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Editorial: Quantum information 
theory

Karl Hess*

Center for Advanced Study, University of Illinois, Urbana, IL, United States

KEYWORDS

bell inequalities, contextual probabilities, EPR experiments, hidden variables / 
ontological variables, quantum entanglement, quantum information theory, quantum 
measurement problem, quantum nonlocality

Editorial on the Research Topic 
Editorial: Quantum science and technology

Quantum information theory has evolved into a rapidly expanding and significant field 
of research. The papers presented in this section address a specific subset of this 
discipline—namely, the nature of quantum entanglement and the fundamental question 
of whether quantum information must inherently rely on probabilities that are intrinsic 
features of nature, rather than mere reflections of our ignorance regarding the details of 
underlying physical events. These issues trace back to the Einstein–Bohr debates, which 
were given formal logical and mathematical structure following the seminal contributions 
of Einstein, Podolsky, and Rosen (EPR), and later through John Stuart Bell’s formulation of 
his celebrated inequality.

Subsequent experimental work, inspired by the ideas of EPR and Bell, led to major 
advances, particularly in polarization-based measurements capable of resolving single 
photon-pair detections. The paper by Carl Kocher in this section provides a detailed 
and lucid account of the first photon-based experiment demonstrating entanglement. 
Following this experimental milestone, it became reasonable to assert that EPR-type 
experiments offered compelling evidence for the entanglement—i.e., the significant 
correlation—of photon-pair measurements, consistent with the existence of certain 
intrinsic properties of the photon pairs responsible for the observed correlations, as 
originally suggested by EPR.

However, theoretical and experimental investigations by John Clauser and others soon 
revealed discrepancies between measurement results and Bell-type inequalities for specific 
sets of polarizer-angle pairs. After extensive theoretical analysis, Bell concluded that these 
discrepancies could only be explained by invoking nonlocal, instantaneous 
influences—faster than the speed of light—which contradicted the spirit of Einstein’s 
relativity and which Einstein famously described as “spooky.” Recognizing the 
extraordinary implications of his claim, Bell emphasized the necessity of definitive 
experimental proof that photon-pair measurements could not influence one another 
through any signal propagating at or below the speed of light. Alain Aspect and his 
collaborators provided a groundbreaking solution by developing experiments that rapidly 
switched polarizer angles in between measurement, ensuring that the actual pair- 
measurements could not influence each other within the light-speed limit.

These fast-switching experiments were later refined by research groups led by Alain 
Aspect, John Clauser, and Anton Zeilinger—whose team even conducted photon-pair 
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frameworks were neglected by Bell and his followers, despite 
their importance for the validity of Bell-type proofs. From a 
mathematical standpoint, the cardinality of the number M of 
Einstein’s “elements of reality” (the properties of entangled 
photons) relative to the number N of measurements 
determines whether Bell-type proofs hold; they do so only 
when M≪N. This insight also clarifies the success of 
Mermin’s well-known elementary proofs, which typically 
assume M = 8. There is, however, no physical justification for 
restricting the number of photon-pair properties to eight. Hess 
and Jakumeit further point out that for finite M, Bell-type 
inequalities can only be derived by neglecting the physically 
necessary symmetry associated with the invariance of average 
measurement outcomes under certain polarizer rotations.

Marian Kupczynski promotes a statistical interpretation of 
quantum mechanics and critically reexamines Bell’s theorem and 
its implications. Drawing upon Bertrand’s paradox, he emphasizes 
the contextual nature of probabilities and their intrinsic dependence 
on the specific experimental conditions and measurement protocols. 
Kupczynski argues that if one introduces additional setting- 
dependent local variables—representing the physical 
characteristics of measuring instruments and procedures—into 
Bell’s probabilistic framework, then quantum correlations can be 
accounted for without invoking nonlocalities.

Kupczynski’s explanation also relies on the invariance of certain 
global physical laws with respect to rotations of the coordinate 
system employed to describe the EPR experiments, thereby 
guaranteeing consistency with the observed quantum statistics. 
His conclusions are extensively supported by numerous 
references in his review, which collectively reinforce the 
contextual and statistical foundations of his interpretation.

Taken together, these analyses suggest that while the 2022 Nobel 
Prize recognized remarkable experimental achievements, its 
interpretative emphasis on instantaneous influences and quantum 
superposition may have led the field astray. The use of Bell-type 
inequalities by Aspect, Clauser, and Zeilinger remains conceptually 
problematic. The photon-pair entanglement-experiments described 
by Carl Kocher can, in fact, be interpreted consistently with 
Einstein’s notion of physical reality. Kocher’s contribution in this 
section elucidates the essential details of the first EPR experiment 
with entangled photons and provides clear explanations of the 
factors underlying entanglement.

The contribution by Ana Maria Cetto and Luis de la Peña
offers an additional compelling rationale to reconsider 
quantum-mechanical interpretations by taking the underlying 
physics of quantum phenomena into account. They establish a 
link between particle spin and quantum statistics, which results 
from the particles’ response to the shared background radiation 
field. This approach has significant implications for 
understanding entanglement.

Finally, Theodorus Maria Nieuwenhuizen’s paper presents a 
rigorous Hamiltonian treatment of the Curie–Weiss measurement 
model for spin-1 systems, distinguishing the stages of dephasing, 
decoherence, and registration. The associated H-theorem for the 
“dynamical free energy” illustrates relaxation toward a stable pointer 
state. This ensemble-based treatment, in which the density matrix 
becomes diagonal, provides valuable insight into the quantum 
measurement problem, without solving it.

measurements between distant Canary Islands. Their collective 
achievements were recognized with the 2022 Nobel Prize in 
Physics. In their Nobel lectures, they emphasized Bell’s 
postulated quantum nonlocalities. Many researchers have since 
endorsed this interpretation, arguing that such instantaneous 
influences u nderpin t he c omputational a dvantages o f quantum 
systems. However, no direct empirical proof of this claim exists, 
and Bell’s theoretical framework remains the principal foundation 
for associating quantum superposition with nonlocality. 
Consequently, Bell’s inequalities have become a central defense 
against more conventional, Einsteinian interpretations of 
quantum phenomena.

Despite extensive experimental progress, substantial doubts 
remain concerning the theoretical soundness of Bell’s 
framework—doubts that extend well beyond the familiar 
experimental loopholes. These reservations center on the 
mathematical consistency of Bell-type derivations, as numerous 
previously neglected mathematical and physical factors have been 
identified t hat c an y ield v iolations o f B ell-type i nequalities. The 
introduction of rapid polarizer switching partially mitigated these 
concerns by not only ensuring that photon pairs emitted at the 
source could not depend on the polarizer settings, but also by 
suggesting that the observing experimenters (conventionally 
named Alice and Bob) are spatially separated, mutually unaware 
of each other’s settings, and free to choose their polarizer 
orientations independently. Under these conditions, explanations 
of the observed correlations seem to necessarily invoke 
instantaneous, nonlocal influences.

The analyses presented in this section challenge that conclusion, 
showing, for example, that such reasoning implicitly disregards the 
stratagems of Einstein’s theory of relativity. Yes, Alice and Bob are 
causally disconnected during the pair-measurement process and 
cannot possibly perform any mutual or relative assessment of 
outcomes in real time. However, a relative assessment may be 
carried out by theoreticians who retrospectively can check the 
consistency of their model—after all measurement data have 
been collected.
Gerard 't Hooft identified fundamental problems in Bell’s 
framework early on and consistently expressed skepticism 
toward prevailing interpretations involving quantum 
superposition. Despite his distinguished reputation and 
profound contributions to theoretical physics, his 
deterministic perspective was largely disregarded and, at 
times, unfairly associated with “conspiratorial” thinking. This 
section includes one of 't Hooft’s important papers, which 
demonstrates that the standard quantum-mechanical 
harmonic oscillator possesses an exact duality with a fully 
classical system, thereby revealing the potential existence of 
hidden ontological variables—a possibility often denied in 
textbooks emphasizing Bell’s conclusions. 't Hooft’s ideas and 
findings indicate the need for a more extensive investigation 
into underlying classical variables that are more basic 
than the quantum variables usually employed.
Several other contributions in this section further 
demonstrate that Bell’s work possesses only limited validity 
and cannot be exclusively grounded in considerations of 
locality or determinism. Karl Hess and Jürgen Jakumeit 
show that crucial mathematical details within set-theoretic 
probability 
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Quantumentanglement of optical
photons: the first experiment,
1964–67

Carl A. Kocher*

Quantum Foundry, University of California, Santa Barbara, Santa Barbara, CA, United States

The first experimental observation of entangled visible light was achieved by
optically exciting free atoms of calcium and detecting pairs of photons emitted in
a two-stage cascade. The polarizations of the entangled photons were observed
to be correlated, in agreement with quantum theory. This review describes the
rationale, methodology, challenges, and results, including experimental details
not previously published.

KEYWORDS

entanglement, EPR paradox, atomic cascade, photon counting, reduction postulate,
polarization correlation, Bell inequalities

1 Introduction

In the mid-1960s, as a young experimental physicist at the University of California,
Berkeley, I was fascinated by quantum theory and impressed by its success in describing
small systems such as atoms and molecules. Of particular interest was the 1935 article
by Einstein, Podolsky, and Rosen (Einstein et al., 1935), which notes that if particles
have a common origin, measurements of their properties (such as spin states) may be
correlated. The correlation remains, even if the particles move apart and are spatially
separated. In this hypothetical situation, quantum effects would be apparent on a
macroscopic scale.

Although the term “entanglement”was coined by Schrödinger in the 1930s, it was not in
common use in the 1960s. In simple terms, entanglement is a property of a system
containing two ormore particles, in which the quantum state of a particle depends on, and is
linked to, the states of others. Electrons, for example, are entangled in every atom, every
molecule, every material. So it would be fair to say that entanglement is everywhere. And
experiments on entangled systems can reveal aspects of Nature that may seem surprising
and quite remarkable.

I was interested in finding the simplest possible system for studying the effects of
entanglement, and began feasibility studies for a low-energy experiment that could be set up
in a small laboratory with a limited budget. Inspired by the Einstein-Podolsky-Rosen
gedanken experiment, it would deal with the spin states of just two entangled particles.

If the particles were electrically charged, like low-energy electrons, there would be no
clean way to extract them without exposure to stray fields that would affect the spins.
Therefore it seemed natural to consider visible light, in which the photons have no charge
and are non-interacting. When atoms emit light, there is no need to extract the photons:
Nature performs the extraction process for us.
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2 Experimental concept

If a free atom is excited, it can make a transition to a lower-
energy state, via the spontaneous emission of electromagnetic
radiation in the form of a photon. Although the photon may be
detected as a point-particle, it propagates as an extended wave
packet, spreading as it moves out from the atom, carrying
angular momentum (spin) as well as energy.

Figure 1 shows several singlet-state energy levels for an isolated
calcium atom. If the atom is initially in state A, it can give up energy in
two stages, A→ B and B → C, with the emission of Photon 1 (green
light, 551 nm) and Photon 2 (violet light, 423 nm). The corresponding
spectral lines are seen in the emission spectrum of calcium.

An ensemble of excited calcium atoms is shown at the center of
Figure 2, with the green and violet photons detected by
photomultiplier detectors (PM) along a common axis.

Narrow-band interference filters pass the desired
wavelengths while blocking other light. Pulses from the
detectors are recorded as atoms proceed through the two-stage
cascade A → B → C. For identification of photon pairs from the
same atom, the detector pulses can be fed into a coincidence
circuit that “clicks” only when photons arrive at the two detectors
at nearly the same time.

Since light propagates as a wave, even in the quantum realm,
the experiment can incorporate familiar optical components
such as lenses, interference filters, linear polarizers, and glass
vacuum windows, through which the photons can pass prior
to detection.

The spin state of a photon corresponds to its polarization
state, as noted in Section 3.2, where the two-photon final state is
discussed. In the visible region of the spectrum, polarizations can
be studied with ordinary linear polarizers, commonly known as
Polaroid sheets. In the experiment, a rotatable linear polarizer is
mounted in front of each detector, so that the coincidence
counting rate can be recorded as a function of the angular
orientations of the polarizers.

This experiment would be the first attempt to count
and analyze single optical photons and pairs of photons
emitted in an atomic cascade. (Kocher, 1967a; Kocher and
Commins, 1967).

Why did I choose calcium? 1) Efficient linear polarizers
are available for polarization measurements at the green and
violet calcium wavelengths. 2) Single-photon detection by
photomultiplier detectors is possible, although somewhat
inefficient, for light at these wavelengths. 3) Entanglement
calculations are simple and unambiguous for calcium, as the
initial and final states, A and C, are spherically symmetric.
Spherical symmetry requires that all internal angular momenta
for the atom (orbital, electron spin, and nuclear spin) must be zero.
States A and C are S-states, with no orbital angular momentum. Zero
electron spin suggests an atom from the second column of the
periodic table, with two valence electrons forming singlet states for
which the spins cancel. It is also fortunate that essentially all the atoms
in naturally occurring Ca (99.8%) have spin-zero nuclei. 4) The vapor
pressure characteristics of calcium allow for the production of an
atomic beam from a suitable oven in a vacuum chamber.

3 Relevant quantum concepts

This section presents, in simplified form, a view of the
theoretical background for the entanglement of photon
polarization states.

FIGURE 1
Photons emitted in a two-stage cascade.

FIGURE 2
Experimental geometry, simplified.
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3.1 Polarization measurements

A linear polarizer is an anisotropic flat plate with a transmission
axis in its plane. In the classical domain, in which light behaves as a
transverse electromagnetic wave, linearly polarized light passes
undiminished through an ideal polarizer if its axis is parallel to
the electric field in the wave. However, no light is transmitted if the
electric field and polarizer directions are perpendicular. The
meaning of “no light” can be extended to the quantum realm,
where it means “no photons” are transmitted. Thus it is possible
to regard the polarizer as a filter for quantum states.

In Figure 3, light travels along the experiment’s axis of
symmetry, shown here as the z-axis, with a linear polarizer in
the xy plane. Capital letter X will denote the photon state
transmitted by a polarizer aligned along the x-axis, and
similarly Y for the y-axis. The general polarization state Ψ for a
single photon is a linear combination, or coherent mixture, of
these states:

Ψ � axX + ayY, (1)

where ax and ay are amplitudes (in general, complex) that tell how
much of each state is present in the admixture.

Quantum theory provides two ways for the state of a system to
change in time:

(1) The Time-dependent Schrödinger Equation is central to
quantum mechanics. Solving it yields a wave function or
state vector Ψ(t) that describes the system and its continuous
evolution between measurements.

(2) The Reduction Postulate determines how Ψ changes when a
measurement is made. A measurement leads to a sudden
collapse, or projection, of Ψ onto the observed state.

The stateΨ for a photon therefore changes discontinuously as
a result of a polarization measurement. If the photon described by
Eq. 1 is detected after passing through a polarizer with its
transmission axis along x, that constitutes a measurement. In
this case the reduction postulate requires that the Y term must
drop out. Only the observed-state X term remains in Ψ after the
measurement.

The experiment in Figure 2 explores the reduction postulate in a
two-photon system.

3.2 Polarization states for
entangled photons

Photon spin states for light traveling in the z-direction can be
expressed in terms of linear polarization states X and Y (as above), or
in terms of helicity. The two sets of basis states are related as follows
(with normalization factors not shown):

Spin parallel to photon momentum:

Positive helicity Ψ+ � X + iY

Spin antiparallel to photon momentum:

Negative helicity Ψ− � X − iY

Conservation laws for angular momentum and parity play a
central role in quantum correlation phenomena. For the three-level
radiative cascade in Figure 1, the initial atomic state A and final state
C both have zero total angular momentum and even parity.
Therefore, the two-photon final state Ψ must also satisfy the
conditions of zero angular momentum and even parity:

Ψ � Ψ+
1 · Ψ+

2 + Ψ-1 · Ψ-2 . (2)

If the same z-axis is used for both photons and is directed to the
right in Figure 2, the states for Photon 1 require i → - i. Then

Ψ � X1 − iY1( ) · X2 + iY2( ) + X1 + iY1( ) · X2 − iY2( ), (3)
in which the X1·Y2 and Y1·X2 terms drop out, yielding (without
normalization factor) a simple and elegant result

Ψ � X1 · X2 + Y1 · Y2 (4)
for the two-photon system, before either photon is detected. The
reasoning in Eqs 2, 3, leading to Eq. 4, gives it a sense of
universality, as no consideration is given to the internal
structure of the source atom or its interaction with a quantized
radiation field. Before any measurements have been made, each
photon has a potential to pass through a linear polarizer with any
orientation.

FIGURE 3
Linear polarizer geometry.
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The two-particle quantum state Ψ is not a simple product, as it
would be for photons having no common history. Instead it is a sum
of products representing an entangled state. Entanglement of the
photons is evident in Eq. 4, where neither photon has an
independent identity. In each of the two terms, the amplitude for
one of the photons is a wave function for the other.

Since the orientation for the x- and y-axes around z is arbitrary,
the form of Eq. 4 will remain unchanged if the xy coordinate system
is rotated through any angle about the z-axis.

3.3 Polarization correlation

If the first photon (green) passes through a linear polarizer
transmitting the state X1, the reduction postulate removes the
second term, containing Y1, from Ψ in Eq. 4. Only the first term
remains, leaving the second photon (violet) unambiguously in
polarization state X2. More generally, if one of the photons
passes through a linear polarizer at any orientation, the
remaining photon will then be in the same polarization state,
pending future measurements.

Quantum theory makes specific predictions for the experiment
shown in Figure 2.

(1) If both polarizers are aligned with their axes parallel,
coincidence counts will be observed.

(2) If the polarizer axes are perpendicular, no coincidences
will be observed—a conclusion that also follows directly
from the absence of cross-terms X1·Y2 and Y1·X2 in Eq. 4.
This signature of entanglement, which has no classical
analog, is noteworthy and accessible to experimental
observation.

These predictions may seem counterintuitive, bizarre, or weird,
especially because there is no known evidence for physical
transmission of information from one detector to the other. This
question is addressed further in Section 6.

Additional remarks:

(a) Taken separately, the green and violet beams are unpolarized.
(b) If there is a general angle between the polarizer axes, Eq. 4

predicts a coincidence probability (and therefore a
counting rate) that varies as the square of the cosine of
this angle.

(c) The reduction postulate also enables calculations of the time
dependence for the detection of entangled photons emitted by
an atom. (Kocher, 1971).

4 Experimental considerations

4.1 Photon detection

A photomultiplier detector is an evacuated and sealed glass
tube with a light-sensitive cathode on a window at one end. As
Einstein first realized, the energy of a detected photon is conveyed
to a single photoelectron from the cathode. This electron is

accelerated toward a positively charged metal dynode, where
additional electrons are knocked loose. This process is repeated
at additional dynodes, producing a negative pulse that can be
counted with standard electronics. Quantum efficiencies (output
pulse probability per photon) are of order 10% (green) to 20%
(violet). Photoelectrons released from different locations on the
cathode travel a range of distances in reaching the first dynode,
introducing some loss of time resolution, typically several
nanoseconds. In addition, thermal processes can release
electrons randomly from the cathode, resulting in spurious
output pulses, or “dark noise.”

4.2 Atomic beam oven

The oven, shown in Figure 4, is 6.5 cm in length and machined
from tantalum, a nonreactive refractory metal. It is heated by an
electric current through internal resistive coils. A cylinder of calcium
metal is loaded into the well. When the oven is installed in a vacuum
chamber and heated, monatomic calcium vapor evaporates from the
solid and comes out through an opening in the front,
forming a beam.

A thermocouple junction, set into a small hole in the oven, reads
out the temperature. At 1000 K, an oven load of Ca (12 g) will empty
in about 25 h, and a typical beam velocity for a Ca atom is about
105 cm/s. Since the radiative cascade requires about 10–8 s, the atom
moves only about 10–3 cm—a negligible distance—while the photons
are being emitted.

The oval at the center of Figure 2, labeled “Ensemble of Atoms,”
represents a cross section of the atomic beam from this oven.

4.3 Excitation strategy

The two-stage cascade, as shown in Figure 1, requires
excitation of calcium atoms from the 4S ground state to the
6S excited state. This is a challenging problem, since the direct 4S
→ 6S transition is “forbidden” for single-photon absorption.
(Dipole matrix elements are zero.) An acceptable alternative

FIGURE 4
Atomic beam oven for calcium.
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would be to optically excite the 6P state (also shown in Figure 1)
by an allowed transition, 4S → 6P. The 6P can decay to 6S by
emitting an infrared photon that is not observed, and then the
desired cascade can take place. The 4S → 6P excitation requires a
228 nm ultraviolet light source.

A minor complication is that while the 6P state can decay to 6S,
it can also decay to 5S and several D-states (in total about 8 times as
likely as 6S). All of these return to the ground state via the 4P state,
producing a Photon 2 not time-correlated with a Photon 1. Detector
pulses from unpaired violet photons can trigger false coincidences
and are a source of noise.

In 1964 it was a major challenge to find an acceptable 228 nm
UV excitation source for the 4S → 6P transition. No tunable
lasers, UV lasers, or UV LEDs were available. (There were also no
pocket calculators and no lab computers. It was still the
slide rule era.)

A calcium discharge lamp could not be considered as a 228 nm
source, as it would produce intense 423 nm (violet) radiation that
could not be effectively blocked from reaching the Photon
2 detector. Electron impact excitation would pose a similar
problem. A third possibility was a continuum source of
ultraviolet light, in conjunction with a 228 nm bandpass
interference filter. A high-pressure mercury lamp was considered,
but even this produced far too much visible light.

Then I read about the UV continuum emitted by molecular
hydrogen, with wavelengths spanning the range from about
180 nm to 450 nm. No suitable lamps were commercially
available, so I designed and built a cylindrical low-voltage high-
current H2 arc lamp in a brass chamber, using a porous tungsten
dispenser cathode and a continuous flow of H2 gas. (Kocher,
1967b). This turned out to be essential to the eventual success
of the experiment. The lamp operated at 17 V, 30 amps, with the
discharge produced between the cathode and anode in the cross-
sectional view of Figure 5. Fused quartz transmits 228 nm
radiation, so a quartz focusing lens is mounted between the
lamp and the excitation region.

If the broadband UV light were applied perpendicular to the
Ca beam, only atoms within the natural linewidth (about
30 MHz) for the 4S → 6P transition could be excited, and all
the useful radiation would be absorbed near the edge of the
atomic beam. Atoms beyond this edge would not be excited.
However, there is a spread in atomic velocities from a thermal
oven, and the Doppler-broadened linewidth (1,000 MHz)
exceeds the natural linewidth by a factor of about 30. In the
experimental plan I therefore introduced the calcium beam at
45° relative to the observation z-axis, from lower left to upper
right in Figures 2 and 6. With this configuration the much larger
number of atoms in the Doppler-broadened absorption line can
potentially be excited to the 6P state. The oblique angle between
the atomic beam and the detector axis also effectively eliminates
trapping and multiple scattering of the emitted 423 nm
violet photons.

4.4 Coincidence rate estimate

It would not be wise to proceed with a complex experiment
unless the signal and noise levels can be estimated. Therefore, before

the major construction of a vacuum chamber and dealing with
pumps, hoses, ion gauges, etc., an effort was made to calculate the
coincidence counting rate under reasonable experimental
conditions.

For each detector I considered the fractional solid angle of
intercept, together with the quantum efficiency and the filter
transmission, and found that about 106 cascade-emitting atoms
are needed for each observable coincidence count—without the
polarizers.

The atomic beam oven holds about 1023 atoms of
Ca, but only 1 atom in 103 would pass through the
excitation region.

I used a radiation thermopile to measure the intensity of the H2

arc lamp in conjunction with a 228 nm bandpass filter. I also
searched the literature for transition rates in calcium and
determined the branching ratios for the transitions.

It was a complex process putting these pieces together,
attempting to identify every limitation and concern. In the end I
estimated 1 coincidence per second (with the polarizers removed),
with an uncertainty factor of about 5.

Under these conditions, reasonable statistics—and a clear
experimental result—might be obtained with a multi-hour
observation. It would be a difficult undertaking, requiring
considerable care, patience, a long observation time, and
some courage.

4.5 Apparatus details

The experimental plan employs a vacuum system with two
diffusion-pumped brass chambers and removable flanges for
access. A water-cooled source chamber holds the calcium beam
oven. The excitation chamber, pumped to a lower pressure (10–6

Torr), contains the interaction region, where UV light from the H2

FIGURE 5
500 watt H2 arc lamp.
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lamp would excite Ca atoms in the atomic beam, and fromwhich the
green and violet photons would be detected by photomultiplier
assemblies outside the chamber.

Details of the experiment are shown in Figure 6 and in a
photograph, Figure 7.

