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Editorial on the Research Topic

The application of multi-omics analysis in translational medicine

The primary goal of translational medicine is to convert fundamental biological

discoveries into tangible improvements in human health. Achieving this requires a holistic

understanding of the complexmolecular networks governing disease. Multi-omics analysis

has become an essential paradigm in this endeavor, integrating data from diverse layers

such as genomics, transcriptomics, proteomics, and metabolomics. This integration is

crucial for bridging the gap between basic research and clinical application, facilitating

precise diagnostics and personalized therapies.

However, the application of multi-omics approaches faces challenges, including

the complexity of data integration, the interpretation of high dimensional datasets,

and the standardization required for clinical implementation. This Research Topic,

“The Application of Multi-omics Analysis in Translational Medicine”, presents 14 articles

that navigate these challenges and showcase advancements in this rapidly evolving field.

The Research Topic underscores the power of integrative strategies across a spectrum of

methodological innovations and complex diseases.

Advancing computational methodologies and data
integration

The volume and complexity of multi-omics data demand sophisticated computational

tools. A significant focus within this Research Topic is the development of artificial

intelligence (AI) and machine learning frameworks, alongside the integration of diverse

data types, to enhance predictive accuracy.
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Predicting drug response is central to precision oncology.

Miao et al. introduced an innovative drug response prediction

model (NMDP) to address challenges in feature extraction and

data fusion. Their model utilizes an interpretable semi supervised

weighted SPCA module and integrates convolution methods

with Kolmogorov Arnold Networks, demonstrating superior

performance in predicting drug sensitivity.

Prioritizing actionable drug targets from vast genomic

landscapes remains a significant hurdle. Gu and Chen developed

GETgene AI, a framework that combines network-based

prioritization, machine learning, and automated literature analysis

powered by advanced language models. Applied to pancreatic

cancer, GETgene AI successfully prioritized high priority

targets, illustrating how AI driven approaches can accelerate

drug discovery.

The integration of molecular data with imaging modalities

represents another critical frontier. Huang Y. et al. explored

the predictive potential of quantitative histopathological image

features (HIF) in glioblastoma. By integrating HIF with genomics,

transcriptomics, and proteomics, they found that the integrated

multi-omics model significantly enhanced prognostic accuracy

compared to single omics approaches.

Similarly, Li et al. developed a radiomics model for predicting

chemoradiotherapy response in advanced non-small cell lung

cancer. They integrated radiomic features from both the primary

lesion and nodal disease with clinical data. This multimodal

composite model demonstrated superior predictive performance,

emphasizing the value of comprehensive data integration in clinical

decision making.

Multi-omics insights into molecular
mechanisms of oncological and
chronic diseases

Multi-omics research continues to deepen our understanding

of tumorigenesis, classification, and the interplay with systemic

conditions and chronic diseases.

Loganathan and Doss investigated the interconnected

molecular mechanisms between breast cancer and diabetes.

Utilizing transcriptomic and exomic analyses across different

cohorts, they identified shared pathways related to extracellular

matrix organization and immune regulation. Their analysis

highlighted the TNF pathway as a central link connecting chronic

inflammation, insulin resistance, and tumor growth.

Pugazenthi et al. provided a review of the application of multi-

omics analysis for pituitary neuroendocrine tumors (PitNETs).

They summarized how integrated approaches have contributed to a

deeper understanding of PitNET pathogenesis, revealing molecular

subtypes and regulatory networks that inform classification and

advance personalized medicine.

The power of multi-omics analysis extends to degenerative and

inflammatory diseases. Zhang et al. aimed to identify novel risk

genes for intervertebral disc disorder by integrating large scale

multi-omics analyses, including transcriptome wide association

studies and proteome wide association studies. Their integrative

analysis and experimental validation confirmed the pathogenic

roles of TMEM190, CILP2, and FOXO3, highlighting CILP2 as a

potential druggable target.

Jin et al. focused on periodontitis by integrating transcriptomic

and DNA methylation profiles. Their analysis explored the

immune microenvironment and utilized machine learning to

identify nine key diagnostic biomarkers. Subsequent network

pharmacology analysis identified potential targeted drugs, offering

new therapeutic avenues.

The nexus of microbiome,
metabolism, and host response

The integration of microbiome and metabolomic data with

host multi-omics profiles is rapidly emerging as a critical area of

translational research, revealing intricate interactions between host

metabolism, immune function, and microbial communities.

The connection between gut microbiota and systemic disease

is an area of intense investigation. Liu L. et al. reviewed the

emerging evidence surrounding the gut microbiota lung axis in

lung cancer. They synthesized data indicating that gut dysbiosis

is associated with worse prognosis and impacts the efficacy of

immune checkpoint blockade, suggesting potential adjunctive

therapeutic strategies through microbiome modulation.

The microbiome’s role extends to neuroscience. Wang et al.

employed a multi-omics approach to unravel the mechanisms

of propofol induced psychological dependence. By integrating

transcriptomics, metabolomics, and gut microbiome sequencing

in a mouse model, they identified significant changes in

neuroactive ligand receptor interaction pathways and gut

microbial composition, suggesting a complex bidirectional

signaling mechanism.

In the context of musculoskeletal health, Liu Y. et al. conducted

an integrative analysis of serum microorganisms and serum

metabolomics in osteoporosis patients. Their findings revealed

distinct microbial compositions and significant differences in

lipid metabolism pathways associated with osteoporosis, providing

candidate biomarkers for early diagnosis.

Metabolomics also proved valuable in elucidating the

mechanisms of traditional therapies. Sun et al. investigated the

protective mechanisms of Angelica sinensis polysaccharide (ASP)

against recurrent spontaneous abortion. Through metabolomic

analysis and assessment of autophagy levels, they found that ASP

restores diminished autophagy activity and regulates key metabolic

pathways, including glycolysis/gluconeogenesis.

Emerging modalities and perspectives

The Research Topic also highlights the potential of novel

biological entities and advanced analytical modalities. The

diagnostic and therapeutic potential of exosomes was reviewed by

Odehnalová et al.. As carriers of disease specific biomarkers, these

extracellular vesicles offer opportunities for non-invasive detection,

targeted drug delivery, and regenerative medicine in cancer and

neurodegenerative diseases.

Furthermore, Huang F. F. et al. provided neuroimaging

evidence for the central mechanisms of acupuncture in non-specific
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low back pain through a systematic review and meta-analysis.

Utilizing functional neuroimaging data, this study demonstrated

that acupuncture modulates pain processing through the insula

and limbic system, validating its clinical efficacy and exploring its

underlying mechanisms.

The studies compiled in this Research Topic collectively

demonstrate the profound impact of multi-omics analysis on

translational medicine. By embracing integrative approaches,

novel computational methods, and the inclusion of diverse data

types such as microbiome profiles and imaging features, these

investigations are significantly advancing the field. The insights

generated here not only enhance our understanding of complex

diseases but also pave the way for more precise diagnostics

and personalized therapeutic strategies, bringing us closer to the

realization of personalized healthcare.
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Introduction: Recurrent spontaneous abortion (RSA) represents a significant clinical 
challenge, with its underlying mechanisms yet to be fully elucidated. Despite 
advances in understanding, the precise pathophysiology driving RSA remains 
unclear. Angelica sinensis, a traditional herbal remedy, is frequently used as an 
adjunctive treatment for miscarriage. However, it remains uncertain whether 
its primary active component, Angelica sinensis polysaccharide (ASP), plays a 
definitive role in its therapeutic effects. The specific function and mechanism of 
ASP in the context of RSA require further investigation.

Methods: In this study, we sought to evaluate autophagy levels at the maternal-
fetal interface in RSA patients and in an RSA mouse model treated with ASP, 
complemented by a comprehensive metabolomic analysis. Autophagy flux in the 
decidua was compared between eight RSA patients and eight healthy pregnant 
women. Additionally, changes in autophagy flux were assessed in an RSA mouse 
model following ASP treatment, with embryos and placental tissues collected for 
subsequent metabolomic profiling.

Results: Our results revealed a significant reduction in Beclin 1 protein levels in the 
decidua of RSA patients compared to the normal pregnancy group. Conversely, ASP 
treatment in the RSA mouse model restored autophagy-related protein expression, 
including ATG7, ATG16L, and Beclin 1, to levels higher than those observed in the 
untreated RSA group. Metabolomic analyses further identified significant changes 
in phosphatidylethanolamine levels between ASP-treated and control groups, with 
differential metabolites enriched in pathways related to glycolysis/gluconeogenesis, 
glycerolipid metabolism, and glycine, serine, and threonine metabolism. Functional 
assays revealed that ASP enhances trophoblast cell proliferation, migration, and invasion.

Conclusion: In summary, our findings demonstrate diminished autophagy activity 
in RSA patients, while ASP appears to restore autophagy and regulate key metabolic 
pathways, including glycolysis/gluconeogenesis. These results provide new 
insights into the protective mechanisms of ASP in RSA, suggesting its potential 
as a therapeutic intervention for this condition.

KEYWORDS

recurrent spontaneous abortion, Angelica sinensis polysaccharide, autophagy, 
metabolomics, Beclin 1
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1 Introduction

Recurrent spontaneous abortion (RSA) is a prevalent and 
clinically significant obstetric complication, defined by the occurrence 
of two or more consecutive pregnancy losses prior to the 28th week of 
gestation (1). The known causes of RSA are diverse, including 
infectious agents, chromosomal abnormalities, hormonal and 
metabolic disorders, antiphospholipid syndrome, and structural 
abnormalities of the uterus (2–6). However, approximately 50% of 
RSA cases are classified as idiopathic, with no clearly identifiable 
underlying cause (7). Emerging evidence suggests that autophagy 
levels in trophoblast cells of RSA patients are dysregulated (8–11). 
However, whether RSA is driven by autophagy deficiency or excessive 
autophagy activation remains poorly understood, necessitating 
further investigation.

Autophagy is a fundamental cellular process that mediates the 
transport of intracellular components to lysosomes for degradation 
and recycling, ensuring cellular homeostasis and adaptation to stress 
(12). This highly orchestrated pathway is regulated by a network of 
autophagy-related genes (ATGs) and their associated proteins. Beyond 
its role in cellular maintenance, autophagy plays a pivotal role in early 
embryonic development and implantation (11). Dysregulated 
autophagy has been implicated in various pregnancy complications, 
including preeclampsia and fetal growth restriction (13, 14), However, 
investigations into the role of autophagy in RSA remain scarce, and 
existing findings are often inconsistent, highlighting the need for 
further focused research.

Angelica sinensis, a cornerstone of traditional Chinese medicine, 
has been historically employed for the treatment of gynecological 
disorders (15). Its primary bioactive components include Angelica 
sinensis polysaccharide (ASP), along with sugars such as xylose, 
galactose, glucose, arabinose, rhamnose, fucose, and galacturonic acid, 
with ASP recognized as the most significant therapeutic constituent 
(16). A growing body of research has highlighted the diverse 
pharmacological properties of ASP, including hepatoprotective effects 
(17, 18), anti-cancer activity (19, 20), anti-aging benefits (21–23), 
antioxidant capacity (24), and immune modulation (25).

Emerging evidence further supports the role of Angelica sinensis 
extracts in modulating autophagy (26, 27) and restoring immune 
balance in abortion-prone models (28, 29). Specifically, ASP have been 
shown to significantly suppress the expression of autophagy-related 
proteins, including microtubule-associated protein 1 light chain 3 
(LC3)II/LC3I, thereby mitigating excessive mitochondrial autophagy 
(30, 31). Despite these promising findings, the precise regulatory 
effects of ASP on autophagy, particularly within the context of RSA, 
and its underlying mechanisms remain inadequately understood.

Thus, this study aims to elucidate whether ASP contributes to the 
adjunctive treatment of RSA through modulation of autophagy 
pathways and to identify the associated signaling pathways. Our 
findings demonstrate a significant reduction in Beclin 1 expression at 
the maternal-fetal interface in RSA patients, indicating impaired 
autophagy activity. In contrast, ASP treatment in RSA mice led to a 
marked upregulation of autophagy-related proteins, including ATG7, 
ATG16L, and Beclin 1, accompanied by alterations in the glycolysis/
gluconeogenesis metabolic pathway. Furthermore, ASP was shown to 
enhance the proliferation, migration, and invasion of HTR-8/SVneo 
trophoblast cells, highlighting its potential to support 
trophoblast function.

2 Materials and methods

2.1 RSA animal model

The CBA/J and DBA/2 mouse strains are well-established models 
for investigating immune-mediated RSA. In this study, female CBA/J 
mice were mated with male DBA/2 mice (CBA/J × DBA/2) to induce 
RSA-like phenotypes, as previously described (1). A total of 30 female 
CBA/J mice (20 ± 2 g), 10 male DBA/2 mice (22 ± 2 g), and 5 male 
BALB/c mice (20 ± 2 g), all aged 9 weeks, were obtained from Beijing 
Huafukang Biotechnology Co., Ltd. During the experimental 
procedures, female mice were paired with male mice at a 2:1 mating 
ratio. During the experimental procedures, female mice were paired 
with male mice in a 2:1 mating ratio. The detection of a vaginal plug 
was designated as embryonic day 1 of pregnancy. The pregnant 
females were randomly divided into three experimental groups: a 
normal control group, a RSA control group and an ASP intervention 
group. The ASP group received daily oral gavage of ASP at a dose of 
400 mg/kg (32), while the control groups were administered an 
equivalent volume of saline. Treatments commenced on the first day 
of pregnancy and continued for 2 weeks. At the end of the treatment 
period, all mice were anesthetized and euthanized in accordance with 
humane protocols. All experimental procedures were conducted 
under the approval of the Ethics Committee of Shanghai First 
Maternity and Infant Hospital.

2.2 Sample collection

Embryos and placentas were carefully harvested from the 
experimental mice and immediately rinsed with ice-cold phosphate-
buffered saline (PBS) to remove residual blood and debris. The cleaned 
samples were then subjected to rapid flash-freezing in liquid nitrogen 
to preserve molecular integrity and stored at −80°C until 
further analysis.

2.3 Sample preparation

Frozen embryo and placenta samples, each weighing 15 
milligrams, were carefully transferred into 1.5 mL Eppendorf tubes. 
To optimize the extraction process, two small steel beads were added 
to each tube, along with 0.3 mL of a methanol-to-water solution (4:1, 
vol/vol). Additionally, a reference solution containing 0.3 mg of 
L-2-chlorophenylalanine dissolved in methanol was included in each 
tube. The samples were subsequently incubated at −20°C for 30 min 
to enhance the extraction efficiency.

Following the initial storage period, the samples were subjected to 
ultrasonic extraction in an ice-water bath for 10 min to ensure 
thorough processing. They were then briefly stored at −20°C for 2 min 
before being ground at 60 Hz for 2 min to achieve a uniform mixture. 
Subsequently, the samples were centrifuged at 4°C and 13,000 rpm for 
10 min, facilitating the separation of the supernatant. The collected 
supernatant was concentrated and dried using a freeze-drying 
centrifuge, yielding a final volume of 250 μL.

Each dried sample was processed with 300 μL of a methanol–
water mixture (1:4, vol/vol). The mixture was vortexed for 30 s and 
subjected to ultrasonic extraction in an ice-water bath for 3 min. The 
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samples were then incubated at −20°C for 2 h to ensure thorough 
extraction. Following incubation, the samples were centrifuged at 
13,000 rpm for 10 min at 4°C. A 150 μL aliquot of the supernatant was 
carefully collected with a crystal syringe, passed through a 0.22 μm 
microfilter, and transferred to LC vials. These vials were subsequently 
stored at −80°C to maintain sample integrity prior to liquid 
chromatography-mass spectrometry (LC–MS) analysis.

To ensure the reliability and consistency of the LC–MS analysis, a 
pooled sample derived from equal portions of each individual sample 
was prepared and utilized as a quality control (QC) sample.

2.4 LC–MS analysis

Metabolic profiling of the collected samples was conducted using 
a cutting-edge UPLC i-Series system (Waters Corporation, Milford, 
United States) coupled with the advanced VION IMS QTOF mass 
spectrometer (Waters Corporation, Milford, United  States). 
Chromatographic separation was achieved on a high-resolution UPLC 
BEH C18 column (1.7 μm, 2.1 × 100 mm) in both positive and 
negative ionization modes. The mobile phase comprised water with 
0.1% formic acid as solvent A and a 2:3 (vol/vol) acetonitrile/methanol 
mixture containing 0.1% formic acid as solvent B. A linear gradient 
elution program was employed as follows: 0 min, 1% B; 1 min, 30% B; 
2.5 min, 60% B; 6.5 min, 90% B; 8.5 min, 100% B; 10.7 min, 100% B; 
10.8 min, 1% B; and 13 min, 1% B. The column was maintained at a 
constant temperature of 45°C, with a flow rate of 0.4 mL/min. To 
ensure sample integrity, all samples were stored at 4°C throughout the 
analysis, with an injection volume precisely set to 1 μLs.

Mass spectrometry data acquisition was conducted using both 
full-scan mode (m/z range: 50–1,000) and MSE mode to ensure 
comprehensive coverage and enhanced fragmentation information. In 
MSE mode, alternating low- and high-energy scans were performed, 
enabling simultaneous acquisition of precursor and fragment ion data. 
The low-energy scans were conducted with a fixed collision energy of 
4 eV, while high-energy scans employed a collision energy ramp 
ranging from 20 to 45 eV. Collision-induced dissociation was 
facilitated using high-purity argon gas (99.999%), with optimized 
instrument settings as follows: source temperature set to 115°C, 
desolvation gas temperature maintained at 450°C, cone voltage at 
40 V, desolvation gas flow rate at 900 L/h, a scan interdelay of 0.02 s, 
and a scan time of 0.2 s.

To ensure data reproducibility and evaluate analytical repeatability, 
QC samples were systematically injected at regular intervals 
throughout the analysis, typically after every three sample injections. 
The QC samples, prepared as pooled extracts from all experimental 
samples, were used to monitor the relative standard deviations of both 
retention times and peak areas.

The specifications and details of the primary instruments utilized 
in this study are available in Supplementary material S1.

2.5 Data preprocessing

The raw LC–MS data were processed using Progenesis QI V2.3 
software (Nonlinear Dynamics, Newcastle, United  Kingdom), 
incorporating a comprehensive workflow that included baseline 
filtering, peak detection, integration, retention time correction, peak 

alignment, and normalization. The data processing pipeline utilized 
stringent parameters, including a 5% production threshold, 10 ppm 
product tolerance, and 5 ppm precursor tolerance, to ensure high 
fidelity and reproducibility. Compound identification was performed 
through a qualitative analysis using multiple reference databases, 
including the Human Metabolome Database (HMDB), LipidMaps 
(V2.3), Metlin, EMDB, PMDB, and a custom in-house database. 
Accurate mass-to-charge ratios (m/z), secondary fragment patterns, 
and isotopic distributions were employed as definitive criteria for 
compound annotation, ensuring precise and reliable 
metabolite identification.

2.6 Statistical analysis

The acquired data underwent rigorous preprocessing to ensure 
reliability and accuracy. Peaks with more than 50% missing values 
across groups (ion intensity = 0) were excluded. Zero values were 
imputed with half of the minimum detected value, and compounds 
were filtered based on qualitative criteria. Specifically, compounds 
scoring fewer than 36 points on a 60-point scale were deemed 
invalid and subsequently removed. Data from both positive and 
negative ion modes were integrated into a unified data matrix. To 
evaluate the overall distribution and confirm the stability of the 
analytical workflow, the consolidated matrix was subjected to 
principal component analysis (PCA) using the R 
programming environment.

To identify differential metabolites between experimental groups, 
we  applied orthogonal partial least squares discriminant analysis 
(OPLS-DA) and partial least squares discriminant analysis (PLS-DA). 
Model quality was rigorously evaluated through 7-fold cross-
validation and 200 response permutation tests to mitigate the risk of 
overfitting. The variable importance in projection (VIP) scores derived 
from the OPLS-DA model were utilized to quantify each variable’s 
contribution to group separation. Metabolites were considered 
differentially expressed if they met the criteria of a VIP score greater 
than 1.0 and a p-value less than 0.05, determined using a two-tailed 
Student’s t-test.

2.7 Kyoto encyclopedia of genes and 
genomes enrichment analysis

Pathway enrichment analysis of differential metabolites was 
conducted using their KEGG IDs, leveraging the KEGG database1 and 
the analytical platform developed by Shanghai Oebiotech Co., Ltd.2 
Enrichment of metabolic pathways was determined using a 
hypergeometric test, with a significance threshold set at p ≤ 0.05. A 
lower p-value indicated a higher degree of significance in the 
differences observed across metabolic pathways. Detailed calculation 
formulas and methodologies are provided in 
Supplementary material S2.

1  https://www.kegg.jp/

2  https://cloud.oebiotech.cn/task/
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2.8 Ethical approval and clinical sample 
collection

This study was conducted with the approval of the Ethics 
Committee of the Obstetrics and Gynecology Hospital Affiliated to 
Tongji University (Ethical Approval Number: 22Y11922400). Clinical 
samples, including villi and decidual tissues, were collected from 
January 2024 to May 2024 at Shanghai First Maternity and Infant 
Hospital (also known as the Obstetrics and Gynecology Hospital 
Affiliated to Tongji University). The study population consisted of 8 
patients diagnosed with RSA (RSA group) and 8 women with normal 
pregnancies (NC group).

The inclusion criteria for the RSA group comprised patients with 
a history of two or more consecutive unexplained spontaneous 
miscarriages occurring prior to 28 weeks of gestation. For the control 
group, participants were individuals undergoing elective termination 
of normal pregnancies, carefully matched to the RSA group based on 
baseline characteristics and with no prior history of 
spontaneous miscarriage.

Exclusion criteria encompassed any history of infections, 
reproductive tract abnormalities, endocrine disorders, or other 
identified causes of miscarriage. Baseline clinical characteristics for 
both groups are presented in Table 1, with additional details available 
in Supplementary material S3.

2.9 Western blotting

Total protein was extracted using RIPA lysis buffer (WB6001, 
Shanghai Wayo Biotechnology, Shanghai, China), and protein 
concentrations were quantified using the bicinchoninic acid (BCA) 
method (23,235, Thermo Scientific, Waltham, United States). Equal 
amounts of protein samples were resolved on SDS-PAGE gels and 
subsequently transferred onto PVDF membranes (IPVH00010, 
Millipore, Massachusetts, United States). Membranes were blocked 
with 5% non-fat milk at room temperature for 1 h, followed by 
overnight incubation at 4°C with primary antibodies (42,867, Cell 
Signaling Technology, Boston, United  States). The following day, 
membranes were incubated with secondary antibodies for 1 h at room 
temperature. Immunoreactive proteins were visualized using the 
Tanon 5,200 imaging system (Tanon, Shanghai, China).

Grayscale intensities of protein bands were quantified using 
ImageJ software (NIH, Manassas, MD, United States). The relative 
expression of target proteins was normalized to internal controls, and 
mean values along with standard deviations were calculated for each 
group. Statistical comparisons were performed using two-tailed 
t-tests, with statistical significance defined as p < 0.05. All antibodies 

used in this experiment were obtained from the autophagy antibody 
kit supplied by Cell Signaling Technology.

2.10 Cell culture

HTR8-Svneo cells, a human chorionic trophoblast-derived cell 
line, were procured from the cell bank of Shanghai First Maternity and 
Infant Hospital. The cells were maintained in DMEM/F12 medium 
(C3130-0500, Biological Industries, Kibbutz Beit Haemek, Israel) 
supplemented with 10% fetal bovine serum and 1% penicillin–
streptomycin (15140-122, Grand Island Biological Company, 
Montana, United States). Cultures were incubated in a humidified 
atmosphere of 95% air and 5% carbon dioxide at 37°C to ensure 
optimal growth conditions.

2.11 Drug preparation

ASP (Yuanye, Shanghai, China) was dissolved in complete culture 
medium to prepare a series of concentrations: 0 μg/mL, 0.001 μg/mL, 
0.01 μg/mL, 0.1 μg/mL, 1 μg/mL, and 10 μg/mL. The solutions were 
then sterilized by filtration through a 0.22 μm pore-sized membrane 
filter to ensure sterility prior to subsequent experiments.

2.12 Assessment of cell proliferation 
capacity

HTR8 cells were seeded into 96-well plates at a density of 3,000 
cells per well, with 100 μL of culture medium supplemented with 
specified concentrations of ASP. Each group included six replicates. 
After cell adhesion, the Cell Counting Kit-8 (CCK8, MedChemExpress, 
New Jersey, United States) reagent was added to the wells following 
the manufacturer’s protocol. A blank control, containing culture 
medium and CCK8 reagent without cells, was included to account for 
background absorbance. The optical density (OD) at 450 nm was 
measured using a microplate reader, with the first measurement 
recorded as Day 1. Subsequent measurements were performed at 24 h 
intervals to monitor cell proliferation dynamics.

The net OD was determined by subtracting the OD value of the 
blank control from that of the experimental wells. Comparative 
analysis of OD values across groups was conducted, and proliferation 
curves were generated using GraphPad Prism (version 8.0.2). 
Statistical significance was assessed via repeated measures analysis, 
followed by the least significant difference (LSD) method for 
post-hoc comparisons.

TABLE 1  Clinical characteristics of the RSA group and NC group.

NC group 
(Mean ± SEM)

RSA group 
(Mean ± SEM)

p-value 95% CI

Down Up

Count 8 8

Age (year) 32.25 ± 1.61 32.75 ± 1.16 0.805 −4.761 3.761

BMI (kg/m2) 21.53 ± 1.00 22.79 ± 1.18 0.443 −4.738 2.222

Gestational age (week) 7.75 ± 0.53 9.13 ± 0.61 0.110 −3.104 0.354
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2.13 Wound healing assay

To evaluate cell migration, a wound healing assay was performed. 
Cells were seeded into 6-well plates at a density of 600,000 cells per 
well and cultured in serum-free medium containing varying 
concentrations of the tested drug. Once the cell monolayer reached 
approximately 90% confluence, a sterile 200-μL pipette tip was used 
to create a uniform, vertical scratch across the well. Detached cells and 
debris were carefully removed by washing the wells 2–3 times with 
PBS. Images of the wound area were captured using an inverted 
microscope (Leica, Wetzlar, Germany) at predefined time intervals. At 
each time point, the culture medium was replenished to maintain 
optimal conditions. The wound area was quantified using ImageJ 
software to assess the rate of wound closure over time.

2.14 Transwell migration assay

To assess cell migration, 800 μL of medium containing 20% serum 
and the respective drug treatment was added to the lower chamber of 
the Transwell system, which was then placed in a 24-well plate. A total 
of 200 μL of cell suspension (containing 100,000 cells per well) was 
seeded into the upper chamber. The system was incubated at 37°C in 
a humidified incubator with 5% CO2 for 16 h. Following incubation, 
cells that had migrated to the lower surface of the membrane were 
fixed with 4% paraformaldehyde at room temperature for 20 min. The 
fixed cells were stained with 0.1% crystal violet solution for 30 min. 
Non-migrated cells on the upper surface of the membrane were 
carefully removed using a cotton swab. The membranes were then 
rinsed with PBS to eliminate excess stain. Migrated cells were 
visualized and imaged under an inverted microscope for 
quantitative analysis.

2.15 Transwell invasion assay

In contrast to the migration assay, the invasion assay incorporates 
an additional step to assess cell invasive capabilities. The upper 
chamber is pre-coated with 100 μL of medium containing 10% 
Corning matrigel matrix (Corning, New York, United States) to mimic 
the extracellular matrix. The chamber is incubated at 37°C for 1 h to 
allow the Matrigel to solidify, after which the supernatant is carefully 
removed. The subsequent procedures, including cell seeding and 
incubation, follow the same protocol as described for the 
migration assay.

2.16 Data acquisition and statistical analysis

Image analysis was conducted using ImageJ software, while data 
visualization and statistical evaluations were performed with 
GraphPad Prism (version 8.0.2). Results are presented as the 
mean ± standard error of the mean. Statistical comparisons between 
groups were performed using one-way analysis of variance. Post hoc 
analyses were carried out using either the LSD or Bonferroni multiple 
comparison tests to assess the significance of intergroup differences. 
Statistical significance was defined as follows: p < 0.05 (*), p < 0.01 
(**), or p < 0.001 (***).

2.17 Transmission electron microscopy

Cells were harvested via centrifugation and promptly fixed in a 
2.5% glutaraldehyde solution at 4°C for a minimum of 3 h to preserve 
cellular structures. Following fixation, samples were washed three 
times with 0.1 M phosphate buffer and subsequently post-fixed in 1% 
osmium tetroxide at 4°C for 3 h. The specimens were then subjected 
to three additional washes with phosphate buffer, sequentially 
dehydrated in graded ethanol, and embedded in Epon 812 resin to 
ensure optimal preservation and sectioning quality.

Ultrathin sections, approximately 70 nm in thickness, were 
prepared using an ultramicrotome (Leica UC6) and carefully mounted 
onto copper grids coated with formvar support films. The sections 
were stained with uranyl acetate for 30 min to enhance contrast, 
followed by counterstaining with lead citrate for 15 min. Finally, the 
stained sections were visualized and imaged using a transmission 
electron microscope (Thermo Fisher Talos 120) operated at 120 kV.

3 Results

3.1 Clinical characteristics of the RSA and 
NC groups

The diagnostic criteria for RSA were defined according to the 
ESHRE guidelines (33, 34). The clinical characteristics of participants 
in the RSA group and the NC group are summarized in Table 1 and 
Supplementary material S3. No significant differences were observed 
between the two groups in terms of age (30–34 years), body mass 
index (BMI, 20–24), or gestational age (7–10 weeks) (p > 0.05).

3.2 Reduced autophagy levels at the 
maternal-fetal interface of RSA patients

To investigate autophagy activity at the maternal-fetal interface, 
we examined decidual tissues from RSA patients and compared them 
to those of the NC group. As illustrated in Figure 1, autophagy flux 
was assessed across 8 samples from the NC group and 8 samples from 
the RSA group. Western blot analysis revealed a significant reduction 
in the expression levels of autophagy-related proteins, including 
ATG5, ATG7, and ATG16L, in the RSA group. Notably, Beclin 1 levels 
were significantly decreased (p-value <0.05). Although the expression 
of several other proteins implicated in the autophagy pathway did not 
show significant differences, the overall autophagy levels in the RSA 
group displayed a clear downward trend.

3.3 ASP elevate autophagy levels at the 
maternal-fetal Interface in RSA model mice

Previous studies have demonstrated that ASP promotes autophagy 
activation (35) and improves outcomes in RSA animal models (36). 
Furthermore, ASP has been reported to confer protective effects 
during pregnancy (32). Based on these findings, we hypothesize that 
ASP may mitigate RSA by activating protective autophagy pathways. 
Data presented in Supplementary material S4 illustrate the miscarriage 
status of mice in the RSA model. WB analysis revealed that the 
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expression levels of autophagy-related proteins, including ATG7, 
ATG16L, and Beclin 1, were significantly elevated in the ASP-treated 
group compared to the untreated RSA group (Figures  1C,D). 
Additionally, our previous metabolomic analysis highlighted 
enrichment of differential metabolites in the autophagy pathway, with 
pathway activity upregulated in the ASP-treated group relative to 
controls (Supplementary material S5).

3.4 Metabolite profiling of ASP and control 
groups

To investigate the metabolic alterations induced by ASP in the 
context of RSA, a metabolomic analysis was conducted comparing 
samples from the ASP-treated and control groups (Figure 2A). An 
OPLS-DA model revealed a clear and optimized class separation, 
demonstrating robust model fitting and effectively capturing the 
metabolic changes induced by ASP exposure (Figure 2B). Among the 
identified metabolites, 55 were significantly downregulated, and 42 
were upregulated in the ASP group compared to the control group 
(Figure  2C; Supplementary materials S6, S7). Supporting our 
hypothesis, phosphatidylethanolamine (PE) was prominently altered 
between the two groups. The differential metabolites identified belong 
to several chemical classes, including benzene and substituted 
derivatives, carboxylic acids and derivatives, and fatty acyls, etc. 

(Supplementary materials S8, S9). Pathway enrichment analysis using 
the KEGG database highlighted significant enrichment of these 
metabolites in pathways such as glycolysis/gluconeogenesis, 
glycerolipid metabolism, glycine, serine, and threonine metabolism, 
nicotinate and nicotinamide metabolism, glyoxylate and dicarboxylate 
metabolism, Fc gamma R-mediated phagocytosis, and the Apelin 
signaling pathway (Figure  2D; Supplementary material S10). 
Subsequently, autophagosomes were observed by TEM. TEM further 
provided direct evidence of autophagic activity. Autophagosomes were 
visualized in the decidual tissues of the normal mouse model 
(Figure 2E), the RSA mouse model (Figure 2F), and the ASP-treated 
RSA mouse model (Figure 2G).

3.5 ASP enhances proliferation, migration 
and invasion of human chorionic 
trophoblast cells

The impact of ASP on the proliferation of HTR8 cells was 
assessed using the CCK-8 assay, revealing that ASP significantly 
promoted cell proliferation in a dose-dependent manner 
(Figure 3A). Consistently, transwell migration and scratch wound 
healing assays demonstrated a marked enhancement in the 
migratory capacity of HTR8 cells upon ASP treatment 
(Figures  3B,C,F,G). Additionally, the transwell invasion assay 

FIGURE 1

Western blot analysis of autophagy level changes in clinical samples from the RSA group and RSA model mice following ASP intervention. (A) Western 
blot analysis of autophagy-related proteins in samples from the RSA group compared to the Normal group. (B) Histogram showing the quantification 
of Western blot band intensities from (A). (C) Western blot analysis of autophagy-related proteins in RSA model mice, comparing the ASP intervention 
group to the control group. (D) Histogram illustrating the quantification of Western blot band intensities from (C).
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FIGURE 2

Establishment of the mouse model, metabolomics analysis, and transmission electron microscopy (TEM) images of autophagosomes. (A) workflow for 
constructing the mouse model. Female CBA/J mice and male DBA/2 mice were paired in a 2:1 ratio to establish the RSA model. On the first day of 
pregnancy, female mice were randomly assigned to either the ASP group or the control group, receiving ASP or an equivalent volume of saline, 
respectively. Samples were collected after 14 days for subsequent LC–MS analysis and data processing. (B) OPLS-DA analysis demonstrates a clear 
separation between the ASP and control groups. (C) Volcano plot of differential metabolites between the ASP and control groups. Each point in the 
figure represents a metabolite. The x-axis represents the log2(FC) value of the comparison between the two groups, while the y-axis represents the 
−log10(p-value). Red points indicate metabolites with p < 0.05 and fold change (FC) > 1, and blue points indicate metabolites with p < 0.05 and FC < 1. 
Gray points indicate non-significant differences (p > 0.05). (D) Bubble chart showing KEGG enrichment analysis of selected differential metabolites. 
(E) TEM revealed autophagosomes in the decidual tissues of mice. Autophagosomes in the decidua of mice from the normal control group. 
(F) Autophagosomes in the decidua of mice from the RSA control group. (G) Autophagosomes in the decidua of mice from the ASP intervention RSA 
group.
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FIGURE 3

The effects of different concentrations of ASP (0, 0.001, 0.01, 0.1, 1, 10, 100 μg/mL) on the phenotype of HTR8 cells. (A) CCK8 assay showing the effect 
of ASP treatment at concentrations of 0, 0.1, and 100 μg/mL on the proliferation of HTR8 cells. (B,C) Transwell migration assay evaluating the effect of 
ASP treatment at concentrations of 0.001, 0.01, 0.1, and 1 μg/mL on the migration ability of HTR8 cells. (D,E) Transwell invasion assay showing the 
effect of ASP treatment at concentrations of 0, 0.001, 0.01, 0.1, 1, and 10 μg/mL on the invasion ability of HTR8 cells. (F,G) Scratch wound assay 
evaluating the effect of ASP treatment at concentrations of 0, 0.01, and 10 μg/mL on the migration ability of HTR8 cells.
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further confirmed that ASP significantly facilitated the invasive 
ability of HTR8 cells (Figures 3D,E). Collectively, these findings 
indicate that ASP serves as a potent enhancer of trophoblast cell 
proliferation, migration, and invasion, underscoring its potential 
role in promoting trophoblast function in a dose-
dependent manner.

4 Discussion

The relationship between RSA and autophagy remains an area 
of limited investigation, with findings to date presenting 
inconsistencies. Most research has predominantly focused on 
autophagy and its upstream and downstream signaling pathways, 
while metabolic aspects remain underexplored. Some studies have 
reported elevated autophagy levels in the chorionic tissues of RSA 
patients (11). Conversely, other investigations have observed a 
downregulation of autophagy-related genes in the chorion of RSA 
patients (9, 37, 38), suggesting that suppressed autophagy may lead 
to aberrant alterations in decidual natural killer (dNK) cell 
phenotypes, potentially contributing to pregnancy loss (10). 
Further studies investigating the immune microenvironment at the 
maternal-fetal interface have highlighted significant upregulation 
of autophagy-related proteins, such as Beclin 1, LC3B II/I, and 
BNIP3, in decidual macrophages of RSA patients (8). Impaired 
decidualization, a key factor influencing RSA, has been associated 
with reduced autophagy levels and disrupted uterine 
decidualization in RSA patients (39). Moreover, preclinical 
research indicates that hypericin, a bioactive compound, exerts 
protective effects against abortion in a rat model by enhancing 
autophagy (40). These findings collectively underscore the complex 
and multifaceted role of autophagy in RSA. However, the precise 
interplay between autophagy, immune regulation, and metabolism 
at the maternal-fetal interface remains to be  fully elucidated. 
Further studies are warranted to clarify the mechanistic links 
between autophagy and RSA pathogenesis, which may pave the 
way for novel therapeutic strategies targeting this pathway.

Our experimental findings reveal a significant reduction in 
Beclin-1 levels in RSA patients compared to those with normal 
pregnancies, accompanied by a decreasing trend in ATG5, ATG7, 
and ATG16L expression. The autophagy pathway is initiated by the 
unc-51-like autophagy-activating kinase (ULK) complex, which 
orchestrates upstream signals to activate downstream processes. 
Beclin-1, a pivotal component of the autophagy-specific vacuolar 
protein sorting 34 (VPS34) complex I, plays a critical role in 
catalyzing the production of phosphatidylinositol-3-phosphate 
(PI3P) (PI3P). The generation of PI3P facilitates the recruitment 
of autophagy-related machinery, including the ATG16L1-
ATG5-ATG12 complex, ATG3, and ATG7. These components 
work synergistically to conjugate ATG8 family members—
encompassing the LC3 and GABARAP subfamilies—with PE, a key 
step in promoting autophagosome maturation and subsequent 
autophagic flux (12, 41).

Therefore, our findings indicate that autophagy levels at the 
maternal-fetal interface are diminished in RSA patients compared 
to those with normal pregnancies, aligning with previously 
reported observations (9, 37, 38). Importantly, in the RSA mouse 

model, treatment with ASP partially restored autophagy activity, 
suggesting a potential mechanism by which ASP confers protective 
effects in RSA. Beyond its influence on autophagy, ASP has 
demonstrated broader benefits in pregnancy-related contexts. For 
example, ASP has been shown to mitigate iron-deficiency anemia 
in pregnant rats by modulating the hepcidin-FPN1 axis (32). 
Furthermore, Angelica sinensis extracts, such as Ligustilide, have 
been reported to enhance pregnancy outcomes by improving 
endometrial receptivity and promoting angiogenesis within the 
endometrium (42). Additionally, Angelica sinensis has been 
implicated in alleviating metabolic disturbances in abortion-prone 
mice through the regulation of glycerolipid metabolism and has 
been shown to exert immunomodulatory effects (29, 43).

Simultaneously, ASP has demonstrated the ability to regulate 
autophagy through diverse signaling pathways. In the context of 
osteoarthritis, ASP has been reported to induce autophagy via 
activation of the ERK1/2 pathway (35). Similarly, ASP can mitigate 
chemotherapy-induced hepatotoxicity by enhancing autophagy 
through the MEK/ERK signaling cascade (44). Additionally, 
studies in a rat model of idiopathic pulmonary fibrosis revealed 
that Angelica sinensis exerts its autophagy-inducing effects via 
modulation of the mammalian target of rapamycin (mTOR) 
pathway (45).

In summary, ASP provide a degree of protection during 
pregnancy and can influence autophagy levels through different 
signaling pathways. Despite extensive evidence supporting the 
protective role of Angelica sinensis in pregnancy, research 
specifically investigating the contribution of ASP in miscarriage 
remains limited. The phytochemical composition of Angelica 
sinensis is highly complex, encompassing various bioactive 
compounds such as ASP, ligustrazine, laurene, ferulic acid, and 
vanillic acid (46). This complexity underscores the need for 
targeted studies to identify whether ASP represents the primary 
active component responsible for its therapeutic effects and to 
elucidate the molecular mechanisms involved. Our findings 
provide preliminary evidence suggesting that ASP may mitigate 
RSA by activating autophagy. However, further comprehensive 
investigations are required to validate these observations and 
explore the precise mechanisms underlying this protective effect.

Metabolomics has emerged as a robust and unbiased analytical 
approach, offering a comprehensive overview of an individual’s 
metabolic profile (47). In this study, a metabolomic analysis was 
performed to compare the metabolic profiles of the ASP-treated 
group and the control group, revealing significant differences in PE 
levels between the two. PE plays a critical role in the autophagy 
pathway, serving as an essential lipid for the conjugation of LC3-I, 
facilitating its conversion into the autophagosome-associated form, 
LC3-II (48). These findings highlight the potential mechanistic link 
between ASP treatment and autophagy regulation.

KEGG pathway analysis highlighted significant alterations in 
metabolic pathways, including Glycolysis/Gluconeogenesis, 
Glycerolipid metabolism, and Glycine, serine, and threonine 
metabolism. Glycolysis/Gluconeogenesis has been implicated in 
impaired decidualization in pregnant rats (49) and is associated 
with defective trophoblast invasion in preeclampsia patients, as 
previously reported (50). Similarly, disruptions in Glycerolipid 
metabolism have been identified as potential biomarkers for 
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idiopathic infertility in in vitro fertilization (IVF) patients (51) and 
are linked to an increased risk of gestational diabetes in pregnant 
women (52). Consistent with our findings, metabolomic analyses 
of plasma from RSA patients have also revealed changes in 
Glycolysis/Gluconeogenesis and Glycerolipid metabolism (53). 
Both pathways have been further associated with preterm birth 
(54) and gestational diabetes risk (55). These studies collectively 
underscore the critical impact of metabolic dysregulation on 
pregnancy, highlighting the intricate connection between altered 
metabolic states and pregnancy complications.

However, there is a lack of relevant research when it comes to 
trends in the levels of specific metabolites within these pathways 
or whether intervention leads to reversals of these trends, 
particularly in RSA. Our findings reflect the possible metabolic 
mechanisms through which ASP exerts protective effects against 
RSA by regulating autophagy, providing a comprehensive overview 
of the metabolic profile changes induced by ASP at the maternal-
fetal interface. Although these discoveries do not delve into deeper 
metabolic explorations, they lay a foundation and perspective for 
further investigation into the pathogenesis of RSA and 
its treatment.

However, this study has some limitations. Firstly, although 
our study initially found that ASP exerts protective effects on 
RSA by regulating autophagy, we  did not further conduct 
dynamic validation to comprehensively observe autophagic flux. 
Instead, we  focused only on autophagy levels at specific time 
points. This verification is crucial for establishing the reliability 
and applicability of the research findings. In future projects, 
we plan to perform additional experiments to observe autophagic 
flux in RSA and ASP intervention. These experiments may 
include observing LC3-labeled cells under a fluorescence 
microscope, using lysosome-specific fluorescent dyes to assess 
lysosomal function, measuring sequestosome 1 levels at different 
time points after intervention, and combining lysosomal 
inhibitors to validate autophagic flux activity. Secondly, the 
sample size in our study is relatively small, with only 8 
participants in each clinical group, and the mouse experiments 
included only 6 and 3 samples from the ASP and control groups, 
respectively. This limitation restricts the generalizability of the 
findings and may affect the applicability of the results. Before 
ASP can be considered a protective factor for RSA, more in-depth 
validation in larger independent cohorts is necessary. Although 
our current metabolomics sequencing results indicate that PE is 
an important differential metabolite and that ASP affects key 
metabolic pathways, we  have not yet conducted further 
experiments to explore how the metabolic changes induced by 
ASP specifically contribute to the pathological mechanisms of 
RSA. In future studies, we plan to exogenously add PE and other 
key metabolites to evaluate their effects on cell functions. 
Furthermore, in an RSA animal model with ASP intervention, 
we aim to measure the activity of key metabolic enzymes and 
lipid metabolic enzymes in critical pathways to investigate 
whether ASP improves RSA by regulating these enzyme activities 
and influencing metabolic pathways. At the same time, we will 
utilize specific inhibitors or gene knockout or knockdown 
methods to study the expression of key metabolic enzymes in cell 
models and assess their effects on cellular functions and the 
autophagy pathway.

5 Conclusion

In summary, we studied the levels of autophagy in the maternal-
fetal interface of RSA patients and healthy pregnant individuals, and 
examined the changes in autophagy levels in ASP-treated RSA model 
mice, followed by a metabolomic analysis and cell phenotype assays. 
Our findings suggest that ASP may exert protective effects against RSA 
by activating autophagy while influencing pathways such as 
Glycolysis/Gluconeogenesis, Glycerolipid metabolism, and Glycine, 
serine, and threonine metabolism. However, further research and 
validation are necessary. Our results may provide insights for 
exploring the pathogenesis of RSA and offer evidence for the 
therapeutic effects of ASP in treating RSA.
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Exosomes, nanosized extracellular vesicles released by various cell types, are 
intensively studied for the diagnosis and treatment of cancer and neurodegenerative 
diseases, and they also display high usability in regenerative medicine. Emphasizing 
their diagnostic potential, exosomes serve as carriers of disease-specific biomarkers, 
enabling non-invasive early detection and personalized medicine. The cargo 
loading of exosomes with therapeutic agents presents an innovative strategy for 
targeted drug delivery, minimizing off-target effects and optimizing therapeutic 
interventions. In regenerative medicine, exosomes play a crucial role in intercellular 
communication, facilitating tissue regeneration through the transmission of 
bioactive molecules. While acknowledging existing challenges in standardization 
and scalability, ongoing research efforts aim to refine methodologies and address 
regulatory considerations. In summary, this review underscores the transformative 
potential of exosomes in reshaping the landscape of medical interventions, with 
a particular emphasis on cancer, neurodegenerative diseases, and regenerative 
medicine.
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1 Introduction

Extracellular vehicles (EVs) are cellular structures released by cells 
into the extracellular space and have recently become a focal point of 
research due to their multifunctional role in many biological processes 
(1, 2). According to the new classification, EVs are divided into several 
types based on their biogenesis (e.g., exosome, microvesicle, 
apoptosome, and autophagic EVs), concept (e.g., oncosome, matrix 
vesicle, stress EVs, and migrasome), and size (e.g., small EVs and large 
EVs) (3). In general, EVs were divided into three types including 
apoptotic bodies (apoptosomes), which are the largest EVs with a size 
range between 1 and 5 μm and are released during programmed cell 
death (apoptosis). They contain cellular organelles and fragmented 
DNA and are cleared by phagocytic cells. Microvesicles, typically 
100–1,000 nm in diameter, are shed directly from the plasma 
membrane through outward budding, a process in which a portion of 
the cellular membrane protrudes outward from the cell surface. They 
contain proteins, lipids, polysaccharides, and nucleic acids and are 
involved in intercellular communication and signaling (2, 3). Exosomes 
(Figure 1), the smallest EVs ranging in size from 30 to 150 nm, are lipid 
bilayer vesicles and were discovered three decades ago by Pan and 
Johnstone during investigations of reticulocyte maturation (2–5). 
Recent studies discovered small exosomes (Exo-S) and large exosomes 
(Exo-L). Exo-S are in the size range 40–80 nm and contain exosomal 
tetraspanin marker CD63, while Exo-L (80–150 nm) contain CD9 (3). 
Initially perceived as cellular waste products responsible for eliminating 
unnecessary cellular components, our understanding of exosomes has 
undergone a paradigm shift over the years, revealing their multifaceted 
functions in cellular communication and signaling (1, 2).

Exosomes not only represent a promising material for the diagnosis 
of serious pathological states but can also be  effectively utilized for 

medicinal applications and drug transport. Given their significance, this 
review presents the medicinal potential of exosomes, encompassing areas 
such as regenerative medicine, early diagnosis, and drug treatment. In 
addition, to provide a more comprehensive understanding, the review 
rigorously assesses exosome biogenesis, isolation, and characterization.

2 Biogenesis of exosomes

Understanding the biogenesis of exosomes is crucial for advancing 
the knowledge of their biological functions, their roles in diseases, and 
potential applications in therapeutics (1, 3). Their life cycle is a 
complex process involving three main steps: biogenesis, transport, and 
release (2, 3). The whole process is illustrated in Figure  2 and is 
initiated by an inward cell membrane budding (6). During this 
invagination of the plasma membrane, a portion of a cellular 
membrane undergoes inward folding, and a cup-shaped structure 
containing extracellular proteins, lipids, metabolites, and cell 
membrane proteins is formed. This leads to the formation of early 
endosomes (EEs), which subsequently mature and transform into late 
endosomes (LEs). Maturation involves the inward budding of the EEs 
membrane, leading to the sequestration of EE cytoplasmic contents 
and intraluminal vesicle (ILVs) formation within the endosomal 
lumen. During ILV formation, specific cargo molecules such as 
proteins, lipids, and nucleic acids are selectively sorted into the ILVs. 
LEs containing ILVs are called multi-vesicular bodies (MVBs). The 
fate of MVBs is determined by the specific proteins present on their 
surface, which in turn influence various intracellular pathways 
involved in cargo sorting and trafficking. The MVBs can either fuse 
with lysosomes or autophagosomes to be degraded or fuse with a 
plasma membrane to release the contained ILVs as exosomes (2, 6).

GRAPHICAL ABSTRACT

The figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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3 Isolation and characterization 
methods of exosomes

Isolation of exosomes is challenging due to the complexity of 
biological fluids (7, 8). The most common isolation methods include 
ultracentrifugation, ultrafiltration, size exclusion chromatography, 
polymer precipitation, tangential flow filtration, and immunoaffinity 
approaches. A comparison of these methods is provided in Table 1. 
The optimal isolation strategy should be  selected based on the 
application field, as well as the volume and number of biological 
samples (7–9). Furthermore, the application of exosomes directly 
influences the use of subsequent characterization methods (9, 10). 
This chapter does not aim to provide a detailed explanation of the 
principles behind individual isolation and characterization methods 
of exosomes but rather to offer a comprehensive overview that assists 
researchers in selecting the most appropriate approaches based on 
considering the specific requirements of different experimental and 
application contexts.

For diagnostic purposes, exosomes from various biological fluids, 
including blood (serum and plasma), saliva, and urine, are used in 
non-invasive diagnostics due to their ability to carry specific molecular 
information (9, 11). Blood-derived exosomes provide systemic 
insights, reflecting the physiological and pathological state of the 
entire body, making them ideal for detecting various diseases such as 
cancer, neurodegenerative, cardiovascular, and autoimmune diseases 
(12–16). Salivary exosomes, primarily originating from the salivary 
glands and the oral cavity, are valuable for diagnosing oral diseases 
and gastrointestinal tract disorders (17–19). Urinary exosomes, 
secreted by epithelial cells of the urinary tract, are effective in 

diagnosing renal diseases, bladder cancer, and prostate conditions 
(20–22).

When utilizing exosomes for diagnostic purposes, the primary 
goal is to identify disease-specific exosomal markers. To determine 
disease-specific markers, it is essential to identify markers that differ 
in presence or expression level between samples from diseased and 
healthy patients. This requires the comparison and processing of a 
large number (tens to hundreds) of biological samples for statistical 
relevance (23, 24). This procedure thus involves processing large 
numbers of samples with small volume, typically in the maximum of 
a few milliliters. For limited numbers of samples, typically in the range 
of lower tens, differential ultracentrifugation (DUC) is considered the 
gold standard and is the most widely used method. It usually involves 
several consecutive rounds of centrifugation with increasing 
centrifugal force and centrifugation time to remove cells, cell debris, 
and larger microvesicles. The final step at 100,000 g or higher serves 
to precipitate the exosomes (12, 25–27).

Because DUC is time-consuming, for handling tens to hundreds 
of samples, the final ultracentrifugation step is often replaced with 
commercial kits based on precipitation. Several commercial kits use a 
polyethylene glycol precipitation technology, including the Total 
Exosome Isolation Kit (Invitrogen), ExoQuick-TC Exosome 
Precipitation Solution (System Biosciences), miRCURY Exosome Kits 
(QIAGEN), Exo-Prep (HansaBioMed), PureExo Exosome Isolation 
Kit (101Bio), ExoGAG (NasasBiotech), Exosome Precipitation 
Solutions (Immunostep), and the miRCURY Exosome Isolation Kit 
(Exiqon) (28–32). These methods result in the isolation of exosomes 
referred to as total exosomes. In neurodegenerative diseases (NDs), 
specific subpopulations of exosomes are isolated from the total 

FIGURE 1

Structure of exosomes. From a structural perspective, exosomes can be defined as lipid nanoparticles characterized by a phospholipid bilayer 
membrane. The exosomal membrane is enriched with a diverse array of proteins and saccharide markers, including immunomodulatory molecules, 
such as PD-1 and PD-L1, and hormone receptors, such as EGFR, tetraspanins, and glypicans. The internal composition of exosomes comprises a 
variety of biomolecules, including intracellular and cytoskeletal proteins, nucleic acids, growth factors, and cytokines. The figure was partly generated 
using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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exosome pool using immunoaffinity methods with specific antibodies, 
such as anti-L1CAM, anti-NCAM, anti-MOG, or anti-GLAST. These 
antibodies bind specifically neural, oligodendrocyte, or astrocyte 
exosomes, which are the most relevant for identifying markers of NDs 
as Alzheimer disease (AD), multiple sclerosis (MS), dementia, or 
schizophrenia (33–36).

After the isolation of total exosomes or specific exosomal 
subpopulations, the characterization of these exosomes and the 
identification of specific disease markers are performed (10). The most 
common markers include specific proteins or RNAs. For protein marker 
identification, techniques such as tandem of liquid chromatography and 
mass spectrometry (LC–MS) are used, while next-generation sequencing 
(NGS) is used for RNA. Once specific disease markers are identified, it 
is crucial to determine whether their exosomal expression differs 
significantly between diseased and healthy patients in a statistically 
relevant manner. To quantify markers, techniques such as enzyme-linked 
immunosorbent assay (ELISA) or quantitative reverse transcription 
polymerase chain reaction (qRT-PCR) are commonly used (37–42).

Currently, exosomes are being extensively investigated as drug 
delivery systems. Due to their nanoscale dimensions, they can deliver 
therapeutic agents specifically to tumor sites (43). Tumor tissues are 

characterized by a high absorption capacity and poor drainage (44), 
which facilitates the selective accumulation of exosomes with 
prolonged circulation times within these tissues. In addition, it is 
noteworthy that exosomes exhibit favorable permeability across BBB 
(45). Furthermore, the surface of exosomes can be effectively modified 
with various ligands that are specific to target cells, thereby 
significantly enhancing the selectivity of exosomes for these cells (46). 
As cell-derived products, exosomes are generally considered to 
be safer than conventional nanoparticles, particularly metal-based 
nanoparticles (47). Their unique structure, comprising a hydrophilic 
core and a lipid bilayer, allows them to transport a wide range of drug 
types (46). However, a significant limitation in the clinical application 
of exosomes is that cells produce only small quantities of various types 
of exosomes, which restricts their usability in therapeutic contexts (48).

In regenerative medicine and therapeutic applications, exosomes 
are isolated from cell culture media. The most commonly used cell 
sources are mesenchymal stem cells. Similar to diagnostic applications, 
where DUC is a preferred method for smaller sample quantities, DUC 
is also commonly employed for isolating exosomes from cell culture 
media for volumes ranging from tens to hundreds of milliliters. 
However, a drawback of the final ultracentrifugation step is that the 

FIGURE 2

Biogenesis of exosomes. Extracellular membranes are characterized by the presence of numerous transmembrane proteins, including various 
receptors. (1) Upon ligand binding, receptor-mediated endocytosis is initiated, facilitated by actin filaments, which are integral components of the 
cytoskeleton. This process results in the invagination of the membrane surrounding the receptor, leading to the formation of an early endosome within 
the cell. (2) In this early endosome, the bilayer phospholipid membrane exhibits an orientation that is opposite to that of the cytoplasmic membrane, 
causing the extracellular domains of the transmembrane proteins to be directed inward, toward the lumen of the endosome. (3) Within the cellular 
context, endosomes are integral components of the complex endosomal-lysosomal system that interacts in a parallel manner (in both directions) with 
various organelles (e.g., Golgi apparatus and endoplasmic reticulum). This interaction allows endosomes and exosomes to encapsulate biomolecules 
derived from diverse cellular compartment. (4) During this process, early endosomes undergo maturation into late endosomes, which possess the 
normal orientation of transmembrane proteins and (5) generate intraluminal vesicles that will ultimately become exosomes. (6) Following the fusion of 
multi-vesicular bodies containing these intraluminal vesicles with the cytoplasmic membrane, exosomes are released into the extracellular 
environment. The figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 
unported license.
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high speeds lead to exosomal damage and the sedimentation of 
impurities, which diminishes exosomal therapeutic activity (12, 49, 
50). Therefore, the final ultracentrifugation step is often replaced by 
density gradient ultracentrifugation (DGUC), utilizing sucrose or 
iodixanol gradients (OptiPrep™), where the exosomal fraction is not 
only less damaged but also better purified (49–51).

For larger volumes, in the range of hundreds of milliliters to liters, 
a combination of other techniques is employed due to the limited 
capacity of centrifuges. These primarily include ultrafiltration (UF), 
utilizing polymer filters of various pore sizes to remove cells, cell 
debris, and microvesicles, followed by tangential flow filtration (TFF) 
to remove contaminating proteins, to concentrate the sample, and to 
perform diafiltration of exosomes into the desired buffer (52–54). For 
final exosome purification, size exclusion chromatography (SEC) is 
employed, followed by a final TFF step to concentrate the sample and 
transfer it into suitable application buffers, most commonly PBS (55–
57). The advantage of the combination of techniques such as UF, TFF, 
and SEC is that they are suitable for practical use on an industrial scale 
(55, 56). In addition, the isolated exosomes exhibit high purity and 
preserved therapeutic activity, which is usually subsequently 
confirmed by in vitro tests such as scratch or transwell assays (54, 58).

According to the recommendations of the International Society 
for Extracellular Vesicles (ISEV), exosomal samples should generally 
be characterized for size, concentration, and the presence of exosomes 
(59, 60). The presence of exosomes is typically confirmed by detecting 
at least one transmembrane protein (commonly tetraspanins: CD9, 
CD63, and CD81) or a GPI-anchored protein (e.g., integrins), along 
with one cytoplasmic lipid (e.g., sphingolipids, ceramides, and 
cholesterol) or cytoplasmic protein (e.g., ALIX, TSG101, and HSP70) 
(59, 60). These specific markers can be assayed using methods such as 
Western blot or ELISA (61, 62). In addition, electron microscopy is 

often employed to provide images of typical exosomal morphology, 
further confirming the presence of exosomes in the sample (63, 64).

The size and concentration of exosomes, expressed as particles per 
milliliter, are commonly determined using techniques such as 
dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), 
and resistive pulse sensing (RPS). However, these techniques are not 
specific to exosomes and may overestimate their concentration (65, 
66). Alternatively, exosomes can be labeled with specific dyes, where 
the measured concentration corresponds only to the positively stained 
population. This approach allows for more accurate quantification of 
exosomes and can be  performed using nanoflow cytometry 
(nanoFCM). Nevertheless, underestimation of concentration may 
occur if the sample is not properly titrated (67, 68). In some cases, the 
concentration of exosomes is determined based on the total protein 
concentration per milliliter (μg/mL) using the Bradford assay (10). All 
these parameters must be thoroughly assessed to ensure sufficient 
sample purity and demonstrate that the observed therapeutic effect is 
primarily induced by exosomes rather than by potential contaminants.

4 Therapeutic applications of 
exosomes in biomedicine

As mentioned earlier, exosomes are natural intercellular 
communicators in normal biological processes but also in pathologies. 
They transport proteins, lipids, and nucleic acids specific for their 
parenteral pathogenic cells. From a clinical perspective, most 
applications use exosomes as biomarkers of diseases (69). The content 
of the exosome has been shown to be disease-specific, such as in NDs, 
prion diseases, viral infections, and cancer (69). Furthermore, 
exosomes play a transformative role in regenerative medicine, offering 

TABLE 1  Advantages and disadvantages of the most common isolation techniques of exosomes.

Isolation technique Advantages Disadvantages References

Ultracentrifugation Low cost, separation of large volumes, low operating 

expenses, compatibility with a wide range of samples

Time consumption, low purity, inappropriateness 

for small volumes, diminishing biological 

activity of exosomes, high equipment cost

(8, 25, 26, 216, 217)

Ultrafiltration Simplicity, fast, absence of special equipment Potential deformation of exosomes, moderate 

purity, loss of exosomes, particularly problematic 

for isolating from small volumes, reduced 

purification efficiency due to clogging of 

membrane pores

(218–221)

Size exclusion chromatography High purity, scalable, cost-effective for large-scale 

processing, availability of commercial kits, 

preservation of biological activity

Requirement of dedicated equipment, low yield, 

target product dilution

(25, 218, 220, 222, 223)

Precipitation techniques High morphological and functional quality of 

exosomes, fast, simplicity, compatibility with low 

sample volumes, availability of commercial kits

Low purity, contamination of precipitating agent, 

not suitable for large sample volumes

(28, 29, 221, 224, 225)

Immunoaffinity techniques High purity of specific exosomes Loss of exosomes with lower expression levels, 

challenge separating exosomes from the bound 

antibodies, low capacity, low yields

(216, 226)

Tangential flow filtration Processing of large sample volumes, high recovery 

rate of exosomes with minimal loss, preservation of 

exosome integrity, simultaneous concentration and 

buffer exchange (diafiltration), scalable for industrial 

production, reduction of processing time

High initial cost of equipment and consumables, 

require pre-filtration steps to remove large 

particles or debris, potential risk of membrane 

fouling leading to reduced efficiency over time

(52, 53, 55, 56)
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innovative therapeutic interventions. Their bioactive cargo, including 
growth factors and signaling molecules, has demonstrated significant 
potential in modulating immune responses and promoting tissue 
repair (70). In addition, exosomes serve as carriers for therapeutic 
cargo loading, holding promise for targeted drug delivery in disease 
treatment (69, 71, 72). Currently, 150 clinical trials registered on 
ClinicalTrials.gov are investigating exosome-based therapies for 
various diseases (73). The majority of applications utilizing exosomes 
for both therapy and diagnosis focus on their utilization in the fields 
of cancer and NDs, as depicted in Figure 3 (74). For this reason, this 
review will focus on the use of exosomes in these diseases.

4.1 Exosomes in regenerative medicine

Nowadays, one of the main applications of exosomes is in 
regenerative medicine, a promising field dedicated to the 
regeneration and reconstruction of diseased or injured organs and 
tissues (72). Since the 1970s, mesenchymal stem cells (MSCs) have 
been under investigation in this field for their multipotent 
characteristics and their ability to migrate to injury sites. They are 
used in regenerative medicine due to their robust self-renewal 

capacity and ability to differentiate into adipogenic, chondrogenic, 
osteogenic, endothelial, neural, and epithelial cells, as proven in 
both in  vivo and in  vitro experiments (70, 73–75). MSCs, like 
every cell in the human body, release exosomes, which have 
started to be  extensively researched due to their regenerative 
properties. Currently, at least 31 clinical trials are exploring the 
use of exosomes derived from MSCs (MSCs-EXOs) as an 
alternative to basic MSCs therapy (73). MSCs-EXOs have shown 
comparable or superior therapeutic efficacy compared to MSCs 
alone (72, 73). They exhibit lower immunogenicity, present an 
enhanced safety profile by avoiding concerns related to 
uncontrolled differentiation and tumorigenicity associated with 
live cells, and offer improved storage conditions, simplifying 
logistical challenges compared to live cell storage. In addition, 
there are no ethical issues, and their small size allows for 
sterilization by filtration (73–77). The comparison between 
exosomal and stem cell therapy is provided in Table 2.

The greatest attention in regenerative medicine is focused on skin 
healing, a tissue which plays a crucial multifunctional role as a 
protective barrier, a temperature regulator, and facilitating tactile and 
pain sensations (78). However, the use of exosomes for wound 
treatment could be challenging due to their rapid clearance from the 

FIGURE 3

Distribution of exosome therapy and diagnostics concerning the target diseases (74). The figure was partly generated using Servier Medical Art, 
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

TABLE 2  Exosomes versus stem cells in preparation and therapy.

Advantages Disadvantages

MSC preparation Ease to isolate, easy to expand at a large scale, highly proliferative, well established 

FDA guidelines

Harsh storage and transportation conditions

Exosome preparation Small size, stable upon freezing and thawing Difficult to isolate and purify, no established 

regulations and standards

Therapeutic application of MSCs Multilineage differentiation potential, extensive preclinical and clinical studies Immunogenicity, oncological complications, 

fusion toxicity, ethical issues

Therapeutic application of exosomes Minimal risk of immune responses and tumor formation, no ethical issues, multiple 

delivery routes, can be engineered to specifically target and deliver drug cargoes

Rapid clearance from blood after 

administration
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application site, which limited therapeutic effectiveness (79). To 
address this limitation, current research focuses on the combination 
of exosomes and biomaterials. This innovative approach extends the 
retention time of exosomes on the wound surface without 
compromising their biological activity, enabling the development of 
advanced exosome-based therapies (80, 81). Hydrogels as biomaterials 
exhibit a synergistic effect in exosome-induced wound healing and 
can serve as a versatile platform for the incorporation of therapeutic 
exosomes, enhancing their efficacy in tissue regeneration. To date, 
hyaluronic acid, gelatin, chitosan, and polypeptide-based hydrogels 
have been used for encapsulating exosomes from different cell sources 
(75, 80, 81). Chitosan is the often-used material for hydrogel 
preparation. Chitosan hydrogel enriched with MSCs-EXOs, 
specifically human endometrial stem cell-derived and human 
placenta-derived exosomes, demonstrated notable wound closure 
ability by promoting the formation of new epithelial cells, significant 
retention of MSCs-EXOs at injury sites, promotion of angiogenesis, 
and acceleration of the recovery of ischemic hind limbs (82). For the 
best contact of the hydrogel with the wounded skin and effective 
wound filling, thermosensitive hydrogels are used. Thermosensitive 
pluronic hydrogel combined with human umbilical cord MSCs-EXOs 
(HUCMSCs-EXOs) significantly accelerated wound closure, 
promoted angiogenesis, and improved skin healing of chronic diabetic 
wounds (83). For effective diabetic wound treatment, polyvinyl 
alcohol/alginate nanohydrogel with HUCMSCs-EXOs and an 
injectable antibacterial polypeptide-based hydrogel with adipose 
derived MSCs-EXOs were used. This type of hydrogels demonstrated 
the ability to promote proliferation, migration, and angiogenesis of 
human umbilical vein endothelial cells, expediting diabetic wound 
closure thus presenting a novel approach for complete skin 
regeneration (84, 85).

Further applications in regenerative medicine are focused on hard 
tissue regeneration, essential for bone and cartilage repair. 
Traditionally, MSCs, scaffolds, and growth factors are used in this 
field. While scaffolds have been proven beneficial for bone 
regeneration, the avascular nature of cartilage poses unique challenges 
(75). Osteoarthritis (OA), a prevalent joint disease extending beyond 
cartilage, demands innovative regenerative procedures (81). 
Promisingly, exosome-integrated scaffolds and MSCs-EXO therapy 
show potential in OA treatment. Articular cavity injection with 
HUCMSCs-EXOs in PBS demonstrated significant efficacy in 
preventing severe damage to knee articular cartilage in a rat OA 
model. These therapies not only promoted chondrocyte proliferation 
and migration but also exhibited anti-apoptotic effects and reversed 
cellular injuries. Moreover, HUCMSCs-EXOS played a crucial role in 
regulating the polarization of M2 macrophages, fostering chondrocyte 
survival by producing anti-inflammatory cytokines to suppress 
adverse inflammation (86). To enhance therapeutic efficiency and 
retention time in  vivo, HUCMSCs-EXOs were engineered to 
specifically target chondrocytes and encapsulated within hyaluronic 
acid hydrogel, presenting a “two-phase” releasing system. This 
approach synergistically facilitated OA cartilage repair in a rat model 
and proved the rejuvenating effects of HUCMSCs-EXOs on aging 
chondrocytes in OA, offering a promising cell-free OA treatment 
strategy (87). Therapeutic potential of bone marrow MSCs-EXOs was 
explored in the context of mitochondrial dysfunction and oxidative 
stress in OA. 3D printed scaffolds, composed of extracellular matrix, 
gelatin methacrylate, and exosomes, effectively restored chondrocyte 

mitochondrial function, enhanced chondrocyte migration, and 
polarized the synovial macrophage response in vitro. Notably, a 3D 
printed scaffold significantly facilitated cartilage regeneration in a 
rabbit model, highlighting its potential as an early treatment strategy 
for OA (88).

In recent years, MSCs-EXOs have also been used increasingly in 
ophthalmology. MSCs-EXOs have shown promise in various 
applications, such as promoting ocular tissue regeneration and 
addressing vision-related disorders. MSCs-EXOs have explored the 
therapeutic potential of stem cell exosomes in treating ocular surface 
diseases, corneal injuries, and retinal degenerative conditions (89). 
Exosomes derived from bone marrow stem cells have demonstrated 
the ability to enhance corneal epithelialization and maintain corneal 
transparency in diabetic mice (90). MSCs-EXOs have been explored 
for their regenerative effects on corneal injuries (91). In retinal 
diseases, including age-related macular degeneration and retinitis 
pigmentosa, MSCs-EXOs have been investigated for their 
neuroprotective and regenerative properties. These exosomes may 
influence retinal cell survival, angiogenesis, and anti-inflammatory 
responses, offering a novel approach for treating degenerative 
conditions affecting the retina (92). As exosome research in 
regenerative medicine continues to progress, MSCs-EXOs are 
beginning to be applied into various fields, such as periodontitis (93, 
94). Research on exosomes in regenerative medicine is expected to 
gain prominence, highlighting the growing need to integrate exosome-
based regenerative therapies into clinical practice (95).

4.2 Exosomes in early diagnosis

As already mentioned, exosomes are promising biomarkers for the 
diagnosis of several diseases. Most attention has been paid to cancer 
(Figure 4; Supplementary Table S1) (95–105) with less focus on NDs.

Tumor-derived exosomes (TEXs) have emerged as critical players 
in cancer progression. Cancer cells release TEXs in large quantities, 
leading to a rapid increase in the concentration of total exosomes in 
the serum or plasma of cancer patients, which correlates with poor 
prognosis (106). TEXs provide immunosuppressive effects by 
inducing dysfunction in various immune cells, thereby suppressing 
anti-tumor immune responses (107). Initial interactions between 
TEXs and immune cells occur through ligand–receptor recognition, 
followed by either direct fusion with the plasma membrane or 
receptor-mediated uptake, resulting in the release of TEX cargo into 
the cytoplasm of immune cells. While T lymphocytes do not efficiently 
internalize TEXs, they interact with surface molecules to trigger 
sustained Ca2+ flux and downstream signaling cascades, ultimately 
altering the transcriptome of recipient cells. In contrast, phagocytic 
cells, such as dendritic cells and macrophages, rapidly internalize 
TEXs (108).

Macrophages are a prominent component of the tumor 
microenvironment (TME) and can make up more than half of the 
tumor mass in some cases. Moreover, tumor progression is associated 
mainly with macrophages. Macrophages can be  induced to either 
tumor-suppressive immunological type M1 or tumor-promoting 
inflammatory M2 macrophages (109, 110). Tumor-associated 
macrophages predominantly exhibit an M2 phenotype, characterized 
by the secretion of pro-angiogenic factors and cytokines that promote 
angiogenesis, tumor growth, and metastasis (111, 112). Many studies 
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have shown evidence on the role of TEXs in macrophage M2 
polarization to promote tumor progression. For instance, exposure of 
macrophages to TEXs decreased the expression of M1 markers, such 
as IFNγ, while upregulating IL-1β, a marker of inflammation, 
suggesting that TEXs may help maintain a macrophage phenotype 
supportive of tumor survival and proliferation (113). In triple-negative 
breast cancer (TNBC), TEXs have been reported to promote M2 
macrophage polarization, facilitating lymph node metastasis. 
Co-culture of TNBC-TEXs with macrophages led to significant 
morphological changes and an increased expression of M2 markers, 
including Fizz1, CD206, and Arg-1. An orthotopic TNBC model 
further confirmed the role of TEXs in driving M2 polarization, with 
enhanced tumor growth and axillary lymph node metastasis observed 
in vivo (114).

