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Editorial on the Research Topic

Innovation in tackling the global challenge of eradicating
antibiotic-resistant microorganisms

Antimicrobial resistance (AMR) is no longer a distant risk; it is a daily constraint on
routine clinical care, animal and plant health and the safety of food systems. The World
Health Organization ranked AMR among the top global public health and development
threats, with an estimated 1.27 million deaths directly attributable to bacterial AMR and
4.95 million AMR-associated deaths in 2019. These threats do not distribute evenly due
to gaps in prevention infrastructure, diagnostics and access to effective therapy, resulting
in heaviest burden on low-resource settings. In contrast, resistant pathogens and mobile
resistance elements ignore borders and travel with patients, animals, food, water and trade.

In parallel, antibiotic innovation has been slow, with only 12 new antibacterial drugs
approved between 2017 and 2021, most belonging to existing classes where resistance
mechanisms are already established. This tension between rising resistance and limited
therapeutic novelty, is pushing the field toward a dual mandate, namely, improving
stewardship, prevention and diagnostics, while expanding the therapeutic and surveillance
toolbox with alternatives to classic small-molecule antibiotics, new targets and One Health
approaches that address reservoirs beyond the hospital.

This Research Topic, “Innovation in tackling the global challenge of eradicating
antibiotic-resistant microorganisms,’ presents 15 papers that reflect that broadened
demands of innovation. The contributions span bacterial and fungal pathogens, hospitals,
communities, soils and crops, with methods ranging from bacteriophage therapeutics
and phage-derived enzymes to hybrid genome assembly, metagenomics, microbiome
analytics and implementation of focused stewardship research. Together, they show that
progress against AMR will require a combination of complementary tools, validated under
real-world biological and operational constraints.
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Bacteriophages and phage-derived
antibacterials: precision that faces
biofilm reality

Bacteriophages are often framed as “precision antibacterials,”
with performance depending on host range, bacterial physiology,
clinical workflow and biofilm architecture. Using isothermal
microcalorimetry, Lafranca et al. quantify the efficacy of a
commercial phage cocktail against skin pathogens in planktonic
culture and both thin and thick biofilms, and found that biofilm
thickness and maturity can limit phage impact. They also noted
that chronic wound settings may require biofilm disruption
(e.g., mechanical debridement) to create conditions conducive to
phage activity.

Two additional phage studies focus on the hypervirulent and
multidrug-resistant Klebsiella pneumoniae. Peng et al. report the
isolation, characterization and genomic analysis of a novel lytic
phage (vB_Kp_XP4) targeting K. pneumoniae, and demonstrate
that genomic inspection can support safer and more rational
phage selection for therapeutic development. At the population
level, Tellez-Carrasquilla et al. combine lytic phages with high
activity against high-risk, globally disseminated K. pneumoniae
clones (CG258 and ST307), and emphasize the essentiality of
cocktail design and performance testing when lineages co-circulate
and diversify.

In a plant-health context, Liu L. et al. investigate bacteriophage
LDT325 as a biocontrol strategy against Pseudomonas syringae-
associated bud blight in tea (Camellia sinensis). Their work links
phage treatment to improved antioxidant defenses and enhanced
disease tolerance, which can indirectly reduce antimicrobial
and dissemination across and

use, selection

environmental interfaces.

agricultural

Finally, the Topic includes a forward-looking perspective
Iytic that
protein-based antibacterials. Baldysz et

on “enzybiotics’—phage-derived enzymes may

offer controllable,
al. argue that enzybiotic bioinformatics must mature to
include better annotation standards, curated datasets and
benchmarking that connects in silico predictions to measurable

antimicrobial activity.

Genomic epidemiology and resistome
intelligence: tracking genes, plasmids,
and transmission

Several papers in this Research Topic sharpen surveillance
scope and capacities by addressing elements that traverse
wards, institutions and bacterial lineages. Piispa et al.
use hybrid genome assembly to resolve plasmids carrying
carbapenemase genes across Enterobacterales isolated from
patients and from multiple Finnish healthcare environments.
Two complementary clinical datasets illustrate implications
of local epidemiology on day-to-day decision-making. Liu
Z. et al. analyze the distribution and resistance profiles
of bacteria isolated from ICU blood cultures over several
years, evidence that can refine

and provide empiric
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therapy and stewardship in high-risk settings. Qiu et al.
characterize carbapenem resistance mechanisms in clinical
K. pneumoniae isolates and examine genotypic-phenotypic
these
studies reinforce the need for strict surveillance of “units of

correlations and transmission patterns. Together,
spread,” which can be a clone, lineage, plasmid, or even an

ecological reservoir.

One Health perspectives: plants, soils,
and livestock as AMR arenas

Using metagenomics, Yu et al. profile soil microbial
communities, antibiotic resistance genes and virulence factors in
tea plantation soils after two decades of conventional vs. organic
management. Their work shows how agricultural practice and
environmental conditions can shape the background resistome,
i.e., the genetic “starting point” from which resistance determinants
may persist or spread.

Wagner et al. address reliance on relative abundances in
standard 16S rRNA amplicon sequencing, which can be misleading
when total microbial loads shift and is biased due to variable 16S
copy numbers. By incorporating absolute abundance calculations,
they show a substantially different inferred impact, both in
magnitude and statistical significance, of antibiotic treatment on
the fecal microbiota of young pigs. This methodological advance
can reshape how we interpret intervention in human and veterinary
medicine and, consequently, how we assess selection pressure and
downstream AMR risk.

Stewardship and implementation:
making innovation durable

Using an interrupted time-series approach,
Abdelsalam-Elshenawy et al. examine how seasonal variation
and the COVID-19 pandemic

stewardship activities and antibiotic prescribing for respiratory

influenced  antimicrobial
tract infections in a UK secondary care setting. Their results
demonstrate that external shocks and seasonal pressures can
rapidly shift prescribing behavior and therefore, stewardship
programs must be designed to remain effective when routines
are disrupted.

Novel or repurposed therapeutics and
targets

Aloriby et al. evaluate the efficacy of Olea europaea and
Ficus carica leaf extracts against multidrug-resistant pathogens
through an integrated pipeline combining in vitro testing,
in vivo toxicity assessment and in silico modeling. Their
workflow illustrates a disciplined path for prioritizing plant-derived
antimicrobial candidates.

Shaalan et al. examine three urease inhibitors (acetohydroxamic
acid, ebselen and baicalin) and their effects on Helicobacter
pylori viability, urease activity and urease gene expression.
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Their insights can be applied to weaken colonization-critical
which
and counteract the

functions could complement antibiotic regimens

rising  resistance-driven H. pylori
treatment failure.

Wang et al. combine virtual screening targeting the
transcriptional regulator AbaA, with experimental validation
and transcriptomic analysis to identify small-molecule candidates
active against Sporothrix globosa and to illuminate underlying
response pathways. In Candida glabrata, Zheng et al. uncover a
connection between tunicamycin-induced respiratory deficiency
and reduced fluconazole tolerance, emphasizing that tolerance
phenotypes can be governed by cellular physiology and may

represent actionable vulnerabilities.

Outlook: integration is the strategy

These 15 papers do not claim a single solution for AMR.
Instead, they offer a portfolio of approaches that resolve the vehicles
of resistance, provide metagenomic views of environmental
reservoirs, improve microbiome analytics, develop novel or
repurpose molecules in both bacteriology and mycology and
research system-level behavior.

The unifying message is both sobering and hopeful. No “silver

bullet” will eradicate antibiotic-resistant microorganisms.
Durable progress will arise from integration of new
therapeutics with improved diagnostics, faster genomic

surveillance and stewardship programs resilient to real-
world pressures. By building bridges between bench and
bedside, farm and

innovations showcased here can transition from promising

clinic, genome and guidelines, the

studies to agents with sustained impact on the fight against
antibiotic-resistant microorganisms.

Frontiers in Microbiology

10.3389/fmicb.2025.1774105

Author contributions

IN: Project administration, Supervision, Writing - original
draft, Writing - review & editing. AP: Project administration,
Supervision, Writing — review & editing.

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declared that generative AI was used in the
creation of this manuscript. AI was used to test and improve the
text as well as for proofreading purposes.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1774105
https://doi.org/10.3389/fmicb.2025.1546020
https://doi.org/10.3389/fmicb.2025.1528341
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

.‘ frontiers ‘ Frontiers in Microbiology

‘ @ Check for updates

OPEN ACCESS

EDITED BY

Avi Peretz,

The Baruch Padeh Medical Center,
Poria, Israel

REVIEWED BY
Bozena Nejman-Falenczyk,
University of Gdansk, Poland

*CORRESPONDENCE

Sophia Batdysz
sopbal@amu.edu.pl;
sophiabaldysz@gmail.com

RECEIVED 02 August 2024
ACCEPTED 26 August 2024
PUBLISHED 05 September 2024

CITATION

Batdysz S, Dabrowska K and Barylski J (2024)
What do we need to move enzybiotic
bioinformatics forward?

Front. Microbiol. 15:1474633.

doi: 10.3389/fmicb.2024.1474633

COPYRIGHT

© 2024 Batdysz, Dabrowska and Barylski. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Microbiology

TYPE Opinion
PUBLISHED 05 September 2024
pol 10.3389/fmicb.2024.1474633

What do we need to move
enzybiotic bioinformatics
forward?

Sophia Batdysz'*, Krystyna Dabrowska? and Jakub Barylski'

!Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University,
Poznan, Poland, 2Faculty of Medicine, Wroclaw Institute of Science and Technology, Wroctaw, Poland

KEYWORDS

enzybiotic, bioinformatics, forward, consortium, lysins

Highlights

« Lytic enzymes are a promising alternative to treating antibiotic-resistant bacteria.

o Many tools and databases developed to study lysins are no longer maintained
or outdated.

o This paper reviews the current state of endolysin computational methods.

o There is an opportunity for the scientific community to develop a tailored database
for these proteins with coherent ontology.

In the age of increasing numbers of infections caused by antibiotic-resistant bacteria
alternative strategies for combating these superbugs are in high demand. One of the
most promising approaches involves the use of lytic enzymes, or simply enzybiotics such
as autolysins, bacteriocins, endolysins, and virion-associated lysins, as well as biofilm
degrading depolymerases. The effectiveness of such proteins has been proven in numerous
in vitro studies, animal models, and several clinical trials (Murray et al., 2021; Schmelcher
and Loessner, 2021; Liu et al., 2023). Unfortunately, enzybiotics targeting many important
pathogens are still unavailable and identification of novel therapeutic proteins through
traditional wet-lab methods is time-consuming and expensive. Publicly available databases
provide access to millions of metagenomic sequences that could serve as a virtually
inexhaustible source of novel lytic enzymes. However, identification of enzybiotic-coding
sequences and matching them with susceptible bacteria still remains the major problem.

In previous years several bioinformatic tools have been developed for searching
for bacteriolytic proteins. These included machine-learning based classifiers, designed
to distinguish between lytic and non-lytic proteins based on the frequencies of amino
acids within the proteins, as well as their order in the sequence (Lypred, CWLy-SVM,
CWLy-pred and CWLy-RF) (Chen et al., 2016; Meng et al., 2020a,b; Jiao et al., 2021).
Unfortunately, all of the tools used a very similar small, unbalanced, and barely curated
collection of sequences to construct training and testing datasets. Additionally, one may
wonder if authors of some of these tools (Chen et al., 2016) had enzymological knowledge
required to critically evaluate bioinformatic results since they referred to lytic proteins as
“lyases”. Importantly, Lypred has not been updated since its release and the other tools are
not available.

Currently, the only accessible tool is phiBiScan, which uses 16 models (profile hidden
Markov models) representing conserved lysin-related domains to search for lytic proteins.
Although versions of these models are regularly updated (the current version of this tool
uses profiles from Pfam 35.0), the list of lysin-related domains has not been revised since
its release in 2013 (Hojckova et al., 2013). It seems unlikely that just 16 domains reflect the
entire diversity of lytic proteins observed in nature (Ferndandez-Ruiz et al., 2018; Baldysz
et al., 2024).
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All of these examples demonstrate that although bioinformatic
lytic protein detection tools have been developed, their use
is restricted mainly to homologs of known proteins, and the
repertoire of well characterized enzybiotics is rather limited. More
importantly, it is difficult to assess the effectiveness of programs
developed to identify enzybiotics because we simply do not have
a representative test set of validated enzybiotic sequences.

The databases published up to date (EnzyBase, phiBIOTICS,
PhaLP, and LEDGOs) (Wu et al., 2012; Hojckova et al., 2013; Criel
et al., 2021; Mitchell et al., 2021) are either too small (e.g., hold
<1,000 enzymes) and/or rely heavily on in silico annotation instead
of experimental information. They are also taxonomically biased—
only a handful of protein groups (e.g., against staphylococci) are
well represented in these databases. What’s more discouraging,
the majority of the included sequences have been selected based
merely on similarity but the real range of their activity has
not been validated by wet-lab methods. Additionally, most lysin
databases have not been updated in many years and some are
no longer available. Obviously, the lack of large, well annotated,
enzybiotic databases is particularly detrimental to the development
of machine-learning tools, because these require comprehensive
well-balanced training and test sets. The same can be concluded
about the inconsistent, and poorly standardized metadata, which
does not follow any formal ontology and often fails to track
current taxonomy. Hence, although such lysin identification tools
are desperately needed in the scientific market, they do not reach
broader researchers’ audiences and do not gain recognition.

The research community needs a representative and consistent
database containing enzybiotic sequences, along with accurate,
detailed annotations, wet-lab confirmation of the activity of the
protein, and, if available, results from animal tests or clinical trials,
along with other relevant information, like safety for human cells
or immunogenicity.

We firmly believe that such a database shouldn’t result
from the work of one specialized group, to avoid bias from
this group’s specific scientific background. Instead, it should be

Frontiersin Microbiology

a collective work of the larger community. Such an approach
will ensure that the structure of the new database and the
information stored within will cater for the needs of diverse
groups, including enzymologists, bioinformaticians, machine-
learning specialists, medical professionals or biotechnology and
pharmaceutical companies. We firmly believe that collaboration
between different laboratories, regular maintenance of tools and
databases, as well as exploration of novel in silico methods may
prompt flourishing of enzybiotics studies leading to numerous new
breakthroughs. Therefore, we call for the creation of a consortium
that will prepare a tailored database, guarantee its coherent,
formalized ontology and sequence nomenclature, gather scattered
sequences and integrate biochemical, molecular and evolutionary
information, like domains and families. Current boom in language
processing tools may also be a unique opportunity to include
literature information in a consistent manner, while under careful
supervision of human curators.
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Background: Treatment of Helicobacter pylori (H. pylori) infections is challenged
by antibiotic resistance. The urease enzyme contributes to H. pylori colonization
in the gastric acidic environment by producing a neutral microenvironment.
We hypothesized that urease inhibition could affect H. pylori viability. This work
aimed to assess the effects of acetohydroxamic acid (AHA), ebselen and baicalin
on urease activity, bacterial viability and urease genes expression in H. pylori
isolates.

Methods: Forty-nine H. pylori clinical isolates were collected. Urease activity
was assessed using the phenol red method. The urease inhibition assay assessed
inhibitors’ effects on urease activity. Flow cytometry assessed the effect of
inhibitors on bacterial viability. Real time PCR was used to compare urease genes
expression levels following urease inhibition.

Results: Urease activity levels differed between isolates. Acetohydroxamic
acid inhibited urease activity at a concentration of 2.5mM. Although baicalin
inhibited urease activity at lower concentrations, major effects were seen at
8 mM. Ebselen’s major inhibition was demonstrated at 0.06 mM. Baicalin (8 mM)
significantly reduced ATP production compared to untreated isolates. Baicalin,
ebselen and acetohydroxamic acid significantly reduced H. pylori viability.
Increased urease genes expression was detected after exposure to all urease
inhibitors.

Discussion: In conclusion, higher concentrations of baicalin were needed
to inhibit urease activity, compared to acetohydroxamic acid and ebselen.
Baicalin, ebselen and acetohydroxamic acid reduced H. pylori viability. Therefore,
these inhibitors should be further investigated as alternative treatments for H.
pylori infection.

KEYWORDS

Helicobacter pylori, urease inhibitors, urease activity, bacterial viability, urease genes

1 Introduction

Helicobacter pylori (H. pylori) is a Gram-negative, microaerophilic, spiral-shaped
bacterium, which colonizes the human gastric mucosa (Malfertheiner et al., 2023) and
is present in the gut of over 50% of the world population (Garcia et al., 2014). While
the infection is often asymptomatic, chronic infection can cause gastritis, gastric ulcer,
mucosa-associated lymphoid tissue (MALT) lymphoma and gastric adenocarcinoma
(Diaconu et al., 2017; Kusters et al., 2006). Currently accepted treatment for H. pylori
infections is mostly a combination of proton pump inhibitor (PPI) with two antibiotics
(clarithromycin, metronidazole or levofloxacin) (Lee et al., 2022; Azrad et al., 2022). Yet,
many epidemiological studies have shown increased rates of H. pylori antibiotic resistance
in recent years, which interferes with treatment efficacy (Azrad et al., 2022; Kuo etal., 2017).
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H. pylori produces large quantities of urease (6-10% of the
total protein) which converts urea into ammonia and carbamate,
enabling the bacterium to survive in the acidic gastric environment
by generation of a neutral microenvironment (Ansari and
Yamaoka, 2017). In addition to its role in colonization, urease
mediates inflammatory responses by activating monocytes and
neutrophils, which elicit damage to the gastric epithelial cells (Lee
and Buck, 1996).

Urease is a heterodimer composed of the UreA and UreB
subunits, with two-nickel ions bound to the active site of
each dimer (Ansari and Yamaoka, 2017; Woo et al., 2021).
In addition to these two structural genes, the urease gene
cluster contains seven accessory genes important for enzyme
activation and insertion of the nickel ions (Collins and D’Orazio,
1993).

Due to its role in pathogenesis, urease has become an
important target in the search for new antimicrobial agents
to treat H. pylori infection. Several studies have demonstrated
the inhibitory effects of many compounds, including natural
products and synthetic drugs, against purified H. pylori urease
(Follmer, 2010; Hassan and Sudomovd, 2017). However, little
is known about their performance in clinical H. pylori isolates.
Urease inhibitors can be a substrate structure analog, which
competes with urea over the active site, or a compound
that with the
2012).

Taking into consideration the importance of urease enzyme

interferes enzymatic reaction (Upadhyay,

and the large number of studies that aimed to investigate the
inhibitory effect of different compounds on purified H. pylori
urease, our study aimed to elucidate the knowledge in this
field by measuring urease activity of different clinical H. pylori
isolates and investigating its association with infection severity.
Additionally, three known H. pylori urease inhibitors, including
natural and synthetic compounds, which differ in their inhibition
mechanism, were chosen to assess their effect on 49 H. pylori
clinical isolates, and investigated their effect on microbial cell
viability. Acetohydroxamic acid (AHA) competitively inhibits
urease by forming a complex with the enzyme’s nickel ions
(Suenaga et al., 2023; Kafarski, 2018). It is also a drug used to
treat chronic urea-splitting urinary infections. It was approved
by the Food and Drug Administration (FDA) as an orphan drug
for the prevention of struvite stones (Marwick, 1983). Baicalin
is a component of the root and aerial part of a medical plant
known as Scutellaria baicalensis. It is considered a non-competitive
inhibitor of H. pylori urease that interacts with Cys321 on the
mobile flap of the enzyme (Yu et al., 2015). It was also reported
to reduce gastric inflammation caused by H. pylori infection (Shih
etal., 2007). Moreover, it has anti-inflammatory, anti-allergic, anti-
oxidant and neuroprotective properties (Yu et al., 2015). Ebselen
is a selenoorganic compound with anti-inflammatory, antioxidant,
and cytoprotective activities (Macegoniuk et al., 2023). It acts as
a competitive urease inhibitor that reacts with the nickel ions
and cysteine 322 in the enzyme active site (Macegoniuk et al.,
2016). In addition to its anti-urease activity, its antiulcer properties
were demonstrated in a rat model (Tabuchi and Kurebayashi,
1993).
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2 Materials and methods

2.1 Urease inhibitors

AHA, baicalin and ebselen were purchased from Acros
Organics (Geel, Belgium). AHA was dissolved in double distilled
water (DDW) to create a stock solution of 20 mM. Baicalin
and ebselen were dissolved in 1% dimethyl sulfoxide (DMSO)
(Sigma-Aldrich, Louis, USA) to create stock solutions of
16 mM for baicalin, and 0 0.25mM for ebselen. The prepared
solutions (Table 1) were stored at —20°C until further use.
The concentrations were chosen based on previous reports
(Yu et al, 2015; Macegoniuk et al., 2016; Goldie et al,
1991).

2.2 Bacterial isolates

Forty-nine clinical H. pylori isolates were randomly chosen
from the isolates bank of the clinical microbiology laboratory
at the Tzafon Medical Center. The isolates had been previously
isolated from gastric specimens of patients undergoing gastroscopy
between January 2018 and December 2021, due to symptomatic
gastroduodenal pathologies. Histological data regarding infection
severity was collected from patient records. The study was approved
by the Medical Center Helsinki Committee, Approval no. POR
0007-20. ATCC strain 43504 (American Type Culture Collection,
USA) served as a positive control.

2.3 Bacterial culture

H. pylori isolates were grown from frozen bead stocks on
modified BD Helicobacter agar (Becton Dickinson, Heidelberg,
Germany), and incubated under microaerophilic conditions, at
37°C, for 7 days. Then, colonies were harvested and suspended
in brain-heart infusion broth supplemented with yeast extract and
0.1% L-cysteine (BHIS) (Hy Laboratories Ltd., Rehovot, Israel)
or with phosphate buffered saline (PBS) (Biological Industries,
Beit-Haemek, Israel).

2.4 Urease activity assay

Urease activity was determined using the phenol red method
(Chang et al., 2020). In brief, H. pylori isolates were grown on
modified BD Helicobacter agar for 7 days under microaerophilic
conditions at 37°C, and then diluted in PBS (Biological Industries)
to achieve 1 McFarland turbidity. The assay was carried out in
96-well plates, wherein a H. pylori suspension (50 pl/well) was
mixed with 50 pl/well urease test broth (Novamed, Jerusalem,
Israel) which contained a pH indicator (phenol red) and the
urease substrate (urea). In case of urease activity, the pH
rises, and the solution color changes from yellow to pink.
Optical density (OD) at 570nm was measured every minute,
for 20 min, using a Multiskan FC microplate reader (Thermo
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TABLE 1 Tested urease inhibitor concentrations.

10.3389/fmicb.2024.1464484

Concentration | (mM)

Urease inhibitor

Concentration Il (mM)

Concentration Il (mM)

Acetohydroxamic acid 2.5 5 10
Baicalin 2 4 8
Ebselen 0.03125 0.0625 0.125

Scientific, Waltham, USA). Urease activity was calculated using the
following equation:

Urease activity = ODsyonm (max) — ODsyonm (min)
ODpmax = ODi—20; ODpin = ODi—g

2.5 Urease inhibition assay

A bacterial suspension of one McFarland turbidity was
prepared as described above. H. pylori isolates (50 pl) were
incubated with 50 pl of each inhibitor (50 wM-20 mM) for
15min in 96-well plates, under microaerophilic conditions, at
37°C. Urease activity was measured as described above. Control
wells contained bacterial suspension and DDW (without inhibitor).
Blank wells contained inhibitor and PBS.

2.6 Microbial cell viability assay

The BacTiter-Glo™ Microbial Cell Viability Kit (Promega,
Madison, USA) was used to determine the number of viable
microbial cells based on ATP quantification. H. pylori colonies,
grown as described above, were suspended in BHIS to McFarland 1
turbidity. The bacterial suspension (50 1) was then incubated with
50 1 of the inhibitor or 50 wl DDW (control), in triplicates, in a
96-well plate, for 24 h, under microaerophilic conditions. BacTiter-
Glo™ Reagent (100 p1) was placed in each well, and luminescence
was recorded using the Fluoroskan™ FL Microplate Fluorimeter
and Illuminometer (Thermo Fisher Scientific, Waltham, USA).

2.7 Flow cytometry

Flow cytometry was performed to determine bacterial viability
following exposure to urease inhibitors compared to untreated
isolates, in representative isolates (n = 10). H. pylori suspension
(100 pl) at 0.6 McFarland turbidity was incubated in a tube with
100-] urease inhibitor for 24 h, under microaerophilic conditions.
Then, tubes were centrifuged and the pellet was resuspended
in 200-pl NaCl 0.9% and then diluted 10-pl suspension in 477
pl NaCl 0.9%. A mixture of 1.5 ul SYTO®9 green fluorescent
nucleic acid stain (for live bacteria) and 1.5 pl red-fluorescent
nucleic acid stain, propidium iodide (PI) (for dead bacteria)
(Thermo Fisher Scientific, Waltham, Massachusetts, United States)
was then mixed with the suspension, to stain the bacteria.
Flow cytometry was performed using a Gallios Flow Cytometer
(Beckman Coulter, Indianapolis, USA), with excitation/emission
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TABLE 2 Primers used for real-time qPCR reactions.

Gene Forward primer Reverse primer
(5/_3/) (5/_3/)
ureA CGTGGCAAGCATGATCCAT | GGGT
ATGCACGGTTACGAGTTT
ureB TCTATCCCTACCCCACAACC, CCATCCACGAACACATGGTA
165 TATGACGGGTATCCGGC ATTCCACTTACCTCTCCCA

wavelengths of 488/520nm for SYTO®9 and 488/>630nm
for PL

2.8 Quantitative real-time PCR

Urease gene (ureA, ureB) expression levels in representative
isolates were quantified using RT PCR. Briefly, H. pylori isolate
suspensions in BHIS were incubated with each urease inhibitor,
for 24h, as described above. Then, total RNA was extracted
from suspensions using the RNeasy Mini Kit (QIAGEN, Hilden,
Germany) and then reverse-transcribed using the gqPCRBIO ¢cDNA
Synthesis Kit (PCR Biosystems Inc, Pennsylvania, USA). Each real-
time qPCR reaction included 10 ul PowerUp™ SYBR™ Green
Master Mix (Thermo Fisher Scientific, Baltics, UAB), 0.5 pl primers
(forward, and reverse, at final concentration of 500nm each;
Table 2) (Hy Laboratories), 4 ng cDNA and water to a final volume
of 20 pl. The 16s rRNA gene served as a housekeeping gene. The
PCR was performed using the CFX96 Real-Time PCR System (Bio
Rad, California, USA), under the following conditions: for 16s and
ureB —95°C for 155, 58°C for 15s and 72°C for 1 min, 40 cycles
and for urea —95°C for 15, and 60°C for 1 min, 40 cycles. Results
were analyzed using the A ACt method.

2.9 Statistical analysis

The analysis of variance (ANOVA) test was applied to identify
differences in urease activity between the different isolates and
between urease inhibitor-treated and untreated isolates. The
ANOVA test was also applied to assess differences in ATP
production and bacterial cell viability between urease inhibitor-
treated vs. untreated isolates. T-test was applied to compare gene
expression levels of urease inhibitor-treated vs. control isolates, for
each inhibitor. All tests applied were two-tailed, and a p-value of 5%
or less was consider statistically significant. The data were analyzed
using the Graphpad Prism software, version 9.5.1.733 (GraphPad
Software, Florida, Boston, MA).
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3 Results

3.1 Urease activity of the clinical isolates
and association with infection severity

The clinical isolates exhibited urease activity in the range of
0.04-0.09 (arbitrary units) (Figure 1A). No significant association
was found between urease activity and infection severity
(Figure 1B).

3.2 Inhibition of urease activity in clinical
isolates by the different inhibitors

3.2.1 Acetohydroxamic acid

Urease activity of isolates was significantly lower in AHA-
treated isolates compared to untreated bacteria. Almost full
inhibition (84% reduction) was already achieved at an inhibitor
concentration of 2.5mM (p < 0.001) (Figure 2A). There was no
significant difference in the effect of the three tested concentrations
on urease activity (Figure 2B).

3.2.2 Baicalin

During the first 15 min of the assay, urease activity in isolates
treated with 2 mM or 4 mM baicalin was lower than urease activity
of controls. However, at 20 min, they reached the same levels of
activity as those of controls (Figure 3A). From a concentration of
2mM, baicalin significantly inhibited urease activity, with a 50%
reduction in activity measured upon treatment with 8 mM baicalin
(p < 0.001) (Figure 3B).

3.2.3 Ebselen

Significantly reduced urease activity was measured throughout
the entire assay, in all isolates treated with any of the three
tested concentrations of ebselen (Figure 3C). Even at the low
concentration of 0.03mM, a 71% reduction from control was
measured in urease activity (p < 0.001) (Figure 3D).

3.3 Effect of urease inhibitors on ATP
production in clinical isolates

To determine whether the urease inhibitors affect bacterial cell
viability, ATP production was measured is an indicator of cell
metabolism. ATP levels in isolates following incubation baicalin
8 mM were significantly lower compared to their levels in untreated
control cells. In contrast, AHA 2.5 mM and ebselen 0.06 mM had no
effect on bacterial cell activity (Figure 4).

3.4 Effect of urease inhibitors on clinical
isolate cell viability

Exposure to urease inhibitors significantly decreased the
percentage of live bacteria compared to untreated bacteria
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(Figure 5A; Table 3). For example, exposure to AHA resulted in
21.9% live cells, as compared to the control untreated strains, in
which 74.4% of the cells were viable. The greatest decrease (61.82%
decrease and 60.97% decrease, respectively) in the percentage
of viable bacteria was observed following baicalin and ebselen
treatment (p < 0.001) (Figure 5B).

3.5 Urease gene expression following
exposure of clinical isolates to urease
inhibitors

ureA and ureB gene expression was upregulated in cells
exposed to urease inhibitors. However, this increase was only
statistically significant in baicalin-treated isolates, where 3-fold
increase compared to control were measured for both genes (p <
0.05) (Figure 6).

4 Discussion

Antibiotic resistance poses an increasing challenge to the
effectiveness of H. pylori treatment. The search for alternative
treatments has become crucial and many researchers have focused
on urease inhibition (Woo et al., 2021; Kafarski, 2018; Svane et al.,
2020). In contrast to previous studies that investigated urease
inhibitors on enzymes, mostly purified from a limited number of
strains, the present study assessed the effects of three inhibitors on
urease enzymes of 49 clinical isolates.

4.1 Urease activity and infection severity

While the different isolates exhibited different levels of
urease activity, no association was found between urease activity
and infection severity. In contrast, previous studies showed a
correlation between urease activity and disease severity (Ito et al,
1995; Ghalehnoei et al., 2016; Igarashi et al., 2001). For example,
one study found higher urease activity in H. pylori strains isolated
from patients with intestinal metaplasia, compared to isolates from
patients with peptic ulcer disease (Ghalehnoei et al., 2016). Another
study measured higher urease activity in H. pylori isolates from
oncology patients compared to than isolates from duodenal ulcer
patients (Ito et al., 1995). Although no such association was found
here, a correlation may exist between the disease severity and other
virulence factors, such as Cag A and Vac A as presented in other
studies (Ghalehnoei et al., 2016; Roshrosh et al., 2023).

4.2 Inhibition of urease activity by AHA,
ASA, baicalin and ebselen

This study focused on three urease inhibitors. AHA is a
competitive inhibitor that forms a complex with nickel ions in the
metallo-center of the enzyme (Suenaga et al., 2023; Kafarski, 2018)
and is used to treat chronic urea-splitting urinary infections. Zhou
etal. (2017) ound that a concentration of 0.07 mM AHA was needed
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Urease activity of study’s isolates and relation to disease severity. Activity of H. pylori urease was measured as the difference between the optical
density measured in 570 nm- ODs7q (t = 20 min) and initial ODsyq (t = 0). (A) The urease activity of the different isolates. (B) Urease activity in relation
to infection severity. Each experiment was conducted in triplicates, n = 49.

FIGURE 2
Urease activity of ace
activity was assessed

different concentrations of AHA or untreated (Control). (B) Urease activity of 49 isolates treated for 10 min, with three different concentrations of AHA
for 15 min was detected at t = 10 min and compared to the control (untreated). ***p < 0.001, n = 49. Each experiment was conducted in triplicates.
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which was treated with baicalin at three different concentrations or untreated (Control). (B) Urease activity of the isolates treated with three different
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0.001, n = 49. Each experiment was conducted in triplicates. **p < 0.01.
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FIGURE 4

ATP production in H. pylori isolates treated with urease inhibitors.
Isolates were treated with the minimal urease inhibitory
concentration of each inhibitor (AHA = 2.5 mM, baicalin = 8 mM and
ebselen = 0.06 mM) for 24 h. ATP concentration was determined by
luminescence. Untreated isolates served as control. ***p < 0.001, n

Frontiersin Microbiology

16

to achieve 50% urease inhibition. Another study reported that the
ideal AHA inhibition concentration was 2.6 mM (Goldie et al,
1991), almost the same as the concentration found most effective
in the current study.

Baicalin has anti-inflammatory, anti-allergic and anti-oxidant
properties. The compound is a non-competitive inhibitor which
interacts with Cys321 on the mobile flap of urease (Yu et al., 2015).
A previous work measured 0.82 mM as the ICs of baicalin toward
purified H. pylori urease, a concentration much lower than the
present results (Yu et al., 2015).

Ebselen is a competitive inhibitor, reacting with the nickel
ions and cysteine322 (Macegoniuk et al., 2016), and induces anti-
inflammatory, antioxidant and cytoprotective effects. Biernat et al.
found reported that the ICs of ebselen toward H. pylori urease at
time zero was 45 and 3.69 LM if the cells were preincubated with
ebselen for 2h (Macegoniuk et al., 2016). The authors concluded
that the difference in the concentrations needed for inhibition was
due to the time needed for diffusion of the inhibitor through the
bacterial membrane. This finding underscores the importance of
the present analysis of clinical isolates, as most previous studies
tested the effects of inhibitors on purified urease.

The inhibition mode of each compound was reflected in
the results. AHA and ebselen, both competitive inhibitors,
achieved almost full inhibition of urease, even at very low
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FIGURE 5
Viability of bacterial isolates treated with different urease inhibitors. Viability of bacterial isolates treated with different urease inhibitors. H. pylori
representative isolates were incubated with urease inhibitors for 24 h (AHA = 2.5 mM, baicalin = 8 MM or ebselen = 0.06 mM) and then bacterial
viability was measured by flow cytometry. The graphs in (A) present viable (blue) and dead (pink) cells of Control (untreated isolates), 2.5 mM
AHA-treated isolates, 8 MM baicalin-treated isolates, and 0.06 mM-ebselen treated isolates. Propidium iodide, which stains dead bacteria, was
detected by the FL4 channel, and SYTO9, which stains live bacteria, was detected by the FL1 channel. The graph in (B) present the percent of live
bacteria in isolates treated with urease inhibitors, compared to control. *p < 0.05, ***p < 0.001, n = 10. AHA, acetohydroxamic acid.

concentrations, with no significant differences measured between
the different tested inhibitor concentrations. In comparison, the
urease inhibition capacity of baicalin, a non-competitive inhibitor,
differed at the three tested concentrations, with significant urease
inhibition achieved only at high concentrations. Interestingly,
the effect of the inhibitors was not uniform across all the
49 isolates; in some cases, the treatment had a noticeable
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inhibitory effect on some isolates but no effect on other isolates.
For example, after treatment with 2.5mM AHA, <80% urease
inhibition was measured in 10 isolates, 80-90% inhibition in
These
differences may be associated with the expression and activities
of other virulence factors of the bacterium, which protect against

29 isolates and above 90% inhibition in 10 isolates.

urease inhibition.
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TABLE 3 Effect of urease inhibitors on bacterial cell viability.

Control AHA Baicalin Ebselen
(2.5 mM) (8 mM) (0.06 mM)
100% 63.5% 26.68% 38.6%
100% 67% 47.62% 25.21%
100% 63.36% 28% 79.13%
100% 7.811% 5.6% 19.76%
100% 74.42% 38.24% 67.33%
100% 87.47% 54.92% 74.29%
100% 15.02% 31.68% 8.64%
100% 87.03% 44.76% 35.02%
100% 80.03% 21.05% 27.78%
100% 84.52% 83.25% 14.55%
4

@R Control

3 AHA (2.5mM)

&3 BAI (SmM)

3 EBS (0.06mM)

Fold change compared to control

ureB

ureA
Gene

FIGURE 6

Urease genes expression following exposure to urease inhibitors.
Urease genes expression following exposure to urease inhibitors. H.
pylori isolates were treated with urease inhibitors for 24 h, then RNA
was extracted and real-time PCR was performed to detect the
expression levels of ureA, ureB and the housekeeping gene 16s. *p
< 0.05, ** p < 0.01, n = 13. AHA, acetohydroxamic acid; BAI,
Baiclain; EBS, Ebselen.

4.3 Effect of urease inhibitors on bacterial
cell viability

Several studies assessed the effect of urease inhibitors on H.
pylori growth (Woo et al., 2021), morphology (Tran Trung et al.,
2020), viability (Goldie et al, 1991), and adhesion to gastric
epithelial cells (Chang et al., 2020). In the present study, the lowest
inhibitor concentration that showed a significant inhibitory effect
on enzyme activity, was applied to test its effect on H. pylori
viability. Ebselen and AHA, which had a notable inhibitory effect
at very low concentrations, did not reduce ATP production, but
did reduced bacterial cells viability. In contrast, baicalin, which
only inhibited urease activity at high concentrations, significantly
reduced ATP production. From these results, it can be concluded
that ATP production is not necessarily an indicator of cell viability
and that urease inhibition does not necessarily correlate with
H. pylori eradication. Exposure to stressful conditions may have
different effects on bacterial community; on one hand, it can

Frontiersin Microbiology

18

10.3389/fmicb.2024.1464484

reduce bacterial viability, however on the one hand it may alter a
survival mechanism to produce a large amount of ATP. Thus, in
order to choose an effective urease inhibitor for H. pylori infection
treatment, its effect on bacterial cell viability should be taken
into consideration.

4.4 Effect of urease inhibition on urease
gene expression levels

H. pylori urease consists of six copies of two structural subunits
(UreA and UreB), with two nickel ions in the UreB subunit, in
addition to six accessory subunits (UreE, UreF, UreG, Urel, UreD)
(Mobley et al., 1995). Examination of the effect of urease inhibition
on ureA and ureB gene expression found that only baicalin
significantly increased gene expression. Such upregulation may be
a bacterial mechanism to compensate for inhibited urease activity.

5 Conclusions

In this study, we showed that the three compounds, AHA,
baicalin and ebselen have an inhibitory effect on H. pylori urease.
AHA and ebselen were more potent compared to baicalin. Baicalin,
AHA, and ebselen significantly reduced H. pylori viability, and
further study should investigate their usefulness for eradication of
H. pylori infection. Additional studies are still needed to assess the
effect of these inhibitors on human host cells.

6 Limitations of the study

One limitation of this study is the narrow spectrum
of inhibitors concentrations; it is important to check more
concentrations to assess the maximum and minimum inhibitory
concentration of each inhibitor. Moreover, no additional
pathogenic factors were taken into account in this study, for
example, we didn’t check correlations of our results with CagA and

flagella. Future studies are needed to check these correlations.
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High activity and specificity of
bacteriophage cocktails against
carbapenem-resistant Klebsiella
pneumoniae belonging to the
high-risk clones CG258 and
ST307
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J. Natalia Jiménez*

Grupo de Investigacion en Microbiologia Basica y Aplicada (MICROBA), Escuela de Microbiologia,
Universidad de Antioquia, Medellin, Colombia

Introduction: The widespread clinical and environmental dissemination
of successful clones of carbapenem-resistant Klebsiella pneumoniae
(CRKP) represents a serious global public health threat. In this context, lytic
bacteriophages have emerged as a promising alternative for controlling
these pathogens. This study describes the biological, structural, and genomic
characteristics of lytic bacteriophages against the high-risk CRKP clones CG258
and ST307 and describes their performance in combination.

Methods: An experimental study was carried out. Bacteriophages were isolated
from hospital wastewater and from wastewater treatment plants (WWTP).
Bacteriophages were isolated using the double layer agar technique and their
characterization included host range (individual and cocktail), plating efficiency
(EOP), infection or bacterial killing curve, one-step curve, bacteriophage stability
at pH and temperature conditions, transmission electron microscopy (TEM) and
whole genome sequencing.

Results: After purification, five active bacteriophages against CRKP were
obtained, three bacteriophages (FKP3, FKP4 and FKP14) had targeted activities
against CG258 CRKP and two (FKP10 and FKP12) against ST307 isolates. Seven
cocktails were prepared, of which Cocktail 2, made up of the bacteriophages
FKP3, FKP10, and FKP14, showed the best activity against 85.7% (n = 36/42) of
CRKP isolates belonging to both clones, CG258 (80.8%; n = 21/26) and ST307
(93.8%, n = 15/16). The efficiency of the plating (EOP), infection curve, and
one-step growth curve showed that the cocktail phages efficiently infected
other CRKP isolates (EOP > 0.5), controlled bacterial growth up to 73.5%, and
had short latency periods, respectively, (5-10 min). In addition, they were
stable at temperatures between 4°C and 50°C and pH between 4 and 10. All
bacteriophages belonged to the Caudoviricetes class, and no genes associated
with virulence factors or antibiotic resistance were detected.

Conclusion: These findings showed bacteriophages and phage cocktails with
high specificity against CRKP belonging to the successful clones CG258 and
ST307 with promising characteristics, making them an alternative for controlling
these clones in different environmental or health settings, biocontrol agents, or
disinfectants in industry and in the field of diagnosis.
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1 Introduction

Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections
have a major clinical impact globally, given their high levels of
multidrug resistance (MDR), increased mortality (33-50%), length of
hospital stays, and high healthcare costs (Xu et al., 2017). Currently,
this microorganism is considered an urgent priority by the Centers for
Disease Control and Prevention (CDC) (2024) and the World Health
Organization (2024).

Several CRKP clones have been described around the world,
which differ according to geographical location. Among the most
important clones, ST14, ST15, ST147, and ST101 have been reported
with the highest frequency; however, the global spread of CRKP has
been mainly linked to an expansion of successful clones belonging to
CG258 (including ST258, ST512 and ST11) harboring principally
KPC-type carbapenemase (K. pneumoniae carbapenemase) (Wyres
et al., 2020; Lee et al., 2016). These clones account for 70-90% of all
CRKEP strains and are responsible for 68% of outbreaks in hospital
settings. In addition, they have been reported to cause outbreaks in
the United States, Canada, European, Asian, and Latin American
countries (Wyres et al., 2020; Yang et al., 2021; Munoz-Price et al.,
2013; Kitchel et al.,, 2009; Schwaber et al., 2011). In recent years, CRKP
clones belonging to ST307 have successfully emerged in the
United States, Italy, and Colombia owing to their virulence factors,
which provide them with adaptive advantages in various scenarios
(Villa et al., 2017; Bonnin et al., 2020; Peirano et al., 2020).

On the other hand, CRKP has spread worryingly to other settings,
such as the community and the environment, because it harbors
successful mobile genetic elements that confer resistance and easy
dissemination and inappropriate use of antibiotics in diverse
anthropogenic activities (KKahn, 2017). Several studies have described
the presence of this microorganism in effluents from hospital
wastewater and domestic wastewater treatment plants (WWTPs)
(Surleac et al., 2020; Moges et al., 2014). In addition, these bacteria
have been classified as emerging pollutants that persist in effluents
because WWTPs are not designed to remove them, increasing the risk
of dissemination and infection due to the use of these waters (Li
etal., 2022).

Considering that therapeutic options are becoming scarce and
that environmental biocontrol alternatives are necessary to contain
this problem, strategies based on the use of lytic bacteriophages have
been reconsidered in recent years (Hobson et al., 2022; Dancer, 2014).
These viruses have a great potential to infect bacteria in a specific way;
they do not affect other bacterial communities or eukaryotic cells,
making them safe alternatives for humans and friendly to the
environment (Sharma et al., 2017). Bacteriophages have a wide field
of application, and there are currently a variety of studies evaluating
their activity in different scenarios like compassionate therapy in
humans, disinfectants in hospital settings, the removal of biofilms, and
as an alternative biocontrol agent for the treatment of wastewater
(McCallin and Zheng, 2019; Dedrick et al., 2023; Accolti et al., 2018;
Ho et al., 2016; Lusiak-Szelachowska et al., 2020; Fu et al., 2010; Jassim
etal., 2016). However, bacteriophage characterization processes based
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on biological, structural, and genomic analyses form the basis of
application studies.

Numerous studies have been conducted to characterize
bacteriophages that are active against antibiotic-resistant pathogens,
specifically bacteria belonging to the ESKAPE group (Enterococcus
faecium, Staphylococcus aureus, K. pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa 'y Enterobacter spp.) (Yoon et al.,
2013; Chen et al., 2021; Peng et al., 2014; Adnan et al., 2019; Zhao
et al., 2019). However, studies of bacteriophages against specific
K. pneumoniae clones have been limited and have focused on the
isolation of active bacteriophages against other clones, such as ST11,
ST16, and ST15 (Martins et al., 2022a; Horvath et al., 2023; Fang and
Zong, 2022). Only a few of them are described in the characterization
of bacteriophages active against ST258 (Tisalema-Guanopatin et al.,
2023; Thiry et al., 2019; D’Andrea et al., 2017). In this context, this
study describes the biological and structural characteristics of
bacteriophages with high specificity against CRKP belonging to
CG258 and ST307. In addition, their activity in combination was
evaluated to obtain an effective alternative for controlling endemic
clones disseminated worldwide.

2 Materials and methods
2.1 Specimen collection

Wastewater samples were collected from the effluents of a tertiary-
care hospital (these effluents comprising wastewater from emergency
rooms, hospitalization, intensive care unit, special care unit, internal
medicine and food service) and from the affluents and effluents of a
wastewater treatment plant (WWTP) in the city of Medellin
(Colombia), between September 2021 and November 2022. Five
hundred milliliters of each wastewater sample were collected and
processed within the first 2-24 h to avoid alterations in the microbial
communities (Van Charante et al., 2021).

2.2 Selection of host bacteria

Three carbapenem-resistant K. pneumoniae isolates harboring
bla-xpc belonging to two successful clones were used as host bacteria
for the search for bacteriophages. These included isolates from CG258
(ST512 and ST258 n=1) and ST307 (n=1)
(Supplementary Table S1). The bacterial isolates had clinical origins

n=1

and were obtained from the Microbiological strain collection of the
Grupo de Investigacion en Microbiologia Bésica y Aplicada
(MICROBA) (Ocampo et al., 2016; Cienfuegos-Gallet et al., 2017).
The bacterial isolates were previously characterized, and identification
and susceptibility tests were performed using a semi-automated
method VITEK® 2 Compact system (bioMérieux, Inc. Hazelwood,
MO). In addition, genes encoding carbapenemases were identified by
PCR and sequenced to determine gene-variants; further, molecular
typing was performed using Multilocus sequence typing (MLST)
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(Ocampo et al., 2016; Poirel et al., 2011; Ellington et al., 2007;
Diancourt et al., 2005).

2.3 Bacteriophages isolation

2.3.1 Samples processing

Wastewater samples were processed with chloroform (Merck,
KGaA, Darmstadt, Germany) to release the bacteriophages from
organic matter (relation 1:10). Subsequently, the aqueous phase
was recovered, centrifuged (4500 rpm for 10 min at 4°C), and
filtered through 0.22 pm syringe filters (Minisart® Sartorius AG,
Germany) according to a modification to the protocol by Kropinski
and Clokie (2009). To selectively increase the number of
bacteriophages in the processed samples, enrichment was
performed. The processed sample was placed in contact with each
host bacterium in LB broth (Miller, Becton Dickinson Difco™)
with CaCl, (2mM, Biobasic). Subsequently, samples were
incubated at 35+ 2°C for 24 h in a shaking humidified bath,
centrifuged (4500 rpm for 10 min at 4°C), and filtered (0.22 pm
syringe Filter, Minisart® Sartorius AG, Germany) (Kropinski and
Clokie, 2009).

2.3.2 Bacteriophage detection and plaque
purification

To detect bacteriophages in the enriched samples, the spot test
method described by Clokie et al. was performed (Kropinski and
Clokie, 2009). Subsequently, to obtain isolated plaques, positive
samples were serially diluted (1:10) and seeded using the double-layer
agar method (Adams, 1959). The plaques were selected based on size
and translucency, and only one plaque was collected and deposited in
Eppendorf tubes with 500 pL of SM buffer (100 mM, NaCl Merck
Millipore; 50 mM Tris-HCI [pH 7.5]; 8 mM, MgSO, Scharlau; 0.01%
gelatin Oxoid). Subsequently, the plaques were mixed in SM buffer
until homogeneous, and serial dilutions were made (1:10) and seeded
using the double layer agar method (Adams, 1959). Each
bacteriophage plaque was purified three times with repeated isolation
to obtain a single bacteriophage.

2.3.3 Concentration and quantification of
bacteriophages

Bacteriophages were concentrated using the double-layer agar
method (Swanstrom and Adams, 1951). Briefly, plaques in SM
buffer obtained after purification were mixed and serially diluted
(1:10). Subsequently, dilutions of higher phage concentrations (less
diluted) were plated using the double-layer agar method. This
procedure was repeated nine times until 10 replicates were
completed. After incubation, the entire top-agar layer of the ten
replicas was collected and added to 15 mL of SM buffer; it was then
mixed, centrifuged (4500 rpm for 10 min at 4°C), and the
supernatant was filtered (0.22 pm Minisart® Syringe Filter)
(Swanstrom and Adams, 1951). Finally, bacteriophage solutions
were quantified twice on different days and each dilution was plated
in duplicate using the double-layer agar method and stored in SM
buffer at 4°C and at-80°C with 50% glycerol (Amresco, Inc., Solon
Ohio, United States) (Kropinski and Clokie, 2009; Adams, 1959).
The stability of the bacteriophages under these storage conditions is
monitored over time.
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2.4 Characterization of bacteriophages

2.4.1 Host range evaluation

A host range was performed using 131 bacterial isolates to
determine the specificity of bacteriophage infection. The evaluation
was performed in triplicate using the spot test method, and plaque
formation was verified by performing serial dilutions of the phages
and plating in the quantitative spot test to confirm productive
infection in the bacteriophage-susceptible isolates (Kropinski and
Clokie, 2009). An inter-species and inter-genus assessment was
performed on 31 isolates other than K. pneumoniae: Klebsiella oxytoca
(n =3), Citrobacter freundii (n=3), Enterobacter cloacae (n=3),
Escherichia coli (n = 5), Serratia spp. (n = 4), Pseudomonas aeruginosa
(n = 3), Acinetobacter baumannii (n = 3), Aeromonas SPP (n = 2),
Ralstonia paucula (n=2), and Staphylococcus aureus (n=3).
Additionally, the intra-species host range was determined in 100
isolates of K. pneumoniae: 25 carbapenem-susceptible and 75
carbapenem-resistant KPC (bla xpc, n =45 and blagpc; n =30),
belonging to CG258 (n = 25), ST307 (n =15), ST14 (n = 10), and
other STs (n = 25) (Supplementary Table 52). The CRKP isolates were
also resistant to other antibiotic families (Supplementary Table S3),
such as aminoglycosides (57.9%, n = 44/76), quinolones (82.14%,
n =23/28), fluoroquinolones (72.7%, n = 56/77), glycylcycline (67.2%,
n = 39/58), and nitrofurans (100%, n = 10/10). The bacterial isolates
were obtained from the strain collection of the Grupo de Investigacion
en Microbiologia Bésica y Aplicada (MICROBA).

2.4.2 Efficiency of plating

Efficiency of plating was assessed for bacteriophage-susceptible
K. pneumoniae isolates identified in the host range. This assessment
was conducted using the quantitative spot test to determine the
efficiency of phage infection against different K. pneumoniae isolates
by comparing plaque production (Kropinski and Clokie, 2009). The
EOP was calculated by dividing the number of plaques produced by
the evaluated bacteria by the number of plaques produced by the host
bacterium. Efficiency of plating values >0.5 were considered an
efficient infection, values between 0.1 and less than 0.5 were
considered a moderately efficient infection, values between 0.001 and
less than 0.1 an infection with low efficiency, and values <0.001 were
an inefficient infection (Khan Mirzaei and Nilsson, 2015). Each
experiment was conducted in triplicate.

2.4.3 Preparation and evaluation of
bacteriophage cocktails

Different
combinations of 2 until 4 phages, each at a final concentration of 3x10”

bacteriophage cocktails were prepared using
UFP/ml, according to previous studies to prevent aggregation among
bacteriophages (Zurabov et al., 2023; Asghar et al., 2022). The
selection of the combination of bacteriophages for each cocktail was
based on host range and EOP results. Cocktail assessments were
performed using the same strains used in the intraspecies host range.
First, the activity of the cocktails was determined using a spot-test.
Then, serial dilutions of the cocktails were performed and seeded
using the quantitative drop test to confirm productive infection in
cocktail-susceptible isolates (Kropinski and Clokie, 2009). Finally, the
best performing cocktail was selected, and individual characterization
(biological, structural, and genomic) of the cocktail phages was
performed. All experiments were performed in triplicate.
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2.4.4 Infection or killing curve

To evaluate the control of bacteriophage on bacterial growth, the
host bacteria in exponential phase (approximate concentration of
1.5-5x10* CFU/ml) were placed in contact with different concentrations
of the phage (MOI 1, 0.1, and 0.01). The experiment was conducted on
96-well plates, and absorbance readings were taken every hour for 23 h
at 600 nm using a Multiskan GO Microplate Spectrophotometer, using
SkanIt™ Software (Thermo Scientific, v6.1.1) (Martins et al., 2022b).
Additionally, the effects of the cocktail at different concentrations (MOI
1, 0.1, 0.01) on the inhibition of bacterial growth were evaluated. Each
experiment was conducted in triplicate.

2.4.5 Adsorption time and one-step growth curve

To define the adsorption time, the host bacterium in the
exponential phase (1x10®° CFU/ml) was placed in contact with the
bacteriophage at an MOI of 0.01 (1x10° PFU/ml), followed by
incubation at 37°C in a shaking humidified bath. Subsequently,
samples were collected every 5 min for 20 min. Each sample was
filtered, and serial dilutions (1:10) were performed to quantify the
number of phages each time using the double-layer agar technique
(Adams, 1959). To obtain the one-step curve, adsorption was first
performed. The phages (1x10° UFP/ml) were placed in contact with
host bacteria in the exponential phase (1x10* CFU/ml) at an MOI of
0.01 and incubated for 10 min at 37°C. After this time, it was
centrifuged (4500 rpm for 10 min at 4°C), and the supernatant was
discarded; the pellet was re-suspended in the same volume of broth
and incubated at 37°C. Two samples were taken every 5 min for
45 min; one of them was treated with chloroform (1:10 ratio) to
determine the eclipse time, and the other sample was used to
determine the latency time (Zhao et al., 2019). Both samples were
filtered and serially diluted to quantify the number of bacteriophages
each time using the double-layer agar method (Adams, 1959). The
burst size was determined by dividing the average number of viral
particles produced by the number of infected cells (D’Andrea et al.,
2017). The experiments were conducted in triplicate.

2.4.6 Susceptibility to different pH and
temperature conditions

Each bacteriophage at a concentration of 1x10° PFU/ml was
exposed to temperatures of 4°C, 25°C, 37°C, 50°C, 60°C, and 70°C to
determine temperature susceptibility. After 1h of exposure, serial
dilutions (1:10) were prepared and plated using the quantitative spot
test (Kropinski and Clokie, 2009). To assess pH sensitivity, the
bacteriophages were diluted in SM buffer adjusted to different pH
(CDC, 2024; Wyres et al., 2020; Yang et al., 2021; Munoz-Price et al,,
2013; Kitchel et al., 2009; Villa et al., 2017; Peirano et al., 2020) to
reach a final concentration of 1x10° PFU/ml. After 1 h of exposure,
serial dilutions (1:10) were prepared and plated using the quantitative
spot test (Kropinski and Clokie, 2009). The experiments were
conducted in triplicate.

2.4.7 Transmission electron microscopy

The bacteriophages (1 x 10 UFP/ml) were purified by
ultracentrifugation and washed with ammonium acetate (Merck
KGaA, Darmstadt, Garmany) according to Kropinski and Clokie
(2009). To obtain transmission electron micrographs of the phages, a
drop of each high-titer phage was deposited on a carbon-coated
Formvar layer held by a copper grid. The samples were allowed to dry
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for 30 min, and excess liquid was removed. Finally, the phages were
negatively stained with 2% phosphotungstic acid and examined under
a transmission electron microscope (Domingo-Calap et al., 2020). All
measurements were performed using Image ] program v1.51 2018.
Three different particles of which phage were measured.

2.4.8 Genetic material extraction and sequencing
A solution of bacteriophages at a concentration of 10" PFU/ml
was used, which was enzymatically digested with RNAse (Sigma-
Aldrich, St. Louis, United States) and DNAse I (Thermo Scientific,
Massachusetts, United States) overnight at 37°C. After incubation, the
enzymes were inactivated at 80°C for 15 min. Subsequently, a
proteolysis buffer was added [final concentration: Proteinase K (50 pg/
mL) (Thermo Scientific, Vilnius, Lithuania), EDTA pHS8 (20 nM)
(Honeywell, Wunstorfer, Germany), and SDS (0.5%) (Merck KGaA,
Darmstadt, Garmany)], followed by incubation at 56°C for 1 h, and
extraction was continued using the phenol-chloroform protocol with
some modifications (Payaslian et al., 2021). The genetic material was
quantified by fluorometry using Qubit (Life Technologies, Singapore)
and Picogreen (Quant-iT™ PicoGreen™ Life Technologies, Oregon,
United States). Genome quality and integrity were assessed using
NanoDrop (Thermo Scientific, United States) and Agilent genomic
DNA screen tape (DIN, DNA integrity number). Phage genomic DNA
libraries and sequencing were performed by Psomagen Inc. (Rockville,
Maryland, United States). Briefly, DNA libraries were prepared using
an Illumina Truseq DNA PCR-free (350 bp insert) Library Prep Kit
(Mlumina, California, United States). The libraries were sequenced on
the Illumina NovaSeq 6000 S4 platform with 151 bp paired end reads
(2x151), with an approximate yield of 24 million reads per sample.

2.4.9 Genome assembly and annotation

Quality control of the raw sequences was performed using FastQC
v0.12.1. Low-quality bases (Phred <30), adapters, and duplicate
sequences were removed using FastP v0.23.4, and Trimmomatic v0.39
(Chen et al., 2018; Bolger et al., 2014). Subsequently, contaminated
sequences were removed from the Illumina sequencing vector phage
PhiX174 (NC_001422.1), and from the phage host K. pneumoniae
F17KP0040 (GCA_012971225.1) using BBDuk v39.01 from the
BBMap suite tools' (Mukherjee et al., 2015). The filtered readings were
assembled using SPAdes v3.15.5 (Prjibelski et al., 2020). The resulting
contigs were lined with K. pneumoniae phages previously reported
using BLASTn,? and the readings that were mapped to these counts
using BBDuk were retrieved and assembled de novo using SPAdes.
Phageterm v3.0.1 was used for the prediction of physical endings and
the rearrangement of phage genomes (Garneau et al., 2017). Complete,
high-quality genomes were obtained using Pilon v1.24, and genome
quality and integrity were assessed using QUAST v5.2.0 and CheckV
v.1.0.1 (Walker et al., 2014; Gurevich et al., 2013; Nayfach et al., 2021).
Genome annotation was performed using Pharokka v1.7.1 (Bouras
et al., 2023). Briefly, coding sequences (CDS) were predicted using
PHANOTATE v1.5.1, tRNAs were predicted using tRNAscan-SE
v2.0.12, mRNAs were predicted using Aragorn, and CRISPR
sequences were predicted using CRT. Functional annotation was

1 https://sourceforge.net/projects/bbmap/
2 https://blast.ncbi.nlm.nih.gov/Blast.cgi
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performed by searching the PHROGS database for CDS using
MMseqs2 and PyHMMER (Terzian et al., 2021; Steinegger and
Soding, 2017; Larralde and Zeller, 2023). Virulence factors and
resistance genes were predicted using the VFDB databases and CARD
(Chen etal., 2005; Alcock et al., 2020). Contigs were matched to their
closest hit in the INPHARED database using mash (Cook et al., 2021;
Ondov et al,, 2016). The annotation was improved using Phold v0.1.3,?
a bacteriophage genome annotation tool based on protein structural
homology. Finally, the annotation of the phage replicative cycle was
predicted in silico using BACPHLIP, PhageAl v.1.0.0, and phaTYP
(Hockenberry, 2021; Tynecki et al., 2020; Shang et al., 2023). The
bacteriophage genomes were submitted to the National Center for
Biotechnology Information (NCBI) database. The genome figures
were created in PATRIC (Davis et al., 2019).

2.4.10 Comparative genomics and phylogenetic
analysis

First, the genomic similarity of the phages was compared using
ProgressiveMauve (Darling et al., 2010). Closely related phages were
identified using BLASTn on the GenBank NCBI virus database. Then,
the average nucleotide identity (ANI) was calculated based on BLAST
+ (ANIb) by comparing the three phage genomes to those with
highest score and identify (> = 90%) using JSpeciesWS (Richter et al.,
2016). Based on this comparison, closely related phages with the
highest ANIb values and other dsDNA phages were used to classify
the phages to family levels using a proteome-based clustering strategy
on the ViPTree server (Nishimura et al., 2017). Phages with the
highest VipTree tBLASTx scores (Sg) and outgroups from the
Autographiviridae and Drexleviridae families were selected to perform
a genome-genome distance phylogenetic analysis of phages using the
Virus Classification and Tree Building Online Resource (VICTOR)
(Meier-Kolthoff and Goéker, 2017).

2.4.11 Statistical analysis

The host range and cocktail evaluation results were described
using absolute and relative frequencies. Quantitative variables were
described using mean and standard deviation, and the assumption of
normality was evaluated using Shapiro-Wilk. The analysis of
quantitative variables was performed according to the assumption of
normality; parametric tests included analysis of variance (ANOVA) or
Student’s t-test, and nonparametric tests included the Kruskal-Wallis
test or Wilcoxon test. The efficiency of plating results were classified
according to the M. Khan Mirzaei et al. criteria (Khan Mirzaei and
Nilsson, 2015). Values of p <0.05 were considered statistically
significant. The obtained information was analyzed using R studio v
2023.09.1 + 494.

3 Results
3.1 Bacteriophage isolation

Fourteen wastewater samples were collected, including 10 from
hospital effluents and 4 from WWTPs (affluent n = 1, effluent n = 3).

3 https://github.com/gbouras13/phold
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In total, 22 plaques of different morphologies were collected using the
double-layer agar technique. After plaque purification process, 5
bacteriophages with large, sharp-edged, and translucent plaques were
selected. Of the five isolated bacteriophages, three had the host
bacterium CRKP belonging to CG258 (ST512, n =2 and ST258,n =1)
and were named FKP3, FKP4, and FKP14. On the other hand, the
remaining two bacteriophages had CRKP of ST307 as host bacteria
and were designated FKP10 and FKP12. Bacteriophages produced
plaques between 1 and 2 mm in diameter; in addition, the plaques
produced by the bacteriophages FKP10 and FKP12 formed a double
halo of inhibition (Figure 1).

3.2 Characterization of bacteriophages

3.2.1 Host range evaluation

The evaluation of the inter-species and inter-genus host range
showed that the isolated bacteriophages were not active against any of
the bacterial strains of other genus and species evaluated (n = 0/31).
Regarding the evaluation of intra-species strains (K. pneumoniae),
bacteriophages showed lytic activity between 16 and 21%; the
bacteriophage FKP12 had the highest activity by lysing 21 of the
100 K. pneumoniae isolates evaluated (Figure 2A). Bacteriophages
were mainly active against K. pneumoniae isolates belonging to the
same clonal group as their host bacterium. Bacteriophages FKP3,
FKP4, and FKP14 obtained from CG258 host bacteria were active
against 56% (14/25) and 60% (15/25) of CRKP of the same clonal
group (CG258). Likewise, the FKP10 and FKP12 bacteriophages
isolated from K. pneumoniae from ST307 were active against 66.7%
(10/15) and 93.3% (14/15) of isolates belonging to the same ST of the
host bacteria, respectively. Regarding the activity of phages in
carbapenem-susceptible strains, FKP10 and FKP12 exhibited activity
against 20% (n = 5/25) of the strains compared with FKP3, FKP4, and
FKP14 phages, which exhibited activity against 4% (n =1/25). In
general, bacteriophages showed no activity against the CRKP strains
of other STs, except for FKP10 and FKP12, which exhibited activity
against ST231.

3.2.2 Efficiency of plating

The efficiency of the plating results is shown in Figure 3. In
general, bacteriophages efficiently infected other K. pneumoniae
isolates, when compared to infection against their host bacteria
(EOP > 0.5) (Figure 3A). FKP3, FKP4, and FKP14 phages efficiently
infected 93.75% (n = 15), 93.75% (n = 15), and 94.1% (n = 16) of
the isolates evaluated (Figure 3B), with EOP averages of 1.06 + 0.27,
1.19 + 0.31, 1.00 + 0.31, These three
bacteriophages did not differ in the production of plaques
(p = 0.204) (Figure 3A). On the other hand, the FKP10 and FKP12
bacteriophages efficiently infected 100% (n=17) and 95.2%
(n=20) of the evaluated strains, respectively (EOP > 0.5)
(Figure 3B). In addition, they had EOP averages of 1.31 + 0.40 and
1.45 + 0.66, which did not differ significantly (p = 0.15) (Figure 3A).
Finally, moderately efficient infection (0.1 <EOP <0.5) was
observed in 6.25% (n=1), 6.25% (n=1), 5.9% (n = 1), and 4.8%
(n = 1) of the isolates with the bacteriophages FKP3, FKP4, FKP14,
and FKP12, respectively; further, low infection efficiency
(0.001 < EOP < 0.1) and inefficient infection (< 0.001) were not
observed (Figure 3B).

and respectively.
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FIGURE 1
Bacteriophage plaque morphology. The figure shows the morphology of the plaques obtained using double-layer agar for the phages FKP3 (A), FKP4
(B), FKP10 (C), FKP12 (D) and FKP14 (E). The size of the plaques was between 1 and 2 mm, and FKP10 and FKP12 phages had a double halo.
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FIGURE 2

Intraspecies host range using individual bacteriophages and cocktails. (A) Shows the intraspecies host range of individual bacteriophages. * Host
bacteria from which the bacteriophages were isolated: FKP3, FKP4, and FKP14 were obtained from CG258 isolates, whereas FKP10 and FKP12 were
obtained from ST307 isolates. Gray squares correspond to strains against which the bacteriophages were not evaluated. (B) Presents the results of the
intra-species host range of the evaluated cocktails. Considering that the individual host range showed high specificity for bacteriophages against some
clones, bacteriophage combinations were performed to evaluate their performance in combination. Because the bacteriophages FKP3 and FKP4 had
the same host range, one of them was selected to perform the combinations, except for Cocktail 3.

10.3389/fmicb.2024.1502593

3.2.3 Preparation and evaluation of
bacteriophage cocktails

In total, seven cocktails were prepared, five aimed at increasing
the host range against clones belonging to CG258 and ST307
(Cocktails 1, 2, 5, 6, and 7), one aimed at isolates of ST307 (Cocktail

Frontiers in Microbiology

4), and another aimed at isolates of CG258 (Cocktail 3). The
conformation of the cocktails is described in Table 1.

The evaluation of the intra-species host range of the cocktails
showed a broadening of the host range up to 43.1% (n = 44/102)
compared with the values of the individual host range, which reached
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observed in bacteriophages.

Efficiency of plating (EOP) of CRKP bacteriophages. (A) Shows the efficiency of plating evaluated in susceptible isolates in the host range. EOP values
> 0.5 indicate efficient infection; 0.1 < EOP < 0.5, moderately efficient infection; and 0.001 < EOP < 0.1, infection with low efficiency. * Bacteriophage
FKP3 exhibited reduced infection efficiency with the KL024 isolate (EOP = 0.459; p < 0.05). The same result was observed for the FKP12 bacteriophage
with isolate SK105 (EOP = 0.221; p < 0.05). On the other hand, the bacteriophages FKP10 (EOP = 2.499; p < 0.001) and FKP12 (EOP = 3.517; p < 0.001)
exhibited statistically significant high infection efficiency with the KH045 isolate. (B) Presents the percentage of efficient and moderate infection values
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TABLE 1 Conformation of bacteriophages cocktails against K. pneumoniae.

Against CRKP of CG258

Bacteriophages
Against CRKP of ST307

Cocktails

FKP4 FKP14 FKP10 FKP12
Cocktail 1 X X
Cocktail 2 X X
Cocktail 3 X X X
Cocktail 4 X X
Cocktail 5 X X X X
Cocktail 6 X X
Cocktail 7 X X X

CRKP, carbapenem resistant Klebsiella pneumoniae.

21%. Furthermore, all seven cocktails showed an increase in activity for
both CRKP isolates belonging to CG258 and ST307 (Figure 2B).
Cocktails 1, 2, and 4 were active against 85.7% (n = 36/42; CG258
80.7%, n = 21/26; ST307, 93.75%, n = 15/16) of the isolates belonging to
both clones. Cocktail 4, prepared to increase activity only against ST307
isolates, expanded the host range against CG258 isolates (85.7%;
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n =36/42; CG258 n =21; ST307 n = 15); while Cocktail 3, targeting
CG258 strains, maintained its specificity against this same clonal group
(47.6%; n = 20/42; CG258 n = 19; ST307 n = 1). Finally, Cocktails 1, 2,
and 5 were active against 28% (1 = 7) carbapenem-susceptible isolates,
followed by cocktails 6 and 7 with 24% (n = 6) and cocktails 3 and 4
active against 8% (1 = 2) and 20% (1 = 5), respectively.
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FIGURE 4
Bacterial infection or elimination curve. (A—C) Show the elimination curve of bacteriophage FKP3, FKP10 and FKP14, respectively. (D—F) Show the
elimination curve of cocktail 2 (conformed for the bacteriophages FKP3, FKP10 and FKP14) with the host bacteria of each bacteriophage that
composed that cocktail. MOI: multiplicity of infection.