It took more than a year to reach the point where all the parts of
the experiment could be assembled. The components were tested
separately, to the extent possible, and then in tandem.

Two flags, shown in Figure 6, can be controlled from outside
the chamber. One can block the calcium beam, and the other can
block the UV radiation from the lamp so it cannot reach the
beam. This flexibility made it possible to monitor and optimize
the counting rate for each detector separately. It was then
possible to determine the sources of extraneous coincidence
counts, of which there were many, including stray light from
the oven heating coils and visible-light fluorescence due to the
UV from the lamp. I installed light-blocking baffles and applied

lampblack to the chamber walls. The improvements were slow
and incremental.

After this was done, photomultiplier “dark noise,” which had
always been present, became noticeable at room temperature. To
address this problem, I cooled the photomultipliers by soldering a
helix of copper tubing around each brass photomultiplier
enclosure and installing a refrigeration compressor that could
circulate refrigerant through the tubing. The photocathode
temperatures were cooled to −15°C, reducing the dark noise
significantly.

Instead of using a simple coincidence circuit, I recorded
coincidence counts versus the time delay between the pulses
from the two detectors, using a time-to-pulse-height converter
and a multichannel pulse-height analyzer, as in Figure 8.

The time-to-height converter produces an output pulse with
an amplitude proportional to the time delay between the “start”
pulse (from the Photon 1 detector} and the “stop” pulse (from the

FIGURE 6
Cross section of the apparatus, top view.
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Photon 2 detector). A pulse-height analyzer stores these counts in
an array of magnetic-core memory channels corresponding to a
span of delay times. Each memory channel effectively represents a
separate coincidence circuit, for which the time spread can be
varied by changing the ramp rate. The time offset, corresponding
to sliding the distribution to the right or left, can be adjusted by
varying a delay line (a length of coaxial cable) on the
Photon 2 side.

If the pulse pairs are from the same atom, they contribute to a
central peak in the distribution, as viewed on an oscilloscope. Pulse
pairs may also be due to photons from different atoms, or to stray
light. In these cases the time intervals are random, contributing to a
background signal, with fluctuating statistics, along the entire
horizontal time scale.

5 Final testing and results

Figure 9 shows the laboratory in 1966. Test runs were attempted
with the calcium beam and H2 lamp running, without the polarizers.
As expected, the Photon 2 detector recorded the most photons, and
the single-detector counting rates increased encouragingly when the
beam and the UV excitation were both on. Unfortunately the rate for
coincidence counts was lower than the lower limit I had estimated,
by a factor of about 10. Under these conditions the experiment could
not yield clear results.

Weeks passed, with considerable frustration, and I went into a
deep search for an explanation. All questions had to be asked, and
everything rechecked. Then I thought of a possible reason for the

low coincidence rate. An interference filter was mounted on each
photomultiplier assembly. These were high quality narrow-band
filters, made from sets of dielectric plates and built-to-order for the
calcium wavelengths. But dielectrics tend to be thermally sensitive,
and I now realized that when I installed the refrigeration coils for
cooling the photomultipliers, I also ended up cooling the filters. If

FIGURE 7
Apparatus photograph corresponding to Figure 6.

FIGURE 8
Basic electronics for recording and displaying coincidence counts.
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the filters were thermally sensitive, the transmitted wavelength could
have shifted. If the shift were large enough, the filter would end up
being “tuned off-resonance” and the desired wavelength would be
blocked instead of transmitted.

I removed the filters, got a bucket with dry ice, a thermometer,
and some clean rags, and scanned the filters using a recording
spectrophotometer. I started with the filters at room temperature
and printed out the scans. The peak wavelengths were very close to
what I had ordered, at 551.3 nm and 422.7 nm. Then I wrapped the
filters, cooled them with dry ice to −20°C, and made repeated
spectrometer scans as they warmed up. The violet filter, which
had the narrower passband, was far off resonance at −20°C and also
at −10°C. To correct for this shift I added a small heating coil for the
violet filter and adjusted the current through it to bring the filter’s
transmission peak back onto the wavelength for the violet-light
photons. This is shown in Figure 6.

Then I loaded the oven with a full cylinder of calcium and pumped
down the vacuum system. A clear, unequivocal coincidence signal was
apparent within an hour. That afternoon I obtained the time correlation
plot in Figure 10, showing coincidences in the form of a peak.

Here the horizontal separation between channels represents a
time interval of 0.8 ns. The exponential decay of the 4P state, which
has a mean lifetime of 4.5 ns, shows up as an asymmetry, although
each photomultiplier smears out the time resolution by about 3 ns.
The counts above the noise baseline are coincidences.

As noted previously, the separate Photon 1 and Photon 2 light
beams are expected to be unpolarized. To check this I installed the
polarizers and verified that the single-detector counting rates did not
vary with the polarizer orientations.

Finally, a 25-h run with the polarizers installed, on December
17 and 18, 1966. The experiment continued through the night, with
data recorded during 21 consecutive hours. Parallel and perpendicular
polarizer configurations were alternated, with the recording of data
switched in cycles between memory banks for horizontal and vertical
polarizer combinations xx, yy, xy, and yx. Equal recording periods
were allotted to parallel and perpendicular orientations of the
polarizers. The results are shown in Figure 11, where each point
represents a sum over three adjacent analyzer channels. Upper panel
(A) shows a coincidence peak with the polarizer axes parallel. Lower
panel (B) shows no peak with the axes perpendicular.

The hint of a peak in (B) can be attributed entirely to the
imperfect linear polarizers, which transmitted 6% of unpolarized
violet light when crossed at 90°.

Most significantly:When the polarizer axes are perpendicular,
no coincidences are recorded. This conclusion is in agreement with
the predictions of quantum theory for entangled photons.

The photon detectors in this experiment were about 40 cm apart,
a macroscopic distance. Each photon is a spherical wave, traveling
outward from the atom at the speed of light. Before the photons are
detected, their coupled (or entangled) waves occupy the entire space
between the atom and the detectors. As a consequence the quantum
system is macroscopic, with the two-photon wave function
extending over a macroscopic region.

When this work was undertaken it was inconceivable that,
decades later, unforeseen and breathtaking developments, including
sophisticated lasers and parametric down-conversion, would enable
the creation of entangled photons in great numbers, or that theymight
play a role in practical or useful technology. Yet we now understand
that entanglement and quantum correlations can be exploited, leading
to an exciting new field of “quantum information.”

6 Reflections and overview

In an experiment with non-interacting particles, how can a
measurement here affect what happens there? It may seem
profoundly strange that quantum theory—the best we have—does
not introduce or incorporate a deterministic “causal mechanism” for
correlations in the measurements. Could there be some identifiable
process that allows one photon, or onemeasurement, to communicate
with the other?

Einstein famously called these kinds of effects “spooky action
at a distance.” What is now known as the “Einstein-Podolsky-

FIGURE 9
Overall view of the experiment.

FIGURE 10
Coincidencecountsdisplayed frommemoryofpulse-height analyzer.
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Rosen paradox” led him to suggest that the theory might be
“incomplete” in some way. Nevertheless the quantum theory of
the 1920s and 30s does accurately predict and describe
experimental results, including entanglement phenomena. It is a
successful theory that has been tested repeatedly, including by
others who used my apparatus years later and confirmed the results
presented here. (Freedman and Clauser, 1972).

Could there be situations where quantum theory makes incorrect
predictions, or where alternative theories give equally satisfactory
explanations? Much effort has been devoted to theories involving
hidden variables and to experiments probing the Bell inequalities.
Yet none of these, so far, appear to have led to new physics.

Most of us have never lived in an overtly quantumworld, and so it
is tempting to proclaim a “paradox” when expectations based on
classical phenomena are extrapolated into the quantum realm. A
corollarymight be offered—that credible experiments yielding strange
results should be welcomed into our consciousness, celebrated for
their insight, and incorporated into the life experience from which
intuition derives.

Frommy perspective, performing an experiment of this kind was a
rare opportunity for witnessing a strangely wonderful quantum
phenomenon and bringing it into the domain of experience. It is a
search for truth, and if the truth changes our outlook on the world, so
much the better.
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The hidden ontological variable in
quantum harmonic oscillators

Gerard ’t Hooft*

Institute for Theoretical Physics, Utrecht University, Utrecht, Netherlands

The standard quantum mechanical harmonic oscillator has an exact, dual
relationship with a completely classical system: a classical particle running
along a circle. Duality here means that there is a one-to-one relation between
all observables in one model, and the observables of the other model. Thus the
duality we find, appears to be in conflict with the usual assertion that classical
theories can never reproduce quantum effects as observed in many quantum
models. We suggest that there must be more of such relationships, but we study
only this one as a prototype. It reveals how classical hidden variables may work.
The classical states can form the basis of Hilbert space that can be adopted in
describing the quantum model. Wave functions in the quantum system generate
probability distributions in the classical one. One finds that, where the classical
system always obeys the rule probability in = probability out, the same
probabilities are quantum probabilities in the quantum system. It is shown
how the quantum x and p operators in a quantum oscillator can be given a
classical meaning. It is explained how an apparent clash with quantum logic can
be rationalized.

KEYWORDS

ontological variable, quantum harmonic oscillator, quantum mechanics, duality, local
hidden variable (LHV), classical ontological variable (COV)

1 Introduction

It has become customary to investigate quantum theories by proving that they cannot be
represented in terms of ontological variables. These ontological variables, known as “local
hidden variables” (LHV), are assumed to reproduce the results of all experiments that can be
performed on a given quantum system, which is subsequently shown to lead to logical
contradictions.

However, when the outcome of an extensively examined quantum experiment is
compared with a classical theory, it is often the classical dynamics that is finished off in
one short sentence: “This cannot be the result of a classical theory.” One may however
suspect that the assumptions made concerning these LHV are too strict, so that there could
be loopholes.1 Many investigations are aimed at closing these loopholes by making further
assumptions (Bell, 1964; Bell, 1982; Bell, 1987; Conway and Kochen, 2008; Clauser et al.,
1969; Greenberger et al., 1990).
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This, we claim, may not be the only way to improve our
understanding of quantum mechanics. Here, we approach the
question concerning the interpretation of quantum mechanics
from the other end: which quantum systems do allow for
classical variables, and can these models be extended to include
physically useful ones? Can these models be demanded to obey
(some form of) locality? Can we use them as building blocks? We
claim that this is a rich field for further investigation (Brans, 1988;
Vervoort, 2013; ’t Hooft, 2016; ’t Hoofta, 2023).

Here, a very important example is exhibited: the quantum
harmonic oscillator. As we shall see, it contains a variable that
can explain everything we see in a quantum harmonic oscillator, in
terms of completely classical mathematical logic. Our variables are
not hidden at all, and completely ontological; therefore we call our
variable “COV”, standing for “Classical Ontological Variable.” The
letter L is omitted, since locality may not be guaranteed, and anyway,
we do not intend to contradict earlier no-go theorems, but rather
search for ways out.2 Understanding the COV may be an important
pathway that could lead us to new insights, perhaps even in model
building (Jegerlehner, 2021; ’t Hooft, 2022).

Themost important part of this paper is Section 2. Here we show
how any quantum harmonic oscillator, contains an ontological
degree of freedom. Using modern jargon, we observe that the
quantum harmonic oscillator is dual to a classical particle on a circle.

Questions asked after a talk I presented at the Lindau Meeting,
June/July 2024, made me realise that the features discussed below are
not very well-known and therefore this short publication may
be useful.

2 The harmonic oscillator

In one space-like dimension, consider the Hamiltonian3 H of an
elementary quantum harmonic oscillator in terms of the variables x
and p,

x, p[ ] � i , H � 1
2

p2 + x2 − 1( ). (1)

Planck’s constant will always be set as Z � 1, and as such it merely
relates the units of energy to the units of frequencies. Also the
angular frequency ω is set to 1. The operator equations are

dx
dt

� i H, x[ ] � p ,
dp
dt

� i H, p[ ] � −x. (2)

We shall need the annihilation operator a and the creation
operator a†, defined by

a � 1�
2

√ x + ip( ) , a† � 1�
2

√ x − ip( ) , a, a†[ ] � 1,

x � 1�
2

√ a + a†( ) , p � i�
2

√ a† − a( ) , x, p[ ] � i.
(3)

(For practical reasons, the signs chosen in our definitions, deviate
from the signs chosen in other work). The eigenstates |n〉E ofH, and
their eigenvalues En, are found as usual to obey:

H|n〉E � a†a |n〉E � En|n〉E , En � n � 0, 1,/ (4)

This, of course, is a completely standard, quantum mechanical
procedure applied to the harmonic oscillator, but now we claim that
it is dually related to a completely classical model. The classical
system we have in mind is a particle moving on the unit circle, with
fixed velocity v � 1, and period � 2π. The solution of its e.o.m. is:

φ t( ) � φ 0( ) + t mod 2π; (5)
φ is constrained to the interval [0 , 2π), where the boundary
conditions are periodic.

To make our point, it is important to introduce (temporarily) a
large integer N, and a variable s � 0 , . . . , N − 1, discretising the
allowed values of φ, as follows:

φ � 2πs/N , s � 0 , 1 , / , N − 1.

This matches with the introduction of small, finite time steps
δt � 2π/N. The φ states span an N-dimensional vector space
{|s〉ont}, where the superscript “ont” stands for ontological.

The energy eigenstates |n〉E , n � 0 , / , N − 1, of this
rotating particle are superpositions of the ontological states:

|n〉E � 1��
N

√ ∑N−1

s�0
e
2π
N i n s |s〉ont, (6)

with the inverse:

|s〉ont � 1��
N

√ ∑N−1

n�0
e−

2π
N i n s |n〉E. (7)

Note that these equations are merely discrete Fourier
transformations. By checking the time dependence of |n〉E and
|s〉ont, we see that

|n〉E t( ) � e−i n t |n〉E 0( ). (8)
and |s〉ont t( ) � |s − t/2πN〉ont 0( ).

We now note that the firstN energy eigenstates of the harmonic
oscillator, Equation 4, obey exactly the same Equation 8, and
therefore Equations 6, 7 define N states, obeying (Equation 5).
There is an important reason to start with a finite numberN. We see
that, in these equations, the energy spectrum not only has a lowest
energy state, |0〉E, but also a highest energy state, |N − 1〉E. With
strictly continuous angular variables |φ〉ont, we could postulate an
energy spectrum running from −∞ to +∞. This would not dually
correspond to a harmonic oscillator.4 In this paper, we keep the
lowest energy to be E � 0, while the highest energy will be
unbounded. This enables us to take the limit N → ∞, where we
can write:

φ � 2πs/N , dφ � 2π
N

, and |φ〉ont � |s〉ont/ ���
dφ

√
;

2 Locality is not a meaningful concept for the single harmonic oscillator.

3 For convenience, we set the ground state energy to zero; ground-state

energies can be returned whenever this might be needed.

4 At finite N, there is an exact, dual relationship to the SU(2) algebra, with

N � 2ℓ + 1.
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This turns Equations 6, 7 into

|n〉E � 1���
2π

√ ∮ dφ eiφ n |φ〉ont , |φ〉ont � 1���
2π

√ ∑∞
n�0

e−iφ n |n〉E.

Thus we proved that harmonic oscillators can be described in terms
of variables |φ〉ont that evolve deterministically. It is easy to see that, due
to Equation 5, the wave function in terms of the s variable (or the φ
variable) does not spread. However, the wave function may not have
been chosen to collapse. In that case, the probability distribution
ϱ(φ1) � |〈φ1|φ〉ont|2 can be seen to rotate along the circle in the
same way as φ itself, so that we easily conclude that this probability
distribution merely reflects the probabilities of the initial state.

This is a typical feature of the COV in a theory: these variables
can be projected on the basis states of any Hilbert space, in which
case the theory reproduces the probability distribution of the final
states in terms of that of the initial states. It is very important,
however, that this identification between Hilbert space and the space
of classical probability distributions, only applies to the ontological
basis of Hilbert space, that is, the basis spanned by all ontological
states (the states |φ〉ont in the case of the harmonic oscillator).

Thus we emphasise: any quantum harmonic oscillator is
mathematically equivalent to a periodically moving particle on a
unit circle, and the wave function of a quantum harmonic oscillator
merely reflects the probability distribution on this circle, if the initial
state is not known with infinite precision.

Some useful auxiliary functions are

G z( ) ≡ ∑∞
n�1

�
n

√
zn , and g φ( ) � G eiφ( ). (9)

Since the annihilation operator a, defined in Equation 3 obeys

a|n〉E � �
n

√ |n − 1〉E ,

we can derive the matrix elements

ont〈φ1|a|φ2〉ont �
1
2π

e−iφ1 g(φ1 − φ2) ,

and ont〈φ1|a†|φ2〉
ont � 1

2π
eiφ2 g(φ1 − φ2) ,

and from this, using Equation 3, we find the matrix elements of the
operators x and p of the original quantum harmonic oscillator, in
terms of the basis states |φ〉ont:

〈φ1|x|φ2〉 � 1
2π

�
2

√ e−iφ1 + eiφ2( )g(φ1 − φ2); (10)

〈φ1|p|φ2〉 � i

2π
�
2

√ e−iφ1 − eiφ2( )g(φ1 − φ2). (11)

It is possible to combineN oscillators with different frequencies
ωi, requiring us to generalise Equations 1–4 as

H � ∑N
i�i

Hi ; Hi � 1
2
(ω2

i x
2
i + p2

i − ωi) � ωia
†
iai ,

ai � 1�
2

√ (ω1/2
i x + iω−1/2

i p) ,
Ei
n � ni ωi.

This system ofN quantum harmonic oscillators, gives usN variables
of the COV type,

φi(t) � φi(0) + ωit mod 2π . etc.

Ideas of treating quantized field theories as systems in a box with
periodic boundary conditions were investigated by Dolce (2023).
The wave equation then fixes the timelike component of the
periodicities, and systems of this kind may then be regarded as
multiple systems of COV variables.

3 On the analytic structure of the
auxiliary function G(z)

The auxiliary function G(z) is defined by Equation 9, but this
only converges for values of z within the unit circle, that is, |z|< 1.
Also, on the unit circle, this definition seems to diverge. Usually,
expansions that oscillate wildly at some distance from the origin, can
be defined by slightly smearing the coefficients, but here, this
procedure is tricky. Indeed, the mathematics needed to show that
the probabilities generated by applying g(φ) are uniquely defined
and real, is rather delicate, an understatement, as shown in
this section.

This section is intended only for mathematically minded
readers. Their comments would be appreciated.

At finite N the function

GN(z) � ∑N
n�1

�
n

√
zn (12)

has N zeros. Most of these will be close to the unit circle, |z|n → 1.
The questions we would like to see answered are:

1. What will be the analytic structure of Equation 12 in the
limit N → ∞?

2. Is it possible at all to define and compute an analytic
continuation for the function GN for |z|> 1?

3. Where are the zeros and the poles of this analytic function?
4. Can one prove that

G*(z) �? G(z*) , (13)

FIGURE 1
The ontological states |s〉ont when time is discrete, δt � 2π

N . In this
picture, the choice N � 11 was made. The energy spectrum is shown;
the energies form the same sequence as in harmonic oscillators, in
particular if we take the limit N → ∞.
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so that the operators x and p defined in Equations 10, 11 can be seen
to be Hermitian?

The last question is not quite trivial because one must first
redefine the limit function g(φ), but by careful study of the
equations, we found that Equation 13 is true, due to the fact that
the coefficients

�
n

√
are all real, see Figure 2.

First, we find that G(z) is the second derivative of a function
F(z) that stays strictly finite on the unit circle (where |z| � 1):

G(z) � (z∂z)2F(z) , F(z) � ∑∞
n�1

zn/(n �
n

√ ) ;

g(φ) � −∂2
∂φ2 f(φ) , f(φ) � F(eiφ) . (14)

Therefore, F(z) is also accurately defined on the unit circle, but
before using it to recuperateG(z), onemust carefully choose the order of
the limits N → ∞ and |z| → 1. In practice, one encounters no
problems, see Figure 2. A useful transformation may be the following:

y � 4z

(1 + z)2 , (15)

and its inverse:

z � −1 + 2
y

1 − �����
1 − y

√( ) � 1
4
y + 1

8
y2 + / . (16)

This can also be written as

��
y

√ � 2�
z

√ + 1/ �
z

√ . (17)

The second Riemann sheet describes the solution with the opposite
sign of the square root on Equation 16. There, we get the solution

~z � −1 + 2
y

1 + �����
1 − y

√( ) � 1/z ,

which is easiest to see in Equation 17.

GN(z) � ∑N
n�1

�
n

√
~zn � ∑N

n�1

�
n

√
z−n ;

Figure 3 shows how the unit circle (Figure 3A) is mapped on the
first Riemann sheet (Figure 3B). by the function (Equation 15), and
how the branch cut at the right connects the two sheets. The function
G(z) does go to infinity where the branch cut begins; the function F
stays finite. They are related through Equation 14. By using Cauchy’s
theorem one may be able to use this branch cut to define faster
converging nexpressions for the function f(φ), and with that, our
auxiliary function g(φ). Our attempts to use these observations for
obtaining more convergent expressions for G(z) were however
unsuccessful; much more work must be done to realise this, but
an excessive list of calculations on this matter was not the aim of this
paper. The function G(z) does go to infinity where the branch cut
begins; the function F stays finite. They are related through Equation
14. Question (4) is now obviously answered in the positive.

4 Epilogue

We showed how one may consider the quantum harmonic
oscillator as an ontological theory in disguise. This is important
since it appears to contradict theorems claiming that such a
behaviour in quantum theories is impossible. Of course those
theories were assumed to be far more general than a single
harmonic oscillator, or even a simple collection of harmonic
oscillators, but this now is a question of principle. Where is the
dividing line?Which other quantum systems allow for the definition
of COV variables, variables that commute with themselves and
others at all times? If for instance one considers the quantum field
theory of bosonic free particles in a box of an arbitrary shape in
multiple dimensions, one may observe that this is merely a collection
of harmonic oscillators.

One would be tempted to conclude that, therefore, bosonic
particles in a box should also contain COV states (’t Hooft, 2023),
but there is a complication in such systems: it is not easy to restore
locality in the COV, since they are defined in momentum space.
Turning these into variables that are local in position space appears
not to be impossible, but then there is another complication: the
operators one obtains that way seem to violate Lorentz invariance.
This happens since the box is not Lorentz invariant. It is conceivably
possible to restore Lorentz invariance, but we presently do not know
how to do this in the Standard Model.

Thus our observations do not imply that text books on quantum
mechanics have to be rewritten, except where they state explicitly
that classical ontological variables cannot exist. Are local ontological
variables forbidden? Locality is a meaningless concept in a single
quantum harmonic oscillator. In this paper we show exactly what an
ontological variable is. Emphatically, the ontological variable may be
assumed to have a probability distribution as in quantummechanics
and in classical theories:

All uncertainties in the final state merely reflect the uncertainties
in the initial state.

As soon as we claim that the initial state is exactly given, the
wave function of the final state will collapse. The harmonic
oscillator requires no special axiom for the collapse of the wave
function – provided that we stick to the observables in φ space.

FIGURE 2
An accurate calculation of the function f(φ), defined in Equation
14. Blue solid line: its real part, dashed red line: its imaginary part. Both
real part and imaginary part have a divergence in their first and second
derivatives, apparently only at the origin, φ → 0.

Frontiers in Quantum Science and Technology frontiersin.org04

’t Hooft 10.3389/frqst.2024.1505593

20

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2024.1505593


There, we do not need to assume the existence of many universes.
Just one universe, ours, is all we need to understand.

We emphasise that what we found here as a modification of
the usual picture of quantum mechanics, is presumably merely
the tip of an iceberg. It will not only apply to pure harmonic
quantum oscillators, but also to many systems that evolve and
interact in more generic ways. It is the fact that harmonic
oscillators are periodic that counts. Whenever we consider a
simplified model of nature where variables become periodic (for
instance if we consider a box with periodic boundary conditions),
one may observe that the energy spectrum consists of regular
sequences of spectral lines (see Figure 1), so that harmonically
oscillating fields enter the picture. Time-periodic motion is
always classical. All we then need to talk about is how the
probability distributions evolve.

In all classical systems, probability distributions evolve in
the same orbits as the classical variables do. Consequently:
probability in = probability out. If, in φ space, the initial
state is defined with infinite precision, the final state will also
be infinitely precise. This implies that the “typically quantum
feature” of the collapse of the wave function, has its counter part
in ontological theories. In the model we presented, the variables
φmay be assumed to be infinitely sharply defined, but then also
the final states will still be completely sharply defined; they
always come in a collapsed form.