In cancer metastasis, epithelial–mesenchymal transition (EMT) is 
the key process during which cancer cells lose their epithelial 
properties and adopt a more mesenchymal and invasive phenotype. 
Generally, EMT initiation is characterized by loss of cell–cell 
adhesions and apicobasal polarity, leading to the formation of cells 
with increased migratory and invasion capabilities that are able to 
invade the extracellular matrix (115, 116). At a molecular level, EMT 
involves the downregulation of epithelial-type proteins, such as 
E-cadherin, and the acquisition of mesenchymal markers, such as 
vimentin (117). TEXs from bladder cancer cells have been shown to 
induce EMT-like changes in urothelial cells, enhancing their invasive 
potential. This effect was mediated by TEX-induced upregulation of 
vimentin and downregulation of E-cadherin through the TGF-β1 

signaling pathway (118). Similar EMT-inducing effects of TEXs have 
been observed in glioblastoma, lung carcinoma, and gastric cancer 
models (119–121). TEXs can also influence EMT through their 
miRNA cargo. For example, miR-23a within TEXs promotes EMT by 
inhibiting E-cadherin synthesis in lung carcinoma and melanoma 
cells, while miR-191 and let-7a, present in TEXs from patients with 
melanoma, gastric, and colorectal cancers, have also been implicated 
in EMT regulation (122–126). In addition, TEX-derived miR-105 has 
been shown to promote vascular invasion by downregulating ZO-1 in 
endothelial cells. Notably, elevated miR-105 levels in the serum of 
breast cancer patients have been correlated with metastatic progression 
and poor prognosis (127). Given their critical role in modulating the 
TME, promoting EMT, and facilitating immune evasion, profiling 
TEXs in blood and other body fluids holds significant promise as a 
non-invasive method for cancer diagnosis and prognosis (128).

The WHO Global Cancer Observatory (GLOBOCAN) 2022 
registry provides a list of the most common types of cancers. The three 
most common types are lung (12.4%), breast (11.5%), and colorectal 
(9.6%) cancers. Lung cancer is the leading cause of cancer death 
worldwide (129). Surface-enhanced Raman spectroscopy (SERS) of 
exosomes, combined with AI deep learning software, allows for 
accurate diagnosis of early-stage lung cancer. The deep learning model 
was trained with SERS signals of exosomes derived from normal and 
lung cancer cell lines and subsequently its ability to detect cancer was 
verified using exosome samples from patients’ blood. The model 
identified the lung cancer patients and even detected stage I patients 
with an accuracy of 90.7% (130). Regarding TEX protein biomarkers, 

FIGURE 4

Potential of exosomes in cancer diagnostics. The applicability of exosomes in cancer diagnostics is detailed in Supplementary Table S1. The figure was 
partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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CD151, TSPAN8, and CD171 were overexpressed in lung cancer 
samples. Of these, CD171 has been associated with EMT, metastases, 
and poor prognosis (96, 131, 132). Determination of PD-L1 can also 
provide important diagnostic information. Akbar et al. reported that 
exoPD-L1 from non-small cell lung cancer (NSCLC) patients and 
healthy controls showed a significantly higher difference than 
corresponding serum and tissue PD-L1 (97). For example, exoPD-L1 
was found in all the patients (100%), while tissue PD-L1 was observed 
only in 71% patients. Furthermore, exoPD-L1 can also be used for the 
prediction of immune inhibitors efficiency. ROC curve analysis of 
change from baseline in exoPD-L1 levels between responders and 
non-responders showed 87% sensitivity and 100% specificity 
(p = 0.0015), indicating strong discriminatory power. An increasing 
number of studies have demonstrated that non-coding RNAs are 
closely correlated with the initiation and development of lung cancer 
as well (133). Detection of exosomal long non-coding RNA as 
potential lung cancer diagnosis is also performed in a current clinical 
study (NCT03830619) (134). Breast cancer is the most common type 
of cancer and the second leading cause of cancer-related deaths in 
women. In this type of cancer, media from breast cancer cell lines were 
analyzed to identify specific exosomal proteins such as glucose 
transporter-1, glypican-1, and the metalloproteinase domain-
containing protein 10 (98). Epidermal growth factor receptor (EGFR) 
is a transmembrane protein that plays a key role in cell signaling 
pathways involved in cell growth, proliferation, and survival and is 
often overexpressed or mutated in various cancers. It was reported 
that triple-negative breast cancer cells (MDA-MB-468) can produce 
exosomes with encapsulated EGFR (protected from EGFR inhibitor), 
which can induce EGFR signaling in target cells, thereby promoting 
cancer progression or resistance to therapy (99). Typical non-coding 
RNA cancer biomarkers are miR-1246 and miR-21, which were also 
overexpressed in breast cancer cell lines (100). The plasma level of 
miR-1246 was measured in breast cancer patients and healthy controls 
using an Au nanoflare probe. This biomarker-based probe 
distinguished breast cancer patients from healthy individuals with 
100% sensitivity and 92.9% specificity (95). Currently, a clinical trial 
(NCT02662621) is underway, focusing on an exosomal detection 
protocol for diagnosing various cancers, including breast cancer. The 
study indicates that exosomes displaying the stress protein HSP70 on 
their membrane may serve as cancer-specific exosomes (134). In 
colorectal cancer, tetraspanin-1 was found to be  upregulated in 
plasma exosomes from patients compared to healthy controls, 
showing 75.7% sensitivity (135). Pancreatic cancer, one of the 
deadliest cancer types, involves TEXs that carry the glypican-1 
biomarker. This co-receptor for various signaling molecules regulates 
key processes such as cell growth, motility, and differentiation (102). 
Currently, two clinical trials are underway to assess the efficacy of 
diagnostic exosomes in colon and liver cancers (NCT03432806) and 
in pancreatic cancer (NCT03334708). These studies aim to identify 
biomarkers circulating in blood and analyze the corresponding tissues 
(134). While previous studies have focused on TEXs from blood, 
urinary exosomes play a role in urological tumors (136). In prostate 
cancer, biomarkers such as TM256 and LAMTOR proteins found in 
urinary exosomes exhibited very high sensitivity (105). In addition, 
potential biomarkers such as TPP1, TMPRSS2, and FOLR1 were 
highly upregulated in urinary exosomes derived from the bladder. 
Notably, despite being histologically tumor-free at cystectomy, 
patients’ urinary exosomes displayed a carcinogenic metabolic profile, 

likely originating from undetected or partially transformed cancer 
cells (137).

Current diagnosis of NDs relies on clinical assessments, medical 
history, imaging techniques, and diagnostic tests based on observed 
symptoms (138, 139). However, predicting these diseases remains 
challenging due to the typically late-stage diagnosis. Emerging 
research highlights the potential of exosomes as biomarkers for early 
detection, offering a promising approach for more effective and timely 
diagnoses in the future (Figure 5) (140). Early diagnosis of NDs is 
crucial for enabling timely interventions that can significantly improve 
patient outcomes (141).

In Alzheimer’s disease (AD), neural-derived blood exosomes have 
emerged as a valuable source of AD-related overexpressed protein 
markers, including total tau, P-T181-tau, P-S396-tau, and Aβ42 (33). 
Exosomal synaptic proteins, such as growth-associated GAP43, 
neurogranin, SNAP25, and synaptotagmin 1, show promise in 
predicting AD at asymptomatic stages, potentially detecting the 
disease 5 to 7 years before cognitive impairment occurs (34). In 
addition, miRNA markers, including miR-137, miR-181c, miR-9, and 
miR-29a/b, are downregulated in blood serum and offer additional 
potential for early AD detection (142, 143). Among other types of 
biomarkers, lipids such as LDL-C, TG, and HDL-C are associated with 
AD (144). Furthermore, it was also shown that exosomal protein 
markers offer comparable diagnostic capacity to cerebrospinal 
markers, further enhancing the potential of blood-based diagnostics 
for AD (145). Exosomal levels of Aβ42, Aβ40, and P-T181-tau were 
also measured in the blood plasma of patients diagnosed with 
schizophrenia (36). Specifically, these markers were determined in 
neural and astrocytic exosomes. While Aβ42 levels were higher in 
astrocytic exosomes than in neural exosomes, other markers were 
similar between these two groups. It was also found that higher 
astrocytic P-T181-tau levels were associated with worse executive 
functioning, and astrocytic Aβ42 levels were more sensitive and 
specific in differentiating diagnostic groups. Other types of neural cells 
explored in the context of NDs are oligodendrocytes. These cells are 
associated with MS. Oligodendrocyte-derived extracellular vesicles 
showed higher concentrations of myelin basic protein, which could 
serve as potential biomarkers across diverse MS phenotypes (35). For 
Parkinson disease (PD), it was found that the most reliable biomarker 
of blood neural exosomes is α-synuclein (146). In amyotrophic lateral 
sclerosis (ALS), exosomal biomarkers, such as neurofilament light 
chain, have been identified in both cerebrospinal fluid and blood. This 
marker can serve for early diagnosis and monitoring disease 
progression (147).

4.3 Exosomes in targeted delivery and 
disease treatment

The two main areas in which exosome applications are greatly 
investigated and hold great potential are cancer and NDs (74, 76). In 
cancer treatment, significant attention is paid to nanocarriers which 
can entrap chemotherapeutic drugs and deliver them to the diseased 
site, reducing the side effects associated with the systemic 
administration of conventional anticancer drugs (148, 149). In recent 
years, exosomes started to be explored as promising nanocarriers (48) 
that can affect tumor growth, metastasis, and even sensitize cancer 
cells to conventional therapies (Figure 6).
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Their ability to target specific cell types and deliver therapeutic 
cargos makes them a valuable asset in the fight against malignancies 
(150–153). For example, exosomes loaded with doxorubicin 
(ExoDOX) were used in a mouse model of breast and ovarian cancers. 
It was found that ExoDOX are less cardiotoxic than free DOX, 
enabling the use of higher concentrations of ExoDOX, thus increasing 
the efficacy of DOX (154). ExoDOX conjugated with gold 
nanoparticles (ExoDOX-GNPs) were used in vitro with lung cancer 

cell lines and normal lung fibroblasts. The pH sensitive conjugation 
bond enables the enhanced rate of drug release under acidic conditions 
and successful uptake of the ExoDOX-GNPs by the recipient cells. 
Cell viability assays indicated that ExoDOX-GNPs exhibit preferential 
cytotoxicity toward cancer cells and have minimal activity on 
non-cancerous cells (155). Exosomes loaded with paclitaxel (ExoPTX) 
were developed. The incorporation of paclitaxel into exosomes 
enhanced drug cytotoxicity more than 50-fold in drug-resistant 

FIGURE 5

Potential of exosomes in the diagnosis of neurological diseases. In AD, protein markers such as total tau, phosphorylated T181-tau (p-T181-tau), 
phosphorylated S396-tau (p-S396-tau), and amyloid-beta 42 (Aβ42) derived from neural-derived blood exosomes are indicative of neurodegeneration 
and plaque formation. Notably, GAP43, SNAP25, and synaptotagmin 1 can be detected even in asymptomatic stages of AD. Furthermore, exosomal 
Aβ42, Aβ40, and P-T181-tau have been implicated in schizophrenia. In the context of PD and ALS, exosomal α-synuclein and neurofilament light chain 
exhibit promising potential as biomarkers for disease monitoring and progression. The figure was partly generated using Servier Medical Art, provided 
by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

FIGURE 6

Exosomes represent a promising delivery system for the transport of anticancer agents. In murine cancer models, specifically in breast and ovarian 
carcinoma, exosomal formulations exhibit lower cardiotoxicity and higher efficacy compared to free doxorubicin. In the case of paclitaxel, exosomal 
formulations provide significantly improved intracellular delivery into 3LL-M27 cells (Lewis carcinoma expressing P-glycoprotein, which is associated 
with drug resistance) when compared to liposomal formulations and polystyrene nanoparticles. Furthermore, in these murine models, exosomes have 
been shown to suppress the development of metastases. Regarding natural agents, curcumin-loaded exosomes display promising efficacy against 
colon and pancreatic carcinomas, exhibiting antimetastatic effects and reduced inflammation. Exosomes are also suitable for the transport of 
biological agents such as microRNAs. For instance, exosomes loaded with miR-379 and miR-144-5p demonstrate potent effects against breast cancer 
and pancreatic ductal adenocarcinoma. The figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative 
Commons Attribution 3.0 unported license.
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MDCKMDR1 (Pgp+) cells (156). Furthermore, ExoPTX displayed a 
potent anticancer effect in a mouse model of murine Lewis Lung 
Carcinoma pulmonary metastases. In addition to separate 
therapeutics, other compounds are also used as exosomal cargo. 
Exosomes loaded with gemcitabine in combination with the survivin 
protein with mutation T34A induce apoptosis and enhance 
gemcitabine-killing effects in pancreatic adenocarcinoma cells (157). 
For cancer treatment, exosomes can also deliver nucleic acids, 
including miRNAs, siRNAs, and mRNAs (158). For instance, 
exosomes containing miR-379, a potential tumor suppressor, showed 
a significant reduction in the rate of tumor formation and growth for 
the in vitro and in vivo therapies of breast cancer (159). Exosomes 
loaded with miR-145-5p, which inhibits pancreatic ductal 
adenocarcinoma (PDAC) cell proliferation, invasion, and increase 
apoptosis, significantly reduced the growth of xenograft tumors in a 
PDAC mouse model (160). Natural products are also used in exosomal 
cancer therapies, including the use of curcumin. This molecule can 
mitigate cancer initiation and metastasis (161, 162). Exosomes loaded 
with curcumin induced the apoptosis of pancreatic cancer cells and 
significantly delayed brain tumor growth with reduced inflammation 
when delivered to a GL26 brain tumor model via an intranasal route 
(163, 164). Plant exosomes with curcumin are used also in Phase 
I clinical trial investigating the ability of plant exosomes to deliver 
curcumin to normal and malignant colon tissue (NCT01294072). This 
study is now recruiting patients (165). Grape exosomes are investigated 
in preliminary active clinical trial to abrogate oral mucositis induced 
by combined chemotherapy and radiation in head and neck cancer 
patients (NCT01668849) (165). Vaccination with tumor antigen-
loaded dendritic cell-derived exosomes on patients with unresectable 
NSCLC lung cancer responding to induction chemotherapy was 
explored in another clinical study (NCT01159288), where the first 
phase of this study has now been completed. The primary endpoint 

was progression-free survival at 4 months after chemotherapy 
cessation, with a target of at least 50% of patients achieving this 
endpoint. However, this target was not met as only 32% of patients 
experienced disease stabilization at 4 months (165, 166). A study of 
mesenchymal stromal cell-derived exosomes with KrasG12D siRNA 
for metastatic pancreas cancer patients harboring the KrasG12D 
mutation is now recruiting patients for the NCT03608631 clinical trial 
(166). G12D is the most common KRAS mutation detected in 
carcinomas and confers a unique structural conformation that 
influences downstream signaling and may lead to its potent oncogenic 
activity (167).

It is noteworthy that anti-tumor exosomes could be produced by 
activated T cells themselves (Figure 7). It is well established that tumor 
cells often express programmed death-ligand 1 (PD-L1) to deactivate 
T cells through the activation of programmed death-1 (PD-1) 
signaling pathways (168). Furthermore, research has shown that these 
tumor cells also release exosomes containing PD-L1, which exhibit 
similar immunosuppressive functionality. However, Qiu et al. have 
reported that activated T cells produce exosomes containing PD-1, 
which serve to neutralize exosomes carrying PD-L1 (169) and induce 
the degradation of PD-L1 on the surface of TNBC cells. This dynamic 
interplay highlights the potential of T-cell-derived exosomes in 
counteracting tumor-mediated immune evasion.

The ability of exosomes to cross the blood–brain barrier (BBB) 
provides the opportunity for their use in the treatment of NDs (45, 
170). Many publications highlight the application of MSCs-EXOs in 
the treatment of NDs (Figure 8) (171, 172).

For example, the effect of bone marrow-derived MSCs-EXOs was 
examined in rats with induced Parkinson’s disease (PD). Rats treated 
with these exosomes showed significant improvements in motor 
function and histopathological outcomes, demonstrating a greater 
suppression of PD symptoms compared to L-DOPA treatment, which 

FIGURE 7

Anti-tumor effects of T-cell-derived exosomes. Following activation by antigen-presenting cells (1), T cells generate exosomes containing PD-1 (2), 
which directly attenuate the immunosuppressive effects of cancer cells (4) by facilitating the degradation of PD-L1 (5) present on the surface of tumor 
cells. In addition, T-cell-derived exosomes (3) inhibit the functionality of immunosuppressive exosomes expressing PD-L1 (5), produced by cancer cells. 
The figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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is a medication commonly used to treat PD (173). In AD treatment, 
bone marrow MSCS-EXOs with high content of sphingosine-1-
phosphate (second messenger downregulated in the AD tissue) were 
injected into double transgenic AD mice (174). Their application led 
to reduce Aβ deposition and promote cognitive function recovery. 
According to the observed results, sphingosine kinase inhibitor 
(SKI-II) or sphingosine-1-phosphate 1 receptor blocker (VPC23019) 
repress the therapeutic effects of exosomes. Intracerebral injection of 
bone marrow MSCS-EXOs in a preclinical mouse model of early stage 
of AD suggests the possibility of intervening before overt clinical 
manifestations. The study indicated that bone marrow MSC-EXOs are 
effective at reducing the Aβ plaque burden and the number of 
dystrophic neurites in both cortex and hippocampus (175). Adipose-
MSCs-EXOs administered intranasally and HUCMSCs-EXOs 
administered intravenously have also shown promise in AD treatment. 
These treatments effectively improved neurological damage in entire 
brain regions, increased newborn neurons, powerfully rescued 
memory deficits, and reduced Aβ expression in transgenic AD mice 
(176–179). MSCS-EXOs were also used in a mouse model of 
schizophrenia, where they improved the core schizophrenia-like 
behavior and biochemical markers of schizophrenia (e.g., 
cerebrospinal fluid glutamate level) (180). In addition to MSCs-EXOs, 
macrophage-derived EXOs loaded with resveratrol, nature 
antioxidant, or exosomes from murine microglia cell line containing 
anti-inflammatory cytokine IL-4 were also used in mice with MS (181, 
182). The efficacy of this approach can be  increased by suitable 
derivatization of the exosome membrane with compounds such as 
lactadherin (“eat me” signal for the phagocytes) or sialic acid 
derivatives (BBB transport). Both exosome agents significantly 
inhibited inflammatory responses in the CNS and the peripheral 
system in a mouse model and effectively improved the clinical 
evolution of MS in vivo (182, 183). In clinical studies, there is just a 
single trial registered in CLinicalTrials.gov. This study evaluates the 
safety and the efficacy of adipose MSC-EXOs in AD (NCT04388982). 
It was found that the intranasal administration of MSCs-EXOs was 

safe and well tolerated for a semi-weekly treatment frequency. A dose 
of at least 4 × 108 particles was selected for a randomized phase II and 
phase III clinical trial in further steps (181).

5 Future direction

Exosomes are increasingly recognized for their pivotal role in the 
diagnostic realm of cancer and NDs. Nonetheless, a multitude of high-
impact clinical trials have unveiled their promising potential in 
diagnosing a spectrum of additional serious conditions. 
Hyperuricemia (HUA) is acknowledged as a significant risk factor for 
chronic heart failure (CHF), a disease frequently linked to elevated 
morbidity and mortality rates (184, 185). Notably, fluctuations in 
miRNA expression have been correlated with cardiovascular diseases, 
including CHF and HUA (186, 187). Analysis of miRNA patterns in 
serum exosomes revealed that miR-27a-5p was upregulated (p < 0.01), 
while miR-139-3p was downregulated (p < 0.01) in patient groups 
(CHF with HUA) (188). When used in combination, these markers 
exhibited an AUC of 0.899 (95%) with 79.2% sensitivity and 91.7% 
specificity. Moreover, exosomes are integral to the pathogenesis of 
osteoarthritis, with those isolated from synovial fluids emerging as 
promising diagnostic instruments for affected patients (189, 190). 
However, exosome isolation methods can be invasive. In contrast, 
urine biomarkers present a non-invasive alternative for osteoarthritis 
diagnostics (191), positioning urine-derived exosomes as potential 
diagnostic assets. Cao et al. introduced a nanopolymer modified with 
an exosome-affinity component (CD63 aptamer and distearoyl 
phosphoethanolamine) (192). This innovative approach leads to 
aggregation of exosomes upon binding, facilitating easy centrifugation 
(4,000 g for 3 min at pH 6). Notably, these precipitated exosomes can 
be re-dissolved in a basic pH environment. Metabolomic analyses of 
urine exosomes have identified 30 biomarkers, including catechol 
(AUC = 0.917, p < 0.001), which effectively differentiate between 
healthy individuals and those with early osteoarthritis.

FIGURE 8

Exosomes in the treatment of neurodegenerative diseases. Due to their ability to cross the BBB, exosomes are being investigated for the treatment of 
neurodegenerative diseases. In a rat model of PD, bone marrow-derived mesenchymal stem cell exosomes (MSCs-EXOs) have been shown to improve 
motor function. Similarly, MSCs-EXOs with a high content of sphingosine-1-phosphate have been found to decrease Aβ deposition and enhance 
cognitive function in a mouse model of AD. In a mouse model of schizophrenia, MSCs-EXOs have been reported to reduce cerebrospinal fluid 
glutamate levels and alleviate schizophrenia-related behaviors. Exosomes derived from murine microglial cells contain IL-4, an anti-inflammatory 
cytokine, and lactadherin, a phagocytic “eat me” signal, which reduce neuroinflammation in a mouse model of experimental autoimmune 
encephalomyelitis (a MS model). Similarly, effects were observed with macrophage-derived exosomes that were modified with derivatives of sialic acid, 
containing resveratrol. The figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 
3.0 unported license.
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In the future, exosomes such as natural nanocarriers should 
emerge as a novel therapeutic alternative in the fields of oncology, 
immunology, and regenerative medicine. Future research may focus 
on refining loading techniques, optimizing targeting strategies, and 
exploring novel applications in diverse disease contexts (193). For 
example, in ND treatment to enhance targeted drug delivery efficiency, 
exosomes can be  surface-modified with RVG protein/peptides to 
specifically bind to the acetylcholine receptor expressed on neuronal 
cells (194). Comparing RVG-tagged MSC-EXOs to MSCS-EXOs, 
EXOs tagged with RVG exhibit improved targeting to the cortex and 
hippocampus after being administered intravenously, plaque 
deposition and Aβ levels are decreased sharply, and the activation of 
astrocytes is obviously reduced compared to the observations made in 
the group of AD mice treated only with MSCs-EXOs. In the group of 
AD mice injected with RVG-EXOs, there is a significant improvement 
in learning and memory capabilities with reduced plaque deposition 
and Aβ levels (195).

Exosomes can also be  combined with other biomaterials or 
inorganic materials for biomedical uses. These hybrid nanoparticles 
can be  further loaded with specific cargo or drug and surface 
engineered to increase the local concentration of the particles at the 
diseased site, thereby reducing toxicity and side effects and 
maximizing therapeutic efficacy (196). The surface engineered 
exosomal hybrid nanoparticles with specific cargo loading, and 
modifications conferring desired properties such as pH sensitivity or 
photosensitivity can be called “ExoBots.” This term reflects the hybrid 
nature of these structures, which incorporate elements from both 
biological (exosomes) and technological (robotics) realms to form 
advanced nanoparticle system. ExoBots combine the advantageous 
properties of exosomes and other nanoparticles, holding great promise 
for advancing therapeutic interventions across various biomedical 
applications. For instance, an engineered core-shell hybrid system was 
prepared for the in vivo treatment of PD mice. This hybrid system 
consisted of a curcumin-loaded polymer nanoparticle core and an 
RVG-modified exosome shell. This hybrid was able to clear 
α-synuclein aggregates, reduce their cytotoxicity in neurons, and 
improve the motor behavior of PD mice (197).

Another type of hybrid is composed from exosomes and 
liposomes. Long circulating and pH sensitive hybrids loaded with 
DOX were investigated for anti-tumor effect on a mouse model of 
breast cancer. The results indicated that this hybrid system may be a 
promising nanocarrier for the treatment of breast cancer, reducing 
toxicity and inhibiting metastasis mainly in the lungs (198). This 
hybrid approach was also used to overcome chemotherapy resistance 
in OC. The hybrid system was developed by fusing cRGD-modified 
liposomes loaded with miR-497 and triptolide with CD47-expressing 
tumor-derived exosomes. RGD peptides specifically bind to integrin 
receptors overexpressed on the surface of many cancer cells. 
Overexpression of miR-497 may overcome OC chemotherapy 
resistance, and triptolide was confirmed to possess a superior killing 
effect on cisplatin-resistant cell lines. The in vitro results indicated that 
these hybrids were efficiently taken up by tumor cells, thus significantly 
enhancing tumor cell apoptosis and exerting significant anticancer 
activity without any negative effects observed in vivo. These hybrids 
may provide a translational strategy to overcome cisplatin-resistant 
OC (199). In addition, paclitaxel was used as the cargo of hybrids for 
in  vivo colon cancer treatment. The study revealed that hybrids 
significantly suppressed tumor growth in a colon tumor-bearing 

mouse model, reduced the expression of M2 type tumor-associated 
macrophages, and decreased regulatory T cells (200). Many other 
types of hybrids were explored, such as thermosensitive hybrids for 
improved treatment of metastatic peritoneal cancer, pH sensitive 
macrophage hybrids loaded with DOX for tumor targeted drug 
delivery, or long circulated pH sensitive hybrids loaded with dasatinib 
for pancreatic cancer treatment. All these ExoBots show positive 
therapeutic results and can thus serve as potential therapeutics for 
cancer treatment (201–203).

Recently, alongside the extensive research on exosomes derived 
from eukaryotic cells, there has been a growing interest in exploring 
plant-derived exosomes (P-ELNs; puerarin) as a novel source of 
exosomes with potential applications in various biotechnological and 
therapeutic fields. Polyphenolic compounds found in various plant 
exosomes show great promise in treating serious health disturbances. 
High-impact studies (204, 205) suggest that their therapeutic effects 
may be  partially attributed to their ability to target ferroptosis, a 
process linked to numerous pathological states (206, 207).

For instance, exosome-like nanovesicles derived from P. lobata 
roots have been shown to alleviate alcoholic intoxication, enhance 
alcohol metabolism, and reduce alcohol levels in the liver and serum 
of mouse models (204). These effects are associated with the induction 
of acetaldehyde dehydrogenase activity and a decrease in glutathione 
peroxidase 4 and glutathione levels, as well as with the suppression of 
acyl-CoA synthetase long-chain family member 4, likely contributing 
to the repression of ferroptosis. In addition, Robinia pseudoacacia 
L. flower-derived P-ELNs, when administered orally, significantly 
reduce hypoxia-induced ferroptosis and mucosal injury in the 
gastrointestinal tract of mouse models (205). Their effects are 
mediated through the modulation of HIF-1α and HIF-2α expression, 
subsequently influencing ROS production and lipid peroxidation via 
NOX4 and ALOX5 pathways.

Another promising application of P-ELNs is their potential to 
mitigate obesity, a well-known risk factor for cancer, metabolic disorders, 
cardiovascular diseases, and inflammation (208–210). The global 
prevalence of obesity has been on the rise, making this research 
particularly relevant. Wang et al. reported that turmeric-derived ELNs 
exhibit potent anti-obesity effects, achieving weight reductions of 8.68 
and 14.56% through intragastric and subcutaneous delivery, respectively 
(211). This effect is linked to the stimulation of adipocyte apoptosis, the 
induction of lipolysis, and the inhibition of lipogenesis, highlighting the 
therapeutic potential of these natural compounds. However, the 
biological functions of P-ELNs are not fully understood, standard 
isolation protocols are lacking, and P-ELNs are a promising new frontier 
in precision medicine. Their plant origin offers advantages in terms of 
biocompatibility, scalability, and reduced immunogenicity. Moreover, 
bioactive molecules from plants are associated with disease-preventive 
effects making P-ELNs an attractive alternative to mammalian EVs in 
future biomedical innovations (212–214).

6 Conclusion

Although further fundamental research, especially regarding the 
biogenesis of exosomes and the optimization of their isolation techniques 
and characterization methods, is necessary, their significant potential has 
been demonstrated in several biomedical areas, particularly in 
regenerative medicine, disease diagnosis, and treatment. The continued 
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growth of the exosome market is also evidenced by the recent 
announcement of four collaborations between pharmaceutical 
companies, including two potentially worth close to $1 billion each. One 
of the largest is Lilly’s partnership with Evox Therapeutics of Oxford, 
UK. In this deal, which could bring in up to $1.2 billion in milestone 
payments, CNS-targeting exosomes developed by Evox will be loaded 
with RNA interference and antisense oligonucleotide therapies from Lilly, 
targeting up to five undisclosed targets. In another major deal, potentially 
worth over $900 million, Carmine Therapeutics has partnered with 
Takeda to develop gene therapies for two undisclosed rare diseases targets 
(215). Exosomes may thus be the future of medicine, used as ExoBots 
programmed to deliver specific drugs to specific locations within the 
organism with minimal side effects and high therapeutic efficacies.
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Glossary

AD - Alzheimer’s disease

ALS - amyotrophic lateral sclerosis

BBB - blood–brain barrier

CHF - chronic heart failure

DGUC - density gradient ultracentrifugation

DLS - dynamic light scattering

DUC - differential ultracentrifugation

EEs - early endosomes

EGFR - epidermal growth factor receptor

ELISA - enzyme-linked immunosorbent assay

EMT - epithelial–mesenchymal transition

EVs - extracellular vehicles

ExoDOX - exosomes loaded with doxorubicin

ExoDOX-GNPs - exosomes loaded with doxorubicin conjugated with 
gold nanoparticles

Exo-L - large exosomes

ExoPTX - exosomes loaded with paclitaxel

Exo-S - small exosomes

HUA - hyperuricemia

HUCMSCs-EXOs - mesenchymal stem cell exosomes derived from 
human umbilical cord

ILVs - intraluminal vesicles

ISEV - International Society for Extracellular Vesicles

LC–MS - liquid chromatography–mass spectrometry 
tandem technique

LEs - late endosomes

MS - multiple sclerosis

MSCs - mesenchymal stem cells

MSCs-EXOs - mesenchymal stem cell-derived exosomes

MVBs - multi-vesicular bodies

nanoFCM - nanoflow cytometry

NDs - neurodegenerative diseases

NGS - next-generation sequencing

NSCLC - non-small cell lung cancer

NTA - nanoparticle tracking analysis

PD - Parkinson disease

PDAC - pancreatic ductal adenocarcinoma

PD-1 - programmed death-1

PD-L1 - programmed death-ligand 1

P-ELNs - plant-derived exosomes

qRT-PCR - quantitative reverse transcription polymerase 
chain reaction

RPS - resistive pulse sensing

SEC - size exclusion chromatography

SERS - surface-enhanced Raman spectroscopy

TEXs - tumor-derived exosomes

TFF - tangential flow filtration

TME - tumor microenvironment

TNBC - triple-negative breast cancer

OA - osteoarthritis

UF - ultrafiltration
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Motivation: Predicting the response of cell lines to characteristic drugs based on
multi-omics gene information has become the core problem of precision
oncology. At present, drug response prediction using multi-omics gene data
faces the following three main challenges: first, how to design a gene probe
feature extraction model with biological interpretation and high performance;
second, how to develop multi-omics weighting modules for reasonably fusing
genetic data of different lengths and noise conditions; third, how to construct
deep learningmodels that can handle small sample sizes whileminimizing the risk
of possible overfitting.

Results:Wepropose an innovative drug response predictionmodel (NMDP). First,
the NMDP model introduces an interpretable semi-supervised weighted SPCA
module to solve the feature extraction problem in multi-omics gene data. Next,
we construct a multi-omics data fusion framework based on sample similarity
networks, bimodal tests, and variance information, which solves the data fusion
problem and enables the NMDP model to focus on more relevant genomic data.
Finally, we combine a one-dimensional convolution method and
Kolmogorov–Arnold networks (KANs) to predict the drug response. We
conduct five sets of real data experiments and compare NMDP against seven
advanced drug response prediction methods. The results show that NMDP
achieves the best performance, with sensitivity and specificity reaching
0.92 and 0.93, respectively—an improvement of 11%–57% compared to other
models. Bio-enrichment experiments strongly support the biological
interpretation of the NMDP model and its ability to identify potential targets
for drug activity prediction.
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drug response prediction, feature extraction, sparse PCA, Kolmogorov–Arnold
networks, data fusion
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1 Introduction

Precision oncology aims to leverage genomic information to
identify patient groups with similar biological traits, enabling the
delivery of the most suitable treatments (Dlamini et al., 2020;
Garraway et al., 2013; Hodson, 2020; Prasad, 2016; Prasad et al.,
2016). In clinical applications, this approach generally involves
choosing targeted therapies based on the individual genomic
profiles of patients (Ballester and Carmona, 2021). However,
research reveals that only approximately 9% of patients
experience effective outcomes from such targeted treatments,
which greatly restricts the broad applicability of precision
oncology (Barretina et al., 2012a; Rubio-Perez et al., 2015).
Moreover, limited drug response prediction models for non-
specific therapies mean that many patients miss out on the
benefits of precision oncology and may even receive ineffective
treatments. Fortunately, data from extensive pharmacogenomic
screenings have shown that nearly all cancer cell lines and
patient-derived xenografts (PDXs) respond to some form of
targeted therapy or non-specific chemotherapy (Barretina et al.,
2012b; Gao et al., 2015; Garnett et al., 2012). Thus, a primary
challenge now is accurately aligning cancer patients with treatments
that match their unique drug response profiles.

Currently, a significant research focus is predicting drug
responses in cancer patients using single genomics data (Adam
et al., 2020; Dong et al., 2015; Firoozbakht et al., 2022; Sheng et al.,
2015). For instance, as demonstrated by Geeleher et al., a ridge
regression model that utilizes gene expression data from the
Genomics of Drug Sensitivity in Cancer (GDSC) database has
shown effective application to clinical trial datasets for drugs
including erlotinib, cisplatin, docetaxel, and bortezomib. The
study also found that incorporating data from cancer cell lines
other than breast cancer can improve the predictive performance of
the docetaxel drug response model (Geeleher et al., 2014). Moreover,
our preliminary research indicates that combining statistical
methods based on individual genomic information from patients
with machine learning techniques can construct highly performant
drug response prediction models (Miao et al., 2020; Zheng et al.,
2024; Sharma et al., 2024).

Recently, the increasing availability of multi-omics datasets for
drug response has opened new avenues for machine learning
models, enabling a deeper understanding of biological processes.
Multi-omics data have shown notable success across various
bioinformatics tasks, including survival prediction, cancer subtype
classification, and target gene identification (Xu et al., 2024). As deep
learning continues to progress rapidly, constructing predictive
models that utilize multi-omics data through deep learning
techniques becomes a primary research focus. Several multi-
omics drug response models have been developed (Ballester
et al., 2022; Baptista et al., 2021; Chen and Zhang, 2021; Zhou
et al., 2024; Rashid, 2024; Baptista and Ferreira, 2023). For instance,
Chiu et al. developed a deep learning model that utilizes
autoencoders to combine diverse omics features for drug
response prediction (Chiu et al., 2019). Similarly, Hossein et al.
proposed a model that employs deep neural network fusion,
combining hidden layer representations from different multi-
omics networks to synthesize feature information effectively
(Sharifi-Noghabi et al., 2019). Peng et al. proposed a two-space

graph convolutional neural network (TSGCNN) that combines cell
line and drug feature spaces to predict drug responses by leveraging
both homogeneous and heterogeneous relationships (Peng et al.,
2023). Similarly, Trac et al. proposed a GCN-based drug response
prediction model for acute myeloid leukemia (AML), highlighting
the versatility of graph-based neural networks in oncology research
(Trac et al., 2023). Wang et al. proposed MOICVAE, a deep learning
model that integrates multi-omics data using a variational
autoencoder to improve drug sensitivity prediction (Wang et al.,
2023). Meanwhile, Sharma et al. proposed DeepInsight-3D,
architecture to fuse multi-omics data for anticancer drug
response prediction, offering an advanced deep learning
perspective for modeling complex interactions in diverse
biological datasets (Sharma et al., 2023).

Currently, the multi-omics drug response prediction model
faces three major challenges. First, genomic data typically involve
small sample sizes, which increases the likelihood of overfitting in
existing models (Deng et al., 2023). Developing an efficient and
biologically interpretable feature selection method to select key
genomic data is the first major challenge currently faced (Deng
et al., 2023). Second, most genomic datasets for drug response
prediction contain multiple independent genomic data types
(Munquad et al., 2024). The data lengths and noise levels of
these genomic datasets vary significantly, making the rational
design of the multi-omics fusion method the second major
challenge in constructing high-performance drug response
medical models. Third, considering that drug response prediction
is a complex biological problem and the dataset has only limited
training samples, constructing a sufficiently high-performance
prediction model based on a small sample of data remains the
third major challenge.

In this study, we introduce an innovative model for predicting drug
response (NMDP, Figure 1). The NMDP model is composed of four
main modules. 1) Key genome selection module: we propose an
interpretable, semi-supervised weighted sparse PCA to identify
essential biological features. 2) Similarity network construction
module: this module addresses the challenge of aligning data across
different omics. 3) Data fusion module: we introduce a weighted
similarity network fusion approach, incorporating the dip test
method and variance information. 4) Drug response prediction
module: we integrate one-dimensional convolutional neural networks
(CNNs) and the Kolmogorov–Arnold network (KAN) method.

2 Materials and methods

2.1 Datasets

In this study, we use publicly available datasets to extract drug
response and genomic data from cell lines. The first dataset is
Genomics of Drug Sensitivity in Cancer (GDSC), which provides
extensive data on drug response measurements. The second is the
Gene Expression Omnibus (GEO) and Cell Model Passports, along
with the European Bioinformatics Institute (EMBL-EBI) datasets.
These two datasets provide the genomic data needed for this
experiment.

It is important to note that the GDSC dataset comprises
624 unique drugs, 576,758 IC_50 values, and 978 cell lines.
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Genomic characteristics for each cell line include somatic copy number
alterations (SCNAs) across 21,878 genes, RNA-Seq expression levels for
44,421 probes, and methylation levels for 365,860 CpG sites. For our
study, we select 68 drugs: 14 FDA-approved targeted therapies, 49 drugs
with known target genes not yet FDA-approved, and 5 nonspecific
treatments (Supplementary Tables S1–S3).

2.2 Dataset of gene pathway data

The pathway data used in this study are sourced from the
Pathway Commons database, which contains commonly used
pathway datasets such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO).

FIGURE 1
Overview of the NMDPmodel workflow. (A)Multi-omics data input. (B) Semi-supervised weighted sparse PCA. (C) Similarity calculationmodule. (D)
Construct of the fusion feature matrix. (E) Prediction model. (F) Output.

FIGURE 2
Structure of the deep learning model used in the NMDP model.
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2.3 Drug response data

In addition to the preprocessing already performed by the
provider of this dataset, we also perform additional preprocessing.
The following are the steps and criteria of our preprocessing: first,
we remove samples with certain missing data, such as samples with
a missing rate of more than 10%; second, we remove drugs with
limited IC_50 test information, requiring the amount of IC_50 test
data for each drug to be no less than 200 samples. Third, we use
waterfall distribution to divide drug response data (Ding et al.,
2018). Waterfall distribution is a method that sorts drugs based on
their IC_50 values and uses a linear model to fit the data, which is
used to determine whether a drug is effective. Specifically, the
drugs are sorted according to the true IC_50 information. A linear
model is then constructed to fit the distribution, and Pearson’s
coefficient is used to evaluate the degree of fit of the model. If the fit
is higher than 0.95, then the median is chosen as the cut-off point.
If the fit is less than 0.95, a new monadic linear function is created,
and the parameters of the function are determined by the smallest
and largest points of IC_50. Finally, the point furthest away from
the unary linear function in the IC_50 curve is calculated as the
demarcation point. Ultimately, we classify divide drugs into two
categories: responsive and non-responsive. In addition, to ensure
that the data are balanced, we ensure that the response group
constitutes at least 25% of the total data.

2.4 Methods

In this section, we provide a detailed overview of the
architecture and algorithm flow of the NMDP model. This
NMDP method transforms the sparse PCA model from a non-
supervised to a semi-supervised approach, improving the ability of
feature selection (key genome selection module). Second:
Similarity network building module: in this module, we
construct a sample similarity network based on the Spearman
and Kendall correlation coefficients. Third: Data fusion module:

we develop a data fusion algorithm based on the dip and variance
tests. Fourth: Drug response prediction module: in this module, we
propose a drug response prediction model based on one-
dimensional convolution and KANs.

2.4.1 Key genome selection module
2.4.1.1 ESPCA method

Before introducing the NMDP model, we first define the sparse
PCA (SPCA) and edge sparse PCA (ESPCA) models. Suppose we
have an m × n feature matrix X ∈ Rm,n, where n represents the
number of samples and m represents the number of gene probes.
The definition of SPCA is given by Formula 1:

maximize
u‖ ‖2 ≤ 1

uTXXTu, s.t. u‖ ‖0 ≤ s. (1)

Here, ‖*‖2 and ‖*‖0 represent L2 and L0 norms, respectively. u
represents principal component (PC) loading, which has the
dimension as the number of gene probes. s represents the
retention number of gene probes. In most cases, the SVD
method is used to solve Formula 1. Therefore, the formula can
also be written as Formula 2:

maximize
u‖ ‖2 ≤ 1, v‖ ‖2 ≤ 1

uTXv, s.t.‖ u ‖0 ≤ s. (2)

In this case, v represents the weight information corresponding
to the sample, with dimensions matching the number of samples.
ESPCA builds upon SPCA by incorporating improvements. Its main
contribution is the integration of pathway structure information
from the genome as a priori knowledge. Suppose that the known
pathway structure information (edge set) is represented as
G � e1, . . . , el{ }. At this point, the researcher introduces ‖u‖ES
regulon, which is represented as Formula 3:

u‖ ‖ES � minimize
∀G′∈G,support u( )⊆V G′( ) G′∣∣∣∣ ∣∣∣∣. (3)

Here, G′ ∈ G and V(G′) represents the vertex set derived from the
‖u‖ES regulon. Therefore, ESPCA can also be represented as
Formula 4 (Min et al., 2018):

FIGURE 3
Results of 14 FDA-approved drugs for eachmodel. (A) Sensitivity and specificity of the NMDPmodel; (B) sensitivity and specificity of theMOLImodel;
(C) sensitivity and specificity of the netDxmodel; (D) sensitivity and specificity of the TSGCNNmodel; (E) sensitivity and specificity of theMOICVAEmodel;
and (F) accuracy of each model.
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maximize
u‖ ‖2 ≤ 1, v‖ ‖2 ≤ 1

uTXv, s.t.‖ u ‖ES ≤ s. (4)

2.4.1.2 Semi-supervised weighted edge sparse PCA
The existing SPCA and ESPCA methods are pure non-supervised

methods; this method has a great advantage in data analysis with small
samples and high dimensions. However, two primary issues arise: first,
the method cannot utilize existing grouping information, which may
reduce its effectiveness. Second, for the problem of drug response, the
existing sparse PCAmethod selects the exact same key gene probe for all
types of drugs; it obviously does not accord with the common sense of
biology. In this study, we propose a novel semi-supervised weighted
edge sparse PCA. This methodmainly includes a weighted parameter t,
which is calculated using a machine learning model. The parameter t
leverages known grouping information on drug responses. Each time
the model completes a cycle, we calculate t based on the currently
selected key gene probes and weight u. Finally, we can select different
key gene probes for each drug. The specific steps are shown in
Formulas 5–12.

In general, the semi-supervised weighted edge sparse PCA
method proposed in this paper can be expressed as Formula 5:

maximize
u‖ ‖2 ≤ 1, v‖ ‖2 ≤ 1

uTXv, s.t.‖ u ‖NM ≤ k. (5)

Here, ‖u‖NM is a sparse regulon representing the edge group
proposed by ESPCA and k is the regularization parameter. The
regulon is given by Formula 6:

u‖ ‖NM � minimize
∀G′w∈Gw,support u( )⊆V G′w( )

G′
w

∣∣∣∣∣ ∣∣∣∣∣. (6)

Here, G′
w represents a subset of vertices selected from the edge

set, with |G′
w| representing the count of vertices within this subset.

Additionally, support (u) represents the collection of non-zero
elements in the sparse vector u. Then, we specifically explain
how to calculate G′

w, supposing eh � (ui, uj) ∈ G, ui, uj ∈ Rm. At
the beginning of the algorithm, v is randomly initialized. We use
u � Xv to calculate the weight of u. Based on u, we use Formula 7 to
calculate the edge weight wh corresponding to eh:

wh �
������
u2
i + u2

j

√
. (7)

Finally, the edge weight can be represented as Gw � wh{ }l1. In this
paper, we used a greedy principle based on the random sampling
method, previously developed by our team, to sparsify u, as
represented in Formula 8 (Miao et al., 2022):

PGw z, k( )[ ]i � zi, ifGw i( ) ∩ sample I, k( ) ≠∅
0, otherwise

{ . (8)

Here, PG(z, k) represents the sparse projection, with
[PGp(z, k)]i(i � 1, . . . , m). I � supp(normDM

Gp
(e′), (1 + ω) × k).

sample(I, k) represents the random selection of k elements from
the set I. k denotes the number of non-zero elements selected in the
sparsification process. If gene i is selected, then [PG(z, k)]i � zi;
otherwise, [PG(z, k)]i � 0.

In this case, we can obtain a sparse gene weight vector
û � PGw(z, k). Since existing sparse PCA models are non-
supervised, identical input gene expression information results in
the same û for each drug. In order to find a more suitable key geneT
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set for different drugs, we design a linear evaluator based onmachine
learning, denoted as ŷ � fθ(x). For example, linear models or
random forests can be used as evaluators. Here, θ represents the
parameterized model, while the classification label corresponds to
the drug response grouping information. Each time the sparse PCA
model completes a cycle, we extract a new genome key expression
matrix X̂∈ Rp,n and X̂∈ X based on û, where p represents the
number of non-zero gene probes contained in û at that time.
Next, X̂ is input into ŷ, as represented in Formula 9:

θ* � argmin
θ

L X̂; θ,ω( ). (9)

Here, L represents the loss function. ω represents the optimizer of
the model. θ* represents the parameter after model training. Once
training is complete, an importance score t is calculated for each
gene probe associated with X̂. Finally, we obtain t � t1, . . . , tp{ }.
In order to ensure the stability in the weighting process, we
perform a normalization step on t,scaling the values to the range
0–2. Finally, we update û based on t, as represented in
Formula 10:

û � t1û1, . . . , tmûm{ }. (10)
In this case, if the gene probe corresponding to ti is not included

in the set of t, then ti � 0. We use Formulas 11, 12 to cross-update u:

u ← û

û‖ ‖, (11)

v ← v̂

v‖ ‖, where v̂ � XTu. (12)

1: u � Xv

2: foranyweightofedge einGw do

3: w′
h �

���
u2
i

√
+u2

j Gen erateadynamic network.

4: updateG′
w � w′

h

5: endfor

6: LetnormNM
G′
w
(e′) � (‖ e1

′‖,/, ‖e′
l ‖)T

7: I � supp (normNM
Cn

(e′), (1 + ω) × k)Extract (1 + ω) × kedges

8: Jk � sample (I,k)
9: ifω>0thenω � ω − ρ

10: VG′
w
� V(G′

w)
11: foranygeneiinVG′

w
do

12: ûi � ui

13: endfor

14: X̂ � X[û]
15: Class � RandomForestClassifier ( )
16: Class.fit (Class,Y) \#Trainandtesttheclassifier

17: t � Class.feature importances

18: û � t*û#Weight û

19: return û

20: uupdate � û
‖û‖

21: v ← v̂
‖v‖,where v̂ � XTuupdate

22: loss � ‖u − uupdate‖2,if loss<0.0001,end,thenreturnstep1

Algorithm 1. Semi-supervised weighted edge SPCA.

2.4.2 Similarity network building modules
For the same drug, we can get at least three different genomics

data. The experiments in this paper mainly include gene expression
data, copy volume data, and methylation data. Each omics performs
sparse PCA operations independently. Finally, we can obtain three
key feature matrices, namely, S ∈ Rk,n, C ∈ Rp,n, and M ∈ Rh,n.
k, p, h represents the number of key gene probes retained by
each of the three omics.

Because of the inconsistency of the data lengths for each omics,
data cannot be aligned. Therefore, we calculate a sample similarity
subnet for each omics based on the concept of the sample similarity
network. In this paper, we use two similarity measurement methods.
We use the Spearman correlation coefficient to calculate the sample
similarity subnet of gene expression and methylation omics, as
represented in Formula 13:

FIGURE 4
NMDP model precision results of 14 FDA-approved drugs.

TABLE 2 External independent validation results.

Precision Recall F1-score

Responsive 0.72 0.74 0.73

Non-responsive 0.83 0.81 0.82

Accuracy 0.77

Macro average 0.73 0.77 0.74

Weighted average 0.8 0.78 0.79
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ρ2 �
∑k

1 xi − �x( ) yi − �y( )��������������������∑k
1 xi − �x( )2∑k

1 yi − �y( )2√ . (13)

Here, for the x and yth sample, xi, yi represent the expression
information on the ith gene expression in each sample, with k
representing the total number of gene probes. The symbols �x, �y
indicate the average gene expression levels for each sample.

The Kendall correlation coefficient is used for the copy number
dataset, as provided in Formula 14:

Tau � C −D
1
2 k k − 2( ). (14)

Here, the x andyth sample can be showed as a set of two
elements containing p gene probe. C represents the number of
consistent elements. D represents the number of inconsistent
elements. k denotes the total number of gene probes in
each sample.

2.4.3 Data fusion module
After completing the construction of the sample similarity

subnet, we can obtain three feature matrices, namely, S′∈ Rn,n,
C′ ∈ Rn,n, and M′ ∈ Rn,n. Then, we propose a subnet fusion
algorithm based on the dip test and variance estimation using
Formula 15:

X′ � α1 × β1 × S′ + α2 × β2 × C′ + α3 × β3 × M′, (15)
where X′ represent the feature representation after fusion. α and β
are defined as the amount of statistical information corresponding
to the genomics data matrix. Theoretically, our goal is to retain as
much of the feature matrix as possible, prioritizing genomics with
higher statistical significance for drug response prediction. To
achieve this, we use two statistical methods to assess the
amount of information in the data. The first method is the
single peak test, which aims to retain similarity matrices that
exhibit more typical bimodal distributions. A bimodal
distribution is a statistical concept that represents a dataset in
more than two regions. In gene expression analysis, if the data
show a bimodal part, it indicates a significant statistical difference
within the sample. In this paper, we assess the bimodal property of
data using the dip test method, originally proposed by Hartigan
et al. (1985). We assume that ρ(F, G) follows Formula 16 for any
bounded functions F, G. Let μ be the class of unimodal
distribution functions.

ρ F, G( ) � supx F x( ) − G x( )| |. (16)

We define μ as a typical unimodal distribution function and F as
a dip distribution function. We can obtain Formulas 17, 18
as follows:

D F( ) � ρ F, μ( ), (17)
D F1( )≤D F2( ) + ρ F1, F2( ). (18)

It is important to note that D(F) � 0 for F ∈ μ, indicating that
the dip quantifies deviation from unimodality. Assume that the
result of the dip function is p, as shown in Equation 19:

p> 0.95: significant unimodality
p< 0.05: significant bimodality

. (19)

Another statistical method is the variance test. In addition to
information about the probability distribution of the samples, our
goal is to retain a matrix of sample similarity features that preserves
as much discrete information as possible. The formula for the
variance S information is provided in Formula 20:

S � ∑ X − �X( )2
n − 1

, (20)

where X is the variable, �X is the sample mean, and n denotes the
sample size. Suppose that the result of the variance of the i feature of
the ith histology is Sij. Then, βi of ith histology can be expressed as
Formula 21:

βi �
1
n
∑n
1

Sij. (21)

The computed β � β1, β2, β3{ } accounts for the possibility that β
having a large parameter. Therefore, we normalize β using Formulas
22, 23 as follows:

wi � a + p ki −Min( ), (22)
p � b − a( )/ Max −Min( ). (23)

Here, a and b are user-defined parameters, representing the
normalized range of data. p represents a scaling factor used to
normalize the raw data β to a user-defined range. Max and Min
represent the maximum and minimum values of β, respectively.

2.4.4 Drug response prediction module
Finally, we obtain the feature matrix X′. Although the problem

of the high dimensionality of data has been largely alleviated after
genomic feature extraction and similarity network computation,
researchers still need a powerful enough deep learning model to
achieve high performance and avoid overfitting. However,
considering the limitation of the number of samples, researchers
still need a sufficiently powerful drug response prediction deep
learning model to avoid model overfitting. In this study, we
construct a deep learning model based on one-dimensional
convolution and KANs to predict drug response (Figure 2). One-
dimensional convolution can further localize the features of the
samples and remove potential noise. Experimental results indicate
that one-dimensional convolution significantly enhances the
model’s prediction performance. KANs, proposed by Liu et al.
(2024), aim to replace the traditional fully connected neural
network layer. The network is based on the Kolmogorov–Arnold
theorem, which states that any continuous function f(x) in
n-dimensional real space, where x � (x1, . . . , xn) can be
represented as a combination of a single-variable continuous
function h and a series of continuous bivariate functions gi and
gi,j. Specifically, the theorem is expressed in Formula 24:

f x1, . . . , xn( ) � ∑2n
q�0

h ∑n
i�1
gq,i xi( )⎛⎝ ⎞⎠. (24)

The theorem shows that even a complex function in a high-
dimensional space can be reconstructed using a series of lower-
dimensional function operations. Specifically, a KAN layer with nin
dimensional inputs and nout dimensional outputs can be defined as a
matrix of one-dimensional functions, as represented in Formula 25:

Frontiers in Genetics frontiersin.org07

Miao et al. 10.3389/fgene.2025.1532651

46

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1532651


KANs � ϕq,p{ }, p � 1, 2, . . . , nin, q � 1, 2, . . . , nout, (25)

where the function ϕ is defined as shown in Formula 26 and consists
of a B-spline curve and a residual activation function b(x), all
multiplied by a learnable parameter w. The function ϕ is defined as
shown in Formula 26:

ϕ � w1 × spline x( ) + w2b x( ). (26)

The main advantage of KANs is that they can achieve results
beyond fully connected neural networks while using fewer
parameters. This is especially important for the drug response
prediction problem. Due to the limitation of the sample size, it is
unlikely that we can construct a deep learning model that contains a
huge neural network. To summarize, the module can be expressed
using Formulas 27, 28 as follows:

�X � One −Dimensional Convolution X′( ), (27)
out � KANs �X( ). (28)

3 Results

The procedure in this article consists of six distinct steps.
Initially, experiments were performed using 14 FDA-approved
targeted therapy drugs already authorized for clinical use. In the
second step, we broadened the model evaluation by testing it with
49 targeted therapy drugs not approved by the FDA. In the third
step, we conducted experiments on five chemotherapeutic agents
(non-targeted therapeutics) in order to verify that the NMDPmodel
has good scalability. We used seven state-of-the-art AI models for
comparison, namely, TSGCNN, MOICVAE, MOLI, netDx,
netDx–elastic network, deep autoencoder, and netDx–SVR. Five
evaluation indicators were used, namely, sensitivity, specificity,

precision, accuracy, and F1 score. The details of comparison
models are provided in Supplementary Materials.

In the fourth step, we selected the GDSC1 dataset for training
and testing and the GDSC2 dataset for validation. We selected
14 FDA-approved drugs to perform and calculate the mean value.
The consistency and reliability of the results were ensured by
calculating the mean value.

The fifth step included conducting ablation experiments to
determine the importance of each sub-module of the NMDP
model. We randomly selected 10 drugs for analysis and averaged
the results. All experiments were performed using the
GDSC2 dataset (Supplementary Table S7). We conducted four
independent experiments: the first experiment was conducted to
remove the multi-omics weighting module; the second experiment,
to remove the convolution module; the third experiment, to remove
the sample similarity network; and the last experiment, to replace
KANs with MLPs.

Ultimately, we used the Metascape platform to examine the
biological pathways associated with the gene probes chosen by the
NMDP model (Zhou et al., 2019). The details of the indicators are
provided in Supplementary Materials.

3.1 FDA-approved targeted therapy drugs

Based on the results presented in Figure 3 and Supplementary
Table S4, experiments show that the NMDP model is much better
than the advanced deep learning model. Notably, the NMDP
model achieves an average sensitivity of 0.92 and a specificity of
0.93. Among the models for comparison, the MOICVAE model
ranks highest, with a sensitivity of 0.77 and a specificity of 0.91.
The deep autoencoder model, however, performs the lowest, with
sensitivity and specificity values of 0.53 and 0.44, respectively.

FIGURE 5
NMDP model precision results of five non-specific therapeutic drugs.
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Based on Figure 3C, it is evident that the deep autoencoder model
exhibits overfitting across multiple drugs. Moreover, the NMDP
model demonstrates minimal fluctuation across 14 drugs,
indicating its superior stability (Figure 3F). Compared to other
models, all except the MOLI model show relatively high levels of
fluctuation, suggesting weaker stability in those models. The NMDP
model achieves values of 0.93, 0.92, 0.92, and 0.92 for average accuracy
and F1 score, outperforming the MOICVAE model by 10% in each
metric (Table 1). When compared to the deep autoencoder model, it
shows improvements of 31%, 48%, 52%, and 50%, respectively.

According to Figure 4, the NMDPmodel demonstrated excellent
performance in predictive accuracy. It is worth mentioning that out
of these 14 drugs, the prediction accuracy for 13 of them
exceeded 90%.

3.2 FDA non-approved targeted
therapy drugs

Across the 49 drugs not approved by the FDA, we observe similar
outcomes. Experimental findings indicate that the NMDP model
achieves average sensitivity and specificity values of 0.92 and 0.93,
respectively, outperforming the comparison models by 11%–57%
(Supplementary Figure S1; Supplementary Table S5). Supplementary
Figure S1F illustrates the NMDPmodel’s high stability, with only 5 out
of the 49 drugs showing precision below 0.9 (see Figure 5). In addition,
the average precision of theNMDPmethod can reach 0.95. F1 score can
reach 0.92, surpassing the MOLI model by 14%, 10%, and 13%
(Supplementary Table S1). Among the seven models compared,
MOLI achieves the highest performance. Nevertheless, its sensitivity,
specificity, precision, and accuracy for response, non-response, and all
samples are only 0.80, 0.88, and 0.86, respectively, with F1 scores of 0.83,
0.83, 0.83, 0.82, and 0.84.

3.3 Non-specific therapeutic drugs

In the study of five non-specific therapeutic drugs, we achieve
optimal outcomes in three experiments. Results indicate that the
NMDP model achieves 0.93 for average sensitivity, surpassing the
comparison models by 19%–42% (Supplementary Figure S2;
Supplementary Table S6). Additionally, the NMDP model
demonstrates a precision close to 0.95 across the five drugs
(Figure 6). The model also shows outstanding performance in

F1 score and accuracy, reaching 0.93 (Supplementary Table S2).
Compared to the other models, the MOLI model achieves the best
results, but its average F1 score and accuracy reach only 0.78. The
experimental results show that the NMDPmodel has good expansibility.

3.4 External independent validation results

To evaluate the model’s performance and test its generalization
ability, we design this external independent validation experiment.
The experimental outcomes demonstrate that the NMDP model
exhibits superior generalization capabilities. Specifically, the NMDP
model achieves an overall prediction accuracy of 0.77 and precision,
recall, F1 score, and accuracy of 0.73, 0.77, 0.74, and 0.77, respectively
(Table 2). It is worth noting that a slight decrease in accuracy is
observed on the validation set compared to the results on the test set.
This may be due to the noise difference between the datasets. Overall,
the NMDP model exhibits robustness and reliability, with the
capability for widespread application.

3.5 Ablation experiment

The experimental results show that the model feature extraction
effect is weakened by removing the multi-omics weighting module and
the convolution module, but the convolution module has a greater
impact on the model. The sample similarity network module has the
greatest impact, further verifying the importance of similarity across
samples. When KANs are replaced with MLPs, the performance of the
model improves but still does not surpass that of the original model.
This indicates that KANs have a unique advantage in capturing
complex relationships, especially when dealing with multi-omics
data. Taken together, the results of the ablation experiments fully
indicate that the sample similarity network and convolution module
are the key factors in improving the model performance. Among them,
the sample similarity network module has the greatest impact, and we
believe that the main reason is that, even after the feature filtering of the
sparse PCA model, the three modules are still able to save more than
9,000 gene probes collectively, and the excessively high data dimensions
make it easy for the model to fall into an overfitting state.

3.6 Enrichment analysis

To validate the biological interpretability of the NMDP model, we
conduct bio-enrichment analysis using gene selection results for
erlotinib across different omics types obtained from the first
principal component (PC) in the NMDP model. Erlotinib is an
FDA-approved non-small cell lung cancer drug, with EGFR as its
primary target (Tsao et al., 2005; Zhou et al., 2021). The analysis yields
promising results as the NMDP model successfully identifies lung
cancer-related pathways and gene probes. For instance, in copy number
omics, we discover pathways corresponding to genes like EGFR, CDK6,
RASSF5, BRAF, and CCND1, which are associated with non-small cell
lung cancer (Chen et al., 2018; Xue et al., 2019; Zhao et al., 2018)
(Figure 7A). In methylation omics, we observe the developmental
process pathway GO:0032502, involving genes such as EGFR,
FGFR2, GATA6, ASCL1, BMP4, and FOXA1, indicating relevance to

FIGURE 6
NMDP model precision results of five non-specific
therapeutic drugs.
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lung development (Bach et al., 2018; Ju et al., 2019; Murai et al., 2015)
(Figure 7B). In Seq omics, we identify pathways related to the KEGG
pathway, which include genes like EGFR, MAPK1, KRAS, CCND1,
HRAS, NRAS, PLCG1, and GRB2, which show strong connections to
non-small cell lung cancer (Betticher et al., 1996; Park et al., 2020; Pązik
et al., 2021) (Figure 7C). Remarkably, EGFR, the target gene of erlotinib,
is consistently identified across these three omics types.

Overall, the NMDP model demonstrates superior performance
compared to other models across all metrics.

4 Discussion

With advancements in bioassay technology, a growing number of
large-scale drug response datasets are being released, creating new
possibilities for building drug response prediction models. In recent
years, researchers have proposed a number of AI-based drug response
predictionmodels (Chiu et al., 2020). However, drug response prediction
data aremostly characterized by the typical features ofmulti-omics, small

samples, high dimensionality, and high noise. Designing feature selection
and multi-omics fusion methods based on regularization ideas becomes
very important. In addition, considering the potential overfitting
problem, it is difficult for researchers to build AI-based drug response
prediction models with many parameters.

In light of the aforementioned issues, we propose the NMDPmodel,
which integrates semi-supervised weighted SPCA, similarity networks,
dip tests, and KANs. Unlike the traditional unsupervised sparse PCA
model, the NMDP model proposes an independent evaluator that
converts the sparse PCA model from a traditional unsupervised to a
semi-supervised model. This improvement allows the NMDP model to
use known dataset grouping information, ultimately allowing the model
to stably select different potential target genes for different target drugs.
The experimental results show that the NMDP model inherits the
advantages of the sparse PCA model, such as good biological
interpretability and strong denoising ability, further enhances the
feature selection ability of the model in multi-omics gene data, and
greatly strengthens the stability of the model in high-dimensional small-
sample cases. Sample similarity networks further address the

FIGURE 7
(A) Pathway results from the first PC of copy number; (B) pathway results from the first PC of methylation data; and (C) pathway results from the first
PC of sequencing data.
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dimensionality challenge of the samples while helping themodel perform
multi-omics data alignment.We introduce a fusion algorithm that utilizes
both dip test and variance data with weighted integration, which allows
themodel to focus on important histological information, thus improving
prediction accuracy. Finally, we propose a one-dimensional convolution
combined with KANs for drug response predictionmodeling. Themodel
achieves efficient prediction with a small number of parameters, thereby
effectively avoiding the overfitting problem.

To enhance the validation of the model, we also conduct external
validation experiments to assess the generalization capability of themodel
using independent datasets. The experimental findings indicate that the
NMDP model performs consistently on different datasets, validating its
robustness and reliability. In addition, we conduct ablation experiments
to evaluate the contribution of each component to the model
performance. The results of the ablation experiments show that
removing the multi-omics weighting module and the convolution
module significantly degrades the model’s performance, and in
particular, the sample similarity network module plays the most
crucial role in influencing the model’s effectiveness. This further
emphasizes the importance of inter-sample similarity and the unique
advantage of KANs in capturing complex relationships. Bioenrichment
experiments fully validate the biointerpretability of the model, suggesting
that the NMDP model could help researchers in drug development.

We also acknowledge some limitations to this study: our
research is confined to predicting the response to a single drug,
without considering the effects of combination drug therapies.
Moreover, the weighted edge sparse PCA method has high time
complexity, which leads to slower model computations. In future
work, we plan to improve the model’s ability to predict responses to
drug combinations and optimize its computational efficiency.
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approach linked to gut 
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function
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Introduction: Drug abuse is becoming a global public health crisis. According 
to the United Nations, the number of drug users worldwide has increased 
dramatically over the past decade, with a surge in the number of drug abusers. 
The problem was exacerbated by the expanding market for illicit drugs and the 
increasing availability of synthetic drugs such as fentanyl. Clinical drug abuse is a 
problem that requires particular attention, and the potential addictive properties 
of some drugs and their mechanisms of action are currently unknown, which 
limits the development and implementation of drug addiction intervention 
strategies.

Methods: Eight-week-old C57BL/6J mice were used as study subjects. A 
mental dependence model was established using the conditional position 
preference experiment (CPP), and the hippocampal tissues of the model mice 
were subjected to RNA-seq transcriptome sequencing, LC–MS non-targeted 
metabolome sequencing, and intestinal macro-genome sequencing in order 
to discover propofol mental dependence signature genes. Correlation analyses 
of transcriptomics and metabolomics were performed using the Spearman 
method, and gene-metabolite networks were mapped using Cytoscape 
software. Real-time fluorescence quantitative PCR and immunoprotein blotting 
(Western blotting) methods were used to validate the characterized genes.

Results: After the conditioned position preference experiment, the conditioned 
preference scores of the 75 mg/kg propofol and 2 g/kg alcohol groups were 
significantly higher than those of the control saline group. 152 differential genes 
and 214 differential metabolites were identified in the 75 mg/kg group. Cluster 
analysis revealed that changes in the neuroactive ligand receptor pathway were 
most pronounced. Gut microbiomics assays revealed significant changes in 
five differential enterobacterial phyla (Campylobacter phylum, Thick-walled 
phylum, Anaplasma phylum, Actinobacteria phylum, and Chlorella verticillata 
phylum) in the 75 mg/kg propofol group, which may be related to changes in 
the differential expression of dopamine.
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Discussion: These findings suggest that 75 mg/kg propofol has a significant 
mind-dependent effect on the biology of drug addiction through neuroactive 
ligand-receptor interaction pathways in conjunction with the tricarboxylic acid 
cycle, and the metabolic pathways of alanine, aspartate, and glutamate that may 
influence intestinal microbial changes through bidirectional signaling.

KEYWORDS

propofol, psychiatric dependence, gut microbes, transcriptomics, metabolomics, 
hippocampus

1 Introduction

Propofol, as a fast-acting short-acting anesthetic, is widely used in 
a variety of clinical practices, including short-term anesthesia for 
abortion, gastroscopy, and the induction and maintenance of general 
anesthesia (1), but also for conscious sedation in critically ill patients, 
as well as in the treatment of refractory agitated delirium and 
antiemetic. Recent studies have also shown that propofol has 
therapeutic and anti-inflammatory effects (2). Its main mechanism of 
action is to inhibit neural signaling by promoting chloride inward flow 
via GABA-A type receptors (3). However, the risk of propofol abuse 
and addiction cannot be  ignored, especially among medical 
professionals (4, 5), long-term or overdose use of propofol may lead 
to dependence, increased tolerance, and withdrawal symptoms, and 
overdose may even be life-threatening (6).

Drug addiction is considered a chronic and relapsing brain 
disorder characterized by persistent craving for and use of drugs 
regardless of negative consequences (7). Underlying this craving 
and use behavior are long-term gene expression changes, neuronal 
adaptations, and changes in synaptic plasticity triggered by 
repeated drug ingestion. The hippocampus, a key brain region for 
learning and memory, plays a central role in drug addiction (8). 
Drug addiction can lead to significant changes in neuroplasticity 
in the hippocampus that include changes in neuronal excitability, 
neurotransmission, morphological changes in dendrites and 
axons, and synapse formation or elimination (9). Neurotransmitter 
systems in the hippocampus, including dopamine, glutamate, and 
GABA, are closely linked to the neural mechanisms of drug 
addiction (10). Current research on the mechanisms of drug 
addiction has focused on changes in brain neurotransmitters 
(dopamine, glutamate, and GABA, among others) (11). The 
hippocampal region, a key brain area for learning, memory, and 
spatial navigation, plays a central role in the development and 
maintenance of drug addiction (8). Addictive drugs such as 
cocaine, opioids, and nicotine alter the structure and gene 
expression of the region by modulating synaptic plasticity in the 
hippocampus. In addition, drug abuse-induced changes in 

neurotransmitter systems, including serotonin and endorphins, 
have been strongly associated with the development of addictive 
behaviors by modulating mood, memory, and reward behaviors. 
Most addictive drugs are directly linked to reward effects by 
increasing the release of dopamine in the brain, particularly in the 
hippocampus, leading to craving and dependence on the drug 
(12). In neurobiological models of addiction, changes in dopamine 
receptor expression in the hippocampus have received widespread 
attention, e.g., chronic drug exposure (e.g., cocaine, endogenous 
cannabinoid analogs) may lead to down-regulation of dopamine 
D2 receptors in the hippocampus, which may be  related to 
reduced sensitivity to drugs and disinterest in non-pharmacological 
rewards in addicted individuals (13). Dysregulated dopamine 
signaling in the hippocampus has also been associated with the 
risk of relapse in drug addiction, as these alterations may affect an 
individual’s response to drug-related cues and decision-making 
processes. Thus, the hippocampus and dopamine system play a 
critical role in the development, maintenance, and relapse of drug 
addiction, and long-term alterations in these brain regions 
provide a neurobiological basis for the persistence of addiction 
and the complexity of treatment.

Multi-omics technology refers to the integrated application of 
various genomics techniques such as genomics, transcriptomics, 
proteomics, metabolomics, etc., to comprehensively analyze the 
changes in biological samples at different biological levels, and in 
the case of drug addiction, many researchers have used 
metabolomics to find that metabolites such as (inositol-1-
phosphate, free fatty acids, and metabolites related to tricarboxylic 
acid cycle, etc.) are increased in the brain of rats after heroin 
addiction (14). Microbiome and metabolomics approaches to 
study methamphetamine users identify microbial metabolic 
pathways involved in addiction (15). The effects of chronic 
methamphetamine exposure on the neural proteome in the 
hippocampus and olfactory bulb region of rats were also 
investigated by proteomic approaches, revealing significant 
changes in the expression of 18 proteins related to addiction such 
as (synaptic vesicle glycoprotein 2A, myelin proteolipoproteins, 
etc.) (16). These technologies enable us to probe deeply into the 
biological basis of drug addiction at the molecular level, revealing 
the underlying gene expression regulation, protein function 
changes, metabolic pathway remodeling, and complex networks 
of inter-cellular interactions. For example, the development of 
single-cell sequencing technology and spatial transcriptomics 
provides a powerful tool to study the cellular heterogeneity and 
tissue microenvironment of drug addiction (17, 18). Dysregulation 
of gut flora in alcohol addiction and modification of addiction 
using gut flora modification (19). The application of these 

Abbreviations: CPP, Conditional position preference; TCA, Tricarboxylic acid cycle; 

LC–MS, Liquid chromatography–tandem mass spectrometry; QPCR, Quantitative 

polymerase chain reaction; OPLS-DA, Orthogonal partial Least Squares-

Discriminant Analysis; PCA, Principal component analysis; NMDS, Non-metric 

multidimensional scaling; LEfSe, Linear Discriminant Analysis Effect Size; RIPA, 

Radio Immunoprecipitation Assay; SYBR, Synergetic Binding Reagent; ANOVA, 

Analysis of variance; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes 

and Genomes; SCFA, Short-chain fatty acids.
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technologies not only greatly broadens our understanding of the 
pathogenesis of drug addiction, but also provides a solid scientific 
basis for the development of new treatment strategies. At present, 
the combined application of propofol and multi-omics technology 
is still in its infancy, and the related research results are limited. 
Transcriptome studies have found that propofol can change the 
structure and function of the developing heart, suggesting its 
potential cardiotoxic effect (20). Metabolomics studies have 
shown that propofol can significantly increase the level of 
inflammatory marker glycoprotein acetylation (GlycA) (21).