The results of the intra-species host range using cocktails (using  and 20 (52.73%) hours at MOIs of 1, 0, 1, and 0.01, respectively
the spot test) were confirmed using the plaque count to identify  (Figure 4B). No differences were observed in the control of bacterial
productive infection. These results allowed us to determine low plaque ~ growth at the different MOIs, and a constant growth control was
production of Cocktail 4, compared to Cocktails 1 and 2. Finally, of =~ observed with the MOI of 1 (between 8 to 20 h; 61.3 to 67.5%), 0.1
the seven cocktails prepared, cocktail 2, composed of the  (between 10 to 23 h, 53.32 to 58.65%), and 0.01 (between 14 to 23 h,
bacteriophages FKP3, FKP10, and FKP14, showed the best 50.84 to 52.73%) (Figure 4B). In general, the use of the cocktail
performance considering its high specificity for both CG258 and  showed no difference in the control of bacterial growth at MOI of 1
ST307 isolates (80.8 and 93.75%, respectively). Furthermore, the  and 0.1 compared with that observed for the individual phage;
bacteriophages in this cocktail had higher EOP results. Phages from  however, the cocktail at an MOI of 0.01 improved performance
Cocktail 2 were then selected for individual characterization  between hours 4 and 11 (Figure 4E).

(biological, structural, and genomic). Finally, the bacteriophage FKP14 evaluated against the CG258

isolate (KR06), maintained its highest peak activity at 2 (61.43%), 22
3.2.4 Infection or killing curves of individual (51.6%) and 23 (47.28%) hours after treatment, for MOI of 1, 0.1, and
phages and cocktail 0.01, respectively, (Figure 4C). Likewise, a significant growth control

Bacteriophage FKP3 showed a greater reduction in bacterial =~ was observed with the 3 MOI at 6, 12, and 23 h, and no differences
growth (82.70%) after 6 h of treatment at an MOI of 1, whereas ~ were observed between phage activity at each MOL On the other
lower MOIs (0.1 and 0.01) showed reduced effectiveness hand, the activity of the phage at different MOIs was constant over
(Figure 4A). Overall, significant control of bacterial growth of the  time (MOI 1; reduction from 47.46 to 53.14%; MOI 0.1 reduction
FKP3 phage was observed at 6, 12, and 23 h; however, the MOI of  from 40.40 to 51.6%; MOI 0.01, reduction from 40.87 and 47.28%)
1 remained superior throughout treatment (Figure 4A). On the  (Figure 4C). In contrast, the cocktail did not show a better
other hand, when the selected cocktail 2 was used in the host strain ~ performance than that observed with the individual bacteriophage;
of the FKP3 phage [CRKP-ST 512 isolate (KP58)], the MOI of 1 ~ however, the cocktail exhibited a significant reduction in bacterial
showed a similar behavior to that observed with the individual  growth at 6, 12, and 23 h (Figure 4F).
phage (MOI 1), but the cocktail 2 at lower MOIs performed better
between hours 6 and 12 (MOI 0.1 69.02 to 77.63%; MO1 0.01 59.91  3.2.5 Adsorption time and one-step growth curve

to 65.25%), showing a greater reduction than the individual phage The adsorption time of the three bacteriophages was 5 min,
(MOI 0.1 36.98 and 42.88%; MOI 0.0128.6 to 32.69%)  during which 95-99% of the viral particles were adsorbed (Figure 5A).
(Figures 4A,D). The one-step curve showed that the bacteriophage replication times

When the performance of phage FKP10 was evaluated against the =~ were between 30 and 45 min (Figures 58-D); in addition, we found
CRKP-ST307 isolate (KH45), it was observed that the phage exerted  eclipse times of 5 min for the three bacteriophages and latency periods
maximum control of bacterial growth at 12 (67.55%), 18 (58, 65%),  of 5, 5, and 10 min for FKP3, FKP10, and FKP14, respectively. Finally,
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bacteriophages FKP3 (B), FKP10 (C), and FKP14 (D).
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a burst size of 5 PFU/cell was observed for phage FKP3, 8
PFU/cell for phage FKP10, and 18 PFU/cell for phage FKP14
(Figures 5B-D).

3.2.6 Susceptibility to different pH and
temperature conditions

All three bacteriophages were stable at temperatures between 4°C
and 50°C. The bacteriophage FKP3 reduced 3.9 Log when exposed to
a temperature of 70°C (p = 4.22 x 107'**), and FKP10 decreased 2.8
Log at 60°C (p =1.0) and 6.6 Log at 70°C (p = 0.258) (Figure 6A).
Regarding pH stability, similar behavior was observed in the three
bacteriophages, which maintained stability at a pH between 4 and 10
(FKP3, p = 0.849; FKP10, p = 0.700; FKP14, p = 0.957); however, they
were susceptible to extreme pH levels of 2 and 12, so a complete
reduction in bacteriophage titers was observed for both pHs
(Figure 6B).

3.2.7 Transmission electron microscopy

Phages FKP3, FKP10, and FKP14 had approximate lengths of
206.2 £ 3.6, 165.6 + 1.2 and 208.1 + 1.1 nanometers, respectively, and
all of them had tail, so they belong to the Caudoviricetes class. All three
phages had icosahedral isometric capsids with sizes of 89.05 + 2.6 nm
(FKP3), 73.8 = 3 nm (FKP10) and 92.2 + 1.9 nm (FKP14). The tails
were straight and short with approximate sizes of 116.7 + 0,5 nm

Frontiers in Microbiology

(FKP3), 89.09+ 1,6 nm (FKP10) and 114.2+24nm (FKP14)
(Figure 7).

3.2.8 Genome characteristics and annotation

The genome features are described in Table 2. Bacteriophages had
double-stranded DNA (dsDNA), and the three presented high-quality
genomes with integrity >99%. The genomes had a length between
~142 and ~ 159 kbp; further, the FKP3 (GenBank: PP895363.1)
genome was linear, whereas FKP10 (GenBank: PP974338.1) and
FKP14 (GenBank: PP974339.1) had circularly permuted genomes.
More than 230 open reading frames (ORFs) and coding sequences
(CDS) were annotated; but, most corresponded to genes encoding
hypothetical proteins (~60%) and about 33% corresponded to genes
encoding proteins with known functions. These genes were classified
into functional categories, such as structural and packaging proteins,
associated with lysis, moron, integration and excision, auxiliary
metabolic genes and host takeover, and DNA, RNA, and metabolism
genes (Figure 6). All three phages had CDS associated with lytic
lifestyles such as Rz-like spanins, endolysin, lysis inhibitors, and
endolysins; however, FKP3 also had a CDS (0063) that was identified
as a site-specific recombination directionality factor (RDF) and
assigned to the integration and excision module. The presence of this
recombination factor decreased the probability to 46.25% that this
bacteriophage was virulent when implementing the BACHLIP tool;
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Bacteriophage morphology. (A—C) Show photographs taken by transmission electron microscopy (TEM) of FKP3, FKP10, and FKP14, respectively. The
three bacteriophages had tails sized 165.6 nm +1.2 and 208.1 nm +1.1. The scale bar represents 100 nm.

however, both the Phage AI and phaTYP tools predicted with high
probabilities (>90%) that all three bacteriophages were virulent
(Table 2). No virulence-associated or antimicrobial resistance genes
were detected in the bacteriophages.

3.2.9 Comparative genomics and phylogenetic
analysis

Figure 8A shows multiple alignments of Klebsiella phage genomes
containing two syntenic colinear blocks (homologous regions). This
alignment was consistent with high ANIb values between FKP10 and
FKP14 (ANIb% between 95.83 to 96.04%), indicating greater genomic
similarity, and lower ANIb values for FKP3 (ANIb% with FKP10
between 62.08 to 62.26%; ANIb% with FKP14 between 67.11 to
70.08%). Based on these results, FKP10 and FKP14 phages were more
closely related to each other than to FKP3. Figure 8B presents a
comparative circular map of the protein-coding genes of the three
annotated  genomes.

Furthermore, a  genome-to-genome
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distance-based phylogenetic tree was constructed using closely related
phages based on ANIb values and Viptree Sg scores, with distant
members from the Drexlerviridae and
Autographiviridae families. This phylogenetic tree was composed of 4
families, 4 genera and 43 species clusters; and the phages FKP10 and
FKP14 belonged to the Ackermannviridae family and Taipeivirus
genus, whereas FKP3 belonged to the Stephanstirmvirinae and

Justusliebigvirus families (Figure 9).

set as outgroups

4 Discussion

Although bacteriophages were discovered more than 100 years
ago, during the last two decades, the use of these viruses to combat
antibiotic-resistant bacteria has increased, making them attractive
alternatives for the control of carbapenem-resistant clones of
K. pneumoniae (CRKP), which have successfully spread in clinical and
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TABLE 2 Genomic profile of FKP3, FKP10, and FKP14 bacteriophages active against K. pneumoniae.

Genomic profile

Klebsiella phage FKP3

Klebsiella phage FKP10

10.3389/fmicb.2024.1502593

Klebsiella phage FKP14

Size (bp) 142277 159358 157205

Genome organization Linear Circularly permuted Circularly permuted

Depth 125X 111X 139X

GC content (%) 39.56 46.57 46.3

Completeness 100 100 99.94

ORF 305 246 233

CDS 303 244 231

Hypothetical proteins 212 140 129

Functional proteins 91 104 102

tRNA* 21 8 7

Termini Short direct terminal repeats (DTRs) of Headful packaging (PAC) Non identified**
317 bp length

Taxonomy

Family Stephanstirmvirinae Ackermannviridae Ackermannviridae

Genus Justusliebigvirus Taipeivirus Taipeivirus

In silico replicative cycle

PhageAlI (virulent) 91.74% 92.49% 92.80%

BACHLIP (virulent) 46.25% 98.39% 94.50%

PhaTYP (virulent) 1.0 1.0 1.0

GG, guanine-cytokine content; ORE, Open Reading Framework; CDS, coding sequences; tRNA, transfer RNA. * Four transfer RNAs were identified in all phages (tRNAMet, tRNATyr,
tRNAAsn, tRNAGIn). ** Owing to the lack of identified termini in FKP14 genome, the genome was re-arranged it using the large terminase subunit as the start base through the Pharokka

pipeline, and as recommended in Shen and Millard 2021.

environmental settings. This study allowed the isolation of highly
specific bacteriophages against the CRKP strains CG258 and ST307
with promising biological, structural, and genomic traits.

Although it is important to isolate specific bacteriophages against the
strains of interest, it is necessary to perform an individual characterization
of bacteriophages to determine their safety and predict their performance
in various applications, whether in biocontrol or phage therapy. At
present, there are no standardized guidelines that determine which
characteristics should be evaluated for the subsequent implementation of
bacteriophages; however, some entities, such as the Food and Drug
Administration (FDA) and the European Medicines Agency (EMA), have
made recommendations to ensure the use of bacteriophages in various
applications. These recommendations include confirmation of activity
against the strains of interest, origin of the phage, effective concentration
of the phage, absence of antibiotic resistance genes, virulence genes, and
genes associated with integration or lysogeny (Yang et al., 2023; Furfaro
etal., 2018). However, other important characteristics could help predict
the performance of bacteriophages against different isolates, including
host range, plating efficiency, and infection or killing curves. Considering
that these methodologies can be diverse, the selection of criteria for
characterization must be aligned with the objective of the research and
the type of application.

In recent years, it has become more common to find publications that
focus on identifying bacteriophages against high-risk clones; some studies
have described the isolation of active phages against clones such as ST11,
ST101, ST16, ST13, and ST15, among others (Martins et al., 2022a; Fang
and Zong, 2022; Tan et al., 2019; Ciacci et al., 2018; Laforét et al., 2022;
Horvath et al., 2020). Likewise, the isolation of active bacteriophages
against CRKP-ST258 has been reported, whereas publications of active
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phages against emerging clones such as ST307 are limited (Tisalema-
Guanopatin et al., 2023; Thiry et al., 2019; D’Andrea et al., 2017; Venturini
et al., 2020; Hesse et al., 2020; Ponsecchi et al., 2024).

The FKP3, FKP4, and FKP14 phages exhibited a broad host range
with high specificity against CG258 isolates (56 to 60%). This finding
aligns with a study by D’Andrea et al., where K. pneumoniae bacteriophages
displayed a host range covering 52.4% of strains from CG258 (clade II)
(D’Andrea et al,, 2017). On the contrary; a study published in 2020 by
Venturini C et al. reported the isolation of bacteriophages from ST258
(CG258) strains, which only had activity against their host bacteria and
not against other strains tested (Venturini et al., 2020).

The high specificity of infection observed in the selected
bacteriophages could be associated with the presence of common
bacterial receptors in these clones, which are specifically recognized
by the receptor binding proteins (RBP) of the phage (De Jonge et al.,
2018). In K. pneumoniae phages have been described important
receptors involved in the specificity of infection, such as capsular type,
in these sense Venturini et al. isolated specific bacteriophages against
K. pneumoniae from CG258, finding a correlation between the host
range of the bacteriophages and the capsular type, as well as with the
clade to which these clones belonged (Venturini et al., 2020).

On the other hand, phages FKP10 and FKP12 show a wide host
range of 66.7-93.3% against CRKP from ST307; which is in line with
previous studies conducted at Lyon University Hospital in France
(2021), where it was described the isolation and characterization of
one K. pneumoniae jumbo phage with activity against 80% (24/30)
ST307 clones (unpublished data). Recent studies reported the isolation
of two phages active against CRKP-ST307 with a host range of up to
85.8% (10/12) of isolates (Ponsecchi et al., 2024).
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shared exclusively by FKP10 and FKP14. Phage FKP3 exhibited lower protein sequence identity (up to 50%) than FKP10 and FKP14 phages. The shared
protein-coding genes among the three phages were involved in DNA, RNA, and nucleotide metabolism.

Finally, phage studies against CRKP from CG258 and ST307 have not
only focused on characterization but also evaluated other aspects of the
phage’s activity related to the mechanisms of resistance to bacteriophages
and the effects of bacterial fitness during this process (Thiry et al., 2019;
Hesse et al., 2020; Hesse et al., 2021; De Angelis et al., 2021).

The findings of this study are of great interest considering that few
publications have reported the isolation and characterization of CRKP
phages belonging to CG258 and ST307. Moreover, not all studies that
report the isolation of phages against these clones perform host range
using a large number of isolates, and in some cases, authors did not
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evaluate the host range (Tisalema-Guanopatin et al., 2023; D’Andrea
etal,, 2017; Venturini et al.,, 2020). Furthermore, many of these studies
only assessed host range using the spot test and did not confirm
productive phage infection by determining plaque formation in
susceptible strains, which may have overestimated phage activity and
host range results (D’Andrea et al., 2017; Venturini et al.,, 2020). Unlike
the limitations of these studies, in this work, the productive infection
of bacteriophage was determined, and we confirmed that the results
of the spot test effectively overestimated the host range from 2.4 to
29.4%, in comparison with the host range assessed by the
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Genome-based phylogenetic tree of bacteriophages FKP3, FKP10 and FKP14. The phylogenetic tree was generated by VICTOR nucleotide pairwise
comparisons. Yellow stars indicate the phages of interest in this study. The colors and shapes on the right indicate similarities of bacteriophages
according to characteristics such as family, genus, species, guanine-cytosine content, and genome size.

determination of plaque formation, highlighting the importance of
this confirmation. Finally, our findings showed that bacteriophages
efficiently infected 94% of the susceptible strains in the host range
(EOP values >0.5); which again underlines the importance of this
study in comparison to others reported, where the infection efficiency
of phages against these important clones is not evaluated (Tisalema-
Guanopatin et al., 2023; D’Andrea et al., 2017). Overall, the EOP
results for non-CG258 and non-ST307 CRKP phages are diverse and
depend on each bacteriophage. Some studies have reported high
infection efficiency in the 54.5% of the strains (Kim et al., 2023; Balcao
etal., 2022).

Evaluation of the host range in many strains and determination of
EOP are important procedures for characterizing bacteriophages
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because they allow estimation of the probability of success of a
bacteriophage against specific groups of bacteria during its application.
The host range allows us to identify which bacteria are susceptible to
the action of a phage by recognizing common receptors between
them. Further, EOP shows how bacteria are permissive for phage
replication, which allows us to determine how well phages replicate in
infected bacteria compared to their host bacteria by identifying
productive infection (Khan Mirzaei and Nilsson, 2015; Kutter, 2009).
Permissiveness is also related to the presence of resistance mechanisms
to bacteriophages; therefore, our EOP results with values equal to or
greater than 1 probably indicate that the strains do not share phage
resistance mechanisms; thus, they replicate efficiently in most strains
(Hyman and Abedon, 2010).
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Although individual bacteriophages showed high species
specificity (100%) and specific activity against CRKP from CG258 and
ST307, the use of bacteriophage cocktails increased the intra-species
host range up to 85.7% (n = 36/42) of isolates belonging to both
clones, which makes it a very interesting alternative for its
implementation in places where both clones circulate frequently, such
as hospital settings. The activity of the phages of this study against
both clones (85.7%) could indicate additive activity of the phages
FKP3, FKP14 (CG258), and FKP10 (ST307); however, it was observed
that the cocktail increased the host range up to 80.8% of the CG258
strains and 93.8% of the ST307 strains vs. 56 and 66.7% of the activity
obtained with the individual phages, respectively. Furthermore, some
bacteria that were not susceptible to either phage individually were
susceptible to the cocktail, indicating the possible synergistic activity
of the phages in these strains. This work also allowed us to determine
whether the cocktail’s bacteriophages were replicating during infection
by confirming the formation of plaques in susceptible strains, an
aspect that has been rarely evaluated in other studies. These findings
are of great relevance because they reject the effect of “lysis from
without” and confirm that a productive infection of the cocktail
phages is taking place; besides, demonstrate that antagonism
phenomena during co-infection probably do not occur in most strains
(Molina et al., 2022; Kerr et al., 2008).

Several studies have described the use of bacteriophage cocktails
to control K. pneumoniae; however, a specific cocktail has not been
described to control high-risk clones such as CG258 and ST07. Other
publications have focused on the evaluation of phage cocktails in
biofilm-producing K. pneumoniae or animal infection models to
determine the activity of the cocktails against specific strains
(Zurabov et al., 2023; Kelly and Jameson, 2024; Liang et al., 2023;
Singh et al., 2022). Furthermore, most studies that evaluate the
activity of cocktails only determine their effectiveness through a
killing curve with some strains, and there are few publications that
re-evaluate the performance of cocktails with various isolates as is
usual with the host range (Jokar et al., 2023). According to a study
published in 2023, the use of a cocktail of 4 bacteriophages increased
the host range from 52 to 75% of the isolates, preventing bacterial
regrowth (Jokar et al., 2023). Another study published in Kenya
determined the performance of a cocktail in 8 strains and reported
no differences between the administration of individual or
combination bacteriophages (Michodigni et al., 2022). These studies
contrast with the present work, in which various cocktails were
evaluated against several isolates and productive infection was
confirmed. Furthermore, the use of cocktails significantly increased
the host range against CG258 and ST307, with higher percentages
observed than those reported in previous studies, indicating a greater
probability of cocktail success.

Additionally, the performance of the cocktails was determined
using the infection curve obtained after 23 h, which differs from some
studies on K. pneumoniae phages in which evaluation is shorter,
making it more difficult to identify phage-resistant subpopulations
over time (Fayez et al., 2023). In general, our phages showed significant
control of bacterial growth but did not exhibit complete elimination.
Furthermore, the cocktails presented mixed results, and in some cases,
an improvement in the performance of the cocktail was observed at
low MOIs compared to the performance of the individual phage. The
use of the cocktail at MOIs of 0.1 and 0.01 on the host bacteria of
phages FKP3 (CRKP-ST 512, strain KP58) and FKP10 (CRKP-ST307,
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strain KH45) delayed the appearance of phage-resistant bacteria;
compared to the individual phage results at the same MOIs. Therefore,
the cocktail achieved a performance like the individual phage FKP3
and FKP10 at an MOI of 1 (FKP3, 82.70% control first 6 h; FKP10,
67.55% control first 12 h), whose concentration was the best in all
cases. These findings coincide with those of other studies in which the
use of the cocktail delayed the appearance of subpopulations resistant
to phages (Kondo et al., 2023). However, other publications have
reported that the use of cocktails did not perform significantly better
than that of phage alone (Concha-Eloko et al., 2023); which was also
evidenced in our results with the host bacteria of phage FKP14
(CRKP-ST258, strain KR06). These findings demonstrate the
importance of evaluating cocktails using infection curves with
different strains, considering that the behavior may vary and could
be related to the resistance mechanisms of bacteria to phages.

It is well known that the use of cocktails offers advantages
compared to the administration of individual phages because they
expand the host range, and their use decreases the probability of
selecting phage-resistant bacteria. In this sense, it is ideal to use
combinations of phages with affinity for different receptors,
considering that the use of bacteriophages that recognize the same
receptor could be ineffective due to the development of bacterial
resistance mechanisms related to mutations that cause cross resistance
(Abedon etal., 2021; Yoo et al.,, 2024). The use of phages that recognize
different receptors can delay or prevent the emergence of resistance;
which was observed in this study; However, in our case, it could
be necessary to use an additional phage to control the remaining
resistant subpopulations, administer the phages from the cocktail
sequentially over time, or use combinations of bacteriophages with
other compounds. Some studies have documented a greater reduction
in bacterial growth when K. pneumoniae phage cocktails are combined
with antibiotics such as meropenem and tigecycline (Martins et al.,
2022b; Michodigni et al., 2022). Furthermore, it has been reported
that the use of bacteriophages and chemical disinfectants is more
effective in eliminating biofilms and bacteria on surfaces (Chen
etal., 2024).

On the other hand, the results of the one-step curve indicated
rapid replication of the bacteriophages and rapid release of viral
particles (latency time 10 min). Some studies have shown that phages
with short latency periods lyse more bacteria at each time,
demonstrating their potential for rapid control of bacterial populations
(Fang et al., 2023). The burst size results were obtained when the
infection was carried out at an MOI of 0.01 and under these conditions
there was a low production of viral progeny (5-18 per infected cell).
In this sense, the burst size results coincide with those observed in the
elimination curve at an MOI of 0.01, where there was no evident
control of bacterial growth, which is related to the low production of
bacteriophages that infect adjacent bacteria. Although it is considered
that the bacteriophages with the greatest potential are those with a
large burst size, it has been reported that bacteriophages with small
burst sizes are associated with short lysis cycles, as observed in this
study. This can also be considered an advantage by favoring the
development of several replication cycles in shorter timeframes and
faster viral particle production (Shao and Wang, 2008). Other authors
have described small burst sizes (6 to 63 bacteriophages per infected
cell) in K. pneumoniae phages, however, the possible limitations
caused by burst size could be solved with the use of higher MOI or the
combined use of other bacteriophages, antibiotics, or compounds
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(Tisalema-Guanopatin et al, 2023; Peng et al, 2023; Gordillo
Altamirano and Barr, 2019).

Finally, the bacteriophages that made up the best cocktail
belonged to the class of Caudoviricetes and to the families
Stephanstirmvirinae (FKP3) and Ackermannviridae (FKP10 and
FKP14), with the latter being one of the most frequently reported
phages against Klebsiella (Tisalema-Guanopatin et al., 2023; Assafiri
et al,, 2021). All bacteriophages were virulent; however, in phage
FKP3, a gene was identified that encodes an RDF (recombination
directionality factor) protein. This gene is involved in the directionality
of site-specific recombination mediated by integrases (Lewis and
Hatfull, 2001). However, FKP3 did not possess other genes related to
the lysogenic cycle, and tools in silico indicated a high probability
(91.74%) of being virulent. Some authors have reported that RDF
proteins can accomplish functions related to the process of DNA
replication; therefore, the acquisition of the RDF gene may be due to
evolutionary processes and requires further studies of its transcription
and functionality (Payaslian et al., 2021). In addition, no genes
encoding virulence or antibiotic resistance factors were found in the
three genomes, which supports the safety of these bacteriophages for
their implementation in future applications. Other results showed that
bacteriophages harbor several tRNAs in their genomes, which are
associated with lytic replication cycles (Bailly-Bechet et al., 2007;
Nepal et al., 2022). Likewise, the presence of tRNA enables viral
proteins to be translated more efficiently, reducing latency times,
which could be evidenced in the three bacteriophages evaluated,
whose eclipse and latency periods were short (Bailly-Bechet et al.,
2007). Finally, genes associated with lysis proteins, such as endolysins
and Rz-type spins, were identified in the genomes of the three
bacteriophages, and these genes are related to Gram-negative lysis
processes (Kongari et al., 2018; Briers et al., 2014).

The evaluation of the biological and structural characteristics of the
bacteriophages isolated in this study supports the development of new
applications, particularly in critical scenarios with high CRKP levels in
CG258 and ST307. These bacteriophages could be used at higher MOIs
in scenarios where the target bacterial population is not very high and
under conditions where the bacteria have slower replication rates that
allow control of the bacterial population. In this context, bacteriophages
could be used as part of a surface disinfection strategy in hospital settings
given that CRKPs CG258 and ST307 are frequently found in these settings
and spread easily, causing healthcare-associated infections (Centeleghe
et al, 2023). In addition, its use could be explored in hospitals and
community wastewater where these pathogens have been frequently
reported (Jassim et al., 2016). Finally, considering the specificity of
infection against these high-risk clones, the bacteriophages isolated in this
study could be implemented as diagnostic and epidemiological
surveillance tools, considering that CRKP of CG258 and ST307 are the
main circulating clones at the local and global levels (Fu et al., 2015).

The limitations and perspectives of this study are related with the
evaluation of the mechanism of action of the bacteriophages and
receptors involved. Furthermore, the evaluation of phage-resistant
populations, resistance mechanisms, and phenomena such as trade-off
(resensitization to antibiotics, altered metabolism, decreased virulence)
(Burmeister et al., 2020; Gordillo Altamirano et al., 2021; Chan et al.,
2016; Fujiki et al, 2023). Finally, additional combinations with
antibiotics or other compounds and the study of the functionality of
some genes of biotechnological interest, such as endolysins, are expected.
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5 Conclusion

In this study, cocktails of bacteriophages with high activity
against CRKP isolates belonging to the successful clones CG258
and ST307 were Through the
characterization of each of these bacteriophages, promising

obtained. individual
biological, structural, and genomic traits were identified,
infection specificity against K. pneumonie of CG258 and ST307,
high lytic activity, short latency periods, rapid replication cycles,
stability at varying pH and temperature conditions, and the
absence of genes associated with antibiotic resistance and
virulence. Together, these results show the potential of these
bacteriophage combinations for the control of carbapenem-
resistant K. pneumoniae of the CG258 and ST307 and, in turn,
constitute a starting point for future in vitro and in vivo studies
where these bacteriophages are implemented in clinical and
environmental scenarios. The characterization results obtained
in this work allow the prediction of the performance of
bacteriophages during applications.
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Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China, *National
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Bud blight caused by Pseudomonas syringae is a serious disease affecting tea
plants and causing severe damage to production output and quality. Phages
play an important role in controlling the development of bacterial diseases
in plants. Previous studies have shown that the tolerance of phage-treated
tea plants to bud blight was notably greater compared with that of the
control group. In the present study, we determined the effect of bacteriophage
therapy on physiological and biochemical parameters of tea leaves. Transmission
electron microscopy (TEM) was used to analyze the cellular structure of tea
leaves, and bioinformatics was used to analyze the phage. Results revealed
that bacteriophage treatment can enhance the expression of antioxidant
enzyme genes (CsSOD, CsCAT, and CsPOD). The levels of osmotic adjustment
compounds, including proline and soluble sugars, were also elevated, suggesting
that bacteriophage enhances the osmotic adjustment capacity in tea plants.
TEM analysis revealed that the integrity of the cell structure of the tea leaves
treated with phage was notably better compared with that of the control
group. Interestingly, we also observed that the phage lysed the animal pathogen
Salmonella as well as the plant pathogen P. syringae. Using NCBI BLASTn to
compare the entire genome with other nucleotide sequences, we found that
the phage LDT325 exhibited cross-species characteristics that had not been
previously reported. In summary, our findings demonstrate that bacteriophages
can protect tea plants from damage caused by bacterial diseases by regulating
antioxidant systems.

KEYWORDS

Camellia sinensis, Pseudomonas syringae, bacteriophage, physiological characters,
antioxidant enzyme

1 Introduction

The tea plant is a notable perennial evergreen crop that thrives in tropical and
temperate regions (Hao et al., 2018). However, the warm and humid climate promotes
the growth and transmission of pathogens that cause numerous plant diseases. Recently,
there has been a significant increase in the occurrence of bacterial bud blight in tea plants
throughout China. Diseases caused by Pseudomonas syringae are widespread and have
affected the United States, Australia, and Korea (Tsuji and Takikawa, 2018). Tea bud blight
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primarily impacts the young buds and leaves. Tea plantations
suffering from bud blight can experience a decline in productivity
and quality (Khandan et al., 2013; Bartoli et al., 2015).

P. syringae causes a wide-range of bacterial diseases in plants
worldwide. The emergence and spread of P. syringae in many
tea-producing areas around the world have negatively impacted
the sustainability of tea plants (Xin et al, 2018; Yang et al,
2023). P. syringae is highly aggressive and spreads rapidly among
different plant varieties (Khandan et al, 2013; Bartoli et al,
2015). At present, the management of bud blight disease primarily
depends on copper-based treatments and antibiotics; however,
studies have shown that the protective effect of copper preparations
significantly decreases after plants become infected with bacterial
pathogens and improper use can lead to serious harm to the plants
(Zhang et al., 2021). Although antibiotics can effectively reduce
bacterial diseases, their overuse can promote bacterial resistance
and residue accumulation in tea leaves (Batuman et al., 2024).
Thus, the growing public consciousness of food safety has resulted
in extensive recognition of the necessity of secure and efficient
biological control methods for plant diseases.

Bacteriophage is a kind of virus that can specifically infect
and destroy bacteria, and has the ability of self-replication.
Unlike most antibiotics, phages generally demonstrate strong
specificity for particular bacterial species or strains (Nawaz et al.,
2023). Their ability to self-replicate enables them to be used as
potent antimicrobial agents. Phages have been used not only for
treating and preventing bacterial diseases in humans but also
for managing plant diseases, detecting pathogens, and assessing
food safety (Davidson et al, 2012; Lahlali et al, 2022). In
addition, phages are also used to treat and prevent animal diseases,
showing good application prospects in animal medicine and
aquaculture. Bacteriophages significantly reduce their impact on
the environment and non-target microorganisms. Thus, phages are
considered more sustainable and safer compared with antibiotics
(Buttimer et al., 2017).

Although significant advancements have been made in
examining the role of phage in responses to plant bacterial diseases,
little information regarding the effect of phage on bacterial disease
tolerance in tea plants is available. In this study, we examined
the regulatory mechanisms governing phage-mediated bacterial
disease resistance in tea plants and evaluated the effect of phage on
bacterial disease in tea plants. We determined the effect of phage
treatment on various tea seedling factors during tea bud blight,
including chlorophyll content, soluble sugar content, free proline
(Pro) content, antioxidant enzyme activity, and the expression of
the antioxidant defense system.

2 Materials and methods

2.1 Plant material and treatments

The tea variety used in this experiment was Longjing No. 43
(Camellia sinensis), which was grown in plastic boxes and cultured
in acidic soil. The surface of the leaves was washed with sterile
water and disinfected with 75% ethanol for 1 min. After the surface
of the leaves was dried, four holes of equal distance were pierced
in the middle of the leaves with sterile needles. The 40 pwL of
P. syringae (2 x 107 CFU/mL) was applied to the surface of the
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leaves and distributed at four needle puncture sites for air drying.
The 40 1L of phage suspension (2 x 107 PFU/mL) was similarly
applied to the upper surface of the leaves and spread across the same
puncture sites. The treated leaves were covered with sterile cotton
to protect the injured areas. For comparison, the control group was
only infected with the pathogens (Aftab et al., 2022). The negative
control was the sterile water group, in which 40 L of sterile water
was applied to the surface of the leaves and distributed at 4 needle
puncture points for air drying. The treated leaves were cultured in
a climate box at 25°C and 90% humidity for 3 days.

2.2 Sample collection and enzyme
extraction

Leaf samples were collected to evaluate the activity of the
antioxidant enzymes. The method of extracting the antioxidant
enzymes was modified. Leaf samples (1 g) were ground using 5mL
of 50 mM phosphate buffer (pH 7.8). The resulting homogenate was
centrifuged at 10,000 x g for 30 min at 4°C. The supernatants were
immediately used to measure enzyme activity (Wang et al., 2024).

2.3 Superoxide dismutase (SOD) activity

A reaction mixture containing 130 mM methionine, 0.75 mM
nitroblue tetrazolium, 0.1 mM ethylenediamine tetraacetic acid,
and 0.05M phosphate buffer (pH 7.8) was used to assess SOD
activity. Briefly, 0.1 mL of the leaf extract supernatant was added to
3 mL of the reaction mixture. Then, 0.2 mL of a 0.02 mM riboflavin
solution was added and the mixture was exposed to fluorescent light
(4,000 lux) for 20 min to start the reaction. The complete reaction
mixture without the enzyme extract was used as a control. The
absorbance at 560 nm was used to calculate SOD activity.

2.4 Catalase (CAT) activity

CAT
spectrophotometer. The reaction solution was prepared with
30% hydrogen peroxide and 50 mM phosphate buffer (pH 7).
Then, 0.1 mL of enzyme extract were added to the reaction mixture

activity was determined wusing an ultraviolet

to start the reaction. The complete reaction mixture without the
enzyme extract was used as a control. The absorbance at 240 nm
was recorded every 30 s for 3 min.

2.5 Peroxidase (POD) activity

Peroxidase activity was determined by the guaiacol method.
First, 50 mM phosphate buffer (pH 7) was added into a beaker
followed by 1 mL of guaiacol; the mixture was heated and stirred.
The resulting solution was cooled and mixed with 30% H,O;, and
the leaf extract supernatant was mixed with the reaction solution.
The control group was added to the same volume of 50 mM
phosphate buffer (pH 7) solution without the enzyme solution. The
absorbance was measured at 470 nm.
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2.6 RNA extraction and quantitative
real-time PCR

The leaf-damaged part was ground into a fine powder in the
presence of liquid nitrogen with a high-pressure sterilized mortar
and pestle and stored at —80°C (Aftab et al, 2022). The RNA
Isolator Total RNA Extraction Reagent (Vazyme, Nanjing, China)
was used to extract total RNA from the tea tree tissues, which
was reverse-transcribed into cDNA using a reverse transcriptase
(ReverTraAce-a, Toyobo Co.). The internal reference gene was
Csp-actin. Real-time qPCR was done using an Applied Biosystems
7500 Real-Time PCR system (Thermo Fisher Scientific, USA). The
amplification program was as follows: 95°C for 30s; 40 cycles
at 95°C for 5s, and annealing at 60°C for 30s; 95°C for 15s,
60°C for 1 min, and 95°C for 15s. The relative expression was
calculated using the 272ACt method (Wang et al, 2023). The
primer sequences are listed in Figure 1. The expression levels were
assessed using three replicates.

2.7 Determination of proline (pro) content
in tea leaves

The proline content was measured using a slightly altered
method. Leaf samples (1g) were ground in 10mL of 3%
sulfosalicylic acid and the mixture was centrifuged at 10,000 g for
10 min. Next, 2mL of supernatant was mixed with 2mL of glacial
acetic acid and 2 mL of ninhydrin reagent, then heated in a water
bath for 40 min. After cooling to room temperature, 5 mL of toluene
was added and the mixture was shaken (Freitas et al., 2019). After
the solution formed a layer, the upper solution was removed and
the absorbance at 520 nm was measured.

2.8 Determination of soluble sugar content
and chlorophyll content in tea leaves

The anthrone method was used to determine the soluble sugar
content. A small amount of distilled water and 1.0 g of leaves were
added to grind and homogenize. After heating the mixture in a
water bath for 30 min, it was cooled and filtered into a 100 mL
volumetric flask. After adding 5mL of distilled water, the residue
was extracted with boiling water and filtered into a volumetric flask
to a constant volume. The extract (0.5mL) was transferred to a
25 mL test tube and 5.0 mL of concentrated sulfuric acid and 0.5 mL
of anthrone-ethyl acetate reagent were added. After thorough
mixing, the mixture was boiled for 1 min (Luo and Huang, 2011).
After cooling, the absorbance value was measured at 630 nm.

The chlorophyll
spectrophotometer. The leaves (1g) were mixed with 2.5mL

content was measured using a
of 80% acetone solution and a small amount of quartz sand and
ground. Next, 10 mL of acetone solution was added and grinding
was continued until the sample appeared white. The sample was
filtered into a volumetric flask and 80% acetone solution was added
to a constant volume. The absorbance was measured at 652 nm

(Pérez-Patricio et al., 2018).
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2.9 Transmission electron microscopy
(TEM)

The tea leaves were immersed in 2.5% glutaraldehyde for 12 h,
then removed and rinsed with 0.1 M phosphate buffer (pH 7.0) 3-
5 times. Each rinse lasted 15 min. Then, 1% osmotic acid solution
was added and incubated for 1-2 h. To remove the excess osmotic
acid solution, the sample was rinsed with the same concentration
of phosphate buffer solution (pH 7.0) 3 times for 15 min each. The
samples were dehydrated in a series of ethanol washes, with the
concentration increasing at each step (50%, 70%, 80%, 90%, and
95%) for 15 min per step. Then, they were rinsed in 100% ethanol
for 20 min and 100% acetone for another 20 min. The specimens
were immersed in a 3:1 embedding agent and acetone solution for
180 min. The samples were embedded and ultra-thin sections (70—
90nm) were cut using a Leica ecaEMUC?7 ultra-thin sectioning
machine. The sections were mounted onto grids and stained with
saturated aqueous uranyl acetate and leaf citrate for TEM (Hitachi,
H-7500) (Li et al., 2014). The sterile water group, the treatment
group and the control group were treated in the same way.

2.10 Genome sequencing and analysis of
vB_PsS_LDT325

A virus extraction kit was used to extract vB_PsS_LDT325
phage nucleic acid. The phage genome samples were submitted to
the BIOZERON company for sequencing and the host bacterial
sequences were filtered out to obtain a valid phage sequence. The
sequencing results were subjected to quality control using FastQC
on the raw data. Genome assembly was done using Unicycle,
prediction of the genome ORFs using GeneMarkS, and alignment
and annotation of functional proteins using GenBank. BLAST
searches against the NCBI database were conducted for sequence
similarity analyses. Putative virulence factors were screened using
the Virulence Factor Database (http://www.mgc.ac.cn/cgi-bin/
VFs/v5/main.cgi) and antibiotic resistance genes were screened
by the Comprehensive Antibiotic Resistance Database (https://
card.mcmaster.ca/analyze/rgi) (Jia et al., 2016; Liu et al., 2019).
For genome visualization, the Proksee Server (https://proksee.
ca/) and Easyfig 2.2.5_win were selected. Evolutionary trees were
constructed using the ClustalW program in MEGA (Kumar et al,,
2018).

2.11 Double-layer plate method was used
to verify whether phage LDT325 lyses
Salmonella

The double-layer plate method was used to determine whether
the phage lyses Salmonella. The 200 pL Salmonella solution (2 x
107 CFU/mL) was poured into 5mL LB semi-solid agar medium
[LB containing 0.4% (w/v) agar] at 55°C, and then immediately
poured into the plate of LB solid agar medium [LB containing 1.5%
(w/v) agar] to prepare a double-layer plate. Approximately 10 puL
of phage filtrate was added to the solidified semi-solid LB plate and
cultured at 37°C for 12 h to observe whether there were transparent
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Name Forward primer(5°-3°) Reverse primer(5°-3”)
CsSOD GATGACGGAACTGCTTGCTT ATCAGGGTCTGCATGGACAA
CsCAT CCTGAACGTGTTGTCCATGC AACCTCGAGGATCCCTCAG
CsPOD GCCACACTTCGCTTATTCTT AGCCAGGACTACAACATCTC
Csp-actin GATTCCGTTGCCCTGAAGTCCT CCTTGCTCATACGGTCTGCGATA
FIGURE 1

Primers used for gene expression analysis.

areas or plaques at the inoculation site. Purification: A single plaque
was taken with a sterile gunhead, placed in SM buffer for 12 h, and
filtered with 0.22 wm filter membrane. After filtration, the filtrate
and Salmonella were taken to prepare a double-layer plate again,
and a single plaque was taken for purification for 4 times to obtain
a purified phage (Cao et al., 2022).

2.12 Statistical analysis

Data were analyzed using GraphPad Prism 8.0.2, specifically

employing one-way analysis of variance. At least three

independent replicates were performed under identical
conditions, and data were presented as the mean + standard
deviation. Statistical significance was assessed based on P-
value, and P-values of <0.05 were considered to indicate

statistical significance.

3 Results

3.1 Effect of phage on antioxidant enzyme
activity in tea plant leaves

Antioxidant enzyme activity in the phage-treated leaves
exhibited an upward trend. Inoculation of sterile water did not
affect the antioxidant enzyme activity of tea leaves. The antioxidant
enzyme activities of SOD, CAT, and POD in the leaves of the
control- and phage-treated plants did not change significantly at the
initial stage (Figures 2A-C). At 24-72h, the antioxidant enzyme
activity of phage-treated leaves was higher compared with that of
the control group. At 24 and 72 h, SOD activity in the phage-treated
group was significantly higher compared with that in the control
group (13.11% and 11.11% higher, respectively). At 48 and 72h,
CAT activity in the phage-treated group was higher compared with
that in the control group (24.35% and 24.03% higher, respectively).
At 24 and 72h, POD activity in the phage-treated group was
significantly higher compared with that in the control group (8.33%
and 9.38% higher, respectively). The results indicate that phage can
enhance the activity of antioxidant enzymes.

Frontiers in Microbiology

3.2 Effect of phage treatment on the
expression of antioxidant enzymes in tea
plants

As shown in Figures 2D-F, inoculation with sterile water
did not affect the relative expression of CsSOD, CsCAT, and
CsPOD in tea leaves. The relative expression of CsSOD, CsCAT,
and CsPOD in the leaves of the control and phage-treated
plants did not change significantly at the initial stage; however,
the relative expression of CsSOD in phage-treated leaves was
significantly higher compared with that in the control at 24-
72h. At 48-72h, the relative expression of CsCAT in the leaves
of the phage-treated group was higher compared with that of
the control. The relative expression of CsPOD in the control
and phage-treated leaves exhibited a trend of increasing first and
then decreasing; however, the relative expression of CsPOD in
the phage-treated leaves was significantly higher compared with
that in control throughout the experiment, reaching a peak at
24h. These results indicate that phage treatment significantly
increases the expression of antioxidant enzyme-related genes in
tea leaves.

3.3 Effects of phage on the pro content,
soluble sugar, and chlorophyll content in
tea plants

Inoculation of sterile water did not affect the proline content,
soluble sugar content, and chlorophyll content in tea leaves. At
48h, compared with the control group, the proline content in
the phage-treated tea increased by 20.83% (Figure 3A). At 72h,
soluble sugar levels in tea leaves treated with phage increased
by 45.11%, compared with that in the control group (Figure 3B).
Furthermore, during the whole experiment, the soluble sugar
and proline content in phage-treated tea leaves remained higher
than that in the control group. Chlorophyll in the tea plants
was reduced with an increase period of bacterial disease stress
and phage treatment slowed the decline of chlorophyll in the
leaves. The chlorophyll content in the tea leaves treated with
phage consistently exceeded that of the control group (Figure 3C).
At 72h, the chlorophyll content of the phage group was
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Effects of phage on antioxidant enzyme activity and gene expression in tea at designated time. (A) Superoxide dismutase (SOD), (B) catalase (CAT),
(C) peroxidase (POD), (D) CsSOD, (E) CsCAT, (F) CsPOD. Vertical bars indicate the standard error of the mean values. Asterisks imply statistically
significant differences (p < 0.05) between the control and phage treated group in the same day.
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FIGURE 3

Phage affecting on physiological parameters of tea leaves. (A) Proline content, (B) soluble sugar content, (C) chlorophyll content. Vertical bars
indicate the standard error of the mean values. Asterisks imply statistically significant differences (p < 0.05) between the control and phage treated

significantly higher compared with that of the pathogen-treated
group (16.67% higher).

3.4 Transmission electron microscope of
tea leaves

Cell morphology was observed by TEM. Image analysis of the
sterile water group showed that the cell wall and cell membrane
were clear, and there were complete cell structures, such as
mitochondria and thylakoids (Figures 4A, B). These characteristics
were the same as the internal morphological structure of healthy
leaves. In contrast, the images of the control group infected with Ps
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exhibited cell lysis and a lack of cell structure, indicating necrosis
(Figures 4C, D). The images of the phage-treated group showed
clear cell structures, including a cell wall, mitochondria, thylakoid,
and cell membrane (Figures4E, F). This indicates that phage
LDT325 effectively inhibits P. syringae.

3.5 Whole genomic and phylogenetic
analysis of vB_PsS_LDT325

The sequencing results indicate that vB_PsS_LDT325 is a long-
tailed bacteriophage, which is in consistent with the findings
from previous electron microscopy studies. Phage LDT325 has a
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FIGURE 4
Transmission electron microscopy images of ultrathin sections of tea leaves. (A, B) Transmission electron microscopy images of ultrathin sections of
tea leaves in sterile water group. (A) Observed at 1,000x. (B) Observed at 5,000x. (C, D)Transmission electron microscopy images of ultrathin
sections of tea leaves in the control group. (C) Observed at 1,000x. (D) Observed at 5,000x. (E, F) Transmission electron microscopy images of
ultrathin sections of tea leaves in phage treatment group. (E) Observed at 1,000x. (F) Observed at 5,000x. cw, cell wall; cm, cell membrane; m,
mitochondria; t, thylakoid.

length of 43,781 bp with a G4+C% content of 48.82% (Figure 5A).
The entire genomic sequence was subjected to an NCBI BLASTn
analysis and the results indicated that it had high similarity with
the Salmonella phage GRNsp6 (ON526838.1, query coverage 92%,
nucleotide homology 94.98%). The complete genomic sequence
and annotation information of the phage were submitted to
GenBank under accession number PP389045. In addition, a
phylogenetic tree was created using the amino acid sequence of
the major capsid protein of the vB_PsS_LDT325 bacteriophage.
The evolutionary status of the phage LDT325 was also evaluated
by phylogenetic analysis to select the 11 existing phages from
the database, including 9 Salmonella strains, 1 Escherichia, and
1 Jersey virus phage. Phylogenetic tree analysis revealed that
the LDT325 phage was clustered on a distinct branch and its
closest relative was phage GRNsp6 (Figure 5B). Phage LDT325
contains 61 CDS, including 4 DNA replication/repair functional
proteins (DNA ligase, DNA polymerase, DNA primer enzyme,
DNA helicase, DNA polymerase, RNA polymerase, integrated
host factor), and 4 nucleotide metabolism proteins (ribonuclease,
recombinant endonuclease, recombinant exonuclease), 15 phage
structural proteins (main tail fiber protein, bottom plate protein,
tail tube protein, tail sheath protein, main capsid protein, major
termination enzyme subunit, gate protein), 1 host lysis/interaction
protein (bacteriolysin, hole protein), and 11 other function
proteins. The remainder are annotated as hypothetical proteins
(Supplementary Table S1). The entire genome was uploaded to
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the Virulence Factor Database and the Comprehensive Antibiotic
Resistance Database; no bacterial toxin genes or antibiotic
resistance genes were detected. Additionally, lysogenic-related
genes, such as integrase, recombinase, cleavage enzyme, and
inhibitory enzyme, were not found.

3.6 Comparative genomics of phage
vB_PsS_LDT325

Phage vB_PsS_LDT325 was subjected to a multiple genomic
comparison with the phage of the genus “Salmonella phage
GRNsp6.” The results indicated that phage vB_PsS_LDT325
exhibited an (>78%).
The homologous protein modules primarily included DNA

extremely high protein homology

replication/repair, nucleotide metabolism, and phage structure,
particularly in terms of phage structure and DNA replication/repair
(Figure 6).

3.7 Phage vB_PsS_LDT325 lyses Salmonella
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FIGURE 5

Genomic analysis. (A) Genome map of phage vB_PsS_LDT325, the genome of phage vB_PsS_LDT325 depicted in the circular. These arrows
represent 61 CDS. In addition, the map shows GC skew and content about the genome. (B) An expanded view of the region of the tree containing
the most closely related phages. The location of phage LDT325 is indicated in the red triangle.

morphology could be observed on the double-layer plate 4 Discussion

(Figure 7). Therefore, we isolated a phage that can lyse

both plant pathogen Pseudomonas syringae and animal P. syringae can infect many economically important plants,
pathogen Salmonella. causing the spread of plant diseases and serious economic
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Genome structure. Arrows indicate the direction of transcription for predicted ORFs. ORFs with different functions are shown in different colors.
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FIGURE 7

Several animal pathogenic Salmonella strains lysed by phage LDT325. The number below the picture is the number of Salmonella. Image S73-1
showed that after 12 h of culture, the phage suspension showed a clear cleavage area on the double-layer plate covered with Salmonella suspension
numbered S73, showing the lysing bacteria. Picture S73-2 was further purified from the clear cleavage region of phage in picture S73-1. The

same below.

S36-1 S36-2

S79-2

losses. Because of the increased resistance of plant pathogens
to widely used copper-based fungicides and antibiotics, phages
have become an alternative method of biological control owing
to their strong specificity and self-replication (Nachimuthu et al.,
2021). Bacteriophages are capable of specifically infecting bacteria
and can more effectively remove pathogens without affecting
normal bacterial populations. Phage infection can activate the
host immune response, thereby enhancing the host tolerance to
bacterial infection. The interaction between phages, pathogens
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and beneficial bacteria is a complex and important ecosystem.
Bacteriophages specifically infect specific bacterial hosts, and the
enzymes released by phages during the lysis phase can directly
dissolve the bacterial cell wall, leading to the death of pathogens.
Bacteriophages also help maintain the balance of beneficial bacteria.
Beneficial bacteria inhibit the growth of pathogens by competing
for nutrients, producing antimicrobial substances and changing
the microenvironment (Fernandez et al., 2019). There are few
reports to date on biological control methods related to the
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prevention and treatment of tea bud blight (Gu et al, 2021;
Kim et al, 2019; Wang et al., 2020). Moreover, there are only
a limited number of studies showing the effectiveness of phage
inhibition on P. syringae infection by analyzing the expression
of antioxidant enzymes and related genes or through TEM of
tea leaves.

The accumulation of reactive oxygen species causes oxidative
damage to plants; therefore, they have evolved a set of
antioxidant systems, including antioxidant enzymes (SOD, POD,
CAT) (Hasanuzzaman et al, 2020). Antioxidant enzymes can
maintain the balance between the production and scavenging of
reactive oxygen species and free radicals to maintain homeostasis.
During pathogen infection, plant cells often experience oxidative
stress, resulting in damage to cell membranes, proteins, and
DNA. Increasing the activity of antioxidant enzymes can reduce
these damages and help plants maintain normal physiological
functions and growth. Plants may establish a long-term effective
defense mechanism by increasing the activity of phage-induced
antioxidant enzymes. The phage itself can directly infect and
lyse Pseudomonas syringae, reducing the number of pathogens,
thereby reducing the risk of plant infection. At the same
time, phage infection may stimulate the immune response of
plant cells and improve disease resistance (Alkadi, 2020). The
increase of antioxidant enzyme activity induced by phage and
the enhancement of plant immune response promote each other,
and jointly improve the resistance to Pseudomonas syringae.
Peroxidase (POD) is a key enzyme in the enzymatic defense
system of plants under stress conditions. For example, balancing
zinc nutrition can improve the antioxidant activity of lily flowers
to extend storage time (Shaheen et al, 2015). We analyzed
the effects of phages on the expression of antioxidant (CsSOD,
CsCAT, and CsPOD). The results indicated that phage significantly
increased the transcription levels of these genes. Another study
demonstrated that treatment with spermidine increased the
expression of antioxidant genes and the activity of antioxidant
enzymes, while decreasing reactive oxygen species production in
alfalfa exposed to salt stress (Lou et al., 2018). Consistent with
these findings, we demonstrated that phage treatment enhances
the activities of key antioxidant enzymes under abiotic stress
by increasing the expression levels of their associated genes,
thus improving disease resistance in tea plants. The sterile
water group had no effect on antioxidase activity and related
gene expression, proline content, soluble sugar content and
chlorophyll content.

Proline and soluble sugar are important osmotic adjustment
substances in plants. They are one of the indicators that reflect
the level of plant stress resistance. Furthermore, the application
of phage upregulated chlorophyll and soluble sugar levels in tea
leaves, which was consistent with studies showing that COS in
wheat enhanced the accumulation of these components (Naz
et al,, 2021). Chlorophyll is the main substance required for
photosynthesis of plants (Baltazar et al., 2021). Soluble sugar is
used for plant metabolism and is an important energy source
for plant growth and development (Afzal et al, 2021). During
stress, proline levels in plants increases significantly (Qamar et al.,
2015). Proline also activates the expression of plant defense genes,
enhances the function of the immune system, and improves the
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resistance of plants to pathogens. During abiotic stress, proline
levels increase as a result of significant protein degradation.
In the present study, the notable rise in proline levels in tea
leaves is indicative of disease resistance. The use of phages in
tea cultivation enhances the growth of tea plants and boosts
production yields. Therefore, phages positively influence the
physiological responses of tea plants by promoting their growth
and development.

The cell membrane has various physiological functions,
including the role of a barrier to maintain a stable intracellular
environment (Stewart et al., 2018). It controls the exchange of
internal and external substances of cells and regulates the life
activities of cells. We showed that the integrity of cells in the
control group was compromised, which was confirmed by TEM.
Specifically, the cell membrane in the control group was completely
ruptured, which resulted in the collapse of intracellular structures.
This indicates that pathogens destroy the cell membrane structure,
interfere with cell membrane permeability, and induce apoptosis.
The images of the phage treatment group showed clear cell
structures, including a cell wall, mitochondria, thylakoid, and a
cell membrane. Thus, phage may severely impede the growth
of Ps, which has a marked impact on its propagation. This
indicates that phage LDT325 effectively inhibits P. syringae. Whole
genome analysis of vB_PsS_LDT325 phage provides a theoretical
basis for its effect on P. syringae. The phage genome obtained
in this study was 43,781 bp in length with a GC content of
48.82% and 61 ORFs. The GC content of phage LDT325 was
higher compared with that of P. syringae phages, such as KILI
and KIL2, with an average GC content of 44.8% (Rombouts
et al., 2016). The host specificity of bacteriophages comes from
the specific recognition of the host surface receptors. The tail
filament proteins of most bacteriophages are responsible for the
specific recognition of host receptors. Phage LDT325 has four
ORFs encoding the family proteins, ORF16, ORF19, ORF37, and
ORF49. A group or several groups of proteins with similar amino
acid sequences are known as protein families and evidence of the
evolution of multiple species can be obtained by analyzing protein
family members. Phage LDT325 contains a gene that encodes
the portal protein ORF24. The function of the portal protein
is similar to that of a DNA sensor, which can couple genome
packaging with icosahedral capsid maturation (Lokareddy et al.,
2017). The tail proteins, ORF36, ORF51, and ORF47, comprise
the tail phage, which indicates that the phage LDT325 belongs
to the tail phage (Chibani et al., 2019). Phage LDT325 expresses
two genes encoding endolysin, ORF12 and ORF14. Compared
with traditional broad-spectrum antibiotics, the main advantage of
endolysin is its high specificity; moreover, it does not kill beneficial
bacteria (Gontijo et al., 2021; Rahman et al., 2021). Therefore, as
a medicinal bacteriostatic agent, phages have obvious advantages
compared with traditional antibiotics. Interestingly, we found that
the phage LDT325 lysed the animal pathogen Salmonella as well
as the plant pathogen P. syringae. This phenomenon has not
been reported to date. In addition, bacterial toxin genes, antibiotic
resistance genes, integrase, recombinase, cleavage enzymes, and
inhibitory enzymes related to lysogenic genes were not found in
the genome of vB_PsS_LDT325, and indicates its safety as an
antibacterial agent for potential clinical application. Whole genome
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phylogenetic tree construction, linear analysis of amino acid
sequences, and the development of a tree based on the major capsid
protein indicate that vB_PsS_LDT325 has a close relationship
with other bacteriophages and demonstrates the genetic diversity
among bacteriophages.

In conclusion, we demonstrated that phages have multiple
roles in preventing P. syringae from infecting tea plants, such
as inducing antioxidant enzyme activity, enhancing plant
resistance to pathogenic bacteria, destroying the cellular
structure of P. syringae, and inhibiting the expansion of P.
syringae. Our findings demonstrate that the phage LDT325 has
numerous beneficial effects on tea plants, thus indicating the
potential for application in the prevention and control of tea

leaf blight.
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Introduction: Hypervirulent and multidrug-resistant Klebsiella pneumoniae
(hvKP and MDR-KP) are significant public health threats. This study aimed to
isolate a lytic bacteriophage targeting these high-risk strains, systematically
characterize its biological properties, genomic features, and therapeutic efficacy,
and establish a foundation for clinical phage therapy and novel antimicrobial
development.

Methods: The phage vB_Kp_XP4 was isolated from river water using the
double-layer agar plate method with the clinically isolated strain P4 as the
host. Morphology was analyzed via transmission electron microscopy (TEM).
Host range, pH, and thermal stability were assessed using spot assays and ODggz
measurements. One-step growth curves determined the latent period and burst
size. Whole-genome sequencing and phylogenetic analysis were performed.
Therapeutic efficacy and safety were evaluated in a Galleria mellonella infection
model.

Results: TEM revealed Phage vB_Kp_XP4 as a tailed phage with an icosahedral head
and a long, flexible tail. It lysed an hvKP strain (carrying rmp, peg, iuc, iro genes)
and an MDR-KP strain (resistant to carbapenems, fluoroquinolones, etc.), with an
optimal MOI of 0.1 and latent period <10 minutes. Stability was maintained at pH
4-11 and <70°C. Whole-genome sequencing revealed a linear double-stranded
DNA genome of 44,344 bp with a G+C content of 53.80%. The genome comprised
54 coding sequences and lacked lysogenic, virulence, or antibiotic resistance genes.
Phylogenetic analysis positioned phage vB_Kp_XP4 as a novel species within the
genus Drulisvirus, family Autographiviridae. In the Galleria mellonella model, vB_
Kp_XP4 prolonged survival of P4-infected larvae (P < 0.001)

Conclusion: Phage vB_Kp_XP4 exhibits high stability, specificity, potent lytic
activity, and no undesirable genes, demonstrating effective in vivo therapeutic
efficacy, suggest its potential for clinical applications against Klebsiella
pneumoniae infections. The presence of multiple halos during plaque formation
further enhances its research value. The complete genome sequence has been
submitted to GenBank under accession number PP663283.
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1 Introduction

Klebsiella pneumoniae is a ubiquitous opportunistic Gram-negative
enterobacterium (Beamud et al, 2023). Recent national and
international surveys have identified it as one of the predominant
clinical isolates, particularly among immunocompromised individuals.
It is associated with community-acquired and hospital-acquired
infections, including pneumonia, meningitis, urinary tract infections,
bacteremia, and liver abscesses (Lee et al., 2017; Lan et al., 2021; Pu
et al,, 2023). The incidence and mortality rates have shown a steady
increase in recent years. According to the 2023 CHINET (China
Antimicrobial Surveillance Network) report, K. prneumoniae ranks as
the second most common clinical isolate after Escherichia coli, with a
rising prevalence and multiple drug resistance trend. Globally, without
effective measures to curb the spread of resistance, the annual death
toll is projected to reach 10 million by 2050 (Antimicrobial Resistance
Collaborators, 2022; Programme TUE, 2023; Antimicrobial Resistance
Collaborators, 2024). On May 17, 2024, the World Health Organization
(WHO) updated its list of critical bacterial pathogens, categorizing
carbapenem-resistant Enterobacteriaceae within the Critical group
(World Health Organization, 2024a). A global alert was issued on July
31 concerning a highly virulent, multidrug-resistant K. pneumoniae
strain, highlighting its rapid transmission and broad infection range,
which poses a global health crisis (World Health Organization, 2024b).
In the search for new effective strategies to combat this growing threat,
phage therapy has regained global attention (Wang et al., 2021).
Advances in genomic sequencing have enhanced the understanding
and utilization of bacteriophages. Bacteriophages can specifically
infect, lyse bacteria, and co-evolve with them, demonstrating
significant potential in treating bacterial infections (Castledine et al.,
2022). Increasingly explored as an alternative to antibiotics, phage
therapy has shown success in numerous reported case (Brives and
Pourraz, 2020). The demand for phages is rising, leading to the
establishment of several phage banks worldwide, such as the G. Eliava
Institute of Bacteriophages, Microbiology, and Virology in Tbilisi,
Georgia (Kutateladze, 2015); the Ludwik Hirszfeld Institute of
Poland
(Migdzybrodzki et al., 2012); The Center for Innovative Phage
Applications and Therapeutics (IPATH) (UCSD, 2019); The Félix
d’Hérelle Reference Center for Bacterial Viruses (Université Laval,
2024); The Leibniz Institute DSMZ-German Collection of
Microorganisms and Cell Cultures (DSMZ, 2024); Queen Astrid
Military Hospital in Brussels (Pirnay et al., 2024); The IPTC in Israel
(Yerushalmy et al., 2023); Phage Australia (Sacher et al., 2022) and
Phage Canada (Hufsky et al., 2023), etc. The aim is to achieve effective

Immnology and Experimental Therapy, Wroctaw,

treatment outcomes for bacterial infections through phage therapy and
phage-antibiotic combination therapies. However, given the biological
activity of phages, a comprehensive understanding of their biological
properties and genomic characteristics is essential to optimize their
role as clinical therapeutic agents against infectious diseases.

This study successfully isolated a novel bacteriophage, vB_Kp_
XP4, from a natural water source. This phage demonstrates lytic
activity against highly virulent and multidrug-resistant strains. Basic
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experiments were conducted to analyze its biological characteristics.
Whole-genome sequencing and analysis techniques were employed to
perform comparative genomic analysis, gene annotation, and
functional prediction of the phage’s complete genome sequence. These
findings provide a material foundation and theoretical basis for the
application of bacteriophages in treating K. pneumoniae infections.

2 Materials and methods

2.1 Origin and identification of Klebsiella
pneumoniae strains

The Klebsiella pneumoniae strains used in this experiment were
identified using a fully automated microbial identification and
susceptibility testing system (BD, phoenix100). The host bacterium
P4, verified in preliminary experiments, possesses several virulence
genes, including rmp, peg, iuc, and iro. The antibiotic resistance of the
remaining K. pneumoniae strains was assessed using the disk diffusion
method and PCR, with PCR amplification specifically targeting the
KPC gene. The string test was employed to measure the viscosity of
K. pneumoniae strains (Shon et al., 2013). Bacteria were inoculated on
LB agar plates and incubated at 37°C for 16 h. A single colony was
then picked to observe the string formation. A positive result,
indicating a hypermucoviscous phenotype, was defined by the
formation of a viscous string greater than 5 mm in length. A negative
result indicated a non-hypermucoviscous phenotype.

2.2 Phage isolation, purification, and
amplification

Following the method described by Mohammadi et al. (2023),
flowing river water samples were collected from the Han River in
Xiangyang, Hubei Province, a tributary of the Yangtze River. The
samples were centrifuged at 10,000 rpm for 15min, and the
supernatant was collected. The supernatant was then filtered through
a 0.22 pm syringe filter and stored in 50 mL centrifuge tubes at
4°C. The culture was grown to the logarithmic phase using
K. pneumoniae P4 as the host bacterium. Then, mix 1 mL of filtered
solution with the host bacteria and incubate overnight in a shaker at
37°C and 160 rpm. After incubation, the mixture was centrifuged at
10,000 rpm for 15 min, followed by filtration to collect the supernatant.
A further step involved mixing 100 pL of this supernatant with 100 pL
of the host bacterial culture in the logarithmic phase, incubating at
37°C in a shaker at 220 rpm for 15 min. Subsequently, 5 mL of 50°C
0.7-0.8% LB semi-solid medium was added, mixed thoroughly, and
quickly poured onto the surface of an LB solid medium. After
solidification, the plates were inverted and incubated overnight at
37°C. The double-layer agar plate method (Hyman and Abedon, 2009)
was employed to observe the presence of bacteriophage plaques. Upon
verification, individual plaques were picked and subjected to multiple
rounds of purification to obtain a pure phage. For amplification, 5 mL
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of purified phage solution was mixed with 5 mL of the host bacterial
culture in the logarithmic phase, and a liquid LB medium was added
to reach a total volume of 50 mL. This mixture was incubated at 37°C
with shaking for 6-8 h. The suspension was then centrifuged at
10,000 rpm for 15 min, followed by filtration through a 0.22 pm pore-
size membrane to obtain the supernatant, resulting in an amplified
phage solution. The amplified phage solution was aliquoted and stored
at —80°C in glycerol for future use.

2.3 Examination of phage by transmission
electron microscopy

To examine the phage morphology, 20 pL of the amplified phage
suspension was pipetted onto a 200-mesh copper grid and allowed to
adsorb naturally for 5-10 min. Excess liquid was removed using a
filter paper strip, and the grid was air-dried briefly,. A 2%
phosphotungstic acid solution (20 pL) was then applied to the grid for
negative staining and left for 3-5 min. Afterward, the excess stain was
removed with a filter paper strip, and the grid was air-dried under an
incandescent lamp. The morphology of the phages was then observed
using transmission electron microscopy (HITACHI, HT7700, Japan).

2.4 Phage host range and efficiency of
plating

Host range analysis was performed using a panel of
21 K. pneumoniae strains by spot tests as previously described with
slight modifications. Briefly, the purified phage stocks were gradient
diluted with LB liquid medium and 2 pL of gradient diluted phage
concentrate (10>-10° PFU/mL) was added to the tested bacterial lawn
and incubated at 37°C for 12 h. The presence of clear plaque on the
bacterial lawn indicated that the tested strains were susceptible to the
phage (Han et al.,, 2023). All K. pneumoniae isolates that were sensitive
to phage vB_Kp_XP4 in the spot test assay (n = 2) were selected for
the determination of the Efficiency of Plating (EOP), following the
method described by Khan Mirzaei and Nilsson (2015). The EOP was
calculated as the ratio of plaque-forming units (PFU/mL) on a
sensitive strain to PFU/mL on the indicator strain. Each combination
of bacterial strain and phage dilution was tested in triplicate, and the
results are presented as the mean of three observations.

2.5 Optimal multiplicity of infection
determination

The bactericidal activity of phage vB_Kp_XP4 was assessed by
determining its time-killing curves. Phage solutions (500 pL) were
mixed with 500 puL of host bacterial culture in the logarithmic phase
at varying multiplicities of infection (MOIs) of 10, 1, 0.1, 0.01, 0.001,
and 0.0001. The mixtures were incubated at 37°C with shaking at
220 rpm for 1 h. After incubation, the cultures were centrifuged at
10,000 rpm for 8 min, and the supernatant was filtered. The
supernatant was then serially diluted, and the phage titer was
determined using the double-layer agar plate method. The MOI with
the highest phage titer was considered the optimal MOI for this phage.
The experiment was repeated three times to ensure accuracy.
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2.6 Monitoring changes in phage load and
the effect of bacteriophages on bacterial
morphology

Following the method described by Mohammadi et al. with slight
modifications (Feng et al., 2023), the phage suspension was mixed
with the host bacterial culture at the optimal multiplicity of infection
(MOI) and incubated at 37°C for 15 min. Following incubation, the
mixture was subjected to immediate centrifugation at 10,000 rpm, and
the supernatant was discarded. The pellet was washed multiple times
with LB liquid medium and then resuspended in LB medium. The
suspension was incubated in a shaker at 37°C and 180 rpm. Samples
(300-400 pL) were collected at 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, and 120 min. Each sample was immediately centrifuged at
10,000 rpm, and the supernatant was filtered through a 0.22 pm pore-
size membrane. The filtrate was serially diluted in an LB liquid
medium, and 100 pL of each dilution was mixed with 100 pL of host
bacterial culture. The mixtures were incubated for 15 min and then
plated using the double-layer agar plate method. The plates were
inverted and incubated overnight at 37°C to observe plaque formation
and calculate the phage titer. Three parallel experiments were
conducted for each time point. Burst size was calculated using the
following formula: (titer after burst—titer at T0)/ (added phage—titer
at T0). The curve of phage titer changes was constructed based on the
phage titer at each time point. Perform Gram staining on the P4 strain
both before and after bacteriophage treatment within a 12-h period.
Bacterial morphology was observed using an optical microscope at
1,000x magnification.