The clash with usual findings concerning the “impossible” physical
reality of quantum mechanical phenomena and calculations, lies in the
fact that the duality transformation is only applicable in one basis of
Hilbert space: the one consisting of the ontological states. Choosing the
conventional basis elements does not modify the results. The fact that
we wish to emphasise is that, this “ontological” basis also never needs to
be departed from, other than in approximative calculations: both the
initial states and the final, observed states of any quantum process will
be totally determined by the probabilities in the genuinely ontological
basis; therefore, other choices of basis will never be necessary from a
strictly logical viewpoint.

And it seems as if this possibility has never been considered
before; however, see Refs Brans (1988) and Vervoort (2013). As for

the numerous “quantum paradoxes” that have been formulated in
the literature, the procedure needed, to formulate the probability
patterns in an ontological basis has been worked out in Ref. Hooft
et al. (2021). The guiding principle: always stay in the
ontological basis.

The author benefitted from many discussions, notably with T.
Palmer, C. Wetterich, M. Welling and D. Dolce.
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FIGURE 3
(A) y space, regions where the function G(z) converges: domains | z |≤ .05, .1, . . . , 1.0 are shown. (B) After the transformation (Equation 15), these
domains turn into the regions shown here, that is, the entire z plane up to the branch cut, will be singularity free if expressed in the new y variable.

Frontiers in Quantum Science and Technology frontiersin.org05

’t Hooft 10.3389/frqst.2024.1505593

21

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2024.1505593


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200. doi:10.
1103/physicsphysiquefizika.1.195

Bell, J. S. (1982). On the impossible pilot wave. Found. Phys. 12, 989–999. doi:10.1007/
bf01889272

Bell, J. S. (1987). Speakable and unspeakable in quantum mechanics. Cambridge:
Cambridge Univ. Press.

Brans, C. H. (1988). Bell’s theorem does not eliminate fully causal hidden variables.
Int. J. Theor. Phys. 27 (2), 219–226. doi:10.1007/bf00670750

Clauser, J. F., Horne, M. A., Shimony, A., andHolt, R. A. (1969). Proposed experiment
to test local hidden-variable theories. Phys. Rev. Lett. 23 (15), 880–884. doi:10.1103/
Phys.Rev.Lett.23.880

Conway, J. H., and Kochen, S. (2008). The strong free will theorem. arXiv: Quant-Ph
56 (2), 226.

Dolce, D. (2023). Internal times and how to second-quantize fields by means of
periodic boundary conditions. Ann. Phys. 457, 169398. doi:10.1016/j.aop.2023.169398

Greenberger, D., Horne, M., Shimony, A., and Zeilinger, A. (1990). Bell’s theorem
without inequalities. Am. J. Phys. 58 (12), 1131–1143. Bibcode:1990AmJPh.58.1131G.
doi:10.1119/1.16243

Hooft, G. ’t (2021). “Explicit construction of Local Hidden Variables for any
quantum theory up to any desired accuracy, arxiv:2103.04335,” in: Quantum
mechanics and fundamentality: naturalizing quantum theory between scientific
realism and ontological indeterminacy, Springer Nature, chapt. 13, V. Allori ed
arxiv:2103.04335[quant-ph].

Jegerlehner, F. (2021). The Standard Model of particle physics as a conspiracy theory
and the possible role of the Higgs boson in the evolution of the Early Universe. Acta
Phys. Pol. B 52, 575. doi:10.5506/aphyspolb.52.575

’t Hooft, G. (2023). An ontological description for relativistic, massive bosons. doi:10.
48550/arXiv.2306.09885(quant-ph)09885

’t Hooft, G. (2022). Projecting local and global symmetries to the Planck scale,
dedicated to Prof. Chen Ning Yang at the occasion of his 100th birthday. ArXiv.
Available at: http://arxiv.org/abs/2202.05367 (Accessed February 2022).

’t Hooft, G. (2016). “The cellular automaton interpretation of quantum mechanics,”
in Fundamental theories of physics (Springer International Publishing), 185. eBook
ISBN 978-3-319-41285-6, Hardcover ISBN 978-3- 319-41284-9, Series ISSN 0168-1222,
Edition Number 1. doi:10.1007/978-3-319-41285-6

Vervoort, L. (2013). Bell’s theorem: two neglected solutions. Found. Phys. 43,
769–791. doi:10.1007/s10701-013-9715-7

Frontiers in Quantum Science and Technology frontiersin.org06

’t Hooft 10.3389/frqst.2024.1505593

22

https://doi.org/10.1103/physicsphysiquefizika.1.195
https://doi.org/10.1103/physicsphysiquefizika.1.195
https://doi.org/10.1007/bf01889272
https://doi.org/10.1007/bf01889272
https://doi.org/10.1007/bf00670750
https://doi.org/10.1103/Phys.Rev.Lett.23.880
https://doi.org/10.1103/Phys.Rev.Lett.23.880
https://doi.org/10.1016/j.aop.2023.169398
https://doi.org/10.1119/1.16243
https://doi.org/10.5506/aphyspolb.52.575
https://doi.org/10.48550/arXiv.2306.09885
https://doi.org/10.48550/arXiv.2306.09885
http://arxiv.org/abs/2202.05367
https://doi.org/10.1007/978-3-319-41285-6
https://doi.org/10.1007/s10701-013-9715-7
https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2024.1505593


Explicit mathematical models of
multiple polarization-
measurements and the
Einstein-Bohr debate

Karl Hess1 and Jürgen Jakumeit2*
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University of Cologne, Cologne, Germany

We present mathematical models that also may be formulated as computer
models for experiments that feature single photon resolution and multiple pairs
of polarizers to determine the sorting into ordinary and extraordinary channels.
The models are based on Einstein’s hypothesis of elements of physical reality that
determine the photon properties and are at first developed for Malus-type
experiments. It is then shown that analogous models apply to the well-known
Clauser-Aspect-Zeilinger experiments and violate all Bell-type inequalities
without violating Einstein’s separation principle. The Bell-type inequalities do
not apply to the actual experiments, because they cannot obey the physically
necessary symmetry with respect to polarizer-pair rotations. We believe that
these findings suggest a change of current interpretations of quantum
entanglement away from instantaneous influences at a distance, as promoted
in the physics Nobel-lectures 2022, and back toward Einstein’s ideas aswell as the
more recent ideas of Gerard ‘t Hooft.

KEYWORDS

Bell-inequalities, CHSH-inequalities, quantum-entanglement, EPR-experiments,Monte-
Carlo simulation

1 Introduction

The well-known debate between Einstein and Bohr can be summarized by the slogan
“relativity versus probability”. Bohr maintained that, with respect to quanta, probability was
a fundamental feature of nature and Pauli explained that in contrast to Bohr “. . . Einstein
. . . considered quantum mechanics to be something like statistical gas theory . . . ” Einstein
resisted indeed the Born-type probability theories that are defined without the involvement
of elements of physical reality. At first glance, the differences of the two views appear minor.
Probability theorists assume that Tyche, the goddess of fortune choses elements ω of the
sample space Ω and a particular ωact that determines the outcome of the measurement of
the moment. Einstein in essence insists that in physical experiments we need to deal with
physical properties λ ∈ Λ and with corresponding λact that provide the related ωact with a
physical meaning. However, Bohr and his school pointed to the fact that the possible
physical properties of quanta that determine the actual events, such as the complementary
values of location and velocity, cannot even exist before themoment of measurement, owing
to the Uncertainty Principle.

It took Einstein years to produce an incisive response to Bohr and the teachings of the
Copenhagen school. With Podolsky and Rosen he formulated a manuscript (now called the
EPR paper (Einstein et al., 1935)) that offered a possibility to determine complementary
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properties of the quanta as follows: create pairs of quanta that are
correlated by physical law. Then, if you measure the velocity of one
piece of the pair you may deduce the velocity of the other from the
physical law. Measuring the position of the other piece gives you,
therefore, both properties. The Uncertainty Principle is not violated,
because only one measurement is performed on each quantum, to
obtain both complementary properties. We may, thus, believe that
Tyche’s choices also represent elements of physical reality.

The actually performed first direct experiments related to EPR
were a variation of a suggestion of Bohm: Kocher and Commins
(Kocher and Commins, 1967) used measurements involving photon
pairs and the concept of polarization. Judging from their results,
Einstein’s ideas appeared to be possible. Kocher and Commins
found excellent experimental correlations (entanglement) for
equal polarizer angles that could be seen as representing a law of
nature for the photon-pairs and the corresponding existence of
properties.

However, the well-known inequality of J. S. Bell (Bell, 1964) has
led to a different explanation of the photon-pair experiments. Note
that Bell’s original theory was describing spin 1

2 quantum entities and
Stern-Gerlach measurements. His work and its important logical
implications concerning such experiments, may be “translated” for
photon (spin 1) related experiments by simply including a factor of
two in the pertinent equations, which we have done below. We may
then imagine that Bell’s work has considered experimental
sequences, each having different polarizer directions and
maintained that the average measurement outcomes must fulfill
an inequality. Strangely enough, this inequality was not obeyed by
the results of quantummechanics. It also was convincingly shown by
numerous groups related to the 2022 Nobel Laureates Clauser,
Aspect and Zeilinger that the actual experiments also
contradicted the inequality of Bell and a similar inequality
derived by Clauser, Horn Shimony and Holt (CHSH) (Clauser
et al., 1969). We assume at this point that the reader is familiar
with Bell-CHSH-type inequalities. We will, however, include below
a fairly detailed description of the CHSH inequality and its
derivations.

The crucial question is why Bell’s model does not agree with
quantum theory. Bell had an answer to this question. He was
convinced that he, CHSH and others had derived the inequalities
more or less exclusively based on Einstein’s physics and in particular
Einstein’s separation principle and corresponding “local” properties
of physical events (following from the limitations of all velocities to a
maximum of the speed of light in vacuum). The violation of their
inequalities indicated to Bell and CHSH that a special interpretation
of the photon correlation (entanglement) that included “non-local”
effects must be in order. As we will show, it is important to
distinguish between different forms of “non-localities”, in order
to understand what indeed the Bell-CHSH inequalities mean. The
form that Einstein objected to was any instantaneous influences at a
distance, such as a measurement in Tokyo influencing instantly the
outcome of a measurement in New York. In contrast to this
particular non-locality that Einstein called “spooky”, there are
physically natural (at least to Einstein) non-localities. For
example, any properly relativistic model requires the
theoretician’s consideration of physical events relative to each
other and involves, if these events are spatially separated, non-
local theoretical considerations to start with. Such a non-locality

may, however, retrospectively be explained without instantaneous
influences by use of a space-time system. It is important to
distinguish between the permitted global thinking of a
theoretician using a space-time system and inappropriate
introductions of instantaneous non-local occurrences. These
subtle problems related to the physical nature of non-localities
are enhanced by the mathematical complications of set theoretic
probability that must be the basis of the derivation of the Bell-CHSH
inequalities.

We highlight these problems and questions by detailed
mathematical- and computer-models for two types of
experiments: the Malus-type as explained in the Feynman
lectures (Feynman Lectures, 1965) and the EPRB-type, including
the experiments of Kocher and Commins (Kocher and Commins,
1967), of Aspect and coworkers (Aspect, 2015) and of Kwiat (Kwiat
et al., 1999) and coworkers. Before doing so, however, we discuss
what we mean by words like “local” or “measurement” etc. and how
to avoid prejudicial conclusions about them.

2 Definitions and prejudices in
discussions related to the Bell-CHSH
inequalities

Concepts often involved when discussing Bell-CHSH, are those
of entanglement, measurement, experiment, local vs. non-local, as
well as deterministic vs. probabilistic. We also use these terms but
only subject to the following considerations:

It is commonly claimed and believed that the Bell-CHSH
inequalities must be valid within Einstein’s framework and
definitions of physical principles. We put our main emphasis on
the refutation of this important point and, therefore, do not involve
concepts of quantum mechanics other than those pioneered
by Einstein.

As a consequence, we never use any contemporary quantum
mechanical meaning of the word “measurement”. What we mean by
measurement follows from the most elementary explanations such
as “a detector clicks”, or in another situation “a detector clicks after a
photon has passed a polarizer”. We agree with the standard
definition found on Internet-dictionaries: “Measurement is the
quantification of attributes for an object or event, which can be
used to compare with other objects and events.” It nicely
encompasses the importance of the relative comparison of
attributes and events. With the expression “experiment” we also
refer to the dictionary meaning of “a scientific procedure undertaken
to make a discovery, test a hypothesis, or demonstrate a known fact”.

When we talk about entanglement, we do mean something
related to the quantum-entanglement as defined already by
Schrödinger. In our present utilization of the word, we only refer
to some basic correlation and hope that a future more detailed
interpretation will benefit from our contributions to an
understanding of the work of Bell-CHSH.

The concepts of “local” and “deterministic” appear in a vast Bell-
CHSH-related literature, often with different meaning. We believe
that what is acceptable as “local theory” spans a wide range that is
not necessarily accepted by the followers of Bell-CHSH. For
example, Einstein’s relativity teaches about measurement
outcomes relative to each other. If these outcomes have a space-
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like distance, then naturally any relativistic thought-process of a
theoretician involves non-local factors, as already mentioned. Yet,
there are not many physicists who would think of such relativistic
thinking as something that is physically undesirable or even
forbidden. We, therefore, have limited ourselves to talk about
“local” and “non-local” only in connection with specific
experiments and measurements that we model also by computers
to illustrate the non-local thought processes versus the local causal
machinery that mother nature uses (according to Einstein) in a given
measurement station.

We dismiss out of hand all definitions of “local” and
“deterministic” that use certain conditional probabilities: Bell and
followers have frequently used probabilities conditional to one
particular element of physical reality (Gisin, 2012). Because the
elements of physical reality may involve continua (distances, times,
etc.), the Lebesgue measure of the probability that such a particular
element of physical reality is actually encountered may be zero.
Consequently, such a conditional probability cannot sensibly be
defined within the confines of set theory (for additional explanations
and problems see (Hess, 2023)).

Regarding the concepts of “deterministic vs. probabilistic”, we
also adhere to the common-sense definition that: “Deterministic
models produce the same exact outcome for any given exact same set
of inputs, while probabilistic models do not.” However, we have to
be cautious with this definition in the following respect. Bell’s model
contains the symbols of Einstein’s elements of physical reality that
may be randomly selected out of a continuum and may be modeled,
as we will do below, by random real numbers out of the interval [-1,
+1]. The subtle point is now that onemay not be permitted to use the
same real number again for different model-events. While it may be
true then that we have the same exact outcome for the same exact
input, the probability to encounter the same exact input may be zero.
Such a model is, therefore, comparable to models of radioactive
decay and must be seen as probabilistic. The consequences of this
fact for the interpretation of experiments related to Bell-CHSH were
discussed in (Jakumeit and Hess, 2024). Bell’s model is, therefore,
probabilistic depending on the nature of his variable λ, particularly
whenever λ is used just like the general ω of probability theory (as
used by many researchers).

We like furthermore to point to the fallacies of the very common
Alice and Bob reasoning regarding locality considerations. Alice
controls one polarizer angle without knowing anything about Bob,
who controls the other polarizer angle. The confusion of the Alice-
Bob stories arises from the fact that Alice and Bob are seen as
somehow representing mother nature, who must, according to
Einstein’s views, indeed be local causal. That does not mean
however that a theoretician, say Charly, does not know global
macroscopic instrument arrangements and designs the local
causation of his model by using his global knowledge and the
space-time system. For the particular case of EPRB experiments,
Charly must know about the ancient principle that events may only
be evaluated relative to each other, which Alice and Bob cannot
accomplish to start with, because they do not know about each other.
Without global physical laws and a space-time system, even the
correlation of clocks in distant cities becomes a mystery.

We ask the reader not to abandon our reasoning, because of
prejudices regarding the use and meaning of the discussed
important terms.

We also like to point toward other important criticisms
involving views more or less different to ours presented here. In
particular, the concept of “contextuality” has been used in a number
of ways to discuss violations of the Bell-CHSH inequalities. We do
not use the loaded word “contextual” at all but only talk about
“events being evaluated relative to each other”. Of course, in the case
of spatially distant experiments relative evaluation encompasses a lot
of the meaning of “contextuality”. Numerous important works have
discussed related violations of Bell-CHSH. Particularly relevant
points have been presented in the works of Khrennikov (2009)
(see also the well-known Växjö conferences) and Kupczynski (2020)
as well as references in their works.

3 Malus-type experiments for single
photons with sequential polarizers

3.1 Geometry and measurement-outcomes
of the Malus-type experiments

Perhaps the most illuminating experiment, at least with
respect to modeling and the Alice-Bob “locality” assumptions
by Bell and followers, is the standard Malus-type experiment
performed with single photon resolution. Consider two special
polarizers, Wollaston prisms, in sequence to the right of a
single-photon source S (Wollaston prisms permit a clearer
formulation of the arguments, although they have not
necessarily been used in all actual experiments). The photons
propagate in z- direction and are sorted by the Wollaston
prisms into two sets one named ordinary Λo and the other
extraordinary Λe. The properties of these sets depend, in
general, on the geometric configuration of the Wollaston
prisms. We characterize this configuration throughout this
paper by an angle in the x, y plane denoted by the variable j �
a, a′, . . . for the primary Wollaston W1 and by j′ � b, b′, . . . for
any secondary Wollaston W2.

Assume now that the source S emanatesN photons that behave
in the following way. Passing W1 with a given configuration angle,
for example, j � a, leads to the sorting of about N

2 photons into the
ordinary set that we denote now by Λa

o and about
N
2 photons into the

extraordinary Λa
e . We cannot deduce from such measurements

more than the fact that Wollaston prisms, no matter how

FIGURE 1
Experimental arrangement for single-photon Malus-type
experiments. The polarizer is represented by Wollaston prism W1 and
the analyzers by W2 and W2

*, respectively.
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configured, lead to binary sorting that may be influenced by the
given polarizer direction (angle). This angle is just defined within
our rather arbitrary global coordinate system and, therefore, single
photon measurements performed with a single polarizer, have only
limited significance for distant correlations.

Sequential measurements with two additional Wollaston
prisms W2 and W2

* (called analyzers), do give us more
interesting information. W2 is arranged to pick up the
ordinary channel of W1 and deals, thus, with the set Λj

o, while
W2

* deals with the extraordinary channel of W1 and the set Λj
e.

We have illustrated the geometry of the Wollaston prisms
including the source S in Figure 1. Note that one cannot have
both W2 and W2

* precisely perpendicular to the z-axis with their
face in the x-y plane, but it is well known how to experimentally
approximate this situation and we just assume for the
mathematical model that all Wollaston prisms are
perpendicular to the z-axis, which is the direction of the
photon propagation. The Wollaston’s rotation-angle is in the
x-y plane starting with zero in the x-direction.

The two sets Λj
o and Λj

e are now analyzed by Wollaston prisms
W2 and W2

* that sort these sets into the sets Λj,j′
o , Λj,j′

e and Λ*j,j′
o ,

Λ*j,j′
e , respectively.
Einstein’s hypothesis is that the photons of these sets have

certain properties. We denote these properties of the photons
that are contained in the various sets above by the lower-case
symbols: λj,j′o , λj,j′e , λ*j,j′o and λ*j,j′e and take them as the basis for
our Einstein-type model. This second (relative) sorting follows a law
of nature, known for very large numbers N

2 of photons as the law of
Malus and states:

Of all the photons that transfer into the ordinary channel ofW1,
an approximate number of

N

2
cos 2 j − j′( )

photons will transfer into the ordinary channel of W2 for large N.
The numbers found in the extraordinary channel of W2

* follow the
same law. As is evident, this law is invariant to rotations of the
coordinate system as well as the rotation of the Wollaston prisms
around the z-axis. Therefore, we may choose j � 0, without
restriction of generality, put j − j′ � θ and obtain in this way the
Malus law in its usual notation:

N

2
cos 2 θ( )

The connection of the corresponding expressions in terms of the
energy of macroscopic electromagnetic fields (instead of large
numbers of photons), has been described in detail in
introductory texts and also has been shown to be fully consistent
with the laws of quantum mechanics (Feynman Lectures, 1965;
Baym, 1973).

In order to provide an Einstein type model for the single
photon Malus law we need to develop a model that is in principle
described by a set theoretic probability theory that features events
ωact that also have a meaning as Einstein’s elements of physical
reality λact. We further need to link this element of physical
reality to the measurement outcomes for the events of the
photons interacting with the Wollaston prisms. This link may
be achieved as follows.

3.2 Set theoreticmathematicalmodel for the
Malus-type experiments

It has been shown in great detail by David Williams in his
textbook on probability theory (Williams, 2001) that experiments
describing the possible machineries of our surrounding macroscopic
world by using probabilities may be modeled by the set theoretically
precise Fundamental Model of Probability Theory. The patient
reader must remember that set-theoretic mathematics deals with
a “fundamental triple” that includes a sample space Ω, a sigma
algebra of subsets of Ω and a unique probability measure P.

The Fundamental Model of probability theory uses the interval
[0,+1] of the real numbers for Ω. Every event of actual
measurements may be simulated by a real number out of this
interval. The events are, as usual, denoted by ω ∈ Ω. As
mentioned, Tyche, the goddess of fortune, picks one such ω

denoted by ωact to instigate a certain actual event. For ωact

drawn uniformly from the interval [0,1] the probability that ωact

lies in a sub-interval [0, x] is given by x (Williams, 2001).
To simulate the actual polarizer experiments by involving real

numbers for the photon properties, it is convenient (as we will see
below) to generalize the Fundamental model to include the extended
interval [−1,+1] instead of [0,+1], which is straightforward. We
introduce now the notation and conventions similar to Bell and
denote the measurement outcomes by two-valued functions, A for
polarizer W1 and B for polarizers W2 as well as W2

*. We define A �
B � +1 if the photon is found always in the ordinary channel and
A � B � −1, if it is always found in the extraordinary channel. Our
main postulate is that one can indeed model the photon properties
for the particular experiment in question by the real numbers of the
Fundamental model. The possibility of mapping the elements of
physical reality onto the real interval [−1,+1] is indeed a plausible
assumption, because we consider only relative outcomes. For a given
polarizer angle j, we may then sort the outcomes of A into two sets
that depend only on the sign of the number that models the
properties of the photon, because we know that the polarizer
accomplishes just such sorting, hereby connecting these sets to
the polarizer direction within our arbitrarily chosen
coordinate system.

The sorting of the analyzers W2 and W2
* into ordinary and

extraordinary sets can then be further modeled as follows: the
photon stays with the same sorting that W1 has accomplished
(extraordinary or ordinary), meaning B � A if and only if:

λje,o
∣∣∣∣ ∣∣∣∣≤ cos 2 θ( ). (1)

According to the Fundamental Model, the probability
measure that we indeed encounter such |λje,o| equals precisely
cos 2(θ), which leads to the law of Malus-type for large N. The
absolute value is now used because we have extended the
Fundamental interval to [−1,+1].

Notice that the use of the relative polarizer angles θ in
Equation 1 appears completely natural, because the photon
has passed both polarizers and may be sorted into the
appropriate sets due to its properties that are recognized by
both polarizers. No “forbidden” non-locality has ever been
attributed to the use of (j′ − j � θ) for that particular
experiment in contrast to the EPRB-type experiments. We
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note in passing that mathematically there exists almost no
difference between this Malus-type experiment and the EPRB-
type as soon as Einstein’s hypothesis of elements of physical
reality is made. One of the reasons for this fact is that we do not
need to assume that the Wollaston polarizers change the
properties of the photons. It is sufficient to assume that the
photon properties are recognized by the polarizers and used for
the sorting. In this connection it is important to realize the
difference between the properties described by λ immediately
after the emission of the photons and the properties (actual or
model) that mark the photons and λ after passing the polarizers.
It is these properties that may be represented by markers related
to the law of nature that determines the outcomes. We will return
to this important point below.

4 Polarizers on opposite sides of
a source

We now turn to the configuration with the polarizers on
opposite sides of the source as illustrated in Figure 2, which
shows the experimental arrangement along the lines of the EPR
ideas with the modifications by Bohm and first implementation
using photon-pairs and a stretched film of poly-vinyl alcohol
containing oriented anisotropic molecules instead of a Wollaston
prism, by Kocher and Commins (Kocher and Commins, 1967).

Unlike the Malus-type single-photon experiment, this
experiment has been performed by many researchers starting
with Kocher and Commins and continuing with significant
extensions by groups around Clauser et al. (1969), Aspect (2015),
Giustina et al. (2015), Kwiat et al. (1999) and others.

We use the same notation that we have used in the previous
section, in order to highlight the important similarities and
differences with respect to the modeling of the Malus-type.
Wollaston W1 is now arranged to the left of the source S and
Wollaston W2 to the right as shown in Figure 2. Wollaston W2

* is
being merged with W2.