In recent years, the interaction between gut microbiota and 
host metabolism has become a hot topic in biomedical research, 
such as the brain-gut axis and the gut-liver axis. The gut 
microbiome not only plays a key role in maintaining the host’s 
nutritional metabolism, immune regulation and intestinal barrier 
function, but also affects the host’s systemic metabolic status 
through its metabolites (22). More and more evidence suggests 
that the interaction between gut microbiome and host metabolism 
may play an important role in the pathogenesis of drug addiction. 
On the one hand, gut microbes can affect the behavior and mood 
of the host by regulating neurotransmitter levels and immune 
responses. On the other hand, metabolic changes may reflect the 
systemic effects of drug abuse on the body.

The purpose of this study is to explore the mechanism of 
propophenol-induced mental dependence in mice by network 
pharmacology, transcriptomtics, metabolomics and 
metagenomics, reveal the molecular mechanism of propofol 
addiction, explore the changes of hippocampal and intestinal flora 
in mice after propofol addiction, and provide therapeutic 
strategies for clinical treatment of propofol addiction and 
prevention of propofol abuse. The flow chart of the experiment is 
shown in Figure 1A.

2 Materials and methods

2.1 Chemical reagents

Propofol was purchased from McLean Biotechnology (D806979), 
HiScript II Q RT SuperMix for qPCR (R223-01, vazyme, Nanjing, 
China), primers were purchased from Xianghong Bio-technology Co., 
Ltd., and antibodies to DRD1 and DRD2 were purchased from 
Proteintech (17934-1-AP, Wuhan, China).

2.2 Animal models and experimental 
design

Healthy male C57BL/6J mice (6 weeks old, weighing 20–23 g) were 
purchased from Xi’an Fraser Biotechnology Co. The mice were 
acclimatized to the laboratory environment for 2 weeks before the 
experiment. Standard diet and water were ad libitum. 72 mice were 
randomly divided into 6 groups of 12 mice each, including saline 
control group, propofol-treated group (0 mg/kg, 50 mg/kg, 75 mg/kg, 
100 mg/kg) and alcohol control group. Propofol was injected 
intraperitoneally and 100 mg/kg was chosen as the highest dose based 
on the literature that the 114 mg/kg dose resulted in the loss of the flip 
reflex in mice. The normal saline group and alcohol group were used 

as negative and positive controls, respectively. The experiment was 
divided into adaptation stage, training stage and testing stage. The 
adaptation period lasted for 3 days. Every day, the mice were placed in 
the middle channel, opened the channel door, and explored freely for 
30 min to help the mice adapt to the experimental environment. On 
the fourth day, the basic time test was performed with a 15 min limit 
time, and the mouse’s residence time in the preference box and the 
non-preference box was recorded as the baseline data of behavioral 
preferences. Then enter the 20 day training phase. In the morning, 
mice were intraperitoneally injected with normal saline, propofol and 
alcohol of different concentrations, and placed in the preference box to 
close the door of the middle channel; In the afternoon, all mice received 
the same volume of normal saline injection as the control group, placed 
in the non preference box, closed the channel door, and then cycled to 
the 21st day, entered the test phase, reopened the door of the middle 
channel, the mice explored freely for 15 min, and recorded the 
residence time in the preference box and the non preference box. The 
preference score was calculated by the residence time before and after 
the experiment to evaluate the effect of propofol and alcohol on the 
behavioral preference of mice (23, 24). At the end of the test, mice were 
executed and hippocampal tissues were separated on ice and stored in 
liquid nitrogen for subsequent experiments. All experiments involving 
propofol drug addiction in this study were approved by the Ethics 
Committee of Qinghai University School of Medicine (2022–01). 
Animal experiments were conducted in accordance with the European 
Guidelines for the Care and Use of Laboratory Animals (2010/63/EU).

2.3 Metabolomics

A 50–100 mg sample was taken and added to a methanol-
acetonitrile mixture for low temperature sonication extraction. 
Centrifuge at 12000 rpm for 10 min, take the supernatant and add 
200 μL of 30% acetonitrile solution to re-dissolve and centrifuge at 
14000 rpm for 15 min. Samples were analyzed using Vanquish UPLC 
(Thermo, USA). Samples were separated on a Waters HSS T3 column 
with electrospray ionization source detection. Raw data were 
pre-processed using Progenesis QI software (Waters Corporation, 
Milford, USA), normalized and imported into R software. The metabolic 
abundance of each group of samples was standardized to eliminate the 
technical variation between different samples. On this basis, the average 
abundance of each group of metabolites was calculated, and the FC 
value was further calculated. The p value was calculated by Student’s 
t-test, and the VIp value was calculated by multivariate statistical 
analysis method OPLS-DA. When screening differential metabolites, 
strict thresholds were set: P value 1, and FC > 1.5 or < 0.667. The 
metabolites that met these conditions were identified as differential 
metabolites, and the significance level of metabolite enrichment in each 
pathway was analyzed by Fisher’s exact test.

2.4 Transcriptomics

Total RNA was extracted by Trizol reagent and evaluated for 
quantity and purity. High-quality RNA samples were selected for 
construction of sequencing libraries. The mRNA was enriched using the 
magnetic bead method, followed by fragmentation, reverse transcription 
and PCR amplification. DESeq2 software was used to identify 
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FIGURE 1

Hippocampal transcriptome changes in 75 mg/kg propofol-addicted mice. (A) Study design. (B) Change in preference scores for each group after the 
conditional location preference experiment (preference preference score = time before the experiment - time after the experiment) p < 0.05, *p < 0.01. 
(C) Volcano map of the propofol group. (D) Volcanic map of the alcohol group. (E) Differential gene intersections between the propofol group and the 

(Continued)
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differentially expressed transcripts and genes, setting |log2(fold change)| 
>1 as the threshold, and KEGG and GO enrichment analyses were 
performed. p value corrected p < 0.05 was used as the screening criterion 
to further analyze the GO function and KEGG pathway enrichment.

2.5 Macrogenomics

Samples of intestinal contents were collected and total DNA was 
extracted from the samples and tested for DNA purity and integrity. 
DNA samples were broken and libraries were constructed for high-
throughput sequencing. Raw data were pre-processed in Illumina fastq 
format to remove host contamination. The obtained sequences were 
spliced and assembled, and gene prediction, annotation and 
classification were performed. Finally, the samples were subjected to 
similarity clustering, sequencing tests and statistical comparison of 
differences. For the analysis of intestinal microbiota, principal 
component analysis (PCA) was used to preliminarily distinguish the 
significant differences between different groups. Subsequently, the 
differences in the composition of intestinal microbial communities 
under different groups were shown by species composition histograms, 
and these differences were further quantified by linear discriminant 
analysis (LDA). In order to identify microbial species with significant 
differences, STAMP analysis tool and Wilcoxon rank sum test were 
used to analyze the differences between groups, and the significance 
level was also set as p < 0.05. This method can not only identify different 
species, but also visually display their distribution in different groups.

2.6 Network pharmacology and molecular 
docking

Potential targets of propofol were collected from four databases, 
PharmMapper, SwissTargetPrediction, Drugbank and 
BATMAN-TCM, and from NCBI, GeneCard, Therapeutic Targets 
Database, Pharmacogenomics Knowledge Base four databases to 
collect relevant targets for drug addiction (25–28). The Wayne 
diagrams of propofol targets and drug addiction targets were drawn 
using the Microbiotics Online Platform.1 Protein interaction networks 
were constructed using the STRING database. The DAVID database 
was used to perform GO and KEGG pathway enrichment analyses 
and visualization of potential targets. The 3D structural data of 
propofol were downloaded from the PubChem database, while the 
protein structural data were obtained from the PDB database. 
Molecular docking was performed through the CB-Dock2 platform.2

1  https://www.bioinformatics.com.cn/

2  https://cadd.labshare.cn/cb-dock2/php/index.php

2.7 Comprehensive analysis of 
transcriptomics and metabolomics

On the basis of transcriptomics and metabolomics sequencing 
analysis, the correlation analysis of OPLS-DA was performed on the 
differential genes and differential metabolites of propofol at a 
concentration of 75 mg / kg, and the load map was drawn. Subsequently, 
the differential metabolites and differential genes were analyzed by 
Pearson correlation analysis for clustering heat map drawing, and the 
correlation was set to p < 0.05 (p < 0.05, ‘*’) to explore the correlation 
between genes and metabolites. After that, Cytoscape (Cytoscape 
v3.9.0) was used to draw a gene-enzyme reaction-metabolite network 
diagram to explore the relationship between genes and metabolites.

2.8 Real-time fluorescence quantitative 
PCR

RNA was extracted from hippocampus, converted to cDNA by 
reverse transcription kit, and amplified by PCR using SYBR method. 
Through the PCR instrument, the fluorescence signal changes were 
monitored and collected to obtain the Ct value (cycling threshold), and 
the relative quantitative analysis was performed by the 2^–ΔΔCt method.

2.9 Western blotting

Hippocampal tissue was mixed with RIPA lysate, protease and 
phosphatase inhibitor (100:1:1) and ground, and the supernatant was 
subjected to polypropylene gel electrophoresis, incubated overnight at 
4°C with primary antibody against DRD1 and DRD2, and then the 
secondary antibody was incubated and developed, and the images 
were collected.

2.10 Statistical analysis

Behavioral data were calculated by the preference score formula, 
plotted and analyzed using GraphPad Prism software v10.1.2. 
Comparisons between multiple groups were analyzed using one-way 
ANOVA with p < 0.05 as the criterion for significance. All experiments 
were repeated three times with p < 0.05 as the criterion for 
statistical significance.

3 Results

3.1 Behavioral analysis

The results of CPP showed that the preference scores of mice 
in the 75 mg/kg Propofol group (Propofol group) changed 

saline and alcohol groups. (F) Heat map of gene expression in saline, propofol group and alcohol group. (G) KEGG-enriched bubble map of the 
propofol group. (H) KEGG-enriched bubble plot for the alcohol group. (I) GO analysis enrichment circle plot for the propofol group. (J) GO analysis 
enrichment circle plot for the alcohol group. (K) Metabolite principal component analysis plot for the propofol group. (L) Metabolite principal 
component analysis plot for the alcohol group.

FIGURE 1 (Continued)
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significantly and at p < 0.05 compared to the saline control group, 
the preference scores of mice in the Alcohol group changed 
significantly and at p < 0.05 compared to the saline group, and 
the preference scores of mice in the Propofol group showed the 
same trend of change compared to the Alcohol group which 
indicated that isoPropofol did form a mental dependence, see 
(Figure 1B).

3.2 Transcriptomic analysis of propofol 
group and alcohol group

In the transcriptomic analyses performed in the propofol and 
alcohol groups, we used |log2FC| > 1 and p < 0.05 as the criteria 
for screening differentially expressed genes. The results showed 
that there were 152 genes with significant changes in expression 
in the propofol group, of which 30 were up-regulated and 122 
were down-regulated. The alcohol group, on the other hand, had 
261 genes with significant changes in expression, including 18 
up-regulated and 243 down-regulated genes (Figures  1C,D). 
Cross-tabulation analysis of gene expression revealed 79 common 
differentially expressed genes. Clustering heatmap analysis further 
revealed that the propofol and alcohol groups were similar in 
differential gene expression patterns (Figures  1E,F). KEGG 
pathway enrichment analysis pointed out that samples from both 
groups exhibited significant changes in cocaine addiction and 
neuroactive ligand-receptor interaction pathways (Figures 1G,H). 
In addition, GO functional enrichment analysis identified 10 
significantly enriched biological processes covering signal 
transduction, dopamine receptor activity, and lipid and organic 
acid binding functions (Figures 1I,J).

3.3 Metabolomic changes in propofol and 
alcohol groups

Alterations in hippocampal metabolic profiles by propofol 
addiction were assessed from metabolite expression levels, and 
OPLS-DA analysis of the propofol and alcohol groups showed that 
samples within the propofol and alcohol groups clustered together, 
whereas the samples between the groups tended to be significantly 
separated, suggesting that there were significant differences 
between the groups (Figures  1K,L). Volcano plots of the 
differential metabolites screened in the propofol group and 
alcohol group are shown (Figures 2A,B). The cross-differential 
metabolite heatmaps of the saline, propofol, and alcohol groups 
clearly showed the differences in metabolites and 17 cross-
differential metabolites between the propofol and alcohol groups 
and the control saline group (Figure 2C), which indicated that the 
metabolite trends were similar in the propofol and alcohol groups. 
Next, metabolite-related metabolic pathways were analyzed using 
the KEGG pathway library and plotted as bar graphs 
(Figures 2D,E), which showed that the metabolites in the propofol 
group and the alcohol group were mainly concentrated in the 
citric acid cycle, 2-oxocarboxylic acid metabolism, and alanine, 
aspartate, and glutamate metabolic pathways. In addition to the 
common metabolic compounds such as glycerophospholipids, 
carboxylic acids and their derivatives, which were found in the 

propofol and alcohol groups, there were also antioxidant and 
neuroprotective compounds such as benzothiazoles, coumarins 
and their derivatives, organic oxides, and purine nucleosides, as 
shown in the graphs (Figures 2F,G).

3.4 Differences in gut microbes between 
propofol and saline groups

To assess the effect of propofol addiction on gut microbial 
diversity, we  analyzed species evenness and richness in the 
propofol group versus the saline group using Simpson’s index and 
Shannon’s index. The results showed that species evenness and 
richness were significantly higher in the propofol group than in 
the saline group (Figures  2H,I). Principal component analysis 
(PCA) and non-metric multidimensional scaling (NMDS) further 
revealed a high degree of clustering of the samples in the propofol 
group, indicative of a high diversity of community composition 
(Figure  3A). Linear discriminant analysis of LEfSe software 
identified potential biometabolic pathways (Figure 3B). Histogram 
analysis of species abundance revealed significant changes in 
microbial composition at the phylum level in the propofol group, 
including the disappearance of the Campylobacter phylum, a 
decrease in the thick-walled phylum, and an increase in the 
Anaplasma phylum, Actinobacteria phylum, Pseudomonas 
phylum, and Micrococcus wartyi phylum. At the genus level, 
H. pylori disappeared, Streptococcus decreased, and Lactobacillus 
spp. and Akkobacter spp. increased in abundance, changes 
indicative of key biomarker flora in the propofol group 
(Figures 3C,D). Comparative analysis of the macrogenomic data 
using Stamp software gave us information on the species 
composition abundance, functional prediction and their 
differences in the propofol group. KEGG and eggNOG functional 
prediction analyses revealed a significant increase in substance-
dependent, neural and drug-resistance-associated metabolic 
pathways in the propofol group (Figures 3E,F).

3.5 Integrated analysis of metabolomics 
and transcriptomics data

To gain a deeper understanding of the biological changes in the 
hippocampal region of the propofol group, we constructed a correlation 
matrix heat map of 79 common differential genes and 17 common 
differential metabolites among the saline, propofol and alcohol groups 
by Spearman correlation analysis (Figure  3G), which revealed the 
expression patterns of key genes and metabolites. The analysis revealed 
significant correlations (p < 0.05) between 1,062 pairs of differential 
genes and metabolites, e.g., the dopamine receptor was positively 
correlated with cis-aconitine and (R)-ergosterol-5-pyrophosphate, and 
negatively correlated with docosahexaenoic acid (DHA), a metabolite 
of lysophosphatidylethanolamine, and lysophosphatidylcholine. In 
addition, OPLS-DA analysis of Top25 differential genes and metabolites 
further revealed the correlation between them (Figure  3H). The 
compound-reaction-enzyme-gene network diagram constructed using 
Cytoscape 3.9.0 software (Figure 4A) revealed the potential interactions 
and pathway regulation between metabolites and genes. These findings 
not only elucidated the biological changes in the propofol group, but 
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FIGURE 2

Changes in metabolomics in the hippocampus in the 75 mg/kg group. (A) Metabolite volcano plot of the propofol group. (B) Metabolite volcano plot of 
the propofol group versus the alcohol group. (C) Gene expression heatmap of the saline, propofol and alcohol groups. (D) KEGG pathway enrichment 
histogram for the propofol group. (E) KEGG pathway enrichment histogram for the alcohol group. (F) Pie chart of chemical classification of differential 
metabolites in the propofol group. (G) Pie chart of chemical classification of differential metabolites in the alcohol group. (H) Shannon index box plot of 
alpha diversity of gut microbes in the propofol group. (I) Box plot of the Gini-simpson index of alpha diversity of gut microbes in the propofol group.
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FIGURE 3

Characteristic gut microbiological changes in the propofol group and the control group. (A) PCA and NMDS analysis of gut microbes in the propofol 
group versus the saline and alcohol groups. (B) Linear discriminant analysis of gut microbial metabolic pathways in the propofol group. (C) Changes in 
species composition at the phylum level in the propofol group. (D) Species composition changes at the genus level in the propofol group. (E) KEGG 
pathway maps for significant differences in microbial abundance in the propofol group. (F) Functional annotation maps of eggNOG for significant 
differences in microbial abundance in the propofol group. (G) Correlation matrix heatmaps of differential genes with differential metabolites in the 
propofol group. *p < 0.05, **p < 0.01. (H) OPLS-DA analyses of differential genes with differential metabolites in the Top20.

59

https://doi.org/10.3389/fmed.2025.1539467
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al.� 10.3389/fmed.2025.1539467

Frontiers in Medicine 09 frontiersin.org

FIGURE 4

Network pharmacology and differential gene-metabolite association analysis of propofol and addiction. (A) Gene-metabolite network mapping with 
cytoscape. (B) Venn of targets of action of propofol versus targets of action of addiction. (C) Protein interactions map between propofol targets of 
action and targets of addiction. (D) GO enrichment analysis of the common targets of action of propofol and addiction. (E) KEGG pathway-enriched 
bubble map of the intersection of propofol targets of action and targets of addictive action. (F) Venn of propofol addiction targets versus cocaine 
addiction targets.
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also provided important data for the discovery of therapeutic targets 
and biomarkers for propofol addiction.

3.6 Network pharmacology and molecular 
docking analysis

In this study, 473 propofol action targets and 588 addiction targets 
were obtained by database screening, and Venn diagram analysis 
showed that 37 targets were shared between the two (Figure 4B). 
These targets were collated and visualized by a protein–protein 
interaction (PPI) network constructed from the STRING database and 
using Cytoscape 3.9.0 software (Figure 4C), with node color shades 
indicating the strength of the protein–protein interactions. The GO 
enrichment analysis identified 143 annotated pathways for biological 
processes, 51 cellular components and 56 molecular functions, and 
the analyses of each class The top  10 pathways were visualized 
(Figure 4D), involving multiple key biological processes such as signal 
transduction, chemical synaptic transmission, transmembrane ion 
transport, etc. KEGG pathway enrichment analysis screened out 23 
signaling pathways, of which the top  10 were mainly involved in 
GABAergic synapses, morphine addiction, taste transmission, etc. 
(Figure 4E), and the neuroactive ligand-receptor interaction pathway 
was particularly prominent. Transcriptomics sequencing focused on 
pathways related to neurological ligand-active receptor interactions 
and cocaine addiction. Cross-analysis with transcriptomic data from 
cocaine addiction models, seen in dataset GSE108836 (29) identified 
38 common targets of action (Figure 4F), and KEGG enrichment 
analysis further confirmed the importance of the neuroactive ligand-
receptor pathway (Figure  5A). Combined with network 
pharmacological analysis, we  screened the neuroactive receptor-
ligand pathway and mapped the network of genes in the pathway, and 
found that the dopamine receptors DRD1 and DRD2 had a high 
degree of interactions (Figure  5B); therefore, molecular docking 
analyses of dopamine receptors DRD1 and DRD2 were performed, 
and the results showed that isoproterenol binds with binding energies 
of −6.9 and − 6.6 to DRD1 and DRD2, respectively (Figures 5C,D).

3.7 qPCR validation of differential genes

We screened eight differential genes from key pathways involved 
in neural ligand-receptor interactions for real-time fluorescence 
quantitative qPCR validation. These genes included DRD1, DRD2, 
TH, TRH, PPP1R1B, CHAT, RGS9, and GPR6. qPCR validation 
showed that the expression changes of these genes in the hippocampal 
region were consistent with the transcriptome sequencing results, thus 
validating the accuracy of the transcriptome data. This result is 
detailed in Figure 5E, which provides a solid experimental basis for 
further exploring the molecular mechanism of propofol addiction.

3.8 Western blot to verify the expression of 
dopamine receptor

In order to verify the expression of dopamine receptors in the 
hippocampus, protein immunoblotting was performed for verification, 
and the results showed that the expression of dopamine DRD1 and 

DRD2 in the hippocampus of mice in the propofol and Alcohol groups 
was decreased compared with that in the Saline group, which was 
consistent with the results of the sequencing analysis (Figures 5F,G).

4 Conclusion

Through this study, it was found that propofol had mental 
dependence, and the addictive effect was the highest at the dose of 
75 mg/kg, and the addictive effect decreased after a certain dose, which 
provided a basis for the future use of propofol. Transcriptome and 
network pharmacology showed that propofol addiction caused 
significant expression of neuroactive ligand receptor pathway, and the 
tricarboxylic acid cycle and alanine, aspartate, and glutamate pathways 
in the hippocampus were significantly up-regulated. At the same time, 
Campylobacter, Bacteroidetes, Actinobacteria, and Verrucomicrobia in 
the intestinal flora were significantly increased. Therefore, it is inferred 
that the increase of SCFAS in the gut interacts with the activity of 
dopamine neurotransmitters in the hippocampal fatty acid metabolism, 
amino acid metabolism and neuroactive receptor ligand pathway.

5 Discussion

In this study, we  combined transcriptomic, metabolomic, and 
metagenomic analyses of the hippocampus to provide new insights 
into the molecular mechanisms of propofol abuse addiction. These 
findings reveal the central role of the neural ligand-receptor interaction 
pathway in propofol addiction, especially the changes of dopamine 
neurotransmitters in the neuroreceptor pathway, and provide new 
insights into the detailed mechanism of propofol addiction.

In the analysis of transcriptomics results, significant changes 
in gene expression in the hippocampus following propofol 
addiction were observed, and these changes were mainly focused 
on the neuroactive ligand receptor pathway. Specifically, we found 
significant changes in the expression of the dopamine receptors 
DRD1 and DRD2, GPR6, and RGS9, which are closely related to 
neuroadaptive changes, synaptic plasticity, signaling, and other 
functions. These findings echo the neurobiological model 
proposed by Koob and Le Moal et al., which posits that addiction 
is a vicious cycle driven by a decline in the function of the brain 
reward system and activation of the anti-reward system, where 
chronic drug exposure leads to a decline in the function of the 
reward neurotransmitter system and concomitant activation of the 
anti-reward system, which induces down-regulation of dopamine 
receptor expression, thereby increasing the risk of drug craving 
and relapse (30, 31), causing downregulation of dopamine 
receptor expression and a high risk of drug craving and relapse. 
In addition, GPR6, a G protein-coupled receptor, has been 
identified as a novel therapeutic molecular target for cannabidiol, 
which provides new therapeutic perspectives (32), RGS9 and its 
specific splice variant RGS9-2 play roles in the regulation of 
morphine reward and dependence (33). Studies of the neuroactive 
ligand pathway have revealed that the pathway contains a variety 
of neurotransmitter systems including dopamine, endorphins, 
glutamate, norepinephrine, 5-hydroxytryptamine, and gamma-
aminobutyric acid. Among these systems, the dopamine system 
plays a central role in the regulation of motor, emotional, and 
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FIGURE 5

Validation of differential gene correlations in the neuroactive receptor-ligand interaction pathway. (A) KEGG-enriched bubble plot of cocaine addiction 
targets. (B) Protein interaction plots of genes on the neuroactive receptor-ligand pathway. (C) Diagram of molecular docking models for dopamine 
receptor 1. (D) Diagram of molecular docking models for dopamine receptor 2. (E) QPCR validation of differential genes in significant pathways 
regarding propofol addiction. *p < 0.05, p < 0.01 and p < 0.001 and ***p < 0.0001. (F,G) Western blotting validation of dopamine receptor 1 and 
dopamine receptor 2 regarding propofol addiction. *p < 0.05, p < 0.01 and p < 0.001 and ***p < 0.0001.

62

https://doi.org/10.3389/fmed.2025.1539467
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al.� 10.3389/fmed.2025.1539467

Frontiers in Medicine 12 frontiersin.org

reward-related behaviors. Therefore, we believe that the reciprocal 
regulation of neural ligand-receptor interactions between genes 
such as DRD1, DRD2, GPR6, and RGS9 is closely linked to the 
reward effects and addictive behaviors of propofol.

Metabolomics further analyzes the effects of propofol addiction on the 
hippocampal region, which produces metabolites including citric acid, 
lysophosphatidylcholine, lysophosphatidylethanolamine, methylcoumarin, 
and docosahexaenoic acid, all of which are involved in cellular signaling, 
and energy metabolism related to the hippocampus. Especially dominated 
by citric acid, which breaks down into a variety of short-chain fatty acids, 
and the citric acid cycle also produces a variety of short-chain fatty acids. 
Current research suggests that short-chain fatty acids have anti-
inflammatory effects, are involved in G protein-coupled receptors, 
neurotransmitter synthesis, neuroprotection, and the brain-gut axis (34), 
an increase in neuroprotection, signaling, and energy metabolism was 
found in the chemical classification of metabolites. In addition, significant 
cell membrane metabolic markers found in animal models of nicotine 
addiction and methamphetamine addiction were phosphatidylcholine (35, 
36), and significant changes in energy metabolism-related metabolites such 
as citric acid cycle products and intermediates were similarly found in 
human serum as well as in the hippocampus of methamphetamine addicts 
(37), thus changes in metabolites in the hippocampal region of propofol 
addiction reflect the effects of propofol on energy metabolism pathways, 
neural signaling pathways involved in the production, activation, and 
functioning of neurotransmitters in the neural ligand-receptor interaction 
pathway to provide energetic substances, and reflect adaptive changes in 
neuronal cells in response to chronic exposure to propofol, which may 
further affect neurotransmitter function and neural network stability. This 
is consistent with existing findings.

In addition to transcriptomics and metabolomics, intestinal 
microbial macro-genomics sequencing was performed, and the results 
revealed that propofol addiction resulted in significant changes in the 
species abundance and composition of microorganisms in the intestine, 
such as a decrease in Thick-walled phyla and an increase in Anopheles and 
Actinomycetes, which were found to be the main phyla of the intestinal 
tract, and that the Thick-walled phyla and the Anopheles produce, by 
different means, SCFA, which can affect the brain by acting on G protein-
coupled receptors expressed by cells in the intestine. For example, short-
chain fatty acids act through G protein-coupled receptors such as FFAR2 
and FFAR3, or by inhibiting histone deacetylase activity (38), and an 
increase in the actinomycete phylum improves host resistance to disease 
and maintains immune stability in the intestinal environment. Gut 
microbes can affect the immune system, including influencing the 
activation of immune cells and the production of cytokines. These 
cytokines can cross the blood–brain barrier and affect neuroinflammation 
and the activation state of microglia in the brain, which in turn affects 
neurotransmitter homeostasis. For example, anaerobic bacteria of the 
phylum Actinobacteria such as Bifidobacteria, Propionibacteria, 
Corynebacteria, and Streptomyces modulate the immune-inflammatory 
response by inducing regulatory T cells (39). In addition Actinobacteria 
phylum has the ability to produce antibiotics, which helps to inhibit the 
growth of pathogenic microorganisms, and is also involved in the 
synthesis of vitamins in the intestinal tract and maintenance of intestinal 
barrier function (40). Additionally the increase in Lactobacillus gates 
suggests that there may be vagal involvement in the brain-gut connection, 
and that certain specific gut microbes, such as Lactobacillus rohita, can 
transmit signals to the microbe-gut-brain axis via the vagus nerve, 
thereby affecting neuroendocrine metabolism and altering neurotrophic 

proteins, neurotransmitters in the hippocampus (41, 42). The gut 
microbiota communicates bi-directionally with the brain via the 
gut-brain axis. For example, changes in the metabolism of tryptophan, a 
precursor for the synthesis of the neurotransmitter 5-hydroxytryptophan, 
may affect mood and behavior (43). The mechanisms by which the gut 
microbiota influences mood and behavior through the gut-brain axis are 
multifaceted and involve complex interactions between the nervous, 
endocrine and immune systems.

These findings further underscore the pivotal role of the 
brain-gut axis in drug addiction and elucidate the intricate 
regulatory mechanisms between gut microbiota and hippocampal 
neural function. A key innovation of this study lies in the selection 
of propofol, a widely used clinical anesthetic, as the research 
subject, combined with neuroomics and gut microbiome analysis 
to explore the molecular mechanisms underlying drug addiction. 
However, we  acknowledge several limitations, including the 
constrained scope of experimental data and the absence of large-
scale dataset validation, which may restrict the generalizability 
and long-term applicability of our findings. Moreover, the precise 
mechanisms governing the interactions between gut microbiota 
and the host nervous system remain to be fully elucidated. Future 
studies should employ larger sample sizes and longitudinal designs 
to comprehensively unravel the molecular mechanisms of propofol 
addiction, thereby providing a more robust theoretical foundation 
and practical insights for clinical interventions.
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Objectives: Glioblastoma (GBM) is a highly malignant brain tumor with 
complex molecular mechanisms. Histopathological images provide valuable 
morphological information of tumors. This study aims to evaluate the predictive 
potential of quantitative histopathological image features (HIF) for molecular 
characteristics and overall survival (OS) in GBM patients by integrating HIF with 
multi-omics data.

Methods: We included 439 GBM patients with eligible histopathological images 
and corresponding genetic data from The Cancer Genome Atlas (TCGA). A total of 
550 image features were extracted from the histopathological images. Machine 
learning algorithms were employed to identify molecular characteristics, with 
random forest (RF) models demonstrating the best predictive performance. 
Predictive models for OS were constructed based on HIF using RF. Additionally, 
we enrolled tissue microarrays of 67 patients as an external validation set. 
The prognostic histopathological image features (PHIF) were identified using 
two machine learning algorithms, and prognosis-related gene modules were 
discovered through WGCNA.

Results: The RF-based OS prediction model achieved significant prognostic 
accuracy (5-year AUC = 0.829). Prognostic models were also developed using 
single-omics, the integration of HIF and single-omics (HIF + genomics, HIF + 
transcriptomics, HIF + proteomics), and all features (multi-omics). The multi-
omics model achieved the best prediction performance (1-, 3- and 5-year AUCs 
of 0.820, 0.926 and 0.878, respectively).

Conclusion: Our study indicated a certain prognostic value of HIF, and the 
integrated multi-omics model may enhance the prognostic prediction of GBM, 
offering improved accuracy and robustness for clinical application.
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glioblastoma, histopathological image, genomics, transcriptomics, proteomics, 
prognosis
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1 Introduction

Glioma is the most prevalent primary malignant tumor of the 
brain, accounting for 40–50% of intracranial tumors (1). Glioblastoma 
(GBM), classified as a WHO grade IV glioma, is the most common 
(57.3% of all gliomas) and aggressive form of glioma in adults (2, 3). 
The age-adjusted incidence rate of GBM is 3.22 per 100,000 
population, with a median overall survival (OS) of 12–15 months with 
standard treatment, while population studies suggest a median 
survival of 8–10 months (4, 5). Approximately 7% of GBM patients 
live for at least 5 years after diagnosis, defined as long-term survivors 
(LTS) in previous research (6–8). Conventional treatments of GBM 
include maximal surgical resection, postoperative radiotherapy and 
chemotherapy; however, complete tumor resection is often 
unattainable due to the tumor’s invasive nature and high recurrence 
rate (9). Prognostic factors such as tumor stage, age, pathological 
grade, KPS, extent of resection and certain molecular markers have 
been identified as key indicators of GBM prognosis (10, 11). Therefore, 
as a cancer characterized by multiple genetic and pathway alterations, 
further investigation into comprehensive prognostic markers is critical 
for guiding risk stratification, clinical treatment decisions and survival 
prediction in GBM patients.

GBM derives from glial cells and neurons and exhibits a complex 
gene expression profile with various molecular alterations that drive 
its oncogenesis and progression (12). Notably, isocitrate 
dehydrogenase-1 (IDH-1) and IDH-2 mutations are observed in 
primary (6%) and secondary (70%) GBMs (13). Compared with IDH1 
wild-type, the survival of IDH1 mutant high-grade glioma patients is 
significantly prolonged (14). The O6-methylguanine-DNA 
methyltransferase (MGMT) coded protein involved in methylated 
bases and DNA repair and the methylation status of MGMT promoter 
may be  a significant predictor for sensitivity to chemotherapy or 
radiotherapy (15, 16). Telomerase reverse transcriptase (TERT) can 
activate telomerase to keep the telomeres intact and promote cell 
proliferation. IDH1 mutant gliomas with mutations in TERT promoter 
have exhibited better prognosis (17). Alpha thalassemia/X-linked 
intellectual disability (ATRX) is also discovered as a mutational cancer 
driver in GBM (18). GBM can be classified into subtypes based on 
molecular features, including transcriptional profiles (classical, 
mesenchymal, neural, proneural), genetic mutations (e.g., IDH1 
mutations), and epigenetic alterations (e.g., CpG island methylator 
phenotype, CIMP) and so on (19, 20). Therefore, establishing a 
comprehensive and effective biomarker will be  of great benefit to 
prognostic prediction and therapeutic strategies for GBM patients.

In clinical practice, in addition to imaging examinations such as 
CT and MRI, the final diagnosis is confirmed through 
histopathological biopsy following tumor resection. Histopathological 
images obtained from H&E-stained tumor tissue slides are routinely 
used in definite diagnosis and staging of different cancers. The 
development of computer-assisted medical image processing and 
analysis systems is increasingly employed in digital pathological image 
assessment. These systems can accurately and reproducibly capture 
morphological, structural, and compositional changes in tissues and 
cells, reducing the subjectivity associated with traditional pathologist 
assessments (21). Commonly extracted histopathological image 
features such as texture structure, gray level distribution and 
morphological features including the size and shape of cell and nuclei, 
have demonstrated potential in pathological diagnosis, classification 

and prognosis of human cancers such as breast cancer (22), colorectal 
cancer (23) and lung cancer (24). In addition to histopathological 
images, omics profiles such as genomics, transcriptomics and 
proteomics have also been applied to patient stratification and 
prognostic prediction. Integrating histopathological image features 
with multi-omics data has shown promise in various cancers, 
including renal cancer (25), lung cancer (26) and head and neck 
squamous cell carcinoma (27). Therefore, exploring the integration of 
histopathological image features with omics data holds significant 
potential for prognostic prediction in clinical settings.

In this study, we  focused on the analyses of histopathological 
image features (HIF) and their correlation with genomic and 
transcriptomic profiles, which has not been explicitly demonstrated 
in GBM. We first assessed the overall capacity of HIF in classifying 
somatic mutations, molecular and methylation subtypes of GBM via 
different machine learning approaches. Subsequently, we identified 
the prognosis-related histopathological image features and evaluated 
the underlying correlation with gene expression profiles. Finally, 
we constructed survival prediction models based on various omics 
profiles and their integration. We validate these models with both an 
internal test cohort and an external validation cohort, expecting to 
enhance the accuracy of prognostic prediction for GBM patients.

2 Materials and methods

2.1 Study design and data acquisition

The overall framework of the study is illustrated in Figure 1, and 
the specific process is described in the following sections. We obtained 
a cohort of GBM samples with accessible clinical information, 
genomics and transcriptomics data from The Cancer Genome Atlas 
(TCGA) data portal1 and matched proteomics profile from The 
Cancer Proteome Atlas (TCPA) repository.2 The corresponding H&E 
histopathological images were obtained from The Cancer Imaging 
Archive (TCIA).3 A total of 439 GBM patients were selected from 
TCGA based on the completeness of clinical records and image 
availability of high-quality histopathological images in TCIA, 
excluding cases with incomplete data. All included patients had 
corresponding genomic, transcriptomic, and proteomic data for a 
comprehensive multi-omics analysis. The GBM tissue microarrays 
(TMA) of 67 patients with clinical and follow-up data were purchased 
from Shanghai Outdo Biotech Co., Ltd. (Shanghai, China). Clinical 
information of patients involved in TMA and TCGA cohorts is 
provided in Supplementary materials 2, 3.

2.2 Image processing and feature 
extraction

To extract the quantitative features from whole-slide 
histopathological images, we applied the Openslide Python library 
(28) to segment the images into 1,000 × 1,000 pixel sub-images. 

1  https://portal.gdc.cancer.gov

2  http://tcpaportal.org/tcpa/

3  http://www.cancerimagingarchive.net/
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FIGURE 1

The workflow of data analysis and prognostic model construction. (1) The whole-slide histopathological images of GBM were segmented into sub-
images of 1,000 × 1,000 pixels. Through CellProfiler the histopathological image features (HIF) were extracted for subsequent analyses. (2) Image 
feature selection and molecular features prediction based on HIF using different combinations of machine learning algorithms. (3) Construction of 
prognostic models for overall survival in TCGA training set based on HIF genomics, transcriptomics and proteomics data. (4) Selection of prognostic 
histopathological image features (PHIF) by two machine learning methods. Identification of prognostic gene modules and gene pathway analysis were 
performed subsequently.
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Furthermore we randomly selected 50 sub-images on behalf of each 
patient to minimize selection bias and reduce computational load. 
Image feature extraction was conducted by CellProfiler (29),4 an open-
source tool for biological-image analysis. The H&E-stained images 
were converted to grayscale for the extraction of features, which can 
be specifically categorized into 10 aspects including correlation, image 
area occupied, image granularity, image intensity, image quality, object 
intensity, object neighbors, object radial distribution, object size shape 
and texture. In particular, the textural features were calculated by 
CellProfiler to quantitatively present the perceived textures of 
histopathological images, thereby measuring the extent and nature of 
textures within objects in grayscale images. Through automatic 
identification and segmentation, these quantitative features objectively 
interpret the size, shape, spatial distribution, the texture of nucleus 
and the relationship of pixel intensities, etc. Afterwards, each 
sub-image was screened to exclude irrelevant features. Eventually, a 
total of 550 image features were extracted, with the average feature 
values of 50 representative sub-images of each slide calculated for 
subsequent analysis.

2.3 Statistical analysis

2.3.1 Mutations and subtypes prediction
Initially, we randomly assigned the GBM samples into a training 

set and a test set by a ratio of 1:1 using R package “randomizr.” In order 
to reduce overfitting caused by the large number of features, 
we initially employed four machine learning algorithms for feature 
selection to extract the most informative histopathological image 
features (HIFs), including least absolute shrinkage and selection 
operator (LASSO) (30), random forest (RF) (31), gradient boosting 
decision tree (GBDT) (32), and extreme gradient boosting (XGBoost) 
(33). Subsequently, we evaluated eight classifiers including RF, GBDT, 
adaptive boosting (AdaBoost) (34), logistic regression (LR) (34), 
decision tree (DT) (35), support vector machine (SVM) (36), naive 
Bayesian (NB) (37) and K-nearest neighbor (KNN) (38) to determine 
the optimal classification algorithm through the prediction of frequent 
somatic mutations (i.e., ATRX, IDH, MGMT, and TERT) and 
molecular subtypes defined by transcription profiles and epigenetics 
(i.e., classical, mesenchymal, neural, proneural, and G-CIMP) based 
on the selected imaging features and evaluated with 5-fold cross-
validation. By applying multiple approaches, we intended to verify the 
feasibility and stability of the method in different algorithms. Based 
on the test set, the performances of trained classifiers were validated 
and compared respectively, among which RF demonstrated the 
highest predictive accuracy, as evidenced in Supplementary material 1 
and Figure 2.

2.3.2 Survival analysis
For survival analysis, we divided patients in the training cohort 

into two groups based on the median value of individual HIFs, which 
was used for Kaplan–Meier survival analysis and log-rank test to 
compare overall survival (OS) between high-risk and low-risk groups, 
with p  < 0.05 considered statistically significant. Univariate Cox 

4  https://cellprofiler.org/

regression was conducted based on all HIFs as continuous variables 
to determine the hazard ratio (HR) and 95% confidence interval (CI) 
and identify features significantly associated with overall survival.

2.3.3 Data pre-processing and feature selection
To synthetically evaluate the prognostic value of various omics 

data types, we  included independent omics data (HIF, genomics, 
transcriptomics and proteomics) and integration of multiple features 
(HIF + genomics, HIF + transcriptomics, HIF + proteomics and 
HIF + omics) for further analysis. Patients were randomly distributed 
into training and validation sets on a ratio of 1:1, ensuring a balanced 
subset size for model training and independent evaluation to assess 
generalizability. In the training set, we first included the 100 most 
frequent somatic mutations to reduce the dimensionality in genomics 
profile for subsequent analyses. Patients with an overall survival (OS) 
of over 60 months were categorized into the long-term survival group, 
while those with an OS of 1–12 months were placed in the short-term 
survival group. Differentially expressed genes (DEGs) between the 
two groups were conducted using the limma package in R, and the 
top  100 significant DEGs were used for survival prediction. 
Additionally, Metascape5 was employed for enrichment analysis based 
on the genomic profile.

2.3.4 Prognostic models construction and 
validation

Based on the training set, we employed the random forest (RF) 
algorithm with 1,000 decision trees and 5-fold cross-validation to 
construct prognostic models via R randomForestSRC package. The RF 
algorithm is a dimension reduction method that has preferable 
performance in accessing vast amounts of input data and gives 
estimates of the importance of variables. It can also conduct internal 
unbiased estimates of the generalization error and improve model 
accuracy. Meanwhile, the RF includes its own regularization through 
tree pruning and ensemble learning. Furthermore, we  performed 
model validation based on the validation set through the estimation 
of the AUC value of time-dependent ROC. Patients were then assigned 
to high-risk group and low-risk group in line with the median value 
of risk score computed by different models. Kaplan–Meier analysis 
and log-rank test were performed between the groups to evaluate the 
prediction capacity. Moreover, we  carried out the decision curve 
analysis (DCA) based on validation set to compare the net benefit 
under a range of threshold probabilities of each model.

2.4 Selection of prognosis-related 
histopathological image features

Two machine learning methods including least absolute shrinkage 
and selection operator Cox (LASSO-Cox) regression (R package 
“glmnet”) and support vector machines-recursive feature elimination 
(SVM-RFE) (R package “e1071”) were performed independently to 
identify potential informative image features related to prognostic 
prediction. LASSO-Cox regression applies L1 regularization, 
effectively reducing multicollinearity, selecting the most 

5  http://metascape.org
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survival-associated features and mitigating overfitting by shrinking 
less relevant coefficients to zero (39). The SVM model can classify data 
points by maximizing the distance of the hyperplane with high 
accuracy, thus identifying predictive models or classifiers. SVM-RFE 
is a feature selection algorithm according to recursive feature deletion 
sequences with maximum interval principle. It ranks features based 
on their contribution to classification performance, iteratively 
eliminating the least informative ones. The integration of LASSO-Cox 
and SVM-RFE has been demonstrated to improve the model’s 
generalizability and predictive performance by reducing overfitting 
and enhancing feature selection reliability (40, 41). Eventually, the 
features within the intersection of the results by two algorithms were 
identified as the prognostic histopathological image features (PHIF).

2.5 Gene co-expression network analysis

We performed weighted gene co-expression network analysis 
(WGCNA) based on training set to investigate the association of the 

prognostic histopathological image features and corresponding gene 
expression, aiming to further understand the upstream biological 
mechanisms. WGCNA (42) has been applied to identify modules of 
genes with highly correlated expression by analyzing the connections 
between corresponding genes and converting the expression profile 
into the weighted network. Co-expressed gene networks may facilitate 
the identification of underlying biological processes, candidate 
biomarkers and certain clinical traits. Additionally, we  applied 
Metascape for enrichment analysis to estimate the interlinkage 
between key modules.

3 Results

3.1 Prediction performance of HIF on 
somatic mutations and molecular subtypes

In total we  included 439 GBM patients with the matched 
information of histopathological images and other omics from TCGA 

FIGURE 2

The predictive power of HIF in molecular features. Four machine learning algorithms (GBDT, LASSO, RF, and XGBoost) were applied for feature 
selection. Eight machine learning classifiers (RF, GBDT, Addaboost (ADABAG), LR, DT, SVM, NB, and KNN) were applied for molecular feature 
classification.
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portal. To minimize overfitting caused by high-dimensional image 
features, we initially employed XGBoost, GBDT, LASSO, and RF for 
feature selection and extracted 550 histopathological image features 
(HIFs) out of the segmented tumor tissue images. Subsequently, to 
evaluate the clinical practicability of the 550 HIFs, we employed eight 
algorithms (RF, GBDT, AdaBoost, LR, DT, SVM, NB, and KNN) as 
classifiers in predicting four common somatic mutations (ATRX, 
IDH, MGMT, and TERT) and five RNA-based molecular subtypes 
(classical, mesenchymal, neural, proneural, and G-CIMP). 
We  systematically compared the predictive performances of all 
classifiers across multiple molecular features, and RF consistently 
achieved the highest predictive accuracy among the eight classifiers, 
independent of the feature selection method used. The AUC values for 
RF models showed superior classification ability across all tested 
molecular characteristics as shown in Figure  2 and 
Supplementary material 1. Therefore, we selected RF as a robustly 
performed algorithm for subsequent prognostic model construction. 
Additionally, the HIF models validated by GBDT and AdaBoost 
(ADABAG) also achieved a relatively accurate classification effect 
under different feature screening methods, which indicates the clinical 
practicability of HIFs in distinguishing the somatic mutations and 
molecular subtypes of GBM.

3.2 Prognostic value evaluation of 
histopathological image features

To assess the correlation between histopathological image features 
(HIFs) and the prognosis of GBM patients, we  conducted survival 
analyses based on individual HIFs. We first assigned the patients into 
two groups in line with the median value of each HIF (higher than 
median vs. lower than median) for survival analyses. Afterwards, 
we carried out univariate Cox analyses based on all HIFs to identify 
protective prognostic imaging factors, and the top  20 features 
significantly correlated with the overall survival (OS) was demonstrated 
in Figure 3A. The four most significant HIFs, with the smallest p-value 
included one Zernike shape feature (Median_Cells_AreaShape_
Zernike_5_5) and three cell texture features (Mean_Cells_Texture_
Contrast_3_45, Mean_Cells_Texture_DifferenceEntropy_3_45 and 
StDev_Cells_Texture_SumAverage_3_0). In particular, Zernike features 
are a series of 30 shape features based on Zernike polynomials, ranging 
from order 0 to order 9, which have been frequently extracted for 
representing the shape parameters in cell nucleus. Cell texture features 
quantify the correlations between nearby pixels in the regions of interest, 
which suggests that the global modes of cell nuclei and cytoplasm are 
all related to clinical survival outcomes. The Kaplan–Meier survival 
curves of four image features indicated significant differences between 
groups with high-value and low-value features, demonstrating the 
feasibility of HIFs in predicting the survival of GBM patients 
(Figure 3B).

Additionally, according to the expression level of the four 
predictive features mentioned above, we evaluated the sub-images 
of high-expressed and low-expressed prognostic features. 
We utilized TCGA internal validation and TMA external validation 
cohorts to assess the robustness of the predictive models and 
reduce the potential overfitting to the specific characteristics of the 
initial dataset. These validation steps serve as important safeguards 
against overfitting and bias, which enhances the reliability of our 

models across diverse datasets. The patients were identified as 
high-risk and low-risk groups based on the median value of risk 
scores, and the representative histopathological sub-images 
showed visible differences in TCGA and TMA external validation 
cohorts (Figure  3C). The image processing involving cell 
recognition and segmentation was conducted by CellProfiler, and 
different cell types were also outlined.

3.3 Integrated prognostic model of 
histopathological image features and 
genomics

To develop a more accurate predictive model for overall survival 
(OS) in GBM patients, we estimated the prognostic value of genetic 
profiles and further incorporated the HIFs with genomics data. 
Patients were randomly assigned into training (n = 136) and validation 
(n = 135) sets. To enhance the stability of the measurement, 
we estimated the mutation status of genes in training set and included 
the 100 most common somatic mutations in the prognostic model to 
reduce the dimensionality of the genomics data. The top 15 genes with 
the most frequent alterations are presented in Figure 4A. Based on the 
HIFs and 100 mutations we constructed prognosis-relate models in 
the training set. We applied time-dependent ROC in the validation set 
since it is more appropriate to represent time-to-event outcomes in the 
prognostic models compared to the classical ROC curve analysis 
approach (43). As illustrated in Figures  4C–E, the AUCs for 
histopathological image features (HIF) model exceeded those of 
genomics (G) model in 1-year (0.715 vs. 0.634), 3-year (0.813 vs. 
0.723) and 5-year (0.829 vs. 0.692) respectively. Moreover, the 
integrated model of HIF and genomics (HIF + G) reached a better 
predictive capacity in 3-year and 5-year (AUC = 0.826 and 0.834) than 
the former two single-omics models. According to the median value 
of risk score acquired from each model, the patients were then divided 
into high-risk and low-risk groups. The HIF model and integrative 
model (HIF + G) showed more accurate prognostic performance 
(HR = 3.86, 95%CI: 2.67–5.30, p < 0.001, Figure  4) as depicted in 
Kaplan–Meier curves (Figure 4B).

To further validate the predictive power of the prognostic model, 
we implemented an external verification using the TMA-GBM cohort. 
Patients in the external validation set were also divided into high-risk 
and low-risk groups according to the median risk score. The Kaplan–
Meier survival curve revealed a significant difference in survival 
probability between the groups (p = 0.039, Figure 4F). The 1-year, 
3-year and 5-year AUCs of time-dependent ROC were 0.716, 0.712, 
and 0.703, respectively (Figure  4G). The results thus verified the 
prognostic capacity of the HIFs in GBM patients.

3.4 Integrated prognostic model of HIF and 
transcriptomics

Transcriptomics can serve as an approach for a comprehensive 
understanding of the interconnection between the genome, proteome, 
and cellular phenotype by analyzing the RNA transcripts that reflect 
the underlying genotype. Based on the training set, we involved 100 
whole expressed mRNA genes to decrease the dimensionality and 
further build the transcriptomics predictive model of OS. The patients 
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were categorized into short-term group (deceased, 12 months ≥ OS 
≥1 month) and long-term group (OS ≥60 months) according to the 
clinical survival status (4, 5, 7, 8). In addition, we applied Metascape 
for pathways enrichment in the short-term survival group based on the 
mRNA sequencing data (Figure 5A). Regulation of insulin-like growth 

factor (IGF) transport and uptake by insulin-like growth factor binding 
proteins (IGFBPs) has been proven to modulate essential cellular 
processes and be implicated in certain disorders including malignant, 
metabolic and immune diseases (44, 45). Previous studies have 
reported the potential effect of IGF in biological processes associated 

FIGURE 3

Univariate survival analyses based on HIF. GBM patients were assigned into high-risk and low-risk group according to the median value of each feature. 
(A) Hazard ratio of survival difference between two groups in univariate Cox regression. (B) Kaplan–Meier curves for groups with high-value and low-
value “Median_Cells_AreaShape_Zernike_5_5,” “Mean_Cells_Texture_Contrast_3_45,” “Mean_Cells_Texture_DifferenceEntropy_3_45” and “StDev_
Cells_Texture_SumAverage_3_0.” (C) Representative sub-images of high-risk and low-risk groups in both TCGA and TMA validation cohorts.
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with tumor growth and invasion inhibition in GBM (46), which may 
suggest a new effective target for anti-cancer treatment strategies.

As demonstrated in the validation set, the transcriptomics model 
(RNA) displayed a good predictive performance for OS (1-year 
AUC = 0.751, 3-year AUC = 0.795 and 5-year AUC = 0.809), which were 
about equal to the HIF model (1-year AUC = 0.722, 3-year AUC = 0.815 
and 5-year AUC = 0.835). Furthermore, we  incorporated the 

transcriptomics and image features as the integrated model (HIF + RNA), 
which achieved the highest accuracy with the 1-year, 3-year and 5-year 
AUC increased to 0.769, 0.831 and 0.848 (Figures 5C–E). Additionally, 
Kaplan–Meier survival analyses also revealed significant differences in 
survival outcomes between the two groups, with the integrative 
HIF + RNA model presenting the most notable prognostic value 
(HR = 7.15, 95%CI: 4.51–10.41, p < 0.001, Figure 5B).

FIGURE 4

Prognostic models integrating HIF and genomics. (A) The waterfall plot of the top 15 most common somatic mutations in training set. (B) Kaplan–
Meier curves of histopathological image features model (HIF), genomics model (G) and integrative histopathology + genomics model (HIF + G) in the 
validation set. (C–E) The (C) 1-year, (D) 3-year, and (E) 5-year area under the time-dependent receiver operating curve (AUC) of the three prognostic 
models in the validation set. (F) Kaplan–Meier curves of high-risk group and low-risk group in the TMA external validation cohort. (G) Time-dependent 
ROC of 1-year, 3-year, and 5-year OS in the TMA external validation cohort.
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3.5 Integrated prognostic model of HIF and 
proteomics

To improve the prognostic prediction of GBM we  also 
incorporated proteomics profile from TCPA portal for further analysis 
through the reverse phase protein array (RPPA), a high-throughput 
proteomics method that can assess protein expression and activation 
states in abundant samples using small amounts of material. In total 
we involved 179 eligible protein profiles in the proteomics model based 
on the validation set. The integration of image features and proteomics 
features (HIF + P) achieved the highest AUCs in 1-year, 3-year and 
5-year compared with the proteomics model (0.752 vs. 0.743, 0.835 vs. 
0.813, 0.854 vs. 0.818) or the HIF model alone (Figures 6A–C). As 
shown in the survival analyses, patients in the high-risk group were 
significantly related to poor OS, and the integrated model (HIF + P) 
attained the best performance in prognosis prediction among the three 
models (HR = 6.35, 95%CI: 4.05–9.20, p < 0.001, Figure 6D).

3.6 Integrated multi-omics features for 
survival prediction

According to the previous analyses, the histopathological image 
features have presented certain effectiveness in prognostic prediction 
for GBM patients, and histopathology + omics models have also 
indicated enhancement in predictive performance and accuracy than 

the single-omics models. Therefore, we  expect to explore the 
prognostic capacity of a multi-omics predictive model incorporating 
all the omics features (HIF, genomics, transcriptomics, and 
proteomics). Based on the validation set, the multi-omics model 
achieved a 1-year AUC of 0.820, 3-year AUC of 0.926 and 5-year AUC 
of 0.878, representing an improvement over the HIF + genomics, 
HIF + transcriptomics and HIF + proteomics models (Figure 7A). 
Kaplan–Meier survival analysis illustrated a significant difference in 
survival between high-risk and low-risk groups (HR = 13.14, 95% CI: 
7.95–25.95, p < 0.001, Figure  7B). Furthermore, the multi-omics 
model demonstrated superior net benefit in survival prediction 
compared to the other models (Figure 7C).

In order to identify the histopathological image features with 
higher prognostic value for OS, LASSO-Cox regression and SVM-RFE 
were performed independently. These combined approaches help 
mitigate the risk of overfitting and ensure the robustness of selected 
features across different selection frameworks. Previous studies (39–
41) have demonstrated that the combination of LASSO and SVM-RFE 
enhances the reliability of prognostic feature identification in cancer 
research. A total of five imaging features involved in prognosis were 
selected via LASSO-Cox regression model, and SVM-RFE selected 12 
imaging features with the most significant predictive ability. 
Ultimately, three overlapped features were identified as prognostic 
histopathological image features (PHIF), including StDev_Cells_
AreaShape_FormFactor, StDev_Cells_AreaShape_Orientation and 
Mean_Cells_Texture_InfoMeas1_MaskedHematoxylin_3_90 

FIGURE 5

Prognostic models integrating HIF and transcriptomics (RNA). (A) Metascape enrichment network visualization cluster of genes and associated 
biological pathways based on training set. Each circled node represents a term and each color represents its cluster identification, showing the intra-
cluster and inter-cluster similarities of enriched terms. (B) Kaplan–Meier curves of prognostic models (HIF, RNA, and HIF + RNA) in the validation set. 
(C–E). The (C) 1-year, (D) 3-year and (E) 5-year AUCs of the three prognostic models in the validation set.

74

https://doi.org/10.3389/fmed.2025.1510793
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Huang et al.� 10.3389/fmed.2025.1510793

Frontiers in Medicine 10 frontiersin.org

(Figures 8A,B). Representative sub-images and detailed information 
of patients with high expressed and low expressed PHIF were 
displayed in Figure 8C and Supplementary material 4.

To explore the upstream genetic mechanisms, we  employed 
WGCNA to construct a gene co-expression network in the training 
set and identify the gene clusters significantly correlated with the 
PHIF in GBM samples. Module-trait correlation analysis showed that 
the red module (219 genes) and turquoise module (868 genes) were 
significantly associated with the three prognostic image features of 
GBM among the six identified gene co-expression modules 
(Figure 9A). Therefore, we defined the red and turquoise module as 
the key modules of significant prognostic relevance for 
subsequent research.

Subsequently, we performed an enrichment analysis to explain the 
biological interpretations of the gene expression profile in the two 
modules. Genes in the red module were significantly related to several 
biological processes and pathways such as defense response to other 
organism, myeloid leukocyte activation, leukocyte cell–cell adhesion, 
activation of immune response and response to bacterium (Figure 9B). 
The results indicated that these genes may be involved in immune 

function, a crucial aspect of tumor immunology, which plays an 
important role in tumor initiation and progression. The genes in the 
turquoise module were primarily enriched in categories related to cell 
morphogenesis involved in differentiation, regulation of neuron 
differentiation and nervous system development, synapse organization 
and signaling (Figure  9C). These findings implied that turquoise 
module genes may have potential association with central nervous 
system pathways and cerebral function, which may correspond to 
tumorigenesis and progression in GBM.

4 Discussion

In this study, we  extracted quantitative image features from 
histopathological images of GBM patients, and subsequently 
constructed machine learning classifiers based on the HIFs to 
discriminate the common molecular features of GBM. A predictive 
model incorporating HIFs was established in the training set, with its 
prognostic validity subsequently verified in both internal and external 
validation cohorts. The results demonstrated the prognostic 

FIGURE 6

Prognostic models integrating HIF with proteomics (P). (A–C) The (A) 1-year, (B) 3-year and (C) 5-year AUCs of the three prognostic models (HIF, P and 
HIF + P) in the validation set. (D) Kaplan–Meier curves of the three prognostic models in the validation set.

75

https://doi.org/10.3389/fmed.2025.1510793
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Huang et al.� 10.3389/fmed.2025.1510793

Frontiers in Medicine 11 frontiersin.org

robustness of the predictive model. To enhance the predictive 
performance, comprehensive prognostic models were built by 
integrating HIFs with multi-omics data. Based on machine learning 
approaches, we selected prognostic histopathological image features 
(PHIF) and identified gene modules most strongly correlated with 
PHIF through bioinformatics techniques. Notably, the predictive 
power of OS in patients was significantly enhanced in multi-omics 
models compared with the single-omics models, suggesting that this 
approach may be promising for risk stratification and individualized 
treatments for GBM patients.

Based on histopathological image features, we performed the 
prediction of the common somatic mutations (ATRX, IDH, and 

TERT) and methylation (MGMT) in GBM through combinations 
of eight independent machine learning algorithms. IDH mutations, 
which occur in approximately 12% of GBM cases, are a well-
established prognostic marker associated with prolonged OS (47). 
The mutation can induce downstream effects on cellular 
metabolism and epigenetic regulation (48). Previous studies have 
reported the predictive value of MRI radiomics models for 
identifying IDH1 mutations in GBM (49, 50), as well as the 
characterization of core signaling pathways in IDH wild-type 
tumors (51). The prediction ability of histopathological image 
features in IDH mutation has not been widely explored, while it 
may represent an important avenue for further research in 

FIGURE 7

Prognostic models of survival integrating HIF and multiple omics features. (A) AUCs of multi-omics model in the validation set. Kaplan–Meier curve of 
multi-omics model (integrating HIF, radiomics, genomics, transcriptomics, proteomics) in the validation set. (B) Decision curves analysis for different 
models in the validation set. (C) The gray oblique line represented the net benefit of intervention for all patients, while the horizontal line represented 
the net benefit of no intervention. The multi-omics model achieved higher net benefit than single-omics models across the major range of threshold 
probability.
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FIGURE 8

Selection of prognostic histopathological image features (PHIF). (A) Twelve image features were selected by SVM-RFE. (B) Five image features were 
selected by LASSO-COX regression model. Three image features within the overlap were defined as PHIF. Three image features within the overlap 
were defined as PHIF. (C) Representative sub-images of patients with high expressed and low expressed PHIF. The groups were defined by the median 
value of each image feature.
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prognostic evaluation and targeted therapies for GBM. MGMT 
methylation status and TERT promoter mutations have also been 
recognized as powerful diagnostic and prognostic indicators in 
GBM (2, 52). Meanwhile, we also conducted the prediction of four 
mRNA-based molecular subtypes (classical, mesenchymal, neural, 
proneural) and the G-CIMP methylator phenotype. The prognostic 
significance of G-CIMP+ subsets among glioma types has been 
investigated in previous studies (53, 54). For instance, 1p/19q 
codeletion and MGMT promoter methylation may act as 
therapeutic predictive markers in GBM (55). Our random forest 
predictive model based on HIFs exhibited certain accuracy and 
effectiveness in predicting GBM molecular characteristics, which 
may contribute to improving current clinical examinations and 
diagnostic practices.

Subsequently, we  constructed prognostic models through 
random forest algorithm based on single-omics and integrated 
multi-omics data. Image features of histopathology tissue slides 
can infer morphological changes in tumor cells and 
microenvironment, which have proven valuable in identifying 
pathology biomarkers and predicting clinical outcomes through 
machine learning techniques (56–58). A fair number of 
computational histopathologic models have also been applied in 

the prognostic prediction of diseases such as breast (59), lung (60) 
and colorectal cancers (61). Consistent with previous studies, the 
image features with significant prognostic power of OS we selected 
primarily pertained to Zernike and cell texture (i.e., contrast, sum 
average, and difference entropy). Zernike shape features in nuclei 
and cytoplasm are extracted frequently to identify long and short 
term survival (62). In addition, the texture features are frequently 
used to represent the distribution and variation of pixel intensity, 
as well as the relationship between pairs with different intensity 
values in the regions of interest. While many studies have 
established prognostic modules based on single-omics data source 
or combination of quantitative histopathological image features 
and genomics features (21, 53), our study focused on a more 
comprehensive evaluation of image features to provide additional 
prognostic efficiency and precision of the prognostic model. By 
integrating HIFs with genomics, transcriptomics and proteomics 
data, we  developed a multi-omics model incorporating all 
features, which eventually achieved superior prediction 
performance compared to other models. Additionally, we further 
proposed external validation by involving an extra TMA cohort, 
further supporting the robustness and generalizability of 
our findings.

FIGURE 9

Identification of co-expressed gene modules. (A) Heatmap of the relationship between gene modules and prognostic histopathological image features 
(PHIF) through WGCNA. The red module and turquoise module showed the most significant correlation. (B) Metascape enrichment network of genes 
in the red module. Each circled node represents a term and each color represents its cluster identification, showing the intra-cluster and inter-cluster 
similarities of enriched terms. (C) Metascape enrichment network of genes in the turquoise module.
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An intriguing observation in our study was that the model 
based solely on HIFs slightly outperformed the combined HIF and 
genomics (HIF + G) model in terms of predictive performance, as 
shown in Figure 4B. This unexpected finding prompted further 
reflection on the interaction between histopathological and 
genomic data in prognostic modeling. One possible explanation 
lies in feature redundancy and confounding effects that HIFs 
inherently capture tumor morphological and microstructural 
features, which may already correlate with patient prognosis. The 
addition of genomic features that provide overlapping or weakly 
correlated prognostic signals may introduce noise rather than 
improving predictive accuracy. This aligns with established 
principles in machine learning, where the mere inclusion of 
additional variables does not necessarily enhance model 
performance; instead, feature interactions must be  carefully 
managed to avoid confounding effects. Moreover, the non-linearity 
between histopathological and genomic data may contribute to 
this outcome. While HIFs reflect macroscopic tumor morphology, 
genomic alterations influence prognosis through intricate 
molecular pathways that may not exhibit direct correlations with 
image-derived features. Traditional machine learning models may 
struggle to capture these complex interactions effectively, 
highlighting the need for alternative fusion strategies such as deep 
learning or graph neural networks to better integrate data from 
different modalities.

Despite the robust predictive power of HIFs alone, we emphasize 
the importance of multi-omics integration for comprehensive patient 
profiling. While the HIF + G model did not significantly outperform 
the HIF model alone, the incorporation of transcriptomic and 
proteomic data substantially improved the accuracy of our prognostic 
models. This suggests that multi-omics integration holds promise for 
enhancing model generalizability and robustness across diverse 
patient populations. Further optimization of feature selection and 
model refinement will be necessary to fully leverage the potential of 
multi-omics data.

Through SVM-RFE and LASSO-Cox regression machine learning 
algorithms, we identified three prognostic histopathological image 
features (PHIF) concerning cell morphology and texture. We also 
explored the upstream molecular mechanisms of these features by 
identifying relevant gene co-expression modules via weighted gene 
co-expression network analysis (WGCNA). Enrichment analysis of 
the red and turquoise gene modules demonstrated significant 
prognostic association with molecular pathways mainly involved in 
immune response, cell morphogenesis involved in differentiation, 
development and regulation of central nervous system function. For 
instance, leukocyte cell adhesion plays a crucial role in the progression 
and resolution of innate immunity (63). Myeloid leucocyte activation 
reveals exposure to activating factors and has been regarded as one of 
the major forces in immunosuppression in tumor progression (64). 
The genes enriched in cell morphogenesis related pathways might 
suggest the association with tumor angiogenesis and cell adhesion. In 
addition, regulation of neuron differentiation, trans-synaptic signaling 
and gliogenesis also suggest a close connection with biological 
processes in GBM development (65–67). The results may offer an 
opportunity to comprehend the association of histopathological image 
features and the upstream mechanisms of the oncogenesis and 
progression of GBM.

In conclusion, this study demonstrated the potential of 
histopathological image features in predicting molecular 
characteristics and classifying molecular subtypes. By integrating 
histopathological image features with multi-omics data, we developed 
comprehensive prognostic models and subsequently analyzed the 
associated upstream biological processes. The integrative multi-omics 
model has the potential to enhance prediction performance for OS 
with greater accuracy and robustness, thereby contributing to risk 
stratification, prognostic evaluation, and personalized treatment 
strategies for GBM patients.

However, several limitations should be addressed. Firstly, while the 
prognostic models were validated using an external TMA cohort to 
assess prediction stability, a larger-scale multi-center dataset is needed to 
enhance the applicability and reliability of our findings. Secondly, the 
genomic features of patients with intermediate survival (12–60 months) 
warrant further investigation, as they may provide additional insights 
into treatment response and prognostic markers. Additionally, 
discrepancies and potential biases in multi-omics data could impact the 
results. Future research should explore alternative data integration 
strategies to optimize the synergy between histopathology and molecular 
alterations. We also acknowledge the lack of unified visualization for all 
survival curves and model comparisons. Although constrained by 
computational limitations, we  recognize the value of such visual 
summaries and are committed to improving model visualization and 
interpretability in future work, hoping to provide clearer insights for both 
clinical and research applications. Lastly, further clinical and 
experimental research is required to elucidate the molecular mechanisms 
underlying the relationship between histopathological image features 
and survival outcomes in GBM patients.
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Glossary

AdaBoost - Adaptive boosting

AUC - Area under the curve

CI - Confidence interval

DCA - Decision curve analysis

DEG - Differently expressed gene

DT - Decision tree

GBDT - Gradient boosting decision tree

GBM - Glioblastoma

HIF - Histopathological image features

HR - Hazard ratio

KNN - K-nearest neighbor

LASSO - Least absolute shrinkage and selection  
operator

LR - Logistic regression

NB - Naive Bayesian

OS - Overall survival

PHIF - Prognostic histopathological image features

RF - Random forest

ROC - Receiver operating characteristic

SVM - Support vector machine

TMA - Tissue microarrays

WGCNA - Weighted gene co-expression network  
analysis

XGBoost - Extreme gradient boosting
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Multi-omics insights into 
biomarkers of breast cancer 
associated diabetes: a 
computational approach
Tamizhini Loganathan  and C. George Priya Doss *

Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and 
Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India

Introduction: Breast cancer (BC) and diabetes are multifaceted diseases 
with interconnected molecular mechanisms that are not yet fully elucidated. 
These diseases share common risk factors, biological pathways, and treatment 
outcomes.

Methods: This study utilizes an integrative computational approach to investigate 
the interplay between BC and diabetes in African American (AA) and European 
American (EA) cohorts. It employs transcriptomic and exomic analyses to 
identify shared pathways and potential therapeutic targets.

Results: The pooled cohort of differential expression analysis identified 2,815 
genes differentially expressed in BC patients with diabetes compared to those 
without diabetes, including 1824 upregulated and 990 downregulated genes. 
We reanalyzed transcriptomic data by stratifying BC patients with and without 
diabetes into two cohorts, identifying 3,245 DEGs in AA and 3,208 DEGs in 
EA, with 786 genes commonly altered between both groups. Whole-exome 
sequencing (WES) of 23 BC patients with diabetes revealed 899 variants across 
208 unique genes, predominantly missense mutations. Among these, nine key 
genes were prioritized, with TNFRSF1B (L264P) and PDPN (A105G) identified as 
the most deleterious variants. Functional enrichment analyses highlighted the 
significant involvement of pathways related to extracellular matrix organization, 
angiogenesis, immune regulation, and signaling processes critical to cancer 
progression and metabolic dysfunction. The TNF pathway emerged as a central 
link connecting chronic inflammation, insulin resistance, and tumor growth. 
TNF-mediated mechanisms, including NF-κB activation, oxidative stress, and 
epithelial-to-mesenchymal transition (EMT), were found to drive both diseases, 
promoting tumorigenesis, immune evasion, and metabolic dysregulation.

Conclusion: This study provides critical molecular insights into the shared 
mechanisms of BC and diabetes, identifying the TNF pathway as a key therapeutic 
target to improve outcomes for patients with these interconnected conditions.
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breast cancer, diabetes, transcriptomics, exome analysis and TNF pathway, 
bioinformatics

OPEN ACCESS

EDITED BY

HaiHui Huang,  
Shaoguan University, China

REVIEWED BY

Xuejing Sun,  
University of Pittsburgh, United States
Abdullah Al Marzan,  
Toxicology Society of Bangladesh, 
Bangladesh

*CORRESPONDENCE

C. George Priya Doss  
 georgepriyadoss@vit.ac.in

RECEIVED 07 February 2025
ACCEPTED 12 May 2025
PUBLISHED 06 June 2025

CITATION

Loganathan T and Doss CGP (2025) 
Multi-omics insights into biomarkers of breast 
cancer associated diabetes: a computational 
approach.
Front. Med. 12:1572500.
doi: 10.3389/fmed.2025.1572500

COPYRIGHT

© 2025 Loganathan and Doss. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  06 June 2025
DOI  10.3389/fmed.2025.1572500

83

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1572500&domain=pdf&date_stamp=2025-06-06
https://www.frontiersin.org/articles/10.3389/fmed.2025.1572500/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1572500/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1572500/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1572500/full
mailto:georgepriyadoss@vit.ac.in
https://doi.org/10.3389/fmed.2025.1572500
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1572500


Loganathan and Doss� 10.3389/fmed.2025.1572500

Frontiers in Medicine 02 frontiersin.org

1 Introduction

Breast cancer (BC) is a multifaceted disease characterized by a 
wide range of genetic, molecular, and phenotypic variations (1). It 
remains one of the most prevalent malignancies among women 
worldwide, with significant heterogeneity in its clinical presentation, 
prognosis, and therapeutic response (2). Concurrently, diabetes, a 
chronic metabolic disorder characterized by hyperglycemia and 
insulin resistance, has been increasingly recognized as a comorbidity 
that influences cancer risk, progression, and treatment outcomes (3, 
4). The intersection of BC and diabetes presents a unique and 
challenging clinical scenario that warrants a deeper understanding of 
the underlying molecular mechanisms and potential biomarkers (5). 
Diabetes has been implicated in altering the tumor microenvironment, 
enhancing chronic inflammation, promoting oxidative stress, and 
disrupting metabolic pathways, all of which can contribute to cancer 
initiation and progression (6, 7). The coexistence of diabetes with BC 
introduces additional layers of complexity, influencing tumor biology, 
therapeutic efficacy, and patient survival (3). Patients with diabetes are 
often associated with poor outcomes, including higher recurrence 
rates and reduced overall survival, potentially due to delayed 
diagnosis, altered pharmacokinetics of anticancer drugs, and the 
impact of hyperglycemia on cancer cell metabolism (8).