2.7 Phage temperature and pH stability

Phage stability under different temperatures was assessed by
placing the phage suspension in metal baths at 4°C, 10°C, 20°C, 30°C,
37°C, 40°C, 50°C, 60°C, 70°C, and 80°C for 60 min. For pH stability,
the pH of the solutions was adjusted from 2 to 11 using HCI and
NaOH. Four mL of phage solution (approximately 10* PFU/mL) was
incubated at each pH level for 60 min. Phage solutions were then
added to host bacteria cultures at an MOI of 0.1, while control groups
received LB medium. These were placed in a shaker at 220 rpm and
37°C. Bacterial OD630 was measured at 30-min intervals to monitor
changes in bacterial growth. Measurements were taken continuously
for 3 to 12 h, with each group tested in triplicate.

2.8 Phage genome sequencing and
characterization

2.8.1 Whole genome sequencing and annotation
of phage

The DNBSEQ-T?7 platform was used for sequencing. To ensure
the reliability of subsequent analyses, the raw sequencing data were
filtered and quality-controlled using fastp (Chen et al., 2018). This
step included adapter trimming and the removal of low-quality reads
and reads with a high proportion of ‘N, resulting in clean reads. The
metaSPAdes (Nurk et al., 2017) software was employed for the de
novo assembly of the clean reads, testing different kmer lengths to
achieve optimal assembly results. The clean reads were then aligned
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to the assembled genome using BWA software (Li and Durbin, 2009).
Open reading frames (ORFs) were identified using the NCBI
ORFfinder server, with methionine and alternative start codons as
initiation codons. The protein sequences were compared to the NR
database using Blastp to identify sequences with high similarity.
Functional annotation of the genes was performed using eggNOG-
mapper (Cantalapiedra et al., 2021), which provided annotations
from databases such as COG, GO, KEGG, CAZy, BiGG, and
PFAM. Additionally, the predicted ORFs and coding sequences were
cross-validated with the ORFs and coding sequences predicted by
PHASTER (Seemann, 2014). An additional round of ORF prediction
and functional annotation was conducted using RASTtk (Aziz et al.,
2008; Overbeek et al., 2014; Brettin et al., 2015) and BV-BRC (Olson
etal., 2023) to enhance confidence in the predicted coding genes. The
presence of antibiotic-resistance genes within the phage genome was
assessed using the resfinder database (Bortolaia et al., 2020).
Homology searches against the VEDB (Liu et al., 2022) database were
conducted to evaluate the presence of virulence genes. The presence
of tRNA in the phage genome was determined using the tRNAscan-SE
SearchServer online database.! The DeepTMHMM online tool* was
utilized to screen for proteins with transmembrane domains
(Hallgren et al., 2022).

Linear genome comparison and visualization of coding regions
were performed utilizing Easyfig (Sullivan et al., 2011) and Mauve
software (Darling et al., 2004). The lifestyle of the phage was predicted
using the PHACTS program (McNair et al., 2012). Sequence similarity
for further bioinformatic studies was determined using BLASTp
searches in the NCBI database.’

2.8.2 Phylogenetic analysis of phage

The phylogenetic analysis of the phage’s core proteins, such as
terminase large subunit and tail fiber protein, was conducted using
the BLASTp tool in the NCBI database to check for sequence
similarity of the amino acid sequences. Phages with homologous
amino acid sequences to these phage proteins were selected. A
phylogenetic tree was then generated using MAGE11 software
(Tamura et al., 2021). The phylogeny was constructed using the
Maximum Likelihood method (Rokas and Charlesworth, 2001) and
the JTT matrix-based model (Jones et al., 1992), with 1,000 bootstrap
replicates to ensure the robustness of the analysis. Meanwhile,
we predicted its protein structure using AlphaFold3 (Chen
etal., 2024).

2.9 Therapeutic effect of phage vB_Kp_
XP4 in the Galleria mellonella larvae

Galleria mellonella larvae model was used to assess the potential
in vivo efficacy of phage against K. pneumoniae. The methods for larval
injection and incubation were carried out with reference (Han et al.,
2023; Li et al., 2023). The experimental procedures are as follows: the
larvae selected were 25 + 5 mm in length, 300 + 50 mg in weight, with
high activity and no visible black spots on the surface. All injections

1 http://lowelab.ucsc.edu/tRNAscan-SE/
2 https://services.healthtech.dtu.dk/services/DeepTMHMM-1.0/
3 http://www.ncbi.nlm.nih.gov/BLAST
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were performed using a Hamilton syringe into the left or right hind leg.
Larvae were considered dead when they did not respond to touch. In
vivo experiment, the larvae were divided into 12 groups, with 10 larvae
randomly selected per group: (i)10 pL PBS injection, (ii) 10 pL of
107 CFU/mL strain P4, (iii) 10 pL of 10° CFU/mL strain P4 injection,
(iv) 10 pL of 10* CFU/mL bacteriophage, (v) injection of 10 pL of PBS
in the right leg (symmetrical position) at 0 h, (vi) injection of 10 pL of
PBS in the right leg after 1 h; (vii-ix) MOI = 0.1 (P4 = 10° CFU/mL), 1
(P4=10"CFU/mL), 10 (P4=10" CFU/mL), with 10 pL of the
corresponding concentration of strain P4 injected into the left hind leg,
while 10 pL of bacteriophage with titers of 10%, 107, or 10° PFU/mL was
injected into the right hind leg, respectively; for MOI = 0.1, 10 pL of
10® CFU/mL strain P4 was injected into the left hind leg in three groups
of larvae, followed by 10 pL of 10" PFU/mL bacteriophage in the right
hind leg at 1 h, 2h, and 4 h intervals. After completing the above
procedures, all larvae were incubated at 37°C and monitored for
mortality every 2 h for a total of 60 h. Survival curves were generated
using GraphPad Prism v.10.1 and the survival rates were analyzed using
Kaplan-Meier and log-rank test. Differences with p <0.05 were
considered statistically significant.

2.10 Statistical methods

Statistical analysis and plotting were performed using GraphPad
Prism version 10.1 software. Student’s t-test was used for both intra-
group and inter-group comparisons, with the significance level set at
p<0.05.

3 Results

3.1 Origin and identification of Klebsiella
pneumoniae strains

Phage-sensitive strains were tested for antibiotic susceptibility using
the disk diffusion method, including imipenem, meropenem,
ertapenem, levofloxacin, ceftazidime, ciprofloxacin, and amikacin.
Strains resistant to more than three classes of antibiotics were defined
as multi-drug resistant (Table 1). The results of capsule typing for the

TABLE 1 Drug sensitivity and virulence genes of phage target strains.

Antibiotic Strains* Virulence Strains
p4 10 ¢ P4 10

IPM 24/S 10/R  iucAl +

MEM 25/S 7R | iucA2 + ND

EPM 24/S 6/R  iroB1I +

LEV 12/R 13/R  iroB2 + ND

CAZ 16/S 6/R prmpA +

CIP 9/R 8/R prmpA2 +

AMK 18/S 18/S | peg-344 +

IPM: imipenem, MEM: meropenem, EPM: ertapenem, LEV: levofloxacin, CAZ: ceftazidime,
CIP: ciprofloxacin, AMK: amikacin, : Antibacterial circle diameter (mm); ND: No detection,
“+”: positive, “-”: negative; R: Drug resistance, S: sensitive.
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TABLE 2 Detail information of bacteria of host range test.

10.3389/fmicb.2025.1491961

Strains Deduced Resistant gene Wire drawing Sensitivity 2EOP (%)
K-Type KPC NDM experiment

1 Ke4 + — — — 0
2 K64 + - - - 0
3 K64 + - - - 0
4 K64 + - - - 0
5 K64 + - + - 0
6 K19 + - - - 0
7 K64 + - - - 0
8 K64 + - - - 0
9 K64 + - - - 0
10 K19 + - - + 51+8
11 Ké4 + - + - 0
12 K149 + - - . 0
13 K19 + - - - 0
14 K64 + - - _ 0
15 K19 - - - - 0
16 K57 - - + - 0
17 K125 - - — - 0
18 K64 + - - - 0
19 K102 - + - - 0
20 K64 + - - - 0

In this Table “+” represents positive; “-” represents negative. “EOP (efficiency of plating) is calculated in percent as the PFU/mL of the phages on the test strain divided by the PFU/mL obtained

on strain P4 multiplied by 100.

Klebsiella pneumoniae strains, along with the amplification of KPC and
NDM genes and the outcomes of the string test, are presented in Table 2.

Using the hypervirulent K. pneumoniae strain P4 as the host, a
bacteriophage was isolated and purified from Han River water and
named Klebsiella phage vB_Kp_XP4. Serial dilutions of the phage
stock solution (~10° PFU/mL) were prepared, and within 12 h of
incubation at 36°C on double-layer agar plates, plaques with a
diameter of approximately 2 mm formed. These plaques exhibited a
halo with multiple semi-transparent layers around them. The plaque
morphology at different dilutions (1073, 107%, 1077, 107®) is shown in
Figures 1A,a-d. Over time, the halo gradually expanded, with the
plaque and halo diameters reaching up to 15 mm at 24 h under
ambient conditions (Figures 1A,e) and 28 mm at 36 h (Figures 1A,f).

3.2 Examination of phage by transmission
electron microscopy

Transmission electron microscopy (TEM) revealed the
morphological characteristics of phage vB_Kp_XP4. The phage
displayed a typical icosahedral head structure with a diameter of
approximately 55 + 2 nm and a non-contractile tail measuring about
168 £ 10 nm in length (Figure 1B). Based on these morphological
features, phage vB_Kp_XP4 was classified as a tailed phage with a
flexible, non-contractile tail.
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3.3 Phage host range and efficiency of
plating

The lytic spectrum and efficiency of phage vB_Kp_XP4 were
evaluated across 21 K. pneumoniae strains. The phage exhibited a lytic
rate of 9.5% (2 out of 21 strains). Virulence genes iucAl, iucA2, iroBI,
iroB2, prmpA, prmpA2, and peg-344 were amplified in phage-sensitive
strains using PCR. Strains positive for all these genes were defined as
‘high-virulence strains’ (Table 1). These results suggest that phage
vB_Kp_XP4 has therapeutic potential against infections caused by
hypervirulent or multidrug-resistant K. pneumoniae. The EOP analysis
showed that when the bacteriophage-to-bacteria ratio is approximately
0.1, phage vB_Kp_XP4 demonstrates extremely high efficiency in
lysing the P4 strain, with fewer than 10 colonies growing (EOP ~ 1).
In contrast, the lysis rate for strain 10 is only 0.51 + 0.08. Detailed
information is presented in Table 2.

3.4 Optimal multiplicity of infection
determination

Klebsiella phage vB_Kp_XP4 was tested for its bactericidal activity
against its host, K. pneumoniae P4, at various MOIs. At an MOI of 0.1,
the phage titer reached approximately 10° PFU/mL, significantly
higher than in other groups (Figure 2A).
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FIGURE 1

(A, a—d) Plaque morphology of phage vB_Kp_XP4 stock solution (=~ 10°) at various dilution gradients (103, 10-5, 107, and 10-%), with plaques
approximately 2 mm in diameter and surrounded by a halo comprising a multi-layered translucent zone; e: Plague and halo morphology observed at
24 h post-inoculation; f: Plaque and halo morphology observed at 36 h post-inoculation. (B) TEM image of phage vB_Kp_XP4 (scale bar = 100 nm).

3.5 Monitoring changes in phage load and
the effect of bacteriophages on bacterial
morphology

The parameters of phage reproduction, including but not limited
to the latent period and changes in phage quantity during the growth
cycle, are valuable for the practical application of phages. Monitoring
changes in phage load (Figure 2B) indicated that phage vB_Kp_XP4
has a relatively short latent period of approximately 10 min. When
co-cultured with the host bacteria for 10 to 50 min, the phage titer
increased rapidly, and the bacterial suspension transitioned from
turbid to clear. After 50 min of co-culture, the phage concentration
peaked at 10"*PFU/mL, entering a plateau phase where the suspension
remained relatively clear. The average burst size of this phage was
about 387 phages/cell. However, after 100 min, a noticeable decline
in phage concentration was observed, and the bacterial suspension
gradually became turbid. Under an optical microscope at 1,000x
magnification, the morphology of the P4 strain changed after
treatment with bacteriophage vB_Kp_XP4. Macroscopically,

« »

we observed that the staining intensity in image “a” is higher
compared to image “b.” Microscopically, individual bacterial cells
appeared smaller after phage treatment than before. This suggests that

phages may have disrupted the capsule structure of Klebsiella
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pneumoniae. (Figure 2C). However, this morphological change was
not observed in strain 10.

3.6 Phage temperature and pH stability

Pathogenic K. pneumoniae is distributed across various
environmental conditions. Therefore, the ability of phages to control
these pathogens under different conditions is crucial for their practical
application. The tolerance of phage vB_Kp_XP4 at different titers (10°
and 10"”PFU/mL) was tested across a range of temperatures (4°C,
37°C, 40°C, 50°C, 60°C, 70°C, and 80°C). The results showed that
phage vB_Kp_XP4 reached its highest titer at 50°C after 1 h. At 70°C
for 1 h, phages with a titer of 10° PFU/mL were completely inactivated,
while phages with a titer of 10”PFU/mL partially survived, and even
at 80°C for 1 h, a small amount of phages with this titer still survived
(Figure 3).

The impact of different pH levels on the phage’s ability to inhibit
its host bacteria was analyzed, as shown in Figure 4. The results
indicated that at pH < 3, the growth of host bacteria in both the
experimental and control groups was significantly inhibited,
suggesting that both phage and bacterial growth are restricted by
highly acidic conditions. Within a pH range of 4 to 11, the growth of
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FIGURE 2
(A) Results of the optimal MOI assays for phage vB_Kp_XP4. (B) Monitoring changes in phage vB_Kp_XP4 load. (C, a) Morphology of the P4 bacterial
strain in the absence of phage treatment; (b) Morphology of the P4 bacterial strain following exposure to phage vB_Kp_XP4.
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(A,B) Changes in phage titer after 1 h of exposure to different temperatures, with initial titers of approximately 10® and 10* PFU/mL, respectively.
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FIGURE 4
Effect of pH on the ability of phage vB_Kp_XP4 to inhibit the growth of host bacteria. Changes in OD at 630 nm were measured for phage-treated
bacterial cultures under different pH conditions, with bacterial cultures without phage treatment used as controls. The experiment was carried out in

three technical replicates.

host bacteria in the experimental group (MOI of 0.1) was significantly

inhibited, indicating that the phage exhibits antibacterial activity

across this broad pH spectrum. Additionally, it was observed that after

12 h, the concentration of host bacteria increased markedly, and the
difference between the experimental and control groups diminished.
This suggests that the phage was unable to completely eradicate the
host bacteria, leading to a relative equilibrium between the two

over time.

3.7 Phage genome sequencing and
characterization
3.7.1 Whole genome basic characteristics

The sequencing results revealed that the genome of phage
vB_Kp_XP4 is a linear double-stranded DNA with a genome size
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of 44,344 bp and a G + C content of 53.80%. A total of 54 coding
sequences (CDS) were predicted, all oriented forward (see
Supplementary File 1). The online tool tRNAscan-SE predicted
that phage vB_Kp_XP4 contains no tRNA genes. Homology
analysis using BLAST against the VFDB database found no known
virulence genes in phage vB_Kp_XP4. Similarly, analysis with the
resfinder database predicted the absence of antibiotic-resistance
genes in the genome. The complete nucleotide sequence of phage
vB_Kp_XP4 has been submitted to GenBank with the accession

number PP663283.

3.7.2 Comparative genomic analysis of phage vB_
Kp_XP4

A whole-genome comparison of phage vB_Kp_XP4 was
performed using the BLASTn program on the NCBI website. The
results showed a high similarity between phage vB_Kp_XP4 and
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FIGURE 5

(A) Genome comparison of phage vB_Kp_XP4 with phages NTUH-K2044-K1-1, VLCpiAlc, KpV71 and pKP-M212-2.1. Colored blocks indicate regions
of similarity between phage genomes, with the height of the panels within the blocks representing the strength of nucleotide similarity; (B) Comparison
of the phage vB_Kp_XP4 genome with NTUH-K2044-K1-1 using EasyFig software. Arrows indicate predicted CDS based on their genomic functions,
while the gray chromatogram reflects genetic similarity percentages.

TABLE 3 Whole genome-based databank homologies of Klebsiella phage vB_Kp_XP4 according to NCBI.

Strains Coverage (%) Identity (%) Accession humber E
Klebsiella phage NTUH-K2044-K1-1 88 90.92 ON602748.1 0
Kilebsiella phage VLCpiAlc 88 96.39 MK380015.1 0
Klebsiella phage KpV71 88 94.97 NC_031246.1 0
Klebsiella phage pKP-M212-2.1 89 96.93 0Q734493.1 0

phages from the genera Autographiviridae, Slopekvirinae, and  2018) Klebsiella phage NTUH-K2044-K1-1 and KpV71 exhibit Iytic
Drulisvirus. Based on the BLASTn results, the phages with the highest ~ activity against the K1 capsular serotype of K. pneumoniae.
scores, Klebsiella phage NTUH-K2044-K1-1, Klebsiella phage  Collinearity analysis using Mauve software (Darling et al., 2004)
VLCpiAlc, Klebsiella phage KpV71, and Klebsiella phage pKP-M212-  revealed that certain regions of the Klebsiella phage vB_Kp_XP4
2.1, were selected for further comparison, as shown in Table 3.  genome are similar to those of other Klebsiella phage genomes,
Previous studies have shown that (Lin et al., 2014; Solovieva et al.,  indicated by the same colors in Figure 5A. The sequences of Klebsiella
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phage vB_Kp_XP4, KpV71, and pKP-M212-2.1 were found to
be highly conserved, with no rearrangements, insertions, or
inversions, indicating a strong collinearity and similar conserved
framework. Additionally, the genome sequence of Klebsiella phage
vB_Kp_XP4 was compared with that of Klebsiella phage NTUH-
K2044-K1-1 using EasyFig software (Sullivan et al., 2011) (Figure 5B).

3.7.3 Gene function prediction and annotation

The functions of the phage genome were predicted and
annotated using Prokka, blastp, and eggNOG-mapper, as shown in
Figure 6. Among the 54 analyzed coding sequences (CDS), 49
(90.7%) use ATG as the start codon, three (5.6%)—CDS2, CDS13,
and CDS16—use GTG, and two (3.7%)—CDS19 and CDS36—use
TTG. Fourteen CDSs were annotated as hypothetical proteins or
proteins with unknown functions, while the remaining 40 CDSs
have clearly defined functions. These include proteins involved in
phage morphology and structure, DNA replication, transcription,
packaging, and lysis. Thirteen CDSs are related to capsid and tail
structural proteins, while 17 CDSs are associated with replication,
transcription, and packaging. Proteins related to phage-mediated
lysis of the host include glycosidases, transmembrane proteins,
lysozymes, holins, and endolysins. None of the predicted CDSs
encode lysogenic phage-associated proteins, such as transposases or
integrases. Additionally, a screening of the phage genome with Phage
Leads (Yukgehnaish et al., 2022) detected no genes indicative of a
temperate lifecycle, antibiotic resistance, or virulence factors. These
findings suggest that phage vB_Kp_XP4 has a certain level of safety
and applicability for clinical therapeutic use. Various proteins and
pathways have been identified as participants in phage-mediated
bacterial lysis (Kongari et al., 2018). The holin-endolysin pathway is
the most well-known mechanism, with additional involvement from
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transmembrane proteins. Biochemical and genetic studies indicate
that Spanins are essential for disrupting the outer membrane (OM)
hosts. Rz-like
two-component transmembrane proteins, are capable of degrading
and lysing the OM (Summer et al., 2007). Using DeepTMHMM, the
transmembrane domains (TMDs) of predicted proteins were

of Gram-negative proteins, which form

analyzed, revealing three potential proteins (CDS: 20, 51, and 52)
with TMDs. CDS51 encodes an Rz-like spanin and was found to
have one TMD topology (Figure 7B); CDS20 encodes a
transmembrane protein, and CDS52 encodes a holin. Two TMD
topologies were detected in the predicted proteins of CDS20 and
CDS52 (Figures 7A,C).

3.7.4 Evolutionary analysis of phage vB_Kp_XP4

To further investigate the evolutionary relationships of phage
vB_Kp_XP4, a phylogenetic tree was constructed based on the
conserved terminase large subunit (CDS48) using blastp for protein
comparison in the NCBI database. The phylogenetic tree (Figure 8A)
showed that phage vB_Kp_XP4 is closely related to phage BUCT86
and other phages. To understand the relationship between host
specificity and phage tail fiber protein gene sequences, a phylogenetic
tree was also constructed using the tail fiber protein (CDS46)
(Figure 8B). This analysis revealed that the tail fiber protein sequence
had the highest homology with Klebsiella phage KpV71, vB_Kpn_
K1PH164Cl, and NTUH-K2044-K1-1. Overall, phages with high
sequence homology belong to the genus Drulisvirus, further
confirming the close evolutionary relationship of Klebsiella phage
vB_Kp_XP4 with the Drulisvirus genus. Using AlphaFold3, the
protein structures of the terminase large subunit and the tail fiber
protein of the Klebsiella phage vB_Kp_XP4 were predicted
(Figures 8C,D).
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Predicted transmembrane topology of hypothetical holin (CDS20 (A), CDS51 (B), and CDS52 (C)) using the DeepTMHMM tool. Red squares represent
predicted transmembrane domains, while pink and blue lines represent intra-and extra-membrane domains, respectively. The y-axis represents
predicted probability, and the x-axis represents amino acid sequence positions.

3.8 Assessment of the efficacy of phage
vB_Kp_XP4 against strain P4 in vivo

Galleria mellonella larvae model was used to assess the efficacy of
phage vB_Kp_XP4 against strain P4 in vivo. At 60 h, the survival rate
of larvae injected with only PBS and phage was both 90%, while the
survival rate of larvae injected with strain P4 (10%) was 0%, and those
injected with strain P4 (107) had a survival rate of 10%. The P4 + PBS
group had a survival rate of 20%, while the groups injected with
P4 + phage at MOI = 0.1, 1, and 10 had survival rates of 40, 80, and
50%, respectively. Notably, at MOI = 0.1, the lower survival rate was
related to the higher concentration of P4 in this group (Figure 9A). It
can be observed that the phage treatment groups performed
significantly better than the untreated group. Larvae injected with
strain P4 (10%) all died within 20 h, and those injected with PBSat 1 h
post-injection died within 36 h; when MOI = 0.1, larvae injected with
phage at 1 h had a survival rate of 20% at 60 h; larvae injected with
phage at 2 h all died by 45 h; larvae injected with phage at 4 h all died
within 22 h (Figure 9B). It is evident that under the same infection
conditions, the earlier phage treatment is administered, the longer the
survival time of Galleria mellonella larvae, and the more pronounced
the therapeutic effect. Additionally, larvae injected with phage alone
still had a high survival rate, demonstrating the safety of phage therapy
in this model. The morphology of the Galleria mellonella larvae after
treatment with phage vB_Kp_XP4 is shown in Figure 9C.

4 Discussion

It is well known that the phenomenon of “mutual inhibition”
among organisms is common. At the end of the 19th century, an
outbreak of cholera in the Ganges River mysteriously disappeared,
suggesting the presence of a natural antagonist to bacteria in the
environment, which was later identified as bacteriophages (d'Herelle,
1931; Duckworth, 1976). In the early 20th century, bacteriophages
were widely used to treat various bacterial infections, including
cholera, dysentery, plague, Staphylococcus, Escherichia coli, and
Streptococcus (McCallin et al., 2019; Summers, 1993; Myelnikov,
2020). However, with the advent of antibiotics in the mid-20th
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century, which marked a “golden era” lasting over 40 years, research
on bacteriophages nearly halt (Gordillo Altamirano and Barr, 2019).
By the end of the 20th century, the development of new antibiotics had
slowed significantly, entering what is often referred to as a “dry
pipeline,” while antimicrobial resistance continued to escalate as a
global threat (Gordillo Altamirano and Barr, 2019; Hitchcock et al.,
2023). With rapid advancements in biology, medicine, and other
fields, our understanding and research on bacteriophages have
deepened, and phage therapy has re-emerged as a promising solution
to mitigate the antibiotic resistance crisis.

In this study, a lytic environmental phage was isolated from a
natural water source using the hypervirulent K. pneumoniae strain P4
as the host. At 36°C, within 12h, the phage formed plaques
approximately 2 mm in diameter with surrounding halos consisting of
multiple semi-transparent layers. As time progressed, the halos
expanded, and by 36 h, the plaques and halos reached a diameter of up
to 28 mm, consistent with the findings of Zaki et al. (2023). According
to morphological observations and the latest classification data from
the International Committee on Taxonomy of Viruses (ICTV),* most
phages isolated from K. pneumoniae are double-stranded DNA phages
belonging to the order Caudovirales (Zerbini et al., 2023).

The lysis efficiency of phage vB_Kp_XP4 is positively correlated
with temperature between 4°C and 50°C. However, when the
temperature exceeds 60°C, this relationship reverses, regardless of
whether the titer is high (10" PFU/ml) or low (10° PFU/ml). It is
similar to the behavior observed in phage vB_KpnP_IME337 (Gao
et al., 2020). Increasing the initial dose of the phage allows some
activity to be retained, suggesting that adjusting the phage dosage
could effectively target heat-resistant bacterial strains in high-
temperature environments. The phage also demonstrated strong lytic
activity across a pH range of 4 to 11, indicating high stability under
various conditions. This stability suggests that Phage vB_Kp_XP4
could be useful not only under standard conditions but also in special
environments, such as in the disinfection and cleaning of hospital
settings contaminated with multidrug-resistant bacteria (Otter et al.,

4 http://ictv.global/taxonomy
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2015) or in applications within high-temperature, acidic, or alkaline
environments (Suja and Gummadi, 2023). These properties confer
broad practicality and application value to the phage. The study
found that phage vB_Kp_XP4 has a latent period of approximately
10 min, shorter than most phages (Li et al., 2020), allowing for
quicker control of pathogenic bacterial infections. The phage titer
peaked around 50 min, entering a plateau phase. Due to the strong
viscosity of the host bacteria, some free phages were not fully eluted
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during the experiment, slightly affecting the measurement of the
burst size. However, the rapid and efficient lytic capability of the
phage remains evident. Lytic phages with short incubation times,
meaning they have a rapid replication cycle within the host
bacterium, and high productivity, indicating they produce a large
number of new phage particles per infected host cell, such as vB_Kp_
XP4, are suitable for use during the acute phase of infections (Meile
et al., 2022), effectively reducing the number of pathogens and
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providing more time for the host immune response and clinical
treatments, thereby improving patient outcomes. After 100 min, a
marked decline in phage titer and an increase in bacterial count were
observed, which aligns with the growth pattern of phage ST11 K47
(Fang and Zong, 2022). Continued observation in liquid culture
showed that the numbers of phages and bacteria tended to stabilize,
indicating that in liquid media, phages cannot eliminate bacteria, as
the death of bacteria would also disrupt the phage’s limited food
chain. On solid plates, when the phage titer reaches a sufficient level,
bacterial growth can be completely inhibited, demonstrating that the
growth and mutation rates of bacteria and phages are significantly
influenced by the culture environment (Chevallereau et al., 2022). On
this basis, we adopted Galleria mellonella larvae as the infection
model. The natural immune system of Galleria mellonella has
similarities with the human immune system and is easy to obtain and
breed (Feng et al., 2023). In this study, a new phage vB_Kp_XP4 was
used to prolong the survival time of Galleria mellonella larvae after
infection. The survival time of the phage treatment group was
significantly longer than that of the non-intervention group, and the
earlier the phage intervention was carried out, the more obvious the
treatment effect was, which was consistent with the conclusion of a
certain study (Lin et al., 2014). Further in vivo studies are needed to
explore the interaction mechanisms between phages and bacteria.
Regarding the emergence of phage-resistant bacterial strains, many
studies have shown that the acquisition of phage resistance often
results in a significant decrease in virulence and antibiotic resistance
(Chen et al., 2024). Combining antibiotics (Ziller et al., 2024) and
phage cocktails (Yoo et al., 2024) can suppress the emergence of
resistant strains. A substantial body of animal studies has
demonstrated that the combination of phages, antibiotics, and the
host immune system can effectively control bacterial infections (Tang
etal, 2024; Pal et al., 2024; Nang et al., 2024). However, clinical cases
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are relatively limited, and more clinical trials are necessary to
optimize, validate, and refine the therapeutic use of phages. Klebsiella
phage vB_Kp_XP4 shows a narrow lytic spectrum and high
specificity, typical of natural phages (Dion et al., 2020). Phages rely
primarily on the specificity of their tail structures to recognize host
bacteria. Modifying phages through induced culture, co-culture, and
genetic engineering strategies can help broaden their lytic spectra
(Parker and Nugen, 2024; Ulrich et al., 2024; Hesse et al., 2020).

Based on whole-genome sequencing data, a comparison using
Blastn in the NCBI database revealed that Klebsiella phage vB_Kp_
XP4 is most similar to Klebsiella phage NTUH-K2044-K1-1
(ON602748.1), with 88% coverage, 90.92% identity, and an E-value of
0. The nucleotide sequence of Klebsiella phage vB_Kp_XP4 differs by
more than 5% from that of known phages, indicating it represents a
new species (Grigson et al., 2023). Further phylogenetic analysis using
conserved proteins confirmed that Klebsiella phage vB_Kp_XP4 is
closely related to phages in the genus Drulisvirus. Therefore, it is
suggested that Klebsiella phage vB_Kp_XP4 is a new member of the
genus Drulisvirus within the subfamily Slopekvirinae. Klebsiella phage
vB_Kp_XP4 has relatively small nucleic acid molecular weights,
making them easier to edit. This characteristic makes them ideal
model phages for genetic engineering and synthetic biology
applications, offering significant potential for more in-depth research
(Lenneman et al., 2021).

The formation of halos around plaques is likely related to the
synthesis of phage protein products, including lytic enzymes,
endolysins, and spanins (holin, endolysin, and spanin). Numerous
studies have demonstrated that phage depolymerases possess biofilm-
degrading properties (Tagliaferri et al.,, 2019; Glizniewicz et al., 2023;
Drulis-Kawa et al., 2015). According to the National Institutes of
Health, more than 80% of bacterial diseases are associated with
biofilms (Evans et al., 2023). The significant morphological changes
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observed in the P4 strain after treatment with phage vB_Kp_XP4
suggest its ability to remove the capsule of serotype K1 Klebsiella
pneumoniae. Phage vB_Kp_XP4 encodes endolysin (CDS53), a cell
wall hydrolase synthesized in the late stage of phage infection that
hydrolyzes peptidoglycan to release progeny phages (Cahill and
Young, 2019; Marques et al., 2021). Euler et al. (2023) demonstrated
in mouse experiments that phage endolysins have bactericidal effects
against multiple Gram-negative ESKAPE pathogens. Chen et al.
(2024) ngineered endolysins with different protein peptides, showing
significant bactericidal activity against ESKAPEE pathogens.
Endolysins in Klebsiella phages exhibit diversity and conservation
within the genus, providing substantial potential for further
exploration (Chang et al., 2022). Future research will focus on phage
protein products, such as depolymerases and endolysins, to develop
formulations targeting bacterial biofilms and novel antibacterial
agents. Such developments could provide a material basis for
combining phages and antibiotics, offering more options for treating
bacterial infections. In this study, we observed the morphological
differences of the strains before and after phage treatment using only
light microscopy. Utilizing electron microscopy may provide more
detailed insights. As a biological therapy, phage treatment must
prioritize safety considerations. Comparisons with existing databases
indicate that Klebsiella phage vB_Kp_XP4 does not contain tRNA,
lysogenic genes, antibiotic resistance genes, or virulence genes, thereby
posing no risk of transmitting resistance or virulence genes, which
ensures its safety for clinical applications.

5 Conclusion

In conclusion, bacteriophages and their protein products have
garnered significant interest globally as potential therapies to reduce
or replace antibiotic use. This study successfully isolated a novel
Klebsiella phage vB_Kp_XP4, and characterized its biological
properties and genomic features. In vivo experiments demonstrated
its therapeutic effect on a Galleria mellonella infection model, with
high safety and efficacy, making it a promising candidate for phage
therapy and a potential synergist in combination with antibiotics,
offering additional options for antimicrobial treatment. Furthermore,
phage protein products, such as lytic enzymes and endolysins, possess
properties that assist in bacterial lysis. Future in vitro and in vivo
experiments could explore the antibacterial effects of phage
suspensions, protein synthesis products, and various combinations
with antibiotics.
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Background: The intestinal microbiota contributes to the colonization resistance
of the gut towards bacterial pathogens. Antibiotic treatment often negatively
affects the microbiome composition, rendering the host more susceptible for
infections. However, a correct interpretation of such a perturbation requires
quantitative microbiome profiling to reflect accurately the direction and
magnitude of compositional changes within a microbiota. Standard 16S rRNA
gene amplicon sequencing of microbiota samples offers compositional data
in relative, but not absolute abundancies, and the presence of multiple copies
of 16S rRNA genes in bacterial genomes introduces bias into compositional
data. We explored whether improved sequencing data analysis influences the
significance of the effect exerted by antibiotics on the faecal microbiota of
young pigs using two veterinary antibiotics. Calculation of absolute abundances,
either by flow cytometry-based bacterial cell counts or by spike-in of synthetic
16S rRNA genes, was employed and 16S rRNA gene copy numbers (GCN) were
corrected.

Results: Cell number determination exhibited large interindividual variability
in two pig studies, using either tylosin or tulathromycin. Following tylosin
application, flow cytometry-based cell counting revealed decreased
absolute abundances of five families and ten genera. These results were not
detectable by standard 16S analysis based on relative abundances. Here, GCN
correction additionally uncovered significant decreases of Lactobacillus and
Faecalibacterium. In another experimental setting with tulathromycin treatment,
bacterial abundance quantification by flow cytometry and by a spike-in method
yielded similar results only on the phylum level. Even though the spike-in method
identified the decrease of four genera, analysis by fluorescence-activated cell
sorting (FACS) uncovered eight significantly reduced genera, such as Prevotella
and Paraprevotella upon antibiotic treatment. In contrast, analysis of relative
abundances only showed a decrease of Faecalibacterium and Rikenellaceae
RC9 gut group and, thus, a much less detailed antibiotic effect.

Conclusion: Flow cytometry is a laborious method, but identified a higher
number of significant microbiome changes in comparison to common
compositional data analysis and even revealed to be superior to a spike-in
method. Calculation of absolute abundances and GCN correction are valuable
methods that should be standards in microbiome analyses in veterinary as well
as human medicine.
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Introduction

Antibiotic treatment often has a detrimental impact on the gut
microbiome integrity, resulting in an increased risk for infection
(Stecher et al., 2013; Prax et al., 2021), and an improved functional
understanding of this dysbiosis requires a proper analysis of the
intestinal microbiota composition. However, 16S sequencing data is
generally not fully representative of community composition, due to
sampling, DNA isolation, primer choice, 16S rRNA gene copies, and
data analysis (Abellan-Schneyder et al., 2021). Concerning data
analysis, filtering of spurious taxa and primer trimming seems to have
a major impact (Reitmeier et al., 2021; Haider et al., 2024). Another
major limitation is that high-throughput 16S rRNA gene sequencing
of microbiota samples provides compositional data that appear as
relative instead of absolute abundancies. Relative abundancies
quantify the different microbial taxa as fractions within a sample
irrespective of its total cell numbers. Such relative microbiome
profiling (RMP) often results in artefacts with respect to comparative
taxon counts. In particular, a comparative analysis does not yield data
about extent or directionality of compositional changes of a microbiota
upon perturbation. For example, antibiotic treatment that decreases
cells belonging to a specific microbial family necessarily results in an
apparent increase of the relative abundance of a resistant family when
RMP is applied. This hampers the identification of microbial taxa that
are significantly affected upon intervention (Jian et al., 2020). Further
drawbacks of describing relative abundances were stated in numerous
publications (Vandeputte et al., 2021; Vandeputte et al., 2017; Galazzo
et al., 2020; Lambrecht et al.,, 2017; Rao et al., 2021), but they have
rarely been assessed in next generation sequencing (NGS) studies on
microbiomes (Boshuizen and Te Beest, 2023).

To address this issue, microbial cell numbers of a sample need to
be quantified by internal standards. For example, known amounts of
DNA can be spiked into microbial samples before DNA extraction
(Tkacz et al,, 2018; Lin et al., 2019), an approach termed internal
standard normalization (ISN) that has been established for
quantitative and metagenome analysis (Satinsky et al., 2013). Using a
set of environmental samples, Lin et al. demonstrated that community
profiles and taxon co-occurrence patterns obtained by ISN
substantially differed from RMP (Lin and Peddada, 2020). Another
option is to spike a sample with a known number of exogeneous
bacteria to adjust the microbiome composition (Staimmler et al.,
2016). As an alternative, quantitative microbiome profiling (QMP) by
qPCR, which targets 16S rRNA genes, is cost-effective, feasible and
directly comparable to NGS (Jian et al., 2020). Challenges encountered
here are the choice of a reference organism required to construct a
standard curve, DNA extraction efficiencies, and the variance of

Abbreviations: ASV, amplicon sequence variant; OTU, operational taxonomic unit;
FC, fold change; GCN, gene copy number; IMNGS2, Integrated Microbial Next
Generation Sequencing version 2; SINA, SILVA Incremental Aligner; RDP, ribosomal
database project; RMP, relative microbiome profiling; QMP, quantitative microbiome

profiling.
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strain-specific16S rRNA operon copy numbers per genome (Bonk
etal,, 2018). Flow cytometry of cells stained with a fluorescent dye is
another feasible method to enumerate bacterial cells. Vandeputte and
colleagues (Vandeputte et al., 2017) established a workflow for QMP
of 40 faecal samples of a study cohort by flow cytometry and thus
demonstrated that the association between Crohn’s disease and a
low-cell-count Bacteroides enterotype is an artefact due to
RMP. However, when DNA-binding stains are used, the fluorescence
intensity is directly related to the nucleic acid content of the sample,
possibly resulting in a bias due to distinct genome lengths,
physiological states of a cell, or a lack of reproducibility in staining
and storage conditions that cause DNA to deteriorate (Prest et al.,
2013; Kamiya et al.,, 2007). Following a comparison of qPCR and flow
cytometry, Galazzo et al. (2020) concluded that QPCR-based QMP is
too imprecise to be an alternative to flow cytometry. In contrast, Jian
and colleagues pointed out that microbiota sequenced by 16S rRNA
amplicon sequencing differs from microbiota quantified by flow
cytometry, because the DNA extracted from a faecal sample does not
necessarily correlate with intact bacterial cells (Jian et al., 2020).

A further bias in microbiome analysis is introduced by up to 15
copies of 165 rRNA genes in a single genome (Angly et al., 2014;
Vetrovsky and Baldrian, 2013). Bacteria with more than one copy of
the 16S rRNA gene appear overrepresented as multiple sequences are
attributed to single cells. Variations in 16S rRNA gene copy numbers
(GCN) are particularly common in the phylum Bacillota and the class
Gammaproteobacteria, which belongs to the phylum Pseudomonadota
(Vetrovsky and Baldrian, 2013; Goker and Oren, 2024; Williams and
Kelly, 2013). Although the exact number of the 16S rRNA gene is
usually taxon-specific, variations among strains of the same species
were also observed (Acinas et al., 2004).

In this study, we examined whether an optimized microbiota analysis
of faeces samples from animals treated with antibiotics reveals significant
effects that were not detected by RMP. The veterinary antibiotics tylosin
and tulathromycin were administered to piglets in two independent
animal trials. A correction of relative frequencies of bacterial taxa
determined via NGS was performed by considering the 16S rRNA
GCN. Absolute taxon abundancies were calculated for each taxon by
measuring total bacterial cell numbers via by flow cytometry. For method
comparison, cell numbers of samples from animals treated with
tulathromycin were additionally determined using a spike-in method
according to Tourlousse et al. (2017, 2018).

Methods

Piglet feeding trial A with tylosin
application

Four weeks old female pigs obtained from the Morsdorfer Agrar
GmbH (Morsdorf, Thuringia, Germany) were maintained in the
animal facility of the Friedrich-Loeffler-Institute (Jena, Germany) in
separate pens. After 2 weeks of acclimatization, piglets (n =2 per
group in pre-trial, # = 4 per group in main trial, 12 animals in total,
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10.77 + 1.39 kg live weight) were fed about 5 g of either pure peanut
butter (Netto American Style, Netto Marken-Discount Stiftung & Co.
KG, Maxhiitte-Haidhof, Germany) or peanut butter supplemented
with tylosin tartrate (Sigma-Aldrich Chemie GmbH, Taufkirchen,
Germany) at a concentration of 10 mg/kg bodyweight per piglet. Each
feeding was done twice in an interval of 24 h. Individual faecal samples
were collected before (d0) and 30 h (d1), 48 h (d2), 72 h (d3), and 96 h
(d4) after antibiotic treatment. Samples were homogenized, and
aliquots were stored either at room temperature (RT) in 600 pL DNA
stabilization solution (INVITEK Molecular, Berlin, Germany) for
sequencing, or at —20°C without additives.

Piglet feeding trial B with tulathromycin
application

Eighty weaned barrows (6.39 + 1.1 kg live weight) were group-
housed (four piglets/pen) and equally assigned to one of four diets
with graded copper levels (five pens/diet) during 5 weeks of rearing.
At the end of the fourth experimental week, piglets of each dietary
group were subdivided into half and were subjected to intramuscular
injection of the antibiotic (DRAXXIN® Zoetis, 2.5 mg tulathromycin/
kg BW) or a placebo (0.9% NaCl). Individual faecal samples obtained
via manual rectal stimulation were collected directly before and 24 h
after the respective injection. Faecal material was snap-frozen in liquid
nitrogen immediately after collection and stored at —80°C until
further processing. Six piglets (antibiotic-treated individuals) of the
dietary groups with 150 mg Cu/kg feed were chosen for further
analysis in this study for total bacterial counts and sequencing.

Sequencing and raw read processing

Isolation of total DNA and sequencing of 16S rRNA gene
amplicons was carried out at the Core Facility Microbiome of the
Technical University of Munich (Freising, Germany) as described
previously (Reitmeier et al., 2020) with slight modifications. Briefly,
DNA was isolated using a MaxWell (Promega, Walldorf, Germany)
after bead-beating and used in a 2-step PCR to generate sequencing
libraries. The first PCR used primers specific for the V3 and V4
regions (i.e., 341F, CCT ACG GGN GGC WGC AG; 785R, GAC TAC
HVG GGT ATC TAA TCC) that contain an overhang for the
subsequent PCR for sample barcoding. Cleaned libraries were
sequenced PE300 on a MiSeq (Illumina). Spike-in of synthetic full-
length 16S rRNA genes was done as described by Tourlousse et al.
(2018, 2017). Here, 6 ng of spike DNA, consisting of an equimolar
mixture of 13 linearized plasmids, each of which contains an artificial
16S rRNA gene, was added to 600 pL of the faeces-stabilizer mix. In
each artificial “gene”, the invariant regions of the 16S rRNA were left
untouched, while the variable regions were swapped with artificial
sequences. Thus, spike reads are clearly distinguishable from true
bacterial reads in analysis. Sample weight (i.e., gram of faecal material)
was recorded in order to obtain 16S rRNA GCN per gram sample.

Raw reads were processed with pipeline DADA2 (Callahan et al.,
2016). Sequences were demultiplexed and filtered, and amplicons with an
expected error > 2 were excluded. To limit the analysis of regions with
higher error values, reads were trimmed to sequence lengths of 250 bp
and 200 bp, respectively, for forward and reverse reads. Remaining reads

Frontiers in Microbiology

10.3389/fmicb.2025.1481197

were merged to paired end reads. Amplicon sequence variants (ASV's)
were clustered at 97% sequence identity, and their sample-wise
abundances were calculated after removing substitution and chimera
errors. Taxonomies were assigned at 80% confidence level by considering
results from both the Ribosomal Database Project (RDP) classifier (Wang
etal,, 2007) and the SILVA Incremental Aligner (SINA; v1.2.11) (Pruesse
et al,, 2012). Taxon names were verified manually in accordance to the
nomenclature defined by the List of Prokaryotic names with Standing in
Nomenclature (LPSN) (Parte, 2013; Parte, 2018; Parte et al., 2020;
Euzéby, 1997).

16S rRNA GCN correction and synthetic
spike-in

ASVs were analysed using parts of the PICRUSt2 pipeline (Douglas
etal., 2020) as follows. HMMER version v3.3.2! places ASVs, EPA-ng
(Barbera et al., 2018) determined the optimal position of these ASV's
in a reference phylogeny, and GAPPA (Czech and Stamatakis, 2019)
outputs a new tree incorporating ASV placements. This adjusted
reference phylogeny allowed for the prediction of 16S rRNA GCN. The
IMNGS output ASVs tables were corrected within the PICRUSt2
pipeline by dividing the original read counts by the predicted GCN.

To obtain a more intuitive comparability of both methods,
we harmonized absolute abundances obtained by a flow cytometry
method, FACS, and the spike-in approach as follows. Since the spike-in
method gives only relative numbers of 16S rRNA gene copies between
samples, cell counts of piglet 7 determined by FACS on day 0 were used
as a reference. Subsequently, read counts for the spikes of this sample were
scaled to the cell numbers within this sample using an arbitrary factor. The
factor was chosen such that the relative amount of spike in this sample
could be converted into the cell number found by FACS. The other
samples gave relative numbers of gene copies that were multiplied by this
factor in order to calculate cell number equivalents.

Flow cytometry measurements

Frozen faecal samples were split into 0.1-g aliquots in triplicate
and slowly thawed on ice. Aliquots were diluted in 10 mL 0.85% (w/v)
NaCl and homogenized for 3 min with a Vortex-Genie 2 mixer
(Scientific Industries, New York, United States). To remove faecal
debris, the solutions were filtered using a sterile syringe filter with
5 um pore size (Macherey-Nagel, Diiren, Germany). Next, 500 pL of
the filtered cell suspension were mixed with three volumes of fixation
buffer (4% paraformaldehyde, 200 nM Na,HPO, pH 7.2) for at least
3hours at RT. Subsequently, the samples were centrifuged at
12,000 x g for 10 min, and the supernatant was discarded. The
remaining pellets were dissolved in 500 pL sterile filtered PBS (Sigma-
Aldrich, Steinheim, Germany) and stained using the LIVE/DEAD™
BacLight™ kit (Invitrogen, Karlsruhe, Germany).

Quantification of microbial cells in the faecal suspensions was
performed using a FACS Canto II flow cytometer (BD Biosciences, NJ,
United States). Fluorescence events were monitored using 530 nm and

1 http://www.hmmer.org
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660 nm optical detectors. Forward-and sideward-scattered light was
also collected. The BD FACSDiva™ Software and FlowJo (both BD
Biosciences) were used to gate and separate the microbial fluorescence
events on the FITC-PE density plot from the faecal sample background.
The gated fluorescence events were evaluated on the forward-sideways
density plot to exclude remaining background events and to obtain an
accurate microbial cell count. Instrument and gating settings were
identical for all samples. Measurements were conducted in triplicates.

Integration of cell counts into relative
abundances

To calculate absolute frequencies of individual taxa, flow
cytometry-measured bacterial cell counts were integrated into the
ASV table created with DADA2 (Callahan et al., 2016). For this
purpose, the read counts of each taxon in a sample were divided by
the total read count of that sample. Subsequently, these numbers were
multiplied by the bacterial cell count of the sample. The sum of all taxa
in a sample yielded the total bacterial cell counts.

Statistical analysis

All further analyses were performed in the R programming
environment using Rhea (Lagkouvardos et al., 2017), following scripts
and instructions available online.” A PERMANOVA test (vegan::adonis)
was performed in each case to determine if the separation of sample
groups was significant, as a whole and in pairs. For the analysis of relative
abundances, counts were standard normalized using total sum scaling.
To analyse absolute abundances, no normalization was applied after
integration of bacterial cell counts. The filtered and, in case of relative
abundances, normalized ASVs table used as basis for all analyses is
provided in Supplementary Tables 1, 2. a-diversity was computed based
on generalized UniFrac distances (Chen et al., 2012). -diversity was
assessed on the basis of species richness and Shannon effective diversity
(Jost, 2007) as explained in detail in Rhea. p values were corrected for
multiple comparisons according to the Benjamini-Hochberg method.
Only taxa with a prevalence >30% (proportion of samples positive for
the given taxa) in one given group and relative abundance >0.25%
(Reitmeier et al., 2021) in at least one sample were considered for
statistical testing. Statistical analyses were performed as described for
each experiment and p values <0.05 were considered as significant.

Results and discussion

Relative and absolute bacterial abundances
upon tylosin treatment of piglets

In the first experimental setting, 10 mg of tylosin per kg
bodyweight was applied twice in a 24 h-interval orally to six animals.

Faecal samples were collected immediately before (sample d0) and at
day 1 to 4 (samples d1-d4) after application. To investigate effects of

2 https://lagkouvardos.github.io/Rhea/
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tylosin on the composition of the piglet microbiota, we performed 16S
rRNA gene amplicon sequencing of faecal samples. Statistical analysis
revealed no significant changes in the faecal microbiota compositions
of control group piglets, whereas tylosin treatment caused various
effects. In more detail, the a-diversity of faecal microbiota compositions
on day 1 to 4 of each tylosin treated animal in comparison with day 0
was calculated for each animal (Supplementary Figure 1). Throughout
the whole group, the number of species and the Shannon effective
number significantly decreased after tylosin application, as previously
described for other macrolide antibiotics such as azithromycin
(McDonnell et al., 2021). Despite an overall reduction in species
richness following tylosin treatment, a significant increase in the
relative abundance of Pseudomonadota was observed post-application
(Figure 1A; Supplementary Table 3; Supplementary Figure 2). The
abundance of this phylum increased in the microbiota of all animals
tested here, but only in one piglet to a considerable extent. In sample
d3, we observed a marked increase in the abundance of Bacillota,
indicating a microbiota rebalancing post-tylosin disturbance, while the
abundance of Pseudomonadota decreased. Four days after application,
the microbiota composition closely resembled that of sample d0, with
aminor increase in the abundance of Bacillota.

The values gained by RMP, however, do not necessarily mirror
absolute cell numbers of a taxon present in a sample. For example, the
true reduction of a taxon can result in an apparent decrease of the total
cell count without affecting absolute frequencies of the other taxa. To
overcome this limitation of RMP, we applied flow cytometry to all
samples analysed above. Total cell numbers determined at day 0 ranged
from 7.20 x 107 cells per gram faeces (c/gf) to 2.49 x 10® ¢/gf, with the
group median of 9.15 x 107 ¢/gf (Figure 1B; Supplementary Table 4).
Along the experimental course, the median number remained nearly
constant. Total cell counts not only varied among the animals but also
within an individual over time due to cell densities in faeces depending
on water content and other physiological factors (Vandeputte et al.,
2021; Wang et al., 2007). Nevertheless, results from individual samples
of the present study are comparable to each other upon careful sample
processing, even if they deviate from the results of other studies
(Vandeputte et al., 2021; Vandeputte et al., 2017; Wang et al., 2007). The
method used in this study differs from other protocols by an additional
fixation and washing step, possibly resulting in a reduced number
of bacteria.

Integration of bacterial cell counts into
faecal microbiome composition analysis
improves the explanatory power of a
porcine faecal microbiome analysis

Total cell counts obtained by flow cytometry were integrated into the
relative abundances of bacterial taxa as determined by 16S rRNA gene
amplicon sequencing. The resulting absolute abundances revealed that
the increase of Pseudomonadota, detected by RMP, was not an artefact
due to limitations of this method (Figure 1C; Supplementary Table 3;
Supplementary Figure 2), but indicated an actual bloom of this phylum.
This observation can be explained by the inhibition of other phyla by
tylosin, thus creating ecological niches that favour the spread of
Pseudomonadota (Morton et al., 2019), in turn contributing to dysbiosis,
intestinal diseases, and increased susceptibility towards infections (Shin
et al.,, 2015; Sun et al., 2019; Bonardi, 2017; Bin et al., 2018).

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1481197
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://lagkouvardos.github.io/Rhea/

Wagner et al.

10.3389/fmicb.2025.1481197

A swine 1 swine 2 swine 3 swine 4 swine 5 swine 6
g 100
@
e 75
]
2
32 50
©
22 ‘
s 0 = || == LI
d0d1d2d3d4 d0d1d2d3d4 d0d1d2d3d4 d0d1d2d3d4 d0d1d2d3d4 d0d1d2d3d4
C swine 1 swine 2 swine 3

2.5e+08

2.0e+08

1.5e+08

1.0e+08

absolute abundance (cells/gram feces)

do d1 d2 d3 d4 d0 d1 d2 d3 d4 do d1 d2 d3 d4

FIGURE 1

@™

bacterial cell count
(cells/gram feces)

swine 4

0.0e+00 —- —_ = — — L

do d1 d2 d3 d4

Integration of bacterial cells counts into faecal microbiome composition. (A) Relative abundances of bacterial phyla deduced from standard
microbiome 16S rRNA gene amplicon sequencing. (B) Bacterial cell counts per gram faeces measured by flow cytometry. (C) Absolute abundances of
bacterial phyla following integration of bacterial cell counts into 16S rRNA gene sequencing data. Per phylum, cumulative abundances were calculated
from all single ASV classified within one phylum using both RDP and SILVA. The numbers above the bars indicate individual piglets. Samples d0O-d4
were taken immediately before and at the 4 days following tylosin treatment. Bar plots for individual piglets are shown (n = 6).

swine 1 swine 2 swine 3 swine 4 swine 5 swine 6

2e+08

1e+08 T T =

8
?
8

d0d1d2d3d4 d0d1d2d3d4 dod1d2d3d4 dOd1d2d3d4 d0d1d2d3d4 dod1d2d3d4

swine 5 swine 6

phylum
Actinomycetota
B seciliota
. Bacteroidota
Candidatus Saccharimonadota
. Chlamydiota
. Deferribacterota
Elusimicrobiota
. Fibrobacterota
. Fusobacteriota
. Kiritimatiellota
Lentisphaerota
. Methanobacteriota
. Mycoplasmatota
Planctomycetota
. Pseudomonadota
. Spirochaetota
Synergistota
Verrucomicrobiota

. unknown bacteria

do d1 d2 d3 d4 do d1 d2 d3 d4

Correction of 16S rRNA GCN increases the
accurateness of family-and genus-level
analysis

To reduce bias due to 16S rRNA gene copies present in a bacterial
genome, we determined the GCN for each molecular species using
PICRUSt2 (Douglas et al., 2020) and corrected relative frequencies
accordingly. This pipeline has the advantage that it predicts GCN of
unknown genera based on similarities to already known sequences.

Of a total of 234 genera, 63 genera (26.9%) were identified in our
samples to harbour more than one copy of the 16S rRNA gene in the
genome, and most of them carried up to five copies
(Supplementary Table 5). Genus Pseudescherichia exhibited six copies,
genus Clostridium sensu stricto 6 eight copies, and genus Paenibacillus
even nine copies, indicating that the significance of these individual taxa
for the overall microbiota composition is overestimated. Following
GCN correction of relative abundances, the decrease observed for the
families Rikenellaceae and Oscillospirales UCG-10 was confirmed
(Figures 2A,B top; Supplementary Table 6). On genera level, GCN
correction decreased the proportion of taxa with more than one copy of
the 16S rRNA gene and thus influenced results of the statistical analysis
(Figures 2A,B, bottom). The decrease in unknown Bacteroidales RF16
group was not confirmed by GCN correction, which is consistent with
the observations already made at the family level. The relative abundance
of some genera (i.e., Lachnospiraceae ND3007 group, Lactobacillus, the
Rikenellaceae RC9 gut group, and an unknown Bacteroidales RF16
group) showed a decrease on day 1 compared to day 0 only after GCN
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correction. The Lachnospiraceae ND3007 group is known to
be positively correlated with a health supporting diet, which is rich in
fibre and plant-based foods (Ericson et al., 2020; Ma et al., 2021). A
restriction of fibre-degrading bacteria by antibiotics may have a negative
effect on the energy production and thus on the growth performance of
animals. Lactobacillus has been identified as one of the core genera in
the gastrointestinal tract of pigs (Valeriano et al., 2017), contributing to
overall health and growth performance and increasing the productivity
of swine husbandry (Kenny et al, 2011; Yang et al., 2015). The
Rikenellaceae RC9 gut group typically experiences an increase after
weaning, coinciding with the transition of swine to solid food digestion
(Saladrigas-Garcia et al., 2022). In addition, significant decreases in the
abundances of Faecalibacterium, Neglectibacter, and Solobacterium were
overlooked due to missing GCN correction (Figures 2A,B, bottom).
Faecalibacterium is a short chain fatty acids (SCFAs) producing genus
with potential benefits for human health (Martin et al., 2023), thus
underlining the relevance of GCN correction in microbiome analysis.

Combination of absolute cell numbers and
GCN reveals further hidden significant
changes of bacterial abundances in
tylosin-treated piglets

Integration of total cell counts into GCN-corrected relative
abundances revealed several significant changes in different taxa,
which were insignificant before. The decrease noted for Rikenellaceae
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by RMP was not confirmed by QMP upon data integration (Figure 2C
top; Supplementary Table 6), in contrast to the decrease of the
Oscillosporales UCG-10 family on day 4. Significant reductions were
noted in the Clostridia UCG-014 family, in the Clostridia vadin BB60
group, and in Pseudobdellovibrionaceae from day 1 to day 4 post-
treatment. Additionally, a significant decrease was recorded for the
abundance of Eggerthellaceae on day 2 and of Campylobacteraceae on
day 4. To summarize, relative abundances corrected with GCN only
revealed significant decrease of two different families, while absolute
abundance analysis of such data showed a significant change of six
different bacterial families over time.

On the genus level, eleven different genera were found to have a
significant decrease when absolute abundances together with GCN
were considered (Figure 2C, bottom). The decrease of Solobacterium,
an opportunistic pathogen, and the genus Oscillospirales UCG-010, as
already observed upon RMP, was confirmed. In contrast, six different
genera showed statistically significant changes in relative abundances,
but did not exhibit significant changes in absolute analysis
(Figures 2B,C, bottom). Additionally, Campylobacter displayed a
decreased abundance on day 4 and an unknown genus from
Oscillospiraceae on day 1 and day 2. Acetitomaculum and Clostridium
sensu stricto 1 showed decreased abundance on days 1 to 3, and
Clostridia UCG-014, Clostridia vadin BB60 group, Oscillospiraceae
UCG-002, and Vampirovibrio exhibited decreasing abundances
consistently over 4 days. Oscillospiraceae UCG-002 support breakdown
of aspartate and glycine, and the unknown Clostridia UCG-014
facilitates degradation of tryptophan in the intestine (Atzeni et al., 2022;
Yang et al,, 2021). Both genera are important for the normal intestinal
function of animals. The inhibition of SCFA-producing genera such as
Clostridiales vadin BB60, the genus Oscillospirales UCG-010, and
Acetitomaculum, may reverse the positive effects described above
(Sawicka-Smiarowska et al., 2021; Sebastia et al., 2024; Greening and
Leedle, 1989). The opportunistic pathogen Clostridium sensu stricto 1
was shown to be associated with inflammatory bowel disease and a
reduced concentration of SCFA in the intestine (Yang et al., 2019; Hu
etal,, 2021). Inhibition of these bacteria can have positive effects on the
health of animals by preventing relapsing infection (Bublitz et al., 2023).

To summarize the tylosin treatment data, correcting for 16S rRNA
gene copies and the integration of bacterial cell counts increased the
explanatory power of the data regarding such a perturbation (Kim
et al.,, 2016; Candon et al., 2015; De La Cochetiere et al., 2005;
Dethlefsen and Relman, 2011). Until now, any such correction has
hardly been applied in microbiome studies. GCN combined with
QMP not only revealed tylosin activity against opportunistic
pathogens, but also stronger effects of the antibiotic on beneficial
commensal bacteria otherwise not detectable by RMP. This result may
explain a stronger impairment of functions of the gut microbiota such
as the maintenance of colonization resistance and, thus, an increased
probability of subsequent infections as compared to previous data
(Collington et al., 1972; Kim et al., 2012).

FACS and spike-in counting for QMP are
equivalent methods on the phylum level

To compare two methods for calculating abundances, namely flow

cytometry-based cell counting and spike-in of synthetic full-length
16S rRNA genes, we analysed the microbiota of samples from
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tulathromycin-treated piglets of a second experimental setting (see
Supplementary Table 7 for an overview of the workflow). For
comparability of both methods, we applied an arbitrary factor based
on the sample from piglet 7 on day 0 as the reference (see method for
details) that revealed cell number equivalents. Since FACS analyses
yielded about 6.0 x 107 ¢/gf, cell number equivalents for swine 7 using
spike-in DNA were set to the same level.

RMP of the samples from piglets treated with tulathromycin
identified 15 different phyla (Figure 3A; Supplementary Table 8) and a
decrease of Bacteroidota across most piglets that correlated with a relative
increase of Bacillota. Piglets 9, 10, and 11 exhibited only minor changes at
the phylum level, indicating a stable composition of their microbiomes.
Incorporating total cell counts obtained by flow cytometry into RMP
revealed a consistent decrease in total bacterial cell numbers across all
piglets, ranging from 27% for piglet 9 to 68% for piglet 12 (Figure 3B;
Supplementary Table 8). These differences, as well as the variation of
initial total bacterial cell numbers, which range from 2.3 x 107 t0 9.2 x 107
c/gf, underline the high variability of individual faecal microbiomes. In
contrast to RMP, Bacillota exhibited a decrease from 4.8 x 107 ¢/gf on day
0 to 1.9 x 107 ¢/gf on day 1, which is a fold change [FC] of 0.40 after
integration of bacterial cell counts. Similarly, a decrease in Bacteroidota
was observed in all piglets, which contrasted with relative increases noted
in the microbiome of piglet 11 due to RMP (FC = 1.15).

Next, we compared the results of FACS with those of the spike-in
results. The changes of absolute abundancies on the phylum level as
revealed by the spike-in method were mostly similar compared to
total 3G;
Supplementary Table 8). An exception was observed in piglet 10,

results calculated with cell counts (Figure
where an increase in total absolute abundances of Actinomycetota
(1.5-fold), Bacillota (1.8-fold), and Spirochaetota (1.7-fold) was noted.
Integration of spike-in sequencing data into GCN-corrected RMP
revealed a decreased total cell count for most of the samples in line
with flow cytometry-based analysis.

Taken together, the phyla reductions upon tulathromycin
treatment observed in absolute abundances were more prominent

than those observed for relative abundances.

QMP by FACS is superior to spike-in on the
family and genus level

The application of tulathromycin caused dynamic shifts of the
abundance of families and genera. Among the 59 families detected by
RMP, a relative decrease was observed in 33 families (Figure 4A;
Supplementary Table 9; Supplementary Figure 3). For instance,
Rikenellaceae experienced a significant relative decrease from 2.0 to
1.3%. This decline was associated with a relative increase in 26 other
families, including Tannerellaceae and Acidaminococcaceae.

Integration of flow cytometry data revealed a decrease in mean cell
counts from 6.32 x 107 ¢/gf to 3.3 x 107 c/gf after treatment (Figure 4B;
Supplementary Table 9). In contrast to RMP, significant reductions in
Lachnospiraceae, Lactobacillaceae, Oscillospiraceae, and Prevotellaceae
across all piglets during the same time were observed. In contrast, when
applying a data analysis using the spike-in method, we also found a
decrease for 42 families, but none became significant (Figure 4C;
Supplementary Table 9; Supplementary Figure 4). Sample analysis at the
genus level revealed distinct trends in relative and absolute abundances.
Upon RMP, Faecalibacterium decreased relatively from 2.10 to 0.84%, and
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Absolute abundances of bacterial phyla after integrating total cells or spike-in counts. (A) Stacked bar plots show phyla abundances after correction for
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the Rikenellaceae RC9 gut group from 1.81 to 1.25% (Figure 4A;
Supplementary Figure 3). Integration of FACS data revealed eight genera

in the key gut genera and SCFA-producer Lactobacillus and Prevotella,
which contribute to the maintenance of the intestinal barrier, from

significantly decreased with respect to absolute abundances, namely
Catenibacterium, Duncaniella, Lactobacillus, Paraprevotella, Prevotella,
Prevotella 9, Roseburia, and an unknown genus of Oscillospiraceae
(Figure 4B; Supplementary Figure 3). For instance, there was a decrease
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3.6 x 10°to 1.1 x 10°and from 2.2 x 10° ¢/gf to 9.6 x 10° ¢/gf, respectively
(Supplementary Figure 4). While Faecalibacterium and Rikenellaceae RC9
gut group still decreased from day 0 to day 1, this decrease was no longer
significant in pairwise tests.
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Following analysis of spiked-in samples, Faecalibacterium and
Rikenellaceae RC9 gut group were again found to be statistically
significantly reduced, with Faecalibacterium decreasing by a FC of 0.29
and Rikenellaceae RC9 gut group by a FC of 0.05 (Figure 4C;
Supplementary Figure 4). Additionally, the number of Prevotella 7 was
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reduced by a FC of 0.6, and an unknown genus from Erysipelotrichaceae
by a FC of 0.2. To summarize, the spike-in method yielded a higher
number of significant changes of the microbiota on the family and
genus level compared to RMP, but fewer effects than total cell counting
by FACS.
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Conclusion

Integrating absolute cell counts into relative sequence data is one step
further for accurately assessing gut microbiota states (Lin and Peddada,
2020), especially since changes in bacterial density may indicate various
health conditions (Morjaria et al., 2019; Contijoch et al., 2019). Our study
supports the significance of a precise determination of absolute cell
numbers, either by flow cytometry analysis or spike-in of DNA, to avoid
misinterpretation of microbiome data. The FACS approach, however,
requires a greater effort in preparation than the spike-in method based
only on adding appropriate amounts of synthetic DNA to the sample
ahead of DNA isolation. We observed a high degree of comparability
between the two methods to calculate absolute abundancies. Integration
of total cell counts by FACS detected a larger number of significant
changes in the compositional data of the microbiomes on the level of
families and genera. Although there is potential for errors, for example
due to high interindividual variance, the need of standards in cell
quantitation, and the lack of comparability between samples to
be sequenced on the one hand and the quantified microbiota on the other
hand (Jian et al., 2020), the presented benefits of improved data analysis
outweigh their drawbacks.
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SUPPLEMENTARY FIGURE 1

a-diversity of faecal microbiota upon tylosin treatment. (A) Normalized
number of species and (B) Shannon effective numbers of faecal microbiota
obtained by standard analysis of 16S rRNA gene sequencing data is shown a
line plot. Individual piglets are indicated by the corresponding colours.
Cumulative abundances were calculated from all single ASVs classified
within one family as per the best possible taxonomy using both RDP and
SILVA (# p < 0.05 after Paired Wilcoxon Signed Rank Sum Test, n = 6).

SUPPLEMENTARY FIGURE 2

Correction of 16S rRNA GCN and integration of bacterial cell counts into
relative abundance analyses of the phylum Pseudomonadota. (A) Relative
abundances of Pseudomonadota were obtained by standard analysis of 16S
rRNA gene sequencing data. (B) Same data set as panel A, but corrected for
GCN of the 16S rRNA genes. (C) Same data as in panel B, but absolute
abundances of Pseudomonadota were obtained by integration of bacterial cells
counts via flow cytometry. Relative and absolute abundances in the faecal
microbiota of each animal are shown in boxplots. Cumulative abundances
were calculated from all single ASVs classified within one phylum as per the
best possible taxonomy using both RDP and SILVA (# p < 0.05 after Paired
Wilcoxon Signed Rank Sum Test, n = 6).

SUPPLEMENTARY FIGURE 3

Influence of tulathromycin on the family level of porcine faecal
microbiota after integrating total cells or spike-in counts. Relative
abundances of bacterial families were obtained by standard analysis of
16S rRNA gene sequencing data including GCN correction (A columns).
The same data set as in A columns is shown after integrating total cell
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counts obtained from flow cytometry (B columns) and after calculating
absolute abundances of bacterial genera from spike-in DNA after
sequencing (C columns). Heat maps for the abundance fold change of
families following tulathromycin treatment are shown as mean values
over all six animals. Cumulative abundances were calculated from all
single ASVs classified within one family as per the best possible
taxonomy using both RDP and SILVA.

SUPPLEMENTARY FIGURE 4
Relative and absolute abundances of commensal genera in porcine
faecal microbiota. (A) Relative abundances of bacterial families obtained
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Seasonal variations and the
COVID-19 pandemic: impact on
antimicrobial stewardship and
antibiotic prescribing in a UK
secondary care setting to combat
antimicrobial resistance—a pilot
study

Rasha Abdelsalam-Elshenawy*, Nkiruka Umaru and
Zoe Aslanpour

School of Health, Medicine and Life Sciences, University of Hertfordshire, Hatfield, United Kingdom

Antimicrobial resistance (AMR) remains a significant global health challenge, exacerbated
by inappropriate antibiotic use, particularly during crises such as the COVID-19 pandemic.
This pilot study evaluates the impact of seasonal variations and the pandemic on
antimicrobial stewardship (AMS) practices in a UK secondary care setting. Using an
interrupted time-series analysis, the study examined antibiotic prescribing patterns
for respiratory tract infections (RTIs) during the pre-pandemic period of 2019 and the
pandemic year of 2020. Among the 80 admissions reviewed, communityacquired
pneumonia (CAP) was the most frequent diagnosis, with cases peaking at 15 in December
2019, illustrating the seasonal burden of RTls. AMS interventions were assessed using
the CARES framework, as recommended by the United Kingdom Health Security
Agency's (UKHSA) Start Smart, Then Focus toolkit. This CARES framework consists
of five key actions: Cease, which involves discontinuing antibiotics if no infection is
present; Amend, modifying antibiotic therapy based on clinical response or diagnostic
findings; Refer, consulting specialised services when additional expertise is required;
Extend, continuing antibiotic therapy with a documented review date; and Switch,
transitioning from intravenous to oral antibiotic therapy when clinically appropriate.
Notable shifts in AMS practices were observed, with Cease interventions increasing
from 5% in winter 2019 to 9% by early spring 2020, Amend actions briefly spiking
in March 2020, and Switch interventions peaking at 6% in spring 2020, reflecting
dynamic stewardship responses to the evolving pandemic landscape. While the
small sample size limits statistical power, a more extensive validation sample would
strengthen the robustness of the data extraction tool and enhance its credibility
for broader applications. Nevertheless, these findings highlight the importance of
adaptive, sustainable, and resilient AMS strategies that align with seasonal trends
to mitigate AMR risks and ensure effective healthcare delivery during public health
emergencies. The study highlights the value of pilot testing in ensuring feasibility
and reliability, advocating for the development of robust AMS frameworks to combat
AMR and build healthcare resilience during future global crises.

