alternatively, exosomes can be labeled with specific dyes, where
the measured concentration corresponds only to the positively stained
population. This approach allows for more accurate quantification of
exosomes and can be performed using nanoflow cytometry
(nanoFCM). Nevertheless, underestimation of concentration may
occur if the sample is not properly titrated (67, 68). In some cases, the
concentration of exosomes is determined based on the total protein
concentration per milliliter (ng/mL) using the Bradford assay (10). All
these parameters must be thoroughly assessed to ensure sufficient
sample purity and demonstrate that the observed therapeutic effect is
primarily induced by exosomes rather than by potential contaminants.

4 Therapeutic applications of
exosomes in biomedicine

As mentioned earlier, exosomes are natural intercellular
communicators in normal biological processes but also in pathologies.
They transport proteins, lipids, and nucleic acids specific for their
parenteral pathogenic cells. From a clinical perspective, most
applications use exosomes as biomarkers of diseases (69). The content
of the exosome has been shown to be disease-specific, such as in NDs,
prion diseases, viral infections, and cancer (69). Furthermore,
exosomes play a transformative role in regenerative medicine, offering
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innovative therapeutic interventions. Their bioactive cargo, including
growth factors and signaling molecules, has demonstrated significant
potential in modulating immune responses and promoting tissue
repair (70). In addition, exosomes serve as carriers for therapeutic
cargo loading, holding promise for targeted drug delivery in disease
treatment (69, 71, 72). Currently, 150 clinical trials registered on
ClinicalTrials.gov are investigating exosome-based therapies for
various diseases (73). The majority of applications utilizing exosomes
for both therapy and diagnosis focus on their utilization in the fields
of cancer and NDs, as depicted in Figure 3 (74). For this reason, this
review will focus on the use of exosomes in these diseases.

4.1 Exosomes in regenerative medicine

Nowadays, one of the main applications of exosomes is in
regenerative medicine, a promising field dedicated to the
regeneration and reconstruction of diseased or injured organs and
tissues (72). Since the 1970s, mesenchymal stem cells (MSCs) have
been under investigation in this field for their multipotent
characteristics and their ability to migrate to injury sites. They are
used in regenerative medicine due to their robust self-renewal

10.3389/fmed.2025.1539714

capacity and ability to differentiate into adipogenic, chondrogenic,
osteogenic, endothelial, neural, and epithelial cells, as proven in
both in vivo and in vitro experiments (70, 73-75). MSCs, like
every cell in the human body, release exosomes, which have
started to be extensively researched due to their regenerative
properties. Currently, at least 31 clinical trials are exploring the
use of exosomes derived from MSCs (MSCs-EXOs) as an
alternative to basic MSCs therapy (73). MSCs-EXOs have shown
comparable or superior therapeutic efficacy compared to MSCs
alone (72, 73). They exhibit lower immunogenicity, present an
enhanced safety profile by avoiding concerns related to
uncontrolled differentiation and tumorigenicity associated with
live cells, and offer improved storage conditions, simplifying
logistical challenges compared to live cell storage. In addition,
there are no ethical issues, and their small size allows for
sterilization by filtration (73-77). The comparison between
exosomal and stem cell therapy is provided in Table 2.

The greatest attention in regenerative medicine is focused on skin
healing, a tissue which plays a crucial multifunctional role as a
protective barrier, a temperature regulator, and facilitating tactile and
pain sensations (78). However, the use of exosomes for wound
treatment could be challenging due to their rapid clearance from the

FIGURE 3
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Distribution of exosome therapy and diagnostics concerning the target diseases (74). The figure was partly generated using Servier Medical Art,
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

TABLE 2 Exosomes versus stem cells in preparation and therapy.

Advantages

Disadvantages

MSC preparation
FDA guidelines

Ease to isolate, easy to expand at a large scale, highly proliferative, well established

Harsh storage and transportation conditions

Exosome preparation

Small size, stable upon freezing and thawing

Difficult to isolate and purify, no established

regulations and standards

Therapeutic application of MSCs

Multilineage differentiation potential, extensive preclinical and clinical studies

Immunogenicity, oncological complications,

fusion toxicity, ethical issues

Therapeutic application of exosomes

Minimal risk of immune responses and tumor formation, no ethical issues, multiple

delivery routes, can be engineered to specifically target and deliver drug cargoes

Rapid clearance from blood after

administration
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application site, which limited therapeutic effectiveness (79). To
address this limitation, current research focuses on the combination
of exosomes and biomaterials. This innovative approach extends the
retention time of exosomes on the wound surface without
compromising their biological activity, enabling the development of
advanced exosome-based therapies (80, 81). Hydrogels as biomaterials
exhibit a synergistic effect in exosome-induced wound healing and
can serve as a versatile platform for the incorporation of therapeutic
exosomes, enhancing their efficacy in tissue regeneration. To date,
hyaluronic acid, gelatin, chitosan, and polypeptide-based hydrogels
have been used for encapsulating exosomes from different cell sources
(75, 80, 81). Chitosan is the often-used material for hydrogel
preparation. Chitosan hydrogel enriched with MSCs-EXOs,
specifically human endometrial stem cell-derived and human
placenta-derived exosomes, demonstrated notable wound closure
ability by promoting the formation of new epithelial cells, significant
retention of MSCs-EXOs at injury sites, promotion of angiogenesis,
and acceleration of the recovery of ischemic hind limbs (82). For the
best contact of the hydrogel with the wounded skin and effective
wound filling, thermosensitive hydrogels are used. Thermosensitive
pluronic hydrogel combined with human umbilical cord MSCs-EXOs
(HUCMSCs-EXOs)
promoted angiogenesis, and improved skin healing of chronic diabetic

significantly accelerated wound closure,
wounds (83). For effective diabetic wound treatment, polyvinyl
alcohol/alginate nanohydrogel with HUCMSCs-EXOs and an
injectable antibacterial polypeptide-based hydrogel with adipose
derived MSCs-EXOs were used. This type of hydrogels demonstrated
the ability to promote proliferation, migration, and angiogenesis of
human umbilical vein endothelial cells, expediting diabetic wound
closure thus presenting a novel approach for complete skin
regeneration (84, 85).

Further applications in regenerative medicine are focused on hard
tissue regeneration, essential for bone and cartilage repair.
Traditionally, MSCs, scaffolds, and growth factors are used in this
field. While scaffolds have been proven beneficial for bone
regeneration, the avascular nature of cartilage poses unique challenges
(75). Osteoarthritis (OA), a prevalent joint disease extending beyond
cartilage, demands innovative regenerative procedures (81).
Promisingly, exosome-integrated scaffolds and MSCs-EXO therapy
show potential in OA treatment. Articular cavity injection with
HUCMSCs-EXOs in PBS demonstrated significant efficacy in
preventing severe damage to knee articular cartilage in a rat OA
model. These therapies not only promoted chondrocyte proliferation
and migration but also exhibited anti-apoptotic effects and reversed
cellular injuries. Moreover, HUCMSCs-EXOS played a crucial role in
regulating the polarization of M2 macrophages, fostering chondrocyte
survival by producing anti-inflammatory cytokines to suppress
adverse inflammation (86). To enhance therapeutic efficiency and
retention time in vivo, HUCMSCs-EXOs were engineered to
specifically target chondrocytes and encapsulated within hyaluronic
acid hydrogel, presenting a “two-phase” releasing system. This
approach synergistically facilitated OA cartilage repair in a rat model
and proved the rejuvenating effects of HUCMSCs-EXOs on aging
chondrocytes in OA, offering a promising cell-free OA treatment
strategy (87). Therapeutic potential of bone marrow MSCs-EXOs was
explored in the context of mitochondrial dysfunction and oxidative
stress in OA. 3D printed scaffolds, composed of extracellular matrix,
gelatin methacrylate, and exosomes, effectively restored chondrocyte
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mitochondrial function, enhanced chondrocyte migration, and
polarized the synovial macrophage response in vitro. Notably, a 3D
printed scaffold significantly facilitated cartilage regeneration in a
rabbit model, highlighting its potential as an early treatment strategy
for OA (88).

In recent years, MSCs-EXOs have also been used increasingly in
ophthalmology. MSCs-EXOs have shown promise in various
applications, such as promoting ocular tissue regeneration and
addressing vision-related disorders. MSCs-EXOs have explored the
therapeutic potential of stem cell exosomes in treating ocular surface
diseases, corneal injuries, and retinal degenerative conditions (89).
Exosomes derived from bone marrow stem cells have demonstrated
the ability to enhance corneal epithelialization and maintain corneal
transparency in diabetic mice (90). MSCs-EXOs have been explored
for their regenerative effects on corneal injuries (91). In retinal
diseases, including age-related macular degeneration and retinitis
pigmentosa, MSCs-EXOs have been investigated for their
neuroprotective and regenerative properties. These exosomes may
influence retinal cell survival, angiogenesis, and anti-inflammatory
responses, offering a novel approach for treating degenerative
conditions affecting the retina (92). As exosome research in
regenerative medicine continues to progress, MSCs-EXOs are
beginning to be applied into various fields, such as periodontitis (93,
94). Research on exosomes in regenerative medicine is expected to
gain prominence, highlighting the growing need to integrate exosome-
based regenerative therapies into clinical practice (95).

4.2 Exosomes in early diagnosis

As already mentioned, exosomes are promising biomarkers for the
diagnosis of several diseases. Most attention has been paid to cancer
(Figure 4; Supplementary Table S1) (95-105) with less focus on NDs.

Tumor-derived exosomes (TEXs) have emerged as critical players
in cancer progression. Cancer cells release TEXs in large quantities,
leading to a rapid increase in the concentration of total exosomes in
the serum or plasma of cancer patients, which correlates with poor
prognosis (106). TEXs provide immunosuppressive effects by
inducing dysfunction in various immune cells, thereby suppressing
anti-tumor immune responses (107). Initial interactions between
TEXs and immune cells occur through ligand-receptor recognition,
followed by either direct fusion with the plasma membrane or
receptor-mediated uptake, resulting in the release of TEX cargo into
the cytoplasm of immune cells. While T lymphocytes do not efficiently
internalize TEXs, they interact with surface molecules to trigger
sustained Ca** flux and downstream signaling cascades, ultimately
altering the transcriptome of recipient cells. In contrast, phagocytic
cells, such as dendritic cells and macrophages, rapidly internalize
TEXs (108).

Macrophages are a prominent component of the tumor
microenvironment (TME) and can make up more than half of the
tumor mass in some cases. Moreover, tumor progression is associated
mainly with macrophages. Macrophages can be induced to either
tumor-suppressive immunological type M1 or tumor-promoting
inflammatory M2 macrophages (109, 110). Tumor-associated
macrophages predominantly exhibit an M2 phenotype, characterized
by the secretion of pro-angiogenic factors and cytokines that promote
angiogenesis, tumor growth, and metastasis (111, 112). Many studies
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Potential of exosomes in cancer diagnostics. The applicability of exosomes in cancer diagnostics is detailed in Supplementary Table S1. The figure was
partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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have shown evidence on the role of TEXs in macrophage M2
polarization to promote tumor progression. For instance, exposure of
macrophages to TEXs decreased the expression of M1 markers, such
as IFNy, while upregulating IL-1f8, a marker of inflammation,
suggesting that TEXs may help maintain a macrophage phenotype
supportive of tumor survival and proliferation (113). In triple-negative
breast cancer (TNBC), TEXs have been reported to promote M2
macrophage polarization, facilitating lymph node metastasis.
Co-culture of TNBC-TEXs with macrophages led to significant
morphological changes and an increased expression of M2 markers,
including Fizzl, CD206, and Arg-1. An orthotopic TNBC model
further confirmed the role of TEXs in driving M2 polarization, with
enhanced tumor growth and axillary lymph node metastasis observed
in vivo (114).

In cancer metastasis, epithelial-mesenchymal transition (EMT) is
the key process during which cancer cells lose their epithelial
properties and adopt a more mesenchymal and invasive phenotype.
Generally, EMT initiation is characterized by loss of cell-cell
adhesions and apicobasal polarity, leading to the formation of cells
with increased migratory and invasion capabilities that are able to
invade the extracellular matrix (115, 116). At a molecular level, EMT
involves the downregulation of epithelial-type proteins, such as
E-cadherin, and the acquisition of mesenchymal markers, such as
vimentin (117). TEXs from bladder cancer cells have been shown to
induce EMT-like changes in urothelial cells, enhancing their invasive
potential. This effect was mediated by TEX-induced upregulation of
vimentin and downregulation of E-cadherin through the TGF-p1
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signaling pathway (118). Similar EMT-inducing effects of TEXs have
been observed in glioblastoma, lung carcinoma, and gastric cancer
models (119-121). TEXs can also influence EMT through their
miRNA cargo. For example, miR-23a within TEXs promotes EMT by
inhibiting E-cadherin synthesis in lung carcinoma and melanoma
cells, while miR-191 and let-7a, present in TEXs from patients with
melanoma, gastric, and colorectal cancers, have also been implicated
in EMT regulation (122-126). In addition, TEX-derived miR-105 has
been shown to promote vascular invasion by downregulating ZO-1 in
endothelial cells. Notably, elevated miR-105 levels in the serum of
breast cancer patients have been correlated with metastatic progression
and poor prognosis (127). Given their critical role in modulating the
TME, promoting EMT, and facilitating immune evasion, profiling
TEXs in blood and other body fluids holds significant promise as a
non-invasive method for cancer diagnosis and prognosis (128).

The WHO Global Cancer Observatory (GLOBOCAN) 2022
registry provides a list of the most common types of cancers. The three
most common types are lung (12.4%), breast (11.5%), and colorectal
(9.6%) cancers. Lung cancer is the leading cause of cancer death
worldwide (129). Surface-enhanced Raman spectroscopy (SERS) of
exosomes, combined with AI deep learning software, allows for
accurate diagnosis of early-stage lung cancer. The deep learning model
was trained with SERS signals of exosomes derived from normal and
lung cancer cell lines and subsequently its ability to detect cancer was
verified using exosome samples from patients’ blood. The model
identified the lung cancer patients and even detected stage I patients
with an accuracy of 90.7% (130). Regarding TEX protein biomarkers,
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CD151, TSPANS, and CD171 were overexpressed in lung cancer
samples. Of these, CD171 has been associated with EMT, metastases,
and poor prognosis (96, 131, 132). Determination of PD-L1 can also
provide important diagnostic information. Akbar et al. reported that
exoPD-L1 from non-small cell lung cancer (NSCLC) patients and
healthy controls showed a significantly higher difference than
corresponding serum and tissue PD-L1 (97). For example, exoPD-L1
was found in all the patients (100%), while tissue PD-L1 was observed
only in 71% patients. Furthermore, exoPD-L1 can also be used for the
prediction of immune inhibitors efficiency. ROC curve analysis of
change from baseline in exoPD-L1 levels between responders and
non-responders showed 87% sensitivity and 100% specificity
(p = 0.0015), indicating strong discriminatory power. An increasing
number of studies have demonstrated that non-coding RNAs are
closely correlated with the initiation and development of lung cancer
as well (133). Detection of exosomal long non-coding RNA as
potential lung cancer diagnosis is also performed in a current clinical
study (NCT03830619) (134). Breast cancer is the most common type
of cancer and the second leading cause of cancer-related deaths in
women. In this type of cancer, media from breast cancer cell lines were
analyzed to identify specific exosomal proteins such as glucose
transporter-1, glypican-1, and the metalloproteinase domain-
containing protein 10 (98). Epidermal growth factor receptor (EGFR)
is a transmembrane protein that plays a key role in cell signaling
pathways involved in cell growth, proliferation, and survival and is
often overexpressed or mutated in various cancers. It was reported
that triple-negative breast cancer cells (MDA-MB-468) can produce
exosomes with encapsulated EGFR (protected from EGFR inhibitor),
which can induce EGFR signaling in target cells, thereby promoting
cancer progression or resistance to therapy (99). Typical non-coding
RNA cancer biomarkers are miR-1246 and miR-21, which were also
overexpressed in breast cancer cell lines (100). The plasma level of
miR-1246 was measured in breast cancer patients and healthy controls
using an Au nanoflare probe. This biomarker-based probe
distinguished breast cancer patients from healthy individuals with
100% sensitivity and 92.9% specificity (95). Currently, a clinical trial
(NCT02662621) is underway, focusing on an exosomal detection
protocol for diagnosing various cancers, including breast cancer. The
study indicates that exosomes displaying the stress protein HSP70 on
their membrane may serve as cancer-specific exosomes (134). In
colorectal cancer, tetraspanin-1 was found to be upregulated in
plasma exosomes from patients compared to healthy controls,
showing 75.7% sensitivity (135). Pancreatic cancer, one of the
deadliest cancer types, involves TEXs that carry the glypican-1
biomarker. This co-receptor for various signaling molecules regulates
key processes such as cell growth, motility, and differentiation (102).
Currently, two clinical trials are underway to assess the efficacy of
diagnostic exosomes in colon and liver cancers (NCT03432806) and
in pancreatic cancer (NCT03334708). These studies aim to identify
biomarkers circulating in blood and analyze the corresponding tissues
(134). While previous studies have focused on TEXs from blood,
urinary exosomes play a role in urological tumors (136). In prostate
cancer, biomarkers such as TM256 and LAMTOR proteins found in
urinary exosomes exhibited very high sensitivity (105). In addition,
potential biomarkers such as TPP1, TMPRSS2, and FOLRI1 were
highly upregulated in urinary exosomes derived from the bladder.
Notably, despite being histologically tumor-free at cystectomy,
patients’ urinary exosomes displayed a carcinogenic metabolic profile,
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likely originating from undetected or partially transformed cancer
cells (137).

Current diagnosis of NDs relies on clinical assessments, medical
history, imaging techniques, and diagnostic tests based on observed
symptoms (138, 139). However, predicting these diseases remains
challenging due to the typically late-stage diagnosis. Emerging
research highlights the potential of exosomes as biomarkers for early
detection, offering a promising approach for more effective and timely
diagnoses in the future (Figure 5) (140). Early diagnosis of NDs is
crucial for enabling timely interventions that can significantly improve
patient outcomes (141).

In Alzheimer’s disease (AD), neural-derived blood exosomes have
emerged as a valuable source of AD-related overexpressed protein
markers, including total tau, P-T181-tau, P-S396-tau, and Ap42 (33).
Exosomal synaptic proteins, such as growth-associated GAP43,
neurogranin, SNAP25, and synaptotagmin 1, show promise in
predicting AD at asymptomatic stages, potentially detecting the
disease 5 to 7 years before cognitive impairment occurs (34). In
addition, miRNA markers, including miR-137, miR-181¢, miR-9, and
miR-29a/b, are downregulated in blood serum and offer additional
potential for early AD detection (142, 143). Among other types of
biomarkers, lipids such as LDL-C, TG, and HDL-C are associated with
AD (144). Furthermore, it was also shown that exosomal protein
markers offer comparable diagnostic capacity to cerebrospinal
markers, further enhancing the potential of blood-based diagnostics
for AD (145). Exosomal levels of AB42, AB40, and P-T181-tau were
also measured in the blood plasma of patients diagnosed with
schizophrenia (36). Specifically, these markers were determined in
neural and astrocytic exosomes. While Ap42 levels were higher in
astrocytic exosomes than in neural exosomes, other markers were
similar between these two groups. It was also found that higher
astrocytic P-T181-tau levels were associated with worse executive
functioning, and astrocytic AB42 levels were more sensitive and
specific in differentiating diagnostic groups. Other types of neural cells
explored in the context of NDs are oligodendrocytes. These cells are
associated with MS. Oligodendrocyte-derived extracellular vesicles
showed higher concentrations of myelin basic protein, which could
serve as potential biomarkers across diverse MS phenotypes (35). For
Parkinson disease (PD), it was found that the most reliable biomarker
of blood neural exosomes is a-synuclein (146). In amyotrophic lateral
sclerosis (ALS), exosomal biomarkers, such as neurofilament light
chain, have been identified in both cerebrospinal fluid and blood. This
marker can serve for early diagnosis and monitoring disease
progression (147).

4.3 Exosomes in targeted delivery and
disease treatment

The two main areas in which exosome applications are greatly
investigated and hold great potential are cancer and NDs (74, 76). In
cancer treatment, significant attention is paid to nanocarriers which
can entrap chemotherapeutic drugs and deliver them to the diseased
site, reducing the side effects associated with the systemic
administration of conventional anticancer drugs (148, 149). In recent
years, exosomes started to be explored as promising nanocarriers (48)
that can affect tumor growth, metastasis, and even sensitize cancer
cells to conventional therapies (Figure 6).
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Potential of exosomes in the diagnosis of neurological diseases. In AD, protein markers such as total tau, phosphorylated T181-tau (p-T181-tau),
phosphorylated S396-tau (p-S396-tau), and amyloid-beta 42 (AB42) derived from neural-derived blood exosomes are indicative of neurodegeneration
and plaque formation. Notably, GAP43, SNAP25, and synaptotagmin 1 can be detected even in asymptomatic stages of AD. Furthermore, exosomal
Ap42, Ap40, and P-T181-tau have been implicated in schizophrenia. In the context of PD and ALS, exosomal a-synuclein and neurofilament light chain
exhibit promising potential as biomarkers for disease monitoring and progression. The figure was partly generated using Servier Medical Art, provided
by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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Exosomes represent a promising delivery system for the transport of anticancer agents. In murine cancer models, specifically in breast and ovarian
carcinoma, exosomal formulations exhibit lower cardiotoxicity and higher efficacy compared to free doxorubicin. In the case of paclitaxel, exosomal
formulations provide significantly improved intracellular delivery into 3LL-M27 cells (Lewis carcinoma expressing P-glycoprotein, which is associated
with drug resistance) when compared to liposomal formulations and polystyrene nanoparticles. Furthermore, in these murine models, exosomes have
been shown to suppress the development of metastases. Regarding natural agents, curcumin-loaded exosomes display promising efficacy against
colon and pancreatic carcinomas, exhibiting antimetastatic effects and reduced inflammation. Exosomes are also suitable for the transport of
biological agents such as microRNAs. For instance, exosomes loaded with miR-379 and miR-144-5p demonstrate potent effects against breast cancer
and pancreatic ductal adenocarcinoma. The figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative
Commons Attribution 3.0 unported license.

Their ability to target specific cell types and deliver therapeutic
cargos makes them a valuable asset in the fight against malignancies
(150-153). For example, exosomes loaded with doxorubicin
(ExoDOX) were used in a mouse model of breast and ovarian cancers.
It was found that ExoDOX are less cardiotoxic than free DOX,
enabling the use of higher concentrations of ExoDOX, thus increasing
the efficacy of DOX (154). ExoDOX conjugated with gold
nanoparticles (ExoDOX-GNPs) were used in vitro with lung cancer
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cell lines and normal lung fibroblasts. The pH sensitive conjugation
bond enables the enhanced rate of drug release under acidic conditions
and successful uptake of the ExoDOX-GNPs by the recipient cells.
Cell viability assays indicated that ExoDOX-GNPs exhibit preferential
cytotoxicity toward cancer cells and have minimal activity on
non-cancerous cells (155). Exosomes loaded with paclitaxel (ExoPTX)
were developed. The incorporation of paclitaxel into exosomes
enhanced drug cytotoxicity more than 50-fold in drug-resistant
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MDCKMDRI (Pgp+) cells (156). Furthermore, ExoPTX displayed a
potent anticancer effect in a mouse model of murine Lewis Lung
Carcinoma pulmonary metastases. In addition to separate
therapeutics, other compounds are also used as exosomal cargo.
Exosomes loaded with gemcitabine in combination with the survivin
protein with mutation T34A induce apoptosis and enhance
gemcitabine-killing effects in pancreatic adenocarcinoma cells (157).
For cancer treatment, exosomes can also deliver nucleic acids,
including miRNAs, siRNAs, and mRNAs (158). For instance,
exosomes containing miR-379, a potential tumor suppressor, showed
a significant reduction in the rate of tumor formation and growth for
the in vitro and in vivo therapies of breast cancer (159). Exosomes
loaded with miR-145-5p, which inhibits pancreatic ductal
adenocarcinoma (PDAC) cell proliferation, invasion, and increase
apoptosis, significantly reduced the growth of xenograft tumors in a
PDAC mouse model (160). Natural products are also used in exosomal
cancer therapies, including the use of curcumin. This molecule can
mitigate cancer initiation and metastasis (161, 162). Exosomes loaded
with curcumin induced the apoptosis of pancreatic cancer cells and
significantly delayed brain tumor growth with reduced inflammation
when delivered to a GL26 brain tumor model via an intranasal route
(163, 164). Plant exosomes with curcumin are used also in Phase
I clinical trial investigating the ability of plant exosomes to deliver
curcumin to normal and malignant colon tissue (NCT01294072). This
study is now recruiting patients (165). Grape exosomes are investigated
in preliminary active clinical trial to abrogate oral mucositis induced
by combined chemotherapy and radiation in head and neck cancer
patients (NCT01668849) (165). Vaccination with tumor antigen-
loaded dendritic cell-derived exosomes on patients with unresectable
NSCLC lung cancer responding to induction chemotherapy was
explored in another clinical study (NCT01159288), where the first
phase of this study has now been completed. The primary endpoint

10.3389/fmed.2025.1539714

was progression-free survival at 4 months after chemotherapy
cessation, with a target of at least 50% of patients achieving this
endpoint. However, this target was not met as only 32% of patients
experienced disease stabilization at 4 months (165, 166). A study of
mesenchymal stromal cell-derived exosomes with KrasG12D siRNA
for metastatic pancreas cancer patients harboring the KrasG12D
mutation is now recruiting patients for the NCT03608631 clinical trial
(166). G12D is the most common KRAS mutation detected in
carcinomas and confers a unique structural conformation that
influences downstream signaling and may lead to its potent oncogenic
activity (167).

It is noteworthy that anti-tumor exosomes could be produced by
activated T cells themselves (Figure 7). It is well established that tumor
cells often express programmed death-ligand 1 (PD-L1) to deactivate
T cells through the activation of programmed death-1 (PD-1)
signaling pathways (168). Furthermore, research has shown that these
tumor cells also release exosomes containing PD-L1, which exhibit
similar immunosuppressive functionality. However, Qiu et al. have
reported that activated T cells produce exosomes containing PD-1,
which serve to neutralize exosomes carrying PD-L1 (169) and induce
the degradation of PD-L1 on the surface of TNBC cells. This dynamic
interplay highlights the potential of T-cell-derived exosomes in
counteracting tumor-mediated immune evasion.

The ability of exosomes to cross the blood-brain barrier (BBB)
provides the opportunity for their use in the treatment of NDs (45,
170). Many publications highlight the application of MSCs-EXOs in
the treatment of NDs (Figure 8) (171, 172).

For example, the effect of bone marrow-derived MSCs-EXOs was
examined in rats with induced Parkinson’s disease (PD). Rats treated
with these exosomes showed significant improvements in motor
function and histopathological outcomes, demonstrating a greater
suppression of PD symptoms compared to L-DOPA treatment, which
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Anti-tumor effects of T-cell-derived exosomes. Following activation by antigen-presenting cells (1), T cells generate exosomes containing PD-1 (2),
which directly attenuate the immunosuppressive effects of cancer cells (4) by facilitating the degradation of PD-L1 (5) present on the surface of tumor
cells. In addition, T-cell-derived exosomes (3) inhibit the functionality of immunosuppressive exosomes expressing PD-L1 (5), produced by cancer cells.
The figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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Exosomes in the treatment of neurodegenerative diseases. Due to their ability to cross the BBB, exosomes are being investigated for the treatment of
neurodegenerative diseases. In a rat model of PD, bone marrow-derived mesenchymal stem cell exosomes (MSCs-EXOs) have been shown to improve
motor function. Similarly, MSCs-EXOs with a high content of sphingosine-1-phosphate have been found to decrease Ap deposition and enhance
cognitive function in a mouse model of AD. In a mouse model of schizophrenia, MSCs-EXOs have been reported to reduce cerebrospinal fluid
glutamate levels and alleviate schizophrenia-related behaviors. Exosomes derived from murine microglial cells contain IL-4, an anti-inflammatory
cytokine, and lactadherin, a phagocytic “eat me” signal, which reduce neuroinflammation in a mouse model of experimental autoimmune
encephalomyelitis (a MS model). Similarly, effects were observed with macrophage-derived exosomes that were modified with derivatives of sialic acid,
containing resveratrol. The figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution
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is a medication commonly used to treat PD (173). In AD treatment,
bone marrow MSCS-EXOs with high content of sphingosine-1-
phosphate (second messenger downregulated in the AD tissue) were
injected into double transgenic AD mice (174). Their application led
to reduce AP deposition and promote cognitive function recovery.
According to the observed results, sphingosine kinase inhibitor
(SKI-II) or sphingosine-1-phosphate 1 receptor blocker (VPC23019)
repress the therapeutic effects of exosomes. Intracerebral injection of
bone marrow MSCS-EXOs in a preclinical mouse model of early stage
of AD suggests the possibility of intervening before overt clinical
manifestations. The study indicated that bone marrow MSC-EXOs are
effective at reducing the AP plaque burden and the number of
dystrophic neurites in both cortex and hippocampus (175). Adipose-
MSCs-EXOs administered intranasally and HUCMSCs-EXOs
administered intravenously have also shown promise in AD treatment.
These treatments effectively improved neurological damage in entire
brain regions, increased newborn neurons, powerfully rescued
memory deficits, and reduced AP expression in transgenic AD mice
(176=179). MSCS-EXOs were also used in a mouse model of
schizophrenia, where they improved the core schizophrenia-like
behavior and biochemical markers of schizophrenia (e.g.,
cerebrospinal fluid glutamate level) (180). In addition to MSCs-EXOs,
macrophage-derived EXOs loaded with resveratrol, nature
antioxidant, or exosomes from murine microglia cell line containing
anti-inflammatory cytokine IL-4 were also used in mice with MS (181,
182). The efficacy of this approach can be increased by suitable
derivatization of the exosome membrane with compounds such as
lactadherin (“eat me” signal for the phagocytes) or sialic acid
derivatives (BBB transport). Both exosome agents significantly
inhibited inflammatory responses in the CNS and the peripheral
system in a mouse model and effectively improved the clinical
evolution of MS in vivo (182, 183). In clinical studies, there is just a
single trial registered in CLinicalTrials.gov. This study evaluates the
safety and the efficacy of adipose MSC-EXOs in AD (NCT04388982).
It was found that the intranasal administration of MSCs-EXOs was
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safe and well tolerated for a semi-weekly treatment frequency. A dose
of at least 4 x 10° particles was selected for a randomized phase Il and
phase III clinical trial in further steps (181).

5 Future direction

Exosomes are increasingly recognized for their pivotal role in the
diagnostic realm of cancer and NDs. Nonetheless, a multitude of high-
impact clinical trials have unveiled their promising potential in
diagnosing a spectrum of additional serious conditions.
Hyperuricemia (HUA) is acknowledged as a significant risk factor for
chronic heart failure (CHF), a disease frequently linked to elevated
morbidity and mortality rates (184, 185). Notably, fluctuations in
miRNA expression have been correlated with cardiovascular diseases,
including CHF and HUA (186, 187). Analysis of miRNA patterns in
serum exosomes revealed that miR-27a-5p was upregulated (p < 0.01),
while miR-139-3p was downregulated (p < 0.01) in patient groups
(CHF with HUA) (188). When used in combination, these markers
exhibited an AUC of 0.899 (95%) with 79.2% sensitivity and 91.7%
specificity. Moreover, exosomes are integral to the pathogenesis of
osteoarthritis, with those isolated from synovial fluids emerging as
promising diagnostic instruments for affected patients (189, 190).
However, exosome isolation methods can be invasive. In contrast,
urine biomarkers present a non-invasive alternative for osteoarthritis
diagnostics (191), positioning urine-derived exosomes as potential
diagnostic assets. Cao et al. introduced a nanopolymer modified with
an exosome-affinity component (CD63 aptamer and distearoyl
phosphoethanolamine) (192). This innovative approach leads to
aggregation of exosomes upon binding, facilitating easy centrifugation
(4,000 g for 3 min at pH 6). Notably, these precipitated exosomes can
be re-dissolved in a basic pH environment. Metabolomic analyses of
urine exosomes have identified 30 biomarkers, including catechol
(AUC=0.917, p <0.001), which effectively differentiate between
healthy individuals and those with early osteoarthritis.
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In the future, exosomes such as natural nanocarriers should
emerge as a novel therapeutic alternative in the fields of oncology,
immunology, and regenerative medicine. Future research may focus
on refining loading techniques, optimizing targeting strategies, and
exploring novel applications in diverse disease contexts (193). For
example, in ND treatment to enhance targeted drug delivery efficiency,
exosomes can be surface-modified with RVG protein/peptides to
specifically bind to the acetylcholine receptor expressed on neuronal
cells (194). Comparing RVG-tagged MSC-EXOs to MSCS-EXOs,
EXOs tagged with RVG exhibit improved targeting to the cortex and
hippocampus after being administered intravenously, plaque
deposition and Ap levels are decreased sharply, and the activation of
astrocytes is obviously reduced compared to the observations made in
the group of AD mice treated only with MSCs-EXOs. In the group of
AD mice injected with RVG-EXOs, there is a significant improvement
in learning and memory capabilities with reduced plaque deposition
and A levels (195).

Exosomes can also be combined with other biomaterials or
inorganic materials for biomedical uses. These hybrid nanoparticles
can be further loaded with specific cargo or drug and surface
engineered to increase the local concentration of the particles at the
diseased site, thereby reducing toxicity and side effects and
maximizing therapeutic efficacy (196). The surface engineered
exosomal hybrid nanoparticles with specific cargo loading, and
modifications conferring desired properties such as pH sensitivity or
photosensitivity can be called “ExoBots.” This term reflects the hybrid
nature of these structures, which incorporate elements from both
biological (exosomes) and technological (robotics) realms to form
advanced nanoparticle system. ExoBots combine the advantageous
properties of exosomes and other nanoparticles, holding great promise
for advancing therapeutic interventions across various biomedical
applications. For instance, an engineered core-shell hybrid system was
prepared for the in vivo treatment of PD mice. This hybrid system
consisted of a curcumin-loaded polymer nanoparticle core and an
RVG-modified exosome shell. This hybrid was able to clear
a-synuclein aggregates, reduce their cytotoxicity in neurons, and
improve the motor behavior of PD mice (197).

Another type of hybrid is composed from exosomes and
liposomes. Long circulating and pH sensitive hybrids loaded with
DOX were investigated for anti-tumor effect on a mouse model of
breast cancer. The results indicated that this hybrid system may be a
promising nanocarrier for the treatment of breast cancer, reducing
toxicity and inhibiting metastasis mainly in the lungs (198). This
hybrid approach was also used to overcome chemotherapy resistance
in OC. The hybrid system was developed by fusing cRGD-modified
liposomes loaded with miR-497 and triptolide with CD47-expressing
tumor-derived exosomes. RGD peptides specifically bind to integrin
receptors overexpressed on the surface of many cancer cells.
Overexpression of miR-497 may overcome OC chemotherapy
resistance, and triptolide was confirmed to possess a superior killing
effect on cisplatin-resistant cell lines. The in vitro results indicated that
these hybrids were efficiently taken up by tumor cells, thus significantly
enhancing tumor cell apoptosis and exerting significant anticancer
activity without any negative effects observed in vivo. These hybrids
may provide a translational strategy to overcome cisplatin-resistant
OC (199). In addition, paclitaxel was used as the cargo of hybrids for
in vivo colon cancer treatment. The study revealed that hybrids
significantly suppressed tumor growth in a colon tumor-bearing
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mouse model, reduced the expression of M2 type tumor-associated
macrophages, and decreased regulatory T cells (200). Many other
types of hybrids were explored, such as thermosensitive hybrids for
improved treatment of metastatic peritoneal cancer, pH sensitive
macrophage hybrids loaded with DOX for tumor targeted drug
delivery, or long circulated pH sensitive hybrids loaded with dasatinib
for pancreatic cancer treatment. All these ExoBots show positive
therapeutic results and can thus serve as potential therapeutics for
cancer treatment (201-203).

Recently, alongside the extensive research on exosomes derived
from eukaryotic cells, there has been a growing interest in exploring
plant-derived exosomes (P-ELNs; puerarin) as a novel source of
exosomes with potential applications in various biotechnological and
therapeutic fields. Polyphenolic compounds found in various plant
exosomes show great promise in treating serious health disturbances.
High-impact studies (204, 205) suggest that their therapeutic effects
may be partially attributed to their ability to target ferroptosis, a
process linked to numerous pathological states (206, 207).

For instance, exosome-like nanovesicles derived from P, lobata
roots have been shown to alleviate alcoholic intoxication, enhance
alcohol metabolism, and reduce alcohol levels in the liver and serum
of mouse models (204). These effects are associated with the induction
of acetaldehyde dehydrogenase activity and a decrease in glutathione
peroxidase 4 and glutathione levels, as well as with the suppression of
acyl-CoA synthetase long-chain family member 4, likely contributing
to the repression of ferroptosis. In addition, Robinia pseudoacacia
L. flower-derived P-ELNs, when administered orally, significantly
reduce hypoxia-induced ferroptosis and mucosal injury in the
gastrointestinal tract of mouse models (205). Their effects are
mediated through the modulation of HIF-1a and HIF-2a expression,
subsequently influencing ROS production and lipid peroxidation via
NOX4 and ALOX5 pathways.

Another promising application of P-ELNs is their potential to
mitigate obesity, a well-known risk factor for cancer, metabolic disorders,
cardiovascular diseases, and inflammation (208-210). The global
prevalence of obesity has been on the rise, making this research
particularly relevant. Wang et al. reported that turmeric-derived ELNs
exhibit potent anti-obesity effects, achieving weight reductions of 8.68
and 14.56% through intragastric and subcutaneous delivery, respectively
(211). This effect is linked to the stimulation of adipocyte apoptosis, the
induction of lipolysis, and the inhibition of lipogenesis, highlighting the
therapeutic potential of these natural compounds. However, the
biological functions of P-ELNs are not fully understood, standard
isolation protocols are lacking, and P-ELNs are a promising new frontier
in precision medicine. Their plant origin offers advantages in terms of
biocompatibility, scalability, and reduced immunogenicity. Moreover,
bioactive molecules from plants are associated with disease-preventive
effects making P-ELNs an attractive alternative to mammalian EVs in
future biomedical innovations (212-214).

6 Conclusion

Although further fundamental research, especially regarding the
biogenesis of exosomes and the optimization of their isolation techniques
and characterization methods, is necessary, their significant potential has
been demonstrated in several biomedical areas, particularly in
regenerative medicine, disease diagnosis, and treatment. The continued
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growth of the exosome market is also evidenced by the recent
announcement of four collaborations between pharmaceutical
companies, including two potentially worth close to $1 billion each. One
of the largest is Lilly’s partnership with Evox Therapeutics of Oxford,
UK. In this deal, which could bring in up to $1.2 billion in milestone
payments, CNS-targeting exosomes developed by Evox will be loaded
with RNA interference and antisense oligonucleotide therapies from Lilly,
targeting up to five undisclosed targets. In another major deal, potentially
worth over $900 million, Carmine Therapeutics has partnered with
Takeda to develop gene therapies for two undisclosed rare diseases targets
(215). Exosomes may thus be the future of medicine, used as ExoBots
programmed to deliver specific drugs to specific locations within the
organism with minimal side effects and high therapeutic efficacies.
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Glossary

AD - Alzheimer’s disease

ALS - amyotrophic lateral sclerosis

BBB - blood-brain barrier

CHEF - chronic heart failure

DGUC - density gradient ultracentrifugation
DLS - dynamic light scattering

DUC - differential ultracentrifugation

EEs - early endosomes

EGEFR - epidermal growth factor receptor
ELISA - enzyme-linked immunosorbent assay
EMT - epithelial-mesenchymal transition
EVs - extracellular vehicles

ExoDOX - exosomes loaded with doxorubicin

ExoDOX-GNPs - exosomes loaded with doxorubicin conjugated with
gold nanoparticles

Exo-L - large exosomes

ExoPTX - exosomes loaded with paclitaxel
Exo-S$ - small exosomes

HUA - hyperuricemia

HUCMSCs-EXOs - mesenchymal stem cell exosomes derived from
human umbilical cord

ILVs - intraluminal vesicles
ISEV - International Society for Extracellular Vesicles

LC-MS -
tandem technique

liquid  chromatography-mass  spectrometry

LEs - late endosomes
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MS - multiple sclerosis

MSCs - mesenchymal stem cells
MSCs-EXOs - mesenchymal stem cell-derived exosomes
MVBs - multi-vesicular bodies

nanoFCM - nanoflow cytometry

NDs - neurodegenerative diseases

NGS - next-generation sequencing
NSCLC - non-small cell lung cancer

NTA - nanoparticle tracking analysis

PD - Parkinson disease

PDAC - pancreatic ductal adenocarcinoma
PD-1 - programmed death-1

PD-L1 - programmed death-ligand 1
P-ELNSs - plant-derived exosomes

qRT-PCR -
chain reaction

quantitative reverse transcription polymerase

RPS - resistive pulse sensing

SEC - size exclusion chromatography

SERS - surface-enhanced Raman spectroscopy
TEXSs - tumor-derived exosomes

TFF - tangential flow filtration

TME - tumor microenvironment

TNBC - triple-negative breast cancer

OA - osteoarthritis

UF - ultrafiltration
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A semi-supervised weighted
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Motivation: Predicting the response of cell lines to characteristic drugs based on
multi-omics gene information has become the core problem of precision
oncology. At present, drug response prediction using multi-omics gene data
faces the following three main challenges: first, how to design a gene probe
feature extraction model with biological interpretation and high performance;
second, how to develop multi-omics weighting modules for reasonably fusing
genetic data of different lengths and noise conditions; third, how to construct
deep learning models that can handle small sample sizes while minimizing the risk
of possible overfitting.

Results: We propose an innovative drug response prediction model (NMDP). First,
the NMDP model introduces an interpretable semi-supervised weighted SPCA
module to solve the feature extraction problem in multi-omics gene data. Next,
we construct a multi-omics data fusion framework based on sample similarity
networks, bimodal tests, and variance information, which solves the data fusion
problem and enables the NMDP model to focus on more relevant genomic data.
Finally, we combine a one-dimensional convolution method and
Kolmogorov—Arnold networks (KANs) to predict the drug response. We
conduct five sets of real data experiments and compare NMDP against seven
advanced drug response prediction methods. The results show that NMDP
achieves the best performance, with sensitivity and specificity reaching
0.92 and 0.93, respectively—an improvement of 11%-57% compared to other
models. Bio-enrichment experiments strongly support the biological
interpretation of the NMDP model and its ability to identify potential targets
for drug activity prediction.

KEYWORDS

drug response prediction, feature extraction,

networks, data fusion

sparse PCA, Kolmogorov—-Arnold
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1 Introduction

Precision oncology aims to leverage genomic information to
identify patient groups with similar biological traits, enabling the
delivery of the most suitable treatments (Dlamini et al., 2020;
Garraway et al., 2013; Hodson, 2020; Prasad, 2016; Prasad et al,
2016). In clinical applications, this approach generally involves
choosing targeted therapies based on the individual genomic
profiles of patients (Ballester and Carmona, 2021). However,
research reveals that only approximately 9% of patients
experience effective outcomes from such targeted treatments,
which greatly restricts the broad applicability of precision
oncology (Barretina et al., 2012a; Rubio-Perez et al, 2015).
Moreover, limited drug response prediction models for non-
specific therapies mean that many patients miss out on the
benefits of precision oncology and may even receive ineffective
treatments. Fortunately, data from extensive pharmacogenomic
screenings have shown that nearly all cancer cell lines and
patient-derived xenografts (PDXs) respond to some form of
targeted therapy or non-specific chemotherapy (Barretina et al,
2012b; Gao et al, 2015; Garnett et al, 2012). Thus, a primary
challenge now is accurately aligning cancer patients with treatments
that match their unique drug response profiles.

Currently, a significant research focus is predicting drug
responses in cancer patients using single genomics data (Adam
et al., 2020; Dong et al., 2015; Firoozbakht et al., 2022; Sheng et al.,
2015). For instance, as demonstrated by Geeleher et al., a ridge
regression model that utilizes gene expression data from the
Genomics of Drug Sensitivity in Cancer (GDSC) database has
shown effective application to clinical trial datasets for drugs
including erlotinib, cisplatin, docetaxel, and bortezomib. The
study also found that incorporating data from cancer cell lines
other than breast cancer can improve the predictive performance of
the docetaxel drug response model (Geeleher et al., 2014). Moreover,
our preliminary research indicates that combining statistical
methods based on individual genomic information from patients
with machine learning techniques can construct highly performant
drug response prediction models (Miao et al., 2020; Zheng et al.,
2024; Sharma et al., 2024).

Recently, the increasing availability of multi-omics datasets for
drug response has opened new avenues for machine learning
models, enabling a deeper understanding of biological processes.
Multi-omics data have shown notable success across various
bioinformatics tasks, including survival prediction, cancer subtype
classification, and target gene identification (Xu et al., 2024). As deep
learning continues to progress rapidly, constructing predictive
models that utilize multi-omics data through deep learning
techniques becomes a primary research focus. Several multi-
omics drug response models have been developed (Ballester
et al,, 2022; Baptista et al., 2021; Chen and Zhang, 2021; Zhou
et al,, 2024; Rashid, 2024; Baptista and Ferreira, 2023). For instance,
Chiu et al. developed a deep learning model that utilizes
autoencoders to combine diverse omics features for drug
response prediction (Chiu et al., 2019). Similarly, Hossein et al.
proposed a model that employs deep neural network fusion,
combining hidden layer representations from different multi-
omics networks to synthesize feature information -effectively
(Sharifi-Noghabi et al., 2019). Peng et al. proposed a two-space
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graph convolutional neural network (TSGCNN) that combines cell
line and drug feature spaces to predict drug responses by leveraging
both homogeneous and heterogeneous relationships (Peng et al.,
2023). Similarly, Trac et al. proposed a GCN-based drug response
prediction model for acute myeloid leukemia (AML), highlighting
the versatility of graph-based neural networks in oncology research
(Tracetal,, 2023). Wang et al. proposed MOICVAE, a deep learning
model that integrates multi-omics data using a variational
autoencoder to improve drug sensitivity prediction (Wang et al.,
2023). Meanwhile, Sharma et al. proposed DeepInsight-3D,
architecture to fuse multi-omics data for anticancer drug
response prediction, offering an

advanced deep learning

perspective for modeling complex interactions in diverse
biological datasets (Sharma et al., 2023).

Currently, the multi-omics drug response prediction model
faces three major challenges. First, genomic data typically involve
small sample sizes, which increases the likelihood of overfitting in
existing models (Deng et al., 2023). Developing an efficient and
biologically interpretable feature selection method to select key
genomic data is the first major challenge currently faced (Deng
et al,, 2023). Second, most genomic datasets for drug response
prediction contain multiple independent genomic data types
(Munquad et al, 2024). The data lengths and noise levels of
these genomic datasets vary significantly, making the rational
design of the multi-omics fusion method the second major
challenge in constructing high-performance drug response
medical models. Third, considering that drug response prediction
is a complex biological problem and the dataset has only limited
training samples, constructing a sufficiently high-performance
prediction model based on a small sample of data remains the
third major challenge.

In this study, we introduce an innovative model for predicting drug
response (NMDP, Figure 1). The NMDP model is composed of four
main modules. 1) Key genome selection module: we propose an
interpretable, semi-supervised weighted sparse PCA to identify
essential biological features. 2) Similarity network construction
module: this module addresses the challenge of aligning data across
different omics. 3) Data fusion module: we introduce a weighted
similarity network fusion approach, incorporating the dip test
method and variance information. 4) Drug response prediction
module: we integrate one-dimensional convolutional neural networks
(CNNs) and the Kolmogorov—-Arnold network (KAN) method.

2 Materials and methods

2.1 Datasets

In this study, we use publicly available datasets to extract drug
response and genomic data from cell lines. The first dataset is
Genomics of Drug Sensitivity in Cancer (GDSC), which provides
extensive data on drug response measurements. The second is the
Gene Expression Omnibus (GEO) and Cell Model Passports, along
with the European Bioinformatics Institute (EMBL-EBI) datasets.
These two datasets provide the genomic data needed for this
experiment.

It is important to note that the GDSC dataset comprises
624 unique drugs, 576,758 IC_50 values, and 978 cell lines.
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FIGURE 2
Structure of the deep learning model used in the NMDP model.

Genomic characteristics for each cell line include somatic copy number
alterations (SCNAs) across 21,878 genes, RNA-Seq expression levels for
44,421 probes, and methylation levels for 365,860 CpG sites. For our
study, we select 68 drugs: 14 FDA-approved targeted therapies, 49 drugs
with known target genes not yet FDA-approved, and 5 nonspecific
treatments (Supplementary Tables S1-S3).
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2.2 Dataset of gene pathway data

The pathway data used in this study are sourced from the
Pathway Commons database, which contains commonly used
pathway datasets such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO).
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Results of 14 FDA-approved drugs for each model. (A) Sensitivity and specificity of the NMDP model; (B) sensitivity and specificity of the MOLI model;
(C) sensitivity and specificity of the netDx model; (D) sensitivity and specificity of the TSGCNN model; (E) sensitivity and specificity of the MOICVAE model;

and (F) accuracy of each model.

2.3 Drug response data

In addition to the preprocessing already performed by the
provider of this dataset, we also perform additional preprocessing.
The following are the steps and criteria of our preprocessing: first,
we remove samples with certain missing data, such as samples with
a missing rate of more than 10%; second, we remove drugs with
limited IC_50 test information, requiring the amount of IC_50 test
data for each drug to be no less than 200 samples. Third, we use
waterfall distribution to divide drug response data (Ding et al,
2018). Waterfall distribution is a method that sorts drugs based on
their IC_50 values and uses a linear model to fit the data, which is
used to determine whether a drug is effective. Specifically, the
drugs are sorted according to the true IC_50 information. A linear
model is then constructed to fit the distribution, and Pearson’s
coefficient is used to evaluate the degree of fit of the model. If the fit
is higher than 0.95, then the median is chosen as the cut-off point.
If the fit is less than 0.95, a new monadic linear function is created,
and the parameters of the function are determined by the smallest
and largest points of IC_50. Finally, the point furthest away from
the unary linear function in the IC_50 curve is calculated as the
demarcation point. Ultimately, we classify divide drugs into two
categories: responsive and non-responsive. In addition, to ensure
that the data are balanced, we ensure that the response group
constitutes at least 25% of the total data.

2.4 Methods

In this section, we provide a detailed overview of the
architecture and algorithm flow of the NMDP model. This
NMDP method transforms the sparse PCA model from a non-
supervised to a semi-supervised approach, improving the ability of
feature selection (key genome selection module). Second:
Similarity network building module: in this module, we
construct a sample similarity network based on the Spearman
and Kendall correlation coefficients. Third: Data fusion module:
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we develop a data fusion algorithm based on the dip and variance
tests. Fourth: Drug response prediction module: in this module, we
propose a drug response prediction model based on one-
dimensional convolution and KANs.

2.4.1 Key genome selection module
2.4.1.1 ESPCA method
Before introducing the NMDP model, we first define the sparse
PCA (SPCA) and edge sparse PCA (ESPCA) models. Suppose we
have an m x n feature matrix X € R™", where n represents the
number of samples and m represents the number of gene probes.
The definition of SPCA is given by Formula I:
mcﬁimlize u XXTu, s.t. |ull, <s. (1)
ull, <
Here, [I*[, and [*|ly represent L, and L, norms, respectively. u
represents principal component (PC) loading, which has the
dimension as the number of gene probes. s represents the
retention number of gene probes. In most cases, the SVD
method is used to solve Formula 1. Therefore, the formula can
also be written as Formula 2:
maximize u’ Xv,s.t.| u [y <s. (2)
lulla < LIvlla <1
In this case, v represents the weight information corresponding
to the sample, with dimensions matching the number of samples.
ESPCA builds upon SPCA by incorporating improvements. Its main
contribution is the integration of pathway structure information
from the genome as a priori knowledge. Suppose that the known
pathway structure information (edge set) is represented as
G={e,..

regulon, which is represented as Formula 3:

/| 3)
)

.,ei}. At this point, the researcher introduces ||u|gs

minimize

lleell s =
VG'e€G,support (u)cV (Q’

Here, G' € G and V (G') represents the vertex set derived from the
[lullgs regulon. Therefore, ESPCA can also be represented as
Formula 4 (Min et al., 2018):
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TABLE 1 Results of each model of the 14 drugs approved by the FDA.
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maximize u' Xv, s.t.| u |lgs <s. (4)
llull, < Llvl, <1

2.4.1.2 Semi-supervised weighted edge sparse PCA

The existing SPCA and ESPCA methods are pure non-supervised
methods; this method has a great advantage in data analysis with small
samples and high dimensions. However, two primary issues arise: first,
the method cannot utilize existing grouping information, which may
reduce its effectiveness. Second, for the problem of drug response, the
existing sparse PCA method selects the exact same key gene probe for all
types of drugs; it obviously does not accord with the common sense of
biology. In this study, we propose a novel semi-supervised weighted
edge sparse PCA. This method mainly includes a weighted parameter ¢,
which is calculated using a machine learning model. The parameter ¢
leverages known grouping information on drug responses. Each time
the model completes a cycle, we calculate ¢ based on the currently
selected key gene probes and weight u. Finally, we can select different
key gene probes for each drug. The specific steps are shown in
Formulas 5-12.

In general, the semi-supervised weighted edge sparse PCA
method proposed in this paper can be expressed as Formula 5:

mflgcllmzzzsel u' Xv, st u llym <k. (5)

Here, |lullya is a sparse regulon representing the edge group
proposed by ESPCA and k is the regularization parameter. The
regulon is given by Formula 6:

[l war = minimize |Q:U| (6)
Vg:uegw,support (w)cv (G:U)

Here, Q:U represents a subset of vertices selected from the edge
set, with |g;u| representing the count of vertices within this subset.
Additionally, support (u) represents the collection of non-zero
elements in the sparse vector u. Then, we specifically explain
how to calculate g:u, supposing e, = (u,-,uj) (XA uj,uj € R™. At
the beginning of the algorithm, v is randomly initialized. We use
u = Xv to calculate the weight of u. Based on u, we use Formula 7 to
calculate the edge weight wy, corresponding to ey,:

wy, = U} +ul. (7)

Finally, the edge weight can be represented as G,, = {wy}}. In this
paper, we used a greedy principle based on the random sampling
method, previously developed by our team, to sparsify u, as
represented in Formula 8 (Miao et al., 2022):

zi,if Gy (i) N sample(I,k) +O&
0, otherwise ’

[Po. (2], = { ®

Here, Pg(z,k) represents the sparse projection, with
[Pg,(zR)i(i=1,....m). [I= supp(normgj’f ("), (1 + w) x k).
sample (I, k) represents the random selection of k elements from
the set I. k denotes the number of non-zero elements selected in the
sparsification process. If gene i is selected, then [Pg(z,k)]; = z;;
otherwise, [Pg(z,k)]; = 0.

In this case, we can obtain a sparse gene weight vector
it = Pg, (z,k). Since existing sparse PCA models are non-
supervised, identical input gene expression information results in
the same # for each drug. In order to find a more suitable key gene
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NMDP model precision results of 14 FDA-approved drugs.

TABLE 2 External independent validation results.

Precision Recall Fl-score
Responsive 0.72 0.74 0.73
Non-responsive 0.83 0.81 0.82
Accuracy 0.77
Macro average 0.73 0.77 0.74
Weighted average 0.8 0.78 0.79

set for different drugs, we design a linear evaluator based on machine
learning, denoted as y = fg(x). For example, linear models or
random forests can be used as evaluators. Here, 6 represents the
parameterized model, while the classification label corresponds to
the drug response grouping information. Each time the sparse PCA
model completes a cycle, we extract a new genome key expression
matrix Xe RP" and Xe X based on #, where p represents the
number of non-zero gene probes contained in # at that time.
Next, X is input into j, as represented in Formula 9:

6* = argmin £(X; 0, w). )
0

Here, L represents the loss function. w represents the optimizer of
the model. 6% represents the parameter after model training. Once
training is complete, an importance score ¢ is calculated for each
gene probe associated with X. Finally, we obtain ¢ = {tl, AU tp}.
In order to ensure the stability in the weighting process, we
perform a normalization step on ¢,scaling the values to the range
0-2. Finally, we update & based on t, as represented in
Formula 10:

1= {tﬂ:l], PN tmﬁm}. (10)

In this case, if the gene probe corresponding to t; is not included
in the set of t, then t; = 0. We use Formulas 11, 12 to cross-update u:

— 1A
lll

Ve ,where v=X"u.

(11)

(12)
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U= Xv
: foranyweightofedgeeing, do

- 2 2
Wy, = U1+Uj

: updateg, = W,

Gen erateadynamicnetwork .

:endfor

s Letnorm (') = (Il €1l -+ e )

= supp (normNM (e"), (1+w) x k)Extract (1 +w) x k edges
: Jk = sample (I,k)

9:ifw>0thenw=w-p

10: Vg = V(G,)

11: foranygeneiin VQ'W do

00}10\01-%0_3!\3—\

12: 05 = U;

13: end for

14: X = X[0)

15: Class = RandomForestClassifier ()

16: Class. fit (Class,Y)\#Trainand test theclassifier
17: t = Class. feature imortances

18: 0 =t*0#Weight U

19: returnd

20: Uypdate = ﬁ

21: v hwhere v = XTUypgate

22: 10ss = || = Uypdatell2, 1T 10Ss < 0.0001, end, then return step 1

Algorithm 1. Semi-supervised weighted edge SPCA.

2.4.2 Similarity network building modules

For the same drug, we can get at least three different genomics
data. The experiments in this paper mainly include gene expression
data, copy volume data, and methylation data. Each omics performs
sparse PCA operations independently. Finally, we can obtain three
key feature matrices, namely, S € Rkn C e RP" and M e R™,
k, p,h represents the number of key gene probes retained by
each of the three omics.

Because of the inconsistency of the data lengths for each omics,
data cannot be aligned. Therefore, we calculate a sample similarity
subnet for each omics based on the concept of the sample similarity
network. In this paper, we use two similarity measurement methods.
We use the Spearman correlation coefficient to calculate the sample
similarity subnet of gene expression and methylation omics, as
represented in Formula 13:
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D ES))
P2 = k ook 2
VIS G- 255 (0 - 7)

(13)

Here, for the x and yth sample, x;, y; represent the expression
information on the ith gene expression in each sample, with k
representing the total number of gene probes. The symbols X, ¥
indicate the average gene expression levels for each sample.

The Kendall correlation coefficient is used for the copy number
dataset, as provided in Formula 14:

(14)

Here, the xand yth sample can be showed as a set of two
elements containing p gene probe. C represents the number of
consistent elements. D represents the number of inconsistent
elements. k denotes the total number of gene probes in
each sample.

2.4.3 Data fusion module

After completing the construction of the sample similarity
subnet, we can obtain three feature matrices, namely, S'e RM",
C' e R, and M’ e R™. Then, we propose a subnet fusion
algorithm based on the dip test and variance estimation using
Formula 15:

X' =a; x P, x8 +0, x P, xC'+ a3 x B, x M/, (15)

where X' represent the feature representation after fusion. a and
are defined as the amount of statistical information corresponding
to the genomics data matrix. Theoretically, our goal is to retain as
much of the feature matrix as possible, prioritizing genomics with
higher statistical significance for drug response prediction. To
achieve this, we use two statistical methods to assess the
amount of information in the data. The first method is the
single peak test, which aims to retain similarity matrices that
exhibit typical bimodal A bimodal
distribution is a statistical concept that represents a dataset in

more distributions.
more than two regions. In gene expression analysis, if the data
show a bimodal part, it indicates a significant statistical difference
within the sample. In this paper, we assess the bimodal property of
data using the dip test method, originally proposed by Hartigan
et al. (1985). We assume that p (F, G) follows Formula 16 for any
bounded functions F,G. Let y be the class of unimodal
distribution functions.

p(F.G) = sup,|F (x) - G(x)]. (16)

We define p as a typical unimodal distribution function and F as
a dip distribution function. We can obtain Formulas 17, 18
as follows:
(17)
(18)

D(F) = p(F,p),
D(F,)<D(F,) + p(F1, Fy).