Advancements in high-throughput technologies, such as 
transcriptomics and exome sequencing, have significantly 
enhanced our ability to understand the molecular landscape of 
diseases (9). Exome sequencing facilitates the identification of 
somatic mutations, copy number variations, and other genomic 

alterations that drive cancer development (10). Conversely, 
transcriptomics provides insights into gene expression patterns, 
revealing dysregulated pathways and potential therapeutic targets 
(11, 12). Integrating transcriptomics and exome data has proven 
to be a powerful approach to uncover genetic and transcriptomic 
alterations, providing a more comprehensive understanding of the 
molecular mechanisms driving conditions such as cancer and 
other diseases. This integration has the potential to identify novel 
biomarkers and therapeutic targets. Biomarkers are invaluable for 
stratifying patients, predicting therapeutic responses, and 
monitoring disease progression (13–15). Few studies have 
explored the diabetes-associated gene expression profiles in BC, 
revealing the unique signatures that could be  targeted 
therapeutically or used as diagnostic tools (16–19). Understanding 
the molecular interplay between BC and diabetes can pave the way 
for personalized medicine approaches, ensuring more effective 
and tailored treatments.

In this study, we aim to explore the biomarker landscape in BC 
with diabetes (African American (AA) and European American 
(EA) cohorts) through a comprehensive analysis of transcriptomics 
and exome data. By examining the transcriptomic and genomic 
profiles specific to this cohort, we seek to identify key molecular 
players and pathways that underlie the interaction between these 
two conditions. Our findings could provide insights into the 
mechanistic basis of BC in diabetic patients, highlight potential 
therapeutic vulnerabilities, and contribute to the development of 
precision oncology strategies. The detailed workflow is illustrated in 
Figure 1.

FIGURE 1

Integration of transcriptomics and exome data analysis. The figure illustrates the workflow and outcomes of integrating transcriptomics and exome 
data analysis. Transcriptomics data provides insights into differential gene expression across conditions, while exome data reveals coding region 
mutations. The integration identifies overlapping features, including genes with significant expression changes and mutations. This combined approach 
highlights key biomarkers, potential driver genes, and pathways associated with the biological process of interest.
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2 Materials and methods

2.1 Transcriptomics data analysis

All data used in this study were obtained from the NCBI 
database. We acquired the gene expression profiling dataset produced 
through high-throughput sequencing (GSE202922) (16) using 
Illumina HiSeq 3,000 from the publicly available GEO database (20). 
The dataset has a total of 73 samples, and a further 66 samples have 
raw counts. A total of 66 samples were included in this study, 
comprising 32 diabetic and 34 non-diabetic cases. The detailed 
metadata information, along with transcriptomics data of the 
66 samples, were described in Supplementary Table  1 and 
Supplementary Figure  1A. We  also conducted race-specific 
transcriptomic analyses using datasets from African American (AA) 
and European American (EA) cohorts. The metadata for these 
cohorts is provided in Supplementary Table 2. GEO2R is a web-based 
analysis tool that enables user to compare multiple sample groups 
within a GEO Series to find deregulated genes under certain 
experimental conditions (21). Moreover, differentially expressed 
genes (DEGs) were detected using the limma R package (22), 
applying a threshold of |log2FoldChange| > = 0.5, adj p < =0.05, and 
p < = 0.05. All statistical analyses and data visualization were carried 
out using R/Bioconductor packages. Statistical plots such as boxplot 
and UMAP plot were performed and analyzed.

2.2 Exome data analysis

The study also utilized Whole Exome Sequencing (WES) data 
with ID: PRJNA840859 comprising 32 individuals with BC-associated 
diabetes (16). Supplementary Figure 1B provides detailed information 
on the selected exome data. After verifying the availability of exome 
data, 23 sample reads were retrieved and analyzed. These samples were 
subjected to exome sequence analysis. Sequencing was performed on 
Illumina NovaSeq 6,000 systems, generating paired-end reads. A shell 
script was employed to download the sequencing reads from the ENA 
database (23). The exome sequencing pipeline involves a 
comprehensive workflow for processing, analyzing, and interpreting 
genetic data to ensure high accuracy and reliability in identifying 
variants. The process begins with quality control using FastQC (24), 
which evaluates critical metrics such as read quality scores, GC 
content, and adapter contamination. This step helps to identify 
potential issues in the raw FASTQ files, ensuring only high-quality 
reads proceed to the next stage. Tools like Trimmomatic remove 
low-quality bases and adapter sequences in the read preprocessing 
step. Reads with quality scores below a threshold (commonly Q30) are 
trimmed or discarded, producing a clean dataset suitable for 
downstream analysis. Next, the high-quality reads are aligned to the 
human reference genome GRCh38 (25) using the BWA-MEM 
algorithm (26), a widely used tool for efficient and accurate alignment 
of short-read sequences. This step generates SAM files containing 
mapped reads and their corresponding positions on the genome. 
These SAM files are converted into BAM format using SAMtools, 
sorted by coordinate order, and indexed to enable efficient querying 
and visualization in downstream applications. The variant calling step 
identifies genetic variants such as SNPs and indels (27). BCFtools 
generate a pileup of aligned reads, and variants are called highly 

confidently (28). The resulting data is output in the Variant Call 
Format (VCF), which contains detailed information about each 
identified variant.

Once variants are called, they undergo filtering and annotation. 
Each sample VCF was merged using the “VCFmerge tool” and the 
Galaxy tool. The Ensembl Variant Effect Predictor (VEP) was used to 
annotate the functional consequences of genes (29). Filtering ensures 
that only high-confidence variants are retained by removing 
low-quality or potentially false-positive calls. Tools like the BCFtools 
filter allow for applying stringent criteria, such as minimum quality 
scores or read depth thresholds. Annotating the filtered variants with 
databases such as dbSNP and ClinVar provides functional insights, 
including potential pathogenicity, population frequency, and relevance 
to known diseases. The missense variants were retrieved and further 
used for functional analysis.

2.3 Functional enrichment analysis

Functional analysis of the differentially expressed genes (DEGs) 
identified from the transcriptomic analysis was conducted using 
EnrichR (30). Additionally, common genes identified from both 
transcriptomic and exome analyses were analyzed. Functional 
enrichment analysis included Gene Ontology categories: Biological 
Process (GO-BP), Cellular Component (GO-CC), and Molecular 
Function (GO-MF), as well as pathway analyses using KEGG and 
Reactome. Protein-coding genes with a p-value < 0.05 were used as 
the background gene set.

2.4 Identification of potentially deleterious 
variants

Genes featuring missense variants from a curated in-house list of 
cancer-associated genes were subsequently examined for functional 
effects using the PredictSNP web tool (31). This examination utilized 
six well-known predictive tools, MAPP, PhD-SNP, PolyPhen-1, 
PolyPhen-2, SIFT, and SNAP, to detect potentially harmful variants 
(missense).

MAPP demonstrated that the likelihood of disease or cancer risk 
is closely linked to breaches of physicochemical limitations due to 
amino acid variations (32). PhD-SNP, based on support vector 
machines (SVMs), was used to determine whether a given point 
mutation was a neutral polymorphism or associated with genetic 
disorders (33). PolyPhen-1 analyzed the impact of missense variants 
on protein structure and function (34). In contrast, PolyPhen-2 
incorporated both sequence- and structure-based features, utilizing a 
Naïve Bayesian classifier to predict the consequences of amino acid 
substitutions. Variants identified as “probably damaging” or “possibly 
damaging” (scores ≥0.5) were categorized as harmful, whereas 
“benign” variants (scores <0.5) were regarded as acceptable. Scores 
nearer to 1.0 were more prone to be damaging (35).

SIFT predicted the potential harm of variants using a normalized 
probability score, where scores <0.05 were deemed harmful and scores 
≥0.05 were considered neutral. The SIFT score assessed the effect of 
amino acid substitutions on protein function (36). SNAP was used to 
evaluate the functional impact of missense variants (37). Protein 
stability alterations due to single-point variants were forecasted using 
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I-Mutant 2.0, which categorized variants into two groups: reduced 
stability (<0 kcal/mol -decrease) and enhanced stability (>0 kcal/
mol – increase) (38).

The evolutionary conservation of amino acid positions for the 
most deleterious variants were assessed using the ConSurf online tool. 
Conservation scores ranges from 1 (most variable positions) to 9 
(most conserved positions), providing insights into the variants’ 
functional significance (39).

3 Results

3.1 Transcriptomics and functional analysis 
of pooled cohort

To identify differentially expressed genes (DEGs) between BC 
patients with and without diabetes, we utilized normalized expression 
data from the GEO database. The GEO2R tool, based on the limma 
package, was employed for the analysis. 2,814 DEGs were analyzed 
across 66 samples, including BC without and BC with diabetes 
samples. A boxplot is a graphical representation of the distribution of 
a dataset that shows its central tendency and variability. It provides a 
concise summary of the data’s statistical properties across samples. The 
boxplot of each group comparison is mentioned in the Figure 2A. A 

UMAP plot is a dimensionality reduction technique that is particularly 
useful for visualizing high-dimensional data, such as gene expression 
values plotted in Figure 2B. The comparison revealed 2,814 DEGs 
comprising 1824 upregulated and 990 downregulated genes (p-
value <= 0.05, adj p-value <= 0.05, |log2 fold change| > =0.5). The 
DEGs were visualized using a volcano plot (Figure 2C), highlighting 
significant genes with biological relevance. The detailed results of 
DEGs are mentioned in Supplementary Table  3. The heatmap 
illustrates the expression levels of selected genes across 66 samples, 
with rows representing genes and columns representing samples, as 
mentioned in Figure 2D.

The functional enrichment analysis of 2,814 DEGs was performed 
using EnrichR. The background genes are protein-coding genes with 
p-value<=0.05. The functional terms are GO (Gene ontology) terms 
and KEGG pathways. Significant enrichment is seen in processes such 
as extracellular matrix organization, regulation of cell migration, 
angiogenesis, and circulatory system development. These are key 
processes in tissue remodeling, cancer metastasis, and vascular 
development. Highlighted components include collagen-containing 
extracellular matrix, cell junctions, plasma membrane raft, and 
sarcolemma. These components are critical for cellular integrity, 
signaling, and intercellular communication. Functions such as 
tyrosine kinase activity, platelet-derived growth factor binding, and 
kinase inhibitor activity dominate. These molecular functions are 

FIGURE 2

Statistical plots of transcriptomics data. (A) The boxplot represents the distribution of normalized transcriptomics data across all samples. Each box 
corresponds to an individual sample, with the central line representing the median expression level. (B) The UMAP plot illustrates the clustering of 
transcriptomics data, with each point representing an individual sample. Samples are color-coded based on their respective groups (BC with diabetes 
vs. BC without diabetes). This visualization highlights the underlying structure and relationships in the dataset, revealing group-specific patterns. The 
“YES” label represents the BC with diabetes, and the “NO” label represents the BC without diabetes. The color-coded representation of the “YES” label is 
green, and the “NO” label is purple. (C) The volcano plot shows the relationship between statistical significance for all genes. Significant upregulated 
and downregulated genes are highlighted in distinct colors with respective thresholds. This visualization identifies key differentially expressed genes. 
The red denotes the upregulated genes, and the blue indicates the down-regulated genes. (D) The heatmap visualizes the expression levels of selected 
genes across 66 samples. Rows represent genes, and columns represent samples.
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often associated with signaling pathways and therapeutic targets in 
cancer and other diseases. Enriched pathways include systemic lupus 
erythematosus, cell cycle regulation, ECM-receptor interaction, and 
PI3K-Akt signaling. These pathways are relevant to immune disorders, 
cancer progression, and extracellular matrix interactions. The results 
suggest an association with processes and pathways related to cancer 
progression, immune regulation, and extracellular matrix dynamics. 
The length of the bar indicates the top function in the barplot. The 
detailed functional results are mentioned in Figure 3.

3.2 Transcriptomics and functional analysis 
of AA and EA cohorts

To identify DEGs between BC patients with and without diabetes, 
we  analyzed normalized expression data from the GEO database 
separately for African American (AA) and European American (EA) 
cohorts. The analysis was performed using the GEO2R tool, which is 
based on the limma package. In the African American (AA) cohort, a 
total of 3,245 differentially expressed genes (DEGs) were identified 
from 57 samples, including 1,922 upregulated and 1,323 
downregulated genes, based on thresholds of p-value ≤ 0.05, adjusted 
p-value ≤ 0.05, and |log₂ fold change| ≥ 0.5. Similarly, in the European 
American (EA) cohort, 3,208 DEGs were detected across 17 samples, 
with 1,640 genes upregulated and 1,568 downregulated using the same 
statistical criteria. Notably, 786 DEGs were found to be shared between 
the AA and EA cohorts. The statistical plots of boxplot and UMAP 
were performed and mentioned in Supplementary Figure  2. The 
detailed information of DEGs of both the cohorts were mentioned in 
the Supplementary Tables 4, 5.

The functional enrichment analysis of each cohort was performed. 
The functional enrichment analysis of 3,245 (AA cohort) and 3,208 
(EA cohort) DEGs was performed using EnrichR. The background 
genes are protein-coding genes with p-value<=0.05. Some of the 
KEGG’s significant functions are cell cycle, ECM receptor interactions, 
PI3K-Akt signaling, and AGE-RAGE signaling pathway in diabetic 
complications, and these functions were specific to the AA cohort. 
Some of the important functions in the EA cohort are Oxidative 
phosphorylation and Diabetic cardiomyopathy. The detailed 
information on these enrichment analyses is mentioned in 
Supplementary Figures 3, 4.

The Venn diagram illustrates the overlap in transcriptomic data 
between the African American (AA) and European American (EA) 
cohorts, revealing 786 genes common to both groups 
(Supplementary Figure  5A). Further functional analysis of 
GO-BP,GO-CC,GO-MF and KEGG pathways were performed on 
common genes. Some of the important functions are Notch signaling 
pathway and Hippo signaling pathway. Both these functions were 
related to BC and diabetes. The detailed functional enrichment 
analysis were mentioned in the Supplementary Figures 5B–E.

3.3 Exome data analysis

We retrieved WES datasets for BC with diabetes from the NCBI 
SRA database. The tumor data of BC with diabetes (n = 23) were only 
taken for further analysis. Each sample was processed using a 
computational pipeline tailored to laboratory protocols. Sequence 
quality was assessed using the FastQC tool. High-quality data for 
analysis was ensured by trimming low-quality reads, removing 

FIGURE 3

Functional enrichment analysis (transcriptomics). The figure showcases the functional enrichment analysis of differentially expressed genes (DEGs) 
derived from transcriptomics data. (A) GO-BP, (B) GO-CC, (C) GO-MF, and (D) KEGG pathways. Bar sizes indicate statistical significance (adjusted p-
values) and gene ratios, providing insights into DEGs’ molecular and functional context.
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adapters, and further validating the sequences’ base quality. Following 
the evaluation of read quality, the final reads were mapped to the 
human reference genome GRCh38.p13 (hg38) utilizing the BWA 
aligner with default settings. Every dataset attained a total alignment 
rate surpassing 85%. SAM tools were employed to process and 
enhance the sequenced files further in the “SAM” format. The SAM 
files were first transformed into BAM format by utilizing the “samtools 
view” command. This transformation enabled later processes, 
including file sorting, indexing, and arranging mapped reads for 
further analysis. Prior to indexing, samtools organized the aligned 
reads and clustered them according to particular genomic areas. In 
conclusion, base calls from the mapped reads aligned to the reference 
sequence were compiled using the “samtools mpileup” command.

After processing the output from “mpileup” with BCFtools, SNPs 
in relation to the reference genome were identified and interpreted as 
variations. The VCF and its binary counterpart, BCF, were used in the 
analysis to handle the data. The resulting output for each dataset was 
provided in a VCF format, containing detailed information about 
variant positions, types, and quality. Each VCF file was annotated 
using the Ensembl VEP database (release 113) which provided a 
thorough analysis of the variants detected in each sample. All 
identified variants are single-nucleotide (SNVs), accounting for 100% 
of the dataset. There are two types of variants: non-coding variants 
and coding variants. The non-coding variants constitute 56.9% of the 
total, including regions like upstream, downstream, and intronic 
variants. The coding variants represent 43.1%, further categorized into 
missense variants 96%, synonymous variants 3%, stop-gained 1%, and 
no start-lost variants. The results are depicted in Figure 4A. Among 

the 3,238 observed missense variants in the VCF file, filtered 899 
missense variants were chosen for further analysis (no novel variants 
were detected) (Figure 4B). After removing duplicate genes in the 298 
overlapped genes, 208 unique genes were finalized for further analysis. 
The detailed results of missense variants are mentioned in 
Supplementary Table 6. The distribution of 208 genes with respective 
metadata is depicted in Figure 5.

3.4 Identification of shared genes and their 
respective functional analysis

The Venn diagram illustrates the overlap between transcriptomic 
and exomic data. A total of 2,804 unique genes were identified only in 
transcriptomic analysis. One hundred ninety-seven unique genes are 
found exclusively in the exomic data. Eleven genes are shared between 
the datasets, representing key potentially important genes across 
transcriptional and mutational levels. The two genes with no variations 
were excluded from the analysis. The nine genes comprises six 
upregulated genes (SKI, TNFRSF1B, PDPN, SLC25A34, EPHA2, and 
IFFO2) and three down-regulated genes (ARHGEF16, FBXO6, and 
PADI2). The results of overlap genes are mentioned in 
Figure  6A. We  compared the selected genes across two different 
cohorts AA and EA populations. Four genes such as SKI, TNFRSF1B, 
SLC25A34, and EPHA2, were present in both cohorts.

The functional analysis of nine genes was performed and analyzed, 
including the functional categories such as GO-BP, GO-CC, GO-MF, 
and the Reactome pathway. The GO-BP enriched terms include 

FIGURE 4

Exome data analysis. Exome data analysis was conducted on tumor samples (n = 23) from breast cancer patients with diabetes. Variants were 
annotated using the VEP tool. (A) A pie chart was generated to classify coding and non-coding variants. (B) Among the filtered coding variants, 96% 
were identified as missense variants. A total of 208 missense variants, derived from all 23 samples, were selected for further analysis.
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FIGURE 5

Distribution of variants. This figure illustrates the distribution of genetic variants observed in 23 samples, stratified by metadata variables such as age, 
race, ER status, diabetes type, and diabetes info. Each sample is represented as a distinct bar or point, categorized by metadata groups.

FIGURE 6

Overlapping genes and functional analysis. This figure shows the overlapping genes identified through integrative analysis of exome sequencing and 
transcriptomics data. The shared genes represent a subset with potential biological functions. (A) Eleven genes overlapped the exome and 
transcriptomics data. The functional analysis of common genes was performed. (B) GO-BP, (C) GO-CC, and (D) GO-MF. (E) Reactome pathways.
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protein  localization processes and synaptic pathways, reflecting 
cellular organization and signaling roles. The GO-CC, the enriched 
components, such as synaptic and endosomal compartments, 
highlight cellular compartmentalization for signaling and transport. 
The GO-MF of enriched functions includes ubiquitin-protein ligase 
binding, TNF activity, chemokine activity, and cadherin binding, 
which are crucial for protein regulation and cellular interactions. The 
Reactome pathways enriched are RHOG GTPase cycle, TNFs Bind 
their physiological receptors. The other pathways include EPHA-
mediated growth cone collapse and signaling pathways. The functional 
results are mentioned in the Figures  6B–E. These variations were 
taken for further analysis.

3.5 Identification of potential variants

The analysis involved nine genes, focusing on identifying the most 
deleterious variants using a comprehensive suite of online prediction 
tools. These tools included PredictSNP, MAPP, PhD-SNP, PolyPhen-1, 
PolyPhen-2, SIFT, SNAP, and PANTHER, each offering distinct 
methodologies for assessing variant pathogenicity. The prediction 
results provided detailed insights into the potential impact of these 
variants on protein function and structure. A summary of the findings, 
highlighting the pathogenicity scores from each tool for the identified 
variants, is presented in Table 1. This table serves as a consolidated 
resource, showcasing the comparative outcomes from all tools, thus 
facilitating an in-depth evaluation of the most deleterious genetic 
changes. Among these nine genes, the TNFRSF1B (L264P) and PDPN 
(A105G) were the top 2 variants predicted by the above tools.

Variants classified as neutral were excluded from stability analysis 
using I-Mutant 2.0. analysis. Among these nine gene variants, the 
results revealed distinct patterns of stability changes. Three gene 
variants exhibited an increase in protein stability upon mutation. This 
indicates that these mutations potentially enhance the structural 
integrity or thermodynamic stability of the proteins, which could 
impact their functional roles positively or negatively, depending on 
the biological context. The remaining six gene variants showed a 
decrease in protein stability upon mutation. A reduction in stability 
suggests that these mutations may disrupt the protein’s structural 
conformation, potentially leading to misfolding, aggregation, or loss 
of function (38). Such destabilizing mutations could contribute to 
disease pathogenesis or altered protein activity. The results are 
mentioned in Table 2. Among these mutations, the TNFRSF1B variant 
(L264P) is the most deleterious variant confirmed by all computational 
tools. ConSurf is a tool that analyses the evolutionary conservation of 
amino acid positions in protein sequences. The variant (TNFRSF1B-
L264P) is categorized as a highly conserved position with a significant 
score (score range of 9), it may suggest a deleterious impact. The 
ConSurf results are mentioned in Figure 7.

4 Discussion

Integrating transcriptomics and exomic analyses combines the 
strengths of both methods to achieve a comprehensive understanding 
of genomic and transcriptomic changes in biological systems (40, 41). 
This integration represents a powerful approach to elucidating the 
molecular mechanisms underlying complex diseases, facilitating the 

identification of robust biomarkers and therapeutic targets (42). 
Several studies have successfully integrated transcriptomics and 
exomic data to provide deeper insights into biological mechanisms, 
disease pathogenesis, and therapeutic strategies (43–47). The etiology 
of BC associated with diabetes remains poorly understood. We aimed 
to identify differentially expressed genes (DEGs) between BC patients 
without diabetes and those with diabetes. Our analysis included 66 
samples, comparing BC without diabetes to BC with diabetes, and 
identified 2,815 DEGs, comprising 1,824 upregulated and 990 
downregulated genes with statistical significance. This integrative 
analysis provides insights into the gene expression changes associated 
with diabetes in BC patients, with visualizations effectively 
summarizing statistical properties, significant DEGs, and their 
expression patterns.

Functional enrichment analysis of the 2,814 DEGs was performed 
using EnrichR, with protein-coding genes as the background. The 
study focused on GO terms and KEGG pathways, revealing significant 
enrichment in processes and pathways related to cancer progression, 
immune regulation, and extracellular matrix (ECM) dynamics. 
Notable enrichment was observed in processes such as extracellular 
matrix organization, regulation of cell migration, angiogenesis, and 
circulatory system development. These processes are crucial for tissue 
remodeling, cancer metastasis, and vascular development. Key 
components highlighted include collagen-containing extracellular 
matrix, cell junctions, plasma membrane rafts, and sarcolemma, 
which are essential for cellular integrity, signaling, and intercellular 
communication. Functions like tyrosine kinase activity, platelet-
derived growth factor binding, and kinase inhibitor activity were 
dominant, indicating relevance to signaling pathways and therapeutic 
targets. The enrichment analysis underscores the involvement of key 
processes, components, and pathways in cancer progression, immune 
system regulation, and extracellular matrix interactions, offering 
potential insights into disease mechanisms and therapeutic targets. 
These processes are fundamental biological functions and pathways 
in BC and diabetes, as reported in several studies (48–54).

To identify DEGs between BC patients with and without diabetes, 
normalized expression data from the GEO database were analyzed 
separately for AA and EA cohorts. In the AA cohort, 3,245 DEGs were 
identified from 57 samples, including 1,922 upregulated and 1,323 
downregulated genes, while in the EA cohort, 3,208 DEGs were 
detected across 17 samples, with 1,640 upregulated and 1,568 
downregulated genes. A total of 786 DEGs were found to be common 
between the two cohorts. Key KEGG pathways identified in the AA 
cohort included cell cycle, ECM-receptor interaction, PI3K-Akt 
signaling, and AGE-RAGE signaling in diabetic complications. In 
contrast, significant pathways in the EA cohort included oxidative 
phosphorylation and diabetic cardiomyopathy. A Venn diagram 
illustrating the overlap between AA and EA transcriptomic profiles 
revealed 786 shared genes. Some of the key KEGG pathways, such as 
Notch signaling and Hippo signaling, both of which are relevant to 
breast cancer and diabetes (55–58).

The study analyzed WES data from 23 BC patients with diabetes, 
sourced from the NCBI SRA database, using a customized 
computational pipeline. Annotation via the Ensembl VEP database 
classified these variants into non-coding (56.9%) and coding (43.1%). 
Among coding variants, 96% were missense, 3% synonymous, and 1% 
stop-gained, with no start-lost variants detected. A total of 899 
variants were analyzed, with no novel variants identified. After 
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TABLE 1  Prediction of deleterious variants of common genes by different tools.

Protein Uniport 
ID

Amino_
acid_

change

Existing_
variation

PredictSNP 
prediction

MAPP 
prediction

PhD-SNP 
prediction

PolyPhen-1 
prediction

PolyPhen-2 
prediction

SIFT 
prediction

SNAP 
prediction

PANTHER 
prediction

SKI P12755 A62G rs28384811 Neutral Neutral Neutral Neutral Deleterious Deleterious Neutral Unknown

SKI P12755 E491D rs1266460001 Neutral Neutral Neutral Neutral Deleterious Neutral Neutral Neutral

TNFRSF1B P20333 M196R rs1061622 Neutral Deleterious Neutral Neutral Neutral Neutral Neutral Neutral

TNFRSF1B P20333 E232K rs5746026 Neutral Deleterious Neutral Neutral Neutral Neutral Neutral Neutral

TNFRSF1B* P20333 L264P rs2229700 Deleterious Deleterious Deleterious Deleterious Neutral Deleterious Deleterious Deleterious

PDPN Q86YL7 M43V rs141726617 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral

PDPN* Q86YL7 A105G rs2486188 Neutral Deleterious Neutral Deleterious Deleterious Neutral Neutral Neutral

PDPN Q86YL7 A147G rs2486188 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral

SLC25A34 Q6PIV7 I215M rs62621224 Neutral Deleterious Deleterious Neutral Neutral Neutral Neutral Neutral

EPHA2 P29317 V747I rs145592908 Neutral Neutral Deleterious Neutral Deleterious Neutral Neutral Unknown

EPHA2 P29317 M631T rs34021505 Neutral Neutral Neutral Deleterious Neutral Neutral Neutral Neutral

EPHA2 P29317 V541M rs61731097 Neutral Neutral Neutral Neutral Neutral Deleterious Neutral Neutral

EPHA2 P29317 G391R rs34192549 Neutral Na Neutral Deleterious Neutral Deleterious Neutral Neutral

EPHA2 P29317 D232G rs114498261 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral

IFFO2 Q5TF58 V352I rs6675316 Neutral Neutral Neutral Neutral Deleterious Neutral Neutral Neutral

ARHGEF16 Q5VV41 V137M rs3806164 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Deleterious

ARHGEF16 Q5VV41 H370Y rs2185639 Neutral Neutral Deleterious Neutral Neutral Neutral Neutral Deleterious

FBXO6 Q9NRD1 R60Q rs3125818 Neutral Neutral Neutral Neutral Deleterious Neutral Neutral Neutral

FBXO6 Q9NRD1 V72M rs766167101 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Unknown

FBXO6 Q9NRD1 V290I rs140436527 Neutral Na Neutral Neutral Neutral Neutral Neutral Unknown

PADI2 Q9Y2J8 Y275H NA Neutral Neutral Neutral Deleterious Deleterious Neutral Neutral Neutral

PADI2 Q9Y2J8 D259N rs150731573 Neutral Neutral Deleterious Neutral Neutral Deleterious Neutral Neutral

* Represents the most deleterious variants from all the tools.
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removing duplicates, these variants spanned 298 genes, which were 
reduced to 208 unique genes. A Venn diagram illustrated the overlap 
between transcriptomic and exomic datasets, identifying 2,804 genes 
unique to transcriptomics, 197 genes exclusive to exomics, and 11 

common genes (Figure  6A). Two genes without mutations were 
excluded, leaving nine key genes: SKI (59, 60), TNFRSF1B (61, 62), 
PDPN (62, 63), SLC25A34 (64), EPHA2 (65, 66), IFFO2 (67, 68), 
ARHGEF16 (69, 70), FBXO6 (71, 72), and PADI2 (73, 74) for further 

TABLE 2  Prediction of protein stability using I-Mutant 2.0.

Protein Uniport ID Amino_acid_
change

Existing_
variation

Stability RI DDG_value 
(kcal/mol)

SKI P12755 A62G rs28384811 Decrease 5 −0.28

SKI P12755 E491D rs1266460001 Increase 6 0.04

TNFRSF1B P20333 M196R rs1061622 Decrease 7 −1.07

TNFRSF1B P20333 L264P rs2229700 Decrease 4 −2.29

PDPN Q86YL7 A105G rs2486188 Decrease 7 −1.68

SLC25A34 Q6PIV7 I215M rs62621224 Decrease 7 −1.91

EPHA2 P29317 V747I rs145592908 Decrease 7 −0.57

EPHA2 P29317 M631T rs34021505 Increase 1 0.1

EPHA2 P29317 D232G rs114498261 Decrease 3 −0.9

IFFO2 Q5TF58 V352I rs6675316 Decrease 8 −1.04

ARHGEF16 Q5VV41 V137M rs3806164 Decrease 7 −2.43

ARHGEF16 Q5VV41 H370Y rs2185639 Increase 4 2.02

FBXO6 Q9NRD1 R60Q rs3125818 Decrease 8 −0.94

PADI2 Q9Y2J8 Y275H NA Decrease 6 −0.62

PADI2 Q9Y2J8 D259N rs150731573 Decrease 0 −0.56

FIGURE 7

ConSurf analysis of potential deleterious variant (TNFRSF1B-L264P). This figure presents the results of a ConSurf analysis, highlighting the evolutionary 
conservation of amino acid residues in the TNFRSF1B (L264P) protein. Residues are color-coded based on their conservation scores, ranging from 
highly conserved (dark shades) to variable (light shades).
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analysis. Among these, six were upregulated, and three were 
downregulated. These genes play significant roles in both diabetes and 
BC. We analyzed gene expression across two cohorts—AA and EA 
populations and mapped these four genes (SKI, TNFRSF1B, 
SLC25A34, and EPHA2) that were consistently present in both groups.

Functional analysis of these nine genes revealed enriched terms 
across GO categories and Reactome pathways. GO-BP terms included 
processes like protein localization and synaptic pathways. GO-CC 
analysis highlighted synaptic and endosomal compartments, 
indicating roles in cellular organization and signaling. GO-MF terms 
included ubiquitin-protein ligase binding, TNF activity, chemokine 
activity, and cadherin binding, essential for protein regulation and 
interactions. These biological functions were enriched in BC and 
diabetes in other studies (75–79). Reactome pathways featured RHOG 
GTPase cycle, TNF-receptor binding, EPHA-mediated growth cone 
collapse, and other signaling pathways. Among these, the TNF 
pathway is significant in connecting BC and diabetes (16, 80, 81). The 
analysis focused on identifying the most deleterious variants using a 
comprehensive suite of online prediction tools. Among the nine genes 
analyzed, TNFRSF1B (L264P) and PDPN (A105G) were identified as 
the top two variants predicted to be most deleterious. These mutations 
remain poorly characterized and have not been extensively studied. 
TNFRSF1B (also known as TNFR2), a receptor for the 
pro-inflammatory cytokine TNF-α, is primarily expressed in immune 
cells, endothelial cells, and certain tumor cells, playing a pivotal role 
in immune regulation, inflammation, and cell survival. As chronic 
inflammation is a common feature of both BC and diabetes, 
TNFRSF1B may represent a molecular link between these diseases. It 
contributes to shared inflammatory pathways by promoting a 
pro-inflammatory microenvironment, and the presence of missense 
mutations in TNFRSF1B among BC patients with diabetes may 
exacerbate both tumor progression and metabolic dysfunction. Given 
its involvement in both cancer and metabolic disease, TNFRSF1B 
holds potential as a biomarker for identifying at-risk BC patients with 
diabetes and guiding personalized treatment strategies. Moreover, 
targeting TNFRSF1B signaling such as through TNF-α inhibitors 
could offer therapeutic benefits by mitigating inflammation and tumor 
development. Understanding genetic variations in TNFRSF1B may 
also inform precision medicine approaches that address the dual 
challenges of cancer and metabolic dysregulation (5, 16, 82–84).

TNF pathway plays a crucial role in linking chronic inflammation, 
metabolic dysfunction, and cancer progression, providing an everyday 
mechanistic basis for its involvement in diabetes and BC. TNF, 
produced by adipocytes and macrophages in adipose tissue, is elevated 
in obesity and diabetes (85, 86). It inhibits insulin signaling by 
phosphorylating insulin receptor substrate-1 (IRS1), disrupting 
pathways essential for glucose uptake. TNF-induced NF-κB activation 
and oxidative stress exacerbate inflammation, worsening insulin 
resistance (87). TNF-mediated inflammation also contributes to beta-
cell dysfunction, reducing insulin secretion. Prolonged TNF signaling 
increases circulating free fatty acids, further impairing metabolic 
homeostasis (88). In BC, chronic TNF secretion by cancer-associated 
macrophages and stromal cells creates a pro-inflammatory 
environment that supports tumor growth (89). NF-κB activation in 
cancer cells increases the expression of anti-apoptotic genes, helping 
tumor cells evade programmed cell death (90). TNF drives epithelial-
to-mesenchymal transition (EMT), enhancing cancer cell motility and 
invasion, and promotes angiogenesis via VEGF induction, facilitating 

tumor vascularization and growth (91). The cross-talk between 
diabetes and BC with shared mechanisms. Obesity and hyperglycemia 
heighten TNF levels, creating a pro-inflammatory milieu (92). TNF 
exacerbates oxidative stress, which damages DNA and increases 
cancer risk (93). TNF-mediated immune suppression allows cancer 
cells to escape immune surveillance. Insulin resistance and 
hyperinsulinemia, driven by TNF, activate pathways like PI3K/AKT, 
promoting cancer cell proliferation (94). Elevated TNF levels in 
diabetic patients may accelerate BC progression through increased 
inflammation and angiogenesis (95, 96). These mechanisms are 
illustrated in a simplified manner in Figure 8.

Our analysis identifies the TNF pathway as a crucial mediator in 
the interplay between BC and diabetes. While pathways such as 
PI3K-AKT, JAK–STAT, and mTOR are also implicated, our 
differential expression analysis reveals a significant enrichment of 
TNF receptor activity among genes common to both conditions. This 
indicates that TNF signaling plays a pivotal role in inflammation, 
apoptosis, and immune regulation, potentially driving the 
interactions between these diseases. Although the PI3K-AKT and 
MAPK pathways contribute broadly, TNF signaling stands out as a 
central hub, highlighting its potential as a therapeutic target (5, 50, 
97). Further studies are needed to refine these insights. Targeting the 
TNF gene or its variants could have substantial therapeutic 
implications, especially for research on comorbidities. Anti-TNF 
therapies could reduce inflammation, benefiting patients with both 
metabolic disorders and cancer. Combining TNF inhibitors with 
treatments specific to metabolic or cancer conditions may offer 
synergistic benefits, particularly for patients with both diabetes and 
BC. The TNF pathway exemplifies how chronic inflammation is a 
common factor in complex diseases like diabetes and BC, 
emphasizing the importance of addressing systemic inflammation in 
therapeutic strategies.

5 Conclusion

This study provides a comprehensive examination of the 
biomarker landscape in BC associated with diabetes through 
integrative transcriptomics and exome analysis. Utilizing 
computational approaches, we identified key differentially expressed 
genes, mutations, and genes with potential deleterious variants that 
may elucidate the interplay between these conditions. Our findings 
highlight potential biomarkers and therapeutic targets that could 
enhance stratification, diagnosis, and treatment for patients with 
comorbid BC and diabetes. Future studies validating these 
biomarkers in experimental and clinical settings could significantly 
advance our understanding and management of this complex 
disease intersection.

5.1 Limitation of the study

We acknowledge the limitation of our Whole Exome 
Sequencing (WES) analysis due to the relatively small sample size 
(n = 23). This constraint primarily arises from our focus on 
integrating transcriptomic and exomic data specifically for BC 
patients with diabetes, ensuring a well-defined cohort for robust 
multi-omics analysis. Additionally, the stringent patient selection 
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criteria and data availability restricted our analysis to tumor 
samples alone, as paired normal controls were not available within 
the dataset.
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FIGURE 8

Pathway mechanism linked with diabetes and cancer. This schematic illustrates the interconnected molecular mechanisms linking diabetes and 
cancer. Key pathways include insulin signaling, chronic inflammation, oxidative stress, and altered metabolism. The figure highlights how 
hyperinsulinemia and insulin resistance influence cancer cell proliferation and survival through pathways like PI3K/AKT/mTOR and MAPK.
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SUPPLEMENTARY FIGURE 1

(A) Selection of samples from transcriptomics data. (B) Selection of samples 
from exomic data.

SUPPLEMENTARY FIGURE 2

Statistical plots of transcriptomics data. The boxplot represents the 
distribution of normalized transcriptomics data across all samples. Each box 
corresponds to an individual sample, with the central line representing the 
median expression level. (A) Boxplot of AA cohort; (B) Boxplot of EA cohort. 
The UMAP plot illustrates the clustering of transcriptomics data, with each 
point representing an individual sample. Samples are color-coded based on 
their respective groups (BC with diabetes vs BC without diabetes). (C) UMAP 
of AA cohort; (D) UMAP of EA cohort.

SUPPLEMENTARY FIGURE 3

The figure presents the functional enrichment analysis of DEGs identified 
from transcriptomic data of the AA cohort. Panels include (A) GO-BP, 
(B) GO-CC, (C) GO-MF, and (D) KEGG pathways. Bar lengths represent both 
statistical significance (adjusted p-values) and gene ratios, offering insights 
into the molecular roles and functional relevance of the DEGs.

SUPPLEMENTARY FIGURE 4

The figure presents the functional enrichment analysis of DEGs identified 
from transcriptomic data of the AA cohort. Panels include (A) GO-BP, 
(B) GO-CC, (C) GO-MF, and (D) KEGG pathways. Bar lengths represent both 
statistical significance (adjusted p-values) and gene ratios, offering insights 
into the molecular roles and functional relevance of the DEGs.

SUPPLEMENTARY FIGURE 5

This figure displays the overlapping genes identified through a 
transcriptomics analysis of the AA and EA cohort. These shared genes 
represent a subset with potential biological significance and functional 
relevance. (A) 786 overlapping genes were present in both cohorts. The 
functional analysis of common genes was performed. (B) GO-BP, (C) 
GO-CC, and (D) GO-MF. (E) KEGG pathways.

SUPPLEMENTARY TABLE 1

Metadata information of transcriptomics data.

SUPPLEMENTARY TABLE 2

Detailed metadata information of AA and EA cohorts.

SUPPLEMENTARY TABLE 3

Detailed information of differentially expressed genes (pooled cohort) in 
comparison of BC with and without diabetes.

SUPPLEMENTARY TABLE 4

Detailed information of differentially expressed genes of the AA cohort in 
comparison of BC with and without diabetes.

SUPPLEMENTARY TABLE 5

Detailed information of differentially expressed genes of the EA cohort in 
comparison of BC with and without diabetes.

SUPPLEMENTARY TABLE 6

Detailed information of missense data.
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Background: Numerous radiomic models have been developed to predict 
treatment outcomes in patients with NSCLC receiving chemotherapy and 
radiation therapy. However, computed tomography (CT) radiomic models that 
integrate the Gross Tumour Volume of the primary lesion (GTVp), the Gross 
Tumour Volume of nodal disease (GTVnd), and clinical information are relatively 
scarce and may offer greater predictive accuracy than models focusing 
on GTVp alone. This study aimed to evaluate the efficacy of a CT radiomic 
model combining GTVp, GTVnd, and clinical data for predicting treatment 
response in unresectable stage III–IV NSCLC patients undergoing concurrent 
chemoradiotherapy.

Methods: A total of 101 patients with unresectable stage III–IV NSCLC were 
included. GTVp was delineated using lung windows, and GTVnd was delineated 
using mediastinal windows. Radiological features were extracted using Python 
3.6, then subjected to F-test and Lasso regression for feature selection. Logistic 
regression was performed on the selected radiological features. Clinical 
information was analysed with univariate and multivariate logistic regression to 
identify significant clinical variables. Five models were developed and evaluated, 
incorporating GTVp, GTVnd, and clinical data.

Results: The GTVp-based radiomics model achieved an area under the curve 
(AUC) of 0.855  in the training cohort and 0.775  in the validation cohort. The 
multimodal composite model (integrating GTVp, GTVnd, and clinical parameters) 
significantly outperformed the GTVp-only model, with a training AUC of 0.862 
and validation AUC of 0.863, demonstrating superior predictive performance for 
concurrent chemoradiotherapy response in this patient population.
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1 Introduction

Lung cancer has a high incidence and mortality rate, with an 
estimated five-year survival of only around 23% (1). It is classified into 
non-small cell lung cancer (NSCLC) and small cell lung cancer 
(SCLC) based on pathological features, with NSCLC accounting for 
approximately 85% of cases (2). For patients with inoperable stage 
III–IV NSCLC, concurrent chemoradiotherapy (CCRT) is a vital 
treatment approach (3). However, treatment sensitivity varies among 
individuals (4, 5), affecting prognosis. Notably, the response to cancer 
therapy is closely linked to prognosis. Notably, patients who respond 
more favourably to therapy often experience longer progression-free 
and overall survival then those with poorer responses (6–8).

Imaging remains the primary method for tumour evaluation in 
clinical practice (9), and radiomics has emerged as a non-invasive, 
effective tool for prognostic prediction (10–14). Several radiological 
models have been developed to predict treatment response and 
outcomes in patients with NSCLC undergoing CCRT (15–17). 
Approximately 60% of patients with NSCLC present with advanced or 
locally advanced disease at diagnosis (18), often because of late 
detection of non-specific symptoms (19), which can lead to 
mediastinal lymph node metastasis. In such cases, radiation 
oncologists typically delineate the Gross Tumour Volume of the 
primary lesion (GTVp) and nodal disease (GTVnd) for chest radiation 
therapy. However, when extracting CT radiomic features, many 
researchers focus solely on GTVp while overlooking GTVnd (20, 21). 
This omission is notable because pre- and post-treatment changes in 
GTVnd are equally critical for tumour staging (22). Moreover, prior 
research has shown that combining mediastinal window CT images 
with lung window CT images can improve both the malignancy of a 
nodule and its potential indolence (23, 24). Thus, incorporating 
GTVnd CT images may be crucial for assessing CCRT efficacy.

Despite the demand for multimodal biomarkers in NSCLC 
management, no prior study has simultaneously integrated CT 
radiomics features of GTVp (lung window) and GTVnd (mediastinal 
window) with clinical parameters to predict CCRT response. 
Therefore, this study aims to develop and validate a composite model, 
specifically evaluating its performance in predicting short-term CCRT 
efficacy among patients with unresectable stage III-IV NSCLC.

2 Methods

The study received approval from the Ethics Committee of the 
Second Affiliated Hospital of Guizhou Medical University (SAHGMU; 
approval number 2020-LS-03) and was conducted in strict accordance 
with the Declaration of Helsinki. Informed consent was obtained from 
all participants.

Figure 1 presents the study flowchart. The inclusion criteria were: 
(1) pathologically confirmed NSCLC; (2) no surgical indications; (3) 
no prior therapies (including neoadjuvant chemotherapy, 
interventional therapy, immunotherapy, or targeted therapy) before 
CCRT; (4) stage III or IV disease with confirmed mediastinal lymph 
node metastasis (N2/N3) based on the 8th edition UICC 

Tumor-Node-Metastasis staging system; (5) availability of standard 
contrast-enhanced chest CT images obtained within 1 month before 
and 3 months after treatment completion; and (6) receipt of 
conventional fractionated radiotherapy (target dose: 60–66 Gy/30–33\
u00B0F, intensity-modulated radiotherapy) combined with 
chemotherapy. For squamous cell carcinoma, weekly paclitaxel plus 
cisplatin was used, whereas for non-squamous cell carcinoma, 
pemetrexed was administered every 3 weeks alongside cisplatin (25). 
The exclusion criteria were: (1) concomitant malignancies, (2) 
incomplete or poor-quality CT images, and (3) insufficient 
follow-up data.

This multicentre retrospective study enrolled patients from two 
distinct cohorts: (1) 77 patients treated at SAHGMU; (2) 24 patients 
from three regional hospitals (Guiyang Pulmonary Hospital, 
Qiandongnan People’s Hospital, Qiannan Traditional Chinese 
Medicine Hospital). All cases were recruited consecutively between 
January 2019 and July 2023. Treatment outcomes were categorized as 
complete response (CR), partial response (PR), stable disease (SD), or 
progressive disease (PD) according to RECIST 1.1 (26). Patients with 
CR or PR were classified into the treatment-sensitive group, while 
those with SD and PD were classified as treatment-insensitive.

Chest contrast-enhanced CT images were preprocessed using 
MATLAB 2014b1 with: (1) Spatial normalization: Rigid registration to 
the INHALE chest CT atlas via ANTs (v2.3.3) using mutual 
information; (2) Isotropic resampling: Resampling normalized images 
to 1 mm isotropic voxels using B-spline interpolation. Following the 
guidelines of ICRU 83 (27), a radiation oncologist with 10 years of 
experience in lung cancer treatment delineated the GTVp and GTVnd 
without access to patient information. ITK-SNAP (version 3.8.0; 
http://www.itksnap.org) was used to manually label slices layer-by-
layer (28). GTVp was delineated in the lung window (WW 1600 HU, 
WL − 600 HU), and GTVnd in the mediastinal window (WW 250 
HU, WL 50 HU). The criteria for defining GTVnd included: (1) short-
axis diameter ≥1 cm, (2) presence of ≥3 clustered lymph nodes within 
a single station, (3) pathological confirmation of metastasis in 
mediastinal lymph nodes (in select patients), or (4) PET-CT 
SUVₘₐₓ > 2.5 in the region (in select patients). After completing the 
annotations were completed, the region of interest (ROI) was 
designated. For each patient, 1,834 radiological features were extracted 
from the ROIs. These features were standardized using the Z-score 
and then screened by an F-test in ANOVA, where F is defined as the 
ratio of between-group variance to within-group variance. To avoid 
overfitting, LASSO regression with 10-fold cross-validation (via 
glmnet in R) was performed on each training subset to select the λ 
minimizing mean square error. Only features selected in ≥80% of 
folds were retained for the final model. Finally, logistic regression was 
used to construct the radiological models.

Clinical data—including sex, ethnicity, age, smoking history, 
pathological type, tumour stage, and haematological markers 
measured 1 week before treatment (such as carcinoembryonic antigen, 

1  https://ww2.mathworks.cn/
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neuron-specific enolase [NSE], white blood cell count, haemoglobin, 
and platelet levels)—were collected and initially analysed via 
univariate regression. Factors with p < 0.05 underwent multivariate 
regression, and variables remaining significant (p < 0.05) were 
incorporated into a clinical prediction model built through logistic 
regression. PyRadiomics was used for radiomic feature extraction 
(v3.0.1; https://github.com/radiomics/pyradiomics) (29). Statistical 
modeling was conducted in R (v3.5.1; https://www.r-project.org/). 
SPSS (v26.0, IBM Corp., Armonk, NY, USA) handled 
descriptive statistics.

Combination models were constructed using logistic regression 
with selected radiological and clinical features. Model performance 
was evaluated through Receiver Operating Characteristic (ROC) 
curves, Area Under the Curve (AUC), accuracy, precision, recall, and 
Decision Curve Analysis (DCA). Statistical significance was defined 
as p < 0.05 for all hypothesis tests.

3 Results

A total of 101 participants met the inclusion criteria. Patients 
were recruited from the SAHGMU (n = 77), Guiyang Pulmonary 
Hospital (n = 13), Qiandongnan Prefecture People’s Hospital 
(n = 5), Qiannan Prefecture Traditional Chinese Medicine Hospital 

(n = 6). Table  1 shows the clinical information. Guizhou—an 
ethnically diverse province in southwest China—is home to all four 
treatment centres included in this study. The principal ethnic groups 
were Han (39.60%), Miao (29.70%), and Dong (25.74%). The 
training cohort and external validation cohort exhibited comparable 
treatment efficacy rates (p > 0.05). Table 2 presents the relationship 
between clinical features and CCRT treatment sensitivity. After 
screening, only haemoglobin was significantly correlated with 
CCRT treatment sensitivity. However, as shown in Table  3, the 
haemoglobin-based clinical model underperformed among the 
models, with an AUC of 60.65% in the training set and 65.00% in 
the validation set.

Following the F-test and Lasso regression feature selection, six 
radiomic features were selected for GTVp (lung window) and four for 
GTVnd (mediastinal window). Figure 2 and Table 4 illustrate the 
distribution of these selected features. The predictive performance of 
the radiological models is shown in Figure  3 and Table  3. In the 
training set, the composite model—incorporating GTVp, GTVnd, and 
clinical features—achieved the highest AUC (0.862). The second-
ranked model was the GTVp-only model (AUC: 0.855), followed by 
the GTVp + GTVnd combination (AUC: 0.853). The GTVnd-only 
model yielded the lowest performance (AUC: 0.734). In the external 
validation set, the composite model again demonstrated the highest 
accuracy (AUC: 0.863). The GTVp + GTVnd combination ranked 

FIGURE 1

Experimental flowchart.
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second (AUC: 0.800), the GTVp-only model placed third (AUC: 
0.775), and the GTVnd-only model performed poorest (AUC: 0.375).

The DeLong test on the external validation set ROC data (Table 5) 
showed no statistically significant difference between the composite 
model and the conventional GTVp model (p = 0.14). Considering the 
limited sample size of the validation cohort (n = 24), we conducted 
clinical decision curve analysis to evaluate real-world utility. As shown 
in Figure 4, the composite model provided a superior net benefit 
across threshold probabilities compared to both the conventional 
clinical model and the GTVp model.

4 Discussion

In this study, our radiomic models outperformed the clinical factor 
model in predicting treatment outcomes. At present, the most 
commonly used guideline for tumour evaluation is RECIST 1.1; 
however, metabolic changes in tumour cells induced by chemotherapy 

and radiation therapy may become apparent earlier than morphological 
changes (30, 31). While radiation and chemotherapeutic agents 
effectively inhibit tumour cell proliferation, their structural impact can 
manifest slowly, making it difficult to detect short-term treatment 
effects through conventional imaging. Unlike RECIST 1.1, radiomics 
extracts pre-treatment data from the tumour, thus enabling an earlier 
assessment of treatment sensitivity before therapy is complete.

Among the 101 patients analysed, decreased haemoglobin 
emerged as the only clinical feature associated with CCRT sensitivity. 
Haemoglobin is critical for oxygen transport to tissues. When 
haemoglobin levels are low, increased anoxia in tumour cells leads to 
reduced sensitivity to radiotherapy and chemotherapy, ultimately 
weakening the therapeutic effect (32). In our patient population, over 
70% presented with low haemoglobin levels prior to treatment. This 
could be  explained by several factors. First, dietary habits among 
middle-aged and elderly individuals in Guizhou, who tend to eat more 
vegetables than meat, can result in insufficient iron intake and 
anaemia. Second, compromised immunity in cancer patients elevates 

TABLE 1  Baseline characteristics of patients.

Variables Categories Total (n = 101) Training (n = 77) External validation 
(n = 24)

P

Sex, n (%) Female 17 (16.83) 15 (19.48) 2 (8.33) 0.583

Male 84 (83.17) 62 (80.52) 22 (91.67)

Age, n (%) ≤50 17 (16.83) 15 (19.48) 2 (8.33) 0.336

>50 84 (83.17) 62 (80.52) 22 (91.67)

Ethnicity, n (%) Miao 30 (29.70) 27 (35.06) 3 (12.50) 0.005

Dong 26 (25.74) 22 (28.57) 4 (16.67)

Han 40 (39.60) 23 (29.87) 17 (70.83)

Others 5 (4.95) 5 (6.49) 0 (0.00)

Efficacy, n (%) CR/PR 28 (27.72) 24 (31.17) 4 (16.67) 0.166

SD/PD 73 (72.28) 53 (68.83) 20 (83.33)

Histology, n (%) LUSC 65 (64.36) 46 (59.74) 19 (79.17) 0.238

LUAD 31 (30.69) 26 (33.77) 5 (20.83)

Other 5 (4.95) 5 (6.49) 0 (0.00)

TNM, n (%) III 67 (66.34) 53 (68.83) 14 (58.33) 0.342

IV 34 (33.66) 24 (31.17) 10 (41.67)

CEA, n (%) Normal 59 (58.42) 45 (58.44) 14 (58.33) 0.993

Elevated 42 (41.58) 32 (41.56) 10 (41.67)

NSE, n (%) Normal 72 (71.29) 55 (71.43) 17 (70.83) 0.955

Elevated 29 (28.71) 22 (28.57) 7 (29.17)

WBC, n (%) Reduced 3 (2.97) 3 (3.90) 0 (0.00) 0.548

Normal 86 (85.15) 66 (85.71) 20 (83.33)

Elevated 12 (11.88) 8 (10.39) 4 (16.67)

Hb, n (%) Reduced 71 (70.30) 53 (68.83) 18 (75.00) 0.564

Normal 30 (29.70) 24 (31.17) 6 (25.00)

PLT, n (%) Reduced 5 (4.95) 3 (3.90) 2 (8.33) 0.567

Normal 89 (88.12) 69 (89.61) 20 (83.33)

Elevated 7 (6.93) 5 (6.49) 2 (8.33)

LUSC, Lung squamous cell carcinoma; LUAD, Lung adenocarcinoma; CEA, carcinoembryonic antigen; NSE, neuron specific enolase; WBC, White blood cell; Hb, Hemoglobin; PLT, Platelet; 
Alb, Albumin.
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their risk of secondary infections, which may lead to the excessive 
destruction of red blood cells. Third, acute and chronic bleeding (e.g., 
haemoptysis) often associated with lung cancer can further exacerbate 
anaemia in these patients.

Although the validation set showed that the GTVnd radiomics 
model alone had a relatively poor predictive performance (AUC: 
0.375) compared to the GTVp model (AUC: 0.775), these findings 
indicate that, in standard CT-based radiomics models for stage 

III - IV lung cancer, primary tumour features may be more influential 
than those of metastatic mediastinal lymph nodes. In our study, the 
radiological features of metastatic mediastinal lymph node lesions 
sensitive to CCRT all originated from “wavelets” a phenomenon that 
warrants further inquiry. Moreover, the absence of comprehensive 
PET/CT scans or mediastinal lymph node biopsies in some patients 
may have limited the precision of GTVnd delineation, as radiation 
oncologists relied solely on conventional imaging criteria (e.g., short 

TABLE 2  Clinical model: clinical features related to CCRT sensitivity.

Variables Univariate analysis Multivariate analysis

OR (95%CI) P OR (95%CI) P

Sex

Female 1.00 (Reference)

Male 0.77 (0.23 ~ 2.60) 0.673

Age (years)

≤50 1.00 (Reference)

>50 0.13 (0.02 ~ 1.05) 0.055

Ethnicity

Miao 1.00 (Reference)

Dong 2.10 (0.61 ~ 7.23) 0.239

Han 1.17 (0.42 ~ 3.22) 0.766

Others 2.00 (0.20 ~ 20.33) 0.558

Histology

LUSC 1.00 (Reference)

LUAD 0.59 (0.23 ~ 1.50) 0.270

Other 1.31 (0.14 ~ 12.55) 0.817

TNM

III 1.00 (Reference)

IV 3.03 (1.04 ~ 8.88) 0.043

CEA

Normal 1.00 (Reference)

Elevated 1.40 (0.57 ~ 3.46) 0.459

NSE

Normal 1.00 (Reference)

Elevated 0.51 (0.20 ~ 1.28) 0.149

WBC

Reduced 1.00 (Reference)

Normal 0.00 (0.00 ~ Inf) 0.991

Elevated 0.00 (0.00 ~ Inf) 0.991

Hb

Normal 1.00 (Reference) 1.00 (Reference)

Reduced 2.85 (1.14 ~ 7.16) 0.025 2.85 (1.14 ~ 7.16) 0.025

PLT

Reduced 1.00 (Reference)

Normal 4.57 (0.72 ~ 29.14) 0.108

Elevated 2.00 (0.19 ~ 20.61) 0.560

OR: Odds Ratio, CI: Confidence Interval; LUSC, Lung squamous cell carcinoma; LUAD, Lung adenocarcinoma; CEA, carcinoembryonic antigen; NSE, neuron specific enolase; WBC, White 
blood cell; Hb, Hemoglobin; PLT, Platelet.
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FIGURE 2

Lasso regression was employed to screen radiological features. (A) LASSO coefficient curve for the GTVp group. (B) Cross-validation curve for the 
GTVp group. (C) LASSO coefficient curve for the GTVnd group. (D) Cross-validation curve for the GTVnd group.

TABLE 3  Performance of the models.

Model Accuracy Precision Recall F1-score AUC

Clinical

Training set 68.83% 68.83% 100.00% 81.54% 60.65%

Validation set 83.33% 83.33% 100.00% 90.91% 65.00%

GTVp

Training set 83.12% 85.71% 90.57% 88.07% 85.53%

Validation set 79.17% 82.61% 95.00% 88.37% 77.50%

GTVnd

Training set 79.22% 80.33% 92.45% 85.96% 73.43%

Validation set 83.33% 86.36% 85.00% 90.48% 37.50%

GTVp + GTVnd

Training set 83.12% 84.48% 92.45% 88.29% 85.30%

Validation set 83.33% 83.33% 100.00% 90.91% 80.00%

Composite model (GTVp + GTVnd + clinical)

Training set 83.12% 84.48% 92.45% 88.29% 86.16%

Validation set 83.33% 83.33% 100.00% 90.91% 86.25%

Data in parentheses are 95% CIs. AUC, area under the curve; GTVp, gross tumor volume of the primary lesion; GTVnd, gross tumor volume of nodal disease.
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diameter ≥1 cm or at least three clustered lymph nodes in one 
region), potentially resulting in a reduced diagnostic rate for positive 
mediastinal lymph nodes.

We also noted that integrating clinical features with radiological data 
led to superior predictive performance compared to radiological models 
alone. The radiomics model combining GTVp and GTVnd (AUC: 0.800) 
outperformed the individual GTVp and GTVnd models. We compared 
our model not only to our own previous models but also to similar 
studies, such as: 1. A 2022 study that used a radiomics nomogram based 

solely on CT-derived GTVp and clinical features to predict 
chemoradiotherapy efficacy in  locally advanced non-small cell lung 
cancer, with a training set C-index of 0.796 and a validation set C-index 
of 0.756 (17); 2. A 2023 study developed a radiomics model based on 
CT-derived GTVp to predict concurrent chemoradiotherapy in patients 
with locally advanced non-small cell lung cancer. The study reported that 
the AUC for the GTV reduction (Criteria A) model was 0.767, while the 
AUC for the RECIST 1.1 standard (Criteria B) model was 0.771 (16). In 
contrast, our composite model (GTVp + GTVnd + clinical characteristics) 
achieved higher AUCs in both the training set (0.862) and the validation 
set (0.863). Further analysis revealed that the GTVnd features added 
critical information: (1) “wavelet. LHL_firstorder_10Percentile” quantifies 
low-intensity pixels in regions with vertical textural detail; (2) “wavelet. 
LHL_glcm_Contrast” captures roughness/heterogeneity of vertical 
textures and sensitivity to directional structures; (3) “wavelet. HLH_
glszm_SizeZoneNonUniformityNormalized” indicates lesion size 
heterogeneity; (4) “wavelet. LLL_firstorder_InterquartileRange” stably 
quantifies slow-varying grayscale distribution in anatomical structures. 
The inclusion of these GTVnd radiomic features enhanced the 
model’s efficacy.

In conclusion, our composite model (AUC = 0.863) demonstrated 
notably better performance than the conventional GTVp model 
(AUC = 0.775), indicating that including GTVnd radiological features 
can significantly improve the predictive capacity of CT-based models for 
CCRT outcomes. Decision curve analysis further confirmed that the 
composite model provided higher accuracy than the GTVp model alone, 

TABLE 4  Selected radiological features.

GTVp GTVnd

lbp.3D.k_glszm_

GrayLevelNonUniformityNormalized
wavelet. LHL_firstorder_10Percentile

lbp.3D.k_glrlm_

RunLengthNonUniformityNormalized
wavelet. LHL_glcm_Contrast

original_shape_Sphericity
wavelet. HLH_glszm_

SizeZoneNonUniformityNormalized

square_glcm_Imc2
wavelet. LLL_firstorder_

InterquartileRange

squareroot_glcm_Correlation

exponential_glrlm_

RunLengthNonUniformity

FIGURE 3

Comparison of ROC curves for different models. (A) ROC curves of different radiomic models in the training cohort. (B) ROC curves of different 
radiomic models in the validation cohorts.

TABLE 5  DeLong test for AUC values of the validation set.

Model Clinical GTVp GTVnd GTVp+GTVnd Composite model

Clinical 1 0.59 0.04 0.55 0.26

GTVp 0.59 1 0.23 0.57 0.14

GTVnd 0.04 0.23 1 0.23 0.09

GTVp + GTVnd 0.55 0.57 0.23 1 0.40

Composite model 0.26 0.14 0.09 0.40 1

GTVp, gross tumor volume of the primary lesion; GTVnd, gross tumor volume of nodal disease.
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highlighting the importance of incorporating additional radiomic 
features and clinical data in treatment response predictions. This study 
is the first to show that CT-based radiomic models integrating GTVnd, 
GTVp, and clinical information can meaningfully enhance CCRT 
response prediction in unresectable stage III–IV NSCLC. By extracting 
a broader range of radiomic features, the composite model offers a more 
comprehensive assessment of the tumour’s biological characteristics, 
potentially facilitating more individualized cancer treatment strategies. 
Overall, our findings emphasize the importance of including GTVnd in 
CT imaging analyses, reinforcing the need for a holistic approach to 
tumour evaluation.

Despite these promising results, our study has several limitations. 
First, the use of various CT scanners across four different institutions 
may have introduced variability in imaging parameters. To reduce this 
effect, all CT scans were normalized and reconstructed into 1-mm 
slices. Second, not all patients underwent PET/CT or mediastinal 
lymph node biopsies, potentially impacting the precision of GTVnd 
delineation. Previous research indicates that PET/CT is more accurate 
than conventional CT for detecting malignant lymph nodes (33, 34). 
Consequently, future research should incorporate PET/CT or biopsy 
before CCRT to better define GTVnd and improve model accuracy. 
Third, a single radiation oncologist performed all ROI delineations, 
restricting our ability to assess inter-observer consistency in radiomic 
feature extraction. Fourth, due to a relatively small sample size, larger 
studies are necessary to validate these findings.

5 Conclusion

This study demonstrates that a CT-based model integrating GTVp, 
GTVnd, and clinical data surpasses the conventional GTVp radiological 
model in predicting CCRT efficacy for patients with unresectable 
stage  III–IV NSCLC. Such an approach may allow for earlier 
adjustments to treatment regimens for patients expected to have less 
favourable outcomes.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the Second 
Affiliated Hospital of Guizhou Medical University Ethics 
Committee. The studies were conducted in accordance with the 
local legislation and institutional requirements. The participants 
provided their written informed consent to participate in 
this study.

Author contributions

YL: Conceptualization, Data curation, Investigation, Writing – 
original draft, Writing – review & editing. MZhang: Conceptualization, 
Data curation, Investigation, Writing – original draft, Writing – review 
& editing. YH: Data curation, Writing – original draft, Investigation. 
DZ: Data curation, Investigation, Writing – original draft. BD: Data 
curation, Investigation, Writing – original draft. YM: Data curation, 
Investigation, Writing  – original draft. TH: Data curation, 
Investigation, Writing  – original draft. MZhao: Data curation, 
Investigation, Writing – original draft. BeL: Investigation, Writing – 
original draft. JX: Investigation, Writing  – original draft. ZH: 
Investigation, Writing – original draft. FL: Investigation, Writing – 
original draft, Resources, Supervision. BiL: Investigation, Supervision, 
Writing  – original draft, Conceptualization, Data curation, 
Methodology. JP: Conceptualization, Data curation, Supervision, 
Writing – original draft, Funding acquisition, Project administration, 
Resources, Software, Validation, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
by the Qian Dong Nan Science and Technology Program (No. 
qdnkhJz [2023] 14), Scientific Research Project of Guizhou Provincial 
Health and Wellness Commission (No. gzwkj2024-099 and 
gzwkj2025-608), Public Hospital High-Quality Development 
Research Public Welfare Project Fund (No. GL-A014), and Spark 
Program (No. XHJH-0048).

Acknowledgments

We thank all members for their invaluable contributions.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

FIGURE 4

Decision curve analysis of the models.

105

https://doi.org/10.3389/fmed.2025.1596788
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al.� 10.3389/fmed.2025.1596788

Frontiers in Medicine 09 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
	1.	Rebecca LS, Kimberly DM, Nikita Sandeep W, Ahmedin J. Cancer statistics, 2023. 

CA Cancer J Clin. (2023) 73:17–48. doi: 10.3322/caac.21763

	2.	Molina JR, Yang PG, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung 
cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 
(2008) 83:584–94. doi: 10.1016/S0025-6196(11)60735-0

	3.	Maconachie R, Mercer T, Navani N, McVeigh G. Lung cancer: diagnosis and 
management: summary of updated NICE guidance. BMJ-Brit Med J. (2019) 
364:l1049. doi: 10.1136/bmj.l1049

	4.	Zhivotovsky B, Joseph B, Orrenius S. Tumor Radiosensitivity and apoptosis. 
Exp Cell Res. (1999) 248:10–7. doi: 10.1006/excr.1999.4452

	5.	Zheng WY, Xin Y, Siyang W, Xiaonan W, Qiutao W, Wenhao C, et al. Instability 
mechanism of Osimertinib in plasma and a solving strategy in the pharmacokinetics 
study. Front Pharmacol. (2022) 13:928983. doi: 10.3389/fphar.2022.928983

	6.	Park C, Chu HH, Kim JH, Kim SY, Alrashidi I, Gwon DI, et al. Clinical 
significance of the initial and best responses after chemoembolization in the 
treatment of intermediate-stage hepatocellular carcinoma with preserved liver 
function. J Vasc Interv Radiol. (2020) 31:1998. doi: 10.1016/j.jvir.2020.04.017

	7.	Pointer KB, Katipally RR, Bestvina CM, Juloori A, Partouche J, Patel JD, et al. 
Evaluation of initial metastatic tumor location and radiation response to determine 
outcomes in patients who received combination stereotactic body radiotherapy and 
immunotherapy for NSCLC. Int J Radiat Oncol Biol Phys. (2021) 111:e449. doi: 
10.1016/j.ijrobp.2021.07.1266

	8.	Tsurugai Y, Kozuka T, Ishizuka N, Oguchi M. Relationship between the 
consolidation to maximum tumor diameter ratio and outcomes following 
stereotactic body radiotherapy for stage I non-small-cell lung cancer. Lung Cancer. 
(2016) 92:47–52. doi: 10.1016/j.lungcan.2015.12.003

	9.	Kurland BF, Gerstner ER, Mountz JM, Schwartz LH, Ryan CW, Graham MM, 
et al. Promise and pitfalls of quantitative imaging in oncology clinical trials. Magn 
Reson Imaging. (2012) 30:1301–12. doi: 10.1016/j.mri.2012.06.009

	10.	Peng J, Kang S, Ning Z, Deng H, Shen J, Xu Y, et al. Residual convolutional 
neural network for predicting response of transarterial chemoembolization in 
hepatocellular carcinoma from CT imaging. Eur Radiol. (2020) 30:413–24. doi: 
10.1007/s00330-019-06318-1

	11.	Jiang X, Zhao H, Saldanha OL, Nebelung S, Kuhl C, Amygdalos I, et al. An 
MRI deep learning model predicts outcome in rectal Cancer. Radiology. (2023) 
307:e222223. doi: 10.1148/radiol.222223

	12.	Peng J, Huang J, Huang G, Zhang J. Predicting the initial treatment response 
to Transarterial chemoembolization in intermediate-stage hepatocellular 
carcinoma by the integration of Radiomics and deep learning. Front Oncol. (2021) 
11:730282. doi: 10.3389/fonc.2021.730282

	13.	Peng J, Lu F, Huang J, Zhang J, Gong W, Hu Y, et al. Development and 
validation of a pyradiomics signature to predict initial treatment response and 
prognosis during transarterial chemoembolization in hepatocellular carcinoma. 
Front Oncol. (2022) 12:853254. doi: 10.3389/fonc.2022.853254

	14.	Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A. Predicting cancer 
outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin 
Oncol. (2022) 19:132–46. doi: 10.1038/s41571-021-00560-7

	15.	Chen W, Wang L, Hou Y, Li L, Chang L, Li Y, et al. Combined Radiomics-
clinical model to predict radiotherapy response in inoperable stage III and IV non-
small-cell lung Cancer. Technol Cancer Res Treat. (2022) 21:15330338221142400. 
doi: 10.1177/15330338221142400

	16.	Zhou C, Hou L, Tang X, Liu C, Meng Y, Jia H, et al. CT-based radiomics 
nomogram may predict who can benefit from adaptive radiotherapy in patients 
with local advanced-NSCLC patients. Radiother Oncol. (2023) 183:109637. doi: 
10.1016/j.radonc.2023.109637

	17.	Chen X, Tong X, Qiu Q, Sun F, Yin Y, Gong G, et al. Radiomics nomogram 
for predicting Locoregional failure in locally advanced non-small cell lung Cancer 
treated with definitive Chemoradiotherapy. Acad Radiol. (2022) 29:S53–61. doi: 
10.1016/j.acra.2020.11.018

	18.	Meza R, Meernik C, Jeon J, Cote ML. Lung cancer incidence trends by gender, 
race and histology in the United States, 1973-2010. PLoS One. (2015) 10:e0121323. 
doi: 10.1371/journal.pone.0121323

	19.	Wilk AM, Kozłowska E, Borys D, D'Amico A, Fujarewicz K, Gorczewska I, 
et al. Radiomic signature accurately predicts the risk of metastatic dissemination 
in late-stage non-small cell lung cancer. Transl Lung Cancer Res. (2023) 12:1372–83. 
doi: 10.21037/tlcr-23-60

	20.	Chen W, Hou X, Hu Y, Huang G, Ye X, Nie S. A deep learning- and CT image-
based prognostic model for the prediction of survival in non-small cell lung cancer. 
Med Phys. (2021) 48:7946–58. doi: 10.1002/mp.15302

	21.	Gong J, Bao X, Wang T, Liu J, Peng W, Shi J, et al. A short-term follow-up CT based 
radiomics approach to predict response to immunotherapy in advanced non-small-cell 
lung cancer. Onco Targets Ther. (2022) 11:2028962. doi: 10.1080/2162402X.2022.2028962

	22.	Asamura H, Chansky K, Crowley J, Goldstraw P, Rusch VW, Vansteenkiste JF, et al. The 
International Association for the Study of Lung Cancer lung Cancer staging project: proposals 
for the revision of the N descriptors in the forthcoming 8th edition of the TNM classification 
for lung Cancer. J Thoracic Oncol. (2015) 10:1675–84. doi: 10.1097/JTO.0000000000000678

	23.	Nasir M, Farid MS, Suhail Z, Khan MH. Optimal thresholding for multi-
window computed tomography (CT) to predict lung cancer. Appl Sci. (2023) 
13:256. doi: 10.3390/app13127256

	24.	Lu H, Mu W, Balagurunathan Y, Qi J, Abdalah MA, Garcia AL, et al. Multi-
window CT based Radiomic signatures in differentiating indolent versus aggressive 
lung cancers in the National Lung Screening Trial: a retrospective study. Cancer 
Imaging. (2019) 19:45. doi: 10.1186/s40644-019-0232-6

	25.	Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al. 
NCCN guidelines® insights: non-small cell lung Cancer, version 2.2023. J Natl 
Comprehens Cancer Network. (2023) 21:340–50. doi: 10.6004/jnccn.2023.0020

	26.	Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New 
response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). 
Europ J Cancer. (2009) 45:228–47. doi: 10.1016/j.ejca.2008.10.026

	27.	Grégoire V, Mackie TR. State of the art on dose prescription, reporting and 
recording in intensity-modulated radiation therapy (ICRU report no. 83). Cancer 
Radiother. (2011) 15:555–9. doi: 10.1016/j.canrad.2011.04.003

	28.	Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D 
active contour segmentation of anatomical structures: significantly improved efficiency 
and reliability. NeuroImage. (2006) 31:1116–28. doi: 10.1016/j.neuroimage.2006.01.015

	29.	van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan 
V, et al. Computational Radiomics system to decode the radiographic phenotype. 
Cancer Res. (2017) 77:e104–7. doi: 10.1158/0008-5472.CAN-17-0339

	30.	Yang Y, Tian W, Su L, Li P, Gong X, Shi L, et al. Tumor-infiltrating cytotoxic 
T cells and tumor-associated macrophages correlate with the outcomes of 
neoadjuvant Chemoradiotherapy for locally advanced rectal Cancer. Front Oncol. 
(2021) 11:743540. doi: 10.3389/fonc.2021.743540

	31.	Wang HM, Wu MH, Chang PH, Lin HC, Liao CD, Wu SM, et al. The change 
in circulating tumor cells before and during concurrent chemoradiotherapy is 
associated with survival in patients with locally advanced head and neck cancer. 
Head Neck. (2019) 41:2676–87. doi: 10.1002/hed.25744

	32.	Topkan E, Selek U, Ozdemir Y, Yildirim BA, Guler OC, Mertsoylu H, et al. 
Chemoradiotherapy-induced hemoglobin nadir values and survival in patients with stage III 
non-small cell lung cancer. Lung Cancer. (2018) 121:30–6. doi: 10.1016/j.lungcan.2018.04.016

	33.	Ventura E, Islam T, Gee MS, Mahmood U, Braschi M, Harisinghani MG. Detection of 
nodal metastatic disease in patients with non-small cell lung cancer: comparison of positron 
emission tomography (PET), contrast-enhanced computed tomography (CT), and combined 
PET-CT. Clin Imaging. (2010) 34:20–8. doi: 10.1016/j.clinimag.2009.03.012

	34.	Al-Sarraf N, Gately K, Lucey J, Wilson L, McGovern E, Young V. Lymph node 
staging by means of positron emission tomography is less accurate in non-small cell lung 
cancer patients with enlarged lymph nodes: analysis of 1,145 lymph nodes. Lung Cancer. 
(2008) 60:62–8. doi: 10.1016/j.lungcan.2007.08.036

106

https://doi.org/10.3389/fmed.2025.1596788
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.3322/caac.21763
https://doi.org/10.1016/S0025-6196(11)60735-0
https://doi.org/10.1136/bmj.l1049
https://doi.org/10.1006/excr.1999.4452
https://doi.org/10.3389/fphar.2022.928983
https://doi.org/10.1016/j.jvir.2020.04.017
https://doi.org/10.1016/j.ijrobp.2021.07.1266
https://doi.org/10.1016/j.lungcan.2015.12.003
https://doi.org/10.1016/j.mri.2012.06.009
https://doi.org/10.1007/s00330-019-06318-1
https://doi.org/10.1148/radiol.222223
https://doi.org/10.3389/fonc.2021.730282
https://doi.org/10.3389/fonc.2022.853254
https://doi.org/10.1038/s41571-021-00560-7
https://doi.org/10.1177/15330338221142400
https://doi.org/10.1016/j.radonc.2023.109637
https://doi.org/10.1016/j.acra.2020.11.018
https://doi.org/10.1371/journal.pone.0121323
https://doi.org/10.21037/tlcr-23-60
https://doi.org/10.1002/mp.15302
https://doi.org/10.1080/2162402X.2022.2028962
https://doi.org/10.1097/JTO.0000000000000678
https://doi.org/10.3390/app13127256
https://doi.org/10.1186/s40644-019-0232-6
https://doi.org/10.6004/jnccn.2023.0020
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1016/j.canrad.2011.04.003
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.3389/fonc.2021.743540
https://doi.org/10.1002/hed.25744
https://doi.org/10.1016/j.lungcan.2018.04.016
https://doi.org/10.1016/j.clinimag.2009.03.012
https://doi.org/10.1016/j.lungcan.2007.08.036


Frontiers in Medicine 01 frontiersin.org

The evolution and application of 
multi-omic analysis for pituitary 
neuroendocrine tumors
Sangami Pugazenthi 1,2, Shree S. Pari 1, Ziyan Zhang 1, 
Julie Silverstein 3,4, Albert H. Kim 1,4,5 and Bhuvic Patel 1,4,5*
1 Taylor Family Department of Neurological Surgery, Washington University School of Medicine, St. Louis, 
MO, United States, 2 Department of Neurological Surgery, University of Pittsburgh Medical Center, 
Pittsburgh, PA, United States, 3 Division of Endocrinology, Metabolism and Lipid Research, Washington 
University School of Medicine, St. Louis, MO, United States, 4 WashU Medicine Pituitary Center, 
Washington University School of Medicine, St. Louis, MO, United States, 5 The Brain Tumor Center, 
Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States

Pituitary neuroendocrine tumors (PitNETs) are a heterogeneous group of intracranial 
neoplasms that vary in hormonal activity, histological features, and clinical behavior. 
The rise of high-throughput sequencing and molecular profiling technologies 
has enabled multiomic approaches—including genomics, transcriptomics, 
epigenomics, proteomics, and metabolomics—to deepen our understanding of 
PitNET pathogenesis. These studies have identified key mutations, transcriptional 
lineages, epigenetic modifications, and proteomic features that contribute to tumor 
subtype classification, invasiveness, and treatment response. Integrative multi-omic 
analyses have further revealed distinct molecular subtypes, complex regulatory 
networks, and molecular profiles that can predict recurrence and therapeutic 
efficacy. These approaches hold strong potential for advancing personalized 
medicine in PitNETs, supporting patient-specific diagnosis, prognostication, and 
therapeutic strategies. Future directions include the application of emerging -omic 
technologies and the development of robust computational tools to integrate 
and translate multi-layered data into clinically actionable insights.