KEYWORDS

antimicrobial stewardship (AMS), antimicrobial resistance, COVID-19 pandemic, seasonal
variation, hospital, antibiotic stewardship (ABS), antimicrobial stewardship (ASP)
intervention, antibiotic prescribing

78 frontiersin.org


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1530414&domain=pdf&date_stamp=2025-03-28
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1530414/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1530414/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1530414/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1530414/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1530414/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1530414/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1530414/full
mailto:r.elshenawy@herts.ac.uk
https://doi.org/10.3389/fmicb.2025.1530414
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1530414

Abdelsalam-Elshenawy et al.

Introduction

Antimicrobial resistance (AMR) is a critical global health threat,
causing an estimated 4.71 million deaths in 2021, with mortality
trends varying significantly by age and region. Although AMR deaths
among children under five have decreased, rates among older adults
have sharply increased, driven largely by multidrug-resistant bacteria
such as methicillin-resistant Staphylococcus aureus and carbapenem-
resistant Gram-negative pathogens (Kariuki, 2024). Globally,
multidrug-resistant Acinetobacter baumannii has also emerged,
especially in Brazil, associated with invasive medical procedures,
antibiotic use, and severe infections (Silva et al., 2022). AMR threatens
progress towards the United Nations Sustainable Development Goals
(SDGs), particularly SDG 3, which aims to ensure healthy lives and
promote well-being for all (Jasovsky et al., 2016).

This hidden crisis necessitates immediate and sustained action to
prevent a future where common infections become untreatable and
medical procedures carry increased risks (World Health Organization,
2023). The introduction of penicillin in the 1920s marked a
transformative era in infection management, significantly reducing
mortality rates (Elshenawy et al., 2023a,b). However, despite these
advancements, inappropriate antibiotic prescriptions have driven the
rise of AMR (GOV.UK, 2024). Urgent and sustainable measures are
essential to combat AMR and preserve the effectiveness of antibiotics
(GOV.UK, 2024).

Seasonal variations significantly impact antibiotic prescribing
patterns, often resulting in higher rates of inappropriate antibiotic use,
particularly for conditions where antibiotics are rarely indicated.
Antibiotic prescribing increases notably during winter, frequently
without clear clinical justification, thereby exacerbating the AMR
crisis. Recognising these seasonal prescribing patterns provides
opportunities for targeted AMS interventions aimed at reducing
inappropriate antibiotic use and strengthening stewardship efforts
during critical periods (Serletti et al., 2023).

Antimicrobial stewardship (AMS) is a pivotal component of the
UK’s five-year strategy to effectively combat antimicrobial
resistance. Its implementation promotes judicious antibiotic use,
optimises treatment outcomes, and minimises resistance
(Elshenawy et al., 2023a,b). In 2015, Public Health England (PHE)
developed the “Start Smart, Then Focus” (SSTF) toolkit, a
structured, evidence-based approach guiding AMS practices in
inpatient care. The toolkit provides guidance for clinicians and
healthcare leaders to reduce AMR risks while maintaining high-
quality patient care. In 2023, the UK Health Security Agency
(UKHSA) updated the SSTF toolkit, emphasising timely and
responsible antibiotic use through the rapid initiation of effective
therapies. The SSTF approach consists of two key phases: Start
Smart, which focuses on the prompt and appropriate initiation of
antibiotic therapy, and Then Focus, which involves reviewing and
adjusting therapy based on clinical progress and diagnostic results.
Within the “Then Focus” phase, the toolkit outlines five essential
actions for clinicians to consider: Cease, discontinuing antibiotics
if there is no evidence of infection; Amend, modifying therapy to a
narrower or broader spectrum based on clinical findings; Refer,
consulting or referring to specialised services when necessary;
Extend, continuing treatment with a documented review or
specified stop date; and Switch, transitioning from intravenous to
oral antibiotics when appropriate. The 2023 update further
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reinforces the need for mandatory reviews within 24-72 h to ensure
appropriate prescribing and reduce unnecessary antibiotic use (UK
Health Security Agency, 2023). These measures are designed to
enhance patient outcomes, optimise antimicrobial use, and mitigate
the growing threat of AMR.

The COVID-19 pandemic significantly disrupted global
healthcare systems, leading to increased inappropriate antibiotic use
and rising AMR rates. There remains an urgent need to understand
AMS practices during crises that disrupt healthcare delivery,
particularly how AMS programs adapted to challenges such as staff
shortages, resource constraints, and altered clinical priorities. This
understanding is crucial for enhancing emergency preparedness and
ensuring healthcare systems sustain effective antibiotic prescribing
during future emergencies in secondary care settings (Elshenawy
et al., 2024a).

Therefore, understanding how both seasonal variations and global
crises influence antibiotic prescribing is essential for ensuring the
effectiveness of AMS initiatives and combating the growing threat of
AMR. This insight will be vital for developing robust AMS frameworks
capable of withstanding disruptions and ensuring optimal antibiotic
use during emergencies.

This pilot study aimed to evaluate the impact of seasonal
variations, particularly the rise in respiratory infections during winter,
and the COVID-19 pandemic on antibiotic prescribing patterns and
antimicrobial stewardship practices in a UK secondary care setting.
By comparing data collected before and during the pandemic. By
comparing AMS practices from 2019 as a baseline with those during
the 2020 crisis, the study sought to understand how AMS efforts were
maintained or disrupted. The ultimate goal is to provide practical
solutions and strengthen AMS practices to address the ongoing threat
of antimicrobial resistance.

Materials and methods
Study design and setting

This pilot study aimed to assess the combined impact of
seasonal variations and the COVID-19 pandemic on AMS practices
by comparing data collected before and during the pandemic.
Baseline data from 2019 served as a pre-pandemic reference, with
measurements taken during the first week of March, June,
September, and December. The exact periods were analysed in
2020, coinciding with UK national lockdowns and the initial
rollout of COVID-19 vaccines in December 2020 (Institute for UK
Government, 2022). Utilising an interrupted time-series approach,
the study accounted for seasonal variations in antibiotic
prescribing. This retrospective medical records review was
conducted from 1 August 2021 to 28 February 2023 at a single
National Health Service (NHS) Foundation Trust in the East of
England, which serves a population of approximately 700,000
across 742 beds. The study focused on adult patients aged 25 years
and above, aiming to assess AMS implementation and antibiotic
prescribing patterns in 2019 (pre-pandemic) and 2020 (during the
pandemic). The evaluation included AMS strategies outlined in the
“Then Focus” phase, which emphasise examine Antimicrobial
review outcomes based on the CARES framework and
clinical progress.
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Study population (inclusion/exclusion
criteria)

A stratified sampling strategy was employed to ensure maximum
diversity among the included medical records. The inclusion criteria
comprised adult patients aged 25 years and older, pregnant women,
and immunocompromised individuals admitted to the Trust in 2019
and 2020. Only those prescribed antibiotics for RTIs, including
pneumonia, were included in the study. Patients who spent less than
48-72 h in the Accident & Emergency (A&E) department were not
prescribed antibiotics, or paediatric patients were excluded. This
approach ensured a diverse and representative sample for evaluating
antimicrobial stewardship practices.

The public and patient involvement included submitting the study
protocol to the Citizens Senate, which provided valuable feedback and
suggestions. This study was registered with the International Standard
Randomised Controlled Trial Number (ISRCTN 14825813) and with
Octopus, the global primary research registry (ISRCTN, 2022;
Elshenawy, 2023). Ethical approval was granted by the University of
Hertfordshire Ethics Committee and the Health Research Authority
(HRA). Public and patient involvement included submission of the
study protocol to the Citizens Senate, which provided valuable
feedback and recommendations.

Data sources and variables

In this retrospective cross-sectional study, patients were selected
using electronic health records (EHRs) based on ICD-10 codes
indicative of respiratory tract infections (RT1s). This included a range
of conditions, encompassing both specific and indeterminate
diagnoses. Specific conditions included community-acquired
pneumonia (CAP), infective exacerbation of chronic obstructive
pulmonary disease (COPD), hospital-acquired pneumonia (HAP),
and ventilator-associated pneumonia (VAP). In 2020, the selection
criteria were expanded to incorporate cases of COVID-19 pneumonia.
Additionally, indeterminate diagnoses such as upper respiratory tract
infections (URTTs), lower respiratory tract infections (LRTIs), and
unspecified pneumonia were categorised as “Unspecific” RTIs. The
primary diagnosis of RTIs in these records was crucial in determining
the initial or empirical antibiotic prescribed to patients.

Utilising Minitab Statistical Software Version 21.1.0, and based on
Public Health England’s estimation that 20% of all antibiotics
prescribed in the UK might be inappropriate, with a 10% margin of
error and a 95% confidence interval, the required sample size was
determined (Public Health England, 2018). Data were randomly
selected using Excel’s RAND function, resulting in a total of 80 patient
records (40 from 2019 and 40 from 2020). This approach streamlined
the sampling process while ensuring a comprehensive representation
of the patient population. The primary author (RAE) extracted data
from the EHRSs, strictly adhering to the established inclusion and
exclusion criteria. The extracted data included demographic
characteristics and antibiotic prescribing practices, evaluated using the
antimicrobial stewardship “Start Smart, Then Focus” Toolkit, which
served as the study’s gold standard (UK Health Security Agency, 2023).

To validate the data extraction tool, two independent authors each
extracted data from 10% of the sample (four patient records) per year,
totalling eight records. An agreement rate of 80% or higher was
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required to confirm the tool’s validity (Price, 2018). For reliability
assessment, both authors independently extracted data from 10%
(eight records), and inter-rater reliability was determined by the
percentage agreement. Discrepancies were resolved through discussion.

Data collection

Data were collected from the medical records of 80 patients within
the Foundation Trust in accordance with the specified inclusion and
exclusion guidelines. Data were gathered from eight time points,
specifically the first week of each selected month. The four pre-pandemic
time points included: (i) March 2019 (Spring); (ii) June 2019 (Summer);
(iii) September 2019 (Autumn); and (iv) December 2019 (Winter).
Additionally, four pandemic time points were selected: (i) March 2020
(Spring)—the first wave of COVID-19; (ii) June 2020 (Summer)—the
first lockdown; (iii) September 2020 (Autumn)—the second wave of the
pandemic; and (iv) December 2020 (Winter)—the vaccination rollout.
This approach ensured that data collection was consistent and accounted
for seasonal variations and key phases of the COVID-19 pandemic.

Data extraction

The primary author developed the data extraction tool by
reviewing relevant literature and the UKHSA Toolkit. The authors
collaboratively discussed and agreed upon the elements to be included
in the tool. To extract data from patients meeting the inclusion
criteria, access to the Trust’s electronic health system was necessary.
Prior to commencing data extraction, the primary author completed
training modules for these systems and subsequently gained access.
The AMS data extraction tool encompassed demographic information,
primary diagnosis, SSTF criteria, and AMS practices. This tool was
employed to gather the required information from patients’ medical
records, with each extraction taking approximately 45 min. This
structured approach ensured the accurate and efficient collection of
data necessary for assessing antimicrobial stewardship practices.

Statistical methods

Descriptive analyses were conducted to summarise the data.
Categorical and binary variables—including sex, age, admission
speciality, patient classification, and types of AMS interventions—
were presented as numbers (1) and proportions (%). Continuous
variables with non-normal distributions were summarised using
mean and standard deviation (SD). AMS implementation was assessed
using the AMS Toolkit and further evaluated using the Start Smart
Then Focus toolkit (UK Health Security Agency, 2023). Decisions
made following this review were utilised to determine the type of AMS
intervention. All statistical analyses were performed using Microsoft
Excel 2019 for Windows (Microsoft, 2019).

Results

Table 1 summarises the demographic characteristics and
admissions of 80 patients. The cohort included 39 males (49%) and 41
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females (51%), with a mean age of 76 + 14.8 years, ranging from 26 to
99 years. Most patients were admitted to General Medicine (39
patients) and Elderly Medicine (18), with smaller numbers in Surgery
(7), Cardiology (3), Respiratory Medicine (3), Accident & Emergency
(1), and Others (1). The majority were urgent admissions (76 patients),
while 4 were ordinary and routine admissions.

Figure 1 illustrates the number of respiratory tract infection (RTT)
admissions during the first week of March, June, September, and
December in both 2019 and 2020. Notably, admissions peaked in the
first week of December 2019 with 15 cases. Although December 2019
marks the initial global emergence of the COVID-19 pandemic, the
first confirmed COVID-19 case in the UK was reported in January
2020. Therefore, the December 2019 peak may not be directly
attributable to COVID-19 within the UK context and could instead
reflect typical seasonal variations or other factors influencing RTI
admissions during that period. In the first week of March 2020,
admissions decreased to 10, followed by a further decline to 9 in both
June and September 2020. There was a slight increase in the first week
of December 2020, with admissions rising to 11 cases. This pattern
indicates fluctuations in RTT admissions that correlate more closely
with the early stages and progression of the COVID-19 pandemic in
the UK, particularly from January 2020 onward, rather than the initial
global onset in December 2019.

Table 2 below compares the length of stay (LOS) in 2019 and 2020.
The average LOS was almost the same between 2019 and 2020. The SD
was 16 in 2019, while in 2020, the SD was 13.

Figure 2 presents the number of respiratory tract infection (RTT)
admissions from March 2019 to December 2020, categorised by
diagnosis and totalling 80 admissions. Community acquired
pneumonia (CAP) was the most frequent, with 24 admissions,
peaking at 5 in December 2020. Non-specific diagnoses (URTI,
pneumonia) followed with 23 admissions, peaking at 6 in June 2020.
Hospital acquired pneumonia (HAP) had 10 admissions, with peaks
of 3 in both March and June 2020. Ventilator pneumonia (VAP) had
six admissions, with 3 in June 2019. Bronchiectasis also had six
admissions, evenly spread. COVID-19 pneumonia accounted for five

TABLE 1 Demographic characteristics and admissions (n = 80).

Characteristics Admissions
(n = 80)
Sex Male (%) 39 (49%)
Female (%) 41 (51%)
Admission General medicine 39
specialty Elderly medicine 18
Surgery 7
Cardiology 3
Respiratory medicine 3
Accident & emergency 1
Others® 1
Patient Ordinary and routine admission 4
classification” Urgent admission 76

“The “other” consultant specialities include endocrinology, diabetic medicine, acute internal
medicine, thoracic medicine, neurology, and rheumatology.

Ordinary admissions are planned and elective, while urgent admissions require immediate
hospitalisation, often through accident & emergency (A&E), for acute illness or emergencies.
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admissions, peaking at 2 in March 2020. COPD infective exacerbation
had four admissions, while viral pneumonia had the lowest frequency
with two admissions, one each in March and September 2019.

Figure 3 illustrates the seasonal and monthly trends in
antimicrobial stewardship (AMS) practices—Cease, Amend, Refer,
Extend, and Switch—from spring 2019 (March) to winter 2020
(December). During the winter of 2019 (December), Cease actions
were at 5%, peaking in early spring 2020 (March) at 9%, coinciding
with the onset of the COVID-19 pandemic, before sharply declining
to 1% by winter 2020 (December). A similar pattern was observed
with Amend actions, which rose from 7% in winter 2019 (December)
to 8% in early spring 2020 (March) and then declined to 2% by the end
of winter 2020 (December). Throughout all seasons, the Refer and
Extend actions remained consistently low, fluctuating between 1 and
3%. The Switch category, which indicates efforts to transition patients
from intravenous to oral antibiotics, reached its peak of 6% in early
spring 2020 (March) before decreasing to 1% by the winter of 2020
(December).

Discussion

The findings from this pilot study provide valuable insights into
the impact of the COVID-19 pandemic on antimicrobial stewardship
practices in a secondary care setting in the UK. This study utilised an
interrupted time-series analysis to compare antibiotic prescribing
patterns before (2019) and during (2020) the pandemic, focusing on
respiratory tract infections.

With regards to the demographic characteristics and admissions,
this study included 80 patient admissions, with a balanced gender
distribution (49% male, 51% female) and a mean age of 76 years. The
majority of admissions were for general medicine (39) and elderly
medicine (18), reflecting the high vulnerability of these groups to RTTs
and the critical need for effective AMS practices in these areas. The
pre-dominance of urgent admissions (76 out of 80) highlights the acute
nature of these cases and the necessity for prompt and appropriate
antibiotic use. A meta-analysis of 59 studies from the Netherlands in
2020, involving 36,470 patients, found that men and individuals aged
70 and above face higher risks of COVID-19 infection, severe disease,
ICU admission, and death. The study highlights significant age and sex
disparities in COVID-19 outcomes (Pijls et al., 2021).

Findings from this study illustrate the fluctuations in RTI
admissions across eight time points in 2019 and 2020. The data shows
a peak in admissions in December 2019, followed by a decline
throughout 2020. While December 2019 marks the initial global
emergence of COVID-19, the first confirmed case in the UK was
reported in January 2020 (GOV.UK, 2022). Therefore, the peak in
December 2019 may not be directly attributable to COVID-19 within
the UK context but could instead reflect typical seasonal variations or
other factors influencing RTT admissions during that period. As
COVID-19 cases surged in the UK from early 2020 onward, several
factors likely influenced the decline in RTI admissions. Increased
awareness and testing for respiratory symptoms, changes in patient
behaviour due to lockdowns, and restricted access to healthcare
services may have contributed to this downward trend (Institute for
UK Government, 2022). This pattern is consistent with findings from
a 2020 study in the United States, which revealed a 33.7% decrease in
daily hospital admissions for urgent conditions during the COVID-19
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TABLE 2 Length of stay in days (2019-2020).

Length of stay in days 2019 2020
Mean 16 15
Median 11 10
Range 1-119 1-97
Standards deviation 16 13

pandemic compared to 2019. Significant declines were observed in
gastroenterology (—29.6%) and cardiovascular (—44.7%) admissions.
These trends emphasise the critical importance of public awareness
campaigns aimed at reassuring the public about the safety of seeking
necessary medical care during pandemics. Ensuring that individuals
feel safe to access healthcare services is essential to prevent declines in
admissions for non-COVID-19 related urgent conditions, thereby
maintaining overall healthcare system effectiveness and patient safety
(Oseran et al., 2020).

For the LOS, the average LOS remained consistent between 2019
and 2020, with a mean of 15-16 days. However, the standard
deviation decreased from 16 in 2019 to 13 in 2020, indicating a slight
reduction in the variability of hospital stays during the pandemic.
This could reflect more standardised treatment protocols or the
impact of pandemic-related healthcare policies on patient
management. A 2022 study in China examined 563,680 emergency
admissions in 2020 and 709,583 in 2019, finding that the COVID-19
pandemic increased 28-day in-hospital mortality from 2.9 to 3.6%.
The first and third waves had significantly higher mortality than
inter-wave periods. The average length of stay decreased by 0.40 days,
notably shorter for patients with mental disorders and cerebrovascular
disease (Xiong et al., 2021).
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The Centers for Disease Control and Prevention (CDC) report
that during the COVID-19 pandemic, antibiotic prescribing in
hospitals surged, with nearly 80% of COVID-19 admissions receiving
antibiotics despite low rates of bacterial co-infections. While
antibiotics and antifungals are essential for saving lives, their
inappropriate use significantly contributes to increasing antimicrobial
resistance (Centers for Disease Control and Prevention, 2021). For
example, antibiotic misuse has been linked to the global rise of
multidrug-resistant Pseudomonas aeruginosa (MDRPA) (Hayati
etal., 2023).

Although overall antibiotic use decreased by August 2021
compared to 2019, prescriptions for specific antibiotics, such as
azithromycin and ceftriaxone, increased, often being prescribed
together. This trend likely reflects challenges in distinguishing
COVID-19 from community-acquired pneumonia upon admission
(Elshenawy et al., 2023a,b). Importantly, effective AMS strategies were
implemented during the pandemic, aiding in maintaining appropriate
antibiotic use and mitigating AMR risks. Sustained robust AMS
practices are essential to ensure appropriate antibiotic prescribing and
combat AMR in ongoing and future health crises (Elshenawy
et al., 2024b).

For RTI diagnoses and antibiotic use, CAP was the most common
diagnosis across the study period, with significant cases of HAP and
non-specific RTIs. The emergence of COVID-19 pneumonia cases in
2020 highlights the direct impact of the pandemic on respiratory
infection trends. The variability in diagnoses emphasises the
challenges of maintaining precise AMS during a health crisis,
emphasising the need for robust diagnostic and treatment protocols.
As an example of pneumonia education, a Continuing Education
Activity in Australia in 2024 highlights the complexities of bacterial
pneumonia, including its symptoms, complications, and long-term
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impacts (Sattar et al., 2024). This module highlights a multidisciplinary
approach to managing the disease, offering practical strategies for
diagnosis, treatment, and patient care. It aims to enhance clinician
knowledge, improve patient outcomes, and promote a cohesive
healthcare approach.

Additionally, the protocol preparation adheres to national and
international guidelines, including NICE guidelines, and incorporates
results from local antibiograms (Sattar et al., 2024; NICE Guidelines,
2019). It is frequently updated with changes in local or national
resistance patterns, clinical situations, or emergencies such as the
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COVID-19 pandemic. Updated protocols and antimicrobial
guidelines should be properly disseminated to healthcare professionals
to maintain proper antibiotic prescribing and antimicrobial
stewardship practices (National Institute for Health and Care
Excellence, 2023).

The COVID-19 pandemic posed significant challenges to
maintaining optimal antibiotic stewardship. The consistent use of
documentation for clinical indications and drug allergies is
commendable, but the variability in other AMS interventions points
to the need for strengthened protocols and continuous monitoring.
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These findings align with the study conducted in Spain in 2021, which
reported increased inappropriate antibiotic use during the COVID-19
pandemic, highlighting a significant rise in inappropriate prescriptions
and exacerbating antimicrobial resistance concerns (Calderon-Parra
etal., 2021).

The seasonal and monthly trends observed in AMS practices
reveal notable variations, particularly in response to the COVID-19
pandemic. Figure 3 shows that Cease actions, which indicate a
complete cessation of antibiotic use, peaked at 9% in March 2020
and declined to 1% by December 2020. This increase in March
aligns with the pandemic’s onset, reflecting heightened caution and
AMS efforts during the crisis. Similarly, Amend actions peaked in
March 2020 before tapering off, indicating that initial adjustments
to antimicrobial treatments were made in response to the pandemic.
The trends observed in this study align with findings from other
studies. For example, the research on respiratory tract diagnoses in
the United States found that antibiotic prescribing increased
significantly during winter, driven by diagnoses where antibiotics
were only sometimes or rarely indicated (Serletti et al., 2023). This
pattern mirrors the peaks in AMS actions observed in the present
study during the winter months of December 2019 and early spring
2020, which coincided with the pandemic onset.

Furthermore, the consistency of low Refer and Extend actions
across all seasons, as seen in this study, suggests minimal referrals
or extensions of treatment during the study period. A similar
pattern of minimal seasonal variations in certain AMS actions was
reported in the Netherlands’ study, which found that antimicrobial
resistance rates in Streptococcus pneumoniae were higher in winter
due to increased antibiotic use, similar to the peaks observed in this
study (Martinez et al., 2019). The increased Switch actions in early
spring 2020 indicate efforts to transition patients from intravenous
to oral antibiotics, aligning with AMS goals to reduce inpatient
antibiotic use. However, the subsequent decline in Switch actions
reflects a stabilisation of AMS efforts as healthcare providers
adapted to the ongoing pandemic challenges. Seasonal peaks of
antimicrobial-resistant pathogens, such as vancomycin-resistant
enterococci (VRE) and methicillin-resistant Staphylococcus aureus
(MRSA) peaking in spring and Klebsiella pneumoniae and
ciprofloxacin-resistant E. coli in summer, suggest the need for
season-specific AMS strategies (Cassone et al., 2021). These findings
emphasise the importance of understanding seasonal AMS trends
to enhance stewardship strategies. The findings from this pilot study
revealed that AMS practices were intensified during the pandemic
and exhibited seasonal variations. This highlights the importance
of implementing targeted interventions to address inappropriate
prescribing and enhance AMS efforts consistently across
healthcare settings.

This pilot study also acknowledges that incorporating detailed
virological and microbiological data would enhance the
interpretation of AMS interventions. In this pilot, only 5 out of 80
(6%) admissions were documented as COVID-19 pneumonia, while
many records contained incomplete virology or microbiology data,
limiting the ability to establish direct correlations between specific
pathogens and prescribing interventions. This constraint highlights
the need for future research to integrate comprehensive PCR and
microbiological testing to provide a more detailed understanding
of AMS practices in response to pathogen-specific infections.
However, the primary aim of this study was to assess the feasibility
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of the data extraction tool and evaluate broader AMS patterns,
rather than conduct an in-depth microbiological analysis. These
findings highlight the necessity of future large-scale studies with
improved microbiological reporting to refine AMS strategies
further and ensure a more targeted approach to antibiotic
prescribing, particularly during global health crises such as the
COVID-19 pandemic.

Strengths and limitations

This study has several strengths and limitations that influence
its findings. One key strength is the role of pilot testing, which
ensured feasibility, validity, and reliability in the study’s design and
execution. The research highlights the impact of the COVID-19
pandemic on AMS practices, particularly in relation to seasonal
variations, providing valuable insights to promote resilient and
sustainable AMS frameworks, support rational antibiotic use, and
address the global threat of antimicrobial resistance. The use of a
validated data extraction tool and interrupted time-series analysis
added rigour to the understanding of changes in AMS practices
during the pandemic.

The study’s small sample size and single-centre scope limit
generalisability. However, pilot studies play a critical role in testing
feasibility and refining data collection tools before larger investigations.
This study was designed as a pilot project to assess the reliability of a
data extraction tool and evaluate trends in AMS practices. The
manuscript explicitly identifies this as a pilot study to ensure clarity
regarding its scope. Additionally, subsequent research, referenced in
the Discussion, has since expanded the sample size and coverage,
further addressing the feasibility findings of this pilot. Such pilot data
are valuable for guiding resource allocation and justifying multi-centre
or multi-year expansions. Pilot studies help optimise research
methodologies, ensuring that future large-scale investigations are
methodologically sound and effectively address antimicrobial
stewardship challenges.

Despite these limitations, the study provides important insights
into seasonal AMS variations during a global health crisis,
demonstrating the necessity of tailored AMS strategies that adapt to
seasonal and pandemic-driven disruptions in antibiotic prescribing.
Future research should incorporate larger, multi-centre, and multi-
year studies while also considering factors such as healthcare provider
workload and hospital capacity, which may influence AMS adherence.

Conclusion

This pilot study highlights the significant impact of the
COVID-19 pandemic on AMS practices in a UK secondary care
setting, particularly in relation to seasonal variations. Using
interrupted time-series analysis, it examined antibiotic prescribing
patterns for respiratory infections during the pre-pandemic period
in 2019 and the pandemic period in 2020. Among the 80
admissions reviewed, community-acquired pneumonia was the
most frequent diagnosis, with admissions peaking at 15 cases in
December 2019, reflecting the seasonal burden of RTIs. During the
pandemic, AMS interventions demonstrated notable shifts: Cease
actions increased from winter 2019 to early spring 2020, Amend
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actions briefly spiked in March 2020, and Switch actions peaked in
spring 2020. These findings highlight the need for targeted and
adaptable AMS strategies to address seasonal trends and global
health crises. Aligning AMS efforts with seasonal patterns and
establishing robust, sustainable AMS frameworks are essential to
saving lives and maintaining effective healthcare during global
emergencies. Furthermore, the study emphasises the importance
of pilot testing in ensuring research feasibility and reliability,
ultimately advocating for sustainable AMS frameworks to combat
antimicrobial resistance.
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Introduction: Candida glabrata is a prevalent opportunistic fungal pathogen in
humans, and fluconazole (FLC) is one of the most commonly used antifungal
agents. However, the molecular mechanisms underlying FLC tolerance in C.
glabrata remain largely unexplored.

Objective: This study aims to identify novel mechanisms regulating FLC
tolerance, with a particular focus on tunicamycin (TUN)-induced respiratory
deficiency.

Methods: We employed three distinct experimental approaches to investigate
the impact of TUN on FLC tolerance: (1) co-treatment with TUN and FLC,
(2) exclusive exposure to TUN, and (3) induction of petite formation through
alternative methods. Additionally, gene expression analyses were conducted
to evaluate the regulation of key genes involved in the ergosterol biosynthesis
pathway.

Results: Our findings reveal that TUN exposure significantly abolishes FLC
tolerance in C. glabrata, primarily through the induction of petite formation,
which is characterized by mitochondrial dysfunction. Notably, TUN treatment
resulted in the downregulation of critical ergosterol biosynthesis genes, including
ERGI and ERGI11, indicating a metabolic shift in response to endoplasmic
reticulum (ER) stress. Furthermore, both TUN-induced and ethidium bromide-
induced petites displayed cross-resistance to TUN and FLC but showed reduced
tolerance to FLC.

Conclusion: These results underscore the pivotal role of TUN-induced ER
stress in modulating FLC tolerance via respiratory deficiency and alterations in
ergosterol metabolism. Our study emphasizes the importance of mitochondrial
integrity in maintaining drug tolerance in C. glabrata and suggests potential
therapeutic strategies targeting metabolic pathways associated with antifungal
tolerance. A deeper understanding of these mechanisms may enhance our
capacity to effectively combat fungal infections.

KEYWORDS

Candida glabrata, fluconazole tolerance, fluconazole resistance, petite, tunicamycin

87 frontiersin.org


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1528341&domain=pdf&date_stamp=2025-04-28
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1528341/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1528341/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1528341/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1528341/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1528341/full
mailto:gls2135@sina.com
https://doi.org/10.3389/fmicb.2025.1528341
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1528341

Zheng et al.

Introduction

The incidence of opportunistic fungal infections has been steadily
increasing in recent years, particularly among immunocompromised
individuals such as those with HIV/AIDS, cancer patients undergoing
chemotherapy, and organ transplant recipients. Among these
pathogens, Candida species are significant contributors to morbidity
and mortality (Fisher et al., 2022). Epidemiological studies indicate
that C. glabrata is one of the most frequently isolated Candida species
in clinical settings, surpassing C. albicans in certain patient
populations (Lamoth et al., 2018). The rise of C. glabrata infections is
concerning, as this yeast demonstrates intrinsic resistance to many
antifungal agents and exhibits an alarming capability for acquiring
resistance during treatment. This shift highlights the urgent need for
effective therapeutic strategies and a deeper understanding of the
molecular mechanisms underlying drug tolerance and resistance
(Brunke and Hube, 2013).

Fluconazole (FLC) has long been a cornerstone of antifungal
therapy due to its broad-spectrum activity against various Candida
species, including C. glabrata. It is widely used for both prophylactic
and therapeutic purposes in treating candidiasis. However, the
emergence of FLC-resistant strains poses a significant challenge to
successful treatment outcomes (Lee et al., 2023).

In addition to drug resistance, characterized by elevated minimum
inhibitory concentrations (MIC) of antifungal agents, a new term—
antifungal tolerance—has recently been introduced to describe the
ability of drug-susceptible fungal strains to grow slowly in the presence
of supra-MIC concentrations of these agents (Rosenberg et al., 2018;
Berman and Krysan, 2020). FLC tolerance can be assessed using disk
diffusion assays, where FLC-susceptible strains exhibit an obvious
zone of inhibition (ZOI). In these assays, photographs of the plates are
analyzed using the diskImageR pipeline. The level of drug resistance is
measured by the radius of ZOI (RAD), while tolerance is evaluated
based on the fraction of growth (FoG) within the ZOI (Gerstein et al.,
2016; Berman and Krysan, 2020). While FLC tolerance has been best
studied in C. albicans, it is noteworthy that C. glabrata is more closely
related to Saccharomyces cerevisiae than to other Candida species,
sharing significant genetic and evolutionary similarities. This
relationship sets C. glabrata apart within the Candida genus and
influences our understanding of its biology, pathogenicity, and
response to antifungal treatments (Roetzer et al., 2011).

We have recently demonstrated that FLC tolerance exists in wild-
type C. glabrata isolates and can be induced by exposure to
FLC. Furthermore, similar to findings in C. albicans, we showed that
FLC tolerance in C. glabrata is dependent on the heat shock protein
Hsp90 and calcineurin (Zheng et al., 2024b). However, the factors
modulating FLC tolerance in C. glabrata remain largely unknown.

Tunicamycin (TUN) is a widely used inducer of endoplasmic
reticulum (ER) stress. TUN inhibits UDP-N-acetylglucosamine-
dolichol phosphate N-acetylglucosamine-1-phosphate transferase
(GPT), thereby blocking the initial step of glycoprotein biosynthesis in
the ER. This inhibition leads to the accumulation of unfolded
glycoproteins in the ER, triggering ER stress (Lee, 1992). TUN has
been linked to drug resistance in both mammalian and yeast cells.
Specifically, the inhibition of glycosylation by TUN sensitizes
multidrug-resistant (MDR) gastric cancer cells to TUN-induced cell
death (Wu et al., 2018), as well as enhancing the sensitivity of MDR cell
lines, such as NIH-3T3 and KB-8-5-11, to a range of chemotherapeutic
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agents (Hiss et al., 1996). In the diploid fungal pathogen Candida
albicans, TUN induces amplification of chromosome 2, which results
in the upregulation of several genes associated with tolerance to
caspofungin, the first-line antifungal drug. This genetic adaptation
potentiates cross-tolerance to both TUN and caspofungin (Yang et al.,
2021). In the haploid fungal pathogen Cryptococcus neoformans, TUN
induces formation of multiple aneuploid karyotypes, and some
aneuploids, including disomy of chromosome 1 and chromosome 4,
are cross-resistant to TUN and FLC (Zheng et al., 2024a). Previous
studies have demonstrated that TUN can serve as an adjuvant to
eliminate FLC tolerance in C. albicans; however, the underlying
mechanism remains unexplored (Rosenberg et al., 2018). In this study,
we investigated the effect of TUN on FLC tolerance in C. glabrata and
sought to elucidate the mechanisms involved.

Materials and methods
Strains and growth conditions

The C. glabrata FLC-tolerant isolates CG4 and CG8, and the
non-tolerant reference strain BG2 served as the progenitors for this
study. The profile of FLC tolerance in CG4 has been detailed in our
previous report (Zheng et al., 2024b). Stock cultures were preserved
in 25% glycerol and stored at —80°C. Cells were routinely cultured in
Yeast Extract-Peptone-Dextrose (YPD) medium, which contains 1%
(w/v) yeast extract, 2% (w/v) peptone, and 2% (w/v) D-glucose, at
30°C using a shaking incubator set to 150-200 rpm. For YPG
medium, the composition included 1% (w/v) yeast extract, 0.2% (w/v)
peptone, and 3% (w/v) glycerol, with 2% (w/v) agar added for solid
media. Drug solutions were prepared in dimethyl sulfoxide (DMSO)
and stored at —20°C.

Disk diffusion assay

Disk diffusion assays were performed according to the protocols
outlined in our previous studies (Guo et al., 2024; Zheng et al., 2024b;
Zheng et al., 2024c), following the CLSI M44-A2 guidelines for
antifungal disk diffusion susceptibility testing (CLSI, 2009), with minor
modifications. Briefly, strains were streaked from glycerol stocks onto
YPD agar plates and incubated at 30°C for 48 h. Colonies were then
suspended in distilled water and adjusted to a concentration of 1 x 10°
cells/mL. A volume of 100 pL of this cell suspension was evenly spread
across YPD plates. An empty paper disk (6 mm diameter and 0.7 mm
thickness) was saturated with 5 pL of 40 mg/mL FLC and placed at the
center of each plate. The plates were subsequently incubated at 30°C
and photographed after 48 h. The analysis of the disk diffusion assay
was conducted using the diskImageR pipeline (Gerstein et al., 2016),
measuring parameters such as the fraction of growth within the zone
of inhibition (FoG) and the radius of inhibition (RAD).

Selection of colonies from the inhibition
zone on YPD + TUN plates

For the isolation process, cells were suspended in distilled water
and carefully adjusted to a concentration of 1x10° cells/
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mL. Subsequently, 100 pL of this cell suspension was evenly spread
onto a YPD plate supplemented with 1 pg/mL TUN. An empty paper
disk saturated with 5 pL of 40 mg/mL FLC was placed at the center of
the plate.

Following an incubation period of 48 h at 30°C, four colonies
were randomly selected from within the ZOI for further examination.
These chosen colonies were streaked onto fresh YPD plates and
underwent an additional 48-h incubation. From each replicate, a
single colony was then meticulously chosen to progress to the
subsequent stage of meticulous analysis and exploration.

Acquiring adaptors through elevated
tunicamycin concentrations

The cells were suspended in distilled water and adjusted to a
concentration of 1 x 107 cells/mL. Subsequently, 100 pL of this cell
suspension was evenly spread on YPD plates supplemented with
TUN. The plates were then incubated at 30°C for a duration of 5 days,
after which adaptors were randomly chosen from the drug-
treated plates.

Spot assay

Cells were suspended in distilled water and adjusted to a
concentration of 1x 107 cells/mL. A volume of 3 pL of the cell
suspension was spotted onto YPD or YPG plates. For testing
susceptibility to TUN, 3 pL of 10-fold serial dilutions were spotted on
YPD plates containing 8 pg/mL TUN. The plates were incubated at
30°C and photographed after 48 h.

Induction of petite formation using
ethidium bromide

The technique for inducing petite formation with Ethidium
bromide (EtBr) was adapted from Fox et al. (1991) with slight
modifications. Thawed test strains were streaked onto YPD plates
and incubated at 30°C for 48 h. A single colony was then inoculated
into YPD broth with 25 pg/mL EtBr, followed by transfer to a
second culture with the same medium. Saturated cultures were
streaked onto YPD plates to isolate colonies, which were
subsequently streaked onto YPD and YPG plates to confirm
respiratory deficiency.

RNA extraction, synthesis of
complementary DNA and quantitative
real-time PCR

To compare between progenitor and petite strains, they were
cultured in YPD broth until reaching the logarithmic phase
(ODgy = 1.0). To assess the effect of TUN on gene expression, the
logarithmic phase cultures were split into two groups. One group
received 8 ug/mL TUN supplementation, while the other was
supplemented with an equivalent amount of vehicle. After a 3-h
incubation period, the cells were harvested by centrifugation.
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Total RNA was extracted using YeaStar RNA kit (Zymo Research)
following the manufacturer’s guidelines. The RNA concentration and
purity were evaluated with a spectrophotometer (NanoDrop 2000C;
ThermoFisher Scientific) through absorbance measurements at
230 nm (OD,3), 260 nm (OD,g), and 280 nm (OD,g). Additionally,
RNA integrity was confirmed by electrophoresis on 1% denaturing
and non-denaturing agarose gels in selected samples.

The RNA samples were treated with DNase I (ThermoFisher
Scientific) at 37°C for 30 min following the manufacturer’s protocol.
Approximately 1 pug of total RNA underwent reverse transcription
(RT) using High Capacity ¢cDNA Reverse Transcription Kit
(ThermoFisher Scientific).

The expression of candidate genes was quantified by real-time
RT-PCR using the CFX96 Touch Real-Time PCR system (Bio-Rad).
The housekeeping ACTI was used as internal control. The relative
quantification of gene expression was performed by the 274" method
(Schmittgen and Livak, 2008). Each reaction was performed in
triplicate, and mean values of relative expression were determined for
each gene. Primers are listed in Supplementary Table S1.

Measurement of FLC minimal inhibitory
concentration

The experiment was performed according to the Clinical and
Laboratory Standards Institute (CLSI) recommendations (CLSI, 2017)
with slight modifications. Briefly, yeast cells were harvested during the
logarithmic growth phase, washed twice with sterile distilled water,
and resuspended in distilled water. The cell density was adjusted to a
final concentration of 2.5 x 10° cells/mL in YPD broth supplemented
with fluconazole (FLC) at concentrations ranging from 0.125 to
128 pg/mL. The cell suspensions were then aliquoted into 96-well
microtiter plates, with each well containing 200 pL of the suspension.
The plates were incubated at 30°C for 24 h under static conditions.
After incubation, the optical density at 600 nm (OD600) was
measured using a microplate reader to quantify cell growth. Each
condition was tested in triplicate to ensure reproducibility, and control
wells containing YPD broth without FLC were included to account for
background growth.

Multilocus sequence typing

Multilocus sequence typing (MLST) analysis was conducted as
previously described by Dodgson et al. (2003). Six loci (FKS, LEU2,
NMT1, TRPI, UGP1, and URA3) were amplified using the primers
specified in Dodgson et al. (2003). PCR reactions were carried out in
20-pL volumes containing 5 ng of genomic DNA, 10 pL of 2 x Phusion
Green Hot Start IT High-Fidelity PCR Master Mix (Fisher Scientific),
and 0.1 pM of each primer. The amplified products were sequenced
bidirectionally (forward and reverse) using the same primers as those
employed for the PCR amplification.

Statistical analysis

All disk diffusion assays represent the average of three technical
replicates, with error bars indicating the standard deviation. Statistical
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analyses were conducted using a two-tailed Student’s t-test in
Microsoft Excel. A p-value of less than 0.05 was considered
statistically significant. ** indicates p <0.01, and *** indicates
p <0.001.

Results

Tunicamycin disrupts fluconazole
tolerance in clinical isolates of Candida
glabrata without affecting resistance

In our study, we evaluated the effects of TUN on the FLC tolerance
of three clinical isolates of C. glabrata. Each isolate exhibited a notable
tolerance to FLC, as evidenced by the presence of significant lawn
growth within ZOL In a pilot experiment, we tested the effect of
various concentrations of TUN on FLC tolerance in CG4. We found
that 0.5 pg/mL of TUN did not abolish FLC tolerance, whereas 1 and
2 pug/mL concentrations effectively eliminated FLC tolerance. At 4 pg/
mL, the growth of most cells on the plate was inhibited
(Supplementary Figure S1). Based on these results, we selected 1 pg/
mL of TUN to assess its impact on FLC tolerance in CG4, as well as in
two other C. glabrata isolates, CG8 and CG10.

Upon the supplementation of 1 pg/mL TUN, a marked change in
the response was observed in all the 3 isolates: the ZOI became clear,
indicating a loss of FLC tolerance (Figure 1, top panel).

Quantitative assessments revealed that a concentration of TUN at
1 pg/mL led to a significant decrease of FoG,, values across all three
tested isolates, with statistical significance confirmed (p <0.001,
two-tailed Student’s t-test). Interestingly, while TUN effectively
diminished FLC tolerance, it did not appear to affect the RAD,,
(Figure 1, bottom panel), indicating that TUN’s mechanism of action

10.3389/fmicb.2025.1528341

primarily targets pathways associated with tolerance rather than
directly impacting resistance mechanisms.

Emergence of respiratory-deficient
mutants in Candida glabrata driven by
combined stress from tunicamycin and
fluconazole treatment

While TUN effectively abolished FLC tolerance in our
experiments, we noted an intriguing phenomenon during the testing
of the CG4 isolate; a few exceptionally large colonies were observed
within ZO], as indicated by red arrows in Figure 2A. To further
investigate this anomaly, we randomly selected four of these colonies,
designated as #1 through #4, for analysis.

Interestingly, although the progenitor strain CG4 was capable of
growing on YPG plate—where glycerol served as the carbon source—
none of the four chosen colonies exhibited growth under the same
conditions. This observation suggests that these colonies may
be petites, which are characterized by respiratory deficiencies due to
defects in mitochondrial function (Figure 2B).

To assess the impact of TUN on these four colonies, we conducted
a spot assay, which revealed that each of the four colonies
demonstrated improved growth compared to the parental CG4 strain
when exposed to TUN (Figure 2C). This finding indicates a possible
adaptive response or compensatory mechanism in the petites that
enhances their proliferation in the presence of TUN.

Furthermore, results from a disk diffusion assay using disks
containing FLC showed that all four colonies exhibited clear ZOI with
reduced overall size (Figure 2D). Quantitative analysis of the disk
diffusion assay images confirmed that all four colonies had
significantly lower values for both FoG,, and RAD,, with statistical

FLC
(200 ug)

FIGURE 1

TUN (1 pg/mL): - + - + - +
RAD,,: 15.0£0.0 15.0+0.0 16.0+0.0 16.0+0.0 20.0+0.0 20.0+0.0
FoG,,: 0.51£0.02 0.13+0.02 0.72+0.04 0.12+0.04 0.77+0.11 0.16+0.03

Impact of tunicamycin on fluconazole tolerance and resistance in C. glabrata. Top Panel: Three clinical isolates of C. glabrata were tested on YPD agar

CG8

plates, both with and without the addition of TUN. Each disk contained 200 pg of FLC. The plates were incubated at 30°C for 48 h before being
photographed to assess the growth response. Bottom Panel: Photographs were edited using Imaged prior to quantification with the R package
diskiImageR. The images were cropped to a uniform size, colors were inverted, and brightness and contrast were adjusted using consistent parameters
across all images to enhance the contrast between the white disk and black background. Susceptibility was measured as RAD,, the radius where 20%
reduction of growth occurs, while tolerance was measured as FoG,, the fraction of growth above RAD,,. The RAD,, and FoG,, values shown represent
the means + standard deviation of three biological replicates for each isolate.
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0.0

CG4 #1 #2 #3 #4

Assessment of antifungal susceptibility and growth characteristics in CG4 and derived colonies under tunicamycin and fluconazole treatment. (A) The
CG4 isolate was subjected to a disk diffusion assay using disks containing 200 pg of FLC. The assay was conducted on YPD medium supplemented
with 1 pg/mL of TUN. After a 48-h incubation period, we observed the emergence of several unusually large colonies within ZOI, which were clearly
distinguishable. Four of these colonies, indicated by red arrows in the image, were selected for further analysis. (B) To investigate the growth
characteristics of the progenitor strain CG4 and the selected four colonies (#1-#4), we performed spot assays on both YPD and YPG plates. The YPD
plates utilize glucose as the carbon source, while the YPG plates utilize glycerol. This comparison allowed us to assess the respiratory capabilities of
these colonies in different nutrient contexts. (C) A spot assay was executed on both YPD and YPD plates supplemented with 8 pg/mL TUN. For this
assay, 3 pL of 10-fold serial dilutions of each strain were spotted onto the plates. This method enabled us to evaluate the growth patterns and stress
responses of each isolate in the presence of TUN. (D) In parallel, another disk diffusion assay was performed utilizing disks impregnated with 200 pg of
FLC. This experiment aimed to quantify the antifungal susceptibility of the isolates, providing further insight into their resistance profiles. (E) The images
obtained from the disk diffusion assay plates were quantified using the diskImageR package. Results are presented as the mean and standard deviation

incubated at 30°C for 48 h prior to photography.

from three biological replicates for each isolate. Statistical analysis was conducted using a two-tailed Student's t-test to determine significance.
Asterisks denote statistical significance, with *** indicating p < 0.001 when compared to the progenitor strain CG4. For all assays, the plates were

significance denoted (p < 0.001, two-tailed Student’s ¢-test). These
results collectively indicate that the four colonies not only lost FLC
tolerance but also gained FLC resistance (Figure 2E).

Tunicamycin-induced petite formation
alters fluconazole tolerance and resistance

In the experiments described above, the progenitor strain CG4
was exposed to a combination of TUN and FLC. In this section,
we investigate the impact of TUN alone on the CG4 isolate. To assess
this, CG4 cells were spread on YPD plates containing varying
concentrations of TUN. Notably, on the plate with 16 pg/mL TUN,
several hundred colonies emerged, which we refer to as “adaptors.” In
contrast, lower concentrations of TUN resulted in a uniform lawn
growth across the plates (Figure 3A).

From the colonies that appeared at the highest concentration,
we randomly selected 16 adaptors for further analysis. These adaptors
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were then compared to the progenitor strain in terms of their
resistance to TUN. A spot assay demonstrated that all 16 adaptors
were capable of growing in the presence of 8 pg/mL TUN, while the
progenitor strain exhibited marked inhibition of growth under the
same conditions (Figure 3B). Thus, all the 16 adaptors gained
resistance to TUN.

Next, we evaluated the ability of these adaptors to utilize glycerol
as a carbon source, which is indicative of respiratory competency.
Of the 16 adaptors tested, four—specifically #9, #10, #12, and #16—
were able to grow on YPG plates, suggesting that the majority of the
adaptors (12 out of 16) exhibited respiratory deficiencies
(Figure 3C).

Lastly, we assessed the susceptibility of the adaptors to FLC. The
petite adaptors demonstrated significantly RAD,, and FoG,, compared
to the progenitor strain, indicating that they had lost FLC tolerance
and gained FLC resistance. In contrast, the non-petite adaptors did
not show significant changes in RAD,, or FoG,, when compared to
the progenitor (Figure 3D).
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FIGURE 3

Impact of tunicamycin on fluconazole susceptibility and respiratory proficiency. (A) Cells of the CG4 strain were suspended in distilled water and
adjusted to a concentration of 1 x 107 cells/mL. A volume of 100 pL of this cell suspension was then spread onto YPD plates supplemented with
4-16 pg/mL TUN. The plates were incubated at 30°C for 3 days before being photographed. From the plate containing 16 pg/mL TUN, 16 randomly
selected colonies (referred to as “adaptors”) were chosen for further analysis. (B) Both the progenitor strain and the TUN adaptors were evaluated for
resistance to TUN using a spot assay. For each strain, cells were adjusted to 5 x 107 cells/mL. A volume of 3 uL from 10-fold serial dilutions of each
strain was spotted onto YPD plates with or without 8 pg/mL TUN. The plates were incubated at 30°C for 48 h and subsequently photographed. (C) The
adaptors were assessed for respiratory proficiency. For each strain, cells were again adjusted to 5 x 107 cells/mL using distilled water, and 3 uL were
spotted onto both YPD and YPG plates. After incubation at 30°C for 48 h, the plates were photographed. Among the adaptors, four—specifically #9,
#10, #12, and #16—were able to grow on YPG, while the remaining 12 adaptors were unable to do so. (D) To evaluate susceptibility to FLC, a disk
diffusion assay was performed using disks containing 200 pg of FLC. The resulting images were analyzed using the diskimageR package. Results are
presented as the mean of three biological replicates for each strain. Statistical analysis was conducted using a two-tailed Student's t-test to assess
significance. Asterisks denote statistical significance, with *** indicating p < 0.001 when compared to the progenitor strain CG4.

Susceptibility to FLC was further assessed by determining the
minimum inhibitory concentration (MIC). The progenitor strain and
non-petite TUN adaptors exhibited MICs of 16 pg/mL, whereas the
petite TUN adaptors showed significantly higher MICs, ranging from
64 to 128 pg/mlL.
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Besides CG4, another isolate, CG8, was also tested. We found that
TUN at a concentration of 8 pg/mL significantly inhibited the growth
of CG8 (Supplementary Figure S2A). Twelve adaptors (#1-#12) were
randomly selected, and three of them (#3, #8, and #9) failed to grow
on YPG plates (Supplementary Figure S2B). Disk diffusion assays
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showed that the petite adaptors had significantly lower FoG,, and
smaller RAD,, values compared to the wild-type (p < 0.001, two-tailed
Student’s t-test), while the non-petite adaptors did not exhibit
significant changes in FoG,, or RAD,, (p > 0.05, two-tailed Student’s
t-test).

In addition to the two clinical isolates, the reference strain BG2
was also tested. We found that TUN at 8 pg/mL significantly inhibited
BG2 (Supplementary Figure S3A). From a pool of randomly selected
(#1-#30), identified  as
(Supplementary Figure S3B). Both the progenitor BG2 strain and the
non-petite TUN adaptors exhibited clear zones of inhibition (ZOI)
with similar values for RAD and FoG. In contrast, the petite adaptors

adaptors eight  were petites

showed no detectable ZOI, indicating a high level of resistance to FLC
(Supplementary Figures S4C,D).

Characterization of EtBr-evolved petites:
similar phenotypes of altered fluconazole
susceptibility

From the experiments described above, we established a
connection between respiratory deficiency and resistance to TUN, as
well as altered susceptibility to FLC, characterized by decreased
tolerance and increased resistance. Notably, these petites were selected
either through exposure to TUN alone or a combination of TUN and
FLC. To explore whether petites selected under different stress
conditions exhibit similar phenotypes, we turned our attention to
Ethidium Bromide (EtBr). EtBr is known to inhibit mitochondrial
DNA (mtDNA) synthesis and induce degradation of pre-existing
mtDNA, leading to the conversion of respiratory-sufficient yeast into
respiratory-deficient petites (Goldring et al., 1970).

In our study, CG4 was cultured in YPD broth supplemented with
EtBr. After 24h of incubation, the culture was diluted and
subsequently spread onto YPD plates. From this plating, six randomly
selected colonies were tested for their ability to grow on YPG, which
serves as an indicator of respiratory competency. None of the selected
colonies could grow on YPG, confirming that all were indeed petites
(Figure 4A). We designated these colonies as “EtBr-evolved petites”

Further analysis using a spot assay revealed that the EtBr-evolved
petites exhibited superior growth compared to the progenitor strain
in the presence of 8 pg/mL TUN, indicating a level of resistance to
TUN (Figure 4B). Additionally, results from a disk diffusion assay
demonstrated that all six petites had clear but smaller ZOI in
comparison to the progenitor strain, suggesting that they lost FLC
tolerance while gaining FLC resistance (Figure 4C).

Petites have increased expression of efflux
genes and reduced expression of ERG
genes

Resistance to azoles typically arises from increased efflux and
alterations in the target (Lee et al., 2023). In the C. glabrata genome,
drug efflux is primarily mediated by ATP-binding cassette
transporters, particularly through the C. glabrata sensitivity to
4-Nitroquinoline N-oxide (C¢gSNQ?2) and C. glabrata Drug Resistance
1 and 2 (C¢gCDRI and CgCDR?2) genes (Hassan et al., 2021). Moreover,
PDRI encodes the central transcription factor that triggers the
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expression of CDRI (Moye-Rowley, 2020). Brun et al. identified that
resistance in FLC-induced C. glabrata petites was attributed to the
upregulation of efflux genes, particularly CDRI (Brun et al., 2004). In
Saccharomyces cerevisiae, a model yeast closely related to C. glabrata,
various respiratory inhibitors have diverse impacts on ergosterol
biosynthesis (Adams and Parks, 1969). We hypothesize that
TUN-induced and EtBr-induced petites might influence the
expression of efflux and/or ERG genes, thereby enhancing FLC
resistance while reducing FLC tolerance. Consequently, we compared
the gene expressions between two petites and the parent CG4. One
petite was induced by TUN exposure (TUN-induced petite, TiP),
while the other was induced by EtBr exposure (EtBr-induced petite,
EiP). Our findings revealed a significant increase in the expression of
CDRI and PDRI compared to CG4 (p < 0.001, two-tailed Student’s
t-test), whereas the expression of most ERG genes, including ERGI,
ERG2, ERG3, ERG6, ERG7, ERGY, ERG11, ERG24, ERG25, was
significantly reduced (p < 0.001, two-tailed Student’s -test) in both
types of petites (Figure 5A).

Next, we investigated the effect of TUN exposure on the
expression of efflux and ERG genes. Exposure of CG4 to 8 ug/mL of
TUN significantly down-regulated multiple ERG genes, including
ERGI, ERG2, ERG3, ERGY, ERG11, and ERG24 (p < 0.001, two-tailed
Student’s t-test). However, TUN had negligible effects on the
expression of CDR1, CDR2, SNQ2, and PDRI (p > 0.05, two-tailed
Student’s t-test) (Figure 5B).

Discussion

Previous studies have established that azole tolerance in C. albicans
is influenced by various physiological factors, including temperature,
medium composition, and specific proteins such as Hsp90,
calcineurin, V-ATPase, as well as aneuploidy (Xu et al, 2021;
Kukurudz et al., 2022; Sun et al., 2023; Todd et al., 2023; Yang et al,,
2023). Recently, we discovered that FLC tolerance in C. glabrata also
depends on the heat shock protein Hsp90 and calcineurin (Zheng
et al., 2024b). In the current study, we identify a novel factor—
TUN-induced respiratory deficiency—that regulates FLC tolerance in
C. glabrata, marking the first connection of this kind.

To assess the impact of TUN on FLC tolerance, we employed three
distinct experimental approaches: (1) combining TUN with FLC, (2)
exposing cells exclusively to TUN, and (3) utilizing an alternative
method to induce petite formation. Our findings demonstrate that
TUN can abolish FLC tolerance, primarily through the downregulation
of ergosterol biosynthesis pathway genes.

TUN is a well-characterized inducer of ER stress, acting by
inhibiting the enzyme UDP-N-acetylglucosamine: dolichol phosphate
N-acetylglucosamine-1-phosphate transferase, which plays a critical
role in the synthesis of N-linked glycans. Consequently, newly
synthesized glycoproteins cannot undergo proper glycosylation,
leading to the accumulation of misfolded or unprocessed proteins
within the ER lumen. Cells have a limited capacity to manage this
accumulation, prompting the activation of the unfolded protein
response (UPR)—a cellular stress response mechanism aimed at
restoring normal ER function (Lee, 1992).

Ergosterol, the major sterol found in fungal membranes, is
synthesized in the ER through a complex pathway involving numerous
enzymes encoded by the ERG genes in yeasts. In the C. glabrata
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FIGURE 4

Characterization of EtBr-evolved petites: altered susceptibility to TUN and FLC. CG4 was pre-grown in YPD broth supplemented with Ethidium
Bromide (EtBr) to induce the formation of respiratory-deficient petites. Six randomly selected colonies from this culture, labeled #1 through #6, were
subsequently spotted onto both YPG and YPD plates to assess their respiratory proficiency (A). To further investigate the phenotypic characteristics of
the EtBr-evolved petites, we compared their susceptibility to TUN and FLC against the progenitor strain. Susceptibility to TUN was assessed using a
spot assay (B), which demonstrated that the EtBr-evolved petites (#1-#6) showed enhanced resistance to TUN compared to the progenitor CG4.
Similarly, for FLC susceptibility, a disk diffusion assay was performed (C). The results indicated that all six petites exhibited smaller ZOI compared to the
progenitor, suggesting a loss of FLC tolerance and an increase in FLC resistance.

106

YPD TUN (8 pg/mL)

EtBr evolved petites

genome, these ERG genes include ERGY/CAGLOMO07095g, ERG1/
CAGL0D05940g, ERG7/CAGL0J10824g, ERGI11/CAGLOE04334g,
ERG24/CAGL0102970g, ERG25/CAGLOK04477g, ERG26/
CAGL0G00594g, ERG27/CAGLOM11506g, ERG28/CAGL0J02684g,
ERG6/CAGLOH04653g ERG2/CAGLOL10714g, ERG3/CAGLOF01793g,
ERG5/CAGLOMO07656g, ERG4/CAGL0OA00429¢ (Elias et al., 2024).
Notably, ERGI and ERGI1 represent two rate-limiting steps in the
ergosterol biosynthesis pathway (Jorda and Puig, 2020).

The primary function of the UPR is to manage protein folding and
restore ER homeostasis, necessitating regulatory shifts in metabolic
priorities. Our study reveals that TUN-induced ER stress leads to
reduced expression of ergosterol biosynthesis genes, including the key
players ERGI and ERG11. This finding suggests that when the UPR is
activated due to protein misfolding, the cell reallocates resources away
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from sterol biosynthesis to prioritize the resolution of ER stress. This
supports the notion that the UPR not only oversees protein folding
but also influences metabolic pathways vital for cellular integrity.

Additionally, we identified petite formation as a primary
mechanism for rapid adaptation to TUN-induced ER stress in
C. glabrata. We also evaluated petites induced by exposure to EtBr and
found that both TUN-induced and EtBr-induced petites exhibited
cross-resistance to TUN and FLC, albeit with a diminished tolerance
to FLC. Notably, the expression of multiple ERG genes, including
ERGI and ERG11, was lower in both types of petites compared to the
wild-type strain.

Typically, petites are associated with a loss of mitochondrial
function, significantly influencing cellular metabolism. The analysis
of petites induced by EtBr underscores the similarity between TUN
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FIGURE 5
Relative expression analysis of efflux and ERG genes. (A) Comparison of gene expression between petite strains and progenitor CG4. Two petites were
examined, TiP representing TUN-induced petite and EiP representing EtBr-induced petite. Cells were cultured to logarithmic phase, and the relative
expression levels of genes in petites compared to CG4 are displayed in the figure. (B) Impact of TUN on gene expression. CG4 cells were grown to
logarithmic phase and then treated with 8 pg/mL TUN. The graph illustrates the relative expression levels of genes in TUN-treated cells compared to
vehicle-treated cells. In both A and B, the housekeeping ACT1 was used as internal control. The relative quantification of gene expression was
performed by the 224" method. Each reaction was performed in triplicate, and mean values of relative expression were determined for each gene.

and EtBr in promoting cross-resistance to TUN and FLC, suggesting
a shared adaptive response mechanism involving mitochondrial
dysfunction and altered metabolic states. The observed reduction in
the expression of multiple ergosterol biosynthesis genes in both types
of petites reinforces the idea that perturbations in mitochondrial
function adversely affect sterol metabolism. This reduction in key
ERG gene expression implies that these petites may develop
compensatory mechanisms to cope with drug stress, though this
comes at the cost of FLC tolerance.

Reference to Siscar-Lewin et al’s research highlights that deletion
of the mitochondrial DNA polymerase CgMIPI triggers loss of
mitochondrial function and petite formation, which also conveys
, 2021). Our
findings build upon this work, strengthening the hypothesis that

cross-resistance to TUN and FLC (Siscar-Lewin et al.

mitochondrial integrity is essential for maintaining both ergosterol
biosynthesis and drug tolerance in C. glabrata under stress conditions.

Notably, MLST analysis indicates that CG4 belongs to ST7, the
most prevalent genotype in Asia (Meng et al., 2025). Our study
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demonstrates that TUN can disrupt FLC tolerance and induce FLC
resistance in CG4. Given the prevalence of ST7 strains in Asia,
these findings are likely to have broad applicability and relevance
to other ST7 strains in this region, particularly in understanding
how ER stress influences antifungal tolerance and resistance.
However, further studies are needed to explore whether similar
mechanisms operate in other ST7 strains. Such efforts will provide
deeper insights into the epidemiology and treatment of C. glabrata
infections, particularly in regions where ST7 is dominant.

Conclusion

In summary, our study uncovers a novel mechanism by which
TUN-induced ER stress modulates FLC tolerance in C. glabrata.
We demonstrate that this stress response leads to petite formation and
reduction in ergosterol biosynthesis. This novel insight into the
relationship between ER stress, mitochondrial dysfunction, antifungal
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resistance and tolerance underscores potential avenues for developing
more effective therapeutic strategies against resistant fungal strains.
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Introduction: Sporotrichosis is a fungal disease caused by a complex of
Sporothrix schenckii, leading to chronic infections of the epidermis and
subcutaneous tissue in both humans and animals.

Methods: Through virtual screening targeting the key gene abaA to screen
out the small-molecule drugs to treat Sporotrichosis. To further validate
the antifungal activity of small-molecule drugs, growth curves, minimum
bactericidal concentration (MBC), and minimum inhibitory concentration (MIC)
for Sporothrix globosa (S. globosa) and Sporothrix schenckii (S. schenckii) were
measured. In addition, we have done animal experiments to explore the function
of the drugs. At the same time, gRT-PCR and transcriptome were used to verify
the important role of abaA gene in Sporothrix.

Results: Azelastine and Mefloquine effectively inhibit S. globosa and S. schenckii.
MBC, and MIC for S. globosa and S. schenckii confirmed that both Azelastine
and Mefloquine inhibited the growth of S. globosa and S. schenckii. Additionally,
animal experiments demonstrated that Azelastine and Mefloquine reduced
skin lesions in mice; post-treatment observations revealed improvements in
inflammatory infiltration and granuloma formation. Through transcriptome
analysis and qRT-PCR for validation, our findings demonstrate that the abaA
gene plays a crucial role in regulating the attachment of the Sporothrix cell wall
to the host matrix and in melanin regulation. Notably, when the abaA gene was
inhibited, there was a marked increase in the expression of repair genes. These
results emphasize the significance of the abaA gene in the biology of Sporothrix.

Discussion: Two small-molecule drugs exhibit the ability to inhibit Sporothrix and
treat sporotrichosis both in vitro and in murine models, suggesting their potential
for development as therapeutic agents for sporotrichosis. And gRT-PCR and
transcriptome results underscore the significance of the abaA gene in Sporothrix.
Our results lay the foundation for the search for new treatments for other mycosis.

KEYWORDS

Sporothrix globosa, abaA gene, virtual screening, small molecule drugs,
transcriptomics

1 Introduction

Sporotrichosis is a fungal disease that leads to chronic fungal infections of the epidermis and
subcutaneous tissue in both humans and animals. The pathogenic fungi involved are primarily a
complex of S. schenckii (Chakrabarti et al.,, 2014; Hu et al,, 2024). In the classical infection pathway,
conidia initiate the fungal infection through the interaction between an implanted wound and
decaying plant tissue, which results in the classification of sporotrichosis as a type of rot
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(Lopes-Bezerra et al.,, 2018; Lv et al., 2022; Liu et al., 2024). The main
pathogens responsible for sporotrichosis include Sporothrix schenckii,
Sporothrix globosa, and Sporothrix brasiliensis (Zu et al., 2020). In the
northeastern region of our country, the predominant pathogenic strain is
Sporothrix globose, however, this species remains underappreciated and
poorly researched. To date, there is a limited amount of literature
addressing its fundamental research and clinical implications (Nava-Pérez
et al., 2022; Hoft et al., 2022).
Sporothrix  globosa is to which

immunocompromised individuals are particularly susceptible. This

a dimorphic fungus

organism exists as mycelium in the environment at 25°C, from which
conidia are released into the air, accompanied by fragments of the
mycelium through wind and soil dispersion. When a wound comes
into contact with soil or inhaled spores, the pathogen can enter the
host at 37°C. Temperature changes can induce the transition to a new
form-the yeast phase. Yeast forms are less readily recognized by the
body’s immune cells compared to mycelial forms, rendering them less
likely to be targeted by the immune response. Consequently, the
dimorphic fungus S. globosa is not pathogenic in its mycelial phase
but becomes pathogenic in its yeast phase. The variation in symptoms
following infection is influenced by the individual’s immune status
and differing genotypes. Overall, S. globosa exhibits weak virulence
and typically presents with mild symptoms (Balkrishna et al., 2022).

Gene regulatory networks (GRN) control developmental events and
play an important role in species evolution (Carroll, 2008; Levine, 20105
Smith et al., 2018), three DNA transcription factors, BrlA, AbaA, and
WetA, regulate the developmental program of asexual fruiting bodies.
BrlA activation program. AbaA regulates the development of
conidiophore. In the AabaA mutant, the developmental program halts at
the formation of the peduncle base. Consequently, the mutant
conidiophores deform into globular structures that are dispersed across
the rod-shaped peduncle base, resembling the appearance of an abacus
(Clutterbuck, 1969). WetA controls the maturation of asexual spores
(Etxebeste etal., 2019; Yu, 2010). Regarding research on the DNA-binding
domain of the AbaA transcription factor, Borneman et al. cloned a
homolog of the Aspergillus nidulans abaA gene, which encodes the ATTS/
TEA DNA-binding domain transcriptional regulator, and transformed it
into Penicillium marneffei (Borneman et al. 2000). Their findings indicate
that the abaA gene plays a crucial role in the developmental process of
transitioning from the mycelial phase to the yeast phase. Additionally,
Alex et al. also demonstrated that the amino acid sequence of the AbaA
transcription factor contains an ATTS/TEA DNA binding motif
(Andrianopoulos and Timberlake, 1994). Targeted deletion of AbaA
blocks asexual development at 25°C prior to spore production, resulting
in abnormal conidia with repeat terminal cells. Furthermore, the abaA
deletion strain fails to properly switch from multinucleated filamentous
forms to mononucleated yeast cells at 37°C. Many studies have found the
DNA-binding domain of abaA gene is conserved and plays an important
role in dimorphic switching (Andrianopoulos and Timberlake, 1994).