It is important to note that D (F) = 0 for F € y, indicating that
the dip quantifies deviation from unimodality. Assume that the
result of the dip function is p, as shown in Equation 19:

p >0.95: signi ficant unimodalit y

P <0.05: signi ficant bimodalit y (19)
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Another statistical method is the variance test. In addition to
information about the probability distribution of the samples, our
goal is to retain a matrix of sample similarity features that preserves
as much discrete information as possible. The formula for the
variance S information is provided in Formula 20:

_Y(x-x)
n—1

S ) (20)
where X is the variable, X is the sample mean, and n denotes the
sample size. Suppose that the result of the variance of the i feature of
the iy, histology is S;;. Then, B; of iy histology can be expressed as
Formula 21:

n

1
B; = n ZSU'

1

(1)

The computed p = {B,, B, B;} accounts for the possibility that
having a large parameter. Therefore, we normalize $ using Formulas
22, 23 as follows:

w; = a+ p(k; — Min),
p = (b-a)/(Max — Min).

Here, a and b are user-defined parameters, representing the
normalized range of data. p represents a scaling factor used to
normalize the raw data P to a user-defined range. Max and Min
represent the maximum and minimum values of {, respectively.

2.4.4 Drug response prediction module

Finally, we obtain the feature matrix X'. Although the problem
of the high dimensionality of data has been largely alleviated after
genomic feature extraction and similarity network computation,
researchers still need a powerful enough deep learning model to
achieve high performance and avoid overfitting. However,
considering the limitation of the number of samples, researchers
still need a sufficiently powerful drug response prediction deep
learning model to avoid model overfitting. In this study, we
construct a deep learning model based on one-dimensional
convolution and KANs to predict drug response (Figure 2). One-
dimensional convolution can further localize the features of the
samples and remove potential noise. Experimental results indicate
that one-dimensional convolution significantly enhances the
model’s prediction performance. KANs, proposed by Liu et al.
(2024), aim to replace the traditional fully connected neural
network layer. The network is based on the Kolmogorov-Arnold
theorem, which states that any continuous function f(x) in
space, X = (X15...5%,)
represented as a combination of a single-variable continuous

n-dimensional real where can be
function h and a series of continuous bivariate functions g; and
gi,j- Specifically, the theorem is expressed in Formula 24:

2n n
f(x1,..0%,) = Z h(qu,,- (x,»)>.
g=0 \ i=1

(24)

The theorem shows that even a complex function in a high-
dimensional space can be reconstructed using a series of lower-
dimensional function operations. Specifically, a KAN layer with #;,
dimensional inputs and #,,, dimensional outputs can be defined as a
matrix of one-dimensional functions, as represented in Formula 25:
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KANs={¢, }p=12 . mnq=12. . fuu, (25

where the function ¢ is defined as shown in Formula 26 and consists
of a B-spline curve and a residual activation function b(x), all
multiplied by a learnable parameter w. The function ¢ is defined as
shown in Formula 26:

¢ = w; x spline(x) + wyb(x). (26)

The main advantage of KANs is that they can achieve results
beyond fully connected neural networks while using fewer
parameters. This is especially important for the drug response
prediction problem. Due to the limitation of the sample size, it is
unlikely that we can construct a deep learning model that contains a
huge neural network. To summarize, the module can be expressed
using Formulas 27, 28 as follows:

27)
(28)

X = One — Dimensional Convolution( X"),

out = KANS(X).

3 Results

The procedure in this article consists of six distinct steps.
Initially, experiments were performed using 14 FDA-approved
targeted therapy drugs already authorized for clinical use. In the
second step, we broadened the model evaluation by testing it with
49 targeted therapy drugs not approved by the FDA. In the third
step, we conducted experiments on five chemotherapeutic agents
(non-targeted therapeutics) in order to verify that the NMDP model
has good scalability. We used seven state-of-the-art AI models for
comparison, namely, TSGCNN, MOICVAE, MOLI, netDx,
netDx-elastic network, deep autoencoder, and netDx-SVR. Five
evaluation indicators were used, namely, sensitivity, specificity,

10.3389/fgene.2025.1532651

precision, accuracy, and F1 score. The details of comparison
models are provided in Supplementary Materials.

In the fourth step, we selected the GDSC1 dataset for training
and testing and the GDSC2 dataset for validation. We selected
14 FDA-approved drugs to perform and calculate the mean value.
The consistency and reliability of the results were ensured by
calculating the mean value.

The fifth step included conducting ablation experiments to
determine the importance of each sub-module of the NMDP
model. We randomly selected 10 drugs for analysis and averaged
the results. All experiments were performed using the
GDSC2 dataset (Supplementary Table S7). We conducted four
independent experiments: the first experiment was conducted to
remove the multi-omics weighting module; the second experiment,
to remove the convolution module; the third experiment, to remove
the sample similarity network; and the last experiment, to replace
KANs with MLPs.

Ultimately, we used the Metascape platform to examine the
biological pathways associated with the gene probes chosen by the
NMDP model (Zhou et al., 2019). The details of the indicators are
provided in Supplementary Materials.

3.1 FDA-approved targeted therapy drugs

Based on the results presented in Figure 3 and Supplementary
Table S4, experiments show that the NMDP model is much better
than the advanced deep learning model. Notably, the NMDP
model achieves an average sensitivity of 0.92 and a specificity of
0.93. Among the models for comparison, the MOICVAE model
ranks highest, with a sensitivity of 0.77 and a specificity of 0.91.
The deep autoencoder model, however, performs the lowest, with
sensitivity and specificity values of 0.53 and 0.44, respectively.

Precision results for 49 FDA non-approved drugs
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Based on Figure 3G, it is evident that the deep autoencoder model
exhibits overfitting across multiple drugs. Moreover, the NMDP
model demonstrates minimal fluctuation across 14 drugs,
indicating its superior stability (Figure 3F). Compared to other
models, all except the MOLI model show relatively high levels of
fluctuation, suggesting weaker stability in those models. The NMDP
model achieves values of 0.93, 0.92, 0.92, and 0.92 for average accuracy
and F1 score, outperforming the MOICVAE model by 10% in each
metric (Table 1). When compared to the deep autoencoder model, it
shows improvements of 31%, 48%, 52%, and 50%, respectively.

According to Figure 4, the NMDP model demonstrated excellent
performance in predictive accuracy. It is worth mentioning that out
of these 14 drugs, the prediction accuracy for 13 of them

exceeded 90%.

3.2 FDA non-approved targeted
therapy drugs

Across the 49 drugs not approved by the FDA, we observe similar
outcomes. Experimental findings indicate that the NMDP model
achieves average sensitivity and specificity values of 0.92 and 0.93,
respectively, outperforming the comparison models by 11%-57%
(Supplementary Figure S1; Supplementary Table S5). Supplementary
Figure S1F illustrates the NMDP model’s high stability, with only 5 out
of the 49 drugs showing precision below 0.9 (see Figure 5). In addition,
the average precision of the NMDP method can reach 0.95. F1 score can
reach 0.92, surpassing the MOLI model by 14%, 10%, and 13%
(Supplementary Table S1). Among the seven models compared,
MOLI achieves the highest performance. Nevertheless, its sensitivity,
specificity, precision, and accuracy for response, non-response, and all
samples are only 0.80, 0.88, and 0.86, respectively, with F1 scores of 0.83,
0.83, 0.83, 0.82, and 0.84.

3.3 Non-specific therapeutic drugs

In the study of five non-specific therapeutic drugs, we achieve
optimal outcomes in three experiments. Results indicate that the
NMDP model achieves 0.93 for average sensitivity, surpassing the
19%-42% (Supplementary Figure S2;
Additionally, the NMDP model
demonstrates a precision close to 095 across the five drugs

comparison models by
Supplementary Table S6).

(Figure 6). The model also shows outstanding performance in

Precision results for 5 Non-specific therapeutic

drugs
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FIGURE 6

NMDP model precision results of five non-specific
therapeutic drugs.
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Fl score and accuracy, reaching 0.93 (Supplementary Table S2).
Compared to the other models, the MOLI model achieves the best
results, but its average F1 score and accuracy reach only 0.78. The
experimental results show that the NMDP model has good expansibility.

3.4 External independent validation results

To evaluate the model’s performance and test its generalization
ability, we design this external independent validation experiment.
The experimental outcomes demonstrate that the NMDP model
exhibits superior generalization capabilities. Specifically, the NMDP
model achieves an overall prediction accuracy of 0.77 and precision,
recall, F1 score, and accuracy of 0.73, 0.77, 0.74, and 0.77, respectively
(Table 2). It is worth noting that a slight decrease in accuracy is
observed on the validation set compared to the results on the test set.
This may be due to the noise difference between the datasets. Overall,
the NMDP model exhibits robustness and reliability, with the
capability for widespread application.

3.5 Ablation experiment

The experimental results show that the model feature extraction
effect is weakened by removing the multi-omics weighting module and
the convolution module, but the convolution module has a greater
impact on the model. The sample similarity network module has the
greatest impact, further verifying the importance of similarity across
samples. When KANS are replaced with MLPs, the performance of the
model improves but still does not surpass that of the original model.
This indicates that KANs have a unique advantage in capturing
complex relationships, especially when dealing with multi-omics
data. Taken together, the results of the ablation experiments fully
indicate that the sample similarity network and convolution module
are the key factors in improving the model performance. Among them,
the sample similarity network module has the greatest impact, and we
believe that the main reason is that, even after the feature filtering of the
sparse PCA model, the three modules are still able to save more than
9,000 gene probes collectively, and the excessively high data dimensions
make it easy for the model to fall into an overfitting state.

3.6 Enrichment analysis

To validate the biological interpretability of the NMDP model, we
conduct bio-enrichment analysis using gene selection results for
erlotinib across different omics types obtained from the first
principal component (PC) in the NMDP model. Erlotinib is an
FDA-approved non-small cell lung cancer drug, with EGFR as its
primary target (Tsao et al., 2005; Zhou et al., 2021). The analysis yields
promising results as the NMDP model successfully identifies lung
cancer-related pathways and gene probes. For instance, in copy number
omics, we discover pathways corresponding to genes like EGFR, CDK®,
RASSF5, BRAF, and CCND1, which are associated with non-small cell
lung cancer (Chen et al, 2018; Xue et al, 2019; Zhao et al, 2018)
(Figure 7A). In methylation omics, we observe the developmental
process pathway GO:0032502, involving genes such as EGFR,
FGFR2, GATA6, ASCL1, BMP4, and FOXA1, indicating relevance to
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FIGURE 7

(A) Pathway results from the first PC of copy number; (B) pathway results from the first PC of methylation data; and (C) pathway results from the first

PC of sequencing data.

lung development (Bach et al., 2018; Ju et al,, 2019; Murai et al., 2015)
(Figure 7B). In Seq omics, we identify pathways related to the KEGG
pathway, which include genes like EGFR, MAPKI, KRAS, CCNDI,
HRAS, NRAS, PLCG1, and GRB2, which show strong connections to
non-small cell lung cancer (Betticher et al., 1996; Park et al., 2020; Pazik
etal., 2021) (Figure 7C). Remarkably, EGFR, the target gene of erlotinib,
is consistently identified across these three omics types.

Overall, the NMDP model demonstrates superior performance
compared to other models across all metrics.

4 Discussion

With advancements in bioassay technology, a growing number of
large-scale drug response datasets are being released, creating new
possibilities for building drug response prediction models. In recent
years, researchers have proposed a number of Al-based drug response
prediction models (Chiu et al,, 2020). However, drug response prediction
data are mostly characterized by the typical features of multi-omics, small
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samples, high dimensionality, and high noise. Designing feature selection
and multi-omics fusion methods based on regularization ideas becomes
very important. In addition, considering the potential overfitting
problem, it is difficult for researchers to build Al-based drug response
prediction models with many parameters.

In light of the aforementioned issues, we propose the NMDP model,
which integrates semi-supervised weighted SPCA, similarity networks,
dip tests, and KANs. Unlike the traditional unsupervised sparse PCA
model, the NMDP model proposes an independent evaluator that
converts the sparse PCA model from a traditional unsupervised to a
semi-supervised model. This improvement allows the NMDP model to
use known dataset grouping information, ultimately allowing the model
to stably select different potential target genes for different target drugs.
The experimental results show that the NMDP model inherits the
advantages of the sparse PCA model, such as good biological
interpretability and strong denoising ability, further enhances the
feature selection ability of the model in multi-omics gene data, and
greatly strengthens the stability of the model in high-dimensional small-
sample cases. Sample similarity networks further address the
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dimensionality challenge of the samples while helping the model perform
multi-omics data alignment. We introduce a fusion algorithm that utilizes
both dip test and variance data with weighted integration, which allows
the model to focus on important histological information, thus improving
prediction accuracy. Finally, we propose a one-dimensional convolution
combined with KANs for drug response prediction modeling. The model
achieves efficient prediction with a small number of parameters, thereby
effectively avoiding the overfitting problem.

To enhance the validation of the model, we also conduct external
validation experiments to assess the generalization capability of the model
using independent datasets. The experimental findings indicate that the
NMDP model performs consistently on different datasets, validating its
robustness and reliability. In addition, we conduct ablation experiments
to evaluate the contribution of each component to the model
performance. The results of the ablation experiments show that
removing the multi-omics weighting module and the convolution
module significantly degrades the model’s performance, and in
particular, the sample similarity network module plays the most
crucial role in influencing the model’s effectiveness. This further
emphasizes the importance of inter-sample similarity and the unique
advantage of KANs in capturing complex relationships. Bioenrichment
experiments fully validate the biointerpretability of the model, suggesting
that the NMDP model could help researchers in drug development.

We also acknowledge some limitations to this study: our
research is confined to predicting the response to a single drug,
without considering the effects of combination drug therapies.
Moreover, the weighted edge sparse PCA method has high time
complexity, which leads to slower model computations. In future
work, we plan to improve the model’s ability to predict responses to
drug combinations and optimize its computational efficiency.
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Introduction: Drug abuse is becoming a global public health crisis. According
to the United Nations, the number of drug users worldwide has increased
dramatically over the past decade, with a surge in the number of drug abusers.
The problem was exacerbated by the expanding market for illicit drugs and the
increasing availability of synthetic drugs such as fentanyl. Clinical drug abuse is a
problem that requires particular attention, and the potential addictive properties
of some drugs and their mechanisms of action are currently unknown, which
limits the development and implementation of drug addiction intervention
strategies.

Methods: Eight-week-old C57BL/6J mice were used as study subjects. A
mental dependence model was established using the conditional position
preference experiment (CPP), and the hippocampal tissues of the model mice
were subjected to RNA-seq transcriptome sequencing, LC-MS non-targeted
metabolome sequencing, and intestinal macro-genome sequencing in order
to discover propofol mental dependence signature genes. Correlation analyses
of transcriptomics and metabolomics were performed using the Spearman
method, and gene-metabolite networks were mapped using Cytoscape
software. Real-time fluorescence quantitative PCR and immunoprotein blotting
(Western blotting) methods were used to validate the characterized genes.

Results: After the conditioned position preference experiment, the conditioned
preference scores of the 75 mg/kg propofol and 2 g/kg alcohol groups were
significantly higher than those of the control saline group. 152 differential genes
and 214 differential metabolites were identified in the 75 mg/kg group. Cluster
analysis revealed that changes in the neuroactive ligand receptor pathway were
most pronounced. Gut microbiomics assays revealed significant changes in
five differential enterobacterial phyla (Campylobacter phylum, Thick-walled
phylum, Anaplasma phylum, Actinobacteria phylum, and Chlorella verticillata
phylum) in the 75 mg/kg propofol group, which may be related to changes in
the differential expression of dopamine.
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Discussion: These findings suggest that 75 mg/kg propofol has a significant
mind-dependent effect on the biology of drug addiction through neuroactive
ligand-receptor interaction pathways in conjunction with the tricarboxylic acid
cycle, and the metabolic pathways of alanine, aspartate, and glutamate that may
influence intestinal microbial changes through bidirectional signaling.

KEYWORDS

propofol, psychiatric dependence, gut microbes, transcriptomics, metabolomics,

hippocampus

1 Introduction

Propofol, as a fast-acting short-acting anesthetic, is widely used in
a variety of clinical practices, including short-term anesthesia for
abortion, gastroscopy, and the induction and maintenance of general
anesthesia (1), but also for conscious sedation in critically ill patients,
as well as in the treatment of refractory agitated delirium and
antiemetic. Recent studies have also shown that propofol has
therapeutic and anti-inflammatory effects (2). Its main mechanism of
action is to inhibit neural signaling by promoting chloride inward flow
via GABA-A type receptors (3). However, the risk of propofol abuse
and addiction cannot be ignored, especially among medical
professionals (4, 5), long-term or overdose use of propofol may lead
to dependence, increased tolerance, and withdrawal symptoms, and
overdose may even be life-threatening (6).

Drug addiction is considered a chronic and relapsing brain
disorder characterized by persistent craving for and use of drugs
regardless of negative consequences (7). Underlying this craving
and use behavior are long-term gene expression changes, neuronal
adaptations, and changes in synaptic plasticity triggered by
repeated drug ingestion. The hippocampus, a key brain region for
learning and memory, plays a central role in drug addiction (8).
Drug addiction can lead to significant changes in neuroplasticity
in the hippocampus that include changes in neuronal excitability,
neurotransmission, morphological changes in dendrites and
axons, and synapse formation or elimination (9). Neurotransmitter
systems in the hippocampus, including dopamine, glutamate, and
GABA, are closely linked to the neural mechanisms of drug
addiction (10). Current research on the mechanisms of drug
addiction has focused on changes in brain neurotransmitters
(dopamine, glutamate, and GABA, among others) (11). The
hippocampal region, a key brain area for learning, memory, and
spatial navigation, plays a central role in the development and
maintenance of drug addiction (8). Addictive drugs such as
cocaine, opioids, and nicotine alter the structure and gene
expression of the region by modulating synaptic plasticity in the
hippocampus. In addition, drug abuse-induced changes in

Abbreviations: CPP, Conditional position preference; TCA, Tricarboxylic acid cycle;
LC-MS, Liquid chromatography—tandem mass spectrometry; QPCR, Quantitative
polymerase chain reaction; OPLS-DA, Orthogonal partial Least Squares-
Discriminant Analysis; PCA, Principal component analysis; NMDS, Non-metric
multidimensional scaling; LEfSe, Linear Discriminant Analysis Effect Size; RIPA,
Radio Immunoprecipitation Assay; SYBR, Synergetic Binding Reagent; ANOVA,
Analysis of variance; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes; SCFA, Short-chain fatty acids.
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neurotransmitter systems, including serotonin and endorphins,
have been strongly associated with the development of addictive
behaviors by modulating mood, memory, and reward behaviors.
Most addictive drugs are directly linked to reward effects by
increasing the release of dopamine in the brain, particularly in the
hippocampus, leading to craving and dependence on the drug
(12). In neurobiological models of addiction, changes in dopamine
receptor expression in the hippocampus have received widespread
attention, e.g., chronic drug exposure (e.g., cocaine, endogenous
cannabinoid analogs) may lead to down-regulation of dopamine
D2 receptors in the hippocampus, which may be related to
reduced sensitivity to drugs and disinterest in non-pharmacological
rewards in addicted individuals (13). Dysregulated dopamine
signaling in the hippocampus has also been associated with the
risk of relapse in drug addiction, as these alterations may affect an
individual’s response to drug-related cues and decision-making
processes. Thus, the hippocampus and dopamine system play a
critical role in the development, maintenance, and relapse of drug
addiction, and long-term alterations in these brain regions
provide a neurobiological basis for the persistence of addiction
and the complexity of treatment.

Multi-omics technology refers to the integrated application of
various genomics techniques such as genomics, transcriptomics,
proteomics, metabolomics, etc., to comprehensively analyze the
changes in biological samples at different biological levels, and in
the case of drug addiction, many researchers have used
metabolomics to find that metabolites such as (inositol-1-
phosphate, free fatty acids, and metabolites related to tricarboxylic
acid cycle, etc.) are increased in the brain of rats after heroin
addiction (14). Microbiome and metabolomics approaches to
study methamphetamine users identify microbial metabolic
pathways involved in addiction (15). The effects of chronic
methamphetamine exposure on the neural proteome in the
hippocampus and olfactory bulb region of rats were also
investigated by proteomic approaches, revealing significant
changes in the expression of 18 proteins related to addiction such
as (synaptic vesicle glycoprotein 2A, myelin proteolipoproteins,
etc.) (16). These technologies enable us to probe deeply into the
biological basis of drug addiction at the molecular level, revealing
the underlying gene expression regulation, protein function
changes, metabolic pathway remodeling, and complex networks
of inter-cellular interactions. For example, the development of
single-cell sequencing technology and spatial transcriptomics
provides a powerful tool to study the cellular heterogeneity and
tissue microenvironment of drug addiction (17, 18). Dysregulation
of gut flora in alcohol addiction and modification of addiction
using gut flora modification (19). The application of these
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technologies not only greatly broadens our understanding of the
pathogenesis of drug addiction, but also provides a solid scientific
basis for the development of new treatment strategies. At present,
the combined application of propofol and multi-omics technology
is still in its infancy, and the related research results are limited.
Transcriptome studies have found that propofol can change the
structure and function of the developing heart, suggesting its
potential cardiotoxic effect (20). Metabolomics studies have
shown that propofol can significantly increase the level of
inflammatory marker glycoprotein acetylation (GlycA) (21).

In recent years, the interaction between gut microbiota and
host metabolism has become a hot topic in biomedical research,
such as the brain-gut axis and the gut-liver axis. The gut
microbiome not only plays a key role in maintaining the host’s
nutritional metabolism, immune regulation and intestinal barrier
function, but also affects the host’s systemic metabolic status
through its metabolites (22). More and more evidence suggests
that the interaction between gut microbiome and host metabolism
may play an important role in the pathogenesis of drug addiction.
On the one hand, gut microbes can affect the behavior and mood
of the host by regulating neurotransmitter levels and immune
responses. On the other hand, metabolic changes may reflect the
systemic effects of drug abuse on the body.

The purpose of this study is to explore the mechanism of
propophenol-induced mental dependence in mice by network
pharmacology, transcriptomtics, metabolomics and
metagenomics, reveal the molecular mechanism of propofol
addiction, explore the changes of hippocampal and intestinal flora
in mice after propofol addiction, and provide therapeutic
strategies for clinical treatment of propofol addiction and
prevention of propofol abuse. The flow chart of the experiment is
shown in Figure 1A.

2 Materials and methods
2.1 Chemical reagents

Propofol was purchased from McLean Biotechnology (D806979),
HiScript I Q RT SuperMix for qPCR (R223-01, vazyme, Nanjing,
China), primers were purchased from Xianghong Bio-technology Co.,
Ltd., and antibodies to DRD1 and DRD2 were purchased from
Proteintech (17934-1-AP, Wuhan, China).

2.2 Animal models and experimental
design

Healthy male C57BL/6] mice (6 weeks old, weighing 20-23 g) were
purchased from Xian Fraser Biotechnology Co. The mice were
acclimatized to the laboratory environment for 2 weeks before the
experiment. Standard diet and water were ad libitum. 72 mice were
randomly divided into 6 groups of 12 mice each, including saline
control group, propofol-treated group (0 mg/kg, 50 mg/kg, 75 mg/kg,
100 mg/kg) and alcohol control group. Propofol was injected
intraperitoneally and 100 mg/kg was chosen as the highest dose based
on the literature that the 114 mg/kg dose resulted in the loss of the flip
reflex in mice. The normal saline group and alcohol group were used
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as negative and positive controls, respectively. The experiment was
divided into adaptation stage, training stage and testing stage. The
adaptation period lasted for 3 days. Every day, the mice were placed in
the middle channel, opened the channel door, and explored freely for
30 min to help the mice adapt to the experimental environment. On
the fourth day, the basic time test was performed with a 15 min limit
time, and the mouse’s residence time in the preference box and the
non-preference box was recorded as the baseline data of behavioral
preferences. Then enter the 20 day training phase. In the morning,
mice were intraperitoneally injected with normal saline, propofol and
alcohol of different concentrations, and placed in the preference box to
close the door of the middle channel; In the afternoon, all mice received
the same volume of normal saline injection as the control group, placed
in the non preference box, closed the channel door, and then cycled to
the 21st day, entered the test phase, reopened the door of the middle
channel, the mice explored freely for 15 min, and recorded the
residence time in the preference box and the non preference box. The
preference score was calculated by the residence time before and after
the experiment to evaluate the effect of propofol and alcohol on the
behavioral preference of mice (23, 24). At the end of the test, mice were
executed and hippocampal tissues were separated on ice and stored in
liquid nitrogen for subsequent experiments. All experiments involving
propofol drug addiction in this study were approved by the Ethics
Committee of Qinghai University School of Medicine (2022-01).
Animal experiments were conducted in accordance with the European
Guidelines for the Care and Use of Laboratory Animals (2010/63/EU).

2.3 Metabolomics

A 50-100 mg sample was taken and added to a methanol-
acetonitrile mixture for low temperature sonication extraction.
Centrifuge at 12000 rpm for 10 min, take the supernatant and add
200 pL of 30% acetonitrile solution to re-dissolve and centrifuge at
14000 rpm for 15 min. Samples were analyzed using Vanquish UPLC
(Thermo, USA). Samples were separated on a Waters HSS T3 column
with electrospray ionization source detection. Raw data were
pre-processed using Progenesis QI software (Waters Corporation,
Milford, USA), normalized and imported into R software. The metabolic
abundance of each group of samples was standardized to eliminate the
technical variation between different samples. On this basis, the average
abundance of each group of metabolites was calculated, and the FC
value was further calculated. The p value was calculated by Student’s
t-test, and the VIp value was calculated by multivariate statistical
analysis method OPLS-DA. When screening differential metabolites,
strict thresholds were set: P value 1, and FC > 1.5 or < 0.667. The
metabolites that met these conditions were identified as differential
metabolites, and the significance level of metabolite enrichment in each
pathway was analyzed by Fisher’s exact test.

2.4 Transcriptomics

Total RNA was extracted by Trizol reagent and evaluated for
quantity and purity. High-quality RNA samples were selected for
construction of sequencing libraries. The mRNA was enriched using the
magnetic bead method, followed by fragmentation, reverse transcription
and PCR amplification. DESeq2 software was used to identify
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Hippocampal transcriptome changes in 75 mg/kg propofol-addicted mice. (A) Study design. (B) Change in preference scores for each group after the
conditional location preference experiment (preference preference score = time before the experiment - time after the experiment) p < 0.05, *p < 0.01.
(C) Volcano map of the propofol group. (D) Volcanic map of the alcohol group. (E) Differential gene intersections between the propofol group and the
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FIGURE 1 (Continued)

component analysis plot for the alcohol group.

saline and alcohol groups. (F) Heat map of gene expression in saline, propofol group and alcohol group. (G) KEGG-enriched bubble map of the
propofol group. (H) KEGG-enriched bubble plot for the alcohol group. (I) GO analysis enrichment circle plot for the propofol group. (J) GO analysis
enrichment circle plot for the alcohol group. (K) Metabolite principal component analysis plot for the propofol group. (L) Metabolite principal

differentially expressed transcripts and genes, setting |log,(fold change)|
>1 as the threshold, and KEGG and GO enrichment analyses were
performed. p value corrected p < 0.05 was used as the screening criterion
to further analyze the GO function and KEGG pathway enrichment.

2.5 Macrogenomics

Samples of intestinal contents were collected and total DNA was
extracted from the samples and tested for DNA purity and integrity.
DNA samples were broken and libraries were constructed for high-
throughput sequencing. Raw data were pre-processed in Illumina fastq
format to remove host contamination. The obtained sequences were
spliced and assembled, and gene prediction, annotation and
classification were performed. Finally, the samples were subjected to
similarity clustering, sequencing tests and statistical comparison of
differences. For the analysis of intestinal microbiota, principal
component analysis (PCA) was used to preliminarily distinguish the
significant differences between different groups. Subsequently, the
differences in the composition of intestinal microbial communities
under different groups were shown by species composition histograms,
and these differences were further quantified by linear discriminant
analysis (LDA). In order to identify microbial species with significant
differences, STAMP analysis tool and Wilcoxon rank sum test were
used to analyze the differences between groups, and the significance
level was also set as p < 0.05. This method can not only identify different
species, but also visually display their distribution in different groups.

2.6 Network pharmacology and molecular
docking

Potential targets of propofol were collected from four databases,
PharmMapper, SwissTargetPrediction, Drugbank and
BATMAN-TCM, and from NCBI, GeneCard, Therapeutic Targets
Database, Pharmacogenomics Knowledge Base four databases to
collect relevant targets for drug addiction (25-28). The Wayne
diagrams of propofol targets and drug addiction targets were drawn
using the Microbiotics Online Platform.! Protein interaction networks
were constructed using the STRING database. The DAVID database
was used to perform GO and KEGG pathway enrichment analyses
and visualization of potential targets. The 3D structural data of
propofol were downloaded from the PubChem database, while the
protein structural data were obtained from the PDB database.
Molecular docking was performed through the CB-Dock2 platform.?

1 https://www.bioinformatics.com.cn/
2 https://cadd.labshare.cn/cb-dock2/php/index.php
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2.7 Comprehensive analysis of
transcriptomics and metabolomics

On the basis of transcriptomics and metabolomics sequencing
analysis, the correlation analysis of OPLS-DA was performed on the
differential genes and differential metabolites of propofol at a
concentration of 75 mg / kg, and the load map was drawn. Subsequently,
the differential metabolites and differential genes were analyzed by
Pearson correlation analysis for clustering heat map drawing, and the
correlation was set to p < 0.05 (p < 0.05, *’) to explore the correlation
between genes and metabolites. After that, Cytoscape (Cytoscape
v3.9.0) was used to draw a gene-enzyme reaction-metabolite network
diagram to explore the relationship between genes and metabolites.

2.8 Real-time fluorescence quantitative
PCR

RNA was extracted from hippocampus, converted to cDNA by
reverse transcription kit, and amplified by PCR using SYBR method.
Through the PCR instrument, the fluorescence signal changes were
monitored and collected to obtain the Ct value (cycling threshold), and
the relative quantitative analysis was performed by the 2A-24% method.

2.9 Western blotting

Hippocampal tissue was mixed with RIPA lysate, protease and
phosphatase inhibitor (100:1:1) and ground, and the supernatant was
subjected to polypropylene gel electrophoresis, incubated overnight at
4°C with primary antibody against DRD1 and DRD2, and then the
secondary antibody was incubated and developed, and the images
were collected.

2.10 Statistical analysis

Behavioral data were calculated by the preference score formula,
plotted and analyzed using GraphPad Prism software v10.1.2.
Comparisons between multiple groups were analyzed using one-way
ANOVA with p < 0.05 as the criterion for significance. All experiments
were repeated three times with p<0.05 as the criterion for
statistical significance.

3 Results
3.1 Behavioral analysis

The results of CPP showed that the preference scores of mice
in the 75 mg/kg Propofol group (Propofol group) changed
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significantly and at p < 0.05 compared to the saline control group,
the preference scores of mice in the Alcohol group changed
significantly and at p < 0.05 compared to the saline group, and
the preference scores of mice in the Propofol group showed the
same trend of change compared to the Alcohol group which
indicated that isoPropofol did form a mental dependence, see
(Figure 1B).

3.2 Transcriptomic analysis of propofol
group and alcohol group

In the transcriptomic analyses performed in the propofol and
alcohol groups, we used |log,FC| > 1 and p < 0.05 as the criteria
for screening differentially expressed genes. The results showed
that there were 152 genes with significant changes in expression
in the propofol group, of which 30 were up-regulated and 122
were down-regulated. The alcohol group, on the other hand, had
261 genes with significant changes in expression, including 18
up-regulated and 243 down-regulated genes (Figures 1C,D).
Cross-tabulation analysis of gene expression revealed 79 common
differentially expressed genes. Clustering heatmap analysis further
revealed that the propofol and alcohol groups were similar in
differential gene expression patterns (Figures 1E,F). KEGG
pathway enrichment analysis pointed out that samples from both
groups exhibited significant changes in cocaine addiction and
neuroactive ligand-receptor interaction pathways (Figures 1G,H).
In addition, GO functional enrichment analysis identified 10
significantly enriched biological processes covering signal
transduction, dopamine receptor activity, and lipid and organic
acid binding functions (Figures 11,]).

3.3 Metabolomic changes in propofol and
alcohol groups

Alterations in hippocampal metabolic profiles by propofol
addiction were assessed from metabolite expression levels, and
OPLS-DA analysis of the propofol and alcohol groups showed that
samples within the propofol and alcohol groups clustered together,
whereas the samples between the groups tended to be significantly
separated, suggesting that there were significant differences
between the groups (Figures 1K,L). Volcano plots of the
differential metabolites screened in the propofol group and
alcohol group are shown (Figures 2A,B). The cross-differential
metabolite heatmaps of the saline, propofol, and alcohol groups
clearly showed the differences in metabolites and 17 cross-
differential metabolites between the propofol and alcohol groups
and the control saline group (Figure 2C), which indicated that the
metabolite trends were similar in the propofol and alcohol groups.
Next, metabolite-related metabolic pathways were analyzed using
the KEGG pathway library and plotted as bar graphs
(Figures 2D,E), which showed that the metabolites in the propofol
group and the alcohol group were mainly concentrated in the
citric acid cycle, 2-oxocarboxylic acid metabolism, and alanine,
aspartate, and glutamate metabolic pathways. In addition to the
common metabolic compounds such as glycerophospholipids,
carboxylic acids and their derivatives, which were found in the
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propofol and alcohol groups, there were also antioxidant and
neuroprotective compounds such as benzothiazoles, coumarins
and their derivatives, organic oxides, and purine nucleosides, as
shown in the graphs (Figures 2EG).

3.4 Differences in gut microbes between
propofol and saline groups

To assess the effect of propofol addiction on gut microbial
diversity, we analyzed species evenness and richness in the
propofol group versus the saline group using Simpson’s index and
Shannon’s index. The results showed that species evenness and
richness were significantly higher in the propofol group than in
the saline group (Figures 2H,I). Principal component analysis
(PCA) and non-metric multidimensional scaling (NMDS) further
revealed a high degree of clustering of the samples in the propofol
group, indicative of a high diversity of community composition
(Figure 3A). Linear discriminant analysis of LEfSe software
identified potential biometabolic pathways (Figure 3B). Histogram
analysis of species abundance revealed significant changes in
microbial composition at the phylum level in the propofol group,
including the disappearance of the Campylobacter phylum, a
decrease in the thick-walled phylum, and an increase in the
Anaplasma phylum, Actinobacteria phylum, Pseudomonas
phylum, and Micrococcus wartyi phylum. At the genus level,
H. pylori disappeared, Streptococcus decreased, and Lactobacillus
spp- and Akkobacter spp. increased in abundance, changes
indicative of key biomarker flora in the propofol group
(Figures 3C,D). Comparative analysis of the macrogenomic data
using Stamp software gave us information on the species
composition abundance, functional prediction and their
differences in the propofol group. KEGG and eggNOG functional
prediction analyses revealed a significant increase in substance-
dependent, neural and drug-resistance-associated metabolic
pathways in the propofol group (Figures 3E,F).

3.5 Integrated analysis of metabolomics
and transcriptomics data

To gain a deeper understanding of the biological changes in the
hippocampal region of the propofol group, we constructed a correlation
matrix heat map of 79 common differential genes and 17 common
differential metabolites among the saline, propofol and alcohol groups
by Spearman correlation analysis (Figure 3G), which revealed the
expression patterns of key genes and metabolites. The analysis revealed
significant correlations (p < 0.05) between 1,062 pairs of differential
genes and metabolites, e.g., the dopamine receptor was positively
correlated with cis-aconitine and (R)-ergosterol-5-pyrophosphate, and
negatively correlated with docosahexaenoic acid (DHA), a metabolite
of lysophosphatidylethanolamine, and lysophosphatidylcholine. In
addition, OPLS-DA analysis of Top25 differential genes and metabolites
further revealed the correlation between them (Figure 3H). The
compound-reaction-enzyme-gene network diagram constructed using
Cytoscape 3.9.0 software (Figure 4A) revealed the potential interactions
and pathway regulation between metabolites and genes. These findings
not only elucidated the biological changes in the propofol group, but
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Changes in metabolomics in the hippocampus in the 75 mg/kg group. (A) Metabolite volcano plot of the propofol group. (B) Metabolite volcano plot of
the propofol group versus the alcohol group. (C) Gene expression heatmap of the saline, propofol and alcohol groups. (D) KEGG pathway enrichment
histogram for the propofol group. (E) KEGG pathway enrichment histogram for the alcohol group. (F) Pie chart of chemical classification of differential
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FIGURE 3
Characteristic gut microbiological changes in the propofol group and the control group. (A) PCA and NMDS analysis of gut microbes in the propofol
group versus the saline and alcohol groups. (B) Linear discriminant analysis of gut microbial metabolic pathways in the propofol group. (C) Changes in
species composition at the phylum level in the propofol group. (D) Species composition changes at the genus level in the propofol group. (E) KEGG
pathway maps for significant differences in microbial abundance in the propofol group. (F) Functional annotation maps of eggNOG for significant
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propofol group. *p < 0.05, **p < 0.01. (H) OPLS-DA analyses of differential genes with differential metabolites in the Top20.
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also provided important data for the discovery of therapeutic targets
and biomarkers for propofol addiction.

3.6 Network pharmacology and molecular
docking analysis

In this study, 473 propofol action targets and 588 addiction targets
were obtained by database screening, and Venn diagram analysis
showed that 37 targets were shared between the two (Figure 4B).
These targets were collated and visualized by a protein—protein
interaction (PPI) network constructed from the STRING database and
using Cytoscape 3.9.0 software (Figure 4C), with node color shades
indicating the strength of the protein—protein interactions. The GO
enrichment analysis identified 143 annotated pathways for biological
processes, 51 cellular components and 56 molecular functions, and
the analyses of each class The top 10 pathways were visualized
(Figure 4D), involving multiple key biological processes such as signal
transduction, chemical synaptic transmission, transmembrane ion
transport, etc. KEGG pathway enrichment analysis screened out 23
signaling pathways, of which the top 10 were mainly involved in
GABAergic synapses, morphine addiction, taste transmission, etc.
(Figure 4E), and the neuroactive ligand-receptor interaction pathway
was particularly prominent. Transcriptomics sequencing focused on
pathways related to neurological ligand-active receptor interactions
and cocaine addiction. Cross-analysis with transcriptomic data from
cocaine addiction models, seen in dataset GSE108836 (29) identified
38 common targets of action (Figure 4F), and KEGG enrichment
analysis further confirmed the importance of the neuroactive ligand-
5A).
pharmacological analysis, we screened the neuroactive receptor-

receptor pathway (Figure Combined with network
ligand pathway and mapped the network of genes in the pathway, and
found that the dopamine receptors DRD1 and DRD2 had a high
degree of interactions (Figure 5B); therefore, molecular docking
analyses of dopamine receptors DRD1 and DRD2 were performed,
and the results showed that isoproterenol binds with binding energies

of —6.9 and — 6.6 to DRD1 and DRD2, respectively (Figures 5C,D).

3.7 gPCR validation of differential genes

We screened eight differential genes from key pathways involved
in neural ligand-receptor interactions for real-time fluorescence
quantitative qPCR validation. These genes included DRD1, DRD2,
TH, TRH, PPP1R1B, CHAT, RGS9, and GPR6. qPCR validation
showed that the expression changes of these genes in the hippocampal
region were consistent with the transcriptome sequencing results, thus
validating the accuracy of the transcriptome data. This result is
detailed in Figure 5E, which provides a solid experimental basis for
further exploring the molecular mechanism of propofol addiction.

3.8 Western blot to verify the expression of
dopamine receptor

In order to verify the expression of dopamine receptors in the

hippocampus, protein immunoblotting was performed for verification,
and the results showed that the expression of dopamine DRD1 and
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DRD2 in the hippocampus of mice in the propofol and Alcohol groups
was decreased compared with that in the Saline group, which was
consistent with the results of the sequencing analysis (Figures 5EG).

4 Conclusion

Through this study, it was found that propofol had mental
dependence, and the addictive effect was the highest at the dose of
75 mg/kg, and the addictive effect decreased after a certain dose, which
provided a basis for the future use of propofol. Transcriptome and
network pharmacology showed that propofol addiction caused
significant expression of neuroactive ligand receptor pathway, and the
tricarboxylic acid cycle and alanine, aspartate, and glutamate pathways
in the hippocampus were significantly up-regulated. At the same time,
Campylobacter, Bacteroidetes, Actinobacteria, and Verrucomicrobia in
the intestinal flora were significantly increased. Therefore, it is inferred
that the increase of SCFAS in the gut interacts with the activity of
dopamine neurotransmitters in the hippocampal fatty acid metabolism,
amino acid metabolism and neuroactive receptor ligand pathway.

5 Discussion

In this study, we combined transcriptomic, metabolomic, and
metagenomic analyses of the hippocampus to provide new insights
into the molecular mechanisms of propofol abuse addiction. These
findings reveal the central role of the neural ligand-receptor interaction
pathway in propofol addiction, especially the changes of dopamine
neurotransmitters in the neuroreceptor pathway, and provide new
insights into the detailed mechanism of propofol addiction.

In the analysis of transcriptomics results, significant changes
in gene expression in the hippocampus following propofol
addiction were observed, and these changes were mainly focused
on the neuroactive ligand receptor pathway. Specifically, we found
significant changes in the expression of the dopamine receptors
DRD1 and DRD2, GPR6, and RGS9, which are closely related to
neuroadaptive changes, synaptic plasticity, signaling, and other
functions. These findings echo the neurobiological model
proposed by Koob and Le Moal et al., which posits that addiction
is a vicious cycle driven by a decline in the function of the brain
reward system and activation of the anti-reward system, where
chronic drug exposure leads to a decline in the function of the
reward neurotransmitter system and concomitant activation of the
anti-reward system, which induces down-regulation of dopamine
receptor expression, thereby increasing the risk of drug craving
and relapse (30, 31), causing downregulation of dopamine
receptor expression and a high risk of drug craving and relapse.
In addition, GPR6, a G protein-coupled receptor, has been
identified as a novel therapeutic molecular target for cannabidiol,
which provides new therapeutic perspectives (32), RGS9 and its
specific splice variant RGS9-2 play roles in the regulation of
morphine reward and dependence (33). Studies of the neuroactive
ligand pathway have revealed that the pathway contains a variety
of neurotransmitter systems including dopamine, endorphins,
glutamate, norepinephrine, 5-hydroxytryptamine, and gamma-
aminobutyric acid. Among these systems, the dopamine system
plays a central role in the regulation of motor, emotional, and
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reward-related behaviors. Therefore, we believe that the reciprocal
regulation of neural ligand-receptor interactions between genes
such as DRD1, DRD2, GPR6, and RGS9 is closely linked to the
reward effects and addictive behaviors of propofol.

Metabolomics further analyzes the effects of propofol addiction on the
hippocampal region, which produces metabolites including citric acid,
lysophosphatidylcholine, lysophosphatidylethanolamine, methylcoumarin,
and docosahexaenoic acid, all of which are involved in cellular signaling,
and energy metabolism related to the hippocampus. Especially dominated
by citric acid, which breaks down into a variety of short-chain fatty acids,
and the citric acid cycle also produces a variety of short-chain fatty acids.
Current research suggests that short-chain fatty acids have anti-
inflammatory effects, are involved in G protein-coupled receptors,
neurotransmitter synthesis, neuroprotection, and the brain-gut axis (34),
an increase in neuroprotection, signaling, and energy metabolism was
found in the chemical classification of metabolites. In addition, significant
cell membrane metabolic markers found in animal models of nicotine
addiction and methamphetamine addiction were phosphatidylcholine (35,
36), and significant changes in energy metabolism-related metabolites such
as citric acid cycle products and intermediates were similarly found in
human serum as well as in the hippocampus of methamphetamine addicts
(37), thus changes in metabolites in the hippocampal region of propofol
addiction reflect the effects of propofol on energy metabolism pathways,
neural signaling pathways involved in the production, activation, and
functioning of neurotransmitters in the neural ligand-receptor interaction
pathway to provide energetic substances, and reflect adaptive changes in
neuronal cells in response to chronic exposure to propofol, which may
further affect neurotransmitter function and neural network stability. This
is consistent with existing findings.

In addition to transcriptomics and metabolomics, intestinal
microbial macro-genomics sequencing was performed, and the results
revealed that propofol addiction resulted in significant changes in the
species abundance and composition of microorganisms in the intestine,
such as a decrease in Thick-walled phyla and an increase in Anopheles and
Actinomycetes, which were found to be the main phyla of the intestinal
tract, and that the Thick-walled phyla and the Anopheles produce, by
different means, SCFA, which can affect the brain by acting on G protein-
coupled receptors expressed by cells in the intestine. For example, short-
chain fatty acids act through G protein-coupled receptors such as FFAR2
and FFAR3, or by inhibiting histone deacetylase activity (38), and an
increase in the actinomycete phylum improves host resistance to disease
and maintains immune stability in the intestinal environment. Gut
microbes can affect the immune system, including influencing the
activation of immune cells and the production of cytokines. These
cytokines can cross the blood-brain barrier and affect neuroinflammation
and the activation state of microglia in the brain, which in turn affects
neurotransmitter homeostasis. For example, anaerobic bacteria of the
phylum Actinobacteria such as Bifidobacteria, Propionibacteria,
Corynebacteria, and Streptomyces modulate the immune-inflammatory
response by inducing regulatory T cells (39). In addition Actinobacteria
phylum has the ability to produce antibiotics, which helps to inhibit the
growth of pathogenic microorganisms, and is also involved in the
synthesis of vitamins in the intestinal tract and maintenance of intestinal
barrier function (40). Additionally the increase in Lactobacillus gates
suggests that there may be vagal involvement in the brain-gut connection,
and that certain specific gut microbes, such as Lactobacillus rohita, can
transmit signals to the microbe-gut-brain axis via the vagus nerve,
thereby affecting neuroendocrine metabolism and altering neurotrophic
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proteins, neurotransmitters in the hippocampus (41, 42). The gut
microbiota communicates bi-directionally with the brain via the
gut-brain axis. For example, changes in the metabolism of tryptophan, a
precursor for the synthesis of the neurotransmitter 5-hydroxytryptophan,
may affect mood and behavior (43). The mechanisms by which the gut
microbiota influences mood and behavior through the gut-brain axis are
multifaceted and involve complex interactions between the nervous,
endocrine and immune systems.

These findings further underscore the pivotal role of the
brain-gut axis in drug addiction and elucidate the intricate
regulatory mechanisms between gut microbiota and hippocampal
neural function. A key innovation of this study lies in the selection
of propofol, a widely used clinical anesthetic, as the research
subject, combined with neuroomics and gut microbiome analysis
to explore the molecular mechanisms underlying drug addiction.
However, we acknowledge several limitations, including the
constrained scope of experimental data and the absence of large-
scale dataset validation, which may restrict the generalizability
and long-term applicability of our findings. Moreover, the precise
mechanisms governing the interactions between gut microbiota
and the host nervous system remain to be fully elucidated. Future
studies should employ larger sample sizes and longitudinal designs
to comprehensively unravel the molecular mechanisms of propofol
addiction, thereby providing a more robust theoretical foundation
and practical insights for clinical interventions.
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West China Tianfu Hospital, Sichuan University, Chengdu, China

Objectives: Glioblastoma (GBM) is a highly malignant brain tumor with
complex molecular mechanisms. Histopathological images provide valuable
morphological information of tumors. This study aims to evaluate the predictive
potential of quantitative histopathological image features (HIF) for molecular
characteristics and overall survival (OS) in GBM patients by integrating HIF with
multi-omics data.

Methods: We included 439 GBM patients with eligible histopathological images
and corresponding genetic data from The Cancer Genome Atlas (TCGA). A total of
550 image features were extracted from the histopathological images. Machine
learning algorithms were employed to identify molecular characteristics, with
random forest (RF) models demonstrating the best predictive performance.
Predictive models for OS were constructed based on HIF using RF. Additionally,
we enrolled tissue microarrays of 67 patients as an external validation set.
The prognostic histopathological image features (PHIF) were identified using
two machine learning algorithms, and prognosis-related gene modules were
discovered through WGCNA.

Results: The RF-based OS prediction model achieved significant prognostic
accuracy (5-year AUC = 0.829). Prognostic models were also developed using
single-omics, the integration of HIF and single-omics (HIF + genomics, HIF +
transcriptomics, HIF + proteomics), and all features (multi-omics). The multi-
omics model achieved the best prediction performance (1-, 3- and 5-year AUCs
of 0.820, 0.926 and 0.878, respectively).

Conclusion: Our study indicated a certain prognostic value of HIF, and the
integrated multi-omics model may enhance the prognostic prediction of GBM,
offering improved accuracy and robustness for clinical application.

KEYWORDS

glioblastoma, histopathological image, genomics, transcriptomics, proteomics,
prognosis
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1 Introduction

Glioma is the most prevalent primary malignant tumor of the
brain, accounting for 40-50% of intracranial tumors (1). Glioblastoma
(GBM), classified as a WHO grade IV glioma, is the most common
(57.3% of all gliomas) and aggressive form of glioma in adults (2, 3).
The age-adjusted incidence rate of GBM is 3.22 per 100,000
population, with a median overall survival (OS) of 12-15 months with
standard treatment, while population studies suggest a median
survival of 8-10 months (4, 5). Approximately 7% of GBM patients
live for at least 5 years after diagnosis, defined as long-term survivors
(LTS) in previous research (6-8). Conventional treatments of GBM
include maximal surgical resection, postoperative radiotherapy and
chemotherapy; however, complete tumor resection is often
unattainable due to the tumor’s invasive nature and high recurrence
rate (9). Prognostic factors such as tumor stage, age, pathological
grade, KPS, extent of resection and certain molecular markers have
been identified as key indicators of GBM prognosis (10, 11). Therefore,
as a cancer characterized by multiple genetic and pathway alterations,
further investigation into comprehensive prognostic markers is critical
for guiding risk stratification, clinical treatment decisions and survival
prediction in GBM patients.

GBM derives from glial cells and neurons and exhibits a complex
gene expression profile with various molecular alterations that drive
Notably,
dehydrogenase-1 (IDH-1) and IDH-2 mutations are observed in
primary (6%) and secondary (70%) GBMs (13). Compared with IDH1
wild-type, the survival of IDHI1 mutant high-grade glioma patients is
(14). The O6-methylguanine-DNA
methyltransferase (MGMT) coded protein involved in methylated

its oncogenesis and progression (12). isocitrate

significantly  prolonged

bases and DNA repair and the methylation status of MGMT promoter
may be a significant predictor for sensitivity to chemotherapy or
radiotherapy (15, 16). Telomerase reverse transcriptase (TERT) can
activate telomerase to keep the telomeres intact and promote cell
proliferation. IDH1 mutant gliomas with mutations in TERT promoter
have exhibited better prognosis (17). Alpha thalassemia/X-linked
intellectual disability (ATRX) is also discovered as a mutational cancer
driver in GBM (18). GBM can be classified into subtypes based on
molecular features, including transcriptional profiles (classical,
mesenchymal, neural, proneural), genetic mutations (e.g., IDH1
mutations), and epigenetic alterations (e.g., CpG island methylator
phenotype, CIMP) and so on (19, 20). Therefore, establishing a
comprehensive and effective biomarker will be of great benefit to
prognostic prediction and therapeutic strategies for GBM patients.
In clinical practice, in addition to imaging examinations such as
CT and MRI, the final diagnosis is confirmed through
histopathological biopsy following tumor resection. Histopathological
images obtained from H&E-stained tumor tissue slides are routinely
used in definite diagnosis and staging of different cancers. The
development of computer-assisted medical image processing and
analysis systems is increasingly employed in digital pathological image
assessment. These systems can accurately and reproducibly capture
morphological, structural, and compositional changes in tissues and
cells, reducing the subjectivity associated with traditional pathologist
assessments (21). Commonly extracted histopathological image
features such as texture structure, gray level distribution and
morphological features including the size and shape of cell and nuclei,
have demonstrated potential in pathological diagnosis, classification
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and prognosis of human cancers such as breast cancer (22), colorectal
cancer (23) and lung cancer (24). In addition to histopathological
images, omics profiles such as genomics, transcriptomics and
proteomics have also been applied to patient stratification and
prognostic prediction. Integrating histopathological image features
with multi-omics data has shown promise in various cancers,
including renal cancer (25), lung cancer (26) and head and neck
squamous cell carcinoma (27). Therefore, exploring the integration of
histopathological image features with omics data holds significant
potential for prognostic prediction in clinical settings.

In this study, we focused on the analyses of histopathological
image features (HIF) and their correlation with genomic and
transcriptomic profiles, which has not been explicitly demonstrated
in GBM. We first assessed the overall capacity of HIF in classifying
somatic mutations, molecular and methylation subtypes of GBM via
different machine learning approaches. Subsequently, we identified
the prognosis-related histopathological image features and evaluated
the underlying correlation with gene expression profiles. Finally,
we constructed survival prediction models based on various omics
profiles and their integration. We validate these models with both an
internal test cohort and an external validation cohort, expecting to
enhance the accuracy of prognostic prediction for GBM patients.

2 Materials and methods
2.1 Study design and data acquisition

The overall framework of the study is illustrated in Figure 1, and
the specific process is described in the following sections. We obtained
a cohort of GBM samples with accessible clinical information,
genomics and transcriptomics data from The Cancer Genome Atlas
(TCGA) data portal' and matched proteomics profile from The
Cancer Proteome Atlas (TCPA) repository.” The corresponding H&E
histopathological images were obtained from The Cancer Imaging
Archive (TCIA).? A total of 439 GBM patients were selected from
TCGA based on the completeness of clinical records and image
availability of high-quality histopathological images in TCIA,
excluding cases with incomplete data. All included patients had
corresponding genomic, transcriptomic, and proteomic data for a
comprehensive multi-omics analysis. The GBM tissue microarrays
(TMA) of 67 patients with clinical and follow-up data were purchased
from Shanghai Outdo Biotech Co., Ltd. (Shanghai, China). Clinical
information of patients involved in TMA and TCGA cohorts is
provided in Supplementary materials 2, 3.

2.2 Image processing and feature
extraction

To extract the quantitative features from whole-slide
histopathological images, we applied the Openslide Python library
(28) to segment the images into 1,000 x 1,000 pixel sub-images.

1 https://portal.gdc.cancer.gov
2 http://tcpaportal.org/tcpa/
3 http://www.cancerimagingarchive.net/
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FIGURE 1

The workflow of data analysis and prognostic model construction. (1) The whole-slide histopathological images of GBM were segmented into sub-
images of 1,000 x 1,000 pixels. Through CellProfiler the histopathological image features (HIF) were extracted for subsequent analyses. (2) Image
feature selection and molecular features prediction based on HIF using different combinations of machine learning algorithms. (3) Construction of
prognostic models for overall survival in TCGA training set based on HIF genomics, transcriptomics and proteomics data. (4) Selection of prognostic
histopathological image features (PHIF) by two machine learning methods. Identification of prognostic gene modules and gene pathway analysis were
performed subsequently.
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Furthermore we randomly selected 50 sub-images on behalf of each
patient to minimize selection bias and reduce computational load.
Image feature extraction was conducted by CellProfiler (29)," an open-
source tool for biological-image analysis. The H&E-stained images
were converted to grayscale for the extraction of features, which can
be specifically categorized into 10 aspects including correlation, image
area occupied, image granularity, image intensity, image quality, object
intensity, object neighbors, object radial distribution, object size shape
and texture. In particular, the textural features were calculated by
CellProfiler to quantitatively present the perceived textures of
histopathological images, thereby measuring the extent and nature of
textures within objects in grayscale images. Through automatic
identification and segmentation, these quantitative features objectively
interpret the size, shape, spatial distribution, the texture of nucleus
and the relationship of pixel intensities, etc. Afterwards, each
sub-image was screened to exclude irrelevant features. Eventually, a
total of 550 image features were extracted, with the average feature
values of 50 representative sub-images of each slide calculated for
subsequent analysis.

2.3 Statistical analysis

2.3.1 Mutations and subtypes prediction

Initially, we randomly assigned the GBM samples into a training
setand a test set by a ratio of 1:1 using R package “randomizr” In order
to reduce overfitting caused by the large number of features,
we initially employed four machine learning algorithms for feature
selection to extract the most informative histopathological image
features (HIFs), including least absolute shrinkage and selection
operator (LASSO) (30), random forest (RF) (31), gradient boosting
decision tree (GBDT) (32), and extreme gradient boosting (XGBoost)
(33). Subsequently, we evaluated eight classifiers including RE, GBDT,
adaptive boosting (AdaBoost) (34), logistic regression (LR) (34),
decision tree (DT) (35), support vector machine (SVM) (36), naive
Bayesian (NB) (37) and K-nearest neighbor (KNN) (38) to determine
the optimal classification algorithm through the prediction of frequent
somatic mutations (i.e., ATRX, IDH, MGMT, and TERT) and
molecular subtypes defined by transcription profiles and epigenetics
(i.e., classical, mesenchymal, neural, proneural, and G-CIMP) based
on the selected imaging features and evaluated with 5-fold cross-
validation. By applying multiple approaches, we intended to verify the
feasibility and stability of the method in different algorithms. Based
on the test set, the performances of trained classifiers were validated
and compared respectively, among which RF demonstrated the
highest predictive accuracy, as evidenced in Supplementary material 1
and Figure 2.

2.3.2 Survival analysis

For survival analysis, we divided patients in the training cohort
into two groups based on the median value of individual HIFs, which
was used for Kaplan-Meier survival analysis and log-rank test to
compare overall survival (OS) between high-risk and low-risk groups,
with p <0.05 considered statistically significant. Univariate Cox

4 https://cellprofiler.org/
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regression was conducted based on all HIFs as continuous variables
to determine the hazard ratio (HR) and 95% confidence interval (CI)
and identify features significantly associated with overall survival.

2.3.3 Data pre-processing and feature selection

To synthetically evaluate the prognostic value of various omics
data types, we included independent omics data (HIF, genomics,
transcriptomics and proteomics) and integration of multiple features
(HIF + genomics, HIF + transcriptomics, HIF + proteomics and
HIF + omics) for further analysis. Patients were randomly distributed
into training and validation sets on a ratio of 1:1, ensuring a balanced
subset size for model training and independent evaluation to assess
generalizability. In the training set, we first included the 100 most
frequent somatic mutations to reduce the dimensionality in genomics
profile for subsequent analyses. Patients with an overall survival (OS)
of over 60 months were categorized into the long-term survival group,
while those with an OS of 1-12 months were placed in the short-term
survival group. Differentially expressed genes (DEGs) between the
two groups were conducted using the limma package in R, and the
top 100 significant DEGs were used for survival prediction.
Additionally, Metascape® was employed for enrichment analysis based
on the genomic profile.

2.3.4 Prognostic models construction and
validation

Based on the training set, we employed the random forest (RF)
algorithm with 1,000 decision trees and 5-fold cross-validation to
construct prognostic models via R randomForestSRC package. The RF
algorithm is a dimension reduction method that has preferable
performance in accessing vast amounts of input data and gives
estimates of the importance of variables. It can also conduct internal
unbiased estimates of the generalization error and improve model
accuracy. Meanwhile, the RF includes its own regularization through
tree pruning and ensemble learning. Furthermore, we performed
model validation based on the validation set through the estimation
of the AUC value of time-dependent ROC. Patients were then assigned
to high-risk group and low-risk group in line with the median value
of risk score computed by different models. Kaplan-Meier analysis
and log-rank test were performed between the groups to evaluate the
prediction capacity. Moreover, we carried out the decision curve
analysis (DCA) based on validation set to compare the net benefit
under a range of threshold probabilities of each model.

2.4 Selection of prognosis-related
histopathological image features

Two machine learning methods including least absolute shrinkage
and selection operator Cox (LASSO-Cox) regression (R package
“glmnet”) and support vector machines-recursive feature elimination
(SVM-RFE) (R package “€1071”) were performed independently to
identify potential informative image features related to prognostic
prediction. LASSO-Cox regression applies L1 regularization,
effectively most

reducing multicollinearity, selecting the

5 http://metascape.org
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survival-associated features and mitigating overfitting by shrinking
less relevant coeflicients to zero (39). The SVM model can classify data
points by maximizing the distance of the hyperplane with high
accuracy, thus identifying predictive models or classifiers. SVM-RFE
is a feature selection algorithm according to recursive feature deletion
sequences with maximum interval principle. It ranks features based
on their contribution to classification performance, iteratively
eliminating the least informative ones. The integration of LASSO-Cox
and SVM-RFE has been demonstrated to improve the model’s
generalizability and predictive performance by reducing overfitting
and enhancing feature selection reliability (40, 41). Eventually, the
features within the intersection of the results by two algorithms were
identified as the prognostic histopathological image features (PHIF).