The source emanates now correlated photon-pairs (see
explanations by Kocher and Commins (1967)). We assume in the
following theoretical discussions that the correlation of the photon-
pair is ideal and such that each photon is being recognized according
to its properties in identical fashion byW1 andW2. In other words,
the photons are identical twins as viewed with W1 or W2.

As for the case of the Malus-type experiments, we need to
maintain the principle that the measurements of events have only
physical meaning relative to each other. Alice and Bob, knowing
nothing about each other, may only judge their local measurements

relative to their own previous measurements and thus conclude that
the clicks of their detectors are random, corresponding to the
detections for ordinary and extraordinary channels of W1 and
W2, respectively. If we wish to probe into the distant relative
measurement-outcomes, we need to employ a theoretician,
Charly, who must involve global factors into his thinking, while
still admitting only local causes for the interactions and
measurement-outcomes on a given side. As Einstein told
Heisenberg: “it is the theory that determines what we can
measure” and it is historically true that great experimentalists
have also had a deep grasp of theory and vice versa.

Therefore, if we wish to proceed to the understanding of the
non-local distant correlations, we need to clearly distinguish on one
hand between the theoretical knowledge that Charly must have
about the global situation and on the other hand the local causality
that must apply according to Einstein for the events in the
respective stations.

The natural local interactions involve the polarizer angles j and
j′ at the time of interaction, which is measured by local
synchronized clocks. Charly describes the local configurations by
use of his global coordinate system. Therefore, the local
configurations of the polarizers at the time t1n for polarizer W1

and t2n for polarizerW2 may both assumed to be available to Charly
within the space-time system, while Nature has available just the
single local configurations. Charly, of course, can only find out later
what the actual polarizer configurations were, by checking the
records of measurement at the registered clock-times.

Note, that the experimenters must, as Charly does, involve more
than their local knowledge of equipment configurations if they wish
to consider relative outcomes. They too must have a global
coordinate system and synchronized clocks (a space-time
system), whenever they attempt to compare the outcomes A, B
and determine whether A � B (Aspect, 2015). They also have
worked with fixed polarizers and without clocks during the
whole sequence of measurements (see, for example, some of the
measurements in (Kwiat et al., 1999)).

What is it then that can be measured, while the global rules of
relative evaluation as well as the rules of local causes are strictly
obeyed? Consider the case of registered detector clicks A � ± 1 and
B � ± 1. Relatively speaking, we have then four possibilities of
interesting physical outcomes and we collapse them by symmetry
onto two: we either have A � B or A ≠ B. All relative physics must,
therefore, be contained in the numbers of equal versus not-equal
outcomes of the experimental runs. Importantly, it turns out that the
results of A � B vs A ≠ B are also the only results used to obtain the
Bell-CHSH inequalities. Charly needs to model, therefore, only the
number Neq of equal outcomes A � B that contains all interesting

FIGURE 2
Experimental arrangement for entangled-photon for EPRB-Kocher-Commins-type experiments.
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physics. The number of not equal outcomes Nneq is given by
Nneq � N −Neq. Thus, Charly is not interested in modeling
natures outcomes for A and B separately but is satisfied to obtain
a correct model for the product A · B, which also happens to be all
that Bell-CHSH have needed and used in their work.

We now apply the methods that we have developed for the
Malus-type experiment in the previous section: W1 is thought to
establish the connection of the actual experiment to the global
coordinate system and sorts the incoming photon of the pair into
two sets, while W2 analyzes the incoming twin-photon
corresponding to its properties and “markers” that are for all
practical purposes assumed identical for the twins. Because we
treat W2 as the analyzer we have a situation which is completely
analogous to the Malus-type experiments. To see this fact, imagine
the measurement of theW1 detector to be performed slightly earlier,
exactly as it is for the Malus type measurements. This analogy
permits us to sorting the identical twins as we did in the Malus-type
experiments and as is described next. Of course, we may also
exchange the roles of W1 and W2. Imagining that the
measurement involving W1 happens before that involving W2, is
only used to illustrate the analogy to the Malus type experiment.

There exists one big difference of the EPRB-type experiments to
the Malus-type. For these latter, we could useW2 andW2

* to further
process the ordinary and extraordinary channels. Without this
possibility we must employ very careful procedures that avoid
the introduction and appearance of instantaneous distant influences.

We still use Einstein’s elements of physical reality that may be
imagined as “markers” of the single photons that are the causes for
W1 to guide the incoming photon of the pair toward the +1 or the −1
detector and thus makes it a member of the sets Λj

o or Λj
e,

respectively, after being detected. Note that we must postulate
that these sets depend on the angle j, because otherwise the
polarizer-geometry would have no influence. We have denoted
their elements by λjo or λje for the Malus-type experiments, but
add now an index n for the measurement number in order to obtain
the notation of λjon or λjen, respectively.

In our opinion, this approach synthesizes the views of Einstein
and Bohr. The properties of the photons and photon pairs are only
known after at least one measurement (with say j � a) was
performed, relative to which other measurements are evaluated
and analyzed.

We turn now to our model in which all of Einstein’s elements
of physical reality are simulated by real numbers out of [-1, +1].
Each of the randomly selected numbers signifies different
properties and is denoted by λn with n � 1, 2, 3, . . . , N. We
postulate further that there exists a one-to-one
correspondence of the Einsteinian elements (that occur in the
actual measurements for a given polarizer angle, e.g., j � a) and
our model-numbers λn. Each λn is, therefore being mapped to
represent one of the specific elements λjon or λ

j
en arising from the

measurements involving W1 and belonging to the sets Λj
o or Λj

e

for the selected value j � a. The source has sent a twin element
toward the analyzerW2, and that analyzer is being represented by
the function B(j′ � b, λn � λj�aon ). The evaluation of that function
may, thus, depend on both j � a and j′ � b, because both angles
appear in the entirely local domain of the function B. The
concrete form of the function is not known for certain and
may not even exist. Nevertheless, Charly may guess the value

of j and base his model on this guess, while validating the model
later on when the information about the value of j is available to
him (as in the model of (Jakumeit and Hess, 2024)).

Based on all these facts, Charly lets:

A j, λn( ) � sign λn( ) (2a)
and

B j′, λn( ) � sign λn( ) if and only if λn ≤| cos 2 j′ − j( )∣∣∣∣
in order to model the law of nature that determines the equal and
not-equal relative outcomes (A � B).

We do admit that our multiple assumptions, although very
plausible, do not let us prove with certainty that quantum-non-
localities are not involved in any way. Such proof can probably never
be achieved. One simply cannot prove that “spooky” influences (in
Einstein’s sense) do not exist.

There is just one minor modification necessary in order to fully
compare this model with the experiments of Kocher, Clauser, Aspect
and others. All these well-known actual experiments use complete
anti-correlation instead of correlation. To obtain the results for anti-
correlation, we just need to put

Bj′, λn � sign λn( ) (2b)

If and only if:

λn > co| s2 j′ − j( ).∣∣∣∣ (2c)

Equations 2a-c permit us to derive the well-known measured
averages by our model. For any given polarizer-angle pair (j, j′), we
denote the normalized sum of N measurements by D(j, j′) :

D j, j′( ) � 1
N

∑N
n�1

A j, λn( )B j′, λn( ) (3)

In the limit of N → ∞, we obtain from expressions (Equations
2a-c) of our model:

D j, j′( ) � −cos 2 j′ − j( )( ) (4)

This latter result agrees with the results of quantum mechanics,
which appears entirely natural, because it represents in essence a
Malus-type law and is very closely connected to the measurement-
outcomes for single photon Malus type experiments.

This very result is, however, incompatible with the Bell-CHSH
inequalities derived in (Clauser et al., 1969). How can that be? The
obvious reason is that Bell-CHSH and followers have used the same
measurement number n for different polarizer setting pairs. As long
as one considers only one polarizer-angle pair (no matter which),
this is correct. However, as soon as one calculates the four sums
D(j, j′) that are the basis for the Bell-CHSH inequality, one needs to
realize that different polarizer-angle pairs must have, in general, a
different measurement number. As we show next, this lack of precise
mathematical labeling still permits the correct derivation of the Bell-
CHSH-type inequalities if (and only if) Einstein’s elements of
physical reality are countable (see also (Jakumeit and Hess,
2024)). However, just in this very case of countability, the so
derived Bell-CHSH inequalities are not invariant under rotations
of the polarizers around the z-axis and, therefore, physically
speaking, unacceptable
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5 Bell-type inequalities as derived in the
terms of the Fundamental Model

Bell-CHSH deduced by elementary manipulations that
one expects:

CHSH � : D| a, b( ) −D a, b′( ) +D a′, b( ) +D a′, b′( ) ≤ 2| (5)

Key to this finding is that they used identical λn in all the sums of
Equation 3 for all values of (j, j′), meaning for (a, b), (a, b′), (a′, b)
and (a′, b′).

Notice that identical λn permit the derivation of Equation 5 from
Equation 3, because then all 4N measurement-outcomes may be
described by N quadruples of the form:

A a, λn( ) · B b, λn( ) − A a, λn( ) · B b′, λn( ) + A a′, λn( ) · B b, λn( )
+ A a′, λn( ) · B b′, λn( ) (6)

which are now each cyclically connected (with three products
known, the fourth is fully determined) and, therefore, all
quadruples are equal to +2 or −2. However, for our Fundamental
model, the λn are represented by real numbers chosen randomly out
of [−1,+1]. The probability to obtain the same λn for any different
model-measurement is zero and this applies also to any actual
measurement if Einstein’s elements of physical reality indeed
correspond to a continuum that can be mapped onto (or
modeled by) the interval [-1, +1] of real numbers.

As mentioned, Bell-CHSH have deduced their use of the
identical λn in each of the four sums from the fact that the
emitted elements of physical reality may not depend on the
polarizer angles, because these may be chosen in the last moment
just before the actual measurement and indeed have been so chosen
in all Aspect-type (Aspect, 2015) experiments. As mentioned,
however, that fact does not mean that the λn of Equation 6 must
be identical for all polarizer angle pairs. In strict mathematical terms,
the λn are only identical in approximately all quadruples if their
numberM is countable (finite) and if the number of measurements
N≫M. (We do not include the case of countable infinite into our
discussions in spite of the fact that similar situations can be
constructed with countable infinite sets such as rational numbers.)

The astounding conundrum of the Bell-CHSH inequalities arose
from the conviction of Bell and followers that their derivations
followed mostly from Einstein’s separation principle. They did not
realize that their derivation required additional mathematical
conditions regarding the cardinality of Einstein’s elements of
physical reality and a certain cyclicity of the polarizer angles.
They also did not realize that these mathematical conditions have
the consequence that the inequalities are physically not acceptable,
because they are not invariant under rotations of the polarizer angle-
pair around the z-axis. We show these facts in form of two theorems
in the following section. We formulate these theorems in terms of
the Fundamental Model that we have used all along. It is important
to note that the theorems are derived without a direct use of
Einstein’s separation principle (although it is indirectly
guaranteed by the random draws of real numbers). All the above
facts and following Theorems are also consistent with Gerard ‘t Hooft’s
widely published ideas (’t Hooft, 2020) regarding the Einstein-Bohr
debate and his recent additional important findings with regard to
“hidden ontological variables” (’t Hooft, 2024).

6 Physical inconsistency of
mathematically correct Bell-CHSH
inequality: two theorems

6.1 Theorem 1

Given the polarizer geometry of Section 4, a cyclical
arrangement of the polarizer angle pairs such as
(a, b); (a, b′); (a′, b); (a′, b′) and a mathematical representation of
Einstein’s elements of physical reality by real numbers of the interval
[−1,+1] encompassing two possible cases: (i) Each real number of
the interval [−1,+1] represents an element of physical reality, which
is drawn randomly and uniformly for each different model-
measurement. (ii) Einstein’s elements consist of a countable finite
number M of reals randomly and uniformly chosen from the
interval [−1,+1]. In this case, the draws of the model-
measurements are random choices from these finite subsets with
given numberM independent of the polarizer angles. Given further
the Bell-CHSH functions (of these drawn numbers and polarizer
angles) with values A � ± 1, B � ± 1, the following holds:

The Bell-CHSH-type inequalities may be validated if and only if
the cardinality of the number of draws N significantly exceeds the
cardinality of the number M of Einstein’s elements of physical
reality (which can never be true for case (i)).

6.2 Proof

6.2.1 Necessity
If Einstein’s elements are not countable and modeled by

numbers selected randomly and uniformly from the interval [-1,
+1] of the reals, all the chosen numbers are different with probability
1. We may, therefore, choose function-values A, B that model theN
quadruples of Equation 6 such that the Bell-CHSH inequalities are
violated, because the necessary cyclicity of (Equation 6) may now be
eliminated for all the quadruples in a suitable way.

6.2.2 Sufficiency
Given are the cyclical arrangement of polarizer angles from

above and an arbitrary finite number M of Einstein’s elements as
well as a number of measurements (draws) N≫M. One can then
build about N

M stacks of the M elements for each of the four pairs of
polarizer angles that lead to the validity of Equation 6 and thus to the
inequalities for N → ∞. Q. E. D.

The facts of this theorem with regard to the cardinality of
Einstein’s elements vs. the number of draws were unknown to
Bell and followers. They believed that it was rather “locality” that
was the virtually sole non-trivial basis for their inequalities, while, in
fact, it is only locality together with cardinality. The locality
requirement that, at the source, Einstein’s elements are
independent of the polarizer angles, is automatically fulfilled by
the randomness of the draws. Note that our proof above has not
assumed any probability measure for the possible function-
outcomes of A, B. As a consequence, Theorem 1 (and also
Theorem two below) do not give us any actual degree of
violation they only tell us that Bell-CHSH cannot be regarded as
impossibility-proofs. To obtain the violations that correspond to the
quantum results, we need the additional assumptions of our model
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as described above and also below in the computer model. In
particular, we need to assume the evaluation of the model results
relative to each other.

Some may wish to indeed accept a finite number of Einstein’s
elements as a physical fact and, thus, have the physical validity of the
Bell-CHSH inequalities guaranteed. There is, however, another
important factor to be considered. The results of quantum
mechanics for the data averages of the above experiments
(Equation 3) are invariant under rotations of the polarizer-pairs
around the z-axis and this invariance has also been proven
experimentally for the photon-pair experiments beyond
reasonable doubt [see 2, 4, 6, 7, 15]. Consequently, the sum of
three (Bell) or four (CHSH) such data averages of experimental runs
should be invariant with respect to rotations of the polarizer pairs
around the z-axis for one or more such experimental runs. However,
we prove in Theorem two below that for a finite number M of
elements of physical reality and, thus, valid Bell-CHSH inequalities,
these inequalities are not rotationally invariant. The Bell-CHSH
inequalities lead, therefore, to a contradiction: their mathematical
proof of using finite numbers M requires also that they are
physically unacceptable, because they violate invariance to
rotations of the polarizer pairs around the z-axis.

6.3 Theorem 2

Given the premises of Theorem 1 and a finite number M for
Einstein’s elements of physical reality, the following holds:

The Bell-CHSH inequalities are not invariant to rotations of the
polarizer pairs around the z-axis.

6.4 Proof

Take the four polarizer angles used by CHSH. Then, the Bell-
CHSH inequalities are valid according to Theorem 1.

Now rotate the two polarizers for each of the separate experimental
runs with polarizer angle pairs (a, b); (a, b′); (a′, b); (a′, b′) such that
the left polarizer has always the angle 0 (zero) in a given coordinate
system.We have in this way removed the cyclicity, which is a necessary
condition to arrive at the Bell-CHSH inequality as shown by expression
(6) (and in much greater mathematical generality by the work of
Vorob’ev for topological-combinatorial cyclicities (Vorob’ev, 1962)).
Consequently, the inequality must no longer be fulfilled. Q. E. D.

The Bell-CHSH inequality is, therefore, not invariant with respect
to rotations of the polarizer angles around the z-axis and violates, thus,
both the results of quantum mechanics and of actual measurements.
We emphasize again that we have not made the specific model
assumptions of Equations 2a–c to derive the theorems. Theorem
two does not tell us, for this reason, how large the violations of the
Bell-CHSH inequalities are. The numerical experiment discussed in the
next section shows that with the additional assumptions of our model,
the violation is major and approximates the quantum results.

The above theorems leave us then with a very reasonable and
physically acceptable corollary: the Bell-CHSH inequalities do
simply not apply to the Clauser-Aspect-Zeilinger experiments.
Furthermore, if we are willing to accept that Einstein’s elements
of physical reality have the cardinality of a continuum, we can find a

model that violates Bell-CHSH and is rotationally invariant. This
model may also be implemented on two distant computers.

7 Two-computer model for EPRB
experiments and application to actual
experiments

We present now a numerical EPRB experiment, executed by two
computers C1 and C2 precisely in the same way as done by the
experimenters equipped with polarizer W1 and analyzer W2 as well
as photon detectors. The detection of photons and the correlation of
events related to entangled photon pairs by the time stamp are
assumed to be ideal. Therefore, every measurement is marked by an
index n of the photon pair property λn. The measurement times,
meaning the times of the detector clicks, are also often recorded by
synchronized clocks and denoted by t1n and t2n, respectively. Also
recorded at these times are polarizer angles j and j′, which are
available and used on the computers. Note that time-dependences
innate in the experiments as explained by Kocher (Kocher and
Commins, 1967) may be included into our computer simulation.

Overall, we use precisely the same model that we have developed
above and Equations 2a–c with two exceptions: We use a computer
random number instead of a mathematical real number for λn. The
random numbers for computers are naturally countable and of
numberM. They can be, however, made large enough so that for any
simulated experimentM≫N, which is all that is needed to show the
important points. As we will see, Bell-CHSH is not valid anyway,
because we do not use the cyclicity by involving the rotational
invariance. Furthermore, in order to highlight the role of the
cyclicity assumptions, we remove the cyclicity by the physically
permitted and necessary rotational invariance with respect to
rotations around the z-axis to obtain j � 0 for all cases. Thus,
we have:

A � sign λn( ) (7a)

And we guess the law of nature that

B � sign λn( ) (7b)
if and only if

λn| |≥ cos2 j′( ) (7c)

Remember that the subscript n denotes the number of
measurement and must be different for different polarizer-angle
pairs and now for different j′ .

The computer-model outcomes compare well with the results of
quantum mechanics. Of course, we have included a fair number of
definitions and theoretical assumptions and have used global space
and time coordinates as well as rotational invariance, in order to
develop this “theory laden” computer experiment.

Notice that any fast changes of j′ do not cause any differences in
our computer-model. It is not Bell’s “locality” or spooky influences
that play any role, it is our inclusion of rotational invariance that
removes the cyclicity and, therefore, the validity of Bell-CHSH.

The necessary special and relative treatment of theW1 polarizer
in contrast to the W2 analyzer (or vice versa), becomes totally
acceptable, as soon as one notices the absolute need of a global
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measure in order to consider correlations. For example, if we were to
measure instead of polarization some kind of “length”, one clearly
needs to agree globally on a length-measure. If Alice measures in
units that she switches rapidly between Inches, Parsec and Angstrom
and without telling Bob, clearly Bob cannot guess the correlations in
the length of the identical twins that they investigate.

As a corollary, the Bell-CHSH inequalities should have never
been considered as a staple of physical theory related to EPRB,
because they violate rotational invariance that is a hallmark of
quantum theory and the Malus law, and has been experimentally
proven by countless single photon EPRB-type measurements.

7.1 Computer simulations illustrating
Theorem 2

The just described computer model can be used in a
straightforward way to simulate the results that are expected for
a countable number of elements of physical reality. We just select
randomly a set of M numbers, for example, � 10, 000 , out of the
interval [−1,+1] and compute a consistent set of outcomes A · B for
all possible polarizer setting pairs by using expressions (7a-c) within
a Monte Carlo framework, meaning that we determine and store the
outcomes for the M random numbers in a consistent way for 4N
measurements;N for every one of the four different polarizer angle-
pairs. We have used the CHSH polarizer orientations that lead to the
largest violation of the CHSH inequality for the polarizer angle
differences: a � 0°, a′ � 45°, b � 22.5° and b′ � 67.5°. We have
published the precise procedure in (Jakumeit and Hess, 2024).

We have performed this calculation for the polarizer angles used by
CHSH (Clauser et al., 1969) and Aspect (Aspect, 2015) for the givenM
and varying N. The results are shown in Figure 3., which shows the
values of CHSH as defined in Equation 4 (note that these are absolute
values) as a function of the number N of measurements for a value of
M � 10, 000. As expected from Theorem 1, the CHSH inequality must
be fulfilled for N≫M and begins to be fulfilled approximately for
M � N. Big violations are clearly visible for N≤M, simply because
then most of the λn are different and we are free to choose outcomes
A,B commensurate with a Malus-type law.

We then have rotated the four polarizer-angle-pairs in such a way
around the z-axis that the angle j of W1 is always 0, while j′ of W2 is
chosen to obtain the desired differences j − j′ that CHSH and Aspect

have used. For the concrete selection of CHSH angles mentioned above,
thismeans to rotateD (a’, b) toD (a’-a’, b-a’) =D (0°,−22.5°) (previously
D (45°,22,5°) and D (a’, b’) to D (a’-a’, b’-a’) = D (0°,22.5°) (previously D
(45°,67.5°), by just using the rotational symmetry. The results of this
procedure are shown in Figure 4.

As clearly seen in Figure 4, the rotation of the polarizer angle-pairs
has completely destroyed the validity of the CHSH inequality.
Therefore, the CHSH inequality is not invariant to rotations of the
polarizer angle-pairs and the coordinate system as is required by the
results of quantummechanics and by a world of experimental evidence
including the classical limit for very large numbers of photons.

8 Conclusion

We have used the Fundamental Model of probability theory
(Williams, 2001) for experiments using single photons or photon-
pairs and polarizers in two very different configurations, one
corresponding to Malus-type measurements, the other to EPRB-
type measurements such as performed by Kocher and Commins
(1967) and groups related to Aspect (2015), Clauser et al. (1969) and
Kwiat et al. (1999); Giustina et al., 2015).

Our model shows a pronounced violation of the Bell-CHSH
inequalities and agreement with the quantum result. We have
shown that this unexpected violation of the highly respected
inequalities arises, within the confines of the Fundamental Model
(Williams, 2001), from the fact that there are precise premises
that guarantee the mathematical validity of the inequalities.
However, these mathematical premises lead to a
mathematical-physical problem: The correctly derived Bell-
CHSH inequalities are physically not acceptable, because they
are not invariant to rotations of the polarizer-angle pairs. This
lack of invariance makes Bell-CHSH physically unacceptable as a
model for the actual experiments such as (Kocher and Commins,
1967; Clauser et al., 1969; Aspect, 2015; Kwiat et al., 1999;
Giustina et al., 2015), which are invariant to such rotations.
The paradox created by the work of Bell is, thus, resolved and
proven to be no reason to suspect any failure of Einstein’s
separation principle as well as the ideas of Einstein and ‘t
Hooft (’t Hooft, 2020; ’t Hooft, 2024) regarding the existence
of ontological hidden variables and their local-causal nature.

FIGURE 3
Model results for the values of CHSH (defined by Equation 4)
plotted versus the number ofmeasurementsN. Note the validity of the
CHSH inequality for N≫M.

FIGURE 4
The CHSH values for a system of coordinates rotated such that
we have j � 0 for all four terms of the CHSH inequality and j′ rotated
appropriately to obtain the angle differences j′ − j as used in Aspect-
type experiments. Note that the CHSH inequality is always
significantly violated, with a value close to the quantum result.

Frontiers in Quantum Science and Technology frontiersin.org09

Hess and Jakumeit 10.3389/frqst.2025.1542466

31

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2025.1542466


Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

KH: Writing–original draft, Writing–review and editing,
Conceptualization, Formal Analysis, Methodology, Visualization.
JK: Writing–review and editing, Methodology, Software, Validation,
Visualization.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

Recent correspondence with Anthony J. Leggett has been a very
valuable motivation for us to derive Theorems 1 and 2. While we
agree on the importance of the cardinality, the Theorems may
explain at least some of the differences of our views mentioned
in (Leggett, 2024). Comments of Colin Naturman regarding finite
subsets and subtleties for a countable-infinite number of elements of

physical reality were helpful for our formulation of the Theorems.
We also thank the referees for their important contributions to the
clarity of the explanations.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Aspect, A. (2015). Closing the door on Einstein and bohr’s quantum debate. Physics 8,
123. doi:10.1103/physics.8.123

Baym, G. (1973). Lectures on quantum mechanics. Redwood City: Adison-Wesley
Publishing Company Inc., 1–8.