In recent years, the emergence of multi-resistant pathogens has made
fungal infections increasingly difficult to treat. Consequently; strategies
for managing hospital infections and opportunistic infections have
garnered significant attention within the scientific community (Perlroth
et al,, 2007; Badiee and Hashemizadeh, 2014). Currently, treatment
options for sporotrichosis are limited, and emerging resistance is a
concern (Zhang et al., 2024; Brown-Elliott et al., 2001), there was no
improvement observed after 16 months of treatment with terbinafine,
fluconazole, and itraconazole. Consequently, there is an urgent need for
new treatments for sporotrichosis.
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Molecular docking is an important technology in computer-aided
drug design, which is widely used in new drug development (Farha and
Brown, 2019). The process of researching and developing new drugs is
lengthy and requires substantial financial resources. Currently, the issue
of fungal drug resistance is becoming increasingly severe. In recent years,
a notable trend has emerged in the development of new drugs that
involves the integration of various disciplines, particularly the
combination of biology, computer science, and chemistry. With
advancements in computer science, computer-aided drug design has
become a prominent focus in the development of new drugs, especially
through the use of molecular docking techniques (Swamidass, 2011;
Jadamba and Shin, 2016). The development of new drugs is a lengthy and
inefficient process, primarily due to challenges related to identifying new
targets, ensuring safety, and managing significant associated costs.
Consequently, repurposing drugs that have already been approved for
other human conditions may offer a more expedient approach to
discovering new antifungal agents. In various areas of clinical research,
drug repurposing has emerged as a strategy to accelerate the development
of new therapies, often utilizing drug-based phenotypic screening
methods or high-throughput screening of FDA-approved drug libraries
(Park, 2019). In this context, target recognition can be used to target new
diseases for drug repurpose (Ma et al., 2022). So this study will look for
new ways to treat sporotrichosis through a combination of bioinformatics
and traditional experiments. The abaA gene plays a crucial role in the
dimorphic switch of Sporothrix, and the downstream virulence factors,
along with other related genes regulated by the abaA gene, were also
investigated using bioinformatics and transcriptomic methods.

2 Materials and methods

2.1 Screening of small molecule drugs
targeting AbaA protein

The target was AbaA protein, a key dimorphic switch protein of
S. schenckii, used the Robetta' to predict the three-dimensional structure
of AbaA, the DNA binding domain of AbaA protein was found by
bioinformatics analysis. Then, the DNA-binding domain portion of the
model’s highest-quality three-dimensional structure was truncated for
binding pocket prediction. The grid box was determined by aligning the
structure of the AbaA DNA domain, and the X, y; and z-coordinates of the
grid box (x=67.154, y =85.033, z=—92.830; x = 58.693, y = 85.350,
z = —82.023) were determined. AutoDock Vina was then used to perform
bulk molecular docking in the FDA-approved small molecule database,
the docking results were comprehensively analyzed in terms of binding
energy, price, pharmacodynamics and side effects (Moreira et al., 2021;
Haozhen et al., 2023).

2.2 Fungal strain and culture conditions

The strain of S. globosa, S. schenckii used was maintained at the
Research Center for Pathogenic Fungi, Liaoning University, China. To
obtain a mycelial culture, the S. globosa, S. schenckii was inoculated
onto Sabouraud dextrose agar (SDA) solid medium (10 g/L tryptone,
40 g/L glucose, 15 g/L agar) and incubated at 25°C. To induce the

1 https://robetta.bakerlab.org/
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switch of S. globosa and S. schenckii from the mycelial phase to the
yeast phase, mycelial culture was enriched and transferred to brain-
heart infusion (BHI) liquid medium, which was incubated at 37°C.

2.3 In vitro antifungal susceptibility

Antifungal susceptibility testing was performed using the proto-
cols described in the CLSI document. Sporothrix was cultured at 25°C
for 4 days, followed by filtration and centrifugation. The spores were
resuspended in autoclaved BHI liquid medium, adjusting the spore
concentration to 1 x 10° CFU/mL. In a 96-well plate, 200 pL of the test
drug working solution was added to Well 1, while 100 uL of BHI
liquid medium was added to Wells 2-11. Well 12 received 200 pL of
BHI liquid medium as a negative control. A 100 pL aliquot from Well
1 was transferred to Well 2 and gently mixed by pipetting up and
down. This serial dilution process was repeated for Wells 3-10. After
mixing Well 10, 100 pL of the supernatant was discarded. Finally,
100 pL of the prepared spore suspension (from Step 2) was added to
each well. MIC and MBC results were read by visual inspection and
from the readings of the cell optical density at an absorbance of
625 nm (ODyys) (Joao et al., 2020; Van Cutsem et al., 1994).

2.4 Measurement of growth curve

The Sporothrix cultured at 25°C with shaking at 150 rpm for
4 days were transferred to 50-mL sterile centrifuge tubes and
centrifuged at 8,000 rpm for 5 min. The supernatant was then
discarded. The mycelium was diluted in BHI medium, in groups, the
final concentration of the drug was 50 pg/mL by adding quantitative
Sporothrix suspension and DMSO-dissolved small molecule drug in
groups. 37°C for 96 h, ODs,s was measured and photographed under
bright-field microscopy at 40 x magnification every 12h, the
experiment was repeated three times for each group.

2.5 Murine model of sporotrichosis

Male 8-week-old KM mice were purchased from Liaoning
Changsheng Biotechnology Co. Ltd., permit No. SCXK (Lia0)2020-
0001. The mice in all groups were injected intraperitoneally with
cortisol solution every other day for 1 week before inoculation with
sporotrichosis suspension. 20 mg/kg, after 1 week it was changed to
every 2 days, gavage administration was started after successful
modeling (Feng et al., 2010; Boyce et al.,, 2011). All groups of mice had
their abdominal skin shaved with a razor before being injected with
Sporothrix suspension, 0.1 mL Sporothrix suspension was injected
intradermically into one of the hair-removal sites with a 1 mL syringe,
it contains about 1 x 107 spores.

2.6 Small molecule drugs treatment

After modeling, Daily Gavage was started. Mice were
randomly assigned to two treatment cohorts: the Azelastine
treatment group and Mefloquine treatment group. These cohorts
were further stratified into high-dose (Azelastine: 6 mg/kg/day,
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Mefloquine: 20 mg/kg/day), low-dose (Azelastine: 3 mg/kg/day,
Mefloquine: 3.8 mg/kg/day), and a control group receiving 0.5%
carboxymethylcellulose sodium salt.

2.7 Histological examination of the skin

Following drug administration, the mice were euthanized through
cervical dislocation and immersed for 5 min in a 5% phenol solution for
disinfection purposes. The specimens were then rinsed three times with
autoclaved sterile distilled water and placed on a sterile dissecting board
under aseptic conditions. Skin lesions were excised and immediately
fixed in a 4% paraformaldehyde solution for histopathological
processing. Skin lesion samples were sent to Jijia for HE staining, the
infiltration of inflammatory cells and the formation of granuloma were
observed and analyzed.

2.8 Statistical analysis

The study groups were compared statistically using the SPSS 23.0.
Significance for all statistical tests is shown in the figures for p < 0.05,
p<0.01, and p < 0.001.

2.9 Ethics statement

The experiment was conducted in strict accordance with the
Guide for the Care and Use of Laboratory Animals.

2.10 cDNA library construction and
sequencing

Total RNA was extracted from the mycelial phase of a 48-h culture,
the yeast phase of 48-h induction and the liquid of 48-h culture following
the addition of Azelastine. The total amount and purity of the extracted
RNA were assessed. After qualification, eukaryotic mRNA was enriched
using magnetic beads with Oligo (DT). Fragmentation buffer was
subsequently added to cleave the mRNA into shorter fragments. Using
the mRNA as a template, single-stranded cDNA was synthesized with
random primers, followed by the addition of RNase H to produce
double-stranded cDNA. The resulting double-stranded ¢cDNA was
purified, its ends were repaired, a tail was added, and sequencing linkers
were connected. Fragments were selected using AMPure XP beads.
Finally, PCR amplification and purification were performed to obtain the
final library. The libraries were quality-checked, and those meeting the
criteria were subjected to PE150 sequencing using the Illumina
HiSeq 2,500 high-throughput sequencing platform.

2.11 Transcriptome analysis

First, the quality of sequencing data was evaluated using
FASTP (Chen et al.,, 2018) software. Following quality control, the
sequencing data were aligned with ribosome sequences from the
NCBI RefSeq (Pruitt et al., 2007) and RFAM (Kalvari et al., 2021)
databases utilizing Bowtie 2 (Langmead et al., 2019) software. The
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alignment results were statistically processed using samtools
(Danecek et al., 2021) and subsequently compared to the reference
genome with Bowtie 2 (Langmead et al, 2019). Transcript
assembly was performed with StringTie (Pertea et al., 2015)
software, leveraging available reference information, followed by
quantitative analysis of gene expression levels. Once the transcript
read counts were obtained, they were converted to gene read
counts using the R package maximport (Soneson et al., 2015).
After acquiring read counts for all samples, we employed the
differential analysis software DESEQ2 (Love et al., 2014) to
conduct differential expression analysis of genes. For this analysis,
we utilized the GO, KEGG, and EggNOG databases for functional
annotation, functional enrichment, and GSEA analyses.

2.12 Real-time quantitative PCR

Approximately 100 mg of S. globosa mycelial-phase cells and
yeast-phase cells were collected and rapidly frozen in liquid nitrogen.
The samples were subsequently ground under continuous liquid
nitrogen cooling using a mortar and pestle. Total RNA was extracted
from both phases using the TRIzol Reagent Kit (Vazyme Biotech Co.,
Ltd., China) in accordance with the manufacturer’s protocol.
Quantitative real-time PCR was conducted on the StepOnePlus
system. Following normalization with the 18S rDNA reference gene,
the relative expression levels of the target gene between the yeast-
phase and mycelial-phase were compared and analyzed using the
2A(-AACt) method.

3 Results

3.1 Discovery of anti—S. globosa entry
inhibitors among candidates in the FDA
approved drug library

The abaA gene sequence of S. globosa utilized in this study was
obtained through sequencing conducted in our laboratory. The
three-dimensional structure of this gene is currently unknown,
prompting a search for similar proteins to facilitate further
investigation. In order to search for similar proteins of AbaA,
we first searched for similar genes of abaA (Table 1), HMPREF1624,
which exhibited the highest total score and sequence similarity,
was selected and subsequently searched in the UniProt database
(Supplementary Table S1). This protein contains a DNA-binding
domain known as TEA (Supplementary Table S2), which is
identical to that of the AbaA protein. We used the RoseTTAFold
module in the Robetta server to predict the three-dimensional
structure of the AbaA protein (Figures 1 A-E), the five predicted
models are evaluated in SAVES v6.0 (Table 2), we finally chose the

TABLE 1 BLAST comparison results.

Max score Total score

Description

Query cover

10.3389/fmicb.2025.1546020

highest score Result-1 for follow-up processing (Moreira et al.,
2021; Cho et al., 2009; Ma et al., 2022). We utilized PyMOL to
truncate the AbaA protein’s DNA-binding domain from the model
Result-1 (Figure 1A). The binding pockets of this domain were
predicted using DoGSiteScorer (Table 3, Figure 1F). We then
employed AutoDock Tools to preprocess the top two pockets,
setting the size and coordinates of the docking box. Subsequently,
we conducted batch molecular docking using AutoDock Vina
(Supplementary Table S3). We compared the binding energies and
analyzed the primary efficacy and side effects of the selected small
molecule drugs. Ultimately, we chose four small molecule drugs,
Avodart, Eltrombopag, Azelastine, and Mefloquine, for further
study (Figures 1G,H).

3.2 Azelastine and Mefloquine have in vitro
antifungal activity against the S. globosa
and S. schenckii

In our previous studies, abaA gene expression was upregulated
during the dimorphic switch of the S. schenckii from the mycelial
phase to the yeast phase, and the deletion of this gene causes
S. schenckii to become less resistant to all kinds of stress, these results
suggest that the gene is critical for S. schenckii dimorphic switch
(Zheng et al., 2021). Therefore, it is reasonable to speculate that this
gene is also important for the dimorphic switch of S. globosa.
Consequently, we suspect that AbaA is also upregulated during the
yeast phase of S. globosa. To explore the antifungal activity of
Azelastine and Mefloquine, the selected drugs were administered to
S. globosa and the S. schenckii phase reversal process respectively, in
order to observe their effects on the dimorphic switch of S. globosa
and S. schenckii. The results indicate that Avodart and Eltrombopag
have no effect on either fungus (Figures 2A,B). In contrast, Azelastine
and Mefloquine showed inhibitory effects on both S. globosa and
S. schenckii when compared to the control group and DMSO solvent
control group (Figures 2C-F). When Azelastine and Mefloquine were
added, the conidia of S. globosa dropped off and did not grow. Both
Azelastine and Mefloquine significantly inhibited the growth and
spore production of S. globosa and S. schenckii. In the control and
solvent control groups, dimorphic switch of S. globosa and S. schenckii
occurred, there was no phase inversion in the Azelastine and
Mefloquine groups. Thus, both small-molecule drugs inhibited the
growth and dimorphic switch of S. globosa and S. schenckii.

3.3 Determination of fungal growth curves,
MIC and MBC of Azelastine and Mefloquine

Given the subjective nature of morphological observations,
we aimed to further investigate the inhibitory effects of Azelastine and

E value Percent identity = Accession

HMPREF1624_03084 1,621 99% 0.0 94.11% ERS99720.1
SPSK_08393 1,608 99% 0.0 93.97% XP_016588585.1
transcription factor 1,606 99% 0.0 94.38% XP_040619892.1
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FIGURE 1

AbaA three-dimensional structure prediction and docking results display. (A—E) The three-dimensional structure of AbaA protein was predicted using
Robetta, the three-dimensional structure of AbaA DNA-binding domain is shown under (A). (F) Use DoGSiteScorer to predict the protein-binding
pocket. (G,H) The four graphs are Avodart, Eltrombopag, Azelastine, Mefloquine and AbaA DNA binding domain docking results.

TABLE 2 Results of model quality evaluation.

Result Verify 3D Procheck Whatcheck Errat Prove
1 Fail Pass:3 Green:29 91.6514 Fail
2 Fail Pass:3 Green:29 91.0009 Warning
3 Fail Pass:2 Green:27 89.7179 ‘Warning
4 Fail Pass:2 Green:28 91.7498 Fail
5 Fail Pass:2 Green:25 87.3733 Fail
TABLE 3 Combine pocket predictions. are considered safer than antibiotics and are administered at lower doses
Pocket Volume Surface Drug Simple compared to Itraconazole alone. Both drug stents can also be optimised
number (A3) (A2) Score Score for the development of new small-molecule drugs to treat sporotrichosis
1 499,78 912.12 . 0.36 if the clinical dose is higher than the safe range.
2 436.16 921.93 0.76 0.34
3 22765 31654 055 013 3.4 Azelastine and Mefloquine are effective

Mefloquine on S. globosa and S. schenckii. To achieve this, we determined
the growth curves for these small molecule drugs in relation to the
inhibition of both S. globosa and S. schenckii, and we determined the MIC
and MBC of the two small molecule drugs. The addition of Azelastine
and Mefloquine significantly inhibited the growth of S. globosa and
S. schenckii compared with the control group and DMSO solvent control
group (Figure 3). Although the measured MIC and MBC values do not
show a small-dose advantage over other fungicide (Table 4), these agents
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for sporotrichosis

We verify the efficacy of Azelastine and Mefloquine in the treatment
of sporotrichosis at the animal level. The model was established by
intradermal injection of Sporothrix spore suspension in mice (Figure 4)
Intradermal injection of spore into the abdomen of mice produced
varying degrees of skin lesions, some grow nodules, some ulcers, or cysts.
For some nodules, the pus was collected by gastric perfusion. The pus
was dipped into a high-temperature sterilized cotton swab and diluted
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Itraconazole Avodart Itraconazole  Eltrombopag
A Contral DMSO SOpg/ml 100 ug/mL Contral = SOpg/mL 100 pg/mL

12h
24h
48 h
72h

96 h

Itraconazole Azclastine Itraconazole Mefloquine
C Contral DMSO 50 pg/mL 100 pg/mL D Contral DMSO 50 pg/mL 100 pg/mL

12h

.
- .
O e
g | [N e

Itraconazole Azelastine Itraconazole Mefloquine
E cowm DMsO  liggeosergle  faslastine Contral DMSO  “Soug/mL 100 pg/ml.

FIGURE 2

Antifungal activity of the candidate against Sporothrix globose and Sporothrix schenckii under bright-field microscopy at 40 X magnification. (A) In
vitro antifungal activity of Avodart against Sporothrix globose. (B) In vitro antifungal activity of Eltrombopag against Sporothrix globose. (C) In vitro
antifungal activity of Azelastine against Sporothrix globose. (D) In vitro antifungal activity of Mefloquine against Sporothrix globose. (E) In vitro
antifungal activity of Azelastine against Sporothrix schenckii. (F) In vitro antifungal activity of Mefloquine against Sporothrix schenckii. The test
concentration was 50 pg/mL, 100 pg/mL, and the selected concentration was 100 pg/mL. The amount of DMSO is the amount of candidate drugs.

12h

24h

72h

96 h

with sterile distilled water. 40 pL of pus was spread evenly on SDA  the morphology of the lesions was analyzed by reviewing the literature,
medium and cultured at 25°C for 4 days, microscopy confirmed  and the pus was purified and cultured, microscopic observation showed
S. schenckii (Supplementary Figure S1). Inflammatory ulcers and nodules  that the lesions were Sporotrichosis. The Sporotrichosis was most severe
began to appear in the skin of mice 1 week after intradermal injection,  in the third week, when the drug was given intragastrically for 10 days,
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The growth curves of Sporothrix globose and Sporothrix schenckii were inhibited by small molecule drugs. (A) The growth curves of the small
molecule drugs for the inhibition of Sporothrix globosa. (B) The growth curves of the small molecule drugs for the inhibition of and Sporothrix
schenckii. DMSO group was solvent control group and Itraconazole group was positive control group. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Data
processing used SPSS 23.0 for Ducan’s multiple comparison test to analyze its significance.

TABLE 4 Azelastine and Mefloquine inhibited MIC and MBC of Sporothrix
globose, Sporothrix schenckii.

Drug MIC (pg/mL)  MBC (pg/mL)
Azelastine-Sporothrix globose 25 50
Mefloquine-Sporothrix globose 12,5 25
Azelastine-Sporothrix schenckii 6.25 50
Mefloquine-Sporothrix schenckii 6.25 25

the nodules in the Itraconazole positive control group and the Azelastine
and Mefloquine groups became smaller and the crusts were improved
(Figure 5). In comparison to the mock group, the control group exhibited
larger granulomas and a greater infiltration of inflammatory cells.
Notably, the granulomas in the positive control group were smaller than
those in the control group. The granulomas observed in both the low and
high dose Azelastine groups were wider than those in the positive control
group, yet smaller than those in the control group; they were dispersed
and did not form a cohesive mass, with milder inflammatory cell
infiltration compared to the control group. In contrast, the inflammatory
infiltration in both the low and high dose Mefloquine groups did not
show improvement relative to the control group; however, the
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granulomas were significantly smaller, with the inflammatory cells
remaining dispersed and not coalescing (Figure 6). The granuloma width
of the control group was significantly different from that in both the
positive control group and the treatment group (Table 5). Statistical
analysis of inflammatory cell statistics showed that there were significant
differences between the control group and the positive control group
(Table 6).

3.5 The regulatory effect of the abaA gene
on downstream virulence factors was
analyzed using bioinformatics

To further investigate the regulation of the abaA gene on these
virulence factors, we reviewed the literature to identify the
downstream virulence factors associated with Sporothrix (Garcia-
Carnero and Martinez-Alvarez, 2022; Teixeira et al., 2014; Félix-
Contreras et al., 2020). We downloaded the gene sequences of these
virulence factors from the NCBI and utilized the JASPAR database?

2 https://JASPAR elixir.no/

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1546020
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://JASPAR.elixir.no/

Wang et al. 10.3389/fmicb.2025.1546020

=y

1
()

Inject the Remove skin
spore suspension lesions
KM (3 wk) | | | | ] |
|
week 1 2 3 4 5 6 7

—---------—-----*

.(/.\). Push the =fr———

seiisol “ Give the

S
14
AN g 3’2 medicine by
/ } Gavage
FIGURE 4

Mouse model and treatment process. After a week of acclimation, the mice were injected with a cortisol solution for immunosuppression, after 1 week
of inhibition, the mold was made by injection Sporothrix suspension, meanwhile, immunosuppression was continued. Three weeks after successful
modeling, the rats were treated with medicine. After 10 days of administration, mice were killed and skin lesions were examined.

Azelastine  Azelastine  Mefloquine Mefloquine
Control Itraconazole 3 mg/kg 6 mg/kg 3.8 mg/k: 20 mg/kg
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FIGURE 5

Pictures of mouse model and treatment process. Intradermal injection of Sporothrix suspension into the abdomen of mice produced varying degrees
of skin lesions, some grow nodules, some ulcers, or cysts.

to identify virulence factors containing AbaA binding sites  alignment software, allowing us to screen for virulence factors
(Andrianopoulos and Timberlake, 1994). The sequences of the ~ that may be regulated by the abaA gene. These genes are
abaA binding sites were then compared using DANMAN sequence ~ GPI-anchored cell wall beta-1,3-endoglucanase EgIC, scytalone
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FIGURE 6

(Granuloma width was measured by software CaseViewer).

HE staining results of skin lesions in mice. The Mock group was the result of HE staining of healthy skin, the red arrow was granuloma, control group
was not given medicine after successful modeling. The width of granuloma in control group was 3,320 um; the width of granuloma in Itraconazole
group was 1,460 pm; the width of granuloma in Azelastine 3 mg/kg group was 1,880 um; the width of granuloma in Azelastine 6 mg/kg group was
1,480 pm; the width of granuloma in Mefloquine 3.8 mg/kg group was 1,940 pm; the width of granuloma in Mefloquine 20 mg/kg group was 1,251 pm.

TABLE 5 Results of granuloma width statistical analysis.

(€17e]0] o} Granuloma width (pm)

TABLE 6 Results of inflammatory cell count were analyzed statistically.

(€17e]0] o} Inflammatory cell count

Control 2588.9 +423.4° Control 566.9 + 72.3
Itraconazole 1446.7 + 418.5* Itraconazole 255.2 £29.7*
Azelastine 3 mg/kg 1059.3 + 699.8° Azelastine 3 mg/kg 263.1+93.4°
Azelastine 6 mg/kg 1136.9 + 224.4* Azelastine 6 mg/kg 273.6 + 85.5*
Mefloquine 3.8 mg/kg 1054.7 + 138.6° Mefloquine 3.8 mg/kg 333.1+71.7°
Mefloquine 20 mg/kg 911.4 +253.2° Mefloquine 20 mg/kg 222.8+11.9°

Different lowercase letters indicate significant difference (P < 0.05). SPSS 23.0 was used to
analyze the significance of Ducan multiple comparison test.

dehydratase, CFEM domain protein, laccase precursor, molecular
chaperone HTPG, DNA mismatch repair protein. This screening
was subsequently validated through transcriptome analysis. To
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Different lowercase letters indicate significant difference (p < 0.05). SPSS 23.0 was used to
analyze the significance of Ducan multiple comparison test. Inflammatory cells were counted
using software Image-J.

validate the reliability of the bioinformatics

we subsequently conducted transcriptome analysis and qRT-PCR

analysis,

for verification.
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Transcriptome data analysis. (A) Gene Ontology Enrichment Analysis of MP and YP differentially expressed genes. (B) Gene Ontology Enrichment
Analysis of YP and YPA differentially expressed genes. (C) Histogram of the Kyoto Encyclopedia of Genes and Genomes pathway classification of
differentially-expressed genes of MP and YP. (D) Histogram of the Kyoto Encyclopedia of Genes and Genomes pathway classification of differentially-
expressed genes of YP and YPA. (E) Histograms of differentially expressed genes. There were 2,681 genes differing between MP and YP, and 5,256
genes differing between YP and YPA. (F) gRT-PCR showed that abaA regulated virulence factor gene was expressed in yeast phase and mycelial phase
with other genes. The expression of each gene was expressed as 2A-/A/\ CT value (mean + SEM), and the expression of each gene in the mycelial
phase was constant as 1, which served as a baseline comparison with other genes in the yeast phase. Gene: LP: laccase precursor; SD: scytalone
dehydratase; MC: molecular chaperone HtpG; GP: GPl-anchored cell wall beta-1,3-endoglucanase EgIC; PM: DNA mismatch repair protein. CF: CFEM
domain protein. The significance was analyzed by independent sample t test (*, p < 0.05; **, p < 0.01). MP: mycelial phase baseline.

3.6 Transcriptome sequencing data
processing and assembly result statistics

RNA-Seq sequencing yielded between 41,934,980 and 47,331,900
raw reads from nine libraries, with raw bases ranging from 6.29 G to
7.02 G. The number of clean reads varied from 43,514,694 to 8,516,234.
The GC content ranged from 54.26 to 56.27%. The Q30(%), which
represents the percentage of bases with an accuracy exceeding 99.9%,
the Q30 value was greater than 92% in this experiment, indicating that
the sequencing quality was reliable (Supplementary Table S5).

Gene expression was analyzed using DESeq, with the criteria for
screening differentially expressed genes set at [log2foldchange| > 1 and
significance p <0.05. A total of 2,681 genes were found to
be differentially expressed between the Mycelial Phase (MP) and Yeast
Phase (YP), of which 1,500 genes were up-regulated and 1,181 genes
were down-regulated. Additionally, 5,256 genes were differentially
expressed between Yeast Phase + Azelastine (YPA) and Yeast Phase
(YP), with 2,100 genes up-regulated and 3,156 genes down-regulated
(Figure 7E).

Frontiers in Microbiology

107

We utilized the Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) databases to analyze significantly
differentially expressed genes between the MP and YP, as well as
between the YP and YPA. The GO functional enrichment analysis
for the comparison of the MP versus YP (Figure 7A) revealed that
1,020 differentially expressed genes were enriched in molecular
functions, with 630 genes enriched in catalytic activity and 507
genes enriched in membrane functions. The KEGG pathway
enrichment analysis (Figure 7C) indicated that the differentially
expressed genes in the treatment group were significantly enriched
in metabolic and biosynthetic pathways, such as valine, leucine, and
isoleucine degradation (KEGG: ko00280) and amino acid
biosynthesis (KEGG: ko01230). The enrichment of these differential
genes in the aforementioned functions and pathways suggests
potential changes in cell membrane structure and the production of
virulence factors during the dimorphic transformation of
Sporothrix. Notably, serine metabolism can generate precursors for
glutathione, enhancing the fungus’s ability to cope with reactive
oxygen species (ROS) produced by the host’s immune response,
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thereby aiding its survival following macrophage phagocytosis
(Cheng et al., 2019).

For the YP and YPA, GO functional enrichment analysis
(Figure 7B) revealed that 1,897 differentially expressed genes were
enriched in molecular functions, with 1,152 genes enriched in
catalytic activity and 328 genes enriched in oxidative activity.
Additionally, KEGG pathway enrichment analysis (Figure 7D)
demonstrated that the differentially expressed genes in this
treatment group were enriched in the biosynthesis of secondary
metabolites (KEGG: ko01110) and metabolic pathways. The
significant enrichment of differentially expressed genes in
molecular functions, catalytic activity, and metabolic pathways
indicates that the drug had a substantial impact on the original
metabolic activities of the strain. Furthermore, the functional
enrichment of differentially expressed genes in oxidative activity
and the biosynthesis of secondary metabolites pathway suggests
that the drug may have exerted specific effects on the synthesis of
secondary metabolites and the oxidative stress system in the
fungal. This further implies potential disturbances in the synthesis
of virulence factors and the mechanisms of host immune evasion
in the fungal. Transcriptome results indicated that several
virulence factors regulated by abaA, including GPI-anchored cell
wall beta-1,3-endoglucanase (EGLC), dehydratase, and CFEM
domain protein, were significantly down-regulated. Conversely,
genes associated with fungal growth and repair, such as laccase
precursor, molecular chaperone HTPG, and DNA mismatch
repair protein, exhibited significant up-regulation. Further
validation and functional analyses of these candidate genes will
be performed.

3.7 The results of qRT-PCR were consistent
with those of transcriptome

To verify the reliability of the transcriptome results, we performed
qRT-PCR validation. (Figure 7F). The primers used are shown in
Supplementary Table S4. The results of qRT-PCR were consistent
with those of transcriptome analysis (Figure 8). Interestingly, among
the screened genes, genes related to the cell wall structure of
Sporothrix (GPI-anchored cell wall beta-1,3-endoglucanase EglC,
CFEM domain protein) were significantly down-regulated; and genes
related to melanin (scytalone dehydratase) were significantly down-
regulated. Other genes such as DNA repair-related genes (molecular
chaperone HtpG, DNA mismatch repair protein) and fungal
adaptability-related genes (laccase precursor) were significantly
up-regulated. This suggests that the abaA gene plays a crucial role in
regulating the anchoring of the Sporothrix cell wall to the host matrix
and in the regulation of melanin. Furthermore, inhibition of the abaA
gene results in a significant expression of repair genes, highlighting
its importance to Sporothrix. We analyzed the transcriptome data of
the virulence factors regulated by the abaA gene and observed that
the expression levels of these virulence factors were inversely
correlated with those of yeast following the addition of Azelastine
(Figure 8). This finding further confirms that the expression level of
abaA is down-regulated upon the introduction of small molecule
drugs, indicating that the abaA gene serves a regulatory function in
these virulence factors.
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4 Discussion

Currently, the issue of drug resistance in invasive fungal diseases
is becoming increasingly serious, with emerging resistance also
observed in sporotrichosis. Therefore, there is an urgent need to
search for new small-molecule drugs to treat sporotrichosis and to
explore innovative methods for drug discovery. If we want to find new
small molecule drugs, we have to find new targets (Ortiz-Ramirez
etal., 2022; Cortés Juan Carlos et al., 2019). S. globosa is a dimorphic
fungus that exists in the mycelial form in the environment at 25°C,
where it is non-pathogenic. Upon entering the body at 37°C, S. globosa
transforms into its yeast phase, at which point it becomes pathogenic.
The AbaA gene, which is involved in the dimorphic switching process,
can influence the virulence of S. globosa, making it a key target for
selection. The abaA gene, which plays a crucial role in the dimorphic
switch process, can influence the virulence of S. globosa, making it a
focal point for target selection. The abaA gene is essential for
dimorphic switch; in Talaromyces marneffei, deletion of the abaA gene
impacts dimorphic switch (Borneman et al, 2000), while in
S. schenckii, deletion of the abaA gene affects virulence. Consequently,
we chose abaA gene as a novel drug target.

We employed molecular docking techniques to screen for small
molecules that could inhibit S. globosa and S. schenckii. The literature
review revealed that almost all invasive mycoses can lead to central
nervous system diseases when they are severe (Krysan, 2016).
Consequently, it is essential for fungicides to penetrate the blood-
brain barrier and achieve elevated serum and tissue concentrations
(Bing et al.,, 2012; Karbwang and Harinasuta, 1992). Through the
analysis and screening of molecular docking results, we eliminated the
side effects associated with drugs used for treating cancer and
psychiatric diseases. Subsequently, we combined considerations of
price, efficacy, and in vitro antifungal tests to identify two small-
molecule drugs.

Two small-molecule drugs demonstrated a tendency to inhibit the
growth of Sporothrix in antifungal experiments. The proposed
mechanism involves the regulation of conidiophore development by
AbaA. In AabaA mutants, the formation of the peduncle is associated
with inhibited growth of Sporothrix, leading to the cessation of the
developmental program. Furthermore, the molecular structures of the
drugs Azelastine and Mefloquine interact with AbaA, resulting in the
inhibition of both mycelial and spore development of Sporothrix, as
evidenced by a decrease in ODj,s.Azelastine is a histamine 1 receptor
blocker, its role is not an antagonist, but a reverse agonist, reduce the
H1 receptor component activity (Watts et al., 2019). Azelastine has few
side effects, is low-cost, can be taken for long periods of time and is
safe for children over 6 years of age (Konrat et al., 2022). The drug has
also been shown to have in vitro antiviral activity against the
coronavirus (Lythgoe and Middleton, 2020). In addition, Azelastine
also has anti-inflammatory effects, mainly by stabilizing mast cells and
inhibiting the production of leukotrienes and proinflammatory
cytokine (Watts et al., 2019). It can also down-regulate the expression
of intercellular adhesion molecule-1 and reduce the migration of
inflammatory cells. However, the effects of Azelastine on fungi have
been poorly studied. Azelastine, a cationic amphiphilic drug belonging
to a pharmacologically diverse class of compounds with distinct target
molecules (Tummino et al,, 2021), has been shown to induce
phospholipidosis at the submicron scale. This property suggests that
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p < 0.05; **, p < 0.01; *** p < 0.001).

its antifungal activity against Sporothrix may result from a combination
of direct fungal growth inhibition and host-mediated mechanisms.
Furthermore, Azelastine remains effective when administered as a
nasal spray for the treatment of rhinitis, indicating its significant
potential as a nasal spray for the treatment of sporotrichosis (Konrat
etal., 2022).

The results of pharmacological studies of Mefloquine show that
Mefloquine has many useful features in the treatment of fungal
infections. First, when taken orally, it can be well absorbed and
establishes high serum and tissue levels, second, it can penetrate the
blood-brain barrier to high nerve concentrations relative to plasma,
Mefloquine has a long half-life, so it can be used as a prophylactic
regimen (Montoya et al., 2020). In addition, some studies have
shown that Mefloquine has certain antifungal activity against
Candida, Cryptococcus and Aspergillus (Montoya et al., 2020).
Mefloquine has been shown to inhibit the formation of egg
granulomas in Schistosoma japonicum, suggesting that it may play
a role in modulating the host immune system in vivo (Huang et al.,
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2011). Furthermore Mefloquine may inhibits Sporothrix through
two mechanisms, in addition to binding to key target proteins of
Sporothrix, it may also influence the host immune response. The
underlying mechanisms of this interaction will be explored in
further studies. The selection of dosing concentration was informed
by a review of pertinent literature, indicating that both Azelastine
and Mefloquine are capable of penetrating the blood-brain barrier
and possess potential therapeutic effects against fungal infections.
With regard to Azelastine, The pharmacokinetic results of the drug
demonstrated Azelastine 16 mg did not increase side effects, and
the maximum dose for adults was 40 mg, through the above
pharmacokinetics analysis, combined with mouse and human drug
delivery conversion formula, we selected two dosing concentrations
of 3 mg/kg and 6 mg/kg, to conduct animal experiments (McTavish
and Sorkin, 1989). About Mefloquine, adults were given 18-20 mg/
kg, or (750-1,250 mg) a day, the clinical pharmacokinetics of
Mefloquine showed that the peak time of Mefloquine administration
was 6-24 h in healthy subjects, the maximum blood concentration
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of the drug was 1,000 pg/mL after taking 1,000 mg. Based on the
above pharmacokinetics analysis, we selected a dosing concentration
of 3.8 mg/kg; we also found that many studies treated neuropathic
pain by intraperitoneal administration of Mefloquine at a dose of
20 mg/kg, so we chose a larger concentration of 20 mg/kg to study
the effect of Mefloquine on sporotrichosis. As for the choice of the
positive itraconazole concentration, the final choice was 60 mg/kg
according to the conversion of doses between human and mice
(Bonifaz and Vazquez-Gonzalez, 2010; Saraiva et al., 2012; Moreira
etal., 2015).

The abaA gene is crucial for the dimorphic switch of Sporothrix
and influences the virulence of certain fungi. In this study, several
genes regulated by abaA, including various virulence factors and
functional genes, were identified through a combination of
bioinformatics  predictions and experimental approaches.
GPI-anchored cell wall beta-1,3-endoglucanase EGLC functions as a
GPI-anchored protein. Its biosynthesis is crucial for maintaining the
integrity of fungal cell walls and is recognized as a significant virulence
factor in various pathogenic fungi, including Candida albicans, where
it plays an adhesive role in the process of host cell infection (Martinez-
Lopez et al., 2004; Cormack et al., 1999). It is also an important target
for many fungicide. The CFEM domain protein, characterized by its
unique cell wall structure in fungi, is associated with
glycosylphosphatidylinositol (GPI)-anchored proteins. This protein
can bind to virulence factor effectors that contain the CFEM domain,
thereby playing a critical role in the formation and enhancement of
adhesion and virulence (Choi and Dean, 1997; Wang et al., 2022). As
a classical virulence factor of pathogenic fungi, melanin plays a
significant role in the immune evasion of these organisms, particularly
in their resistance to oxidative attacks from immune cells, such as
reactive oxygen species (ROS) (Garcia-Carnero and Martinez-Alvarez,
2022; Wang et al., 1995). Scytalone dehydratase has been implicated in
the formation of melanin virulence factors in fungi. After Wang et al.
expressed the gene for scytalone dehydratase, which encodes the sickle
dehydratase, in melanin-deficient, nonpathogenic Colletotrichum
lagenarium (OSD1), it restored both melanin production and
pathogenicity in this species (Wang et al, 2001). Furthermore,
scytalone dehydratase has been utilized as a target for antifungal drug
development aimed at inhibiting melanin synthesis (Eisenman et al.,
2009). Laccase precursor is a precursor of laccase (Motoyama et al.,
2022), a virulence-related cell wall enzyme associated with the
blackening of Cryptococcus neoformans and the acquisition of
resistance to polyene and echinocandins (Eisenman et al., 2009). The
DNA mismatch repair protein- PMS2 is responsible for recognizing
and repairing erroneous insertions, deletions, and base
misincorporations that occur during DNA replication and
recombination, as well as for addressing certain types of DNA damage
(Iyer et al., 2006). Its absence contributes to the evolution of fungal
resistance (Legrand et al., 2007; Dos Reis et al., 2019). Molecular
Chaperone HTPG, a member of the Hsp90 family, is an important
chaperone whose overexpression enhances the virulence of Candida in
mice (Hodgetts et al.,, 1996). It is also considered central to the buffering
effect known as pipelization (Burnie et al., 2006). HTPG has been
described as suppressing phenotypic variation under normal
conditions, yet it releases such variation when its function is impaired
(Bergman and Siegal, 2003). Therefore, these genes may serve as new

targets for future research.
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5 Conclusion

In this study, we employ bioinformatics to identify new
therapeutic targets for Sporotrichosis. To further predict these
targets, selected small molecule drugs were tested in vitro and
in vivo. The results concluded that Azelastine and Mefloquine are
effective in treating Sporotrichosis. Furthermore, our study
indicates that these small molecule drugs may possess a broad-
spectrum antifungal effect, potentially providing new insights for
the treatment of other invasive fungal diseases. At the same time,
we investigated the virulence factors and growth repair-related
genes regulated by abaA through transcriptomics and
qRT-PCR. The results indicated that abaA is crucial for the
toxicity, growth, and development of Sporothrix. The methodology
employed in this research establishes a foundation for the
investigation of drug resistance in other fungi, and the regulation
of downstream related factors by abaA offers a robust basis for
future studies.
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Sustainable organic management practices have gained significant attentions
for its potential health and environmental benefits. However, the spread of
antibiotic resistance genes (ARGs) and virulence factors (VFs) in soils, plants, and
agricultural products has severely limited the development of organic managements
on agriculture. At present, the distribution and assembly of ARGs and VFs in
organic managed tea plantation systems remains largely unknown. Here, we used
metagenomic analysis to explore soil microbial taxa, ARGs and VFs in 20 years
of conventional managed (CM) and organic managed (OM) tea plantation soils.
Results showed that total abundance of ARGs in OM was 16.9% (p < 0.001) higher
than that in CM, and the increased ARGs were rpoB2, evgS, MuxB, TaeA, and
efrA. As for VFs, OM significantly increased the abundance of adherence, stress
protein and actin-based motility compared to CM. Moreover, OM increased the
relative abundance of soil microbial taxa harboring ARGs and VFs, which were
Streptomyces, Pseudomonas, and Terrabacter, compared to CM. Network analysis
suggested that OM increased the positive interactions of microbial taxa-ARGs,
microbial taxa-VFs and ARGs-VFs compared to CM. Impact of stochastic process
on the assembly of soil microbial taxa, ARGs and VFs in OM was stronger than
that in CM. Overall, these findings provide a basis for integrating ARGs, VFs and
pathogen hosts to assess the ecological and health risks in long-term organic
managed soils, and increased efforts need to be done in reducing ARGs, VFs
and bacterial pathogens in fertilizers for organic managements on agriculture.

KEYWORDS

organic management, antibiotic resistance genes, virulence factors, assembly process,
soil microorganisms

1 Introduction

In last decades, the widespread use and misuse of antibiotics in medical has led to the
prevalence of antibiotic resistance genes (ARGs) in microbial communities (Kuppusamy et al.,
2018; Wang J. H. et al., 2022). With the increase of ARGs and antibiotic resistant bacteria
(ARBs) in the environment, antibiotic resistance poses a serious threat to ecological security
and public health (Tiedje et al., 2019; Zhang et al., 2022). Soils are probably the most important
hosts of ARGs, and a large number and diversity of ARGs have been found in soils around the
world (Xiao et al., 2016; Braga et al., 2017). The ARGs in farmland soils can enter to plant
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2 Insecticide
Herbicides

stems, leaves and agricultural products, and further spread to humans
along the food chain, posing a major threat to human health (Zhang
et al., 2019; Song et al., 2023). Besides, the virulence factors (VFs)
enable pathogenic bacteria to colonize a host, establish infection and
confer virulence, thereby enabling its bacterial hosts to invade humans
or animals and cause disease (Wu H. J. et al., 2008; Liang et al., 2020).
When the ARGs coexist with VFs in the genome, the risk of the
genome to humans or animals will increase (Liang et al., 2020). Many
studies have reported that anthropogenic activities (such as irrigation,
landfilling of waste, fertilization and cropping practices, especially
organic fertilization) significantly enriched the abundance of ARGs in
soils (Wang et al., 2014; Wu et al.,, 2017; Wang et al., 2018). Hence, it
is urgent to assess to distribution and interaction of ARGs and VFs in
organic managed farmland systems.

Tea (Camellia sinensis L.) plantations are widely distributed in
tropical and subtropical acidic soils (Wang et al., 2016). Normally,
high nitrogen fertilization rate was applied to obtain high yield in tea
plantations (Yang et al., 2023), but its misuse may trigger negative
environmental impacts (Wang L. L. et al., 2020). Organic management,
such as using livestock manure, can reduce chemical fertilizer
application, maintain soil fertility and improve soil biodiversity (Guo
etal, 2017; Ekman et al., 2020). However, inputs of livestock-derived
organic fertilizers may introduce ARGs and ARBs into farmland soils
(Han et al., 2018; Sanz et al., 2022). Therefore, antibiotic resistance
may spread from organically amended soils to crops, products and
ultimately to consumers (Yang et al., 2018). Recent findings shown
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that the coexistence and convergence of ARGs and VFs in pathogenic
bacteria significantly increased the risk of microbial contaminants in
the environment (Yang et al., 2018; Liang et al., 2020; Li et al., 2023).
Therefore, it is necessary to understand the characteristics of ARGs
and VFs in long-term organic managed soils.

Studies have demonstrated that soil properties and microbial
diversity are the main drivers that influence ARGs and VFs
distribution (Nolvak et al., 2016; Wei et al., 2022; Wu et al., 2023a;
Wang L. et al., 2024). It is found that abundance and diversity of ARGs
in soil are related to soil type and nutrient content in organic farming
systems (Wang L. et al., 2022). Besides, soil physicochemical variables,
such as soil organic carbon (SOC), total nitrogen (TN), soil TN:TP
ratio and microbiomass-P, are strongly associated with the distribution
and prevalence of ARGs or VFs in soils (Guo et al., 2020; Wang
L. etal,, 2020; Kang et al., 2023). Furthermore, soil microorganisms
carrying ARGs can influence plant-associated microbiota through
direct contact between the plant rhizosphere and bulk soil
environment, and ultimately accelerate the evolution of ARGs in plant
compartments (Chen et al., 2018). Environmental heterogeneity has
been shown to determine the diversity and distribution of bacterial
communities, and soil property variables induced by fertilization may
indirectly influence ARGs distribution by shaping soil bacterial
communities (Li H. et al., 2022; Wu et al., 2023b). Therefore, it is
essential to elucidate the complexity and correlation of microbial
communities and soil properties impacts on ARGs and VFs
distribution in long-term organic managed soils.
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Here, we used macrogenomic sequencing to analyze soil
microbial communities, antibiotic resistance genes (ARGs) and
Virulence factors (VFs) in conventional and organic managed tea
plantation soils after 20 years. The aims of this study were (I) to
investigate the effects of conventional and organic managements on
soil microbial communities, ARGs and VFs; (II) to explore the biotic
and abiotic factors that affect the composition and distribution of
ARGs and VFs.

2 Materials and methods
2.1 Study site and soil sampling

Soil samples of the 0-20 cm layer were collected in July 2023
from a 20-year managed tea plantation (22.48°N, 100.58°E) in
Puer City, Yunnan Province, China. The study site has a typical
subtropical monsoon climate, with an annual mean precipitation
of 1,311 mm and annual mean temperature of 21.5°C. Two
treatments: conventional managed (CM, only NPK fertilizer) or
organic managed (OM, livestock organic fertilizer) tea plantation
soils with 20 years were selected in this study. The tea variety in
the experimental area is Yunkang 10. The long-term experimental
field was managed according to local practices, which usually
received NPK fertilizer or sheep manure compost for the past two
decades. The organic management fertilization method includes
basal fertilizer (November to December every year) and
topdressing (May of the following year). The basal fertilizer was
12,000 kg ha™"' and the topdressing was 3,000 kg ha™'. The organic
matter content, total nutrient content and pH of the organic
fertilizer were 60, 5% and 7.5, respectively. In conventional
management, the compound fertilizer (1,050 kg ha™'; N-P-K:
22-5-5) was applied in June each year, and Glyphosate and
Diafenthiuron were used for weeding and pest extermination,
respectively. In order to ensure the representativeness of the soil
samples, we established 6 plots (20 m x 5 m) for each fertilization
treatment to collect soil. Each plot used a five-point sampling
method to collect soil, and five individual samples were mixed to
obtain a duplicate sample. In total, 12 soil samples (2 treatments x
6 replicates) were obtained, then the soil samples were stored at
4°C and —80°C, respectively.

2.2 Analysis of soil properties and enzyme
activities

Soil pH was determined using a pH meter (1:2.5, w/v). Soil
organic carbon (SOC) and total nitrogen (TN) were determined by
the K,Cr,0, oxidation-reduction titration and Kjeldahl digestion
methods (Bao, 2000), respectively. Soil ammonium nitrogen
(NH,*-N) and nitrate nitrogen (NO; -N) were determined using a
microplate spectrophotometer (Thermol510, Multiskan Go;
Thermo Scientific Inc., Waltham, MA, United States). Activity of
B-1, 4-glucosidase (BG), p-cellobiohydrolase (CE), p-xylosidase
(BX), p-1,4-N-acetylglucosaminidase (NAG) and L-leucine
aminopeptidase (LAP) were determined by a microplate
spectrophotometer (Ex. 360 nm; Em. 450 nm; Thermo Scientific
Inc., Waltham, MA, United States) using 4-methylumbelliferone
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(MUF) and 7-amino-4-methylcoumarin (AMC) coupled substrates
(Marx et al., 2001).

2.3 DNA extraction, metagenomics
sequencing and data analysis

Total microbial genomic DNA was extracted from 0.5 g soil using
the E.Z.N.A.® soil DNA Kit (Omega Bio-tek, Norcross, GA,
United States), and the quality of extracted DNA was measured using
NanoDrop® ND-2000 spectrophotometer (Thermo Scientific Inc.,
Waltham, MA, United States). The shotgunmetagenomic sequencing
were performed using Novaseq6000 (Shanghai Majorbio Bio-pharm
Technology Co., Ltd., Shanghai, China).

Raw sequences were trimmed and filtered using fastp version
0.20.0 software. Reads with average quality score lower than 20,
containing more than three “N,” with length shorter than 50 bp and
those reads matching the Illumina background sequences (artifact,
spike-ins or phiX) were all removed. CD-HIT version 4.6.1 software
was used for clustering, and the longest gene was selected as the
representative sequence to construct a non-redundant gene set. Use
BLASTP version 2.3.0 software to compare the non-redundant gene
set with the NR database version 20,200,604, and obtain the species
annotation results through the taxonomic information database
corresponding to the NR database (Altschul et al., 1997).

2.4 ARGs and VFs analysis

We use the Comprehensive Antibiotic Resistance Database (CARD
version 3.0.9) with Antibiotic Resistance Ontology (ARO) as its core
for annotation of antibiotic resistance genes (ARGs) (Yang et al., 2022).
The non-redundant gene sets were compared to the CARD database
using BLASTP version 2.3.0 software, and the annotation of E to le™
was selected. The setting parameters for ARGs annotation were >90%
of sequence identity and >25 amino acids of alignment length. The
ARGs obtained were classified by type (antibiotics to which the genes
are resistant) and subtype (antibiotic resistance genes). To identify
virulence factors (VFs) sequences in our data, open reading frames
(ORFs) were compared against the virulence factor database (VFDB
version 2020.07.03) using blastx with the E-value to 1e™. The ORF with
identity >90% and coverage > 90% was annotated as a VFs (Liu
B. et al., 2022; Liu W. B. et al., 2022). In addition, we annotated the
species of ARGs or VFs to identify host bacteria.

2.5 Statistical analysis

Unpaired t tests were performed for significance analysis of two
groups, and p values were adjusted by the false discovery rate test.
Heatmap, boxplot and stacked chart were created using the
OmicStudio.! Principal coordinate analysis (PCoA) and redundancy
analysis (RDA) were performed using the “vegan” package in R
version 4.2.2 (Oksanen et al., 2013). Procrustes analysis was

1 https://www.omicstudio.cn/tool
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performed to examine the correlations between soil microbial
communities, ARGs and VFs, and the sum of squares (M?) and
p-value were used to determine the consistency of two datasets. The
neutral community model (NCM) was performed using the “hmisc”
and “minpack.Im” packages in R version 4.2.2 to evaluate the impact
of stochastic dispersal on the assembly of soil microbial
communities, ARGs and VFs (Ning et al., 2019). We selected soil
microbial taxa, ARGs and VFs with relative abundance greater than
0.1% to construct the co-occurrence network. The correlations were
computed using the “Hmisc” package in R version 4.2.2, with a
strict absolute value threshold set to 0.9. To increase the credibility
of the network analysis, only correlations with adjusted p values less
than 0.01 were retained. Network visualization was performed
using the Gephi version 0.9.2 software (Bastian et al., 2009; Yu
etal., 2023).

3 Results
3.1 Soil properties and enzyme activities

Soil properties and enzyme activities varied greatly in OM and
CM soils (Supplementary Table S1). The soil pH, TN content and SOC
content in OM was 29.9, 9.3 and 6.6% (p < 0.05) higher than that in
CM. The soil activities of NAG and LAP in OM was 26.8 and 184.1%
(p <0.05) higher than that in CM. However, no difference was
detected in content of NO;™-N and NH,*-N, and activity of BG and
CE between OM and CM (Supplementary Table S1).

3.2 Microbial diversity and community
composition

A total of 6.1-7.6 Gb high quality clean reads was obtained after
quality control for each sample (Supplementary Table S2). The
filtered sequences were assembled de novo and 233,226 to 550,838
sequences were obtained, with a 481-598 bp for N50 and
332-345 bp for N90, for each sample. Each sample has 264,897-
678,746 ORFs
(Supplementary Table S3). Furthermore, bacteria and archaea

with a mean 373-419bp per sample
dominated in total sequences with proportion of 65.3 and 19.5%,
respectively (Supplementary Table S4).

The Shannon index of soil microbial communities in OM was
3.6% higher than that in CM (Figure la, P < 0.001). Similarly, OM
significantly altered soil microbial community composition
compared to CM (Figure 1). Actinobacteria, Proteobacteria,
Acidobacteria, and Chloroflexi dominanted in abundance at the
phylum level, with relative abundance of 31.9-40.7%, 27.7-36.5%,
10.8-14.9%, and 6.8-10.7%, respectively (Figure 1b). OM increased
relative abundance of Proteobacteria, Gemmatimonadetes and
Bacteroidota by 24.1, 56.6 and 37.4%, while reduced relative
abundance of Actinobacteria and Chloroflexi by 12.6 and 34.2%
compared to CM (Figure 1b, P < 0.001). Further analysis showed
OM significantly increased relative abundance of the genera
Nocardioides, Terrabacter, Rhodococcus, Arthrobacter, Streptomyces,
Sphingomonas, Pseudolabrys, Lysobacter, and Pseudomonas
within the changed phyla compared to CM (Figure Ig
Supplementary Table S5, p < 0.001).
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3.3 Abundance and composition of ARGs
and VFs

PCoA demonstrated that composition of ARGs were significantly
separated in OM and CM (Figure 2a, P = 0.004). The total abundance
of ARGs in OM was 16.9% higher than that in CM (Figure 2b,
P <0.001). A total of 21 ARGs and 945 subtypes were detected in OM
and CM. Multidrug, Tetracycline, MLS and Glycopeptide were the
major ARGs components in all samples, with abundance of 23788.9-
30589.7,7709.7-8851.8, 7681.3-8466.5 and 4324.6-5001.8, respectively
(Figure 2¢). Among them, OM significantly enriched the abundance of
13 antibiotics (i.e., Multidrug, Tetracycline, MLS, Glycopeptide,
Aminocoumarin, Peptide, Mupirocin, Beta-lactam, Pleuromutilin,
Fosfomycin, Triclosan, Diaminopyrimidine, and Bicyclomycin), while
decreased the abundance of 5 antibiotics (Fluoroquinolone,
Aminoglycoside, Rifamycin, Elfamycin, and Nucleoside), compared to
CM (Supplementary Table S6). Subsequently, differential analysis on
the top abundant 30 subtypes showed that OM enriched relative
abundance of 10 subtypes (rpoB2, evgS, TaeA, MuxB, efrA, otr(A),
tetB(P), mdtC, efrB, and vanRM), while decreased relative abundance
of 16 subtypes (macB, tetA(58), oleC, bcrA, mtrA, msbA, efpA, ariR,
kdpE, tlrC, baes, facT, patA, evgA, patB, and ImrC), compared to CM
(Figure 2d; Supplementary Table S7). Furthermore, the potential host
test of ARGs showed that Mpycobacterium (Unclassified),
Bradyrhizobium (B. sp._35-63-5), Streptomyces (S. sp._CEV_2-1,S. sp._
ADI95-17, S. chartreusis, S. sp._LAM7114 and S. rishiriensis),
Saccharopolyspora (S. shandongensis and S. hirsuta) and Actinomadura
(A. amylolytica and A. hibisca) were shared hosts for both CM and
OM. A total of 23 unique hosts were detected in CM, such as Bacillus
(B. cereus), Dictyobacter (D. kobayashii and D. aurantiacus),
Bradyrhizobium (B. sp._35-63-5) and Amycolatopsis (A. vastitatis and
A. kentuckyensis), while 10 unique hosts were detected in OM, such as
Terrabacter (Terrabacter. sp._3264), Pseudomonas (P. aeruginosa),
Pseudonocardia (P. hierapolitana), Tetrasphaera (T. sp._HKS02) and
Microbispora (M. sp._GKU_823) (Supplementary Table S8).

PCoA demonstrated that composition of VFs were significantly
separated between OM and CM (Figure 3a, P = 0.003). Iron uptake
system, adherence,
antiphagocytosis were the dominant encoded functions for both OM
and CM, with relative abundance of 23.61-26.55, 16.44-18.67, 12.16—
12.71, 11.32-12.26, 9.82-11.21, and 9.53-9.94, respectively (Figure 3b).
Among them, OM enriched the relative abundance of adherence, stress

secretion systems, regulation, toxin and

protein, serum resistance, phase variation, complement protease,
exoenzyme and actin-based motility, while decreased the relative
abundance of iron uptake system, secretion system, regulation, toxin and
magnesium uptake system, compared to CM (Supplementary Table S9).
Further analysis of the top abundant 40 VFs showed that OM
significantly increased VFs related to the putative hosts of Acinetobacter
baumannii (AdeFGH), Francisella tularensis subsp. (repeat in toxin and
EF-Tu), Pseudomonas aeruginosa (HSI-I and alginate), Legionella
pneumophila subsp. (Hsp60), Pseudomonas stutzeri (pyridine-2,6-
dithiocarboxylic acid), Pseudomonas syringae pv (GacS/GacA),
Mycobacterium smegmatis str (proteasome-associated proteins)
(Figure 3¢; Supplementary Table S10). However, OM significantly
decreased VFs associated with Aeromonas hydrophila subsp. (Polar
flagella and repeat in toxin), Mycobacterium sp. (MymA operon),
Mycobacterium tuberculosis (PDIM, PhoP/R and PhoP), Mycobacterium
ulcerans (GPL locus) (Figure 3¢; Supplementary Table S10).
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FIGURE 1
Shannon index (a), relative abundance of abundant phyla (b), and genera with significant differences in relative abundance (c) of soil bacterial
community in conventional managed (CM) and organic managed (OM) tea plantation soils. Values are means (n = 6). ***p < 0.001.

3.4 Assembly processes and environmental
drivers of microbial taxa, ARGs and VFs

The neutral community model fitting results showed that the
explained variance of soil microbial communities (R%oy = 0.906,
Rey=0.871), ARGs (R’oy=0.925, R’ey=0.775) and VFs
(R%om = 0.936, R*; =0.706) in OM was higher than that in CM
(Figure 4). These results underscore the important role played of
stochastic processes in shaping assembly of soil microbial
communities, ARGs and VFs, particularly in OM. We found that OM
decreased the m value (the migration rate of community) of soil
microbial communities, ARGs and VFs, indicating that the species
and gene dispersal was lower, compared to CM (Figure 4).

Soil properties and enzyme activities correlated significantly with
composition of soil microbial communities (F = 5.33, p = 0.004),
ARGs (F =15.01, p =0.003) and VFs (F = 21.30, p = 0.003). RDA
result illustrated that RDA1 and RDA2 explained 48.2% of the
microbial variations (Figure 5a), 83.2% of the ARGs variations
(Figure 5b) and 79.9% of the VFs variations (Figure 5¢). Furthermore,
soil pH, TN, SOC, NAG and LAP were the main environmental
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factors driving the composition of soil microbial communities, ARGs
and VFs (Supplementary Table S11).

3.5 Relationships between microbial taxa,
ARGs and VFs

The Procrustes analysis showed that ARGs and VFs of soil
exhibited goodness-of-fit based on the Bray-Curtis dissimilarity
metrics (M? =0.116, p < 0.001, permutations = 999), indicating
significant correlations between ARGs and VFs (Figure 6a).
Similarly, Procrustes analysis showed that ARGs (M?=0.182,
p <0.002, permutations = 999; Figure 6b) and VFs (M? = 0.157,
p <0.001, permutations = 999; Figure 6¢) correlated significantly
with microbial communities, respectively. Networks showed that
OM increased the number of node, edge, correlation, average
degree, graph density, modularity and average clustering coefficient
of the network, while reduced the average path length, compared to
CM (Figures 6d,e; Supplementary Table S12). These results
suggested that organic management leads to tighter relationships
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between microbial taxa, ARGs and VFs. Furthermore, OM
increased the positive interaction of microbial taxa-ARGs (116 vs.
35), microbial taxa-VFs (40 vs. 21), and ARGs-VFs (119 vs. 57)
compared to CM (Supplementary Table S13). Within the network
of CM, Mesorhizobium (6 subtypes), Kouleothrix (5 subtypes) and
Blastococcus (4 subtypes) were highly correlated with ARGs, and
Cupriavidus (3 VFs), Blastococcus (2 VFs) and Kouleothrix (2 VFs)
were highly correlated with VFs. Within the network of OM,
Streptomyces (11 subtypes), Flavisolibacter (9 subtypes), Rhizobium
(8 subtypes) Blastococcus (8 subtypes), Terrabacter (8 subtypes) and
Nocardioides (7 subtypes) were highly correlated with ARGs, and
Pseudomonas (5 VFs), Hypericibacter (4 VFs), Ramlibacter (4 VFs)
and Hyphomicrobium (3 VFs) were highly correlated with VFs
(Figures 6d,e).
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4 Discussion

The composition of microbial communities and antibiotic
resistance in agricultural soils was closely related to soil health, food
production safety and human welfare (Tshikantwa et al., 2018;
Bertola et al., 2021). Organic management was reported to increase
soil microbial community diversity and change its community
structure (Schmidt et al., 2019; Li J. et al., 2022; Shu et al., 2022).
This may be attributed to organic matter addition increased organic
carbon and available nitrogen contents in the soils (Wu T. et al.,
2008), which provided a favorable nutritional environment for
microorganisms. On the other hand, organic fertilizer can
effectively regulate soil acidification and improve the living
environment for soil microorganisms (Chepkorir et al., 2018; Ye
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etal, 2022), especially in tea plantations. Although organic fertilizer
input brings many benefits to the soils, the application of livestock
derived organic fertilizers also has the risk of contamination with
antibiotics, virulence factors and pathogenic bacteria (Bloem
etal., 2017).

In this study, OM significantly changed the ARGs composition
and increased its abundance, which was consistent with previous
findings (Chen et al., 2016; Sun et al., 2019). Livestock manure
contains high levels of antibiotics, ARBs and ARGs (Fang et al.,
2014; Wang X. R. et al., 2024), which can potentially spread into
the environment when applied to agricultural fields (Joy et al.,
2013). We found OM enriched the abundant of Multidrug,
Tetracycline, MLS and Glycopeptide antibiotic types compared to
CM. Previous studies have confirmed that application of manure
introduced extra antibiotics into the agricultural ecosystems
(Wang L. et al., 2020; Zhu et al., 2022; Xiao et al., 2023). Further,
we explore the differences of main subtypes of the microbial risk
genes and OM significantly enriched resistance genes affiliated to
multidrug (rpoB2, evgS, MuxB and efrA) and Pleuromutilin
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(TaeA). These genes may increase soil resistance to multidrug and
Pleuromutilin by encoding efflux pump or antibiotic target
alteration (Alcock et al., 2020). In contrast, resistance genes
significantly enriched in CM included MLS (macB and oleC),
Tetracycline (tetA(58)), Aminocoumarin (novA) and Peptide
(berA), and these genes were closely related to antibiotic efflux
(Alcock et al., 2020). Virulence factors related to adherence, stress
protein, serum resistance, phase variation, complement protease,
exoenzyme and actin-based motility were significantly enriched
in OM. Bacterial pathogens are able to adhere to host cells by
produce a protein or polysaccharide surface layer, and specific
enzymes participate in the invasion of host cells and tissues after
adhesion (Huang et al., 2016). For intracellular survival, stress
proteins affected their persistence and survival (Hingley-Wilson
et al., 2010). The significant enrichment of these virulence factors
in organically managed agricultural systems suggests that bacterial
pathogens may have an enhanced ability to colonize and persist in
these environments. Taken together, these results indicated that
organic management increased some of ARGs and VFs, which
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The redundancy analysis (RDA) shows the correlations between soil microbial communities (a), antibiotics resistance genes (ARGs; b) and virulence
factors (VFs; c) with soil properties and enzyme activities in conventional managed (CM) and organic managed (OM) tea plantation soils. Soil properties
and enzyme activities are marked with red arrows. Antibiotic types and VFs functions are marked with blue arrows. pH, soil pH; NOs™-N, nitrate
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may pose a serious threat to public health (Carmeli et al., 2016;  patterns of coexistence in the same niche (Martinez et al., 2015;

Coll et al., 2018).

Liang et al., 2020). Procrustes analysis and network analysis found

Microbial risk depends not only on diversity and abundance  significant correlations between microbial communities, ARGs
of microbial communities, ARGs and VFs, but also on their and VFs (Che et al., 2019; Li et al., 2023), and OM increased
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FIGURE 6
Procrustes analysis based on Bray-Curtis distance reveals the correlations between soil microbial communities (a), antibiotics resistance genes (ARGs;
b) and virulence factors (VFs; ), and co-occurrence network analysis shows the correlations between microbial taxa, ARGs and VFs in conventional
managed (CM; d) and organic managed (OM; e) tea plantation soils based on Pearson coefficient. Nodes with different colors represent different
microbial taxa, ARGs and VFs. Orange and blue edges represent positive and negative correlations, respectively.

network complexity (Xie et al., 2018), which may promote the
coexistence of microbial taxa, ARGs and VFs thereby increase the
risk of microbial contamination (Liang et al., 2020; Zhu et al,,
2022). We found that OM increased more positive interactions of
microbial taxa-ARGs, microbial taxa-VFs and ARGs-VFs which
further supported this conclusion. Within the network, species in
CM (such as Kouleothrix and Blastococcus) and OM (such as
Streptomyces,  Blastococcus, Terrabacter,
Pseudomonas) were significantly associated with many ARGs and
VFs, suggesting that microbial taxa may carry various ARG
subtypes and VFs (Yin et al., 2022). It is worth noting that
Streptomyces (8. rishiriensis), Pseudomonas (P. aeruginosa) and
Terrabacter (T. sp._3264) with significantly higher relative
abundance in OM were identified as potential hosts carrying
ARGs, which was consistent with previous findings (Ye et al., 2018;
Sheam et al., 2020; Song et al., 2022). Meanwhile, several species
affiliated to Pseudomonas were potential hosts of VFs in OM,

Flavisolibacter,
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including P. aeruginosa, P. stutzeri and P. syringae pv. The
P. aeruginosa was a significant pathogen which increased risks of
mortality and zoonotic diffusion among patients with sepsis
(Dulger, 2020). These results indicate that close links existed
between microbial taxa, ARGs and VFs in organic managed tea
plantation soils, indicating the significance roles of microbial
community succession in growth and spread of ARGs and VFs
in soils.

Deterministic and stochastic processes play important roles in
assembly of soil microbial communities, ARGs and VFs (Evans
et al., 2017; Wang L. et al., 2024; Wang M. M. et al., 2024). Our
results support the prominent role of stochastic processes in
shaping the assembly of soil microbial communities, ARGs and
VFs, particularly in organic managed systems. The higher stochastic
assembly from ARGs and VFs in organic managed soils resulted in
a more stable antibiotic resistome and virulence factor than that
from conventional managed soils (Hou et al., 2021). For soil
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microbial communities, long-term organic management increased
resource availability to reduce resource competitiveness, which
resulted in the dominance of stochasticity in soil microbial
community assembly process (Badri et al., 2013; Chaparro et al.,
2013). To some extent, the regulation principle of ARGs and VFs
assembly by environmental stress is similar to regulation of soil
microbial community assembly by resources (Liu B. et al., 2022; Liu
W. B. et al,, 2022). The importance of soil properties on soil
microbial communities, ARGs and VFs varies under different
management strategies (Cycon et al., 2019; Tang et al., 2023; Wu
et al., 2023a). In this study, soil microbial communities, ARGs and
VFs were strongly influenced by soil pH, TN, SOC, NAG, and LAP,
as proved by previous findings (Zhu et al., 2022; Wu et al., 2023¢;
Shen et al., 2024). It has been reported that soil pH strongly affected
the adsorption and desorption behavior of ARGs (Liu et al., 2010)
and organic carbon, total nitrogen, and available potassium altered
the distribution of ARGs in soils (Zhu et al., 2022). Furthermore,
considering that ARGs and VFs are existed in microbial potential
hosts, and the strong correlation between soil properties, enzyme
activities and the resistance group may be mediated by soil
microbial communities (Li T. T. et al., 2022).

5 Conclusion

Our study found that ARGs and VFs could be transferred into
soils by agricultural managements in tea plantation. Organic
management significantly increased diversity and abundance of
ARGs and VFs, and increased relative abundance of microbial
hosts harboring ARGs and VFs have significant impacts on soil
and human health compared to conventional management. The
assembly of microbial communities, ARGs and VFs in organic
managed soils was more driven by stochastic processes than that
in conventional managed soils. Furthermore, organic management
increased the coexistence of microbial taxa-ARGs, microbial
taxa-VFs and ARGs-VFs. Taken together, these findings provide
more comprehensive insights into the spread, ecological processes
and coexistence patterns of ARGs and VFs in tea plantation soils
under long-term organic management.
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pneumoniae isolates from
Ningbo, China
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!Department of Clinical Laboratory, The Affiliated Li Huili Hospital of Ningbo University, Ningbo,
China, 2Department of Clinical Laboratory, Langxia Street Health Service Center, Ningbo, China

Objective: The purpose of this study is to understand the antimicrobial
susceptibility and molecular distribution characteristics of carbapenem-resistant
Klebsiella pneumoniae (CRKP) in the region, and to evaluate their correlation.
Additionally, the study aims to investigate the transmission status of these strains.

Methods: A total of 150 CRKP collected from January 2019 to December 2021 in
the Ningbo region were included in this study. Antimicrobial susceptibility testing
was performed using broth microdilution method following CLSI guidelines
(CLSI, 2023). The tested agents included: (1) basic antimicrobials (tigecycline,
polymyxin B, ceftazidime-avibactam); and (2) combination therapy candidates
(ertapenem, imipenem, levofloxacin, piperacillin-tazobactam, ceftriaxone,
cefepime, trimethoprim-sulfamethoxazole, fosfomycin, amikacin, aztreonam,
chloramphenicol, amoxicillin-clavulanate, ceftazidime). Resistance genes were
detected using polymerase chain reaction (PCR). Multi-locus sequence typing
(MLST) was employed to analyze the molecular characteristics and evolutionary
trends of the strains to determine their clonal relationships.