KEYWORDS

pituitary, PitNET, multiomics, molecular sequencing, transcriptomics, genomics, 
epigenomics, proteomics

Introduction

Pituitary tumors represent a diverse group of neoplasms that originate from the endocrine 
cells of the pituitary gland and account for approximately 17.8% of all intracranial tumors (1). 
Historically termed pituitary adenomas, these tumors have been considered largely benign and 
indolent. However, this perception has evolved significantly with advances in molecular 
pathology and clinical characterization. In 2022, the World Health Organization (WHO) 
officially reclassified these tumors as pituitary neuroendocrine tumors (PitNETs) to better reflect 
their neuroendocrine origin and biological spectrum (2). A pivotal aspect of the new WHO 
classification is the use of pituitary-specific transcription factors (TFs) to define tumor lineage 
more accurately than traditional hormonal immunostaining alone. The key TFs include 
pituitary-specific positive transcription factor 1 (PIT1), steroidogenic factor 1 (SF1), and T box 
transcription factor (TPIT), which correspond to the somatotroph/lactotroph/thyrotroph, 
gonadotroph, and corticotroph lineages, respectively (Figure 1). This molecular stratification 
helps distinguish morphologically similar but biologically distinct subtypes, thereby enhancing 
diagnostic precision and prognostic estimation (2). Despite these advances, the clinical 
management of PitNETs remains challenging due to a lack of robust biomarkers for tumor 
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aggressiveness, treatment response, and recurrence risk. In this 
context, multiomic approaches—including genomic, transcriptomic, 
epigenomic, proteomic, and metabolomic profiling—offer powerful 
tools to dissect the complexity of PitNETs. Integrative multiomic 
analysis can provide a systems-level understanding of tumor biology, 
identify molecular subgroups, and uncover novel targets for therapy 
and early detection (3). This review summarizes the current landscape 
and emerging insights from multiomic studies in PitNETs, emphasizing 
their potential to revolutionize classification, prognosis, and 
individualized treatment strategies in pituitary tumor management.

Genomic analysis

Genomic analyses have played a crucial role in uncovering the 
molecular underpinnings of PitNETs, shedding light on both sporadic 
and hereditary forms. Although PitNETs display a relatively low 
mutational burden compared to other solid tumors, several recurrent 
somatic and germline alterations have been identified that contribute 
to tumor initiation, hormonal dysregulation, and progression.

The most well-characterized somatic mutations in PitNETs are 
subtype specific. Guanine nucleotide-binding protein, alpha 
stimulating (GNAS) mutations are frequently found in somatotroph 

tumors, promoting cyclic adenosine monophosphate (cAMP) signaling 
and growth hormone (GH) overproduction. PitNETs with GNAS 
mutations have been associated with smaller size and decreased 
invasiveness (4). In corticotroph tumors causing Cushing’s Disease, 
ubiquitin carboxyl-terminal hydrolase 8 (USP8) mutations are present 
in up to 40% of cases and result in impaired degradation of epidermal 
growth factor receptor (EGFR), enhancing adrenocorticotropic 
hormone (ACTH) secretion and cellular proliferation (5, 6). Other 
mutations described in corticotroph PitNETs include ubiquitin specific 
peptidase 48 (USP48), B-Raf proto-oncogene, serine/threonine kinase 
(BRAF), and tumor protein p53 (TP53) (7, 8). Despite these discoveries, 
most PitNETs lack recurrent driver mutations, suggesting a significant 
role for epigenetic regulation, chromosomal instability, and post-
transcriptional mechanisms in tumor biology. A subset of PitNETs 
arise in the context of hereditary tumor syndromes, most notably 
Multiple Endocrine Neoplasia type 1 (MEN1), caused by inactivating 
mutations in the MEN1 gene, which encodes the tumor suppressor 
menin. Other inherited mutations involve cyclin-dependent kinase 
inhibitor 1B (CDKN1B) (associated with MEN4), aryl hydrocarbon 
receptor interacting protein (AIP), and succinate dehydrogenase 
(SDHx) (9–12). Patients harboring AIP mutations most commonly 
present with somatotropinomas, often at a younger age, with larger 
tumors and more growth hormone (GH) secretion (13, 14). Succinate 

FIGURE 1

Comparison of 2017 and 2022 PitNET WHO classification schemes. PitNET, Pituitary neuroendocrine tumor; WHO, World Health Organization.
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dehydrogenase complex iron sulfur subunit B/D (SDHB/D) mutations 
have been shown to be associated with combined paragangliomas, 
pheochromocytomas, and less frequently PitNETs, suggesting shared 
tumorigenesis pathways related to mitochondrial metabolism (12).

With the development of next-generation sequencing (NGS), 
including whole-exome sequencing (WES) and whole-genome 
sequencing (WGS), studies utilizing these methods provided a broader 
landscape of mutational events in PitNETs. In 2016, Song et al. examined 
the somatic mutational landscape of 125 PitNETs, identifying low 
mutational burden, confirming the presence of previously described 
mutations such as GNAS, MEN1, and USP8, identifying novel mutations 
such as kinesin heavy chain isoform 5A (KIF5A) and growth factor 
receptor-bound protein 10 (GRB10), and determining that 18% of 
tumors harbor copy number alterations (CNAs). Gene ontology analysis 
revealed that plurihormonal, GH-, prolactin (PR)-, and ACTH-secreting 
PitNETs were enriched for somatic mutations in overlapping molecular 
pathways as were TSH- and LH/FSH-secreting PitNETs (15). 
Subsequently, Bi et al. identified that 29% of PitNETs have CNAs, but 
novel somatic alterations in genes were infrequent and often 
non-recurrent. They found that the tumors with more disrupted 
genomes (higher CNA burden) were more likely to be  functional 
PitNETs or null cell tumors compared to PitNETs with less disrupted 
genomes, which were more likely nonfunctional (16). Large-scale 
sequencing efforts continue to uncover novel candidate genes and 
low-frequency variants that may contribute to tumor biology but 
integration of genomic data with transcriptomic and epigenomic profiles 
is essential to elucidate the mechanistic impact of these mutations, and 
inclusion of phenotypic data is critical for clinical relevance.

To facilitate clinical interpretation, Table  1 summarizes key 
PitNET biomarkers identified across multiomic studies, specifically 
highlighting their functional roles, prognostic value, and therapeutic 
relevance. Even though many markers remain investigational, this 
framework may inform future biomarker-guided therapy trials.

Transcriptional profiling

Transcriptomic profiling using techniques such as bulk and 
single-cell RNA sequencing has emerged as a powerful approach to 

characterize PitNETs beyond histology and hormonal output, offering 
insights into their functional identity, heterogeneity, and 
aggressiveness. Unlike genomic alterations, which are relatively 
infrequent in PitNETs, transcriptional changes are widespread and 
reflect both lineage commitment and tumor behavior.

Transcriptomic profiling has had a significant impact on the field 
of pituitary tumors as this method was used to discover the relevance 
of TFs in the classification of PitNETs highlighted in the 2022 WHO 
guidelines. The use of transcription factors has been shown to be more 
reliable than previous methods using histology, immunochemistry, in 
situ hybridization, and hormone expression to identify and classify 
these tumors (2). The biological role of PIT1, SF1 and TPIT in normal 
pituitary gland development and PitNET pathogenesis has also been 
investigated using bulk RNA sequencing (17, 18). In normal 
corticotroph development, TPIT along with paired like homeodomain 
1 (PITX1) activate the proopiomelanocortin (POMC) gene (19, 20). 
On the other hand, suppression of TPIT causes pituitary 
neuroendocrine cells to differentiate into gonadotroph or thyrotroph 
cells (21). The PIT1 TF lineage is positively regulated by paired-like 
homeobox 1 (PROP1) and negatively regulated by HESX homeobox 
1 (HESX1) (22, 23). Each hormonal subtype of PIT1 PitNETs have 
specific mechanisms through which PIT1 is involved in pathogenesis. 
Gonadotrophs are part of the SF1-lineage of PitNETs; SF1 
transcription in part relies on the binding of estrogen-to-estrogen 
receptor alpha, which mediates chromatin remodeling of the SF1 
locus (24).

Invasive PitNETs have significant differences in their 
transcriptional profiles compared to noninvasive tumors, including 
differentially expressed genes related to the Nuclear Factor-kappa B 
(NF-κB) and antitumoral immune response (25, 26). Invasive 
prolactinomas exhibited significantly different transcriptional profiles 
compared to noninvasive prolactinomas (27). Compared to 
noninvasive corticotrophs, invasive corticotroph tumors exhibit 
upregulation of cyclin D2 (CCND2) and zinc finger protein 676 
(ZNF676) and downregulation of death-associated protein kinase 1 
(DAPK1) and tissue inhibitor of metalloproteinase 2 (TIMP2) (28). 
Additionally, in corticotroph tumors, RNA-sequencing showed a 
decrease in RNA expression of secreted frizzled-related protein 2 
(SFRP2), which may promote tumorigenesis by upregulating Wnt 

TABLE 1  Known biomarkers prognostic/therapeutic utility.

Biomarker Subtype(s) Alteration type Functional role Prognostic 
relevance

Therapeutic 
significance

GNAS Somatotroph Activating mutation
↑ cAMP signaling → GH 

hypersecretion

Smaller, less invasive 

tumors

Somatostatin analog 

sensitivity

USP8 Corticotroph
Gain-of-function 

mutation

↑ EGFR stability → ↑ 

ACTH secretion

Less aggressive, lower 

recurrence

EGFR inhibitors 

(experimental)

SF3B1 Lactotroph Spliceosome mutation Aberrant mRNA splicing
Potentially linked to 

aggressiveness
Still being investigated

HMGA2 Lactotroph
Overexpression/

epigenetic activation
Chromatin remodeling

Associated with 

invasiveness

HDAC inhibitors 

(preclinical)

TERT methylation Multiple Promoter methylation Telomerase activation
Conflicting; may indicate 

poor prognosis
Still being investigated

ID2 Corticotroph, Lactotroph Protein overexpression EMT regulation Linked to invasiveness
Potential EMT targeting 

(preclinical)
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signaling (29). The transcriptional profile of lactotroph tumors showed 
activation of estrogen receptor signaling, oxidative phosphorylation 
signaling, and eukaryotic translation initiation factor (EIF) signaling. 
Network analysis of upstream regulators determined that potential 
pathogenic drivers may include early growth response 1 (EGR1), 
protein kinase cAMP-activated catalytic subunit Alpha (PRKACA), 
paired like homeodomain 2 (PITX2), cAMP responsive element 
binding protein 1 (CREB1), and Jun D (JUND) proto-oncogene, an 
AP-1 transcription factor subunit (30).

In addition to evaluating specific genes, pathways, and PitNET 
types, transcriptomic data has been used to cluster PitNETs based on 
molecular subtype. Consensus clustering of transcriptomic data from 
117 PitNETs of all hormonal subtypes revealed three molecular 
subtypes of tumors defined by biological processes: Group I  – 
signaling pathways, Group II – metabolic processes, and Group III – 
immune responses. Each group had different immune profiles, and 
Group III had the worst prognosis even though these tumors were 
smaller (31). Future investigation of the role of non-coding, long 
non-coding, micro, and circulating RNAs in PitNET biology 
represents a new frontier for transcriptional profiling of PitNETs (32).

Single cell RNA sequencing (scRNA-seq) has also been used to 
investigate biological pathways related to invasive PitNETs. Previous 
work has shown that silent corticotroph PitNETs have been associated 
with an invasive phenotype; scRNA-seq revealed that these tumors 
express epithelial to mesenchymal transition genes, which may 
be driving tumor invasion (20). scRNA-seq has also been utilized to 
more robustly identify the heterogeneous biology of PitNETs. For 
example, when analyzing tumor cells from PIT1-lineage tumors, 
expression of hormone-encoding genes represented the majority of 
variation between tumors. There were four major clusters of non-PIT-1 
tumor cells, and of the three clusters with majority TPIT-lineage 
tumor cells, one had significantly elevated Granzyme K (GZMK) 
expression, suggesting a possible novel subtype of corticotroph tumor. 
The fourth cluster of non-PIT-1 tumor cells was predominantly 
composed of SF-1 lineage cells with overexpression of follicle 
stimulating hormone subunit beta (FSHB). Additionally, within the 
tumor microenvironment, two distinct tumor-associated macrophage 
(TAM) clusters were enriched in PitNETs, one with pro-inflammatory 
M1 features and the other with immunosuppressive M2 marker 
upregulation (SPP1, TREM2, and CX3CR1). This finding suggests that 
depletion of TAMs or macrophage repolarization may 
be therapeutically relevant in PitNET treatment. In addition, stress 
response pathways were upregulated in T cells, suggesting functional 
exhaustion. This finding suggests that certain PitNET subtypes may 
be responsive to immune checkpoint blockade and other relevant 
tumor microenvironment modulating therapies (33).

Through the integration of scRNA-seq and single cell genomic 
sequencing, transcriptional profiles of normal endocrine cells 
(gonadotrophs, somatotrophs, and lactotrophs) to cognate tumor cells 
revealed several tumor-related genes such as adhesion molecule with 
Ig like domain 2 (AMIGO2), zinc finger protein 36 (ZFP36), BTG anti-
proliferation factor 1 (BTG1), and disks large MAGUK scaffold 
protein 5 (DLG5) (34). Although 62% of tumors harbored CNAs, 
there was no significant intratumoral CNA heterogeneity (34). 
Although single cell molecular analyses have been utilized extensively 
to reveal the underlying biology and microenvironment of several 
cancer types and central nervous system tumors, there are only a few 
robust studies analyzing PitNETs at a single cell resolution. Further 

work in this area will likely lead to a more sophisticated understanding 
of PitNET tumorigenesis, especially with regard to differences between 
hormonal subtypes, tumor microenvironment, the immune landscape, 
and molecular drivers.

Epigenetic profiling

While genomic mutations in PitNETs are relatively uncommon, 
epigenetic dysregulation influencing gene expression, hormonal 
activity, and tumor behavior has emerged as a critical mechanism of 
PitNET pathogenesis (35). Epigenetic changes—such as in DNA 
methylation, histone modifications, and chromatin remodeling—are 
key modulators of transcriptional activity and cellular identity in both 
normal pituitary cells and tumors (35). Indeed, the activity of lineage-
specific transcription factors such as PIT1, SF1, and TPIT is modulated 
by epigenetic marks, and clustering of PitNETs profiled by methylation 
array separated tumors by TF lineage (36).

Many studies have reported epigenetic changes in numerous 
genes associated with cell growth, cell signaling, and cell cycle 
signaling, including cyclin dependent kinase 1 (CDK1), cyclin 
dependent kinase inhibitor 1B (CDKN1B), cyclin dependent kinase 
inhibitor 2A (CDKN2A), cyclin dependent kinase inhibitor 2C 
(CDKN2C), growth arrest and DNA damage inducible gamma 
(GADD45G), Ras association domain family member 1 (RASSF1A), 
Ras association domain family member 3 (RASSF3), DAPK, pituitary 
tumor transforming gene 1 (PTTG1), maternally expressed 3 (MEG3), 
and fibroblast growth factor receptor 2 (FGFR2) (37–51). More 
aggressive PitNETs, defined by larger size and invasiveness, have been 
associated with the overexpression of DNA methyltransferases 1/3A 
(DNMT1/3A) and promoter hypermethylation of tumor suppressor 
genes (52). The first genome-wide methylation analysis of PitNETs in 
2012 identified differentially methylated genes in nonfunctioning, 
GH-, and PRL-secreting PitNETs. Specifically, HHIP like 1 (HHIPL1) 
and transcription factor AP-2 epsilon (TFAP2E) were hypermethylated 
in nonfunctioning tumors (53). Multiple studies have shown that 
these nonfunctional tumors have global hypermethylation compared 
to hormonally active tumors (53–55). However, invasive 
nonfunctioning tumors have more hypomethylated cytosine-
phosphate guanine (CpGs) sites compared to noninvasive 
nonfunctioning tumors (54), reminiscent of the global 
hypomethylation observed in many cancers (56). Biological 
pathways that were differentially methylated between invasive and 
noninvasive PitNETs included homophilic cell adhesion, 
cell–cell adhesion, and biological adhesion. The Polypeptide 
N-acetylgalactosaminyltransferase 9 (GALNT9) promoter was also 
found to be methylated with corresponding decreased RNA expression 
in invasive tumors, making GALNT9 expression a potential 
therapeutic target (55).

Although telomerase reverse transcriptase (TERT) promoter 
mutation is a marker of aggressiveness in numerous cancers and 
central nervous system tumors, the role of TERT promoter alterations 
such as methylation has been debated in PitNETs. In 2018, a study 
with 101 patients found no relationship between TERT promoter 
mutation or methylation and outcomes in patients with PitNETs (57). 
However, in a 2019 study analyzing 70 patients, TERT promoter 
methylation was associated with disease progression and shorter 
progression free survival (58, 59). Other common epigenetic 
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biomarkers in brain tumors such as glioma include 
O6-methylguanine-DNA methyltransferase (MGMT) promoter 
methylation, which is related to response to temozolomide (TMZ) 
therapy. In contrast, in PitNETs the relationship between MGMT 
methylation status and prognosis or response to TMZ remains 
controversial (60–63).

Despite the ongoing debate surrounding prognostic epigenetic 
biomarkers like MGMT in PitNETs, the broader role of the epigenetic 
machinery itself presents a compelling target for therapeutic 
intervention. Importantly, DNA methyltransferase (DNMT) inhibitors 
and histone deacetylase (HDAC) inhibitors have demonstrated 
efficacy in other central nervous system tumors like glioblastoma and 
may be clinically relevant for the treatment of aggressive PitNETs (64, 
65). While not yet clinically validated in PitNETs, DNMT and HDAC 
inhibitor therapies could be particularly beneficial when conventional 
therapies fail. Preclinical PitNET models will be  essential in 
determinng whether modulation of the epigenetic landscape can 
suppress tumor proliferation, reduce hormonal hypersecretion, or 
enhance sensitivity to standard treatments such as temozolomide. As 
we  further study PitNET epigenetics, targeted manipulation of 
regulators such as DNMTs and HDACs may emerge as a viable 
therapeutic strategy within a precision medicine framework.

Proteomic analysis

Proteomic analysis provides a direct readout of the functional 
state of cells by quantifying proteins and their post-translational 
modifications. In PitNETs, proteomic analyses offer unique insights 
into tumor activity, cellular heterogeneity, and treatment response.

Advanced mass spectrometry (MS)-based techniques, including 
tandem MS and data-independent acquisition (DIA), have enabled 
high-throughput profiling of PitNET proteomes and post-translational 
modifications. MS analysis reveals that nonfunctioning PitNETs have 
2,000–6,000 differentially expressed proteins compared to normal 
pituitary glands (66, 67). Proteomic methods have also been used to 
identify the role of phosphorylation of proteins in nonfunctioning 
PitNETs. For example, phosphorylation of β-catenin at Serine552 is 
associated with aggressive disease characterized by invasion and 
recurrence (68). Meanwhile, comparison of nonfunctioning tumors 
to normal pituitary glands revealed 595 differentially phosphorylated 
proteins associated with biological pathways such as the spliceosome 
pathway, RNA transport pathway, and proteoglycans in cancer (69). 
Ubiquitination is another post-translational modification that has 
been investigated in PitNET biology. Ubiquitinated proteins in 
PitNETs were most involved in biological pathways such as the 
Phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, 
Hippo (Hpo) pathway, ribosome signaling pathway, and nucleotide 
excision repair (70).

Alterations of specific protein abundances and functions have 
been investigated to identify their role in tumorigenesis in PitNETs. 
For example, hematopoietic cell signal transducer 1 (Hint1) is a 
protein marker that was found to have high expression in invasive 
PitNETs, especially those that expressed vascular endothelial growth 
factor (VEGF) and fetal liver kinase 1 (Flk1) (71). Invasive tumors 
were also found to have higher expression of cluster of differentiation 
206 (CD206), a M2-macrophage marker, compared to noninvasive 
tumors based on immunohistochemical staining (72). Several protein 

components of the Notch pathway were altered in prolactinomas, in 
addition to increased expression of PIT1 and survival factor 
phosphoprotein associated with glycosphingolipid-enriched 
microdomains 1 (PAG1) and decreased expression of E-cadherin and 
N-cadherin (73).

Nitroproteomics is a subfield of proteomics that specifically 
studies nitropeptides and nitroproteins, which are often markers of 
oxidative damage and can be associated with tumorigenesis. In studies 
investigating nitroproteins in PitNETs, several nitroproteins and other 
proteins that interact with nitroproteins in nonfunctioning PitNETs 
were discovered using a nitrotyrosine affinity column (NTAC) (74, 
75). Analysis of nitroproteins is important since identification of post-
translational modifications such as nitrosylation may suggest potential 
new avenues for targeted therapy (76). Further work to identify the 
extent of the role of nitroproteomics in PitNET biology and 
tumorigenesis is warranted.

Metabolomics

Metabolomics—the comprehensive profiling of small-molecule 
metabolites in biological samples—provides a dynamic snapshot of 
cellular metabolism and its interaction with the tumor 
microenvironment. In PitNETs, metabolomic analysis has begun to 
uncover metabolic adaptations associated with hormone synthesis, 
tumor growth, and treatment resistance (77). Metabolomic methods 
such as matrix-assisted laser desorption/ionization (MALDI) mass 
spectrometry imaging have been used to confirm excess hormone 
production and classify PitNETs within 30 min (78). In patients with 
Cushing’s disease, biomarkers such as pyridoxate, deoxycholic acid, 
and 3-methyladipate were altered in plasma samples (79). Urine 
metabolites were analyzed using gas chromatography mass 
spectrometry system in prolactinoma patients, which showed an 
elevation of urinary 17-ketosteroids and all estrogen metabolite 
concentrations, as well as the ratios of delta 5/delta 4-steroids and 5 
beta/5 alpha- hydrogensteroids (80). These findings have implications 
for understanding tumor biology, the systemic effect of disease, and 
identification of measurable biomarkers. For instance, PitNETs are 
defined by a distinct metabolic profile with higher succinic and lactic 
acid (72). These finding suggest possible mechanisms of disease 
development and progression as well as identification of biomarkers 
for diagnosis and targeted therapy. Although still an emerging field in 
pituitary tumor research, metabolomics holds significant promise for 
identifying biomarkers and therapeutic vulnerabilities, particularly in 
combination with other -omic methods.

Integrative Multiomic analysis

The advent of high-throughput -omics technologies has 
revolutionized our understanding of PitNETs, enabling 
comprehensive analyses at multiple molecular levels. These 
technologies each offer distinct advantages and limitations in terms 
of resolution, sensititivty, sample input, cost, and use-case. Table 2 
provides a comparative overview of commonly used technologies 
across omics layers in an effort highlight pragmatic and 
methodological constraints across PitNET research. Integrative 
-omic analysis provides a holistic view of the molecular landscape 
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of PitNETs, facilitates identification of biomarkers, elucidates 
complex regulatory networks, and uncovers potential therapeutic 
targets. Recent studies have demonstrated that such integrative 
analyses can reveal distinct molecular subtypes of PitNETs, 
improve correlations between molecular profiles and clinical 
outcomes, and provide insights into tumorigenesis and progression 
(Figure 2).

As Table 3 summarizes, each PitNET subtype is characterized by 
distinct molecular features across genomic, transcriptomic, 
epigenomic, proteomic, and metabolomic layers. Despite their 
differences, these multiomic signatures converge on shared biological 
pathways across subtype. For instance, somatotroph tumors exhibit 
GNAS mutations, PIT1-driven transcription, and enrichment of 
proteins in PI3K/AKT signaling, which collectively support growth 
hormone hypersecretion via cAMP signaling and metabolic 
reprogramming (81). Corticotroph tumors exhibit USP8 mutations, 
upregulation of proopiomelanocortin (POMC), transcriptomic 
changes in Wnt regulators like SFRP2, and proteomic changes in 
Galectin-3 and ID2, linking chromatin remodeling and epithelial-to-
mesenchymal (EMT) transition with sustained ACTH hypersecretion 
(82–84). Finally, lactotroph tumors with FIPA or SF3B1 mutations and 
estrogen receptor activation display epigenetic change (HMGA 
regulation via chromatin architecture) and proteomic shifts in 
Galectin-3, HADH1, and ID2, linking genetic mutations and estrogen 
signaling to altered tumor epigenetics and protein expression patterns 
that drive tumor aggressiveness and treatment resistance (85, 86). 
These convergences evidently highlight shared mechanisms such as 
hormone hypersecretion, chromatin remodeling, biological pathway 
activation, and metabolic rewiring across tumor types, underscoring 
the translational value of integrative multiomic analysis in PitNET 
research. Additional molecular studies across different subtypes 

remain necessary, as certain subtypes such as Gonadotroph PitNETs 
lack any published molecular data (87).

Although genomic profiling suggests infrequent rates of somatic 
mutations in PitNETs, CNAs are common among all TF-lineage 
subtypes. Integrating analysis of methylation and transcriptional data 
suggests that hypomethylation of promoter regions is associated with 
increased RNA expression of GH1 and Somatostatin Receptor subtype 
5 (SSTR5) in GH-secreting PitNETs and POMC in ACTH-secreting 
PitNETs (88). In a 2020 multi-omic study, three molecular classes of 
PitNETs were identified by integrating somatic mutations, 
chromosomal alterations, and profiling of the miRNAome, 
methylome, and transcriptome (89). This classification scheme 
clustered PitNETs similar to the classification based on TF lineage. 
Prognostic analysis identified that USP8 wildtype (WT) compared to 
USP8 mutant corticotroph PitNETs were more aggressive with 
invasive properties (89). The transcriptome of these invasive 
corticotrophs was enriched for genes associated with epithelial-
mesenchymal-transition, consistent with their invasive clinical 
behavior (89). Gene ontology analysis in a transcriptomic and 
proteomic integrated analysis of GNAS mutant vs. wildtype 
somatotrophs suggested that GNAS mutations may impact endocrine 
features through induction of G protein-coupled receptor (GPCR) 
pathways. Higher protein expression of WW and C2 domain-
containing protein-3 (WWC3), serine incorporator 1 (SERINC1), and 
zinc finger AN1-type containing 3 (ZFAND3) was correlated with 
increased tumor volume after somatostatin analog treatment (90). 
Recurrence as a clinical marker of aggressive disease has also been 
investigated utilizing multiomic methodologies. A robust longitudinal 
study of primary and recurrent PitNETs from the same patient 
determined primary and recurrent PitNETs to have similar genomic 
profiles but divergent transcriptomic profiles (91). Interestingly, 

TABLE 2  Omics technology comparison table.

Omics layer Technology Resolution Noise/
Artifacts

Sample 
input

Cost Use case in 
PitNETs

Genomics Whole-Exome 

Sequencing (WES)

Coding regions only Misses non-coding 

mutations

Low (DNA only) Lower Detects recurrent 

mutations (e.g., 

GNAS, USP8)

Whole-Genome 

Sequencing (WGS)

Genome-wide Higher data volume; 

difficult to interpret

Moderate to high High Detects CNAs, 

structural variants, 

non-coding mutations

Transcriptomics Bulk RNA-seq Average expression 

across all cells

Cell-type 

heterogeneity 

obscured

Moderate (bulk 

RNA)

Moderate Captures bulk 

transcriptional 

signatures and TF 

expression

Single-cell RNA-seq Cell-level resolution High dropout rate, 

technical variability

High quality single 

cells

High Uncovers 

heterogeneity, 

subclonal expression, 

TME profiles

Epigenomics Methylation Profiling CpG-rich regions Biased methylome 

coverage

Low (DNA) Low to moderate Differentiates TF-

defined subtypes; 

correlates with RNA 

expression

Proteomics Mass Spec based 

Proteomics

Protein-level, post 

translational

Stochastic sampling, 

high data volume

Moderate Moderate to 

high

Identifies differentially 

expressed proteins 

and PTMs

112

https://doi.org/10.3389/fmed.2025.1629621
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Pugazenthi et al.� 10.3389/fmed.2025.1629621

Frontiers in Medicine 07 frontiersin.org

several metabolic pathways that were differentially expressed among 
primary and recurrent tumors based on transcriptional data did not 
seem to be  regulated by methylation, raising the possibility of 
alternative regulatory mechanisms that warrant further 
investigation (91).

Multiomic analyses have also incorporated both proteomic and 
transcriptomic data to further understand PitNET biology. For 
example, nonfunctioning PitNETs had almost 300 differentially 
expressed genes and 50 differentially expressed proteins compared to 
controls including secreted frizzled-related protein 1 (SFRP1), 
transducin like enhancer of split 2 (TLE2), PITX2, Notch receptor 3 
(NOTCH3), and delta like non-canonical Notch ligand 1 (DLK1) (92). 
These findings suggest potential critical molecular pathways 
implicated in this tumor type such as the Wnt and Notch pathways. 
Integrative proteomic and transcriptomic analysis has also been used 
to analyze metastatic PitNETs, which led to the identification of 
almost 5,000 differentially expressed genes, and the downregulation 
of beta-galactoside binding protein galactin-3. Other genes that may 
play important roles in metastatic PitNETs include lectin, galactoside-
binding, soluble, 3 (LGALS3), achaete-scute family bHLH 
transcription factor 1 (ASCL1), ID2, and transducin like enhancer of 
split 4 (TLE4) (93). Lastly, transcriptomic and proteomic analysis of 
prolactinomas compared to normal pituitary glands identified a 
unique transcriptomic and proteomic profile. Notably, several 

components of the Notch pathway were altered in prolactinomas, 
along with increased expression of survival factor BCL2 associated 
athanogene 1 (BAG1) and decreased expression of E-cadherin and 
N-cadherin (73).

Metabolomics has been used alongside other -omic methods such 
as proteomics and lipidomics to delve further into the mechanisms of 
PitNET pathogenesis. In ACTH-secreting PitNETs, integrated analysis 
identified that these tumors were significantly enriched in protein-
metabolite joint pathways such as glycolysis/gluconeogenesis, 
pyruvate metabolism, citrate cycle, and fatty acid metabolism (94). 
The Myc signaling pathway was also identified to have a significant 
role in the metabolic changes and tumorigenesis of these tumors (94). 
A broader study using desorption electrospray ionization (DESI-MS) 
derived phospholipid signals that differed between gray matter, white 
matter, gliomas, meningiomas and pituitary tumors. Principal 
component analysis of lipid and metabolite profiles from this analysis 
were able to separate different tumor types: gliomas, meningiomas, 
and pituitary tumors (95).

However, while these studies underscore the value of integrative 
multiomics, they also highlight the significant computational hurdles 
in merging heterogenous omic datasets. Despite the growing number 
of multi-omic studies in PitNETs, integration and standardization 
across datasets remain computationally challenging, as omics data is 
inherently heterogenous. Several bioinformatic tools have been 

FIGURE 2

Insights derived from the application of individual and integrative multiomics analyses for PitNETs.
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developed to address these issues. Multi-omics factor analysis uses 
unsupervised latent factor modeling to identify hidden sources of 
variation across omics layers (96). Similarity network fusion 
constructs networks of samples and merges these networks effectively 
to discover subtypes (97). By contrast, iClusterPlus applies joint latent 
variable modeling to integrate multiple subtypes of genomic data for 
subtype identification (98). Unfortunately, these distinct data fusion 
techniques differ in scalability, handling of missing data, and 
interpretability. Moreover, these methods are rarely tailored to 
PitNET-specific datasets, which tend to be small and sparse.

Standardization of data in PitNET omics research faces similar 
issues. Batch effects, inconsistent normalization strategies, and 

variable bioinformatics pipelines undermine reproducibility of data. 
Transcriptomic analysis heavily relies on normalization and batch 
correction tools like ComBat or Harmony (99, 100). Proteomic and 
epigenomic analyses use quantile normalization and reference-based 
scaling to address technical variability (101). Collectively, these 
techniques’ inconsistencies can complicate downstream integration 
efforts. Hence, adhering to data frameworks such as the NIH’s 
Findable, Accessible, Interoperable, Reusable (FAIR) principles, 
standardizing pipelines, and reporting metadata in PitNET research 
would allow for increased reproducibility and comparability of data, 
facilitating the development of robust PitNET-specific computational 
pipeline that provide clinically meaningful data.

TABLE 3  Molecular features of PitNETs by hormonal expression.

Cell of origin Somatotroph Lactotroph Thyrotroph Corticotroph Gonadotroph

Hormone Growth Hormone Prolactin
Thyroid stimulating 

hormone

Adrenocorticotrophic 

hormone

Luteinizing hormone/

follicle stimulating 

hormone

Transcription Factor PIT1 PIT1 PIT1 TPIT SF1

% of all PitNETs 11 40 0.2 6 43

Molecular features

Genomics
GNAS

AIP

FIPA

SF3B1

MEN1

AIP

ASTN2

CWH43

R3HDM2

SMOX

STYL3

ZSCA23

CNAs

USP8

USP48

BRAF

TP53

Transcriptomics

Three transcriptional 

subtypes

ODC

BAG1

Activation of estrogen 

receptor, oxidative 

phosphorylation, and 

EIF signaling

SFRP2

Wnt signaling

CCND

ZN

DAPK1

TIMP2

Epigenomics
HMGA regulation via 

chromatin architecture
SLIT1

Proteomics

IL-4

PDGF

PTEN

VEGF

PI3K/AKT

FAK

Galectin-3

HASH1

ID2

Galectin-3

HASH1

ID2

Metabolomics

Urine 17-ketosteroids

Succinic acid

Lactic acid

Pyridoxate

Deoxycholic acid

3-methyladipate

Multiomics

GH1

SSTR5

GPCR pathway

ATP2A2

ARID5B

WWC3

SERINC1

ZFAND3

Notch pathway

E-cadherin

N-cadherin

Fatty acid metabolism

Nitrogen metabolism

Insulin

PPAR

HIPPO

PIP5K1B

NEK10

POMC

Glycolysis

Gluconeogenesis

Pyruvate metabolism

Citrate cycle

Fatty acid metabolism

Myc signaling
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In parallel with efforts to integrate and standardize multiomic 
workflows, artificial intelligence (AI) and machine learning (ML) 
have emerged as powerful tools for analyzing complex multi-omic 
datasets. Although still in the nascent stages of adoption in PitNET 
research, these methods are beginning to prove extremely useful. 
Several studies have already utilized AI and ML to create robust 
PitNET classifiers for risk stratification and diagnosis. Wang et al. 
used LASSO regression and Support Vector Machine Recursive 
Feature Elimination to develop a Programmed Cell Death-
associated index (PCDI) classifier that outperforms traditional 
prognostic models in identifying invasive PitNETs with a high 
degree of accuracy (102). In another study, Li et al. used radiomic 
features derived from T2-weighted MRI to construct a Gaussian 
process model capable of preoperatively predicting histological 
subtypes of PitNETs, such as prolactinoma (103). Despite these 
promising results, the translational potential of these approaches 
is limited by the paucity of PitNET datasets. Collaborative future 
modeling efforts may allow for more robust and accurate model 
construction and generalization.

Integrative multi-omics analyses have significantly advanced our 
understanding of PitNETs by revealing multiple molecular subtypes 
and the complex regulatory networks that underlie tumor behavior. 
Building upon these approaches, spatial omics technologies are 
emerging as vital tools for resolving tumor heterogeneity in its native 
context. Spatial transcriptomics and proteomics offer significant 
resolution advancement for characterizing intratumoral heterogeneity 
and tumor microenvironment architecture in PitNETs. For instance, 
spatial transcriptomics could distinguish between non-invasive and 
invasive PitNET phenotypes by localizing EMT markers. Similarly, 
spatial proteomic analysis could enable the visualization of PTMs 
throughout the invasive PitNET front. These tools have the potential 
to refine the current understanding of PitNET pathophysiology and 
support the development of spatially-informed, precision 
medicine strategies.

Translational gaps

While multiomics PitNET research has yielded invaluable 
biological insights, a significant gap remains between academic 
discovery and clinical translation. Cost and infrastructure 
requirements for generating and analyzing multi-layered omics 
data remains prohibitive, especially outside of academic centers. 
Governmental regulatory pathways for clinical grade omics 
assays are still evolving, with no PitNET omics-based biomarker 
panels still having received FDA clearance. Clinical trials for 
multiomic biomarker validation also remain rare 
and underpowered.

Conclusion

In conclusion, the integration of multi-omics technologies has 
profoundly advanced our understanding of PitNETs, offering a 
comprehensive view of their molecular landscape. By combining 
data from genomics, transcriptomics, proteomics, epigenomics, and 
metabolomics, researchers have identified distinct molecular 
subtypes, unveiled regulatory networks, and discovered novel 

biomarkers, thereby enhancing diagnostic precision and informing 
therapeutic strategies. Clinically, these integrative approaches hold 
promise for the development of personalized medicine in PitNET 
management, which is a critical need, in particular for recurrent 
tumors and tumors not cured by the current standard of care. The 
ability to correlate multiomic profiles with clinical outcomes 
facilitates more accurate prognostication and the potential for 
tailored treatment regimens. Looking forward, the continued 
evolution of computational tools and machine learning algorithms 
will be  critical in managing the complexity of multiomic data, 
enabling real-time integration and interpretation in clinical settings. 
Advancements in single-cell and spatial omics technologies are 
expected to further define tumor heterogeneity and 
microenvironmental interactions, providing deeper insights into 
PitNET pathogenesis. Collectively, these developments herald a new 
era in PitNET management, where multiomic integration becomes 
central to patient-specific diagnosis, prognosis, and therapy.
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Introduction: Although significant progress has been made in the treatment 
and research of osteoporosis patients in recent years, the genetic mechanism 
of osteoporosis has not yet been fully elucidated.
Methods: We conducted a comprehensive analysis using 16S sequencing and 
UHPLC–MS/MS metabolomics data to characterize the microbial composition 
and metabolic composition in the serum of osteoporosis patients.
Results: At the phylum level, Proteobacteria are mainly present in Osteoporosis; In 
Normal, it is mainly Bacteroidota. At the genus level, Cupriavidus is the main species 
in Osteoporosis; In Normal, the main ones are Blautia, Bacteroides, Alcaligenes 
and Pseudomonas. Serum metabolomics revealed different metabolites (230 
significantly differentially expressed metabolites) and lipid metabolism pathways 
(such as Glycerophospholipid metabolism) among the two groups. The combined 
serum microbiota and serum metabolomics datasets demonstrate a correlation 
reflecting the impact of microbiota on metabolic activity (p < 0.05).
Discussion: Our research findings indicate that microbiota and metabolomics 
analysis provide important candidate biomarkers. The correlation between these 
serum microbiota and host metabolism is of great significance for optimizing 
early diagnosis and developing personalized treatment strategies. This study 
elucidates the relationship between serum microbiota and metabolites in 
osteoporosis.

KEYWORDS

metabolomics, microbiome, serum, osteoporosis, biomarkers

1 Introduction

Osteoporosis is a common metabolic disorder, mainly characterized by reduced bone mass 
and abnormal bone tissue microstructure, decreased bone strength, increased bone fragility, 
and increased risk of fractures (1). Osteoporosis can be divided into primary osteoporosis, 
secondary osteoporosis, and other types of osteoporosis (2). The clinical manifestations of 
osteoporosis mainly include lower back pain, bone pain, spinal deformity, fractures, muscle 
weakness, fatigue, and worsening symptoms after activity. Psychological abnormalities may 
occur due to the impact of the disease on daily life, including fear, anxiety, depression, and loss 
of confidence (3). Despite the widespread use of medical therapies in the past decade, 
osteoporosis remains the leading cause of life-threatening conditions for the elderly, second 
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only to tumors and cardiovascular diseases (4). Osteoporosis is usually 
accompanied by severe bone pain, changes in bone density, and 
alterations in serum bone metabolism indicators (5) Therefore, 
identifying biomarkers of osteoporosis is of great significance for 
preventing the occurrence of osteoporosis.

Research has shown that the structure and composition of the 
microbiota in osteoporosis have undergone significant changes (6). 
Patients with low bone density have dysbiosis of the microbiota, and 
a decrease in the number of bifidobacteria and lactobacilli is associated 
with a decrease in bone density (7). Research has found that patients 
with dysbiosis but no osteoporosis have already experienced decreased 
bone density and abnormal bone metabolism, and the dysbiosis in the 
osteoporosis group is more severe, indicating that dysbiosis has 
already affected bone metabolism and bone density to some extent 
before osteoporosis occurs (8). Dysregulation of lipid metabolism 
plays an important role in the pathogenesis of osteoporosis (9, 10). In 
addition, various amino acids such as arginine, threonine, and 
tryptophan can affect bone density (11).

The changes in microbiota and metabolism may be related to the 
pathogenesis of osteoporosis (12–14), but the microbiota 
characteristics and metabolic profile of osteoporosis patients still need 
to be  determined. In this study, we  analyzed the microbiota and 
metabolic profiles of 18 osteoporosis patients and 18 healthy 
volunteers using high-throughput sequencing and non-targeted 
metabolomics. The combination of these two omics can reveal how 
microorganisms affect host metabolic processes and how metabolites 
regulate microbial growth and function by analyzing the correlation 
between microbial diversity and metabolite abundance. Based on 
multi-omics analysis, we  identified specific characteristics of the 
microbiota and host metabolite profiles associated with osteoporosis, 
and further established these relationships, revealing the relationship 
between microbiota and serum metabolite functional modules. Our 
research reveals that the integration of metabolomics and 16S rRNA 
sequencing analysis may reveal the interactions occurring between 
hosts and microbial communities.

2 Materials and methods

2.1 Study population

The 2013 Helsinki Declaration is in compliance with this study, 
which has been approved by the Ethics Committee for Life Sciences 
at Hefei First People’s Hospital. Prior to registration, written informed 
consent was provided by all participants. Among them, there were 18 
healthy volunteers (Normal group) and 18 newly diagnosed 
osteoporosis patients (Osteoporosis group). Inclusion criteria for 
participants: no previous history of cancers; Participants who signed 
the informed consent form for the study. The exclusion criteria for 
participants are as follows: cancer patients; Participants who have not 
signed the informed consent form; patients had been treated with 
antibiotics in the past 6 months (15).

2.2 Sample collection and preparation

The collection of fasting blood from 36 participants was conducted 
during clinical examinations. Blood samples were collected from 

blood vessels using serum separation gel containing coagulants. After 
standing at room temperature for 60 min to coagulate, they were 
centrifuged at 3000 rpm for 10 min at 4 °C. 250 μL of supernatant was 
collected and divided into numbered and suitable 2 mL centrifuge 
tubes. After the samples are processed, they should be stored in a 
– 80 °C freezer to avoid repeated freezing and thawing of the collected 
samples (16).

2.3 DNA extraction and 16S rDNA 
sequencing

The genomic DNA of the sample was extracted by CTAB or SDS 
method and then the purity and concentration of DNA were detected by 
agarose gel electrophoresis. An appropriate amount of sample DNA was 
taken into a centrifuge tube, and the sample was diluted to 1 ng/μl with 
sterile water. Using diluted genomic DNA as a template and selecting 
sequencing regions, specific primers with barcode are used, corresponding 
to the following regions: 16S V3-V4(341F(CCTA 
YGGGRBGCASCAG) and 806R(GGACTACNNGGGTATCTAAT)). 
After mixing and purifying the PCR products, TruSeq was used ® The 
DNA PCR Free Sample Preparation Kit was used to construct a library. 
The constructed library was quantified using Qubit and Q-PCR, and after 
passing the test, it was sequenced using NovaSeq6000 (17).

2.4 Non-targeted metabolomics

The sample stored at −80 °C refrigerator was thawed on ice and 
vortexed for 10 s. 50 μL of sample and 300 μL of extraction solution 
(ACN: Methanol = 1:4, V/V) containing internal standards were 
added into a 2 mL microcentrifugetube. The sample was vortexed for 
3 min and then centrifuged at 12000 rpm for 10 min (4 °C). 200 μL of 
the supernatant was collected and placed in −20 °C for 30 min, and 
then centrifuged at 12000 rpm for 3 min (4 °C). A 180 μL aliquots of 
supernatant were transferred for UHPLC (Vanquish, Thermo 
Scientific (Massachusetts, USA))-MS (Q Exactive HF-X, Thermo 
Scientific (Massachusetts, USA)) analysis. Selection of 
chromatographic columns: Waters ACQUITY Premier HSS T3 
Column 1.8 μm, 2.1 mm*100 mm; Retention Time = 6.0 min. The 
ionization mode is electric spray ionization (ESI). All samples were for 
two ionization modes (ESI+, ESI-). During the detection process of 
metabolomics technology, quality control (QC) samples are used for 
method validation to ensure the stability of the entire analysis system. 
QC samples are obtained by mixing 100 μL of each sample. To reduce 
errors, sample testing is conducted randomly. Before analyzing the 
sample, run the QC sample 5 times to balance the system. During the 
sample testing process, run QC samples once every 3 normal samples 
to measure the stability of the system (18).

The raw data of the mass spectrometer was converted into 
mzXML format by ProteoWizard, and the XCMS program was used 
to extract and align the overall ion peaks of each substance to obtain 
the primary spectrum of metabolic ions. Further, the ion peaks of each 
fragment of metabolic ions were extracted to obtain the secondary 
spectrum of metabolic ions. Finally, the extracted primary and 
secondary spectra of metabolic ions were matched with the spectra of 
metabolites in online public databases, and qualitative information of 
metabolites was obtained using the metDNA method (19).
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2.5 Microbial omics research

Separate each sample data from the offline data based on the 
barcode sequence and PCR amplification primer sequence and 
remove the barcode and primer sequences. Using Fastp Filter the 
original reads to obtain high-quality reads. The filtering method is to 
automatically detect and remove the joint sequence; Remove reads 
with a base number of 1 or more; Remove reads with low-quality bases 
(mass value<15) accounting for more than 40%; Deletion with an 
average mass of less than 20 within the 4 base window interval; 
Remove the polyG at the end; Delete reads with a length less than 
150 bp. High quality dual end reads are concatenated using FLASH to 
obtain high-quality Tag data. The tag sequence is compared with the 
species annotation database using vsearch (v2.22.1) to detect chimeric 
sequences, and finally the chimeric sequences are removed to obtain 
the final valid data. Calculate alpha diversity and beta diversity 
analysis using the phylosseq and vegan packages of R software. 
p < 0.05 was considered to have significant. Perform LEfSe analysis on 
phylum and genera using R software. Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States 2 (PICRUSt2) 
were utilized to perform functional predication of the gut microbiota. 
Furthermore, Pathways that were significantly different between the 
Normal group and Osteoporosis group were identified by t-test. 
p < 0.05 was considered to have significant (20).

2.6 Metabolomics research

Perform principal component analysis (PCA) on metabolomic 
data using R software to outline the inherent similarities/dissimilarities 
within the dataset. Perform orthogonal partial least squares 
discriminant analysis (OPLS-DA) using qualitative orthogonal 
projection of metabolomic data onto latent structures and evaluate the 
quality of the model through model parameters such as Q2, which 
represents the predictability of the model, and R2, which represents 
the goodness of the model fit. The 7-fold cross validation method, 
CV-ANOVA, and permutation test (permutation number = 200) are 
used to evaluate the predictive performance of the model. The variable 
importance (VIP) value in the prediction reflects the importance of 
the terms in the model relative to Y (all responses) and relative to X 
(prediction). Finally, fold change (FC) and significant p-value 
calculations were performed, and metabolites with VIP > 1 and 
p < 0.05 were considered to have significant differences between 
groups. Based on the KEGG pathway, it is determined whether 
differential metabolites are significantly enriched in the KEGG 
metabolic pathway. The significantly enriched metabolic pathways 
indicate their significant importance in the biological processes 
studied, p < 0.05 was considered to have significant (21).

2.7 Omics association analysis

Further understand the pathogenesis of osteoporosis patients 
through multi-omics association analysis. Spearman rank correlation 
analysis uses Spearman correlation coefficient as an indicator to 
describe the correlation between two populations and uses rank 
correlation test to determine whether there is a statistically significant 
correlation between the two populations. The range of Spearman 

correlation coefficient [−1, 1], positive values indicating positive 
correlation and negative values indicating negative correlation. The 
correlation analysis was calculated using the cor function of R 
software, and the significance test of the correlation was calculated 
using the corPvalueStudent function of the WGCNA package in R 
software. The input differential metabolites (VIP > 1 and p < 0.05) are 
sorted in descending order of VIP, and the metabolites with the 
highest ranking are selected. Microorganisms are sorted in descending 
order based on the sum of relative quantitative values in all samples 
(22). Metabolites are fixed in the top 50, while microorganisms are 
assumed to be in the top 30. p < 0.05 is considered significant.

3 Results

3.1 Estimation of sequencing depth

The 16S rDNA sequencing of 36 samples was based on the 
NovaSeq6000 sequencing platform. Each sample’s Raw Tags are 
greater than 50,000 reads. Based on noise reduction methods, a total 
of 1889 microorganisms were obtained (Supplementary Figure S1). 
The dilution curve shows that the curves of each sample have reached 
the plateau stage, indicating that the sequencing data volume is 
reasonable (Supplementary Figure S2A). The ranking richness curve 
reflects that the richness and evenness of each sample are high 
(Supplementary Figure S2B). The species accumulation box plot 
shows that as the sample size increases, species diversity gradually 
increases, and when the sample size reaches 36, the curve tends to 
flatten (Supplementary Figure S2C).

3.2 Alpha-diversity

Alpha diversity is used to analyze the diversity of microbial 
communities within a group. The evaluation of Shannon and Simpson 
showed significant changes in alpha diversity in osteoporosis group 
compared to Normal group (p < 0.05) (Figures  1A,B). *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001.

3.3 Beta-diversity

β-diversity is a comparative analysis of the composition of 
different microbial communities. PCA based on Euclidean distance 
can extract two axes that maximize the differences between 
samples, thereby reflecting the differences in multidimensional data 
on a two-dimensional coordinate graph (Figure 2A). The β-diversity 
index analyzed by Wilcox test showed significant differences 
between the Normal group and the osteoporosis group (p < 0.05) 
(Figure 2B). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

3.4 Distribution of classification 
composition of microbial communities in 
patients

LEfSe is an analytical tool used to discover and interpret 
biomarkers in high-dimensional data, which can be  used to 
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compare two groups and find biomarkers with statistical differences 
between groups. As shown in Figures 3A,B, at the phylum level, 
Proteobacteria are mainly present in Osteoporosis; In Normal 

group, it is mainly Bacteroidota. At the genus level, Cupriavidus is 
the main species in Osteoporosis group; In Normal group, the 
main ones are Blautia, Bacteroides, Alcaligenes and Pseudomonas.

FIGURE 1

Differences in microbial community diversity between Osteoporosis group and Normal group. The evaluation of Shannon and Simpson showed 
significant changes in alpha diversity in osteoporosis group compared to Normal group (Normal) (A,B). p < 0.05 is considered significant. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001.

FIGURE 2

Differences in microbial community composition between Osteoporosis group and Normal group. PCA based on Euclidean distance can extract two 
axes that maximize the differences between samples, thereby reflecting the differences in multidimensional data on a two-dimensional coordinate 
graph (A). The β-diversity index analyzed by Wilcox test showed significant differences between the Osteoporosis group and Normal group (B). 
p < 0.05 is considered significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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3.5 PICRUSt2 predicts the functionality of 
the microbiome

The PICRUSt2 program predicts the functions of two groups 
(Osteoporosis group and Normal group) of microorganisms. At level 
1, microorganisms within the osteoporosis group are involved in 
the Human Diseases and Cellular Processes (p < 0.05) 
(Supplementary Figure S3A). At level 2, microorganisms within the 
osteoporosis group are involved in the Amino acid metabolism and 
Signal transduction (p < 0.05) (Supplementary Figure S3B) 0.3.6. 
Multivariate Analysis of Metabolomics Data.

Based on mass spectrometry analysis of serum samples from 36 
participants, the total ion chromatograms (TICs) of different quality 
control (QC) serum samples were overlaid. The results showed highly 
overlapping TIC curves for the detected metabolic molecules, indicating 
strong consistency in peak intensity and retention time of metabolic 
molecules. This demonstrates excellent instrumental stability when 
analyzing the same sample at different time points 
(Supplementary Figures S4A,B). The high stability of mass spectrometry 
ensures the reliability and reproducibility of the serum metabolomics data.

Multivariate principal component analysis (PCA) of two groups 
(Osteoporosis group and Normal group) showed significant 
differences between the Normal group and the Osteoporosis group 
(Figure 4A). OPLS-DA, a supervised pattern recognition method, was 
employed to visualize and characterize overall metabolic variations 
between groups. As shown in Figure 4B, each sample is represented as 
a point in the score plot, with clear separation between groups. A 
permutation test (n = 200) was conducted to validate the OPLS-DA 
model (Supplementary Figure S5A). An S-plot was used to identify 
differential metabolites (Supplementary Figure S5B). In the S-plot, 

each point represents a variable, and those farther from the origin 
contribute more significantly to the differences between the 
Osteoporosis group and Normal group.

3.6 Identification of differential metabolites 
in serum

Potential differential metabolites were selected based on the 
VIP derived from the OPLS-DA model and univariate analysis. 
Screening criteria included VIP > 1.0 and p < 0.05. In the Normal 
group vs. Osteoporosis group, 230 endogenous metabolites with 
robust differences across the two groups were identified as 
potential biomarkers (Figure  5A). Display of the top  20 
metabolites with different multiples in group comparison 
(Supplementary Figure S6). The top three metabolites with 
significant upregulation are 4-Chloroaniline, Oleamide, and 
1-Hexadecanoyl-2-docosanoyl-glycero-3-phosphorine. The top 
three metabolites with significant downregulation are 
PC(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)), Astaxanthin, 
1,2-Dipalmitoleoyl-sn-glycero-3-phosphoethanolamine.

3.7 Identification of differential metabolic 
pathways in serum

KEGG enrichment pathway analysis identified key metabolic 
pathways involved in metabolic reactions. In Normal vs. Osteoporosis, 
the significant differences in metabolic pathways are mainly enriched 
in Glycerophospholipid metabolism, Choline metabolism in cancer, 

FIGURE 3

Screening of biomarkers with statistical differences in osteoporosis patients. LDA value distribution histogram (A). Cladogram (B).
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Linoleic acid metabolism, Arachidonic acid metabolism (p < 0.05) 
(Figure 5B).

3.8 Omics association analysis

By conducting correlation analysis between the microbiome and 
metabolome, researchers calculated Spearman correlations between 
the top ranked differential genera and the top  50 differential 
metabolites in VIP rankings. In Normal group vs. Osteoporosis group, 

at the phylum level, Proteobacteria is significantly positively correlated 
with differential metabolites (PE-NMe2(20:4(8Z,11Z,14Z,17Z)/
(16:0)), etc). At the genus level, Cupriavidus is significantly correlated 
with most of the differential metabolites among the top  50, 
Cupriavidus is significantly positively correlated with differential 
metabolites (PE-NMe2(20:4(8Z,11Z,14Z,17Z)/(16:0)), PA(22:2)
(13Z,16Z)/22:2(13Z,16Z), PE(18:0/20:4(5Z,8Z,11Z,14Z)), etc) 
among the top  50 (Supplementary Figure S7). p < 0.05 is 
considered significant. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001.

FIGURE 4

Multivariate Analysis of Metabolomics Data. Principal component analysis (PCA) (A). OPLS-DA, a supervised pattern recognition method, was employed 
to visualize and characterize overall metabolic variations between groups (B).

FIGURE 5

Metabolomics analysis is used to explore differential metabolites and biological pathways in osteoporosis patients. In the Normal vs. Osteoporosis, 230 
endogenous metabolites with robust differences across the two groups were identified as potential biomarkers (A). KEGG pathway analysis (B).
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4 Discussion

Although significant progress has been made in the treatment and 
research of osteoporosis patients in recent years (23), the genetic 
mechanism of osteoporosis has not yet been fully elucidated. 
Microorganisms have been reported to play an important role in the 
pathogenesis of osteoporosis (24). Our research shows that, at the 
phylum level, Proteobacteria are mainly present in Osteoporosis. At 
the genus level, Cupriavidus is the main species in Osteoporosis.

In osteoporosis research, it has been found that the abundance of 
Proteobacteria is negatively correlated with bone mass. When the 
number of Proteobacteria increases, bone mass may decrease, which 
may indicate that overgrowth or imbalance of Proteobacteria is related 
to the occurrence and development of osteoporosis (25). The increase 
in abundance of Proteobacteria is associated with enhanced 
inflammatory response. The release of inflammatory factors can affect 
the activity of osteoclasts and osteoblasts, promote bone resorption, 
inhibit bone formation and lead to bone loss and osteoporosis (26).

According to reports, Cupriavidus is associated with diseases (27). 
Cupriavidus is enriched in patients with high inflammatory response 
colon cancer (28). Cupriavidus is enriched in patients with duodenal 
bulb inflammation (29). In immune thrombocytopenia patients, 
Cupriavidus is positively correlated with lipid molecules (30). When 
the level of lipid molecules increases, lipid oxidation and accumulation 
occur in the bone. Oxidized lipids can inhibit osteoblast formation, 
induce osteoclast differentiation, and promote bone resorption. In 
addition, oxidized lipids can induce inflammatory reactions, produce 
cytokines (such as IL-6, TNF-α, etc.), further activate osteoclasts, lead 
to increased bone resorption, and inhibit osteoblast differentiation 
(10, 31). Our research found that Cupriavidus is associated with lipid 
molecules, and Cupriavidus may regulate the inflammatory response 
of osteoporosis patients through lipid molecules. However, the specific 
mechanism needs to be  elucidated in further experiments. The 
differences in microbial community classification and composition 
demonstrated in the study provide a theoretical basis for future 
research that may improve osteoporosis patients.

Non-targeted metabolomics is a quantitative analysis of all 
endogenous metabolites in an organism, following the research ideas of 
proteomics and genomics. Metabolites help explain the mechanisms of 
disease occurrence and development (32). Non-targeted metabolomics 
analysis based on serum has been applied to identify biomarkers for 
early disease detection and treatment efficacy prediction, and to explore 
the pathological mechanisms of diseases in depth (33). In this study, 
we reported the metabolic profile differences between the Osteoporosis 
group and Normal group, and conducted multivariate analysis to 
elucidate the differences among the two groups. The results showed 
significant changes in the expression levels of metabolites in the two 
groups and identified the metabolic pathway with significant changes: 
Glycerophospholipid metabolism. Glycerophospholipid metabolism has 
been reported to be associated with the pathogenesis of many diseases 
(34). Glycerophospholipid metabolism metabolism is involved in energy 
metabolism regulation (35). The process of bone remodeling requires a 
large amount of energy, and abnormal energy metabolism can affect the 
activity of osteoblasts and osteoclasts, leading to osteoporosis (36). The 
oxidation of Glycerophospholipid metabolism can produce reactive 
oxygen species, triggering oxidative stress (37). During oxidative stress, 
a large amount of reactive oxygen species (ROS) are generated within 

cells. ROS can directly activate the nuclear factor kappa B (NF-κB) 
inflammatory signaling pathway. NF-κB is activated and enters the 
nucleus, promoting gene transcription of inflammatory factors such as 
tumor necrosis factor - α and interleukin-6, increasing their expression 
and release (38). Inflammatory cytokines such as interleukin-6 and 
tumor necrosis factor-α can promote osteoclast activity, inhibit 
osteoblast function, and lead to increased bone resorption and decreased 
bone formation (39). These studies may help to better understand the 
potential pathogenesis of osteoporosis patients and provide metabolic 
evidence for further research on osteoporosis patients.

The comprehensive analysis of the microbiome and non-targeted 
metabolome of diseased individuals has preliminarily revealed the 
correlation between differential microorganisms and differential 
metabolites, and indicated the main lipid metabolism pathways. Our 
multi-omics studies have demonstrated the correlation between 
differential bacterial genera and metabolites. Although the causes of 
these differentially expressed metabolites may come from changes in 
microbial community structure, they may also be related to the lipid 
metabolism homeostasis caused by the host microbial community 
(40). More and more evidence suggests that the metabolic products 
and structural components of microorganisms may promote the 
pathogenesis of osteoporosis (24). Our study provides aevidence for a 
deeper understanding of the mechanisms underlying osteoporosis, but 
significant limitations still exist. The sample size of this study is 
relatively small, a small sample size may lead to a decrease in the 
effectiveness of statistical testing, making it difficult to detect real 
differences or relationships. Insufficient sample size may lead to 
increased uncertainty in external validity, making it difficult to validate 
research results in other contexts, and future research with increased 
sample size is needed to further elucidate the roles of identified factors, 
lipids, and metabolic pathways in osteoporosis. In the future, targeted 
metabolomics and animal experiments will be used to conduct more 
in-depth mechanistic studies. In addition, due to the possibility of 
confounding variables (including age, race, diet, body mass index, and 
new drug intake), external validation queues will be needed in the 
future to validate the current research results.

5 Conclusion

In summary, there are differences in the relative abundance and 
structural composition of the microbiota in osteoporosis patients 
compared to Normal group. Understanding the role of microbiota 
may be  helpful in disease mechanism understanding and the 
identification of biomarkers for diagnosis. Current metabolomics 
studies have shown identifiable differences in metabolites and lipid 
metabolism pathways between Osteoporosis group and Normal 
group. The identified metabolites contribute to the understanding of 
the pathophysiology of osteoporosis patients. Due to the heterogeneity 
and complexity of diseases, and with the rapid advancement of various 
detection technologies, treatment options for diseases have evolved 
from single target therapy to multi-target therapy. A comprehensive 
approach (microbiome and Non-targeted metabolomics) can provide 
multidimensional therapeutic targets for personalized treatment of 
osteoporosis. However, due to the limitations of the research, the next 
step requires larger external validation cohorts and an interventional 
study to confirm the relationships detected and potential biomarkers, 
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providing more reliable therapeutic targets for personalized treatment 
of osteoporosis patients.
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GETgene-AI: a framework for
prioritizing actionable cancer
drug targets
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Prioritizing actionable drug targets is a critical challenge in cancer research,
where high-dimensional genomic data and the complexity of tumor biology
often hinder effective prioritization. To address this, we developed GETgene-AI, a
novel computational framework that integrates network-based prioritization,
machine learning, and automated literature analysis to prioritize and rank
potential therapeutic targets. Central to GETgene-AI is the G.E.T. strategy,
which combines three data streams: mutational frequency (G List), differential
expression (E List), and known drug targets (T List). These components are
iteratively refined and ranked using the Biological Entity Expansion and
Ranking Engine (BEERE), leveraging protein-protein interaction networks,
functional annotations, and experimental evidence. Additionally, GETgene-AI
incorporates GPT-4o, an advanced large language model, to automate
literature-based ranking, reducing manual curation and increasing efficiency.
In this study, we applied GETgene-AI to pancreatic cancer as a case study. The
framework successfully prioritized high-priority targets such as PIK3CA and
PRKCA, validated through experimental evidence and clinical relevance.
Benchmarking against GEO2R and STRING demonstrated GETgene-AI’s
superior performance, achieving higher precision, recall, and efficiency in
prioritizing actionable targets. Moreover, the framework mitigated false
positives by deprioritizing genes lacking functional or clinical significance.
While demonstrated on pancreatic cancer, the modular design of GETgene-AI
enables scalability across diverse cancers and diseases. By integrating multi-
omics datasets with advanced computational and AI-driven approaches,
GETgene-AI provides a versatile and robust platform for accelerating cancer
drug discovery. This framework bridges computational innovations with
translational research to improve patient outcomes.

KEYWORDS

cancer, pancreatic cancer, network-based prioritization, computational biology and
bioinformatics, drug target prioritization, drug target, network biology, gene
prioritarization

1 Introduction

Traditional chemotherapeutic agents, which non-specifically target rapidly dividing
cells (Gu et al., 2023; Sun et al., 2021), are contested with the promise of targeted therapies
that disrupt specific molecular pathways governing cell survival and apoptosis (Sellers and
Fisher, 1999; Lim et al., 2019). Drug target discovery is pivotal for advancing cancer
therapies, yet traditional approaches face three critical limitations. First, manual curation of
literature and static biomedical databases struggles to scale with the complexity of modern
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multi-omics data (genomic, transcriptomic, proteomic), leading to
incomplete or outdated target identification (Paananen and Fortino,
2020; Zhou et al., 2022; Trajanoska et al., 2023; Lindsay, 2003; Zhou
and Zhong, 2017). Second, traditional network-based prioritization,
which prioritize genes based on protein-protein interaction (PPI)
network centrality, oversimplify biological context by ignoring
tissue-specific genomic features such as mutation frequencies and
differential expression profiles (Petti et al., 2020). These limitations
contribute to high failure rates in translating preclinical discoveries
to clinical therapies, particularly in genetically heterogeneous
cancers like pancreatic cancer. Third, reliance on single-metric
approaches like fold change or mutational frequency introduces
variability due to arbitrary thresholds and sample bias (McCarthy
and Smyth, 2009; Dinstag and Shamir, 2020; López-Cortés et al.,
2018). These gaps contribute to high failure rates in translating
preclinical discoveries to clinical therapies, particularly in genetically
heterogeneous cancers like pancreatic cancer (Singh et al., 2023; Sun
et al., 2022; Zhu et al., 2021; Somarelli et al., 2019).

Computational advances address these challenges by integrating
multi-omics data, network-based prioritization and AI-driven
literature review, driving down costs, increasing precision, and
expediting the development of effective therapies through in
silico assessments (Sadybekov and Katritch, 2023; Sliwoski et al.,
2014; Huan et al., 2010; Chen et al., 2006). The integration of multi-
omics data contextualizes mutations within tissue-specific
expression patterns, while network-based prioritization refines
prioritization by mapping genes to functionally relevant pathways
(Shim et al., 2015). Network-based prioritization enables researchers
to analyze genomic datasets and identify critical regulatory genes
implicated in cancer development (Chang et al., 2021; Sonehara and
Okada, 2021). These methods prioritize disease-related genes by
integrating data from PPI networks and known gene-drug
associations (Mohsen et al., 2021; Zhang et al., 2021).
Furthermore, network-based prioritization approaches provide
the ability to efficiently process genomic information and derive
meaningful insights is pivotal for identifying and visualizing relevant
drug targets (Chen et al., 2013; Chen et al., 2009; Huan et al., 2010;
Shim et al., 2015; Huang et al., 2012).

Differential gene expression is a critical method for
identifying genes significantly altered between conditions, such
as cancerous versus normal tissues (Bai et al., 2013; Van de Sande
et al., 2023). A common approach involves calculating “fold
change,” which quantifies the ratio of gene expression levels
between these states (Love et al., 2014; Mutch et al., 2002).
GEO2R, a tool to determine differentially expressed genes,
utilizes fold change to rank genes under experimental
conditions (ie. tumor versus healthy tissue comparisons)
(Barrett et al., 2013). However, the arbitrary selection of fold
change thresholds can introduce variability into prioritization,
compromising the reliability of target identification (McCarthy
and Smyth, 2009). Separately, frequency-based prioritization
methods focus on genes with elevated mutational rates in
disease contexts, hypothesizing these as common therapeutic
targets (Dinstag and Shamir, 2020; López-Cortés et al., 2018).
Frequency-based prioritization methods for gene prioritization
can be prone to bias, especially due to sample selection, which can
skew results (Lazzeroni et al., 2014). To address these limitations,
network centrality-based prioritization has emerged as a

complementary strategy. This approach leverages gene
connectivity within biological networks, offering a holistic
framework for target selection by expanding gene lists and
strengthening disease association metrics (Janyasupab et al.,
2021; Magger et al., 2012).