2.5 Gene co-expression network analysis

We performed weighted gene co-expression network analysis
(WGCNA) based on training set to investigate the association of the

Frontiers in Medicine

prognostic histopathological image features and corresponding gene
expression, aiming to further understand the upstream biological
mechanisms. WGCNA (42) has been applied to identify modules of
genes with highly correlated expression by analyzing the connections
between corresponding genes and converting the expression profile
into the weighted network. Co-expressed gene networks may facilitate
the identification of underlying biological processes, candidate
biomarkers and certain clinical traits. Additionally, we applied
Metascape for enrichment analysis to estimate the interlinkage
between key modules.

3 Results

3.1 Prediction performance of HIF on
somatic mutations and molecular subtypes

In total we included 439 GBM patients with the matched
information of histopathological images and other omics from TCGA
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portal. To minimize overfitting caused by high-dimensional image
features, we initially employed XGBoost, GBDT, LASSO, and RF for
feature selection and extracted 550 histopathological image features
(HIFs) out of the segmented tumor tissue images. Subsequently, to
evaluate the clinical practicability of the 550 HIFs, we employed eight
algorithms (RF, GBDT, AdaBoost, LR, DT, SVM, NB, and KNN) as
classifiers in predicting four common somatic mutations (ATRX,
IDH, MGMT, and TERT) and five RNA-based molecular subtypes
and G-CIMP).
We systematically compared the predictive performances of all

(classical, mesenchymal, neural, proneural,
classifiers across multiple molecular features, and RF consistently
achieved the highest predictive accuracy among the eight classifiers,
independent of the feature selection method used. The AUC values for
RF models showed superior classification ability across all tested
molecular characteristics as shown in Figure 2 and
Supplementary material 1. Therefore, we selected RF as a robustly
performed algorithm for subsequent prognostic model construction.
Additionally, the HIF models validated by GBDT and AdaBoost
(ADABAG) also achieved a relatively accurate classification effect
under different feature screening methods, which indicates the clinical
practicability of HIFs in distinguishing the somatic mutations and

molecular subtypes of GBM.

3.2 Prognostic value evaluation of
histopathological image features

To assess the correlation between histopathological image features
(HIFs) and the prognosis of GBM patients, we conducted survival
analyses based on individual HIFs. We first assigned the patients into
two groups in line with the median value of each HIF (higher than
median vs. lower than median) for survival analyses. Afterwards,
we carried out univariate Cox analyses based on all HIFs to identify
protective prognostic imaging factors, and the top 20 features
significantly correlated with the overall survival (OS) was demonstrated
in Figure 3A. The four most significant HIFs, with the smallest p-value
included one Zernike shape feature (Median_Cells_AreaShape_
Zernike_5_5) and three cell texture features (Mean_Cells_Texture_
Contrast_3_45, Mean_Cells_Texture_DifferenceEntropy_3_45 and
StDev_Cells_Texture_SumAverage_3_0). In particular, Zernike features
are a series of 30 shape features based on Zernike polynomials, ranging
from order 0 to order 9, which have been frequently extracted for
representing the shape parameters in cell nucleus. Cell texture features
quantify the correlations between nearby pixels in the regions of interest,
which suggests that the global modes of cell nuclei and cytoplasm are
all related to clinical survival outcomes. The Kaplan-Meier survival
curves of four image features indicated significant differences between
groups with high-value and low-value features, demonstrating the
feasibility of HIFs in predicting the survival of GBM patients
(Figure 3B).

Additionally, according to the expression level of the four
predictive features mentioned above, we evaluated the sub-images
of high-expressed and low-expressed prognostic features.
We utilized TCGA internal validation and TMA external validation
cohorts to assess the robustness of the predictive models and
reduce the potential overfitting to the specific characteristics of the
initial dataset. These validation steps serve as important safeguards
against overfitting and bias, which enhances the reliability of our
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models across diverse datasets. The patients were identified as
high-risk and low-risk groups based on the median value of risk
scores, and the representative histopathological sub-images
showed visible differences in TCGA and TMA external validation
cohorts (Figure 3C). The image processing involving cell
recognition and segmentation was conducted by CellProfiler, and
different cell types were also outlined.

3.3 Integrated prognostic model of
histopathological image features and
genomics

To develop a more accurate predictive model for overall survival
(OS) in GBM patients, we estimated the prognostic value of genetic
profiles and further incorporated the HIFs with genomics data.
Patients were randomly assigned into training (n = 136) and validation
(n=135) sets. To enhance the stability of the measurement,
we estimated the mutation status of genes in training set and included
the 100 most common somatic mutations in the prognostic model to
reduce the dimensionality of the genomics data. The top 15 genes with
the most frequent alterations are presented in Figure 4A. Based on the
HIFs and 100 mutations we constructed prognosis-relate models in
the training set. We applied time-dependent ROC in the validation set
since it is more appropriate to represent time-to-event outcomes in the
prognostic models compared to the classical ROC curve analysis
approach (43). As illustrated in Figures 4C-E, the AUCs for
histopathological image features (HIF) model exceeded those of
genomics (G) model in 1-year (0.715 vs. 0.634), 3-year (0.813 vs.
0.723) and 5-year (0.829 vs. 0.692) respectively. Moreover, the
integrated model of HIF and genomics (HIF + G) reached a better
predictive capacity in 3-year and 5-year (AUC = 0.826 and 0.834) than
the former two single-omics models. According to the median value
of risk score acquired from each model, the patients were then divided
into high-risk and low-risk groups. The HIF model and integrative
model (HIF + G) showed more accurate prognostic performance
(HR = 3.86, 95%CI: 2.67-5.30, p < 0.001, Figure 4) as depicted in
Kaplan—Meier curves (Figure 4B).

To further validate the predictive power of the prognostic model,
we implemented an external verification using the TMA-GBM cohort.
Patients in the external validation set were also divided into high-risk
and low-risk groups according to the median risk score. The Kaplan-
Meier survival curve revealed a significant difference in survival
probability between the groups (p = 0.039, Figure 4F). The 1-year,
3-year and 5-year AUCs of time-dependent ROC were 0.716, 0.712,
and 0.703, respectively (Figure 4G). The results thus verified the
prognostic capacity of the HIFs in GBM patients.

3.4 Integrated prognostic model of HIF and
transcriptomics

Transcriptomics can serve as an approach for a comprehensive
understanding of the interconnection between the genome, proteome,
and cellular phenotype by analyzing the RNA transcripts that reflect
the underlying genotype. Based on the training set, we involved 100
whole expressed mRNA genes to decrease the dimensionality and
further build the transcriptomics predictive model of OS. The patients
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were categorized into short-term group (deceased, 12 months > OS
>1 month) and long-term group (OS >60 months) according to the
clinical survival status (4, 5, 7, 8). In addition, we applied Metascape
for pathways enrichment in the short-term survival group based on the
mRNA sequencing data (Figure 5A). Regulation of insulin-like growth
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factor (IGF) transport and uptake by insulin-like growth factor binding
proteins (IGFBPs) has been proven to modulate essential cellular
processes and be implicated in certain disorders including malignant,
metabolic and immune diseases (44, 45). Previous studies have
reported the potential effect of IGF in biological processes associated
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with tumor growth and invasion inhibition in GBM (46), which may
suggest a new effective target for anti-cancer treatment strategies.

As demonstrated in the validation set, the transcriptomics model
(RNA) displayed a good predictive performance for OS (1-year
AUC =0.751, 3-year AUC = 0.795 and 5-year AUC = 0.809), which were
about equal to the HIF model (1-year AUC = 0.722, 3-year AUC = 0.815
and 5-year AUC=0.835). Furthermore, we incorporated the
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transcriptomics and image features as the integrated model (HIF + RNA),
which achieved the highest accuracy with the 1-year, 3-year and 5-year
AUC increased to 0.769, 0.831 and 0.848 (Figures 5C-E). Additionally,
Kaplan-Meier survival analyses also revealed significant differences in

survival outcomes between the two groups, with the integrative

HIF + RNA model presenting the most notable prognostic value
(HR =7.15,95%CI: 4.51-10.41, p < 0.001, Figure 5B).
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3.5 Integrated prognostic model of HIF and
proteomics

To improve the prognostic prediction of GBM we also
incorporated proteomics profile from TCPA portal for further analysis
through the reverse phase protein array (RPPA), a high-throughput
proteomics method that can assess protein expression and activation
states in abundant samples using small amounts of material. In total
we involved 179 eligible protein profiles in the proteomics model based
on the validation set. The integration of image features and proteomics
features (HIF + P) achieved the highest AUCs in 1-year, 3-year and
5-year compared with the proteomics model (0.752 vs. 0.743, 0.835 vs.
0.813, 0.854 vs. 0.818) or the HIF model alone (Figures 6A-C). As
shown in the survival analyses, patients in the high-risk group were
significantly related to poor OS, and the integrated model (HIF + P)
attained the best performance in prognosis prediction among the three
models (HR = 6.35, 95%CI: 4.05-9.20, p < 0.001, Figure 6D).

3.6 Integrated multi-omics features for
survival prediction

According to the previous analyses, the histopathological image
features have presented certain effectiveness in prognostic prediction
for GBM patients, and histopathology + omics models have also
indicated enhancement in predictive performance and accuracy than
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the single-omics models. Therefore, we expect to explore the
prognostic capacity of a multi-omics predictive model incorporating
all the omics features (HIE genomics, transcriptomics, and
proteomics). Based on the validation set, the multi-omics model
achieved a 1-year AUC of 0.820, 3-year AUC of 0.926 and 5-year AUC
of 0.878, representing an improvement over the HIF + genomics,
HIF + transcriptomics and HIF + proteomics models (Figure 7A).
Kaplan-Meier survival analysis illustrated a significant difference in
survival between high-risk and low-risk groups (HR = 13.14, 95% CI:
7.95-25.95, p < 0.001, Figure 7B). Furthermore, the multi-omics
model demonstrated superior net benefit in survival prediction
compared to the other models (Figure 7C).

In order to identify the histopathological image features with
higher prognostic value for OS, LASSO-Cox regression and SVM-RFE
were performed independently. These combined approaches help
mitigate the risk of overfitting and ensure the robustness of selected
features across different selection frameworks. Previous studies (39—
41) have demonstrated that the combination of LASSO and SVM-RFE
enhances the reliability of prognostic feature identification in cancer
research. A total of five imaging features involved in prognosis were
selected via LASSO-Cox regression model, and SVM-RFE selected 12
imaging features with the most significant predictive ability.
Ultimately, three overlapped features were identified as prognostic
histopathological image features (PHIF), including StDev_Cells_
AreaShape_FormFactor, StDev_Cells_AreaShape_Orientation and
Mean_Cells_Texture_InfoMeasl_MaskedHematoxylin_3_90
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(Figures 8A,B). Representative sub-images and detailed information
of patients with high expressed and low expressed PHIF were
displayed in Figure 8C and Supplementary material 4.

To explore the upstream genetic mechanisms, we employed
WGCNA to construct a gene co-expression network in the training
set and identify the gene clusters significantly correlated with the
PHIF in GBM samples. Module-trait correlation analysis showed that
the red module (219 genes) and turquoise module (868 genes) were
significantly associated with the three prognostic image features of
GBM among the six identified gene co-expression modules
(Figure 9A). Therefore, we defined the red and turquoise module as
the key modules
subsequent research.

of significant prognostic relevance for

Subsequently, we performed an enrichment analysis to explain the
biological interpretations of the gene expression profile in the two
modules. Genes in the red module were significantly related to several
biological processes and pathways such as defense response to other
organism, myeloid leukocyte activation, leukocyte cell-cell adhesion,
activation of immune response and response to bacterium (Figure 9B).
The results indicated that these genes may be involved in immune
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function, a crucial aspect of tumor immunology, which plays an
important role in tumor initiation and progression. The genes in the
turquoise module were primarily enriched in categories related to cell
morphogenesis involved in differentiation, regulation of neuron
differentiation and nervous system development, synapse organization
and signaling (Figure 9C). These findings implied that turquoise
module genes may have potential association with central nervous
system pathways and cerebral function, which may correspond to
tumorigenesis and progression in GBM.

4 Discussion

In this study, we extracted quantitative image features from
histopathological images of GBM patients, and subsequently
constructed machine learning classifiers based on the HIFs to
discriminate the common molecular features of GBM. A predictive
model incorporating HIFs was established in the training set, with its
prognostic validity subsequently verified in both internal and external
validation cohorts. The results demonstrated the prognostic
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robustness of the predictive model. To enhance the predictive
performance, comprehensive prognostic models were built by
integrating HIFs with multi-omics data. Based on machine learning
approaches, we selected prognostic histopathological image features
(PHIF) and identified gene modules most strongly correlated with
PHIF through bioinformatics techniques. Notably, the predictive
power of OS in patients was significantly enhanced in multi-omics
models compared with the single-omics models, suggesting that this
approach may be promising for risk stratification and individualized
treatments for GBM patients.

Based on histopathological image features, we performed the
prediction of the common somatic mutations (ATRX, IDH, and

Frontiers in Medicine

TERT) and methylation (MGMT) in GBM through combinations
of eight independent machine learning algorithms. IDH mutations,
which occur in approximately 12% of GBM cases, are a well-
established prognostic marker associated with prolonged OS (47).
The mutation can induce downstream effects on cellular
metabolism and epigenetic regulation (48). Previous studies have
reported the predictive value of MRI radiomics models for
identifying IDH1 mutations in GBM (49, 50), as well as the
characterization of core signaling pathways in IDH wild-type
tumors (51). The prediction ability of histopathological image
features in IDH mutation has not been widely explored, while it
may represent an important avenue for further research in
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Identification of co-expressed gene modules. (A) Heatmap of the relationship between gene modules and prognostic histopathological image features
(PHIF) through WGCNA. The red module and turquoise module showed the most significant correlation. (B) Metascape enrichment network of genes
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prognostic evaluation and targeted therapies for GBM. MGMT
methylation status and TERT promoter mutations have also been
recognized as powerful diagnostic and prognostic indicators in
GBM (2, 52). Meanwhile, we also conducted the prediction of four
mRNA-based molecular subtypes (classical, mesenchymal, neural,
proneural) and the G-CIMP methylator phenotype. The prognostic
significance of G-CIMP+ subsets among glioma types has been
investigated in previous studies (53, 54). For instance, 1p/19q
codeletion and MGMT promoter methylation may act as
therapeutic predictive markers in GBM (55). Our random forest
predictive model based on HIFs exhibited certain accuracy and
effectiveness in predicting GBM molecular characteristics, which
may contribute to improving current clinical examinations and
diagnostic practices.

Subsequently, we constructed prognostic models through
random forest algorithm based on single-omics and integrated
multi-omics data. Image features of histopathology tissue slides
can infer morphological changes in tumor cells and
microenvironment, which have proven valuable in identifying
pathology biomarkers and predicting clinical outcomes through
machine learning techniques (56-58). A fair number of

computational histopathologic models have also been applied in
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the prognostic prediction of diseases such as breast (59), lung (60)
and colorectal cancers (61). Consistent with previous studies, the
image features with significant prognostic power of OS we selected
primarily pertained to Zernike and cell texture (i.e., contrast, sum
average, and difference entropy). Zernike shape features in nuclei
and cytoplasm are extracted frequently to identify long and short
term survival (62). In addition, the texture features are frequently
used to represent the distribution and variation of pixel intensity,
as well as the relationship between pairs with different intensity
values in the regions of interest. While many studies have
established prognostic modules based on single-omics data source
or combination of quantitative histopathological image features
and genomics features (21, 53), our study focused on a more
comprehensive evaluation of image features to provide additional
prognostic efficiency and precision of the prognostic model. By
integrating HIFs with genomics, transcriptomics and proteomics
data, we developed a multi-omics model incorporating all
features, which eventually achieved superior prediction
performance compared to other models. Additionally, we further
proposed external validation by involving an extra TMA cohort,
further supporting the robustness and generalizability of

our findings.
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An intriguing observation in our study was that the model
based solely on HIFs slightly outperformed the combined HIF and
genomics (HIF + G) model in terms of predictive performance, as
shown in Figure 4B. This unexpected finding prompted further
reflection on the interaction between histopathological and
genomic data in prognostic modeling. One possible explanation
lies in feature redundancy and confounding effects that HIFs
inherently capture tumor morphological and microstructural
features, which may already correlate with patient prognosis. The
addition of genomic features that provide overlapping or weakly
correlated prognostic signals may introduce noise rather than
improving predictive accuracy. This aligns with established
principles in machine learning, where the mere inclusion of
additional variables does not necessarily enhance model
performance; instead, feature interactions must be carefully
managed to avoid confounding effects. Moreover, the non-linearity
between histopathological and genomic data may contribute to
this outcome. While HIFs reflect macroscopic tumor morphology,
genomic alterations influence prognosis through intricate
molecular pathways that may not exhibit direct correlations with
image-derived features. Traditional machine learning models may
struggle to capture these complex interactions effectively,
highlighting the need for alternative fusion strategies such as deep
learning or graph neural networks to better integrate data from
different modalities.

Despite the robust predictive power of HIFs alone, we emphasize
the importance of multi-omics integration for comprehensive patient
profiling. While the HIF + G model did not significantly outperform
the HIF model alone, the incorporation of transcriptomic and
proteomic data substantially improved the accuracy of our prognostic
models. This suggests that multi-omics integration holds promise for
enhancing model generalizability and robustness across diverse
patient populations. Further optimization of feature selection and
model refinement will be necessary to fully leverage the potential of
multi-omics data.

Through SVM-RFE and LASSO-Cox regression machine learning
algorithms, we identified three prognostic histopathological image
features (PHIF) concerning cell morphology and texture. We also
explored the upstream molecular mechanisms of these features by
identifying relevant gene co-expression modules via weighted gene
co-expression network analysis (WGCNA). Enrichment analysis of
the red and turquoise gene modules demonstrated significant
prognostic association with molecular pathways mainly involved in
immune response, cell morphogenesis involved in differentiation,
development and regulation of central nervous system function. For
instance, leukocyte cell adhesion plays a crucial role in the progression
and resolution of innate immunity (63). Myeloid leucocyte activation
reveals exposure to activating factors and has been regarded as one of
the major forces in immunosuppression in tumor progression (64).
The genes enriched in cell morphogenesis related pathways might
suggest the association with tumor angiogenesis and cell adhesion. In
addition, regulation of neuron differentiation, trans-synaptic signaling
and gliogenesis also suggest a close connection with biological
processes in GBM development (65-67). The results may offer an
opportunity to comprehend the association of histopathological image
features and the upstream mechanisms of the oncogenesis and
progression of GBM.
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In conclusion, this study demonstrated the potential of
histopathological image features in predicting molecular
characteristics and classifying molecular subtypes. By integrating
histopathological image features with multi-omics data, we developed
comprehensive prognostic models and subsequently analyzed the
associated upstream biological processes. The integrative multi-omics
model has the potential to enhance prediction performance for OS
with greater accuracy and robustness, thereby contributing to risk
stratification, prognostic evaluation, and personalized treatment
strategies for GBM patients.

However, several limitations should be addressed. Firstly, while the
prognostic models were validated using an external TMA cohort to
assess prediction stability, a larger-scale multi-center dataset is needed to
enhance the applicability and reliability of our findings. Secondly, the
genomic features of patients with intermediate survival (12-60 months)
warrant further investigation, as they may provide additional insights
into treatment response and prognostic markers. Additionally,
discrepancies and potential biases in multi-omics data could impact the
results. Future research should explore alternative data integration
strategies to optimize the synergy between histopathology and molecular
alterations. We also acknowledge the lack of unified visualization for all
survival curves and model comparisons. Although constrained by
computational limitations, we recognize the value of such visual
summaries and are committed to improving model visualization and
interpretability in future work, hoping to provide clearer insights for both
clinical and research applications. Lastly, further clinical and
experimental research is required to elucidate the molecular mechanisms
underlying the relationship between histopathological image features
and survival outcomes in GBM patients.
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Glossary

AdaBoost - Adaptive boosting

AUC - Area under the curve

CI - Confidence interval

DCA - Decision curve analysis

DEG - Differently expressed gene

DT - Decision tree

GBDT - Gradient boosting decision tree
GBM - Glioblastoma

HIF - Histopathological image features
HR - Hazard ratio

KNN - K-nearest neighbor
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LASSO - Least absolute shrinkage and selection
operator

LR - Logistic regression

NB - Naive Bayesian

OS - Overall survival

PHIF - Prognostic histopathological image features
RF - Random forest

ROC - Receiver operating characteristic

SVM - Support vector machine

TMA - Tissue microarrays

WGCNA - Weighted gene co-expression network
analysis

XGBoost - Extreme gradient boosting
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Multi-omics insights into
biomarkers of breast cancer
associated diabetes: a
computational approach

Tamizhini Loganathan and C. George Priya Doss*

Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and
Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India

Introduction: Breast cancer (BC) and diabetes are multifaceted diseases
with interconnected molecular mechanisms that are not yet fully elucidated.
These diseases share common risk factors, biological pathways, and treatment
outcomes.

Methods: This study utilizes an integrative computational approach to investigate
the interplay between BC and diabetes in African American (AA) and European
American (EA) cohorts. It employs transcriptomic and exomic analyses to
identify shared pathways and potential therapeutic targets.

Results: The pooled cohort of differential expression analysis identified 2,815
genes differentially expressed in BC patients with diabetes compared to those
without diabetes, including 1824 upregulated and 990 downregulated genes.
We reanalyzed transcriptomic data by stratifying BC patients with and without
diabetes into two cohorts, identifying 3,245 DEGs in AA and 3,208 DEGs in
EA, with 786 genes commonly altered between both groups. Whole-exome
sequencing (WES) of 23 BC patients with diabetes revealed 899 variants across
208 unique genes, predominantly missense mutations. Among these, nine key
genes were prioritized, with TNFRSF1B (L264P) and PDPN (A105G) identified as
the most deleterious variants. Functional enrichment analyses highlighted the
significant involvement of pathways related to extracellular matrix organization,
angiogenesis, immune regulation, and signaling processes critical to cancer
progression and metabolic dysfunction. The TNF pathway emerged as a central
link connecting chronic inflammation, insulin resistance, and tumor growth.
TNF-mediated mechanisms, including NF-xB activation, oxidative stress, and
epithelial-to-mesenchymal transition (EMT), were found to drive both diseases,
promoting tumorigenesis, immune evasion, and metabolic dysregulation.

Conclusion: This study provides critical molecular insights into the shared
mechanisms of BC and diabetes, identifying the TNF pathway as a key therapeutic
target to improve outcomes for patients with these interconnected conditions.

KEYWORDS

breast cancer, diabetes, transcriptomics, exome analysis and TNF pathway,
bioinformatics
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1 Introduction

Breast cancer (BC) is a multifaceted disease characterized by a
wide range of genetic, molecular, and phenotypic variations (1). It
remains one of the most prevalent malignancies among women
worldwide, with significant heterogeneity in its clinical presentation,
prognosis, and therapeutic response (2). Concurrently, diabetes, a
chronic metabolic disorder characterized by hyperglycemia and
insulin resistance, has been increasingly recognized as a comorbidity
that influences cancer risk, progression, and treatment outcomes (3,
4). The intersection of BC and diabetes presents a unique and
challenging clinical scenario that warrants a deeper understanding of
the underlying molecular mechanisms and potential biomarkers (5).
Diabetes has been implicated in altering the tumor microenvironment,
enhancing chronic inflammation, promoting oxidative stress, and
disrupting metabolic pathways, all of which can contribute to cancer
initiation and progression (6, 7). The coexistence of diabetes with BC
introduces additional layers of complexity, influencing tumor biology,
therapeutic efficacy, and patient survival (3). Patients with diabetes are
often associated with poor outcomes, including higher recurrence
rates and reduced overall survival, potentially due to delayed
diagnosis, altered pharmacokinetics of anticancer drugs, and the
impact of hyperglycemia on cancer cell metabolism (8).

Advancements in high-throughput technologies, such as
transcriptomics and exome sequencing, have significantly
enhanced our ability to understand the molecular landscape of
diseases (9). Exome sequencing facilitates the identification of
somatic mutations, copy number variations, and other genomic

10.3389/fmed.2025.1572500

alterations that drive cancer development (10). Conversely,
transcriptomics provides insights into gene expression patterns,
revealing dysregulated pathways and potential therapeutic targets
(11, 12). Integrating transcriptomics and exome data has proven
to be a powerful approach to uncover genetic and transcriptomic
alterations, providing a more comprehensive understanding of the
molecular mechanisms driving conditions such as cancer and
other diseases. This integration has the potential to identify novel
biomarkers and therapeutic targets. Biomarkers are invaluable for
stratifying patients, predicting therapeutic responses, and
monitoring disease progression (13-15). Few studies have
explored the diabetes-associated gene expression profiles in BC,
revealing the unique signatures that could be targeted
therapeutically or used as diagnostic tools (16-19). Understanding
the molecular interplay between BC and diabetes can pave the way
for personalized medicine approaches, ensuring more effective
and tailored treatments.

In this study, we aim to explore the biomarker landscape in BC
with diabetes (African American (AA) and European American
(EA) cohorts) through a comprehensive analysis of transcriptomics
and exome data. By examining the transcriptomic and genomic
profiles specific to this cohort, we seek to identify key molecular
players and pathways that underlie the interaction between these
two conditions. Our findings could provide insights into the
mechanistic basis of BC in diabetic patients, highlight potential
therapeutic vulnerabilities, and contribute to the development of
precision oncology strategies. The detailed workflow is illustrated in
Figure 1.

Samples - 73 BC without diabetes
s 2 / @34 | Transcriptomics | b | Exome analysis |
? 7 \
Filt
1:226(1 ~ BC with diabetes o, .
(n=66) (0=32) Identification of Biomarkers
Transcriptomics analysis Exome analysis
& - A
| Dataset retrieval (GEO database) I | Dataset retrieval (SRA database) |
H H
| Accession ID- GSE202922 I | Accession ID - PRINA840859 |
: \4
A4 : : Samples taken only tumor samples
| /.%nalysm - Limma package | associated with diabetes (n=32)
v v
Normalization (log2 | Filtered - 23 samples |
transformation) v
v Downstream data analysis
Differential Expression analysis A o Raw reads (fastq)
(DEGs) e Read quality(FastQC)
: e Read alignment (BWA)
v Hdentifying e Variant Calling (SAM
Functional Enrichment Analysis potentially tool, BCFtool,mpileup)
(EnrichR) deleterious o VEP (annotation)
variants
J

FIGURE 1

Integration of transcriptomics and exome data analysis. The figure illustrates the workflow and outcomes of integrating transcriptomics and exome
data analysis. Transcriptomics data provides insights into differential gene expression across conditions, while exome data reveals coding region
mutations. The integration identifies overlapping features, including genes with significant expression changes and mutations. This combined approach
highlights key biomarkers, potential driver genes, and pathways associated with the biological process of interest.
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2 Materials and methods
2.1 Transcriptomics data analysis

All data used in this study were obtained from the NCBI
database. We acquired the gene expression profiling dataset produced
through high-throughput sequencing (GSE202922) (16) using
Iumina HiSeq 3,000 from the publicly available GEO database (20).
The dataset has a total of 73 samples, and a further 66 samples have
raw counts. A total of 66 samples were included in this study,
comprising 32 diabetic and 34 non-diabetic cases. The detailed
metadata information, along with transcriptomics data of the
66 samples, were described in Supplementary Table 1 and
Supplementary Figure 1A. We also conducted race-specific
transcriptomic analyses using datasets from African American (AA)
and European American (EA) cohorts. The metadata for these
cohorts is provided in Supplementary Table 2. GEO2R is a web-based
analysis tool that enables user to compare multiple sample groups
within a GEO Series to find deregulated genes under certain
experimental conditions (21). Moreover, differentially expressed
genes (DEGs) were detected using the limma R package (22),
applying a threshold of |log2FoldChange| > = 0.5, adj p < =0.05, and
p < =0.05. All statistical analyses and data visualization were carried
out using R/Bioconductor packages. Statistical plots such as boxplot
and UMAP plot were performed and analyzed.

2.2 Exome data analysis

The study also utilized Whole Exome Sequencing (WES) data
with ID: PRINA840859 comprising 32 individuals with BC-associated
diabetes (16). Supplementary Figure 1B provides detailed information
on the selected exome data. After verifying the availability of exome
data, 23 sample reads were retrieved and analyzed. These samples were
subjected to exome sequence analysis. Sequencing was performed on
Ilumina NovaSeq 6,000 systems, generating paired-end reads. A shell
script was employed to download the sequencing reads from the ENA
database (23). The exome sequencing pipeline involves a
comprehensive workflow for processing, analyzing, and interpreting
genetic data to ensure high accuracy and reliability in identifying
variants. The process begins with quality control using FastQC (24),
which evaluates critical metrics such as read quality scores, GC
content, and adapter contamination. This step helps to identify
potential issues in the raw FASTQ files, ensuring only high-quality
reads proceed to the next stage. Tools like Trimmomatic remove
low-quality bases and adapter sequences in the read preprocessing
step. Reads with quality scores below a threshold (commonly Q30) are
trimmed or discarded, producing a clean dataset suitable for
downstream analysis. Next, the high-quality reads are aligned to the
human reference genome GRCh38 (25) using the BWA-MEM
algorithm (26), a widely used tool for efficient and accurate alignment
of short-read sequences. This step generates SAM files containing
mapped reads and their corresponding positions on the genome.
These SAM files are converted into BAM format using SAMtools,
sorted by coordinate order, and indexed to enable efficient querying
and visualization in downstream applications. The variant calling step
identifies genetic variants such as SNPs and indels (27). BCFtools
generate a pileup of aligned reads, and variants are called highly
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confidently (28). The resulting data is output in the Variant Call
Format (VCF), which contains detailed information about each
identified variant.

Once variants are called, they undergo filtering and annotation.
Each sample VCF was merged using the “VCFmerge tool” and the
Galaxy tool. The Ensembl Variant Effect Predictor (VEP) was used to
annotate the functional consequences of genes (29). Filtering ensures
that only high-confidence variants are retained by removing
low-quality or potentially false-positive calls. Tools like the BCFtools
filter allow for applying stringent criteria, such as minimum quality
scores or read depth thresholds. Annotating the filtered variants with
databases such as dbSNP and ClinVar provides functional insights,
including potential pathogenicity, population frequency, and relevance
to known diseases. The missense variants were retrieved and further
used for functional analysis.

2.3 Functional enrichment analysis

Functional analysis of the differentially expressed genes (DEGs)
identified from the transcriptomic analysis was conducted using
EnrichR (30). Additionally, common genes identified from both
transcriptomic and exome analyses were analyzed. Functional
enrichment analysis included Gene Ontology categories: Biological
Process (GO-BP), Cellular Component (GO-CC), and Molecular
Function (GO-MF), as well as pathway analyses using KEGG and
Reactome. Protein-coding genes with a p-value < 0.05 were used as
the background gene set.

2.4 ldentification of potentially deleterious
variants

Genes featuring missense variants from a curated in-house list of
cancer-associated genes were subsequently examined for functional
effects using the PredictSNP web tool (31). This examination utilized
six well-known predictive tools, MAPP, PhD-SNP, PolyPhen-1,
PolyPhen-2, SIFT, and SNAP, to detect potentially harmful variants
(missense).

MAPP demonstrated that the likelihood of disease or cancer risk
is closely linked to breaches of physicochemical limitations due to
amino acid variations (32). PhD-SNP, based on support vector
machines (SVMs), was used to determine whether a given point
mutation was a neutral polymorphism or associated with genetic
disorders (33). PolyPhen-1 analyzed the impact of missense variants
on protein structure and function (34). In contrast, PolyPhen-2
incorporated both sequence- and structure-based features, utilizing a
Naive Bayesian classifier to predict the consequences of amino acid
substitutions. Variants identified as “probably damaging” or “possibly
damaging” (scores >0.5) were categorized as harmful, whereas
“benign” variants (scores <0.5) were regarded as acceptable. Scores
nearer to 1.0 were more prone to be damaging (35).

SIFT predicted the potential harm of variants using a normalized
probability score, where scores <0.05 were deemed harmful and scores
>0.05 were considered neutral. The SIFT score assessed the effect of
amino acid substitutions on protein function (36). SNAP was used to
evaluate the functional impact of missense variants (37). Protein
stability alterations due to single-point variants were forecasted using
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I-Mutant 2.0, which categorized variants into two groups: reduced
stability (<0 kcal/mol -decrease) and enhanced stability (>0 kcal/
mol - increase) (38).

The evolutionary conservation of amino acid positions for the
most deleterious variants were assessed using the ConSurf online tool.
Conservation scores ranges from 1 (most variable positions) to 9
(most conserved positions), providing insights into the variants’
functional significance (39).

3 Results

3.1 Transcriptomics and functional analysis
of pooled cohort

To identify differentially expressed genes (DEGs) between BC
patients with and without diabetes, we utilized normalized expression
data from the GEO database. The GEO2R tool, based on the limma
package, was employed for the analysis. 2,814 DEGs were analyzed
across 66 samples, including BC without and BC with diabetes
samples. A boxplot is a graphical representation of the distribution of
a dataset that shows its central tendency and variability. It provides a
concise summary of the data’s statistical properties across samples. The
boxplot of each group comparison is mentioned in the Figure 2A. A

10.3389/fmed.2025.1572500

UMAP plot is a dimensionality reduction technique that is particularly
useful for visualizing high-dimensional data, such as gene expression
values plotted in Figure 2B. The comparison revealed 2,814 DEGs
comprising 1824 upregulated and 990 downregulated genes (p-
value <= 0.05, adj p-value <= 0.05, |log2 fold change| > =0.5). The
DEGs were visualized using a volcano plot (Figure 2C), highlighting
significant genes with biological relevance. The detailed results of
DEGs are mentioned in Supplementary Table 3. The heatmap
illustrates the expression levels of selected genes across 66 samples,
with rows representing genes and columns representing samples, as
mentioned in Figure 2D.

The functional enrichment analysis of 2,814 DEGs was performed
using EnrichR. The background genes are protein-coding genes with
p-value<=0.05. The functional terms are GO (Gene ontology) terms
and KEGG pathways. Significant enrichment is seen in processes such
as extracellular matrix organization, regulation of cell migration,
angiogenesis, and circulatory system development. These are key
processes in tissue remodeling, cancer metastasis, and vascular
development. Highlighted components include collagen-containing
extracellular matrix, cell junctions, plasma membrane raft, and
sarcolemma. These components are critical for cellular integrity,
signaling, and intercellular communication. Functions such as
tyrosine kinase activity, platelet-derived growth factor binding, and
kinase inhibitor activity dominate. These molecular functions are

B)

UMARP plot, nbrs =15
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FIGURE 2

GSM6138489

Statistical plots of transcriptomics data. (A) The boxplot represents the distribution of normalized transcriptomics data across all samples. Each box
corresponds to an individual sample, with the central line representing the median expression level. (B) The UMAP plot illustrates the clustering of
transcriptomics data, with each point representing an individual sample. Samples are color-coded based on their respective groups (BC with diabetes
vs. BC without diabetes). This visualization highlights the underlying structure and relationships in the dataset, revealing group-specific patterns. The
"YES" label represents the BC with diabetes, and the "NO" label represents the BC without diabetes. The color-coded representation of the "YES” label is
green, and the "NO" label is purple. (C) The volcano plot shows the relationship between statistical significance for all genes. Significant upregulated
and downregulated genes are highlighted in distinct colors with respective thresholds. This visualization identifies key differentially expressed genes.
The red denotes the upregulated genes, and the blue indicates the down-regulated genes. (D) The heatmap visualizes the expression levels of selected
genes across 66 samples. Rows represent genes, and columns represent samples.
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often associated with signaling pathways and therapeutic targets in
cancer and other diseases. Enriched pathways include systemic lupus
erythematosus, cell cycle regulation, ECM-receptor interaction, and
PI3K-Akt signaling. These pathways are relevant to immune disorders,
cancer progression, and extracellular matrix interactions. The results
suggest an association with processes and pathways related to cancer
progression, immune regulation, and extracellular matrix dynamics.
The length of the bar indicates the top function in the barplot. The
detailed functional results are mentioned in Figure 3.

3.2 Transcriptomics and functional analysis
of AA and EA cohorts

To identify DEGs between BC patients with and without diabetes,
we analyzed normalized expression data from the GEO database
separately for African American (AA) and European American (EA)
cohorts. The analysis was performed using the GEO2R tool, which is
based on the limma package. In the African American (AA) cohort, a
total of 3,245 differentially expressed genes (DEGs) were identified
from 57 samples, including 1,922 upregulated and 1,323
downregulated genes, based on thresholds of p-value < 0.05, adjusted
p-value <0.05, and |log, fold change| > 0.5. Similarly, in the European
American (EA) cohort, 3,208 DEGs were detected across 17 samples,
with 1,640 genes upregulated and 1,568 downregulated using the same
statistical criteria. Notably, 786 DEGs were found to be shared between
the AA and EA cohorts. The statistical plots of boxplot and UMAP
were performed and mentioned in Supplementary Figure 2. The
detailed information of DEGs of both the cohorts were mentioned in
the Supplementary Tables 4, 5.

10.3389/fmed.2025.1572500

The functional enrichment analysis of each cohort was performed.
The functional enrichment analysis of 3,245 (AA cohort) and 3,208
(EA cohort) DEGs was performed using EnrichR. The background
genes are protein-coding genes with p-value<=0.05. Some of the
KEGG?s significant functions are cell cycle, ECM receptor interactions,
PI3K-Akt signaling, and AGE-RAGE signaling pathway in diabetic
complications, and these functions were specific to the AA cohort.
Some of the important functions in the EA cohort are Oxidative
phosphorylation and Diabetic cardiomyopathy. The detailed
information on these enrichment analyses is mentioned in
Supplementary Figures 3, 4.

The Venn diagram illustrates the overlap in transcriptomic data
between the African American (AA) and European American (EA)
cohorts, revealing 786 genes common to both groups
(Supplementary Figure 5A). Further functional analysis of
GO-BP,GO-CC,GO-MF and KEGG pathways were performed on
common genes. Some of the important functions are Notch signaling
pathway and Hippo signaling pathway. Both these functions were
related to BC and diabetes. The detailed functional enrichment

analysis were mentioned in the Supplementary Figures 5B-E.

3.3 Exome data analysis

We retrieved WES datasets for BC with diabetes from the NCBI
SRA database. The tumor data of BC with diabetes (1 = 23) were only
taken for further analysis. Each sample was processed using a
computational pipeline tailored to laboratory protocols. Sequence
quality was assessed using the FastQC tool. High-quality data for
analysis was ensured by trimming low-quality reads, removing
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adapters, and further validating the sequences’ base quality. Following
the evaluation of read quality, the final reads were mapped to the
human reference genome GRCh38.p13 (hg38) utilizing the BWA
aligner with default settings. Every dataset attained a total alignment
rate surpassing 85%. SAM tools were employed to process and
enhance the sequenced files further in the “SAM” format. The SAM
files were first transformed into BAM format by utilizing the “samtools
view” command. This transformation enabled later processes,
including file sorting, indexing, and arranging mapped reads for
further analysis. Prior to indexing, samtools organized the aligned
reads and clustered them according to particular genomic areas. In
conclusion, base calls from the mapped reads aligned to the reference
sequence were compiled using the “samtools mpileup” command.
After processing the output from “mpileup” with BCFtools, SNPs
in relation to the reference genome were identified and interpreted as
variations. The VCF and its binary counterpart, BCE, were used in the
analysis to handle the data. The resulting output for each dataset was
provided in a VCF format, containing detailed information about
variant positions, types, and quality. Each VCF file was annotated
using the Ensembl VEP database (release 113) which provided a
thorough analysis of the variants detected in each sample. All
identified variants are single-nucleotide (SNVs), accounting for 100%
of the dataset. There are two types of variants: non-coding variants
and coding variants. The non-coding variants constitute 56.9% of the
total, including regions like upstream, downstream, and intronic
variants. The coding variants represent 43.1%, further categorized into
missense variants 96%, synonymous variants 3%, stop-gained 1%, and
no start-lost variants. The results are depicted in Figure 4A. Among

10.3389/fmed.2025.1572500

the 3,238 observed missense variants in the VCEF file, filtered 899
missense variants were chosen for further analysis (no novel variants
were detected) (Figure 4B). After removing duplicate genes in the 298
overlapped genes, 208 unique genes were finalized for further analysis.
The
Supplementary Table 6. The distribution of 208 genes with respective

detailed results of missense variants are mentioned in

metadata is depicted in Figure 5.

3.4 ldentification of shared genes and their
respective functional analysis

The Venn diagram illustrates the overlap between transcriptomic
and exomic data. A total of 2,804 unique genes were identified only in
transcriptomic analysis. One hundred ninety-seven unique genes are
found exclusively in the exomic data. Eleven genes are shared between
the datasets, representing key potentially important genes across
transcriptional and mutational levels. The two genes with no variations
were excluded from the analysis. The nine genes comprises six
upregulated genes (SKI, TNFRSF1B, PDPN, SLC25A34, EPHA2, and
IFFO2) and three down-regulated genes (ARHGEF16, FBXO6, and
PADI2). The results of overlap genes are mentioned in
Figure 6A. We compared the selected genes across two different
cohorts AA and EA populations. Four genes such as SKI, TNFRSFIB,
SLC25A34, and EPHA2, were present in both cohorts.

The functional analysis of nine genes was performed and analyzed,
including the functional categories such as GO-BP, GO-CC, GO-ME,
and the Reactome pathway. The GO-BP enriched terms include
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Exome data analysis. Exome data analysis was conducted on tumor samples (n = 23) from breast cancer patients with diabetes. Variants were
annotated using the VEP tool. (A) A pie chart was generated to classify coding and non-coding variants. (B) Among the filtered coding variants, 96%
were identified as missense variants. A total of 208 missense variants, derived from all 23 samples, were selected for further analysis.
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FIGURE 5
Distribution of variants. This figure illustrates the distribution of genetic variants observed in 23 samples, stratified by metadata variables such as age,
race, ER status, diabetes type, and diabetes info. Each sample is represented as a distinct bar or point, categorized by metadata groups.
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FIGURE 6
Overlapping genes and functional analysis. This figure shows the overlapping genes identified through integrative analysis of exome sequencing and
transcriptomics data. The shared genes represent a subset with potential biological functions. (A) Eleven genes overlapped the exome and
transcriptomics data. The functional analysis of common genes was performed. (B) GO-BP, (C) GO-CC, and (D) GO-MF. (E) Reactome pathways.
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protein localization processes and synaptic pathways, reflecting
cellular organization and signaling roles. The GO-CC, the enriched
components, such as synaptic and endosomal compartments,
highlight cellular compartmentalization for signaling and transport.
The GO-MF of enriched functions includes ubiquitin-protein ligase
binding, TNF activity, chemokine activity, and cadherin binding,
which are crucial for protein regulation and cellular interactions. The
Reactome pathways enriched are RHOG GTPase cycle, TNFs Bind
their physiological receptors. The other pathways include EPHA-
mediated growth cone collapse and signaling pathways. The functional
results are mentioned in the Figures 6B-E. These variations were
taken for further analysis.

3.5 ldentification of potential variants

The analysis involved nine genes, focusing on identifying the most
deleterious variants using a comprehensive suite of online prediction
tools. These tools included PredictSNP, MAPP, PhD-SNP, PolyPhen-1,
PolyPhen-2, SIFT, SNAP, and PANTHER, each offering distinct
methodologies for assessing variant pathogenicity. The prediction
results provided detailed insights into the potential impact of these
variants on protein function and structure. A summary of the findings,
highlighting the pathogenicity scores from each tool for the identified
variants, is presented in Table 1. This table serves as a consolidated
resource, showcasing the comparative outcomes from all tools, thus
facilitating an in-depth evaluation of the most deleterious genetic
changes. Among these nine genes, the TNFRSF1B (L264P) and PDPN
(A105G) were the top 2 variants predicted by the above tools.

Variants classified as neutral were excluded from stability analysis
using I-Mutant 2.0. analysis. Among these nine gene variants, the
results revealed distinct patterns of stability changes. Three gene
variants exhibited an increase in protein stability upon mutation. This
indicates that these mutations potentially enhance the structural
integrity or thermodynamic stability of the proteins, which could
impact their functional roles positively or negatively, depending on
the biological context. The remaining six gene variants showed a
decrease in protein stability upon mutation. A reduction in stability
suggests that these mutations may disrupt the protein’s structural
conformation, potentially leading to misfolding, aggregation, or loss
of function (38). Such destabilizing mutations could contribute to
disease pathogenesis or altered protein activity. The results are
mentioned in Table 2. Among these mutations, the TNFRSF1B variant
(L264P) is the most deleterious variant confirmed by all computational
tools. ConSurfis a tool that analyses the evolutionary conservation of
amino acid positions in protein sequences. The variant (TNFRSF1B-
L264P) is categorized as a highly conserved position with a significant
score (score range of 9), it may suggest a deleterious impact. The
ConSurf results are mentioned in Figure 7.

4 Discussion

Integrating transcriptomics and exomic analyses combines the
strengths of both methods to achieve a comprehensive understanding
of genomic and transcriptomic changes in biological systems (40, 41).
This integration represents a powerful approach to elucidating the
molecular mechanisms underlying complex diseases, facilitating the
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identification of robust biomarkers and therapeutic targets (42).
Several studies have successfully integrated transcriptomics and
exomic data to provide deeper insights into biological mechanisms,
disease pathogenesis, and therapeutic strategies (43-47). The etiology
of BC associated with diabetes remains poorly understood. We aimed
to identify differentially expressed genes (DEGs) between BC patients
without diabetes and those with diabetes. Our analysis included 66
samples, comparing BC without diabetes to BC with diabetes, and
identified 2,815 DEGs, comprising 1,824 upregulated and 990
downregulated genes with statistical significance. This integrative
analysis provides insights into the gene expression changes associated
with diabetes in BC patients, with visualizations effectively
summarizing statistical properties, significant DEGs, and their
expression patterns.

Functional enrichment analysis of the 2,814 DEGs was performed
using EnrichR, with protein-coding genes as the background. The
study focused on GO terms and KEGG pathways, revealing significant
enrichment in processes and pathways related to cancer progression,
immune regulation, and extracellular matrix (ECM) dynamics.
Notable enrichment was observed in processes such as extracellular
matrix organization, regulation of cell migration, angiogenesis, and
circulatory system development. These processes are crucial for tissue
remodeling, cancer metastasis, and vascular development. Key
components highlighted include collagen-containing extracellular
matrix, cell junctions, plasma membrane rafts, and sarcolemma,
which are essential for cellular integrity, signaling, and intercellular
communication. Functions like tyrosine kinase activity, platelet-
derived growth factor binding, and kinase inhibitor activity were
dominant, indicating relevance to signaling pathways and therapeutic
targets. The enrichment analysis underscores the involvement of key
processes, components, and pathways in cancer progression, immune
system regulation, and extracellular matrix interactions, offering
potential insights into disease mechanisms and therapeutic targets.
These processes are fundamental biological functions and pathways
in BC and diabetes, as reported in several studies (48-54).

To identify DEGs between BC patients with and without diabetes,
normalized expression data from the GEO database were analyzed
separately for AA and EA cohorts. In the AA cohort, 3,245 DEGs were
identified from 57 samples, including 1,922 upregulated and 1,323
downregulated genes, while in the EA cohort, 3,208 DEGs were
detected across 17 samples, with 1,640 upregulated and 1,568
downregulated genes. A total of 786 DEGs were found to be common
between the two cohorts. Key KEGG pathways identified in the AA
cohort included cell cycle, ECM-receptor interaction, PI3K-Akt
signaling, and AGE-RAGE signaling in diabetic complications. In
contrast, significant pathways in the EA cohort included oxidative
phosphorylation and diabetic cardiomyopathy. A Venn diagram
illustrating the overlap between AA and EA transcriptomic profiles
revealed 786 shared genes. Some of the key KEGG pathways, such as
Notch signaling and Hippo signaling, both of which are relevant to
breast cancer and diabetes (55-58).

The study analyzed WES data from 23 BC patients with diabetes,
sourced from the NCBI SRA database, using a customized
computational pipeline. Annotation via the Ensembl VEP database
classified these variants into non-coding (56.9%) and coding (43.1%).
Among coding variants, 96% were missense, 3% synonymous, and 1%
stop-gained, with no start-lost variants detected. A total of 899
variants were analyzed, with no novel variants identified. After
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TABLE 1 Prediction of deleterious variants of common genes by different tools.

Protein Uniport Amino_ Existing_ PredictSNP MAPP PhD-SNP PolyPhen-1 PolyPhen-2 SIFT SNAP PANTHER
ID acid_ variation prediction prediction prediction prediction prediction prediction prediction prediction
change

SKI P12755 A62G rs28384811 Neutral Neutral Neutral Neutral Deleterious Deleterious Neutral Unknown
SKI P12755 E491D rs1266460001 Neutral Neutral Neutral Neutral Deleterious Neutral Neutral Neutral
TNFRSF1B P20333 M196R rs1061622 Neutral Deleterious Neutral Neutral Neutral Neutral Neutral Neutral
TNFRSF1B P20333 E232K rs5746026 Neutral Deleterious Neutral Neutral Neutral Neutral Neutral Neutral
TNFRSF1B* P20333 1264P rs2229700 Deleterious Deleterious Deleterious Deleterious Neutral Deleterious Deleterious Deleterious
PDPN Q86YL7 M43V 15141726617 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral
PDPN* Q86YL7 A105G rs2486188 Neutral Deleterious Neutral Deleterious Deleterious Neutral Neutral Neutral
PDPN Q86YL7 A147G rs2486188 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral
SLC25A34 Q6PIV7 1215M rs62621224 Neutral Deleterious Deleterious Neutral Neutral Neutral Neutral Neutral
EPHA2 P29317 V7471 rs145592908 Neutral Neutral Deleterious Neutral Deleterious Neutral Neutral Unknown
EPHA2 P29317 M631T rs34021505 Neutral Neutral Neutral Deleterious Neutral Neutral Neutral Neutral
EPHA2 P29317 V541M 1rs61731097 Neutral Neutral Neutral Neutral Neutral Deleterious Neutral Neutral
EPHA2 P29317 G391R rs34192549 Neutral Na Neutral Deleterious Neutral Deleterious Neutral Neutral
EPHA2 P29317 D232G rs114498261 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral
IFFO2 Q5TF58 V3521 rs6675316 Neutral Neutral Neutral Neutral Deleterious Neutral Neutral Neutral
ARHGEF16 Q5VV4l V137M rs3806164 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Deleterious
ARHGEF16 Q5VV4l H370Y rs2185639 Neutral Neutral Deleterious Neutral Neutral Neutral Neutral Deleterious
FBXO6 QI9NRD1 R60Q rs3125818 Neutral Neutral Neutral Neutral Deleterious Neutral Neutral Neutral
FBXO6 QINRD1 V72M 1s766167101 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Unknown
FBXO6 QINRD1 V2901 rs140436527 Neutral Na Neutral Neutral Neutral Neutral Neutral Unknown
PADI2 Q9Y2]8 Y275H NA Neutral Neutral Neutral Deleterious Deleterious Neutral Neutral Neutral
PADI2 Q9Y2J8 D259N rs150731573 Neutral Neutral Deleterious Neutral Neutral Deleterious Neutral Neutral

* Represents the most deleterious variants from all the tools.

91

$so( pue ueyyeuebon

0062/57'5202'PaW4/68¢¢ 0T


https://doi.org/10.3389/fmed.2025.1572500
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Loganathan and Doss

TABLE 2 Prediction of protein stability using I-Mutant 2.0.

10.3389/fmed.2025.1572500

Protein Uniport ID Amino_acid_ Existing_ Stability DDG_value
change variation (kcal/mol)
SKI P12755 A62G 1528384811 Decrease 5 —0.28
SKI P12755 E491D rs1266460001 Increase 6 0.04
TNFRSF1B P20333 M196R 151061622 Decrease 7 —1.07
TNFRSF1B P20333 L264P 152229700 Decrease 4 —2.29
PDPN Q86YL7 A105G 152486188 Decrease 7 —1.68
SLC25A34 Q6PIV7 1215M 1562621224 Decrease 7 —-1.91
EPHA2 P29317 V7471 15145592908 Decrease 7 —0.57
EPHA2 P29317 M631T 1s34021505 Increase 1 0.1
EPHA2 P29317 D232G rs114498261 Decrease 3 —-0.9
IFFO2 Q5TF58 V3521 156675316 Decrease 8 —1.04
ARHGEF16 Q5VV4l V137M 13806164 Decrease 7 —2.43
ARHGEF16 Q5VV4l H370Y rs2185639 Increase 4 2.02
FBXO6 QI9NRD1 R60Q 153125818 Decrease 8 —0.94
PADI2 QI9Y2]8 Y275H NA Decrease 6 —0.62
PADI2 Q9Y2J8 D259N rs150731573 Decrease 0 —0.56
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fevavwaaL AveLeLwAAA HALPAQVAET pvareBcsf] rErevyogfa
eeeeebbbbb bbbbebbebe eebeeebebb ececeeecceeceb ecceeececeeb
2L s
51 61 71 81 91
omclskfsEl omaxirfrKr spHvEpsBel sPrHorwfllv BefrsBesrfE The conservation scale:
eebbeeeeee eeceeeebeee eeeebeececee eebbebbeeb eebbebeeeb =
sf £ £f s £f s £ £ s £ s fs s '-34567
- $5i 353 i 15 Variable Average  Conserved
sspoverQal] HreoNf:fr reciyHarfx ocecfraer rxEEeErEla ) . .
eeeececeeeb eeceeeebbeb eeceeebbbee eeebebbeee ecececcecccee . =3n d residue ding to the neural network algorithm.
f s £ £ff s s s s s £ i b - A buried residue according to the neural network algorithm.
151 161 171 181 191 £ - A predicted functional residue (highly conserved and exposed) .
RPIT!TSDEV Expanpm "ITET.IER nq IEnv: Eunsum s - A predicted structural residue (highly conserved and buried) .
eeeeeeceeee beeeeceeceee eceeceeeebe eeeebebbbb ebeeeeebbb x - Insufficient data - the calculation for this site was
£ s £ fE££% £ £ff £ s £f s s fs £ s performed on less than 10% of the sequences.
201 211 221 231 241
rstserfisMa BE@avELeorv sTrsoHfjorT PEPsTaPsTs FLlPMGRsPP
eeeeceeceecee eeeeeeececee eeeeeceececee eeeeececeeece eceeceecececee
| L264P
251 261 271 281 291
AE@sTepFAL PVELEVEVEA LeLrLFrcvvN cvIMTOVKKK PLCEHOREAKV
eeeeeceebbb bbbbbbbbbb bbbbbbbbbb bbbbeeeccee ecececeeecececece
£
301 311 321 331 341
pELPADKARG TQGPofrEf 1rarffY)sss MEssasafior rRarTRNorPoa
eeececceee ececececceceebb cecececececceece beececcecccee eccececececeece
£ 2 A £E£2222 nft
351 361 371 381 391
PGVEASGAGE ARAsTGsSps srccrGEofiN [ELERINZLL]s SpEsSecsfHe
eeeeeeceeee ecececcececececee eeceeeeceebe bbbbbebbee ecececcececece
sf sssssfssf £2Lf ¢ £f£
401 411 421 431 441
ASSTMGDEDS SPSESPKDEQ VBF[JKLJJCAF RSQLETPETL LGsEEE[rL}
eeeeececececee eececeeceece eceeceeceecee eeceeceeceeeb eeceececeececece
£E££E £f ££ £
451 461
EGvepafHIRe B
eebeececeee e
gf £ £2f ¢
FIGURE 7
ConSurf analysis of potential deleterious variant (TNFRSF1B-L264P). This figure presents the results of a ConSurf analysis, highlighting the evolutionary
conservation of amino acid residues in the TNFRSF1B (L264P) protein. Residues are color-coded based on their conservation scores, ranging from
highly conserved (dark shades) to variable (light shades).

removing duplicates, these variants spanned 298 genes, which were
reduced to 208 unique genes. A Venn diagram illustrated the overlap
between transcriptomic and exomic datasets, identifying 2,804 genes
unique to transcriptomics, 197 genes exclusive to exomics, and 11
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common genes (Figure 6A). Two genes without mutations were
excluded, leaving nine key genes: SKI (59, 60), TNFRSFIB (61, 62),
PDPN (62, 63), SLC25A34 (64), EPHA2 (65, 66), IFFO2 (67, 68),
ARHGEF16 (69, 70), FBXO6 (71, 72), and PADI2 (73, 74) for further
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analysis. Among these, six were upregulated, and three were
downregulated. These genes play significant roles in both diabetes and
BC. We analyzed gene expression across two cohorts—AA and EA
populations and mapped these four genes (SKI, TNFRSFIB,
SLC25A34, and EPHA?2) that were consistently present in both groups.
Functional analysis of these nine genes revealed enriched terms
across GO categories and Reactome pathways. GO-BP terms included
processes like protein localization and synaptic pathways. GO-CC
analysis highlighted synaptic and endosomal compartments,
indicating roles in cellular organization and signaling. GO-MF terms
included ubiquitin-protein ligase binding, TNF activity, chemokine
activity, and cadherin binding, essential for protein regulation and
interactions. These biological functions were enriched in BC and
diabetes in other studies (75-79). Reactome pathways featured RHOG
GTPase cycle, TNF-receptor binding, EPHA-mediated growth cone
collapse, and other signaling pathways. Among these, the TNF
pathway is significant in connecting BC and diabetes (16, 80, 81). The
analysis focused on identifying the most deleterious variants using a
comprehensive suite of online prediction tools. Among the nine genes
analyzed, TNFRSF1B (L264P) and PDPN (A105G) were identified as
the top two variants predicted to be most deleterious. These mutations
remain poorly characterized and have not been extensively studied.
TNFRSFIB (also known as TNFR2), a receptor for the
pro-inflammatory cytokine TNF-q, is primarily expressed in immune
cells, endothelial cells, and certain tumor cells, playing a pivotal role
in immune regulation, inflammation, and cell survival. As chronic
inflammation is a common feature of both BC and diabetes,
TNFRSF1B may represent a molecular link between these diseases. It
contributes to shared inflammatory pathways by promoting a
pro-inflammatory microenvironment, and the presence of missense
mutations in TNFRSFIB among BC patients with diabetes may
exacerbate both tumor progression and metabolic dysfunction. Given
its involvement in both cancer and metabolic disease, TNFRSF1B
holds potential as a biomarker for identifying at-risk BC patients with
diabetes and guiding personalized treatment strategies. Moreover,
targeting TNFRSF1B signaling such as through TNF-a inhibitors
could offer therapeutic benefits by mitigating inflammation and tumor
development. Understanding genetic variations in TNFRSF1B may
also inform precision medicine approaches that address the dual
challenges of cancer and metabolic dysregulation (5, 16, 82-84).
TNF pathway plays a crucial role in linking chronic inflammation,
metabolic dysfunction, and cancer progression, providing an everyday
mechanistic basis for its involvement in diabetes and BC. TNE
produced by adipocytes and macrophages in adipose tissue, is elevated
in obesity and diabetes (85, 86). It inhibits insulin signaling by
phosphorylating insulin receptor substrate-1 (IRSI), disrupting
pathways essential for glucose uptake. TNF-induced NF-kB activation
and oxidative stress exacerbate inflammation, worsening insulin
resistance (87). TNF-mediated inflammation also contributes to beta-
cell dysfunction, reducing insulin secretion. Prolonged TNF signaling
increases circulating free fatty acids, further impairing metabolic
homeostasis (83). In BC, chronic TNF secretion by cancer-associated
macrophages and stromal cells creates a pro-inflammatory
environment that supports tumor growth (89). NF-kB activation in
cancer cells increases the expression of anti-apoptotic genes, helping
tumor cells evade programmed cell death (90). TNF drives epithelial-
to-mesenchymal transition (EMT), enhancing cancer cell motility and
invasion, and promotes angiogenesis via VEGF induction, facilitating
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tumor vascularization and growth (91). The cross-talk between
diabetes and BC with shared mechanisms. Obesity and hyperglycemia
heighten TNF levels, creating a pro-inflammatory milieu (92). TNF
exacerbates oxidative stress, which damages DNA and increases
cancer risk (93). TNF-mediated immune suppression allows cancer
cells to escape immune surveillance. Insulin resistance and
hyperinsulinemia, driven by TNE, activate pathways like PI3K/AKT,
promoting cancer cell proliferation (94). Elevated TNF levels in
diabetic patients may accelerate BC progression through increased
inflammation and angiogenesis (95, 96). These mechanisms are
illustrated in a simplified manner in Figure 8.