Results: The 150 strains of CRKP exhibit high resistance rates to various
conventional drugs; The sensitivity rates to tigecycline, polymyxin B, and
ceftazidime-avibactam were 98.7, 98.0, and 68%, respectively; Conversely, the
sensitivity rates to fosfomycin, amikacin, and chloramphenicol were 72.0, 40.0,
and 16.7%, respectively; The main proportions of carbapemen genes producing
in CRKP are as follows: KPC-2 (61.3%), NDM-5 (14.7%), IMP-4 (8.0%), OXA-232
(6.0%), and OXA-181 (1.3%); The main proportions of p-lactamase resistance
genes are as follows: CTX-M-1 (13.33%), CTX-M-3 (25.33%), CTX-M-9 (17.33%),
CTX-M-14 (34.67%), SHV-1 (26.66%), SHV-11 (66.66%), SHV-12 (18.66%),
and SHV-28 (10.00%); CRKP carrying class A, B, and D carbapenemases had
a sensitivity rate greater than 96% for tigecycline and polymyxin B, while
their sensitivities to ceftazidime-avibactam, aztreonam, and amikacin varied
significantly (p < 0.01). Analysis of the MLST results for CRKP revealed that ST11
strains were predominant in the region. There was a significant difference in
the resistance genes carried by ST11 strains compared to non-ST11 strains.
While different healthcare institutions exhibited variations in ST types, the strains
generally showed high homogeneity.
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Conclusion: Intheregion, CRKP showed high sensitivity to tigecycline, polymyxin
B, ceftazidime-avibactam, fosfomycin, amikacin, and chloramphenicol. The
main carbapenemase genes identified were KPC-2 and NDM-5. The inhibitory
effects of ceftazidime-avibactam, aztreonam, and amikacin varied for CRKP
carrying different enzyme types. ST11 strains were predominant in the region.
There was a significant difference in the resistance genes carried by ST11 strains
compared to non-ST11 strains. Clonal dissemination was observed both within
the same healthcare institution and between different institutions.

KEYWORDS

Klebsiella pneumoniae, carbapenem-resistant, antibacterial susceptibility, resistance

genes, MLST

1 Introduction

Klebsiella pneumoniae (KP) commonly colonizes the human
nasopharynx, skin, and intestines and is one of the main pathogens
causing hospital-acquired infections. It poses significant risks and can
lead to multiple systemic infections such as meningitis, pneumonia,
abdominal infections, and bloodstream infections (Jiang et al., 2024).
In recent years, the emergence of carbapenem-resistant Klebsiella
pneumoniae (CRKP) has become a significant public health concern,
particularly in China. The widespread use of carbapenem antibiotics
has led to a steady increase in CRKP detection rates (Hu et al., 2020).
According to data from the China Antimicrobial Resistance
Surveillance System (CARSS, 2014-2023),' the prevalence of CRKP
has shown a consistent upward trend in Zhejiang Province, with the
Ningbo region being particularly affected (Gao et al., 2024). In
healthcare settings in Ningbo, CRKP infections have exhibited a
marked increase, reflecting a growing challenge in the management
of antimicrobial resistance in the area. CRKP possesses significant
pathogenicity, with mortality rates for bloodstream infections caused
by it reaching as high as 45-75% (Venugopalan et al., 2017; Wang
et al.,, 2018; Soares de Moraes et al., 2022). CRKP exhibits high
resistance to commonly used antimicrobial drugs in clinical practice,
resulting in a gradual reduction in available sensitive medications. Its
broad transmission routes significantly increase the difficulty of
treatment. In recent years, experts (Rodriguez-Bano et al., 2015; Guan
et al, 2016) both domestically and internationally have reported
reaching a consensus recommending a combination therapy approach
for the treatment of CRKP infections. This approach is based on a
combination of tigecycline, polymyxin B, imipenem, and ceftazidime-
avibactam. Additional drugs included in the combination may
be aminoglycosides, fosfomycin, and amoxicillin-clavulanic acid.
Indeed, there are discrepancies in the reported sensitivity of these
foundational antimicrobial agents for multidrug-resistant organisms
and combination therapy drugs, including CRKP. Currently, there is
a lack of systematic testing and evaluation in this regard. The
mechanism of carbapenem resistance in CRKP is complex, with the
most common being the production of carbapenemases (Sarva et al.,
2023). Currently, carbapenemases are classified into three classes, A,
B, and D, according to the Ambler classification system. Class A
enzymes are mainly represented by KPC and GES, Class B enzymes

1 http://www.carss.cn/
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are mainly represented by IMB VIM, GIM, SPM, SIM, and NDM, and
Class D enzymes are mainly represented by OXA-48 (Calik et al,,
2022). The distribution of these carbapenemase genes varies
significantly among CRKP strains across different regions (Angles-
Yanqui et al., 2020; Garcia-Betancur et al., 2021; Ge et al., 2024; Guo
et al.,, 2024). In China, among CRKP clinical isolates, the primary
carbapenemase types are KPC and NDM, with a small proportion of
strains carrying OXA-48 or IMP-type carbapenemase genes (Han
etal, 2020; Lietal., 2021). Notably, several studies have reported that
KPC-2 and NDM-1 are the most prevalent carbapenemases among
CRKP clinical isolates in Eastern China, including the Ningbo region
(Ding et al., 2024; Zhao et al, 2021), reflecting both regional
epidemiological characteristics. Furthermore, strains producing
different types of enzymes exhibit significant differences in resistance
characteristics. The sensitivity of CRKP carrying different
carbapenemase genes to antimicrobial drugs also varies, thereby
affecting drug selection. Clearly identifying the distribution of
carbapenemase types among CRKP strains in the local region is
crucial for various aspects, including early intervention in CRKP
infections, selecting empiric therapy, and enhancing treatment success
rates. This study aims to understand the corelation between molecular
and phenotype of CRKP in the Ningbo region, and to evaluate their
correlation to lay a foundation for the treatment of CRKP infections.
Additionally, it seeks to map the dissemination patterns of these
strains, providing a scientific basis for the prevention and control of
in the

epidemiological data with molecular insights, this research will

hospital-acquired infections region. By integrating
contribute to the development of targeted interventions and improved

management strategies for CRKP infections in healthcare settings.

2 Materials and methods
2.1 Bacterial strains and specimen source

In this study, a total of 150 strains of CRKP were selected from
multiple hospitals located in Ningbo, Zhejiang Province, China, from
January 2019 to December 2021. The hospitals included Hospital A
(with two campuses: Campus I and Campus II), Hospital B, Hospital
C, Hospital D, and Hospital E. The distribution of strains across
hospitals, patient age, gender and departments was analyzed. This
study was approved by the Ethics Committee of Ningbo Medical
Centre Lihuili Hospital, Ningbo University (KY2023SL347-01). The
specimen types included sputum, bronchoalveolar lavage fluid, urine,
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blood, puncture fluid, drainage fluid, pleural/peritoneal fluid, and bile,
and strain identification was conducted using a mass spectrometer
(Zhongyuan Huji, China). Escherichia coli ATCC 25922 served as the
quality control strain for strain identification and antimicrobial
susceptibility testing, and purchased from the National Center for
Clinical Laboratories, Ministry of Health.

2.2 Drug susceptibility test

Antimicrobial susceptibility testing was performed using the
broth microdilution method following CLSI guidelines (CLSI 2023).
Briefly, bacterial suspensions were adjusted to 0.5 McFarland standard
and diluted 1:200 in cation-adjusted Mueller-Hinton broth, with
100 pL aliquots dispensed into microdilution plates containing graded
antimicrobial concentrations. After incubation at 35°C for 16-20 h,
the minimum inhibitory concentration (MIC) was determined as the
lowest concentration showing complete growth inhibition. The
susceptibility results for ertapenem, imipenem, levofloxacin,
piperacillin-tazobactam, ceftriaxone, cefepime, trimethoprim-
sulfamethoxazole, ceftazidime-avibactam, amoxicillin-clavulanic acid,
fosfomycin, ceftazidime, aztreonam, amikacin, and chloramphenicol
were interpreted according to Clinical and Laboratory Standards
Institute (CLSI) 2023 standards. Polymyxin B susceptibility was
evaluated using European Committee on Antimicrobial Susceptibility
Testing (EUCAST) version 10.0 criteria, while tigecycline breakpoints
were determined based on standards from both the U.S. Food and
Drug Administration (FDA) and China’s National Medical Products

Administration (NMPA).

2.3 Screening of antibiotic resistance genes
and whole-genome sequencing

In order to identify the presence of carbapenemase resistance
genes, we conducted PCR amplification using specific primers
targeting KPC-2, NDM-1, NDM-5, VIM, IMP-1, IMP-2, IMP-4,
OXA-232, OXA-181, IMI, SME, GES, GIM, SIM, SPM, AIM, and
DIM. These primers, designed to detect markers for carbapenemase
resistance genes (refer to Supplementary Table 1), were utilized to
screen for the presence of these genes in the template DNA of bacterial
isolates. The PCR mixture consisted of a total volume of 25 pL,
comprising 1 pL of genomic DNA template, 1 pL of each primer,
12.5 pL of Premix-rTaq PCR solution (manufactured by TaKaRa,
Japan), and 9.5 pL of distilled water. The PCR procedure was
conducted utilizing an ABI Veriti Thermal Cycler (Applied
Biosystems, Singapore). The template was initially subjected to
denaturation at a temperature of 94°C for a duration of 5 min. This
was followed by 30 cycles consisting of denaturation at 94°C for 45 s,
annealing at 55°C for 45 s, and extension at 72°C for 1 min. A final
extension step was performed at 72°C for 10 min. The reaction
conditions for p-lactamase genes (DHA, CIT, EBC, MOX, ACC, FOX,
CMY, TEM, SHV, CTX-M-1, CTX-M-2, CTX-M-3, CTX-M-8,
CTX-M-9, CTX-M-10, CTX-M-14, and CTX-M-25), outer membrane
protein genes (OmpK35 and OmpK36), and efflux pump genes (acrA,
0gxB, kexD, kdeA, kpnE, emrB, oqxA, and qacEAI) may vary slightly.
The PCR products were subsequently confirmed through
electrophoresis and sequencing. The presence of carbapenemase genes

Frontiers in Microbiology

10.3389/fmicb.2025.1546805

was confirmed by aligning assembled contigs against the CARD
database using BLASTn (Alcock et al., 2020). The primer sequences
for other antibiotic resistance genes are provided in
Supplementary Table 1, which were used to screen whether these
genes are present in the template DNA of bacterial isolates. Due to
limited funds, we selected 47 strains of CRKP from a total of 150
isolates for whole genome sequencing (WGS) using next-generation
sequencing (NGS). The selection criteria were based on the following
factors: (1) the distribution of resistance genes, particularly
carbapenem resistance genes, to ensure that all major resistance
genotypes were represented; (2) antimicrobial susceptibility profiles,
with strains exhibiting diverse resistance patterns prioritized to
capture the full spectrum of resistance mechanisms; and (3) the
epidemiological distribution of strains across hospitals, patient
demographics (age, gender), and clinical departments (e.g., ICU,
respiratory, surgery). Genomic DNA was extracted and sent to
Novogene (Beijing Novogene Bioinformatics Co., Ltd., Beijing, China)
for WGS, which was performed using the Illumina HiSeq 4000
platform (Illumina, San Diego, CA, United States). Raw sequencing
data obtained from the Illumina HiSeq 4000 platform were subjected
to quality control using FastQC (v0.11.9) to assess read quality (de
Sena Brandine and Smith, 2019). Low-quality reads and adapters were
trimmed using Trimmomatic (v0.39) with the following parameters:
SLIDINGWINDOW:4:20 and MINLEN:50 (Bolger et al., 2014). Clean
reads were then assembled de novo using SPAdes (v3.15.4) with
default parameters to generate draft genomes (Bankevich et al., 2012).
The quality of the assemblies was evaluated using QUAST (v5.0.2)

(Gurevich et al., 2013).

2.4 Determination of phylogenetic groups
of Klebsiella pneumoniae by MLST

MLST analysis was performed to determine the sequence types
(STs) of 150 CRKP isolates by amplifying seven housekeeping genes
(gapA, infB, mdh, pgi, phoE, rpoB, and tonB). The sequences were
compared with the Klebsiella pneumoniae MLST database (Jolley et al.,
2018)* to assign STs. A minimum spanning tree (MST) was
constructed using PHYLOViZ Online (Nascimento et al., 2017)° by
uploading FASTA files containing housekeeping gene sequences and
strain metadata. The MST was visualized with adjustments to node
size, color, and other parameters.

2.5 Statistical analysis

Statistical analyses were performed using SPSS 26.0. Differences
in resistance gene distribution and antimicrobial susceptibility profiles
among ST types and carbapenemase gene carriers were evaluated
using the chi-square test or Fisher’s exact test, with a significance level
of p<0.01.

2 Available at: https://bigsdb.pasteur.fr/cgi-bin/bigsdb/bigsdb.

pl?db=pubmlst_klebsiella_seqdef.
3 http://www.phyloviz.net/
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2.6 Data availability

The complete genome sequences of 47 strains of CRKP were
deposited in GenBank with accession numbers PRINA1241480.

3 Results
3.1 Analysis of strain origin

The distribution of CRKP strains across hospitals revealed that
Hospital A Campus I accounted for the highest proportion of cases
(36.7%, 55/150), followed by Hospital A Campus II (24.6%, 37/150),
Hospital B (14.0%, 21/150), Hospital C (10.7%, 16/150), Hospital D
(8.0%, 12/150), and Hospital E (6.0%, 9/150). In terms of patient
demographics, the majority of CRKP infections occurred in
individuals aged 55 years or older, accounting for 72.0% (108/150) of
the cases. The median age of patients was 65 years, with an age range
of 18 to 92 years. Gender distribution was relatively balanced, with
male patients representing 52.0% (78/150) and female patients
representing 48.0% (72/150) of the cases. Regarding departmental
distribution, the intensive care unit (ICU) had the highest proportion
of CRKP cases, representing 30.0% (45/150) of the isolates. This was
followed by the respiratory department (23.3%, 35/150), general
surgery (16.7%, 25/150), nephrology (13.3%, 20/150), and other
departments (16.7%, 25/150). Notably, Hospital B had a
concentration of cases in the hepatobiliary-pancreatic surgery
department, while Hospital E primarily reported cases from the
burn unit.

10.3389/fmicb.2025.1546805

3.2 The sensitivity of antimicrobial drugs

The MIC results obtained through instrumental methods and the
broth microdilution method reveal that 150 CRKP strains had
relatively high sensitivity to the basic drugs tigecycline, polymyxin B,
the

and ceftazidime-avibactam. Additionally, sensitivity to

combination  therapy drugs fosfomycin, amikacin, and
chloramphenicol was also relatively high, with rates of 72, 40, and
16.7%, respectively. Furthermore, a certain proportion of the strains
exhibited intermediate sensitivity to fosfomycin and chloramphenicol,
at 9.3 and 8.7%, respectively. The resistance rates for the remaining

drugs were all above 90% (Table 1).

3.3 The screening results for antibiotic
resistance genes

The main proportions of carbapemen genes producing in CRKP
are as follows: KPC-2 (61.3%), NDM-5 (14.7%), IMP-4 (8.0%), OXA-
232 (6.0%), and OXA-181 (1.3%), respectively. No strains expressed
IMP-2, VIM, IMI, SME, GES, GIM, SIM, SPM, AIM, or DIM genes
were detected. The distribution of f-lactamase resistance genes in the
analyzed isolates was as follows: CTX-M-1 (13.33%), CTX-M-3
(25.33%), CTX-M-9 (17.33%), CTX-M-14 (34.67%), and SHV
(93.33%) were the most prevalent. Subsequent sequencing of the SHV-
positive isolates revealed seven variants: SHV-1 (16.66%), SHV-11
(52.66%), SHV-12 (18.66%), SHV-28 (10.00%), SHV-65 (0.66%),
SHV-103 (0.66%) and SHV-33 (0.6%). For additional details on the
distribution of other resistance genes, please refer to Figure 1.

TABLE 1 Resistance and sensitivity profiles of 150 CRKP strains to antimicrobial agents.

Antibacterial Break point (MIC, ug/ Sensitive Intermediary Resistance
agents mL)

P (%) P (%) Ne P4 (%)
Ertapenem >2 <0.5 0 0.0 0 0.0 150 100.0
Imipenem >4 <1 2 1.3 1 0.7 147 98.0
Levofloxacin >2 <0.5 8 5.3 15 10.0 127 84.7
Piperacillin-Tazobactam >32/4 <8/4 0 0.0 0 0.0 150 100.0
Ceftriaxone >4 <1 0 0.0 0 0.0 150 100.0
Cefepime >32 <8 0 0.0 1 0.7 149 99.3
SMZ-TMP >4/76 <2/38 70 46.7 7 4.6 73 48.7
Ceftazidime >16 <4 3 2.0 2 1.3 145 96.7
Amikacin >64 <16 60 40.0 4 2.7 86 57.3
Amoxicillin-clavulanate >32/16 <8/4 2 1.3 0 0.0 148 98.7
Fosfomycin >256 <64 108 72.0 14 9.3 28 18.7
Aztreonam >16 <4 13 8.7 1 0.6 136 90.7
Chloramphenicol >32 <8 25 16.6 13 8.7 112 74.7
Tigecycline >8 <2 148 98.7 2 1.3 0 0.0
Polymyxin B >2 <2 147 98.0 0 0.0 3 2.0
ceftazidime-avibactam >16/4 <8/4 102 68.0 0 0.0 48 32.0

“Resistance breakpoint.
"Sensitivelass breakpoint.
‘Number.

4Proportion.
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The genome of strain 111 (Figure 2) was selected for display because
it carries KPC-2, the most prevalent carbapenemase gene in CRKP,
and represents a comprehensive and typical profile of carbapenemase
genes observed in CRKP. Strain 111 was chosen because it carries
KPC-2, the most prevalent carbapenemase gene in CRKP. This
combination of genes makes strain 111 highly representative of the
resistance patterns observed in the studied population. Furthermore,
the whole genome sequencing results of strain 111were consistent
with the PCR-based detection of resistance genes, confirming the
accuracy and reliability of the data. Its genomic profile not only
reflects the dominant resistance mechanisms but also provides a clear
example of the genetic diversity and complexity of CRKP strains.

3.4 Correlation analysis of the sensitivity of
basic antimicrobial drugs and combination
therapy drugs with different enzyme types

Analysis of the sensitivity of basic antimicrobial drugs in relation to
the three main carbapenemase enzyme types revealed that CRKP
producing class A, class B, and class D enzymes had sensitivity rates of
97.8, 100, and 100% to tigecycline, and 96.7, 100, and 100% to
polymyxin B, respectively, indicating relatively high sensitivity rates.
Specifically, CRKP producing class A enzymes exhibited a sensitivity
rate of 100% to ceftazidime-avibactam, while CRKP producing class B
and class D enzymes had sensitivity rates of only 0 and 18.2%,
respectively (Figure 3). Ceftazidime-avibactam exhibited better
inhibitory effects against CRKP strains producing class A enzymes
(p < 0.01). The study on the differences in sensitivity to combination
therapy drugs among the three main enzyme types of strains showed
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that the sensitivity rates of CRKP producing class A, class B, and class
D enzymes to fosfomycin were 76.1, 73.5, and 45.5%, respectively. The
sensitivity rates to amikacin were 29.3, 61.8, and 27.3%, respectively, and
to chloramphenicol were 13, 23.5, and 18.2%, respectively. The
sensitivity rates to aztreonam were 0.0, 29.4, and 0.1%, respectively.
Aztreonam and amikacin exhibited a more significant inhibitory effect
against CRKP producing class B enzymes (p < 0.01). The resistance rates
with the remaining combination therapy drugs were relatively high, and
no comparison of drug sensitivity rates was conducted (Figure 3).

3.5 The subtyping results for the MLST

According to the MLST typing method, the 150 CRKP were
classified into 19 ST (sequence type) types. Among them, ST11 was
the dominant clone (75/150, 50.00%), followed by ST437 (22/150,
14.67%), ST15 (16 strains, 10.67%), ST290 (11 strains, 7.33%), ST307
(5 strains, 3.33%), ST4 and ST37 (3 strains each, 2.00%), ST35, ST412,
and ST3113 (2 strains each, 1.33%), and ST5734, ST86, ST519, ST2370,
ST1203, ST2189, ST2668, ST43, and ST193 (1 strain each, 1/60,
1.67%). Among them, ST11, ST437, and ST2189 are phylogenetically
related, while ST2370 and ST37 are also phylogenetically related. The
minimum spanning tree is shown in Figure 4.

3.6 Difference in antibiotic resistance
genes by different ST types

Analyzing the antibiotic resistance genes carried by different ST
strains revealed that ST11 strains carry a higher number of resistance
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genes. Other strains, particularly those of ST437, exhibit a wide
distribution in the number of resistance genes and, comparatively, carry
fewer resistance genes (Figure 5). Comparison between ST11 and
non-ST11 strains revealed that ST11 strains primarily carry the KPC-2
carbapenemase gene, whereas other carbapenemase genes are
predominantly carried by non-ST11 strains (p < 0.01). The presence of
f-lactamase resistance genes CTX-M-14, SHV-11, and SHV-12 types is
mainly observed in ST11 strains, while the CTX-M-1, SHV-1, and
SHV-28 B-lactamase resistance gene is primarily found in non-ST11
strains (p < 0.05). Additionally, the presence of outer membrane protein
genes Ompk35 and Ompk36 is predominantly associated with ST11
strains (p < 0.01). Similarly, the presence of efflux pump genes arcA,
kexD, kexA, emrB, and qacEA I types is mainly observed in ST11 strains
(p < 0.01), indicating statistically significant differences (Table 2).

3.7 The distribution of carbapenemase
genes and ST types in different medical
institutions

In hospitals A, B, C, and D, the KPC-2 gene predominated,
accounted for 78.2, 43.3, 85.7, and 75.0%, respectively. Additionally,
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the IMP-4 gene also constituted a significant proportion in hospital B,
at 21.6%. In hospital E, the NDM-5 gene was the most prevalent,
accounted for 91.7%. There were notable differences in the distribution
of ST types among different resistance gene types. Among the isolates
carrying the KPC-2 gene, the most common ST type was ST11 (n = 70,
76.1%), followed by ST15 (n = 10, 10.9%). In the NDM-5 gene isolates,
the most common ST type was ST290 (n = 11, 50.0%), followed by
ST307 (n =5, 22.7%). The IMP-4 and OXA-232 types were mainly
associated with ST437. More details can be found in Figure 6.

4 Discussion

The emergence and rapid dissemination of carbapenem-resistant
Klebsiella pneumoniae (CRKP) have become a global public health
crisis, particularly in regions with high antibiotic consumption such
as China (Hu et al., 2020; Ge et al., 2024). This study provides a
comprehensive analysis of the antimicrobial susceptibility profiles,
carbapenemase gene distribution, and molecular epidemiology of
CRKRP strains isolated from multiple hospitals in the Ningbo region.
By integrating phenotypic and genotypic data, our findings not only
elucidate the local resistance patterns but also offer valuable insights
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The differences in sensitivity of CRKP carrying different enzyme types to different drugs. Different colors represent different carbapenem enzyme
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FIGURE 4

Minimum spanning tree of Klebsiella pneumoniae. The minimum spanning tree is constructed using seven allelic genes (gapA, infB, mdh, pgi, phoE,
rpoB, tonB) of Klebsiella pneumoniae. The size of the nodes is proportional to the number of isolates, and the red number represents affinity, and the
smaller the number, the closer the two ST types are.
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for optimizing treatment strategies and infection control measures in
the context of global CRKP epidemiology.

The high resistance rates of CRKP to most commonly used
antibiotics observed in our study are consistent with reports from
other regions in China, such as Changsha (Jia et al., 2023) and Beijing
(Wang et al., 2018), as well as globally (Jean et al., 2022). However, the
relatively high sensitivity to tigecycline, polymyxin B, and ceftazidime-
avibactam aligns with their recommended use as first-line treatments
for CRKP infections (Zhuang et al., 2025). In comparison to other
regions in China, the resistance rates observed in Ningbo are similar
to those reported in Henan Province, where KPC-2-producing CRKP
strains also exhibit high resistance to carbapenems but remain
sensitive to polymyxin B and ceftazidime-avibactam (Wang et al,,
2023). These differences may be attributed to variations in antibiotic
usage patterns, infection control practices, and the prevalence of
specific resistance mechanisms. Notably, the sensitivity of CRKP to
combination therapy drugs such as fosfomycin, amikacin, and
chloramphenicol was higher than expected, suggesting their potential
utility in tailored treatment regimens. This contrasts with reports from
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some countries, where fosfomycin resistance rates are significantly
higher due to its widespread use in urinary tract infections (Hurwitz
etal, 2024). The regional differences highlight the importance of local
antimicrobial resistance surveillance in guiding empirical therapy.
Additionally, CRKP shows low resistance rates to levofloxacin and
amikacin. The reason for this is that in clinical practice, these three
drugs are typically not used individually but rather as components of
combination therapy. This approach can enhance treatment efficacy
and mitigate the development of bacterial resistance to medications.
The lower resistance rates to SMZ-TMP compared to B-lactam
antibiotics can be attributed to their different mechanisms of action
(Li et al., 2020). However, while SMZ-TMP demonstrates sensitivity
in vitro, its efficacy in vivo may be limited.

CRKP exhibits a complex mechanism of resistance to carbapenem
antibiotics, with the most common mechanism being the production
of carbapenemases. The KPC-2 gene was predominant in hospitals A,
C,and D (78.2, 85.7, and 75.0%, respectively), consistent with its high
prevalence in eastern China (Kong et al., 2020; Li et al., 2025). NDM
and VIM are more prevalent in South Asia and Europe, respectively
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TABLE 2 Comparison of drug resistance genes between ST11 type and non-ST11 type CRKP strains.

Resistance Genotype ST11 type Non-ST11 type

mechanism (n=75) (n =75)

Carbapenemase KPC-2 70 22 67.768 <0.01
NDM-5 0 22 25.781 <0.01
IMP-4 1 11 9.058 <0.01
OXA-232 0 9 9.574 <0.01
OXA-181 0 2 2.027 0.16
KPC-2+NDM-1 2 0 2.027 0.16
KPC-2+IMP-4 2 1 0.340 0.56

B lactamase CTX-M-1 2 18 14.769 <0.01
CTX-M-3 16 22 1.269 0.26
CTX-M-9 21 7 8.607 <0.01
CTX-M-14 43 9 34.027 <0.01
SHV-1 0 25 38.368 <0.01
SHV-11 64 15 3.930 0.047
SHV-12 28 0 10.465 0.0012
SHV-28 0 15 55.4112 <0.01

AmpC enzyme DHA 3 5 0.528 0.467

Outer membrane protein Ompk35 75 55 23.077 <0.01
Ompk36 71 56 11.554 <0.01

Efflux gene arcA 75 65 10.714 <0.01
kexD 56 17 40.589 <0.01
kexA 75 66 9.574 <0.01
kpnE 75 72 3.063 0.08
emrB 74 60 13.713 <0.01
qacEA1 54 22 27.312 <0.01

(Gajdécs et al., 2020). For example, in India, NDM is the dominant
carbapenemase gene, accounting for over 70% of CRKP isolates
(Kumarasamy et al., 2010), while in Poland, VIM is the most common
carbapenemase gene (Izdebski et al, 2023). However, the high
proportion of IMP-4 (21.6%) in hospital B and NDM-1 (91.7%) in
hospital E suggests localized outbreaks driven by specific resistance
genes. The occurrence of CRKP strains with identical resistance genes
across different hospitals or departments may be attributed to
nosocomial cross-transmission, patient referrals, or healthcare
worker-mediated spread. Furthermore, factors such as antibiotic
prescribing practices, environmental contamination levels, and the
frequency of invasive procedures can significantly influence bacterial
colonization and dissemination, leading to the clustering of resistant
strains in high-risk units. These findings underscore the importance
of tailored infection control strategies that consider the unique risks
and patient populations in different hospital departments. Enhanced
surveillance, strict adherence to hand hygiene, and targeted
decolonization efforts may help mitigate the spread of CRKP within
high-risk departments. Additionally, further research into the
molecular epidemiology of CRKP strains within specific departments
could provide valuable insights into their transmission dynamics and
inform more effective intervention strategies. The co-occurrence of
KPC-2 and NDM-1 genes in some strains is particularly concerning,
as it may limit treatment options and facilitate the spread of multidrug
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resistance. In our study, carrying both KPC-2 and NDM-1 types, as
well as KPC-2 and IMP-4 types, were found. This phenomenon has
also been reported in other regions, such as India and the Middle East,
where the co-production of multiple carbapenemases is increasingly
common (Kumarasamy et al., 2010). These regional differences
highlight the importance of tailoring infection control strategies to
local epidemiological patterns. Further investigation into other patient
information revealed that patients infected with CRKP are mainly
concentrated in the elderly population aged 55 years and older, who
generally have relatively weakened immune systems and are more
susceptible to superbug infections. However, the gender distribution
is relatively balanced. Analysis indicates that there is no significant
correlation between enzyme type distribution and patient age
or gender.

Strains carrying different p-lactamase enzyme types (class A, B,
and D) exhibit distinct resistance profiles, leading to varying
sensitivities to antimicrobial agents and influencing therapeutic
decisions (da Costa de Souza et al., 2022). In this study, CRKP carrying
class A, B, and D enzymes exhibited high sensitivity to tigecycline and
polymyxin B, consistent with previous reports highlighting these
drugs as last-resort options against carbapenem-resistant
Enterobacterales (CRE) (Chang et al., 2022). Regarding ceftazidime-
avibactam (CZA) susceptibility, CRKP strains harboring class A
enzymes (particularly KPC) showed a sensitivity rate of 100%,
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Sankey diagram illustrating the distribution of resistance genes and sequence types (STs) across hospitals. The diagram shows the flow and proportion
of resistance genes (KPC-2, NDM-5, IMP-4, and OXA-232) and their associated ST types (e.g., ST11, ST15, ST290, ST307, and ST437) in hospitals A, B, C,
D, and E. The width of the bands represents the relative proportion of isolates. KPC-2 was the predominant gene in hospitals A, B, C, and D, while
NDM-5 was the most prevalent in hospital E. ST11 was the most common ST type among KPC-2-carrying isolates, whereas ST290 was the most
frequent among NDM-5-carrying isolates. IMP-4 and OXA-232 were primarily associated with ST437.
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aligning with studies confirming CZAs potent activity against
KPC-producing isolates (Huang et al., 2021). In contrast, strains
carrying class B and class D enzymes exhibited significantly reduced
susceptibility, corroborating findings that avibactam does not inhibit
metallo-p-lactamases (Xiong et al., 2022). For metalloenzyme-
producing CRKP (class B), combination therapies involving
aztreonam and amikacin demonstrated notable inhibition zones,
likely due to aztreonams stability against metallo-p-lactamases despite
its susceptibility to serine p-lactamases (Vazquez-Ucha et al., 2023).
This observation aligns with clinical studies advocating aztreonam-
avibactam combinations for NDM-producing Enterobacterales (Delp
et al., 2024). However, other tested combinations (e.g., ceftazidime,
amoxicillin/clavulanic acid, cefepime, and rifampin) showed limited
efficacy despite statistically significant differences in zone diameters,
underscoring the need for tailored regimens based on enzyme type.
In addition to carbapenemase production, the loss of outer
membrane proteins (e.g., Ompk35 and Ompk36) and the
overexpression of efflux pumps (e.g., arcA, kexD, emrB) were identified
as key resistance mechanisms in CRKP strains. These mechanisms
contribute to reduced antibiotic penetration and increased drug efflux,
further complicating treatment (Alenazy, 2022; Onishi et al., 2022).
The widespread distribution of CTX-M p-lactamase genes among
CRKP strains also underscores their high resistance to p-lactam
antibiotics, necessitating the use of alternative therapeutic strategies.
In this study, a certain proportion of strains exhibited loss of the outer
membrane protein genes Ompk35 and Ompk36, with the loss rates of
these genes being 13.4 and 15.4%, respectively. The loss of these outer
membrane proteins can compromise the permeability of the bacterial
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cell wall, thereby contributing to increased antibiotic resistance.
Furthermore, efflux pumps play a critical role in antibiotic resistance
by actively transporting drugs from inside the cell to the outside,
reducing the effective drug concentration and enhancing the
resistance of the cell to drugs (Alenazy, 2022). In this study, a
significant proportion of strains were found to carry efflux pump
genes such as arcA, kexD, kexA, kpnE, emrB, and qacEAI. This
enhances CRKP’s ability to actively pump out antibiotics, thereby
further increasing antibiotic resistance.

Multilocus sequence typing (MLST) revealed that ST11 was the
dominant sequence type (50.0%) among CRKP strains in the Ningbo
region, consistent with reports from other parts of China (Liao et al.,
2020). The ST11 strains have broad dissemination capability and
adaptability, enabling them to survive and proliferate in diverse
environments. This makes them more prone to acquiring and
disseminating resistance genes, leading to their high revalence in the
local area. In addition, our study results further demonstrate
molecular characteristic differences among different ST types of
strains. For example, ST11 strains exhibited a higher prevalence of
resistance genes, including KPC-2, CTX-M-9, CTX-M-14, and
SHV-11/SHV-12 (ESBL variants), compared to non-ST11 strains. In
contrast, non-ST11 strains were more likely to carry NDM-5 and
IMP-4 carbapenemase genes, as well as CTX-M-1 and non-ESBL
SHV-1/SHV-28 B-lactamase genes (Talebzadeh et al., 2022). The
predominance of SHV-11 and SHV-12 (both confirmed ESBLs) in
ST11 strains suggests a lineage-specific adaptation favoring extended-
spectrum resistance, whereas non-ST11 strains predominantly
harbored SHV-I (a narrow-spectrum p-lactamase) and SHV-28 (a rare
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variant with uncertain ESBL phenotype). This divergence underscores
the role of ST11 in propagating ESBL-associated resistance, potentially
due to plasmid compatibility or selective pressures in clinical
environments. These findings suggest that ST11 strains have a greater
capacity for acquiring and disseminating resistance genes, contributing
to their widespread prevalence. The high genetic homogeneity of ST11
strains within individual hospitals indicates potential intra-hospital
transmission, likely facilitated by the movement of healthcare workers,
contaminated medical equipment, and environmental surfaces. This
is consistent with reports from other regions (Li et al., 2022).

In contrast, ST258 remains the most common sequence type in
Western countries, highlighting the regional variability in CRKP
epidemiology (Unlu et al., 2021). For example, in the United States,
ST258 strains are responsible for the majority of CRKP infections,
particularly in intensive care units (Chen et al., 2014). The genetic
similarity between ST11 and ST258 suggests a possible evolutionary
relationship, although further studies are needed to elucidate their
origins and dissemination patterns. Other ST types may also cause
outbreaks, necessitating further research, detection, and control
measures for these clones. In addition, strong association of KPC-2
with ST11 (76.1%) and NDM-5 with ST290 (50.0%) highlights the role
of high-risk clones in disseminating resistance. These findings
underscore the need for tailored infection control measures. Hospitals
with high KPC-2-producing ST11 strains should prioritize strict
antibiotic stewardship, while those with NDM-5-producing ST290 or
IMP-4-producing ST437 strains may require targeted interventions,
such as screening high-risk patients and enhancing contact
precautions. Continuous surveillance is essential to monitor emerging
resistance patterns and prevent the spread of multidrug-
resistant clones.

Our findings have several clinical implications. First, the high
sensitivity of CRKP to tigecycline, polymyxin B, and ceftazidime-
avibactam supports their continued use as first-line treatments. However,
the potential for heteroresistance and toxicity associated with these drugs
necessitates careful monitoring and dose optimization (Ma et al., 2019;
Fang et al., 2023). Second, the observed sensitivity of CRKP to
combination therapy drugs such as fosfomycin and amikacin suggests
their potential utility in tailored treatment regimens. Finally, the
identification of hospital-specific resistance patterns underscores the
need for targeted infection control measures to prevent the spread of
CRKP within healthcare facilities. Future studies should focus on
longitudinal surveillance of CRKP strains to monitor emerging resistance
patterns and evaluate the effectiveness of intervention strategies. The
integration of epidemiological data with molecular insights will
be crucial for addressing the global challenge of CRKP infections.

5 Conclusion

In summary, CRKP showed high sensitivity to tigecycline,
polymyxin B, ceftazidime-avibactam, fosfomycin, amikacin, and
chloramphenicol. The main carbapenemase genes identified were
KPC-2 and NDM-5. The inhibitory effects of ceftazidime-avibactam,
aztreonam, and amikacin varied for CRKP carrying different enzyme
types. ST11 strains were predominant in the region. There was a
significant difference in the resistance genes carried by ST11 strains
compared to non-ST11 strains. Clonal dissemination was observed both
within the same healthcare institution and between different institutions.
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Introduction: Antimicrobial resistance (AMR) represents a critical global health
issue, prompting the urgent exploration of alternative plant-derived antimicrobial
therapies. In this context, the present study evaluates the therapeutic efficacy
and safety profiles of Olea europaea and Ficus carica leaf extracts against
multidrug-resistant pathogens, integrating in vitro antimicrobial assays, in vivo
toxicity assessments, and in silico modeling approaches.

Methods: Leaf extracts from O. europaea and F. carica were prepared by
solvent-based maceration using methanol, acetone, and distilled water. Their
antimicrobial properties were evaluated through disk and well diffusion assays
to determine the minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC) against clinically relevant pathogens.
Toxicological assessments were performed in vivo using the BALB/c mice
model, including histopathological examinations, hematological profiling, and
biochemical analyses. A complementary in vitro toxicogenomic screening
was conducted using a cell-based reporter assay to profile nuclear receptor
signaling and cellular stress responses. Furthermore, computational modeling
and molecular docking were employed to predict the possible interactions of
selected phytochemicals with E. coli cytochrome ¢ peroxidase.

Results: Methanolic extracts of O. europaea exhibited potent antimicrobial
activity against multidrug-resistant isolates, whereas F. carica extracts showed
minimal efficacy across all experimental contexts. /n silico molecular docking
analyses revealed high-affinity interactions between olive-derived phenolic
compounds and E. coli cytochrome c peroxidase, suggesting a plausible
mechanistic basis for the observed antibacterial effects. In vivo, toxicological
evaluation in BALB/c mice administered aqueous formulations of the methanolic
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olive extract demonstrated dose-dependent hepatic and renal histopathological
alterations, accompanied by dysregulation of the immunological profiles and
elevated hepatic enzyme levels. These findings were consistent with outcomes
from the cell reporter assays and computational toxicology models, which
indicated potential nephrotoxic and immunotoxic risks at higher concentrations.

Discussion: These findings validate the promising antimicrobial activity of
O. europaea and F. carica leaf extracts against multidrug-resistant pathogens.
However, further investigations on precise dosage optimization and long-
term safety evaluations are essential before these extracts are implemented in

clinical practice.

KEYWORDS

Olea europae, Ficus carica, multidrug-resistant pathogens, solvent extraction,
antimicrobial activities, toxicological evaluation, histopathology, in silico modeling and

docking

1 Introduction

Antimicrobial resistance (AMR) has become a leading
cause of mortality globally, with an estimated 1.14 million
deaths directly caused by drug-resistant bacterial infections
in 2021. In the absence of effective interventions, this figure
is anticipated to rise significantly, potentially resulting in
~2 million direct deaths annually by 2050 (Sullivan et al,
2024). Therefore, an integrated strategy emphasizing improved
antimicrobial stewardship, infection control measures, and
innovative therapeutic approaches is essential to effectively
address this challenge (Ho et al., 2024). Recent reports highlight
exploring alternative antimicrobial strategies, including plant-
based pharmaceuticals, bacteriophage therapy, antimicrobial
peptides, RNA-based therapies, and probiotics (Singha et al., 2024).
Several plant-derived phytochemicals have shown promising
activity against multidrug-resistant (MDR) pathogens as direct
inhibitors or by potentiating the action of traditional antimicrobial
drugs to overcome resistance mechanisms (Jubair et al., 2021). The
renewed interest in plant-derived antimicrobials reflects a strategic
paradigm shift in antimicrobial drug discovery, emphasizing their
potential as rich reservoirs of novel, bioactive compounds to
address the rising challenge of MDR. The secondary metabolites
of plants offer considerable therapeutic promise due to their
inherent biocompatibility.

Olive (O. europaea) leaf extracts exhibit broad-spectrum
antibacterial properties, demonstrating significant in vitro efficacy
against pathogens commonly associated with gastrointestinal
and respiratory tract infections (de Oliveira et al., 2024). The
antimicrobial efficacy of olive leaf extract is attributed to a
synergistic interplay of its phenolic constituents (like oleuropein
and hydroxytyrosol) and other components, such as fatty acids
(de Oliveira et al, 2024). Recent studies highlight the potent
antimicrobial activity of olive leaf extract, revealing an 82%
inhibition of biofilm formation by MDR Pseudomonas aeruginosa
strains at sub-inhibitory concentrations (Esfandiary et al., 2024).
Furthermore, olive leaf extracts have demonstrated potent
bactericidal activity against Campylobacter species resistant to
ciprofloxacin and tetracycline (Silvan et al, 2022). Similarly,
fig (F. carica) leaves are a potential source of diverse bioactive
compounds with promising antimicrobial and therapeutic
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activities. Phytochemical analyses reveal that fig leaves contain
various organic acids, coumarins, tannins, and flavonoids,
contributing to their ethnomedicinal uses (Shiraishi et al., 2023).
Notably, F. carica leaf extracts exhibited potent antimicrobial
activity against several MDR pathogens, including carbapenem-
resistant Klebsiella pneumoniae, Escherichia coli, Staphylococcus
aureus, and P. aeruginosa (Shiraishi et al., 2023). The fig extract was
particularly effective due to the phenolic compounds, including
eugenol, acetyleugenol, and psoralen, which were demonstrated
to be the essential active constituents (Kim and Lee, 2023).
Collectively, F. carica leaf extracts demonstrate antimicrobial
efficacy and pharmacological activity, underscoring their potential
utility as alternative therapies in managing infections caused by
MDR pathogens.

This investigation employs a comprehensive strategy to
integrate in silico modeling, in vitro experiments, and in vivo
validation to assess the antimicrobial potential and safety of O.
europaea and F. carica leaf extracts. Computational techniques
enable efficient prediction of interactions between phytochemicals
and biological targets (Mangana et al., 2025; Mishra and
Muthukaliannan, 2024), while in vitro analyses provide empirical
evidence of efficacy against MDR organisms (Esfandiary et al,
2024). Subsequent in vivo studies in animal models provide critical
insights into therapeutic efficacy and biosafety, enhancing the
translational relevance of the findings (Shiraishi et al, 2023).
Although in silico, in vitro, and in vivo approaches have been
independently explored in previous studies, research integrating
these methodologies remains limited. This study conducts a
comprehensive evaluation to underscore the therapeutic potential
of O. europaea and F. carica leaf extracts as plant-based
interventions against antimicrobial resistance.

2 Materials and methods

2.1 In vitro studies

2.1.1 Antimicrobial susceptibility testing
Antimicrobial susceptibility profiles for selected clinically

relevant pathogens were evaluated against a panel of antimicrobial

agents. Antimicrobial susceptibility testing was performed using
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the standardized disk diffusion method according to the Clinical
and Laboratory Standards Institute (CLSI) guidelines (Haley et al.,
2024). Bacterial and fungal isolates from clinical samples were
identified using standard methods. The pathogens investigated
in the study were Escherichia coli, Klebsiella pneumoniae,
aureus,  Enterococcus Enterococcus

Staphylococcus faecalis,

faecium, Streptococcus agalactiae, Enterobacter cloacae, and
Candida albicans. The clinical isolates were first cultivated on
appropriate selective and enriched media for optimal growth
and preliminary identification. Subsequent identification of the
pathogens was conducted using the Vitek2 Compact Identification
System (BioMérieux, Marcy—l’Etoile, France) for confirmation.
The
(AZM), nitrofurantoin (NIF), trimethoprim/sulfamethoxazole
(SXT), amikacin (AK), gentamicin (CN), vancomycin (VA),
amoxicillin/clavulanic acid (AMC), ceftriaxone (CRO), ceftazidime
(CAZ), and tobramycin (TOP; Oxoid Ltd., Basingstoke, UK).

These antimicrobial agent were chosen based on their clinical

selected antimicrobial agents included azithromycin

relevance and therapeutic significance. Inoculum suspensions (in
0.5 McFarland unit) were plated on Mueller-Hinton agar (for
bacteria) and Sabouraud Dextrose Agar (SDA) for fungi to perform
the test (Kebede and Shibeshi, 2022). The inhibition zone diameters
were measured in millimeters and interpreted as Susceptible (S)
and Resistant (R) according to CLSI guidelines.

2.1.2 Plant material and extraction procedures
2.1.2.1 Sample collection of plant material

O. europaea leaves were collected in July 2024 from a 12-year-
old Manzanilla del Litoral tree in the Abuatni district of Benghazi,
Libya. Simultaneously, F. carica leaves were collected from a 28-
year-old Moraceae tree in the Al-Laithi district of the same city.
Before analysis, all plant materials were thoroughly washed with
running tap water to remove superficial debris and then air-dried
at ambient temperature in a shaded and well-ventilated area for 6
days. The leaves were dried in a dehydrator before being ground to
a fine powder in a commercial blender (Ahmed et al., 2023).

2.1.2.2 Extraction protocol

For each plant species, 20 g of powdered olive leaves and 15g
of powdered fig leaves were accurately weighed and individually
immersed in 200mL of high-purity analytical-grade methanol
or acetone (BDH Chemicals Ltd., England) or distilled water.
The extraction was performed in sterile glass containers under
controlled laboratory conditions to ensure reproducibility and
prevent contamination. We selected methanol, acetone, and
distilled water based on their efficacy in extracting polyphenolic
compounds from plant materials, as supported by previous
studies. The solvent-to-powder ratio was optimized following
standard extraction protocols to ensure efficient recovery of
bioactive constituents and allow methodological consistency across
conditions. These parameters are widely used in phytochemical
extraction to maximize yield and reproducibility (Cifd et al., 2018;
Meziant et al., 2018; Agatonovic-Kustrin et al., 2023; Nguyen
et al., 2023). The mixtures were kept at room temperature for
24h, with occasional gentle agitation, to facilitate the extraction
of bioactive compounds. After maceration, the extracts were first
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filtered through multiple layers of gauze and subsequently passed
through 180 mL of filter paper to remove coarse particulates.

2.1.2.3 Concentration and stock solution preparation

The resulting filtrates were concentrated under reduced
pressure with a rotary evaporator at 45°C for methanolic and
acetone extracts and at 100°C for the distilled water extract. The
acetone and methanolic residues were left at room temperature
for 24 h without covering to allow residual solvents to evaporate.
Meanwhile, the distilled water extract was further concentrated via
Soxhlet extraction until a sufficiently dense residue was obtained.
For the olive leaf extract, an approximate yield of 4 g was achieved
from the initial leaf powder at a solvent-to-powder ratio of 1:5.
A total of 2g of fig leaf extract was obtained at a solvent-to-
powder ratio of 1:7.5 following the extraction process, providing
an adequate quantity for subsequent antimicrobial evaluation and
toxicity assessment. The lower yield of F. carica extract may be
attributed to the comparatively lower concentration of extractable
bioactive compounds, mainly phenolic acids, and flavonoids, which
vary depending on the plants maturity, growing conditions,
and solvent polarity. Fig leaves also possess a different cellular
structure than olive leaves, which may affect solvent permeability
and compound solubility (Cho et al., 2020; Khelouf et al., 2023;
Zhang et al., 2024). Notably, during our preliminary experiments
using different solvents under the same conditions, we did not
observe significant variations in extraction yields, suggesting that
the solvent type may not significantly influence the yield differences
between the two plant species (Abi-Khattar et al, 2019). The
dried fine powder from each extract was reconstituted in dimethyl
sulfoxide (DMSO) to prepare a stock solution at 100 mg/mL
concentration and transferred into dark, airtight vials for storage
at room temperature until further use.

2.1.2.4 Disc and well diffusion assay

Sterile filter-paper discs were prepared by punching uniform
circles (6mm diameter) and immersing them in each extract
solution for 12h. Standardized Muller-Hinton agar plates were
bored with 6 mm wells and filled with the corresponding volumes
or concentrations of olive or fig leaf extract for well-diftusion assays.
All prepared plates were subsequently sealed and stored at 4°C in
sterile amber glass vials, protected from light and moisture until
antimicrobial testing commenced within 7-10 days of preparation
to ensure chemical stability and preserve bioactivity (Sa and
Bradford, 2008; Ahmad-Qasem et al., 2016; Khelouf et al., 2023).

2.1.3 Cultivation and standardization of microbial
strains
2.1.3.1 Bacterial cultures

The clinical samples used in this study were collected from
hospitalized patients with confirmed bacterial infections. Isolates
of Gram-positive and Gram-negative bacteria were collected
from various clinical specimens from patients of different ages
and sexes, including stool, blood, cerebrospinal fluid (CSF),
urine, and swab cultures. All isolates were obtained with
informed patient consent and approved by the institutional ethics
committee to ensure compliance with ethical research standards.

Bacterial identification was performed using the Vitek2 compact
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system (BioMérieux, Marcy-I'Etoile, France). The Gram-positive
isolates included Staphylococcus aureus, Streptococcus agalactiae,
and Enterococcus faecalis, while the Gram-negative isolates
comprised Escherichia coli, Pseudomonas aeruginosa, and Klebsiella
pneumoniae. All bacterial isolates were routinely maintained on
Mueller-Hinton agar (HIMEDIA, India) and subcultured onto
fresh nutrient agar plates as required to ensure viability and purity
throughout the study. Antimicrobial susceptibility testing was
assessed using disc diffusion and well-diffusion assays, following
Clinical and Laboratory Standards Institute (CLSI) guidelines.
Broth microdilution and Mueller-Hinton agar plating methods
determined minimum inhibitory (MIC) and minimum bactericidal
concentration (MBC).

2.1.3.2 Inoculum standardization

Bacterial isolates were standardized to a 0.5 McFarland
turbidity, approximately equivalent to ~1 x 108 CFU/mL. In brief,
a single loopful of the respective colony was transferred to 10 mL
of sterile distilled water in a glass tube, ensuring that the optical
density matched the 0.5 McFarland reference (Haley et al., 2024).

2.1.3.3 Fungal culture

A clinical isolate of Candida albicans from the sputum of the
35-year-old male patient was obtained and cultured on Sabouraud
Dextrose Agar (SDA) at 37°C. Following initial growth, the isolate
was subcultured as required for antifungal evaluation.

2.1.4 Antimicrobial assays
2.1.4.1 Determination of MIC and MBC/MFC

The antimicrobial efficacy of the plant extracts was assessed
using standardized broth microdilution and agar diffusion
techniques following Clinical and Laboratory Standards Institute
(CLSI) recommendations (Haley et al., 2024). Serial two-fold
dilutions of each plant extract were prepared in Mueller-Hinton
Broth (MHB) to obtain final 100, 50, 25, and 12.5 mg/mL
concentrations. Each sterile 96-well microtiter plate received 100
pL of the diluted extract and 100 pwL of a bacterial suspension
standardized to a 0.5 McFarland turbidity. The following
experimental controls were included to ensure assay reliability: a
growth control (MHB and bacterial inoculum), a sterility control
(MHB and extract without bacterial inoculum), a DMSO control
(MHB, bacterial inoculum, and DMSO), and a solvent control
(MHB, bacterial inoculum, and either methanol or acetone),
to account for potential solvent effects. Following incubation
at 37°C for 18-24h, the minimum inhibitory concentration
(MIC) was defined as the lowest concentration of extract that
inhibited visible microbial growth. To determine the minimum
bactericidal concentration (MBC), 10 pL aliquots from wells
showing no turbidity were subcultured onto Mueller-Hinton Agar
(MHA), and the lowest concentration at which no colonies were
observed after incubation was considered as the MBC (Liu et al,,
2017; Sdnchez-Gutiérrez et al., 2021; Kebede and Shibeshi, 2022;
Esfandiary et al., 2024).

For the disc diffusion assay, MHA plates were uniformly
inoculated with a 0.5 McFarland bacterial suspension using sterile
cotton swabs. Sterile 6 mm filter paper discs were saturated with
plant extracts (100, 50, 25, and 12.5 mg/mL) prepared in DMSO
or sterile water. Positive control discs were antimicrobial agents
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(e.g., Levofloxacin 5 pg/disc was used as an antibacterial agent,
Sulconazole 25 g disc was used as the antifungal control),
while negative control discs contained only the solvent (methanol,
acetone, or DMSO). After air-drying the discs for ~5 min to ensure
complete solvent evaporation, the discs were aseptically placed
on the surface of the inoculated plates, maintaining a minimum
spacing of 24 mm. Plates were incubated at 37°C for 18-24h,
after which inhibition zones (including the disc diameter) were
measured in millimeters and compared to the standard antibiotic
controls (Liu et al., 2017; Sinchez-Gutiérrez et al., 2021; Kebede and
Shibeshi, 2022; Esfandiary et al., 2024).

Similarly, MHA plates were inoculated in the well diffusion
assay as described above. Wells of 6-8 mm diameter were
aseptically made using a sterile cork borer, and 100 pL of each
plant extract concentration (100, 50, 25, and 12.5 mg/mL) was
loaded into individual wells. Solvent and antibiotic controls were
also applied. Plates were left at room temperature for 10 min to
facilitate initial diffusion, followed by incubation at 37°C for 18-
24 h. The inhibition zone surrounding each well was measured and
recorded (Liu et al., 2017; Sdnchez-Gutiérrez et al., 2021; Kebede
and Shibeshi, 2022; Esfandiary et al., 2024).

2.1.4.2 Control measures

Levofloxacin (5 pg/disc) was used as the positive control for
antibacterial activity, whereas Sulconazole (25 pg) was used as the
antifungal control. To ensure appropriate negative controls, both
the extraction solvents (methanol, ethanol, and aqueous media)
and a 10% DMSO solution were tested to ensure appropriate
negative controls. DMSO was included based on its frequent
use as a solvent for plant extracts and bioactive compounds.
However, to mitigate its potential antimicrobial effect, we ensured
that the DMSO final concentration in microbial assays remained
below inhibitory levels, as previously reported in the literature
(Gonelimali et al., 2018; Ratananikom and Srikacha, 2020; Summer
et al, 2022). Furthermore, methanol, ethanol, and aqueous
media were individually tested as standalone negative controls
to eliminate the possibility of solvent-induced antimicrobial
effects. These tests confirmed that the extraction solvents did not
exhibit antimicrobial activity at the concentrations used in the
experiments, validating their appropriateness as controls.

2.1.5 In vitro reporter-gene profiling of
toxicity pathways

We employed toxicological assay software (Attagene, Inc.,
Morrisville, NC, USA) to evaluate critical toxicological endpoints
encompassing nuclear receptor signaling pathways, stress response
pathways, molecular initiating events (MIEs), and metabolism.
Unless otherwise noted, all procedures were performed according
to the manufacturer’s instructions (which included guidelines for
plate preparation, reagent handling, incubation conditions, and
normalization of data). Although the Attagene platform employs
automated software analytics, the TF-CIS/NRF assay is a cell
reporter-gene in vitro screening system; therefore, all pathway data
reported here originate from cultured HepG2-derived cells rather
than purely computational (in silico) simulations. We evaluated
three plant extracts: O. europaea methanolic fraction, O. europaea
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aqueous fraction, and F. carica methanolic fraction. Each extract
was tested at five concentrations: 6.25, 12.5, 25, 50, and 100 mg/mL,
with 0.5% DMSO as the constant vehicle.

The Tox21 software was used to determine the activity of the
following nuclear receptor signaling pathways: aryl hydrocarbon
receptor (AhR), androgen receptor (AR), androgen receptor ligand
binding domain (AR-LBD), aromatase, estrogen receptor alpha
(ER), and estrogen receptor ligand binding domain (ER-LBD),
and peroxisome proliferator-activated receptor gamma (PPAR-
Gamma). Using the same platform, stress response pathways
were detected by assessing the activity of key stress-related
factors: nuclear factor (erythroid-derived 2)-like 2/antioxidant
responsive element (nrf2/ARE); heat shock factor response
element (HSE); mitochondrial membrane potential (MMP);
phosphoprotein (tumor suppressor) p53; and ATPase family AAA
domain-containing protein 5 (ATADS5). Reporter cells or assays
specific to each stress factor were employed according to the
manufacturer’s guidelines, which included protocol-driven cell
seeding, compound exposure, and post-treatment incubation. The
resulting signals were detected and analyzed according to the
software’s instructions. Positive-control agonists for each pathway
(e.g., TCDD for AhR, 17B-estradiol for ERa, rosiglitazone for
PPAR-y, and tBHQ for Nrf2/ARE) were run in parallel to validate
assay performance. At the same time, vehicle-only wells served as
baselines for fold-induction calculations.

To further identify molecular initiating events, the assay
software was further applied to measure the activity of the
following receptors and enzymes: thyroid hormone receptor alpha
(THRa), thyroid hormone receptor beta (THRp), transthyretin
(TTR), ryanodine receptor (RYR), GABA receptor (GABAR),
glutamate N-methyl-D-aspartate receptor (NMDAR), alpha-
amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptor
(AMPAR), kainate receptor (KAR), acetylcholinesterase (AChE),
constitutive androstane receptor (CAR), pregnane X receptor
(PXR), NADH-quinone oxidoreductase (NADHOX), voltage-
gated sodium channel (VGSC), and Nat/I~ symporter (NIS).
We also expand our investigation using the Attagene platform
to assess metabolic activity by measuring the activity of the
following cytochrome P450 enzymes: cytochrome CYP1A2,
CYP2C19, CYP2C9, CYP2D6, CYP3A4, and CYP2EL. A reporter
was classified as “active” when the fold-induction exceeded
1.5x vehicle control in at least two adjacent concentrations and
demonstrated a concentration-dependent trend with Hill-fit R* >
0.9; otherwise, it was deemed inactive.

2.2 In vivo studies

2.2.1 Animal model

All animal experiments were carried out in accordance with
institutional guidelines and international regulations for the care
and use of laboratory animals, following the ARRIVE 2.0 guidelines
(Percie du Sert et al., 2020). Fifteen healthy male BALB/c mice were
purchased from the University of Benghazi, Faculty of Medicine
Animal House. Individual mice were 1-2 months old, with an
average weight of 25-30 g. Animals were maintained at a 12-h
light/dark cycle at 24-25°C, receiving unrestricted access to tap
water and a standard commercial rodent diet throughout both the
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acclimation and experimental phases. The mice were randomly
assigned to three experimental groups (n = 5 per group). The
selection of five mice per group was guided by considerations of
scientific rigor, ethical responsibility, and consistency with prior
in vivo studies. A sample size of n = 5 is commonly employed
in murine models investigating plant extracts, as it provides
adequate statistical power while reducing excessive animal use
(Charan and Kantharia, 2013). Moreover, this selection aligns
with the principles of Reduction, Replacement, and Refinement
(3Rs), ensuring ethical compliance without compromising data
integrity. Moreover, established guidelines in experimental design
recommend similar sample sizes for preclinical studies to balance
statistical robustness and ethical responsibility (Festing and
Altman, 2002; Piper et al., 2022). The first experimental group
was administered intraperitoneal injections with the methanolic
fraction of olive leaf extract, reconstituted in distilled water at
50 mg/kg. The second group received the same extract at 100
mg/kg dose. The control group was administered distilled water.
For in vivo administration, the methanolic extract of O. europaea
was reconstituted in distilled water to ensure biocompatibility and
reduce solvent-related toxicity in accordance with ethical and safety
standards for animal research. The doses of 50 and 100 mg/kg of
O. europaea leaf extract were selected based on previous studies
demonstrating their safety and efficacy in animal models. Oral
administration of olive leaf extracts at doses up to 200 mg/kg
has shown therapeutic effects without toxicity, while acute toxicity
studies report no adverse effects at doses up to 2,000 mg/kg
(Clewell et al., 2015; Guex et al., 2018; Hinad et al., 2021). Before
sacrifice, animals were fasted but retained free access to water
until 24 h before euthanasia. In vivo experiments were conducted
exclusively with the methanolic extract of olive leaves due to its
promising bioactivity observed in preliminary in vitro evaluations,
thus warranting further investigation. In contrast, fig leaf extract
was excluded from in vivo testing due to practical limitations, such
as restricted laboratory animal availability and the necessity to
optimize resource allocation to ensure a statistically significant and
ethically compliant study design. All procedures were carried out
in accordance with institutional guidelines for animal care and use
and conformed to internationally recognized ethical standards.

2.2.2 Ethical approval

All clinical samples were anonymized prior to analysis to ensure
patient confidentiality. The study was approved by the Institutional
Ethics Review Board and conducted in accordance with the
ethical principles outlined in the Declaration of Helsinki (approval
reference number: LIMU/UMC/IRB/2024-027). The Institutional
Animal Care and Use Committee, University of Benghazi, reviewed
and approved animal protocols (animal ethical approval certificate
number: TACUCB-MED-JY/2024/015). All experimental protocols
were performed in accordance with institutional guidelines for the
care and use of laboratory animals.

2.2.3 Histological techniques and sample
collection

The histological methods employed in this study were
conducted to assess potential tissue alterations induced by olive
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and fig leaf extracts, detect cellular and inflammatory responses,
evaluate safety and adverse effects, and provide microscopic
evidence of physiological impacts not detected by biochemical
assays alone.

2.2.3.1 Organ removal and fixation

Mice were anesthetized by diethyl ether inhalation 24 h after
the injection of olive leaf extracts. These animals were then
euthanized, and liver (hepatectomy) and kidney (nephrectomy)
tissues were extracted in aseptic conditions. Each tissue sample
was placed in 10% neutral-buffered formalin for 24h to preserve
the structure. After fixation for the first time, standard histological
preparations were performed as described by Suvarna et al. (2020).
Briefly, samples remained in 10% formalin to stabilize tissue
architecture, and tissues were sequentially exposed to increasing
ethanol concentrations (50%, 70%, 90%, and 100%) to remove
residual water. Dehydrated samples were immersed in xylene for
~2h to replace ethanol and increase tissue transparency. Tissues
were infiltrated with molten paraffin wax, providing mechanical
support and enabling thin sectioning, and transferred to metallic
or plastic molds, which were then rapidly cooled (—6 to —4°C) to
solidify the wax block, thereby fixing the tissue orientation. Blocks
were trimmed into 3-5pm sections with a rotary microtome
for sectioning. Ribbon sections were floated on a 40-45°C water
bath and subsequently mounted onto microscope slides pre-
treated with an adhesive or 50% ethanol to facilitate adherence.
The slides were then dried before staining 0.50% ethanol or
adhesive is needed to perform well, and the slides were dried
before staining.

2.2.3.2 Hematoxylin and eosin staining

The staining procedure was conducted according to the method
described by Fischer et al. (2008), with minor modifications. For
deparaffinization and rehydration, the slides were placed in xylene
for about 2min, then in descending concentrations of ethanol
(96%, 90%, 70%) to rehydrate the tissue sections. Slides were then
immersed in hematoxylin solution for 5 min, rinsed under running
water, briefly dipped in acid alcohol (one dip) for differentiation,
and thoroughly rewashed. These sections were transferred to eosin
for 3 min, then lightly rinsed in water to remove excess stain and
dehydrated for mounting. The slides were finally immersed in
xylene to clear residual ethanol and mounted with DPX (styrene
plasticizer xylene). A coverslip was gently lowered to seal the
tissue sections.

2.2.3.3 Histopathological evaluation

Prepared slides were examined under an Olympus BX41 light
microscope. Images were captured digitally with an Olympus
DP2-BSW system. Pathological assessments focused on identifying
inflammatory lesions, necrosis, and other cellular or architectural
alterations relevant to olive leaf extract treatment effects.

2.2.3.4 Hematological and biochemical analysis

Blood samples were drawn via puncture using a 30-gauge
needle. A portion of the blood was collected into EDTA tubes for
complete blood count (CBC) analysis using a SYSMEX XN330
(Diamond Diagnostics, USA) hematology analyzer, determining
red blood cells (RBCs), white blood cells (WBCs), hemoglobin,
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and platelets. The remaining blood sample was placed into plain
tubes centrifuged at 4,000 rpm, and the resulting serum was
evaluated for liver and kidney function using a Cobas Integra
400 plus platform (Roche Diagnostics, Germany). Parameters such
as alanine transaminase (ALT), aspartate transaminase (AST),
creatinine, and urea were measured to assess organ function
(Arantes-Rodrigues et al., 2011; Clewell et al., 2015).

2.3 In silico studies

2.3.1 Molecular docking studies

All calculations were initiated by preparing and optimizing
the ligand as O. europaea leaf extract with Gaussian 09 (Gaussian
Inc., Wallingford, CT, USA). The quantum-chemical geometry
optimizations used DFT at the B3LYP functional level with
the 6-311 G++(d,p) basis set, a commonly used combination
where computational load and accuracy are balanced. Subsequent
vibrational-frequency analyses were conducted to ensure no
imaginary frequencies were present, confirming that optimized
structures corresponded to true potential-energy minima. The
energy diagram (Figure 1) and the refined version of the final
geometry (Figure 2A) were exported from Gaussian 09 to ensure
reproducibility and clarity.

We selected the cytochrome-c peroxidase (Ccp) because it
is an essential periplasmic H,O,-detoxifying enzyme in many
of the Gram-negative MDR pathogens examined in this study.
Chemical or genetic inhibition of Ccp markedly increases
oxidative-stress sensitivity and attenuates virulence. The high-
resolution E. coli Ccp structure (PDB ID 1BEK, 1.8 A) provides a
conserved, biologically relevant, and readily druggable target for
our panel of Enterobacteriaceae isolates. The E. coli peroxidase
structure was obtained from the Protein Data Bank (PDB
ID: 1BEK; https://www.rcsb.org) and processed to remove any
unnecessary entities, including crystallographic water and non-
essential cofactors, keeping only the functional portion of the
enzyme-binding site. Missing hydrogen atoms were added, and
side-chain orientations were validated using the standard protein-
preparation protocols. PyMOL (v 2.0; Schrédinger, LLC) was
used to visualize the a-helices, B-sheets and loop regions in red,
cyan, and green, respectively (Figure 2B). This color scheme and
rendering style were selected to emphasize the overall fold of
the protein with a focus on the structural motifs essential for
enzymatic catalysis.

For the molecular docking analyses, 10 phenolic compounds
were selected based on their consistent identification as major
constituents in methanolic leaf extracts through recent LC-MS
and HPLC-MS studies. These included oleuropein, hydroxytyrosol,
tyrosol, verbascoside, luteolin-7-O-glucoside, and apigenin from
Olea europaea (Kabbash et al., 2023; Papageorgiou et al., 2022),
as well as psoralen, eugenol, acetyleugenol, and quercetin from
Ficus carica (Kim and Lee, 2023; Tikent et al., 2024; Shiraishi
et al., 2023). These compounds were selected for docking based
on their well-documented antimicrobial and redox-modulatory
properties, adherence to Lipinski’s and Veber’s criteria for
drug-likeness, their substantial representation in the methanolic
extract (>5% of the total peak area), and the availability of
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FIGURE 1

minimum on the potential energy surface.

Optimized minimum-energy geometry of a representative olive leaf extract compound obtained using DFT calculations [B3LYP/6-311++G(d,p)] in
Gaussian 09. The absence of imaginary vibrational frequencies in the vibrational analysis confirms that the structure corresponds to an actual local

high-quality, structurally resolved 3D coordinates enabling robust
computational modeling.

Pre-docking and docking simulations were conducted using
established molecular-docking software, such as AutoDock
Vina and Schrodinger Glide (MOE-Dock). The optimized
olive-leaf-extract ligands were converted into the appropriate
(PDBQT)
package. During ligand preparation, rotatable bonds, such

docking-file formats suitable for each software
as broken rings, were carefully defined to ensure accurate
modeling of ligand flexibility. Reported catalytic residues were
combined with automated pocket-detection algorithms for
peroxidase active-site delineation. Multiple independent docking
runs allowed for extensive exploration of the conformational
landscape, resulting in various plausible ligand poses. We further
examined the high-scoring solutions in detail, with a focus
stacking, hydrophobic

on hydrogen-bond formation, m-m

contacts, and potential electrostatic clashes, particularly
for functionally important residues (e.g., Ser 185, Lys 179,

Arg 48).

2.4 Statistical analysis

All data were processed using Microsoft Excel 2023 and
are expressed as means £ standard deviation (SD). Statistical
significance across multiple experimental groups was assessed
via one-way analysis of variance (ANOVA) with repeated
measures, utilizing SPSS software (SPSS, Inc., Chicago, IL).
Additionally, a t-test was conducted to determine differences
between two independent group means. Furthermore, two-way
ANOVA was employed to simultaneously evaluate the influence
and interactions of two independent factors, providing a more
comprehensive understanding of their combined effects on the
results. Differences with p-values below 0.05 (p < 0.05) were
considered statistically significant.