Bell, J. S. (1964). On the Einstein podolsky rosen paradox. Physics 1, 195–200. doi:10.
1103/physicsphysiquefizika.1.195

Clauser, J. F., Horne, M. A., Shimony, A., and Holt, R. A. (1969). Proposed experiment to
test local hidden-variable theories.Phys. Rev. Lett. 23, 880–884. doi:10.1103/physrevlett.23.880

Einstein, A., Podolsky, B., and Rosen, N. (1935). Can quantum mechanical
description of physical reality be considered complete? Phys. Rev. 16, 777–780.
doi:10.1103/physrev.47.777

Feynman Lectures (1965). Physics 11–14.

Gisin, N. (2012). Non-realism: deep thought or a soft option? Found. Phys. 42, 80–85.
doi:10.1007/s10701-010-9508-1

Giustina, M., Versteegh, M. A., Wengerowsky, S., Handsteiner, J., Hochrainer, A.,
Phelan, K., et al. (2015). Significant-loophole-free test of bell’s theorem with entangled
photons. Phys. Rev. Lett. 115, 250401–250407. doi:10.1103/physrevlett.115.250401

Hess, K. (2023). Logical conflict between Bell’s locality and probability theory. J. Mod.
Phys. 14, 1762–1770. doi:10.4236/jmp.2023.1413105

’t Hooft, G. (2024). The hidden ontological variable in quantum harmonic oscillators.
Front. Quantum Sci. Technol. 3, 1505593.

Jakumeit, J., and Hess, K. (2024). Breaking a combinatorial symmetry resolves the
paradox of einstein-podolsky-rosen and Bell. Symmetry 16, 255–265. doi:10.3390/
sym16030255

Khrennikov, A. (2009). “Contextual approach to quantum formalism,” in
Fundamental theories of physics. Springer Nature.

Kocher, C. A., and Commins, E. D. (1967). Polarization correlation of photons
emitted in an atomic cascade. Phys. Rev. Lett. 18, 575–577. doi:10.1103/physrevlett.
18.575

Kupczynski, M. (2020). Is the moon there if nobody looks: Bell inequalities and
physical reality. Front. Phys. 8, 1–13. doi:10.3389/fphy.2020.00273

Kwiat, P. G., Waks, E., White, E. G., Appelbaum, I., and Eberhard, P. H. (1999).
Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, 773–776. doi:10.
1103/physreva.60.r773

Leggett, A. J. (2024). The EPR-bell experiments: the role of counterfactuality and
probability in the context of actually conducted experiments. Philosophies 9.5, 133.
doi:10.3390/philosophies9050133

’t Hooft, G. (2020). Deterministic quantum mechanics: the mathematical equations.
Front. Phys. 8. doi:10.3389/fphy.2020.00253

Vorob’ev, N. N. (1962). Consistent families of measures and their extension. Theory
Probab. Its Appl. 7, 147–163.

Williams, D. (2001). 44. Cambridge: Cambridge University Press, 73–110.

Frontiers in Quantum Science and Technology frontiersin.org10

Hess and Jakumeit 10.3389/frqst.2025.1542466

32

https://doi.org/10.1103/physics.8.123
https://doi.org/10.1103/physicsphysiquefizika.1.195
https://doi.org/10.1103/physicsphysiquefizika.1.195
https://doi.org/10.1103/physrevlett.23.880
https://doi.org/10.1103/physrev.47.777
https://doi.org/10.1007/s10701-010-9508-1
https://doi.org/10.1103/physrevlett.115.250401
https://doi.org/10.4236/jmp.2023.1413105
https://doi.org/10.3390/sym16030255
https://doi.org/10.3390/sym16030255
https://doi.org/10.1103/physrevlett.18.575
https://doi.org/10.1103/physrevlett.18.575
https://doi.org/10.3389/fphy.2020.00273
https://doi.org/10.1103/physreva.60.r773
https://doi.org/10.1103/physreva.60.r773
https://doi.org/10.3390/philosophies9050133
https://doi.org/10.3389/fphy.2020.00253
https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2025.1542466


Statistical contextual explanation
of quantum paradoxes

Marian Kupczynski*

Département de l’Informatique et d’Ingénierie, UQO, Gatineau, QC, Canada

This year we celebrate 100 years of quantum mechanics (QM). Incorrect
interpretations of QM and incorrect mental models of the invisible details of
quantum phenomena lead to paradoxes. To explain these, we advocate the
statistical contextual interpretation (SCI) of quantum mechanics. State vectors
(wave functions) and various operators are purely mathematical entities that
permit quantitative probabilistic predictions. “State vector” describes an ensemble
of identically prepared physical systems, and a specific “operator” represents a
class of equivalent measurements of a physical observable. A collapse of
wavefunction is not a mysterious and instantaneous physical process; a
collapsed quantum state describes a new ensemble of physical systems
prepared in a particular way. A value of a physical observable, such as a spin
projection, associated with a pure quantum ensemble is a characteristic of this
ensemble created by its interaction with measuring instruments. Probabilities are
objective properties of random experiments in which empirical frequencies
stabilize. Following Einstein, SCI rejects the claim that QM provides a
complete description of individual physical systems, but it remains agnostic
about whether a more detailed subquantum description can be found or is
necessary. In conformity with Bohr contextuality, SCI rejects Bell-local and Bell-
causal hidden variable models. Nevertheless, by incorporating into a probabilistic
model contextual hidden variablemeasuring instruments, long distance quantum
correlations studied in Bell tests can be explained without evoking quantum
nonlocality or retro-causality. SCI allows the explanation of several quantum
phenomena without evoking quantum magic. SCI does not claim to provide a
complete description of quantum phenomena; in fact, it is unknown whether
quantum probabilities even provide a complete description of existing
experimental data. Time series of experimental data may contain much more
information than is obtained using empirical frequencies and histograms.
Therefore, predictable completeness of QM must be tested and not taken for
granted.

KEYWORDS

EPR paradox, Bell-CHSH inequalities, Bell tests, entanglement, quantum nonlocality,
contextuality, completeness of quantum mechanics

1 Introduction

In 1925, Werner Heisenberg, Max Born, and Pascual Jordan developed matrix
mechanics (Heisenberg, 1925; Born and Jordan, 1925; Author anonymous, 2024a), the
first consistent formulation of quantum mechanics (QM). To commemorate this
achievement, 2025 has been declared the International Year of Quantum Science and
Technology (IYQ) by the United Nations.

Despite the incredible advances made in quantum science and technology over the past
century, there is still no consensus regarding its interpretation and limitations (Author
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anonymous, 2024b; Schlosshauer et al., 2013; Kupczynski, 2018a;
Kupczynski, 2024a). Incorrect interpretations of QM and incorrect
mental models of invisible details of quantum phenomena lead to
paradoxes and speculations about quantum weirdness and quantum
magic. Most of these paradoxes are due to the “individual”
interpretation, according to which an instantaneous collapse of
wave function describing individual physical system(s) is
triggered by a single measurement performed on one of
these systems.

We here review and advocate a statistical contextual
interpretation (SCI) which is free of paradoxes (Einstein and
Schilpp, 1949; Einstein, 1936; Ballentine, 1989; Ballentine, 1998;
Kupczynski, 2007; Kupczynski, 1973; Kupczynski, 1987a;
Kupczynski, 2005; Kupczynski, 2006; Kupczynski, 2015a;
Kupczynski, 2016a; Kupczynski, 2017a; Khrennikov, 1999;
Khrennikov, 2024; Khrennikov, 2009; Khrennikov, 2016;
Allahverdyan et al., 2013). According to this interpretation, a
quantum state is not an attribute of an individual physical
system which can be changed instantaneously. The so-called
collapse of the wavefunction is not a mysterious physical process.
Quantum state/wavefunction is a mathematical entity representing
an equivalence class of subsequent preparations of the physical
systems. Quantum states together with specific operators
representing physical observables are used to make probabilistic
predictions for a statistical scatter of measured values of these
observables in well-defined experimental contexts. A value of a
physical observable, such as a spin projection, associated with a
pure quantum ensemble is a characteristic of this ensemble created
by its interaction with measuring instruments. Probabilities are
objective properties of random experiments in which empirical
frequencies stabilize. SCI rejects the claim that quantum
mechanics provides a complete description of individual physical
systems, but it remains agnostic on whether a more detailed
subquantum description can be found or is necessary. In
conformity with Bohr contextuality, SCI rejects Bell-local and
Bell-causal hidden variable models. Nevertheless, by
incorporation into probabilistic model contextual hidden
variables measuring instruments, the quantum correlations
studied in Bell tests can be explained without evoking quantum
nonlocality. SCI does not claim to provide a complete description of
quantum phenomena. In fact, it is not even known whether
quantum probabilities provide a complete description of existing
experimental data. Time series of experimental data may contain
much more information than is obtained using empirical
frequencies and histograms.

SCI (Kupczynski, 2006; Kupczynski, 2007; Kupczynski, 2016a;
Kupczynski, 2017a) is similar but not identical to Ballentine’s
statistical (Ballentine, 1989; Ballentine, 1998) and Khrennikov’s
Växjö interpretation (Khrennikov, 1999; Khrennikov, 2024;
Khrennikov, 2009; Khrennikov, 2016). In Ballentine’s statistical
interpretation, the quantum state also describes an ensemble of
similarly prepared systems, not individual systems. This
interpretation avoids the need for wave function collapse. It is
compatible with hidden variable theories but contrary to SCI and
Växjö interpretation it acknowledges that such theories must be
non-local to comply with Bell’s theorem (Ballentine, 1998). Växjö
interpretation combines realism at the subquantum level with the
contextuality of quantum observables. The value of an observable

depends on the measurement context, in conformity with Bohr’s
complementarity and contextuality. The quantum probabilities are
conditional probabilities. In contrast to SCI, it introduces the
concept of a “prespace,” suggesting that both classical and
quantum spaces are reductions of a more fundamental reality.

A probability can have a different meaning (Khrennikov, 1999;
Author anonymous, 2024c). In SCI, it is an objective property of a
random experiment in which empirical frequencies stabilize. Thus, a
probabilistic description of quantum phenomena can hardly be
considered a complete description of individual physical systems
(Einstein, 1936; Ballentine, 1989; Ballentine, 1998;
Kupczynski, 2006).

Therefore, Einstein believed that QM is an emergent theory and
that a more detailed description of quantum phenomena should be
found (Einstein and Schilpp, 1949; Einstein, 1936; Ballentine, 1989).
Bohr insisted that quantum probabilities were irreducible and that
QM provided a complete description of quantum phenomena and
experiments (Bohr, 1963; Bohr, 1987; Plotnitsky, 2009;
Plotnitsky, 2012).

Heisenberg (1927) demonstrated the uncertainty principle
according to which one may not measure simultaneously, with
arbitrary accuracy, a linear momentum p and a position x of a
sub-atomic particle, ΔxΔp≤ h, where h is a Planck constant. The
principle was generalized by Robertson (1929) and its precise
statistical meaning was given by Kennard (1927). We have two
experiments performed on two identically prepared beams/
ensembles of “particles”. In one experiment, we measure their
linear momenta and, in another, their positions. A statistical
scatter of experimental data is described by respective standard
deviations and σxσp ≤ ħ /2 where Z � h/2π. This interpretation only
refers to a statistical scatter of measurement outcomes and not to
positions and linear momenta of “particles” if no measurements are
performed. According to the Copenhagen interpretation (CI), all
speculations about the sharp unmeasured values of linear momenta
and positions of sub-atomic particles are meaningless, and QM does
not imply that an electron can be here and a meter away at the same
time (Kupczynski, 2024a; Kupczynski, 2024b), as incorrectly
claimed by several authors.

In 1935, Einstein, Podolsky and Rosen (Einstein et al., 1935)
proposed a thought experiment—the “EPR paradox”—intended to
demonstrate the incompleteness of quantum mechanics. They
considered two entangled particles which interacted in the past
moving away from each other in distant locations. According to the
Copenhagen interpretation (CI), measuring the position or
momentum of one particle would instantly give information
about the position or momentum of its distant partner without
disturbing it in any way. Thus, physical properties of objects exist
independently of measurement, contrary to CI. Bohr (1935)
explained that EPR inference requires different incompatible but
complementary experiments and that it could not provide more
information about an individual physical system than was
allowed by QM.

The EPR paradox was rephrased by Bohm (1951) in terms of
measurements of a particle’s spin. If you measure the spin of one
particle, you instantly know the spin of the other. According to QM,
outcomes are produced in irreducibly random ways, but in an ideal
EPR-B experiment they are perfectly correlated or anti-correlated in
specific randomly chosen experimental settings. This is called the
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“EPR-B paradox”, since a pair of fair dice cannot always produce
correlated outcomes (Mermin, 1985; Mermim, 1993; Kupczynski,
2017b; Kupczynski, 2020).

(Bell, 1965, 2004) abandoned irreducible randomness and
proposed the Local Realistic Hidden Variable Model (LRHVM)
in which outcomes are predetermined at a source. Clauser and
Horne (1974) abandoned predetermination and proposed the
Stochastic Hidden Variable Model (SHVM). LRHVM describes
entangled pairs/qubits as pairs of socks and SHVM as pairs of
dice. In these models, correlations between distant outcomes
coded ±1 must obey Bell–CHSH inequalities (Clauser et al., 1969).

Later, hidden variables were assumed to represent all common
causes of events in distant laboratories, and the Local Hidden
Variable Model (LHVM) (Mermin, 1993; Bell, 2004; Valdenebro,
2002; Wiseman, 2014) could be rejected in several Bell tests (Hensen
et al., 2015; Giustina et al., 2015; Shalm et al., 2015; Handsteiner
et al., 2017; The BIG Bell Test Collaboration, 2018; Rosenfeld et al.,
2017; Zhang et al., 2022; Storz et al., 2023).

Since Bell–CHSH inequalities are violated by some quantum
predictions and by experimental data, the majority of the physics
community believes that no other locally causal explanation of
quantum correlation is possible. Therefore, nature does exhibit
non-locality, and entangled particles can influence each other
instantaneously across huge distances. This is a source of
extraordinary metaphysical speculation about experimenters’
freedom of choice, retro-causality, quantum nonlocality, and
quantum magic.

It has been widely explained that such speculations are
unfounded (Kupczynski, 2006; Kupczynski, 2007; Kupczynski,
2016a; Kupczynski, 2017a; Kupczynski, 2018a; Khrennikov, 1999;
Khrennikov, 2024; Khrennikov, 2009; Khrennikov, 2016;
Allahverdyan et al., 2013; Kupczynski, 1973; Kupczynski, 1987a;
Kupczynski, 2005; Kupczynski, 2015a; Accardi, 1981; Accardi et al.,
2002; Accardi, 2005; Accardi and Uchiyama, 2007; Aerts, 1982;
Aerts, 1986; Aerts et al., 2000; Boughn, 2022; Czahor, 1988;
Dzhafarov, 2021; Fine, 1982; Hance and Hossenfelder, 2022; Hess
and Philipp, 2005; Hess, 2014; Hess et al., 2009; Hess et al., 2016;
Hess, 2022; Jaynes and Skilling, 1989; Jung, 2017; Khrennikov, 2007;
Khrennikov, 2008; Khrennikov, 2019; Khrennikov, 2020a;
Khrennikov, 2022; Kupczynski, 1987b; Khrennikov, 1986;
Khrennikov, 2012; Khrennikov, 2014; Khrennikov, 2018b;
Khrennikov, 2021; Khrennikov, 2023a; Khrennikov, 2024a;
Khrennikov, 2024b; De Muynck et al., 1994; De Muynck, 2002;
Nieuwenhuizen, 2009; Nieuwenhuizen, 2011; Nieuwenhuizen and
Kupczynski, 2017; Peres, 1978; Pitovsky, 1983; Pitovsky, 1994; De la
Peña et al., 1972; Zhao et al., 2008).

• In spin polarization correlation experiments (SPCE) and other
Bell tests, we have four incompatible random experiments for
different pairs of settings. LRHVM use a unique probability
space and a joint probability distribution to describe these
experiments, what is only possible in rare circumstances, and
what is clearly incompatible with experimental protocols in
Bell Tests (Kupczynski, 2007; Kupczynski, 2016a; Kupczynski,
2017a; Khrennikov, 1999; Kupczynski, 1987a; Kupczynski,
2005; Kupczynski, 2015a; Kupczynski, 2017b; Accardi et al.,
2002; Accardi, 2005; Accardi et al., 2007; Accardi and
Uchiyama, 2007; Aerts, 1982; Aerts, 1986; Czahor, 1988;

Fine, 1982; Hess and Philipp, 2005; Hess, 2014; Hess et al.,
2009; Hess et al., 2016; Hess, 2022; Khrennikov, 2007;
Khrennikov, 2008; Khrennikov, 2019; Khrennikov, 2020a;
Khrennikov, 2022; Kupczynski, 2024c; Pitovsky, 1994; De la
Peña et al., 1972).

• In 1982, Arthur Fine was the first to clearly demonstrate that
the following statements are mutually equivalent (Fine, 1982).
1) There is a deterministic hidden-variables model for the
experiment. 2) There is a factorizable, stochastic model. 3)
There is one joint distribution for all observables of the
experiment, returning the experimental probabilities. 4)
There are well-defined, compatible joint distributions for all
pairs and triples of commuting and non-commuting
observables. 5) The Bell inequalities hold.

• Bell and CHSH inequalities are trivial algebraic properties of
experimental spreadsheets (Kupczynski, 2020; Hess and
Philipp, 2005; Kupczynski, 2018b; De Raedt et al., 2017; De
Raedt et al., 2023; De Raedt et al., 2024) containing
quadruplets of ±1 which are, in fact, samples drawn from a
statistical population described by some joint probability
distribution of four compatible random variables. The
outcomes of Bell tests are displayed using four spreadsheets
each containing only couples ±1. The violation of Bell–CHSH
inequalities only provides the evidence that the data in these
four spreadsheets cannot be reshuffled to form quadruples (De
Raedt et al., 2023; De Raedt et al., 2024).

• In QM, interactions of instruments with physical systems
during the measurement process may not be neglected, and
outcomes are not passively registered pre-existing values of the
physical observables. Therefore, the Bell-causal hidden
variable model suffers from a theoretical “contextuality
loophole” (Kupczynski, 2015a; Kupczynski, 2017b;
Kupczynski, 2020; Kupczynski, 2021; Kupczynski, 2023a;
Kupczynski, 2024e; Kupczynski, 2024a; Nieuwenhuizen,
2009; Nieuwenhuizen, 2011; Nieuwenhuizen and
Kupczynski, 2017) because it fails to correctly include
setting-dependent variables that describe measuring
instruments at the moment of measurement.

A detailed discussion of EPR-type paradoxes and Bell Tests in
the spirit of SCI may be found in Kupczynski (2006), Kupczynski
et al. (2007), Kupczynski (2016a), and in a dedicated section of this
study. As we conclude in Kupczynski (2024b) and Kupczynski
(2024c), Bell tests allow only the rejection of probabilistic
couplings provided by Bell-local and Bell-causal hidden variable
models. If contextual variables, describing varying experimental
contexts, are correctly incorporated into a probabilistic model,
then Bell–CHSH inequalities cannot be proven, and nonlocal
quantum correlations may be explained intuitively.

This study is organized as follows. Section 2 recalls different
definitions of probability and Bertrand`s paradox. We explain that
in physics, probabilities are objective properties of random
experiments in which empirical frequencies stabilize. Section 3
compares classical and quantum observables and filters. Section 4
recalls EPR-B paradoxes and explains them using SCI. In Section 5,
quantum predictions for an ideal EPR-B experiment are
derived. Section 6 gives an explanation of how Bell–CHSH
inequalities are trivial arithmetic properties of N×4 spreadsheets
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containing ±1 entries and can be rigorously derived only for random
experiments described by four binary jointly-distributed random
variables. Section 7 discusses hidden variable models proposed to
explain EPR-B experiments. Section 8 is about loophole free Bell
Tests, their interpretation, and their implications. Section 9 presents
a contextual hidden variable model, which allows an explanation of
long-range correlations observed in Bell tests. A more detailed
analysis of existing time-series of data in order to elucidate the
problem of completeness of quantum mechanics is advocated in
Section 10. Additional conclusions are presented in Section 11.

2 Probability and Bertrand paradox

Probability and randomness are subtle notions long debated by
mathematicians and philosophers. There are several definitions of
probability (Khrennikov, 1999; Author anonymous, 2024a; Author
anonymous, 2024b).

Classical probability is the ratio of the number of favorable
outcomes to the total number of possible outcomes. For example, the
probability of drawing a black king from a deck of 52 cards is 2/52 =
1/26. Geometric probability is the probability that a point chosen at
random within a certain geometric figure will satisfy a given
condition, and it is calculated as the ratio of the area (or length,
volume, etc.) of the favorable region to the area of the entire region.
For example, the probability of hitting a specific region on the
dartboard can be calculated by dividing the area of that region by the
total area of the dartboard.

Frequentist probability is the relative frequency of occurrence of
an experiment’s outcome “in the long run” of outcomes
(theoretically if the experiment could be repeated an infinite
number of times). It is an objective property of a random
experiment. Another objective probability is propensity, which is
defined as the tendency of some experiments to yield a certain
outcome, even if they are performed only once. A subjective
probability is based on the personal judgment of an agent and
quantifies her degree of belief of how likely an event is to occur.

The limitations of the classical and geometric probabilities
became evident due to Bertrand’s paradox. This demonstrates
how different methods of defining “randomness” can lead to
different probabilities for the same event. In 1889, Bertrand
posed the following problem. Consider an equilateral triangle
inscribed in a circle. What is the probability that a randomly
chosen chord of the circle is longer than a side of the triangle?
He provided three different methods to choose a random chord,
each yielding a different probability (Bertrand, 1889; Author
anonymous, 2024c).

Bertrand’s paradox can be rephrased in a more intuitive way
(Kupczynski, 1987a). If we consider two concentric circles on a plane
with radii R andR/2 respectively, we can askwhat the probability P is that
a chord of the larger circle chosen at random cuts the smaller one at least
one point? The various answers seem to be equally reasonable. If we
divide the ensemble of all chords into sub-ensembles of parallel chords,
we find that P = ½. If we consider sub-ensembles of chords having the
same beginning, we find that P = ⅓. Finally, if we choose midpoints of
chords lying in small circle, we find that P = ¼.

The solution of Bertrand’s paradox is simple. Different
probabilistic models leading to different answers correspond to

random experiments performed using different specific
experimental protocols. It proves the contextual character of
probabilities and their intimate relation to specific random
experiments (Kupczynski, 2015a). Therefore, the probability of
obtaining “heads” in a coin flipping experiment using a specific
coin and a specific flipping device is neither a property of the coin
nor of the flipping device. It is only a property of the whole
experiment: “flipping this particular coin with that particular
flipping device.” This is why in physics, probabilities are objective
properties of phenomena and random experiments in which
empirical frequencies stabilize.

3 Classical versus quantum: properties,
filters, and observables

In classical physics, measurement outcomes may contain
experimental errors, but measurements are assumed to be non-
invasive, meaning that they do not change the properties they
measure. Therefore, macroscopic physical systems are described
by properties pi (i = 1, . . . ,n) quantified by the values of classical
compatible observables which can be measured in any order.

If we have a mixed statistical ensemble (a beam) B of
macroscopic systems, we can choose systems having particular
properties using classical filters. A classical filter Fi or a macro
selector is a device which passes only through systems having a
property pi. Classical filters operate according to Boolean yes-or-no
logic. If we have n different properties, we have n filters
corresponding to them. A lattice of classical filters have simple
properties: Fi Fj =Fj Fi Fj =Fj Fi. There also exists a maximal filter
F= F1 F2 . . .Fn which transforms a mixed statistical ensemble into a
pure statistical ensemble in which all the systems have exactly the
same properties (Kupczynski, 2015a). Mixed statistical ensembles
of physical systems can be described by a joint probability
distribution of random variables associated with measured
physical observables.

In quantum experiments, the information obtained about
invisible physical systems is indirect and obtained from their
interactions with macroscopic measuring instruments. As Bohr
correctly insisted, the atomic phenomena are characterized by
“. . .the impossibility of any sharp separation between the
behaviour of atomic objects and the interaction with the
measuring instruments which serve to define the conditions
under which the phenomena appear” (Bohr, 1987, v. 2,
pp. 40–41). Quantum observables have the following properties
of Bohr-contextuality (Khrennikov, 2020b; Kupczynski, 2021): the
output of any quantum observable is indivisibly composed of the
contributions of the system and the measurement apparatus.

The formalism of QM was inspired by optical experiments with
polarized light. Linearly polarized light passes without noticeable
attenuation by a subsequent identical polarizer. The intensity of
linearly polarized light after a passage through another polarizer is
reduced according to Malus law � I0 cos 2 θ , where I0 is the initial
intensity and θ is the angle between the light’s initial polarization
direction and the axis of the polarizer.