Our analysis identifies the TNF pathway as a crucial mediator in
the interplay between BC and diabetes. While pathways such as
PI3K-AKT, JAK-STAT, and mTOR are also implicated, our
differential expression analysis reveals a significant enrichment of
TNF receptor activity among genes common to both conditions. This
indicates that TNF signaling plays a pivotal role in inflammation,
apoptosis, and immune regulation, potentially driving the
interactions between these diseases. Although the PI3K-AKT and
MAPK pathways contribute broadly, TNF signaling stands out as a
central hub, highlighting its potential as a therapeutic target (5, 50,
97). Further studies are needed to refine these insights. Targeting the
TNF gene or its variants could have substantial therapeutic
implications, especially for research on comorbidities. Anti-TNF
therapies could reduce inflammation, benefiting patients with both
metabolic disorders and cancer. Combining TNF inhibitors with
treatments specific to metabolic or cancer conditions may offer
synergistic benefits, particularly for patients with both diabetes and
BC. The TNF pathway exemplifies how chronic inflammation is a
common factor in complex diseases like diabetes and BC,
emphasizing the importance of addressing systemic inflammation in
therapeutic strategies.

5 Conclusion

This study provides a comprehensive examination of the
biomarker landscape in BC associated with diabetes through
integrative transcriptomics and exome analysis. Utilizing
computational approaches, we identified key differentially expressed
genes, mutations, and genes with potential deleterious variants that
may elucidate the interplay between these conditions. Our findings
highlight potential biomarkers and therapeutic targets that could
enhance stratification, diagnosis, and treatment for patients with
comorbid BC and diabetes. Future studies validating these
biomarkers in experimental and clinical settings could significantly
advance our understanding and management of this complex

disease intersection.

5.1 Limitation of the study

We acknowledge the limitation of our Whole Exome
Sequencing (WES) analysis due to the relatively small sample size
(n=123). This constraint primarily arises from our focus on
integrating transcriptomic and exomic data specifically for BC
patients with diabetes, ensuring a well-defined cohort for robust
multi-omics analysis. Additionally, the stringent patient selection
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criteria and data availability restricted our analysis to tumor
samples alone, as paired normal controls were not available within
the dataset.
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SUPPLEMENTARY FIGURE 1
(A) Selection of samples from transcriptomics data. (B) Selection of samples
from exomic data.

SUPPLEMENTARY FIGURE 2

Statistical plots of transcriptomics data. The boxplot represents the
distribution of normalized transcriptomics data across all samples. Each box
corresponds to an individual sample, with the central line representing the
median expression level. (A) Boxplot of AA cohort; (B) Boxplot of EA cohort.
The UMAP plot illustrates the clustering of transcriptomics data, with each
point representing an individual sample. Samples are color-coded based on
their respective groups (BC with diabetes vs BC without diabetes). (C) UMAP
of AA cohort; (D) UMAP of EA cohort.

SUPPLEMENTARY FIGURE 3

The figure presents the functional enrichment analysis of DEGs identified
from transcriptomic data of the AA cohort. Panels include (A) GO-BP,

(B) GO-CC, (C) GO-MF, and (D) KEGG pathways. Bar lengths represent both
statistical significance (adjusted p-values) and gene ratios, offering insights
into the molecular roles and functional relevance of the DEGs.

SUPPLEMENTARY FIGURE 4

The figure presents the functional enrichment analysis of DEGs identified
from transcriptomic data of the AA cohort. Panels include (A) GO-BP,

(B) GO-CC, (C) GO-MF, and (D) KEGG pathways. Bar lengths represent both
statistical significance (adjusted p-values) and gene ratios, offering insights
into the molecular roles and functional relevance of the DEGs.
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A novel radiomics model
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prediction in patients with
advanced NSCLC
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“Division of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, China,
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Prefecture Hospital of Traditional Chinese Medicine, Duyun, China

Background: Numerous radiomic models have been developed to predict
treatment outcomes in patients with NSCLC receiving chemotherapy and
radiation therapy. However, computed tomography (CT) radiomic models that
integrate the Gross Tumour Volume of the primary lesion (GTVp), the Gross
Tumour Volume of nodal disease (GTVnd), and clinical information are relatively
scarce and may offer greater predictive accuracy than models focusing
on GTVp alone. This study aimed to evaluate the efficacy of a CT radiomic
model combining GTVp, GTVnd, and clinical data for predicting treatment
response in unresectable stage IlI-IV NSCLC patients undergoing concurrent
chemoradiotherapy.

Methods: A total of 101 patients with unresectable stage IlI-IV NSCLC were
included. GTVp was delineated using lung windows, and GTVnd was delineated
using mediastinal windows. Radiological features were extracted using Python
3.6, then subjected to F-test and Lasso regression for feature selection. Logistic
regression was performed on the selected radiological features. Clinical
information was analysed with univariate and multivariate logistic regression to
identify significant clinical variables. Five models were developed and evaluated,
incorporating GTVp, GTVnd, and clinical data.

Results: The GTVp-based radiomics model achieved an area under the curve
(AUC) of 0.855 in the training cohort and 0.775 in the validation cohort. The
multimodal composite model (integrating GTVp, GTVnd, and clinical parameters)
significantly outperformed the GTVp-only model, with a training AUC of 0.862
and validation AUC of 0.863, demonstrating superior predictive performance for
concurrent chemoradiotherapy response in this patient population.

08 frontiersin.org


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1596788&domain=pdf&date_stamp=2025-07-24
https://www.frontiersin.org/articles/10.3389/fmed.2025.1596788/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1596788/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1596788/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1596788/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1596788/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1596788/full
mailto:sank44@sina.com
mailto:lbgymaaaa@163.com
https://doi.org/10.3389/fmed.2025.1596788
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1596788

Lietal.

KEYWORDS

10.3389/fmed.2025.1596788

NSCLC, radiomics, chemoradiotherapy, GTVp, GTVnd

1 Introduction

Lung cancer has a high incidence and mortality rate, with an
estimated five-year survival of only around 23% (1). It is classified into
non-small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC) based on pathological features, with NSCLC accounting for
approximately 85% of cases (2). For patients with inoperable stage
III-IV NSCLC, concurrent chemoradiotherapy (CCRT) is a vital
treatment approach (3). However, treatment sensitivity varies among
individuals (4, 5), affecting prognosis. Notably, the response to cancer
therapy is closely linked to prognosis. Notably, patients who respond
more favourably to therapy often experience longer progression-free
and overall survival then those with poorer responses (6-8).

Imaging remains the primary method for tumour evaluation in
clinical practice (9), and radiomics has emerged as a non-invasive,
effective tool for prognostic prediction (10-14). Several radiological
models have been developed to predict treatment response and
outcomes in patients with NSCLC undergoing CCRT (15-17).
Approximately 60% of patients with NSCLC present with advanced or
locally advanced disease at diagnosis (18), often because of late
detection of non-specific symptoms (19), which can lead to
mediastinal lymph node metastasis. In such cases, radiation
oncologists typically delineate the Gross Tumour Volume of the
primary lesion (GTVp) and nodal disease (GTVnd) for chest radiation
therapy. However, when extracting CT radiomic features, many
researchers focus solely on GT Vp while overlooking GTVnd (20, 21).
This omission is notable because pre- and post-treatment changes in
GTVnd are equally critical for tumour staging (22). Moreover, prior
research has shown that combining mediastinal window CT images
with lung window CT images can improve both the malignancy of a
nodule and its potential indolence (23, 24). Thus, incorporating
GTVnd CT images may be crucial for assessing CCRT efficacy.

Despite the demand for multimodal biomarkers in NSCLC
management, no prior study has simultaneously integrated CT
radiomics features of GTVp (lung window) and GTVnd (mediastinal
window) with clinical parameters to predict CCRT response.
Therefore, this study aims to develop and validate a composite model,
specifically evaluating its performance in predicting short-term CCRT
efficacy among patients with unresectable stage III-IV NSCLC.

2 Methods

The study received approval from the Ethics Committee of the
Second Affiliated Hospital of Guizhou Medical University (SAHGMU;
approval number 2020-LS-03) and was conducted in strict accordance
with the Declaration of Helsinki. Informed consent was obtained from
all participants.

Figure 1 presents the study flowchart. The inclusion criteria were:
(1) pathologically confirmed NSCLC; (2) no surgical indications; (3)
no prior therapies (including neoadjuvant chemotherapy,
interventional therapy, immunotherapy, or targeted therapy) before
CCRT; (4) stage III or IV disease with confirmed mediastinal lymph

node metastasis (N2/N3) based on the 8th edition UICC
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Tumor-Node-Metastasis staging system; (5) availability of standard
contrast-enhanced chest CT images obtained within 1 month before
and 3 months after treatment completion; and (6) receipt of
conventional fractionated radiotherapy (target dose: 60-66 Gy/30-33\
u00BOE,
chemotherapy. For squamous cell carcinoma, weekly paclitaxel plus

intensity-modulated  radiotherapy) combined with
cisplatin was used, whereas for non-squamous cell carcinoma,
pemetrexed was administered every 3 weeks alongside cisplatin (25).
The exclusion criteria were: (1) concomitant malignancies, (2)
incomplete or poor-quality CT images, and (3) insufficient
follow-up data.

This multicentre retrospective study enrolled patients from two
distinct cohorts: (1) 77 patients treated at SAHGMU; (2) 24 patients
from three regional hospitals (Guiyang Pulmonary Hospital,
Qiandongnan People’s Hospital, Qiannan Traditional Chinese
Medicine Hospital). All cases were recruited consecutively between
January 2019 and July 2023. Treatment outcomes were categorized as
complete response (CR), partial response (PR), stable disease (SD), or
progressive disease (PD) according to RECIST 1.1 (26). Patients with
CR or PR were classified into the treatment-sensitive group, while
those with SD and PD were classified as treatment-insensitive.

Chest contrast-enhanced CT images were preprocessed using
MATLAB 2014b" with: (1) Spatial normalization: Rigid registration to
the INHALE chest CT atlas via ANTs (v2.3.3) using mutual
information; (2) Isotropic resampling: Resampling normalized images
to 1 mm isotropic voxels using B-spline interpolation. Following the
guidelines of ICRU 83 (27), a radiation oncologist with 10 years of
experience in lung cancer treatment delineated the GTVp and GTVnd
without access to patient information. ITK-SNAP (version 3.8.0;
http://www.itksnap.org) was used to manually label slices layer-by-
layer (28). GTVp was delineated in the lung window (WW 1600 HU,
WL — 600 HU), and GTVnd in the mediastinal window (WW 250
HU, WL 50 HU). The criteria for defining GTVnd included: (1) short-
axis diameter >1 cm, (2) presence of >3 clustered lymph nodes within
a single station, (3) pathological confirmation of metastasis in
mediastinal lymph nodes (in select patients), or (4) PET-CT
SUVmax > 2.5 in the region (in select patients). After completing the
annotations were completed, the region of interest (ROI) was
designated. For each patient, 1,834 radiological features were extracted
from the ROIs. These features were standardized using the Z-score
and then screened by an F-test in ANOVA, where F is defined as the
ratio of between-group variance to within-group variance. To avoid
overfitting, LASSO regression with 10-fold cross-validation (via
glmnet in R) was performed on each training subset to select the 1
minimizing mean square error. Only features selected in >80% of
folds were retained for the final model. Finally, logistic regression was
used to construct the radiological models.

Clinical data—including sex, ethnicity, age, smoking history,
pathological type, tumour stage, and haematological markers
measured 1 week before treatment (such as carcinoembryonic antigen,

1 https://ww2.mathworks.cn/
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Experimental flowchart

neuron-specific enolase [NSE], white blood cell count, haemoglobin,
and platelet levels)—were collected and initially analysed via
univariate regression. Factors with p < 0.05 underwent multivariate
regression, and variables remaining significant (p <0.05) were
incorporated into a clinical prediction model built through logistic
regression. PyRadiomics was used for radiomic feature extraction
(v3.0.1; https://github.com/radiomics/pyradiomics) (29). Statistical
modeling was conducted in R (v3.5.1; https://www.r-project.org/).
SPSS  (v26.0, IBM Corp., Armonk, NY, USA) handled
descriptive statistics.

Combination models were constructed using logistic regression
with selected radiological and clinical features. Model performance
was evaluated through Receiver Operating Characteristic (ROC)
curves, Area Under the Curve (AUC), accuracy, precision, recall, and
Decision Curve Analysis (DCA). Statistical significance was defined
as p < 0.05 for all hypothesis tests.

3 Results

A total of 101 participants met the inclusion criteria. Patients
were recruited from the SAHGMU (n = 77), Guiyang Pulmonary
Hospital (n=13), Qiandongnan Prefecture People’s Hospital
(n =5), Qiannan Prefecture Traditional Chinese Medicine Hospital
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(n=6). Table 1 shows the clinical information. Guizhou—an
ethnically diverse province in southwest China—is home to all four
treatment centres included in this study. The principal ethnic groups
were Han (39.60%), Miao (29.70%), and Dong (25.74%). The
training cohort and external validation cohort exhibited comparable
treatment efficacy rates (p > 0.05). Table 2 presents the relationship
between clinical features and CCRT treatment sensitivity. After
screening, only haemoglobin was significantly correlated with
CCRT treatment sensitivity. However, as shown in Table 3, the
haemoglobin-based clinical model underperformed among the
models, with an AUC of 60.65% in the training set and 65.00% in
the validation set.

Following the F-test and Lasso regression feature selection, six
radiomic features were selected for GTVp (lung window) and four for
GTVnd (mediastinal window). Figure 2 and Table 4 illustrate the
distribution of these selected features. The predictive performance of
the radiological models is shown in Figure 3 and Table 3. In the
training set, the composite model—incorporating GTVp, GTVnd, and
clinical features—achieved the highest AUC (0.862). The second-
ranked model was the GTVp-only model (AUC: 0.855), followed by
the GTVp + GTVnd combination (AUC: 0.853). The GT Vnd-only
model yielded the lowest performance (AUC: 0.734). In the external
validation set, the composite model again demonstrated the highest
accuracy (AUC: 0.863). The GTVp + GTVnd combination ranked
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TABLE 1 Baseline characteristics of patients.

10.3389/fmed.2025.1596788

Variables Categories Total (n = 101) Training (n = 77) External validation
(n = 24)

Sex, 1 (%) Female 17 (16.83) 15 (19.48) 2(8.33) 0.583
Male 84(83.17) 62 (80.52) 22 (91.67)

Age, 1 (%) <50 17 (16.83) 15 (19.48) 2(8.33) 0.336
>50 84(83.17) 62 (80.52) 22 (91.67)

Ethnicity, 1 (%) Miao 30 (29.70) 27 (35.06) 3 (12.50) 0.005
Dong 26 (25.74) 22(28.57) 4(16.67)
Han 40 (39.60) 23(29.87) 17 (70.83)
Others 5(4.95) 5(6.49) 0 (0.00)

Efficacy, (%) CR/PR 28 (27.72) 24 (31.17) 4(16.67) 0.166
SD/PD 73 (72.28) 53 (68.83) 20(83.33)

Histology, 1 (%) LUSC 65 (64.36) 46 (59.74) 19 (79.17) 0238
LUAD 31 (30.69) 26 (33.77) 5(20.83)
Other 5 (4.95) 5(6.49) 0 (0.00)

TNM, 7 (%) 1 67 (66.34) 53 (68.83) 14 (58.33) 0.342
v 34 (33.66) 24 (31.17) 10 (41.67)

CEA, 11 (%) Normal 59 (58.42) 45 (58.44) 14 (58.33) 0.993
Elevated 42 (41.58) 32 (41.56) 10 (41.67)

NSE, 1 (%) Normal 72 (71.29) 55 (71.43) 17 (70.83) 0.955
Elevated 29 (28.71) 22(28.57) 7(29.17)

WBC, 1 (%) Reduced 3(2.97) 3(3.90) 0 (0.00) 0.548
Normal 86 (85.15) 66 (85.71) 20(83.33)
Elevated 12 (11.88) 8 (10.39) 4(16.67)

Hb, 1 (%) Reduced 71 (70.30) 53 (68.83) 18 (75.00) 0.564
Normal 30 (29.70) 24 (31.17) 6 (25.00)

PLT, 1 (%) Reduced 5(4.95) 3(3.90) 2(8.33) 0.567
Normal 89 (88.12) 69 (89.61) 20(83.33)
Elevated 7(6.93) 5(6.49) 2(8.33)

LUSC, Lung squamous cell carcinoma; LUAD, Lung adenocarcinoma; CEA, carcinoembryonic antigen; NSE, neuron specific enolase; WBC, White blood cell; Hb, Hemoglobin; PLT, Platelet;

Alb, Albumin.

second (AUC: 0.800), the GTVp-only model placed third (AUC:
0.775), and the GTVnd-only model performed poorest (AUC: 0.375).

The DeLong test on the external validation set ROC data (Table 5)
showed no statistically significant difference between the composite
model and the conventional GTVp model (p = 0.14). Considering the
limited sample size of the validation cohort (n = 24), we conducted
clinical decision curve analysis to evaluate real-world utility. As shown
in Figure 4, the composite model provided a superior net benefit
across threshold probabilities compared to both the conventional
clinical model and the GTVp model.

4 Discussion

In this study, our radiomic models outperformed the clinical factor
model in predicting treatment outcomes. At present, the most
commonly used guideline for tumour evaluation is RECIST 1.1;
however, metabolic changes in tumour cells induced by chemotherapy

Frontiers in Medicine

and radiation therapy may become apparent earlier than morphological
changes (30, 31). While radiation and chemotherapeutic agents
effectively inhibit tumour cell proliferation, their structural impact can
manifest slowly, making it difficult to detect short-term treatment
effects through conventional imaging. Unlike RECIST 1.1, radiomics
extracts pre-treatment data from the tumour, thus enabling an earlier
assessment of treatment sensitivity before therapy is complete.
Among the 101 patients analysed, decreased haemoglobin
emerged as the only clinical feature associated with CCRT sensitivity.
Haemoglobin is critical for oxygen transport to tissues. When
haemoglobin levels are low, increased anoxia in tumour cells leads to
reduced sensitivity to radiotherapy and chemotherapy, ultimately
weakening the therapeutic effect (32). In our patient population, over
70% presented with low haemoglobin levels prior to treatment. This
could be explained by several factors. First, dietary habits among
middle-aged and elderly individuals in Guizhou, who tend to eat more
vegetables than meat, can result in insufficient iron intake and
anaemia. Second, compromised immunity in cancer patients elevates
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TABLE 2 Clinical model: clinical features related to CCRT sensitivity.

Variables
OR (95%Cl) P

Univariate analysis

10.3389/fmed.2025.1596788

Multivariate analysis
OR (95%ClI) P

Sex

Female 1.00 (Reference)

Male 0.77 (0.23 ~ 2.60) 0.673
Age (years)

<50 1.00 (Reference)

>50 0.13 (0.02 ~ 1.05) 0.055
Ethnicity

Miao 1.00 (Reference)

Dong 2.10 (0.61 ~ 7.23) 0.239
Han 1.17 (0.42 ~ 3.22) 0.766
Others 2.00 (0.20 ~ 20.33) 0.558
Histology

LUSC 1.00 (Reference)

LUAD 0.59 (0.23 ~ 1.50) 0.270
Other 1.31 (0.14 ~ 12.55) 0.817
TNM

111 1.00 (Reference)

v 3.03 (1.04 ~ 8.88) 0.043
CEA

Normal 1.00 (Reference)

Elevated 1.40 (0.57 ~ 3.46) 0.459
NSE

Normal 1.00 (Reference)

Elevated 0.51 (0.20 ~ 1.28) 0.149
WBC

Reduced 1.00 (Reference)

Normal 0.00 (0.00 ~ Inf) 0.991
Elevated 0.00 (0.00 ~ Inf) 0.991
Hb

Normal 1.00 (Reference) 1.00 (Reference)
Reduced 2.85(1.14 ~ 7.16) 0.025 2.85(1.14 ~ 7.16) 0.025
PLT

Reduced 1.00 (Reference)

Normal 4.57 (0.72 ~ 29.14) 0.108
Elevated 2.00 (0.19 ~ 20.61) 0.560

OR: Odds Ratio, CI: Confidence Interval; LUSC, Lung squamous cell carcinoma; LUAD, Lung adenocarcinoma; CEA, carcinoembryonic antigen; NSE, neuron specific enolase; WBC, White

blood cell; Hb, Hemoglobin; PLT, Platelet.

their risk of secondary infections, which may lead to the excessive
destruction of red blood cells. Third, acute and chronic bleeding (e.g.,
haemoptysis) often associated with lung cancer can further exacerbate
anaemia in these patients.

Although the validation set showed that the GT'Vnd radiomics
model alone had a relatively poor predictive performance (AUC:
0.375) compared to the GTVp model (AUC: 0.775), these findings
indicate that, in standard CT-based radiomics models for stage

Frontiers in Medicine

III - IV lung cancer, primary tumour features may be more influential
than those of metastatic mediastinal lymph nodes. In our study, the
radiological features of metastatic mediastinal lymph node lesions
sensitive to CCRT all originated from “wavelets” a phenomenon that
warrants further inquiry. Moreover, the absence of comprehensive
PET/CT scans or mediastinal lymph node biopsies in some patients
may have limited the precision of GTVnd delineation, as radiation
oncologists relied solely on conventional imaging criteria (e.g., short
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TABLE 3 Performance of the models.

10.3389/fmed.2025.1596788

Model Accuracy Precision Recall F1-score AUC
Clinical
Training set 68.83% 68.83% 100.00% 81.54% 60.65%
Validation set 83.33% 83.33% 100.00% 90.91% 65.00%
GTVp
Training set 83.12% 85.71% 90.57% 88.07% 85.53%
Validation set 79.17% 82.61% 95.00% 88.37% 77.50%
GTVnd
Training set 79.22% 80.33% 92.45% 85.96% 73.43%
Validation set 83.33% 86.36% 85.00% 90.48% 37.50%
GTVp + GTVnd
Training set 83.12% 84.48% 92.45% 88.29% 85.30%
Validation set 83.33% 83.33% 100.00% 90.91% 80.00%
Composite model (GTVp + GTVnd + clinical)
Training set 83.12% 84.48% 92.45% 88.29% 86.16%
Validation set 83.33% 83.33% 100.00% 90.91% 86.25%
Data in parentheses are 95% Cls. AUC, area under the curve; GTVp, gross tumor volume of the primary lesion; GTVnd, gross tumor volume of nodal disease.
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diameter >1 cm or at least three clustered lymph nodes in one
region), potentially resulting in a reduced diagnostic rate for positive
mediastinal lymph nodes.

We also noted that integrating clinical features with radiological data
led to superior predictive performance compared to radiological models
alone. The radiomics model combining GTVp and GTVnd (AUC: 0.800)
outperformed the individual GTVp and GTVnd models. We compared
our model not only to our own previous models but also to similar
studies, such as: 1. A 2022 study that used a radiomics nomogram based

TABLE 4 Selected radiological features.

GTVp GTVnd
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RunLengthNonUniformityNormalized

| Soh wavelet. HLH_glszm_
original_shape_Sphericit
8 pe-sp Y SizeZoneNonUniformityNormalized

wavelet. LLL_firstorder_
square_glem_Imc2
InterquartileRange

squareroot_glcm_Correlation

exponential_glrlm_

RunLengthNonUniformity

10.3389/fmed.2025.1596788

solely on CT-derived GTVp and clinical features to predict
chemoradiotherapy efficacy in locally advanced non-small cell lung
cancer, with a training set C-index of 0.796 and a validation set C-index
of 0.756 (17); 2. A 2023 study developed a radiomics model based on
CT-derived GT Vp to predict concurrent chemoradiotherapy in patients
with locally advanced non-small cell lung cancer. The study reported that
the AUC for the GTV reduction (Criteria A) model was 0.767, while the
AUC for the RECIST 1.1 standard (Criteria B) model was 0.771 (16). In
contrast, our composite model (GTVp + GTVnd + clinical characteristics)
achieved higher AUCs in both the training set (0.862) and the validation
set (0.863). Further analysis revealed that the GTVnd features added
critical information: (1) “wavelet. LHL_firstorder_10Percentile” quantifies
low-intensity pixels in regions with vertical textural detail; (2) “wavelet.
LHL_glem_Contrast” captures roughness/heterogeneity of vertical
textures and sensitivity to directional structures; (3) “wavelet. HLH_
glszm_SizeZoneNonUniformityNormalized” indicates lesion size
heterogeneity; (4) “wavelet. LLL_firstorder_InterquartileRange” stably
quantifies slow-varying grayscale distribution in anatomical structures.
The inclusion of these GTVnd radiomic features enhanced the
model efficacy.

In conclusion, our composite model (AUC = 0.863) demonstrated
notably better performance than the conventional GTVp model
(AUC = 0.775), indicating that including GTVnd radiological features
can significantly improve the predictive capacity of CT-based models for
CCRT outcomes. Decision curve analysis further confirmed that the
composite model provided higher accuracy than the GTVp model alone,
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FIGURE 3

radiomic models in the validation cohorts.

Comparison of ROC curves for different models. (A) ROC curves of different radiomic models in the training cohort. (B) ROC curves of different
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TABLE 5 Delong test for AUC values of the validation set.

Model Clinical GTVp GTVnd GTVp+GTVnd Composite model
Clinical 1 0.59 0.04 0.55 0.26

GTVp 0.59 1 0.23 0.57 0.14

GTVnd 0.04 023 1 0.23 0.09

GTVp + GTVnd 0.55 0.57 0.23 1 0.40
Composite model 0.26 0.14 0.09 0.40 1

GTVp, gross tumor volume of the primary lesion; GTVnd, gross tumor volume of nodal disease.
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highlighting the importance of incorporating additional radiomic
features and clinical data in treatment response predictions. This study
is the first to show that CT-based radiomic models integrating GTVnd,
GTVp, and clinical information can meaningfully enhance CCRT
response prediction in unresectable stage III-IV NSCLC. By extracting
abroader range of radiomic features, the composite model offers a more
comprehensive assessment of the tumour’s biological characteristics,
potentially facilitating more individualized cancer treatment strategies.
Overall, our findings emphasize the importance of including GTVnd in
CT imaging analyses, reinforcing the need for a holistic approach to
tumour evaluation.

Despite these promising results, our study has several limitations.
First, the use of various CT scanners across four different institutions
may have introduced variability in imaging parameters. To reduce this
effect, all CT scans were normalized and reconstructed into 1-mm
slices. Second, not all patients underwent PET/CT or mediastinal
lymph node biopsies, potentially impacting the precision of GTVnd
delineation. Previous research indicates that PET/CT is more accurate
than conventional CT for detecting malignant lymph nodes (33, 34).
Consequently, future research should incorporate PET/CT or biopsy
before CCRT to better define GTVnd and improve model accuracy.
Third, a single radiation oncologist performed all ROI delineations,
restricting our ability to assess inter-observer consistency in radiomic
feature extraction. Fourth, due to a relatively small sample size, larger
studies are necessary to validate these findings.

5 Conclusion

This study demonstrates that a CT-based model integrating GT Vp,
GTVnd, and clinical data surpasses the conventional GT Vp radiological
model in predicting CCRT efficacy for patients with unresectable
stage III-IV NSCLC. Such an approach may allow for earlier
adjustments to treatment regimens for patients expected to have less
favourable outcomes.
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Pituitary neuroendocrine tumors (PitNETs) are a heterogeneous group of intracranial
neoplasms that vary in hormonal activity, histological features, and clinical behavior.
The rise of high-throughput sequencing and molecular profiling technologies
has enabled multiomic approaches—including genomics, transcriptomics,
epigenomics, proteomics, and metabolomics—to deepen our understanding of
PitNET pathogenesis. These studies have identified key mutations, transcriptional
lineages, epigenetic modifications, and proteomic features that contribute to tumor
subtype classification, invasiveness, and treatment response. Integrative multi-omic
analyses have further revealed distinct molecular subtypes, complex regulatory
networks, and molecular profiles that can predict recurrence and therapeutic
efficacy. These approaches hold strong potential for advancing personalized
medicine in PitNETs, supporting patient-specific diagnosis, prognostication, and
therapeutic strategies. Future directions include the application of emerging -omic
technologies and the development of robust computational tools to integrate
and translate multi-layered data into clinically actionable insights.

KEYWORDS

pituitary, PitNET, multiomics, molecular sequencing, transcriptomics, genomics,
epigenomics, proteomics

Introduction

Pituitary tumors represent a diverse group of neoplasms that originate from the endocrine
cells of the pituitary gland and account for approximately 17.8% of all intracranial tumors (1).
Historically termed pituitary adenomas, these tumors have been considered largely benign and
indolent. However, this perception has evolved significantly with advances in molecular
pathology and clinical characterization. In 2022, the World Health Organization (WHO)
officially reclassified these tumors as pituitary neuroendocrine tumors (PitNETSs) to better reflect
their neuroendocrine origin and biological spectrum (2). A pivotal aspect of the new WHO
classification is the use of pituitary-specific transcription factors (TFs) to define tumor lineage
more accurately than traditional hormonal immunostaining alone. The key TFs include
pituitary-specific positive transcription factor 1 (PIT1), steroidogenic factor 1 (SFI), and T box
transcription factor (TPIT), which correspond to the somatotroph/lactotroph/thyrotroph,
gonadotroph, and corticotroph lineages, respectively (Figure 1). This molecular stratification
helps distinguish morphologically similar but biologically distinct subtypes, thereby enhancing
diagnostic precision and prognostic estimation (2). Despite these advances, the clinical
management of PitNETs remains challenging due to a lack of robust biomarkers for tumor
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FIGURE 1

Comparison of 2017 and 2022 PitNET WHO classification schemes. PitNET, Pituitary neuroendocrine tumor; WHO, World Health Organization.
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aggressiveness, treatment response, and recurrence risk. In this
context, multiomic approaches—including genomic, transcriptomic,
epigenomic, proteomic, and metabolomic profiling—offer powerful
tools to dissect the complexity of PitNETs. Integrative multiomic
analysis can provide a systems-level understanding of tumor biology,
identify molecular subgroups, and uncover novel targets for therapy
and early detection (3). This review summarizes the current landscape
and emerging insights from multiomic studies in PitNETs, emphasizing
their potential to revolutionize classification, prognosis, and
individualized treatment strategies in pituitary tumor management.

Genomic analysis

Genomic analyses have played a crucial role in uncovering the
molecular underpinnings of PitNETSs, shedding light on both sporadic
and hereditary forms. Although PitNETs display a relatively low
mutational burden compared to other solid tumors, several recurrent
somatic and germline alterations have been identified that contribute
to tumor initiation, hormonal dysregulation, and progression.

The most well-characterized somatic mutations in PitNETs are
subtype specific. Guanine nucleotide-binding protein, alpha
stimulating (GNAS) mutations are frequently found in somatotroph

Frontiers in Medicine

tumors, promoting cyclic adenosine monophosphate (cAMP) signaling
and growth hormone (GH) overproduction. PitNETs with GNAS
mutations have been associated with smaller size and decreased
invasiveness (4). In corticotroph tumors causing Cushing’s Disease,
ubiquitin carboxyl-terminal hydrolase 8 (USP8) mutations are present
in up to 40% of cases and result in impaired degradation of epidermal
growth factor receptor (EGFR), enhancing adrenocorticotropic
hormone (ACTH) secretion and cellular proliferation (5, 6). Other
mutations described in corticotroph PitNETs include ubiquitin specific
peptidase 48 (USP48), B-Raf proto-oncogene, serine/threonine kinase
(BRAF), and tumor protein p53 (TP53) (7, 8). Despite these discoveries,
most PitNETs lack recurrent driver mutations, suggesting a significant
role for epigenetic regulation, chromosomal instability, and post-
transcriptional mechanisms in tumor biology. A subset of PitNETs
arise in the context of hereditary tumor syndromes, most notably
Multiple Endocrine Neoplasia type 1 (MENI1), caused by inactivating
mutations in the MENI gene, which encodes the tumor suppressor
menin. Other inherited mutations involve cyclin-dependent kinase
inhibitor 1B (CDKNI1B) (associated with MEN4), aryl hydrocarbon
receptor interacting protein (AIP), and succinate dehydrogenase
(SDHx) (9-12). Patients harboring AIP mutations most commonly
present with somatotropinomas, often at a younger age, with larger
tumors and more growth hormone (GH) secretion (13, 14). Succinate
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dehydrogenase complex iron sulfur subunit B/D (SDHB/D) mutations
have been shown to be associated with combined paragangliomas,
pheochromocytomas, and less frequently PitNETs, suggesting shared
tumorigenesis pathways related to mitochondrial metabolism (12).

With the development of next-generation sequencing (NGS),
including whole-exome sequencing (WES) and whole-genome
sequencing (WGS), studies utilizing these methods provided a broader
landscape of mutational events in PitNETs. In 2016, Song et al. examined
the somatic mutational landscape of 125 PitNETs, identifying low
mutational burden, confirming the presence of previously described
mutations such as GNAS, MENI, and USPS, identifying novel mutations
such as kinesin heavy chain isoform 5A (KIF5A) and growth factor
receptor-bound protein 10 (GRBI10), and determining that 18% of
tumors harbor copy number alterations (CNAs). Gene ontology analysis
revealed that plurihormonal, GH-, prolactin (PR)-, and ACTH-secreting
PitNETs were enriched for somatic mutations in overlapping molecular
pathways as were TSH- and LH/FSH-secreting PitNETs (15).
Subsequently, Bi et al. identified that 29% of PitNETs have CNAs, but
novel somatic alterations in genes were infrequent and often
non-recurrent. They found that the tumors with more disrupted
genomes (higher CNA burden) were more likely to be functional
PitNETs or null cell tumors compared to PitNETs with less disrupted
genomes, which were more likely nonfunctional (16). Large-scale
sequencing efforts continue to uncover novel candidate genes and
low-frequency variants that may contribute to tumor biology but
integration of genomic data with transcriptomic and epigenomic profiles
is essential to elucidate the mechanistic impact of these mutations, and
inclusion of phenotypic data is critical for clinical relevance.

To facilitate clinical interpretation, Table 1 summarizes key
PitNET biomarkers identified across multiomic studies, specifically
highlighting their functional roles, prognostic value, and therapeutic
relevance. Even though many markers remain investigational, this
framework may inform future biomarker-guided therapy trials.

Transcriptional profiling

Transcriptomic profiling using techniques such as bulk and
single-cell RNA sequencing has emerged as a powerful approach to

TABLE 1 Known biomarkers prognostic/therapeutic utility.

10.3389/fmed.2025.1629621

characterize PitNETs beyond histology and hormonal output, offering

insights into their functional identity, heterogeneity, and
aggressiveness. Unlike genomic alterations, which are relatively
infrequent in PitNETs, transcriptional changes are widespread and
reflect both lineage commitment and tumor behavior.

Transcriptomic profiling has had a significant impact on the field
of pituitary tumors as this method was used to discover the relevance
of TFs in the classification of PitNETs highlighted in the 2022 WHO
guidelines. The use of transcription factors has been shown to be more
reliable than previous methods using histology, immunochemistry, in
situ hybridization, and hormone expression to identify and classify
these tumors (2). The biological role of PIT1, SF1 and TPIT in normal
pituitary gland development and PitNET pathogenesis has also been
investigated using bulk RNA sequencing (17, 18). In normal
corticotroph development, TPIT along with paired like homeodomain
1 (PITX1) activate the proopiomelanocortin (POMC) gene (19, 20).
On the other hand, suppression of TPIT causes pituitary
neuroendocrine cells to differentiate into gonadotroph or thyrotroph
cells (21). The PITI TF lineage is positively regulated by paired-like
homeobox 1 (PROPI) and negatively regulated by HESX homeobox
1 (HESX1) (22, 23). Each hormonal subtype of PIT1 PitNETs have
specific mechanisms through which PIT1 is involved in pathogenesis.
Gonadotrophs are part of the SFI-lineage of PitNETs; SFI
transcription in part relies on the binding of estrogen-to-estrogen
receptor alpha, which mediates chromatin remodeling of the SFI
locus (24).

Invasive PitNETs

transcriptional profiles compared to noninvasive tumors, including

have significant differences in their
differentially expressed genes related to the Nuclear Factor-kappa B
(NF-kB) and antitumoral immune response (25, 26). Invasive
prolactinomas exhibited significantly different transcriptional profiles
compared to noninvasive prolactinomas (27). Compared to
noninvasive corticotrophs, invasive corticotroph tumors exhibit
upregulation of cyclin D2 (CCND2) and zinc finger protein 676
(ZNF676) and downregulation of death-associated protein kinase 1
(DAPKI) and tissue inhibitor of metalloproteinase 2 (TIMP2) (28).
Additionally, in corticotroph tumors, RNA-sequencing showed a
decrease in RNA expression of secreted frizzled-related protein 2
(SFRP2), which may promote tumorigenesis by upregulating Wnt

Biomarker Subtype(s) Alteration type Functional role Prognostic Therapeutic
relevance significance
1 cAMP signaling — GH | Smaller, less invasive Somatostatin analog
GNAS Somatotroph Activating mutation
hypersecretion tumors sensitivity
Gain-of-function 1 EGEFR stability — 1 Less aggressive, lower EGFR inhibitors
USP8 Corticotroph
mutation ACTH secretion recurrence (experimental)
Potentially linked to
SF3B1 Lactotroph Spliceosome mutation Aberrant mRNA splicing Still being investigated
aggressiveness
Overexpression/ Associated with HDAC inhibitors
HMGA2 Lactotroph Chromatin remodeling
epigenetic activation invasiveness (preclinical)
Conflicting; may indicate
TERT methylation Multiple Promoter methylation Telomerase activation Still being investigated
poor prognosis
Potential EMT targeting
D2 Corticotroph, Lactotroph | Protein overexpression EMT regulation Linked to invasiveness
(preclinical)
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signaling (29). The transcriptional profile of lactotroph tumors showed
activation of estrogen receptor signaling, oxidative phosphorylation
signaling, and eukaryotic translation initiation factor (EIF) signaling.
Network analysis of upstream regulators determined that potential
pathogenic drivers may include early growth response 1 (EGRI),
protein kinase cAMP-activated catalytic subunit Alpha (PRKACA),
paired like homeodomain 2 (PITX2), cAMP responsive element
binding protein 1 (CREBI), and Jun D (JUND) proto-oncogene, an
AP-1 transcription factor subunit (30).

In addition to evaluating specific genes, pathways, and PitNET
types, transcriptomic data has been used to cluster PitNETs based on
molecular subtype. Consensus clustering of transcriptomic data from
117 PitNETs of all hormonal subtypes revealed three molecular
subtypes of tumors defined by biological processes: Group I -
signaling pathways, Group II - metabolic processes, and Group III -
immune responses. Each group had different immune profiles, and
Group III had the worst prognosis even though these tumors were
smaller (31). Future investigation of the role of non-coding, long
non-coding, micro, and circulating RNAs in PitNET biology
represents a new frontier for transcriptional profiling of PitNETs (32).

Single cell RNA sequencing (scRNA-seq) has also been used to
investigate biological pathways related to invasive PitNETs. Previous
work has shown that silent corticotroph PitNETs have been associated
with an invasive phenotype; scRNA-seq revealed that these tumors
express epithelial to mesenchymal transition genes, which may
be driving tumor invasion (20). scRNA-seq has also been utilized to
more robustly identify the heterogeneous biology of PitNETs. For
example, when analyzing tumor cells from PITI-lineage tumors,
expression of hormone-encoding genes represented the majority of
variation between tumors. There were four major clusters of non-PIT-1
tumor cells, and of the three clusters with majority TPIT-lineage
tumor cells, one had significantly elevated Granzyme K (GZMK)
expression, suggesting a possible novel subtype of corticotroph tumor.
The fourth cluster of non-PIT-1 tumor cells was predominantly
composed of SF-I lineage cells with overexpression of follicle
stimulating hormone subunit beta (FSHB). Additionally, within the
tumor microenvironment, two distinct tumor-associated macrophage
(TAM) clusters were enriched in PitNETS, one with pro-inflammatory
M1 features and the other with immunosuppressive M2 marker
upregulation (SPPI, TREM2, and CX3CR1). This finding suggests that
of TAMs or
be therapeutically relevant in PitNET treatment. In addition, stress

depletion macrophage repolarization may
response pathways were upregulated in T cells, suggesting functional
exhaustion. This finding suggests that certain PitNET subtypes may
be responsive to immune checkpoint blockade and other relevant
tumor microenvironment modulating therapies (33).

Through the integration of scRNA-seq and single cell genomic
sequencing, transcriptional profiles of normal endocrine cells
(gonadotrophs, somatotrophs, and lactotrophs) to cognate tumor cells
revealed several tumor-related genes such as adhesion molecule with
Ig like domain 2 (AMIGO2), zinc finger protein 36 (ZFP36), BTG anti-
proliferation factor 1 (BTGI), and disks large MAGUK scaffold
protein 5 (DLG5) (34). Although 62% of tumors harbored CNAs,
there was no significant intratumoral CNA heterogeneity (34).
Although single cell molecular analyses have been utilized extensively
to reveal the underlying biology and microenvironment of several
cancer types and central nervous system tumors, there are only a few

robust studies analyzing PitNETS at a single cell resolution. Further
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work in this area will likely lead to a more sophisticated understanding
of PitNET tumorigenesis, especially with regard to differences between
hormonal subtypes, tumor microenvironment, the immune landscape,
and molecular drivers.

Epigenetic profiling

While genomic mutations in PitNETs are relatively uncommon,
epigenetic dysregulation influencing gene expression, hormonal
activity, and tumor behavior has emerged as a critical mechanism of
PitNET pathogenesis (35). Epigenetic changes—such as in DNA
methylation, histone modifications, and chromatin remodeling—are
key modulators of transcriptional activity and cellular identity in both
normal pituitary cells and tumors (35). Indeed, the activity of lineage-
specific transcription factors such as PIT1, SF1, and TPIT is modulated
by epigenetic marks, and clustering of PitNETs profiled by methylation
array separated tumors by TF lineage (36).

Many studies have reported epigenetic changes in numerous
genes associated with cell growth, cell signaling, and cell cycle
signaling, including cyclin dependent kinase 1 (CDKI), cyclin
dependent kinase inhibitor 1B (CDKNIB), cyclin dependent kinase
inhibitor 2A (CDKN2A), cyclin dependent kinase inhibitor 2C
(CDKN2C), growth arrest and DNA damage inducible gamma
(GADD45G), Ras association domain family member 1 (RASSFIA),
Ras association domain family member 3 (RASSF3), DAPK, pituitary
tumor transforming gene 1 (PTTGI), maternally expressed 3 (MEG3),
and fibroblast growth factor receptor 2 (FGFR2) (37-51). More
aggressive PitNETSs, defined by larger size and invasiveness, have been
associated with the overexpression of DNA methyltransferases 1/3A
(DNMT1/3A) and promoter hypermethylation of tumor suppressor
genes (52). The first genome-wide methylation analysis of PitNETs in
2012 identified differentially methylated genes in nonfunctioning,
GH-, and PRL-secreting PitNETSs. Specifically, HHIP like 1 (HHIPLI)
and transcription factor AP-2 epsilon (TFAP2E) were hypermethylated
in nonfunctioning tumors (53). Multiple studies have shown that
these nonfunctional tumors have global hypermethylation compared
(53-55).
nonfunctioning tumors have more hypomethylated cytosine-
(CpGs) sites compared to noninvasive
(54), global
hypomethylation observed in many cancers (56). Biological

to hormonally active tumors However, invasive

phosphate guanine

nonfunctioning tumors reminiscent of the
pathways that were differentially methylated between invasive and
PitNETs

cell-cell adhesion, and biological adhesion. The Polypeptide

noninvasive included homophilic cell adhesion,
N-acetylgalactosaminyltransferase 9 (GALNT9) promoter was also
found to be methylated with corresponding decreased RNA expression
in invasive tumors, making GALNT9 expression a potential
therapeutic target (55).

Although telomerase reverse transcriptase (TERT) promoter
mutation is a marker of aggressiveness in numerous cancers and
central nervous system tumors, the role of TERT promoter alterations
such as methylation has been debated in PitNETs. In 2018, a study
with 101 patients found no relationship between TERT promoter
mutation or methylation and outcomes in patients with PitNETs (57).
However, in a 2019 study analyzing 70 patients, TERT promoter
methylation was associated with disease progression and shorter
progression free survival (58, 59). Other common epigenetic
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biomarkers in brain tumors such as glioma include
06-methylguanine-DNA methyltransferase (MGMT) promoter
methylation, which is related to response to temozolomide (TMZ)
therapy. In contrast, in PitNETs the relationship between MGMT
methylation status and prognosis or response to TMZ remains
controversial (60-63).

Despite the ongoing debate surrounding prognostic epigenetic
biomarkers like MGMT in PitNETSs, the broader role of the epigenetic
machinery itself presents a compelling target for therapeutic
intervention. Importantly, DNA methyltransferase (DNMT) inhibitors
and histone deacetylase (HDAC) inhibitors have demonstrated
efficacy in other central nervous system tumors like glioblastoma and
may be clinically relevant for the treatment of aggressive PitNETSs (64,
65). While not yet clinically validated in PitNETs, DNMT and HDAC
inhibitor therapies could be particularly beneficial when conventional
therapies fail. Preclinical PitNET models will be essential in
determinng whether modulation of the epigenetic landscape can
suppress tumor proliferation, reduce hormonal hypersecretion, or
enhance sensitivity to standard treatments such as temozolomide. As
we further study PitNET epigenetics, targeted manipulation of
regulators such as DNMTs and HDACs may emerge as a viable
therapeutic strategy within a precision medicine framework.

Proteomic analysis

Proteomic analysis provides a direct readout of the functional
state of cells by quantifying proteins and their post-translational
modifications. In PitNETS, proteomic analyses offer unique insights
into tumor activity, cellular heterogeneity, and treatment response.

Advanced mass spectrometry (MS)-based techniques, including
tandem MS and data-independent acquisition (DIA), have enabled
high-throughput profiling of PitNET proteomes and post-translational
modifications. MS analysis reveals that nonfunctioning PitNETs have
2,000-6,000 differentially expressed proteins compared to normal
pituitary glands (66, 67). Proteomic methods have also been used to
identify the role of phosphorylation of proteins in nonfunctioning
PitNETs. For example, phosphorylation of f-catenin at Serine552 is
associated with aggressive disease characterized by invasion and
recurrence (68). Meanwhile, comparison of nonfunctioning tumors
to normal pituitary glands revealed 595 differentially phosphorylated
proteins associated with biological pathways such as the spliceosome
pathway, RNA transport pathway, and proteoglycans in cancer (69).
Ubiquitination is another post-translational modification that has
been investigated in PitNET biology. Ubiquitinated proteins in
PitNETs were most involved in biological pathways such as the
Phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway,
Hippo (Hpo) pathway, ribosome signaling pathway, and nucleotide
excision repair (70).

Alterations of specific protein abundances and functions have
been investigated to identify their role in tumorigenesis in PitNETs.
For example, hematopoietic cell signal transducer 1 (Hintl) is a
protein marker that was found to have high expression in invasive
PitNETs, especially those that expressed vascular endothelial growth
factor (VEGF) and fetal liver kinase 1 (Flk1) (71). Invasive tumors
were also found to have higher expression of cluster of differentiation
206 (CD206), a M2-macrophage marker, compared to noninvasive
tumors based on immunohistochemical staining (72). Several protein
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components of the Notch pathway were altered in prolactinomas, in
addition to increased expression of PIT1 and survival factor
phosphoprotein  associated ~ with  glycosphingolipid-enriched
microdomains 1 (PAG1) and decreased expression of E-cadherin and
N-cadherin (73).

Nitroproteomics is a subfield of proteomics that specifically
studies nitropeptides and nitroproteins, which are often markers of
oxidative damage and can be associated with tumorigenesis. In studies
investigating nitroproteins in PitNETS, several nitroproteins and other
proteins that interact with nitroproteins in nonfunctioning PitNETs
were discovered using a nitrotyrosine affinity column (NTAC) (74,
75). Analysis of nitroproteins is important since identification of post-
translational modifications such as nitrosylation may suggest potential
new avenues for targeted therapy (76). Further work to identify the
extent of the role of nitroproteomics in PitNET biology and
tumorigenesis is warranted.

Metabolomics

Metabolomics—the comprehensive profiling of small-molecule
metabolites in biological samples—provides a dynamic snapshot of
cellular metabolism and its interaction with the tumor
microenvironment. In PitNETs, metabolomic analysis has begun to
uncover metabolic adaptations associated with hormone synthesis,
tumor growth, and treatment resistance (77). Metabolomic methods
such as matrix-assisted laser desorption/ionization (MALDI) mass
spectrometry imaging have been used to confirm excess hormone
production and classify PitNETs within 30 min (78). In patients with
Cushing’s disease, biomarkers such as pyridoxate, deoxycholic acid,
and 3-methyladipate were altered in plasma samples (79). Urine
metabolites were analyzed using gas chromatography mass
spectrometry system in prolactinoma patients, which showed an
elevation of urinary 17-ketosteroids and all estrogen metabolite
concentrations, as well as the ratios of delta 5/delta 4-steroids and 5
beta/5 alpha- hydrogensteroids (80). These findings have implications
for understanding tumor biology, the systemic effect of disease, and
identification of measurable biomarkers. For instance, PitNETs are
defined by a distinct metabolic profile with higher succinic and lactic
acid (72). These finding suggest possible mechanisms of disease
development and progression as well as identification of biomarkers
for diagnosis and targeted therapy. Although still an emerging field in
pituitary tumor research, metabolomics holds significant promise for
identifying biomarkers and therapeutic vulnerabilities, particularly in
combination with other -omic methods.

Integrative Multiomic analysis

The advent of high-throughput -omics technologies has
understanding of PitNETs,
comprehensive analyses at multiple molecular levels. These

revolutionized our enabling
technologies each offer distinct advantages and limitations in terms
of resolution, sensititivty, sample input, cost, and use-case. Table 2
provides a comparative overview of commonly used technologies
across omics layers in an effort highlight pragmatic and
methodological constraints across PitNET research. Integrative
-omic analysis provides a holistic view of the molecular landscape
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TABLE 2 Omics technology comparison table.

10.3389/fmed.2025.1629621

Omics layer Technology Resolution Noise/ Sample Cost Use case in
Artifacts input PitNETs
Genomics ‘Whole-Exome Coding regions only Misses non-coding Low (DNA only) Lower Detects recurrent
Sequencing (WES) mutations mutations (e.g.,
GNAS, USP8)
‘Whole-Genome Genome-wide Higher data volume; | Moderate to high High Detects CNAs,
Sequencing (WGS) difficult to interpret structural variants,
non-coding mutations
Transcriptomics Bulk RNA-seq Average expression Cell-type Moderate (bulk Moderate Captures bulk
across all cells heterogeneity RNA) transcriptional
obscured signatures and TF
expression
Single-cell RNA-seq Cell-level resolution High dropout rate, High quality single =~ High Uncovers
technical variability cells heterogeneity,
subclonal expression,
TME profiles
Epigenomics Methylation Profiling CpG-rich regions Biased methylome Low (DNA) Low to moderate | Differentiates TF-
coverage defined subtypes;
correlates with RNA
expression
Proteomics Mass Spec based Protein-level, post Stochastic sampling, = Moderate Moderate to Identifies differentially
Proteomics translational high data volume high expressed proteins
and PTMs

of PitNETs, facilitates identification of biomarkers, elucidates
complex regulatory networks, and uncovers potential therapeutic
targets. Recent studies have demonstrated that such integrative
analyses can reveal distinct molecular subtypes of PitNETs,
improve correlations between molecular profiles and clinical
outcomes, and provide insights into tumorigenesis and progression
(Figure 2).

As Table 3 summarizes, each PitNET subtype is characterized by
distinct molecular features across genomic, transcriptomic,
epigenomic, proteomic, and metabolomic layers. Despite their
differences, these multiomic signatures converge on shared biological
pathways across subtype. For instance, somatotroph tumors exhibit
GNAS mutations, PIT1-driven transcription, and enrichment of
proteins in PI3K/AKT signaling, which collectively support growth
hormone hypersecretion via cAMP signaling and metabolic
reprogramming (81). Corticotroph tumors exhibit USP8 mutations,
upregulation of proopiomelanocortin (POMC), transcriptomic
changes in Wnt regulators like SFRP2, and proteomic changes in
Galectin-3 and ID2, linking chromatin remodeling and epithelial-to-
mesenchymal (EMT) transition with sustained ACTH hypersecretion
(82-84). Finally, lactotroph tumors with FIPA or SF3B1 mutations and
estrogen receptor activation display epigenetic change (HMGA
regulation via chromatin architecture) and proteomic shifts in
Galectin-3, HADH], and ID2, linking genetic mutations and estrogen
signaling to altered tumor epigenetics and protein expression patterns
that drive tumor aggressiveness and treatment resistance (85, 86).
These convergences evidently highlight shared mechanisms such as
hormone hypersecretion, chromatin remodeling, biological pathway
activation, and metabolic rewiring across tumor types, underscoring
the translational value of integrative multiomic analysis in PitNET
research. Additional molecular studies across different subtypes
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remain necessary, as certain subtypes such as Gonadotroph PitNETs
lack any published molecular data (87).

Although genomic profiling suggests infrequent rates of somatic
mutations in PitNETs, CNAs are common among all TF-lineage
subtypes. Integrating analysis of methylation and transcriptional data
suggests that hypomethylation of promoter regions is associated with
increased RNA expression of GHI and Somatostatin Receptor subtype
5 (SSTR5) in GH-secreting PitNETs and POMC in ACTH-secreting
PitNETs (88). In a 2020 multi-omic study, three molecular classes of
PitNETs were identified by integrating somatic mutations,
chromosomal alterations, and profiling of the miRNAome,
methylome, and transcriptome (89). This classification scheme
clustered PitNETs similar to the classification based on TF lineage.
Prognostic analysis identified that USP8 wildtype (WT) compared to
USP8 mutant corticotroph PitNETs were more aggressive with
invasive properties (89). The transcriptome of these invasive
corticotrophs was enriched for genes associated with epithelial-
mesenchymal-transition, consistent with their invasive clinical
behavior (89). Gene ontology analysis in a transcriptomic and
proteomic integrated analysis of GNAS mutant vs. wildtype
somatotrophs suggested that GNAS mutations may impact endocrine
features through induction of G protein-coupled receptor (GPCR)
pathways. Higher protein expression of WW and C2 domain-
containing protein-3 (WWC3), serine incorporator 1 (SERINC1), and
zinc finger AN1-type containing 3 (ZFAND3) was correlated with
increased tumor volume after somatostatin analog treatment (90).
Recurrence as a clinical marker of aggressive disease has also been
investigated utilizing multiomic methodologies. A robust longitudinal
study of primary and recurrent PitNETs from the same patient
determined primary and recurrent PitNETs to have similar genomic
profiles but divergent transcriptomic profiles (91). Interestingly,
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Genomic Transcrlptomlc Eplgenomlc
PIT1 SFRP2 CDK1 FGFR2
GNAS CDKN1B TPIT EGR1 CDKN1B/2A/2C DNMT1/3A
USP8 AIP SF1 PRKACA GADD45y HHIPLA1
USP48 SDHB/D PITX1 CREB1 RASSF1A/3 TFAP2E
B-raf CNAs POMC JUND DAPK TERTp
BRAF KIF5A CCND2 GZMK PTAG Cell growth
TP53 GRB10 ZNF676 NF-kB signaling MGMT Cell signaling
MEN1 cAMP signaling DAPK1 WNT signaling GALNT9 Cell Cycle
TIMP2 EIF signaling MEG3
Proteomic Metabolomic
: _ Integrative Multiomic
Hint1 Phosphorylation
VEGF Ubiquitination Pyridoxate
Flk1 PI3K/AKT signaling ) Deoxycholic acid
CD206  Hpo signaling GH1 NOTCH3 Glycolysis i 3-Methyladipate
Galectin-3 Splicesome pathway SSTRS DLK1 Gluconeogenesis 17-Ketosteroids
HASH1  RNA transport POMC LGALS3 Pyruvate metabolism Estrogen metabolites
ID2 SNARE interactions Usps ASCL1 Citrate cycle Delta 5/Delta 4-steroid
PAG1 Platelet activation GNAS ID2 Fatty acid metabolism 5-B/5-a Hydrogensteroid
B-catenin Tight junctions WWC3 TLE4 My_c 5|gnallng pathway
SERINC1 BAG1 Epithelial-mesenchymal
ZFAND3  Transducin transition
AMIGO2  Galactin-3
ZFP36 E-cadherin
BTG1 N-cadherin
DLG5 CNA heterogeneity
SFRP1 GPCR pathways
TLE2 Wnt pathway
PIX2 Notch pathway
FIGURE 2
Insights derived from the application of individual and integrative multiomics analyses for PitNETs.

several metabolic pathways that were differentially expressed among
primary and recurrent tumors based on transcriptional data did not
seem to be regulated by methylation, raising the possibility of
alternative  regulatory mechanisms that warrant further
investigation (91).

Multiomic analyses have also incorporated both proteomic and
transcriptomic data to further understand PitNET biology. For
example, nonfunctioning PitNETs had almost 300 differentially
expressed genes and 50 differentially expressed proteins compared to
controls including secreted frizzled-related protein 1 (SFRPI),
transducin like enhancer of split 2 (TLE2), PITX2, Notch receptor 3
(NOTCH3), and delta like non-canonical Notch ligand 1 (DLK1) (92).
These findings suggest potential critical molecular pathways
implicated in this tumor type such as the Wnt and Notch pathways.
Integrative proteomic and transcriptomic analysis has also been used
to analyze metastatic PitNETSs, which led to the identification of
almost 5,000 differentially expressed genes, and the downregulation
of beta-galactoside binding protein galactin-3. Other genes that may
play important roles in metastatic PitNETs include lectin, galactoside-
(LGALS3), achaete-scute family bHLH

transcription factor 1 (ASCL1), ID2, and transducin like enhancer of

binding, soluble, 3
split 4 (TLE4) (93). Lastly, transcriptomic and proteomic analysis of

prolactinomas compared to normal pituitary glands identified a
unique transcriptomic and proteomic profile. Notably, several
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components of the Notch pathway were altered in prolactinomas,
along with increased expression of survival factor BCL2 associated
athanogene 1 (BAG1) and decreased expression of E-cadherin and
N-cadherin (73).

Metabolomics has been used alongside other -omic methods such
as proteomics and lipidomics to delve further into the mechanisms of
PitNET pathogenesis. In ACTH-secreting PitNETS, integrated analysis
identified that these tumors were significantly enriched in protein-
metabolite joint pathways such as glycolysis/gluconeogenesis,
pyruvate metabolism, citrate cycle, and fatty acid metabolism (94).
The Myc signaling pathway was also identified to have a significant
role in the metabolic changes and tumorigenesis of these tumors (94).
A broader study using desorption electrospray ionization (DESI-MS)
derived phospholipid signals that differed between gray matter, white
matter, gliomas, meningiomas and pituitary tumors. Principal
component analysis of lipid and metabolite profiles from this analysis
were able to separate different tumor types: gliomas, meningiomas,
and pituitary tumors (95).

However, while these studies underscore the value of integrative
multiomics, they also highlight the significant computational hurdles
in merging heterogenous omic datasets. Despite the growing number
of multi-omic studies in PitNETS, integration and standardization
across datasets remain computationally challenging, as omics data is
inherently heterogenous. Several bioinformatic tools have been
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TABLE 3 Molecular features of PitNETs by hormonal expression.