Frontiersin Microbiology

3 Results

3.1 In vitro studies

3.1.1 Antimicrobial susceptibility testing of the
clinical isolates

We evaluated antimicrobial susceptibility profiles for
the selected clinically relevant pathogens against a panel
of antimicrobial agents, as shown in Table I. Our results
revealed that E. faecium exhibited complete resistance to
all tested antimicrobial agents, suggesting a pan-resistant
phenotype. K. pneumoniae exhibited extensive antimicrobial
resistance but retained susceptibility to amoxicillin-clavulanate
In contrast, S. sensitive to

and ceftazidime. aureus was

azithromycin, nitrofurantoin/fosfomycin, trimethoprim-
sulfamethoxazole, and amikacin but resistant to gentamicin,
vancomycin, amoxicillin-clavulanate, ceftriaxone, ceftazidime,
Furthermore, E.

and tobramycin. coli was susceptible to

azithromycin, amikacin, and gentamicin but resistant to

nitrofurantoin/Fosfomycin, trimethoprim-sulfamethoxazole,
vancomycin, amoxicillin-clavulanate, ceftriaxone, ceftazidime,
and tobramycin. E. faecalis exhibited a limited antimicrobial
susceptibility profile, demonstrating sensitivity exclusively to
trimethoprim-sulfamethoxazole ~ while exhibiting resistance
to all other agents tested. S. agalactiae exhibited complete
resistance to all antimicrobial agents tested. E. cloacae remained
resistant to azithromycin and amoxicillin-clavulanate but
susceptible to trimethoprim-sulfamethoxazole and amikacin.
Two-way ANOVA revealed statistically significant differences in
antimicrobial agents efficacy (p = 0.042). These findings highlight
the widespread occurrence of multidrug resistance in specific
microbial pathogens, particularly E. faecium and S. agalactiae.
Furthermore, the results emphasize the necessity of ongoing
monitoring, careful antimicrobial agent selection, and responsible

antimicrobial practices.
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FIGURE 2
(A) Energy convergence diagram obtained during the DFT [B3LYP/6-311G++-(d,p)] geometry optimization of olive leaf extract in Gaussian 09. The
top panel shows the total electronic energy at each optimization step, while the bottom panel depicts the root-mean-square (RMS) gradient norm.
The systematic decrease in energy and gradient norm over successive iterations indicates successful convergence to a stable local minimum on the
potential energy surface. (B) Three-dimensional structure representation of the peroxidase enzyme from E. coli (PDB ID: 1BEK). Alpha-helices are
depicted in red, B-sheets in cyan, and loop regions in green. This structure was obtained from the Protein Data Bank and visualized here to illustrate
the overall fold and secondary structural elements characteristic of bacterial peroxidases. (C) A representative histological section of the liver from a
(Continued)
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FIGURE 2 (Continued)

BALB/c control mouse administered an intraperitoneal injection of distilled water, stained with hematoxylin and eosin, and examined at 200x
magnification. (D) A representative histological section of the liver from a BALB/c mouse administered an intraperitoneal dose of 50 mg/kg of the
methanolic fraction of olive leaf extract reconstituted in distilled water. The tissue was stained with hematoxylin and eosin and examined at 200x
maghnification. (E) A representative histological section of the liver from a BALB/c mouse administered an intraperitoneal dose of 100 mg/kg of the
methanolic fraction of olive leaf extract reconstituted in distilled water. The tissue was stained with hematoxylin and eosin and examined at 200x
magpnification. (F) A representative histological section of the kidney from a BALB/c control mouse was administered an intraperitoneal injection of
distilled water. The tissue was stained with hematoxylin and eosin and examined at 200x magnification. (G) A representative histological section of
the kidney from a BALB/c mouse following intraperitoneal injection with 50 mg/kg of the methanolic fraction of olive leaf extract reconstituted in
distilled water. The tissue was stained with hematoxylin and eosin and observed at 200x magnification. The section exhibits cortical hemorrhages
and focal regions of interstitial damage. (H) A representative histological section of the kidney from a BALB/c mouse following intraperitoneal
injection with 100 mg/kg of the methanolic fraction of olive leaf extract reconstituted in distilled water. The tissue was stained with hematoxylin and
eosin and observed at 200x magnification. The section exhibits cortical hemorrhages and focal regions of interstitial damage. (I) The
three-dimensional molecular docking representation of oleuropein (olive leaf extract) bound to bacterial peroxidase. The model highlights critical
tight binding interactions, including hydrogen bonds and hydrophobic contacts, illustrated as dashed lines. This interaction provides insights into
Oleuropein's potential mechanism of action in modulating bacterial peroxidase activity. (J) The two-dimensional interaction map of Oleuropein (olive
leaf extract) with bacterial peroxidase highlights the key molecular interactions. The diagram illustrates hydrogen bonds (green and red dashed lines),
carbon-hydrogen bonds, and various hydrophobic interactions, such as w-alkyl, w-sulfur, and w-7 stacking, which contribute to the binding stability.
Residues involved in these interactions are labeled, providing a detailed view of the compound’s binding orientation and affinity for peroxidase.

3.1.2 Antimicrobial efficacy of O. europaea and F.
carica leaf extracts using different solvents

In parallel, a range of in vitro assays was performed on
O. europaea and F. carica leaf extracts against the previously
described pathogenic bacterial strains and C. albicans. Extracts
were prepared using three different solvents (acetone, methanol,
and distilled water) at five concentrations (100, 50, 25, 12.5, 6.25
mg/mL). Antimicrobial activity was assessed using the agar well
diffusion assay, with inhibition zones recorded in millimeters
from three independent replicates. To ensure the specificity of the
antimicrobial activity, each solvent alone was tested in parallel with
the target pathogens as a solvent control. The negative control
consisted of 10% DMSO, while standard antimicrobial agents were
positive controls.

3.1.2.1 Acetone extracts

At 100 mg/mL concentration, O. europaea acetone extracts
demonstrated moderate inhibitory effects against some bacterial
isolates. The most significant susceptibility was observed in K.
pneumoniae (14.67mm) and E. coli (14.33mm), followed by
modest zones against S. aureus (11 mm) and S. agalactiae (10 mm),
as shown in Supplementary Table 1. However, no inhibition was
detected at lower extract concentrations, nor against Enterococcus
spp., P. aeruginosa, or C. albicans. In contrast, F. carica
acetone extracts displayed minimal activity. Only K. pneumoniae
showed a small inhibition zone (8.67mm) at 100 mg/mL, with
no measurable effects against any other tested organism at
lower concentrations.

These findings suggested that the antimicrobial efficacy of
acetone extracts is notably limited. At the highest concentration,
the extracts showed effectiveness only against a few Gram-positive
and Gram-negative bacterial strains. Furthermore, neither extract
demonstrated antifungal efficacy against C. albicans, indicating
poor extraction of antifungal constituents using acetone.

Overall, both acetone extracts demonstrated narrower spectra
and smaller inhibition zones relative to the positive controls
(e.g, up to 3233mm for K. pneumoniae). These results
suggest that acetone-based extracts exhibit limited antimicrobial
efficacy, particularly at lower concentrations. Consequently,
acetone appears to be a less effective solvent for extracting

Frontiersin Microbiology

pharmacologically active antimicrobial constituents from these
plant sources.

3.1.2.2 Methanol extracts

Methanol emerged as the most effective solvent for extracting
bioactive compounds from O. europaea (Supplementary Table 2).
The methanolic extract exhibited potent antibacterial activity at
the highest tested concentration (100 mg/mL), notably against
S. agalactiae (29 mm) and E. cloacae (39.33 mm). Even at 50%,
considerable inhibition zones were observed, particularly for S.
agalactiae (20.67 mm) and K. pneumoniae (20.33 mm). A moderate
antifungal effect was also evident at 100% against C. albicans
(19.66 mm). However, moderate fungal inhibition was observed at
lower concentrations.

In contrast, the methanolic extract of F. carica exhibited
comparable antimicrobial potency. At 100 mg/mL, the extract
exhibited wider inhibition zones: 20 mm for S. aureus, 8 mm for K.
pneumoniae, 9.33 mm for E. coli, and 13.67 mm for S. agalactiae.
At lower concentrations, the extracts exhibited minimal to no
detectable antimicrobial activity, and C. albicans showed complete
resistance across all tested concentrations.

These findings suggest that methanol is highly efficient
in extracting antimicrobial phytochemicals from O. europaea,
presumably due to its strong capacity to solubilize polar
compounds such as polyphenols and flavonoids. The observed
further  highlights  the
importance of solvent selection and dosage in optimizing the

concentration-dependent  activity
recovery of pharmacologically active constituents. The broad-
spectrum efficacy of O. europaea methanolic extracts against
multiple bacterial strains underscores its potential for further
investigation as a plant-derived antimicrobial agent.

3.1.2.3 Water extracts

The experimental findings revealed that at 100 mg/mL
concentration, aqueous extracts of O. europaea exhibited moderate
to potent antimicrobial activity, particularly against E. cloacae
(23.10mm), S. aureus (20.3mm), P. aeruginosa (27 mm), and
E. faecium (17.7mm) as shown in Supplementary Table 3. K.
pneumoniae and E. coli exhibited limited susceptibility to the
aqueous extracts, each showing inhibition zones of 14.7mm.
In contrast, S. agalactiae, E. faecalis, and C. albicans were
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Measurements were obtained following the Clinical and Laboratory Standards Institute (CLSI) guidelines. AZM, Azithromycin; NI/F, Nitrofurantoin; SXT, Trimethoprim/Sulfamethoxazole; AK, Amikacin; CN, Gentamicin; VA, Vancomycin; AMC,

Amoxicillin/Clavulanic Acid; CRO, Ceftriaxone; CAZ, Ceftazidime; and TOP, Tobramycin.
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entirely resistant with no observable inhibitory effect. Notably,
a moderate level of antimicrobial activity remained detectable at
50 and 25 mg/mL concentrations, particularly against S. aureus
(12.7 and 7.3 mm, respectively) and E. coli (14.3mm at 50%).
However, no measurable inhibitory effects were observed at lower
concentrations or against the remaining tested isolates. Consistent
with its limited activity in other solvents, F. carica aqueous
extracts exhibited only weaker antimicrobial activity. Inhibition
was observed sporadically at 100 mg/mL, specifically against S.
aureus (11.33 mm). However, most other bacterial isolates and
C. albicans showed complete resistance. These findings suggest
water is a suboptimal solvent for extracting bioactive antimicrobial
constituents from F. carica. These findings suggest that although
aqueous extracts of O. europaea display moderate antibacterial
activity, their overall efficacy remains markedly lower than that
of the methanolic extracts. Nevertheless, due to the absence of
organic solvents, their non-toxic nature and compatibility with in
vivo applications underscore their relevance in specific therapeutic
contexts. These findings further underscore the critical importance
of solvent selection in enhancing the antimicrobial efficacy and
potential clinical utility of plant-based therapeutics.

In conclusion, these findings demonstrate that the
antimicrobial effectiveness differs considerably based on the
solvent type and the tested plant species. Methanol proved to be
the most effective solvent for extracting bioactive compounds
from O. europaea, demonstrating potent broad-spectrum
antibacterial activity and moderate antifungal efficacy at the
highest concentration tested. In contrast, extracts from F. carica
exhibited limited antimicrobial potency against specific bacterial
strains at the highest methanolic concentration. Moreover, aqueous
extracts of O. europaea showed moderate antibacterial activity
against particular pathogens, whereas acetone extracts exhibited
more limited activity even at higher concentrations. These
observations emphasize the significant role of solvent selection in
effectively extracting bioactive compounds. Therefore, methanolic
extracts of O. europaea represent a promising candidate for future
antimicrobial research to combat agents-resistant pathogens.

3.1.3 Comparison of plant extracts and
conventional antimicrobial agents against MDR
pathogens

A comparison of the antimicrobial agent susceptibility data
with the current plant extract results shows several noteworthy
similarities and differences. Most prominently, E. faecium
and S. agalactiae exhibited pan-resistance to all conventional
antimicrobial agents tested, yet both demonstrated appreciable
inhibition zones in response to methanolic extracts of O. europaea.
In contrast, S. agalactiae, which exhibited no susceptibility to
standard antimicrobial agents, displayed an inhibition zone of
up to 45mm with O. europaea methanol extract at 100 mg/mL
concentration, suggesting that these phytochemical constituents
can inhibit pathogens. Similarly, E. faecium—entirely resistant
under antimicrobial conventional testing—was also inhibited by
O. europaea methanolic extracts at 100 mg/mL, whereas F. carica
extracts remained largely ineffective.

A similar pattern was observed in the cases of S. aureus
and K. pneumoniae. In our analyses, both isolates displayed
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variable susceptibility or partial resistance to selected antimicrobial
agents but showed clear zones of inhibition upon exposure to
methanolic extracts of O. europaea. Moreover, inhibition zone for
S. aureus and K. pneumoniae at 100% concentration highlight the
broad-spectrum potential of O. europaea under these conditions.
By contrast, F. carica extracts displayed comparatively modest
or negligible antimicrobial activity against the same organisms,
particularly at lower concentrations and with acetone or water
extractions. For E. coli which was susceptible to a limited number
of standard antimicrobial agents, the methanol-based O. europaea
extract demonstrated consistent inhibition, reflecting the partial
efficacy observed in the antimicrobial drug profile. E. cloacae also
followed a similar pattern, showing high-level inhibition with O.
europaea methanol extracts despite exhibiting limited susceptibility
to conventional antimicrobial agents.

Taken together, these comparative findings highlight some key
observations. First, methanol appears most effective in extracting
antimicrobial compounds from O. europaea, as evidenced by
the larger inhibition zones against pathogens that significantly
resisted conventional antimicrobial agents. Secondly, F. carica
extracts generally showed lower activity across the tested
organisms, suggesting that its extracts may lack the same potency
against multidrug-resistant pathogens. The fact that certain
strains were resistant to multiple standard antimicrobial agents
but showed susceptibility to O. europaea extracts underscores
the potential clinical relevance of plant-derived antimicrobials.
Consequently, solvent choice (particularly methanol) and plant
species selection (notably O. europaea) emerge as key factors
in maximizing the inhibitory efficacy against bacterial and
fungal pathogens.

3.1.4 In vitro high-content reporter-gene
profiling of toxicity pathways

Toxicity prediction using in silico models has gained
widespread application in pharmacology and toxicology, offering
a rapid and efficient means of screening compounds for potential
safety concerns (Wichard, 2017). These computational tools
provide notable benefits in early-stage drug development by
reducing time and cost while avoiding the ethical challenges
posed by animal experimentation. Increasingly, regulatory bodies
are recognizing the validity of in silico approaches for specific
evaluations; for instance, the ICH M7 guideline endorses the use
of QSAR models as acceptable alternatives to laboratory testing
for detecting DNA-reactive impurities (Raies and Bajic, 2016;
Wichard, 2017).

Using Attagenes toxicological assay software (Attagene,
Inc., Morrisville, NC, USA), we evaluated olive leaf extract at
doses up to 2,000 mg/kg for potential organ-specific toxicity,
effects on nuclear receptors and stress response pathways,
molecular initiating events, and metabolic enzymes. As presented
in Supplementary Table 4, the predictive models indicated
low probabilities of hepatotoxicity (0.85), neurotoxicity (0.88),
and respiratory toxicity (0.54). However, relatively moderate
probabilities were observed for nephrotoxicity (0.75) and
cardiotoxicity (0.77), signaling potential renal and cardiovascular
concerns. Additionally, the algorithm categorized olive leaf
extracts as active for immunotoxicity (0.98). Clinical toxicity (0.64)
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refers to the potential for adverse physiological effects, such as
organ toxicity, biochemical imbalances, or systemic inflammatory
responses, that could arise from prolonged exposure or high doses
of the studied compound. On the other hand, nutritional toxicity
(0.54) denotes the possibility of disruptions in nutrient metabolism,
absorption, or utilization, which may lead to deficiencies, metabolic
stress, or unintended immune modulation. In contrast, in silico
analyses predicted no significant activity for carcinogenicity
(0.79), mutagenicity (0.84), cytotoxicity (0.70), and ecotoxicity
(0.70), indicating a low risk of malignancy, genotoxicity, direct
cellular toxicity, or environmental hazard. However, a moderate
probability of blood-brain barrier (BBB) penetration (0.52)
underscores the need for further pharmacokinetic investigations to
evaluate potential central nervous system (CNS) exposure.

Tox21-focused
indicated no

Subsequent evaluations

(Supplementary Table 5) significant  activity
against key nuclear receptors including, the aryl hydrocarbon
receptor (AHR, 0.94), androgen receptor (AR, 0.97), aromatase
(0.86), estrogen receptor alpha (0.75), and PPAR-gamma (0.92),
suggesting minimal potential for endocrine pathway disruption.
Similarly, data presented in Supplementary Table 6 indicate that
olive leaf extracts did not significantly induce activation of stress
response pathways such as nrf2/ARE (0.92), heat shock factor (HSE,
0.92), mitochondrial membrane potential disruption (MMP, 0.82),
or p53 (0.79). Moreover, molecular initiating event (MIE)-based
analyses (Supplementary Table 7) revealed consistent inactivity
across several key receptor sites, including thyroid hormone
receptors (THRa and THRB), ryanodine receptors (RYR), and key
neurotransmitter-gated ion channels such as GABA, NMDAR,
AMPAR, and KAR. The extracts exhibited low interaction potential
with key xenobiotic-sensing receptors, including CAR and PXR.
Cytochrome P450 interaction predictions (CYP1A2, CYP2C19,
CYP2C9, CYP2D6, CYP3A4, and CYP2El) also revealed a
minimal likelihood of inducing significant metabolic disruptions
or drug-drug interactions. The in silico analyses suggested that
olive leaf extracts exhibit minimal or no activity across several
pathways and stress response mechanisms. However, this analysis
suggests possible immunotoxic, nephrotoxic, and cardiotoxic
effects. Supporting these predictions, our in vivo hematological
data (Section 3.2.2) also revealed immune-related alterations,
such as decreases in white blood cells and platelet counts. These
findings underscore the requirements for further investigation into
the potential immunotoxic effects of the extracts. Accordingly,
advanced cellular assays and targeted histopathological analyses
are crucial to substantiate the computational predictions
and determine whether the immunomodulatory effects of
olive leaf extracts are beneficial or adverse across different
dosage levels.

3.1.5 Toxicological evaluation of oleuropein
Oleuropein, the principal bioactive constituent of olive leaf
extracts, was evaluated using the ProTox-3 modeling platform
(IUPAC Food ID) to generate a comprehensive toxicity profile.
As shown in Table 2, the predicted LD50 for oleuropein is
2,000 mg/kg, classifying it within Toxicity Class 4, corresponding
to low acute toxicity. This suggests that while moderate oral
doses may be considered relatively safe, higher concentrations
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require careful consideration. In silico predictions also revealed
low mutagenic and carcinogenic potential. These findings are
consistent with the reported absence of carcinogenic and mutagenic
effects associated with olive leaf extracts, as shown in Table 2. In
contrast, oleuropein demonstrated a high immunotoxicity score.
This suggests a potential for immunomodulatory activity, which is
partially supported by our in vivo evidence showing alterations in
leukocyte and platelet counts.

Mild, statistically non-significant elevations in urea levels
observed in both in vivo biochemical analyses and in silico
predictions suggest potential nephrotoxic effects, warranting
further detailed renal investigations. In contrast, predicted
low hepatotoxicity aligns with the absence of histopathological
liver abnormalities in experimental animals. However, the
elevation of AST levels at higher doses may indicate mild
hepatic stress, highlighting the requirements for continued
monitoring in long-term studies. As presented in Table 2,
oleuropein’s

physicochemical ~ properties-specifically its

pronounced hydrophilicity (logP = —0.63) and extensive
hydrogen-bonding potential (6 donors and 13 acceptors)-are
likely to impact its absorption, distribution, and overall metabolic
Therefore,

are significant in accurately establishing oleuropein’s safety

behavior. detailed pharmacokinetic assessments
thresholds. Evidence from our computational modeling and in vivo
investigations underscores its potent antimicrobial and antioxidant
properties. However, these benefits are accompanied by critical
safety concerns, particularly regarding potential nephrotoxicity
and immunotoxicity. For effective clinical translation, further
investigations are essential, particularly those addressing chronic
toxicity, and detailed renal

immunophenotypic profiling,

function assessment.

TABLE 2 The structural and physicochemical properties of oleuropein
illustrate key molecular characteristics such as molecular weight,
hydrogen bonding potential, polarity, and partition coefficient.

Value

Molecular structure of

Properties of
oleuropein

oleuropein

Molecular weight 540.51 g/mol
Hydrogen bond 13

acceptors

Hydrogen bond 6

donors

Number of atoms 38

Number of bonds 40

Number of 11
rotatable bonds

Molecular 127.28

refractivity

Topological polar 201.67 A2

surface area

Octanol/water —0.63
partition

coefficient (logP)

These properties highlight the compound’s chemical nature and potential interactions in
biological systems. The molecular structure is shown for reference.
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3.2 In vivo studies

3.2.1 Histopathological observations

Initial histological assessment of hepatic and renal tissues
from mice treated with 50 and 100 mg/kg doses revealed no
overt necrosis, marked inflammation, or notable degenerative
alterations. These findings correlate well with the predicted
“Inactive” hepatotoxic and neurotoxic profiles from the in
silico toxicological studies (discussed later), suggesting minimal
structural compromise at the doses tested.

Microscopic sections of the liver revealed well-preserved
architecture. Hepatocytes were organized in one to two thick
cell plates, with uniform cytoplasm and round nuclei that
were centrally located, without atypia or pleomorphism. They
showed patent sinusoids and organized portal tracts containing
bile ducts, portal veins, and hepatic arteries without fibrosis,
inflammation, or cell infiltration. Biliary morphologic structures
were also typical; the Kupffer cell population had a uniform
distribution from portal to center of the lobule, and the
connective tissue framework of the Globus was intact with no
evidence of cirrhosis or other architectural abnormalities. Liver
sections from the control group (Figure 2C) exhibited no notable
signs of inflammation, necrosis, or fibrosis. In contrast, hepatic
tissues from the 50 mg/kg olive leaf extract group treatment
(Figure 2D) exhibited notable alterations in hepatocyte nuclear
morphology and more pronounced hemorrhagic manifestations.
Sections from the 100 mg/kg olive leaf extracts group treatment
(Figure 2E) revealed increased hepatocellular necrosis, nuclear
enlargement, and widespread hemorrhage, indicating a dose-
related intensification of hepatic injury.

Renal tissues from both the right and left sides showed
preserved cortical and medullary organization. The glomeruli
appeared normocellular with intact capillary loops, without
sclerosis or basement membrane alterations. No atrophy,
degeneration, or necrosis was observed in renal tubules
with normal epithelial morphology. Interstitium appeared
unremarkable, while vascular structures were free of vasculitis,
hyaline arteriosclerosis, or thrombosis. The collecting ducts
and renal pelvic components were structurally unremarkable,
with no evidence of epithelial proliferation or inflammatory
changes. The kidneys from the control treatment (Figure 2F) were
histologically normal aside from isolated interstitial hemorrhage.
In contrast, tissues from the 50 mg/kg olive leaf extracts group
(Figure 2G) exhibited more extensive interstitial hemorrhage
and occasional glomerular atrophy with localized tubular
atrophy. At the 100 mg/kg dose treatment, hemorrhagic changes
were more prominent, accompanied by marked glomerular
atrophy, suggesting a dose-related progression of renal pathology
(Figure 2H).

3.2.2 Hematological findings

The administration of olive leaf extract at 50 and 100 mg/kg
in BALB/c mice results in several prominent changes in white
blood cell (WBC) counts and platelet levels (Table 3). Both groups
experienced a significant reduction in total WBC count (p < 0.05)
compared to control, suggesting that these doses may induce an
immunomodulatory response. In addition, differential leukocyte
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TABLE 3 Hematological parameters in BALB/c mice (n = 5) following

intraperitoneal administration of the methanolic fraction of olive leaf

extract, reconstituted in distilled water, at doses of 50 and 100 mg/kg,
compared to a control group administered distilled water.

10.3389/fmicb.2025.1567921

TABLE 4 Biochemical parameters in BALB/c mice (n = 5) following
intraperitoneal administration of the methanolic fraction of olive leaf
extract, reconstituted in distilled water, at doses of 50 and 100 mg/kg,
compared to a control group receiving distilled water.

Parameter Control Group A Group B Parameters Control Group A Group B
(50 mg/kg) (100 mg/kg) (50 mg/kg) (100 mg/kg)

WBC 8.02 £ (0.45) 6.48 + (0.73)* 5.52 & (0.41)* Urea 40.67 + (13.03) 55+ (21.9) 61.7 + (6.9)

Neutrophils 20.17 £ (0.90) 12.17 + (1.59)* 15.40 £ (0.61)* B.UN 52.43 + (2.58) 41 £ (7.1) 53.8 £ (3.1)

Eosinophils 1.57 £ (0.55) 0.97 £ (0.59) 1.30 £ (0.26) Creatinine 0.41 £ (0.13) 0.4 £ (0.1) 0.2 £(0.1)

Basophils 0.33 & (0.25) 0.50 £ (0.53) 1.63 & (0.25)* ALT 28.83 £ (1.24) 24.1 £ (2.7) 35.7+(3.2)

Lymphocyte 24.63 £ (2.28) 42.23 £ (2.25)* 62.07 £ (10.94)* AST 56.25 £ (1.15) 74.9 £ (16.5) 91.4 % (5.4)*

Monocyte 5.57 + (0.50) 4.47 £ (0.35) 6.23 + (1.33) ALP 22.15 + (1.78) 4.0 £ (0.8)* 2.5+ (1.3)*

RBC 6.37 % (0.50) 7.82 + (2.19) 5.07 & (2.40) BIL IND 0 0 0.1

HGB 11.63 £ (1.53) 13.98 £ (2.15) 9.63 £ (5.23) BIL DIR 0 0 0.1

HTC 43.70 + (3.20) 44.70 + (4.10) 11.90 + (0.72)* Data are presented as mean =+ standard deviation (SD). Asterisks denote statistically
significant differences compared to the control group (p < 0.05). B.U.N,, blood urea nitrogen;

MCV 56.23 + (3.49) 51.74 + (2.99) 50.17 + (1.85) ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase;
BIL IND, indirect bilirubin; BIL DIR, direct bilirubin.

MCH 12.10 £ (0.61) 16.63 £ (1.33)* 15.43 £ (0.25)*

MCHC 30.67 + (0.57) 31.70 + (2.55) 33.17 + (0.68)

Platelet 37333 + (40.41) | 157.00 + (8.19)* | 213.33 = (20.82)* aqueous Olea europaea leaf extract (Table 4). A significant elevation

Data are presented as mean + standard deviation (SD). Asterisks indicate statistically
significant differences relative to the control group (p < 0.05).

analysis showed a notable increase in lymphocyte percentages
in these animal groups (p < 0.05), along with a corresponding
decrease in neutrophils (p < 0.05). This shift could signify
alterations in immune cell populations caused by olive leaf extract.
A slight but statistically significant increase in basophils was also
observed in BALB/c mice administered with 100 mg/kg dose
(p < 0.05).

Regarding red blood cell (RBC) parameters, neither treatment
group exhibited a significant change in RBC count or hemoglobin
(HGB) compared to controls (p > 0.05). However, according
to T-test comparisons, Group B mice showed a pronounced
reduction in hematocrit (HTC; p < 0.05). The mean corpuscular
volume (MCV), mean corpuscular hemoglobin (MCH), and mean
corpuscular hemoglobin concentration (MCHC) values remained
within their normal ranges. Nevertheless, there was a minor yet
significant rise in MCH among both treated groups (p < 0.05).
Alterations in RBC parameters may suggest altered erythropoiesis
or RBC turnover, but no clear pattern of dose-related toxicity
was evident.

In both treated groups, platelet counts significantly declined
(p < 0.05) compared to control animals, suggesting either
reduced platelet production in the bone marrow or enhanced
peripheral consumption (e.g., destruction or sequestration).
These hematological changes highlight the importance of further
investigations, including bone marrow histopathology and
broader immunological evaluations, to detect whether olive
leaf extract exerts immunomodulatory effects or specifically
targets thrombocytes.

3.2.3 Biochemical findings
Biochemical analyses revealed several notable alterations in
hepatic and renal biomarkers following the administration of
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in AST (Aspartate Aminotransferase) was observed in Group B
(100 mg/kg), potentially suggesting possible hepatocellular injury
or muscular stress associated with higher olive leaf extract exposure.
Meanwhile, ALT (Alanine Aminotransferase) in the same group
displayed a slight, though statistically non-significant, increase,
suggesting possible hepatic involvement but no definitive proof of
liver injury. T-test analysis also indicated that Alkaline Phosphatase
(ALP) was moderately lower in Group B (p = 0.085) than in
controls, suggesting a potential regulatory shift in liver or bone
enzyme production. Animals in both Groups A and B exhibited
moderate increases in urea levels; however, these changes did not
reach statistical significance (p > 0.05). Creatinine and blood urea
nitrogen (B.U.N.) remained stable across all experimental groups,
suggesting minimal or no kidney impairment under the examined
conditions. Furthermore, direct and indirect bilirubin levels were
unaffected, implying that bilirubin metabolism remained intact.
Although the slight elevation in urea may suggest mild renal or
metabolic disturbances, the lack of associated changes in B.U.N.
and creatinine makes definitive conclusions challenging. Therefore,
additional histopathological and mechanistic studies are required
to validate these findings and determine the long-term safety profile
of olive leaf extract.

3.3 In silico studies

3.3.1 Molecular docking results

Molecular docking simulations targeting bacterial peroxidase
(Figure 2I) identified robust non-covalent interactions between
olive leaf extract constituents and the enzyme. These interactions
included classical hydrogen bonding with Ser185, Lys179, and
Arg48 and carbon-hydrogen bonding involving Pro44. Donor-
donor repulsion observed at His181 and Asnl84 suggested
potential steric or electronic interference. At the same time, 7-
o interactions with Leul71 and w-sulfur contacts at Metl72
further characterized the complex binding architecture at the
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active site (Figure 2]). This intricate binding network likely
contributes to the pronounced antibacterial activity associated
with methanolic olive leaf extracts. It highlights the critical
role of solvent choice in maximizing phytochemical recovery
and bioactivity.

Although this study identified limited antifungal activity,
the docking analyses provide evidence for an antibacterial
mechanism involving peroxidase inhibition or disrupting bacterial
redox homeostasis. Although in silico toxicity assessments
(Supplementary Table 4) suggest potential immunotoxic risks,
they highlight the requirement for cautious dosing and further
mechanistic investigations to differentiate between desirable
immunomodulatory effects and unintended immune suppression
or hyperactivation. Future investigations should incorporate
integrated pharmacokinetic and pharmacodynamic assessments
alongside advanced omics-driven approaches to elucidate the
comprehensive therapeutic potential of olive leaf extracts in
addressing MDR pathogens.

4 Discussion

This study presents novel findings on the antimicrobial efficacy
of O. europaea and F. carica leaf extracts against MDR pathogens.
Notably, O. europaea leaf extracts, particularly the methanolic
fraction, demonstrated potent inhibitory activity against several
MDR strains, including E. faecium and S. agalactiae, which
exhibited high levels of resistance to conventional antimicrobial
agents. This inhibitory effect is consistent with previous reports
emphasizing the potency of olive-derived phenolics, including
oleuropein hydroxytyrosol and rutin, in inhibiting both Gram-
positive and Gram-negative bacteria (Sudjana et al., 2009; Lee and
Lee, 2010; Zori¢ and Kosalec, 2022). Interestingly, our findings
revealed that even pan-resistant pathogens exhibited susceptibility
to these polyphenolic compounds, supporting existing evidence
that plant-derived antimicrobials may act through alternative
mechanisms such as disrupting membrane integrity, modulating
redox homeostasis, or impairing stress-response pathways (Borjan
et al., 2020). The antimicrobial mechanism of olive leaf extracts
against Gram-positive and Gram-negative pathogens resembles
that of other plant-derived biomolecules such as green tea, oregano,
and thyme, which typically exert their effects by inducing oxidative
stress or disrupting microbial membrane integrity (Magyari-Pavel
et al., 2024).

In contrast, the F. carica leaf extracts investigated in this
study showed comparatively modest inhibition zones, consistent
with reports suggesting that fig preparations may exhibit reduced
antimicrobial activity depending on the solvent used and the
extraction method (Rahmani and Aldebasi, 2017; Abdel-Rahman
et al, 2021). The antimicrobial activity observed in F. carica
extracts has been attributed to phenolic acids such as caftaric,
gallic, and quercetin (Abdel-Aziz et al., 2020). Previous studies
have indicated that the antimicrobial efficacy of F. carica may vary
depending on the specific plant part utilized and the extraction
solvent employed, suggesting that fig leaves contain a diverse array
of bioactive compounds whose activity is significantly influenced
by the extraction methodology (Abubakar and Haque, 2020). The
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discrepancies between our results and those reported in previous
studies underscore the critical influence of variables such as
solvent polarity, chemical composition, extraction temperature,
and extract concentration on the antimicrobial efficacy of plant-
derived bioactive compounds (Papageorgiou et al., 2022; Barolo
et al., 2023; Agatonovic-Kustrin et al., 2023). Our findings are
consistent with the expanding body of research on phytochemicals,
including those derived from Nigella sativa, Cinnamomum verum,
and other phenolic-rich plants (Papageorgiou et al, 2022).
Furthermore, studies on green tea catechins and oregano oils
suggested that combining plant phenolics with conventional
antimicrobial agents may exert synergistic effects that enable dose
reduction while minimizing toxicity-related concerns (Somerville
et al, 2019). Regarding F. carica, the present findings may
support the development of synergy approaches by refining
extraction techniques or using combined formulations to enhance
its antimicrobial potency.

Consistent with our findings, a broad range of in vivo and
in vitro studies suggested that olive leaf extract is generally safe
at low doses. Oleuropein, the predominant phenolic constituent
of the olive leaf, has not produced adverse or low effects in
animal models, even at doses as high as 1,000 mg/kg (Gonzalez-
Pastor et al, 2023). In addition, human clinical data further
support this favorable safety profile. In a pilot study, healthy
subjects consuming olive leaf extract daily for 8 weeks displayed
no notable alterations in hepatic or renal biomarkers. Interestingly,
the study documented a slight increase in red blood cell counts
and no reports of severe adverse reactions (Kondo et al., 2023).
However, adverse effects have been reported with excessive intake
or prolonged administration of olive leaf extract. It has also
been demonstrated that mice fed diets containing 0.7%—0.9%
olive leaf extract for 6 weeks exhibited significant elevations
in liver enzyme activity and bilirubin levels, accompanied by
histopathological evidence of hepatocellular vacuolation and focal
necrosis (Omer et al., 2012). Moreover, prolonged consumption
of olive leaf extract at dietary concentrations ranging from 0.5%
to 0.75% over 14 weeks resulted in hepatic alterations, including
bile duct proliferation, cholestasis, inflammatory cell infiltration,
and early fibrotic changes. These pathological effects were linked
to mitochondrial dysfunction, reduced membrane potential, and
compromised respiratory capacity. Importantly, such effects were
absent at a lower dose of 0.25%, indicating a clear threshold beyond
which toxicity becomes apparent (Arantes-Rodrigues et al., 2011).
The evidence suggests that while olive leaf extract is generally
considered safe at conventional therapeutic doses, prolonged or
high-dose administration may elicit notable hepatic, renal, and
hematopoietic toxicities.

A fundamental aspect of this study is integrating in silico
toxicity predictions with in vitro and in vivo experiments to
evaluate the efficacy and safety profiles of olive leaf extracts. In
silico approaches, including molecular docking and computational
toxicity prediction, have become essential tools in antimicrobial
drug discovery. They offer a rapid method of screening plant-
derived compounds for potential bioactivity. Recent computational
studies on O. europaea and F. carica leaf extracts illustrate the
utility of these approaches. Molecular docking simulations have
revealed that hydroxytyrosol, a key olive leaf phytochemical, binds
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to bacterial DNA gyrase and penicillin-binding protein 3 (PBP3),
enzymes critical for DNA replication and cell wall synthesis (Ben
Hassena et al., 2024). Notably, olive leaf phytochemicals appear
to target similar pathways as conventional drugs (e.g., gyrase,
a target of fluoroquinolones, and PBPs, targets of p-lactams),
suggesting a mechanism for synergizing with or alternating
conventional antimicrobial agents. Phenolic compounds such as
oleuropein and hydroxytyrosol of olive leaves are considered safe
bioactive dietary compounds. However, our computational models
suggested low potential acute toxicity of O. europaea extracts.
This finding aligns with both in silico toxicity assessments and
in vivo studies consistently validating their low acute toxicity
profiles (Arantes-Rodrigues et al, 2011; Guex et al, 2018;
Wylie and Scott Merrell, 2022).

Similarly, F. carica leaf extracts have demonstrated promising
in silico profiles. A recent study of Moroccan fig leaves identified
several bioactive constituents with strong predicted binding
affinities to microbial targets, including bacterial B-ketoacyl-
ACP synthase (involved in fatty acid biosynthesis), nucleoside
diphosphate kinase, and the fungal sterol 14a-demethylase (CYP51;
Tikent et al, 2024). These findings suggest a potential for
broad-spectrum antimicrobial activity, evidenced by in vitro
activity against bacteria and C. albicans. Regarding safety, both
experimental cytotoxicity assays and computational models suggest
low to moderate toxicity, revealing selective toxicity against
pathogens over host cells (Tikent et al., 2024).

Generally, in silico findings of olive and fig leaf extracts
follow similar patterns commonly observed in other medicinal
plant investigations. Molecular docking studies consistently
highlight microbial proteins such as DNA gyrase, topoisomerases,
transpeptidases, and virulence regulators as common targets. For
example, phytochemicals from Azadirachta indica (neem) and
Curcuma longa (turmeric) have shown high binding affinities to
bacterial DNA replication and quorum-sensing machinery (Wylie
and Scott Merrell, 2022; Dai et al., 2022). Likewise, Snapdragon
flower extracts and garlic-derived compounds have demonstrated
multitarget binding affecting enzymes such as CYP51 and proteins
involved in biofilm formation (Saqallah et al., 2022). A consistent
observation across these studies is the pharmacological nature of
plant-derived compounds. Unlike several synthetic antimicrobial
drugs that act on a single molecular target, phytochemicals
often exhibit moderate affinity for multiple microbial proteins,
which may contribute to their broad-spectrum or synergistic
antimicrobial activity.

Overall, recent comparative studies on plant extracts highlight
the significance of in silico methods in antimicrobial research.
These approaches reliably identify bioactive plant compounds
capable of binding key microbial targets and prioritize candidates
with the most favorable efficacy-to-toxicity profiles for further
investigation (Ben Hassena et al., 2024; Dai et al, 2022).
Although these in silico predictions provide valuable insights,
experimental in vitro and in vivo validations are essential.
For instance, a recent phytochemical screening study identified
several plant-derived compounds as drug-like and emphasized
extensive in vitro and in vivo validation to confirm their clinical
relevance (Belitibo et al., 2024). This observation is consistent
with our findings, demonstrating that computational predictions
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require empirical validation to ensure their reliability and
biological significance.

5 Conclusion

This study highlights the significant antimicrobial properties
of O. europaea and F. carica leaf extracts against MDR pathogens.
Remarkably, O. europaea extracts, especially those derived using
methanol, demonstrated potent antimicrobial activity against
several pathogens. These findings are consistent with existing
research, confirming that plant-derived compounds commonly
exhibit antimicrobial properties by targeting microbial proteins.
Nevertheless, this study identified certain limitations. F. carica
extracts exhibited relatively narrow antimicrobial efficacy, aligning
with previous evidence that factors such as extraction methodology,
solvent system, the concentration of bioactive constituents, and
overall phytochemical profile critically influence the therapeutic
potential of plant-derived extracts. Although O. europaea extracts
demonstrated encouraging therapeutic promise, in vivo studies
revealed subtle signs of toxicity at higher doses, such as liver
and kidney alterations, underscoring the importance of careful
dose optimization. Although computational models predicted
low risks for organ toxicity, notable discrepancies emerged when
compared with experimental biological outcomes. This divergence
between computational predictions and experimental findings
underscores the limitation of in silico approaches. Although such
models are valuable for early toxicity screening and microbial
target identification, their utility must be integrated with in vivo
and in vitro experiments. In conclusion, this study provided
evidence supporting the antimicrobial potential of plant-derived
phytochemicals against MDR pathogens while emphasizing
the importance of therapeutic efficacy with rigorous safety
evaluation. Further investigations are essential to establish optimal
dosing strategies and to elucidate the molecular mechanisms
underlying their biological activity before translation into
clinical practice.
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The spread of carbapenemase-producing Enterobacterales (CPE) is a global concern.
While the majority of the CPE outbreaks are due to clonal spread, recent findings
highlight the transmission of carbapenemase gene-carrying plasmids across various
bacterial species, exacerbated by extensive antibiotic use in hospitals. This study
aimed to identify plasmid-mediated horizontal transfer of carbapenemase genes
among Enterobacterales isolated from patient samples and hospital environment
samples in three healthcare organizations in Finland. Using a hybrid assembly of
short and long reads, we could complete the genome assembly and compare
the plasmids harboring the blayec.s and blaoya 4s-ie genes. Our findings reveal
indications of interspecies and intraspecies plasmid-mediated gene transfer of
blaypc s and blaoya as-ie. €Mphasizing the role of horizontal gene transfer (HGT) in
outbreaks. The study underscores the need for comprehensive infection control
and surveillance beyond specific species to prevent the spread of antimicrobial
resistance genes. These results suggest that expanding outbreak investigations
to an interspecies level could be beneficial.

KEYWORDS

hybrid assembly, horizontal plasmid-mediated gene transfer, outbreak, molecular
epidemiology, plasmid, CPE, whole genome sequencing

Introduction

Carbapenems are considered last-line drugs for the treatment of infections caused by
multidrug-resistant Enterobacterales (Van Duin and Doi, 2017). The continuous rise in
carbapenem resistance, resulting from the acquisition of carbapenemase genes, is a global
concern. Infections caused by carbapenemase-producing Enterobacterales (CPE) are
commonly associated with healthcare settings, where the hospital environment often serves
as a reservoir for the spread of these bacteria. In outbreak investigations, the primary focus
has usually been on tracking the clonal spread of a single pathogen. However, it is essential to
consider that carbapenem resistance genes are predominantly located in mobile genetic
elements (MGEs), such as integrons, insertion sequences, transposons, and plasmids (Kopotsa
etal,, 2019). It has been estimated that up to half of the CPE transmissions could occur through
plasmid-mediated mechanisms (Marimuthu et al., 2022). The ability of plasmids to harbor
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multiple antibiotic resistance genes (ARGs) and facilitate their transfer
between the same and different bacterial species makes them highly
significant in the molecular epidemiology of CPE (Kopotsa et al.,
2019). Horizontal gene transfer (HGT) of plasmids via conjugation
occurs through physical contact between bacteria. This process
involves plasmids carrying mobility (MOB) genes for DNA processing
and a mating pair formation (MPF) complex, a type 4 secretion system
(T4SS), to form the mating channel (Smillie et al., 2010; Coluzzi et al.,
2022). Plasmids can be classified as conjugative (self-transmissible),
mobilizable (relying on another elements MPF genes), or
non-mobilizable. Conjugation begins with a relaxase enzyme nicking
the plasmid DNA at the origin of transfer (oriT), thereby initiating
rolling-circle replication in the donor cell (Coluzzi et al., 2022). The
resulting single-stranded DNA is then transferred to the recipient cell
via the T4SS, where it is circularized and replicated to restore its
double-stranded form.

While the majority of the Klebsiella pneumoniae carbapenemase
(KPC)-producing Klebsiella pneumoniae outbreaks reported to date
are due to clonal spread (Mari-Almirall et al., 2021; Pournaras et al.,
2009; van Beek et al., 2019), recent findings suggest an emerging
concern regarding the transmission of KPC gene-carrying plasmids
(Adler et al., 2016), facilitating their dissemination across different
bacterial species and genera (Schweizer et al., 2019). Plasmid-
mediated horizontal transfer of resistance genes, often exacerbated by
the extensive use of antibiotics in hospitals, may play a significant role
in the regional and supra-regional spread of carbapenem resistance in
healthcare settings (Li et al., 2018; Mari-Almirall et al., 2021; Schweizer
etal., 2019).

To date, the number of CPE cases has been relatively low in
Finland, ranging from 50 to 120 cases annually (Finnish Institute for
Health and Welfair, 2023). From 2017 to 2022, on average, one-third
of the annual CPE strains were associated with possible local
transmission, indicating that they were genetically closely related. The
most common types of carbapenemases detected were blaxpc, blaxpws
and blaoxa s tike-

This study aimed to identify the interspecies and intraspecies
plasmid-mediated horizontal transfer of carbapenemase genes
among Enterobacterales isolated from patient samples and hospital
environment samples in three healthcare organizations in Finland.
The location of the blaxpc ; and blaox, 4511 genes was investigated in
the bacterial genome and plasmid components for mobility
prediction. Knowing the transmission routes of the gene will provide
tackling CPE outbreaks and

valuable information for

epidemiological surveillance.

Materials and methods

According to the Communicable Diseases Act (1227/2016) and
the national guidelines for controlling multidrug-resistant microbes
(Kolho et al., 2020), all Finnish clinical microbiology laboratories are
required to notify the National Infectious Diseases Register of any
human isolates of Enterobacter cloacae, Escherichia coli, and
K. pneumoniae that exhibit reduced susceptibility to carbapenems.
These bacterial strains must also be submitted to the national CPE
strain collection at the Finnish Institute for Health and Welfare (THL)
(Réisdnen et al, 2020). In addition, other CPE species and
environmental isolates obtained as a part of the outbreak investigations
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are sent for further characterization to THL. Species identification and
antimicrobial susceptibility tests were performed in clinical
microbiology laboratories, along with confirmation of carbapenemase
genes for isolates with reduced susceptibility, as previously described
(Réisdnen et al., 2020). For short-read whole genome sequencing
(WGS), 1 ng of purified DNA was used, and the library was prepared
using the Nextera XT DNA Sample Preparation Kit (Illumina, SD,
USA). The paired-end short reads (2x 150-bp) were sequenced using
the llumina MiSeq instrument (Illumina, SD, USA). The short-read
sequences were processed and analyzed using Trimmomatic (version
0.33), fastQC (version 0.11.6), SRST2 (version 0.2.0), and SeqSphere+
(Ridom GmbH, Miinster, Germany), as previously described
(van Beek et al., 2019).

When selecting CPE strains for this study, patient, time, and
hospital environment were noted and grouped accordingly (Table 1).
KP_4 and EC_1 strains were obtained from the same patient on the
same collection date, both carrying the blaox 4 1. gene (group 1). The
other eight strains were obtained within a close timeframe in the same
or close location to each other, all carrying the blaxpc ; gene (groups
2A and 2B). Locations A and C were related to an outbreak caused by
K. pneumoniae ST512 (van Beek et al, 2019) and two other
K. pneumoniae strains (KP_1 & KP_2). Citrobacter freundii strain
(CF_1) from a cluster C. freundii ST116 (Rdisinen et al., 2021) was
obtained from the same patient as the KP_2 strain (group 2B). The
environmental strains of Klebsiella oxytoca (KO_1), Citrobacter braakii
(CB_1), and Enterobacter agglomerans (EA_1) were obtained from the
same hospital ward.

Whole genome sequencing with Oxford
Nanopore

The long-read WGS was performed using the MinION Mk1B
device by the R9.4.1 flow cells (FLO-MIN106) (Oxford Nanopore
Technologies, UK). The bacterial isolates were cultured from frozen
stocks (—70°C) on Mueller-Hinton II agar plates (containing 2 g of
beef extract, 17.5 g of acid hydrolysate of casein, 1.5 g of starch, and
17 g of agar) overnight at 37°C.

The library was prepared using the Rapid Barcoding Kit 96 (SQK-
RBK110.96) (Oxford Nanopore Technologies, UK) according to the
manufacturer’s protocol, except the eluate was incubated in the rotator
mixer (1,200 rpm) for 10 min at 56°C. The total run time was 72 h.

Basecalling was performed using the Guppy basecaller (v6.3.8) in
super high-accuracy mode in real time. The data were processed using
the MinKNOW (v22.10.7) software with the following utility
programs: Bream (v7.3.2) and Configuration (v5.3.7).

Data analysis
For the data analysis, a FullForcePlasmidAssembler (FFPA)

pipeline was used,' which includes Trimmomatic (v0.39), QCAT
(v1.1.0), UniCycler (v0.4.7), and NanoPlot (v1.30.1). The FFPA uses

1 https://github.com/MBHallgren/FullForcePlasmidAssembler#readme/
accessed 2023-2-8
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TABLE 1 Characteristics of the study strains.

10.3389/fmicb.2025.1567913

ID Group Species Sequence Carbapenemase Collection Sources Healthcare
type gene date organization
KP_4 1 K. pneumoniae ST15 blaoxy ssiike 04/2022 Human' B
EC_1 1 E. coli ST1170 blaoxa s iike 04/2022 Human! B
KP_1 2A K. pneumoniae ST512 blagpcs 10/2019 Hospital environment A
(toilet)
KP_3 2A K. pneumoniae ST307 blaypc 3 03/2020 Human
CF_2 2A C. freundii ST125 blagpc s 08/2020 Hospital environment
(floor drain)
KO_1 2A K. oxytoca ST21 blagpc s 08/2019 Hospital environment C
(toilet)*
CB_1 2A C. braakii NT blaypc s 10/2019 Hospital environment C
(toilet)*
EA_1 2A E. agglomerans NT blagpc 12/2019 Hospital environment C
(floor drain)*
KP_2 2B K. pneumoniae ST512 blagpc 5 01/2020 Human? A
CF_1 2B C. freundii ST116 blapc 5 01/2020 Human’®

NT, non-typable; KP, Klebsiella pneumoniae; CF, Citrobacter freundii; KO, Klebsiella oxytoca; CB, Citrobacter braakii; EA, Enterobacter agglomerans; EC, Escherichia coli.

'Tsolated from the same patient.
“Isolated from the same patient.
*Isolated from the same hospital ward.

Trimmomatic and QCAT for trimming long and short reads.
UniCycler (using eight threads) was used to maintain the hybrid
assembly of short and long reads (Wick et al., 2017) using the de novo
assembler SPAdes (v3.13.1) for the short reads (Bankevich et al.,
2012), followed by alignment of the long reads to the graph. The
quality and statistics of the MinION run were confirmed using
NanoPlot (De Coster et al., 2018).

A software platform, Geneious Prime (v2022.2)% was used to
annotate and assemble the contigs found from the hybrid assembly
FASTA data. The target genes (blagpc 3 and blaoxa 4s.11.) Were annotated
against the contigs. The accession numbers of the genes were obtained
from the ResFinder (v.4.1) (Bortolaia et al., 2020) (blagpc.s: HM769262
and blagy s ss1ie: AY236073), and the corresponding gene sequences
were obtained from the National Center for Biotechnology
Information (NCBI) GenBank’. The genes were annotated against the
contigs, and the target contigs were aligned using the MAFFT
alignment -tool (v7.490) (Katoh and Standley, 2013). A distance
matrix and a heatmap, as well as a similarity dendrogram, were built
from the aligned contigs. The similarity dendrogram was built using
Geneious Tree Builder with the Jukes—Cantor distance model and the
neighbor-joining building method. Each target contig was compared
to the NCBI* database using the BLAST Megablast online tool.

The draft assembly of the plasmids was analyzed and characterized
by the software tool MOB-suite using default parameters (Robertson
and Nash, 2018). The MOB-suite includes a set of modular tools for
reconstruction and typing. In the analysis, we used MOB-typer for
conjugative transferability predictions. For predicting putative
conjugative transferability, the MOB-typer identifies different DNA

2 https://www.geneious.com
3 https://www.ncbi.nlm.nih.gov/nucleotide/ accessed 2023-8-18
4 https://blast.ncbi.nlm.nih.gov/Blast.cgi/ accessed 2023-8-18
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markers needed for the transfer, including an origin of transfer (oriT),
a DNA relaxase, a type IV coupling protein (T4CP), and the type IV
secretion system (T4SS) (Robertson and Nash, 2018). Plasmids
possessing both a relaxase and a mate-pair formation marker were
categorized as “conjugative,” plasmids that had either relaxase or oriT,
but lacked the mate-pair formation marker, were classified as
“mobilizable;” and plasmids that lacked both relaxase and oriT were
considered “non-mobilizable” Each plasmid replicon (rep) type was
confirmed additionally using PlasmidFinder, with >95% identity and
>85% coverage® (Camacho et al., 2009; Carattoli et al., 2014).

Ethical statement

The isolates were part of the CPE surveillance or outbreak
investigations based on the Communicable Disease Act (1227/2016);
therefore, patients were not contacted, and ethical permission was
not needed.

Results

The blaoxa s gene was detected in two strains (group 1), and the
blaypc; gene was detected in eight strains (groups 2A and 2B)
(Table 1). In Geneious Prime, hybrid assembly data were divided into
3-14 contigs, and the size of the contigs where the target gene (blagpc
or blaoxa sg 1) Was found varied between 59,633 bp and 117,396 bp
(Table 2). Each of the contigs with the carbapenemase gene was

5 http://cge.cbs.dtu.dk/services/PlasmidFinder/ accessed 2025-5-7
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determined as a plasmid sequence with the grade (E-value 0) varying
from 72.3 to 100%.

MOB-typer analysis revealed that 6 out of 10 (KP_3, KP_4, CF_1,
CF_2,EA_1, and EC_1) plasmids were putatively conjugative and the
remaining were putatively non-mobilizable (KP_1, KP_2, KO_1, and
CB_1) (Table 3). The blaoxasme gene was located in putatively
conjugative plasmids in both strains of group 1. In groups 2A and 2B,
only the plasmids of the strains KP_3, CF_1, CF_2, and EA_1
containing the gene blay,c ; were classified as conjugative.

The similarity dendrogram and distance matrix were generated by
aligning the plasmid sequences that harbor the target genes (blaypc 3
or blaox 4 1xe). Analysis of the similarities unveiled the clustering of
plasmids into three distinct clades (Figure 1). The plasmids of EC_1
and KP_4 belonged to group 1 and created its own clade. The plasmids
of KP_1, KP_2, KP_3, CF_1, KO_1, CB_1, and EA_1 belonging to
group 2A and the plasmids belonging to group 2B were all found in
the same clade. One plasmid from group 2A, namely CF_2, was found
in its own clade apart from the rest of the plasmids.

The distance matrix and the heat map include the sequences of the
contigs containing the target genes (blagpc ; or blaox s i) (Table 4). In
this matrix, a higher value indicates a greater similarity in plasmid
sequences. The total range of sequence similarity varied from 11 to
100%. In the distance matrix, the similarity between the plasmids in
group 1 (with KP_4 and EC_1) was 100%. Among the largest clade—
containing group 2A excluding CF_2 and group 2—the similarity
ranged from 17 to 97%. In group 2A, the greatest similarity was observed
between the putatively conjugative plasmids of KP_3 and EA_1, with a
similarity of 97%. However, the putatively conjugative plasmid from
CF_2 did not demonstrate significant similarities with the plasmids of
any other strains. The plasmids of CF_1 and KP_2 from group 2B
showed 81% similarity, although only CF_1 was characterized as
putatively conjugative. Finally, among groups 2A and 2B, the putatively
conjugative plasmid of CF_1 demonstrated a relatively close similarity
(87%) with the putatively conjugative plasmids of KP_3 and EA_1.

Discussion

With the hybrid assembly, we could overcome the challenge stated
in the article by Zou et al. (2022), where short-read sequencing often

10.3389/fmicb.2025.1567913

resulted in fragmented genomes, thereby complicating the
classification of chromosomal and plasmid sequences. By using the
hybrid assembly, we were able to create a comprehensive assembly of
the plasmids and map the target genes (blagpc 3 0r blaoxa i) Based
on the MOB-typer analysis, 6 out of 10 strains carried putatively
conjugative plasmids (Table 3). By comparing the similarities between
the plasmid sequences, we could predict the mobility between the
strains and predict if interspecies and intraspecies plasmid-mediated
HGT has occurred.

The strains KP_4 and EC_1 from group 1, isolated from the same
patient, carried the blaoxaqs . gene on identical, putatively conjugative
plasmids classified as IncL/M type (Tables 2, 3). These plasmids, found
in the same clade and with 100% similarity, strongly suggest
interspecies plasmid-mediated HGT (Figure 1). This finding aligns
with previous research by Hamprecht et al. (2019), which
demonstrated that blaoxas dissemination primarily occurs via
plasmid-mediated HGT rather than clonal expansion. In addition,
MOB-typer and PlasmidFinder analyses confirmed the IncL/M and
IncL rep types, respectively, which was consistent with the study by
Poirel et al. (2012), further supporting the notion of a common origin
for blaox s ie-carrying plasmids. These plasmids exhibit low fitness
burden and high stability, enhancing HGT potential (Hamprecht
etal., 2019).

In group 2A, only strains KP_3, CF_2, and EA_1 harbored
putatively conjugative plasmids according to the MOB-typer. The
plasmid sequences of KP_3 and EA_1 exhibited a high similarity
(97%) (Tables 3, 4), and this high similarity strongly suggests
plasmid-mediated HGT (Orlek et al., 2017; Schweizer et al.,, 2019).
The presence of these strains in environmental and human samples
supports the hypothesis that environmental contamination in
hospitals contributes to the transmission of the blaxpc; gene
among bacteria, as previously suggested by van Beek et al. (2019).
In addition, the similarity in plasmid sequences and mobility
between different species implies that interspecies plasmid-
mediated gene transfer of the blagpc ; gene likely occurred between
environmental and human isolates. Mari-Almirall et al. (2021)
proposed a similar gene transmission dynamic for the blaypc , gene
in their investigation of the first hospital outbreak caused by
in Catalonia,

KPC-producing Enterobacterales reporting

intraspecies and interspecies transmission associated with

TABLE 2 Result of the BLAST search for the target contigs containing the target gene (blaypc.; Or blaoya-ss-iike)-

Carbapenemase genes Number of Length of the Grade % Type of element
contigs target contigs (E-value 0)
(bp)
KP_1 blagpe 6 117,396 72.5 Plasmid
KP_2 blagpc s 6 117,058 72.5 plasmid
KP_3 blagpe 5 114,528 85.6 Plasmid
KP_4 blassss ke 4 63,589 100 Plasmid
CF_1 blagpe 5 4 112,552 72.3 Plasmid
CE_2 blagpe 13 109,450 86.4 Plasmid
KO_1 blagpc 5 14 59,633 95.6 Plasmid
CB_1 blagee 5 13 66,259 91 Plasmid
EA_1 blagpe 3 116,907 81.9 Plasmid
EC_1 blaoy pss-iike 5 63,589 100 Plasmid
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TABLE 3 Predicted mobility and rep type(s) of the plasmids containing the target gene (blaypc.s or blaoya-4s-iike)-

Predicted mobility

Rep type(s) (MOB-suite)

Rep type(s) (PlasmidFinder)

KP_4 1 Conjugative IncL/M IncL
EC_1 1 Conjugative IncL/M IncL
KP_1 2A Non-mobilizable IncFIB, IncFII, and rep_cluster_2183 IncFIB(pQil)
KP_3 2A Conjugative IncFIB, IncFIl, and rep_cluster_2183 IncFIB(pQil) and IncFII(K)
CF_2 2A Conjugative IncFIC and IncFII IncFII(SARC14)
KO_1 2A Non-mobilizable IncFIB, IncFIl, and rep_cluster_2183 IncFII(K)
CB_1 2A Non-mobilizable IncFIB, IncFIl, and rep_cluster_2183 IncFII(K)
EA_1 2A Conjugative IncFIB, IncFII, and rep_cluster_2183 IncFII(K)
KP_2 2B Non-mobilizable IncFIB, IncFIl, and rep_cluster_2183 IncFIB(pQil)
CF_1 2B Conjugative IncFIB, IncFIL, and rep_cluster_2183 IncFIB(pQil)
The last two columns are results from MOB-suite and PlasmidFinder, respectively.
CF2
EC1
KP_ 4
KO_1
KP_2
KP_1
cB1
CF1
Group 1
EA1
Group 2A
KP_3 Group 2B
0.07
FIGURE 1
A dendrogram representing similarity of the contigs with carbapenemase gene (blayec.s O blaoxa s-ike). The blue square marks the strains from group 1,
red marks the strains from group 2A, and yellow marks the strains from group 2B.

plasmid-mediated gene transfer. They observed the plasmid
overcoming genetic rearrangements in non-K. pneumoniae
isolates, which could explain the minor differences observed in
plasmid sequences in our study.

The suspected plasmid-mediated HGT between the environmental
strains KO_1, CB_1, and EA_1 from the same hospital ward is difficult
to confirm, as only the plasmid found in EA_1 was classified as
putatively conjugative. In addition, the plasmid sequence of KO_1
exhibited low similarity with CB_1 (17%) and EA_1 (29%). The
similarity between CB_1 and EA_1 was higher at 53%. Thus,
confirming any conclusions would require more investigation.
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Group 2B strains, isolated from the same patient within a short
interval, suggested potential interspecies HGT (Evans et al., 2020).
However, the plasmid of strain CF_1 was classified as conjugative;
however, that of strain KP_2 was classified as non-mobilizable (Table 3),
and moreover, the similarity of the plasmids was 81% (Table 4). It is
possible that plasmid-mediated HGT occurred between CF_1 and
KP_2, but the plasmid may have evolved and lost its autonomous
conjugative ability (Coluzzi et al., 2022). Although the plasmid size of
KP_2 was larger than that of CF_1 (Table 2), the observed differences
may not be due to a simple deletion; instead, recombination events
could have occurred, leading to the loss of genes required for
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TABLE 4 Distance matrix and the heat map of the sequences of the contigs containing the target genes (blaypc_; or blaoya.as.-iike)-

Isolate EC_1 CB_1 CF_2 EA_1 KP_3 KP_1 KO_1 KP_2 CF_1
EC_1 13 22 20 20 21 25 21 20
1
13 22 20 20 21 25 21 20
CB_1 13 13 X 11 53 54 49 17 47 52
CF_2 22 22 11 X
EA_1 20 20 53 25
2A
KP_3 20 20 54 24
KP_1 21 21 50 30
KO_1 25 25 17 28
KP_2 21 21 47 29
2B
CF_1 20 20 52 24
, 20-39%;
, 40-59%;

Conjugative plasmid sequences are in bold.

conjugation. Confirming this would require further investigation into
the plasmid sequences. Among groups 2A and 2B, all plasmids belonged
to groups IncFIB and IncFII. In addition, all except CF_2 also had rep_
cluster_2183. Only KP_3, CF_2, EA_1, and CF_1 were classified as
containing a putatively conjugative plasmid with the target gene. The
plasmid sequence of the strain CF_1 shared great similarity (>80%) with
the plasmid sequences of the strains KP_3, KP_2, and EA_1. The strains
CF_1 and KP_3, obtained from human samples collected 2 months
apart at healthcare organization A, strongly suggest the occurrence of
interspecies plasmid-mediated HGT among patients within the same
healthcare organization. This finding confirms the discovery by Li et al.
(2018) that isolates originating from a single hospital have the ability to
spread among various species of Enterobacteriaceae, indicating a wide
dissemination of the plasmids within the hospital. The connection
observed between strains CF_1 and EA_1 further supports the
previously mentioned pattern of interspecies plasmid-mediated HGT
between environmental and human samples. No specific bacterial
species was found to be more prone to plasmid-mediated HGT.

The plasmids of the strains KP_2 and KP_1, which are related to the
same cluster (van Beek et al,, 2019), created their own subgroup with 93%
similarity as expected, as they were identified to be involved in the clonal
spread based on the cgMLST analysis (by using Illumina data only) and
shared a common epidemiological link. Predicted mobility analysis
demonstrated their non-mobilizable status, further validating clonal
spread and likely ruling out plasmid-mediated HGT between the strains.

In this study, we showed a strong indication of interspecies
plasmid-mediated gene transfer of antibiotic resistance genes blagpc
and blaoyx, s This study highlights the prevalence of HGT in
outbreaks and that infection control and surveillance should not only
concern a specific species. In such outbreaks, extensive detection and
surveillance should be designated as a prevention of the spread of the
AMR genes. The plasmid-mediated blaxpc, gene transfer in
multispecies outbreaks has been reported worldwide, for example, in
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Germany (Schweizer et al., 2019) and China (Li et al., 2018). Based on
our results, expanding the outbreak investigation to the interspecies
level in Finland should be considered in the future.

Our study has several limitations. The prediction of plasmid-
mediated HGT was based solely on observing the putative mobility and
similarity of the plasmids. Performing a phylogenetic analysis of plasmids
is challenging because they often lack conserved core genes, and
sequence dissimilarity does not necessarily indicate a distant common
origin (Orlek et al,, 2017). Plasmids that are phylogenetically distant may
share genetic content due to the insertion of similar mobile elements
(Redondo-Salvo et al., 2020), while closely related plasmids can exhibit
significant sequence differences after recombination with other genetic
structures (Redondo-Salvo et al., 2020; Schweizer et al., 2019). Therefore,
plasmid similarity might not be the best indicator of HGT. The use of
MOB-typer for mobility analysis should be approached with caution and
validated with another method in addition. Approximately half of the
plasmids were identified as non-mobilizable, meaning that they lack
relaxase and oriT, which are essential for the conjugation process. There
is a possibility that these strains carry novel oriT systems in their
plasmids that are not recognized. This could be explained by recent
findings by Ares-Arroyo et al. (2024), which suggest that many oriTs are
currently unrecognized. In addition, studies have found that plasmids
with incomplete conjugation systems, lacking some essential genes, can
utilize other mobile genetic elements (MGEs) such as bacteriophages or
other plasmids to facilitate mobility (Ares-Arroyo et al., 2024; Coluzzi
etal., 2022). To better understand this phenomenon, further investigation
into other MGE:s in the bacterium’s genome is required.

To confirm both mobility and HGT in future studies, it would
be advisable to perform plasmid dissemination tests, including
conjugation assays between isolates, and investigation of the MGE:s.
In addition, our sample size was relatively small, limiting the ability to
make definitive conclusions. Further data are required to strengthen
our findings.
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Conclusion

In this study, by using the hybrid assembly of short and long
reads, we could successfully distinguish the bacterial genome into
contigs to separate plasmid and chromosomal sequences, investigate
whether the carbapenem resistance gene is in the plasmid or not,
and predict whether the gene spreads horizontally between the
strains. To the best of our knowledge, this is the first report where
the plasmid-mediated spread of the AMR gene in Finland is
investigated by using the hybrid assembly. Understanding the
transmission route of the gene could yield valuable insights for
addressing CPE outbreaks, as it has been assessed that 50% of them
are disseminated via plasmids (Marimuthu et al., 2022). The
threshold for indications of HGT is difficult to determine with such
small sampling. To more precisely determine the exact threshold
and other indications of the plasmid-mediated HGT, more research
is required.
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Distribution and analysis of the
resistance profiles of bacteria
iIsolated from blood cultures in
the intensive care unit

Zeshi LiuY, Hehui Cai?t, Jing Leit, Xue Zhangt, Jian Yin?,

Yanping Zhangt, Xueping Yu3#* and Yan Geng'*

'Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi‘an,
Shaanxi, China, ?Department of Clinical Laboratory, Fujian Medical University Affiliated First Quanzhou
hospital,Quanzhou, Fujian, China, *Department of Infection Disease, Clinical Medical Research Center
for Bacterial and Fungal Infectious Diseases of Fujian province, Fujian Medical University Affiliated First

Quanzhou Hospital, Quanzhou, Fujian, China, *Key Laboratory of Screening and Control of Infectious
Diseases (Quanzhou Medical College), Fujian Provincial University, Quanzhou, Fujian, China

Purpose: To investigate the distribution characteristics and drug resistance of
pathogenic bacteria in bloodstream infections, providing a basis for rational
clinical treatment.

Patients and methods: Retrospective analysis of 1,282 pathogenic strains
isolated from blood cultures in the intensive care unit (ICU) of the Second
Affiliated Hospital of Xi'an Jiaotong University from January 1, 2019, to
December 31, 2022.

Results: Gram-positive bacteria (52.0%) slightly predominated over gram-
negative bacteria (48.0%). The top three gram-positive bacteria were
Coagulase-negative Staphylococcus (28.0%), Enterococcus faecium (74%), and
Staphylococcus aureus (6.6%). Staphylococci exhibited a high resistance rate
to penicillin, oxacillin, and erythromycin; no strains resistant to vancomycin
or linezolid were found. Among the Enterococci, Enterococcus faecium
had a high resistance rate to penicillin, ampicillin, and erythromycin. Two
strains of Enterococcus faecalis were resistant to linezolid, but none to
vancomycin. The top three gram-negative bacteria were Escherichia coli
(14.7%), Klebsiella pneumoniae (14.0%), and Acinetobacter baumannii (4.8%).
The resistance rate of Escherichia coli to carbapenems increased from 0.0
to 2.3%. Acinetobacter baumannii reached 100% carbapenem resistance (up
from 75.0%), while Klebsiella pneumoniae demonstrated 21.1-80.4% resistance
to various carbapenems.

Conclusion: The isolation rate of gram-positive bacteria in patients with
bloodstream infection in the ICU of the Second Affiliated Hospital of
Xi'an Jiaotong University was slightly higher than that of gram-negative
bacteria. The alarming carbapenem resistance among gram-negative pathogens
and emerging linezolid resistance in Enterococci demand urgent clinical
interventions, including enhanced surveillance, antimicrobial stewardship, and
novel therapeutic strategies.

KEYWORDS

blood culture, drug resistance, pathogens, intensive care unit, antimicrobial
susceptibility test

164 frontiersin.org


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1464573
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1464573&domain=pdf&date_stamp=2025-07-14
https://doi.org/10.3389/fmicb.2025.1464573
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1464573/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Liu et al.

1 Introduction

Bloodstream infection (BSI) is a severe

infectious disease characterized by the invasion of pathogenic

systemic

microorganisms into the body. These microorganisms circulate
in the bloodstream, where they undergo transient, intermittent,
or continuous reproduction, releasing toxins and metabolic
products that trigger the release of cytokines, ultimately resulting
in damage to organs. In severe cases, BSI can lead to shock,
multiple organ failure, disseminated intravascular coagulation,
and death (Tajima et al,, 2021; Fabre et al., 2022). Globally, BSIs
account for an estimated 20-30% of sepsis cases and are associated
with mortality rates exceeding 40% in critically ill populations,
particularly in intensive care units (ICUs) (Fleischmann-Struzek
et al, 2020). The rising prevalence of antimicrobial resistance
(AMR) has further complicated BSI management, with the World
Health Organization declaring AMR one of the top 10 global
public health threats, projected to cause 10 million annual deaths
by 2050 if unchecked (World Health Organization [WHO],
2021).