Discrete atomic spectral lines and the photoelectric effect proved
that exchanges of energy between electromagnetic field and matter are
quantized, and “carriers” of quantized exchanged energy are called

Frontiers in Quantum Science and Technology frontiersin.org04

Kupczynski 10.3389/frqst.2025.1569496

36

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2025.1569496


“photons.” Therefore, linearly polarized monochromatic light is usually
represented as a beam of linearly polarized photons carrying energy h].
This mental picture is misleading because we cannot see photons—they
are not point-like objects. When a sophisticated photon detector, after
several steps of signal enhancement, produces a click, we conclude that
a photon was detected. The intensity of light is now measured by
counting clicks on detectors.We say that each linearly polarized photon
has a probability (propensity)� cos 2 θ to pass through a polarizer if θ is
the angle between the direction of the photon’s initial polarization and
the axis of the polarizer.

After passing through a quantum filter, the linear polarization of
light becomes a contextual property of photons. A quantum filter Fi
is a device which creates a contextual property “i”: passing by Fi. A
physical system having a property “ i” has a probability (propensity)
pij to pass through another filter Fj, acquiring after the passage a new
property“ j.”Quantum filters are idempotent, Fi Fi = Fi , but in general
they do not commute Fi Fj ≠Fj Fi, and the lattice of quantum filters is
isomorphic to the lattice of projectors on subspaces of a Hilbert space.
Quantum filters are not selectors of pre-existing attributes of physical
systems but are creators of the contextual properties defined above
(Kupczynski, 2015a).

Incompatible filters, such as polarizers with non-parallel axes, create
incompatible contextual properties which cannot be measured
simultaneously and, if measured in a sequence a previous contextual
property, is destroyed in a new measurement. As explained in the
preceding section, the probabilities are objective properties of
phenomena and random experiments, and thus considering
propensity as the property of individual physical systems (here,
invisible photons) is in fact unfounded. This is why vectors in SCI
quantum state are not considered to be properties of the individual
physical systems. Treating a wavefunction as an attribute of the
individual physical system leads to the EPR paradox, which is
discussed in the next section.

4 EPR paradox and statistical
contextual interpretation

Resumed here is the discussion of the EPR paradox in
Kupczynski (2016a). Before the publication of the EPR paper, it
was believed that:

A1: Any pure state of a physical system is described by a specific
unique wavefunction Ψ.

A2: Any measurement causes a physical system to jump
instantaneously into an eigenstate of the dynamical variable
being measured. This eigenstate becomes a new wavefunction
describing a state of the system.

A3: A wave function Ψ provides a complete description of a pure
state of an individual physical system.

EPR considers two particular individual systems, I + II, in a pure
quantum state; they interacted in the past, separated, and evolved freely
afterward (Einstein et al., 1935). Using A2, they concluded that

• A single measurement performed on one of the systems—for
example, on system I—gives instantaneous knowledge of the
wave function of system II moving freely far away.

• By choosing two different incompatible observables to be
measured on system I, it is possible to assign two different
wave functions to system II (the same physical reality: the
second system after the interaction with the first).

Since a measurement performed in a distant location on system I
does not disturb system II in any way, according to A1 and
A3 system II should be described by a unique wavefunction and
not by two different wave functions. Moreover, these wave functions
are eigenstates of two non-commuting operators that represent
incompatible physical observables which allow indirect deduction
of the values of these incompatible physical observables for the same
system II without disturbing it in any way which contradicts
Heisenberg uncertainty relations and CI.

EPR discussed particle positions and momenta, and Bohm
discussed an experiment in which a source produces pairs of
particles prepared in a spin singlet state (Bohm, 1951). One of a
pair (photon or electron) is sent to Alice and another to Bob in
distant laboratories. According to A1, each pair of photons is
described by a state vector:

Ψ � +| 〉P −| 〉P − −| 〉P +| 〉P( )/ �
2

√
. (1)

—where | + 〉P and | − 〉P are state vectors corresponding to
photon states in which their spin is “up” or “down” in direction
P, respectively. If we measure a spin projection of a photon I on
direction P, we have an equal probability of obtaining result “1” or
“–1”. If we obtain “1,” a reduced state vector of the photon II is
| − 〉P; if we obtain “-1,” a reduced state vector of the photon II is
| + 〉P. By choosing direction P for the measurement to be
performed on photon I, when “photons are in flight and far
apart” we can assign different incompatible reduced state vectors
to the same photon II. In other words, we can predict with certainty
and without in any way disturbing the second photon that the
P-component of the spin of photon II must have the opposite value
to the value of the measured P- component of the spin of photon I
(Ballentine, 1998). Therefore, for any direction P, the P-component
of the spin of photon II has unknown but predetermined value
which contradicts QM and is called the “EPR-B paradox”.

Bohr (1935) promptly replied to the EPR paper and explained
that two different wave functions could be assigned to system II
only in two different incompatible experiments in which both
systems were exposed to different influences before the
measurement on system I was performed. In order to make
predictions concerning the individual physical systems in EPR
scenario 1, much more detailed knowledge of how a particular
pair was prepared in each of these incompatible experiments is
necessary (Kupczynski, 2006).

In 1936, Einstein advocated a purely statistical interpretation of
QM and explained that the EPR paradox disappears because “. . .Ψ
function does not, in any sense, describe the state of one single
physical system and reduced wave functions describe different sub-
ensembles of systems” (Einstein, 1936). This statistical
interpretation has been generalized and promoted with success
by Ballentine 1989 and Ballentine 1998: “. . .the habit of
considering an individual particle to have its own wave function
is hard to break . . . though it has been demonstrated
strictly incorrect”.
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According to the statistical contextual interpretation of QM
(SCI) (Ballentine, 1998; Kupczynski, 2006; Kupczynski, 2007;
Kupczynski, 2016a; Khrennikov, 2009; Allahverdyan et al., 2013):

1. A state vector Ψ is not an attribute of a single electron, photon,
trapped ion, quantum dot, etc. A state vector Ψ or a density
matrix ρ describe only an ensemble of identical state
preparations of some physical systems.

2. A wave function reduction is neither instantaneous nor non-local.
In an EPR experiment, a state vector describing system II obtained
by reduction of an entangled state (Equation 1) of two physical
systems I + II describes only a sub-ensemble of systems II being
partners of those systems I for which a measurement of some
observable gave the same specific outcome. Different sub-
ensembles are described by different reduced state vectors.

3. A value of a physical observable, such as a spin projection, is
not a predetermined attribute of a system but is a property of a
pure ensemble of identically prepared physical systems created
in the interaction with a measuring instrument (Kupczynski,
1987b, 2015a).

The solution of the EPR-B paradox given by SCI is simple: the
wave function reduction is not instantaneous, and a reduced one-
particle state | + 〉P “describes” only an ensemble of partners of the
particles I which were detected to have “spin down” in the
direction P. For different directions P, we perform specific
experiments, and we obtain a different sub-ensemble of
particles II. Strong correlations between distant outcomes in
EPR experiments are due to contextuality and various
conservation laws. More detailed discussion of EPR and EPR-B
paradoxes may be found, for example, in (Kupczynski, 2009).

5 Kolmogorov and quantum
probabilistic models

Outcomes of any random experiment are described by a specific
probability space Ω, σ-algebra of its all sub-ensembles F, and a
probabilistic measure μ. A sub-ensemble E ∈ F is an event
corresponding to a subset of possible outcomes of a random
experiment. A probability of observing this event is given by
0≤ μ(E)≤ 1. In statistics, instead of Ω we use a sample space S
which contains only the possible outcomes of a studied random
experiment.

Every random experiment is defined by its experimental context
C (Kupczynski, 2017a; Kupczynski, 2015a; Khrennikov, 1999;
Khrennikov, 2024; Khrennikov, 2009; Khrennikov, 2016;
Khrennikov, 2022). If its outcomes are discrete, it may be
described by a random variable A and a probability distribution

P a|C( ) � P A � a C|( ) (2)

and its expectation value

E A|C( ) � ∑
a

aP a|C( ). (3)

In quantum experiments, the context of an experiment is
determined by a preparation of an ensemble of physical systems

represented by a density operator ρ (or a state vector ψ) and by a
Hermitian operator Â representing the experimental set-up used to
measure a physical observable A. Instead of (Equations 2, 3), we have

P a
∣∣∣∣∣∣∣ψ, Â( ) � 〈a

∣∣∣∣ψ〉∣∣∣∣ ∣∣∣∣2, (4)

—where | a〉 is a corresponding eigenvector of the operator Â and

E A
∣∣∣∣ψ, Â( ) � 〈ψ Â

∣∣∣∣ ∣∣∣∣ψ〉. (5)

If a density matrix ρ is used to describe a pure or mixed prepared
ensemble, then

E A
∣∣∣∣ρ, Â( ) � Tr ρÂ( ). (6)

In an idealized EPR-B experiment (Equation 1), which is
impossible to implement, a source sends two correlated signals
which arrive to distant laboratories, pass by polarization
analyzers, and produce coincident counts on detectors. The
experimental situation is much more complicated since clicks are
not registered at the same time and one has to decide which clicks
are correlated by introducing specific time windows and deciding
how to use them in order to define coincident clicks (Kupczynski,
2017b; 2021).

An idealized EPR-B experiment is described by the following
probabilistic model (Kupczynski, 2020, 2023a, 2024a; Cetto et al.,
2020). Randomly chosen polarization measurement settings are (x, y),
prepared ensemble E is described by ρ� |ψ〉〈ψ | , Âx � �σ · �nx and B̂y �
�σ · �ny represent spin projections on the corresponding unit vectors, and

E AxBy( ) � Tr ρÂx ⊗ B̂y( ) � 〈ψ
∣∣∣∣ Âx ⊗ B̂y

∣∣∣∣ψ〉 � ∑
αβ

αβpxy α, β( )
� − �nx · �ny � −cos θxy( ),

(7)
—where Âx ⊗ B̂y|αβ〉xy � αβ|αβ〉xy, pxy(α, β) � |〈ψ|αβ〉xy|2 and
α = ±1 and β = ±1 (Kupczynski, 2024b; Cetto et al., 2020).

The model is contextual because a triplet ρ, Âx, B̂y{ } changes if a
preparation or defined by Equations 4-7 experimental settings
change. For each choice of settings (x, y), QM provides a specific
Kolmogorov model.

Since E(AxBy) � −1 for θxy � (θx − θy) � 0, it has been
incorrectly claimed that QM predicts strict anti-correlations of
two space-like events produced in an irreducibly random way.
Since two space-like events produced randomly cannot be
correlated (E(AxBy) � 0), irreducible randomness was
abandoned, and several hidden variable models were proposed to
explain the correlations predicted by QM. In fact, QM does not
predict strict correlations for EPRB-type experiments. Directions
can only be defined by some small intervals Ix and Iy containing
angles close to θx and θy respectively. Therefore, the correct quantum
prediction for expectation values is (Kupczynski, 2016a, 1987b)

E AxBy( ) � − ∫∫
IxIy

cos θ1 − θ2( ) dρx θ1( )dρy θ2( ). (8)

After defining in the next section Bell–CHSH inequalities, we
will discuss several hidden variable models proposed to explain
quantum correlations Equations 7, 8.
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6 Experimental spreadsheets and
Bell–CHSH inequalities

Let us consider a random experiment described by four jointly
distributed binary random variables (A, A’, B, B’) taking the values ±
1. In each trial of this experiment, four outcomes (a. a, b, b’) are
obtained and displayed in an N×4 experimental spreadsheet
(Kupczynski, 2020). Since b = b’ or b = -b’ thus

s| | � ab − ab′ + a′b + a′b′
∣∣∣∣ ∣∣∣∣ � a b − b′( )∣∣∣∣ ∣∣∣∣ + a′ b + b′( )∣∣∣∣ ∣∣∣∣≤ 2. (9)

From Equation 9 we obtain CHSH inequality:

S| |≤ ∑
a,a′,b,b′

ab − ab′ + a′b + a′b′
∣∣∣∣ ∣∣∣∣p a, a′, b, b′( )≤ E AB( )-E AB′( )∣∣∣∣ ∣∣∣∣

+ E A′B( ) + E A′B′( )∣∣∣∣ ∣∣∣∣≤ 2,
(10)

—where p(a, a′, b, b’) is a joint probability distribution of (A, A′, B,
B’), and E(AB) � ∑a,babp(a, b) is a pairwise expectation of A and B
obtained using a marginal probability distribution p(a, b) �∑a′,b′p(a, a′, b, b′) (Kupczynski, 2020).

If all pair-wise expectation values in Equation 10 are estimated
using the same N×4 experimental spreadsheet, then the inequality
(Equation 10) is strictly obeyed by all finite samples. The inequalities
(Equation 10) are in fact necessary and sufficient conditions for the
existence of a joint probability distribution of only pairwise
measurable ±1-valued random variables (Fine, 1982). The
inequalities (Equation 10) are also valid if |A|≤1, |A’|≤1|, |B|≤1,
and |B’|≤1. It is now well known that cyclic combinations of pairwise
marginal expectations of jointly distributed binary random variables
must obey non-contextuality inequalities (NCI) (Araujo et al., 2013).
Bell–CHSH inequalities are a special case of NCI.

If we have four N×4 spreadsheets containing outcomes from four
runs of the same random experiment, as discussed above, but we use
each of these spreadsheets to estimate only one pairwise expectation E
(A, B), E(A,B′), E (A’. B), and E(A’. B’) respectively, then 50% of the
time, these estimates violate the inequality (Equation 10) (Kupczynski,
2016a; Kupczynski, 2023a; Gill, 2014), Only if N increases to infinity the
probability of the violation of the inequality (Equation 10) tends to 0.
Therefore, the violation of CHSH-inequality by experimental data in
EPR-type experiments allows only the evaluation of the plausibility of
particular probabilistic models (Kupczynski, 2024c). The next section
will discuss such models.

7 Local realistic models for the
EPR–Bohm experiment

7.1 Local realistic hidden variable
model (LRHVM)

In an attempt to explain correlations in an ideal EPR-B
experiment, (Bell, 1965, 2004; Kupczynski, 2015a, 2024d)
proposed a probabilistic model in which outcomes registered in
distant laboratories are predetermined at a source:

E AxBy( ) � ∑
λ∈Λ

Ax λ( )By λ( )P λ( ), (11)

—where Ax( λ) � ± 1 and. By( λ) � ± 1 . In LRHVM, we have four
jointly distributed random variables (Ax(L), By(L), Ax’(L), By’ (L)) being
functions of the same random variable L. The random variable L
describes a classical random experiment in which λ is sampled with
replacement from a probability space Λ. For each value of λ, all
outcomes can be calculated. LRHVM describes entangled pairs as
pairs of socks, which can have different sizes and colors; for
example, Harry draws a pair of socks, sends one sock to Alice and
another to Bob, who in function of (x, y) record corresponding
properties of color or size.

Since (Ax(L), By(L), Ax’(L), By’ (L)) are jointly distributed, they
thus obey CHSH inequality:

S| | � E AxBy( ) + E AxBy′( ) + E Ax′By( ) − E Ax′By′( )∣∣∣∣∣ ∣∣∣∣∣≤ 2. (12)

Bell knew that in the EPR-B experiment, (Ax, By, Ax’, By’) are not
jointly measurable and that their joint probability distribution does
not exist. He did not notice that to prove his inequalities, he was tacitly
using the existence of a joint probability distribution of (Ax(L), By(L),
Ax’(L), By’ (L)). As explained in the preceding section, the inequalities
(Equations 10 and 12) can be rigorously proven for a random
experiment outputting in each trial four ±1 outcomes.

7.2 Stochastic hidden variable model (SHVM)

(Clauser and Horne, 1974; Kupczynski, 2024e) proposed a
stochastic hidden variable model (SHVM) in which λ does not
determine outcomes in a given trial but only their probability.

Using the notation of Big Bell Test collaboration (The BIG Bell
Test Collaboration, 2018):

P(a, b|x, y) � ∑
λ

P a|x, λ( )P(b|y, λ)P λ( ), (13)

—where P(-|-) denotes a conditional probability. Equation 13 for a
fixed setting (x, y) describes a family of independent random
experiments labelled by λ and

E AxBy( ) � ∑
λ

E A|x, λ( )E B
∣∣∣∣y, λ( )P λ( ). (14)

Pair-wise expectations defined by Equation 13 are also
constrained by CHSH inequalities Equation 12. In SHVM,
entangled photon pairs are described as pairs of dice, and the
correlations which can be created in this model are quite limited.

7.3 Local causal hidden variable
model (LHVM)

LHVM is a generalization of the preceding two models, where λ
represents all possible common causes of events happening in
distant laboratories, and “. . .they may include the usual quantum
state; they may also include all the information about the past of
both Alice and Bob. Actually, the λ′s may even include the state of
the entire universe” (The BIG Bell Test Collaboration, 2018;
Kupczynski, 2024a) —except that inputs (x, y) cannot depend
on them.
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P a, b, x, y( ) � ∑
λ

P a|x, λ( )P b y, λ)P(x, y∣∣∣∣ ∣∣∣∣λ( )P λ( ) (15)

and

P x, y
∣∣∣∣λ( ) � P x, y( ). (16)

The condition (Equation 16) is called “measurement
independence,” experimenters’ “freedom-of-choice” (FoC) or “no
conspiracy” (The BIG Bell Test Collaboration, 2018; Hall, 2010;
Myrvold et al., 2020; Blasiak et al., 2021; Kupczynski, 2024b, 2022).
Since correlation does not mean causation, this terminology is based
on the incorrect causal interpretation of conditional probabilities
(Kupczynski, 2017a, 2021, 2023a, 2024a, 2024b, 2024c, 2022). In a
probabilistic model, P(x, y|λ) ≠ P(x, y) does not imply that FoC is
constrained by causal influences.

If λ represents ontic properties of entangled pairs or common
causes, it thus cannot not depend in any sense on chosen settings:

P λ, x, y( ) � P λ( )P x, y( )0P λ
∣∣∣∣x, y( ) � P λ( ). (17)

However, hidden variables can also describe measuring
instruments, so they can depend on the chosen settings
(Kupczynski, 2006; Kupczynski, 2016a; Kupczynski et al., 2007).
As Theo Nieuwenhuizen explained, the model (Equations 13–16)
suffers from a theoretical contextuality loophole because the hidden
variables describing measuring instruments had not been included
(Nieuwenhuizen, 2009; Nieuwenhuizen, 2011; Nieuwenhuizen and
Kupczynski, 2017).

There is no doubt that experimenters can freely choose binary
random labels of their setting (x, y), and this is what they do (Hensen
et al., 2015; Giustina et al., 2015; Shalm et al., 2015; Handsteiner
et al., 2017; The BIG Bell Test Collaboration, 2018; Rosenfeld et al.,
2017; Zhang et al., 2022; Storz et al., 2023). However, this random
choice of labels (x, y) is followed by a choice of corresponding
specific instruments and setting-dependent measuring procedures.
Since measuring instruments play an active role in quantum
experiments, it is reasonable to assume that outcomes depend
not only on setting-independent hidden variables that describe
prepared physical systems but also on setting-dependent hidden
variables that describe local instruments and measuring procedures;
and thus statistical independence (Equation 17) is violated:

P λ
∣∣∣∣x, y( ) ≠ P λ( ). (18)

Bell was the first to notice that if hidden variables depend on
settings; then Bell–CHSH inequalities could not be derived.
However, since Equation 18 implied the violation of Equation 16,
this option was rejected as violating FoC (Kupczynski, 2017a; The
BIG Bell Test Collaboration, 2018; Myrvold et al., 2020; Kupczynski,
2023a, 2024a, 2024b). As explained above, the violation of Equation
16 does not constraint FoC.

Bell clearly demonstrated that LRHVM is inconsistent with QM
because there exist four particular experimental settings for which,
using Equation 7, one obtains |S|≤ 2

�
2

√
, which significantly violates

Equation 12. Various Bell Tests (Hensen et al., 2015; Giustina et al.,
2015; Shalm et al., 2015; Handsteiner et al., 2017; The BIG Bell Test
Collaboration, 2018; Rosenfeld et al., 2017; Zhang et al., 2022; Storz
et al., 2023) were performed in order to check the plausibility of local
hidden variable models. Before explaining a contextual hidden

variable model in which hidden variables depend on settings, the
next section discusses recent Bell tests and their implications.

8 Bell tests and what they have proven

Bell tests are inspired by an ideal EPR experiment. Entangled
pairs are created at a source and sent to distant locations or are
created directly in distant laboratories using specific synchronized
preparations/treatments such as entanglement swapping or
entanglement transfer protocols (Kupczynski, 2024a). Despite
differences, experimental protocols are subdivided into three steps:

1) Preparation of an ensemble E of pairs of entangled
physical systems.

2) Random local choice of labels/inputs (x, y) using random
number generators (RNG), and signals coming from distant
stars (Handsteiner et al., 2017; The BIG Bell Test
Collaboration, 2018) or/and human choices (The BIG Bell
Test Collaboration, 2018; Rosenfeld et al., 2017; Zhang et al.,
2022; Storz et al., 2023). This study uses four pairs of labels/
inputs—(x, y), (x, y’), (x’, y), and (x’, y’) —which denote four
incompatible experimental settings/contexts.

3) Implementation of correlated and synchronized
measurements in distant locations and readout of binary
outcomes (a, b) (called outputs), which are the coded
information corresponding to clicks on different distant
detectors, etc.

In Bell Tests to each randomly chosen input (x,y)
corresponds a specific pair of correlated distant experiments.
Outcomes of these experiments are described by four pairs of
binary random variables: (Axy, Bxy), (Axy’, Bxy’), (Ax’y, Bx’y), and
(Ax’y’, Bx’y’) (Kupczynski, 2024a). Our notation is inspired by the
contextuality-by-default approach (CbD) (Kupczynski, 2021;
Dzhafarov and Kujala, 2014; Dzhafarov et al., 2015; Kujala
et al., 2015) in which random variables measuring the same
content in a different context are a priori stochastically
unrelated, such as Axy and Ax’y. It is evident that in Bell tests,
a joint probability distribution of these eight random variables
does not exist, and Bell– CHSH inequalities cannot be derived
without additional assumptions (Khrennikov, 2022).

A pair of random empirical variables (Axy, Bxy) describes a
scatter of outputs in the experiment using settings (x, y). We have
four random experiments described by specific empirical probability
distributions. Using these distributions, we may test the plausibility
of quantum and local hidden variable models proposed to explain a
statistical scatter of outcomes in an ideal EPR-B experiment. If
random variables in probabilistic models are denoted (A’xy, B’xy) in
order to not be confounded with empirical random variables (Axy,
Bxy), then we say that a probabilistic model provides a probabilistic
coupling if:

E Axy( ) � E A’xy( ), E Bxy( ) � E B’xy( ),E AxyBxy( ) � E A’xyB’xy( ).
(19)

Therefore, in Bell tests, we are testing the plausibility of different
probabilistic couplings, in particular for LRHVM:
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E A’xy( ) � E A’xy’( ) � E Ax( ),E B’xy( ) � E B’x’y( )
� E By( ), E A’xyB’xy( ) � E AxBy( ), (20)

where (Ax, By, Ax’, By’) are jointly distributed Equation 11. More
detailed discussion may be found in Kupczynski (2024a).

There is still much confusion in journals, books, and in social
media concerning the metaphysical implications of the results of Bell
tests (The BIG Bell Test Collaboration, 2018; Rosenfeld et al., 2017;
Zhang et al., 2022; Storz et al., 2023), so it is beneficial to explain it
here. Using LHVM Equations 15–17, one derives inequalities which
must be satisfied by specific combinations of probabilities of events to
be observed in the experiments performed using different
experimental settings. These combinations are denoted “S,” “J,” or
“T,” which are called in brief “Bell parameters”. If the observed
parameter violates inequality, one can conclude that measured
systems were not governed by any LHVM. It should be noted that
this conclusion is always statistical and typically takes a form of a
hypothesis test, leading to a conclusion of the form: “. . .assuming
nature is governed by local realism, the probability to produce the
observed Bell inequality violation . . . is P(observed or stronger | local
realism)≤ p. This p-value is a key indicator of statistical significance in
Bell Tests” (The BIG Bell Test Collaboration, 2018)

Since p-values in several experiments are very small, one
concludes: Local realism, i.e., realism plus relativistic limits on
causation, was debated by Einstein and Bohr using metaphysical
arguments, and recently has been rejected by Bell tests. Such a
conclusion is imprecise and misleading. As correctly observed by
Wiseman (2014), “the usual philosophical meaning of ‘realism’ is the
belief that entities exist independent of the mind, a worldview one
might expect to be foundational for scientists.” It is also claimed that
Bell tests allow the rejection of local causality, where Bell-local
causality is defined: Alice’s output a depends only on her input x
and on λ describing all possible common causes included in the
intersection of the of the backward light cones of a and b and
independent of inputs x and y.