Cell of origin

Somatotroph

Lactotroph

Thyrotroph

Corticotroph

10.3389/fmed.2025.1629621

Gonadotroph

Luteinizing hormone/
Thyroid stimulating Adrenocorticotrophic
Hormone Growth Hormone Prolactin follicle stimulating
hormone hormone
hormone
Transcription Factor PIT1 PIT1 PIT1 TPIT SF1
% of all PitNETs 11 40 0.2 6 43
Molecular features
MEN1
AIP
ASTN2
USP8
CWH43
GNAS FIPA USP48
Genomics R3HDM2
AIP SF3B1 BRAF
SMOX
TP53
STYL3
ZSCA23
CNAs
SFRP2
Three transcriptional Activation of estrogen Wnt signaling
subtypes receptor, oxidative CCND
Transcriptomics
ODC phosphorylation, and ZN
BAG1 EIF signaling DAPK1
TIMP2
HMGA regulation via
Epigenomics SLIT1
chromatin architecture
IL-4
PDGF
Galectin-3 Galectin-3
PTEN
Proteomics HASH1 HASH1
VEGF
1D2 1D2
PI3K/AKT
FAK
Urine 17-ketosteroids Pyridoxate
Metabolomics Succinic acid Deoxycholic acid
Lactic acid 3-methyladipate
GH1
Fatty acid metabolism POMC
SSTR5
Nitrogen metabolism Glycolysis
GPCR pathway
Notch pathway Insulin Gluconeogenesis
ATP2A2
Multiomics E-cadherin PPAR Pyruvate metabolism
ARID5B
N-cadherin HIPPO Citrate cycle
WWC3
PIP5K1B Fatty acid metabolism
SERINC1
NEK10 Myc signaling
ZFAND3

developed to address these issues. Multi-omics factor analysis uses
unsupervised latent factor modeling to identify hidden sources of
variation across omics layers (96). Similarity network fusion
constructs networks of samples and merges these networks effectively
to discover subtypes (97). By contrast, iClusterPlus applies joint latent
variable modeling to integrate multiple subtypes of genomic data for
subtype identification (98). Unfortunately, these distinct data fusion
techniques differ in scalability, handling of missing data, and
interpretability. Moreover, these methods are rarely tailored to
PitNET-specific datasets, which tend to be small and sparse.
Standardization of data in PitNET omics research faces similar
issues. Batch effects, inconsistent normalization strategies, and

Frontiers in Medicine

variable bioinformatics pipelines undermine reproducibility of data.
Transcriptomic analysis heavily relies on normalization and batch
correction tools like ComBat or Harmony (99, 100). Proteomic and
epigenomic analyses use quantile normalization and reference-based
scaling to address technical variability (101). Collectively, these
techniques’ inconsistencies can complicate downstream integration
efforts. Hence, adhering to data frameworks such as the NIH’s
Findable, Accessible, Interoperable, Reusable (FAIR) principles,
standardizing pipelines, and reporting metadata in PitNET research
would allow for increased reproducibility and comparability of data,
facilitating the development of robust PitNET-specific computational
pipeline that provide clinically meaningful data.
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In parallel with efforts to integrate and standardize multiomic
workflows, artificial intelligence (AI) and machine learning (ML)
have emerged as powerful tools for analyzing complex multi-omic
datasets. Although still in the nascent stages of adoption in PitNET
research, these methods are beginning to prove extremely useful.
Several studies have already utilized AI and ML to create robust
PitNET classifiers for risk stratification and diagnosis. Wang et al.
used LASSO regression and Support Vector Machine Recursive
Feature Elimination to develop a Programmed Cell Death-
associated index (PCDI) classifier that outperforms traditional
prognostic models in identifying invasive PitNETs with a high
degree of accuracy (102). In another study, Li et al. used radiomic
features derived from T2-weighted MRI to construct a Gaussian
process model capable of preoperatively predicting histological
subtypes of PitNETs, such as prolactinoma (103). Despite these
promising results, the translational potential of these approaches
is limited by the paucity of PitNET datasets. Collaborative future
modeling efforts may allow for more robust and accurate model
construction and generalization.

Integrative multi-omics analyses have significantly advanced our
understanding of PitNETs by revealing multiple molecular subtypes
and the complex regulatory networks that underlie tumor behavior.
Building upon these approaches, spatial omics technologies are
emerging as vital tools for resolving tumor heterogeneity in its native
context. Spatial transcriptomics and proteomics offer significant
resolution advancement for characterizing intratumoral heterogeneity
and tumor microenvironment architecture in PitNETs. For instance,
spatial transcriptomics could distinguish between non-invasive and
invasive PitNET phenotypes by localizing EMT markers. Similarly,
spatial proteomic analysis could enable the visualization of PTMs
throughout the invasive PitNET front. These tools have the potential
to refine the current understanding of PitNET pathophysiology and
support the

development of spatially-informed, precision

medicine strategies.

Translational gaps

While multiomics PitNET research has yielded invaluable
biological insights, a significant gap remains between academic
discovery and clinical translation. Cost and infrastructure
requirements for generating and analyzing multi-layered omics
data remains prohibitive, especially outside of academic centers.
Governmental regulatory pathways for clinical grade omics
assays are still evolving, with no PitNET omics-based biomarker
panels still having received FDA clearance. Clinical trials for
biomarker  validation also remain

multiomic rare

and underpowered.

Conclusion

In conclusion, the integration of multi-omics technologies has
profoundly advanced our understanding of PitNETs, offering a
comprehensive view of their molecular landscape. By combining
data from genomics, transcriptomics, proteomics, epigenomics, and
metabolomics, researchers have identified distinct molecular
subtypes, unveiled regulatory networks, and discovered novel
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biomarkers, thereby enhancing diagnostic precision and informing
therapeutic strategies. Clinically, these integrative approaches hold
promise for the development of personalized medicine in PitNET
management, which is a critical need, in particular for recurrent
tumors and tumors not cured by the current standard of care. The
ability to correlate multiomic profiles with clinical outcomes
facilitates more accurate prognostication and the potential for
tailored treatment regimens. Looking forward, the continued
evolution of computational tools and machine learning algorithms
will be critical in managing the complexity of multiomic data,
enabling real-time integration and interpretation in clinical settings.
Advancements in single-cell and spatial omics technologies are
further define
microenvironmental interactions, providing deeper insights into

expected to tumor heterogeneity and
PitNET pathogenesis. Collectively, these developments herald a new
era in PitNET management, where multiomic integration becomes

central to patient-specific diagnosis, prognosis, and therapy.
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Introduction: Although significant progress has been made in the treatment
and research of osteoporosis patients in recent years, the genetic mechanism
of osteoporosis has not yet been fully elucidated.

Methods: We conducted a comprehensive analysis using 16S sequencing and
UHPLC-MS/MS metabolomics data to characterize the microbial composition
and metabolic composition in the serum of osteoporosis patients.

Results: At the phylum level, Proteobacteria are mainly presentin Osteoporosis; In
Normal, itis mainly Bacteroidota. At the genus level, Cupriavidus is the main species
in Osteoporosis; In Normal, the main ones are Blautia, Bacteroides, Alcaligenes
and Pseudomonas. Serum metabolomics revealed different metabolites (230
significantly differentially expressed metabolites) and lipid metabolism pathways
(such as Glycerophospholipid metabolism) among the two groups. The combined
serum microbiota and serum metabolomics datasets demonstrate a correlation
reflecting the impact of microbiota on metabolic activity (p < 0.05).

Discussion: Our research findings indicate that microbiota and metabolomics
analysis provide important candidate biomarkers. The correlation between these
serum microbiota and host metabolism is of great significance for optimizing
early diagnosis and developing personalized treatment strategies. This study
elucidates the relationship between serum microbiota and metabolites in
osteoporosis.

KEYWORDS

metabolomics, microbiome, serum, osteoporosis, biomarkers

1 Introduction

Osteoporosis is a common metabolic disorder, mainly characterized by reduced bone mass
and abnormal bone tissue microstructure, decreased bone strength, increased bone fragility,
and increased risk of fractures (1). Osteoporosis can be divided into primary osteoporosis,
secondary osteoporosis, and other types of osteoporosis (2). The clinical manifestations of
osteoporosis mainly include lower back pain, bone pain, spinal deformity, fractures, muscle
weakness, fatigue, and worsening symptoms after activity. Psychological abnormalities may
occur due to the impact of the disease on daily life, including fear, anxiety, depression, and loss
of confidence (3). Despite the widespread use of medical therapies in the past decade,
osteoporosis remains the leading cause of life-threatening conditions for the elderly, second
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only to tumors and cardiovascular diseases (4). Osteoporosis is usually
accompanied by severe bone pain, changes in bone density, and
alterations in serum bone metabolism indicators (5) Therefore,
identifying biomarkers of osteoporosis is of great significance for
preventing the occurrence of osteoporosis.

Research has shown that the structure and composition of the
microbiota in osteoporosis have undergone significant changes (6).
Patients with low bone density have dysbiosis of the microbiota, and
a decrease in the number of bifidobacteria and lactobacilli is associated
with a decrease in bone density (7). Research has found that patients
with dysbiosis but no osteoporosis have already experienced decreased
bone density and abnormal bone metabolism, and the dysbiosis in the
osteoporosis group is more severe, indicating that dysbiosis has
already affected bone metabolism and bone density to some extent
before osteoporosis occurs (8). Dysregulation of lipid metabolism
plays an important role in the pathogenesis of osteoporosis (9, 10). In
addition, various amino acids such as arginine, threonine, and
tryptophan can affect bone density (11).

The changes in microbiota and metabolism may be related to the
(12-14),
characteristics and metabolic profile of osteoporosis patients still need

pathogenesis of osteoporosis but the microbiota
to be determined. In this study, we analyzed the microbiota and
metabolic profiles of 18 osteoporosis patients and 18 healthy
volunteers using high-throughput sequencing and non-targeted
metabolomics. The combination of these two omics can reveal how
microorganisms affect host metabolic processes and how metabolites
regulate microbial growth and function by analyzing the correlation
between microbial diversity and metabolite abundance. Based on
multi-omics analysis, we identified specific characteristics of the
microbiota and host metabolite profiles associated with osteoporosis,
and further established these relationships, revealing the relationship
between microbiota and serum metabolite functional modules. Our
research reveals that the integration of metabolomics and 16S rRNA
sequencing analysis may reveal the interactions occurring between
hosts and microbial communities.

2 Materials and methods
2.1 Study population

The 2013 Helsinki Declaration is in compliance with this study,
which has been approved by the Ethics Committee for Life Sciences
at Hefei First People’s Hospital. Prior to registration, written informed
consent was provided by all participants. Among them, there were 18
healthy volunteers (Normal group) and 18 newly diagnosed
osteoporosis patients (Osteoporosis group). Inclusion criteria for
participants: no previous history of cancers; Participants who signed
the informed consent form for the study. The exclusion criteria for
participants are as follows: cancer patients; Participants who have not
signed the informed consent form; patients had been treated with
antibiotics in the past 6 months (15).

2.2 Sample collection and preparation

The collection of fasting blood from 36 participants was conducted
during clinical examinations. Blood samples were collected from
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blood vessels using serum separation gel containing coagulants. After
standing at room temperature for 60 min to coagulate, they were
centrifuged at 3000 rpm for 10 min at 4 °C. 250 pL of supernatant was
collected and divided into numbered and suitable 2 mL centrifuge
tubes. After the samples are processed, they should be stored in a
- 80 °C freezer to avoid repeated freezing and thawing of the collected
samples (16).

2.3 DNA extraction and 16S rDNA
sequencing

The genomic DNA of the sample was extracted by CTAB or SDS
method and then the purity and concentration of DNA were detected by
agarose gel electrophoresis. An appropriate amount of sample DNA was
taken into a centrifuge tube, and the sample was diluted to 1 ng/pl with
sterile water. Using diluted genomic DNA as a template and selecting
sequencing regions, specific primers with barcode are used, corresponding
to  the  following  regions: 16S  V3-V4(341F(CCTA
YGGGRBGCASCAG) and 806R(GGACTACNNGGGTATCTAAT)).
After mixing and purifying the PCR products, TruSeq was used ® The
DNA PCR Free Sample Preparation Kit was used to construct a library.
The constructed library was quantified using Qubit and Q-PCR, and after
passing the test, it was sequenced using NovaSeq6000 (17).

2.4 Non-targeted metabolomics

The sample stored at —80 °C refrigerator was thawed on ice and
vortexed for 10 s. 50 pL of sample and 300 pL of extraction solution
(ACN: Methanol = 1:4, V/V) containing internal standards were
added into a 2 mL microcentrifugetube. The sample was vortexed for
3 min and then centrifuged at 12000 rpm for 10 min (4 °C). 200 pL of
the supernatant was collected and placed in —20 °C for 30 min, and
then centrifuged at 12000 rpm for 3 min (4 °C). A 180 pL aliquots of
supernatant were transferred for UHPLC (Vanquish, Thermo
Scientific (Massachusetts, USA))-MS (Q Exactive HF-X, Thermo
Scientific  (Massachusetts, USA)) analysis. Selection of
chromatographic columns: Waters ACQUITY Premier HSS T3
Column 1.8 pm, 2.1 mm*100 mm; Retention Time = 6.0 min. The
ionization mode is electric spray ionization (ESI). All samples were for
two ionization modes (ESI+, ESI-). During the detection process of
metabolomics technology, quality control (QC) samples are used for
method validation to ensure the stability of the entire analysis system.
QC samples are obtained by mixing 100 pL of each sample. To reduce
errors, sample testing is conducted randomly. Before analyzing the
sample, run the QC sample 5 times to balance the system. During the
sample testing process, run QC samples once every 3 normal samples
to measure the stability of the system (18).

The raw data of the mass spectrometer was converted into
mzXML format by ProteoWizard, and the XCMS program was used
to extract and align the overall ion peaks of each substance to obtain
the primary spectrum of metabolic ions. Further, the ion peaks of each
fragment of metabolic ions were extracted to obtain the secondary
spectrum of metabolic ions. Finally, the extracted primary and
secondary spectra of metabolic ions were matched with the spectra of
metabolites in online public databases, and qualitative information of
metabolites was obtained using the metDNA method (19).
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2.5 Microbial omics research

Separate each sample data from the offline data based on the
barcode sequence and PCR amplification primer sequence and
remove the barcode and primer sequences. Using Fastp Filter the
original reads to obtain high-quality reads. The filtering method is to
automatically detect and remove the joint sequence; Remove reads
with a base number of 1 or more; Remove reads with low-quality bases
(mass value<15) accounting for more than 40%; Deletion with an
average mass of less than 20 within the 4 base window interval;
Remove the polyG at the end; Delete reads with a length less than
150 bp. High quality dual end reads are concatenated using FLASH to
obtain high-quality Tag data. The tag sequence is compared with the
species annotation database using vsearch (v2.22.1) to detect chimeric
sequences, and finally the chimeric sequences are removed to obtain
the final valid data. Calculate alpha diversity and beta diversity
analysis using the phylosseq and vegan packages of R software.
P < 0.05 was considered to have significant. Perform LEfSe analysis on
phylum and genera using R software. Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States 2 (PICRUSt2)
were utilized to perform functional predication of the gut microbiota.
Furthermore, Pathways that were significantly different between the
Normal group and Osteoporosis group were identified by f-test.
P < 0.05 was considered to have significant (20).

2.6 Metabolomics research

Perform principal component analysis (PCA) on metabolomic
data using R software to outline the inherent similarities/dissimilarities
within the dataset. Perform orthogonal partial least squares
discriminant analysis (OPLS-DA) using qualitative orthogonal
projection of metabolomic data onto latent structures and evaluate the
quality of the model through model parameters such as Q2, which
represents the predictability of the model, and R2, which represents
the goodness of the model fit. The 7-fold cross validation method,
CV-ANOVA, and permutation test (permutation number = 200) are
used to evaluate the predictive performance of the model. The variable
importance (VIP) value in the prediction reflects the importance of
the terms in the model relative to Y (all responses) and relative to X
(prediction). Finally, fold change (FC) and significant p-value
calculations were performed, and metabolites with VIP >1 and
p <0.05 were considered to have significant differences between
groups. Based on the KEGG pathway, it is determined whether
differential metabolites are significantly enriched in the KEGG
metabolic pathway. The significantly enriched metabolic pathways
indicate their significant importance in the biological processes
studied, p < 0.05 was considered to have significant (21).

2.7 Omics association analysis

Further understand the pathogenesis of osteoporosis patients
through multi-omics association analysis. Spearman rank correlation
analysis uses Spearman correlation coeflicient as an indicator to
describe the correlation between two populations and uses rank
correlation test to determine whether there is a statistically significant
correlation between the two populations. The range of Spearman
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correlation coefficient [—1, 1], positive values indicating positive
correlation and negative values indicating negative correlation. The
correlation analysis was calculated using the cor function of R
software, and the significance test of the correlation was calculated
using the corPvalueStudent function of the WGCNA package in R
software. The input differential metabolites (VIP > 1 and p < 0.05) are
sorted in descending order of VIP, and the metabolites with the
highest ranking are selected. Microorganisms are sorted in descending
order based on the sum of relative quantitative values in all samples
(22). Metabolites are fixed in the top 50, while microorganisms are
assumed to be in the top 30. p < 0.05 is considered significant.

3 Results
3.1 Estimation of sequencing depth

The 16S rDNA sequencing of 36 samples was based on the
NovaSeq6000 sequencing platform. Each sample’s Raw Tags are
greater than 50,000 reads. Based on noise reduction methods, a total
of 1889 microorganisms were obtained (Supplementary Figure SI).
The dilution curve shows that the curves of each sample have reached
the plateau stage, indicating that the sequencing data volume is
reasonable (Supplementary Figure S2A). The ranking richness curve
reflects that the richness and evenness of each sample are high
(Supplementary Figure S2B). The species accumulation box plot
shows that as the sample size increases, species diversity gradually
increases, and when the sample size reaches 36, the curve tends to
flatten (Supplementary Figure S2C).

3.2 Alpha-diversity

Alpha diversity is used to analyze the diversity of microbial
communities within a group. The evaluation of Shannon and Simpson
showed significant changes in alpha diversity in osteoporosis group
compared to Normal group (p <0.05) (Figures 1A,B). *p < 0.05,
“p < 0.01, **p < 0.001, ***p < 0.0001.

3.3 Beta-diversity

p-diversity is a comparative analysis of the composition of
different microbial communities. PCA based on Euclidean distance
can extract two axes that maximize the differences between
samples, thereby reflecting the differences in multidimensional data
on a two-dimensional coordinate graph (Figure 2A). The f-diversity
index analyzed by Wilcox test showed significant differences
between the Normal group and the osteoporosis group (p < 0.05)
(Figure 2B). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

3.4 Distribution of classification
composition of microbial communities in
patients

LEfSe is an analytical tool used to discover and interpret
biomarkers in high-dimensional data, which can be used to
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Differences in microbial community diversity between Osteoporosis group and Normal group. The evaluation of Shannon and Simpson showed
significant changes in alpha diversity in osteoporosis group compared to Normal group (Normal) (A,B). p < 0.05 is considered significant. *p < 0.05,

A 2D PCoA Plot
Adonis R2: 0.205, P-value: 1.00e-03
0.61 |
.
)
03 : ]
g o0 Group
<00 . o o Normal
0 © Osteoporosis
a do
031 ° [
-0.61
05 0.0 0.5 1.0 15
PCoA1 (51.91%)
FIGURE 2

weighted_unifrac

1.0

0.0

Differences in microbial community composition between Osteoporosis group and Normal group. PCA based on Euclidean distance can extract two
axes that maximize the differences between samples, thereby reflecting the differences in multidimensional data on a two-dimensional coordinate
graph (A). The g-diversity index analyzed by Wilcox test showed significant differences between the Osteoporosis group and Normal group (B).

p < 0.05 is considered significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Group
E3 Normal
=1 Osteoporosis

Group

compare two groups and find biomarkers with statistical differences

between groups. As shown in Figures 3A,B, at the phylum level,

Proteobacteria are mainly present in Osteoporosis; In Normal
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group, it is mainly Bacteroidota. At the genus level, Cupriavidus is

the main species in Osteoporosis group; In Normal group, the

main ones are Blautia, Bacteroides, Alcaligenes and Pseudomonas.
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Screening of biomarkers with statistical differences in osteoporosis patients. LDA value distribution histogram (A). Cladogram (B).

3.5 PICRUSt2 predicts the functionality of
the microbiome

The PICRUSt2 program predicts the functions of two groups
(Osteoporosis group and Normal group) of microorganisms. At level
1, microorganisms within the osteoporosis group are involved in
the and Cellular Processes (p < 0.05)
(Supplementary Figure S3A). At level 2, microorganisms within the

Human Diseases

osteoporosis group are involved in the Amino acid metabolism and
Signal transduction (p < 0.05) (Supplementary Figure S3B) 0.3.6.
Multivariate Analysis of Metabolomics Data.

Based on mass spectrometry analysis of serum samples from 36
participants, the total ion chromatograms (TICs) of different quality
control (QC) serum samples were overlaid. The results showed highly
overlapping TIC curves for the detected metabolic molecules, indicating
strong consistency in peak intensity and retention time of metabolic
molecules. This demonstrates excellent instrumental stability when
analyzing  the sample different
(Supplementary Figures S4A,B). The high stability of mass spectrometry
ensures the reliability and reproducibility of the serum metabolomics data.

Multivariate principal component analysis (PCA) of two groups
(Osteoporosis group and Normal group) showed significant
differences between the Normal group and the Osteoporosis group
(Figure 4A). OPLS-DA, a supervised pattern recognition method, was
employed to visualize and characterize overall metabolic variations
between groups. As shown in Figure 4B, each sample is represented as
a point in the score plot, with clear separation between groups. A
permutation test (n = 200) was conducted to validate the OPLS-DA
model (Supplementary Figure S5A). An S-plot was used to identify
differential metabolites (Supplementary Figure S5B). In the S-plot,

same at time  points
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each point represents a variable, and those farther from the origin
contribute more significantly to the differences between the
Osteoporosis group and Normal group.

3.6 ldentification of differential metabolites
in serum

Potential differential metabolites were selected based on the
VIP derived from the OPLS-DA model and univariate analysis.
Screening criteria included VIP > 1.0 and p < 0.05. In the Normal
group vs. Osteoporosis group, 230 endogenous metabolites with
robust differences across the two groups were identified as
potential biomarkers (Figure 5A). Display of the top 20
metabolites with different multiples in group comparison
(Supplementary Figure S6). The top three metabolites with
significant upregulation are 4-Chloroaniline, Oleamide, and
1-Hexadecanoyl-2-docosanoyl-glycero-3-phosphorine. The top
three metabolites with significant downregulation are
PC(18:3(9Z,127,152)/18:3(9Z,12Z,157)), Astaxanthin,
1,2-Dipalmitoleoyl-sn-glycero-3-phosphoethanolamine.

3.7 ldentification of differential metabolic
pathways in serum

KEGG enrichment pathway analysis identified key metabolic
pathways involved in metabolic reactions. In Normal vs. Osteoporosis,
the significant differences in metabolic pathways are mainly enriched
in Glycerophospholipid metabolism, Choline metabolism in cancer,
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Metabolomics analysis is used to explore differential metabolites and biological pathways in osteoporosis patients. In the Normal vs. Osteoporosis, 230
endogenous metabolites with robust differences across the two groups were identified as potential biomarkers (A). KEGG pathway analysis (B).

Linoleic acid metabolism, Arachidonic acid metabolism (p < 0.05)
(Figure 5B).

3.8 Omics association analysis

By conducting correlation analysis between the microbiome and
metabolome, researchers calculated Spearman correlations between
the top ranked differential genera and the top 50 differential
metabolites in VIP rankings. In Normal group vs. Osteoporosis group,
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at the phylum level, Proteobacteria is significantly positively correlated
with differential metabolites (PE-NMe2(20:4(87,117,147,17Z)/
(16:0)), etc). At the genus level, Cupriavidus is significantly correlated
with most of the differential metabolites among the top 50,
Cupriavidus is significantly positively correlated with differential
metabolites (PE-NMe2(20:4(8Z2,117,147,177)/(16:0)), PA(22:2)
(13Z,162)/22:2(13Z,16Z),  PE(18:0/20:4(5Z,8Z,11Z,14Z)),  etc)
among the top 50 (Supplementary Figure S7). p<0.05 is
considered  significant. *p <0.05, **p<0.01, ***p<0.001,
ot < 0.0001.
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4 Discussion

Although significant progress has been made in the treatment and
research of osteoporosis patients in recent years (23), the genetic
mechanism of osteoporosis has not yet been fully elucidated.
Microorganisms have been reported to play an important role in the
pathogenesis of osteoporosis (24). Our research shows that, at the
phylum level, Proteobacteria are mainly present in Osteoporosis. At
the genus level, Cupriavidus is the main species in Osteoporosis.

In osteoporosis research, it has been found that the abundance of
Proteobacteria is negatively correlated with bone mass. When the
number of Proteobacteria increases, bone mass may decrease, which
may indicate that overgrowth or imbalance of Proteobacteria is related
to the occurrence and development of osteoporosis (25). The increase
in abundance of Proteobacteria is associated with enhanced
inflammatory response. The release of inflammatory factors can affect
the activity of osteoclasts and osteoblasts, promote bone resorption,
inhibit bone formation and lead to bone loss and osteoporosis (26).

According to reports, Cupriavidus is associated with diseases (27).
Cupriavidus is enriched in patients with high inflammatory response
colon cancer (28). Cupriavidus is enriched in patients with duodenal
bulb inflammation (29). In immune thrombocytopenia patients,
Cupriavidus is positively correlated with lipid molecules (30). When
the level of lipid molecules increases, lipid oxidation and accumulation
occur in the bone. Oxidized lipids can inhibit osteoblast formation,
induce osteoclast differentiation, and promote bone resorption. In
addition, oxidized lipids can induce inflammatory reactions, produce
cytokines (such as IL-6, TNF-a, etc.), further activate osteoclasts, lead
to increased bone resorption, and inhibit osteoblast differentiation
(10, 31). Our research found that Cupriavidus is associated with lipid
molecules, and Cupriavidus may regulate the inflammatory response
of osteoporosis patients through lipid molecules. However, the specific
mechanism needs to be elucidated in further experiments. The
differences in microbial community classification and composition
demonstrated in the study provide a theoretical basis for future
research that may improve osteoporosis patients.

Non-targeted metabolomics is a quantitative analysis of all
endogenous metabolites in an organism, following the research ideas of
proteomics and genomics. Metabolites help explain the mechanisms of
disease occurrence and development (32). Non-targeted metabolomics
analysis based on serum has been applied to identify biomarkers for
early disease detection and treatment efficacy prediction, and to explore
the pathological mechanisms of diseases in depth (33). In this study,
we reported the metabolic profile differences between the Osteoporosis
group and Normal group, and conducted multivariate analysis to
elucidate the differences among the two groups. The results showed
significant changes in the expression levels of metabolites in the two
groups and identified the metabolic pathway with significant changes:
Glycerophospholipid metabolism. Glycerophospholipid metabolism has
been reported to be associated with the pathogenesis of many diseases
(34). Glycerophospholipid metabolism metabolism is involved in energy
metabolism regulation (35). The process of bone remodeling requires a
large amount of energy, and abnormal energy metabolism can affect the
activity of osteoblasts and osteoclasts, leading to osteoporosis (36). The
oxidation of Glycerophospholipid metabolism can produce reactive
oxygen species, triggering oxidative stress (37). During oxidative stress,
a large amount of reactive oxygen species (ROS) are generated within
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cells. ROS can directly activate the nuclear factor kappa B (NF-«B)
inflammatory signaling pathway. NF-kB is activated and enters the
nucleus, promoting gene transcription of inflammatory factors such as
tumor necrosis factor - « and interleukin-6, increasing their expression
and release (38). Inflammatory cytokines such as interleukin-6 and
tumor necrosis factor-o can promote osteoclast activity, inhibit
osteoblast function, and lead to increased bone resorption and decreased
bone formation (39). These studies may help to better understand the
potential pathogenesis of osteoporosis patients and provide metabolic
evidence for further research on osteoporosis patients.

The comprehensive analysis of the microbiome and non-targeted
metabolome of diseased individuals has preliminarily revealed the
correlation between differential microorganisms and differential
metabolites, and indicated the main lipid metabolism pathways. Our
multi-omics studies have demonstrated the correlation between
differential bacterial genera and metabolites. Although the causes of
these differentially expressed metabolites may come from changes in
microbial community structure, they may also be related to the lipid
metabolism homeostasis caused by the host microbial community
(40). More and more evidence suggests that the metabolic products
and structural components of microorganisms may promote the
pathogenesis of osteoporosis (24). Our study provides aevidence for a
deeper understanding of the mechanisms underlying osteoporosis, but
significant limitations still exist. The sample size of this study is
relatively small, a small sample size may lead to a decrease in the
effectiveness of statistical testing, making it difficult to detect real
differences or relationships. Insufficient sample size may lead to
increased uncertainty in external validity, making it difficult to validate
research results in other contexts, and future research with increased
sample size is needed to further elucidate the roles of identified factors,
lipids, and metabolic pathways in osteoporosis. In the future, targeted
metabolomics and animal experiments will be used to conduct more
in-depth mechanistic studies. In addition, due to the possibility of
confounding variables (including age, race, diet, body mass index, and
new drug intake), external validation queues will be needed in the
future to validate the current research results.

5 Conclusion

In summary, there are differences in the relative abundance and
structural composition of the microbiota in osteoporosis patients
compared to Normal group. Understanding the role of microbiota
may be helpful in disease mechanism understanding and the
identification of biomarkers for diagnosis. Current metabolomics
studies have shown identifiable differences in metabolites and lipid
metabolism pathways between Osteoporosis group and Normal
group. The identified metabolites contribute to the understanding of
the pathophysiology of osteoporosis patients. Due to the heterogeneity
and complexity of diseases, and with the rapid advancement of various
detection technologies, treatment options for diseases have evolved
from single target therapy to multi-target therapy. A comprehensive
approach (microbiome and Non-targeted metabolomics) can provide
multidimensional therapeutic targets for personalized treatment of
osteoporosis. However, due to the limitations of the research, the next
step requires larger external validation cohorts and an interventional
study to confirm the relationships detected and potential biomarkers,
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providing more reliable therapeutic targets for personalized treatment
of osteoporosis patients.
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Prioritizing actionable drug targets is a critical challenge in cancer research,
where high-dimensional genomic data and the complexity of tumor biology
often hinder effective prioritization. To address this, we developed GETgene-Al, a
novel computational framework that integrates network-based prioritization,
machine learning, and automated literature analysis to prioritize and rank
potential therapeutic targets. Central to GETgene-Al is the G.E.T. strategy,
which combines three data streams: mutational frequency (G List), differential
expression (E List), and known drug targets (T List). These components are
iteratively refined and ranked using the Biological Entity Expansion and
Ranking Engine (BEERE), leveraging protein-protein interaction networks,
functional annotations, and experimental evidence. Additionally, GETgene-Al
incorporates GPT-40, an advanced large language model, to automate
literature-based ranking, reducing manual curation and increasing efficiency.
In this study, we applied GETgene-Al to pancreatic cancer as a case study. The
framework successfully prioritized high-priority targets such as PIK3CA and
PRKCA, validated through experimental evidence and clinical relevance.
Benchmarking against GEO2R and STRING demonstrated GETgene-Al's
superior performance, achieving higher precision, recall, and efficiency in
prioritizing actionable targets. Moreover, the framework mitigated false
positives by deprioritizing genes lacking functional or clinical significance.
While demonstrated on pancreatic cancer, the modular design of GETgene-Al
enables scalability across diverse cancers and diseases. By integrating multi-
omics datasets with advanced computational and Al-driven approaches,
GETgene-Al provides a versatile and robust platform for accelerating cancer
drug discovery. This framework bridges computational innovations with
translational research to improve patient outcomes.

KEYWORDS

cancer, pancreatic cancer, network-based prioritization, computational biology and
bioinformatics, drug target prioritization, drug target, network biology, gene
prioritarization

1 Introduction

Traditional chemotherapeutic agents, which non-specifically target rapidly dividing
cells (Gu et al,, 2023; Sun et al,, 2021), are contested with the promise of targeted therapies
that disrupt specific molecular pathways governing cell survival and apoptosis (Sellers and
Fisher, 1999; Lim et al, 2019). Drug target discovery is pivotal for advancing cancer
therapies, yet traditional approaches face three critical limitations. First, manual curation of
literature and static biomedical databases struggles to scale with the complexity of modern
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multi-omics data (genomic, transcriptomic, proteomic), leading to
incomplete or outdated target identification (Paananen and Fortino,
2020; Zhou et al., 2022; Trajanoska et al., 2023; Lindsay, 2003; Zhou
and Zhong, 2017). Second, traditional network-based prioritization,
which prioritize genes based on protein-protein interaction (PPI)
network centrality, oversimplify biological context by ignoring
tissue-specific genomic features such as mutation frequencies and
differential expression profiles (Petti et al., 2020). These limitations
contribute to high failure rates in translating preclinical discoveries
to clinical therapies, particularly in genetically heterogeneous
cancers like pancreatic cancer. Third, reliance on single-metric
approaches like fold change or mutational frequency introduces
variability due to arbitrary thresholds and sample bias (McCarthy
and Smyth, 2009; Dinstag and Shamir, 2020; Lopez-Cortés et al.,
2018). These gaps contribute to high failure rates in translating
preclinical discoveries to clinical therapies, particularly in genetically
heterogeneous cancers like pancreatic cancer (Singh et al., 2023; Sun
et al., 2022; Zhu et al., 2021; Somarelli et al., 2019).
Computational advances address these challenges by integrating
multi-omics data, network-based prioritization and AI-driven
literature review, driving down costs, increasing precision, and
expediting the development of effective therapies through in
silico assessments (Sadybekov and Katritch, 2023; Sliwoski et al.,
2014; Huan et al,, 2010; Chen et al., 2006). The integration of multi-
omics data contextualizes mutations within tissue-specific
expression patterns, while network-based prioritization refines
prioritization by mapping genes to functionally relevant pathways
(Shim et al., 2015). Network-based prioritization enables researchers
to analyze genomic datasets and identify critical regulatory genes
implicated in cancer development (Chang et al., 2021; Sonehara and
Okada, 2021). These methods prioritize disease-related genes by
integrating data from PPI networks and known gene-drug
(Mohsen et al, 2021I; 2021).

Furthermore, network-based prioritization approaches provide

associations Zhang et al,
the ability to efficiently process genomic information and derive
meaningful insights is pivotal for identifying and visualizing relevant
drug targets (Chen et al., 2013; Chen et al., 2009; Huan et al., 2010;
Shim et al.,, 2015; Huang et al., 2012).

Differential gene expression is a critical method for
identifying genes significantly altered between conditions, such
as cancerous versus normal tissues (Bai et al., 2013; Van de Sande
et al, 2023). A common approach involves calculating “fold
change,” which quantifies the ratio of gene expression levels
between these states (Love et al., 2014; Mutch et al., 2002).
GEO2R, a tool to determine differentially expressed genes,
utilizes fold change to rank genes under experimental
conditions (ie. tumor versus healthy tissue comparisons)
(Barrett et al., 2013). However, the arbitrary selection of fold
change thresholds can introduce variability into prioritization,
compromising the reliability of target identification (McCarthy
and Smyth, 2009). Separately, frequency-based prioritization
methods focus on genes with elevated mutational rates in
disease contexts, hypothesizing these as common therapeutic
targets (Dinstag and Shamir, 2020; Lopez-Cortés et al., 2018).
Frequency-based prioritization methods for gene prioritization
can be prone to bias, especially due to sample selection, which can
skew results (Lazzeroni et al., 2014). To address these limitations,
network centrality-based prioritization has emerged as a
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complementary strategy. This approach leverages gene
connectivity within biological networks, offering a holistic
framework for target selection by expanding gene lists and
strengthening disease association metrics (Janyasupab et al,
2021; Magger et al., 2012).

Al-driven GPT-4)

automates the synthesis of preclinical and clinical evidence,

Concurrently, literature review (e.g.,
identifying targets with mechanistic and translational relevance
(Liu et al., 2021; Oniani et al., 2024; Sallam, 2023; Tripathi et al,,
2024). By combining these approaches, biases inherent to single-
metric or fragmented datasets can be mitigated, yielding prioritized
targets with mechanistic, functional, and translational relevance.
(Somarelli et al., 2019; Zhu et al,, 2021; Sadybekov and Katritch,
2023). LLMs can predict essential information about gene targets,
including structural domains of proteins, protein structure, toxicity
and adverse effects, functional significance, clinical and preclinical
relevance, and treatment efficacy (Sallam, 2023; Tripathi et al,
2024). Furthermore, GPT-4 has demonstrated the ability to rival
human performance in conducting literature reviews, thus
streamlining the drug target prioritization process (Khraisha
et al., 2024; Li et al.,, 2010).

In this study, we hypothesize that the utilization of network-
based analysis, artificial intelligence, and biologically significant
data will enable systemic prioritization of actionable therapeutic
targets. Thus, we propose GETgene-Al, a framework which
annotates network-based analysis with LLM enabled literature
review, and biologically significant data. Central to GETgene-AI
is the G.E.T. strategy, which integrates three key data streams: the
G List (genes with genetic mutations, variations functionally
implicated in genotype-to-phenotype association studies of the
disease), the E List (disease target tissue-specific expressions of
the candidate gene), and the T List (established drug targets based
on reports from literature, patents, clinical trials, or existing
approved drugs). Initial gene candidates are derived from
heterogeneous biological datasets, including fold change, copy
number alterations, and mutational frequency metrics. To
mitigate biases inherent to fragmented or incomplete data,
GETgene-Al employs a multi-dataset integration approach.
The framework iteratively refines candidate lists through the
network-based tool BEERE, which annotates and prioritizes
genes with network-based centrality methods to create a high-
quality, prioritized gene list. This iterative process expands and
ranks candidates by evaluating their biological relevance,
with
aberrations, thereby improving target identification accuracy.

network  centrality, and concordance genomic
GPT-40 is integrated into the process to improve literature
review efficiency and further annotate the target list,
enhancing the overall workflow. By combining traditional and
in silico methods, GETgene-Al bridges gaps in drug discovery
and facilitates the development of personalized cancer therapies.

The novel drug targets prioritized through our case study in
pancreatic cancer not only offer insights into the unique
molecular mechanisms driving this aggressive cancer but also
present promising avenues for therapeutic intervention. While
pancreatic cancer serves as a case study in this paper, the
underlying methodology is adaptable to a wide range of
cancers and diseases, thereby accelerating the discovery of

therapeutic options.
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Step 4: GET List
prioritization and
genomic annotation

General overview of the GET list compilation and ranking process. Initial gene lists from each of the three subsets are compiled. 2,493 genes are

compiled in the initial G list, 2000 genes are compiled in the initial E list, and

131 genes are compiled in the initial T list. Each list is iteratively prioritized

using the BEERE network ranking and expansion tool, taking the top 500 genes each time and re expanding and ranking. The lists were then merged and
annotated with biologically significant features. Separately, genes implicated in clinical trials related to treatment of pancreatic cancer were
benchmarked to set the weights utilized for RP score ranking. Genes in the GET list were then ranked utilizing these weights.

Methods

In Figure 1, we show a general overview of the GETgene-
Al framework.

The initial gene list is generated by employing a three-tiered
strategy—comprising the Gene list (G list), Expression list (E list),
and Target list (T list)—to integrate biological context into gene
prioritization. The G list identifies genes with high mutational
frequency, functional significance (e.g., pathway enrichment via
the Kyoto Encyclopedia of Genes and Genomes (KEGG)), and
genotype-phenotype associations. The E list focuses on genes
exhibiting significant differential expression in pancreatic
ductal adenocarcinoma (PDAC) compared to normal tissues,
while the T list incorporates genes annotated as drug targets in
clinical trials, patents, or approved therapies. To construct these
lists, disease-specific genomic data were aggregated from public
databases (e.g., TCGA, COSMIC, PAGER) and processed using
GRIPPs (Gong and Chen, 2023), an iterative network-based
approach that applies modality-specific thresholds to ensure
robust inclusion criteria.
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Following the initial gene list generation, the second step
involves prioritizing and expanding these lists using the BEERE
network-ranking tool. BEERE was selected for its demonstrated
efficacy in filtering data enhancing
prioritization accuracy (Yue et al., 2019), ensuring comprehensive
and reliable gene sets.

A benchmark set of genes implicated in pancreatic cancer

low-confidence and

clinical trials (i.e., genes appearing as targets or biomarkers in
registered interventional studies) was analyzed to evaluate which
genomic and network features are most characteristic of clinically
successful drug targets. This benchmark set is distinct from the T list,
which consists only of genes targeted by FDA-approved drugs
already indicated for pancreatic cancer. Genomic features
considered included differential expression, mutation frequency,
and copy number alterations, while network-based features
included the BEERE scores of Gene, Expression, and Target lists.
The benchmarking analysis did not alter the composition or scoring
of the T list but instead provided interpretive context by identifying
which factors were enriched among clinically validated targets. This
analysis was further supplemented by a GPT-4-enabled literature
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review, which added biological and clinical insights to the
interpretation of results.

Finally, the GETgene-Al ranking is generated by integrating
BEERE network rankings, annotated gene information, and insights
derived from GPT-4. This multi-layered approach ensures a robust
and contextually informed prioritization of potential drug targets.

Using PDAC as a case study—selected due to its poor prognosis
and limited therapeutic options (Hu et al., 2021) —our framework
produced quantitative data and novel insights into potential
therapeutic targets,

demonstrating its utility in advancing

precision oncology.

2.1 Initial gene list generation

2.1.1 Compiling the gene list from
genetic mutations

For the “GENE” component of our “GET” framework, we
compiled three gene subsets: PAGER-NC, COSMIC-MUT, and
CBP-CNA-MUT. The initial “GENE” list was compiled from the
PAGER (Huang et al., 2012; Yue et al., 2018; 2022), cBioPortal (de
Bruijn et al., 2023), and COSMIC (Tate et al., 2019) databases. To
address potential sample biases and data incompleteness (e.g.,
studies failing to detect specific genes), we incorporated multiple
datasets from these repositories when available. Genes associated
with the term “Pancreatic Cancer” were manually curated from
these databases. Empirical cutoffs were applied to prioritize genes
with relevance to pancreatic cancer.

To integrate biological pathway context into gene prioritization,
we utilized PAGER (Chowbina et al, 2009), which quantifies
functional significance through pathway-based metrics. From
PAGER, 844 candidate genes were selected heuristically using an
nCoCo score threshold between 5 and 100. The nCoCo score, which
measures gene set coherence by integrating co-citation and pathway
data, with higher scores indicating stronger biological cohesion was
constrained with a minimum of 5 (minimal coherence) and
maximum of 100 (ubiquitous processes) (Huang et al., 2012; Yue
et al., 2018; Yue et al., 2022).

For the cBioPortal and COSMIC databases, thresholds were defined
by identifying points where mutational frequency no longer
demonstrated cancer-specific significance in prior studies. From
cBioPortal, 1,000 genes were selected using cutoffs of 8.2% for copy
number alterations (CNA) and 2.8% for mutational frequency. The
threshold for copy number alterations is significantly higher due to only
21 sets of copy number signitures being represented in 97% of tumor
samples on The Cancer Genome Atlas (Steele et al,, 2022). The 2.8%
cutoff for mutational frequency is due to the fact that a limited amount
of genes were found to be mutated in more than 5% of tumors (Sinkala,
2023). Most biologically relevant genes were found to be mutated at
frequencies between 2%-20% (Lawrence et al., 2014). From COSMIC,
649 genes were compiled using a 20% mutational frequency cutoff
according to the previously mentioned frequency range. Finally,
candidate genes from PAGER, cBioPortal, and COSMIC were
aggregated to form the “G list”, comprising 2,493 genes in total.

Sensitivity analysis was performed by testing lower and higher
cutoffs for both CNA and mutational frequency. For CNA, a lower
threshold of 7.3% and a higher threshold of 9.2% were applied, while
for mutational frequency, thresholds of 2.2% (lower) and 3.4%
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(higher) were used. For the COSMIC cancer database, a lower
cutoff of 15% and a higher cutoff of 25% were applied. Genes
within the top 250 of GETgene-Al were manually examined to
identify those included or functionally related to genes falling within
the lower and higher thresholds. The lower threshold did not
identify any genes beyond those already present in the G list,
whereas the higher threshold excluded the following genes:
P3H2, PAHTM, PLOD3, PLOD2, P4HA1, PLODI, PAM, PSMBS5,
C1QC, C1QA, and CIQB. All of these genes rank outside
the top 150.

2.1.2 Compiling candidate genes for the
“expression” subset

Candidate genes were prioritized by analyzing the GEO dataset
GSE29735, titled “Pancreatic ductal adenocarcinoma tumor and
adjacent non-tumor tissue” (Zhang et al., 2012; Zhang et al., 2013),
using the GEO2R tool. Samples were categorized into tumor and
non-tumor groups via the “Define groups” feature, with the tumor
group defined as “human pancreatic tumor tissue patient samples”
and the non-tumor group as “human pancreatic non-tumor patient
samples”. The dataset comprised of 90 patient samples, evenly
distributed between 45 tumor and 45 non-tumor samples.
Differentially gene expression analysis was performed using
GEO2R’s “analyze” function. The top 2,504 genes exhibiting logfc
values over 0.25 were compiled into an initial “E list”. A cutoff of
0.25 was determined based on the “FindAllMarker” function
provided by the R package Seurat (Wang et al,, 2024). The list
was subsequently processed iteratively using the BEERE software in
accordance with the GRIPPs method.

2.1.3 Compiling candidate genes for the
“Target” subset

Incorporating with  network-based
prioritization is a well established approach (Huang et al, 2015;
Huang et al, 2012b). Building on this methodolody, a set of
131 genes were identified using DrugBank (Wishart et al,, 2018), a

pharmacology ~ data

comprehensive drug and drug-target database. To extract relevant
genes, the database was queried using the search terms “Pancreatic
Cancer,” “Pancreatic Ductal Adenocarcinoma,” and “Neuroendocrine
Pancreatic Cancer” within its drug repository. Drugs explicitly indicated
for Pancreatic Cancer treatment were identified by reviewing their
associated metadata, including summaries, background descriptions,
indications, clinical trial references, and listed “Associated Conditions.”
Each drug’s mechanism of action, therapeutic summary, and clinical
trial references were manually evaluated to distinguish agents directly
treating pancreatic cancer from those used for supportive care (e.g.,
chemotherapy relief, pain management, or sedation). For all drugs
meeting the inclusion criteria, gene targets listed under their respective
“Targets” section in DrugBank were compiled, resulting in 131 unique
genes associated with pancreatic cancer therapeutics.

2.2 Prioritization and expansion of GET lists

To improve the specificity and biological relevance of our
candidate gene lists, we implemented an iterative refinement
process using the BEERE tool for prioritization and network-
based expansion. The BEERE tool employs an initial ranking
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algorithm and two iterative ranking algorithms—PageRank and an
ant-colony algorithm—both of which have demonstrated success
across diverse knowledge domains (Yue et al., 2019). Although both
ranking algorithms use an iterative ranking process, they differ in
how node importance weights are calculated. The PageRank
algorithm assigns node importance directly from neighboring
nodes. In the ant-colony algorithm nodes lose score when
disseminating information and gain score upon receiving it.
BEERE expands the gene list using the nearest-neighbor network
constructed from protein-protein interactions in the HAPPI
2.0 database (Chen et al., 2009; 2017; Wu et al.,, 2012).

This workflow addresses the inherent limitations of single-
(e.g.
expression data) by integrating complementary biological
evidence. Building on the GRIPPS framework (Gong and Chen,
2023), we developed a customized pipeline to systematically

dimensional analyses relying solely on mutation or

prioritize genes from three distinct categories: the combined GET
list (genes ranked by aggregated mutational frequency, differential
expression, and known drug-target status), the GT list (genes co-
occurring in mutation and drug-target databases to highlight
functionally relevant drivers), and a prioritized Expression (E) list
ranked
pancreatic cancer).
The GET, GT, and E lists are expanded independently to
preserve modality-specific signal during the BEERE prioritization

(genes exclusively by differential expression in

phase. Combining them before expansion would dilute distinct
biological features (e.g, mutation-specific drivers in G vs.
expression-based biomarkers in E) and bias the expansion toward
with
overshadowing rare but high-impact genes. For example, MYC

categories larger initial representation, potentially
and TNF, identified through differential expression and drug-
target overlap but not mutational frequency, would have been
deprioritized if lists were merged prior to expansion. This
systematic, modality-preserving  approach  enhanced the
identification of potential therapeutic targets by ensuring that
candidates from each evidence stream were equally represented
in the final prioritization.

Each list underwent the same refinement workflow to balance
comprehensiveness with specificity. First, BEERE expanded the
initial gene sets by incorporating proximal interactors from
in the HAPPI

2.0 database, thereby capturing functionally related genes beyond

protein-protein interaction (PPI) networks
those directly identified in our initial screens. Next, BEERE’s
statistical
their
significance scores. To prevent overexpansion and maintain focus

network propagation and ranking  algorithms

prioritized genes based on network centrality and
on high-confidence candidates, we empirically filtered each list to
retain the top 500 genes after each prioritization cycle. This iterative
process was repeated three times, as preliminary testing revealed that
additional iterations caused excessive convergence of the lists,
reducing their distinct biological relevance. Three iterations
optimally preserved the unique profiles of each list while still
enabling meaningful integration.

The independently expanded GET, GT, and E lists (each refined
through three iterations of BEERE network expansion) were
consolidated into an Initial GET List, which then underwent a
final BEERE-based prioritization to generate the Final GET List.

For comparative analysis, we also retained the previously defined
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Expression List (top differentially expressed genes) and the GT List
(prioritized genes from mutation-drug target overlaps). These lists
were not re-derived here but carried forward for side-by-side
evaluation. This tiered approach ensured that our final candidate
pool retained both mechanistic diversity (genes linked to distinct
biological processes) and clinical relevance (genes with actionable
potential as drug targets).

The refinement process was critical to address three key
challenges: (1) mitigating the high false-positive rate inherent to
mutational and expression screens in heterogeneous cancers like
pancreatic adenocarcinoma, (2) reconciling discrepancies between
genes prioritized by individual data types (e.g., highly mutated genes
often lack expression changes, and vice versa), and (3) ensuring
functional coherence by embedding candidates within PPI networks
reflective of disease biology. By iteratively refining lists through
network propagation and multi-evidence integration, we enhanced
the biological plausibility of candidates while preserving distinct
mechanistic hypotheses for downstream validation.

2.3 GPT-40 aided literature assessment

Recent research has demonstrated that GPT-40 performs
“human-like” literature reviews, particularly in screening and
analyzing scientific literature (Khraisha et al., 2024). For this
study, abstracts related to pancreatic cancer genes and treatments
were downloaded using PubMed’s “save” feature. A total of
5,091 abstracts were collected and uploaded for analysis by GPT-
40 through a custom GPTo interface. Due to the data processing
limitations of GPT-4o, abstracts were filtered to include only meta-
analyses, clinical trials, and systematic reviews on PubMed to ensure
high-quality input data.

The custom GPTo model was configured with specific
instructions to rank genes based on a scoring system with a
maximum score of 400 points, distributed across four categories:
functional significance in pancreatic cancer, research popularity,
treatment effectiveness when targeting or inhibiting the gene, and
protein structure. Each category was allocated 100 points, and the
resulting metric was termed the GPT-4 score. To mitigate GPT-40's
known issue of “hallucination” or the generation of inaccurate or
nonexistent information, the model was explicitly instructed to base
its rankings solely on the uploaded research database. Additionally,
the model was required to cite articles referenced during the ranking
process and provide explanations for the scores assigned to each
gene in every category. GPT-4 outputs were manually verified
against curated datasets to ensure biological relevance and
mitigate hallucinations. Citations provided by GPT-4 were cross-
referenced with PubMed to confirm validity. All cited articles were
manually verified, and any errors or hallucinations were addressed
by instructing the model to re-search the uploaded literature
database for accurate mentions of the gene. Analyses involving
database-derived information was performed on static datasets
downloaded, ensuring that any subsequent database changes
would not affect our reported results. Where possible, we provide
accession numbers and dataset DOIs. This approach guarantees that
the gene rankings and annotations presented here can be
reproduced independently of future GPT-4 updates or changes to
online resources.
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2.4 Incorporation of clinically implicated
genes and annotation of genes with factors
relevant to drug target prioritization

Clinical trials are critical for evaluating the efficacy of
therapeutic agents targeting specific genes. To assess the clinical
relevance of prioritized genes, we quantified clinical trial activity by
compiling the frequency of trials associated with each gene. Genes
targeted by drugs investigated in pancreatic cancer treatment trials
systemically identified through the following process: A search for
the term “pancreatic cancer” was conducted on Clinicaltrials.gov,
and all drugs listed in active or completed interventional trials for
pancreatic cancer were extracted. Corresponding target genes for
these drugs were then identified using DrugBank’s “Targets” section,
which provides genes targeted by the drug for pancreatic cancer
treatment. This process yielded 357 drugs targeting 253 unique
genes. These genes were annotated with BEERE scores derived from
the previously described GET lists. To enhance biological validity,
the analysis integrated quantitative genomic datasets. Mutation
frequency data was obtained from cBioPortal (de Bruijn et al,
2023), while protein expression profiles across tissues relevant to
therapeutic safety (e.g., brain, gastrointestinal tract, liver, and
kidney) were sourced from the ProteinAtlas (Uhlén et al., 2015).

Following the prioritization of the GET list and identification of
clinically trialed genes, we annotated these genes with functional
genomic data. Mutational frequency—a key determinant in gene
ontology ranking (Timar and Kashofer, 2020)—and Copy Number
Alterations (CNA), a critical marker of genomic instability (Beroukhim
et al., 2010), were evaluated. Mutation and CNA data were sourced
from CBioPortal (de Bruijn et al, 2023) using two cohorts: the
“Pancreatic Cancer (UTSW, Nat Commun 2015)” and “Pancreatic
Adenocarcinoma (TCGA, PanCancer Atlas)” studies, both of which
employed whole-exome sequencing for all samples. Network-based
metric was also added through BEERE scores, namely the G-list score,
GT-list score, E-list score, GET-list score, and the T-list score. The G, E,
and T list scores are the BEERE prioritization scores derived from
network-based expansion of the lists prioritized in step 2 of the
methods. The GET list score is similarly from the merged GET-list
detailed in step 2 of the methods. The GT-list score is a combination of
the prioritized G and T scores, which aims to bring genes of higher
mutational frequency into the network of the T list.

Tissue-specific expression is a vital factor in gene prioritization
(Beroukhim et al,, 2010). Genes with high expression in essential
tissues—such as the heart, liver, gastrointestinal system, brain, and
kidneys—pose a higher risk of adverse effects when targeted,
their
expression was performed using the “RNA expression score”

necessitating de-prioritization. Annotation of tissue
provided by ProteinAtlas (Uhlén et al., 2015), a comprehensive
database mapping protein expression in various organs. This RNA
expression score, manually calculated, measures the RNA

expression levels of genes across different tissues.

2.5 GETgene-Al ranking

To unify these criteria, we developed a weighted RP score that
integrates mutation frequency, copy number alterations (CNA), tissue
expression, GET list scores (BEERE prioritization scores derived from
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network-based expansion), E list scores, GT list scores, and clinical trial
activity. Clinical trial popularity was quantified as the number of
registered interventional trials testing drugs targeting a given gene
for cancer therapy. Modality weights were calibrated by Spearman
rank correlation between each modality-specific ranking and two
independent benchmarks of therapeutic relevance: (i) the number of
associated clinical trials and (ii) the frequency of reported adverse
events. The benchmark set used for this analysis consisted of genes
implicated in pancreatic cancer clinical trials, independent of the GET
and GT lists. Correlations with clinical trial count were used to assess
genomic and network features (e.g, mutation frequency, CNA
frequency, GET BEERE scores), while correlations with adverse
event frequency were used to assess tissue expression features (e.g.,
expression in brain, liver, lung, and digestive system). Modalities
showing stronger monotonic associations contributed proportionally
more to the final RP score, while weaker associations retained smaller
weights to preserve the potential for novel candidate discovery. Table 1
summarizes the relative weights of each factor in the RP score, ranked in
descending order of contribution.

2.6 Mitigation of bias and false positives

To address potential sample biases and data incompleteness—such
as studies failing to detect specific genes—multiple datasets from the
same databases were utilized wherever possible. This redundancy
ensured a more comprehensive analysis and minimized the impact
of dataset-specific variability. For example, multiple studies within
CBioPortal, such as “Pancreatic Cancer (UTSW, Nat Commun
2015)” and “Pancreatic Adenocarcinoma (TCGA, PanCancer
Atlas),” were analyzed concurrently to increase the reliability of
mutational frequency and CNA data.

Bias from literature frequency was mitigated by not using
citation counts, publication frequency, or other literature-derived
popularity metrics as a direct modality in the RP score. Instead,
GETgene-Al rankings are based on cancer-type-specific genomic,
transcriptomic, and drug-target evidence (mutation frequency,
CNA, expression, and network centrality). While genes such as
PIK3CA, EGFR, PRKCA, and TNF are indeed well known, their
high ranks in our framework derive from pancreatic cancer-specific
data rather than their prevalence in the broader cancer literature.

Sensitivity analysis was performed by testing lower and higher
cutoffs for both CNA and Mutational Frequency. A lower threshold
0f 7.3% and a higher threshold of 9.2% was utilized for CNA, while a
lower cutoff of 2.2% and a higher cutoff of 3.4% was utilized for
mutational frequency. A lower cutoff of 15% and a higher cutoff of
25% was utilized for COSMIC cancer database. Manually searching
for genes within the top 250 of GETgene-ai that were included or
had functionally related genes within the lower and higher
thresholds. A lower threshold did not yield any genes previously
not found in the G list, while the higher threshold found P3H2,
P4HTM, PLOD3, PLOD2, P4HA1, PLODI1, PAM, PSMBS5, C1QC,
C1QA, C1QB, to be genes excluded due to higher thresholding.
These genes all rank outside of the top 150.

To further enhance the accuracy of the prioritization process,
each gene within the top 250 ranked by RP score was manually
verified through a literature review to confirm its role in cancer
biology. This step was critical in identifying and eliminating false
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TABLE 1 Weights each modality was assigned for calculation of the RP score
in GETGENE-AI

Modality of ranking

Weighted
score

GT list score 0.329
CNA(CBIOPORTAL UTSW NAT COMMUN 2015) 0.201
Expression list score 0.088
GET list score 0.085
Mutation frequency (cBioporta ITCGA PanCancerAtlas) 0.079
CNA(CBIOPORTAL TCGA PANCANCERATLAS) 0.048
Mutation frequency (Cbioportal UTSW Nat Commun -0.023
2015)

Brain expression score -0.054
Kidney expression score -0.081
Gastrointestinal expression score -0.095
Liver expression score -0.101

positives. Notably, no genes within the top 250 were found to be false
positives, validating the robustness of the RP scoring methodology.

Additionally, hallucination errors from GPT-40 were mitigated
through a structured training approach. The model was instructed to
explicitly cite a source used in the calculation of each gene’s ranking
score. These citations were manually evaluated for accuracy and
relevance, ensuring that the ranking process was grounded in
verifiable scientific evidence. This dual-layered validation—automated
scoring combined with manual review—was integral to maintaining the
integrity and reliability of the gene prioritization framework.

2.7 Statistical methods

Spearman correlation coefficients were computed to assess the
alignment of GPT-40 rankings with network-derived rankings. The
Spearman correlation between the GPT-4 score and the Weighted
Score was 0.291, indicating some significance. Interestingly, GPT-4
score is more strongly correlated with all BEERE list ranking scores,
with 0.478 between GPT-4 score and Expression list score,
0.457 between GPT-4 score and Combined weighted score of all
BEERE lists, 0.454 correlations between GPT-4 score and GET list
score, and 0.444 between GPT-4 score and GT list score. These
results indicate that the GPT-4 score is more similar to that of
standard network prioritization techniques, which may be a result of
the training data utilized.

2.8 Comparing research relevance to rank
on GETgene-Al

To compare the popularity to the rankings of each gene in both
the GPT-4 Score and the RP scores, the amount of results contained
on PubMed when searching “Gene name Pancreatic Cancer” were
compiled and used for the GPT-LIT score, and the RP-LIT score.
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The GPT-LIT score is the GPT4-score divided by the amount of
publications on PubMed, while the RP-lit score is the RP-score
divided by the amount of publications on PubMed. Genes with no
functional relationship to cancer in any way were excluded from the
rankings to remove false positives.