The diagnoses of BSIs, infective endocarditis, unexplained
infections, catheter-related BSIs, arthritis, and bacterial pneumonia
rely on blood culture (Gonzalez et al., 2020) to identify the
causative pathogens and provide antibiotic susceptibility profiles.
These data are critical for guiding evidence-based antibiotic
therapy, especially as multidrug-resistant (MDR) pathogens reduce
treatment efficacy and increase healthcare costs (Cheng et al,
2020; Mazi et al, 2021). Recent data reveal alarming global
shifts: while gram-negative bacteria historically dominated BSI
etiology, gram-positive pathogens such as Staphylococcus aureus,
coagulase-negative staphylococci, and enterococci now prevail
in many regions (Lan et al., 2021). Concurrently, resistance
mechanisms like methicillin resistance in S. aureus (MRSA),
vancomycin resistance in enterococci (VRE), and extended-
spectrum P-lactamase (ESBL)-producing Enterobacteriaceae have
escalated, driven by antibiotic overuse in clinical and agricultural
settings (Antimicrobial Resistance Collaborators, 2022). For
instance, MRSA accounts for > 35% of S. aureus BSIs in
high-income countries, while carbapenem-resistant Klebsiella
pneumoniae infections in ICUs exceed 60% in some endemic
regions (Centers for Disease Control and Prevention [CDC], 2023;
European Centre for Disease Prevention and Control [ECDC],
2022).

These trends underscore the urgency of region-specific
pathogen surveillance and resistance profiling. This study
retrospectively analyzed the distribution of pathogens and
their antibiotic resistance in blood culture specimens collected
from an intensive care unit (ICU) between 2019 and 2022. By

Abbreviations: CRAB, Carbapenem-resistant Acinetobacter baumannii;
CREC, Carbapenem-resistant Escherichia coli; CRKP, Carbapenem-
resistant Klebsiella pneumoniae; CRO, Carbapenem-resistant organisms;
CRPA, Carbapenem-resistant Pseudomonas aeruginosa; ICU, Intensive
care unit; KPC, Klebsiella pneumoniae carbapenemases; MH, Mueller-
Hinton; MRCNS, Methicillin-resistant coagulase-negative Staphylococcus;
MRSA, Methicillin-resistant Staphylococcus aureus; MSCNS, Methicillin-
sensitive coagulase-negative Staphylococcus; MSSA, Methicillin-sensitive
Staphylococcus aureus; KPN, Klebsiella pneumonia; KPL, Raoultella
planticola; PAE, Pseudomonas aeruginosa; ABA, Acinetobacter baumannii;
ECO, Escherichia coli; ECL, Enterobacter cloacae; NA, not available.
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correlating our findings with global antimicrobial resistance
establish a
empirical

dynamics, we aim to scientific foundation

for optimizing antibiotic  therapy, informing
stewardship programs, and mitigating resistance escalation in

critical care settings.

2 Materials and methods

2.1 Materials

2.1.1 Strains

Between January 1, 2019, and December 31, 2022, a
total of 1,282 bacterial strains were collected from the
in the ICU at the
Second Affiliated Hospital of Xi’an Jiaotong University, with

positive blood cultures of patients
duplicate strains from the same patient excluded from the
analyses. This study has been approved by the academic
committee of the Stem Cell Clinical Research Institute of
the Second Affiliated Hospital of Xi'an Jiaotong University
and the ethics committee of the same institution (2023414).
Informed consent was obtained from all study participants,
and the guidelines outlined in the declaration of Helsinki
were adhered to.

2.1.2 Culture media and antibiotic discs

Mueller-Hinton (MH) agar (Zhengzhou AutoBio Co., Ltd.,
Zhengzhou, China) was used for disc-diffusion susceptibility
testing, and 5% defibrinated sheep blood MH agar was used
for streptococci. Culture media were sourced from AutoBio
(Co., Ltd., Zhengzhou, China), and the antibiotic discs were
acquired from Oxoid, Basingstoke, UK). E-test strips were
obtained from Wenzhou Kangtai Biotechnology (Co., Ltd.,
Wenzhou, China).

2.2 Methods

2.2.1 Bacterial identification and antimicrobial
susceptibility test

The fully automated bacterial culture system BacT/ALERT
3D (Marcy I'Etoile, bioMérieux, France) was used to detect blood
culture specimens. Bacterial identification and antimicrobial
susceptibility tests were conducted using the VITEK 2-Compact
bacterial identification system (Marcy IEtoile, bioMérieux,
France), while less common bacteria were identified using the
VITEK MS system (Marcy DI'Etoile, bioMérieux, France). The
interpretation of antimicrobial susceptibility results followed
the 2022 performance standards proposed by the Clinical
and Laboratory Standards Institute (Clinical and Laboratory
Standards Institute [CLSI], 2022). To exclude duplicate strains
from the same patient, only the first positive blood culture with
a specific pathogen per patient was included in the analysis.
Subsequent isolates of the same species from the same patient
within 30 days were excluded unless they exhibited distinct
antimicrobial susceptibility profiles or were isolated from different
anatomical sites, as recommended by international guidelines
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for bloodstream infection surveillance (Magiorakos et al,
2017).

2.2.2 Phenotype testing for important drug
resistance
Carbapenem-resistant Enterobacterales defined as

Enterobacterale specimens resistant to any of the carbapenem

were
antibiotics, specifically imipenem, meropenem, or ertapenem.

2.2.3 Quality control strains

The quality control strains used in this study included
Escherichia coli (ATCC 25922 and ATCC 8739), Klebsiella
pneumoniae (ATCC 700603), Staphylococcus aureus (ATCC 25923
and ATCC 29213), Pseudomonas aeruginosa (ATCC 27853),
Enterococcus faecalis (ATCC 29212), Streptococcus pneumoniae
(ATCC 49619), and Haemophilus influenzae (ATCC 49247).
These strains were selected based on CLSI recommendations for
antimicrobial susceptibility testing (Clinical and Laboratory
Standards [CLSI], 2022)
pathogens associated with bloodstream infections. All strains

Institute and represent common
were procured from the American Type Culture Collection
(ATCC) to ensure traceability and standardized phenotypic
characteristics. Quality control testing was performed weekly
alongside clinical isolates, with acceptable ranges defined by CLSI
criteria. No deviations from standard protocols were observed
during the study period, as confirmed by internal audit records.

TABLE 1 Distribution of 1282 pathogenic bacteria in blood cultures.

10.3389/fmicb.2025.1464573

2.3 Statistical analysis

The laboratory data analysis and statistical analyses were
conducted using WHONET 5.6 software (China).! SPSS 24.0
software was utilized for statistical analysis. The chi-square test was
employed to examine differences in categorical data.

3 Results

3.1 Bacterial distribution

Between January 2019 and December 2022, a total of 1,282
distinct pathogenic strains were isolated from the blood cultures
of patients in the ICU (Table 1). Among these, 667 (52.0%)
were gram-positive bacteria, while 615 (48.0%) were gram-
negative bacteria. The five most prevalent bacterial species
were coagulase-negative Staphylococcus (359 strains; 28.0%),
Escherichia coli (189 strains; 14.7%), Klebsiella pneumoniae (180
strains; 14.0%), Enterococcus faecium (95 strains; 7.4%), and
Staphylococcus aureus (85 strains;6.6%). Other gram-negative
bacteria included Raoultella planticola, Citrobacter freundii,
Brucella, Haemophilus influenzae, Morganella morganii, and

1 www.whonet.org.cn

Organism 2019(n=156) 2020 (n=263) 2021 (n=384) 2022 (n=479) Total (n=1282)
Gram-negative bacteria 98 7.6 126 9.8 173 13.5 218 17.0 615 48.0
Escherichia coli 24 1.9 15 1.2 64 5.0 86 6.7 189 14.7
Klebsiella pneumoniae 46 3.6 47 3.7 49 3.8 38 3.0 180 14.0
Acinetobacter baumannii 14 1.1 12 0.9 18 1.4 18 1.4 62 4.8
Stenotrophomonas maltophilia 0 0.0 8 0.6 13 1.0 9 0.7 30 2.3
Pseudomonas aeruginosa 4 0.3 13 1.0 4 0.3 24 1.9 45 3.5
Enterobacter cloacae 4 0.3 9 0.7 6 0.5 21 1.6 40 3.1
Klebsiella oxytoca 4 0.3 1 0.1 0 0.0 8 0.6 13 1.0
Serratia marcescens 0 0.0 0 0.0 3 0.2 6 0.5 9 0.7
Enterobacter aerogenes 0 0.0 0 0.0 5 0.4 0 0.0 5 0.4
Burkholderia cepacia 0 0.0 2 0.2 2 0.2 0 0.0 4 0.3
Other gram-negative bacteria 2 0.2 19 1.5 9 0.7 8 0.6 36 2.8
Gram -positive bacteria 58 4.5 137 10.7 211 16.5 261 20.4 667 52.0
Coagulase-negative Staphylococcus 33 2.6 53 4.1 136 10.6 137 10.7 359 28.0
Enterococcus faecium 7 0.5 26 2.0 34 2.7 28 2.2 95 7.4
Staphylococcus aureus 14 1.1 25 2.0 17 1.3 29 23 85 6.6
Enterococcus faecalis 1 0.1 7 0.5 4 0.3 10 0.8 22 1.7
Streptococcus pneumoniae 2 0.2 13 1.0 0 0.0 0 0.0 15 12
Alpha-hemolytic Streptococcus 1 0.1 4 0.3 4 0.3 12 0.9 21 1.6
Beta-hemolytic Streptococcus 0 0.0 2 0.2 0 0.0 0 0.0 2 0.2
Other gram-positive bacteria 0 0.0 7 0.5 16 1.2 45 3.5 68 5.3
Frontiers in Microbiology 166 frontiersin.org
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Citrobacter diversus. Other streptococci mainly encompassed
Streptococcus viridans, Streptococcus mitis, and Streptococcus
agalactiae, while other gram-positive cocci included Enterococcus
gallinarum, ~ Streptococcus  bovis, Abiotrophia defectiva, and
Gemella species.

3.2 Antibiotic resistances of major
gram-positive bacteria

3.2.1 Staphylococcus genus

A total of 443 strains of Staphylococcus genus were isolated,
comprising 34.6% of all isolated pathogens. Among them, 85
strains were Staphylococcus aureus, and 358 strains were coagulase-
negative staphylococci. The detection rates of methicillin-resistant
Staphylococcus aureus (MRSA) in 2019, 2020, 2021, and 2022
were 2.3% (10 strains), 1.8% (8 strains), 0.0% (0 strains), and
2.7% (12 strains), respectively (Table 2). With the exception
of 2021, the detection rates remained stable. MRSA exhibited
a consistent decline in resistance to gentamicin, levofloxacin,
moxifloxacin, trimethoprim-sulfamethoxazole, and erythromycin
from 2019 to 2022. The resistance rate to gentamicin dropped
from 75.0 to 0.0%, while the resistance rate to erythromycin
decreased from 100.0 to 41.7%. Methicillin-sensitive Staphylococcus
aureus displayed a constant resistance rate to penicillin G from
2019-2022 (100.0%), while the resistance rates to levofloxacin,
moxifloxacin, and erythromycin decreased from 2019-2022.
Staphylococcus aureus was not resistant to vancomycin, linezolid,
or rifampicin.

Between 2019 and 2022, the detection rates of methicillin-
resistant coagulase-negative Staphylococcus (MRCNS) were
7.2% (32 strains), 9.9% (44 strains), 26.2% (116 strains), and
24.8% (110 strains), respectively (Table 3). MRCNS did not
show significant changes in resistance rates to gentamicin,
rifampicin, levofloxacin, moxifloxacin, or erythromycin. However,
the resistance rate to trimethoprim-sulfamethoxazole increased
from 27.3% in 2020 to 41.8% in 2022. No instances of resistance
to vancomycin or linezolid were detected among coagulase-
negative Staphylococcus strains. The resistance to penicillin G
and erythromycin remained relatively high among methicillin-
sensitive coagulase-negative Staphylococcus strains (MSCNS).
The resistance rates of MSCNS to levofloxacin, moxifloxacin,
and trimethoprim-sulfamethoxazole decreased from 2019
to 2022.

3.2.2 Enterococcus genus

A total of 132 strains from the Enterococcus genus were
isolated, including 22 strains of Enterococcus faecalis, 95 strains
of Enterococcus faecium, and 15 strains of other Enterococcus
species. Enterococcus faecium exhibited > 80.0% resistance to
ampicillin, though Enterococcus faecalis was sensitive to the drug
(Table 4). Enterococcus faecium displayed significantly higher
antibiotic resistance rates than those displayed by Enterococcus
faecalis. Enterococcus faecium demonstrated a resistance rate > 90%
to penicillin, although its resistance rate to erythromycin
declined from 2019-2022. In contrast, Enterococcus faecalis
exhibited resistance rates of 20.0% and 40.0% to penicillin and
erythromycin, respectively. Neither Enterococcus faecium nor
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TABLE 2 Resistance and sensitivity rates of Staphylococcus aureus isolated from blood culture to antimicrobial agents from 2019 to 2022.
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TABLE 3 Resistance and sensitivity rates of coagulase-negative Staphylococcus isolated from blood culture to antimicrobial agents from 2019 to 2022.

MRCNS

Antimicrobial agent 2019 (n=25) 2020 (n=44) ‘ 2021 (n=116) 2022 (n=110)

R S R s | R S R S
Penicillin G 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0
Oxacillin 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0
Gentamicin 28.0 68.0 18.2 68.2 6.0 75.0 20.9 70.9
Rifampin 16.0 84.0 11.4 88.6 43 93.1 12.7 84.5
Levofloxacin 80.0 12.0 68.2 31.8 65.5 29.3 73.6 255
Moxifloxacin 64.0 12.0 52.3 31.8 48.3 29.3 53.6 25.5
Trime-thoprim/sulfamethoxazole 72.0 0.0 27.3 72.7 32.8 67.2 41.8 58.2
Erythromycin 96.0 4.0 81.8 13.6 84.5 13.8 74.5 25.5
Linezolid 0.0 100.0 0.0 100 0.0 100 0.0 100.0
Vancomycin 0.0 100.0 0.0 100 0.0 100 0.0 100.0

MSCNS

Antimicrobial agent 2019 (n=6) 2020 (n=8) 2021(n=20)

R ) R
Penicillin G 6 0 8 0 55.0 45.0 85.2 14.8
Oxacillin 0 6 0 8 0.0 100.0 0.0 100.0
Gentamicin 0 6 0 8 0.0 90.0 0.0 100.0
Rifampin 0 6 0 8 10.0 90.0 0.0 100.0
Levofloxacin 4 2 6 2 30.0 70.0 22.2 77.8
Moxifloxacin 2 4 3 5 15.0 70.0 0.0 77.8
Trime-thoprim/Sulfamethoxazole 2 4 3 5 25.0 75.0 12.0 88.0
Erythromycin 4 3 5 3 65.0 25.0 59.3 37.0
Linezolid 0 6 0 8 0.0 100.0 0.0 100.0
Vancomycin 0 6 0 8 0.0 100.0 0.0 100.0

MRCNS, methicillin-resistant coagulase-negative Staphylococcus; MSCNS, methicillin-sensitive coagulase-negative Staphylococcus. Less than 10 bacterial strains, the resistance and sensitivity

rates are replaced by the number of bacterial strains.

Enterococcus faecalis were resistant to vancomycin, though two
strains of Enterococcus faecium were found to be resistant to
linezolid.

3.3 Antibiotic resistances of
enterobacterales

3.3.1 Escherichia coli

Escherichia coli exhibited increased carbapenem resistance
rising from 0.0% in 2019 to 2.3% in 2022 (Table 5). The resistance
rates of Escherichia coli to cefazolin, ceftazidime, and ceftriaxone
exceeded 20.0%, with resistance to cefazolin and ceftriaxone
increasing each year. However, resistance rates to amikacin
and piperacillin-tazobactam remained relatively low. No strains
were found resistant to imipenem, meropenem, tigecycline, or
polymyxin B. Resistance to ampicillin-Sulbactam, Cefazolin,
Cefepime, Levofloxacin, and Trime-thoprim/sulfamethoxazole
varied significantly each year, demonstrating statistical
significance.

Frontiers in Microbiology

3.3.2 Klebsiella pneumoniae

Klebsiella  pneumoniae demonstrated resistance rates to
carbapenem antibiotics that were consistently exceeding 20.0%
from 2019 to 2022 (Table 6). The resistance rates of cefazolin,
ceftazidime, ceftriaxone, and cefepime exceeded 20.0%. Klebsiella
pneumoniae demonstrated slightly higher resistance rates than
Escherichia coli. Both bacteria exhibited their highest resistance
rates in 2021, with some declines observed in 2022. Significant
annual variations in resistance rates were observed for all tested
antibiotics (p < 0.05).

The comparison of antibiotic resistance rates between E. coli
and K. pneumoniae from 2019 to 2022 is shown in Figure 1.

3.3.3 Enterobacter cloacae

Enterobacter cloacae exhibited a rising trend in resistance rates
to carbapenem antibiotics, increasing from 0.0% in 2019 to 19.0%
in 2022 (Table 7). The resistance rates to piperacillin, cefotiam, and
ceftriaxone all exceeded 80.0%. The resistance rate to piperacillin-
tazobactam decreased from 75.0 to 38.1%, and the resistance
rate to amikacin decreased from 100 to 52.4%. There were no
significant changes in resistance rates to gentamicin, levofloxacin,

frontiersin.org
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TABLE 4 Resistance and sensitivity rates of Enterococcus spp. isolated from blood culture to antimicrobial agents from 2019 to 2022.

Entercocccus faecium

Antimicrobial agent 2019 (n=1) 2020 (n=26) ‘ 2021 (n=34) 2022 (n=28)
R(strains) NEIETS) R S
Penicillin G 0 1 100.0 0.0 91.2 8.8 100.0 0.0
Ampicillin 0 1 100.0 0.0 88.2 11.8 100.0 0.0
Gentamicin-high 0 1 346 61.5 324 67.6 39.3 60.7
Erythromycin 1 0 96.2 0.0 82.4 0.0 50.0 50.0
Levofloxacin 1 0 69.2 30.8 64.7 294 55.9 28.6
Linezolid 0 1 0.0 100.0 0.0 100.0 0.0 100.0
Vancomycin 0 1 0.0 100.0 0.0 100.0 0.0 100.0
Entercocccus faecalis
Antimicrobial agent 2019 (n=7) | 2020(n=7) | 2021(n=4)
R (strains) | S (strains) R S R S
(strains) | (strains) | (strains) | (strains)
Penicillin G 3 4 3 4 2 2 20.0 80.0
Ampicillin 0 7 0 7 0 4 0.0 100.0
Gentamicin-high 3 4 2 5 1 3 20.0 80.0
Erythromycin 7 0 7 0 3 1 40.0 0.0
Levofloxacin 2 4 1 6 1 3 10.0 90.0
Linezolid 0 7 0 7 0 4 20.0 80.0
Vancomycin 0 7 0 7 0 4 0.0 100.0

Less than 10 bacterial strains, the resistance and sensitivity rates are replaced by the number of bacterial strains.

TABLE 5 Resistance and sensitivity rates of Escherichia Coli isolated from blood culture to antimicrobial agents from 2019 to 2022.

| 2019(n=24) | 2020(n=15) | 2021(n=64) | 2022(n=86) | x? 3
Antimicrobial agent R ) R ) R S R S
93.3 6.7 79.7 12.5 90.7 9.3

Ampicillin 79.2 20.8 5.194 0.158
Piperacillin 54.2 45.8 60.0 33.3 78.1 20.3 74.4 19.8 6.292 0.098
Ampicillin-Sulbactam 333 50.0 80.0 6.7 64.1 28.1 59.3 25.6 9.966 0.019
Piperacillin-Tazobactam 0.0 100.0 0.0 100.0 1.6 96.9 4.7 94.2 2.694 0.441
Cefazolin 45.8 54.2 46.7 53.3 87.5 12.5 69.7 30.2 20.180 < 0.001
Ceftazidime 26.3 73.7 26.7 73.3 32.8 65.6 32.6 67.4 0.725 0.867
Ceftriaxone 58.3 41.7 46.7 53.3 60.9 39.1 58.1 41.9 1.018 0.797
Cefepime 41.7 50.0 35.8 60.3 34.4 59.4 7.0 86.0 22.938 < 0.001
Cefotetan 0.0 100.0 0.0 100.0 0 100 2.3 96.5 - -
Aztreonam 33.3 66.7 46.7 53.3 48.4 51.6 37.2 62.8 2.746 0.433
Imipenem 0.0 100.0 0.0 100.0 0 100 2.3 97.7 - -
Meropenem 0.0 100.0 0.0 100.0 0 100 2.3 97.7 - -
Amikacin 0.0 100.0 0.0 100.0 1.6 98.4 0.0 100 - -
Gentamicin 20.8 79.2 33.3 66.7 43.8 53.1 37.2 62.8 4.028 0.258
Tobramycin 16.7 66.7 20.0 66.7 21.9 50.0 15.1 67.4 1.344 0.726
Ciprofloxacin 45.8 54.2 73.3 26.7 51.6 453 62.8 37.2 4.787 0.188
Levofloxacin 25.0 66.7 73.3 26.7 51.6 48.4 60.5 33.7 11.982 0.007
Trime-thoprim/sulfamethoxazole 33.3 66.7 26.7 73.3 56.2 43.8 55.8 44.2 8.051 0.045
Tigecycline 0.0 100.0 0.0 100.0 0.0 100 0.0 100 - -
Polymyxin B 0.0 100.0 0.0 100.0 0.0 100 0.0 100 - -
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TABLE 6 Resistance and sensitivity rates of Klebsiella pneumoniae isolated from blood culture to antimicrobial agents from 2019 to 2022.

2019(n = 46) 2020 (n=47) | 2021(n=49) | 2022 (n=38)
Antimicrobial agent R ’ ’ S ‘
Piperacillin 23.4 76.6 38.3 61.7 55.1 22.4 15.8 81.6 17.685 0.001
Ampicillin-Sulbactam 24.5 72.7 59.6 40.4 79.6 20.4 14.4 83.2 45.287 < 0.001
Piperacillin-Tazobactam 20.2 77.8 29.8 70.2 49.0 49.0 11.1 88.9 16.170 0.001
Cefazolin 50.2 48.7 53.2 44.8 81.6 17.4 53.2 41.1 13.947 0.003
Ceftazidime 24.9 69.1 38.3 53.2 59.2 36.7 23.7 76.3 13.695 0.003
Ceftriaxone 23.1 68.9 40.4 58.6 65.3 34.7 26.3 73.7 18.130 <0.001
Cefepime 22.4 72.6 29.8 70.2 59.2 40.8 21.1 73.7 17.973 <0.001
Cefotetan 28.1 71.7 19.1 63.8 14.3 85.7 2.6 97.4 10.250 0.017
Aztreonam 28.7 71.3 38.3 61.7 63.3 36.7 28.9 71.1 13.317 0.004
Imipenem 19.6 80.4 29.8 70.2 49.0 51.0 21.1 78.9 10.480 0.015
Meropenem 19.6 80.4 29.8 70.2 49.0 51.0 21.1 78.9 10.480 0.015
Amikacin 19.6 80.4 29.8 70.2 44.9 55.1 13.2 86.8 11.357 0.010
Gentamicin 15.2 84.8 29.3 70.7 40.8 59.2 10.5 89.5 11.905 0.008
Tobramycin 19.6 80.4 38.3 61.7 44.9 40.8 31.6 60.5 7.408 0.060
Ciprofloxacin 10.9 89.1 38.3 61.7 69.4 26.5 55.3 44.7 44.249 <0.001
Levofloxacin 10.9 89.1 38.3 61.7 65.3 30.6 52.6 44.7 39.089 <0.001
Trimethoprim/sulfamethoxazole 0.0 93.5 25.5 74.5 59.2 40.8 52.6 47.4 55.966 <0.001
Tigecycline 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100 - -
Polymyxin B 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100 - -

and ciprofloxacin. However, the resistance rate to trimethoprim-
sulfamethoxazole increased from 25.0 to 61.9%.

3.4 Antibiotic resistances of
non-fermenting gram-negative bacteria

3.4.1 Pseudomonas aeruginosa

The resistance rates of Pseudomonas aeruginosa to imipenem
and meropenem ranged from 73.7 to 84.6%, with a noticeable
decrease from 2019 to 2022 (Table 8). The resistance rates
to piperacillin-tazobactam, cefotiam, cefepime, amikacin, and
tobramycin were steady at approximately 10.0%. The resistance rate
to ciprofloxacin decreased from 84.6% in 2019 to 0.0% in 2022, as
did the resistance rate to levofloxacin, which decreased from 84.6%
in 2019 to 29.2% in 2022. Pseudomonas aeruginosa did not display
any resistance to polymyxin B.

3.4.2 Acinetobacter baumannii

Acinetobacter baumannii displayed a notable resistance to
multiple antibiotics (Table 9). The resistance rate to amikacin
increased from 16.7 to 72.2% in 2022, while resistance rates
to imipenem and meropenem were consistently > 75.0%. The
resistance rates to other antibiotics also exhibited a rising trend
from 2019 to 2022. Acinetobacter baumannii did not display any
resistance to tigecycline or polymyxin B. Resistance to ampicillin-
Sulbactam, piperacillin-tazobactam,

imipenem, meropenem,

amikacin, tobramycin and Trime-thoprim/sulfamethoxazole
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varied significantly each year, demonstrating statistical significance
(p < 0.05).

3.5 Carbapenem-resistant gram-negative
bacilli

Between 2019 and 2022, the detection rates of carbapenem-
resistant organisms (CRO) among gram-negative bacilli varied
(Table 10). In 2019, CRO accounted for 4.1% (52 strains)
of gram-negative bacilli, including 37 strains of Klebsiella
pneumoniae, 2 strains of Pseudomonas aeruginosa, and 13 strains
of Acinetobacter baumannii. In 2020, CRO accounted for 3.1%
(40 strains) of gram-negative bacilli, including 14 strains of
Klebsiella pneumoniae, 6 strains of Raoultella planticola, 11
strains of Pseudomonas aeruginosa, and 9 strains of Acinetobacter
baumannii. In 2021, the CRO detection rate was 3.3% (42 strains),
including 24 strains of Klebsiella pneumoniae and 18 strains of
Acinetobacter baumannii. In 2022, the CRO detection was 3.8%
(49 strains), including 2 strains of Escherichia coli, 8 strains
of Klebsiella pneumoniae, 4 strains of Enterobacter cloacae, 17
strains of Pseudomonas aeruginosa, and 18 strains of Acinetobacter
baumannii. Carbapenem-resistant Klebsiella pneumoniae (CRKP)
and Carbapenem-resistant Acinetobacter baumannii (CRAB) were
consistently identified from 2019 to 2022. CRKP showed a
decreasing resistance to aminoglycosides but an increasing
resistance to trimethoprim-sulfamethoxazole. Conversely, CRAB
exhibited increasing resistance rates to amikacin and gentamicin,
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FIGURE 1
Comparison of antibiotic resistance rates of E. coli and K. pneumoniae (2019-2022). E. coli, Escherichia coli; K. pneumoniae, Klebsiella pneumoniae.

TABLE 7 Resistance and sensitivity rates of Enterobacter cloacae isolated from blood culture to antimicrobial agents from 2019 to 2022.

2019 (n=4) 2020 (n=9) 2021 (n=6) 2022 (n=21)
Antimicrobial agent R(strains) | S (strains) | R (strains) | S (strains) | R (strains) | S (strains)
Piperacillin 4 0 9 0 6 0 85.7 0.0
Piperacillin-tazobactam 3 1 6 3 0 6 38.1 61.9
Ceftazidime 4 0 9 0 6 0 90.5 9.5
Ceftriaxone 4 0 9 0 6 0 100.0 0.0
Cefepime 1 3 3 6 0 6 33.3 47.6
Aztreonam 4 0 9 0 0 6 52.4 28.6
Imipenem 0 4 0 9 0 6 19.0 81.0
Meropenem 0 4 0 9 0 6 19.0 81.0
Amikacin 0 4 0 9 0 6 0.0 100.0
Gentamicin 1 3 3 6 0 6 47.6 52.4
Tobramycin 1 3 3 6 0 6 14.3 66.7
Ciprofloxacin 1 3 3 6 0 6 429 57.1
Levofloxacin 1 3 3 6 0 6 429 57.1
Trime-thoprim/sulfamethoxazole 1 3 3 6 0 6 61.9 38.1
Tigecycline 0 4 0 9 0 6 0.0 100.0
Polymyxin B 0 4 0 9 0 6 0.0 100.0

Less than 10 bacterial strains, the resistance and sensitivity rates are replaced by the number of bacterial strains.

from 16.7% in 2019 to 77.8% in 2022 and from 66.7% in 2019  resistance rates of CRPA to ciprofloxacin and levofloxacin
to 94.4% in 2022, respectively. The resistance to trimethoprim-  decreased from 100.0% in 2019 to 41.2% and 52.9% in 2022,
sulfamethoxazole increased from 61.5% in 2019 to 69.1% in  respectively.

2022, while resistance to levofloxacin decreased from 100.0% in

2019 to 66.7% in 2022. Carbapenem-resistant Enterobacter cloacae

(CREC) was only detected in 2022 and was sensitive to tigecycline, 4 DiSCUSSiOI’]

polymyxin B, and aminoglycoside antibiotics. Carbapenem-

resistant Pseudomonas aeruginosa (CRPA) was identified in Blood culture remains the gold standard for diagnosing
2019, 2020, and 2022, with resistance rates to ceftazidime and  bloodstream infections (BSIs) due to its accessibility, clinical
cefepime increasing from 0.0% in 2019 to 70.6% in 2022  utility, and ability to guide antibiotic susceptibility testing
and from 0.0% in 2019 to 52.7% in 2022, respectively. The  (Bai et al, 2022). While emerging molecular diagnostics (e.g.,
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TABLE 8 Resistance and sensitivity rates of Pseudomonas aeruginosa isolated from blood culture to antimicrobial agents from 2019 to 2022.

2019 (n=4) 2020 (n=13) 2021 (n=4) 2022 (n=24)

Antimicrobial agent R(strains) | S(strains) | R(strains) | S(strains) | R(strains) | S(strains)

Piperacillin-tazobactam 0 4 15.4 69.2 0 4 12,5 70.8
Ceftazidime 0 4 7.7 76.9 0 4 10.0 79.2
Cefepime 0 4 7.7 84.6 0 4 8.3 83.3
Imipenem 0 4 84.6 154 0 4 75.0 20.8
Meropenem 0 4 84.6 15.4 0 4 70.8 29.2
Amikacin 0 4 0.0 100 0 4 4.2 95.8
Tobramycin 0 4 7.7 92.3 0 4 0.0 100
Ciprofloxacin 2 2 84.6 15.4 2 2 0.0 100
Levofloxacin 2 2 84.6 15.4 2 2 29.2 62.5
Polymyxin B 0 4 0.0 100.0 0 4 0.0 100.0

Less than 10 bacterial strains, the resistance and sensitivity rates are replaced by the number of bacterial strains.

TABLE 9 Resistance and sensitivity rates of Acinetobacter baumannii isolated from blood culture to antimicrobial agents from 2019 to 2022.

2019 (n=14) 2020 (n=12) 2021 (n=18)
Antimicrobial agent
Piperacillin 100.0 0.0 100.0 0.0 100 0.0 100.0 0.0 - -
Ampicillin/Sulbactam 429 57.1 58.3 25.0 72.2 11.1 77.8 5.6 13.328 0.021
Piperacillin-tazobactam 92.9 7.1 75.0 25.0 100 0.0 100.0 0.0 9.528 0.014
Ceftazidime 92.9 7.1 66.7 16.7 83.3 0.0 88.9 0.0 6.949 0.243
Cefepime 92.9 7.1 66.7 25.0 77.8 0.0 83.3 0.0 9.719 0.056
Imipenem 92.9 7.1 75.0 25.0 100 0.0 100.0 0.0 6.530 0.019
Meropenem 92.9 7.1 75.0 25.0 100 0.0 100.0 0.0 6.530 0.019
Amikacin 429 57.1 16.7 83.3 55.6 38.9 72.2 22.2 35.209 < 0.001
Gentamicin 429 57.1 50.0 333 66.7 16.7 77.8 11.1 10.674 0.069
Tobramycin 429 57.1 75.0 25.0 72.2 11.1 100.0 0.0 19.706 < 0.001
Ciprofloxacin 57.1 42.9 58.3 41.7 61.1 16.7 88.9 5.6 12.554 0.023
Levofloxacin 50.0 50.0 50.0 50.0 66.7 222 66.7 16.7 8.076 0.180
Trime-thoprim/sulfamethoxazole 214 78.6 33.3 66.7 55.6 44.4 83.3 16.7 14.186 0.002
Tigecycline 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 - -
Polymyxin B 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 - -

PCR-based assays) offer rapid pathogen identification, blood
culture remains indispensable for capturing viable pathogens
and resistance profiles, particularly in critically ill ICU patients
requiring timely targeted therapy (El Haddad et al, 2018).
The isolation of clinically-relevant pathogens via blood culture
indicates that the defense mechanisms of the host and/or prior
clinical interventions were unsuccessful in eradicating the infecting
pathogens at the primary infection site. Moreover, the specific
types of pathogens identified via blood culture offer important
prognostic insights (El Haddad et al., 2018; Wildenthal et al,
2023). When multidrug-resistant organisms are identified in blood
cultures, the patient mortality rate is as high as 35% (Abu-Saleh
et al., 2018; GBD 2019 Antimicrobial Resistance Collaborators,
2022).

From 2019 to 2022, a total of 1,282 distinct strains were
isolated from the positive blood cultures of patients in the ICU
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at the Second Affiliated Hospital of Xi’an Jiaotong University.
gram-positive bacteria (52.0%) slightly outnumbered gram-
negative isolates (48.0%), aligning with global ICU trends
(Li et al,, 2022; Van An et al, 2023). However, the data in
this study may be biased due to a lower number of strains
in 2021. Among the
negative staphylococci were the most common,
by Enterococcus faecalis and Staphylococcus aureus. MRSA
displayed a decreasing resistance to gentamicin, levofloxacin,

gram-positive bacteria, coagulase-

followed

moxifloxacin, trimethoprim-sulfamethoxazole, and erythromycin
from 2019 to 2022. No resistance to vancomycin, linezolid, or
rifampicin was observed in Staphylococcus aureus. However,
coagulase-negative staphylococci (CoNS) accounted for 28.0%
of isolates, raising questions about their clinical significance.
While CoNS are frequent blood culture contaminants due
to improper skin disinfection (Wang et al, 2023), they may
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TABLE 10 Resistance rate and sensitivity rate of carbapenem resistant gram-negative bacteria isolated from blood culture to antimicrobial agents from 2019 to 2022.

els ni

640" UISIa1UOIY

Antimicrobial agents 2020(n=40) 2021(n=42) 2022(n=49)

kpn(n = 14) ‘ kpl(n=6) ‘ pae(n=11) ‘ aba(n=9) | kpn(n=24) ‘ aba(n=18) ‘ eco(n=2) ‘ kpn(n=8) ‘ ecl(n=4) H pae(n=17) | aba(n=18)

R| s R| s | R|S|R|S R | S
Ampicillin NA NA NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1000 00 | NA | NA | NA | NA | NA | NA | NA | NA
Piperacillin 100.0 0.0 100.0 | 0.0 NA | NA | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 & 00 NA | NA | NA | NA | 1000 | ©
Ampicillin/Sulbactam 100.0 0.0 100.0 | 0.0 NA | NA | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 & 00 NA | NA | NA | NA | 1000 | ©
Piperacillin-tazobactam 100.0 0.0 1000 | 0.0 00 | 909 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 & 0.0 00 | 1000 | 1000 | 0
Cefazolin 100.0 0.0 1000 | 0.0 NA | NA | NA | NA | 1000 | 00 NA | NA | 1000 | 00 | 1000 | 0.0 NA | NA | NA | NA | NA | NA
Ceftazidime 100.0 0.0 100.0 | 0.0 00 | 818 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 0.0 | 1000 | 00 | 1000 00 | 706 | 118 | 100.0 | 0
Ceftriaxone 100.0 0.0 100.0 | 0.0 NA | NA | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 = 00 | 1000 | 00 | NA | NA | 1000 | 0
Cefepime 100.0 0.0 1000 | 0.0 00 | 909 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 529 | 294 | 1000 | 0
Cefotetan 100.0 0.0 1000 | 0.0 NA | NA | NA | NA | 1000 | 00 NA | NA | 1000 | 00 | 1000 | 00 NA | NA | NA | NA | NA | NA
Aztreonam 100.0 0.0 00 | 1000 | NA | NA | NA | NA | 1000 | 00 NA | NA | 1000 | 00 | 1000 | 00 00 | 1000 | NA | NA | NA | NA
Imipenem 100.0 0.0 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 0
Meropenem 100.0 0.0 1000 | 0.0 | 1000 | 00 | 1000 | 00 | 1000 | 0.0 | 1000 | 00 | 100.0 = 00 | 1000 | 0.0 | 1000 | 00 | 82 | 118 | 1000 | 0
Amikacin 100.0 0.0 00 | 1000 | 00 | 1000 | 222 | 778 | 83 | 167 | 167 | 83 | 00 | 1000 | 500 | 500 | 00 | 1000 | 00 | 1000 | 778 | 222
Gentamicin 100.0 0.0 100.0 | 0.0 NA | NA | 667 | 1L1 | 1000 | 00 | 667 | 333 | 00 | 1000 625 | 375 | 00 | 1000 | NA | NA | 944 0
Tobramycin 100.0 0.0 100.0 | 0.0 91 | 909 | 1000 | 00 | 833 | 167 | 1000 | 0.0 00 | 1000 | 500 | 500 | 00 | 1000 | 00 | 1000 | 1000 | ©
Ciprofloxacin 100.0 0.0 1000 | 0.0 | 1000 | 00 | 1000 | 00 | 1000 | 0.0 | 1000 = 00 | 100.0 | 00 | 100.0 | 0.0 00 | 1000 | 412 | 471 | 1000 | 0
Levofloxacin 100.0 0.0 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 8.3 | I1L1 | 1000 00 | 1000 & 00 00 | 1000 | 529 | 235 | 667 | 333
Trime-thoprim/sulfamethoxazole | 28.6 | 714 | 1000 | 0.0 NA | NA | 444 | 556 | 1000 | 00 | 6L1 | 389 | 1000 | 00 | 625 | 375 | 1000 | 00 | NA | NA | 778 | 222
Tigecycline 0.0 100.0 00 | 1000 | NA | NA 00 | 1000 | 00 | 1000 | 00 | 1000 = 00 | 1000 | 00 | 1000 | 00 | 1000 = NA | NA | 00 | 100.0
Polymyxin B 0.0 100.0 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 0.0 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 1000 | 00 | 100.0 | 00 | 100.0
Kpn, Klebsiella pn iae; kpl, R Itella planticola; pae, Pseudomonas aeruginosa; aba, Acinetobacter baumannii; eco, Escherichia coli; ecl, Enterobacter cloacae; NA, not available.
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represent true pathogens in immunocompromised patients or
those with indwelling devices (Heilmann et al, 2019). In our
cohort, standardized blood culture collection were followed, yet
persistent CoNS isolation underscores the need for rigorous
clinical correlation to distinguish contamination from true
infection. The resistance rates of MRCNS to gentamicin,
rifampicin, levofloxacin, moxifloxacin, and erythromycin did
not change significantly throughout the study period, though
the resistance of MRCNS to trimethoprim-sulfamethoxazole
increased slightly. MRCNS were not resistant to vancomycin or
linezolid; therefore, these are the preferred antibiotics for clinical
Staphylococcus infections. The Enterococcus genus constituted
11.0% of the isolated strains in our hospital, with Enterococcus
faecium displaying higher resistance rates than Enterococcus
faecalis. More specifically, Enterococcus faecium exhibited high
resistance to ampicillin, while Enterococcus faecalis was sensitive
to ampicillin. The resistance of Enterococcus faecium decreased
from 2019 to 2022, while Enterococcus faecalis was slightly resistant
to penicillin and erythromycin. Neither Enterococcus faecium
nor Enterococcus faecalis displayed resistance to vancomycin,
though two Enterococcus faecium strains were resistant to
linezolid.

The rising carbapenem resistance in Enterobacterales is
alarming. Escherichia coli exhibited a carbapenem resistance
increase from 0% (2019) to 2.3% (2022), while Klebsiella
pneumoniae maintained resistance rates exceeding 20%
throughout the study period. Nevertheless, the overall resistance
rates decreased from 2019 to 2022. According to the 2023
CHINET China Bacterial Resistance Surveillance data, Klebsiella
pneumoniae had resistance rates of 26.2 and 27.1% to imipenem
and meropenem, respectively, which are similar to the national
resistance levels (Hu et al, 2022). These trends are likely
driven by horizontal gene transfer of blaKPC carbapenemases
(Han et al, 2021) and prolonged carbapenem use in critically
ill patients. Enterobacter cloacae demonstrated an increase
in resistance rates to carbapenem antibiotics from 2019
to 2022. No resistance to tigecycline or polymyxin B was
observed among bacteria in Enterobacterales. Therefore, it is
imperative to prioritize the identification and management of
risk factors associated with carbapenemase-induced nosocomial
infections.

Among non-fermenting gram-negative bacteria, Pseudomonas
aeruginosa displayed relatively high sensitivity to piperacillin-
tazobactam, cefotiam, cefepime, amikacin, and tobramycin.
However, its resistance rates to imipenem and meropenem
decreased during the study period. Pseudomonas aeruginosa did
not display resistance to polymyxin B. In contrast, Acinetobacter
baumannii remained sensitive to tigecycline and polymyxin B.
However, resistance rates to imipenem and meropenem were
high from 2019 to 2022. The rise in carbapenem resistance
aligns with global trends (GBD 2019 Antimicrobial Resistance
Collaborators, 2022), particularly in A. baumannii (100% resistance
in 2022), surpassing national averages reported by CHINET
(260d.%) (Hu et al, 2022). It is likely due to various factors,
including compromised immunity in patients in the ICU and
prolonged use of broad-spectrum antibiotics (Teerawattanapong
et al., 2018; Kaye et al, 2023). This phenomenon may also
be linked to the production of carbapenemase hydrolytic
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enzymes, decreased outer membrane permeability or loss of
porins, reduced affinity of penicillin-binding proteins, and
overexpression of efflux pumps (Abdi et al., 2020; Somily et al,
2022).

The ICU is a high-incidence area of multidrug-resistant
organisms and carries a considerable disease burden. Research
shows that the six leading pathogens for deaths associated with
resistance-related deaths—Escherichia coli, Staphylococcus aureus,
Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter
baumannii, and Pseudomonas aeruginosa—were responsible for
approximately 929,000 (660,000-1,270,000) deaths ascribed to
AMR and 3.57 million (2.62-4.78) deaths associated with AMR
in 2019. Due to various factors, the number of detected
strains in individual years is relatively small, and some drug
resistance rates may be skewed.Clinical implications of resistance
patterns demand urgent action. For gram-positive infections,
vancomycin and linezolid remain effective against staphylococci and
enterococci, though two Enterococcus faecium linezolid-resistant
strains highlight emerging threats. For gram-negative infections,
carbapenem-sparing regimens (e.g., ceftazidime-avibactam for
K. pneumoniae) should be prioritized where susceptibility permits,
while polymyxins and tigecycline serve as last-resort options. For
critically ill patients in the ICU, who often undergo invasive
medical procedures and have multiple underlying conditions
and compromised immune function, the detection of CRO in
blood specimens is associated with an increased risk of mortality,
emphasizing the need for prompt, effective, and precise treatment
(Yi and Kim, 2021; Martinez et al., 2023).

Study limitations include its single-center, retrospective design
and small annual sample sizes (e.g., 2021), which may skew
resistance rates due to stochastic variation. To mitigate this, we
aggregated data across the 4-year period to identify overarching
trends. Additionally, infection control measures (e.g., enhanced
environmental decontamination, antimicrobial stewardship
programs) were implemented during the study period, potentially
influencing resistance dynamics. Future multicenter studies with
larger cohorts are needed to validate these findings.

5 Conclusion

The pathogens responsible for BSI and their antimicrobial
resistance profiles are constantly changing. Timely surveillance
of pathogen distribution and resistance trends in blood cultures
remain indispensable for guiding empirical antibiotic choices in
ICU patients with infections. The resistance patterns reported
here offer actionable insights to optimize treatment regimens and
inform antimicrobial stewardship efforts in critical care settings.
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Introduction: Skin and soft tissue infections are frequent and often require
antibiotic treatment. However, for mild and self-limiting lesions, bacteriophage
therapy could be an interesting treatment option that limits the use of
antimicrobials and helps avoid the development of resistance. Still, very
little is known about the efficacy of commercial phage cocktails against the
biofilms encountered in these lesions. In this study, we investigated the use of
a commercial phage cocktail against Staphylococci and Streptococci grown
planktonically in thin and thick biofilms.

Methods: Isothermal microcalorimetry was used to monitor the metabolic
activity of planktonic cells, as well as cells grown in thin or thick biofilms of
common skin pathogens (Staphylococcus aureus, Staphylococcus epidermidis,
and Streptococcus agalactiae), when exposed to the commercial phage cocktail.

Results: The use of phages against sensitive strains showed a rapid decrease in
metabolic activity in planktonic cells. However, when applied to a thin biofilm,
the effect was already less, although it was still important. Finally, no effect was
visible on thick and mature biofilms.

Conclusion: The efficacy of bacteriophage cocktails is limited by the thickness
and maturation of biofilms. In the case of skin and soft tissue infections,
especially for chronic wounds, it might be necessary to mechanically remove
and disrupt the biofilm through mechanical debridement to enable the phage
product to be effective.

KEYWORDS

phage (bacteriophage), isothermal calorimetry, biofilms, Staphylococcus, phage
therapies

Introduction

Skin and soft tissue infections (SST1Is) present a broad clinical spectrum, ranging from
mild, self-limiting lesions, such as cellulitis, to serious, life-threatening conditions such as
necrotizing fasciitis (Hatlen and Miller, 2021). The foot and lower leg are the most frequently
affected body parts, particularly in diabetic patients (Shittu and Lin, 2006). A large proportion
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of patients require medical treatment and hospitalization, and in some
cases, the outcome is fatal (Moffarah et al., 2016). Current treatment
options involve antibiotics and, if necessary, surgery (Hatlen and
Miller, 2021). The bacterium responsible for most SSTIs is
Staphylococcus aureus (S. aureus), which is a ubiquitous gram-positive
bacterium (Hatlen and Miller, 2021). It is generally part of the natural
flora but might become an opportunistic pathogen (Paharik and
Horswill, 2016). Staphylococcus aureus is also the leading cause of
various other serious infections, including bacteremia, meningitis,
endocarditis, osteomyelitis, and pneumonia (Tong et al., 2015), and a
leading cause of both hospital- and community-acquired infections
worldwide (Lowy, 1998; Whittard et al., 2021).

Increasing evidence has confirmed the importance of biofilms
in various skin conditions, such as diabetic and venous stasis ulcers,
necrotizing fasciitis, pressure ulcers, cellulitis, atopic dermatitis,
erythema nodosum, and erysipelas (Severn and Horswill, 2023).
Indeed, biofilm formation in chronic wounds inhibits healing by
delaying re-epithelialization (Schierle et al., 2009). Biofilms are
communities of micro-organisms embedded in a matrix of
polymeric substances characterized by three major growth phases:
(1) attachment to the surface [in our field, e.g., on the soft tissues or
the epidermal layer of the skin (Kumar et al., 2019)], (2) maturation,
and (3) dispersion. Biofilms act as a protective layer against hostile
physical and chemical hostile conditions, including antibacterial
drugs. The induction and spread of resistant strains, such as
methicillin- or vancomycin-resistant S. aureus (MRSA or VRSA)
(Whittard et al., 2021), are of increasing concern. The continuous
emergence of new resistance not only against penicillin but also
against new agents such as linezolid (Tsiodras et al., 2001) highlights
an urgent need to find new effective therapies. This situation
necessitates increasing the antimicrobial dosage in response to
rising minimal inhibitory concentration (MIC) or combining
multiple antibiotics (Presterl et al., 2009).

Bacteriophage therapy is an option already used in some
countries and is gaining popularity in Europe. Bacteriophages, or
phages, are viruses that use bacterial hosts for replication,
ultimately leading to the destruction of these bacteria (Kiani
et al., 2021; Kim et al., 2021; Giindogdu et al., 2016). Their
discovery dates back to 1915, but after the discovery of penicillin,
interest in phages waned in Western Europe and is only now
resurfacing due to the emergence of antibiotic resistance (Clokie
et al, 2011). However, in Russia and Georgia, research has been
ongoing, and phage products are used in clinical settings and
readily found in online pharmacies (Clokie et al., 2011). Western
European agencies, on the other hand, require further research
into these products; thus, phage therapy has not yet been accepted
(Gordillo Altamirano and Barr, 2019).

Products found online are often a mix of different phage strains
(or phage types) and are known as a cocktail. Indeed, phages exhibit
high host specificity; therefore, using several phages in the same
product broadens the spectrum of activity and increases the chance of
therapy being efficient. It is also hypothesized to reduce the emergence
of resistant variants (Chan and Abedon, 2012). For example, the
cocktail used in this study (see later), called “Fersisi,” can be found in
an online pharmacy. The indications for such a product are broad,
ranging from skin infections to otolaryngological diseases, surgical
diseases, inflammations of the oral cavity, eye diseases, secondary
infections of thermal burns, urogenital and gynecological infections,
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or enteric infections." Although Russian literature on the use of phages
cannot be assessed in detail, the results obtained to date are promising
(Morozova et al., 2018). Phages appear to be a valid alternative to
antibiotics (Jiang et al., 2021), as they are effective against several
bacteria, including S. aureus in skin diseases (Kiani et al., 2021), and
prevent or reduce the formation of their biofilm (Tan et al., 2020; Kelly
etal, 2012; Alves et al., 2014). It has also been shown that the bacteria’s
virulence is decreased as sensitivity to certain antibiotics increases
through the use of phages (Leon and Bastias, 2015). Similarly,
combining phages with anitibiotics has been shown to be even more
effective (Jiang et al., 2021; Lusiak-Szelachowska et al., 2020).
However, the lack of validated clinical trials poses a challenge that
needs to be addressed in the coming years (Parracho et al., 2012).

Analysis and testing of commercial phage products remain a
challenge as culture-based conventional methods require a significant
amount of time, resources, and laboratory staff. Similarly, optical
density-based methods are also limited because some processes
cannot be distinguished from others. Moreover, such methods
perform poorly on solid and/or opaque substrates or media, making
assessment of anti-biofilm activity an even bigger challenge. Therefore,
this study utilizes an isothermal microcalorimeter (IMC) to investigate
the use of these cocktails against S. aureus and assess the metabolic
activity of planktonic cells, as well as thin and thick biofilms. IMC
records the metabolic heat produced during bacterial growth in real-
time, resulting in a heat flow curve that is directly comparable to the
metabolic activity (see details in Bonkat et al., 2012; Nykyri et al,,
2019; Braissant et al., 2020). IMC has been previously used to
investigate the growth of Staphylococci and the effect of phages. For
example, Molendijk et al. (2023) used different methods, including
IMG, to assess the susceptibility of S. aureus to phage mixes and single
phages. The antimicrobial efficacy and antibiofilm activity of phages
against Staphylococcus epidermidis (S. epidermidis) were also
demonstrated using IMC (Fanaei Pirlar et al., 2022). Similarly, the
effect of antibiotics or phages on S. aureus biofilms was also
investigated using a microcalorimeter (Butini et al., 2019; Sultan et al.,
2022). This study aimed to analyze the effect of bacteriophages on
planktonic cells in liquid cultures, on thin biofilms previously grown
in a well plate calorimeter, and on thick biofilms using semi-permeable
filters that can be easily transferred to fresh medium to allow further
growth (Solokhina et al., 2018; Merritt et al., 2011; Solokhina
etal., 2019).

Materials and methods
Microorganisms and phage products used

The bacteriophage used was the Fersisi (Eliava Biopreparations,
Thilisi, 0160, Georgia). The product was obtained from an online
pharmacy as a box of five ampoules of phages with titers against
Staphylococci (S. aureus, S. epidermidis) of no <10° mL™", and titers
against Streptococci (S. pyogenes, S. sanguis, S. salivarius, S. agalactiae)
of no <10 mL™" (as indicated by the manufacturer). The Fersisi

1 https://mybacteriophage.net/products/

fersisi-bakteriophagen-1-box-5-ampullen-x-10ml
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bacteriophage cocktail was described in detail through previous
metagenomic analysis (McCallin et al., 2018). S. aureus (ATCC 29213,
ATCC 43300, and ATCC 25923), S. epidermidis (ATCC 49461), and
S. agalactiae (DSM 6784) were obtained from the ATCC
culture collection.

Calorimetry of liquid culture

The bacterial strains used were stored at —80°C. Before each
experiment, purity was visually checked after overnight culture on
agarized brain-heart infusion (BHI composition: calf brains, beef
heart, peptone, sodium chloride, D-glucose, disodium hydrogen
phosphate) at 37°C. After the initial purity check, one colony was
taken and dissolved in 25 mL of liquid BHI. This liquid culture was
incubated overnight until the stationary phase. This culture was
diluted 20x in fresh BHI, and 7.5 mL of this inoculum was transferred
to 20 mL glass ampoules. Two ampoules were added with 150 pL of
bacteriophages from the beginning using a pipette. Two others were
added with 150 pL of bacteriophages using the TAM admix ampoule
injection system at different time points (between 1 and 3h,
corresponding to the early exponential phase). Finally, two ampoules
without the addition of bacteriophages served as growth controls.
After preparation, the samples were sealed and introduced into a TAM
Air calorimeter (Waters/TA Instruments) that had been previously
equilibrated at a temperature of 37°C + 0.01°C. This device has eight
measuring channels and eight slots for inert thermal references of the
same heat capacity and conductivity as the samples, which were
prepared with equal amounts of sterile PBS. Negative controls were
prepared using two ampoules filled with uninoculated media. All
measurements were performed in duplicates, and experiments were
repeated twice.

Calorimetry of thin biofilm

Eight plastic inserts were prepared with 250 pL of solution prepared
with 100x diluted overnight cultures, as described above. The inserts
were then placed in titanium calorimetry vials and sealed. Following
closure, they were placed in the Calscreener calorimeter (Symcel Sverige
AB), according to the manual 3-step equilibration procedure. The
Calscreener was previously equilibrated at 37°C for at least 2 days. After
1 day of incubation and once heat production returned to baseline, the
planktonic cells were removed by pipetting. The non-adherent cells
were removed by washing with BHI media, and finally, the insert
containing the biofilm was refilled with the same amount of medium
with or without bacteriophages. The phage treatment medium
contained 10% phage product diluted in BHI. The growth controls were
made with BHI only. Sterility controls were made with uninoculated
BHI. All measurements were performed in four replicates.

Calorimetry of thick biofilm on nylon
membrane

Previously sterilized nylon filters (1 cm x 3 cm-0.2 pm, Millipore,

Burlington, MA, USA) were placed on BHI agar. A stationary-phase
overnight culture of Staphylococci strains was spread on those filters
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using a 10 pL sterile inoculating loop. The plates with the biofilm were
incubated at 37°C overnight. After biofilm formation under these
conditions, the filters were transferred to fresh BHI agar until a mature
biofilm state was achieved. Biofilms were considered mature when no
visible changes could be seen in their size (surface and thickness on the
filter) or appearance. This ensured that any changes detected in metabolic
heat production were due to changes in metabolic activity induced by
the antimicrobial treatment and not to further growth or extension of
the biofilm on the membrane. All media and materials (including the cut
nylon filters) were sterilized by autoclaving for 20 min at 121°C.

To detect biofilm heat production with IMC, mature biofilms
grown on nylon filters were placed in 20 mL calorimetry glass vials
(Waters/TA Instruments) containing slanted BHI agar. After sealing
the ampoule, the sample was placed in the microcalorimeter (TAM3 -
Waters/TA Instruments), and metabolic heat production was recorded
in real-time. When metabolic heat production returned close to
baseline, the vials were recovered from the calorimeter, and the same
mature biofilms were exposed to bacteriophages. For this, 250 pL of
phage product was applied to the biofilm until the solution was fully
absorbed (within 5-10 min). After bacteriophage exposure, the nylon
membranes bearing biofilms were transferred to fresh BHI agar vials
to measure the heat flow again, following the same procedure. At the
end of the experiment, the biofilms were heat-killed, and metabolic
heat production was collected for the last time to establish a baseline
signal. All measurements were performed in triplicate.

Data analysis

Each experiment was performed in at least duplicate. The data
analysis was performed using the statistical program R (R Core Team,
2019) and the grofit package (Kahm et al.,, 2010). Heat flow curves
were integrated to obtain the heat over time curves. The Gompertz
growth model was used to fit the heat curves and further calculate the
maximal growth rate (u), the lag phase (1), and the maximum heat (Q
max). When several overlapping peaks were observed, those peaks
were convoluted with Fityk (Wojdyr et al., 2004) using the Pearson VII
model. Then, each individual peak of the data was analyzed as
described above.

Results

Clear differences in phage product sensitivity were observed between
planktonic cell cultures, thin biofilms, and thick biofilms (Table 1).
Planktonic cells were the most affected, and a clear decrease of growth
indicators ¢ and Q was observed in conjunction with an extension of the
lag phase (4). This effect on the lag phase was no longer visible for
biofilm, as it had previously grown and already had a large active
population of bacterial cells. With the increase in biofilm thickness, all
effects were lost. All the details are provided in the specific sections.

Effect of bacteriophages on planktonic
cells in liquid culture

The effect of the bacteriophages was tested for bacteria in
planktonic form by adding the phage product from the beginning or
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TABLE 1 Growth parameter [growth rate (1), lag phase duration (1), total heat produced (Q)] calculated from the calorimetric data.

Condition Liquid culture* Thin biofilm Thick biofilm
. . % [ A % | % | delta A % Q

Microorganism

SE 49461 369+9.9 | 122+151 | 91.9+4.0 492+3.1 0.0+0.4 1103+2.5 1009+227  17+15  111.0+324
SA 43300 302+125 00405 242493 49.0+7.0 00+03 592478 | 123.1+155  14%02 108.7 +3.3
SA 25923 466+278 | 135+158 | 477+135 | 70.7+20.6 00+15 780+157 | 1464+142  0.0+03 107.3+3.9
SA 29213 97.0+ 1.1 0.0+0.2 1019+ 1.7 | 80.1+4.0 04+04 125.1+9.9 ND ND ND
SAg 6,784 98.7 £2.9 0.1+0.1 96.7 +1.2 ND ND ND ND ND ND

SE, Staphylococcus epidermidis; SA, Staphylococcus aureus; Sag, Streptococcus agalactiae; numbers refer to the ATCC or DSM culture collection number. The growth rate (pt) and the total heat
(Q) are expressed as a percentage of the growth control. The lag phase duration (&) is expressed in additional lag hours. *Only data for phage addition at time = 0 are shown.

later in the early exponential phase (between 1 and 5h;
corresponding to 300 and 800 pW), with an injection system, in
comparison with growth without inhibition (see Table 1 and
Figure 1).

Staphylococcus epidermidis (ATCC 49461) and S. aureus (ATCC
43300, ATCC 25923) appeared sensitive to the phage product showing
a rapid decline in metabolic heat production when the phage was
added at the beginning of the experiment or early enough (up to2h
after measurement started) (Table 1; see example in Figure 1). On the
other hand, S. aureus ATCC 29213 and Streptococcus agalactiae
(S. agalactiae) DSM 6784 displayed complete resistance (Table 1)
irrespective of the phage addition time. Looking in more detail,
delaying phage addition significantly reduced their inhibitory effect
(see example in Figure 1). This was quite clear for all sensitive
Staphylococci. In addition, once the bacterial load was too high (and
consequently multiplicity of infection (MOI) too low), the addition of
phages did not show any effect on the metabolic heat. Overall, in our
conditions, injection after 2 h still produced a weak inhibition;
however, after 3 h, no effect was visible for any of the tested strains.

In two cases (S. epidermidis ATCC 49461 and S. aureus ATCC
25923), regrowth could be observed after 15-30 h following initial
phage-induced suppression, which occurred immediately after phage
injection (see example in Figure 1). We assumed that phage-resistant
Staphylococci have emerged or that the bacteriophages have been
inactivated, allowing bacterial growth to resume using the
remaining nutrients.

Effect of bacteriophages on thin biofilms

Thin biofilms grown in calorimetry inserts were analyzed after
removal of the planktonic cells and non-adherent cells. For this part,
we focused on the strains that proved to be sensitive in the first part of
the experiment (S. epidermidis ATCC 49461, S. aureus ATCC 43300 and
25,923) and the resistant one (ATCC 29213) as a control (Figure 2).

For S. epidermidis, a lower maximum growth rate (u) was
observed with phages, although the peak heat production (Q max)
was higher (Figure 2A). This suggests that a high metabolic activity
was sustained for a longer period, likely due to slower nutrient
depletion in the medium. S. aureus ATCC 43300 (Figure 2B) and
S. aureus ATCC 25923 (Figure 2C) exhibited significant inhibition of
both growth and heat production, indicating effective phage activity.
Meanwhile, S. aureus ATCC 29213 (Figure 2D) showed no significant
change, consistent with its previously observed resistance to phages in
liquid cultures (Figure 1).
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Effect of bacteriophages on thick biofilms

For this part of the experiment, we only analyzed the three
sensitive Staphylococcus strains. In this part of the experiment, the
same biofilm was measured both with and without phage insertion
and in new BHI medium. No significant effect from bacteriophages
was detected on any of the strains tested. The biofilm was most likely
too thick and therefore resistant. No heat production was observed
after heat killing (Figure 3). It must be noted that the growth indicator
(4, 4, and Q) used here reflects more the medium consumption rather
than the net growth of the biofilm. Still, for ease of comparison, these
indicators were calculated in the same manner.

Discussion

Observation of the heat flow curves reveals interesting phenomena
such as the appearance of secondary peaks after returning to baseline
for the planktonic cells in liquid medium, the prolonged maintenance
of stable metabolic levels in thin biofilms, and finally, the complete
resistance of thick and mature biofilms to isothermal microcalorimetry.
Indeed, in planktonic cultures, resistant bacterial mutants might
be selected, enabling regrowth as long as the nutrients are not
depleted. Furthermore, recent studies outlined the fact that phages can
lead to the production of persisters host cells (Fernandez-Garcia et al.,
2024). This certainly deserves more attention in future studies. For
thin biofilms, with thicknesses usually ranging between 9 and 40 pm,
according to the literature, which uses closely similar preparations
(Shi et al., 2016; Di Stefano et al., 2009; Shukla and Rao, 2013; Liu
etal.,, 2015), it appears that part of the biofilm remains active. Still, thin
biofilms are unable to regrow and disperse in the liquid phase. Most
likely, the phage is preventing microbes from dispersing in the liquid
medium, but cannot penetrate the entire biofilm and thus eliminate
all microbes. Staphylococci protected in a biofilm can then survive
using the remaining nutrients from the medium. In our study, mature
biofilms appeared particularly resistant. When prepared on
membranes, Staphylococci biofilms have a thickness varying between
270 and 311 pm; however, some studies have reported thicknesses up
to 700 pm (Agostinho et al., 2011; Singh et al., 2010; Chatterjee et al.,
2014). Therefore, it is not surprising that several studies have already
shown that mature biofilms are orders of magnitude more resistant to
several antibiotics (Nickel et al., 1985; Mah and O’Toole, 2001).
Similarly to previously published studies and reviews, we can safely
assume that the same principle also applies to the efficacy of
bacteriophages against biofilms (Abedon, 2023). This may be due to
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several factors such as the barrier against chemical and physical
substances provided by to the exopolysaccharide matrix of the biofilm
and thus the inability of the phages to penetrate, the binding and
trapping of phage on the EPS matrix, the acquired resistance
mechanisms expressed only in biofilms or a metabolism that is too
slow to allow the phages to reproduce sufficiently (Abedon, 2023).
From a more clinical perspective, thick biofilms are a significant factor
in inhibiting the healing of chronic wounds, and optimal management
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to remove such biofilms requires surgical debridement as an additional
step (Scalise et al., 2015). While debridement remains the most cost-
effective strategy for reducing biofilm, it cannot completely eradicate
it. Continued debridement is essential to maintain the biofilm in a
weakened state, which allows adjunctive treatments such as phages or
antibiotics to play a critical role in the healing of chronic wounds
(Wolcott et al., 2009; Anghel et al., 2016). These adjunctive therapies
help disrupt biofilm formation and improve the overall effectiveness
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FIGURE 3

Growth of thick biofilms of S. epidermidis ATCC 49461 (A), S. aureus
ATCC 25923 (B), and ATCC 43300 (C) monitored using IMC before
(white) and during the addition of bacteriophages (green) and after
heat killing (red). The star indicates that some data were omitted due
to technical difficulties or methodological issues.

of wound care (Chan and Abedon, 2012). Although more data are
required to support this statement, it appears that the combination of
debridement and phages should be further investigated as a
therapeutic option (Chan and Abedon, 2012; Parracho et al., 2012).

In the context of phage therapy, the present data and previous
studies show that the use of IMC has proven to be an effective method
for analyzing bacteriophage-bacteria interactions and their kinetics,
as it proved to be faster method than traditional cultures (i.e., agar
overlay requiring up to 24 h) without requiring additional work.
Compared to optical density-based methods, IMC is also suitable for
analyzing opaque liquid and solid media, which has proven effective
for testing thin and thick biofilms without the need for destructive
methods (Stewart and Franklin, 2008). In addition, the growth and
inhibition kinetics can be studied using heat curve analysis as
described before (Braissant et al., 2013). Still, a thorough comparison
of all current methods to assess phages with IMC should be conducted
in order to assess the potential of this technique.
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It must also be noted that IMC has some limitations. In particular,
it uses sealed airtight vials that limit the amount of oxygen in the
system. In addition, as oxygen diffuses poorly in aqueous solution, this
may lead to severe limitations when using strictly aerobic microbes
(Maskow et al., 2014). This was not the case for the Staphylococci and
Streptococci used here, which are capable of fermenting a wide range
of substrates present in the medium used. Another important
limitation of isothermal microcalorimetry is that most of the heat
generated during growth comes from catabolic reactions. The
synthesis of phages, like other anabolic processes, does not release heat
(or a negligible amount - see the study by Battley, 1998; Battley, 1992;
Kell and Battley, 1987) and remains invisible despite its cost to the cell.
Therefore, combining IMC with ATP measurements, flow cytometry,
protein assays, or PFU count might be valuable (Braissant et al., 20205
Braissant et al., 20155 Morais et al, 2014). Similarly, the
calorespirometric approach may also be of interest, as well as the heat
per O, and the heat per CO,, which may provide additional
information. To the best of our knowledge, calorespirometry has not
been investigated with bacteriophages yet. In addition to the
limitations imposed by IMC itself, the following limitations of the
study should also be taken into account. Firstly, only one strain of
Streptococcus was investigated in detail and found to be resistant
(preliminary studies have also shown that other dental strains were
not sensitive to phage cocktails — data not shown). However, the
limited number of strains tested does not allow for any conclusions on
the efficacy of Streptococci. Similarly, with respect to chronic wounds,
Gram-negative pathogens such as Pseudomonas aeruginosa should
also be included in future studies as they can represent an important
proportion of causative pathogens in diabetic foot infections and
various ulcer-related infections (Rahim et al., 2017; Ramakant et al.,
2011; Kirketerp-Moller et al., 2008). This is certainly a limitation of
the current study, especially as phages against Pseudomonas aeruginosa
are indeed available in online pharmacies. Finally, it should be noted
that infection by both pathogens is also common, emphasizing the
need to test several phage products simultaneously (Ibberson et al.,
2017; Lichtenberg et al., 2023). From a more technical standpoint,
during experiments with planktonic cells, the injection system may
have altered the metabolism by mixing the medium and resuspending
cells that otherwise would have sedimented; thus, creating a potentially
more favorable environment for bacterial growth, we believe that the
effect is extremely limited and did not influence the results. Similarly,
for a thick biofilm, the handling with sterile tweezers might have
altered the surface of the biofilm. We estimate that <1% of the surface
of the biofilm might have been altered during the transfer of the filters
to fresh medium. This may have been due to the presence of an entry
window for phages in the Fersici cocktail. Still, all biofilms proved to
be resistant, which supports that the idea that handling did not affect
the results.

Conclusion

Bacteriophages appear to be a valid solution to the growing
resistance to antibiotics as they are an effective agent for killing
bacteria in planktonic cells and thin biofilms, such as those found
in many skin infections. With increasing biofilm thickness and
maturation, it is likely that more aggressive measures (cleaning
and debridement) need to be taken prior to the application of
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phages, as our study demonstrated that thick biofilms of sensitive
microbes are not affected by phages. However, it should be noted
that antibiotics face similar, if not greater, challenges in treating
thick biofilms. Thus, emphasizing the need for further studies,
especially in vivo studies combining debridement and phage
therapy. In addition, a better understanding of bacterial
metabolism when infected with phages would be desirable, as
IMC is rather insensitive to phage production. The use of
incorporation assays, such as stable isotope labeling or substrate
analogue labeling, may provide some significant insights into
phage production and energetic costs (Braissant et al., 2020;
Hatzenpichler et al., 2014). In addition, the use of substrate
analogues would allow tracking the phages using fluorescent
markers through click chemistry.
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