Concurrently, AI-driven literature review (e.g., GPT-4)
automates the synthesis of preclinical and clinical evidence,
identifying targets with mechanistic and translational relevance
(Liu et al., 2021; Oniani et al., 2024; Sallam, 2023; Tripathi et al.,
2024). By combining these approaches, biases inherent to single-
metric or fragmented datasets can be mitigated, yielding prioritized
targets with mechanistic, functional, and translational relevance.
(Somarelli et al., 2019; Zhu et al., 2021; Sadybekov and Katritch,
2023). LLMs can predict essential information about gene targets,
including structural domains of proteins, protein structure, toxicity
and adverse effects, functional significance, clinical and preclinical
relevance, and treatment efficacy (Sallam, 2023; Tripathi et al.,
2024). Furthermore, GPT-4 has demonstrated the ability to rival
human performance in conducting literature reviews, thus
streamlining the drug target prioritization process (Khraisha
et al., 2024; Li et al., 2010).

In this study, we hypothesize that the utilization of network-
based analysis, artificial intelligence, and biologically significant
data will enable systemic prioritization of actionable therapeutic
targets. Thus, we propose GETgene-AI, a framework which
annotates network-based analysis with LLM enabled literature
review, and biologically significant data. Central to GETgene-AI
is the G.E.T. strategy, which integrates three key data streams: the
G List (genes with genetic mutations, variations functionally
implicated in genotype-to-phenotype association studies of the
disease), the E List (disease target tissue-specific expressions of
the candidate gene), and the T List (established drug targets based
on reports from literature, patents, clinical trials, or existing
approved drugs). Initial gene candidates are derived from
heterogeneous biological datasets, including fold change, copy
number alterations, and mutational frequency metrics. To
mitigate biases inherent to fragmented or incomplete data,
GETgene-AI employs a multi-dataset integration approach.
The framework iteratively refines candidate lists through the
network-based tool BEERE, which annotates and prioritizes
genes with network-based centrality methods to create a high-
quality, prioritized gene list. This iterative process expands and
ranks candidates by evaluating their biological relevance,
network centrality, and concordance with genomic
aberrations, thereby improving target identification accuracy.
GPT-4o is integrated into the process to improve literature
review efficiency and further annotate the target list,
enhancing the overall workflow. By combining traditional and
in silico methods, GETgene-AI bridges gaps in drug discovery
and facilitates the development of personalized cancer therapies.

The novel drug targets prioritized through our case study in
pancreatic cancer not only offer insights into the unique
molecular mechanisms driving this aggressive cancer but also
present promising avenues for therapeutic intervention. While
pancreatic cancer serves as a case study in this paper, the
underlying methodology is adaptable to a wide range of
cancers and diseases, thereby accelerating the discovery of
therapeutic options.
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2 Methods

In Figure 1, we show a general overview of the GETgene-
AI framework.

The initial gene list is generated by employing a three-tiered
strategy—comprising the Gene list (G list), Expression list (E list),
and Target list (T list)—to integrate biological context into gene
prioritization. The G list identifies genes with high mutational
frequency, functional significance (e.g., pathway enrichment via
the Kyoto Encyclopedia of Genes and Genomes (KEGG)), and
genotype-phenotype associations. The E list focuses on genes
exhibiting significant differential expression in pancreatic
ductal adenocarcinoma (PDAC) compared to normal tissues,
while the T list incorporates genes annotated as drug targets in
clinical trials, patents, or approved therapies. To construct these
lists, disease-specific genomic data were aggregated from public
databases (e.g., TCGA, COSMIC, PAGER) and processed using
GRIPPs (Gong and Chen, 2023), an iterative network-based
approach that applies modality-specific thresholds to ensure
robust inclusion criteria.

Following the initial gene list generation, the second step
involves prioritizing and expanding these lists using the BEERE
network-ranking tool. BEERE was selected for its demonstrated
efficacy in filtering low-confidence data and enhancing
prioritization accuracy (Yue et al., 2019), ensuring comprehensive
and reliable gene sets.

A benchmark set of genes implicated in pancreatic cancer
clinical trials (i.e., genes appearing as targets or biomarkers in
registered interventional studies) was analyzed to evaluate which
genomic and network features are most characteristic of clinically
successful drug targets. This benchmark set is distinct from the T list,
which consists only of genes targeted by FDA-approved drugs
already indicated for pancreatic cancer. Genomic features
considered included differential expression, mutation frequency,
and copy number alterations, while network-based features
included the BEERE scores of Gene, Expression, and Target lists.
The benchmarking analysis did not alter the composition or scoring
of the T list but instead provided interpretive context by identifying
which factors were enriched among clinically validated targets. This
analysis was further supplemented by a GPT-4–enabled literature

FIGURE 1
General overview of the GET list compilation and ranking process. Initial gene lists from each of the three subsets are compiled. 2,493 genes are
compiled in the initial G list, 2000 genes are compiled in the initial E list, and 131 genes are compiled in the initial T list. Each list is iteratively prioritized
using the BEERE network ranking and expansion tool, taking the top 500 genes each time and re expanding and ranking. The lists were then merged and
annotated with biologically significant features. Separately, genes implicated in clinical trials related to treatment of pancreatic cancer were
benchmarked to set the weights utilized for RP score ranking. Genes in the GET list were then ranked utilizing these weights.
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review, which added biological and clinical insights to the
interpretation of results.

Finally, the GETgene-AI ranking is generated by integrating
BEERE network rankings, annotated gene information, and insights
derived from GPT-4. This multi-layered approach ensures a robust
and contextually informed prioritization of potential drug targets.

Using PDAC as a case study—selected due to its poor prognosis
and limited therapeutic options (Hu et al., 2021) —our framework
produced quantitative data and novel insights into potential
therapeutic targets, demonstrating its utility in advancing
precision oncology.

2.1 Initial gene list generation

2.1.1 Compiling the gene list from
genetic mutations

For the “GENE” component of our “GET” framework, we
compiled three gene subsets: PAGER-NC, COSMIC-MUT, and
CBP-CNA-MUT. The initial “GENE” list was compiled from the
PAGER (Huang et al., 2012; Yue et al., 2018; 2022), cBioPortal (de
Bruijn et al., 2023), and COSMIC (Tate et al., 2019) databases. To
address potential sample biases and data incompleteness (e.g.,
studies failing to detect specific genes), we incorporated multiple
datasets from these repositories when available. Genes associated
with the term “Pancreatic Cancer” were manually curated from
these databases. Empirical cutoffs were applied to prioritize genes
with relevance to pancreatic cancer.

To integrate biological pathway context into gene prioritization,
we utilized PAGER (Chowbina et al., 2009), which quantifies
functional significance through pathway-based metrics. From
PAGER, 844 candidate genes were selected heuristically using an
nCoCo score threshold between 5 and 100. The nCoCo score, which
measures gene set coherence by integrating co-citation and pathway
data, with higher scores indicating stronger biological cohesion was
constrained with a minimum of 5 (minimal coherence) and
maximum of 100 (ubiquitous processes) (Huang et al., 2012; Yue
et al., 2018; Yue et al., 2022).

For the cBioPortal andCOSMICdatabases, thresholdswere defined
by identifying points where mutational frequency no longer
demonstrated cancer-specific significance in prior studies. From
cBioPortal, 1,000 genes were selected using cutoffs of 8.2% for copy
number alterations (CNA) and 2.8% for mutational frequency. The
threshold for copy number alterations is significantly higher due to only
21 sets of copy number signitures being represented in 97% of tumor
samples on The Cancer Genome Atlas (Steele et al., 2022). The 2.8%
cutoff for mutational frequency is due to the fact that a limited amount
of genes were found to be mutated in more than 5% of tumors (Sinkala,
2023). Most biologically relevant genes were found to be mutated at
frequencies between 2%–20% (Lawrence et al., 2014). From COSMIC,
649 genes were compiled using a 20% mutational frequency cutoff
according to the previously mentioned frequency range. Finally,
candidate genes from PAGER, cBioPortal, and COSMIC were
aggregated to form the “G list”, comprising 2,493 genes in total.

Sensitivity analysis was performed by testing lower and higher
cutoffs for both CNA and mutational frequency. For CNA, a lower
threshold of 7.3% and a higher threshold of 9.2% were applied, while
for mutational frequency, thresholds of 2.2% (lower) and 3.4%

(higher) were used. For the COSMIC cancer database, a lower
cutoff of 15% and a higher cutoff of 25% were applied. Genes
within the top 250 of GETgene-AI were manually examined to
identify those included or functionally related to genes falling within
the lower and higher thresholds. The lower threshold did not
identify any genes beyond those already present in the G list,
whereas the higher threshold excluded the following genes:
P3H2, P4HTM, PLOD3, PLOD2, P4HA1, PLOD1, PAM, PSMB5,
C1QC, C1QA, and C1QB. All of these genes rank outside
the top 150.

2.1.2 Compiling candidate genes for the
“expression” subset

Candidate genes were prioritized by analyzing the GEO dataset
GSE29735, titled “Pancreatic ductal adenocarcinoma tumor and
adjacent non-tumor tissue” (Zhang et al., 2012; Zhang et al., 2013),
using the GEO2R tool. Samples were categorized into tumor and
non-tumor groups via the “Define groups” feature, with the tumor
group defined as “human pancreatic tumor tissue patient samples”
and the non-tumor group as “human pancreatic non-tumor patient
samples”. The dataset comprised of 90 patient samples, evenly
distributed between 45 tumor and 45 non-tumor samples.
Differentially gene expression analysis was performed using
GEO2R’s “analyze” function. The top 2,504 genes exhibiting logfc
values over 0.25 were compiled into an initial “E list”. A cutoff of
0.25 was determined based on the “FindAllMarker” function
provided by the R package Seurat (Wang et al., 2024). The list
was subsequently processed iteratively using the BEERE software in
accordance with the GRIPPs method.

2.1.3 Compiling candidate genes for the
“Target” subset

Incorporating pharmacology data with network-based
prioritization is a well established approach (Huang et al., 2015;
Huang et al., 2012b). Building on this methodolody, a set of
131 genes were identified using DrugBank (Wishart et al., 2018), a
comprehensive drug and drug-target database. To extract relevant
genes, the database was queried using the search terms “Pancreatic
Cancer,” “Pancreatic Ductal Adenocarcinoma,” and “Neuroendocrine
Pancreatic Cancer”within its drug repository. Drugs explicitly indicated
for Pancreatic Cancer treatment were identified by reviewing their
associated metadata, including summaries, background descriptions,
indications, clinical trial references, and listed “Associated Conditions.”
Each drug’s mechanism of action, therapeutic summary, and clinical
trial references were manually evaluated to distinguish agents directly
treating pancreatic cancer from those used for supportive care (e.g.,
chemotherapy relief, pain management, or sedation). For all drugs
meeting the inclusion criteria, gene targets listed under their respective
“Targets” section in DrugBank were compiled, resulting in 131 unique
genes associated with pancreatic cancer therapeutics.

2.2 Prioritization and expansion of GET lists

To improve the specificity and biological relevance of our
candidate gene lists, we implemented an iterative refinement
process using the BEERE tool for prioritization and network-
based expansion. The BEERE tool employs an initial ranking
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algorithm and two iterative ranking algorithms—PageRank and an
ant-colony algorithm—both of which have demonstrated success
across diverse knowledge domains (Yue et al., 2019). Although both
ranking algorithms use an iterative ranking process, they differ in
how node importance weights are calculated. The PageRank
algorithm assigns node importance directly from neighboring
nodes. In the ant-colony algorithm nodes lose score when
disseminating information and gain score upon receiving it.
BEERE expands the gene list using the nearest-neighbor network
constructed from protein-protein interactions in the HAPPI
2.0 database (Chen et al., 2009; 2017; Wu et al., 2012).

This workflow addresses the inherent limitations of single-
dimensional analyses (e.g., relying solely on mutation or
expression data) by integrating complementary biological
evidence. Building on the GRIPPS framework (Gong and Chen,
2023), we developed a customized pipeline to systematically
prioritize genes from three distinct categories: the combined GET
list (genes ranked by aggregated mutational frequency, differential
expression, and known drug-target status), the GT list (genes co-
occurring in mutation and drug-target databases to highlight
functionally relevant drivers), and a prioritized Expression (E) list
(genes ranked exclusively by differential expression in
pancreatic cancer).

The GET, GT, and E lists are expanded independently to
preserve modality-specific signal during the BEERE prioritization
phase. Combining them before expansion would dilute distinct
biological features (e.g., mutation-specific drivers in G vs.
expression-based biomarkers in E) and bias the expansion toward
categories with larger initial representation, potentially
overshadowing rare but high-impact genes. For example, MYC
and TNF, identified through differential expression and drug-
target overlap but not mutational frequency, would have been
deprioritized if lists were merged prior to expansion. This
systematic, modality-preserving approach enhanced the
identification of potential therapeutic targets by ensuring that
candidates from each evidence stream were equally represented
in the final prioritization.

Each list underwent the same refinement workflow to balance
comprehensiveness with specificity. First, BEERE expanded the
initial gene sets by incorporating proximal interactors from
protein-protein interaction (PPI) networks in the HAPPI
2.0 database, thereby capturing functionally related genes beyond
those directly identified in our initial screens. Next, BEERE’s
network propagation and statistical ranking algorithms
prioritized genes based on their network centrality and
significance scores. To prevent overexpansion and maintain focus
on high-confidence candidates, we empirically filtered each list to
retain the top 500 genes after each prioritization cycle. This iterative
process was repeated three times, as preliminary testing revealed that
additional iterations caused excessive convergence of the lists,
reducing their distinct biological relevance. Three iterations
optimally preserved the unique profiles of each list while still
enabling meaningful integration.

The independently expanded GET, GT, and E lists (each refined
through three iterations of BEERE network expansion) were
consolidated into an Initial GET List, which then underwent a
final BEERE-based prioritization to generate the Final GET List.
For comparative analysis, we also retained the previously defined

Expression List (top differentially expressed genes) and the GT List
(prioritized genes from mutation–drug target overlaps). These lists
were not re-derived here but carried forward for side-by-side
evaluation. This tiered approach ensured that our final candidate
pool retained both mechanistic diversity (genes linked to distinct
biological processes) and clinical relevance (genes with actionable
potential as drug targets).

The refinement process was critical to address three key
challenges: (1) mitigating the high false-positive rate inherent to
mutational and expression screens in heterogeneous cancers like
pancreatic adenocarcinoma, (2) reconciling discrepancies between
genes prioritized by individual data types (e.g., highly mutated genes
often lack expression changes, and vice versa), and (3) ensuring
functional coherence by embedding candidates within PPI networks
reflective of disease biology. By iteratively refining lists through
network propagation and multi-evidence integration, we enhanced
the biological plausibility of candidates while preserving distinct
mechanistic hypotheses for downstream validation.

2.3 GPT-4o aided literature assessment

Recent research has demonstrated that GPT-4o performs
“human-like” literature reviews, particularly in screening and
analyzing scientific literature (Khraisha et al., 2024). For this
study, abstracts related to pancreatic cancer genes and treatments
were downloaded using PubMed’s “save” feature. A total of
5,091 abstracts were collected and uploaded for analysis by GPT-
4o through a custom GPTo interface. Due to the data processing
limitations of GPT-4o, abstracts were filtered to include only meta-
analyses, clinical trials, and systematic reviews on PubMed to ensure
high-quality input data.

The custom GPTo model was configured with specific
instructions to rank genes based on a scoring system with a
maximum score of 400 points, distributed across four categories:
functional significance in pancreatic cancer, research popularity,
treatment effectiveness when targeting or inhibiting the gene, and
protein structure. Each category was allocated 100 points, and the
resulting metric was termed the GPT-4 score. To mitigate GPT-4o′s
known issue of “hallucination” or the generation of inaccurate or
nonexistent information, the model was explicitly instructed to base
its rankings solely on the uploaded research database. Additionally,
the model was required to cite articles referenced during the ranking
process and provide explanations for the scores assigned to each
gene in every category. GPT-4 outputs were manually verified
against curated datasets to ensure biological relevance and
mitigate hallucinations. Citations provided by GPT-4 were cross-
referenced with PubMed to confirm validity. All cited articles were
manually verified, and any errors or hallucinations were addressed
by instructing the model to re-search the uploaded literature
database for accurate mentions of the gene. Analyses involving
database-derived information was performed on static datasets
downloaded, ensuring that any subsequent database changes
would not affect our reported results. Where possible, we provide
accession numbers and dataset DOIs. This approach guarantees that
the gene rankings and annotations presented here can be
reproduced independently of future GPT-4 updates or changes to
online resources.

Frontiers in Systems Biology frontiersin.org05

Gu and Chen 10.3389/fsysb.2025.1649758

132

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2025.1649758


2.4 Incorporation of clinically implicated
genes and annotation of genes with factors
relevant to drug target prioritization

Clinical trials are critical for evaluating the efficacy of
therapeutic agents targeting specific genes. To assess the clinical
relevance of prioritized genes, we quantified clinical trial activity by
compiling the frequency of trials associated with each gene. Genes
targeted by drugs investigated in pancreatic cancer treatment trials
systemically identified through the following process: A search for
the term “pancreatic cancer” was conducted on Clinicaltrials.gov,
and all drugs listed in active or completed interventional trials for
pancreatic cancer were extracted. Corresponding target genes for
these drugs were then identified using DrugBank’s “Targets” section,
which provides genes targeted by the drug for pancreatic cancer
treatment. This process yielded 357 drugs targeting 253 unique
genes. These genes were annotated with BEERE scores derived from
the previously described GET lists. To enhance biological validity,
the analysis integrated quantitative genomic datasets. Mutation
frequency data was obtained from cBioPortal (de Bruijn et al.,
2023), while protein expression profiles across tissues relevant to
therapeutic safety (e.g., brain, gastrointestinal tract, liver, and
kidney) were sourced from the ProteinAtlas (Uhlén et al., 2015).

Following the prioritization of the GET list and identification of
clinically trialed genes, we annotated these genes with functional
genomic data. Mutational frequency—a key determinant in gene
ontology ranking (Timar and Kashofer, 2020)—and Copy Number
Alterations (CNA), a critical marker of genomic instability (Beroukhim
et al., 2010), were evaluated. Mutation and CNA data were sourced
from CBioPortal (de Bruijn et al., 2023) using two cohorts: the
“Pancreatic Cancer (UTSW, Nat Commun 2015)” and “Pancreatic
Adenocarcinoma (TCGA, PanCancer Atlas)” studies, both of which
employed whole-exome sequencing for all samples. Network-based
metric was also added through BEERE scores, namely the G-list score,
GT-list score, E-list score, GET-list score, and the T-list score. The G, E,
and T list scores are the BEERE prioritization scores derived from
network-based expansion of the lists prioritized in step 2 of the
methods. The GET list score is similarly from the merged GET-list
detailed in step 2 of the methods. The GT-list score is a combination of
the prioritized G and T scores, which aims to bring genes of higher
mutational frequency into the network of the T list.

Tissue-specific expression is a vital factor in gene prioritization
(Beroukhim et al., 2010). Genes with high expression in essential
tissues—such as the heart, liver, gastrointestinal system, brain, and
kidneys—pose a higher risk of adverse effects when targeted,
necessitating their de-prioritization. Annotation of tissue
expression was performed using the “RNA expression score”
provided by ProteinAtlas (Uhlén et al., 2015), a comprehensive
database mapping protein expression in various organs. This RNA
expression score, manually calculated, measures the RNA
expression levels of genes across different tissues.

2.5 GETgene-AI ranking

To unify these criteria, we developed a weighted RP score that
integrates mutation frequency, copy number alterations (CNA), tissue
expression, GET list scores (BEERE prioritization scores derived from

network-based expansion), E list scores, GT list scores, and clinical trial
activity. Clinical trial popularity was quantified as the number of
registered interventional trials testing drugs targeting a given gene
for cancer therapy. Modality weights were calibrated by Spearman
rank correlation between each modality-specific ranking and two
independent benchmarks of therapeutic relevance: (i) the number of
associated clinical trials and (ii) the frequency of reported adverse
events. The benchmark set used for this analysis consisted of genes
implicated in pancreatic cancer clinical trials, independent of the GET
and GT lists. Correlations with clinical trial count were used to assess
genomic and network features (e.g., mutation frequency, CNA
frequency, GET BEERE scores), while correlations with adverse
event frequency were used to assess tissue expression features (e.g.,
expression in brain, liver, lung, and digestive system). Modalities
showing stronger monotonic associations contributed proportionally
more to the final RP score, while weaker associations retained smaller
weights to preserve the potential for novel candidate discovery. Table 1
summarizes the relative weights of each factor in the RP score, ranked in
descending order of contribution.

2.6 Mitigation of bias and false positives

To address potential sample biases and data incompleteness—such
as studies failing to detect specific genes—multiple datasets from the
same databases were utilized wherever possible. This redundancy
ensured a more comprehensive analysis and minimized the impact
of dataset-specific variability. For example, multiple studies within
CBioPortal, such as “Pancreatic Cancer (UTSW, Nat Commun
2015)” and “Pancreatic Adenocarcinoma (TCGA, PanCancer
Atlas),” were analyzed concurrently to increase the reliability of
mutational frequency and CNA data.

Bias from literature frequency was mitigated by not using
citation counts, publication frequency, or other literature-derived
popularity metrics as a direct modality in the RP score. Instead,
GETgene-AI rankings are based on cancer-type-specific genomic,
transcriptomic, and drug-target evidence (mutation frequency,
CNA, expression, and network centrality). While genes such as
PIK3CA, EGFR, PRKCA, and TNF are indeed well known, their
high ranks in our framework derive from pancreatic cancer–specific
data rather than their prevalence in the broader cancer literature.

Sensitivity analysis was performed by testing lower and higher
cutoffs for both CNA and Mutational Frequency. A lower threshold
of 7.3% and a higher threshold of 9.2% was utilized for CNA, while a
lower cutoff of 2.2% and a higher cutoff of 3.4% was utilized for
mutational frequency. A lower cutoff of 15% and a higher cutoff of
25% was utilized for COSMIC cancer database. Manually searching
for genes within the top 250 of GETgene-ai that were included or
had functionally related genes within the lower and higher
thresholds. A lower threshold did not yield any genes previously
not found in the G list, while the higher threshold found P3H2,
P4HTM, PLOD3, PLOD2, P4HA1, PLOD1, PAM, PSMB5, C1QC,
C1QA, C1QB, to be genes excluded due to higher thresholding.
These genes all rank outside of the top 150.

To further enhance the accuracy of the prioritization process,
each gene within the top 250 ranked by RP score was manually
verified through a literature review to confirm its role in cancer
biology. This step was critical in identifying and eliminating false
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positives. Notably, no genes within the top 250 were found to be false
positives, validating the robustness of the RP scoring methodology.

Additionally, hallucination errors from GPT-4o were mitigated
through a structured training approach. The model was instructed to
explicitly cite a source used in the calculation of each gene’s ranking
score. These citations were manually evaluated for accuracy and
relevance, ensuring that the ranking process was grounded in
verifiable scientific evidence. This dual-layered validation—automated
scoring combined with manual review—was integral to maintaining the
integrity and reliability of the gene prioritization framework.

2.7 Statistical methods

Spearman correlation coefficients were computed to assess the
alignment of GPT-4o rankings with network-derived rankings. The
Spearman correlation between the GPT-4 score and the Weighted
Score was 0.291, indicating some significance. Interestingly, GPT-4
score is more strongly correlated with all BEERE list ranking scores,
with 0.478 between GPT-4 score and Expression list score,
0.457 between GPT-4 score and Combined weighted score of all
BEERE lists, 0.454 correlations between GPT-4 score and GET list
score, and 0.444 between GPT-4 score and GT list score. These
results indicate that the GPT-4 score is more similar to that of
standard network prioritization techniques, which may be a result of
the training data utilized.

2.8 Comparing research relevance to rank
on GETgene-AI

To compare the popularity to the rankings of each gene in both
the GPT-4 Score and the RP scores, the amount of results contained
on PubMed when searching “Gene name Pancreatic Cancer” were
compiled and used for the GPT-LIT score, and the RP-LIT score.

The GPT-LIT score is the GPT4-score divided by the amount of
publications on PubMed, while the RP-lit score is the RP-score
divided by the amount of publications on PubMed. Genes with no
functional relationship to cancer in any way were excluded from the
rankings to remove false positives.

3 Results

3.1 GETgene-AI rankings and validations

We observe the highest ranked genes according to GETgene-AI
in Table 2.

During the iterative ranking process, genes lacking functional
relevance to cancer were systematically deprioritized. For instance,
genes that ranked highly due to algorithmic artifacts but lacked
experimental validation or literature support were ranked lower
than genes with experimental validation or literature support. The
final candidate set was defined as the top 250 genes ranked by RP
score. This threshold was selected to enable manual literature
verification for each gene, ensuring that all final candidates could
be cross-checked for pancreatic cancer–specific evidence and
therapeutic relevance. Expanding the list beyond this size would
have substantially increased the manual verification burden without
proportionally improving the quality of candidates for downstream
analysis. This approach allowed us to maintain both methodological
rigor and practical feasibility while focusing on the most highly
ranked genes.

PIK3CA emerged as the highest-ranked gene on our list. It
encodes the enzyme PI3K, which regulates critical cellular processes
such as growth, metabolism, proliferation, and apoptosis (Conway
et al., 2019). PIK3CA also modulates downstream effectors,
including AKT and mTOR (Ala, 2022), and preclinical studies
demonstrate that mutations in this gene sensitize cancers to dual
PI3K/mTOR inhibitors (Zhang et al., 2021), underscoring its
therapeutic potential. Notably, PIK3CA-null tumors exhibit
heightened susceptibility to T-cell surveillance in vitro (Sivaram
et al., 2019), while its inhibition in pancreatic cancer models initiates
tumorigenesis (Payne et al., 2015), highlighting its dual role in
progression and therapy.

MYC, the second highest-ranked gene, achieved its position due
to its top GET list score, reflecting its network centrality among the
500 most expressed, clinically relevant, and frequently mutated
genes. Overexpression of c-MYC is a hallmark of aggressive
pancreatic cancer, where it binds promoter regions of oncogenic
targets (Hayashi et al., 2021). Despite its pivotal regulatory role,
MYC’s complex protein structure poses therapeutic challenges,
resulting in a lower GT list score. Recent advances in small-
molecule inhibitors, however, show preclinical promise.

SRC ranks as the third-highest gene on our list, driven by its high
scores in both the GET list and Expression list modalities. Inhibition
of SRC in pancreatic cancer has been shown to reverse
chemoresistance to pyroptosis in both in vitro and in vivo studies
(Su et al., 2023). Aberrant SRC activity promotes tumorigenesis and
is frequently associated with poor prognosis in pancreatic ductal
adenocarcinoma (PDAC) (Poh and Ernst, 2023). Several SRC-
targeting therapies are currently under clinical investigation
(Hilbig, 2008).

TABLE 1Weights eachmodalitywas assigned for calculation of the RP score
in GETGENE-AI.

Modality of ranking Weighted
score

GT list score 0.329

CNA(CBIOPORTAL UTSW NAT COMMUN 2015) 0.201

Expression list score 0.088

GET list score 0.085

Mutation frequency (cBioporta lTCGA PanCancerAtlas) 0.079

CNA(CBIOPORTAL TCGA PANCANCERATLAS) 0.048

Mutation frequency (Cbioportal UTSW Nat Commun
2015)

−0.023

Brain expression score −0.054

Kidney expression score −0.081

Gastrointestinal expression score −0.095

Liver expression score −0.101
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EGFR is the fourth highest-ranked gene, attributed to its high
GET list and Expression list scores. EGFR is also implicated in
tumorigenesis, particularly in lung and breast cancer (Sigismund
et al., 2018). Anti-EGFR agents have shown significant clinical
promise, despite associated adverse effects (Verma et al., 2020).

KRAS ranks 12th on our list, despite its prominence in
pancreatic cancer research, with over 4,545 PubMed articles on
KRASmutations in pancreatic cancer. Its lower ranking is primarily
due to a low expression score. The KRAS oncogene plays a critical
role in the initiation and maintenance of pancreatic tumors (Luo,
2021). KRASmutations are present in over 90% of PDAC cases, but
therapeutic inhibition remains highly challenging, with effective
inhibitors only recently being discovered (Bannoura et al., 2021).

CDK1 ranks fifth on our list, largely due to its high scores in both
the GET and Expression lists. CDK1 is strongly correlated with
prognosis and is highly expressed in pancreatic cancer tissue, as well
as in response to gemcitabine, an approved pancreatic cancer drug
(Xu et al., 2023). Additionally, inhibition of CDK1, along with CDK2
and CDK5, has been shown to overcome IFN-γ-triggered acquired
resistance in pancreatic tumor immunity (Huang et al., 2021).

PRKCA ranks seventh on our list. It encodes protein kinase C
and is mutated in various cancers. PRKCA’s high ranking is
attributed to its strong GET and Expression list scores, as well as
its extremely low organ expression score. It is strongly associated

with the activation of the protein translation initiation pathway
(Rosenberg et al., 2018) and is a hallmark mutation in chordoid
gliomas (Jiang et al., 2019). PRKCA also contributes to susceptibility
to pancreatic cancer through the peroxisome proliferator-activated
receptor (PPAR) signaling pathway, which plays a key role in
pancreatic cancer development and progression (Liu et al., 2020).
Inhibition of PRKCA has demonstrated antitumor activity in
patients with advanced non-small cell lung cancer (NSCLC)
(Villalona-Calero et al., 2004).

TNF is the eighth highest-ranked gene on our list. Tumor
Necrosis Factor (TNF) upregulation is associated with invasion
and immunomodulation in pancreatic cancer (Wiedmann et al.,
2023). TNF-mutated macrophages have also been shown to promote
aggressive cancer behaviors through lineage reprogramming (Tu
et al., 2021).

LCK ranks ninth on our list. This gene is expressed in tumor cells
and plays a key role in T-cell development (Bommhardt et al., 2019).
High LCK protein expression has been associated with improved
patient survival in cancer (Cancer Genome Atlas Network, 2015).
Despite its biological relevance, LCK has only four PubMed
publications discussing its role in pancreatic cancer as of May
2024. Its identification as a high-priority target demonstrates
GETgene-AI’s ability to prioritize genes with strong biological
relevance but limited literature prominence.

TABLE 2 Highest 20 genes ranked on GETGENE-AI. Weighted score is RP score, CHAT GPT score is GPT4 score.

Gene RP
score

CHATGPT
score

GT list
score

Mutation frequency
(cBioportal TCGA
PanCancer Atlas)

RP-LIT
score

GPT-LIT
score

GET list
score

Expression list
score

PIK3CA 34.8 310 58.7 2.8 0.199 1.771 96 97

MYC 30.1 330 9.5 0.0 0.032 0.349 214 210

SRC 20.0 320 0.0 1.1 0.044 0.711 143 144

EGFR 18.2 320 2.4 0.6 0.010 0.171 134 133

CDK1 15.9 305 15.3 65.4 0.134 2.563 30 7

PRKCA 15.3 305 3.0 0.0 1.702 25.556 101 102

TNF 12.1 270 2.4 0.0 0.013 0.292 83 86

LCK 11.5 220 1.7 0.0 1.274 24.444 62 60

JAK2 10.6 285 1.0 0.6 0.082 2.192 67 67

MAPK1 10.3 305 11.6 3.4 0.139 4.122 7 7

AURKB 9.1 295 0.0 0.6 0.008 0.246 70 70

KRAS 8.7 220 1.7 1.7 0.335 8.462 48 47

MAPK8 7.8 295 0.0 0.0 0.002 0.068 121 117

MTOR 7.1 220 1.7 0.0 0.588 18.333 52 52

ITGA4 6.9 220 4.3 0.6 2.298 73.333 40 37

TOP2A 6.9 310 10.2 1.1 0.215 9.688 0 0

CHEK1 6.7 220 1.7 0.0 0.128 4.231 46 45

BCL2 6.2 220 1.7 0.6 0.012 0.418 41 41

PRKCB 6.0 250 1.4 0.6 1.004 41.667 60 58

ERBB4 5.5 220 3.4 0.6 0.184 7.333 81 83
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ITGA4 ranks 15th on our list. It has an extremely low organ
expression score and only four PubMed articles discussing its role in
pancreatic cancer. ITGA4 has potential as an independent
prognostic indicator for patient survival and has been linked to
the PI3K/AKT pathway (Faleiro et al., 2021). Its identification as a
high-priority target further highlights GETgene-AI’s capability to
prioritize genes with strong biological relevance despite limited
literature attention.

KCNA ranks 34th on our list. Notably, there are no PubMed
publications describing its relation to pancreatic cancer, and only
three publications mention its role in cancer in general. The
identification of KCNA as a high-priority target underscores
GETgene-AI’s ability to prioritize genes with strong biological
relevance but minimal literature prominence. KCNA exhibits
differentially high expression in stomach and lung cancers and is
positively correlated with infiltrated immune cells and survival rates
(Angi et al., 2023).

3.2 Comparing GETgene-AI to other
frameworks

We benchmarked GETgene-AI against two other frameworks:
one focused on differential expression analysis and the other on
network-based gene prioritization. For the differential expression
comparison, we selected GEO2R, utilizing the GSE28735 dataset,
which was integrated into the ’Expression list’ component of our
GET lists. Genes were ranked based on their log-fold change (log-fc),
representing the difference in gene expression between tumor and
non-tumor groups. In the GEO2R list, the top-ranked genes were
PNLIPRP1 and PNLIPRP2, both of which encode pancreatic lipase-
related proteins critical for digestion and fat absorption (Zhu et al.,
2021). However, these genes are not considered viable targets for
pancreatic cancer. The third-ranked gene, IAPP (Islet Amyloid
Polypeptide), has been shown to lack tumor suppressor
functionality, and loss of IAPP signaling is not associated with
pancreatic cancer (Taylor et al., 2023). Among the top 50 genes
identified by GEO2R, 30 were experimentally validated as relevant to
pancreatic cancer. In contrast, GETgene-AI prioritized
49 experimentally validated targets within its top 50, representing
a 38% improvement over GEO2R. GEO2R’s limitations, including
the absence of mutational frequency analysis, functional impact
assessment, network-based analysis, and adverse effect evaluation,
hinder its utility in drug target discovery. In comparison, GETgene-
AI leverages statistical filtering and incorporates genomic
information, significantly enhancing both the efficiency and
quality of gene prioritization. Figure 2 presents a volcano plot
illustrating the log2 (fold change) distributions for the
analyzed genes.

For the network-based comparison, we employed STRING, a
database that integrates protein-protein interaction data (Szklarczyk
et al., 2023), focusing specifically on the KEGG pathway hsa0512
(Kanehisa and Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2025).
Genes were ranked based on node degree, a measure of the number
of interactions a protein has within the network (Bozhilova et al.,
2019). The highest-ranked gene in the STRING list was AKT1, a
protein kinase known to stimulate cell growth and proliferation
(Grassilli et al., 2020). However, AKT1 has been shown to resist

inhibition by shifting its metabolic activity from glycolysis to
mitochondrial respiration (Arasanz et al., 2019). Additionally, it
exhibits a low mutational frequency of only 1% in a cohort of
19,784 patients with various tumors (Millis et al., 2016). Due to its
low mutational frequency and the challenges associated with its
inhibition, AKT1 was ranked 33rd by GETgene-AI. Among the top
50 genes prioritized by STRING, 46 were experimentally validated
for relevance to pancreatic cancer, whereas GETgene-AI identified
49 experimentally validated genes within its top 50, demonstrating a
6% improvement over STRING. STRING’s limitations, such as its
inability to account for mutational frequency and other critical
factors in drug target identification, result in a narrower focus,
with only 81 targets prioritized compared to the more
comprehensive analysis provided by GETgene-AI. Figure 3
illustrates the network constructed using STRING.

Comparing GETgene-AI to GEO2R and STRING, our
framework demonstrates a 38% improvement over GEO2R and a
6% improvement over STRING in the rate of experimental
validation of the top 50 genes on each list. In Figure 4, we
observe the differences in the percentage of experimentally
validated targets out of the top 50.

GETgene-AI was also compared to OpenTarget, an integrative
AI-based prioritization platform (Koscielny et al., 2017). We
compared GETgene-AI’s rankings to those generated by
OpenTargets for pancreatic cancer, focusing on the top 15genes
from each tool. While there was overlap in high-confidence drivers
(e.g., KRAS, TP53, SMAD4, BRCA2), several key differences
emerged that highlight the value of GETgene-AI’s multi-modal
integration.

OpenTargets ranked genes such as POLE and POLD1 highly
despite their low mutation frequency in pancreatic cancer datasets
(POLE absent in one TCGA cohort; POLD1 <1% in UTSW CNA
andmutation frequency). GETgene-AI deprioritized these genes due
to the lack of mutational enrichment and limited pancreatic-specific
evidence, avoiding inflation from literature-based or pathway-only
associations.

FIGURE 2
Volcano plot GSE28735: Microarray gene-expression profiles of
45 matching pairs of tumor vs. nontumor, Padj<0.05. Blue indicates
downregulated while red indicates upregulated.
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Conversely, GETgene-AI prioritized genes such as MYC, SRC,
EGFR, and CDK1, which have strong differential expression and
drug-target relevance in pancreatic cancer but were absent from
OpenTargets’ top list.

These differences indicate that OpenTargets may overweight
generalized associations, whereas GETgene-AI incorporates cancer-
type-specific genomic, transcriptomic, and therapeutic data, leading

to rankings more aligned with the biological and clinical context of
pancreatic cancer.

In Table 3, we observe the ranking overlap for the top 15 genes
for all three frameworks. The top 15 highest ranked targets in both
GETgene-AI and STRING have all been experimentally validated
within pancreatic cancer, but 8 of the highest ranking targets in the
GEO2R approach have not.

FIGURE 3
Network constructed by STRING utilizing the KEGG pathway HG0512. Content inside each node is known or predicted 3days structure of protein.
Turquoise edges mean Protein-protein interactions from curated databases, purple means experimentally determined. Green, red, and dark blue edges
indicate predicted Protein-protein interactions. Light green edges represent text mining, black represents co-expression, and light purple represents
protein homology.
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3.3 Enhancement provided by AI

GPT-4o was utilized to conduct a comprehensive literature
assessment for our gene list. Although its output was not
incorporated into the final weighted score, the GPT-4o scores
demonstrated strong correlations with both the weighted score and
all three GET list scores. Notably, GPT-4o prioritized genes such as
MYC and SRC, reflecting their well-documented prominence in the
scientific literature. This complemented GETgene-AI’s approach, which
relies on network mutational analysis for gene prioritization. To
minimize the inclusion of false positives in the GPT-4o scoring
process, we instructed GPT-4o to directly cite articles from its
internal database. While GPT-4o did not exhibit a higher rate
of experimental validation compared to manual methods, it

significantly reduced the time required for literature review by 80%.
All cited articles were subsequentlymanually verified to ensure accuracy.

The RP-LIT score and GPT-4o score showed a high degree of
correlation, with extremely similar rankings for each gene. Based on
Spearman correlation analysis, the GPT-4o score (out of 400) exhibited
a correlation coefficient of +0.457 with the weighted score, indicating a
statistically significant relationship. Table 4 provides a detailed
comparison of the ranking differences between the GPT-4o score
and the GET ranking score, highlighting the alignment and
discrepancies between the two approaches.

3.4 False positives and limitations

False positives are an inherent risk in large-scale computational
analyses. The GETgene-AI framework addresses this challenge through
iterative refinement and the systematic exclusion of genes lacking
functional or experimental support. Future validation efforts will
focus on further refining these rankings through targeted
experimental studies. Additionally, the literature assessment provided
by generative AI is expected to improve as AI technology advances and
our model is trained on more experimental data, thereby minimizing
inaccuracies or “hallucinations” in the generated outputs.

To mitigate false positives, genes without functional relevance to
cancer were systematically excluded. For instance, genes that ranked
highly due to algorithmic artifacts but lacked experimental
validation or literature support were deprioritized. Examples
include ITGA4 and PRKCB, both of which have fewer than
10 PubMed articles discussing their role in pancreatic cancer.
These genes were ranked lower than many well-established
targets due to their low scores in the GET, GT, and Expression

FIGURE 4
Bar graph displaying the percent of experimentally validated
targets out of the top 50 genes with each framework.

TABLE 3 Top 15 genes from GETGENE-AI, STRING, and GEO2R and their status as experimentally validated drug targets.

GETGENE-AI top
genes

Experimentally
validated?

STRING top
genes

Experimentally
validated?

GEO2R top
genes

Experimentally
validated?

PIK3CA Yes AKT1 Yes PNLIPRP1 No

MYC Yes TP53 Yes PNLIPRP2 No

SRC Yes KRAS Yes IAPP No

EGFR Yes PTEN Yes CTRC No

CDK1 Yes SRC Yes GP2 Yes

PRKCA Yes STAT3 Yes CEL No

TNF Yes EGFR Yes CPA2 Yes

LCK Yes MTOR Yes ALB Yes

JAK2 Yes BCL2 Yes CUZD1 Yes

MAPK1 Yes PIK3CA Yes ERP27 No

MTOR Yes CDKN2A Yes CLPS Yes

AURKB Yes HRAS Yes SERPINI2 Yes

KRAS Yes CCND1 Yes PLA2G1B Yes

MAPK8 Yes NFKB1 Yes CELA2A No

TOP2A Yes CDKN1A Yes CELA2B No
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lists, which prioritize targets with robust experimental or literature
support during the RP score calculation process.

This study has several limitations. First, the top-ranked targets
identified by GETgene-AI require further experimental validation,
which is a critical next step to confirm their biological and
therapeutic relevance. Second, the reliance on publicly available
datasets may introduce biases due to incomplete or inconsistent
annotations. These limitations highlight the need for further
experimental validation and the incorporation of more comprehensive
datasets to enhance the accuracy and reliability of the framework.

3.5 Broader implications and generalizability

While the current study focuses on pancreatic cancer, the
GETgene-AI framework can be readily adapted to other cancers
or diseases with access to similar genomic and clinical data
resources. Future studies will explore its application to breast and
lung cancers by employing the same systematic process described in
this work. The GETgene-AI framework integrates literature review,
large-scale sequencing data, and network centrality scores,
providing a comprehensive approach to drug target prioritization.
Additionally, its reliance on computational methods for
prioritization and the elimination of statistically insignificant data
ensures that the framework is both scalable and efficient, making it
suitable for broader applications in biomedical research.

4 Discussion

Through the application of GETgene-AI to pancreatic cancer,
we have identified several promising drug targets, including
PIK3CA, PRKCA, LCK, MAPK8, ITGA4, PRKCB, and KCNA1,
warranting further investigation. These targets display strong
pancreatic cancer-specific genomic and transcriptomic evidence,
high network centrality in PPI analyses, and have not been
extensively reported in the pancreatic cancer literature despite
their biological relevance in our analysis.

GETgene-AI’s approach to drug target prioritization integrates
literature review, large-scale sequencing data, network-based
centrality scoring, and assessment of potential adverse effects
through organ expression scores. This multifaceted
implementation offers a scalable and comprehensive framework
for drug target prioritization, which can be readily adapted to other
cancers with similar data availability. Furthermore, GETgene-AI’s
ability to systematically deprioritize genes with low mutational
relevance underscores its superiority in efficiently narrowing
down actionable and biologically relevant targets. Slight
variations of cutoffs utilized for the compilation and
prioritization of the GET lists did not result in significant
variations of the final rankings or scores of the final GETgene-
AI gene list.

In contrast to recent methods that rely largely on AI-driven
network analysis alone (e.g., an AI-Driven Network Biology pipeline

TABLE 4 Top 20 highest ranked genes based off of GPT4 score compared to their ranks in GET and their status as experimentally validated drug targets.

Gene GPT4-score ranking GET ranking Experimental validation? Citation

MYC 1 2 Yes Zhang et al. (2024)

SRC 2 3 Yes Su et al. (2023)

EGFR 3 4 Yes Wu et al. (2023)

TERT 4 27 Yes Campa et al. (2015)

RRM2 5 21 Yes Li et al. (2022)

PIK3CA 6 1 Yes Payne et al. (2015)

TOP2A 7 16 Yes Pei et al. (2018)

NTRK1 8 22 Yes Cheng et al. (2013)

PTGS2 9 25 Yes Hingorani et al. (2003)

EGF 10 30 Yes Sheng et al. (2020)

CDK1 11 5 Yes Huang et al. (2021)

MAPK1 12 10 Yes Si et al. (2023)

KRAS 13 13 Yes Timar and Kashofer (2020)

MTOR 14 11 Yes Stanciu et al. (2022)

MSLN 15 37 Yes Hu et al. (2024)

RET 16 28 Yes Bhamidipati et al. (2023)

AKT1 17 31 Yes Arasanz et al. (2019)

JAK2 18 9 Yes Huang et al. (2022)

MET 19 34 Yes Pothula et al. (2020)

PDCD1 20 38 Yes Marabelle et al. (2020)
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identifying SRC as a therapeutic target in pancreatic cancer) (Zhang
and Chen, 2025), GETgene-AI offers a more automated and
modular framework. Our approach not only evaluates
protein–protein interaction networks but also incorporates tissue-
specific gene expression and mutation frequency analyses, and
integrates these modalities through distinct G, E, and T lists
before merging. This enables multi-dimensional prioritization
grounded in genomic, transcriptomic, and therapeutic evidence.
In future extensions, the modular nature of GETgene-AI allows easy
incorporation of additional evaluationmodules—such as differential
tissue analysis, motif-based mutation enrichment, or epigenetic
regulation scores—each processed independently in their own list
and then integrated via our weighted RP score. This design ensures
adaptability and enables seamless expansion of the framework to
accommodate new modalities as the data landscape evolves.

4.1 Contributions and limitations provided
by GPT4o

GPT-4o significantly enhanced the efficiency of literature-based
ranking by automating the review and prioritization of scientific
abstracts. This approach increased the efficiency of literature review
by over 80%. However, inherent challenges, such as the risk of
hallucination, necessitated manual verification to ensure the accuracy
of the results. While GPT-4o provides substantial value, its integration
into research workflows should be approached cautiously, with
safeguards implemented to mitigate potential errors. Additionally,
training GPT-4o on more experimental data in the future will
further improve its accuracy and reliability in prioritization tasks.

4.2 Future directions

While the current study focuses on cancer applications, future
research will expand the scope of the GETgene-AI framework. We
plan to validate its utility in additional cancer types, such as breast
and lung cancer, and explore its applicability to non-cancerous
disease contexts, including neurodegenerative disorders like
Alzheimer’s and Parkinson’s. By integrating computational
methods with large-scale genomic data, the GETgene-AI
framework addresses critical gaps in drug discovery, accelerating
the identification of actionable targets and advancing the
development of personalized therapeutic strategies.

Future work will prioritize experimental validation of top-
ranked targets, such as PIK3CA and PRKCA, using CRISPR-
mediated knockouts in pancreatic cancer cell lines. Subsequent
in vitro drug response assays will evaluate the therapeutic
potential of these targets. Additionally, we aim to refine the
framework by incorporating multi-omics datasets (e.g.,
proteomics, metabolomics) and enhancing its ability to predict
adverse effects through improved organ expression profiling. ce
of these targets.

5 Conclusion

The GET framework represents a significant advancement in
computational drug discovery, integrating network-based
prioritization with machine learning to prioritize actionable
therapeutic targets efficiently. Genes highlighted through our case
study in pancreatic cancer such as PRKCA, LCK, ITGA4, and
PRKCB are novel targets that require further exploration. While
this study focuses on pancreatic cancer, the GETGENE-AI
framework is adaptable to other cancers and diseases, offering a
modular and versatile approach for target discovery. GPT4o
enhanced the efficiency and accuracy of literature-based ranking,
reducing manual workload and aligning well with network-based
rankings. However, its reliance on manual verification underscores
the need for cautious integration into automated pipelines. By
refining target discovery methods, the GETGENE-AI framework
paves the way for personalized therapeutic strategies and accelerates
the translational research in oncology. Future work will focus on
expanding the framework to other cancers, improving ranking
metrics, and integrating multi-omics datasets to enhance its
predictive power. Future iterations of GETgene-AI aim to
integrate multi-omics datasets, such as single-cell RNA-seq and
metabolomics, to capture greater biological complexity. Table 5
indicates the significance of each gene labeled as novel.
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Multi-omics integration to 
identify immune-associated 
biomarkers and potential 
therapeutics in periodontitis
Ling Jin 1, Zhong-zheng Yuan 2 and Yin Liu 2*
1 The First Outpatient Department, Stomatological Hospital of Jilin University, Changchun, China, 
2 Wuxi Stomatological Hospital, Wuxi, Jiangsu, China

Background: Periodontitis, a chronic inflammatory disease of periodontal 
tissues, is linked to immune response and epigenetic modifications, with DNA 
methylation playing a crucial role. This study integrates transcriptomic and 
DNA methylation profiles from periodontitis patients to explore the immune 
microenvironment and identify potential biomarkers and therapeutic targets.
Methods: Transcriptomic and methylation profiles from 24 periodontitis patients 
were analyzed to evaluate the immune microenvironment and identify related 
abnormal genes. WGCNA was used to identify immune cell-associated genes. 
Subsequently, machine learning algorithms identified diagnostic biomarkers for 
periodontitis, which then validated in two cohorts with 247 and 310 periodontitis 
patients, respectively. Finally, network pharmacology analysis identified potential 
targeted drugs for the candidate genes.
Results: We obtained 23,528 differentially methylated sites and 1,641 differential 
expressed genes. Immune cell analysis identified eight abnormal cell types 
in periodontitis, and WGCNA highlighted two gene modules linked to these 
immune alterations. Machine learning with random forest and SVM identified 
nine key genes (ATP2C2, FAM43B, FOXA3, HSPA12A, KIF1C, NCS1, PGM1, 
RASSF6, SH2B2) with diagnostic efficacy, achieving high AUC scores across 
validation datasets. Network pharmacology analysis identified three drugs—
bisphenol A, acetaminophen, and valproic acid—as potential regulators of these 
genes, offering new treatment avenues.
Conclusion: Through integrating s transcriptomic and DNA methylation profiles, 
nine genes have been filtered as potential diagnostic biomarkers of periodontitis. 
Drugs targeting these genes may serve as potential therapeutics for periodontitis. 
These findings reveal valuable insights into immune and epigenetic mechanisms 
in periodontitis, presenting new biomarkers and therapeutic options that may 
enhance clinical diagnosis and treatment of the disease and provide unique 
insights for further exploration of the pathogenesis of periodontitis and the 
development of related therapeutic drugs.
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Introduction

Periodontal disease is considered to be the most common disease 
in humans. The prevalence of periodontal disease is showing a 
significant increase (1), and globally, the prevalence of severe 
periodontal disease is 11%, affecting 743 million people (2). 
Epidemiologic surveys have shown that the leading cause of tooth loss 
worldwide is periodontitis, which is associated with a reduced quality 
of life and may cause a variety of other systemic health problems (3). 
Periodontitis is a chronic inflammatory condition affecting the tissues 
that support teeth, initiated by plaque buildup. This process results in 
progressive tissue destruction, formation of periodontal pockets, loss 
of attachment, and resorption of alveolar bone, ultimately causing 
tooth mobility, gum recession, and eventually, tooth loss (4). Previous 
studies have reported the complex molecular mechanisms of this 
periodontitis (5). However, the specific roles of genes, cell types, and 
cellular mechanisms in the development of periodontitis remain 
unclear, and there are currently no reliable early diagnostic markers 
or therapeutic targets available (6, 7). For instance, researchers found 
that chronic injury may alter transglutaminase gene expression, 
potentially playing a crucial role in remodeling and adaptation (8); It 
has been found that a significant link between miRNA in gingival 
sulcus fluid and the risk of periodontitis (9).

While bacteria are essential in initiating periodontitis, disease 
progression largely relies on the host’s immune response. An excessive 
or imbalanced immune reaction to these microorganisms can speed 
up both the onset and advancement of periodontitis (10), accompanied 
by the release of various inflammatory mediators and cytokines (11). 
For example, prostaglandin E2 (PGE2), interleukin-1β (IL-1β), tumor 
necrosis factor-α (TNF-α) (12), IL-8 (13), and interferon-γ (IFN-γ) 
(14). Thus, the immune response of the host, particularly the cellular 
immune response, is crucial in regulating the equilibrium between the 
repair and damage of periodontal tissues (15). Therefore, current 
research on periodontitis focuses on understanding how the immune 
system and immunomodulatory factors influence periodontal 
inflammation and alveolar bone degradation, as well as the role of 
molecular regulatory networks in immune cell activation and 
differentiation (4).

To further elucidate the mechanisms underlying periodontitis, 
it is important to consider not only the immune response but also 
the epigenetic factors that regulate gene expression. Epigenetics 
refers to changes in gene expression that do not involve alterations 
to the underlying DNA sequence. Key epigenetic processes include 
DNA methylation, histone modifications, and chromatin 
remodeling. Recent studies suggest that chronic inflammatory 
conditions, such as periodontitis, can induce epigenetic changes, 
thereby modulating the immune response and contributing to 
disease progression. Growing evidence indicates that these epigenetic 
changes are linked to the development of periodontitis (15). In 
particular, epigenetic modifications occur in periodontal tissues 
during the periodontitis process. Currently, DNA methylation is the 
most studied epigenetic modification associated with periodontitis 
(16). DNA methylation is a widespread epigenetic alteration in 
eukaryotic cells, involving the attachment of methyl groups to 
cytosine residues within CpG dinucleotides. This modification can 
be  either hypermethylation or hypomethylation, leading to the 
repression or activation of certain genes (17). DNA methylation of 
cytokine-encoding genes has been found in periodontal tissues of 

patients with periodontitis (18). For instance, the IL6 gene expression 
in the gingival tissues of patients with periodontitis was elevated 
compared to healthy controls (19). In addition, DNA methylation 
affects genes encoding interferons and chemokines (20). Recently, 
researchers investigated CpG methylation of 22 inflammatory 
candidate genes (21). These findings may provide some new insights 
into the relationship between altered methylation of encoded genes 
and periodontitis.

In this study, we hypothesize that integrating transcriptomic and 
DNA methylation profiles will reveal novel immune-related 
biomarkers and mechanistic links in periodontitis. To confirm it, 
we systematically integrated periodontitis-associated transcriptome 
and DNA methylation data to explore the immune microenvironment 
of periodontitis. We aimed to identify key immune biomarkers in 
multiple omics dimensions using a range of bioinformatics approaches 
(Figure 1). These findings may offer new insights for the development 
of diagnostic and therapeutic biomarkers for periodontitis.

Methods

Data source

DNA methylation and corresponding mRNA expression data 
from periodontitis patients were retrieved from the GEO database 
under accession numbers GSE173081 (DNA methylation, Ntotal = 24, 
Nperiodontitis = 12, and Nhealthy = 12) and GSE173078 (mRNA expression, 
Ntotal = 24, Nperiodontitis = 12, and Nhealthy = 12). Two additional 
independent datasets, GSE16134 (testing dataset1, Ntotal = 310, 
Nperiodontitis = 241, and Nhealthy = 69) and GSE10334 (testing dataset2, 
Ntotal = 247, Nperiodontitis = 183, and Nhealthy = 64), were used for testing. 
All FPKM expression values were normalized using a log2 
transformation. All these datasets are publicly available and 
unrestricted re-use is permitted via the open license of GEO database.

DNA methylation profiles

The Illumina Human Methylation EPIC Array was used to 
analyze the methylation status of periodontitis patients (Ntotal = 24, 
Nperiodontitis = 12, and Nhealthy = 12). This bead chip covers more than 
810,000 methylation sites per sample. The raw data were processed by 
the following steps: firstly, probes with a null value and located in sex 
chromosomes were removed. Then, probes that mapped to multiple 
genes or were not mapped to genes or containing SNPs were removed.

The minfi R package was used for the normalization of the raw 
Methylation EPIC Array data. Probes with a p-value < 0.05 and 
absolute detabeta (|Δβ|) > 0.1 were considered differentially methylated.

Immune microenvironment analysis

The xcell R package was employed to estimate the abundance of 
64 immune cell types in periodontitis patients, including various 
T-cell subtypes and other immune cells such as B cells, NK cells, 
monocytes, and macrophages. The abundance of immune cells in 
periodontitis patients was compared to that in healthy individuals to 
identify distinctive features for further investigation.
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Differential expression analysis

The limma R package was employed to analyze gene expression 
differences between periodontitis and control groups. 
Differentially expressed mRNAs were identified with an adjusted 
p-value < 0.05 and an absolute log2 fold change ≥ 0.263 (22). 
Subsequently, Pearson correlation analysis was conducted to 
assess the relationship between DNA methylation levels and 
gene  expression. Only correlations with an absolute Pearson 

coefficient above 0.4 and a p-value below 0.05 were considered  
significant.

WGCNA

Co-expression networks were constructed using the WGCNA R 
package to analyze candidate genes showing correlated patterns in 
both methylation and expression levels, alongside abnormal immune 

FIGURE 1

Workflow of the study.
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cell types in periodontitis patients. In this study, hierarchical clustering 
was used to group genes with similar expression patterns. These gene 
clusters were then linked to the altered immune cells in patients, and 
the most relevant genes within these clusters were selected for 
further investigation.

Machine learning

The randomForest R package was employed to build a periodontitis 
prediction model using the random forest method, which involved 
training and testing categorical models to identify gene combinations 
with high discriminatory power for distinguishing periodontitis from 
normal groups. The key genes were identified using an SVM algorithm 
with the e1071 R package to construct an optimal diagnostic model.

Function enrichment analysis

We extracted all differentially expressed genes (DEGs) and 
differentially methylated genes (DMGs) for further functional 
enrichment analysis using the Metascape webserver. Enrichment 
analysis was conducted for KEGG pathways and Hallmark gene sets, 
with functions selected based on a false discovery rate of less than 0.05.

Statistical analyses were performed using R software (version 
4.3.2). A t-test was used to assess differences between the two groups, 
and a p-value of less than 0.05 was considered statistically significant.

Results

Differently expressed and differentially 
methylated genes are associated with 
inflammatory and immune-related 
pathways in periodontitis

We first assessed methylation levels in patients with periodontitis. 
First, we performed differential analysis of the EPIC methylation array 
and obtained a total of 23,528 differentially methylated sites (p < 0.05, 
|Δβ| > 0.1). Subsequently, we categorized the differentially methylated 
probes into promoter region probes (TSS200, TSS1500, 1stExon) and 
body region probes based on their location in the genome. Among 
them, there are 5,152 differentially methylated promoter region probes 
distributed on 2,489 genes and 4,814 differentially methylated body 
region probes, which fell on 2,784 genes (Figure 2A). Subsequently, 
we performed enrichment analysis of these differentially methylated 
genes. The results showed that the differentially methylated genes in 
the body region were mainly enriched in the Calcium signaling 
pathway, Wnt signaling pathway and other inflammation-related 
pathways (Figure 2B), while the differentially methylated genes in the 
promoter region were mainly enriched in the cMAP signaling 
pathway, the PI3K-Akt signaling pathway, and the Cytokine-cytokine 
receptor interaction. Receptor interaction and other immune-related 
pathways (Figure 2C).

To further elucidate the functional impact of these epigenetic 
modifications, we  next examined the gene expression profiles in 
periodontitis patients. We  analyzed the gene expression data of 
periodontitis patients to screen for genes abnormally expressed in 

periodontitis (|log2FC| > 0.263, p < 0.05). We screened a total of 1,641 
differential expressed genes, of which 398 were abnormally down-
regulated and 1,243 were abnormally up-regulated (Figure  2D). 
Enrichment analysis of these differential genes showed that 
periodontitis-associated aberrantly expressed genes were mainly 
enriched in pathways such as Cytokine-cytokine receptor interaction, 
NF-kappa B signaling pathway and HIF-1 signaling pathway 
(Figure 2E). The NF-kappa B signaling pathway, in particular, plays a 
pivotal role in orchestrating inflammatory responses. Activation of 
NF-kappa B leads to the transcription of a variety of cytokines and 
chemokines that mediate inflammation, which is critical in the 
progression of periodontitis. This pathway can contribute to the 
persistence of inflammation, thereby exacerbating tissue destruction 
and bone resorption observed in periodontitis.

In our integrated analysis, we identified 349 genes that were both 
differentially methylated and differentially expressed. Notably, several 
key genes involved in inflammation and immune regulation were 
among these 349 genes. For example, MMP9, a matrix 
metalloproteinase known for its role in tissue remodeling and 
inflammatory processes, has been implicated in periodontal tissue 
degradation. Similarly, CD86, a critical co-stimulatory molecule 
involved in T-cell activation, and PTPRC (CD45), a regulator of 
immune cell signaling, underscore the immune involvement in 
periodontitis. Other genes such as IL2RA and IL21R are central to 
immune cell differentiation and activation, while FAM43B and 
FOXA3 have emerged as potential diagnostic markers in our analysis. 
These gene-specific findings reinforce the biological relevance of our 
integrated analysis and suggest that the dysregulation of these key 
genes may contribute significantly to the pathogenesis of periodontitis 
(Figure 2F).

Altered immune cells in periodontitis linked 
to differentially expressed gene modules 
regulated by aberrant methylation

We evaluated the immune microenvironment of periodontitis 
patients based on the xcell algorithm. The results showed that the 
abundance of immune cells such as Astrocytes, Granulocyte-
Macrophage Progenitor (GMP), Hepatocyte, Monocyte, Neutrophil, 
Plasma cells, and Prevacidocytes was significantly increased while 
Platelets were significantly decreased in periodontitis patients 
(Figure 3A; Supplementary Figure 1). It is important to note that the 
detection of hepatocyte signatures in gingival tissue is unexpected. 
This may be due to the inherent limitations of the xCell algorithm, 
which relies on gene expression profiles that can sometimes overlap 
among different cell types. The “Hepatocyte” signal observed might 
represent a similar cell population with a related expression profile 
rather than true hepatocytes. Further experimental validation is 
needed to clarify this observation. It should be noted that the detection 
of “hepatocyte” and “platelet” signatures likely reflects algorithmic 
limitations of bulk transcriptomic deconvolution rather than the true 
presence of these cell types in gingival tissue.

These alterations in immune cell composition suggest an 
imbalance in immune regulation, potentially driven by underlying 
epigenetic changes. Subsequently, we further screened the aberrant 
genes regulated by methylation, and the screening criteria were, body 
region differentially methylated genes, whose methylation level was 
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positively correlated with the expression level (R > 0.4, p < 0.05), and 
promoter region differentially methylated genes, whose methylation 
level was negatively correlated with the expression level (R < −0.4, 
p < 0.05). These correlation thresholds were chosen to ensure a 
moderate to strong association between methylation changes and gene 
expression regulation while minimizing false positives. Previous 

studies have used similar cutoffs to establish meaningful methylation-
expression relationships in disease contexts (23, 24). Finally, 
we screened 132 eligible candidate genes (Figure 3B).

To connect these findings with the observed immune cell 
alterations, we investigated whether the aberrantly methylated genes 
might drive changes in immune cell profiles. We performed WGCNA 

FIGURE 2

Transcriptome- and DNA mathylation-based screening of periodontitis. (A) Volcano plot of differentially methylated probes (periodontitis vs. control). 
(B) Enrichment analysis of differentially methylated probes which located at gene body region. (C) Enrichment analysis of differentially methylated 
probes which located at gene promoter region. (D) Volcano plot of differentially expressed genes (periodontitis vs. control). (E) Enrichment analysis of 
differentially expressed genes. (F) Venn plot showed the overlap of differentially methylated probes and differentially expressed genes.
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FIGURE 3

Assessment of the immune microenvironment for periodontitis and screening of relevant gene modules. (A) Violin plot showed the altered immune 
cells of periodontitis. GMP, Granulocyte-Macrophage Progenitor. (B) Correlation ship between differentially methylated probes and differentially 
expressed genes. (C) Power of WGCNA co-expression network. (D) Cluster dendrogram of candidate genes which were correlated in DNA methylation 
and gene expression in periodontitis. (E) Immune cells associated co-expression modules in periodontitis.
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analysis to screen the co-expression modules of altered immune cells 
based on the expression levels of these 132 candidate genes with the 
abundance of the above mentioned 8 altered immune cells associated 
with periodontitis. The results showed that there were three expression 
patterns of these candidate genes (Figures 3C,D), among which, the 
MEturquoise module (contains 100 candidate genes) was significantly 
associated with abnormally elevated immune cells such as Astrocytes, 
GMP, Hepatocyte, Monocyte, Neutrophil, Plasma cells, and 
Previpocytes. correlated, while MEblue (contains 25 candidate genes) 
significantly correlated with Astrocytes, Hepatocyte, Monocyte, 
Neutrophil, Plasma cells, Previpocytes and Platelets (Figure  3E; 
Supplementary Table S1). These findings indicate that epigenetic 
regulation, as reflected by aberrant methylation, may influence 
immune cell composition by modulating the expression of gene 
modules relevant to immune functions.

Machine learning-based screening for 
multi-omics diagnostic biomarkers in 
periodontitis patients

Through WGCNA analysis, we  found that MEblue and 
MEturquoise are associated with altered immune cells in periodontitis 
patients. Among them, MEblue contains 25 candidate genes while 
MEturquoise contains 100 candidate genes. These gene modules 
exhibited significant correlations with immune cell types that are 
dysregulated in periodontitis, including monocytes, neutrophils, and 
plasma cells (Figure  3E). The enrichment analysis of these genes 
revealed their involvement in immune-related pathways (such as 
leukocyte activation, toll-like receptor 2 signaling pathway), further 
underscoring their biological relevance (Supplementary Figure 2). The 
strong correlation between these genes and immune cell alterations 
suggests their potential role in immune dysregulation and 
inflammation in periodontitis. Thus, we  selected these genes for 
machine learning analysis to identify the most informative biomarkers 
for disease classification. We first performed random forest modeling 
for the 25 genes in the MEblue module. The results show that the 
random forest model has the optimal classification efficacy when the 
number of genes in the model reaches 3 (Figure 4A). Subsequently, 
we show the gene scores for each node in the random forest and select 
the top3 genes (HSPA12A, ATP2C2, and NCS1) (Figure 4B). These 
three genes have been previously implicated in periodontitis-related 
processes. For instance, HSPA12A is known to regulate inflammatory 
responses (25), ATP2C2 plays a critical role in immune 
microenvironment (26), and NCS1 is associated with immunotherapy 
and prognosis of cancer (27). Next, we construct a classification model 
based on SVM for these top3 genes. The results show that in the 
training set, the classification efficiency of this 3-gene model reaches 
0.826 (AUC = 0.826, Figure 4C), while in the testing dataset1, the 
AUC of this model is also as high as 0.775 (Figure 4D), and in the 
testing dataset2, the AUC value is 0.752 (Figure 4E). This suggests that 
this 3-gene model has a better diagnostic efficacy for periodontitis 
patients. In the MEturquoise module, we  found that the 6-gene 
random forest model had the best classification efficacy (Figure 5A). 
We then ranked the genes in the model based on importance and 
selected the top6 genes (PGM1, RASSF6, KIF1C, SH2B2, FOXA3, and 
FAM43B) (Figure 5B). The six genes selected from the MEturquoise 
module are also intricately linked to immune and inflammatory 

pathways. For example, PGM1 and RASSF6 are associated with 
macrophage (28). KIF1C could regulate the podosome dynamics in 
macrophages (29). The immunologic significance of SH2B2 is related 
to the invasion of colon adenocarcinoma (30). FOXA3 is a 
transcriptional activator that is associated with signal transduction in 
tumors (31). Additionally, FAM43B could repress the cell proliferation 
and is regulated by DNA methylation (32). Similarly, we construct 
SVM classifiers based on these 6 candidate genes. The results show 
that this model has AUC = 0.819 (Figure 5C) in the training set, while 
in testing dataset1 and testing dataset2, the AUC is 0.860 (Figure 5D) 
and 0.816 (Figure 5E), respectively. Detailed performance metrics are 
also summarized in Supplementary Table S2. These results suggesting 
that these models have effective efficacy for periodontitis diagnosis.

Identification of target drugs for 
periodontitis patients based multi-omics 
diagnostic biomarkers

Based on epigenome and transcriptomics, we  screened 9 
periodontitis diagnostic genes in the periodontitis immune 
microenvironment. Subsequently, we further explored potential target 
drugs for these 9 genes. We constructed a drug-targeting network for 
these genes based on the CTD database and identified 345 drugs/
compounds targeting these 9 genes (Figure  6). Through further 
network analysis, we screened out 3 drugs/compounds targeting all 9 
genes simultaneously: bisphenol A, Acetaminophen and Valproic Acid 
(Supplementary Table S3). Bisphenol A, though primarily considered 
an environmental contaminant, has been implicated in immune 
modulation and inflammatory responses (33). Acetaminophen is 
widely used as an analgesic and has been shown to modulate oxidative 
stress pathways, which are relevant in periodontitis pathology (34). 
Valproic acid, a histone deacetylase inhibitor, has demonstrated anti-
inflammatory effects and potential benefits in immune-related 
conditions (35). These insights support the relevance of these drugs in 
the context of periodontitis and highlight their possible regulatory 
roles in disease-associated pathways. Among them, Acetaminophen 
and Valproic Acid are FDA-approved drugs with better results in 
analgesia. In this study, we  found for the first time that they are 
associated with periodontitis-related targets, which provides a new 
idea for the subsequent screening of potential periodontitis-related 
drugs. Their repurposing for periodontitis could offer advantages such 
as well-characterized pharmacokinetics and widespread clinical 
availability. However, the potential off-target effects and adverse 
reactions-such as hepatotoxicity for Acetaminophen and the broad 
systemic effects associated with Valproic Acid-necessitate further 
investigation in the context of periodontitis. Additional preclinical 
studies and clinical trials are warranted to optimize dosing, evaluate 
long-term safety, and establish their efficacy as adjuncts in 
periodontitis management.

Discussion

While numerous studies have highlighted the immune 
microenvironment’s involvement in the development of periodontitis, 
the exact mechanisms through which it affects the onset and 
progression of the disease are still not fully understood (21–23). It has 
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been found that periodontitis is not only affected by the transcriptional 
level but also involves epigenetic alterations. Nevertheless, there are 
limited studies that have identified immune-related genes linked to 
periodontitis across various histological layers, which could potentially 
serve as important clinical biomarkers for the disease. In this study, 
we first investigated the immune microenvironment of periodontitis 
and identified candidate genes that showed both abnormal 
methylation and expression patterns in periodontitis samples, utilizing 
epigenomic and transcriptomic approaches. Subsequently, through a 
multi-dataset machine learning algorithm, we further narrowed down 
these candidate genes to nine key genes with diagnostic efficacy for 
periodontitis, namely, ATP2C2, FAM43B, FOXA3, HSPA12A, KIF1C, 

NCS1, PGM1, RASSF6, and SH2B2. We then further analyzed these 
genes by network pharmacology to screen for their potential drug 
targets. This study revealed the association of key genes related to the 
immune microenvironment with periodontitis at the epigenetic and 
transcriptional levels, and screened for drug targets that could regulate 
these key genes through the drug target network. Our research offers 
significant insights into the potential use of these key genes as 
diagnostic and therapeutic markers for improving the clinical 
management of periodontitis.

ATP2C2 is involved in calcium transmembrane transport, 
intracellular calcium ion homeostasis, and manganese ion transport 
(36). FAM43B has been found to control innate immunity through 

FIGURE 4

Random forest analysis in MEblue. (A) error.cv. plot of random forest analysis. Here, the random forest model has the optimal classification efficacy 
when the number of genes in the model reaches 3. (B) Mean decrease accuracy of random forest model. (C) SVM performance in training datasets. 
(D) SVM performance in testing datasets 1. (E) SVM performance in testing datasets 2.
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Epigenetic Regulation (37). FOXA3 encodes a forkhead-like 
DNA-binding protein that interacts with chromatin. It also plays a role 
in the regulation of metabolism as well as organ differentiation. 
FOXA3 methylation has been found to cause dedifferentiation and 
sorafenib resistance in hepatocellular carcinoma (38). HSPA12A, 
which is predicted to have ATP-binding activity and is located in 
extracellular exosomes, was found to promote nuclear PKM2-
mediated polarization of M1 macrophages (39). The protein encoded 
by KIF1C belongs to a family of kinesin-like proteins that transport 
APC-dependent mRNAs to cellular protrusions (40) and can 
re-localize GLUT4 to immune-modification-positive cell sites (41). 
NCS1, a member of the neuronal calcium sensor gene family, is a key 
Ca2 + −binding protein thought to play a role in cell proliferation and 
immune infiltration (27). The protein encoded by this gene is an 

isoform of phosphoglucomutase (PGM) and is associated with M2 
macrophages and TFH cells and their surface markers CD163 and 
CXCR5 (42). RASSF6 encodes a member of the Ras-associated 
structural domain family (RASSF), and the protein encoded by this 
gene is a Ras effector protein that induces apoptosis. In acute 
lymphoblastic leukemia (ALL), there is a high prevalence of aberrant 
RASSF6 promoter methylation, and its DNA methylation status has 
the potential to serve as a biomarker for assessing MRD levels in ALL 
patients (43). SH2B2 encodes a protein expressed in B lymphocytes 
that undergoes tyrosine phosphorylation in response to B cell receptor 
stimulation and plays a role in signaling in the Shc/Grb2 pathway (44).