It is true that tested probabilistic models have been motivated by
various metaphysical assumptions. Nevertheless, Bell tests allow
only the rejection of a statistical hypothesis that says that LHVM
Equations 15–17 provides a probabilistic coupling (Equation 20)
consistent with experimental data. Therefore, the violation of
Bell–CHSH inequalities does not allow for far reaching
metaphysical speculations. We agree also with De Raedt
et al., (2023):

. . .all EPRB experiments which have been performed and
may be performed in the future and which only focus on
demonstrating a violation BI-CHSH merely provide evidence
that not all contributions to the correlations can be reshuffled to
form quadruples . . . These violations do not provide a clue
about the nature of the physical processes that produce
the data. . ..

Similar conclusions have been drawn (Kupczynski, 1987a,
2018b, 2020; Dzhafarov, 2021; Hess and Philipp, 2005;
Khrennikov, 2007, 2008, 2019, 2020a, 2022; De Raedt et al., 2024).

Bell tests confirm the existence of long range correlations
between outcomes of experiments performed in space-like
locations. If additional context-dependent variables that describe
measuring instruments and procedures are correctly incorporated

into a probabilistic model (Equation 11), then Bell–CHSH
inequalities cannot be derived and “nonlocal “correlations can be
explained without evoking quantum magic. Such a model is
discussed in the next section.

9 Contextual hidden variable model
and the violation of statistical
independence

We incorporate into the model (Equation 11) additional
variables that describe distant measuring contexts
(Kupczynski, 2024a).

• λ1 ∈ Λ1 and λ2 ∈ Λ2 describe correlated physical systems and
do not depend on measurement settings (x, y).

• μx ∈ Μx and μy ∈ Μy describe measurement procedures and
instruments at the moment of measurement when settings (x,
y) were chosen.

• Inputs/labels (x, y) are randomly chosen in separate random
experiments.

• Outputs are created locally: a � A′
x(λ1, μx) � ± 1

and b � B′
y(λ2, μy) � ± 1

The resulting contextual model (CHVM) is defined by
three equations

E AxBy( ) � ∑
λ∈Λxy

Ax λ1, μx( )By λ2, μy( )P λ1, λ2( )Pxy μx, μy( ), (21)

—where Λxy � Λ1 × Λ2 × Mx × My,

P a, b, x, y( ) � ∑
λ∈Λxy

P a | λ1, μx( )P(b λ2, μy)P( μx, μy
∣∣∣∣∣ ∣∣∣∣∣x, y)P x, y( )P λ1, λ2( )

(22)
and

P μx, μy x, y
∣∣∣∣( ) � Pxy μx, μy( ) ≠ P μx, μy( ) (23)

In Bell tests, P(x, y) = P(x) P(y), but in the contextual model
Equation 21 and in QM, it does not matter how labels (x, y) are
chosen. In general, spaces Λxy for different settings (x, y) do not
overlap and, as Larsson and Gill (2004) demonstrated, Bell–CHSH
inequalities cannot be derived and |S|≤ 4.

The model (Equations 21–23) violates statistical independence,
and P(x, y|μx, μy) ≠ P(x, y):
P μx, μy, x, y( ) � Pxy μx, μy( )P x, y( ) � P μx, μy( ) → P x, y

∣∣∣∣ μx, μy( )
� P μx, μy( )
P μx, μy( ) � 1.

(24)
The Equation 24: P(x, y | μx, μy) � 1 only “says” that if a hidden

event μx, μy{ } “happened”, then the settings (x,y) were used
(Kupczynski, 2017a, 2021, 2023a, 2024a, 2022). It has nothing to
do with conspiracy or FoC.

Since inputs (x,y) were chosen using signals from distant stars
(Handsteiner et al., 2017), random number generators or random
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human choices were made during online computer games (The BIG
Bell Test Collaboration, 2018), and thus the freedom-of-choice
loophole was successfully closed, but it did not prove statistical
independence. As I proposed in preceding papers, a violation of
statistical independence should be called “Bohr-contextuality”—not
to be cofounded with CbD contextuality (Dzhafarov and Kujala,
2014; Dzhafarov et al., 2015; Kujala et al., 2015) or simply
contextuality.

CHVM violates Bell-locality and Bell-causality, but outputs are
created in a locally causal way. Hidden variables describing physical
systems and measuring contexts in space-like separated laboratories
can be statistically correlated, but the violation of statistical
independence and apparently non-local correlations may be
explained without evoking spooky influences. It may be the effect
of setting dependent post-selection of data (Kupczynski, 2017b,
2021, 2024a), or it may be due to the global space-time
symmetries (Kupczynski, 2023a, 2024a, 2023b).

The model (Equation 21) can be further simplified. For example,
μx can be a fixed set of variables describing experimental procedures
labeled by x. If in a distant laboratory, a setting labeled by y is used,
then a measuring instrument and/or laser beam are rotated by angle
θxy � θx − θy. Therefore, due to global rotational symmetry,
μy � f(μx, cos(θxy)), and:

E AxBy( ) � ∑
λ∈Λxy

Ax λ1, μx( )By λ2, f μx, cos θxy( )P λ1, λ2( )(( . (25)

The model (Equation 25) seems to have enough flexibility in
order to explain long range correlations in Bell tests depending on
θxy � θx − θy. The model (Equation 25) does not allow the
derivation of any Bell-type inequalities.

10 Can a quantum-mechanical
description of physical reality be
considered complete?

This question asked by Einstein, Podolsky, and Rosen (EPR)
(Einstein et al., 1935) and answered by Bohr (1935) has been debated
for 90 years. Many incorrectly believe that the results of recent Bell
tests prove that if we reconcile QM with general relativity, we will
obtain a complete description of physical reality. In fact, we should
be much more humble (Kupczynski, 2024c) because we even do not
know whether QM is predictably complete.

QM gives probabilistic predictions for distributions of the results
obtained in long runs of one experiment or in several repetitions of
the same experiment on a single physical system. It is unclear how
and in what sense a claim can be made that QM provides a complete
description of individual physical systems. This is why (Einstein,
1936; Einstein and Schilpp, 1949) never accepted that a statistical
theory may provide a complete description of individual physical
systems and believed that QM should be completed by some
microscopic theory of sub-phenomena that enable the
reproduction of quantum probabilistic predictions.

According to Bohr, quantum probabilities describe completely
quantum phenomena and experiments, and no more detailed sub-
quantum description is possible or necessary. Quantum probabilities
are thus irreducible, and QM is not an emergent theory. In statistical
mechanics, probabilities reflect a lack of knowledge about the

properties of physical systems. In SCI, quantum probabilities
reflect a lack of knowledge about the interactions of physical
systems with measuring instruments in well-defined experimental
contexts. The Bertrand paradox teaches that probabilities are not
properties of individual physical systems but are only properties of
random phenomena and experiments as a whole. In this sense, they
do not provide a complete description of individual
physical systems.

Whether a more detailed description of quantum phenomena
does exist is an open question, and several hidden variable models
have been proposed and discussed. Bell tests permit the rejection of
several hidden variable models but neither prove the completeness
nor non-locality of QM. Several years ago, we pointed out that the
question about the completeness of QM cannot be answered by
constructing ad hoc sub-quantum hidden variable models. It can
only be answered by a different and a more detailed analysis of
experimental data (Kupczynski, 2006; Kupczynski et al., 2007;
Kupczynski, 2016a, 1986, 1984).

In quantum experiments, outcomes are registered by online
computers as finite time series of data. It can be a laser beam which,
after passing by a PBS (polarization beam splitter), produces clicks
on detectors coded ±1. It can be a physical system in a trap, a
physical observable is measured, an outcome is recorded, and initial
conditions in the trap are reset.

No single result is predictable in all these experiments. Empirical
frequency distributions are obtained from long-term series of counts
and compared with probabilistic predictions of QT. In this way,
predictable completeness of QT is taken for granted, and any fine
structure of time-series, if it existed, would be averaged.

Let us consider two experiments repeated N times each. In the
first experiment, we obtain a time series of the results, 1,-1,1,-1, . . .
1,-1 . . ., and in the second, 1,-1,-1,1,1,1,-1,-1, 1,-1,-1,1,1,1,-1 . . . By
increasing the value of N, the relative frequency of achieving 1 can
approach ½ as close as we wish. However, it is not a complete
description of these time series. By searching for reproducible fine
structures in experimental time series, we can investigate whether
QM is emergent without constructing specific hidden
variable models.

In any more detailed description of quantum phenomena, pure
quantum ensembles become mixed statistical ensembles with
respect to additional uncontrollable parameters that describe
physical systems and measuring instruments. There is a principal
difference between a pure statistical ensemble and amixed one. For a
pure ensemble, any sub-ensemble has the same properties. Sub-
ensembles of a mixed statistical ensemble may differ from one to
another if mixing is not perfect. These differences can be, in
principle, detected by using so called purity tests (Kupczynski,
2006, 1986, 1984; Kupczynski et al., 2007), which I introduced in
a different context (Kupczynski, 1974, 1977).

Let us consider time series of outcomes T(S, E, i) obtained in an
ith run of an experiment E performed on physical system(s) S. Since
we do not control the distribution of hidden variables, time-series
T(S, E, i) may differ from run to run of the same experiment. Using
the language of mathematical statistics, T(S, E, i) represents a
random sample drawn from some statistical population. A pure
ensemble is one characterized by such empirical distributions of
various counting rates, which remain approximately unchanged for
any rich sub-ensembles drawn from this ensemble in a random way
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(Kupczynski et al., 2007; Kupczynski, 1973, 1986). Therefore, we
must test the null hypothesis H0:

Samples T(S, E, i) for different values of i are drawn from the
same statistical population.

Various statistical non-parametric compatibility tests can be
used to test H0.

Purity tests are not sufficient. To prove that QM is not
predictably complete, it is necessary to study in more detail time
series of data, detect some temporal fine structure, and find a
stochastic model to explain it. Several methods are used to study
and compare empirical time-series: frequency or harmonic analysis,
periodograms, autocorrelation and partial autocorrelation
functions, etc. (Kupczynski, 2009, 2011). The aim of most
physical experiments is to compare empirical probability
distributions with quantum probabilistic predictions. Therefore,
all fine structures in time-series of data, if they exist, are
averaged out and are not discovered.

Completeness of QM has been discussed for nearly 100 years,
but a detailed study of experimental time series of existing
experimental data is still to be done. As demonstrated recently
with Hans de Raedt, sample inhomogeneity invalidates dramatically
significance tests (Kupczynski and De Raedt, 2016); therefore, if
sample homogeneity is not tested carefully enough, then the sample
homogeneity loophole is not closed and statistical inference cannot be
trusted (Kupczynski and De Raedt, 2016; Kupczynski,
2015b, 2016b).

11 Conclusion

This review article has explained why speculations about
quantum nonlocality and quantum magic are rooted in incorrect
interpretations of QM and/or in incorrect “mental pictures” and
models that try to explain invisible details of quantum phenomena.
In particular, it is not true that in Bell tests, entangled qubits behave
as “a pair of dice showing always perfectly correlated outcomes.”

We advocate an abstract statistical contextual interpretation
(SCI) of QM which is free of paradoxes. SCI rejects the existence
of a universal wave function. Quantum probabilities are objective
properties of quantum phenomena. Whether these probabilities can
be explained as emergent is an open question which cannot be
settled by philosophical discussions and no-go theorems; it can be
only elucidated by more detailed study of experimental time series of
data than is usual.

Bell tests are subtle experiments that are imperfect
implementations of an ideal EPRB experiment. It is often
claimed that the violation of Bell–CHSH inequalities in these
tests allow the rejection with great confidence of local realism
and local causality. Such conclusions, though, are misleading.

Bell–CHSH are trivial properties of N×4 spreadsheets on which the
outcomes of measurements of four jointly distributed random variables
(e.g., Ax, By, Ax’, By’) are displayed. In Bell tests, such experimental
spreadsheets do not exist because there are four pairs of distant random
experiments performed using four incompatible experimental settings
(x, y). These experiments are described by empirical probability
distributions of four pairs of random variables (Axy, Bxy).
Bell–CHSH inequalities cannot be derived, and estimated pairwise
expectations E(Axy Bxy) are not constrained by these inequalities.

Probabilistic couplings can be postulated in order to explain
statistical regularities in experimental data, such as E(AxyBxy) =
E(AxBy). The quantum probabilistic model and Bell-causal hidden
variable model can only be tested as plausible probabilistic couplings
(Kupczynski, 2024a). Quantum coupling (Equation 7) is constrained
by quantum–CHSH inequalities: |S|≤ 2

�
2

√
(Kupczynski, 2020;

Kupczynski, 2024a; Khrennikov, 2019; Cirel’son, 1980; Landau,
1987). Local hidden variable couplings (Equations 11,13, 15–17)
are constrained by Bell–CHSH inequalities: |S|≤ 2.

It was incorrectly believed that if the freedom-of-choice loophole
was closed then hidden variables could not statistically depend on
randomly chosen binary inputs (settings’ labels). This is untrue
because variables describing distant measuring instruments used in
different settings can depend on inputs and may be correlated due to
global rotational symmetry. Therefore, closing the freedom-of-choice
loophole does not close the contextuality loophole.

In contextual hidden variable models (Equations 21–23) and
(Equation 25), which are neither Bell-local nor Bell-causal, distant
outcomes are locally determined by setting independent hidden
variables that describe prepared qubits and setting dependent hidden
variables that describe distant measuring instruments and procedures.
This model is only constrained by |S|≤ 4. Due to global rotational
symmetry, the pairwise expectation values of distant random variables
(describing Alice’s and Bob’s outcomes) have to depend on angle
θxy � θx − θy, where (θx, θy) are the respective angles by which
distant qubits are rotated before local read-outs.

We can intuitively explain how parameters describing measuring
devices in space-like locations may obey the equation
μy � f(μx, cos(θxy)), even if (θx, θy) are chosen perfectly
randomly. We imagine two observers in front of two screens on
which two identical triangles are projected. They record their
observations by six coordinates μ=(x1, y1; x2, y2; x3, y3). Next,
(θx, θy) are chosen randomly, and rotated triangles are projected
onto respective screens. Now the observers’ recordings differ:
μx � R(θx)μ, μy � R(θy)μ and μx � R(θxy)μy. Variables
describing distant measuring devices and procedures can be
strongly correlated without any spooky influences. We used a
shortened notation according to which the rotation 2 x 2 matrices
are applied at the same time to coordinates of three triangle’s vertices.

Therefore, Bell tests prove only that the probabilistic coupling
LHVM is inconsistent with the experimental data. They allow the
rejection of Bell-locality and Bell-causality assumptions but have little to
say about the completeness of QM or local causality in nature. As has
been observed, quantum nonlocality is a misleading notion (Boughn,
2022; Czahor, 1988; Dzhafarov, 2021; Fine, 1982; Hance and
Hossenfelder, 2022; Hess and Philipp, 2005; Hess, 2022; Jaynes and
Skilling, 1989; Jung, 2017; Khrennikov, 2007; Khrennikov, 2008;
Khrennikov, 2019; Khrennikov, 2020a; Khrennikov, 2022;
Kupczynski, 2018b; Kupczynski, 2023a; Kupczynski, 2024a;
Kupczynski, 2024b; Peres, 1978; Pitovsky, 1983; Pitovsky, 1994;
Żukowski and Brukner, 2014; De Raedt et al., 2017; De Raedt et al.,
2023; De Raedt et al., 2024; Żukowski and Brukner, 2014; Jung, 2020;
Boughn, 2017), and extraordinary metaphysical speculations based on
the results of Bell tests are unfounded.

Correlation does not mean causation. Alice’s and Bob’s
experimental outcomes may be correlated, but a probabilistic
scatter of Alice’s outcomes cannot depend on what Bob is
measuring in his distant laboratory. This is called “no-signaling.”
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No-signaling was verified and confirmed for raw experimental data
in all Bell tests. Nevertheless, to study correlations in some
experiments involves rejecting single clicks and combining
coincident clicks in pairs on Alice’s and Bob’s detectors. This has
created an apparent signaling in some experiments (Hensen et al.,
2015; Weihs et al., 2024; Adenier and Khrennikov, 2007; Adenier
and Khrennikov, 2017; Bednorz, 2017) which could be explained
without evoking spooky influences (Kupczynski, 2017b;
Kupczynski, 2021; Kupczynski, 2024a; Khrennikov, 2022). The
presence of signaling patterns in the experimental data means
that these data have to be described by random variables labelled
by both the content and context of the experiment, and of course a
joint probability distribution of such variables does not exist.

An external world certainly does exist and it does not depend on
whether it is observed or not. Our mathematical models describe only
imperfectly its different layers (Kupczynski, 2024c). Quantum
phenomena under investigation depend on the detailed contexts of
our experiments. The information obtained is contextual and
complementary, but quantum probabilities are objective properties
of quantum phenomena.

Questions about the completeness of quantum mechanics can
only be answered by a search of reproducible fine structures in time
series of experimental data which were not predicted by QM. It
would not only demonstrate that QM may not provide the most
complete description of the individual physical systems but also that
QM is not predictably complete (Kupczynski, 2006; Kupczynski,
2009; Kupczynski, 2011).

We finish this article with words of Einstein (1936):
Is there really any physicist who believes that we shall never get any

insight into these important changes in the single systems, in their
structure and their causal connections . . . To believe this is logically
possible without contradiction; but it is so very contrary to my scientific
instinct that I cannot forego the search for amore complete description.
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Signature of matter–field
coupling in quantum–mechanical
statistics

Ana María Cetto*† and Luis de la Peña†

Instituto de Física, Universidad Autónoma de México, Mexico City, Mexico

The connection between the intrinsic angular momentum (spin) of particles and
quantum statistics is established by considering the response of identical particles
to a common background radiation field. For this purpose, the Hamiltonian
analysis previously performed in stochastic electrodynamics to derive the
quantum description of a one-particle system is extended to a system of two
identical bound particles subject to the same field. Depending on the relative
phase of the response of the particles to a common field mode, two types of
particles are distinguished by their symmetry or antisymmetry with respect to
particle exchange. While any number of identical particles responding in phase
can occupy the same energy state, there can only be two particles responding in
antiphase. The calculation of bipartite correlations between the response
functions reveals maximum entanglement as a consequence of the parallel
response of the particles to the common field. The introduction of an internal
rotation parameter leads to a direct link between spin and statistics and to a
physical rationale for the Pauli exclusion principle.

KEYWORDS

particle-field coupling, resonant response, quantum statistics, symmetry/antisymmetry,
Pauli exclusion principle

1 Introduction

The statistics of identical particles is one of the most fundamental quantum features: all
quantum particles are known to obey either Fermi–Dirac or Bose–Einstein statistics. It is
also well known that the intrinsic angular momentum (spin) of a particle determines its
statistics and vice versa, with integral-spin particles being bosons and half-integral-spin
particles being fermions. The symmetrization postulate and the spin statistics theorem are
central to a number of key quantum applications, including all of atomic, molecular, and
nuclear physics and quantum statistical physics. Nevertheless, a century after their
establishment (Pauli, 1925; Heisenberg, 1926; Dirac, 1926), they continue to be taken as
mathematically-justified empirical facts. All known experimental data are consistent with
Pauli’s exclusion principle, and experiments continue to be carried out to find possible
violations of it (Kaplan, 2020). Pauli himself, who gave the first formal proof of the spin-
statistics theorem in 1925, expressed his dissatisfaction with this state of affairs two decades
later (Pauli, 1946; Pauli, 1950), but explanations continue to rely mainly on formal
arguments based on topological properties, group-theoretical considerations, and the like.

All this leads to the conclusion that the physical underpinning of quantum statistics
remains to be elucidated. What makes the state vectors of identical multipartite systems
either symmetric or antisymmetric? What is the mechanism that “binds” identical particles
in such a way that they obey either Fermi or Bose statistics?
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The aim of this paper is to provide an answer to these questions
based on general principles and previous results from stochastic
electrodynamics (SED). Recent work has shown that consideration of
the interaction of particles with the electromagnetic radiation field is
key to understanding their quantum behavior (de la Peña et al.,
2015). The ground state of the radiation field—the zero point field
(ZPF)—has been identified as the source of quantum fluctuations and
a key factor in driving a bound system to a stationary state. In
addition, the quantum operator formalism has been obtained as the
algebra describing the response of the particle’s dynamical variables
to the background field modes responsible for the transitions
between stationary states (Cetto and de la Peña, 2024).
Furthermore, bipartite entanglement was derived as a
consequence of the interaction of two identical particles with the
same field modes (de la Peña et al., 2015). Against this background,
the theory provides us with a physically grounded explanation of the
origin of the symmetry properties of identical quantum particle
systems and the resulting statistics.

The paper is structured as follows. Section 2 summarizes the SED

Hamiltonian derivation of the quantum operator formalism, which
gives sense to this formalism as an algebraic description of the linear
(dipolar) resonant response of the particle to a well-defined set of
modes of the background radiation field. In Section 3, the expression
of the dynamical variables of the particle in terms of linear response
coefficients is applied to the analysis of a system of two identical
particles in a stationary state. Section 4 identifies two types of
particles according to the relative phase of their coupling to a
common field mode in the bipartite case, and the multipartite
case is briefly discussed. Section 5 shows that the analysis of two-
particle correlations leads to entangled symmetric or antisymmetric
state vectors. In Section 6, the intrinsic rotation is introduced in
order to establish the connection between the spin and the quantum
statistics as reflected in the symmetry of the state vector, leading to
the Pauli exclusion principle for particles with half-integer spin.

2 Quantum operators as linear
response functions

As shown in SED (de la Peña et al., 2015), the dynamics of an
otherwise classical charged particle immersed in the zero-point
radiation field of energy Zω/2 per mode (ZPF) and subject to a
binding force and its own radiation reaction evolves irreversibly into
the quantum regime, characterized by the stationary states reached
as a result of the average energy balance between radiation reaction
and the action of the background field. Cetto and de la Peña (2024)
showed by means of a Hamiltonian analysis of the particle–field
system that the nature of the particle dynamical variables—the
kinematics—changes in the transition to the quantum regime. In
this regime, x(t), p(t) no longer refer to trajectories but to the linear,
resonant response of the particle to the driving force of the
background field, which effects the transitions between stationary
states. The radiative transitions between two states (n, k) involve
precisely those field modes to which the particle responds
resonantly. Thus, from the initially infinite, continuous set of
canonical field variables (q, p), only those (qnk, pnk) so defined
are relevant for the description in the quantum regime. Since the
memory of the initial particle variables x(0), p(0) is lost and the

dynamics are now controlled by the field, the Poisson bracket of the
particle canonical variables, which initially is taken with respect to
the complete set of (particle + field) variables, reduces to the Poisson
bracket with respect to the (relevant) field variables. Therefore, for
the particle in a stationary state n (note that Roman letters are used
for the canonical field variables),

xn t( ), pn t( ){ }qp � 1, (1)
where

xn t( ), pn t( ){ }qp � ∑
k≠n

∂xn

∂qnk

∂pn

∂pnk
− ∂pn

∂qnk

∂xn

∂pnk
( ).

Instead of the canonical field variables (the quadratures)
(qnk, pnk), it is convenient to use the (dimensionless) normal
variables ank � exp(iϕnk), where ϕnk is a random phase, which
are related to the former by

qnk �
�����
Z

2 ωkn| |

√
ank + ank*( ), pnk � −i

�����
Z ωkn| |
2

√
ank − ank*( ). (2)

This transformation, which takes into account the energy of the
field mode of frequency ωkn being equal to Zωkn, is the entry point of
Planck’s constant in the equations that follow.