3 Results
3.1 GETgene-Al rankings and validations

We observe the highest ranked genes according to GETgene-Al
in Table 2.

During the iterative ranking process, genes lacking functional
relevance to cancer were systematically deprioritized. For instance,
genes that ranked highly due to algorithmic artifacts but lacked
experimental validation or literature support were ranked lower
than genes with experimental validation or literature support. The
final candidate set was defined as the top 250 genes ranked by RP
score. This threshold was selected to enable manual literature
verification for each gene, ensuring that all final candidates could
be cross-checked for pancreatic cancer-specific evidence and
therapeutic relevance. Expanding the list beyond this size would
have substantially increased the manual verification burden without
proportionally improving the quality of candidates for downstream
analysis. This approach allowed us to maintain both methodological
rigor and practical feasibility while focusing on the most highly
ranked genes.

PIK3CA emerged as the highest-ranked gene on our list. It
encodes the enzyme PI3K, which regulates critical cellular processes
such as growth, metabolism, proliferation, and apoptosis (Conway
et al, 2019). PIK3CA also modulates downstream effectors,
including AKT and mTOR (Ala, 2022), and preclinical studies
demonstrate that mutations in this gene sensitize cancers to dual
PI3K/mTOR inhibitors (Zhang et al, 2021), underscoring its
therapeutic potential. Notably, PIK3CA-null tumors exhibit
heightened susceptibility to T-cell surveillance in vitro (Sivaram
etal,, 2019), while its inhibition in pancreatic cancer models initiates
tumorigenesis (Payne et al., 2015), highlighting its dual role in
progression and therapy.

MYC, the second highest-ranked gene, achieved its position due
to its top GET list score, reflecting its network centrality among the
500 most expressed, clinically relevant, and frequently mutated
genes. Overexpression of ¢-MYC is a hallmark of aggressive
pancreatic cancer, where it binds promoter regions of oncogenic
targets (Hayashi et al., 2021). Despite its pivotal regulatory role,
MYC's complex protein structure poses therapeutic challenges,
resulting in a lower GT list score. Recent advances in small-
molecule inhibitors, however, show preclinical promise.

SRC ranks as the third-highest gene on our list, driven by its high
scores in both the GET list and Expression list modalities. Inhibition
of SRC in pancreatic cancer has been shown to reverse
chemoresistance to pyroptosis in both in vitro and in vivo studies
(Su et al.,, 2023). Aberrant SRC activity promotes tumorigenesis and
is frequently associated with poor prognosis in pancreatic ductal
adenocarcinoma (PDAC) (Poh and Ernst, 2023). Several SRC-
targeting therapies are currently under clinical investigation
(Hilbig, 2008).
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TABLE 2 Highest 20 genes ranked on GETGENE-AI. Weighted score is RP score, CHAT GPT score is GPT4 score.

Gene RP CHATGPT GT list Mutation frequency RP-LIT GPT-LIT GET list Expression list
score score score (cBioportal TCGA score score score score
PanCancer Atlas)
PIK3CA | 348 310 58.7 2.8 0.199 1771 96 97
MYC 30.1 330 95 0.0 0.032 0.349 214 210
SRC 20.0 320 0.0 1.1 0.044 0.711 143 144
EGFR 18.2 320 24 0.6 0.010 0.171 134 133
CDK1 15.9 305 153 65.4 0.134 2563 30 7
PRKCA | 153 305 3.0 0.0 1.702 25.556 101 102
TNF 12.1 270 24 0.0 0.013 0.292 83 86
LCK 115 220 1.7 0.0 1.274 24.444 62 60
JAK2 10.6 285 1.0 0.6 0.082 2.192 67 67
MAPK1 | 103 305 116 3.4 0.139 4122 7 7
AURKB | 9.1 295 0.0 0.6 0.008 0.246 70 70
KRAS 8.7 220 1.7 17 0335 8.462 48 47
MAPKS | 7.8 295 0.0 0.0 0.002 0.068 121 117
MTOR | 7.1 220 17 0.0 0.588 18.333 52 52
ITGA4 69 220 43 0.6 2.298 73.333 40 37
TOP2A | 69 310 10.2 11 0215 9.688 0 0
CHEK1 67 220 17 0.0 0.128 4231 46 45
BCL2 62 220 17 0.6 0.012 0418 41 41
PRKCB 6.0 250 14 0.6 1.004 41.667 60 58
ERBB4 | 55 220 34 0.6 0.184 7333 81 83

EGEFR is the fourth highest-ranked gene, attributed to its high
GET list and Expression list scores. EGFR is also implicated in
tumorigenesis, particularly in lung and breast cancer (Sigismund
et al, 2018). Anti-EGFR agents have shown significant clinical
promise, despite associated adverse effects (Verma et al., 2020).

KRAS ranks 12th on our list, despite its prominence in
pancreatic cancer research, with over 4,545 PubMed articles on
KRAS mutations in pancreatic cancer. Its lower ranking is primarily
due to a low expression score. The KRAS oncogene plays a critical
role in the initiation and maintenance of pancreatic tumors (Luo,
2021). KRAS mutations are present in over 90% of PDAC cases, but
therapeutic inhibition remains highly challenging, with effective
inhibitors only recently being discovered (Bannoura et al., 2021).

CDK1 ranks fifth on our list, largely due to its high scores in both
the GET and Expression lists. CDKI is strongly correlated with
prognosis and is highly expressed in pancreatic cancer tissue, as well
as in response to gemcitabine, an approved pancreatic cancer drug
(Xu et al., 2023). Additionally, inhibition of CDKI, along with CDK2
and CDKB5, has been shown to overcome IFN-y-triggered acquired
resistance in pancreatic tumor immunity (Huang et al., 2021).

PRKCA ranks seventh on our list. It encodes protein kinase C
and is mutated in various cancers. PRKCA’s high ranking is
attributed to its strong GET and Expression list scores, as well as
its extremely low organ expression score. It is strongly associated
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with the activation of the protein translation initiation pathway
(Rosenberg et al., 2018) and is a hallmark mutation in chordoid
gliomas (Jiang et al., 2019). PRKCA also contributes to susceptibility
to pancreatic cancer through the peroxisome proliferator-activated
receptor (PPAR) signaling pathway, which plays a key role in
pancreatic cancer development and progression (Liu et al., 2020).
Inhibition of PRKCA has demonstrated antitumor activity in
patients with advanced non-small cell lung cancer (NSCLC)
(Villalona-Calero et al., 2004).

TNF is the eighth highest-ranked gene on our list. Tumor
Necrosis Factor (TNF) upregulation is associated with invasion
and immunomodulation in pancreatic cancer (Wiedmann et al.,
2023). TNF-mutated macrophages have also been shown to promote
aggressive cancer behaviors through lineage reprogramming (Tu
et al.,, 2021).

LCK ranks ninth on our list. This gene is expressed in tumor cells
and plays a key role in T-cell development (Bommbhardt et al., 2019).
High LCK protein expression has been associated with improved
patient survival in cancer (Cancer Genome Atlas Network, 2015).
Despite its biological relevance, LCK has only four PubMed
publications discussing its role in pancreatic cancer as of May
2024. Tts identification as a high-priority target demonstrates
GETgene-AT’s ability to prioritize genes with strong biological
relevance but limited literature prominence.
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ITGA4 ranks 15th on our list. It has an extremely low organ
expression score and only four PubMed articles discussing its role in
pancreatic cancer. ITGA4 has potential as an independent
prognostic indicator for patient survival and has been linked to
the PI3K/AKT pathway (Faleiro et al., 2021). Its identification as a
high-priority target further highlights GETgene-AI’s capability to
prioritize genes with strong biological relevance despite limited
literature attention.

KCNA ranks 34th on our list. Notably, there are no PubMed
publications describing its relation to pancreatic cancer, and only
three publications mention its role in cancer in general. The
identification of KCNA as a high-priority target underscores
GETgene-AT’s ability to prioritize genes with strong biological
relevance but minimal literature prominence. KCNA exhibits
differentially high expression in stomach and lung cancers and is
positively correlated with infiltrated immune cells and survival rates
(Angi et al.,, 2023).

3.2 Comparing GETgene-Al to other
frameworks

We benchmarked GETgene-Al against two other frameworks:
one focused on differential expression analysis and the other on
network-based gene prioritization. For the differential expression
comparison, we selected GEO2R, utilizing the GSE28735 dataset,
which was integrated into the ’Expression list’” component of our
GET lists. Genes were ranked based on their log-fold change (log-fc),
representing the difference in gene expression between tumor and
non-tumor groups. In the GEO2R list, the top-ranked genes were
PNLIPRPI and PNLIPRP2, both of which encode pancreatic lipase-
related proteins critical for digestion and fat absorption (Zhu et al.,
2021). However, these genes are not considered viable targets for
pancreatic cancer. The third-ranked gene, IAPP (Islet Amyloid
Polypeptide), has
functionality, and loss of IAPP signaling is not associated with

been shown to lack tumor suppressor
pancreatic cancer (Taylor et al., 2023). Among the top 50 genes
identified by GEO2R, 30 were experimentally validated as relevant to
GETgene-Al

49 experimentally validated targets within its top 50, representing

pancreatic cancer. In contrast, prioritized
a 38% improvement over GEO2R. GEO2R’s limitations, including
the absence of mutational frequency analysis, functional impact
assessment, network-based analysis, and adverse effect evaluation,
hinder its utility in drug target discovery. In comparison, GETgene-
Al leverages statistical filtering and incorporates genomic
information, significantly enhancing both the efficiency and
quality of gene prioritization. Figure 2 presents a volcano plot
illustrating the log2 (fold change) distributions for the
analyzed genes.

For the network-based comparison, we employed STRING, a
database that integrates protein-protein interaction data (Szklarczyk
et al,, 2023), focusing specifically on the KEGG pathway hsa0512
(Kanehisa and Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2025).
Genes were ranked based on node degree, a measure of the number
of interactions a protein has within the network (Bozhilova et al.,
2019). The highest-ranked gene in the STRING list was AKTI, a
protein kinase known to stimulate cell growth and proliferation

(Grassilli et al., 2020). However, AKTI has been shown to resist
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FIGURE 2

Volcano plot GSE28735: Microarray gene-expression profiles of
45 matching pairs of tumor vs. nontumor, Padj<0.05. Blue indicates
downregulated while red indicates upregulated.

inhibition by shifting its metabolic activity from glycolysis to
mitochondrial respiration (Arasanz et al., 2019). Additionally, it
exhibits a low mutational frequency of only 1% in a cohort of
19,784 patients with various tumors (Millis et al., 2016). Due to its
low mutational frequency and the challenges associated with its
inhibition, AKTI was ranked 33rd by GETgene-AI. Among the top
50 genes prioritized by STRING, 46 were experimentally validated
for relevance to pancreatic cancer, whereas GETgene-Al identified
49 experimentally validated genes within its top 50, demonstrating a
6% improvement over STRING. STRING’s limitations, such as its
inability to account for mutational frequency and other critical
factors in drug target identification, result in a narrower focus,
targets
comprehensive analysis provided by GETgene-Al Figure 3

with only 81 prioritized compared to the more
illustrates the network constructed using STRING.

Comparing GETgene-AI to GEO2R and STRING, our
framework demonstrates a 38% improvement over GEO2R and a
6% improvement over STRING in the rate of experimental
validation of the top 50 genes on each list. In Figure 4, we
observe the differences in the percentage of experimentally
validated targets out of the top 50.

GETgene-Al was also compared to OpenTarget, an integrative
Al-based prioritization platform (Koscielny et al, 2017). We
compared GETgene-Al's rankings to those generated by
OpenTargets for pancreatic cancer, focusing on the top 15genes
from each tool. While there was overlap in high-confidence drivers
(e.g, KRAS, TP53, SMAD4, BRCA2), several key differences
emerged that highlight the value of GETgene-AI's multi-modal
integration.

OpenTargets ranked genes such as POLE and POLD1 highly
despite their low mutation frequency in pancreatic cancer datasets
(POLE absent in one TCGA cohort; POLD1 <1% in UTSW CNA
and mutation frequency). GETgene-Al deprioritized these genes due
to the lack of mutational enrichment and limited pancreatic-specific
evidence, avoiding inflation from literature-based or pathway-only
associations.
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Network constructed by STRING utilizing the KEGG pathway HG0512. Content inside each node is known or predicted 3days structure of protein.
Turquoise edges mean Protein-protein interactions from curated databases, purple means experimentally determined. Green, red, and dark blue edges
indicate predicted Protein-protein interactions. Light green edges represent text mining, black represents co-expression, and light purple represents

protein homology.

Conversely, GETgene-Al prioritized genes such as MYC, SRC,
EGEFR, and CDKI, which have strong differential expression and
drug-target relevance in pancreatic cancer but were absent from
OpenTargets’ top list.

These differences indicate that OpenTargets may overweight
generalized associations, whereas GETgene-Al incorporates cancer-
type-specific genomic, transcriptomic, and therapeutic data, leading
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to rankings more aligned with the biological and clinical context of
pancreatic cancer.

In Table 3, we observe the ranking overlap for the top 15 genes
for all three frameworks. The top 15 highest ranked targets in both
GETgene-Al and STRING have all been experimentally validated
within pancreatic cancer, but 8 of the highest ranking targets in the
GEO2R approach have not.
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FIGURE 4
Bar graph displaying the percent of experimentally validated

targets out of the top 50 genes with each framework.

3.3 Enhancement provided by Al

GPT-40 was utilized to conduct a comprehensive literature
assessment for our gene list. Although its output was not
incorporated into the final weighted score, the GPT-40 scores
demonstrated strong correlations with both the weighted score and
all three GET list scores. Notably, GPT-40 prioritized genes such as
MYC and SRC, reflecting their well-documented prominence in the
scientific literature. This complemented GETgene-AI’s approach, which
relies on network mutational analysis for gene prioritization. To
minimize the inclusion of false positives in the GPT-40 scoring
process, we instructed GPT-40 to directly cite articles from its
internal database. While GPT-40 did not exhibit a higher rate
of experimental validation compared to manual methods, it

10.3389/fsysb.2025.1649758

significantly reduced the time required for literature review by 80%.
All cited articles were subsequently manually verified to ensure accuracy.

The RP-LIT score and GPT-40 score showed a high degree of
correlation, with extremely similar rankings for each gene. Based on
Spearman correlation analysis, the GPT-4o score (out of 400) exhibited
a correlation coefficient of +0.457 with the weighted score, indicating a
statistically significant relationship. Table 4 provides a detailed
comparison of the ranking differences between the GPT-40 score
and the GET ranking score, highlighting the alignment and
discrepancies between the two approaches.

3.4 False positives and limitations

False positives are an inherent risk in large-scale computational
analyses. The GETgene-AI framework addresses this challenge through
iterative refinement and the systematic exclusion of genes lacking
functional or experimental support. Future validation efforts will
on further refining these rankings through targeted
experimental studies. Additionally, the literature assessment provided

focus

by generative Al is expected to improve as Al technology advances and
our model is trained on more experimental data, thereby minimizing
inaccuracies or “hallucinations” in the generated outputs.

To mitigate false positives, genes without functional relevance to
cancer were systematically excluded. For instance, genes that ranked
highly due to algorithmic artifacts but lacked experimental
validation or literature support were deprioritized. Examples
include ITGA4 and PRKCB, both of which have fewer than
10 PubMed articles discussing their role in pancreatic cancer.
These genes were ranked lower than many well-established
targets due to their low scores in the GET, GT, and Expression

TABLE 3 Top 15 genes from GETGENE-AI, STRING, and GEO2R and their status as experimentally validated drug targets.

GETGENE-AI top Experimentally STRING top Experimentally GEOZ2R top Experimentally
genes validated? genes validated? genes validated?
PIK3CA Yes AKTI1 Yes PNLIPRP1 No

MYC Yes TP53 Yes PNLIPRP2 No

SRC Yes KRAS Yes IAPP No

EGFR Yes PTEN Yes CTRC No

CDK1 Yes SRC Yes GP2 Yes

PRKCA Yes STAT3 Yes CEL No

TNF Yes EGFR Yes CPA2 Yes

LCK Yes MTOR Yes ALB Yes

JAK2 Yes BCL2 Yes CUZD1 Yes

MAPKI Yes PIK3CA Yes ERP27 No

MTOR Yes CDKN2A Yes CLPS Yes

AURKB Yes HRAS Yes SERPINI2 Yes

KRAS Yes CCND1 Yes PLA2G1B Yes

MAPKS8 Yes NFKB1 Yes CELA2A No

TOP2A Yes CDKNI1A Yes CELA2B No
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TABLE 4 Top 20 highest ranked genes based off of GPT4 score compared to their ranks in GET and their status as experimentally validated drug targets.

GPT4-score ranking GET ranking Experimental validation? Citation
MYC 1 2 Yes Zhang et al. (2024)
SRC 2 3 Yes Su et al. (2023)
EGFR 3 4 Yes Wu et al. (2023)
TERT 4 27 Yes Campa et al. (2015)
RRM2 5 21 Yes Li et al. (2022)
PIK3CA 6 1 Yes Payne et al. (2015)
TOP2A 7 16 Yes Pei et al. (2018)
NTRK1 8 22 Yes Cheng et al. (2013)
PTGS2 9 25 Yes Hingorani et al. (2003)
EGF 10 30 Yes Sheng et al. (2020)
CDK1 11 5 Yes Huang et al. (2021)
MAPK1 12 10 Yes Si et al. (2023)
KRAS 13 13 Yes Timar and Kashofer (2020)
MTOR 14 11 Yes Stanciu et al. (2022)
MSLN 15 37 Yes Hu et al. (2024)
RET 16 28 Yes Bhamidipati et al. (2023)
AKT1 17 31 Yes Arasanz et al. (2019)
JAK2 18 9 Yes Huang et al. (2022)
MET 19 34 Yes Pothula et al. (2020)
PDCD1 20 38 Yes Marabelle et al. (2020)

lists, which prioritize targets with robust experimental or literature
support during the RP score calculation process.

This study has several limitations. First, the top-ranked targets
identified by GETgene-Al require further experimental validation,
which is a critical next step to confirm their biological and
therapeutic relevance. Second, the reliance on publicly available
datasets may introduce biases due to incomplete or inconsistent
annotations. These limitations highlight the need for further
experimental validation and the incorporation of more comprehensive
datasets to enhance the accuracy and reliability of the framework.

3.5 Broader implications and generalizability

While the current study focuses on pancreatic cancer, the
GETgene-Al framework can be readily adapted to other cancers
or diseases with access to similar genomic and clinical data
resources. Future studies will explore its application to breast and
lung cancers by employing the same systematic process described in
this work. The GETgene-AI framework integrates literature review,
large-scale sequencing data, and network centrality scores,
providing a comprehensive approach to drug target prioritization.
Additionally, its computational
prioritization and the elimination of statistically insignificant data

reliance on methods for

ensures that the framework is both scalable and efficient, making it
suitable for broader applications in biomedical research.
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4 Discussion

Through the application of GETgene-AI to pancreatic cancer,
we have identified several promising drug targets, including
PIK3CA, PRKCA, LCK, MAPKS, ITGA4, PRKCB, and KCNA1,
warranting further investigation. These targets display strong
pancreatic cancer-specific genomic and transcriptomic evidence,
high network centrality in PPI analyses, and have not been
extensively reported in the pancreatic cancer literature despite
their biological relevance in our analysis.

GETgene-AT’s approach to drug target prioritization integrates
literature review, large-scale sequencing data, network-based
centrality scoring, and assessment of potential adverse effects
This
implementation offers a scalable and comprehensive framework

through  organ  expression  scores. multifaceted
for drug target prioritization, which can be readily adapted to other
cancers with similar data availability. Furthermore, GETgene-AT’s
ability to systematically deprioritize genes with low mutational
relevance underscores its superiority in efficiently narrowing
Slight

compilation and

down actionable and biologically relevant
utilized for the

prioritization of the GET lists did not result in significant

targets.
variations of cutoffs
variations of the final rankings or scores of the final GETgene-
Al gene list.

In contrast to recent methods that rely largely on Al-driven
network analysis alone (e.g., an AI-Driven Network Biology pipeline
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TABLE 5 genes highlighted in the discussion section labeled by significance.

Gene Significance

PIK3CA Investigated in PDAC clinical trials

PRKCA Investigated in PDAC preclinical models (in vitro or in vivo)
LCK Investigated in PDAC preclinical models (in vitro or in vivo)
MAPKS Investigated in PDAC preclinical models (in vitro or in vivo)
ITGA4 Novel and unstudied in PDAC

PRKCB Novel and unstudied in PDAC

KCNA1 Novel and unstudied in PDAC

identifying SRC as a therapeutic target in pancreatic cancer) (Zhang
and Chen, 2025), GETgene-Al offers a more automated and
modular framework. Our approach not only evaluates
protein—protein interaction networks but also incorporates tissue-
specific gene expression and mutation frequency analyses, and
integrates these modalities through distinct G, E, and T lists
before merging. This enables multi-dimensional prioritization
grounded in genomic, transcriptomic, and therapeutic evidence.
In future extensions, the modular nature of GETgene-AI allows easy
incorporation of additional evaluation modules—such as differential
tissue analysis, motif-based mutation enrichment, or epigenetic
regulation scores—each processed independently in their own list
and then integrated via our weighted RP score. This design ensures
adaptability and enables seamless expansion of the framework to

accommodate new modalities as the data landscape evolves.

4.1 Contributions and limitations provided
by GPT40

GPT-4o0 significantly enhanced the efficiency of literature-based
ranking by automating the review and prioritization of scientific
abstracts. This approach increased the efficiency of literature review
by over 80%. However, inherent challenges, such as the risk of
hallucination, necessitated manual verification to ensure the accuracy
of the results. While GPT-40 provides substantial value, its integration
into research workflows should be approached cautiously, with
safeguards implemented to mitigate potential errors. Additionally,
training GPT-40 on more experimental data in the future will
further improve its accuracy and reliability in prioritization tasks.

4.2 Future directions

While the current study focuses on cancer applications, future
research will expand the scope of the GETgene-AI framework. We
plan to validate its utility in additional cancer types, such as breast
and lung cancer, and explore its applicability to non-cancerous
disease contexts, including neurodegenerative disorders like
Alzheimer’s and Parkinson’s. By integrating computational
with GETgene-Al
framework addresses critical gaps in drug discovery, accelerating

methods large-scale genomic data, the

the identification of actionable targets and advancing the
development of personalized therapeutic strategies.
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Future work will prioritize experimental validation of top-
ranked targets, such as PIK3CA and PRKCA, using CRISPR-
mediated knockouts in pancreatic cancer cell lines. Subsequent
in vitro drug response assays will evaluate the therapeutic
potential of these targets. Additionally, we aim to refine the
(e.g.
proteomics, metabolomics) and enhancing its ability to predict

framework by incorporating multi-omics datasets
adverse effects through improved organ expression profiling. ce

of these targets.

5 Conclusion

The GET framework represents a significant advancement in
computational drug discovery, integrating network-based
prioritization with machine learning to prioritize actionable
therapeutic targets efficiently. Genes highlighted through our case
study in pancreatic cancer such as PRKCA, LCK, ITGA4, and
PRKCB are novel targets that require further exploration. While
this study focuses on pancreatic cancer, the GETGENE-AI
framework is adaptable to other cancers and diseases, offering a
modular and versatile approach for target discovery. GPT4o
enhanced the efficiency and accuracy of literature-based ranking,
reducing manual workload and aligning well with network-based
rankings. However, its reliance on manual verification underscores
the need for cautious integration into automated pipelines. By
refining target discovery methods, the GETGENE-AI framework
paves the way for personalized therapeutic strategies and accelerates
the translational research in oncology. Future work will focus on
expanding the framework to other cancers, improving ranking
metrics, and integrating multi-omics datasets to enhance its
predictive power. Future iterations of GETgene-Al aim to
integrate multi-omics datasets, such as single-cell RNA-seq and
metabolomics, to capture greater biological complexity. Table 5
indicates the significance of each gene labeled as novel.
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Background: Periodontitis, a chronic inflammatory disease of periodontal
tissues, is linked to immune response and epigenetic modifications, with DNA
methylation playing a crucial role. This study integrates transcriptomic and
DNA methylation profiles from periodontitis patients to explore the immune
microenvironment and identify potential biomarkers and therapeutic targets.
Methods: Transcriptomic and methylation profiles from 24 periodontitis patients
were analyzed to evaluate the immune microenvironment and identify related
abnormal genes. WGCNA was used to identify immune cell-associated genes.
Subsequently, machine learning algorithms identified diagnostic biomarkers for
periodontitis, which then validated in two cohorts with 247 and 310 periodontitis
patients, respectively. Finally, network pharmacology analysis identified potential
targeted drugs for the candidate genes.

Results: We obtained 23,528 differentially methylated sites and 1,641 differential
expressed genes. Immune cell analysis identified eight abnormal cell types
in periodontitis, and WGCNA highlighted two gene modules linked to these
immune alterations. Machine learning with random forest and SVM identified
nine key genes (ATP2C2, FAM43B, FOXA3, HSPA12A, KIF1C, NCS1, PGML,
RASSF6, SH2B2) with diagnostic efficacy, achieving high AUC scores across
validation datasets. Network pharmacology analysis identified three drugs—
bisphenol A, acetaminophen, and valproic acid—as potential regulators of these
genes, offering new treatment avenues.

Conclusion: Through integrating s transcriptomic and DNA methylation profiles,
nine genes have been filtered as potential diagnostic biomarkers of periodontitis.
Drugs targeting these genes may serve as potential therapeutics for periodontitis.
These findings reveal valuable insights into immune and epigenetic mechanisms
in periodontitis, presenting new biomarkers and therapeutic options that may
enhance clinical diagnosis and treatment of the disease and provide unique
insights for further exploration of the pathogenesis of periodontitis and the
development of related therapeutic drugs.

KEYWORDS

periodontitis, immune microenvironment, DNA methylation, machine learning,
diagnostic biomarkers
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Introduction

Periodontal disease is considered to be the most common disease
in humans. The prevalence of periodontal disease is showing a
significant increase (1), and globally, the prevalence of severe
periodontal disease is 11%, affecting 743 million people (2).
Epidemiologic surveys have shown that the leading cause of tooth loss
worldwide is periodontitis, which is associated with a reduced quality
of life and may cause a variety of other systemic health problems (3).
Periodontitis is a chronic inflammatory condition affecting the tissues
that support teeth, initiated by plaque buildup. This process results in
progressive tissue destruction, formation of periodontal pockets, loss
of attachment, and resorption of alveolar bone, ultimately causing
tooth mobility, gum recession, and eventually, tooth loss (4). Previous
studies have reported the complex molecular mechanisms of this
periodontitis (5). However, the specific roles of genes, cell types, and
cellular mechanisms in the development of periodontitis remain
unclear, and there are currently no reliable early diagnostic markers
or therapeutic targets available (6, 7). For instance, researchers found
that chronic injury may alter transglutaminase gene expression,
potentially playing a crucial role in remodeling and adaptation (8); It
has been found that a significant link between miRNA in gingival
sulcus fluid and the risk of periodontitis (9).

While bacteria are essential in initiating periodontitis, disease
progression largely relies on the host’s immune response. An excessive
or imbalanced immune reaction to these microorganisms can speed
up both the onset and advancement of periodontitis (10), accompanied
by the release of various inflammatory mediators and cytokines (11).
For example, prostaglandin E, (PGE,), interleukin-1f (IL-1p), tumor
necrosis factor-a (TNF-a) (12), IL-8 (13), and interferon-y (IFN-y)
(14). Thus, the immune response of the host, particularly the cellular
immune response, is crucial in regulating the equilibrium between the
repair and damage of periodontal tissues (15). Therefore, current
research on periodontitis focuses on understanding how the immune
system and immunomodulatory factors influence periodontal
inflammation and alveolar bone degradation, as well as the role of
molecular regulatory networks in immune cell activation and
differentiation (4).

To further elucidate the mechanisms underlying periodontitis,
it is important to consider not only the immune response but also
the epigenetic factors that regulate gene expression. Epigenetics
refers to changes in gene expression that do not involve alterations
to the underlying DNA sequence. Key epigenetic processes include
DNA methylation,
remodeling. Recent studies suggest that chronic inflammatory

histone modifications, and chromatin
conditions, such as periodontitis, can induce epigenetic changes,
thereby modulating the immune response and contributing to
disease progression. Growing evidence indicates that these epigenetic
changes are linked to the development of periodontitis (15). In
particular, epigenetic modifications occur in periodontal tissues
during the periodontitis process. Currently, DNA methylation is the
most studied epigenetic modification associated with periodontitis
(16). DNA methylation is a widespread epigenetic alteration in
eukaryotic cells, involving the attachment of methyl groups to
cytosine residues within CpG dinucleotides. This modification can
be either hypermethylation or hypomethylation, leading to the
repression or activation of certain genes (17). DNA methylation of
cytokine-encoding genes has been found in periodontal tissues of
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patients with periodontitis (18). For instance, the IL6 gene expression
in the gingival tissues of patients with periodontitis was elevated
compared to healthy controls (19). In addition, DNA methylation
affects genes encoding interferons and chemokines (20). Recently,
researchers investigated CpG methylation of 22 inflammatory
candidate genes (21). These findings may provide some new insights
into the relationship between altered methylation of encoded genes
and periodontitis.

In this study, we hypothesize that integrating transcriptomic and
DNA methylation profiles will reveal novel immune-related
biomarkers and mechanistic links in periodontitis. To confirm it,
we systematically integrated periodontitis-associated transcriptome
and DNA methylation data to explore the immune microenvironment
of periodontitis. We aimed to identify key immune biomarkers in
multiple omics dimensions using a range of bioinformatics approaches
(Figure 1). These findings may offer new insights for the development
of diagnostic and therapeutic biomarkers for periodontitis.

Methods
Data source

DNA methylation and corresponding mRNA expression data
from periodontitis patients were retrieved from the GEO database
under accession numbers GSE173081 (DNA methylation, Ny, = 24,
Nieriodontitis = 12, and Ny = 12) and GSE173078 (mRNA expression,
Nt = 24, Nieriodontivis = 12, and  Nyeany = 12).  Two  additional
independent datasets, GSE16134 (testing datasetl, Ny, =310,
Nieriodontitis = 241, and Npeany = 69) and GSE10334 (testing dataset2,
Niotat = 247, Nieriodontivis = 183, and Ny = 64), were used for testing.
All FPKM expression values were normalized using a log2
transformation. All these datasets are publicly available and
unrestricted re-use is permitted via the open license of GEO database.

DNA methylation profiles

The Mlumina Human Methylation EPIC Array was used to
analyze the methylation status of periodontitis patients (N,y, = 24,
Nperiodontitis = 12, and Nyeqny = 12). This bead chip covers more than
810,000 methylation sites per sample. The raw data were processed by
the following steps: firstly, probes with a null value and located in sex
chromosomes were removed. Then, probes that mapped to multiple
genes or were not mapped to genes or containing SNPs were removed.

The minfi R package was used for the normalization of the raw
Methylation EPIC Array data. Probes with a p-value < 0.05 and
absolute detabeta (|AB|) > 0.1 were considered differentially methylated.

Immune microenvironment analysis

The xcell R package was employed to estimate the abundance of
64 immune cell types in periodontitis patients, including various
T-cell subtypes and other immune cells such as B cells, NK cells,
monocytes, and macrophages. The abundance of immune cells in
periodontitis patients was compared to that in healthy individuals to
identify distinctive features for further investigation.
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FIGURE 1
Workflow of the study.

Differential expression analysis

The limma R package was employed to analyze gene expression

differences between periodontitis and control groups.
Differentially expressed mRNAs were identified with an adjusted
p-value < 0.05 and an absolute log2 fold change > 0.263 (22).
Subsequently, Pearson correlation analysis was conducted to
assess the relationship between DNA methylation levels and

gene expression. Only correlations with an absolute Pearson
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coefficient above 0.4 and a p-value below 0.05 were considered
significant.

WGCNA

Co-expression networks were constructed using the WGCNA R
package to analyze candidate genes showing correlated patterns in
both methylation and expression levels, alongside abnormal immune
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cell types in periodontitis patients. In this study, hierarchical clustering
was used to group genes with similar expression patterns. These gene
clusters were then linked to the altered immune cells in patients, and
the most relevant genes within these clusters were selected for
further investigation.

Machine learning

The randomPForest R package was employed to build a periodontitis
prediction model using the random forest method, which involved
training and testing categorical models to identify gene combinations
with high discriminatory power for distinguishing periodontitis from
normal groups. The key genes were identified using an SVM algorithm
with the eI071 R package to construct an optimal diagnostic model.

Function enrichment analysis

We extracted all differentially expressed genes (DEGs) and
differentially methylated genes (DMGs) for further functional
enrichment analysis using the Metascape webserver. Enrichment
analysis was conducted for KEGG pathways and Hallmark gene sets,
with functions selected based on a false discovery rate of less than 0.05.

Statistical analyses were performed using R software (version
4.3.2). A t-test was used to assess differences between the two groups,
and a p-value of less than 0.05 was considered statistically significant.

Results

Differently expressed and differentially
methylated genes are associated with
inflammatory and immune-related
pathways in periodontitis

We first assessed methylation levels in patients with periodontitis.
First, we performed differential analysis of the EPIC methylation array
and obtained a total of 23,528 differentially methylated sites (p < 0.05,
|AB| > 0.1). Subsequently, we categorized the differentially methylated
probes into promoter region probes (TSS200, TSS1500, 1stExon) and
body region probes based on their location in the genome. Among
them, there are 5,152 differentially methylated promoter region probes
distributed on 2,489 genes and 4,814 differentially methylated body
region probes, which fell on 2,784 genes (Figure 2A). Subsequently,
we performed enrichment analysis of these differentially methylated
genes. The results showed that the differentially methylated genes in
the body region were mainly enriched in the Calcium signaling
pathway, Wnt signaling pathway and other inflammation-related
pathways (Figure 2B), while the differentially methylated genes in the
promoter region were mainly enriched in the cMAP signaling
pathway, the PI3K-Akt signaling pathway, and the Cytokine-cytokine
receptor interaction. Receptor interaction and other immune-related
pathways (Figure 2C).

To further elucidate the functional impact of these epigenetic
modifications, we next examined the gene expression profiles in
periodontitis patients. We analyzed the gene expression data of
periodontitis patients to screen for genes abnormally expressed in
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periodontitis (Jlog2FC| > 0.263, p < 0.05). We screened a total of 1,641
differential expressed genes, of which 398 were abnormally down-
regulated and 1,243 were abnormally up-regulated (Figure 2D).
Enrichment analysis of these differential genes showed that
periodontitis-associated aberrantly expressed genes were mainly
enriched in pathways such as Cytokine-cytokine receptor interaction,
NE-kappa B signaling pathway and HIF-1 signaling pathway
(Figure 2E). The NF-kappa B signaling pathway, in particular, plays a
pivotal role in orchestrating inflammatory responses. Activation of
NE-kappa B leads to the transcription of a variety of cytokines and
chemokines that mediate inflammation, which is critical in the
progression of periodontitis. This pathway can contribute to the
persistence of inflammation, thereby exacerbating tissue destruction
and bone resorption observed in periodontitis.

In our integrated analysis, we identified 349 genes that were both
differentially methylated and differentially expressed. Notably, several
key genes involved in inflammation and immune regulation were
among these 349 genes. For example, MMP9, a matrix
metalloproteinase known for its role in tissue remodeling and
inflammatory processes, has been implicated in periodontal tissue
degradation. Similarly, CD86, a critical co-stimulatory molecule
involved in T-cell activation, and PTPRC (CD45), a regulator of
immune cell signaling, underscore the immune involvement in
periodontitis. Other genes such as IL2RA and IL21R are central to
immune cell differentiation and activation, while FAM43B and
FOXA3 have emerged as potential diagnostic markers in our analysis.
These gene-specific findings reinforce the biological relevance of our
integrated analysis and suggest that the dysregulation of these key
genes may contribute significantly to the pathogenesis of periodontitis
(Figure 2F).

Altered immune cells in periodontitis linked
to differentially expressed gene modules
regulated by aberrant methylation

We evaluated the immune microenvironment of periodontitis
patients based on the xcell algorithm. The results showed that the
abundance of immune cells such as Astrocytes, Granulocyte-
Macrophage Progenitor (GMP), Hepatocyte, Monocyte, Neutrophil,
Plasma cells, and Prevacidocytes was significantly increased while
Platelets were significantly decreased in periodontitis patients
(Figure 3A; Supplementary Figure 1). It is important to note that the
detection of hepatocyte signatures in gingival tissue is unexpected.
This may be due to the inherent limitations of the xCell algorithm,
which relies on gene expression profiles that can sometimes overlap
among different cell types. The “Hepatocyte” signal observed might
represent a similar cell population with a related expression profile
rather than true hepatocytes. Further experimental validation is
needed to clarify this observation. It should be noted that the detection
of “hepatocyte” and “platelet” signatures likely reflects algorithmic
limitations of bulk transcriptomic deconvolution rather than the true
presence of these cell types in gingival tissue.

These alterations in immune cell composition suggest an
imbalance in immune regulation, potentially driven by underlying
epigenetic changes. Subsequently, we further screened the aberrant
genes regulated by methylation, and the screening criteria were, body
region differentially methylated genes, whose methylation level was
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positively correlated with the expression level (R > 0.4, p < 0.05), and
promoter region differentially methylated genes, whose methylation
level was negatively correlated with the expression level (R < —0.4,
p <0.05). These correlation thresholds were chosen to ensure a
moderate to strong association between methylation changes and gene
expression regulation while minimizing false positives. Previous
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studies have used similar cutoffs to establish meaningful methylation-
expression relationships in disease contexts (23, 24). Finally,
we screened 132 eligible candidate genes (Figure 3B).

To connect these findings with the observed immune cell
alterations, we investigated whether the aberrantly methylated genes
might drive changes in immune cell profiles. We performed WGCNA
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analysis to screen the co-expression modules of altered immune cells
based on the expression levels of these 132 candidate genes with the
abundance of the above mentioned 8 altered immune cells associated
with periodontitis. The results showed that there were three expression
patterns of these candidate genes (Figures 3C,D), among which, the
MEturquoise module (contains 100 candidate genes) was significantly
associated with abnormally elevated immune cells such as Astrocytes,
GMP, Hepatocyte, Monocyte, Neutrophil, Plasma cells, and
Previpocytes. correlated, while MEblue (contains 25 candidate genes)
significantly correlated with Astrocytes, Hepatocyte, Monocyte,
Neutrophil, Plasma cells, Previpocytes and Platelets (Figure 3E;
Supplementary Table S1). These findings indicate that epigenetic
regulation, as reflected by aberrant methylation, may influence
immune cell composition by modulating the expression of gene
modules relevant to immune functions.

Machine learning-based screening for
multi-omics diagnostic biomarkers in
periodontitis patients

Through WGCNA analysis, we found that MEblue and
MEturquoise are associated with altered immune cells in periodontitis
patients. Among them, MEblue contains 25 candidate genes while
MEturquoise contains 100 candidate genes. These gene modules
exhibited significant correlations with immune cell types that are
dysregulated in periodontitis, including monocytes, neutrophils, and
plasma cells (Figure 3E). The enrichment analysis of these genes
revealed their involvement in immune-related pathways (such as
leukocyte activation, toll-like receptor 2 signaling pathway), further
underscoring their biological relevance (Supplementary Figure 2). The
strong correlation between these genes and immune cell alterations
suggests their potential role in immune dysregulation and
inflammation in periodontitis. Thus, we selected these genes for
machine learning analysis to identify the most informative biomarkers
for disease classification. We first performed random forest modeling
for the 25 genes in the MEblue module. The results show that the
random forest model has the optimal classification efficacy when the
number of genes in the model reaches 3 (Figure 4A). Subsequently,
we show the gene scores for each node in the random forest and select
the top3 genes (HSPA12A, ATP2C2, and NCS1) (Figure 4B). These
three genes have been previously implicated in periodontitis-related
processes. For instance, HSPA12A is known to regulate inflammatory
responses (25), ATP2C2 plays a critical role in immune
microenvironment (26), and NCS1 is associated with immunotherapy
and prognosis of cancer (27). Next, we construct a classification model
based on SVM for these top3 genes. The results show that in the
training set, the classification efficiency of this 3-gene model reaches
0.826 (AUC = 0.826, Figure 4C), while in the testing datasetl, the
AUC of this model is also as high as 0.775 (Figure 4D), and in the
testing dataset2, the AUC value is 0.752 (Figure 4E). This suggests that
this 3-gene model has a better diagnostic efficacy for periodontitis
patients. In the MEturquoise module, we found that the 6-gene
random forest model had the best classification efficacy (Figure 5A).
We then ranked the genes in the model based on importance and
selected the top6 genes (PGM1, RASSF6, KIF1C, SH2B2, FOXA3, and
FAM43B) (Figure 5B). The six genes selected from the MEturquoise
module are also intricately linked to immune and inflammatory
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pathways. For example, PGMI1 and RASSF6 are associated with
macrophage (28). KIF1C could regulate the podosome dynamics in
macrophages (29). The immunologic significance of SH2B2 is related
to the invasion of colon adenocarcinoma (30). FOXA3 is a
transcriptional activator that is associated with signal transduction in
tumors (31). Additionally, FAM43B could repress the cell proliferation
and is regulated by DNA methylation (32). Similarly, we construct
SVM classifiers based on these 6 candidate genes. The results show
that this model has AUC = 0.819 (Figure 5C) in the training set, while
in testing dataset1 and testing dataset2, the AUC is 0.860 (Figure 5D)
and 0.816 (Figure 5E), respectively. Detailed performance metrics are
also summarized in Supplementary Table S2. These results suggesting
that these models have effective efficacy for periodontitis diagnosis.

Identification of target drugs for
periodontitis patients based multi-omics
diagnostic biomarkers

Based on epigenome and transcriptomics, we screened 9
periodontitis diagnostic genes in the periodontitis immune
microenvironment. Subsequently, we further explored potential target
drugs for these 9 genes. We constructed a drug-targeting network for
these genes based on the CTD database and identified 345 drugs/
compounds targeting these 9 genes (Figure 6). Through further
network analysis, we screened out 3 drugs/compounds targeting all 9
genes simultaneously: bisphenol A, Acetaminophen and Valproic Acid
(Supplementary Table S3). Bisphenol A, though primarily considered
an environmental contaminant, has been implicated in immune
modulation and inflammatory responses (33). Acetaminophen is
widely used as an analgesic and has been shown to modulate oxidative
stress pathways, which are relevant in periodontitis pathology (34).
Valproic acid, a histone deacetylase inhibitor, has demonstrated anti-
inflammatory effects and potential benefits in immune-related
conditions (35). These insights support the relevance of these drugs in
the context of periodontitis and highlight their possible regulatory
roles in disease-associated pathways. Among them, Acetaminophen
and Valproic Acid are FDA-approved drugs with better results in
analgesia. In this study, we found for the first time that they are
associated with periodontitis-related targets, which provides a new
idea for the subsequent screening of potential periodontitis-related
drugs. Their repurposing for periodontitis could offer advantages such
as well-characterized pharmacokinetics and widespread clinical
availability. However, the potential off-target effects and adverse
reactions-such as hepatotoxicity for Acetaminophen and the broad
systemic effects associated with Valproic Acid-necessitate further
investigation in the context of periodontitis. Additional preclinical
studies and clinical trials are warranted to optimize dosing, evaluate
long-term safety, and establish their efficacy as adjuncts in
periodontitis management.

Discussion

While numerous studies have highlighted the immune
microenvironment’s involvement in the development of periodontitis,
the exact mechanisms through which it affects the onset and
progression of the disease are still not fully understood (21-23). It has
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been found that periodontitis is not only affected by the transcriptional
level but also involves epigenetic alterations. Nevertheless, there are
limited studies that have identified immune-related genes linked to
periodontitis across various histological layers, which could potentially
serve as important clinical biomarkers for the disease. In this study,
we first investigated the immune microenvironment of periodontitis
and identified candidate genes that showed both abnormal
methylation and expression patterns in periodontitis samples, utilizing
epigenomic and transcriptomic approaches. Subsequently, through a
multi-dataset machine learning algorithm, we further narrowed down
these candidate genes to nine key genes with diagnostic efficacy for
periodontitis, namely, ATP2C2, FAM43B, FOXA3, HSPA12A, KIF1C,
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NCSI1, PGM1, RASSF6, and SH2B2. We then further analyzed these
genes by network pharmacology to screen for their potential drug
targets. This study revealed the association of key genes related to the
immune microenvironment with periodontitis at the epigenetic and
transcriptional levels, and screened for drug targets that could regulate
these key genes through the drug target network. Our research offers
significant insights into the potential use of these key genes as
diagnostic and therapeutic markers for improving the clinical
management of periodontitis.

ATP2C2 is involved in calcium transmembrane transport,
intracellular calcium ion homeostasis, and manganese ion transport
(36). FAM43B has been found to control innate immunity through
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Epigenetic Regulation (37). FOXA3 encodes a forkhead-like
DNA-binding protein that interacts with chromatin. It also plays a role
in the regulation of metabolism as well as organ differentiation.
FOXA3 methylation has been found to cause dedifferentiation and
sorafenib resistance in hepatocellular carcinoma (38). HSPA12A,
which is predicted to have ATP-binding activity and is located in
extracellular exosomes, was found to promote nuclear PKM2-
mediated polarization of M1 macrophages (39). The protein encoded
by KIF1C belongs to a family of kinesin-like proteins that transport
APC-dependent mRNAs to cellular protrusions (40) and can
re-localize GLUT4 to immune-modification-positive cell sites (41).
NCS1, a member of the neuronal calcium sensor gene family, is a key
Ca2 + —binding protein thought to play a role in cell proliferation and
immune infiltration (27). The protein encoded by this gene is an
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isoform of phosphoglucomutase (PGM) and is associated with M2
macrophages and TFH cells and their surface markers CD163 and
CXCR5 (42). RASSF6 encodes a member of the Ras-associated
structural domain family (RASSF), and the protein encoded by this
gene is a Ras effector protein that induces apoptosis. In acute
lymphoblastic leukemia (ALL), there is a high prevalence of aberrant
RASSF6 promoter methylation, and its DNA methylation status has
the potential to serve as a biomarker for assessing MRD levels in ALL
patients (43). SH2B2 encodes a protein expressed in B lymphocytes
that undergoes tyrosine phosphorylation in response to B cell receptor
stimulation and plays a role in signaling in the Shc/Grb2 pathway (44).

In conclusion, through our integration of DNA methylation profiles
and transcriptomes of periodontitis patients, we assessed the immune
microenvironment of periodontitis patients and screened nine diagnostic
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markers related to periodontitis patients based on machine-learning
algorithms, and screened for relevant targeted drugs. This finding will
provide new insights for subsequent diagnosis and treatment of
periodontitis. Furthermore, our study builds on previous research using
machine learning to identify biomarkers in immune-related diseases. For
instance, studies on interactomic hub gene prediction in PBMCs for type
2 diabetes mellitus, dyslipidemia, and periodontitis have demonstrated
the potential of network-based approaches in identifying key regulatory
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genes (45). Additionally, machine learning models for predicting
rheumatoid arthritis based on ACPA autoantibody development in the
presence of non-HLA gene polymorphisms highlight the utility of such
methods in complex diseases (46). Similarly, the prediction of
interactomic hub genes in rheumatoid arthritis using peripheral
mononuclear cells underscores the importance of transcriptomic and
network-based analyses in understanding immune-related pathologies
(47). Our study contributes to this growing body of research by
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identifying key diagnostic genes and their potential drug interactions in
periodontitis. Meanwhile, our diagnostic models, with AUC values
ranging from 0.75 to 0.86, compare favorably with existing periodontitis
biomarkers, which often rely on single-parameter assessments such as
probing depth, clinical attachment loss, or inflammatory mediators in
gingival crevicular fluid (48). The integration of epigenetic and
transcriptomic data in our models not only improves diagnostic accuracy
but also captures the complexity of the disease’s molecular basis. This
multi-omics approach allows for a more comprehensive evaluation of the
disease state and may facilitate the development of personalized
treatment strategies. The identification of these drugs through a multi-
omics approach presents a novel strategy for periodontitis therapy. In
terms of efficacy, the FDA-approved drugs Acetaminophen and Valproic
Acid have well-documented pharmacological profiles that may enhance
their potential as adjunct therapies. They offer the possibility of
modulating key molecular mechanisms underlying periodontitis, such
as oxidative stress and immune regulation. However, while conventional
therapies focus on bacterial control and symptomatic relief, these drugs
may provide benefits by directly impacting the disease’s molecular
drivers. Regarding safety, current standard therapies generally have
minimal systemic side effects but may not fully address the inflammatory
and tissue-degradative components of periodontitis. In contrast, the
off-target effects of Acetaminophen (e.g., hepatotoxicity) and Valproic
Acid (e.g., gastrointestinal and metabolic disturbances) require careful
dosing and monitoring.

Overall, these findings underscore the clinical and biological
significance of integrating multi-omics data to identify potential
therapeutic agents. The approach not only enhances our understanding
of periodontitis pathogenesis but also opens new avenues for
developing targeted interventions that may complement existing
treatment modalities.

Despite the promising findings of our study, several limitations
should be acknowledged. First, our analyses relied on publicly available
datasets with relatively small sample sizes, which may limit the
generalizability of the results. The lack of detailed demographic
information, such as age and gender, may also introduce selection bias
and restrict applicability across broader populations. Future large-scale
studies with demographically matched cohorts are warranted to address
these concerns. Second, while the use of multi-dataset machine learning
improved robustness, potential confounders (including patient
demographics, disease severity, and sample processing) could still
influence the outcomes. Integrating additional omics layers, such as
proteomics and metabolomics, may provide a more comprehensive
understanding of periodontitis pathogenesis.

Moreover, the current study provides predictive insights into
immune alterations in periodontitis based on bulk transcriptomic
deconvolution. However, bulk analyses cannot fully capture the
complexity of the immune microenvironment, which ideally requires
single-cell transcriptomic and spatially resolved approaches. Importantly,
all conclusions are computationally derived without protein-level or
in vivo validation. Future research should therefore include experimental
confirmation, such as immunohistochemistry, flow cytometry, and
animal models, to validate the biological and therapeutic relevance of the
identified biomarkers and drug candidates. Specifically, preclinical
testing of acetaminophen and valproic acid will be crucial to determine
their mechanistic roles and feasibility as adjunctive therapies
for periodontitis.
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Conclusion

In conclusion, through our integration of DNA methylation
profiles and transcriptomes of periodontitis patients, we assessed the
immune microenvironment of periodontitis patients and screened
nine diagnostic markers related to periodontitis patients based on
machine-learning algorithms, and screened for relevant targeted
drugs. This finding will provide new insights for subsequent diagnosis
and treatment of periodontitis.
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Glossary

WGCNA - Weighted correlation network analysis

SVM - Support Vector Machine

AUC - Area Under the Curve

PGE, - prostaglandin E,

IL-1p - interleukin-1f

TNE-a - tumor necrosis factor-a; IL-8
IFN-y - interferon-y

FPKM - Fragments Per Kilobase per Million
DEGs - differentially expressed genes
DMGs - differentially methylated genes

FC - Fold-Change value

DC - Dendritic Cell
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CLP - Common Lymphoid Progenitor

CMP - Common Myeloid Progenitor

GMP - Granulocyte-Macrophage Progenitor
HSC - Hematopoietic Stem Cell

MEP - Megakaryocyte-Erythroid Progenitor
MPP - Multipotent Progenitor

MSC - Mesenchymal Stem Cell

NKT - Natural Killer T Cell

CTD - Comparative Toxicogenomics Database

PGM - phosphoglucomutase

RF - random forest

RASSF - Ras-associated structural domain family

GEO - Gene Expression Omnibus database
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Neuroimaging evidence for
central mechanisms of
acupuncture in non-specific low
back pain: a systematic review
and meta-analysis
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Guangzhou, Guangdong, China, BThe Second Affiliated Hospital, School of Medicine, The Chinese
University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen,
China

Objectives: Non-specific low back pain (NSLBP) is a prevalent disorder with
significant global health impacts. This systematic review and meta-analysis
assessed acupuncture’s clinical effectiveness for NSLBP and explored its brain
mechanisms using fMRI.

Methods: A comprehensive search of multiple databases (PubMed, Embase,
Cochrane Library, Web of Science, Science Direct, China National Knowledge
Infrastructure, Wanfang Data, Chinese Technical Periodicals Database, and
Chinese Biomedical Literature Database) was conducted from inception to
July 11th, 2024. We included randomized controlled trials (RCTs) or non-RCTs
resting-state functional magnetic resonance imaging to observe the effect of
acupuncture on NSLBP. GingerALE 3.0.2 was used as the meta-analysis tool, and
meta-analysis was performed in the Montreal Neurological Institute coordinate
space.

Results: The review synthesized evidence from ten studies involving 358
participants. Subgroup analyses indicated that acupuncture significantly reduced
pain scores compared to sham acupuncture in both acute NSLBP (WMD = —-1.04,
95% ClI: =1.72 to -0.36, p = 0.003) and chronic NSLBP (WMD = -0.78, 95%
Cl: =1.25 to —0.31, p < 0.001). Neuroimaging analyses revealed distinct brain
activation patterns: acute NSLBP showed positive activation in the right sub-
lobar insula, inferior parietal lobule, medial frontal gyrus, and cingulate gyrus,
while chronic NSLBP demonstrated positive activation in bilateral sub-lobar
insula and negative activation in motor and prefrontal regions.
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Conclusion: Acupuncture shows significant efficacy for NSLBP, modulating pain
processing through the insula and limbic system. While these results suggest
therapeutic potential for both acute and chronic NSLBP, higher-quality research
is needed to validate these mechanisms.

Systematic review registration: Prospero registration number: CRD42022342438,
URL: https://www.crd.york.ac.uk/PROSPERO/view/CRD42022342438.

KEYWORDS

acupuncture, non-specific low back pain, meta-analysis, functional magnetic
resonance imaging, systematic reviews

1 Introduction

Non-specific low back pain (NSLBP), a highly prevalent
musculoskeletal disorder in adults, encompasses both nociceptive and
neuropathic components that may radiate to the lower extremities,
significantly impairing mobility and function (1). The classification of
NSLBP falls into acute, subacute, and chronic categories (2, 3).
According to the 2021 Global Burden of Disease Study, NSLBP ranks
among the top 10 causes of long-term disability in 188 countries (2,
4). The global prevalence of lower back pain is estimated at 18.3%,
with higher rates observed among women and in high-income
countries (5). Financially, this condition imposes a heavy burden,
costing the UK approximately £2.8 billion annually, Australia over
$4.8 billion, and the US more than $100 billion (6).

Given its impact, effective treatments for NSLBP are critical for
global health. Opioids are frequently prescribed for chronic NSLBP
but raise concerns about addiction and risks (7), contributing to a
drug abuse crisis and fueling demand for non-opioid alternatives (8).
Increasingly, research has pointed to non-pharmacological approaches
as safe and effective alternatives for managing NSLBP (9-13), and the
effectiveness of acupuncture in pain relief has been demonstrated in
numerous studies (14-16). It is also strongly advised to utilize
acupuncture for treatment in the American College of Physicians
guidelines for treating chronic NSLBP (13).

Regular MRI is used to visualize structural abnormalities such as disc
herniations, spinal stenosis, or cancer. Brain imaging studies reveal stage-
specific alterations in NSLBP. SPECT imaging and statistical analyses have
demonstrated different alterations in brain blood flow among patients
with acute and chronic NSLBP (17). In chronic cases, enhanced
connectivity within the frontoparietal network (FPN), somatomotor
network (SMN), and thalamus (18). This increased connectivity
represents neurophysiological changes associated with the chronic phase
of the condition. Given these altered connectivity patterns of different
phrases of NSLBP, acupuncture has been explored as a potential
neuromodulatory intervention. As for mechanism, acupuncture appears
to influence several brain networks involved in pain, emotion, and

Abbreviations: ACC, anterior cingulate cortex; ALE, activation likelihood estimation;
ANSLBP, acute non-specific low back pain; Cls, confidence intervals; CNSLBP,
chronic non-specific low back pain; DMN, default mode network; fMRI, functional
magnetic resonance imaging; GRADE, Grading of Recommendations, Assessment,
Development and Evaluation; MFG, medial frontal gyrus; MNI, Montreal
Neurological Institute; NSLBP, nonspecific low back pain; PFC, prefrontal cortex;
RCTs, randomized controlled trials; SDM, Seed-based d Mapping; WMD, weighted

mean difference; FPN, frontoparietal network; SMN, somatomotor network.
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memory, such as the sensorimotor network, the default mode network
(DMN), and the limbic system (19). However, the exact neurophysiological
mechanisms remain unclear due to acupuncture’s engagement of multiple
neural circuits (20), highlighting the need for further research to clarify
its role across NSLBP phases.

Since the mid-1990s, functional magnetic resonance imaging
(fMRI) has been used to observe the human brain’s response to
acupuncture stimulation (21). As an imaging method, fMRI reveals
time-varying changes in brain metabolism, offering researchers precise
insights into the anatomical and physiological functions associated with
acupuncture. These findings suggest that acupuncture’s mechanism is
mediated through the central nervous system (19). Therefore, f/MRI is a
critical tool for investigating how acupuncture exerts its therapeutic
effects at the neurophysiological level. Acupuncture’s analgesic effects
are mediated by neurotransmitters, signaling pathways, and
immunological responses, which in turn influence neural activity in
specific brain regions (22). Previous study discovered that following
acupuncture therapy, neural activation increased in the sensorimotor
network, periaqueductal grey, and nucleus accumbens, while the DMN
showed decreased activation (23). Moreover, there were common
patterns of activation in the sensorimotor cortical network and
deactivation in the limbic paralimbic neocortical network after
acupuncture stimulation (24). These effects were also observed in
participants with NSLBP, where acupuncture improved aberrant brain
structure and functional activity, primarily through the pain matrix,
DMN, salience network, and descending pain modulatory system (25).
In summary, acupuncture’s ability to modulate brain networks and
neurotransmitter activity contributes to its therapeutic effects on pain.

Several reviews have summarized the mechanisms underlying this
treatment using magnetic resonance imaging to explore its effects on
NSLBP (26-29). Yet, these analyses did not differentiate NSLBP by
duration, limiting understanding of phase-specific analgesic
mechanisms. Addressing this gap, our meta-analysis categorizes
NSLBP into acute, subacute, and chronic phases to examine pain
scales and brain function following acupuncture. By focusing on
duration-specific cohorts, our study aims to elucidate neural substrates
of acupuncture analgesia, informing clinical decisions and guiding
future research directions.

2 Methods
2.1 Data and methods

The protocol of this study was registered at PROSPERO (http://www.
crd.york.ac.uk/PROSPERO) (registration number: CRD42022342438).
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A systematic review was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses guidelines
(PRISMA guidelines) and neuroimaging guidelines for meta-
analyses (30).

2.2 Literature retrieval

A systematic search strategy was conducted in PubMed, Embase,
Cochrane Library, Web of Science, Science Direct, Medline, China
National Knowledge Infrastructure, Wanfang Data Knowledge Service
Platform, Chinese Technical Periodicals Database and Chinese
Biomedical Literature Database from inception to July 11th, 2025.
Additionally, forward citation tracking were identified by manually
searching the included studies. The electronic search procedures are
presented in Supplementary materials.

2.3 Inclusion/exclusion criteria

Studies were included based on the following criteria: (1)
Randomized controlled trial (RCT) or non-RCT conducted in patients
with acute, subacute or chronic NSLBP. Acute back pain is defined as
lasting less than 4 weeks, subacute back pain lasts 4 to 12 weeks, and
chronic back pain lasts more than 12 weeks (17); (2) fMRI study; (3)
acupuncture as the intervention; (4) other therapies including
conventional rehabilitation or sham acupuncture as the control group;
(5) study setting in clinic, community, hospital, or laboratory; (5)
presenting the results in Talairach or Montreal Neurological Institute
(MNI) coordinates.

The exclusion criteria were as follows: (1) abstracts, case reports,
commentaries, conference papers, cohort studies, cross-sectional
studies, descriptive studies, editorials or expert opinions,or letters; (2)
animal trial; (3) no extractable data available; (4) not published in
English or Chinese.

2.4 Data extraction

For the data extraction, the base information of the author,
country, condition, sample size of trial groups and control groups,
duration of NSLBP,
interventions, methodological quality assessment tool and main

participant characteristics, outcomes,
conclusions were extracted according to the PRISMA flowchart (31).