In conclusion, through our integration of DNA methylation profiles 
and transcriptomes of periodontitis patients, we assessed the immune 
microenvironment of periodontitis patients and screened nine diagnostic 

FIGURE 5

Random forest analysis in MEturquoise. (A) error.cv. plot of random forest analysis. Here, the random forest model has the optimal classification 
efficacy when the number of genes in the model reaches 6. (B) Mean decrease accuracy of random forest model. (C) SVM performance in training 
datasets. (D) SVM performance in testing datasets 1. (E) SVM performance in testing datasets 2.
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markers related to periodontitis patients based on machine-learning 
algorithms, and screened for relevant targeted drugs. This finding will 
provide new insights for subsequent diagnosis and treatment of 
periodontitis. Furthermore, our study builds on previous research using 
machine learning to identify biomarkers in immune-related diseases. For 
instance, studies on interactomic hub gene prediction in PBMCs for type 
2 diabetes mellitus, dyslipidemia, and periodontitis have demonstrated 
the potential of network-based approaches in identifying key regulatory 

genes (45). Additionally, machine learning models for predicting 
rheumatoid arthritis based on ACPA autoantibody development in the 
presence of non-HLA gene polymorphisms highlight the utility of such 
methods in complex diseases (46). Similarly, the prediction of 
interactomic hub genes in rheumatoid arthritis using peripheral 
mononuclear cells underscores the importance of transcriptomic and 
network-based analyses in understanding immune-related pathologies 
(47). Our study contributes to this growing body of research by 

FIGURE 6

Drug network of nine crucial genes. Red nodes represent nine crucial gene while blue is potential target drugs. The node size indicates the degree of 
the network.

153

https://doi.org/10.3389/fmed.2025.1640961
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Jin et al.� 10.3389/fmed.2025.1640961

Frontiers in Medicine 11 frontiersin.org

identifying key diagnostic genes and their potential drug interactions in 
periodontitis. Meanwhile, our diagnostic models, with AUC values 
ranging from 0.75 to 0.86, compare favorably with existing periodontitis 
biomarkers, which often rely on single-parameter assessments such as 
probing depth, clinical attachment loss, or inflammatory mediators in 
gingival crevicular fluid (48). The integration of epigenetic and 
transcriptomic data in our models not only improves diagnostic accuracy 
but also captures the complexity of the disease’s molecular basis. This 
multi-omics approach allows for a more comprehensive evaluation of the 
disease state and may facilitate the development of personalized 
treatment strategies. The identification of these drugs through a multi-
omics approach presents a novel strategy for periodontitis therapy. In 
terms of efficacy, the FDA-approved drugs Acetaminophen and Valproic 
Acid have well-documented pharmacological profiles that may enhance 
their potential as adjunct therapies. They offer the possibility of 
modulating key molecular mechanisms underlying periodontitis, such 
as oxidative stress and immune regulation. However, while conventional 
therapies focus on bacterial control and symptomatic relief, these drugs 
may provide benefits by directly impacting the disease’s molecular 
drivers. Regarding safety, current standard therapies generally have 
minimal systemic side effects but may not fully address the inflammatory 
and tissue-degradative components of periodontitis. In contrast, the 
off-target effects of Acetaminophen (e.g., hepatotoxicity) and Valproic 
Acid (e.g., gastrointestinal and metabolic disturbances) require careful 
dosing and monitoring.

Overall, these findings underscore the clinical and biological 
significance of integrating multi-omics data to identify potential 
therapeutic agents. The approach not only enhances our understanding 
of periodontitis pathogenesis but also opens new avenues for 
developing targeted interventions that may complement existing 
treatment modalities.

Despite the promising findings of our study, several limitations 
should be acknowledged. First, our analyses relied on publicly available 
datasets with relatively small sample sizes, which may limit the 
generalizability of the results. The lack of detailed demographic 
information, such as age and gender, may also introduce selection bias 
and restrict applicability across broader populations. Future large-scale 
studies with demographically matched cohorts are warranted to address 
these concerns. Second, while the use of multi-dataset machine learning 
improved robustness, potential confounders (including patient 
demographics, disease severity, and sample processing) could still 
influence the outcomes. Integrating additional omics layers, such as 
proteomics and metabolomics, may provide a more comprehensive 
understanding of periodontitis pathogenesis.

Moreover, the current study provides predictive insights into 
immune alterations in periodontitis based on bulk transcriptomic 
deconvolution. However, bulk analyses cannot fully capture the 
complexity of the immune microenvironment, which ideally requires 
single-cell transcriptomic and spatially resolved approaches. Importantly, 
all conclusions are computationally derived without protein-level or 
in vivo validation. Future research should therefore include experimental 
confirmation, such as immunohistochemistry, flow cytometry, and 
animal models, to validate the biological and therapeutic relevance of the 
identified biomarkers and drug candidates. Specifically, preclinical 
testing of acetaminophen and valproic acid will be crucial to determine 
their mechanistic roles and feasibility as adjunctive therapies 
for periodontitis.

Conclusion

In conclusion, through our integration of DNA methylation 
profiles and transcriptomes of periodontitis patients, we assessed the 
immune microenvironment of periodontitis patients and screened 
nine diagnostic markers related to periodontitis patients based on 
machine-learning algorithms, and screened for relevant targeted 
drugs. This finding will provide new insights for subsequent diagnosis 
and treatment of periodontitis.
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SUPPLEMENTARY FIGURE 1

Assessment of the immune microenvironment for periodontitis. Violin plot 
showed the abundance of immune cells in periodontitis. DC, Dendritic Cell; 
CLP, Common Lymphoid Progenitor; CMP, Common Myeloid Progenitor; 
GMP, Granulocyte-Macrophage Progenitor; HSC, Hematopoietic Stem Cell; 
MEP, Megakaryocyte-Erythroid Progenitor; MPP, Multipotent Progenitor; 
MSC, Mesenchymal Stem Cell; NKT, Natural Killer T Cell.

SUPPLEMENTARY FIGURE 2

Enrichment analysis of genes in MEturquoise and MEblue. (A) Enrichment 
analysis of 100 module genes in MEturquoise. (B) Enrichment analysis of 25 
module genes in MEblue.
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Glossary

WGCNA - Weighted correlation network analysis

SVM - Support Vector Machine

AUC - Area Under the Curve

PGE2 - prostaglandin E2

IL-1β - interleukin-1β

TNF-α - tumor necrosis factor-α; IL-8

IFN-γ - interferon-γ

FPKM - Fragments Per Kilobase per Million

DEGs - differentially expressed genes

DMGs - differentially methylated genes

FC - Fold-Change value

DC - Dendritic Cell

CLP - Common Lymphoid Progenitor

CMP - Common Myeloid Progenitor

GMP - Granulocyte-Macrophage Progenitor

HSC - Hematopoietic Stem Cell

MEP - Megakaryocyte-Erythroid Progenitor

MPP - Multipotent Progenitor

MSC - Mesenchymal Stem Cell

NKT - Natural Killer T Cell

CTD - Comparative Toxicogenomics Database

PGM - phosphoglucomutase

RF - random forest

RASSF - Ras-associated structural domain family

GEO - Gene Expression Omnibus database

157

https://doi.org/10.3389/fmed.2025.1640961
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Frontiers in Medicine 01 frontiersin.org

Neuroimaging evidence for 
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University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, 
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Objectives: Non-specific low back pain (NSLBP) is a prevalent disorder with 
significant global health impacts. This systematic review and meta-analysis 
assessed acupuncture’s clinical effectiveness for NSLBP and explored its brain 
mechanisms using fMRI.
Methods: A comprehensive search of multiple databases (PubMed, Embase, 
Cochrane Library, Web of Science, Science Direct, China National Knowledge 
Infrastructure, Wanfang Data, Chinese Technical Periodicals Database, and 
Chinese Biomedical Literature Database) was conducted from inception to 
July 11th, 2024. We included randomized controlled trials (RCTs) or non-RCTs 
resting-state functional magnetic resonance imaging to observe the effect of 
acupuncture on NSLBP. GingerALE 3.0.2 was used as the meta-analysis tool, and 
meta-analysis was performed in the Montreal Neurological Institute coordinate 
space.
Results: The review synthesized evidence from ten studies involving 358 
participants. Subgroup analyses indicated that acupuncture significantly reduced 
pain scores compared to sham acupuncture in both acute NSLBP (WMD = −1.04, 
95% CI: −1.72 to −0.36, p = 0.003) and chronic NSLBP (WMD = −0.78, 95% 
CI: −1.25 to −0.31, p < 0.001). Neuroimaging analyses revealed distinct brain 
activation patterns: acute NSLBP showed positive activation in the right sub-
lobar insula, inferior parietal lobule, medial frontal gyrus, and cingulate gyrus, 
while chronic NSLBP demonstrated positive activation in bilateral sub-lobar 
insula and negative activation in motor and prefrontal regions.
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Conclusion: Acupuncture shows significant efficacy for NSLBP, modulating pain 
processing through the insula and limbic system. While these results suggest 
therapeutic potential for both acute and chronic NSLBP, higher-quality research 
is needed to validate these mechanisms.
Systematic review registration: Prospero registration number: CRD42022342438, 
URL: https://www.crd.york.ac.uk/PROSPERO/view/CRD42022342438.

KEYWORDS

acupuncture, non-specific low back pain, meta-analysis, functional magnetic 
resonance imaging, systematic reviews

1 Introduction

Non-specific low back pain (NSLBP), a highly prevalent 
musculoskeletal disorder in adults, encompasses both nociceptive and 
neuropathic components that may radiate to the lower extremities, 
significantly impairing mobility and function (1). The classification of 
NSLBP falls into acute, subacute, and chronic categories (2, 3). 
According to the 2021 Global Burden of Disease Study, NSLBP ranks 
among the top 10 causes of long-term disability in 188 countries (2, 
4). The global prevalence of lower back pain is estimated at 18.3%, 
with higher rates observed among women and in high-income 
countries (5). Financially, this condition imposes a heavy burden, 
costing the UK approximately £2.8 billion annually, Australia over 
$4.8 billion, and the US more than $100 billion (6).

Given its impact, effective treatments for NSLBP are critical for 
global health. Opioids are frequently prescribed for chronic NSLBP 
but raise concerns about addiction and risks (7), contributing to a 
drug abuse crisis and fueling demand for non-opioid alternatives (8). 
Increasingly, research has pointed to non-pharmacological approaches 
as safe and effective alternatives for managing NSLBP (9–13), and the 
effectiveness of acupuncture in pain relief has been demonstrated in 
numerous studies (14–16). It is also strongly advised to utilize 
acupuncture for treatment in the American College of Physicians 
guidelines for treating chronic NSLBP (13).

Regular MRI is used to visualize structural abnormalities such as disc 
herniations, spinal stenosis, or cancer. Brain imaging studies reveal stage-
specific alterations in NSLBP. SPECT imaging and statistical analyses have 
demonstrated different alterations in brain blood flow among patients 
with acute and chronic NSLBP (17). In chronic cases, enhanced 
connectivity within the frontoparietal network (FPN), somatomotor 
network (SMN), and thalamus (18). This increased connectivity 
represents neurophysiological changes associated with the chronic phase 
of the condition. Given these altered connectivity patterns of different 
phrases of NSLBP, acupuncture has been explored as a potential 
neuromodulatory intervention. As for mechanism, acupuncture appears 
to influence several brain networks involved in pain, emotion, and 

memory, such as the sensorimotor network, the default mode network 
(DMN), and the limbic system (19). However, the exact neurophysiological 
mechanisms remain unclear due to acupuncture’s engagement of multiple 
neural circuits (20), highlighting the need for further research to clarify 
its role across NSLBP phases.

Since the mid-1990s, functional magnetic resonance imaging 
(fMRI) has been used to observe the human brain’s response to 
acupuncture stimulation (21). As an imaging method, fMRI reveals 
time-varying changes in brain metabolism, offering researchers precise 
insights into the anatomical and physiological functions associated with 
acupuncture. These findings suggest that acupuncture’s mechanism is 
mediated through the central nervous system (19). Therefore, fMRI is a 
critical tool for investigating how acupuncture exerts its therapeutic 
effects at the neurophysiological level. Acupuncture’s analgesic effects 
are mediated by neurotransmitters, signaling pathways, and 
immunological responses, which in turn influence neural activity in 
specific brain regions (22). Previous study discovered that following 
acupuncture therapy, neural activation increased in the sensorimotor 
network, periaqueductal grey, and nucleus accumbens, while the DMN 
showed decreased activation (23). Moreover, there were common 
patterns of activation in the sensorimotor cortical network and 
deactivation in the limbic paralimbic neocortical network after 
acupuncture stimulation (24). These effects were also observed in 
participants with NSLBP, where acupuncture improved aberrant brain 
structure and functional activity, primarily through the pain matrix, 
DMN, salience network, and descending pain modulatory system (25). 
In summary, acupuncture’s ability to modulate brain networks and 
neurotransmitter activity contributes to its therapeutic effects on pain.

Several reviews have summarized the mechanisms underlying this 
treatment using magnetic resonance imaging to explore its effects on 
NSLBP (26–29). Yet, these analyses did not differentiate NSLBP by 
duration, limiting understanding of phase-specific analgesic 
mechanisms. Addressing this gap, our meta-analysis categorizes 
NSLBP into acute, subacute, and chronic phases to examine pain 
scales and brain function following acupuncture. By focusing on 
duration-specific cohorts, our study aims to elucidate neural substrates 
of acupuncture analgesia, informing clinical decisions and guiding 
future research directions.

2 Methods

2.1 Data and methods

The protocol of this study was registered at PROSPERO (http://www.
crd.york.ac.uk/PROSPERO) (registration number: CRD42022342438). 

Abbreviations: ACC, anterior cingulate cortex; ALE, activation likelihood estimation; 

ANSLBP, acute non-specific low back pain; CIs, confidence intervals; CNSLBP, 

chronic non-specific low back pain; DMN, default mode network; fMRI, functional 

magnetic resonance imaging; GRADE, Grading of Recommendations, Assessment, 

Development and Evaluation; MFG, medial frontal gyrus; MNI, Montreal 

Neurological Institute; NSLBP, nonspecific low back pain; PFC, prefrontal cortex; 

RCTs, randomized controlled trials; SDM, Seed-based d Mapping; WMD, weighted 

mean difference; FPN, frontoparietal network; SMN, somatomotor network.
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A systematic review was conducted in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses guidelines 
(PRISMA guidelines) and neuroimaging guidelines for meta-
analyses (30).

2.2 Literature retrieval

A systematic search strategy was conducted in PubMed, Embase, 
Cochrane Library, Web of Science, Science Direct, Medline, China 
National Knowledge Infrastructure, Wanfang Data Knowledge Service 
Platform, Chinese Technical Periodicals Database and Chinese 
Biomedical Literature Database from inception to July 11th, 2025. 
Additionally, forward citation tracking were identified by manually 
searching the included studies. The electronic search procedures are 
presented in Supplementary materials.

2.3 Inclusion/exclusion criteria

Studies were included based on the following criteria: (1) 
Randomized controlled trial (RCT) or non-RCT conducted in patients 
with acute, subacute or chronic NSLBP. Acute back pain is defined as 
lasting less than 4 weeks, subacute back pain lasts 4 to 12 weeks, and 
chronic back pain lasts more than 12 weeks (17); (2) fMRI study; (3) 
acupuncture as the intervention; (4) other therapies including 
conventional rehabilitation or sham acupuncture as the control group; 
(5) study setting in clinic, community, hospital, or laboratory; (5) 
presenting the results in Talairach or Montreal Neurological Institute 
(MNI) coordinates.

The exclusion criteria were as follows: (1) abstracts, case reports, 
commentaries, conference papers, cohort studies, cross-sectional 
studies, descriptive studies, editorials or expert opinions,or letters; (2) 
animal trial; (3) no extractable data available; (4) not published in 
English or Chinese.

2.4 Data extraction

For the data extraction, the base information of the author, 
country, condition, sample size of trial groups and control groups, 
participant characteristics, duration of NSLBP, outcomes, 
interventions, methodological quality assessment tool and main 
conclusions were extracted according to the PRISMA flowchart (31).

Firstly, the clinical outcome measures included assessing pain 
intensity and functional status. Pain intensity is primarily assessed 
using the visual analogue scale. Functional status can be assessed 
through self-reported questionnaires measuring disabilities for 
functional evaluation (e.g., Roland Disability Questionnaire for 
Sciatica, World Health Organization Quality of Life in the Brief 
Edition). Secondly, the outcome measures also included brain 
imaging. For brain imaging data, the brain-related data including 
magnetic resonance imaging model, field strength (Tesla), head coil, 
fMRI acquisition parameters [repetition time (TR): 2000–3,000 ms; 
echo time (TE): 30–40 ms; voxel size: 2.6 × 2.6 × 3.0 mm3 to 
3.4 × 3.4 × 4.0 mm3], software used for analysis (e.g., SPM, FreeSurfer), 
coordinate space (MNI or Talairach), smoothing kernel (full-width at 
half-maximum: 5–8 mm), type I  error correction, and functional 

imaging feature were extracted. Preprocessing steps of fMRI data in 
included studies consistently included: (1) motion correction; (2) 
slice-timing correction; (3) normalization to MNI space; (4) spatial 
smoothing. The coordinates and information for each study were 
manually extracted by two researchers (F. H. and M. Q. L.) and 
independently checked for accuracy by the other author (J. J. L.).

2.5 Methodological quality assessment and 
level of evidence

We employed Risk of Bias 22 and Risk Of Bias In Non-randomized 
Studies-of Interventions tools to evaluate the risk of bias in the 
included RCTs and non-RCTs, respectively (32, 33). For RCTs, the 
assessment focused on several bias sources: bias arising from the 
randomization process, bias due to deviations from intended 
interventions, bias due to missing outcome data, bias in outcome 
measurement, bias in the selection of reported results, and overall risk 
of bias. Based on these criteria, the risk of bias in RCT studies was 
categorized as low risk, some concerns, or high risk. In the case of 
non-RCTs, the assessment considered factors such as bias due to 
confounding, bias in participant selection, bias in the classification of 
interventions, bias due to deviations from intended interventions, bias 
due to missing data, bias in outcome measurement, bias in the 
selection of reported results, and overall risk of bias. According to 
these criteria, the risk of bias in non-RCT studies was classified as low, 
moderate, serious, critical, or no information.

2.6 Data analysis

Stata 12.0 software (Stata Corp, College Station, TX, USA) was 
used for clinical data meta-analysis. Dichotomous outcomes were 
reported using risk ratios with corresponding 95% confidence 
intervals (CIs). Continuous outcomes were presented as weighted 
mean differences (WMDs) with 95% CIs or standardized mean 
differences. A fixed-effects model was employed when the I2 statistic 
was below 50% Otherwise, a random-effects model was utilized. 
Subgroup analysis was also conducted. And the level of evidence was 
used by The Grading of Recommendations, Assessment, Development 
and Evaluation (GRADE) approach (34).

GingerALE 3.0.2 (http://www.brainmap.org/ale/) is a tool used for 
neuroimaging meta-analyses, which converts all reported coordinates 
into MNI space via the icbm2tal transformation. Anatomical 
structures were identified within the software, with parameters set at 
p ≤ 0.001 (cluster-level family-wise error correction = 0.001) (35–38). 
Mango 4.0.2 (Research Imaging Institute, UTHSCSA) was used for 
visualization, mapping the three-dimensional ALE results onto the 
MNI standard template to facilitate precise localization of 
brain regions.

2.7 Activation likelihood estimation 
procedure

In ALE analysis, activation hotspots found in existing 
research were viewed as probability patterns centred on the 
reported coordinates. For each voxel in a standard space, 
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activation probabilities were determined to create ALE maps that 
focus on particular contrasts. To assess the trustworthiness of 
these ALE maps, null distributions were formed by examining 
how ALE values were distributed across separate studies (36). 
This approach was somewhat like performing permutation tests 
on individual voxels from different experiments. The influence 
of each study in the analysis was adjusted based on its sample 
size, and each study is considered to contribute to random 
effects (35).

2.8 Calculation of frequency about brain 
regions modulated by acupuncture

To summarize and visualize the frequency of brain regions 
modulated by acupuncture in acute and chronic LBP, we utilized Excel 
for data analysis. The frequencies of involvement for various brain 
regions were calculated and plotted using Excel’s graphing capabilities. 
This allowed us to effectively illustrate the distribution of modulated 
regions in both acute and chronic LBP.

2.9 Sensitivity analysis

We performed sensitivity analyses to assess the robustness of 
ALE meta-analysis results based on previous article (37). Studies 
with a total sample size of <20 were excluded to address potential 
small sample bias.

3 Results

3.1 Study search results

A total of 1,020 articles were identified through PubMed, 
Embase, Cochrane Library, Web of Science, Science Direct, China 
National Knowledge Infrastructure, Wanfang Data Knowledge 
Service Platform, Chinese Technical Periodicals database and 
Chinese Biomedical Literature Database. After removing 
duplicates, trials for which no full-text was available, and 
screening titles and abstracted, a total of ten studies were 
included for further evaluation (8, 39–47).

3.2 Characteristics of the included studies

A total of 358 participants were involved in ten articles (Cohen’s 
kappa = 0.85) (8, 39–47). Table 1 shows the characteristics of the 
included studies. Among these ten articles, three are about acute 
non-specific low back pain (ANSLBP) (39, 40, 42) and seven are 
about chronic non-specific low back pain (CNSLBP) (8, 41, 43–47). 
Among the ten studies included, eight (8, 37, 39, 40, 42, 43, 45, 46) 
were divided into an acupuncture group and a control group, of 
which three (39, 40, 42) analyzed the effect of acupuncture on 
ANSLBP, and the other five (8, 43, 45–47) analyzed the effect of 
acupuncture on CNSLBP. No subacute NSLBP articles were 
included. The other two studies (41, 44) had no control group. The 
selection process is shown in Figure 1.

3.3 Quality assessment of the included 
trials

In eight RCTs (8, 39, 40, 42, 43, 45–47), one study was rated as 
“low” overall risks of bias (8), while seven studies were rated as “some 
concerns” of overall risks of bias due to concerns about the 
randomization process (39, 40, 42, 43, 45–47). In two non-RCTs (41, 
44), all two studies were rated as “low” overall risks of bias 
(Supplementary Tables 1, 2). According to the GRADE approach, the 
quality of evidence and the strength of recommendations were rated 
as “very low” (Supplementary Table 3).

3.4 Meta-analysis results of pain-related 
scales

Based on the pooled results from five RCTs 
(Supplementary Figure  1) (8, 43, 45–47), the acupuncture group 
showed significantly lower pain-related scores of VAS compared with 
the sham acupuncture group, as illustrated in Figure  2 (5 trials: 
WMD = −0.78, 95% CI: −1.25 to −0.31, p < 0.001), with no 
heterogeneity (I2 = 0%, p = 0.825) For subgroup analysis, one RCT 
demonstrated that acupuncture was significantly more effective than 
sham acupuncture for treating ANSLBP (WMD = −1.04, 95% CI: 
−1.72 to −0.36, p = 0.003) (42). However, four RCTs on CNSLBP 
showed no significant difference between real and sham acupuncture 
(Figure 1) (WMD = −0.53, 95% CI: −1.19 to 0.13, p = 0.113) (8, 43, 
45–47), with no heterogeneity (I2 = 0%, p = 0.938).

3.4.1 Neuroimaging findings after acupuncture 
for ANSLBP

Three studies utilized acupuncture for the treatment of ANSLBP 
(39, 40, 42). Following the ALE meta-analysis of these articles, the 
results identified four clusters of positive activation and seven clusters 
of negative activation (Figure 3).

Four clusters of positive activation were identified. The first cluster 
was located in the right cerebrum, specifically in the sub-lobar insula 
(Brodmann area 13), centered at coordinates x = 50, y = 6, z = 12 
(ALE = 0.0022; p < 0.001; Z = 5.20). The second cluster was found in 
the right cerebrum, in the inferior parietal lobule (Brodmann area 40), 
centered at x = 62, y = −26, z = 34 (ALE = 0.0023; p < 0.001; Z = 5.39). 
The third cluster was situated in the right cerebrum, in the medial 
frontal gyrus (MFG) (Brodmann area 6), centered at x = 12, y = 0, 
z = 60 (ALE = 0.0019; p < 0.001; Z = 4.85). The final cluster was 
located in the right cerebrum, in the cingulate gyrus (Brodmann area 
31), centered at x = 18, y = −24, z = 39 (ALE = 0.0019; p < 0.001; 
Z = 4.84) (Figure 3A; Supplementary Table 4).

Seven clusters of negative activation were identified. The first 
cluster was located in the left cerebrum, specifically in the sub-lobar 
insula (Brodmann area 13), centered at coordinates x = −41, y = −13, 
z = 15 (ALE = 0.0027; p < 0.001; Z = 6.36). The second cluster was 
found in the left cerebrum, in the cingulate gyrus (Brodmann area 32), 
centered at x = 0, y = 33, z = 21 (ALE = 0.0028; p < 0.001; Z = 7.03). 
The third cluster was situated in the left cerebrum, in the pulvinar of 
the thalamus, centered at x = −4, y = −30, z = −2 (ALE = 0.0019; 
p < 0.001; Z = 4.58). The fourth cluster was located in the right 
cerebrum, in the parahippocampal gyrus (Brodmann area 35), 
centered at x = 24, y = −27, z = −18 (ALE = 0.0019; p < 0.001; 
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TABLE 1  Characteristics of the included studies.

Study Sample 
number

Phrase Location Design Treatment 
duration

Age Treatment 
group

Control 
group

Manipulation 
modality

Imaging 
type

MRI 
parameter

Clinical 
variables

Adverse 
events

Outcomes

Ziping 

(40)
Sum = 15 acute hospital RCT 16 min 25.7 ± 2.3 acupuncture

sham 

acupuncture
MA RS-fMRI 3 T, MNI

1. Vas score

2. ASS
None

Brain 

activation
Shi et al. 

(42)
Sum = 28 acute NA RCT 36 min 22–30 acupuncture

sham 

acupuncture
EA RS-fMRI 3 T, MNI 1. Vas score None

ReHo, brain 

activation
Makary, 

2018 

(46)

TG = 28

CG = 19
chronic laboratory RCT 25 min 38.4 ± 12.7 acupuncture

sham 

acupuncture
MA RS-fMRI 3 T, MNI 1. Vas score None ROI

Lee, 2019 

(43)

TG = 25

CG = 18
chronic NA RCT 25 min 38.4 ± 12.7 acupuncture

sham 

acupuncture
MA RS-fMRI 3 T, MNI 1. Vas score None ROI, FC

Tu, 2019 

(45)

TG = 24

CG = 26
chronic NA RCT

25 min, 1 or 2 

times/week, 

2 weeks

26–54 acupuncture
sham 

acupuncture
MA TS-fMRI 3 T, MNI

1. Vas score

2. BDI

3. ERS

None rsFC

Yu, 2020 

(8)

TG = 24

CG = 26
chronic hospital RCT

25 min, 1 or 2 

times/week, 

2 weeks

18–60 acupuncture
sham 

acupuncture
MA TS-fMRI 3 T, MNI

1. Vas score

2. BDI

3. 

Bothersomeness 

scale

None rsFC

Kim, 

2020 

(57)

TG = 55

(TG1 = 18,

TG2 = 18,

TG3 = 19)

CG = 23

chronic hospital RCT

20 min, 1 or 2 

times/week, 

4 weeks

41.2 ± 12.0 acupuncture None MA TS-fMRI 3 T, MNI
1. Vas score

2.2PDT
None ROI

Xiang, 

2021 

(11)

Sum = 19 chronic laboratory Non-RCT 15 min 46.61 ± 7.35
ankle 

acupuncture

sham 

acupuncture
MA RS-fMRI 3 T, MNI 1. Vas score None ALFF

BDI, Beck Depression Inventory; TG, treatment group; CG, control group; EA, electroacupuncture; MA, manual acupuncture; ERS, expectations for relief scale; JOA, Japanese Orthopaedic Association scores; NA, not available; Sham, sham acupuncture; VAS, visual 
analogue scale; Verum, verum acupuncture; 2 PDT, two-point discrimination threshold; ASS, Acupuncture Sensation Scale; rs-FC, resting-state functional connectivity/FC; ALFF, Amplitude of Low-Frequency Fluctuations; ICC, Intrinsic Connectivity Contrast; Reho, 
Regional Homogeneity; ROI, Regions of Interest.
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Z = 4.61). The fifth cluster was found in the right cerebrum, in the 
MFG (Brodmann area 8), centered at x = 14, y = 33, z = 44 
(ALE = 0.0019; p < 0.001; Z = 4.57). The sixth cluster was located in 
the right cerebrum, in the angular gyrus (Brodmann area 39), centered 

at x = 54, y = −60, z = 39 (ALE = 0.0019; p < 0.001; Z = 4.61). The final 
cluster was situated in the left cerebrum, in the superior frontal gyrus 
(Brodmann area 6), centered at x = −14, y = 34, z = 52 (ALE = 0.0019; 
p < 0.001; Z = 4.57) (Figure 3B; Supplementary Table 5).

FIGURE 1

Flowchart of the study selection process.

FIGURE 2

Forest plot of the sum total.
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3.4.2 Neuroimaging findings after acupuncture 
for CNSLBP

Seven studies utilized acupuncture as a treatment for CNSLBP 
(8, 41, 43–47). Analyzing the related articles revealed two clusters 
of positive activation and two clusters of negative activation 
(Figure 3).

The two positive activation clusters identified were as follows: 
one was located in the right cerebrum, specifically in the 
sub-lobar insula (Brodmann area 13), centered at coordinates 
x = 46, y = −2, z = 2 (ALE = 0.0019; p < 0.001; Z = 4.65). The 
other was found in the left cerebrum, also in the sub-lobar insula 
(Brodmann area 13), centered at x = −42, y = −16, z = 2 
(ALE = 0.0015; p < 0.001; Z = 3.93) (Figure  3C; 
Supplementary Table 6).

The two negative activation clusters were located as follows: 
one was situated in the left cerebrum, in the precentral gyrus 
(Brodmann area 44), centered at x = −56, y = 12, z = 6 
(ALE = 0.00095; p < 0.001; Z = 3.41). The other was located in 
the right cerebrum, in the middle frontal gyrus (Brodmann area 
8), centered at x = 33, y = 40, z = 42 (ALE = 0.00095; p < 0.001; 
Z = 3.41) (Figure 3D; Supplementary Table 7).

3.4.3 Neuroimaging results after the control 
group’s treatment on ANSLBP

The results showed that the control group’s treatment for ANSLBP 
activated over eight clusters, predominantly located in the sub-lobar 
regions of the left cerebrum, including the insula, lentiform nucleus, 
thalamus, caudate, and hippocampus. Only the caudate in the right 
cerebrum showed activation. It was clear that most of the activated 
clusters were in the sub-lobar area. Additionally, the ALE values 
ranged from 0.0009 to 0.001, with the insula in the left cerebrum 
displaying the highest activation, specifically centered at x = −40, 
y = 6, z = 18 (ALE = 0.0014, p < 0.001, Z = 4.05) (Figure  4A). In 
summary, the results indicate that significant brain activation occurs 
primarily in the sub-lobar region, with the left insula showing the 
highest activation, which may be central to the neurophysiological 
response to ANSLBP treatment.

3.4.4 Neuroimaging results after the control 
group’s treatment on CNSLBP

Long-term control group’s regulates wider areas, such as the 
limbic lobe (Brodmann area 40; peak MNI coordinates: −50, −28, 52; 
peak SDM-Z (Seed-based d Mapping): 3.597; p < 0.001), the parietal 

FIGURE 3

Activation of fMRI signals in cortical and subcortical structures in the acupuncture group. (A) Positive activation of brain regions after acupuncture with 
ANSLBP; (B) Negative activation of brain regions after acupuncture with ANSLBP; (C) Positive activation of brain regions after acupuncture with 
CNSLBP; (D) Negative activation of brain regions after acupuncture with CNSLBP.
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lobe (Brodmann area 36; peak MNI coordinates: −50, −34, −16; peak 
SDM-Z: 3.597; p < 0.001), the frontal lobe (Brodmann area 6; peak 
MNI coordinates: 44, 6, 30; peak SDM-Z: 3.597; p < 0.001), the 
temporal lobe (Brodmann area 22; peak MNI coordinates: −66, −42, 
18; peak SDM-Z: 3.597; p < 0.001), the sub-lobar (Caudate Body; peak 
MNI coordinates: 18, −4, 16; peak SDM-Z: 3.597; p < 0.001), and the 
occipital lobe (Brodmann area 37; peak MNI coordinates: −52, −72, 
4; peak SDM-Z: 3.597; p < 0.001) (Figure 4B).

3.5 Sensitivity analysis

Two studies with small sample sizes were excluded: Ziping (40; 
total n = 15) and Xiang et al. (11) (total n = 19). After exclusion, only 
one study on ANSLBP remained, while all CNSLBP studies met the 
sample size criterion (n ≥ 20). Consistent with the initial analysis, the 
key neuroimaging findings remained unchanged. Acupuncture 
treatment on ANSLBP showed positive activation in the right 
sub-lobar insula, inferior parietal lobule, medial frontal gyrus, and 
cingulate gyrus; CNSLBP demonstrated positive activation in the 
bilateral sub-lobar insula and negative activation in the motor and 
prefrontal regions. Due to low heterogeneity (I2 = 0%) and consistent 
study inclusion, no re-calculation of ALE statistics was required, 
confirming the stability of the primary results.

3.6 Frequency of brain regions modulated 
by acupuncture in acute and chronic LBP

By combining these findings, we summarized and visualized the 
frequency of brain regions modulated by acupuncture in acute and 
chronic LBP (Supplementary Figure  2). As shown in the 
Supplementary Figure 2, in ANSLBP, the most frequently involved 
regions were the insula and lentiform nucleus (approximately 75%), 

followed by the thalamus, caudate, and hippocampus (around 25%). 
In CNSLBP, the most frequently involved regions were the middle 
frontal gyrus (>50%) and precentral gyrus (approximately 45%), 
followed by the parahippocampal gyrus, anterior cingulate cortex, 
superior parietal lobule, and inferior parietal lobule (about 20–30%).

3.7 Adverse events

As shown in Table 1, none of the RCTs or non-RCTs reported 
adverse events.

4 Discussion

This study compares brain changes following acupuncture 
treatment of acute and chronic NSLBP using pain-related scales and 
resting-state fMRI. The research results indicated that acupuncture 
has demonstrable clinical efficacy for treating NSLBP. Through a 
meta-analysis of all eligible articles, three studies used acupuncture for 
ANSLBP (39, 40, 42), with brain activation mainly in the bilateral 
limbic lobe and right inferior lobe. In the seven studies of acupuncture 
treatment of CNSLBP (8, 41, 43–47), we identified four clusters of 
activation, including the sub-lobar insula, precentral gyrus on the left 
side, and the sub-lobar insula and middle frontal gyrus on the 
right side.

4.1 Pain-related outcomes analysis of 
acupuncture for NSLBP

Acupuncture is currently recognized as an effective treatment for 
spinal-related diseases. In recent years, RCTs have demonstrated their 
role in treating degenerative diseases, chronic pain, and acute pain (48, 

FIGURE 4

Activation of fMRI signals in cortical and subcortical structures in the control group. (A) Activation of brain regions in patients with ANSLBP after 
receiving treatment in control group; (B) Activation of brain regions in patients with CNSLBP after receiving treatment in control group.
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49). Chen et al. found that patients with chronic low back pain exhibit 
widespread alterations in brain regions related to pain perception and 
modulation, including the left inferior temporal gyrus, bilateral 
postcentral gyrus, superior and middle frontal gyri, thalamus, and 
occipital cortex. Notably, acupuncture appears to modulate functional 
activity in several of these pathological areas (50). Specifically, 
increased cerebral blood flow has been observed in the right 
postcentral gyrus and superior parietal lobule (regions implicated in 
somatosensory processing and sensorimotor integration), while in the 
bilateral occipital cortex and posterior cingulate gyrus is reduced (51).

In addition to targeted brain modulation by acupuncture, it is 
useful to compare its effects with those of other non-acupuncture 
treatments for NSLBP. Acupuncture has been shown to restore altered 
DMN connectivity, particularly in the dorsolateral and medial 
prefrontal cortices, anterior cingulate, and precuneus, with these 
changes correlating with pain relief (52). Similarly, physical or manual 
therapies, such as spinal manipulative therapy (SMT), modulate DMN 
regions including the right parahippocampal gyrus, posterior 
cingulate cortex, and precuneus, indicating altered intrinsic 
connectivity related to pain processing (53). Cognitive Behavioral 
Therapy (CBT) engages cognitive control and emotional regulation 
networks, with magnetoencephalography studies showing 
normalization of activity in the right inferior frontal gyrus and 
dorsolateral prefrontal cortex, correlating with pain reduction (54). 
Structural MRI further reveals increased gray matter in the 
dorsolateral prefrontal and posterior parietal cortices after CBT, 
associated with decreased catastrophic thinking (55, 56).

However, among the articles we  included, only three 
addressed acute pain. Clinically, acupuncture is sometimes used 
for acute low back pain in emergency settings of traditional 
Chinese medicine clinics, making research challenging due to low 
follow-up rates. Conversely, patient compliance is higher for 
chronic back pain, resulting in more reliable therapeutic 
outcomes in the included articles. Although our meta-analysis 
did not demonstrate positive results without grouping, this might 
be  due to the efficacy of the control group (i.e., open-label 
studies, lack of blinding). Such variability in control group 
selection may affect meta-analysis results. Nonetheless, the 
treatment effectiveness of acupuncture for chronic NSLBP 
remains significantly different when compared with healthy 
controls in our study, confirming its clinical relevance and 
ongoing research importance in traditional Chinese medicine.

4.2 Neuroimaging analysis of acupuncture 
for NSLBP

According to our findings, both acute and CNSLBP activate the 
right insula following acupuncture, a region crucial for integrating 
sensory processing and cognitive regulatory systems (45). 
Activation of the insula observed in the acupuncture group was 
accompanied by significant reductions in VAS scores, suggesting 
that modulation of this key pain-processing region may underlie 
acupuncture’s clinically meaningful analgesic effects. Research 
suggests that the anterior insula plays a key role in the salience 
network, responsible for identifying and filtering salient stimuli, 
particularly during exposure to unpleasant stimuli (57). 
Acupuncture has been shown to reduce cross-network functional 

connectivity between the insula and the DMN, and this reduction 
correlates with the degree of clinical pain alleviation (47). These 
findings suggest that right insula activation is critical to 
acupuncture’s analgesic effects for both acute and chronic NSLBP.

Beyond the insula, the limbic lobe, located at the cerebral cortex’s 
periphery, also plays a significant role in pain processing (58). Regions 
such as the amygdala, orbitofrontal cortex, hippocampus, and 
cingulate cortex form part of this network (59). The anterior cingulate 
cortex (ACC), in particular, is involved in emotion and behavior 
regulation (60). Acupuncture somatosensory afference can transmit 
tactile information from the spinal cord to the thalamus, 
periaqueductal grey, and reticular formation, subsequently affecting 
the ACC, insula, and sensory cortices (61). Activation in the ACC, 
especially in its dorsal sub-region, has been linked to acute pain 
stimulation, suggesting that the ACC’s activation in this study may 
correspond to acupuncture’s pain-relieving effects. (dACC, BA 24) 
(62). Therefore, the insula, ACC, and other limbic structures appear 
to mediate acupuncture’s analgesic effects in both acute and 
chronic NSLBP.

We also summarized and visualized the frequency of brain 
regions modulated by acupuncture in acute and chronic LBP. In 
ANSLBP, the insula and lentiform nucleu, followed by the thalamus, 
caudate, and hippocampus areas are associated with pain 
perception, emotional processing, and pain-related memory (63, 
64). In CNSLBP, the middle frontal gyrus, precentral gyrus, 
followed by the parahippocampal gyrus, anterior cingulate cortex, 
superior parietal lobule, and inferior parietal lobule are more 
closely related to motor planning (65), execution (66), emotional 
regulation, attention control, and the persistence of chronic pain. 
Therefore, acute low back pain is more associated with nociceptive 
processing and emotion/memory circuits (insula–basal ganglia–
limbic system), whereas chronic low back pain is more related to 
higher-order cognitive and motor control networks 
(frontal–parietal).

4.3 Analysis of the current neuroimaging 
results in the control group

The activated brain regions in the acupuncture group were primarily 
located in the bilateral limbic lobe and right inferior lobe, while the 
control group for ANSLBP primarily exhibited changes in the limbic 
system, basal ganglia, and thalamus (39, 40, 42). In contrast, the control 
group for CNSLBP showed a wider range of activation, including the 
frontal, temporal, sub-lobar, and occipital lobes (8, 41, 43–46). The lack of 
blinding in the control group, combined with open-label placebos, likely 
amplified this reward effect and further alleviated pain (67). These 
regions, particularly in the somatosensory cortex and pain conduction 
system, are crucial components of the central nervous system that regulate 
pain (68–70). Interestingly, despite the lack of a correlation analysis 
between ANSLBP and CNSLBP after sham acupuncture, there appears to 
be  a similar modulation pattern in the limbic system across both 
conditions. This observation suggests that the limbic system may play a 
significant role in alleviating NSLBP. Comprising cortical and subcortical 
structures such as the prefrontal cortex (PFC), cingulate gyrus, 
hippocampus, and amygdala, the limbic system integrates sensory input 
from the environment to regulate emotional, autonomic, motor, and 
cognitive responses essential for survival (71–74). Previous research 

166

https://doi.org/10.3389/fmed.2025.1657241
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Huang et al.� 10.3389/fmed.2025.1657241

Frontiers in Medicine 10 frontiersin.org

highlights the involvement of the reward system in acupuncture’s effects 
(75–77), particularly the PFC’s role in self-regulation and pain relief (78, 
79). Taken together, the sensory stimuli received by the control group may 
convey positive reinforcement through the limbic system, particularly the 
PFC, contributing to pain reduction.

Our findings and previous literature indicate that sham 
acupuncture often induces neural activations in brain regions 
associated with attention, expectation, and pain modulation, reflecting 
placebo-related and nonspecific neural responses rather than 
acupuncture-specific effects (25, 80). This overlap complicates the 
interpretation of neuroimaging results and underscores the necessity 
of cautious attribution of brain activity solely to acupuncture. Future 
studies should further delineate these mechanisms to improve the 
specificity of acupuncture-related neurobiological findings.

4.4 Advantages and limitations

Neuroimaging results on the effects of acupuncture on NSLBP 
have been elusive, particularly due to the varied causes of the condition 
and differences in pain types (81). The duration of NSLBP may also 
significantly affect experimental outcomes, adding complexity to 
studies. Besides, Variability in acupuncture protocols (e.g., needle 
retention: 15–36 min; point selection) may confound neuroimaging 
effects. Future trials should adhere to the standards for reporting 
interventions in clinical trials of acupuncture guidelines. Additionally, 
the definition of chronic pain remains unclear (82, 83), which may lead 
to inaccuracies in clinical diagnosis and complicate research on brain 
function changes associated with chronic pain. One limitation of 
earlier studies is their failure to differentiate between acute and chronic 
NSLBP (84). Furthermore, pooling data from studies with different 
designs in meta-analyses can introduce heterogeneity and bias (85). In 
addition, the limited number of included studies in certain subgroup 
analyses (e.g., only three ANSLBP studies) restricts the statistical power 
of our findings, which should be considered when interpreting the 
results. Accordingly, further research with larger sample sizes is needed 
to yield more robust evidence. Besides, most included studies were 
rated as “very low” quality according to the GRADE approach, which 
weakens the strength of our conclusions. Future fMRI research on 
acupuncture should focus on methodological enhancements, such as 
rigorous randomization, appropriate blinding, and adequate sample 
size calculation, to improve evidence reliability. Despite the low quality 
of the study design, all MRI scans were conducted using 3 T machines, 
guaranteeing reliable imaging findings. Our study, however, addresses 
these limitations by distinguishing between acute and chronic NSLBP, 
allowing for a clearer comparison of acupuncture’s effects on brain 
function changes. This distinction helps resolve inconsistencies in prior 
research. Our pooled results offer a comprehensive overview of the 
post-acupuncture effects on clinical outcomes and brain activation in 
patients with NSLBP, providing valuable insights for both clinicians 
and researchers (85).

5 Conclusion

Acupuncture has shown considerable clinical efficacy in 
alleviating pain for patients with NSLBP, with key brain regions 
such as the sub-lobar insula and medial frontal gyrus playing a 

crucial role in the analgesic mechanism for both acute and 
chronic conditions. In our study on acupuncture treatment for 
ANSLBP, we identified four clusters of positive activation (right 
sub-lobar insula, inferior parietal lobule, MFG, and cingulate 
gyrus) and seven clusters of negative activation (left sub-lobar 
insula, cingulate gyrus, pulvinar of the thalamus, superior frontal 
gyrus, right parahippocampal gyrus, MFG, and angular gyrus). 
In contrast, during our research on CNSLBP, we discovered two 
clusters of positive activation (right and left sub-lobar insula) and 
two clusters of negative activation (left precentral gyrus and right 
MFG). Subgroup analyses revealed different neuroimaging 
outcomes based on duration. Despite these findings, the quality 
of evidence and strength of recommendations were rated “very 
low.” by the GRADE approach, highlighting the need for 
methodological improvements in fMRI studies on acupuncture 
for NSLBP.
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Introduction: Although genome-wide association studies (GWAS) have

identified multiple genetic loci linked to intervertebral disc disorder (IDD), their

functional characterization remains largely unelucidated. We aim to leverage

an integrative analytical pipeline to identify novel IDD risk genes from genetic

associations and experimentally validate their functional roles.

Methods: We integrated transcriptome-wide association studies (TWAS),

proteome-wide association studies (PWAS), expression and protein quantitative

trait loci (eQTL and pQTL) colocalization analyses to identify potential

causal genes for IDD. Enrichment analysis, expression profiling, protein-

protein interaction (PPI) network construction, and druggability evaluation were

also performed for the prioritized causal candidates. Subsequently, human

intervertebral disc (IVD) tissues spanning degeneration grades and an in vivo

mouse IDD model were employed to functionally characterize candidate risk

genes.

Results: Integrative analysis of TWAS and PWAS with colocalization studies

identified 104 genes and 10 proteins exhibiting causal associations with IDD.

The identified genes/proteins were enriched in extracellular matrix organization,

cellular senescence and collagen formation. Crucially, TMEM190, CILP2, and

FOXO3 were demonstrated consistent evidence across TWAS, two independent

PWAS datasets, and corresponding colocalization analyses, with CILP2 emerging

as a potentially druggable target. Differential expression analysis revealed

significant upregulated TMEM190 and CILP2, along with downregulated FOXO3

during IVD degeneration. These results were subsequently confirmed at protein

levels in clinical specimens. Mouse model experiments further established that

down-regulation of CILP2 alleviated IDD progression.
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Discussion: Collectively, this work provides an updated compendium of putative 

IDD risk genes and delineates pathogenic roles for TMEM190, CILP2, and FOXO3, 

providing a broad hint for further research on novel mechanism and therapeutic 

targets for IDD. 

KEYWORDS 

intervertebral disc disorder, transcriptome-wide association study, proteome-wide 
association study, genome-wide association study, validation study 

Introduction 

Intervertebral disc disorder (IDD) represents a primary 
etiology of low back pain (1). Both genetic predispositions 
and environmental risk factors involved in its pathogenesis 
(2–5). Currently, the treatment of IDD primarily relies 
on symptomatic management with NSAIDs and surgical 
interventions for more severe cases. However, symptomatic 
treatments fail to address underlying disease mechanisms, while 
surgery entails significant costs, potential complications, and 
surgical morbidity (6). Therefore, identifying causative genes 
and developing targeted therapeutic strategies is imperative 
for IDD management. 

Recent GWAS have identified multiple loci associated with 
IDD, predominantly within non-coding genomic regions (7, 8). 
These regions exhibit complex regulatory mechanisms and linkage 
disequilibrium, complicating the identification of underlying causal 
genes. TWAS coupled with eQTL colocalization address this 
limitation by linking non-coding disease-associated variants to 
transcriptional changes. In a TWAS study, genetic predictors of 
gene expression, specifically cis-eQTLs regulating nearby genes, are 
identified in reference populations, such as the Genotype-Tissue 
Expression (GTEx) project. These genetic predictors subsequently 
impute transcriptomic profiles in GWAS cohorts to identify 
gene expression levels and disease traits (9). eQTL colocalization 
analyses determine whether shared causal variants gene expression 
and disease risk share the same causal variants underlie both gene 
expression and disease risk, strengthening causal inference for 
candidate genes (10). While IDD-specific TWAS study remains 
scarce due to the limited large-scale human transcriptomic 
datasets of disc tissues, GTEx demonstrates substantial eQTLs 
conservation across tissues (11, 12). Thus, regulatory variants 
identified in non-disc tissues may still modulate disc biology and 
IDD susceptibility. 

Complementary to TWAS, PWAS utilizes pQTL data to 
identify protein-level associations with diseases, providing 
enhanced mechanistic insight. Recently, large-scale human plasma 
proteome datasets, including those from the ARIC study and 
Iceland Biobank, have enabled robust pQTL derivation, facilitating 
practical PWAS implementation (13). Plasma proteins, which serve 
as key druggable targets and biomarkers for complex traits, can 
reflect systemic pathological changes associated with IDD. While 
PWAS has been applied to other diseases (14–16), its application to 
IDD remains unexplored. Future integration of PWAS with TWAS 
and eQTL/pQTL colocalization will enable the identification of 
disease-causing genes with higher precision, while minimizing 
confounding eects from horizontal pleiotropy. This multimodal 

approach will elucidate IDD molecular mechanisms and accelerate 
development of targeted therapeutics. 

This study aimed to identify and validate potential causal 
genes associated with IDD by integrating multi-omics analyses 
with experimental approaches. We performed both TWAS and 
PWAS to uncover novel genes implicated in the pathogenesis 
of IDD (Figure 1). Colocalization analyses were performed to 
establish potential causal relationships between these genes and 
IDD risk. The expression patterns of the prioritized genes 
in human degenerated intervertebral discs were also assessed. 
Furthermore, enrichment analysis was conducted to identify key 
pathways and biological terms associated with IDD. Additionally, 
we explored protein-protein interactions among the candidates 
and evaluated their druggability. Finally, experimental validation of 
top-prioritized genes (TMEM190, CILP2, FOXO3) was conducted 
using clinical specimens and animal model. 

Materials and methods 

IDD GWAS summary data sources 

The GWAS data were obtained from meta-analyses of data 
from several large cohorts, including deCODE Genetics from 
Iceland, the Danish Blood Donor Study, the Copenhagen Hospital 
Biobank, and the UK Biobank (7). Participants provided blood or 
buccal samples with informed consent, permitting the use of their 
samples and data in deCODE Genetics and the UK Biobank dataset 
were included. Each dataset was assumed to share a common odds 
ratio (OR), while allowing for dierent population frequencies of 
alleles and genotypes. Variants with imputation information scores 
below 0.8 were excluded from the analyses. The GWAS summary 
data used in our analysis come from the worldcome y data used 
in These analyses included 58,854 IDD cases and 922,958 controls, 
with the participants being of European descent. A total of 53.5 
million sequence variants were included in the GWAS analysis. 

Transcriptomic data from multiple 
human tissues 

The eQTL data were obtained from GTEx Version 8 (49 
tissues) (11). GTEx provides extensive data on the relationship 
between genetic variation and gene expression, sourced from 838 
postmortem donors, and 15,201 RNA-sequencing samples were 
included, primarily of European descent. 
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FIGURE 1 

Overview of the study. This schematic illustrates the multistep approach employed to identify potential genes associated with IDD. First, TWAS and 
eQTL analyses were conducted to identify potential risk genes. Second, two independent PWAS and pQTL analyses were performed to identify 
potential causal proteins of IDD. Third, enrichment analyses were conducted to elucidate the functions of these potential causal genes/proteins. 
Fourth, data from the GEO were analyzed to identify differentially expressed potential causal genes. Additionally, PPI analyses were performed to 
explore interactions among the identified genes. Furthermore, the druggability of the potential causal genes and available drugs that target these 
genes were explored. Finally, validation studies were performed with clinical samples and an animal model. 

Human protein abundance references in 
discovery proteome-wide association 
studies 

The pQTL datasets incorporated in this study were derived 
from two large-scale investigations: the ARIC study, which 
includes data on 4,423 proteins from 7,213 individuals 
(13), and deCODE Genetics, which encompasses 4,428 
proteins from 35,559 individuals (17), both primarily of 
European descent. 

Human intervertebral disc degeneration 
microarray datasets 

Human disc tissue expression microarray 
datasets were obtained retrospectively from the GEO 
(GSE56081: n = 10, with five degenerative and five 
normal samples). 

Transcriptome-wide association studies 

We performed TWAS analysis by integrating genome-wide 

summary statistics from an IDD GWAS with eQTL data from 

GTEx Version 8 across 49 tissue types as descripted before 

(18). To ensure consistency between datasets, we harmonized the 

IDD GWAS single nucleotide polymorphisms (SNPs) with the 

GTEx reference data, aligning SNP reference alleles, eect alleles, 
and associated metadata. Single-tissue TWAS was conducted for 

all tissues via SPrediXcan, followed by cross-tissue analysis via 

S-MultiXcan. S-MultiX can, which is based on a multitissue 

integration approach, allows for the combination of gene 

expression data across tissues, enhancing statistical power and 

enabling the identification of candidate susceptibility genes. We 

utilized default parameters for the software, with the exception 

of adjusting the “—cuto_condition_number” parameter to 30. 
Only protein-coding genes were considered in the analysis, and 

significance was determined via a false discovery rate (FDR) 
threshold of p < 0.05. 
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FastENLOC colocalization 

FastENLOC colocalization tool was used to strengthen the 
causal inferences drawn from our TWAS findings (19). Briefly, 
we computed posterior inclusion probability (PIP) values from 
IDD GWAS data via the torus tool, which quantifies the 
likelihood of each SNP’s association with IDD. These PIPs 
were then input into fastENLOC, which performs colocalization 
analysis by integrating GWAS PIP values with precomputed 
GTEx multitissue eQTL annotations. Colocalization was performed 
for each tissue, producing gene-level colocalization probabilities 
(GLCPs), indicating the likelihood that a given variant influences 
both IDD GWAS and gene expression in each tissue. The 
results across all the tissues were then merged, and for each 
gene, the maximum GLCP value was retained to identify the 
tissue with the strongest colocalization signal. Genes with a 
maximum GLCP > 0.5 were considered to have significant 
evidence of colocalization. 

Proteome-wide association studies 

BLISS method was used for PWAS analysis (20). Traditional 
PWAS approaches rely on individual-level proteomic data, 
which restricts the use of extensive summary-level pQTL 
datasets available in public repositories. The BLISS method 
enables the utilization of large-scale summary-level datasets for 
more eÿcient proteomic association analysis by constructing 
protein imputation models directly from summary-level 
pQTL data. In this study, we performed PWAS analyses via 
summary-level pQTL data from two large-scale cohorts: the 
ARIC study and deCODE Genetics. These datasets include 
over 4,000 proteins, facilitating a comprehensive analysis 
of protein–trait associations in the context of IDD. For 
discovery purposes, proteins with a nominal p < 0.05 were 
considered significant. 

Bayesian colocalization analysis 

We also performed Bayesian colocalization analyses via the 
coloc R package to investigate whether the identified associations 
between plasma proteins and IDD share the same causal variants 
rather than being aected by linkage disequilibrium (21). The 
Bayesian colocalization method evaluated evidence for five distinct 
hypotheses at each locus: (1) no association with either trait, 
(2) association with trait 1 only, (3) association with trait 2 
only, (4) both traits are associated, but each has distinct causal 
variants, and (5) both traits share a common causal variant 
(22). Posterior probabilities for each hypothesis (H0, H1, H2, 
H3, and H4) were calculated as part of the analysis. Initial 
prior probabilities were assigned as follows: a SNP exclusively 
associated with trait 1 (p1) had a probability of 1 × 10−4, a 
SNP exclusively associated with trait 2 (p2) had a probability 
of 1 × 10−4, and a SNP shared by both traits (p12) had a 
probability of 1 × 10−5 (23). A posterior probability of H4 
(PPH4) > 0.5 was considered evidence of a shared causal variant 
between the two traits. 

Enrichment analysis of significant 
findings 

To further investigate the biological role of the identified 
genes, we performed enrichment analysis via Gene Ontology 
(GO) categories [encompassing biological processes (BPs), 
molecular functions (MFs), and cellular components (CCs)], 
Kyoto Encyclopedia Genes and Genomes (KEGGs) pathways, and 
Reactome pathways (24, 25). The analysis was performed via the 
clusterProfiler and Reactome PA R packages. Significant genes or 
proteins were defined as those with a p < 0.05. The background set 
for the enrichment analysis consisted of all genes or proteins tested 
in the study, representing the total gene/protein pool from which 
the significant findings were derived. The ggplot2 R package was 
used for visualization. 

Annotation of prioritized genes/proteins 

The genes/proteins prioritized through TWAS, PWAS, 
and colocalization were further annotated by evaluating their 
expression levels in degenerative disc tissues and constructing 
gene coexpression networks. First, we obtained human disc 
tissue expression microarray datasets from the GEO (GSE56081: 
n = 10, with five degenerative and five normal samples).1 After 
normalization of the expression matrix, dierential expression 
analysis was performed via the lmFit() and eBayes() functions 
from the limma package (26). Gene coexpression networks were 
subsequently constructed to further explore the relationships 
among the prioritized risk genes, including TMEM190, CILP2, and 
FOXO3 (15). Briefly, the gene expression matrix of IVD was used 
to perform correlation analysis between each risk gene and all other 
genes. The genes were then ranked on the basis of their correlation 
indices. These correlation coeÿcients were then used for gene set 
enrichment analysis (GSEA) with pathway data from Reactome, 
which was performed via the clusterProfiler package and visualized 
via the Ridgeplot R package. This approach highlighted significant 
biological functions and pathways associated with each prioritized 
gene. Significant enrichment was determined on the basis of an 
adjusted p < 0.05, a normalized enrichment score (|NES|) > 1, and 
an FDR < 0.25. 

PPI analysis 

To investigate potential causal genes implicated in IDD, we 
employed the STRING database to perform extensive network 
analysis. The 88 proteins associated with IDD in both TWAS and 
PWAS were analyzed (Supplementary Data 1). We only reserved 
connections with an interaction score greater than 0.4. 

Analysis of druggable genes and known 
drugs 

To explore the druggability of potential causal genes of IDD, we 
conducted druggable gene and known drug analyses. A previous 

1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc 
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study categorized druggable genes into three tiers (27). We 
categorized the genes identified via TWAS and eQTL colocalization 
analyses, as well as genes identified via PWAS (ARIC and deCODE) 
and pQTL colocalization analyses, and further searched for updated 
information on the drugs targeting the identified putative causal 
proteins in the Open Target Platform,2 which is a comprehensive 
tool that promotes drug target identification via the integration of 
multiple databases. 

Human IVD tissue collection 

IVD tissue samples were collected from 6 patients undergoing 
spinal fusion surgery with the ethics approval of the Aÿliated 
Hospital of Xuzhou Medical University (XYFY2023-KL337-01). 
The IDD cases were classified according to Pfirrmann’s method 
(28). Samples falling within the I–II classification were labeled 
as controls, while falling within the III–V classification were 
designated as severe IDD samples (29). Patient information is 
provided in Supplementary Table 1. Informed consent was obtained 
from all patients. 

Western blot analysis 

Total protein was extracted from IVD using a complete 
cell lysis buer and quantified with the BCA protein assay kit 
(Beyotime, China). Protein samples were separated via sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred onto 0.2 µm PVDF membranes (Sigma-Aldrich, 
United States). The membranes were blocked with a 5% skim 
milk solution at room temperature and then incubated overnight 
at 4◦C with primary antibodies specific to TMEM190 (1:500; 
Invitrogen, PA5-70986), CILP2 (1:500; Proteintech, 11813-1-AP), 
and FOXO3 (1:1,000; Biotime Biotechnology, AF609-1). Following 
three washes with Tris-buered saline containing Tween 20 
(TBST), the membranes were treated with secondary antibodies 
at room temperature. Immunoblotting was detected using the 
UVP ChemiDoc-It Imaging System (UVP, CA, United States) with 
an enhanced chemiluminescence detection kit (Thermo Fisher; 
34,580) applied to the membranes. β-actin served as the loading 
control, and each blot was analyzed for integrated density using 
ImageJ software. 

Animal experiments 

All experiments were reviewed and approved by the committee 
of the Institutional Animal Care and Use Committee at Nanjing 
Drum Tower Hospital (approval number: DWSY-25005637). The 
methods were described as before (30). Briefly, after anesthesia, 31-
G needle was poked into the 8-week-old male C57BL/6 IVD at 90◦ 

vertically, rotated 360◦ and held for 1 min. Sham operation was also 
performed. These operations were performed on coccygeal IVD. 
Immediately after the puncture, 2 ul shRNA targeted Cilp2 gene 
or negative control encapsulated with the GV112 vector (Shanghai 

2 https://platform.opentargets.org/ 

Genechem Co., Ltd.) were injected into the IVD. Four weeks after 
acupuncture and shRNA injection, the caudal IVD of mice were 
examined by MRI. Degeneration grade of mice IVD was calculated 
as described before (28). IVD tissues were then collected for the test 
of Cilp2 protein levels and histological staining. 

Histological staining and analysis 

The harvested IVD tissue was immersed in a 4% 
paraformaldehyde solution (Solarbio, China) for 48 h to preserve 
its morphology. It was then decalcified in a 10% EDTA solution 
(pH 7.2–7.4) for 2 weeks, with daily changes of the solution. The 
tissue underwent dehydration through a series of graded ethanol 
baths and was subsequently cleared using an environmentally 
friendly clearing agent (Solarbio, China). After clearing, the tissue 
was embedded in paraÿn wax and sectioned into 5 µm-thick 
slices using a microtome. Hematoxylin and Eosin (H & E) staining 
were applied according to the instructions (Solarbio, China) 
to observe the histological morphology of the IVD. Finally, 
histological scoring of the H & E samples was conducted following 
methodologies described before (31). Simply, the stained results 
were evaluated from two perspectives, including annulus fibrosus 
and nucleus pulposus. Each category was assigned a score ranging 
from 0 to 3, yielding a cumulative score between 0 and 6. Higher 
scoring levels indicated greater degrees of degeneration. 

Statistical analyses 

A chi-square test was conducted to assess the dierence in the 
number of colocalizing genes between IDD-associated and non-
associated genes identified by the TWAS. Furthermore, two-tailed 
t-test or one-way ANOVA test were employed to assess: dierential 
expression of TMEM190, CILP2, and FOXO3 in degenerative 
compared to non-degenerative IVD using GEO dataset, protein 
levels of these genes in clinical and animal specimens, and 
degeneration grade, as well as H & E scores in a murine IDD 
model. Statistical significance (p < 0.05) is denoted by asterisks 
(∗) in figures. 

Results 

Identification of genes associated with 
IDD by TWAS 

As shown in the pipeline (Figure 1), we initiated our analysis by 
performing a cross-tissue TWAS based on data from reference gene 
expression predictions from GTEx and the largest intervertebral 
disc disorder GWAS conducted to date. TWAS analysis of 17,342 
protein-coding genes identified 556 significantly IDD-associated 
genes (FDR-adjusted p < 0.05). The top 10 genes most strongly 
correlated with IDD were CHST3, SOX5, SPOCK2, SMAD3, 
FGFR3, C6orf106, GFPT1, TWIST1, ASCC1, IGFBP3 (Figure 2 and 
Supplementary Data 2). Among the 556 genes, 20 genes, including 
SMAD3, mapped to nearest genes at the previously reported 
GWAS susceptibility loci. Our analysis also suggested the novel 
associations of the remaining 536 genes with IDD risk. 
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FIGURE 2 

Manhattan plot illustrating TWAS gene associations. Each dot represents a gene plotted according to its genomic position (x-axis) and the 
significance of the association, measured as the −log10 (FDR-adjusted p-value) (y-axis). Highlighted points with corresponding gene labels indicate 
genes meeting stringent colocalization criteria: FDR-adjusted p < 0.05 and colocalization max-GLCP > 0.5. The color of the highlighted points 
indicates the directionality of the genetic effect: red represents positive z-mean values (z-mean > 0) and blue for negative z-mean values 
(z-mean < 0). 

We then conducted enrichment analysis of the significant 
findings using the KEGG, Reactome, and GO databases. Notably, 
the top enriched pathways of TWAS included extracellular 
matrix organization, cellular senescence, and skeletal system 
and connective tissue development, all of which established 
mechanisms in IDD pathogenesis. Other prominent enriched 
terms included calcineurin activates NFAT, glycosphingolipid 
biosynthesis, aspartate and asparagine metabolism, cartilage 
development, response to transforming growth factor-
beta, chondrocyte dierentiation, regulation of lipid kinase 
activity, and signal transduction pathways (Figures 3A, B and 
Supplementary Figure 1). 

Colocalization between IDD risk loci and 
eQTLs 

To determine whether TWAS-identified associations with 
IDD are driven by shared causal variants, we performed 
eQTL colocalization analysis using fastENLOC across 49 GTEx 
tissues for all protein-coding genes. This analysis identified 146 
genes with strong colocalization evidence (max-GLCP > 0.5), 
among which 104 genes were TWAS- prioritized (Figure 2 
and Supplementary Data 3, 4). TWAS-prioritized genes showed 
significant enrichment for colocalization signals compared to a 
matched background set (χ2 = 2195.6, fold-enrichment = 91.7, 
p < 0.001) (Supplementary Table 2), highlighting the specificity and 
robustness of our findings. 

Identification of plasma proteins 
associated with IDD by PWAS 

To identify proteins potentially associated with IDD for further 
validation, we conducted two independent PWAS by integrating 
GWAS summary statistics with human plasma proteomic data 

from the ARIC consortium and deCODE Genetics. The ARIC-
based PWAS identified 494 significant associations, and the 
deCODE-based PWAS yielded 523 associations (Figures 4A, B; 
Supplementary Data 5, 6) (p < 0.05). Among these, 153 proteins 
were consistently associated with IDD across both datasets 
(Supplementary Data 7). Among them, six proteins, TMEM190, 
CILP2, FOXO3, SPON2, GALNT3, and NUF1, were additionally 
supported by TWAS and eQTL colocalization analyses, further 
reinforcing their relevance to IDD. 

For the PWAS results from the ARIC cohort, the most 
significant pathways were collagen formation, extracellular matrix 
organization, and glycosphingolipid/sphingolipid metabolism 
(Figures 3C, D and Supplementary Figure 2). Similarly, the 
deCODE PWAS analysis revealed glycosphingolipid/sphingolipid 
metabolism, regulation of actin cytoskeleton, extra-nuclear 
estrogen signaling, and signaling pathways associated with 
GPER1, NOTCH1, PI3K-Akt, and Hedgehog (Figures 3E, F and 
Supplementary Figure 3). The high degree of consistency between 
the TWAS and PWAS results across both datasets confirms the 
robustness of these findings. 

Colocalization between IDD risk loci and 
pQTLs 

To provide causal evidence for IDD-associated proteins, we 
performed pQTL colocalization analyses. In the ARIC dataset, 
26 proteins demonstrated strong colocalization signals with IDD 
risk loci (PPH4 > 0.5; Supplementary Data 8). Among these, 
22 proteins were also significantly associated with IDD in the 
PWAS (Figure 4A; Supplementary Data 9). In the deCODE dataset, 
pQTL colocalization identified 24 significant proteins (PPH4 > 0.5; 
Supplementary Data 10), of which 16 proteins showed consistent 
PWAS associations with IDD (Figure 4B; Supplementary Data 
11). Totally, 10 proteins were identified as causal proteins via 
ARIC based and deCODE based PWAS and their respective 
colocalization analyses (Supplementary Data 12). Among these, 
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FIGURE 3 

Reactome and KEGG enrichment analyses of the potential associated genes of IDD identified with TWAS and PWAS. Reactome and KEGG 
enrichment analysis of the potential associated genes of IDD identified with TWAS (A,B), with PWAS using ARIC dataset (C,D), and with PWAS using 
deCODE dataset (E,F). Each line represents a pathway with significance defined by an FDR-adjusted p < 0.05. The color intensity represents 
statistical significance. The dot size corresponds to the gene ratio, which is defined as the number of genes of a pathway to the total number of 
genes analyzed. 

TMEM190, CILP2, and FOXO3 were also supported by TWAS and 
eQTL colocalization analysis. 

Collectively, TMEM190, CILP2, and FOXO3 emerged as 
proteins with strong causal evidence for IDD, supported across 
multiple omics layers including TWAS, two independent PWAS 
datasets, and both eQTL and pQTL colocalizations (Table 1). 

Evaluation of the expression levels of 
genes/proteins identified by TWAS/PWAS 

To identify dierentially expressed genes (DEGs) in 
degenerative intervertebral discs, we analyzed mRNA expression 
profiles from human disc tissues using the microarray dataset 
GSE56081. Analysis of the GSE56081 dataset encompassing 13,170 
genes captured 537 (96.6%), 395 (80.0%), and 404 (77.2%) of 
IDD-associated genes/proteins identified by TWAS, ARIC based, 
and deCODE based PWAS, respectively. Among these genes, 2,877 
were significantly upregulated and 3,140 were downregulated 
in degenerated discs (Figure 5A; Supplementary Data 13). We 
observed 189 genes overlapped with TWAS-prioritized candidates 

(Supplementary Data 14) and 53 overlapped with proteins 
identified in both PWAS analyses (Supplementary Data 15). 

In particular, all three genes (TMEM190, CILP2, and FOXO3) 
priorized by multiple-omics analyses were found to be significantly 
dierentially expressed in degenerative intervertebral discs 
(p < 0.05) (Figures 5A, B and Table 1). Specifically, TMEM190 
and CILP2 were upregulated in IDD samples, whereas FOXO3 was 
downregulated compared to the control group. Notably, CILP2 
showed the most pronounced change, exhibiting a 1.5-fold increase 
in expression in degenerated discs relative to controls. 

Functional annotation of TMEM190, 
CILP2, and FOXO3 

The three potential causal genes were analyzed within the 
framework of GSEA to investigate their functions by coexpression 
analysis (Figure 5C). The GSEA results revealed that all of the 
three genes involved in the expression and translation of olfactory 
receptors, sensory perception and SRP-dependent cotranslational 
protein targeting to the membrane pathways. 

TABLE 1 Summary of three potential causal genes of IDD indicated by TWAS, PWAS and colocalization analyses. 

Discovery of TWAS Validation of PWAS (ARIC) Validation of PWAS (deCODE) 

Gene Chr Max-GLCP FDR p PPH4 P-value PPH4 P-value Expression

TMEM190 19 0.93 1.83 × 10−5 0.99 3.00 × 10−5 0.99 3.74 × 10−5 Up-regulated 

CILP2 19 0.69 8.62 × 10−4 0.92 9.00 × 10−4 0.70 1.75 × 10−5 Up-regulated 

FOXO3 6 0.87 0.006 0.79 0.002 0.69 0.016 Down-regulated 
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FIGURE 4 

Manhattan plot illustrating PWAS protein associations on the basis of ARIC and deCODE data. Manhattan plot for the ARIC based (A) and deCODE 
based (B) PWAS of IDD. Each dot represents a protein plotted according to its genomic position (x-axis), and the significance of the association was 
measured as the −log10 (p-value) (y-axis). Highlighted points and their protein labels indicate proteins meeting stringent colocalization criteria: 
p < 0.05 and colocalization PPH4 > 0.5. The color of the highlighted points indicates the directionality of the genetic effect: red for positive beta 
values (beta > 0) and blue for negative beta values (beta < 0). 

To elucidate the interactions among the candidate genes 
associated with IDD (TMEM190, CILP2, and FOXO3), we 
performed PPI analysis involving 88 proteins associated with 
IDD identified in TWAS and PWAS (Supplementary Data 1). 
There were 27 genes whose connections had interaction scores 
greater than 0.4. Notably, TMEM190 did not interact with either 
CILP2 or FOXO3. Although no direct interactions were observed 
between CILP2 and FOXO3, several core proteins—SMAD3, 
COMP, IGFBP3, IGF1R, COL10A1, RUNX3, and PTK2—were 
identified as mediators of the interaction between CILP2 and 
FOXO3 (Figure 6). 