Firstly, the clinical outcome measures included assessing pain
intensity and functional status. Pain intensity is primarily assessed
using the visual analogue scale. Functional status can be assessed
through self-reported questionnaires measuring disabilities for
functional evaluation (e.g., Roland Disability Questionnaire for
Sciatica, World Health Organization Quality of Life in the Brief
Edition). Secondly, the outcome measures also included brain
imaging. For brain imaging data, the brain-related data including
magnetic resonance imaging model, field strength (Tesla), head coil,
fMRI acquisition parameters [repetition time (TR): 2000-3,000 ms;
echo time (TE): 30-40 ms; voxel size: 2.6 x 2.6 x 3.0 mm® to
3.4 x 3.4 x 4.0 mm’], software used for analysis (e.g., SPM, FreeSurfer),
coordinate space (MNI or Talairach), smoothing kernel (full-width at
half-maximum: 5-8 mm), type I error correction, and functional
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imaging feature were extracted. Preprocessing steps of fMRI data in
included studies consistently included: (1) motion correction; (2)
slice-timing correction; (3) normalization to MNI space; (4) spatial
smoothing. The coordinates and information for each study were
manually extracted by two researchers (F H. and M. Q. L.) and
independently checked for accuracy by the other author (J. J. L.).

2.5 Methodological quality assessment and
level of evidence

We employed Risk of Bias 22 and Risk Of Bias In Non-randomized
Studies-of Interventions tools to evaluate the risk of bias in the
included RCTs and non-RCTs, respectively (32, 33). For RCTs, the
assessment focused on several bias sources: bias arising from the
randomization process, bias due to deviations from intended
interventions, bias due to missing outcome data, bias in outcome
measurement, bias in the selection of reported results, and overall risk
of bias. Based on these criteria, the risk of bias in RCT studies was
categorized as low risk, some concerns, or high risk. In the case of
non-RCTs, the assessment considered factors such as bias due to
confounding, bias in participant selection, bias in the classification of
interventions, bias due to deviations from intended interventions, bias
due to missing data, bias in outcome measurement, bias in the
selection of reported results, and overall risk of bias. According to
these criteria, the risk of bias in non-RCT studies was classified as low,
moderate, serious, critical, or no information.

2.6 Data analysis

Stata 12.0 software (Stata Corp, College Station, TX, USA) was
used for clinical data meta-analysis. Dichotomous outcomes were
reported using risk ratios with corresponding 95% confidence
intervals (CIs). Continuous outcomes were presented as weighted
mean differences (WMDs) with 95% Cls or standardized mean
differences. A fixed-effects model was employed when the P statistic
was below 50% Otherwise, a random-effects model was utilized.
Subgroup analysis was also conducted. And the level of evidence was
used by The Grading of Recommendations, Assessment, Development
and Evaluation (GRADE) approach (34).

GingerALE 3.0.2 (http://www.brainmap.org/ale/) is a tool used for
neuroimaging meta-analyses, which converts all reported coordinates
into MNI space via the icbm2tal transformation. Anatomical
structures were identified within the software, with parameters set at
P <0.001 (cluster-level family-wise error correction = 0.001) (35-38).
Mango 4.0.2 (Research Imaging Institute, UTHSCSA) was used for
visualization, mapping the three-dimensional ALE results onto the
MNI standard template to facilitate precise localization of
brain regions.

2.7 Activation likelihood estimation
procedure

In ALE analysis, activation hotspots found in existing

research were viewed as probability patterns centred on the
reported coordinates. For each voxel in a standard space,
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activation probabilities were determined to create ALE maps that
focus on particular contrasts. To assess the trustworthiness of
these ALE maps, null distributions were formed by examining
how ALE values were distributed across separate studies (36).
This approach was somewhat like performing permutation tests
on individual voxels from different experiments. The influence
of each study in the analysis was adjusted based on its sample
size, and each study is considered to contribute to random
effects (35).

2.8 Calculation of frequency about brain
regions modulated by acupuncture

To summarize and visualize the frequency of brain regions
modulated by acupuncture in acute and chronic LBP, we utilized Excel
for data analysis. The frequencies of involvement for various brain
regions were calculated and plotted using Excel’s graphing capabilities.
This allowed us to effectively illustrate the distribution of modulated
regions in both acute and chronic LBP.

2.9 Sensitivity analysis

We performed sensitivity analyses to assess the robustness of
ALE meta-analysis results based on previous article (37). Studies
with a total sample size of <20 were excluded to address potential
small sample bias.

3 Results
3.1 Study search results

A total of 1,020 articles were identified through PubMed,
Embase, Cochrane Library, Web of Science, Science Direct, China
National Knowledge Infrastructure, Wanfang Data Knowledge
Service Platform, Chinese Technical Periodicals database and
Chinese Biomedical Literature Database. After removing
duplicates, trials for which no full-text was available, and
screening titles and abstracted, a total of ten studies were
included for further evaluation (8, 39-47).

3.2 Characteristics of the included studies

A total of 358 participants were involved in ten articles (Cohen’s
kappa = 0.85) (8, 39-47). Table 1 shows the characteristics of the
included studies. Among these ten articles, three are about acute
non-specific low back pain (ANSLBP) (39, 40, 42) and seven are
about chronic non-specific low back pain (CNSLBP) (8, 41, 43-47).
Among the ten studies included, eight (8, 37, 39, 40, 42, 43, 45, 46)
were divided into an acupuncture group and a control group, of
which three (39, 40, 42) analyzed the effect of acupuncture on
ANSLBP, and the other five (8, 43, 45-47) analyzed the effect of
acupuncture on CNSLBP. No subacute NSLBP articles were
included. The other two studies (41, 44) had no control group. The
selection process is shown in Figure 1.
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3.3 Quality assessment of the included
trials

In eight RCTs (8, 39, 40, 42, 43, 45-47), one study was rated as
“low” overall risks of bias (8), while seven studies were rated as “some
concerns” of overall risks of bias due to concerns about the
randomization process (39, 40, 42, 43, 45-47). In two non-RCTs (41,
44), all two studies were rated as “low” overall risks of bias
(Supplementary Tables 1, 2). According to the GRADE approach, the
quality of evidence and the strength of recommendations were rated
as “very low” (Supplementary Table 3).

3.4 Meta-analysis results of pain-related
scales

Based on the RCTs
(Supplementary Figure 1) (8, 43, 45-47), the acupuncture group

pooled results from five
showed significantly lower pain-related scores of VAS compared with
the sham acupuncture group, as illustrated in Figure 2 (5 trials:
WMD =-0.78, 95% CI. —1.25 to —0.31, p<0.001), with no
heterogeneity (I* = 0%, p = 0.825) For subgroup analysis, one RCT
demonstrated that acupuncture was significantly more effective than
sham acupuncture for treating ANSLBP (WMD = —1.04, 95% CI:
—1.72 to —0.36, p = 0.003) (42). However, four RCTs on CNSLBP
showed no significant difference between real and sham acupuncture
(Figure 1) (WMD = —0.53, 95% CI: —1.19 to 0.13, p = 0.113) (8, 43,
45-47), with no heterogeneity (I* = 0%, p = 0.938).

3.4.1 Neuroimaging findings after acupuncture
for ANSLBP

Three studies utilized acupuncture for the treatment of ANSLBP
(39, 40, 42). Following the ALE meta-analysis of these articles, the
results identified four clusters of positive activation and seven clusters
of negative activation (Figure 3).

Four clusters of positive activation were identified. The first cluster
was located in the right cerebrum, specifically in the sub-lobar insula
(Brodmann area 13), centered at coordinates x =50, y=6, z=12
(ALE = 0.0022; p < 0.001; Z = 5.20). The second cluster was found in
the right cerebrum, in the inferior parietal lobule (Brodmann area 40),
centered at x = 62, y = —26, z = 34 (ALE = 0.0023; p < 0.001; Z = 5.39).
The third cluster was situated in the right cerebrum, in the medial
frontal gyrus (MFG) (Brodmann area 6), centered at x =12, y =0,
z=60 (ALE =0.0019; p <0.001; Z=4.85). The final cluster was
located in the right cerebrum, in the cingulate gyrus (Brodmann area
31), centered at x =18, y=—24, z=39 (ALE =0.0019; p < 0.001;
Z = 4.84) (Figure 3A; Supplementary Table 4).

Seven clusters of negative activation were identified. The first
cluster was located in the left cerebrum, specifically in the sub-lobar
insula (Brodmann area 13), centered at coordinates x = —41, y = —13,
z=15 (ALE = 0.0027; p < 0.001; Z = 6.36). The second cluster was
found in the left cerebrum, in the cingulate gyrus (Brodmann area 32),
centered at x =0, y = 33, z=21 (ALE = 0.0028; p < 0.001; Z = 7.03).
The third cluster was situated in the left cerebrum, in the pulvinar of
the thalamus, centered at x = —4, y=—30, z= -2 (ALE = 0.0019;
p<0.001; Z=4.58). The fourth cluster was located in the right
cerebrum, in the parahippocampal gyrus (Brodmann area 35),
centered at x=24, y=-27, z=-18 (ALE =0.0019; p <0.001;
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TABLE 1 Characteristics of the included studies.

(11)

Sample Phrase Location Treatment Treatment Control Manipulation = Imaging MRI Clinical Adverse  Outcomes
number duration group group modality type parameter variables events
Ziping sham 1. Vas score Brain
Sum =15 acute hospital RCT 16 min 257+23 acupuncture MA RS-fMRI 3T, MNI None
(40) acupuncture 2. ASS activation
Shi et al. sham ReHo, brain
Sum =28 acute NA RCT 36 min 22-30 acupuncture EA RS-fMRI 3T, MNI 1. Vas score None
(42) acupuncture activation
Makary,
TG =128 sham
2018 chronic laboratory RCT 25 min 384 +127 acupuncture MA RS-fMRI 3T, MNI 1. Vas score None ROI
CG=19 acupuncture
(46)
Lee, 2019 TG =25 sham
chronic NA RCT 25 min 384 +127 acupuncture MA RS-fMRI 3T, MNI 1. Vas score None ROL FC
(43) CG=18 acupuncture
25 min, 1 or 2 1. Vas score
Tu, 2019 TG =24 sham
chronic NA RCT times/week, 26-54 acupuncture MA TS-fMRI 3T, MNI 2.BDI None rsFC
(45) CG =26 acupuncture
2 weeks 3.ERS
1. Vas score
25 min, 1 or 2 2.BDI
Yu, 2020 TG=24 sham
chronic hospital RCT times/week, 18-60 acupuncture MA TS-fMRI 3T, MNI 3. None rsFC
(8) CG =26 acupuncture
2 weeks Bothersomeness
scale
TG =55
Kim, (TG1 =18, 20 min, 1 or 2
1. Vas score
2020 TG2 =18, chronic hospital RCT times/week, 41.2+12.0 acupuncture None MA TS-fMRI 3T, MNI 5 2PDT None ROI
(57) TG3=19) 4 weeks ’
CG=23
Xiang,
ankle sham
2021 Sum =19 chronic laboratory Non-RCT 15 min 46.61 +7.35 MA RS-fMRI 3T, MNI 1. Vas score None ALFF
acupuncture acupuncture

BDI, Beck Depression Inventory; TG, treatment group; CG, control group; EA, electroacupuncture; MA, manual acupuncture; ERS, expectations for relief scale; JOA, Japanese Orthopaedic Association scores; NA, not available; Sham, sham acupuncture; VAS, visual
analogue scale; Verum, verum acupuncture; 2 PDT, two-point discrimination threshold; ASS, Acupuncture Sensation Scale; rs-FC, resting-state functional connectivity/FC; ALFFE, Amplitude of Low-Frequency Fluctuations; ICC, Intrinsic Connectivity Contrast; Reho,
Regional Homogeneity; ROI, Regions of Interest.
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Z =4.61). The fifth cluster was found in the right cerebrum, in the
MFG (Brodmann area 8), centered at x=14, y=33, z=44
(ALE = 0.0019; p < 0.001; Z = 4.57). The sixth cluster was located in
the right cerebrum, in the angular gyrus (Brodmann area 39), centered
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atx =54,y =—60,z =39 (ALE = 0.0019; p < 0.001; Z = 4.61). The final
cluster was situated in the left cerebrum, in the superior frontal gyrus
(Brodmann area 6), centered at x = —14, y = 34, z = 52 (ALE = 0.0019;

p <0.001; Z =4.57) (Figure 3B; Supplementary Table 5).
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FIGURE 3

Activation of fMRI signals in cortical and subcortical structures in the acupuncture group. (A) Positive activation of brain regions after acupuncture with
ANSLBP; (B) Negative activation of brain regions after acupuncture with ANSLBP; (C) Positive activation of brain regions after acupuncture with
CNSLBP; (D) Negative activation of brain regions after acupuncture with CNSLBP.

3.4.2 Neuroimaging findings after acupuncture
for CNSLBP

Seven studies utilized acupuncture as a treatment for CNSLBP
(8,41, 43-47). Analyzing the related articles revealed two clusters
of positive activation and two clusters of negative activation
(Figure 3).

The two positive activation clusters identified were as follows:
one was located in the right cerebrum, specifically in the
sub-lobar insula (Brodmann area 13), centered at coordinates
x =46, y=-2,z=2 (ALE = 0.0019; p < 0.001; Z = 4.65). The
other was found in the left cerebrum, also in the sub-lobar insula
(Brodmann area 13), centered at x=-42, y=-16, z=2
(ALE = 0.0015; p <0.001; Z =3.93) (Figure 3C;
Supplementary Table 6).

The two negative activation clusters were located as follows:
one was situated in the left cerebrum, in the precentral gyrus
(Brodmann area 44), centered at x=-56, y=12, z=6
(ALE = 0.00095; p < 0.001; Z = 3.41). The other was located in
the right cerebrum, in the middle frontal gyrus (Brodmann area
8), centered at x = 33, y = 40, z = 42 (ALE = 0.00095; p < 0.001;
Z = 3.41) (Figure 3D; Supplementary Table 7).
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3.4.3 Neuroimaging results after the control
group's treatment on ANSLBP

The results showed that the control group’s treatment for ANSLBP
activated over eight clusters, predominantly located in the sub-lobar
regions of the left cerebrum, including the insula, lentiform nucleus,
thalamus, caudate, and hippocampus. Only the caudate in the right
cerebrum showed activation. It was clear that most of the activated
clusters were in the sub-lobar area. Additionally, the ALE values
ranged from 0.0009 to 0.001, with the insula in the left cerebrum
displaying the highest activation, specifically centered at x = —40,
y=6, z=18 (ALE =0.0014, p <0.001, Z=4.05) (Figure 4A). In
summary, the results indicate that significant brain activation occurs
primarily in the sub-lobar region, with the left insula showing the
highest activation, which may be central to the neurophysiological
response to ANSLBP treatment.

3.4.4 Neuroimaging results after the control
group's treatment on CNSLBP

Long-term control group’s regulates wider areas, such as the
limbic lobe (Brodmann area 40; peak MNI coordinates: —50, —28, 52;
peak SDM-Z (Seed-based d Mapping): 3.597; p < 0.001), the parietal
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FIGURE 4

Activation of fMRI signals in cortical and subcortical structures in the control group. (A) Activation of brain regions in patients with ANSLBP after
receiving treatment in control group; (B) Activation of brain regions in patients with CNSLBP after receiving treatment in control group.

lobe (Brodmann area 36; peak MNI coordinates: —50, —34, —16; peak
SDM-Z: 3.597; p < 0.001), the frontal lobe (Brodmann area 6; peak
MNI coordinates: 44, 6, 30; peak SDM-Z: 3.597; p < 0.001), the
temporal lobe (Brodmann area 22; peak MNI coordinates: —66, —42,
18; peak SDM-Z: 3.597; p < 0.001), the sub-lobar (Caudate Body; peak
MNI coordinates: 18, —4, 16; peak SDM-Z: 3.597; p < 0.001), and the
occipital lobe (Brodmann area 37; peak MNI coordinates: —52, —72,
4; peak SDM-Z: 3.597; p < 0.001) (Figure 4B).

3.5 Sensitivity analysis

Two studies with small sample sizes were excluded: Ziping (40;
total n = 15) and Xiang et al. (11) (total n = 19). After exclusion, only
one study on ANSLBP remained, while all CNSLBP studies met the
sample size criterion (n > 20). Consistent with the initial analysis, the
key neuroimaging findings remained unchanged. Acupuncture
treatment on ANSLBP showed positive activation in the right
sub-lobar insula, inferior parietal lobule, medial frontal gyrus, and
cingulate gyrus; CNSLBP demonstrated positive activation in the
bilateral sub-lobar insula and negative activation in the motor and
prefrontal regions. Due to low heterogeneity (I* = 0%) and consistent
study inclusion, no re-calculation of ALE statistics was required,
confirming the stability of the primary results.

3.6 Frequency of brain regions modulated
by acupuncture in acute and chronic LBP

By combining these findings, we summarized and visualized the
frequency of brain regions modulated by acupuncture in acute and
chronic LBP (Supplementary Figure 2). As shown in the
Supplementary Figure 2, in ANSLBP, the most frequently involved
regions were the insula and lentiform nucleus (approximately 75%),
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followed by the thalamus, caudate, and hippocampus (around 25%).
In CNSLBP, the most frequently involved regions were the middle
frontal gyrus (>50%) and precentral gyrus (approximately 45%),
followed by the parahippocampal gyrus, anterior cingulate cortex,
superior parietal lobule, and inferior parietal lobule (about 20-30%).

3.7 Adverse events

As shown in Table 1, none of the RCTs or non-RCTs reported
adverse events.

4 Discussion

This study compares brain changes following acupuncture
treatment of acute and chronic NSLBP using pain-related scales and
resting-state fMRI. The research results indicated that acupuncture
has demonstrable clinical efficacy for treating NSLBP. Through a
meta-analysis of all eligible articles, three studies used acupuncture for
ANSLBP (39, 40, 42), with brain activation mainly in the bilateral
limbic lobe and right inferior lobe. In the seven studies of acupuncture
treatment of CNSLBP (8, 41, 43-47), we identified four clusters of
activation, including the sub-lobar insula, precentral gyrus on the left
side, and the sub-lobar insula and middle frontal gyrus on the
right side.

4.1 Pain-related outcomes analysis of
acupuncture for NSLBP

Acupuncture is currently recognized as an effective treatment for

spinal-related diseases. In recent years, RCTs have demonstrated their
role in treating degenerative diseases, chronic pain, and acute pain (48,
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49). Chen et al. found that patients with chronic low back pain exhibit
widespread alterations in brain regions related to pain perception and
modulation, including the left inferior temporal gyrus, bilateral
postcentral gyrus, superior and middle frontal gyri, thalamus, and
occipital cortex. Notably, acupuncture appears to modulate functional
activity in several of these pathological areas (50). Specifically,
increased cerebral blood flow has been observed in the right
postcentral gyrus and superior parietal lobule (regions implicated in
somatosensory processing and sensorimotor integration), while in the
bilateral occipital cortex and posterior cingulate gyrus is reduced (51).

In addition to targeted brain modulation by acupuncture, it is
useful to compare its effects with those of other non-acupuncture
treatments for NSLBP. Acupuncture has been shown to restore altered
DMN connectivity, particularly in the dorsolateral and medial
prefrontal cortices, anterior cingulate, and precuneus, with these
changes correlating with pain relief (52). Similarly, physical or manual
therapies, such as spinal manipulative therapy (SMT), modulate DMN
regions including the right parahippocampal gyrus, posterior
cingulate cortex, and precuneus, indicating altered intrinsic
connectivity related to pain processing (53). Cognitive Behavioral
Therapy (CBT) engages cognitive control and emotional regulation
networks, with magnetoencephalography studies showing
normalization of activity in the right inferior frontal gyrus and
dorsolateral prefrontal cortex, correlating with pain reduction (54).
Structural MRI further reveals increased gray matter in the
dorsolateral prefrontal and posterior parietal cortices after CBT,
associated with decreased catastrophic thinking (55, 56).

However, among the articles we included, only three
addressed acute pain. Clinically, acupuncture is sometimes used
for acute low back pain in emergency settings of traditional
Chinese medicine clinics, making research challenging due to low
follow-up rates. Conversely, patient compliance is higher for
chronic back pain, resulting in more reliable therapeutic
outcomes in the included articles. Although our meta-analysis
did not demonstrate positive results without grouping, this might
be due to the efficacy of the control group (i.e., open-label
studies, lack of blinding). Such variability in control group
selection may affect meta-analysis results. Nonetheless, the
treatment effectiveness of acupuncture for chronic NSLBP
remains significantly different when compared with healthy
controls in our study, confirming its clinical relevance and
ongoing research importance in traditional Chinese medicine.

4.2 Neuroimaging analysis of acupuncture
for NSLBP

According to our findings, both acute and CNSLBP activate the
right insula following acupuncture, a region crucial for integrating
sensory processing and cognitive regulatory systems (45).
Activation of the insula observed in the acupuncture group was
accompanied by significant reductions in VAS scores, suggesting
that modulation of this key pain-processing region may underlie
acupuncture’s clinically meaningful analgesic effects. Research
suggests that the anterior insula plays a key role in the salience
network, responsible for identifying and filtering salient stimuli,
particularly during exposure to unpleasant stimuli (57).
Acupuncture has been shown to reduce cross-network functional
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connectivity between the insula and the DMN, and this reduction
correlates with the degree of clinical pain alleviation (47). These
findings suggest that right insula activation is critical to
acupuncture’s analgesic effects for both acute and chronic NSLBP.

Beyond the insula, the limbic lobe, located at the cerebral cortex’s
periphery, also plays a significant role in pain processing (58). Regions
such as the amygdala, orbitofrontal cortex, hippocampus, and
cingulate cortex form part of this network (59). The anterior cingulate
cortex (ACC), in particular, is involved in emotion and behavior
regulation (60). Acupuncture somatosensory afference can transmit
tactile information from the spinal cord to the thalamus,
periaqueductal grey, and reticular formation, subsequently affecting
the ACC, insula, and sensory cortices (61). Activation in the ACC,
especially in its dorsal sub-region, has been linked to acute pain
stimulation, suggesting that the ACC’s activation in this study may
correspond to acupuncture’s pain-relieving effects. (1ACC, BA 24)
(62). Therefore, the insula, ACC, and other limbic structures appear
to mediate acupuncture’s analgesic effects in both acute and
chronic NSLBP.

We also summarized and visualized the frequency of brain
regions modulated by acupuncture in acute and chronic LBP. In
ANSLBP, the insula and lentiform nucleu, followed by the thalamus,
caudate, and hippocampus areas are associated with pain
perception, emotional processing, and pain-related memory (63,
64). In CNSLBP, the middle frontal gyrus, precentral gyrus,
followed by the parahippocampal gyrus, anterior cingulate cortex,
superior parietal lobule, and inferior parietal lobule are more
closely related to motor planning (65), execution (66), emotional
regulation, attention control, and the persistence of chronic pain.
Therefore, acute low back pain is more associated with nociceptive
processing and emotion/memory circuits (insula-basal ganglia—
limbic system), whereas chronic low back pain is more related to
and motor control networks

higher-order  cognitive

(frontal-parietal).

4.3 Analysis of the current neuroimaging
results in the control group

The activated brain regions in the acupuncture group were primarily
located in the bilateral limbic lobe and right inferior lobe, while the
control group for ANSLBP primarily exhibited changes in the limbic
system, basal ganglia, and thalamus (39, 40, 42). In contrast, the control
group for CNSLBP showed a wider range of activation, including the
frontal, temporal, sub-lobar, and occipital lobes (8, 41, 43-46). The lack of
blinding in the control group, combined with open-label placebos, likely
amplified this reward effect and further alleviated pain (67). These
regions, particularly in the somatosensory cortex and pain conduction
system, are crucial components of the central nervous system that regulate
pain (68-70). Interestingly, despite the lack of a correlation analysis
between ANSLBP and CNSLBP after sham acupuncture, there appears to
be a similar modulation pattern in the limbic system across both
conditions. This observation suggests that the limbic system may play a
significant role in alleviating NSLBP. Comprising cortical and subcortical
structures such as the prefrontal cortex (PFC), cingulate gyrus,
hippocampus, and amygdala, the limbic system integrates sensory input
from the environment to regulate emotional, autonomic, motor, and
cognitive responses essential for survival (71-74). Previous research
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highlights the involvement of the reward system in acupuncture’s effects
(75-77), particularly the PEC’s role in self-regulation and pain relief (78,
79). Taken together, the sensory stimuli received by the control group may
convey positive reinforcement through the limbic system, particularly the
PFC, contributing to pain reduction.

Our findings and previous literature indicate that sham
acupuncture often induces neural activations in brain regions
associated with attention, expectation, and pain modulation, reflecting
placebo-related and nonspecific neural responses rather than
acupuncture-specific effects (25, 80). This overlap complicates the
interpretation of neuroimaging results and underscores the necessity
of cautious attribution of brain activity solely to acupuncture. Future
studies should further delineate these mechanisms to improve the
specificity of acupuncture-related neurobiological findings.

4.4 Advantages and limitations

Neuroimaging results on the effects of acupuncture on NSLBP
have been elusive, particularly due to the varied causes of the condition
and differences in pain types (81). The duration of NSLBP may also
significantly affect experimental outcomes, adding complexity to
studies. Besides, Variability in acupuncture protocols (e.g., needle
retention: 15-36 min; point selection) may confound neuroimaging
effects. Future trials should adhere to the standards for reporting
interventions in clinical trials of acupuncture guidelines. Additionally,
the definition of chronic pain remains unclear (82, 83), which may lead
to inaccuracies in clinical diagnosis and complicate research on brain
function changes associated with chronic pain. One limitation of
earlier studies is their failure to differentiate between acute and chronic
NSLBP (84). Furthermore, pooling data from studies with different
designs in meta-analyses can introduce heterogeneity and bias (85). In
addition, the limited number of included studies in certain subgroup
analyses (e.g., only three ANSLBP studies) restricts the statistical power
of our findings, which should be considered when interpreting the
results. Accordingly, further research with larger sample sizes is needed
to yield more robust evidence. Besides, most included studies were
rated as “very low” quality according to the GRADE approach, which
weakens the strength of our conclusions. Future fMRI research on
acupuncture should focus on methodological enhancements, such as
rigorous randomization, appropriate blinding, and adequate sample
size calculation, to improve evidence reliability. Despite the low quality
of the study design, all MRI scans were conducted using 3 T machines,
guaranteeing reliable imaging findings. Our study, however, addresses
these limitations by distinguishing between acute and chronic NSLBP,
allowing for a clearer comparison of acupuncture’s effects on brain
function changes. This distinction helps resolve inconsistencies in prior
research. Our pooled results offer a comprehensive overview of the
post-acupuncture effects on clinical outcomes and brain activation in
patients with NSLBP, providing valuable insights for both clinicians
and researchers (85).

5 Conclusion

Acupuncture has shown considerable clinical efficacy in
alleviating pain for patients with NSLBP, with key brain regions
such as the sub-lobar insula and medial frontal gyrus playing a
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crucial role in the analgesic mechanism for both acute and
chronic conditions. In our study on acupuncture treatment for
ANSLBP, we identified four clusters of positive activation (right
sub-lobar insula, inferior parietal lobule, MFG, and cingulate
gyrus) and seven clusters of negative activation (left sub-lobar
insula, cingulate gyrus, pulvinar of the thalamus, superior frontal
gyrus, right parahippocampal gyrus, MFG, and angular gyrus).
In contrast, during our research on CNSLBP, we discovered two
clusters of positive activation (right and left sub-lobar insula) and
two clusters of negative activation (left precentral gyrus and right
MFG). Subgroup analyses revealed different neuroimaging
outcomes based on duration. Despite these findings, the quality
of evidence and strength of recommendations were rated “very
low” by the GRADE approach, highlighting the need for
methodological improvements in fMRI studies on acupuncture
for NSLBP.
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Introduction: Although genome-wide association studies (GWAS) have
identified multiple genetic loci linked to intervertebral disc disorder (IDD), their
functional characterization remains largely unelucidated. We aim to leverage
an integrative analytical pipeline to identify novel IDD risk genes from genetic
associations and experimentally validate their functional roles.

Methods: We integrated transcriptome-wide association studies (TWAS),
proteome-wide association studies (PWAS), expression and protein quantitative
trait loci (eQTL and pQTL) colocalization analyses to identify potential
causal genes for IDD. Enrichment analysis, expression profiling, protein-
protein interaction (PPI) network construction, and druggability evaluation were
also performed for the prioritized causal candidates. Subsequently, human
intervertebral disc (IVD) tissues spanning degeneration grades and an in vivo
mouse IDD model were employed to functionally characterize candidate risk
genes.

Results: Integrative analysis of TWAS and PWAS with colocalization studies
identified 104 genes and 10 proteins exhibiting causal associations with IDD.
The identified genes/proteins were enriched in extracellular matrix organization,
cellular senescence and collagen formation. Crucially, TMEM190, CILP2, and
FOXO3 were demonstrated consistent evidence across TWAS, two independent
PWAS datasets, and corresponding colocalization analyses, with CILP2 emerging
as a potentially druggable target. Differential expression analysis revealed
significant upregulated TMEM190 and CILP2, along with downregulated FOXO3
during IVD degeneration. These results were subsequently confirmed at protein
levels in clinical specimens. Mouse model experiments further established that
down-regulation of CILP2 alleviated IDD progression.
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Discussion: Collectively, this work provides an updated compendium of putative
IDD risk genes and delineates pathogenic roles for TMEM190, CILP2, and FOXO3,
providing a broad hint for further research on novel mechanism and therapeutic

targets for IDD.

KEYWORDS

intervertebral disc disorder, transcriptome-wide association study, proteome-wide
association study, genome-wide association study, validation study

Introduction

Intervertebral disc disorder (IDD) represents a primary
etiology of low back pain (1). Both genetic predispositions
and environmental risk factors involved in its pathogenesis
(2-5).
on symptomatic management with NSAIDs and surgical

Currently, the treatment of IDD primarily relies
interventions for more severe cases. However, symptomatic
treatments fail to address underlying disease mechanisms, while
surgery entails significant costs, potential complications, and
surgical morbidity (6). Therefore, identifying causative genes
and developing targeted therapeutic strategies is imperative
for IDD management.

Recent GWAS have identified multiple loci associated with
IDD, predominantly within non-coding genomic regions (7, 8).
These regions exhibit complex regulatory mechanisms and linkage
disequilibrium, complicating the identification of underlying causal
genes. TWAS coupled with eQTL colocalization address this
limitation by linking non-coding disease-associated variants to
transcriptional changes. In a TWAS study, genetic predictors of
gene expression, specifically cis-eQTLs regulating nearby genes, are
identified in reference populations, such as the Genotype-Tissue
Expression (GTEx) project. These genetic predictors subsequently
impute transcriptomic profiles in GWAS cohorts to identify
gene expression levels and disease traits (9). eQTL colocalization
analyses determine whether shared causal variants gene expression
and disease risk share the same causal variants underlie both gene
expression and disease risk, strengthening causal inference for
candidate genes (10). While IDD-specific TWAS study remains
scarce due to the limited large-scale human transcriptomic
datasets of disc tissues, GTEx demonstrates substantial eQTLs
conservation across tissues (11, 12). Thus, regulatory variants
identified in non-disc tissues may still modulate disc biology and
IDD susceptibility.

Complementary to TWAS, PWAS utilizes pQTL data to
identify protein-level associations with diseases, providing
enhanced mechanistic insight. Recently, large-scale human plasma
proteome datasets, including those from the ARIC study and
Iceland Biobank, have enabled robust pQTL derivation, facilitating
practical PWAS implementation (13). Plasma proteins, which serve
as key druggable targets and biomarkers for complex traits, can
reflect systemic pathological changes associated with IDD. While
PWAS has been applied to other diseases (14-16), its application to
IDD remains unexplored. Future integration of PWAS with TWAS
and eQTL/pQTL colocalization will enable the identification of
disease-causing genes with higher precision, while minimizing
confounding effects from horizontal pleiotropy. This multimodal
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approach will elucidate IDD molecular mechanisms and accelerate
development of targeted therapeutics.

This study aimed to identify and validate potential causal
genes associated with IDD by integrating multi-omics analyses
with experimental approaches. We performed both TWAS and
PWAS to uncover novel genes implicated in the pathogenesis
of IDD (Figure 1). Colocalization analyses were performed to
establish potential causal relationships between these genes and
IDD risk. The expression patterns of the prioritized genes
in human degenerated intervertebral discs were also assessed.
Furthermore, enrichment analysis was conducted to identify key
pathways and biological terms associated with IDD. Additionally,
we explored protein-protein interactions among the candidates
and evaluated their druggability. Finally, experimental validation of
top-prioritized genes (TMEM190, CILP2, FOXO3) was conducted
using clinical specimens and animal model.

Materials and methods

IDD GWAS summary data sources

The GWAS data were obtained from meta-analyses of data
from several large cohorts, including deCODE Genetics from
Iceland, the Danish Blood Donor Study, the Copenhagen Hospital
Biobank, and the UK Biobank (7). Participants provided blood or
buccal samples with informed consent, permitting the use of their
samples and data in deCODE Genetics and the UK Biobank dataset
were included. Each dataset was assumed to share a common odds
ratio (OR), while allowing for different population frequencies of
alleles and genotypes. Variants with imputation information scores
below 0.8 were excluded from the analyses. The GWAS summary
data used in our analysis come from the worldcome y data used
in These analyses included 58,854 IDD cases and 922,958 controls,
with the participants being of European descent. A total of 53.5
million sequence variants were included in the GWAS analysis.

Transcriptomic data from multiple
human tissues

The eQTL data were obtained from GTEx Version 8 (49
tissues) (11). GTEx provides extensive data on the relationship
between genetic variation and gene expression, sourced from 838
postmortem donors, and 15,201 RNA-sequencing samples were
included, primarily of European descent.
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FIGURE 1

Overview of the study. This schematic illustrates the multistep approach employed to identify potential genes associated with IDD. First, TWAS and
eQTL analyses were conducted to identify potential risk genes. Second, two independent PWAS and pQTL analyses were performed to identify
potential causal proteins of IDD. Third, enrichment analyses were conducted to elucidate the functions of these potential causal genes/proteins.
Fourth, data from the GEO were analyzed to identify differentially expressed potential causal genes. Additionally, PPl analyses were performed to
explore interactions among the identified genes. Furthermore, the druggability of the potential causal genes and available drugs that target these
genes were explored. Finally, validation studies were performed with clinical samples and an animal model.

Human protein abundance references in
discovery proteome-wide association
studies

The pQTL datasets incorporated in this study were derived
from two large-scale investigations: the ARIC study, which
includes data on 4,423 proteins from 7,213 individuals
(13), and deCODE Genetics, which encompasses 4,428
proteins from 35,559 individuals (17), both primarily of
European descent.

Human intervertebral disc degeneration
microarray datasets

disc

Human tissue expression microarray
datasets were obtained retrospectively from the GEO
(GSE56081: n = 10, with five degenerative and five

normal samples).
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Transcriptome-wide association studies

We performed TWAS analysis by integrating genome-wide
summary statistics from an IDD GWAS with eQTL data from
GTEx Version 8 across 49 tissue types as descripted before
(18). To ensure consistency between datasets, we harmonized the
IDD GWAS single nucleotide polymorphisms (SNPs) with the
GTEx reference data, aligning SNP reference alleles, effect alleles,
and associated metadata. Single-tissue TWAS was conducted for
all tissues via SPrediXcan, followed by cross-tissue analysis via
S-MultiXcan. S-MultiX can, which is based on a multitissue
integration approach, allows for the combination of gene
expression data across tissues, enhancing statistical power and
enabling the identification of candidate susceptibility genes. We
utilized default parameters for the software, with the exception

«

of adjusting the “—cutoff_condition_number” parameter to 30.
Only protein-coding genes were considered in the analysis, and
significance was determined via a false discovery rate (FDR)

threshold of p < 0.05.
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FastENLOC colocalization

FastENLOC colocalization tool was used to strengthen the
causal inferences drawn from our TWAS findings (19). Briefly,
we computed posterior inclusion probability (PIP) values from
IDD GWAS data via the torus tool, which quantifies the
likelihood of each SNP’s association with IDD. These PIPs
were then input into fastENLOC, which performs colocalization
analysis by integrating GWAS PIP values with precomputed
GTEx multitissue eQTL annotations. Colocalization was performed
for each tissue, producing gene-level colocalization probabilities
(GLCPs), indicating the likelihood that a given variant influences
both IDD GWAS and gene expression in each tissue. The
results across all the tissues were then merged, and for each
gene, the maximum GLCP value was retained to identify the
tissue with the strongest colocalization signal. Genes with a
maximum GLCP > 0.5 were considered to have significant
evidence of colocalization.

Proteome-wide association studies

BLISS method was used for PWAS analysis (20). Traditional
PWAS approaches rely on individual-level proteomic data,
which restricts the use of extensive summary-level pQTL
datasets available in public repositories. The BLISS method
enables the utilization of large-scale summary-level datasets for
more efficient proteomic association analysis by constructing
protein imputation models directly from summary-level
pQTL data. In this study, we performed PWAS analyses via
summary-level pQTL data from two large-scale cohorts: the
ARIC study and deCODE Genetics. These datasets include
over 4,000 proteins, facilitating a comprehensive analysis
of protein-trait associations in the context of IDD. For
discovery purposes, proteins with a nominal p < 0.05 were

considered significant.

Bayesian colocalization analysis

We also performed Bayesian colocalization analyses via the
coloc R package to investigate whether the identified associations
between plasma proteins and IDD share the same causal variants
rather than being affected by linkage disequilibrium (21). The
Bayesian colocalization method evaluated evidence for five distinct
hypotheses at each locus: (1) no association with either trait,
(2) association with trait 1 only, (3) association with trait 2
only, (4) both traits are associated, but each has distinct causal
variants, and (5) both traits share a common causal variant
(22). Posterior probabilities for each hypothesis (HO, H1, H2,
H3, and H4) were calculated as part of the analysis. Initial
prior probabilities were assigned as follows: a SNP exclusively
associated with trait 1 (pl) had a probability of 1 x 10—4, a
SNP exclusively associated with trait 2 (p2) had a probability
of 1 x 10—4, and a SNP shared by both traits (p12) had a
probability of 1 x 10—5 (23). A posterior probability of H4
(PPH4) > 0.5 was considered evidence of a shared causal variant
between the two traits.
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Enrichment analysis of significant
findings

To further investigate the biological role of the identified
genes, we performed enrichment analysis via Gene Ontology
(GO) categories [encompassing biological processes (BPs),
molecular functions (MFs), and cellular components (CCs)],
Kyoto Encyclopedia Genes and Genomes (KEGGs) pathways, and
Reactome pathways (24, 25). The analysis was performed via the
clusterProfiler and Reactome PA R packages. Significant genes or
proteins were defined as those with a p < 0.05. The background set
for the enrichment analysis consisted of all genes or proteins tested
in the study, representing the total gene/protein pool from which
the significant findings were derived. The ggplot2 R package was
used for visualization.

Annotation of prioritized genes/proteins

The genes/proteins prioritized through TWAS, PWAS,
and colocalization were further annotated by evaluating their
expression levels in degenerative disc tissues and constructing
gene coexpression networks. First, we obtained human disc
tissue expression microarray datasets from the GEO (GSE56081:
n = 10, with five degenerative and five normal samples).! After
normalization of the expression matrix, differential expression
analysis was performed via the ImFit() and eBayes() functions
from the limma package (26). Gene coexpression networks were
subsequently constructed to further explore the relationships
among the prioritized risk genes, including TMEM 190, CILP2, and
FOXO3 (15). Briefly, the gene expression matrix of IVD was used
to perform correlation analysis between each risk gene and all other
genes. The genes were then ranked on the basis of their correlation
indices. These correlation coefficients were then used for gene set
enrichment analysis (GSEA) with pathway data from Reactome,
which was performed via the clusterProfiler package and visualized
via the Ridgeplot R package. This approach highlighted significant
biological functions and pathways associated with each prioritized
gene. Significant enrichment was determined on the basis of an
adjusted p < 0.05, a normalized enrichment score (|NES|) > 1, and
an FDR < 0.25.

PPl analysis

To investigate potential causal genes implicated in IDD, we
employed the STRING database to perform extensive network
analysis. The 88 proteins associated with IDD in both TWAS and
PWAS were analyzed (Supplementary Data 1). We only reserved
connections with an interaction score greater than 0.4.

Analysis of druggable genes and known
drugs

To explore the druggability of potential causal genes of IDD, we
conducted druggable gene and known drug analyses. A previous

1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc

frontiersin.org


https://doi.org/10.3389/fmed.2025.1698050
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Zhang et al.

study categorized druggable genes into three tiers (27). We
categorized the genes identified via TWAS and eQTL colocalization
analyses, as well as genes identified via PWAS (ARIC and deCODE)
and pQTL colocalization analyses, and further searched for updated
information on the drugs targeting the identified putative causal
proteins in the Open Target Platform,? which is a comprehensive
tool that promotes drug target identification via the integration of
multiple databases.

Human IVD tissue collection

IVD tissue samples were collected from 6 patients undergoing
spinal fusion surgery with the ethics approval of the Affiliated
Hospital of Xuzhou Medical University (XYFY2023-KL337-01).
The IDD cases were classified according to Pfirrmann’s method
(28). Samples falling within the I-II classification were labeled
as controls, while falling within the III-V classification were
designated as severe IDD samples (29). Patient information is
provided in Supplementary Table 1. Informed consent was obtained
from all patients.

Western blot analysis

Total protein was extracted from IVD using a complete
cell lysis buffer and quantified with the BCA protein assay kit
(Beyotime, China). Protein samples were separated via sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred onto 0.2 wm PVDF membranes (Sigma-Aldrich,
United States). The membranes were blocked with a 5% skim
milk solution at room temperature and then incubated overnight
at 4°C with primary antibodies specific to TMEM190 (1:500;
Invitrogen, PA5-70986), CILP2 (1:500; Proteintech, 11813-1-AP),
and FOXO3 (1:1,000; Biotime Biotechnology, AF609-1). Following
three washes with Tris-buffered saline containing Tween 20
(TBST), the membranes were treated with secondary antibodies
at room temperature. Immunoblotting was detected using the
UVP ChemiDoc-It Imaging System (UVP, CA, United States) with
an enhanced chemiluminescence detection kit (Thermo Fisher;
34,580) applied to the membranes. B-actin served as the loading
control, and each blot was analyzed for integrated density using
Image] software.

Animal experiments

All experiments were reviewed and approved by the committee
of the Institutional Animal Care and Use Committee at Nanjing
Drum Tower Hospital (approval number: DWSY-25005637). The
methods were described as before (30). Briefly, after anesthesia, 31-
G needle was poked into the 8-week-old male C57BL/6 IVD at 90°
vertically, rotated 360° and held for 1 min. Sham operation was also
performed. These operations were performed on coccygeal IVD.
Immediately after the puncture, 2 ul shRNA targeted Cilp2 gene
or negative control encapsulated with the GV112 vector (Shanghai

2 https://platform.opentargets.org/
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Genechem Co., Ltd.) were injected into the IVD. Four weeks after
acupuncture and shRNA injection, the caudal IVD of mice were
examined by MRI. Degeneration grade of mice IVD was calculated
as described before (28). IVD tissues were then collected for the test
of Cilp2 protein levels and histological staining.

Histological staining and analysis

The IVD a 4%
paraformaldehyde solution (Solarbio, China) for 48 h to preserve
its morphology. It was then decalcified in a 10% EDTA solution
(pH 7.2-7.4) for 2 weeks, with daily changes of the solution. The
tissue underwent dehydration through a series of graded ethanol

harvested tissue was immersed in

baths and was subsequently cleared using an environmentally
friendly clearing agent (Solarbio, China). After clearing, the tissue
was embedded in paraffin wax and sectioned into 5 pm-thick
slices using a microtome. Hematoxylin and Eosin (H & E) staining
were applied according to the instructions (Solarbio, China)
to observe the histological morphology of the IVD. Finally,
histological scoring of the H & E samples was conducted following
methodologies described before (31). Simply, the stained results
were evaluated from two perspectives, including annulus fibrosus
and nucleus pulposus. Each category was assigned a score ranging
from 0 to 3, yielding a cumulative score between 0 and 6. Higher
scoring levels indicated greater degrees of degeneration.

Statistical analyses

A chi-square test was conducted to assess the difference in the
number of colocalizing genes between IDD-associated and non-
associated genes identified by the TWAS. Furthermore, two-tailed
t-test or one-way ANOVA test were employed to assess: differential
expression of TMEM190, CILP2, and FOXO3 in degenerative
compared to non-degenerative IVD using GEO dataset, protein
levels of these genes in clinical and animal specimens, and
degeneration grade, as well as H & E scores in a murine IDD
model. Statistical significance (p < 0.05) is denoted by asterisks
(*) in figures.

Results

Identification of genes associated with
IDD by TWAS

As shown in the pipeline (Figure 1), we initiated our analysis by
performing a cross-tissue TWAS based on data from reference gene
expression predictions from GTEx and the largest intervertebral
disc disorder GWAS conducted to date. TWAS analysis of 17,342
protein-coding genes identified 556 significantly IDD-associated
genes (FDR-adjusted p < 0.05). The top 10 genes most strongly
correlated with IDD were CHST3, SOX5, SPOCK2, SMADS3,
FGFR3, C6orf106, GFPT1, TWIST1, ASCCI, IGFBP3 (Figure 2 and
Supplementary Data 2). Among the 556 genes, 20 genes, including
SMAD3, mapped to nearest genes at the previously reported
GWAS susceptibility loci. Our analysis also suggested the novel
associations of the remaining 536 genes with IDD risk.
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FIGURE 2

Manhattan plot illustrating TWAS gene associations. Each dot represents a gene plotted according to its genomic position (x-axis) and the
significance of the association, measured as the —log;o(FDR-adjusted p-value) (y-axis). Highlighted points with corresponding gene labels indicate
genes meeting stringent colocalization criteria: FDR-adjusted p < 0.05 and colocalization max-GLCP > 0.5. The color of the highlighted points
indicates the directionality of the genetic effect: red represents positive z-mean values (z-mean > 0) and blue for negative z-mean values

(z-mean < 0).

We then conducted enrichment analysis of the significant
findings using the KEGG, Reactome, and GO databases. Notably,
the top enriched pathways of TWAS included extracellular
matrix organization, cellular senescence, and skeletal system
and connective tissue development, all of which established
mechanisms in IDD pathogenesis. Other prominent enriched
terms included calcineurin activates NFAT, glycosphingolipid
biosynthesis, aspartate and asparagine metabolism, cartilage
development, response to transforming growth factor-
beta, chondrocyte differentiation, regulation of lipid kinase
activity, and signal transduction pathways (Figures 3A, B and

Supplementary Figure 1).

Colocalization between IDD risk loci and
eQTLs

To determine whether TWAS-identified associations with
IDD are driven by shared causal variants, we performed
eQTL colocalization analysis using fastENLOC across 49 GTEx
tissues for all protein-coding genes. This analysis identified 146
genes with strong colocalization evidence (max-GLCP > 0.5),
among which 104 genes were TWAS- prioritized (Figure 2
and Supplementary Data 3, 4). TWAS-prioritized genes showed
significant enrichment for colocalization signals compared to a
matched background set (X2 = 2195.6, fold-enrichment = 91.7,
p <0.001) (Supplementary Table 2), highlighting the specificity and
robustness of our findings.

Identification of plasma proteins
associated with IDD by PWAS

To identify proteins potentially associated with IDD for further
validation, we conducted two independent PWAS by integrating
GWAS summary statistics with human plasma proteomic data
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from the ARIC consortium and deCODE Genetics. The ARIC-
based PWAS identified 494 significant associations, and the
deCODE-based PWAS yielded 523 associations (Figures 4A, B;
Supplementary Data 5, 6) (p < 0.05). Among these, 153 proteins
were consistently associated with IDD across both datasets
(Supplementary Data 7). Among them, six proteins, TMEM190,
CILP2, FOXO3, SPON2, GALNT3, and NUF1, were additionally
supported by TWAS and eQTL colocalization analyses, further
reinforcing their relevance to IDD.

For the PWAS results from the ARIC cohort, the most
significant pathways were collagen formation, extracellular matrix
organization, and glycosphingolipid/sphingolipid metabolism
(Figures 3C, D and Supplementary Figure 2). Similarly, the
deCODE PWAS analysis revealed glycosphingolipid/sphingolipid
metabolism, regulation of actin cytoskeleton, extra-nuclear
estrogen signaling, and signaling pathways associated with
GPERI, NOTCHI, PI3K-Akt, and Hedgehog (Figures 3E, F and
Supplementary Figure 3). The high degree of consistency between
the TWAS and PWAS results across both datasets confirms the
robustness of these findings.

Colocalization between IDD risk loci and
pQTLs

To provide causal evidence for IDD-associated proteins, we
performed pQTL colocalization analyses. In the ARIC dataset,
26 proteins demonstrated strong colocalization signals with IDD
risk loci (PPH4 > 0.5; Supplementary Data 8). Among these,
22 proteins were also significantly associated with IDD in the
PWAS (Figure 4A; Supplementary Data 9). In the deCODE dataset,
PQTL colocalization identified 24 significant proteins (PPH4 > 0.5;
Supplementary Data 10), of which 16 proteins showed consistent
PWAS associations with IDD (Figure 4B; Supplementary Data
11). Totally, 10 proteins were identified as causal proteins via
ARIC based and deCODE based PWAS and their respective
colocalization analyses (Supplementary Data 12). Among these,
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FIGURE 3
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genes analyzed.

TMEM190, CILP2, and FOXO3 were also supported by TWAS and
eQTL colocalization analysis.

Collectively, TMEM190, CILP2, and FOXO3 emerged as
proteins with strong causal evidence for IDD, supported across
multiple omics layers including TWAS, two independent PWAS
datasets, and both eQTL and pQTL colocalizations (Table 1).

Evaluation of the expression levels of
genes/proteins identified by TWAS/PWAS

To (DEGs)
degenerative intervertebral discs, we analyzed mRNA expression

identify differentially expressed genes in
profiles from human disc tissues using the microarray dataset
GSE56081. Analysis of the GSE56081 dataset encompassing 13,170
genes captured 537 (96.6%), 395 (80.0%), and 404 (77.2%) of
IDD-associated genes/proteins identified by TWAS, ARIC based,
and deCODE based PWAS, respectively. Among these genes, 2,877
were significantly upregulated and 3,140 were downregulated
in degenerated discs (Figure 5A; Supplementary Data 13). We
observed 189 genes overlapped with TWAS-prioritized candidates

(Supplementary Data 14) and 53 overlapped with proteins
identified in both PWAS analyses (Supplementary Data 15).

In particular, all three genes (TMEM190, CILP2, and FOXO3)
priorized by multiple-omics analyses were found to be significantly
differentially expressed in degenerative intervertebral discs
(p < 0.05) (Figures 5A, B and Table 1). Specifically, TMEM1I190
and CILP2 were upregulated in IDD samples, whereas FOXO3 was
downregulated compared to the control group. Notably, CILP2
showed the most pronounced change, exhibiting a 1.5-fold increase
in expression in degenerated discs relative to controls.

Functional annotation of TMEM190,
CILP2, and FOXO3

The three potential causal genes were analyzed within the
framework of GSEA to investigate their functions by coexpression
analysis (Figure 5C). The GSEA results revealed that all of the
three genes involved in the expression and translation of olfactory
receptors, sensory perception and SRP-dependent cotranslational
protein targeting to the membrane pathways.

TABLE1 Summary of three potential causal genes of IDD indicated by TWAS, PWAS and colocalization analyses.

Discovery of TWAS | Validation of PWAS (ARIC) |Validation of PWAS (deCODE)
Max-GLCP| FDRp P-value PPH4 P-value Expression
TMEM190 19 0.93 1.83 x 107° 0.99 3.00 x 107° 0.99 3.74 x 107° Up-regulated
CILP2 19 0.69 8.62 x 107* 0.92 9.00 x 107* 0.70 1.75 x 107° Up-regulated
FOX03 6 0.87 0.006 0.79 0.002 0.69 0.016 Down-regulated
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Manhattan plot illustrating PWAS protein associations on the basis of ARIC and deCODE data. Manhattan plot for the ARIC based (A) and deCODE
based (B) PWAS of IDD. Each dot represents a protein plotted according to its genomic position (x-axis), and the significance of the association was
measured as the —logjo(p-value) (y-axis). Highlighted points and their protein labels indicate proteins meeting stringent colocalization criteria:
p < 0.05 and colocalization PPH4 > 0.5. The color of the highlighted points indicates the directionality of the genetic effect: red for positive beta
values (beta > 0) and blue for negative beta values (beta < 0).

To elucidate the interactions among the candidate genes
associated with IDD (TMEM190, CILP2, and FOXO3), we
performed PPI analysis involving 88 proteins associated with
IDD identified in TWAS and PWAS (Supplementary Data 1).
There were 27 genes whose connections had interaction scores
greater than 0.4. Notably, TMEM190 did not interact with either
CILP2 or FOXO3. Although no direct interactions were observed
between CILP2 and FOXO3, several core proteins—SMAD3,
COMP, IGFBP3, IGFIR, COL10A1, RUNX3, and PTK2—were
identified as mediators of the interaction between CILP2 and
FOXO3 (Figure 6).

Druggability of the identified genes and
proteins

Among the genes identified through TWAS and eQTL analyses,
33 protein-coding genes were classified within the druggable
genome: including 16 in tier 1, 8 in tier 2, and 9 in tier 3
(Supplementary Data 16). By searching the Open Target Platform,
we identified several approved or investigational drugs targeting
risk genes indicated by TWAS and eQTL analyses, including
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FGFR3, TGFA, CD79B, PDE3A, NQO1, AGER, ITGA2, CDK4,
COL27A1, and PTK2 (Supplementary Data 17). Additionally,
of the proteins identified through PWAS and pQTL analyses
via ARIC or deCODE, 14 protein-coding genes were classified
within the druggable genome: including 4 in tier 1 and 10 in
tier 3 (Supplementary Data 18). We further identified several
approved or investigational drugs targeting risk genes of IDD
indicated by PWAS and pQTL analyses, namely PLG and PTHLH
(Supplementary Data 19). Among the three potential causal genes,
only CILP2 was druggable, while TMEM190 and FOXO3 were not
in the druggable genome.

Validation studies for potential causal
genes of IDD with clinical samples and
animal model

To explore the roles of TMEM190, CILP2, and FOXO3 in IDD,
we assessed their expression in human IVD specimens from mild
degeneration (Grades I and II) and severe degeneration (Grades
IIL, IV, and V). Western blot results showed increased expression
of TMEM190 and CILP2 with concurrent decreased expression
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of FOXO3 in severely degenerated IVD tissues (Figures 7A, B),
aligning with findings in DEGs analysis.

Given the combined evidence supporting CILP2, and its
classification as a druggable target, we further investigated its
role in IDD using a needle-induced IVD degeneration mouse
model. As shown in Figures 8A, B, the protein level of CILP2
in the IVD was up-regulated after puncture treatment. However,
this level decreased significantly following shRNA transfection.
MRI examinations revealed that the grade score of the IVD was
significantly increased after puncture treatment, while it decreased
markedly with CILP2 knockdown (KD) (Figures 8C,D). H &
E staining showed the degenerated progression was alleviated
following the down-regulation of CILP2 (Figures 8E, F). These
results suggest that down-regulation of CILP2 reduces the
susceptibility to intervertebral disc degeneration progression in the
mouse model of IDD.

Discussion

To the best of our knowledge, this study is the first to employ
multidimensional multi-omics data, including high-throughput
genomics, whole-body transcriptomics, plasma proteomics and
intervertebral disc transcriptomics, to investigate potential risk
genes for IDD. Our integrative approach presented 104 TWAS-
identified genes and 10 PWAS-identified proteins with IDD based

10.3389/fmed.2025.1698050

on converging evidence supported by eQTL/pQTL colocalization
analyses. These genes/proteins were enriched for key regulators
of disc pathology, such as glycosphingolipid/sphingolipid
metabolism. Three potential causal genes, TMEM190, CILP2, and
FOXO3, were consistently supported by TWAS, two independent
PWAS and colocalization analyses. These three genes were
dysregulated in degenerated human discs, with CILP2 further
classified as druggable. We also validated the role of these causal
genes, TMEM190, CILP2 and FOXO3 with clinical samples, as well
as the role of CILP2 with animal model in IDD.
Glycosphingolipid/sphingolipid =~ metabolism  consistently
emerged as a key pathway across all enrichment analyses of the
identified associations. Both the TWAS and the PWAS results from
the ARIC and deCODE cohorts strongly highlight this pathway as a
critical factor in the pathogenesis of IDD. Sphingolipids, including
ceramide and sphingosine-1-phosphate, constitute a major class
of lipids found in all eukaryotic cells. Sphingolipids regulate
a wide range of biological processes, including inflammation,
mitochondrial function and apoptosis (32-34). The metabolic
processes involved in sphingolipid biosynthesis and regulation
were significantly enriched, underscoring their potential role in
IDD. This pathway’s involvement in inflammation and apoptosis
suggests that targeting sphingolipids synthesis could serve as a
promising therapeutic strategy to alleviate disc disorders and

associated pain.
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Among the identified genes (TMEM190, CILP2, and FOXO3),  family, is known to regulate critical cellular processes, including
FOXO3 has been previously investigated in the context of IDD.  the cell cycle, apoptosis, and metabolism, and is implicated in
FOXO3, a member of the forkhead box O transcription factor  age-related diseases (35, 36). FOXO3 has been linked to IDD in
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numerous studies, where it functions as a mediator regulating
the role of specific genes in the disease, such as YTHDF2 and
P300 (37, 38). Furthermore, FOXO3 is involved in the molecular
mechanisms of potential therapeutic agents for IDD, such as stem
cell-derived exosomes and procyanidin C1, primarily by regulating
oxidative stress (39, 40), which reinforces the potential of FOXO3
as therapeutic interventions for this condition. The current study
found that FOXO3 was down-regulated in severely degenerated
disc tissues, which aligns with previous findings (38, 41). Our study
provides additional evidence for dysregulated FOXO3 expression
in IDD. However, the contribution of FOXO3 to IDD still requires
further exploration.

The roles of the other two identified genes, TMEMI90 and
CILP2, in IDD are less well characterized. TMEM190 is located
on chromosome 7 and contains five exons, which encode a
small single-pass transmembrane protein (42). Small single-pass
transmembrane proteins may be associated with mitochondrial
oxidative phosphorylation (43), which has been linked to
IDD. Additionally, TMEM190 may contribute to chondrocyte
dedifferentiation (44). Given that cartilage endplate remodeling
and altered chondrocyte subsets play key roles in IDD progression
(45, 46), TMEM190 may involve in IDD pathogenesis. CILP2, a
member of the cartilage intermediate layer protein family, encodes
a matricellular protein predominantly expressed in cartilage cells
but also in various other tissues (47). Quantitative proteomic
analysis and immunohistochemistry have demonstrated increased
CILP2 levels in degenerated human intervertebral discs (48, 49).
In current study, we found CILP2 was up-regulated in severe
IDD tissues, which provides additional evidence that CILP2 play
a role in IDD. Importantly, the inhibition of Cilp2 has been
shown to improve mitochondrial dysfunction in sarcopenia via
the WNT signaling pathway (47). Given the established roles of
mitochondrial dysfunction and WNT signaling in IDD (50, 51),
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CILP2 is likely to play an important role in this condition. In the
current study, we found that down-regulation of CILP2 alleviated
IDD progression in mouse model of IDD. Our results provide
more direct evidence for the role of CILP2 in the progression
of IDD. Our multi-omics investigation and validation study with
clinical samples and animal model offer evidence supporting the
role of CILP2 as a disease-causing gene and therapeutic target
in IDD. However, the functional mechanism of CILP2 in IDD
was not explored in current study. It has been reported that
CILP2 affect sarcopenia and hypertrophic scar by antagonizing
Whnt signaling pathway (47), and reducing the ubiquitination of
ACLY (52), respectively. Further research is warranted to elucidate
the precise role of CILP2 in modulating IDD progression through
these candidate signaling pathways.

While no direct interactions among the three genes
(TMEM190, CILP2 and FOXO3) were reported, GSEA revealed
their collective involvement in the olfactory signaling pathway,
and sensory perception. Notably, olfactory stem cells have been
shown to exhibit a chondrogenic phenotype, promoting IVD
regeneration in a rat model of disc injury (53), which indicates
these three genes collectively contributed to the pathology of
IDD. In addition, pain is a significant symptom of IDD. It has
been reported that anti-sensory nerve transmission significantly
suppresses inflammatory pain markers (54). The involvement of
these three genes in sensory perception indicates that they share
a similar pathway for the contribution of pain to IDD. To further
explore the correlations, we performed a PPI analysis using data
from TWAS and PWAS. Although no direct interactions were
found among the three genes, several mediators of interaction
between CILP2 and FOXO3 were identified, including COMP
and IGFBP3, which have been linked to IDD progression (55, 56).
These findings suggest that CILP2 and FOXO3 may collaboratively
influence IDD through these mediators.
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Our study has several strengths. Primarily, it integrates
both genomic and proteomic data to provide comprehensive
insights into the complex biological systems underlying IDD.
Additionally, the validation of potential causal genes through two
independent PWAS analyses strengthens the reliability of our
findings. Furthermore, the datasets utilized, comprising extensive
human transcriptomes, proteomes, and IDD GWAS data, are
among the largest and most complete to date, enhancing the
robustness of the results. Finally, we validated the risk genes derived
from public datasets using clinical samples and animal model,
which enhances the reliability of our findings.

Some limitations must be acknowledged. First, the PWAS
for IDD utilized human blood proteome data; however, plasma
proteins serve as systemic biomarkers and may not fully capture
disc-specific changes, potentially introducing bias. Future studies
should examine the proteomes specific to human intervertebral
discs. Secondly, the identification of susceptible genes from
a European database, coupled with clinical validation using
specimens from the Chinese population, introduces population
heterogeneity that may limit the generalizability of the findings.
Future cross-ethnic validation studies should be conducted to
assess the robustness of these findings across diverse populations
and ensure their applicability in broader clinical contexts.
Additionally, the mechanisms by which identified risk genes
and the relevance of their enriched pathways contribute to IDD
remain unclear, and additional studies are needed to further
evaluate their potential as therapeutic targets. Besides, only the
mouse tail disc puncture model was employed, which is an
acute injury model and may not adequately replicate the chronic,
progressive nature of human IDD. Also, the current transcriptomic
samples predominantly represent European populations, whereas
the proteomic samples are from American populations, and
expanding the diversity of these datasets may yield more accurate
estimations and broader applicability. Finally, gene-environment
interactions and assortative mating could influence genetic effects
and contribute to variance in the analysis. Unfortunately, due to
the limitations inherent in the current dataset and the scope of the
study design, it is not feasible to adjust for these factors in this
particular analysis. Nevertheless, the strength of our study lies in
its innovative integration of multi-omics data, which positions it
as one of the first efforts to identify and validate novel genetic risk
factors for IDD in such a comprehensive manner.

Conclusion

In summary, we present an expanded resource of putatively
causal genes associated with IDD, and highlight three novel
potential causal genes (TMEMI190, CILP2, and FOXO3). These
findings provided a broad hint for further research on the potential
mechanisms underlying IDD pathogenesis and highlight novel
therapeutic targets for future investigations.
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Lung cancer remains the leading cause of cancer-related deaths globally, with
a 5-years survival rate of only around 20%. Merging cohort and Mendelian-
randomization studies indicate that gut dysbiosis is associated with—though
not yet proven to cause—an elevated risk and worse prognosis of non-
small-cell lung cancer. Lower fecal abundance of butyrate producers such as
Faecalibacterium prausnitzii and expansion of Enterobacteriaceae correlate with
reduced systemic CD8 + T-cell infiltration and shorter progression-free survival
during immune-checkpoint blockade. Antibiotic exposure within 30 days before
anti-PD-1 initiation is consistently linked to diminished objective response
and overall survival in retrospective cohorts, whereas supplementation with
butyrogenic probiotics or fecal microbiota transplantation from responders
restores therapeutic efficacy in pre-clinical models. This review integrates
epidemiological, mechanistic and clinical data to clarify the current evidence,
identify gaps and outline the steps needed to translate gut—lung-axis research
into safe, effective adjunctive therapies for patients with lung cancer.

KEYWORDS

lung cancer, Gut-microbiota-lung Axis, gut microbiota, immunotherapy, short-chain
fatty acids, gut dysbiosis

1 Introduction

Lung cancer remains the leading cause of cancer-related deaths globally, with an
estimated 1.8 million deaths annually. Non-small-cell lung cancer (NSCLC) accounts for
over 85% of cases (1). While recent years have witnessed significant advancements in lung
cancer treatment, such as the emergence of targeted therapies and immune checkpoint
inhibitors, the prognosis for lung cancer patients remains poor, with a global 5-year overall
survival rate of 19.8% (95% CI 19.6-20.0) for all stages combined, ranging from 4.2%
(stage IV) to 68.4% (stage I) in the most recent CONCORD-3 analysis covering 2000-
2014 diagnoses. Regional figures for China (2012-2015) mirror the global estimate at 19.7%
overall (2). For example, the CheckMate-816 trial showed that neoadjuvant nivolumab plus
chemotherapy increased pathological complete response rates, yet the absolute survival
gain was modest (3). Thus, there is an urgent need to explore novel therapeutic strategies
to enhance treatment efficacy and improve patient survival.
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The gut-lung axis denotes bidirectional communication
between intestinal microbiota and pulmonary immunity (4).
Cross-sectional studies report that fecal depletion of butyrate
producers such as Faecalibacterium prausnitzii or enrichment of
Fusobacterium spp. is associated with NSCLC (5, 6). Similarly,
Mendelian-randomization analyses indicate that genetically
predicted lower abundance of Bacteroides and Faecalibacterium
is associated with higher NSCLC risk, mediated by reduced
CD8 + T-cell infiltration (7, 8). Whether these associations
reflect causality or reverse causation is unresolved; nevertheless,
germ-free mice exhibit impaired pulmonary immunity and
accelerated urethane-driven adenocarcinoma (4). Furthermore,
recent advances in microbiome research have provided new
insights into the relationship between the gut microbiota and lung
cancer (9). Studies have shown that the gut microbiota composition
in lung cancer patients differs significantly from that in healthy
individuals. For example, some research has found that the relative
abundance of certain bacterial genera, such as Fusobacterium and
Porphyromonas, is higher in lung cancer patients (5, 6). Moreover,
the gut microbiota can influence the efficacy of lung cancer
treatment. A study demonstrated that patients with a specific gut
microbiota profile had better responses to immune checkpoint
inhibitors (ICIs) and longer progression-free survival (PFS) (10).
Additionally, gut microbiota metabolites, such as short-chain fatty
acids (SCFAs) and bile acids, can affect lung cancer progression by
regulating immune responses and inflammation (11). Collectively,
current evidence supports an association rather than a proven
causal role of gut dysbiosis in lung-cancer initiation or progression.

The Gut-microbiota-lung Axis holds great promise for the
treatment of lung cancer (12). Gut microbiota modulation
through probiotics, prebiotics, and fecal microbiota transplantation
(FMT) has shown potential in regulating immune responses and
improving treatment efficacy in lung cancer patients. For example,
a study found that supplementation with specific probiotics
could enhance the efficacy of immune checkpoint inhibitors (12).
Furthermore, understanding the Gut-microbiota-lung Axis may
help identify novel biomarkers for lung cancer diagnosis and
prognosis. However, there are still some challenges in this field (13).
The mechanisms underlying the Gut-microbiota-lung Axis in lung
cancer are complex and require further exploration. Additionally,
the safety and long-term efficacy of gut microbiota interventions
need to be validated through large-scale clinical trials.

In this review, we aim to comprehensively evaluate the current
evidence on the Gut-microbiota-lung Axis in lung cancer, explore
its potential clinical implications, and identify future research
directions. We will discuss the role of the gut microbiota in lung
cancer development and progression, its impact on treatment
efficacy, and the potential mechanisms involved. We will also
examine the clinical applications of gut microbiota modulation
in lung cancer and the challenges and opportunities in this
field. By bridging basic science and clinical applications, we hope
to provide new perspectives for the prevention, diagnosis, and
treatment of lung cancer.

2 Transparent evidence synthesis

This review is based on a structured literature search of
PubMed (up to 31 March 2025) using the strategy: (lung
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cancer OR non-small cell lung cancer) AND (gut microbiota
OR gut-lung axis OR fecal microbiota) AND (immunotherapy
OR chemotherapy OR prognosis). Inclusion criteria: peer-
reviewed English-language articles (2010-2025) reporting original
human or pre-clinical data on gut microbiota composition,
metabolites or interventions in lung cancer. Exclusion criteria:
conference abstracts, reviews without primary data, studies
lacking lung-cancer-specific outcomes. Because the field is
composed predominantly of observational and single-arm trials,
the risk of publication bias toward positive associations is
acknowledged. Heterogeneity is evident in sequencing platforms
(16S rRNA V3-V4 vs. shotgun metagenomics), DNA extraction
protocols, bioinformatic pipelines (QIIME 2 vs. MOTHUR),
and metabolomic platforms (GC-MS vs. LC-MS/MS), precluding
formal meta-analysis. These limitations are reflected in the use of
qualitative synthesis throughout the manuscript. Prior reviews have
summarized cross-sectional associations between gut dysbiosis and
lung cancer risk (14), the present work extends those observations
by integrating longitudinal intervention data and by explicitly
distinguishing prognostic from predictive microbial signatures.

3 The Gut-microbiota-lung Axis:
physiological and immunological
foundations

Understanding the  physiological and

underpinnings of the Gut-microbiota-lung Axis is essential to

immunological

grasp how these distant organs interact and maintain health (4).
The gut and lungs share a common embryological origin, which
forms the basis for their structural and functional similarities and
the bidirectional communication between them (12) (Figure 1). By
exploring these fundamental aspects, we can better comprehend
the mechanisms through which gut microbiota affects lung cancer
development and progression.

3.1 Anatomical and embryological links

The gut and lungs share a common endodermal origin
during embryonic development, which lays the foundation for
their structural and functional similarities and the bidirectional
communication of the Gut-microbiota-lung Axis (4). Both the
lung, trachea, respiratory epithelium, and gut originate from the
endoderm (12). A study found that hyperactive Wnt signaling in
lung progenitor cells expressing lung-specific genes can induce
the differentiation of lung progenitor cells into gut cell types.
The mucosal immune system, including gut-associated lymphoid
tissue (GALT) and bronchus-associated lymphoid tissue (BALT),
exerts a key role in mediating systemic immunity. Secreted
immunoglobulin A (sIgA) produced by the mucosal immune
system is a common molecular basis of mucosal immunity in
different parts of the body and an important molecular mediator
of the Gut-microbiota-lung Axis (4) (Figure 1). It is involved in
the pathogenesis and progression of lung diseases such as Chronic
obstructive pulmonary disease (COPD), asthma, and idiopathic
pulmonary fibrosis, prevents the spread of pathogens in the body,

frontiersin.org


https://doi.org/10.3389/fmed.2025.1655780
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Liu et al. 10.3389/fmed.2025.1655780
The development process Bronchus-associated
of the embryo lymphoid tissue
.). Secreting
.. immunoglobulin A
“a
\ . L] v ®
q\”' T o %% o
| @ JJ ©
\ k ‘,1
DA T 0 e | e > :)' g
, Gut-associated
t lymphoid tissue
The endoderm of
embryo
Gut and lung share endodermal origin, forming Exerting a key role in mediating systemic
gut-lung axis with bidirectional links. immunity.
FIGURE 1
Anatomical and embryological links of the Gut-microbiota-lung Axis by Figdraw. This figure illustrates the common embryological origin of the gut
and lung tissues and their anatomical features.

and regulates the composition and function of gut microbiota.
The poor outcome of germ-free mice exposed to acute infection
and their susceptibility to allergic airway disease demonstrate
the critical role of the gut microbiota in lung homeostasis and
immunity (4). Researchers have also detected the expression of lung
function protein pulmonary surfactant protein A in the gut tissue of
patients with gut inflammation, further highlighting the similarity
between the lung and gut (15).

3.2 Microbial and metabolic crosstalk

Gut microbiota-derived metabolites, such as SCFAs and bile
acids, play a significant role in pulmonary inflammation. SCFAs,
mainly propionate, acetate, and butyrate, are produced through the
microbial fermentation of indigestible foods in the gastrointestinal
tract (16). They maintain the proper functioning of the intestinal
barrier, regulate glucose and lipid metabolism, alleviate oxidative
stress and inflammation, and are considered main modulators of
gut and lung immunity (17). The gut microbiota is the primary
source of SCFAs influencing immune cells in the lamina propria
and mesenteric lymph nodes (18). These cells then arrive in the
respiratory system through circulation. For example, propionate
produced in mice during a fiber-rich diet stimulates macrophages
and dendritic cell progenitors, which can trigger phagocytosis
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without inducing Th2-mediated allergic airway inflammation (13,
19). SCFAs also affect hematopoietic precursor production in
the bone marrow to maintain lung homeostasis and alleviate
potential airway inflammation (20). In patients with emphysema,
a positive correlation between higher fecal acetate levels and
forced expiratory volume in the first second was observed (20).
Exogenous acetate supplementation reduced alveolar destruction
and pro-inflammatory cytokine production in mouse models of
emphysema (21). In contrast, COPD patients showed a Prevotella-
dominated gut type and lower SCFAs in feces, including acetic acid,
isobutyric acid, and isovaleric acid (22). The severity of COPD
patients was associated with reduced SCFAs concentrations in
feces (23). Antibiotic-induced gut microbiota imbalance leading
to SCFAs reduction aggravated the development of emphysema
in mice (24). Gavage of acetate-producing Bifidobacterium longum
subsp. longum was found to alleviate lung inflammation and
butyrate depletion in the cecum of mice in a COPD model
induced by 8 weeks of cigarette smoke exposure (23). Gut
microbiota-derived SCFAs could directly or indirectly regulate
the immune homeostasis of the lung, thereby alleviating the
development of COPD.

Gut permeability and microbial translocation are drivers of
systemic inflammation (25). Gut dysbiosis impairs epithelial barrier
function and elicits a pro-inflammatory response (26). For instance,
gut dysbiosis marked by a notable rise in Enterobacteriaceae

frontiersin.org


https://doi.org/10.3389/fmed.2025.1655780
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Liu et al.

activates TLR4 in the intestine, which elevates IL-1f levels in the
peripheral circulation (25). This transmits inflammatory signals to
the lungs and activates the NF-kB pathway, triggering oxidative
stress and inflammation and contributing to lung pathology
through the regulation of the intestinal barrier. ILC2s, ILC3s, and
Th17 cells that migrate from the gut to the lungs have also been
shown to impact respiratory immunity (25).

Gut-derived SCFAs shape pulmonary immunity, yet the lung
microbiota itself is now recognized as an independent modulator
of respiratory health. 16S rRNA profiling of bronchoalveolar-
lavage fluid revealed that NSCLC tissue harbors a distinct
luminal community enriched for Streptococcus, Veillonella and
Rothia, with alpha-diversity inversely correlating with tumor
stage (27, 28). Mechanistically, lung-colonizing Streptococcus
spp. secrete peptidoglycan that activates NOD2 on alveolar
macrophages, driving IL-1p-mediated MDSC recruitment and
PD-L1 up-regulation within the tumor bed (29). Thus, local
lung dysbiosis may synergize with gut-derived signals to amplify
immunosuppression.
and COPD are confounders
that simultaneously remodel both gut and lung microbial
COPD-NSCLC
sequencing showed smoke-related enrichment of Prevotella

Tobacco smoke major

compartments. In a cohort, metagenomic
and Porphyromonas in sputum, while the same patients exhibited
gut depletion of Faecalibacterium and reduced serum butyrate
(30). Smoke-induced gut-barrier leakage elevated systemic LPS,
which primed alveolar macrophages for enhanced IL-8 and
MMP-12 release, thereby accelerating emphysema and creating a
pro-metastatic niche (31). Conversely, 8-week smoking cessation
partially restored gut-barrier integrity and re-balanced lung
microbiota, supporting the reversibility of smoke-driven dysbiosis
(23). Integrative analyses therefore suggest that COPD and
smoking function as bidirectional amplifiers of gut-lung-axis
perturbation, warranting stratification for microbiota-targeted
trials in lung-cancer patients.

4 The mechanism of gut microbiota
in the progression of lung cancer

Elucidating the complex interplay between gut microbiota
and lung cancer progression reveals multiple mechanisms
through which these their
influence (14). Emerging evidence highlights the role of

microbial communities exert
gut microbiota in modulating systemic and local immune
responses, producing metabolites with anticancer properties,
and directly affecting the tumor microenvironment through
microbial translocation (Table 1). Additionally, gut microbiota
lead to and the
activation of oncogenic signaling pathways in lung cancer.

proposes an
evidence

dysbiosis can epigenetic modifications

Figure 2 integrated model that synthesizes

current into four, non-exclusive pathways: (i)

systemic  immunomodulation, (ii) microbial metabolite

translocation and tumor micro-

and  (iv)

signaling, (iii) bacterial

environment  remodeling, dysbiosis-induced

epigenetic reprogramming.
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4.1 Immunomodulation and immune cell
recruitment

Emerging evidence highlights the pivotal role of gut microbiota
in modulating systemic and local immune responses, thereby
influencing lung cancer progression. Mendelian randomization
studies demonstrate causal links between gut microbiota
composition and NSCLC risk, mediated by immune cell dynamics.
For instance, Chen et al. (7) identified that Bacteroides and
Faecalibacterium species inversely correlated with NSCLC risk,
likely through enhancing CD8 + T cell infiltration and reducing
regulatory T cell (Tregs) activity. Similarly, Chen et al. (8)
revealed that gut microbiota dysbiosis altered the abundance
of circulating dendritic cells and neutrophils, which directly
impacted tumor immune evasion. However, Li et al. (32) found
no causal association between gut microbiota and small cell lung
cancer (SCLC) in Mendelian randomization study, suggesting
histology-specific immunomodulatory mechanisms. Collectively,
these studies underscore the gut microbiotas capacity to shape
antitumor immunity, though heterogeneity across lung cancer
subtypes warrants further exploration.

While Akkermansia muciniphila enrichment is linked to
enhanced CD8 + T-cell infiltration in European and North-
American cohorts (33), the same taxon shows neutral or even
negative associations in Asian populations receiving concurrent
antibiotics (34). Geographic, dietary and concomitant medication
factors therefore moderate the immunostimulatory potential
of this species.

4.2 Metabolite-mediated anticancer
effects

Short-chain fatty acids, particularly butyrate and propionate,
derived from microbial fermentation of dietary fiber, exhibit
direct anticancer effects. Bi et al. (35) demonstrated that butyrate
synergized with erastin to induce ferroptosis in lung cancer cells
by upregulating ATF3 and inhibiting SLC7A1l, a glutathione
synthesis regulator. Similarly, Kim et al. (36) showed propionate
triggered apoptosis and cell cycle arrest in lung adenocarcinoma
via p53/p21 activation. Conversely, Zhu et al. (28) revealed
that A. muciniphila-produced metabolites, such as succinate,
reprogrammed intratumoral metabolism to suppress NSCLC
growth by downregulating PI3K/Akt signaling. These findings
are corroborated by Feng et al. (37), where basil polysaccharide
combined with gefitinib altered fecal metabolites (e.g., linoleic
acid) to inhibit tumor proliferation. Nevertheless, Ubachs et al.
(38) reported reduced SCFA levels in cachectic lung cancer
patients, implying that metabolite efficacy may depend on host
metabolic status.

Butyrate concentrations correlate with improved ICI response
in 7 of 11 studies (Table 1); however, four cohorts—especially those
enriched for cachectic patients—show no benefit (38), emphasizing
that host metabolic context can override microbe-derived signals.
Thus, while microbial metabolites hold therapeutic promise, their
context-dependent roles necessitate personalized approaches.
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TABLE 1 Studies on the mechanism of gut microbiota in lung cancer.

Flora/metabolites

Bacteroides spp.

CD81 T cells, Tregs (n =452
European GWAS)

Enhances CD8 + T-cell infiltration;
suppresses Treg activity via
immunomodulatory pathways

10.3389/fmed.2025.1655780

Reduces NSCLC risk by promoting
antitumor immunity

Target (With sample ROle in lung =
size)

Chen et al. (7)

Faecalibacterium spp.

Dendritic and neutrophil
abundance (n = 452 GWAS)

Modulates dendritic cell and neutrophil
abundance; reduces tumor immune
evasion

Correlates inversely with NSCLC

progression

Chen et al. (8)

Gut microbiota dysbiosis

SCLC risk (n = 2-sample MR,

No causal association observed in

No significant impact on small cell

Lietal. (32)

replicates; A549 and H1299)

p53/p21 activation

proliferation

24,000 Europeans) Mendelian randomization analysis lung cancer (SCLC) pathogenesis
Butyrate ATF3/SLC7A11 axis (n =36 A/] |Synergizes with erastin to induce Enhances NSCLC cell death; Bietal. (35)
male mice) ferroptosis via ATF3 upregulation and overcomes chemotherapy resistance
SLC7A11 inhibition
Propionate p53/p21 pathway (n = 3 in-vit Triggers apoptosis and cell cycle arrest via |Suppresses lung adenocarcinoma Kim et al. (36)

Akkermansia muciniphila

PI3K/Akt signaling (n = 20

Produces succinate to reprogram

Suppresses NSCLC growth and

Zhu et al. (28)

human NSCLC tissues)

damage via TLR4/NF-kB activation

inducing genomic instability

C57BL/6 mice) intratumoral metabolism; inhibits metastasis
PI3K/Akt signaling
Basil polysaccharide Linoleic acid metabolism (1 = 30 |Alters fecal metabolites (e.g., linoleic acid) |Synergizes with gefitinib to suppress  Feng etal. (37)
BALB/c nude mice) to inhibit tumor proliferation NSCLC progression
SCFAs Host metabolic status (n =102 |Reduced levels in cachectic patients Context-dependent efficacy; requires | Ubachs et al. (38)
cachectic cancer patients) correlate with poor treatment response | personalized approaches
Klebsiella pneumoniae TLR4/NF-«B pathway (n = 32 Promotes chronic inflammation and DNA |Exacerbates NSCLC progression by | Dumont-Leblond et al. (39)

Escherichia coli

Circulating STAMBP (n = 45
tumor-bearing mice)

Elevates circulating STAMBP to enhance
tumor cell invasion

Drives lung cancer metastasis through
STAMBP-mediated signaling

Li et al. (40)

Lactobacillus spp.

Serum LPS (n = 77 Chinese
NSCLC patients)

Reduces serum LPS levels; improves
chemotherapy outcomes

Correlates with better prognosis in
NSCLC patients

Zhao et al. (41)

Streptococcus spp.

Bronchoalveolar lavage
microbiota (n = 56 NSCLC
patients)

Bronchoalveolar lavage fluid microbiota
linked to advanced NSCLC prognosis

Indicates bidirectional
Gut-microbiota-lung Axis crosstalk in
disease progression

Chengetal. (27)

Diallyl trisulfide

PPARY/NF-kB crosstalk (n = 30
A/] mice)

Restores gut microbial diversity;
suppresses PPARY/NF-kB crosstalk

Attenuates NSCLC by reducing
inflammation and oxidative stress

Quetal. (42)

Trimethylamine N-oxide
(TMAO)

HDAC-mediated epigenetic axis
(n = 68 patient metagenome)

Facilitates brain metastasis via
HDAC-mediated epigenetic dysregulation

Promotes NSCLC metastasis to the

brain

Liu et al. (43)

Faecalibacterium depletion

Wnt/B-catenin activation (n = 42
early-stage adenocarcinoma)

Correlates with aberrant Wnt/p-catenin
activation in early-stage lung
adenocarcinoma

Serves as a biomarker for early-stage
NSCLC with oncogenic pathway
dysregulation

Zeng et al. (44)

Gut microbiota dysbiosis

SCLC progression (n = 2-sample
MR, 24 000 Europeans)

No significant association in Mendelian
randomization analyses

Limited role in SCLC pathogenesis

Gong et al. (45)

ATF3, Activating Transcription Factor 3; HDAC, Histone Deacetylase; LPS, lipopolysaccharide; NSCLC, non-small cell lung cancer; PI3K/Akt, Phosphoinositide 3-Kinase/Protein Kinase B;
PPARYy, Peroxisome Proliferator-Activated Receptor Gamma; SCFAs, short-chain fatty acids; SCLC, small cell lung cancer; STAMBP, signal transducing adaptor molecule-binding protein;
Th17, T Helper 17 cells; TLR4, Toll-Like Receptor 4; TMAO, trimethylamine N-oxide; Tregs, regulatory T cells; Wnt/B-catenin, Wingless/Integrated-B-Catenin Signaling Pathway.

4.3 Microbial translocation and tumor
microenvironment remodeling

Gut microbiota-derived

lipopolysaccharides (LPS) and live bacteria, may translocate

components, including
to the lung, directly influencing carcinogenesis. Dumont-Leblond
et al. (39) detected enteric pathogens like Klebsiella pneumoniae
in NSCLC tissues, which promoted chronic inflammation
and DNA damage via TLR4/NF-kB activation. Li et al. (40)
further identified gut Escherichia coli as a key mediator of lung
cancer progression, elevating circulating signal transducing
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adaptor molecule-binding protein (STAMBP) levels to enhance
tumor cell invasion. Conversely, Zhao et al. (41) observed that
Lactobacillus enrichment in the gut correlated with reduced
serum LPS and improved chemotherapy outcomes. Notably,
Cheng et al. (27) linked bronchoalveolar lavage fluid microbiota
(e.g., Streptococcus) to advanced NSCLC prognosis, suggesting
bidirectional Gut-microbiota-lung Axis crosstalk. These studies
highlight the dual role of microbial translocation—pathogenic taxa
exacerbate malignancy, while commensals may confer protection.
Detection of live gut-derived bacteria in lung tumors is reported

in fewer than 15% of resected NSCLC specimens; thus, direct
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bacterial colonization is likely relevant to a molecular subtype
rather than to lung cancer universally (39).

4.4 Dysbiosis-driven epigenetic and
signaling pathway alterations

Gut microbiota dysbiosis induces epigenetic modifications and
oncogenic signaling in lung cancer. Qu et al. (42) found that
diallyl trisulfide attenuated NSCLC by restoring gut microbial
diversity and suppressing PPARY/NF-kB crosstalk. Liu et al. (43)
demonstrated that gut microbiota metabolites (e.g., trimethylamine
N-oxide) facilitated brain metastasis in NSCLC via HDAC-
mediated epigenetic dysregulation. Additionally, Zeng et al. (44)
identified Faecalibacterium depletion as a marker of aberrant
Wnt/B-catenin activation in early-stage lung adenocarcinoma.
However, Gong et al. (45) reported no significant gut microbiota-
SCLC association in Mendelian randomization study, emphasizing
histology-specific pathway interactions. Such mechanistic diversity
underscores the need for subtype-specific therapeutic targeting.
Faecalibacterium prausnitzii depletion consistently associates with
Wnt/B-catenin activation in early-stage adenocarcinoma (44), yet
Mendelian randomization studies fail to support a causal role for
this taxon in SCLC, underlining histology-specific pathways (32).
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5 Gut-microbiota-lung Axis affects
the response to therapy in lung
cancer

Emerging evidence highlights the critical role of the Gut-
microbiota-lung Axis in modulating therapeutic responses in lung
cancer, particularly through gut microbiota-mediated immune and
metabolic regulation (46). This section evaluates the impact of
gut microbiota on treatment efficacy and toxicity across different
therapeutic modalities, with a focus on ICIs, chemotherapy, and
combination therapies (Table 2).

5.1ICls

The gut microbiota significantly influences ICIs efficacy
by shaping systemic and tumor microenvironment immunity.
Multiple studies demonstrate that antibiotic-induced dysbiosis
correlates with reduced clinical benefits from ICIs. For instance,
Derosa et al. (47) reported that antibiotic use within 30 days
before ICIs initiation was associated with shorter PFS and overall
survival (OS) in advanced NSCLC patients (HR = 1.5, p = 0.001).
Similarly, Hamada et al. (48) found that antibiotic exposure
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TABLE 2 Research on the influence of the Gut-microbiota-lung Axis on the treatment response of lung cancer.

Antibiotics-induced Retrospective cohort (1 = 60

Immune checkpoint inhibitors

Reduced systemic immunity via depletion of | Derosa et al. (47)

Italian patients)

dysbiosis NSCLC) immunostimulatory taxa (e.g., Akkermansia
muciniphila)
Antibiotics Observational study (n = 74 Anti-PD-1 therapy Over 70% reduction in OS; impaired CD8 + T | Hamada et al. (48)
NSCLC) cell activation
Faecalibacterium Phase-I trial (n = 38 enrolled) ICIs (anti-PD-1/PD-L1) Enhanced dendritic cell activation and CD8 + T |Bredon et al. (33)
prausnitzii cell infiltration; increased ORR (52% vs. 28%)
Butyrate (SCFAs) Metabolomic analysis (1 = 49 Anti-PD-1 therapy Higher fecal butyrate levels correlated with T | Botticelli et al. (49)

cell activation in responders

Randomized trial (n = 42 ICIs + PPIs

Japanese)

Clostridium butyricum

Restored ICI efficacy by compensating for Tomita et al. (50)
butyrate deficiency; improved median PFS (6.1

vs. 3.4 months)

Bifidobacterium Animal model (n = 18 C57BL/6) |Anti-PD-1 therapy

Extracellular vesicles synergized with ICIsto | Preet et al. (63)

suppress tumor growth via immune modulation

Gut microbiota diversity | Prospective cohort (n = 74

European)

Nivolumab (anti-PD-1)

No significant association between baseline Ouaknine Krief et al. (34)

microbiota and survival outcomes

Serum butyrate Prospective cohort (n = 94

Platinum-based chemotherapy

Higher serum butyrate levels linked to Chen et al. (55)

Chinese) improved ORR (68% vs. 42%) via apoptosis
induction
Antibiotics Retrospective cohort (n = 153 Chemoimmunotherapy Lower ORR (32% vs. 51%) and higher grade >3 | Deng et al. (56)
Chinese) AEs (45% vs. 28%)
Pemetrexed Pre-clinical PDX model (n =12 |Chemotherapy Disrupted gut microbiota diversity; exacerbated | Pensec et al. (57)
mice) intestinal inflammation
BFHY herbal formula Animal model (n = 24 BALB/c) |Cisplatin chemotherapy Attenuated intestinal toxicity via Lactobacillus |Feng et al. (58)

enrichment and anti-inflammatory effects

Bacteroides vulgatus Prospective cohort (n =112

NSCLC)

Chemoradiotherapy

Reduced radiation-induced pneumonitis risk
(HR = 0.47)

Qiu et al. (59)

Antibiotics-induced Real-world analysis (n = 174

dysbiosis Japanese)

Platinum-pembrolizumab

Lower ORR (29% vs. 44%) and shorter median
OS (12.1 vs. 18.9 months)

Tamura et al. (60)

Fecal microbiota

transplantation (FMT) LLC-bearing mice)

Pre-clinical murine model (n = 24| Chemoimmunotherapy

Enriched Bifidobacterium and Akkermansia;
enhanced tumor control

Wang et al. (61)

Japanese)

Probiotics Phase-II trial (n = 96 Chinese) Chemoimmunotherapy Improved ORR (58% vs. 41%) and reduced Xia et al. (62)
gastrointestinal AEs (22% vs. 45%)
Probiotics Randomized trial (n = 200 ICIs £ chemotherapy No significant survival benefit observed; Morita et al. (64)

strain-dependent variability

ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PPIs, proton pump inhibitors; SCFAs, short-chain fatty acids; AEs, adverse events; PDX, Patient-

Derived Xenograft.

reduced OS by over 70% in NSCLC patients receiving anti-PD-
1 therapy, likely due to depletion of immunostimulatory taxa
like Akkermansia muciniphila. Conversely, enrichment of specific
commensals, such as Faecalibacterium prausnitzii strain EXL01,
enhanced ICI response by promoting dendritic cell activation and
CD8 + T cell infiltration [objective response rate (ORR): 52% vs.
28% in controls, p = 0.02] (33).

Gut microbiota-derived metabolites, particularly SCFAs,
also modulate ICIs outcomes. Botticelli et al. (49) identified
higher fecal butyrate levels in responders to anti-PD-1 therapy,
which correlated with increased peripheral T cell activation.
A randomized trial by Tomita et al. (50) further showed that
Clostridium butyricum supplementation restored ICIs efficacy
in patients receiving proton pump inhibitors (PPIs), likely
by compensating for butyrate deficiency (median PFS: 6.1

vs. 3.4 months, p = 0.03). Conflicting evidence surrounds
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Bifidobacterium’s clinical relevance, as high baseline B. breve
abundance predicted longer PFS in Asian NSCLC patients
receiving anti-PD-1 plus chemotherapy (51), yet a European
cohort found no genus-level survival benefit after adjustment
for antibiotics, PPIs and tumor mutational burden (34). These
discordant outcomes likely reflect strain-specific effects, since only
B. breve was protective, together with higher fiber intake and fecal
butyrate in the Asian population that supports Bifidobacterium
colonization (52), frequent PPI use in Europe that lowers gastric
pH and impairs engraftment (53), and host genetic factors
such as the East-Asian-enriched HLA-B allele that enhances
mucosal IgA targeting of Bifidobacterium antigens (54). Such
context emphasizes the need for strain-resolved, diet-adjusted
before Bifidobacterium

and medication-controlled analyses

biomarker implementation.
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5.2 Chemotherapy

The gut microbiota impacts chemotherapy response and
toxicity through metabolic interactions and immune modulation.
Chen et al. (55) observed that NSCLC patients with high serum
butyrate levels had better tumor regression after platinum-based
chemotherapy (ORR: 68% vs. 42%, p = 0.01), likely via SCFA-
induced apoptosis of cancer cells. Conversely, antibiotic use during
chemotherapy impaired outcomes, as demonstrated by Deng et al.
(56), where NSCLC patients receiving antibiotics had lower ORR
(32% vs. 51%, p = 0.02) and higher rates of grade >3 adverse
events (AEs) (45% vs. 28%, p = 0.03). Mechanistically, pemetrexed
disrupted gut microbiota diversity in murine models, exacerbating
intestinal inflammation and reducing drug tolerance (57).
microbiota ameliorate

Notably, gut
chemotherapy toxicity. Feng et al. (58) reported that a herbal

modulation may

formula (BFHY) attenuated cisplatin-induced intestinal damage
in mice by restoring Lactobacillus abundance and suppressing
pro-inflammatory cytokines (e.g., IL-6, TNF-a). Similarly, Qiu
et al. (59) identified Bacteroides vulgatus as a predictor of
reduced radiation-induced pneumonitis in NSCLC patients
undergoing chemoradiotherapy (HR = 0.47, p = 0.01). These
findings suggest microbiota-targeted interventions could optimize

chemotherapy safety.

5.3 Combination therapies

The gut microbiota’s role in chemoimmunotherapy (e.g.,
platinum-pemetrexed plus ICIs) is increasingly recognized. Tamura
et al. (60) found that antibiotic-induced dysbiosis diminished
the efficacy of platinum-pembrolizumab in NSCLC, with lower
ORR (29% vs. 44%, p = 0.04) and shorter median OS
(12.1 vs. 189 months, p = 0.01). Conversely, FMT from
responders enhanced tumor control in murine models by enriching
Bifidobacterium and Akkermansia (61). A phase II trial by Xia
et al. (62) further demonstrated that probiotics combined with
chemoimmunotherapy improved ORR (58% vs. 41%, p = 0.04)
and reduced gastrointestinal AEs (22% vs. 45%, p = 0.02) in
advanced NSCLC patients.

Despite these advances, conflicting data exist. For example,
while Preet et al. (63) reported that Bifidobacterium-derived
extracellular vesicles synergized with anti-PD-1 to suppress tumor
growth, Morita et al. (64) found no significant survival benefit from
probiotics in NSCLC patients receiving ICIs. These discrepancies
may stem from differences in probiotic strains, dosing regimens, or
host genetic factors.

6 Therapeutic interventions
targeting the Gut-microbiota-lung
Axis

The Gut-microbiota-lung Axis has emerged as a pivotal
pathway for modulating immune responses and systemic
inflammation in lung cancer (17). Emerging therapeutic strategies
targeting this axis focus on reshaping gut microbiota composition
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(Table 3), regulating microbial metabolites, and enhancing ICIs
efficacy (65).

6.1 Probiotics and microbial modulation

Probiotics, particularly Clostridium butyricum (CBM588),
have demonstrated promising immunomodulatory effects.
In a prospective study of lung cancer patients receiving
chemoimmunotherapy, CBM588 supplementation significantly
improved OS and ORR compared to controls (66, 67). Whether
these effects reflect prognostic enrichment or true predictive
utility remains unresolved. Mechanistically, CBM588 enhances
butyrate production, which promotes T-cell infiltration and
reduces immunosuppressive cytokines like IL-10 and TGF-B (66).
However, inconsistencies exist: while Tomita et al. (66) reported
prolonged survival in patients receiving CBM588, Wan et al. (68)
found no significant survival benefit with generic probiotics in
ICIs-treated cohorts, suggesting strain-specific effects and the
importance of butyrogenic species. Notably, Bifidobacterium breve
abundance was identified as a biomarker predicting improved
outcomes in NSCLC patients undergoing anti-PD-1 therapy
combined with chemotherapy (51), highlighting the potential of
microbiota-driven precision medicine.

Post hoc analyses of two prospective Japanese cohorts (n = 40
and n = 42) showed that baseline abundance of Faecalibacterium
prausnitzii >1.2% was an independent prognostic factor for
longer OS (HR 0.48, 95% CI 0.26-0.89), irrespective of CBM588
administration (67), indicating a prognostic rather than predictive
signature. Conversely, in the phase-I study of F. prausnitzii
strain  EXLOI, only recipients who achieved >2-fold post-
supplementation expansion of the strain derived significant ORR
benefit (52% vs. 28% in non-expanders, p = 0.02), supporting a
predictive biomarker role (33). Distinguishing prognostic from
predictive value therefore requires longitudinal sampling during
intervention; static baseline taxon abundance alone is insufficient
to claim predictive utility.

6.2 Dietary interventions and microbial
metabolites

Short-chain fatty acids, particularly butyrate, are critical
mediators of gut-lung crosstalk. Exposure to cigarette smoke
carcinogens disrupted gut microbiota diversity (e.g., increased
Firmicutes/Bacteroidetes ratio) and exacerbated lung cancer
progression via NF-kB-driven inflammation (69). Conversely,
dietary interventions such as ginseng polysaccharides altered
the gut microbiota and kynurenine/tryptophan ratio, enhancing
anti-PD-1 efficacy by increasing CD8 + T-cell activity (52).
Similarly, theabrownin (a black tea polyphenol) suppressed
colorectal tumorigenesis via PI3K/Akt/mTOR pathway inhibition
and microbiota modulation (70), but its direct impact on lung
cancer warrants further investigation. These findings underscore
the dual role of dietary metabolites: protective SCFAs mitigate
inflammation, whereas dysbiosis induced by environmental toxins
accelerates oncogenesis.
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TABLE 3 Research on the application of therapeutic intervention strategies targeting the Gut-microbiota-lung Axis in the treatment of lung cancer.

Intervention

strategies

Probiotics (CBM588)

Gut microbiota, T-cell infiltration

Prospective clinical trial (n = 40
Japanese patients)

Improved OS and ORR in lung cancer patients
receiving chemoimmunotherapy

Study types (with sample Therapeutic effect
size)

Tomita et al., (66);

Probiotics (CBM588)

Gut microbiota, T-cell infiltration

Prospective clinical trial (n = 42
Japanese patients)

Confirmed survival benefit with CBM588 plus
chemo-immunotherapy

Tomita et al., (67)

Generic probiotics

Gut microbiota diversity

Retrospective cohort (n =1 841
multi-cancer patients, 229 NSCLC)

No significant survival benefit in ICI-treated
patients; strain-dependent variability

Wan et al. (68)

Bifidobacterium breve

Anti-PD-1 efficacy

Biomarker analysis (n = 126 Chinese
NSCLC patients)

Predicted improved outcomes in NSCLC
patients on anti-PD-1 + chemotherapy

Zhao et al, (51)

Dietary interventions

NF-kB-driven inflammation

Pre-clinical murine model (n =30 A/]
mice)

Cigarette smoke-induced dysbiosis exacerbated
lung cancer progression

Queetal, (69)

Ginseng polysaccharides

Kynurenine/tryptophan ratio,
CD8 + T cells

Randomized controlled trial (n = 68
Chinese patients)

Enhanced anti-PD-1 efficacy via immune
modulation

Huang et al,, (52)

Theabrownin PI3K/Akt/mTOR pathway Murine colorectal model (n = 20 Suppressed tumorigenesis via pathway Leung et al,, (70)
C57BL/6 mice) inhibition and microbiota modulation

Xihuang Pill VEGE, HIF-1a, gut microbiota  |Pre-clinical + clinical (n = 60 mice; ~ |Synergized with anlotinib to suppress Caoetal,(71)
n = 28 patient metagenome) angiogenesis and tumor growth

BuFeiXiao]iYin NLRP3 inflammasome, Murine lung cancer model (n = 24 Ameliorated inflammation and restored gut Jiang et al., (72)

Treg/Th17 balance BALB/c mice) microbiota equilibrium

EGCG STAT1/SLC7A11 pathway Obesity-driven murine model (n = 30 | Alleviated lung cancer progression via Lietal, (73)
C57BL/6 mice) metabolic and microbiota regulation

FMT (Alzheimer’s model |Akkermansia, Enterobacteriaceae |Pre-clinical murine model (n = 20 Accelerated lung tumor growth via Bietal, (74)

feces) C57BL/6 mice) pro-inflammatory microbiota shift

Postbiotics (JK5G)

Immune-related adverse events
(irAEs)

Randomized controlled trial (n = 60
Chinese NSCLC patients)

Reduced irAEs in NSCLC patients via
microbiota modulation

Chen et al,, (75)

Helicobacter pylori
screening

ICI efficacy

Retrospective cohort (n = 404
melanoma patients, validation lung
subset n =97)

Seropositivity correlated with reduced OS in

melanoma patients on ICIs

Tonneau et al., (77)

Proton pump inhibitors
(PPIs)

Gastric pH, microbiota
composition

Post hoc clinical analysis (n = 692
IMpower150 NSCLC patients)

Attenuated atezolizumab efficacy in NSCLC
patients

Hopkins et al., (53)

(Inulin + Sintilimab)

immunity

(n =18 LL/2 mice)

activity

Metformin Akkermansia muciniphila, Pre-clinical murine model (n = 18 Enhanced anti-PD-L1 activity via microbiota |Zhao etal., (78)
butyrate C57BL/6 mice) regulation
Synbiotics Gut microbiota-derived T-cell | Murine lung adenocarcinoma model |Suppressed tumor growth by enhancing T-cell | Yan et al,, (79)

Engineered Diaphorobacter
nitroreducens

ROS-mediated apoptosis

Pre-clinical murine model (n = 15
LLC mice)

Synergized with oxaliplatin to reduce lung
adenocarcinoma burden

Ni et al., (80)

ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PPIs, proton pump inhibitors; SCFAs, short-chain fatty acids; AEs, adverse events; PDX, Patient-Derived
Xenograft; BFHY, BFHY herbal formula; HR, Hazard Ratio; NLRP3, NLR Family Pyrin Domain Containing 3; Treg/Th17, regulatory T cells/T Helper 17 cells; HIF-1a, Hypoxia-Inducible Factor
1-Alpha; VEGE, Vascular Endothelial Growth Factor; STAT1, Signal Transducer and Activator of Transcription 1; SLC7A11, Solute Carrier Family 7 Member 11; PI3K/Akt, Phosphoinositide
3-Kinase/Protein Kinase B; TMAO, trimethylamine N-oxide; Tregs, regulatory T cells; TLR4, Toll-Like Receptor 4; EMT, fecal microbiota transplantation; ICI, immune checkpoint inhibitor.

6.3 Herbal medicine and natural
compounds

Traditional Chinese medicine (TCM) formulations, such as
Xihuang Pill and Qingfei Mixture, synergize with chemotherapy
by modulating gut microbiota and angiogenesis pathways.
Xihuang Pill and  Bifidobacterium
abundance, downregulating VEGF and HIF-la expression in

increased Lactobacillus

tumor microenvironments (71). Similarly, Bu Fei Xiao Ji Yin
ameliorated NLRP3-mediated inflammation in lung cancer mice
by restoring gut microbiota balance and enhancing Treg/Th17

equilibrium (72). However, variability in TCM composition and
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bioavailability poses challenges in standardizing clinical outcomes.
For instance, while EGCG (epigallocatechin gallate) alleviated
obesity-driven lung cancer via STAT1/SLC7A11 signaling (73),
its low bioavailability necessitates further optimization for
therapeutic use.

6.4 FMT and microbial reprogramming
Fecal microbiota transplantation is the most direct strategy

to re-engineer the entire gut ecosystem and has moved from
Clostridioides difficile therapy to oncology trials. In two
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independent pre-clinical lung-cancer models, FMT from ICI-
responding donors restored anti-PD-1 efficacy and tripled median
survival after antibiotic-induced dysbiosis (61). Metagenomic
tracking showed engraftment of Bifidobacterium longum
and Akkermansia muciniphila and a parallel expansion of
tumor-infiltrating CD8 + T cells, indicating that FMT can
both
anti-tumor immunity. Conversely,

reconstitute immunostimulatory taxa and systemic
FMT from Alzheimer’s
disease mice accelerated urethane-driven lung tumors through
selective loss of Akkermansia and overgrowth of LPS-high
Enterobacteriaceae  (74), underscoring the importance of
donor screening.

A first-in-human phase I study (NCT05122546) enrolled
12 refractory NSCLC patients who received a single naso-
jejunal FMT from a verified ICI-responder; 3 patients achieved
stable disease and one partial response, with no >grade-2
adverse events (75). Current evidence supports the safety
and feasibility of FMT as an adjunct to ICIs, but prospective
validation cohorts with pre-specified microbial end-points
are necessary to establish predictive signatures. Although
objective response rates remain modest, FMT was safe and led
to durable engraftment of butyrate producers for >12 weeks.
Ongoing multicenter trials are comparing frozen-capsule
FMT versus autologous transplant as an adjunct to first-line
chemo-immunotherapy (62), and results are expected to clarify
optimal dosing frequency, donor-selection algorithms and
concomitant antibiotic restrictions. Compared with single-
strain probiotics, FMT offers the theoretical advantage of
transferring a complete, self-sustaining microbial network;
however, standardization of donor material, preparation protocols
and long-term safety surveillance remain unresolved (76). Until
phase-II efficacy data are available, FMT should be restricted
to clinical trial settings with rigorous microbiological and

immunological monitoring.

6.5 ICls and microbiota interactions

The gut microbiota profoundly influences ICIs efficacy.
Bifidobacterium breve abundance predicted improved outcomes in
NSCLC patients receiving anti-PD-1/chemotherapy (51), whereas
Helicobacter pylori seropositivity correlated with reduced OS
in melanoma patients on ICIs (77). Pharmacomicrobiomics
studies revealed that proton pump inhibitors (PPIs) attenuated
atezolizumab efficacy by altering gastric pH and microbiota
composition (53). Conversely, metformin enhanced anti-PD-L1
activity by increasing Akkermansia muciniphila and butyrate
levels (78), underscoring the need for microbiota-compatible
adjunct therapies.

Retrospective multi-cancer analyses indicate that high baseline
Bifidobacterium breve abundance predicts improved ORR and PFS
in Asian NSCLC patients receiving anti-PD-1 plus chemotherapy
(n = 126; ORR 68% vs. 41%, p < 0.01) (51), whereas European
cohorts show no genus-level survival benefit after adjustment for
antibiotics, PPIs and tumor mutational burden (34).

These  geographically
that microbial biomarkers may exhibit population-specific

divergent  results  underscore

predictive performance, necessitating external validation before
clinical implementation.
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6.6 Emerging strategies: synbiotics and
engineered microbes

Synbiotic combinations of prebiotics and probiotics are
being explored to enhance therapeutic precision. For example,
prebiotics (e.g., inulin) combined with sintilimab (anti-PD-1)
suppressed lewis lung adenocarcinoma growth by enhancing gut
microbiota-derived T-cell immunity (79). Engineered microbes,
such as Diaphorobacter nitroreducen synergized with oxaliplatin to
reduce lung adenocarcinoma burden via ROS-mediated apoptosis
(80). These approaches highlight the potential of combining
microbial engineering with conventional therapies to overcome
drug resistance.

7 Technological advances in
Gut-microbiota-lung Axis research

Advancements in scientific technology have revolutionized the
study of the Gut-microbiota-lung Axis, offering innovative tools
to investigate its complex mechanisms (20). Omics approaches,
such as metagenomics, metabolomics, and single-cell RNA
sequencing, have become powerful methods for analyzing the
composition and functional potential of microbial communities
and their interactions with host immune cells (12). Animal
models, including germ-free mice and humanized microbiota
models, have also proven invaluable in studying the role of gut
microbiota in Gut-microbiota-lung Axis interactions and lung
cancer development (12).

7.1 Omics approaches

Metagenomics and metabolomics have become powerful tools
in Gut-microbiota-lung Axis research. Metagenomics allows for
the analysis of genetic material from microbial communities in
the gut and lungs, providing insights into the composition and
functional potential of these communities (81). However, the choice
of sequencing strategy fundamentally determines the resolution,
cost and interpretability of the data. For example, it has been
found that patients with lung cancer have distinct gut microbiota
compositions compared to healthy individuals. Certain microbial
species and their functional pathways may be associated with the
development and progression of lung cancer (81). Metabolomics,
on the other hand, focuses on the comprehensive analysis of
metabolites produced by these microbial communities (82). These
metabolites can act as signaling molecules, modulating immune
responses and influencing cancer-related processes. For instance,
SCFAs, produced by gut microbiota through the fermentation of
dietary fiber, have been shown to have immunomodulatory effects
and may play a role in regulating lung immunity and inflammation
(82). Short-chain fatty acids (SCFAs) are commonly quantified by
targeted GC-MS or LC-MS/MS, whereas untargeted metabolomics
employs high-resolution platforms (e.g., UHPLC-QTOEF-MS) to
discover novel microbial metabolites. Studies have found that
SCFAs can affect the function of immune cells in the lungs, such as
macrophages and T cells, thereby potentially influencing the tumor
microenvironment in lung cancer (83, 84).
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However, there are some differences in the findings of different
studies. Some research suggests that specific bacterial species or
metabolites are associated with an increased risk of lung cancer,
while others indicate that they may have protective effects (12, 17).
For example, certain studies have reported that the abundance of
specific bacteria in the gut, such as Firmicutes and Bacteroidetes,
is altered in lung cancer patients, but the exact relationship and
underlying mechanisms remain to be fully elucidated (85-87).
This inconsistency may be due to differences in study populations,
methodologies, and other factors. Therefore, further large-scale,
well-designed studies are needed to clarify the specific roles
of these microbial components and their metabolites in lung
cancer development.

Single-cell RNA sequencing (scRNA-seq) has revolutionized
our understanding of immune-microbial interactions in the Gut-
microbiota-lung Axis (65). This technology enables the analysis of
gene expression at the single-cell level, providing a highly detailed
view of the heterogeneity and functional states of immune cells
in the gut and lungs (88). For example, scRNA-seq has revealed
diverse subsets of immune cells, such as T cells, B cells, and
macrophages, and their unique transcriptional profiles in response
to microbial stimuli (89). By analyzing these transcriptional
changes, researchers can gain insights into how gut microbiota
influences the differentiation, activation, and function of immune
cells, and how these immune cells, in turn, affect lung cancer
development and immune responses (90). Some studies have
shown that specific gut microbiota compositions can modulate
the tumor-infiltrating immune cell landscape in the lungs, thereby
influencing the efficacy of immunotherapy for lung cancer (29,
54). For instance, the presence of certain bacteria in the gut has
been associated with increased numbers of cytotoxic T cells and
natural killer cells in the lung tumor microenvironment, which may
enhance the response to immune checkpoint inhibitors (8, 91).

Nevertheless, there are also discrepancies in the results of
different studies. The specific types of immune cells and their
functional states influenced by gut microbiota may vary depending
on factors such as the composition and function of the microbiota,
the genetic background of the host, and the stage of lung
cancer (12, 92). Therefore, it is necessary to conduct more in-
depth and comprehensive studies to fully understand the complex
interactions between gut microbiota and immune cells in the
context of lung cancer.

7.2 Animal models

Germ-free (GF) mice, which are raised in a sterile environment
and lack exposure to microbiota, have been invaluable in
studying the role of gut microbiota in Gut-microbiota-lung Axis
interactions (93, 94). By colonizing GF mice with specific microbial
communities, researchers can investigate the effects of these
microbes on immune system development, lung function, and
cancer-related processes (95). For example, studies have shown that
the absence of gut microbiota in GF mice leads to impaired immune
system development and function, and increased susceptibility
to respiratory infections and lung cancer. When these mice are
colonized with a normal gut microbiota, their immune systems
and lung health are partially restored (96). This suggests that gut

Frontiers in Medicine

10.3389/fmed.2025.1655780

microbiota plays a crucial role in maintaining immune homeostasis
and protecting against lung diseases.

Humanized microbiota models, which involve transferring
human gut microbiota into GF mice or other animal models,
further enable the study of the specific effects of human
microbiota on Gut-microbiota-lung Axis interactions and lung
cancer development (92). These models provide a more clinically
relevant system for investigating the mechanistic links between gut
microbiota and lung cancer, and for testing potential therapeutic
interventions targeting the Gut-microbiota-lung Axis (97). For
instance, researchers can use humanized microbiota models to
evaluate the impact of specific probiotics or prebiotics on the
composition and function of gut microbiota, and subsequently
assess their effects on immune responses and tumor growth in the
lungs (98).

However, there are also some limitations and differences in the
results obtained from different animal models. The gut microbiota
of mice differs from that of humans in terms of composition
and function, which may affect the translatability of findings
to human clinical settings (99). Additionally, the complexity of
the Gut-microbiota-lung Axis and the multiple factors involved
in its regulation make it challenging to fully recapitulate the
human disease conditions in animal models (100). Therefore, it is
important to carefully interpret the results from animal studies and
to validate them in human clinical studies whenever possible.

8 Challenges and future directions

The manipulation of the gut microbiota holds promise for the
treatment of lung cancer, however, the lack of standardized
protocols poses a (14).
interventions such as FMT, probiotics, and prebiotics are being

significant  challenge Currently,
explored. But the preparation, administration, and quality control
of these interventions vary across studies (14). For example, FMT
can be administered via different routes, such as nasogastric tubes
or capsules, and the donor selection criteria and fecal processing
methods also differ. These variations make it difficult to compare
results across studies and to translate findings into clinical practice
(101). Li et al. (76) demonstrated that FMT could improve the
efficacy of immunotherapy in lung cancer patients, but the long-
term safety and optimal dosing regimens remain unclear. Similarly,
probiotic and prebiotic interventions also lack standardized
protocols. Different strains and doses of probiotics may have
varying effects on the gut microbiota and immune system (102).
Therefore, establishing standardized protocols for microbiota
manipulation is crucial for advancing clinical applications.

The gut microbiome varies significantly among individuals
due to factors such as genetics, diet, and lifestyle (103). This
heterogeneity necessitates the development of personalized
microbiome-based therapies for lung cancer patients (20).
However, achieving personalization is challenging. First, a
comprehensive understanding of the relationship between the gut
microbiome and individual clinical outcomes is required (20).
Studies have shown that certain microbial signatures are associated
with better responses to immunotherapy, but these signatures may
not be universal. For instance, some research indicates that a higher
abundance of specific bacteria, such as Akkermansia muciniphila, is
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linked to improved immunotherapy responses, while other studies
report different associations (104, 105). Second, the dynamic
nature of the gut microbiome further complicates personalization.
The microbiome can change over time due to factors like diet
and medication use. Therefore, developing personalized therapies
requires continuous monitoring and adjustment of the microbiome
(90). Additionally, integrating microbiome data with other clinical
and molecular data is necessary to create more precise treatment
plans (106). Despite these challenges, personalized microbiome-
based therapies offer a potential avenue for improving lung cancer
treatment outcomes.

Axis
communication between the gut and lungs, and the lung

The  Gut-microbiota-lung involves  two-way
microbiota plays a crucial role in this process (107). However,
the exact role of the lung microbiota in Gut-microbiota-lung
Axis dynamics remains poorly understood. Some studies suggest
that the lung microbiota influences systemic immunity and
inflammation, which in turn affect gut microbiota composition
and function (108). For example, Dora et al. (105) found that
alterations in the lung microbiota could impact the gut immune
system through immune cell trafficking and cytokine signaling.
Conversely, gut microbiota-derived metabolites and immune
cells can also affect lung health. Research has shown that SCFAs
produced by gut microbiota can modulate lung immune responses
and influence the development of respiratory diseases (109).
However, 16S rRNA profiling is cost-efficient but rarely resolves
beyond genus level and cannot predict functional genes; shotgun
metagenomics delivers species/strain identification and metabolic
pathway data yet requires higher DNA input and bioinformatics
load, while both methods yield compositional data that may
bias cross-sample comparison of low-abundance taxa (110, 111).
Furthermore, the composition and function of the lung microbiota
in different lung cancer subtypes and disease stages are not well
characterized (112). Zheng et al. (113) revealed distinct lung
microbiota profiles in patients with NSCLC compared to healthy
individuals, but the functional implications of these differences
remain to be elucidated.

Chronic obstructive pulmonary disease is a common
comorbidity in lung cancer patients and can significantly
influence Gut-microbiota-lung Axis interactions (114). COPD is
characterized by chronic inflammation and airflow limitation, and
it is associated with alterations in both the gut and lung microbiota
(21). However, the impact of COPD on microbiota-immune
interactions in the context of lung cancer is not fully understood.
Some studies suggest that COPD-related inflammation may
exacerbate gut barrier dysfunction and promote the translocation
of gut microbial products to the lungs, further intensifying immune
responses (23, 114). For example, Bowerman et al. (30) found that
patients with COPD had increased gut permeability and altered
gut microbiota composition, which were associated with enhanced
systemic inflammation. This inflammation could potentially
influence lung cancer progression and treatment outcomes.
Additionally, the shared risk factors and pathophysiological
mechanisms between COPD and lung cancer may also affect
115).
research is needed to clarify these complex relationships and to

microbiota-immune interactions (31, However, more
develop targeted interventions for lung cancer patients with COPD

and other comorbidities.
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Furthermore, translation of probiotics, FMT, or dietary
modulation into thoracic oncology practice faces pragmatic
barriers identified by Georgiou 2021 and updated trials. First,
regulatory agencies lack harmonized criteria for live-biotherapeutic
potency, leading to variable CFU counts between batches of
Clostridium butyricum CBM588 (67). Second, FMT sourced from
ICI-responders requires donor re-screening every 30 days to
exclude transmissible pathogens, raising cost to ~ US $3,500 per
infusion in a recent US phase-I NSCLC protocol (NCT05122546),
a figure incompatible with universal reimbursement. Third, dietary

1 resistant starch increased

interventions such as 20 g day
fecal butyrate by 2.3-fold in chemo-immunotherapy patients, yet
adherence at 12 weeks was 54%, predominantly limited by grade
1-2 bloating (52). Fourth, antibiotic stewardship programs report
that 38% of lung cancer admissions receive at least one course
of broad-spectrum agents during treatment, potentially abrogating
any microbiota-directed benefit; integration of rapid point-of-care
pathogen identification could reduce unnecessary prescriptions,
but prospective data in oncology are lacking. Collectively, these
data indicate that microbiota-based adjuvants are feasible only
within clinical trials or specialized centers equipped with GMP-
grade biobanks and dietetic support; routine deployment outside
such frameworks is currently premature.

9 Conclusion

In conclusion, the Gut-microbiota-lung Axis plays a crucial
role in lung cancer development and treatment. Gut microbiota
dysbiosis can impact lung health through immune, neural, and
humoral pathways, and influence the efficacy of lung cancer
therapies. Targeting the Gut-microbiota-lung Axis offers potential
for enhancing treatment efficacy and improving patient outcomes.
However, challenges such as the lack of standardized protocols
and the need for personalized therapies remain. Further research
is needed to fully elucidate the mechanisms underlying the Gut-
microbiota-lung Axis in lung cancer and to translate these findings
into clinical applications.
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