Druggability of the identified genes and 
proteins 

Among the genes identified through TWAS and eQTL analyses, 
33 protein-coding genes were classified within the druggable 
genome: including 16 in tier 1, 8 in tier 2, and 9 in tier 3 
(Supplementary Data 16). By searching the Open Target Platform, 
we identified several approved or investigational drugs targeting 
risk genes indicated by TWAS and eQTL analyses, including 

FGFR3, TGFA, CD79B, PDE3A, NQO1, AGER, ITGA2, CDK4, 
COL27A1, and PTK2 (Supplementary Data 17). Additionally, 
of the proteins identified through PWAS and pQTL analyses 
via ARIC or deCODE, 14 protein-coding genes were classified 
within the druggable genome: including 4 in tier 1 and 10 in 
tier 3 (Supplementary Data 18). We further identified several 
approved or investigational drugs targeting risk genes of IDD 
indicated by PWAS and pQTL analyses, namely PLG and PTHLH 
(Supplementary Data 19). Among the three potential causal genes, 
only CILP2 was druggable, while TMEM190 and FOXO3 were not 
in the druggable genome. 

Validation studies for potential causal 
genes of IDD with clinical samples and 
animal model 

To explore the roles of TMEM190, CILP2, and FOXO3 in IDD, 
we assessed their expression in human IVD specimens from mild 
degeneration (Grades I and II) and severe degeneration (Grades 
III, IV, and V). Western blot results showed increased expression 
of TMEM190 and CILP2 with concurrent decreased expression 
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of FOXO3 in severely degenerated IVD tissues (Figures 7A, B), 
aligning with findings in DEGs analysis. 

Given the combined evidence supporting CILP2, and its 
classification as a druggable target, we further investigated its 
role in IDD using a needle-induced IVD degeneration mouse 
model. As shown in Figures 8A, B, the protein level of CILP2 
in the IVD was up-regulated after puncture treatment. However, 
this level decreased significantly following shRNA transfection. 
MRI examinations revealed that the grade score of the IVD was 
significantly increased after puncture treatment, while it decreased 
markedly with CILP2 knockdown (KD) (Figures 8C,D). H & 
E staining showed the degenerated progression was alleviated 
following the down-regulation of CILP2 (Figures 8E, F). These 
results suggest that down-regulation of CILP2 reduces the 
susceptibility to intervertebral disc degeneration progression in the 
mouse model of IDD. 

Discussion 

To the best of our knowledge, this study is the first to employ 
multidimensional multi-omics data, including high-throughput 
genomics, whole-body transcriptomics, plasma proteomics and 
intervertebral disc transcriptomics, to investigate potential risk 
genes for IDD. Our integrative approach presented 104 TWAS-
identified genes and 10 PWAS-identified proteins with IDD based 

on converging evidence supported by eQTL/pQTL colocalization 
analyses. These genes/proteins were enriched for key regulators 
of disc pathology, such as glycosphingolipid/sphingolipid 
metabolism. Three potential causal genes, TMEM190, CILP2, and 
FOXO3, were consistently supported by TWAS, two independent 
PWAS and colocalization analyses. These three genes were 
dysregulated in degenerated human discs, with CILP2 further 
classified as druggable. We also validated the role of these causal 
genes, TMEM190, CILP2 and FOXO3 with clinical samples, as well 
as the role of CILP2 with animal model in IDD. 

Glycosphingolipid/sphingolipid metabolism consistently 
emerged as a key pathway across all enrichment analyses of the 
identified associations. Both the TWAS and the PWAS results from 
the ARIC and deCODE cohorts strongly highlight this pathway as a 
critical factor in the pathogenesis of IDD. Sphingolipids, including 
ceramide and sphingosine-1-phosphate, constitute a major class 
of lipids found in all eukaryotic cells. Sphingolipids regulate 
a wide range of biological processes, including inflammation, 
mitochondrial function and apoptosis (32–34). The metabolic 
processes involved in sphingolipid biosynthesis and regulation 
were significantly enriched, underscoring their potential role in 
IDD. This pathway’s involvement in inflammation and apoptosis 
suggests that targeting sphingolipids synthesis could serve as a 
promising therapeutic strategy to alleviate disc disorders and 
associated pain. 

FIGURE 5 

DEGs and enrichment analysis of the three potential causal genes of IDD. (A) Volcano plot of the DEG analysis. Each dot represents a gene plotted 
according to the significance of the association measured as the −log10 (FDR-adjusted p-value) (y-axis). The colors of the points are as follows: red 
for upregulated genes, blue for downregulated genes, and gray for non-differentially expressed genes (FDR-adjusted p ≥ 0.05). (B) Expression levels 
of potential causal genes for IDD in degenerative vs. non-degenerative groups, based on microassy data from clinical samples n = 5. Two-tailed 
t-test. *p < 0.05. (C) Significantly enriched pathways for the three potential causal genes (TMEM190, CILP2 and FOXO3) as determined by GSEA. 
Each line represents a pathway with significance defined by an FDR-adjusted p < 0.05. Yellow indicates upregulation (NES > 0), while green 
indicates downregulation (NES < 0). 
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FIGURE 6 

PPI network of the significant proteins associated with IDD identified via TWAS and PWAS analyses. Each dot represents a protein. Lines denote 
physical PPIs. 

FIGURE 7 

Validation of risk genes in clinical IVD tissues. (A,B) Western-blot analysis of TMEM190, CILP2, and FOXO3 in control and severe IDD patients. n = 3. 
Data represent the mean (SD). Two tailed t-test. *p < 0.05. 

Among the identified genes (TMEM190, CILP2, and FOXO3), 
FOXO3 has been previously investigated in the context of IDD. 
FOXO3, a member of the forkhead box O transcription factor 

family, is known to regulate critical cellular processes, including 
the cell cycle, apoptosis, and metabolism, and is implicated in 
age-related diseases (35, 36). FOXO3 has been linked to IDD in 
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FIGURE 8 

Down-regulation of CILP2 alleviated IDD progression in mouse model of IDD. (A,B) Western-blot analysis of CILP2 in Sham, puncture (Punc) and 
knocking down (KD) IVD tissues in mouse model of IDD. n = 3. (C,D) Magnetic resonance imaging (MRI) and Pfirrmann grades of IVD in mice treated 
as in (A). n = 3. (E,F) Hematoxylin and Eosin (H&E) staining and histological score assessment of IVD in mice treated as in (A). n = 3. Scale bar = 200 
µm. Data represent the mean (SD). One-way ANOVA. *p < 0.05. 

numerous studies, where it functions as a mediator regulating 
the role of specific genes in the disease, such as YTHDF2 and 
P300 (37, 38). Furthermore, FOXO3 is involved in the molecular 
mechanisms of potential therapeutic agents for IDD, such as stem 
cell-derived exosomes and procyanidin C1, primarily by regulating 
oxidative stress (39, 40), which reinforces the potential of FOXO3 
as therapeutic interventions for this condition. The current study 
found that FOXO3 was down-regulated in severely degenerated 
disc tissues, which aligns with previous findings (38, 41). Our study 
provides additional evidence for dysregulated FOXO3 expression 
in IDD. However, the contribution of FOXO3 to IDD still requires 
further exploration. 

The roles of the other two identified genes, TMEM190 and 
CILP2, in IDD are less well characterized. TMEM190 is located 
on chromosome 7 and contains five exons, which encode a 
small single-pass transmembrane protein (42). Small single-pass 
transmembrane proteins may be associated with mitochondrial 
oxidative phosphorylation (43), which has been linked to 
IDD. Additionally, TMEM190 may contribute to chondrocyte 
dedierentiation (44). Given that cartilage endplate remodeling 
and altered chondrocyte subsets play key roles in IDD progression 
(45, 46), TMEM190 may involve in IDD pathogenesis. CILP2, a 
member of the cartilage intermediate layer protein family, encodes 
a matricellular protein predominantly expressed in cartilage cells 
but also in various other tissues (47). Quantitative proteomic 
analysis and immunohistochemistry have demonstrated increased 
CILP2 levels in degenerated human intervertebral discs (48, 49). 
In current study, we found CILP2 was up-regulated in severe 
IDD tissues, which provides additional evidence that CILP2 play 
a role in IDD. Importantly, the inhibition of Cilp2 has been 
shown to improve mitochondrial dysfunction in sarcopenia via 
the WNT signaling pathway (47). Given the established roles of 
mitochondrial dysfunction and WNT signaling in IDD (50, 51), 

CILP2 is likely to play an important role in this condition. In the 
current study, we found that down-regulation of CILP2 alleviated 
IDD progression in mouse model of IDD. Our results provide 
more direct evidence for the role of CILP2 in the progression 
of IDD. Our multi-omics investigation and validation study with 
clinical samples and animal model oer evidence supporting the 
role of CILP2 as a disease-causing gene and therapeutic target 
in IDD. However, the functional mechanism of CILP2 in IDD 
was not explored in current study. It has been reported that 
CILP2 aect sarcopenia and hypertrophic scar by antagonizing 
Wnt signaling pathway (47), and reducing the ubiquitination of 
ACLY (52), respectively. Further research is warranted to elucidate 
the precise role of CILP2 in modulating IDD progression through 
these candidate signaling pathways. 

While no direct interactions among the three genes 
(TMEM190, CILP2 and FOXO3) were reported, GSEA revealed 
their collective involvement in the olfactory signaling pathway, 
and sensory perception. Notably, olfactory stem cells have been 
shown to exhibit a chondrogenic phenotype, promoting IVD 
regeneration in a rat model of disc injury (53), which indicates 
these three genes collectively contributed to the pathology of 
IDD. In addition, pain is a significant symptom of IDD. It has 
been reported that anti-sensory nerve transmission significantly 
suppresses inflammatory pain markers (54). The involvement of 
these three genes in sensory perception indicates that they share 
a similar pathway for the contribution of pain to IDD. To further 
explore the correlations, we performed a PPI analysis using data 
from TWAS and PWAS. Although no direct interactions were 
found among the three genes, several mediators of interaction 
between CILP2 and FOXO3 were identified, including COMP 
and IGFBP3, which have been linked to IDD progression (55, 56). 
These findings suggest that CILP2 and FOXO3 may collaboratively 
influence IDD through these mediators. 
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Our study has several strengths. Primarily, it integrates 
both genomic and proteomic data to provide comprehensive 
insights into the complex biological systems underlying IDD. 
Additionally, the validation of potential causal genes through two 
independent PWAS analyses strengthens the reliability of our 
findings. Furthermore, the datasets utilized, comprising extensive 
human transcriptomes, proteomes, and IDD GWAS data, are 
among the largest and most complete to date, enhancing the 
robustness of the results. Finally, we validated the risk genes derived 
from public datasets using clinical samples and animal model, 
which enhances the reliability of our findings. 

Some limitations must be acknowledged. First, the PWAS 
for IDD utilized human blood proteome data; however, plasma 
proteins serve as systemic biomarkers and may not fully capture 
disc-specific changes, potentially introducing bias. Future studies 
should examine the proteomes specific to human intervertebral 
discs. Secondly, the identification of susceptible genes from 
a European database, coupled with clinical validation using 
specimens from the Chinese population, introduces population 
heterogeneity that may limit the generalizability of the findings. 
Future cross-ethnic validation studies should be conducted to 
assess the robustness of these findings across diverse populations 
and ensure their applicability in broader clinical contexts. 
Additionally, the mechanisms by which identified risk genes 
and the relevance of their enriched pathways contribute to IDD 
remain unclear, and additional studies are needed to further 
evaluate their potential as therapeutic targets. Besides, only the 
mouse tail disc puncture model was employed, which is an 
acute injury model and may not adequately replicate the chronic, 
progressive nature of human IDD. Also, the current transcriptomic 
samples predominantly represent European populations, whereas 
the proteomic samples are from American populations, and 
expanding the diversity of these datasets may yield more accurate 
estimations and broader applicability. Finally, gene-environment 
interactions and assortative mating could influence genetic eects 
and contribute to variance in the analysis. Unfortunately, due to 
the limitations inherent in the current dataset and the scope of the 
study design, it is not feasible to adjust for these factors in this 
particular analysis. Nevertheless, the strength of our study lies in 
its innovative integration of multi-omics data, which positions it 
as one of the first eorts to identify and validate novel genetic risk 
factors for IDD in such a comprehensive manner. 

Conclusion 

In summary, we present an expanded resource of putatively 
causal genes associated with IDD, and highlight three novel 
potential causal genes (TMEM190, CILP2, and FOXO3). These 
findings provided a broad hint for further research on the potential 
mechanisms underlying IDD pathogenesis and highlight novel 
therapeutic targets for future investigations. 
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SUPPLEMENTARY FIGURE 1 

GO enrichment analysis of the potential associated genes of IDD identified 
with TWAS. Each line represents a pathway with significance defined by an 
FDR-adjusted p < 0.05. The color intensity represents statistical 
significance. The dot size corresponds to the gene ratio, which is defined as 
the number of genes of a pathway to the total number of genes analyzed. 

SUPPLEMENTARY FIGURE 2 

GO enrichment analysis of the potential associated genes of IDD identified 
with PWAS via the ARIC dataset. Each line represents a pathway with 
significance defined by an FDR-adjusted p < 0.05. The color intensity 
represents statistical significance. The dot size corresponds to the gene 
ratio, which is defined as the number of genes of a pathway to the total 
number of genes analyzed. 

SUPPLEMENTARY FIGURE 3 

GO enrichment analysis of the potential associated genes of IDD identified 
with PWAS via the deCODE dataset. Each line represents a pathway with 
significance defined by an FDR-adjusted p < 0.05. The color intensity 
represents statistical significance. The dot size corresponds to the gene 
ratio, which is defined as the number of genes of a pathway to the total 
number of genes analyzed. 
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Lung cancer remains the leading cause of cancer-related deaths globally, with

a 5-years survival rate of only around 20%. Merging cohort and Mendelian-

randomization studies indicate that gut dysbiosis is associated with—though

not yet proven to cause—an elevated risk and worse prognosis of non-

small-cell lung cancer. Lower fecal abundance of butyrate producers such as

Faecalibacterium prausnitzii and expansion of Enterobacteriaceae correlate with

reduced systemic CD8 + T-cell infiltration and shorter progression-free survival

during immune-checkpoint blockade. Antibiotic exposure within 30 days before

anti-PD-1 initiation is consistently linked to diminished objective response

and overall survival in retrospective cohorts, whereas supplementation with

butyrogenic probiotics or fecal microbiota transplantation from responders

restores therapeutic efficacy in pre-clinical models. This review integrates

epidemiological, mechanistic and clinical data to clarify the current evidence,

identify gaps and outline the steps needed to translate gut–lung-axis research

into safe, effective adjunctive therapies for patients with lung cancer.

KEYWORDS

lung cancer, Gut-microbiota-lung Axis, gut microbiota, immunotherapy, short-chain
fatty acids, gut dysbiosis

1 Introduction

Lung cancer remains the leading cause of cancer-related deaths globally, with an
estimated 1.8 million deaths annually. Non-small-cell lung cancer (NSCLC) accounts for
over 85% of cases (1). While recent years have witnessed significant advancements in lung
cancer treatment, such as the emergence of targeted therapies and immune checkpoint
inhibitors, the prognosis for lung cancer patients remains poor, with a global 5-year overall
survival rate of 19.8% (95% CI 19.6–20.0) for all stages combined, ranging from 4.2%
(stage IV) to 68.4% (stage I) in the most recent CONCORD-3 analysis covering 2000–
2014 diagnoses. Regional figures for China (2012–2015) mirror the global estimate at 19.7%
overall (2). For example, the CheckMate-816 trial showed that neoadjuvant nivolumab plus
chemotherapy increased pathological complete response rates, yet the absolute survival
gain was modest (3). Thus, there is an urgent need to explore novel therapeutic strategies
to enhance treatment efficacy and improve patient survival.
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The gut–lung axis denotes bidirectional communication 
between intestinal microbiota and pulmonary immunity (4). 
Cross-sectional studies report that fecal depletion of butyrate 
producers such as Faecalibacterium prausnitzii or enrichment of 
Fusobacterium spp. is associated with NSCLC (5, 6). Similarly, 
Mendelian-randomization analyses indicate that genetically 
predicted lower abundance of Bacteroides and Faecalibacterium 
is associated with higher NSCLC risk, mediated by reduced 
CD8 + T-cell infiltration (7, 8). Whether these associations 
reflect causality or reverse causation is unresolved; nevertheless, 
germ-free mice exhibit impaired pulmonary immunity and 
accelerated urethane-driven adenocarcinoma (4). Furthermore, 
recent advances in microbiome research have provided new 
insights into the relationship between the gut microbiota and lung 
cancer (9). Studies have shown that the gut microbiota composition 
in lung cancer patients diers significantly from that in healthy 
individuals. For example, some research has found that the relative 
abundance of certain bacterial genera, such as Fusobacterium and 
Porphyromonas, is higher in lung cancer patients (5, 6). Moreover, 
the gut microbiota can influence the eÿcacy of lung cancer 
treatment. A study demonstrated that patients with a specific gut 
microbiota profile had better responses to immune checkpoint 
inhibitors (ICIs) and longer progression-free survival (PFS) (10). 
Additionally, gut microbiota metabolites, such as short-chain fatty 
acids (SCFAs) and bile acids, can aect lung cancer progression by 
regulating immune responses and inflammation (11). Collectively, 
current evidence supports an association rather than a proven 
causal role of gut dysbiosis in lung-cancer initiation or progression. 

The Gut-microbiota-lung Axis holds great promise for the 
treatment of lung cancer (12). Gut microbiota modulation 
through probiotics, prebiotics, and fecal microbiota transplantation 
(FMT) has shown potential in regulating immune responses and 
improving treatment eÿcacy in lung cancer patients. For example, 
a study found that supplementation with specific probiotics 
could enhance the eÿcacy of immune checkpoint inhibitors (12). 
Furthermore, understanding the Gut-microbiota-lung Axis may 
help identify novel biomarkers for lung cancer diagnosis and 
prognosis. However, there are still some challenges in this field (13). 
The mechanisms underlying the Gut-microbiota-lung Axis in lung 
cancer are complex and require further exploration. Additionally, 
the safety and long-term eÿcacy of gut microbiota interventions 
need to be validated through large-scale clinical trials. 

In this review, we aim to comprehensively evaluate the current 
evidence on the Gut-microbiota-lung Axis in lung cancer, explore 
its potential clinical implications, and identify future research 
directions. We will discuss the role of the gut microbiota in lung 
cancer development and progression, its impact on treatment 
eÿcacy, and the potential mechanisms involved. We will also 
examine the clinical applications of gut microbiota modulation 
in lung cancer and the challenges and opportunities in this 
field. By bridging basic science and clinical applications, we hope 
to provide new perspectives for the prevention, diagnosis, and 
treatment of lung cancer. 

2 Transparent evidence synthesis 

This review is based on a structured literature search of 
PubMed (up to 31 March 2025) using the strategy: (lung 

cancer OR non-small cell lung cancer) AND (gut microbiota 
OR gut-lung axis OR fecal microbiota) AND (immunotherapy 
OR chemotherapy OR prognosis). Inclusion criteria: peer-
reviewed English-language articles (2010–2025) reporting original 
human or pre-clinical data on gut microbiota composition, 
metabolites or interventions in lung cancer. Exclusion criteria: 
conference abstracts, reviews without primary data, studies 
lacking lung-cancer-specific outcomes. Because the field is 
composed predominantly of observational and single-arm trials, 
the risk of publication bias toward positive associations is 
acknowledged. Heterogeneity is evident in sequencing platforms 
(16S rRNA V3-V4 vs. shotgun metagenomics), DNA extraction 
protocols, bioinformatic pipelines (QIIME 2 vs. MOTHUR), 
and metabolomic platforms (GC-MS vs. LC-MS/MS), precluding 
formal meta-analysis. These limitations are reflected in the use of 
qualitative synthesis throughout the manuscript. Prior reviews have 
summarized cross-sectional associations between gut dysbiosis and 
lung cancer risk (14), the present work extends those observations 
by integrating longitudinal intervention data and by explicitly 
distinguishing prognostic from predictive microbial signatures. 

3 The Gut-microbiota-lung Axis: 
physiological and immunological 
foundations 

Understanding the physiological and immunological 
underpinnings of the Gut-microbiota-lung Axis is essential to 
grasp how these distant organs interact and maintain health (4). 
The gut and lungs share a common embryological origin, which 
forms the basis for their structural and functional similarities and 
the bidirectional communication between them (12) (Figure 1). By 
exploring these fundamental aspects, we can better comprehend 
the mechanisms through which gut microbiota aects lung cancer 
development and progression. 

3.1 Anatomical and embryological links 

The gut and lungs share a common endodermal origin 
during embryonic development, which lays the foundation for 
their structural and functional similarities and the bidirectional 
communication of the Gut-microbiota-lung Axis (4). Both the 
lung, trachea, respiratory epithelium, and gut originate from the 
endoderm (12). A study found that hyperactive Wnt signaling in 
lung progenitor cells expressing lung-specific genes can induce 
the dierentiation of lung progenitor cells into gut cell types. 
The mucosal immune system, including gut-associated lymphoid 
tissue (GALT) and bronchus-associated lymphoid tissue (BALT), 
exerts a key role in mediating systemic immunity. Secreted 
immunoglobulin A (sIgA) produced by the mucosal immune 
system is a common molecular basis of mucosal immunity in 
dierent parts of the body and an important molecular mediator 
of the Gut-microbiota-lung Axis (4) (Figure 1). It is involved in 
the pathogenesis and progression of lung diseases such as Chronic 
obstructive pulmonary disease (COPD), asthma, and idiopathic 
pulmonary fibrosis, prevents the spread of pathogens in the body, 
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FIGURE 1 

Anatomical and embryological links of the Gut-microbiota-lung Axis by Figdraw. This figure illustrates the common embryological origin of the gut 
and lung tissues and their anatomical features. 

and regulates the composition and function of gut microbiota. 
The poor outcome of germ-free mice exposed to acute infection 
and their susceptibility to allergic airway disease demonstrate 
the critical role of the gut microbiota in lung homeostasis and 
immunity (4). Researchers have also detected the expression of lung 
function protein pulmonary surfactant protein A in the gut tissue of 
patients with gut inflammation, further highlighting the similarity 
between the lung and gut (15). 

3.2 Microbial and metabolic crosstalk 

Gut microbiota-derived metabolites, such as SCFAs and bile 
acids, play a significant role in pulmonary inflammation. SCFAs, 
mainly propionate, acetate, and butyrate, are produced through the 
microbial fermentation of indigestible foods in the gastrointestinal 
tract (16). They maintain the proper functioning of the intestinal 
barrier, regulate glucose and lipid metabolism, alleviate oxidative 
stress and inflammation, and are considered main modulators of 
gut and lung immunity (17). The gut microbiota is the primary 
source of SCFAs influencing immune cells in the lamina propria 
and mesenteric lymph nodes (18). These cells then arrive in the 
respiratory system through circulation. For example, propionate 
produced in mice during a fiber-rich diet stimulates macrophages 
and dendritic cell progenitors, which can trigger phagocytosis 

without inducing Th2-mediated allergic airway inflammation (13, 
19). SCFAs also aect hematopoietic precursor production in 
the bone marrow to maintain lung homeostasis and alleviate 
potential airway inflammation (20). In patients with emphysema, 
a positive correlation between higher fecal acetate levels and 
forced expiratory volume in the first second was observed (20). 
Exogenous acetate supplementation reduced alveolar destruction 
and pro-inflammatory cytokine production in mouse models of 
emphysema (21). In contrast, COPD patients showed a Prevotella-
dominated gut type and lower SCFAs in feces, including acetic acid, 
isobutyric acid, and isovaleric acid (22). The severity of COPD 
patients was associated with reduced SCFAs concentrations in 
feces (23). Antibiotic-induced gut microbiota imbalance leading 
to SCFAs reduction aggravated the development of emphysema 
in mice (24). Gavage of acetate-producing Bifidobacterium longum 
subsp. longum was found to alleviate lung inflammation and 
butyrate depletion in the cecum of mice in a COPD model 
induced by 8 weeks of cigarette smoke exposure (23). Gut 
microbiota-derived SCFAs could directly or indirectly regulate 
the immune homeostasis of the lung, thereby alleviating the 
development of COPD. 

Gut permeability and microbial translocation are drivers of 
systemic inflammation (25). Gut dysbiosis impairs epithelial barrier 
function and elicits a pro-inflammatory response (26). For instance, 
gut dysbiosis marked by a notable rise in Enterobacteriaceae 
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activates TLR4 in the intestine, which elevates IL-1β levels in the 
peripheral circulation (25). This transmits inflammatory signals to 
the lungs and activates the NF-κB pathway, triggering oxidative 
stress and inflammation and contributing to lung pathology 
through the regulation of the intestinal barrier. ILC2s, ILC3s, and 
Th17 cells that migrate from the gut to the lungs have also been 
shown to impact respiratory immunity (25). 

Gut-derived SCFAs shape pulmonary immunity, yet the lung 
microbiota itself is now recognized as an independent modulator 
of respiratory health. 16S rRNA profiling of bronchoalveolar-
lavage fluid revealed that NSCLC tissue harbors a distinct 
luminal community enriched for Streptococcus, Veillonella and 
Rothia, with alpha-diversity inversely correlating with tumor 
stage (27, 28). Mechanistically, lung-colonizing Streptococcus 
spp. secrete peptidoglycan that activates NOD2 on alveolar 
macrophages, driving IL-1β-mediated MDSC recruitment and 
PD-L1 up-regulation within the tumor bed (29). Thus, local 
lung dysbiosis may synergize with gut-derived signals to amplify 
immunosuppression. 

Tobacco smoke and COPD are major confounders 
that simultaneously remodel both gut and lung microbial 
compartments. In a COPD-NSCLC cohort, metagenomic 
sequencing showed smoke-related enrichment of Prevotella 
and Porphyromonas in sputum, while the same patients exhibited 
gut depletion of Faecalibacterium and reduced serum butyrate 
(30). Smoke-induced gut-barrier leakage elevated systemic LPS, 
which primed alveolar macrophages for enhanced IL-8 and 
MMP-12 release, thereby accelerating emphysema and creating a 
pro-metastatic niche (31). Conversely, 8-week smoking cessation 
partially restored gut-barrier integrity and re-balanced lung 
microbiota, supporting the reversibility of smoke-driven dysbiosis 
(23). Integrative analyses therefore suggest that COPD and 
smoking function as bidirectional amplifiers of gut–lung-axis 
perturbation, warranting stratification for microbiota-targeted 
trials in lung-cancer patients. 

4 The mechanism of gut microbiota 
in the progression of lung cancer 

Elucidating the complex interplay between gut microbiota 
and lung cancer progression reveals multiple mechanisms 
through which these microbial communities exert their 
influence (14). Emerging evidence highlights the role of 
gut microbiota in modulating systemic and local immune 
responses, producing metabolites with anticancer properties, 
and directly aecting the tumor microenvironment through 
microbial translocation (Table 1). Additionally, gut microbiota 
dysbiosis can lead to epigenetic modifications and the 
activation of oncogenic signaling pathways in lung cancer. 
Figure 2 proposes an integrated model that synthesizes 
current evidence into four, non-exclusive pathways: (i) 
systemic immunomodulation, (ii) microbial metabolite 
signaling, (iii) bacterial translocation and tumor micro-
environment remodeling, and (iv) dysbiosis-induced 
epigenetic reprogramming. 

4.1 Immunomodulation and immune cell 
recruitment 

Emerging evidence highlights the pivotal role of gut microbiota 
in modulating systemic and local immune responses, thereby 
influencing lung cancer progression. Mendelian randomization 
studies demonstrate causal links between gut microbiota 
composition and NSCLC risk, mediated by immune cell dynamics. 
For instance, Chen et al. (7) identified that Bacteroides and 
Faecalibacterium species inversely correlated with NSCLC risk, 
likely through enhancing CD8 + T cell infiltration and reducing 
regulatory T cell (Tregs) activity. Similarly, Chen et al. (8) 
revealed that gut microbiota dysbiosis altered the abundance 
of circulating dendritic cells and neutrophils, which directly 
impacted tumor immune evasion. However, Li et al. (32) found 
no causal association between gut microbiota and small cell lung 
cancer (SCLC) in Mendelian randomization study, suggesting 
histology-specific immunomodulatory mechanisms. Collectively, 
these studies underscore the gut microbiota’s capacity to shape 
antitumor immunity, though heterogeneity across lung cancer 
subtypes warrants further exploration. 

While Akkermansia muciniphila enrichment is linked to 
enhanced CD8 + T-cell infiltration in European and North-
American cohorts (33), the same taxon shows neutral or even 
negative associations in Asian populations receiving concurrent 
antibiotics (34). Geographic, dietary and concomitant medication 
factors therefore moderate the immunostimulatory potential 
of this species. 

4.2 Metabolite-mediated anticancer 
effects 

Short-chain fatty acids, particularly butyrate and propionate, 
derived from microbial fermentation of dietary fiber, exhibit 
direct anticancer eects. Bi et al. (35) demonstrated that butyrate 
synergized with erastin to induce ferroptosis in lung cancer cells 
by upregulating ATF3 and inhibiting SLC7A11, a glutathione 
synthesis regulator. Similarly, Kim et al. (36) showed propionate 
triggered apoptosis and cell cycle arrest in lung adenocarcinoma 
via p53/p21 activation. Conversely, Zhu et al. (28) revealed 
that A. muciniphila-produced metabolites, such as succinate, 
reprogrammed intratumoral metabolism to suppress NSCLC 
growth by downregulating PI3K/Akt signaling. These findings 
are corroborated by Feng et al. (37), where basil polysaccharide 
combined with gefitinib altered fecal metabolites (e.g., linoleic 
acid) to inhibit tumor proliferation. Nevertheless, Ubachs et al. 
(38) reported reduced SCFA levels in cachectic lung cancer 
patients, implying that metabolite eÿcacy may depend on host 
metabolic status. 

Butyrate concentrations correlate with improved ICI response 
in 7 of 11 studies (Table 1); however, four cohorts—especially those 
enriched for cachectic patients—show no benefit (38), emphasizing 
that host metabolic context can override microbe-derived signals. 
Thus, while microbial metabolites hold therapeutic promise, their 
context-dependent roles necessitate personalized approaches. 
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TABLE 1 Studies on the mechanism of gut microbiota in lung cancer. 

Flora/metabolites Target (with sample 
size) 

Mechanism of action Role in lung cancer References 

Bacteroides spp. CD8+ T cells, Tregs (n = 452 

European GWAS) 
Enhances CD8 + T-cell infiltration; 
suppresses Treg activity via 

immunomodulatory pathways 

Reduces NSCLC risk by promoting 

antitumor immunity 

Chen et al. (7) 

Faecalibacterium spp. Dendritic and neutrophil 
abundance (n = 452 GWAS) 

Modulates dendritic cell and neutrophil 
abundance; reduces tumor immune 

evasion 

Correlates inversely with NSCLC 

progression 

Chen et al. (8) 

Gut microbiota dysbiosis SCLC risk (n = 2-sample MR, 
24,000 Europeans) 

No causal association observed in 

Mendelian randomization analysis 
No significant impact on small cell 
lung cancer (SCLC) pathogenesis 

Li et al. (32) 

Butyrate ATF3/SLC7A11 axis (n = 36 A/J 
male mice) 

Synergizes with erastin to induce 

ferroptosis via ATF3 upregulation and 

SLC7A11 inhibition 

Enhances NSCLC cell death; 
overcomes chemotherapy resistance 

Bi et al. (35) 

Propionate p53/p21 pathway (n = 3 in-vit 
replicates; A549 and H1299) 

Triggers apoptosis and cell cycle arrest via 

p53/p21 activation 

Suppresses lung adenocarcinoma 

proliferation 

Kim et al. (36) 

Akkermansia muciniphila PI3K/Akt signaling (n = 20 

C57BL/6 mice) 
Produces succinate to reprogram 

intratumoral metabolism; inhibits 
PI3K/Akt signaling 

Suppresses NSCLC growth and 

metastasis 
Zhu et al. (28) 

Basil polysaccharide Linoleic acid metabolism (n = 30 

BALB/c nude mice) 
Alters fecal metabolites (e.g., linoleic acid) 
to inhibit tumor proliferation 

Synergizes with gefitinib to suppress 
NSCLC progression 

Feng et al. (37) 

SCFAs Host metabolic status (n = 102 

cachectic cancer patients) 
Reduced levels in cachectic patients 
correlate with poor treatment response 

Context-dependent eÿcacy; requires 
personalized approaches 

Ubachs et al. (38) 

Klebsiella pneumoniae TLR4/NF-κB pathway (n = 32 

human NSCLC tissues) 
Promotes chronic inflammation and DNA 

damage via TLR4/NF-κB activation 

Exacerbates NSCLC progression by 

inducing genomic instability 

Dumont-Leblond et al. (39) 

Escherichia coli Circulating STAMBP (n = 45 

tumor-bearing mice) 
Elevates circulating STAMBP to enhance 

tumor cell invasion 

Drives lung cancer metastasis through 

STAMBP-mediated signaling 

Li et al. (40) 

Lactobacillus spp. Serum LPS (n = 77 Chinese 

NSCLC patients) 
Reduces serum LPS levels; improves 
chemotherapy outcomes 

Correlates with better prognosis in 

NSCLC patients 
Zhao et al. (41) 

Streptococcus spp. Bronchoalveolar lavage 

microbiota (n = 56 NSCLC 

patients) 

Bronchoalveolar lavage fluid microbiota 

linked to advanced NSCLC prognosis 
Indicates bidirectional 
Gut-microbiota-lung Axis crosstalk in 

disease progression 

Cheng et al. (27) 

Diallyl trisulfide PPARγ/NF-κB crosstalk (n = 30 

A/J mice) 
Restores gut microbial diversity; 
suppresses PPARγ/NF-κB crosstalk 

Attenuates NSCLC by reducing 

inflammation and oxidative stress 
Qu et al. (42) 

Trimethylamine N-oxide 

(TMAO) 
HDAC-mediated epigenetic axis 
(n = 68 patient metagenome) 

Facilitates brain metastasis via 

HDAC-mediated epigenetic dysregulation 

Promotes NSCLC metastasis to the 

brain 

Liu et al. (43) 

Faecalibacterium depletion Wnt/β-catenin activation (n = 42 

early-stage adenocarcinoma) 
Correlates with aberrant Wnt/β-catenin 

activation in early-stage lung 

adenocarcinoma 

Serves as a biomarker for early-stage 

NSCLC with oncogenic pathway 

dysregulation 

Zeng et al. (44) 

Gut microbiota dysbiosis SCLC progression (n = 2-sample 

MR, 24 000 Europeans) 
No significant association in Mendelian 

randomization analyses 
Limited role in SCLC pathogenesis Gong et al. (45) 

ATF3, Activating Transcription Factor 3; HDAC, Histone Deacetylase; LPS, lipopolysaccharide; NSCLC, non-small cell lung cancer; PI3K/Akt, Phosphoinositide 3-Kinase/Protein Kinase B; 
PPARγ, Peroxisome Proliferator-Activated Receptor Gamma; SCFAs, short-chain fatty acids; SCLC, small cell lung cancer; STAMBP, signal transducing adaptor molecule-binding protein; 
Th17, T Helper 17 cells; TLR4, Toll-Like Receptor 4; TMAO, trimethylamine N-oxide; Tregs, regulatory T cells; Wnt/β-catenin, Wingless/Integrated-β-Catenin Signaling Pathway. 

4.3 Microbial translocation and tumor 
microenvironment remodeling 

Gut microbiota-derived components, including 

lipopolysaccharides (LPS) and live bacteria, may translocate 

to the lung, directly influencing carcinogenesis. Dumont-Leblond 

et al. (39) detected enteric pathogens like Klebsiella pneumoniae 

in NSCLC tissues, which promoted chronic inflammation 

and DNA damage via TLR4/NF-κB activation. Li et al. (40) 
further identified gut Escherichia coli as a key mediator of lung 

cancer progression, elevating circulating signal transducing 

adaptor molecule-binding protein (STAMBP) levels to enhance 

tumor cell invasion. Conversely, Zhao et al. (41) observed that 
Lactobacillus enrichment in the gut correlated with reduced 

serum LPS and improved chemotherapy outcomes. Notably, 
Cheng et al. (27) linked bronchoalveolar lavage fluid microbiota 

(e.g., Streptococcus) to advanced NSCLC prognosis, suggesting 

bidirectional Gut-microbiota-lung Axis crosstalk. These studies 
highlight the dual role of microbial translocation—pathogenic taxa 

exacerbate malignancy, while commensals may confer protection. 
Detection of live gut-derived bacteria in lung tumors is reported 

in fewer than 15% of resected NSCLC specimens; thus, direct 
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FIGURE 2 

Mechanisms of gut microbiota in lung cancer progression by Figdraw. 

bacterial colonization is likely relevant to a molecular subtype 
rather than to lung cancer universally (39). 

4.4 Dysbiosis-driven epigenetic and 
signaling pathway alterations 

Gut microbiota dysbiosis induces epigenetic modifications and 
oncogenic signaling in lung cancer. Qu et al. (42) found that 
diallyl trisulfide attenuated NSCLC by restoring gut microbial 
diversity and suppressing PPARγ/NF-κB crosstalk. Liu et al. (43) 
demonstrated that gut microbiota metabolites (e.g., trimethylamine 
N-oxide) facilitated brain metastasis in NSCLC via HDAC-
mediated epigenetic dysregulation. Additionally, Zeng et al. (44) 
identified Faecalibacterium depletion as a marker of aberrant 
Wnt/β-catenin activation in early-stage lung adenocarcinoma. 
However, Gong et al. (45) reported no significant gut microbiota-
SCLC association in Mendelian randomization study, emphasizing 
histology-specific pathway interactions. Such mechanistic diversity 
underscores the need for subtype-specific therapeutic targeting. 
Faecalibacterium prausnitzii depletion consistently associates with 
Wnt/β-catenin activation in early-stage adenocarcinoma (44), yet 
Mendelian randomization studies fail to support a causal role for 
this taxon in SCLC, underlining histology-specific pathways (32). 

5 Gut-microbiota-lung Axis affects 
the response to therapy in lung 
cancer 

Emerging evidence highlights the critical role of the Gut-
microbiota-lung Axis in modulating therapeutic responses in lung 
cancer, particularly through gut microbiota-mediated immune and 
metabolic regulation (46). This section evaluates the impact of 
gut microbiota on treatment eÿcacy and toxicity across dierent 
therapeutic modalities, with a focus on ICIs, chemotherapy, and 
combination therapies (Table 2). 

5.1 ICIs 

The gut microbiota significantly influences ICIs eÿcacy 
by shaping systemic and tumor microenvironment immunity. 
Multiple studies demonstrate that antibiotic-induced dysbiosis 
correlates with reduced clinical benefits from ICIs. For instance, 
Derosa et al. (47) reported that antibiotic use within 30 days 
before ICIs initiation was associated with shorter PFS and overall 
survival (OS) in advanced NSCLC patients (HR = 1.5, p = 0.001). 
Similarly, Hamada et al. (48) found that antibiotic exposure 

Frontiers in Medicine 06 frontiersin.org 189

https://doi.org/10.3389/fmed.2025.1655780
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1655780 November 19, 2025 Time: 16:58 # 7

Liu et al. 10.3389/fmed.2025.1655780 

TABLE 2 Research on the influence of the Gut-microbiota-lung Axis on the treatment response of lung cancer. 

Flora/metabolites Study types (with n) Treatment measures Mechanism of action References 

Antibiotics-induced 

dysbiosis 
Retrospective cohort (n = 60 

NSCLC) 
Immune checkpoint inhibitors Reduced systemic immunity via depletion of 

immunostimulatory taxa (e.g., Akkermansia 

muciniphila) 

Derosa et al. (47) 

Antibiotics Observational study (n = 74 

NSCLC) 
Anti-PD-1 therapy Over 70% reduction in OS; impaired CD8 + T 

cell activation 

Hamada et al. (48) 

Faecalibacterium 

prausnitzii 
Phase-I trial (n = 38 enrolled) ICIs (anti-PD-1/PD-L1) Enhanced dendritic cell activation and CD8 + T 

cell infiltration; increased ORR (52% vs. 28%) 
Bredon et al. (33) 

Butyrate (SCFAs) Metabolomic analysis (n = 49 

Italian patients) 
Anti-PD-1 therapy Higher fecal butyrate levels correlated with T 

cell activation in responders 
Botticelli et al. (49) 

Clostridium butyricum Randomized trial (n = 42 

Japanese) 
ICIs + PPIs Restored ICI eÿcacy by compensating for 

butyrate deficiency; improved median PFS (6.1 

vs. 3.4 months) 

Tomita et al. (50) 

Bifidobacterium Animal model (n = 18 C57BL/6) Anti-PD-1 therapy Extracellular vesicles synergized with ICIs to 

suppress tumor growth via immune modulation 

Preet et al. (63) 

Gut microbiota diversity Prospective cohort (n = 74 

European) 
Nivolumab (anti-PD-1) No significant association between baseline 

microbiota and survival outcomes 
Ouaknine Krief et al. (34) 

Serum butyrate Prospective cohort (n = 94 

Chinese) 
Platinum-based chemotherapy Higher serum butyrate levels linked to 

improved ORR (68% vs. 42%) via apoptosis 
induction 

Chen et al. (55) 

Antibiotics Retrospective cohort (n = 153 

Chinese) 
Chemoimmunotherapy Lower ORR (32% vs. 51%) and higher grade ≥3 

AEs (45% vs. 28%) 
Deng et al. (56) 

Pemetrexed Pre-clinical PDX model (n = 12 

mice) 
Chemotherapy Disrupted gut microbiota diversity; exacerbated 

intestinal inflammation 

Pensec et al. (57) 

BFHY herbal formula Animal model (n = 24 BALB/c) Cisplatin chemotherapy Attenuated intestinal toxicity via Lactobacillus 
enrichment and anti-inflammatory eects 

Feng et al. (58) 

Bacteroides vulgatus Prospective cohort (n = 112 

NSCLC) 
Chemoradiotherapy Reduced radiation-induced pneumonitis risk 

(HR = 0.47) 
Qiu et al. (59) 

Antibiotics-induced 

dysbiosis 
Real-world analysis (n = 174 

Japanese) 
Platinum-pembrolizumab Lower ORR (29% vs. 44%) and shorter median 

OS (12.1 vs. 18.9 months) 
Tamura et al. (60) 

Fecal microbiota 

transplantation (FMT) 
Pre-clinical murine model (n = 24 

LLC-bearing mice) 
Chemoimmunotherapy Enriched Bifidobacterium and Akkermansia; 

enhanced tumor control 
Wang et al. (61) 

Probiotics Phase-II trial (n = 96 Chinese) Chemoimmunotherapy Improved ORR (58% vs. 41%) and reduced 

gastrointestinal AEs (22% vs. 45%) 
Xia et al. (62) 

Probiotics Randomized trial (n = 200 

Japanese) 
ICIs ± chemotherapy No significant survival benefit observed; 

strain-dependent variability 

Morita et al. (64) 

ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PPIs, proton pump inhibitors; SCFAs, short-chain fatty acids; AEs, adverse events; PDX, Patient-
Derived Xenograft. 

reduced OS by over 70% in NSCLC patients receiving anti-PD-
1 therapy, likely due to depletion of immunostimulatory taxa 
like Akkermansia muciniphila. Conversely, enrichment of specific 
commensals, such as Faecalibacterium prausnitzii strain EXL01, 
enhanced ICI response by promoting dendritic cell activation and 
CD8 + T cell infiltration [objective response rate (ORR): 52% vs. 
28% in controls, p = 0.02] (33). 

Gut microbiota-derived metabolites, particularly SCFAs, 
also modulate ICIs outcomes. Botticelli et al. (49) identified 
higher fecal butyrate levels in responders to anti-PD-1 therapy, 
which correlated with increased peripheral T cell activation. 
A randomized trial by Tomita et al. (50) further showed that 
Clostridium butyricum supplementation restored ICIs eÿcacy 
in patients receiving proton pump inhibitors (PPIs), likely 
by compensating for butyrate deficiency (median PFS: 6.1 
vs. 3.4 months, p = 0.03). Conflicting evidence surrounds 

Bifidobacterium’s clinical relevance, as high baseline B. breve 

abundance predicted longer PFS in Asian NSCLC patients 
receiving anti-PD-1 plus chemotherapy (51), yet a European 

cohort found no genus-level survival benefit after adjustment 
for antibiotics, PPIs and tumor mutational burden (34). These 

discordant outcomes likely reflect strain-specific eects, since only 

B. breve was protective, together with higher fiber intake and fecal 
butyrate in the Asian population that supports Bifidobacterium 

colonization (52), frequent PPI use in Europe that lowers gastric 

pH and impairs engraftment (53), and host genetic factors 
such as the East-Asian-enriched HLA-B allele that enhances 
mucosal IgA targeting of Bifidobacterium antigens (54). Such 

context emphasizes the need for strain-resolved, diet-adjusted 

and medication-controlled analyses before Bifidobacterium 

biomarker implementation. 
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5.2 Chemotherapy 

The gut microbiota impacts chemotherapy response and 
toxicity through metabolic interactions and immune modulation. 
Chen et al. (55) observed that NSCLC patients with high serum 
butyrate levels had better tumor regression after platinum-based 
chemotherapy (ORR: 68% vs. 42%, p = 0.01), likely via SCFA-
induced apoptosis of cancer cells. Conversely, antibiotic use during 
chemotherapy impaired outcomes, as demonstrated by Deng et al. 
(56), where NSCLC patients receiving antibiotics had lower ORR 
(32% vs. 51%, p = 0.02) and higher rates of grade ≥3 adverse 
events (AEs) (45% vs. 28%, p = 0.03). Mechanistically, pemetrexed 
disrupted gut microbiota diversity in murine models, exacerbating 
intestinal inflammation and reducing drug tolerance (57). 

Notably, gut microbiota modulation may ameliorate 
chemotherapy toxicity. Feng et al. (58) reported that a herbal 
formula (BFHY) attenuated cisplatin-induced intestinal damage 
in mice by restoring Lactobacillus abundance and suppressing 
pro-inflammatory cytokines (e.g., IL-6, TNF-α). Similarly, Qiu 
et al. (59) identified Bacteroides vulgatus as a predictor of 
reduced radiation-induced pneumonitis in NSCLC patients 
undergoing chemoradiotherapy (HR = 0.47, p = 0.01). These 
findings suggest microbiota-targeted interventions could optimize 
chemotherapy safety. 

5.3 Combination therapies 

The gut microbiota’s role in chemoimmunotherapy (e.g., 
platinum-pemetrexed plus ICIs) is increasingly recognized. Tamura 
et al. (60) found that antibiotic-induced dysbiosis diminished 
the eÿcacy of platinum-pembrolizumab in NSCLC, with lower 
ORR (29% vs. 44%, p = 0.04) and shorter median OS 
(12.1 vs. 18.9 months, p = 0.01). Conversely, FMT from 
responders enhanced tumor control in murine models by enriching 
Bifidobacterium and Akkermansia (61). A phase II trial by Xia 
et al. (62) further demonstrated that probiotics combined with 
chemoimmunotherapy improved ORR (58% vs. 41%, p = 0.04) 
and reduced gastrointestinal AEs (22% vs. 45%, p = 0.02) in 
advanced NSCLC patients. 

Despite these advances, conflicting data exist. For example, 
while Preet et al. (63) reported that Bifidobacterium-derived 
extracellular vesicles synergized with anti-PD-1 to suppress tumor 
growth, Morita et al. (64) found no significant survival benefit from 
probiotics in NSCLC patients receiving ICIs. These discrepancies 
may stem from dierences in probiotic strains, dosing regimens, or 
host genetic factors. 

6 Therapeutic interventions 
targeting the Gut-microbiota-lung 
Axis 

The Gut-microbiota-lung Axis has emerged as a pivotal 
pathway for modulating immune responses and systemic 
inflammation in lung cancer (17). Emerging therapeutic strategies 
targeting this axis focus on reshaping gut microbiota composition 

(Table 3), regulating microbial metabolites, and enhancing ICIs 
eÿcacy (65). 

6.1 Probiotics and microbial modulation 

Probiotics, particularly Clostridium butyricum (CBM588), 
have demonstrated promising immunomodulatory eects. 
In a prospective study of lung cancer patients receiving 
chemoimmunotherapy, CBM588 supplementation significantly 
improved OS and ORR compared to controls (66, 67). Whether 
these eects reflect prognostic enrichment or true predictive 
utility remains unresolved. Mechanistically, CBM588 enhances 
butyrate production, which promotes T-cell infiltration and 
reduces immunosuppressive cytokines like IL-10 and TGF-β (66). 
However, inconsistencies exist: while Tomita et al. (66) reported 
prolonged survival in patients receiving CBM588, Wan et al. (68) 
found no significant survival benefit with generic probiotics in 
ICIs-treated cohorts, suggesting strain-specific eects and the 
importance of butyrogenic species. Notably, Bifidobacterium breve 
abundance was identified as a biomarker predicting improved 
outcomes in NSCLC patients undergoing anti-PD-1 therapy 
combined with chemotherapy (51), highlighting the potential of 
microbiota-driven precision medicine. 

Post hoc analyses of two prospective Japanese cohorts (n = 40 
and n = 42) showed that baseline abundance of Faecalibacterium 
prausnitzii ≥1.2% was an independent prognostic factor for 
longer OS (HR 0.48, 95% CI 0.26–0.89), irrespective of CBM588 
administration (67), indicating a prognostic rather than predictive 
signature. Conversely, in the phase-I study of F. prausnitzii 
strain EXL01, only recipients who achieved ≥2-fold post-
supplementation expansion of the strain derived significant ORR 
benefit (52% vs. 28% in non-expanders, p = 0.02), supporting a 
predictive biomarker role (33). Distinguishing prognostic from 
predictive value therefore requires longitudinal sampling during 
intervention; static baseline taxon abundance alone is insuÿcient 
to claim predictive utility. 

6.2 Dietary interventions and microbial 
metabolites 

Short-chain fatty acids, particularly butyrate, are critical 
mediators of gut-lung crosstalk. Exposure to cigarette smoke 
carcinogens disrupted gut microbiota diversity (e.g., increased 
Firmicutes/Bacteroidetes ratio) and exacerbated lung cancer 
progression via NF-κB-driven inflammation (69). Conversely, 
dietary interventions such as ginseng polysaccharides altered 
the gut microbiota and kynurenine/tryptophan ratio, enhancing 
anti-PD-1 eÿcacy by increasing CD8 + T-cell activity (52). 
Similarly, theabrownin (a black tea polyphenol) suppressed 
colorectal tumorigenesis via PI3K/Akt/mTOR pathway inhibition 
and microbiota modulation (70), but its direct impact on lung 
cancer warrants further investigation. These findings underscore 
the dual role of dietary metabolites: protective SCFAs mitigate 
inflammation, whereas dysbiosis induced by environmental toxins 
accelerates oncogenesis. 
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TABLE 3 Research on the application of therapeutic intervention strategies targeting the Gut-microbiota-lung Axis in the treatment of lung cancer. 

Intervention 
strategies 

Targets Study types (with sample 
size) 

Therapeutic effect References 

Probiotics (CBM588) Gut microbiota, T-cell infiltration Prospective clinical trial (n = 40 

Japanese patients) 
Improved OS and ORR in lung cancer patients 
receiving chemoimmunotherapy 

Tomita et al., (66); 

Probiotics (CBM588) Gut microbiota, T-cell infiltration Prospective clinical trial (n = 42 

Japanese patients) 
Confirmed survival benefit with CBM588 plus 
chemo-immunotherapy 

Tomita et al., (67) 

Generic probiotics Gut microbiota diversity Retrospective cohort (n = 1 841 

multi-cancer patients, 229 NSCLC) 
No significant survival benefit in ICI-treated 

patients; strain-dependent variability 

Wan et al. (68) 

Bifidobacterium breve Anti-PD-1 eÿcacy Biomarker analysis (n = 126 Chinese 

NSCLC patients) 
Predicted improved outcomes in NSCLC 

patients on anti-PD-1 + chemotherapy 

Zhao et al., (51) 

Dietary interventions NF-κB-driven inflammation Pre-clinical murine model (n = 30 A/J 
mice) 

Cigarette smoke-induced dysbiosis exacerbated 

lung cancer progression 

Qu et al., (69) 

Ginseng polysaccharides Kynurenine/tryptophan ratio, 
CD8 + T cells 

Randomized controlled trial (n = 68 

Chinese patients) 
Enhanced anti-PD-1 eÿcacy via immune 

modulation 

Huang et al., (52) 

Theabrownin PI3K/Akt/mTOR pathway Murine colorectal model (n = 20 

C57BL/6 mice) 
Suppressed tumorigenesis via pathway 

inhibition and microbiota modulation 

Leung et al., (70) 

Xihuang Pill VEGF, HIF-1α, gut microbiota Pre-clinical + clinical (n = 60 mice; 
n = 28 patient metagenome) 

Synergized with anlotinib to suppress 
angiogenesis and tumor growth 

Cao et al.,(71) 

BuFeiXiaoJiYin NLRP3 inflammasome, 
Treg/Th17 balance 

Murine lung cancer model (n = 24 

BALB/c mice) 
Ameliorated inflammation and restored gut 
microbiota equilibrium 

Jiang et al., (72) 

EGCG STAT1/SLC7A11 pathway Obesity-driven murine model (n = 30 

C57BL/6 mice) 
Alleviated lung cancer progression via 

metabolic and microbiota regulation 

Li et al., (73) 

FMT (Alzheimer’s model 
feces) 

Akkermansia, Enterobacteriaceae Pre-clinical murine model (n = 20 

C57BL/6 mice) 
Accelerated lung tumor growth via 

pro-inflammatory microbiota shift 
Bi et al., (74) 

Postbiotics (JK5G) Immune-related adverse events 
(irAEs) 

Randomized controlled trial (n = 60 

Chinese NSCLC patients) 
Reduced irAEs in NSCLC patients via 

microbiota modulation 

Chen et al., (75) 

Helicobacter pylori 
screening 

ICI eÿcacy Retrospective cohort (n = 404 

melanoma patients, validation lung 

subset n = 97) 

Seropositivity correlated with reduced OS in 

melanoma patients on ICIs 
Tonneau et al., (77) 

Proton pump inhibitors 
(PPIs) 

Gastric pH, microbiota 

composition 

Post hoc clinical analysis (n = 692 

IMpower150 NSCLC patients) 
Attenuated atezolizumab eÿcacy in NSCLC 

patients 
Hopkins et al., (53) 

Metformin Akkermansia muciniphila, 
butyrate 

Pre-clinical murine model (n = 18 

C57BL/6 mice) 
Enhanced anti-PD-L1 activity via microbiota 

regulation 

Zhao et al., (78) 

Synbiotics 
(Inulin + Sintilimab) 

Gut microbiota-derived T-cell 
immunity 

Murine lung adenocarcinoma model 
(n = 18 LL/2 mice) 

Suppressed tumor growth by enhancing T-cell 
activity 

Yan et al., (79) 

Engineered Diaphorobacter 
nitroreducens 

ROS-mediated apoptosis Pre-clinical murine model (n = 15 

LLC mice) 
Synergized with oxaliplatin to reduce lung 

adenocarcinoma burden 

Ni et al., (80) 

ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PPIs, proton pump inhibitors; SCFAs, short-chain fatty acids; AEs, adverse events; PDX, Patient-Derived 
Xenograft; BFHY, BFHY herbal formula; HR, Hazard Ratio; NLRP3, NLR Family Pyrin Domain Containing 3; Treg/Th17, regulatory T cells/T Helper 17 cells; HIF-1α, Hypoxia-Inducible Factor 
1-Alpha; VEGF, Vascular Endothelial Growth Factor; STAT1, Signal Transducer and Activator of Transcription 1; SLC7A11, Solute Carrier Family 7 Member 11; PI3K/Akt, Phosphoinositide 
3-Kinase/Protein Kinase B; TMAO, trimethylamine N-oxide; Tregs, regulatory T cells; TLR4, Toll-Like Receptor 4; FMT, fecal microbiota transplantation; ICI, immune checkpoint inhibitor. 

6.3 Herbal medicine and natural 
compounds 

Traditional Chinese medicine (TCM) formulations, such as 
Xihuang Pill and Qingfei Mixture, synergize with chemotherapy 

by modulating gut microbiota and angiogenesis pathways. 
Xihuang Pill increased Lactobacillus and Bifidobacterium 

abundance, downregulating VEGF and HIF-1α expression in 

tumor microenvironments (71). Similarly, Bu Fei Xiao Ji Yin 

ameliorated NLRP3-mediated inflammation in lung cancer mice 

by restoring gut microbiota balance and enhancing Treg/Th17 

equilibrium (72). However, variability in TCM composition and 

bioavailability poses challenges in standardizing clinical outcomes. 
For instance, while EGCG (epigallocatechin gallate) alleviated 
obesity-driven lung cancer via STAT1/SLC7A11 signaling (73), 
its low bioavailability necessitates further optimization for 
therapeutic use. 

6.4 FMT and microbial reprogramming 

Fecal microbiota transplantation is the most direct strategy 
to re-engineer the entire gut ecosystem and has moved from 
Clostridioides diÿcile therapy to oncology trials. In two 
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independent pre-clinical lung-cancer models, FMT from ICI-
responding donors restored anti-PD-1 eÿcacy and tripled median 
survival after antibiotic-induced dysbiosis (61). Metagenomic 
tracking showed engraftment of Bifidobacterium longum 
and Akkermansia muciniphila and a parallel expansion of 
tumor-infiltrating CD8 + T cells, indicating that FMT can 
reconstitute both immunostimulatory taxa and systemic 
anti-tumor immunity. Conversely, FMT from Alzheimer’s 
disease mice accelerated urethane-driven lung tumors through 
selective loss of Akkermansia and overgrowth of LPS-high 
Enterobacteriaceae (74), underscoring the importance of 
donor screening. 

A first-in-human phase I study (NCT05122546) enrolled 
12 refractory NSCLC patients who received a single naso-
jejunal FMT from a verified ICI-responder; 3 patients achieved 
stable disease and one partial response, with no ≥grade-2 
adverse events (75). Current evidence supports the safety 
and feasibility of FMT as an adjunct to ICIs, but prospective 
validation cohorts with pre-specified microbial end-points 
are necessary to establish predictive signatures. Although 
objective response rates remain modest, FMT was safe and led 
to durable engraftment of butyrate producers for ≥12 weeks. 
Ongoing multicenter trials are comparing frozen-capsule 
FMT versus autologous transplant as an adjunct to first-line 
chemo-immunotherapy (62), and results are expected to clarify 
optimal dosing frequency, donor-selection algorithms and 
concomitant antibiotic restrictions. Compared with single-
strain probiotics, FMT oers the theoretical advantage of 
transferring a complete, self-sustaining microbial network; 
however, standardization of donor material, preparation protocols 
and long-term safety surveillance remain unresolved (76). Until 
phase-II eÿcacy data are available, FMT should be restricted 
to clinical trial settings with rigorous microbiological and 
immunological monitoring. 

6.5 ICIs and microbiota interactions 

The gut microbiota profoundly influences ICIs eÿcacy. 
Bifidobacterium breve abundance predicted improved outcomes in 
NSCLC patients receiving anti-PD-1/chemotherapy (51), whereas 
Helicobacter pylori seropositivity correlated with reduced OS 
in melanoma patients on ICIs (77). Pharmacomicrobiomics 
studies revealed that proton pump inhibitors (PPIs) attenuated 
atezolizumab eÿcacy by altering gastric pH and microbiota 
composition (53). Conversely, metformin enhanced anti-PD-L1 
activity by increasing Akkermansia muciniphila and butyrate 
levels (78), underscoring the need for microbiota-compatible 
adjunct therapies. 

Retrospective multi-cancer analyses indicate that high baseline 
Bifidobacterium breve abundance predicts improved ORR and PFS 
in Asian NSCLC patients receiving anti-PD-1 plus chemotherapy 
(n = 126; ORR 68% vs. 41%, p < 0.01) (51), whereas European 
cohorts show no genus-level survival benefit after adjustment for 
antibiotics, PPIs and tumor mutational burden (34). 

These geographically divergent results underscore 
that microbial biomarkers may exhibit population-specific 
predictive performance, necessitating external validation before 
clinical implementation. 

6.6 Emerging strategies: synbiotics and 
engineered microbes 

Synbiotic combinations of prebiotics and probiotics are 
being explored to enhance therapeutic precision. For example, 
prebiotics (e.g., inulin) combined with sintilimab (anti-PD-1) 
suppressed lewis lung adenocarcinoma growth by enhancing gut 
microbiota-derived T-cell immunity (79). Engineered microbes, 
such as Diaphorobacter nitroreducen synergized with oxaliplatin to 
reduce lung adenocarcinoma burden via ROS-mediated apoptosis 
(80). These approaches highlight the potential of combining 
microbial engineering with conventional therapies to overcome 
drug resistance. 

7 Technological advances in 
Gut-microbiota-lung Axis research 

Advancements in scientific technology have revolutionized the 
study of the Gut-microbiota-lung Axis, oering innovative tools 
to investigate its complex mechanisms (20). Omics approaches, 
such as metagenomics, metabolomics, and single-cell RNA 
sequencing, have become powerful methods for analyzing the 
composition and functional potential of microbial communities 
and their interactions with host immune cells (12). Animal 
models, including germ-free mice and humanized microbiota 
models, have also proven invaluable in studying the role of gut 
microbiota in Gut-microbiota-lung Axis interactions and lung 
cancer development (12). 

7.1 Omics approaches 

Metagenomics and metabolomics have become powerful tools 
in Gut-microbiota-lung Axis research. Metagenomics allows for 
the analysis of genetic material from microbial communities in 
the gut and lungs, providing insights into the composition and 
functional potential of these communities (81). However, the choice 
of sequencing strategy fundamentally determines the resolution, 
cost and interpretability of the data. For example, it has been 
found that patients with lung cancer have distinct gut microbiota 
compositions compared to healthy individuals. Certain microbial 
species and their functional pathways may be associated with the 
development and progression of lung cancer (81). Metabolomics, 
on the other hand, focuses on the comprehensive analysis of 
metabolites produced by these microbial communities (82). These 
metabolites can act as signaling molecules, modulating immune 
responses and influencing cancer-related processes. For instance, 
SCFAs, produced by gut microbiota through the fermentation of 
dietary fiber, have been shown to have immunomodulatory eects 
and may play a role in regulating lung immunity and inflammation 
(82). Short-chain fatty acids (SCFAs) are commonly quantified by 
targeted GC-MS or LC-MS/MS, whereas untargeted metabolomics 
employs high-resolution platforms (e.g., UHPLC-QTOF-MS) to 
discover novel microbial metabolites. Studies have found that 
SCFAs can aect the function of immune cells in the lungs, such as 
macrophages and T cells, thereby potentially influencing the tumor 
microenvironment in lung cancer (83, 84). 
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However, there are some dierences in the findings of dierent 
studies. Some research suggests that specific bacterial species or 
metabolites are associated with an increased risk of lung cancer, 
while others indicate that they may have protective eects (12, 17). 
For example, certain studies have reported that the abundance of 
specific bacteria in the gut, such as Firmicutes and Bacteroidetes, 
is altered in lung cancer patients, but the exact relationship and 
underlying mechanisms remain to be fully elucidated (85–87). 
This inconsistency may be due to dierences in study populations, 
methodologies, and other factors. Therefore, further large-scale, 
well-designed studies are needed to clarify the specific roles 
of these microbial components and their metabolites in lung 
cancer development. 

Single-cell RNA sequencing (scRNA-seq) has revolutionized 
our understanding of immune-microbial interactions in the Gut-
microbiota-lung Axis (65). This technology enables the analysis of 
gene expression at the single-cell level, providing a highly detailed 
view of the heterogeneity and functional states of immune cells 
in the gut and lungs (88). For example, scRNA-seq has revealed 
diverse subsets of immune cells, such as T cells, B cells, and 
macrophages, and their unique transcriptional profiles in response 
to microbial stimuli (89). By analyzing these transcriptional 
changes, researchers can gain insights into how gut microbiota 
influences the dierentiation, activation, and function of immune 
cells, and how these immune cells, in turn, aect lung cancer 
development and immune responses (90). Some studies have 
shown that specific gut microbiota compositions can modulate 
the tumor-infiltrating immune cell landscape in the lungs, thereby 
influencing the eÿcacy of immunotherapy for lung cancer (29, 
54). For instance, the presence of certain bacteria in the gut has 
been associated with increased numbers of cytotoxic T cells and 
natural killer cells in the lung tumor microenvironment, which may 
enhance the response to immune checkpoint inhibitors (8, 91). 

Nevertheless, there are also discrepancies in the results of 
dierent studies. The specific types of immune cells and their 
functional states influenced by gut microbiota may vary depending 
on factors such as the composition and function of the microbiota, 
the genetic background of the host, and the stage of lung 
cancer (12, 92). Therefore, it is necessary to conduct more in-
depth and comprehensive studies to fully understand the complex 
interactions between gut microbiota and immune cells in the 
context of lung cancer. 

7.2 Animal models 

Germ-free (GF) mice, which are raised in a sterile environment 
and lack exposure to microbiota, have been invaluable in 
studying the role of gut microbiota in Gut-microbiota-lung Axis 
interactions (93, 94). By colonizing GF mice with specific microbial 
communities, researchers can investigate the eects of these 
microbes on immune system development, lung function, and 
cancer-related processes (95). For example, studies have shown that 
the absence of gut microbiota in GF mice leads to impaired immune 
system development and function, and increased susceptibility 
to respiratory infections and lung cancer. When these mice are 
colonized with a normal gut microbiota, their immune systems 
and lung health are partially restored (96). This suggests that gut 

microbiota plays a crucial role in maintaining immune homeostasis 
and protecting against lung diseases. 

Humanized microbiota models, which involve transferring 
human gut microbiota into GF mice or other animal models, 
further enable the study of the specific eects of human 
microbiota on Gut-microbiota-lung Axis interactions and lung 
cancer development (92). These models provide a more clinically 
relevant system for investigating the mechanistic links between gut 
microbiota and lung cancer, and for testing potential therapeutic 
interventions targeting the Gut-microbiota-lung Axis (97). For 
instance, researchers can use humanized microbiota models to 
evaluate the impact of specific probiotics or prebiotics on the 
composition and function of gut microbiota, and subsequently 
assess their eects on immune responses and tumor growth in the 
lungs (98). 

However, there are also some limitations and dierences in the 
results obtained from dierent animal models. The gut microbiota 
of mice diers from that of humans in terms of composition 
and function, which may aect the translatability of findings 
to human clinical settings (99). Additionally, the complexity of 
the Gut-microbiota-lung Axis and the multiple factors involved 
in its regulation make it challenging to fully recapitulate the 
human disease conditions in animal models (100). Therefore, it is 
important to carefully interpret the results from animal studies and 
to validate them in human clinical studies whenever possible. 

8 Challenges and future directions 

The manipulation of the gut microbiota holds promise for the 
treatment of lung cancer, however, the lack of standardized 
protocols poses a significant challenge (14). Currently, 
interventions such as FMT, probiotics, and prebiotics are being 
explored. But the preparation, administration, and quality control 
of these interventions vary across studies (14). For example, FMT 
can be administered via dierent routes, such as nasogastric tubes 
or capsules, and the donor selection criteria and fecal processing 
methods also dier. These variations make it diÿcult to compare 
results across studies and to translate findings into clinical practice 
(101). Li et al. (76) demonstrated that FMT could improve the 
eÿcacy of immunotherapy in lung cancer patients, but the long-
term safety and optimal dosing regimens remain unclear. Similarly, 
probiotic and prebiotic interventions also lack standardized 
protocols. Dierent strains and doses of probiotics may have 
varying eects on the gut microbiota and immune system (102). 
Therefore, establishing standardized protocols for microbiota 
manipulation is crucial for advancing clinical applications. 

The gut microbiome varies significantly among individuals 
due to factors such as genetics, diet, and lifestyle (103). This 
heterogeneity necessitates the development of personalized 
microbiome-based therapies for lung cancer patients (20). 
However, achieving personalization is challenging. First, a 
comprehensive understanding of the relationship between the gut 
microbiome and individual clinical outcomes is required (20). 
Studies have shown that certain microbial signatures are associated 
with better responses to immunotherapy, but these signatures may 
not be universal. For instance, some research indicates that a higher 
abundance of specific bacteria, such as Akkermansia muciniphila, is 
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linked to improved immunotherapy responses, while other studies 
report dierent associations (104, 105). Second, the dynamic 
nature of the gut microbiome further complicates personalization. 
The microbiome can change over time due to factors like diet 
and medication use. Therefore, developing personalized therapies 
requires continuous monitoring and adjustment of the microbiome 
(90). Additionally, integrating microbiome data with other clinical 
and molecular data is necessary to create more precise treatment 
plans (106). Despite these challenges, personalized microbiome-
based therapies oer a potential avenue for improving lung cancer 
treatment outcomes. 

The Gut-microbiota-lung Axis involves two-way 
communication between the gut and lungs, and the lung 
microbiota plays a crucial role in this process (107). However, 
the exact role of the lung microbiota in Gut-microbiota-lung 
Axis dynamics remains poorly understood. Some studies suggest 
that the lung microbiota influences systemic immunity and 
inflammation, which in turn aect gut microbiota composition 
and function (108). For example, Dora et al. (105) found that 
alterations in the lung microbiota could impact the gut immune 
system through immune cell traÿcking and cytokine signaling. 
Conversely, gut microbiota-derived metabolites and immune 
cells can also aect lung health. Research has shown that SCFAs 
produced by gut microbiota can modulate lung immune responses 
and influence the development of respiratory diseases (109). 
However, 16S rRNA profiling is cost-eÿcient but rarely resolves 
beyond genus level and cannot predict functional genes; shotgun 
metagenomics delivers species/strain identification and metabolic 
pathway data yet requires higher DNA input and bioinformatics 
load, while both methods yield compositional data that may 
bias cross-sample comparison of low-abundance taxa (110, 111). 
Furthermore, the composition and function of the lung microbiota 
in dierent lung cancer subtypes and disease stages are not well 
characterized (112). Zheng et al. (113) revealed distinct lung 
microbiota profiles in patients with NSCLC compared to healthy 
individuals, but the functional implications of these dierences 
remain to be elucidated. 

Chronic obstructive pulmonary disease is a common 
comorbidity in lung cancer patients and can significantly 
influence Gut-microbiota-lung Axis interactions (114). COPD is 
characterized by chronic inflammation and airflow limitation, and 
it is associated with alterations in both the gut and lung microbiota 
(21). However, the impact of COPD on microbiota-immune 
interactions in the context of lung cancer is not fully understood. 
Some studies suggest that COPD-related inflammation may 
exacerbate gut barrier dysfunction and promote the translocation 
of gut microbial products to the lungs, further intensifying immune 
responses (23, 114). For example, Bowerman et al. (30) found that 
patients with COPD had increased gut permeability and altered 
gut microbiota composition, which were associated with enhanced 
systemic inflammation. This inflammation could potentially 
influence lung cancer progression and treatment outcomes. 
Additionally, the shared risk factors and pathophysiological 
mechanisms between COPD and lung cancer may also aect 
microbiota-immune interactions (31, 115). However, more 
research is needed to clarify these complex relationships and to 
develop targeted interventions for lung cancer patients with COPD 
and other comorbidities. 

Furthermore, translation of probiotics, FMT, or dietary 
modulation into thoracic oncology practice faces pragmatic 
barriers identified by Georgiou 2021 and updated trials. First, 
regulatory agencies lack harmonized criteria for live-biotherapeutic 
potency, leading to variable CFU counts between batches of 
Clostridium butyricum CBM588 (67). Second, FMT sourced from 
ICI-responders requires donor re-screening every 30 days to 
exclude transmissible pathogens, raising cost to ≈ US $3,500 per 
infusion in a recent US phase-I NSCLC protocol (NCT05122546), 
a figure incompatible with universal reimbursement. Third, dietary 
interventions such as 20 g day 1 resistant starch increased 
fecal butyrate by 2.3-fold in chemo-immunotherapy patients, yet 
adherence at 12 weeks was 54%, predominantly limited by grade 
1–2 bloating (52). Fourth, antibiotic stewardship programs report 
that 38% of lung cancer admissions receive at least one course 
of broad-spectrum agents during treatment, potentially abrogating 
any microbiota-directed benefit; integration of rapid point-of-care 
pathogen identification could reduce unnecessary prescriptions, 
but prospective data in oncology are lacking. Collectively, these 
data indicate that microbiota-based adjuvants are feasible only 
within clinical trials or specialized centers equipped with GMP-
grade biobanks and dietetic support; routine deployment outside 
such frameworks is currently premature. 

9 Conclusion 

In conclusion, the Gut-microbiota-lung Axis plays a crucial 
role in lung cancer development and treatment. Gut microbiota 
dysbiosis can impact lung health through immune, neural, and 
humoral pathways, and influence the eÿcacy of lung cancer 
therapies. Targeting the Gut-microbiota-lung Axis oers potential 
for enhancing treatment eÿcacy and improving patient outcomes. 
However, challenges such as the lack of standardized protocols 
and the need for personalized therapies remain. Further research 
is needed to fully elucidate the mechanisms underlying the Gut-
microbiota-lung Axis in lung cancer and to translate these findings 
into clinical applications. 
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