With the transformation (2), the Poisson bracket with respect to
the normal variables becomes

x t( ), p t( ){ }nn ≡ ∑
k≠n

∂xn

∂ank

∂pn

∂ank*
− ∂pn

∂ank

∂xn

∂ank*
( )

� iZ∑
k≠n

∂xn

∂qnk

∂pn

∂pnk
− ∂pn

∂qnk

∂xn

∂pnk
( ), (3)

and, therefore, according to Equation 1, the transformed Poisson
bracket must satisfy

x t( ), p t( ){ }nn � iZ. (4)

From this and Equation 3, it is clear that xn(t), pn(t) must
indeed be linear functions of the normal variables ank{ }, k ≠ n. Thus,
xn(t) becomes expressed in the form (in one dimension, for
simplicity)

xn t( ) � xnn +∑
k≠n

xnkanke
−iωknt + c.c., (5)

where the index k denotes any other state that can be reached by
means of a transition from n (hence k ≠ n), and ωkn is the
corresponding transition frequency. The coefficient xnk is the
response amplitude of the particle to the field mode of frequency
ωkn. More generally, since the field variables connecting different
states n, n′ are independent random variables, (∂ank/∂an′k) � δnn′
(for equal times, one may omit the time dependence in the
expression) and

x, p{ }nn′ � iZδnn′. (6)

Using Equation 5 for xn(t) and
pn t( ) � m _xn t( ) � −im∑

k≠n

ωknxnkanke
−iωknt + c.c. (7)

to calculate the derivatives involved in Equation 3, we obtain
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x t( ), p t( ){ }nn � 2im∑
k≠n

ωkn xnk| |2 � iZ. (8)

For x and p real, xnk* (ωnk) � xkn(ωkn), pnk* (ωnk) � pkn(ωkn),
ank* (ωnk) � akn(ωkn). This allows us to write Equation 6 in the
explicit form

∑
k≠n

xnkpkn′ − pn′kxkn( ) � iZδnn′, (9)

and to identify the response coefficients xnk, pn′k as the elements of
matrices x̂, p̂ such that

x̂, p̂[ ] � iZ. (10)

This central result of SED reveals the quantum commutator as the
matrix expression of the Poisson bracket of the particle variables
(xn, pn) in any state n with respect to the (relevant) normal field
variables corresponding to the modes nk{ } to which the particle
responds resonantly from that state. Furthermore, Equation 8 is
identified with the Thomas–Reiche–Kuhn sum rule,

2im∑
k≠n

ωkn xnk| |2 � iZ. (11)

In summary, this is the physical essence of the quantum
operators: they describe the linear, resonant response of the
(bound) particle to a well-defined set of field modes. The
response coefficients xnk and the transition frequencies ωkn

contained in Equation 5 are characteristic of the mechanical
system; the corresponding random normal variables ank in turn
contain information about the (stationary, random) background
field. By taking the derivatives of xn and pn given by Equations 5, 7
with respect to ank, ank* to calculate the Poisson bracket, the latter are
removed from the description; the problem seems to be reduced to
be purely mechanical, although it is in essence electrodynamic. Once
the operator formalism is adopted, the factor Z, coming from the
transformation expressed in Equation 2, remains the only
conspicuous imprint left by the field.

We further note that the structure of the commutator is a direct
consequence of the symplectic structure of the problem; this is a
feature of the Hamiltonian dynamics that remains intact in the
evolution from the initial classical to the quantum regime. The
correspondence between classical Poisson brackets and quantum
commutators, insightfully established by Dirac on formal grounds,
thus finds a physical explanation.

To connect with quantum formalism in the Heisenberg
representation, we consider an appropriate Hilbert space on
which the operators act. In the present case, the natural choice is
the Hilbert space spanned by the set of orthonormal vectors |n〉{ }
representing the stationary states with energy En. With the
components of x̂(t) given by xnke−iωknt (see Equation 5), we have

x̂ t( ) � ∑
n,k

xnke
−iωknt n| 〉〈k|. (12)

The matrix elements of x̂(t) are
xnk t( ) � 〈n|x̂ t( ) k| 〉 (13)

in the Heisenberg picture, or

xnk t( ) � 〈n t( )|x̂ k t( )| 〉 (14)

in the Schrödinger picture, where the time dependence has been
transferred to the state vector,

n t( )| 〉 � e−iEnt/Z n| 〉. (15)
Finally, with the evolution of x, p into operators, the initial

Hamiltonian equations evolve in the quantum regime into the
Heisenberg equations

1
iZ

x̂, Ĥ[ ] � _̂x,
1
iZ

p̂, Ĥ[ ] � _̂p, (16)

with Ĥ � p̂2

2m + V̂, _̂x � p̂/m and _̂p � − ̂(dV/dx). By taking the matrix
element (nk) of the first of these equations, we confirm that
ωkn � (En − Ek)/Z—that is, that the energy Zωkn transferred to
(or from) the field to the particle in a transition is equal to the
energy difference between the two stationary states.

3 Response of a bipartite system to the
background field

Now consider a system consisting of two identical particles.
When the particles are isolated from each other, they are subject to
different realizations of the background field, in which case their
behavior can be studied separately for each particle using the
procedure above. However, if they are part of one and the same
system, they are subject to the same realization of the field and, being
identical, they respond to the same set of relevant field modes,
whether or not they interact with each other. In the following, we
assume that the particles do not interact directly with each other.

Our purpose is to describe the response of the composite system
to the background field when in a stationary state characterized by
the total energy E(nm) � En + Em with En≠ Em, the subindices n and
m referring to single-particle states. If particle 1 is in state n, it
responds to the set of modes nk{ }, and similarly particle 2 in statem
responds to the set ml{ },

x1n t( ) � ∑
k

eiθ
1
nkx1nkanke

−iωknt + c.c., x2m t( )

� ∑
l

eiθ
2
mlx2mlamle

−iωlmt + c.c. (17)

where we have added the factor exp(iθ) to each term to allow for the
(random) phase of the response of the particle to the field modes.

When n ≠ m, the sums in Equation 17 involve the different,
mutually independent normal variables ank and aml, except when
k � m and l � n, since anm � amn* . Therefore, the Poisson bracket of
x1(t) and x2(t), calculated in the state of the composite system
(nm), reduces to a single term:

x1, x2[ ] nm( ) � ∂x1n

∂anm

∂x2m

∂anm*
− ∂x2m

∂anm

∂x1n

∂anm*
( ) � 2i xnm| |2 sin θ12nm. (18)

Since the particles are identical, the interchange of labels 1 and
2 should not alter the value of the Poisson bracket, and therefore this
equationmust be equal to 0. This sets an important restriction on the
possible values of the phase difference. With

θ1nm − θ2nm
∣∣∣∣ ∣∣∣∣ � θ12nm

∣∣∣∣ ∣∣∣∣ ≡ πζ12nm, (19)

we see that ζ12nm must be an integer so that
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x1, x2[ ] nm( ) � 0 n ≠ m( ). (20)

Furthermore, with p2(t) obtained from the second Equation 17,

p2m t( ) � −im∑
l

eiθ
2
mlωlmx2mlamle

−iωlmt + c.c.,

the Poisson bracket of x1(t) and p2(t) calculated for the same state
(nm) gives

x1, p2[ ] nm( ) �
∂x1n

∂anm

∂p2m

∂anm*
− ∂p2m

∂anm

∂x1n

∂anm*
( ) � 2imωmn xnm| |2 cos θ12nm.

(21)
In terms of the parameter ζ12nm defined in Equation 19, we have

cos θ12nm � −1( )ζ12nm , ζ12nm � 0, 1, 2, . . . . (22)
and therefore, from Equation 21,

x1, p2[ ] nm( ) � −1( )ζ12nm2imωmn xnm| |2. (23)

This result shows that a correlation is established between the
response variables of the two particles to the shared field mode
(nm) for n ≠ m; in other words, the field mode serves as a bridge
between the particles and correlates their responses. It is
important to note that Equation 23 involves only the field
mode connecting the two states with En≠ Em, and it is
different from O only when these states are connected by a
dipolar transition element, xnm ≠ 0.

We now consider two equal particles in the same energy state:
n � m. In this case, the particles share all field modes, so that the
Poisson brackets become, by virtue of Equation 22,

x1, x2[ ] nn( ) � ∑
k

∂x1n

∂ank

∂x2n

∂ank*
− ∂x2n

∂ank

∂x1n

∂ank*
( ) � 2i∑

k

sin θ12nk xnk| |2 � 0,

(24)
x1, p2[ ] nn( ) � ∑

k

∂x1n

∂ank

∂p2n

∂ank*
− ∂p2n

∂ank

∂x1n

∂ank*
( )

� 2im∑
k

ωkn cosθ
12
nk xnk| |2 � 2im∑

k

−1( )ζ12nkωkn xnk| |2. (25)

4 Two families of particles

Equation 23 indicates that there are two distinct types of
identical particles, depending on whether the phase parameter
ζ12nm given by Equation 19 is an even or odd number. Since this
condition applies to all modes that are shared by the two particles,
we can write, using Equation 19:

ζ12nm � ζ12 � ζ1 − ζ2
∣∣∣∣ ∣∣∣∣, (26)

so that the two types of particles are characterized by

Type B: ζ12B � 0, 2, 4, . . . , (27a)
Type F: ζ12F � 1, 3, 5, . . . . (27b)

In Appendix A, it is shown that for all ζ12B to be even, the
individual ζ iB must be integers, and that for all ζ12F to be odd, the
individual ζ iF must be half-integers:

Type B: ζ iB
∣∣∣∣ ∣∣∣∣ � 0, 1, 2, . . .ϒB, (28a)

Type F: ζ iF
∣∣∣∣ ∣∣∣∣ � 1

2
,
3
2
,
5
2
, . . .ϒF, (28b)

where ϒB and ϒF are the maximum values of the individual ζ iB, ζ
i
F.

This means that B and F actually stand for two distinct families of
particles, the members of which are characterized by the respective
value of ϒ. Identical particles of family B can have any value of ζ iB
integer such that |ζ iB|≤ϒB, but when combined they must satisfy
Equation 27a; similarly, those of family Fmust satisfy Equation 27b.
In other words, according to Equations 27a, b, only pairwise
combinations of ζ iB that are even and only pairwise combinations
of ζ iF that are odd are allowed. Since, in both cases, ζ i can be positive
or negative, this gives a total of g � 2ϒ + 1 possible different states of
the bipartite system.

With these results, Equation 17 take the form (except for a
remaining common phase factor eiθ that can be neglected)

x1n t( ) � eiπζ
1 ∑

k

x1nkanke
−iωknt + c.c.,

x2m t( ) � eiπζ
2 ∑

l

x2mlamle
−iωlmt + c.c., (29)

and Equation 25 is reduced to

x1, p2[ ] nn( ) � −1( )ζ12 iZ. (30)

Therefore, in comparison with the one-particle commutator
[x1, p1](nn) � iZ, we note that in the B case—when Equation 27a
holds—particle 2 responds in the same way as particle 1. Indeed,
according to Equation 19, the response of the two particles to the
shared field modes is in phase, and a correlation is established
between the particles. By contrast, according to Equation 27b, ζ12F is
an odd number; hence, the response of the two identical type F
particles to the shared field modes is in antiphase.

4.1 Extension to three or more particles

In light of the above results, we now briefly analyze the possible
correlations for a system composed of three or more
identical particles.

In the first case of three type-B particles, when total energy
E(nml) � En + Em + El with En≠ Em≠ El, Equation 27a applies, and
the three particles are pairwise correlated. According to Equation 30,
correlation also exists when En≠ Em� El or En� Em� El because the
responses of the three particles to common field modes are always in
phase. Therefore, all three particles may in principle occupy the
same state n and respond coherently. The argument can of course be
extended to four or more particles; consequently, there may in
principle be an arbitrary number N of type-B particles in the same
state and responding coherently to the field modes, like a well-
disciplined troop.

In the type-F case, we have already concluded that particles
1 and 2 respond in antiphase to a common mode, and the same
applies of course to any pair of identical particles. When total energy
E(nml) � En + Em + El with En≠ Em≠ El, the three particles are
pairwise correlated according to Equation 27b. However, when at
least two energy levels coincide, two particles respond in antiphase
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to the shared modes, thus preventing a third one from responding in
antiphase to the same modes and therefore from being correlated to
the other two. Therefore, contrary to the type-B case, there can be no
coherent response of more than two type-F particles in this case.

5 Field-induced covariance and
entanglement

To calculate the effect of the background field on the correlation
of the responses, we consider two generic dynamical variables
associated with particles 1 and 2. These can be the variables x(t)
and p(t) considered so far, a linear combination of them, or any
other variable of the form given by Equation 29, where n,m are, as
before, two stationary states of the system, with energies En, Em,

f1n t( ) � f1nn + eiπζ
1 ∑
k≠n

f1nkanke
−iωknt + c.c., (31)

g2m t( ) � g2mm + eiπζ
2 ∑
l≠m

g2mlamle
−iωlmt + c.c., (32)

The time-independent terms in these equations represent in
each case the average value of the function, taken over the
distribution of the normal variables ank � exp(iϕnk) where ϕnk is
a random phase, as mentioned in Section 2,

f1n t( ) � f1nn, g2m t( ) � g2mm. (33)
To calculate the correlation, we take the average of the product of
f1(t) and g2(t). When particles 1 and 2 do not form part of the
same system, they respond to independent realizations of the field
modes, and therefore the covariance is given by

Γ f1ng2m( ) � f1n t( ) − f1nn( ) g2m t( ) − g2mm( ) � 0, (34)

which simply confirms that the variables are not correlated.
However, when the particles form a bipartite system, they

respond to the same realization of the field modes. To calculate
the covariance in this case, we must take into account the double
degeneracy of the combined state, E � E1n + E2m � E1m + E2n. In
order to distinguish between the two configurations, we define

EC � E1n + E2m, ED � E1m + E2n. (35)
Let us consider the first case, EC � E1n + E2m, and use Equations 31,
32 to calculate the average product of f1(t) and g2(t), which we call
fg

C
(the left factor always refers to particle 1 and the right to particle

2, so that we omit the indices 1 and 2 in the following). Taking into
account that, for random independent normal variables, aijajk �
aijakj* � δik and hence

ankaml � δnkδml + δnlδkm, (36)
we obtain

fg
C � fnngmm + −1( )ζfnmgmn. (37)

Similarly, for the D configuration, we obtain

fg
D � fmmgnn + −1( )ζfmngnm. (38)

Since the two configurations have the same weight, the averages
of f1(t) and g2(t) are

�f � 1
2

fnn + fmm( ), �g � 1
2

gnn + gmm( ),
and the average of the product of f1(t) and g2(t) is given by

fg � 1
2

fg
C + fg

D( )
� 1
2

fnngmm + −1( )ζfnmgmn + fmmgnn + −1( )ζfmngnm[ ]. (39)

The covariance is therefore given by

Γ fg( ) � fg − �f�g

−1
4

fnn − fmm( ) gnn − gmm( ) + 1
2
−1( )ζ fnmgmn + fmngnm[ ]. (40)

In this equation, the two contributions to the covariance are of a
very different nature: the first is a classical covariance of f1 and g2

due to the different average values of these functions in states n,m
under the condition of degeneracy, E1n + E2m � E1m + E2n. The
second term, though, has no classical counterpart: it is entirely
due to the joint response of particles 1 and 2 to the shared mode
(nm) and is therefore a signature of the matter–field interaction.
Evidently, both particles must respond to the mode (nm) for this
term not to be zero; if any of the two matrices f̂, ĝ is diagonal, there
is no quantum contribution to Γ(fg).

5.1 Emergence of entanglement

In quantum formalism, entanglement is reflected in the non-
factorizability of the bipartite state vector. Therefore, in order to
show the emergence of entanglement in the present context, we will
translate Equation 40 into the language of the product Hilbert space
H1 ⊗ H2, where H1,H2 are respectively spanned by the sets of
orthonormal state vectors |n〉{ } of particles 1 and 2 (see Section 2
for the one-particle case). In the shorthand notation introduced
above, configurations C,D are represented by the product
state vectors

C| 〉 � n| 〉1 m| 〉2, D| 〉 � m| 〉1 n| 〉2. (41)

In this notation, Equation 40 reads

Γ fg( ) � −1
4

fnn + fmm( ) gnn + gmm( )
+1
2
〈C + −1( )ζD∣∣∣∣f̂ĝ C + −1( )ζD∣∣∣∣ 〉. (42)

In writing the second term, we have used the fact that (−1)ζ �
± 1 according to Equations 27a and b. Note that the average of fg is
now taken over the (normalized) state vector

Ψ| 〉 ≡
1�
2

√ C + −1( )ζD∣∣∣∣ 〉, (43)

or in terms of the individual state vectors,

Ψ| 〉 � 1�
2

√ n| 〉1 m| 〉2 + −1( )ζ m| 〉1 n| 〉2[ ]. (44)

As a result, we obtain

Γ fg( ) � 〈Ψ |f̂ĝ Ψ| 〉 − 〈Ψ |f̂ Ψ| 〉〈Ψ |ĝ Ψ| 〉, (45)
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which is exactly the quantum covariance of f̂ĝ calculated in the
entangled state given by Equation 44. The covariance coincides with
the correlation of f and g since the state vector |Ψ〉 is normalized
to unity.

We stress that the above calculation is restricted to the case n ≠ m;
when n � m, there is no field mode correlating the responses of the two
particles, so there is no entanglement. On the other hand, if there is
degeneracy—that is, EC � ED—the two-particle system is necessarily in
an entangled state if fnm, gmn are different from zero—that is, if the
response variables f,g connect the single-particle states n,m. The
origin of the entanglement is thus traced back to the action of the
common relevant field mode (nm), and the responses of the two
particles to this mode are maximally correlated (anticorrelated)
according to Equation 40 with (−1)ζ � +1 (−1). More generally,
entanglement occurs whenever there is degeneracy, be it in energy
or any other variable that defines the state of the bipartite system, as
discussed in the next section.

Equations 43–45 were previously obtained in the context of SED
by a somewhat laborious procedure using the Hilbert-space
formalism. In contrast to such an abstract procedure, the
present derivation has the advantage of keeping track at every
moment of the physical quantities involved: the field mode
variables, the particles’ response variables, and the phase
difference of the responses.

It is clear from Equation 44 that the two families of identical
particles identified in Section 4 are distinguished by their
entangled state vectors. The symmetry or antisymmetry of the
state vector is uniquely linked to the phase difference of the
responses of the two particles to the shared field mode. When the
coupling is in phase (type B particles), the state vector is
symmetric with respect to the exchange of particles; when the
relative coupling is out of phase (type F particles), the state vector
is antisymmetric.

It should be stressed that no direct interaction between the
components of the system is involved in the derivation leading to
entangled states; entanglement arises as a result of their indirect
interaction via the shared field modes and, therefore, does not
entail a non-local action.

6 The Pauli exclusion principle

6.1 Introduction of spin

Among the various proposals that have been made to justify the
spin-statistics theorem, some that are relevant to this work involve
the inclusion of the internal (spin) coordinates among the
parameters affected by the exchange operation (e.g. Hunter et al.,
2005 and Jabs, 2010, and additional references cited the latter). In
particular, in Jabs (2010), the spin–statistics connection is derived
under the postulates that the original and the exchange wave
functions are simply added and the azimuthal phase angle, which
defines the orientation of the spin part of each single-particle spin
component in the plane normal to the spin-quantization axis, is
exchanged along with the other parameters.

In dipolar transitions, atomic electrons interact with field modes of
circular polarization, as expressed in the selection rule△l � ± 1, and is
increasingly exploited for practical applications in spin-resolved

spectroscopy and magneto-optics (e.g. Okuda et al., 2011; De et al.,
2021). Furthermore, the interaction of the particle with circular
polarized modes of the ZPF, which are known to have an intrinsic
angular momentum equal to Z/2 (Sobelman, 1979; Mandel and Wolf,
1995), was indeed shown in Cetto et al. (2014) to be responsible for the
origin of the electron spin itself. It is reasonable to assume that a similar
mechanism is responsible for the neutron spin, since the neutron has a
magnetic moment that couples to the radiation field.

Therefore, following Jabs (2010) and Cetto and de la Peña
(2015), in order to include the spin in the present analysis, we
add an (internal) rotation angle ϕ to the expression for the dynamic
variables. Strictly speaking, the problem becomes a three-
dimensional one. However, for simplicity, we can still use our
one-dimensional expressions for the dynamic variables if we
decompose the radiation field into (statistically independent)
modes of circular polarization. So instead of (31) and (32), we write

f1n t, ϕ( ) � eiπζ
1 ∑

k

f1nkanke
iγnkϕ−iωknt + c.c., (46)

g2m t( ) � eiπζ
2 ∑

l

g2mlamle
iγmlϕ−iωlmt + c.c., (47)

where γnkϕ is the difference of two rotation angles,

γnkϕ � γn − γk( )ϕ, (48)
and γn, γk stand for counterclockwise (clockwise) rotation. If n,m
are two stationary states of a system of identical particles, as before,
we obtain for the partial covariances in configurations C and D (see
Equations 37 and 38)

fg
C � fnngmm + −1( )ζfnme

iγnmϕgmne
iγmnϕ, (49)

fg
D � fmmgnn + −1( )ζfmne

iγmnϕgnme
iγnmϕ, (50)

and, therefore,

fg � 1
2

fg
C + fg

D( ) � 1
2

fnngmm + fmmgnn[ ]
+1
2
−1( )ζ fnme

iγnmϕgmne
iγmnϕ + fmne

iγmnϕgnme
iγnmϕ[ ]. (51)

By translating this result into the language of the product Hilbert
space and using Equation 48, we obtain after some algebra

Γ fg( ) � 〈Ψ |f̂ĝ Ψ| 〉 − 〈Ψ |f̂ Ψ| 〉〈Ψ |ĝ Ψ| 〉, (52)
where |Ψ〉 now stands for the complete bipartite state vector,
including the internal rotation components,

Ψ| 〉 ≡
1�
2

√ e−iγnϕe−iγmϕC + −1( )ζe−iγmϕe−iγnϕD∣∣∣∣ 〉

� 1�
2

√ e−iγnϕ n| 〉1e−iγmϕ m| 〉2 + −1( )ζe−iγmϕ m| 〉−iγnϕ1 n| 〉2
∣∣∣∣∣ 〉. (53)

In Equation 53, the first angular factor is always associated with
particle 1 and the second with particle 2. This suggests writing each
individual state vector in the form e−iγϕ|n〉. In quantum language,
this implies the introduction of two orthonormal vectors |γ〉 � | +
〉, | − 〉 spanning the two-dimensional Hilbert space, |n〉|γ〉 ≡ |nγ〉;
Equation 53 thus takes the form

Ψ| 〉 � 1�
2

√ nγn
∣∣∣∣ 〉1 mγm

∣∣∣∣ 〉2 + −1( )ζ mγm
∣∣∣∣ 〉1 nγn

∣∣∣∣ 〉2[ ]. (54)
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Since the parameter γ is associated with the internal rotation, we
identify it with the spin of the electron, which means that

γn,m � ±
1
2
. (55)

6.2 The connection between spin
and symmetry

We now examine the symmetry properties of the complete
entangled state function (53) under particle exchange. When
particles 1 and 2 are exchanged, in addition to switching their
positions in three-dimensional space, their internal angles change:
particle 1 rotates to the azimuthal position of particle 2 and vice
versa, with both rotations occurring in the same direction (clockwise
or counterclockwise). Consider a clockwise rotation. As shown in
Jabs (2010) and Cetto and de la Peña (2015), when ϕ2 > ϕ1 ϕ1
transforms into ϕ2 and ϕ2 transforms into ϕ1 + 2π,

ϕ2 − ϕ1 → ϕ1 − ϕ2 + 2π, (56)
and |Ψ〉 given by Equation 53 transform into

Ψ| 〉1←→2 � 1�
2

√ e−iγm ϕ+2π( ) m| 〉1e−iγnϕ n| 〉2 + −1( )ζe−iγn ϕ+2π( ) n| 〉1e−iγmϕ m| 〉2
∣∣∣∣∣ 〉.

Since γn, γm are half-integers, the overall effect of the particle
exchange is to multiply the original state vector by a factor of

Ψ| 〉1←→2 � −1( )ζ −1( )2γn Ψ| 〉. (57)
If instead ϕ2 < ϕ1, ϕ2 transforms into ϕ1 and ϕ1 transforms into

ϕ2 + 2π, so that

ϕ2 − ϕ1 → ϕ1 − ϕ2 − 2π, (58)
and the transformation of the state vector is again given by Equation
57. Of course, the same result is obtained if the rotation is
anticlockwise. Since particles 1 and 2 are identical, their exchange
should have no effect on the state vector, which implies that

−1( )ζ −1( )2γn � 1. (59)

Therefore, taking into account Equation 55, we conclude that
(−1)ζ � −1. Thus, symmetry of the total state vector under particle
exchange, obtained from Equation 54 with (−1)ζ � −1,

Ψ| 〉 � 1�
2

√ nγn
∣∣∣∣ 〉1 mγm

∣∣∣∣ 〉2 − mγm
∣∣∣∣ 〉1 nγn

∣∣∣∣ 〉2[ ]. (60)

implies antisymmetry of the (energy) state vector (44),

Ψ| 〉 � 1�
2

√ n| 〉1 m| 〉2 − m| 〉1 n| 〉2[ ]. (61)

6.3 The Pauli principle

The above procedure is of course applicable to particles with
higher spin; thus, for any half-integer value of γ, (−1)2γ � −1 and
according to Equation 59, the bipartite (energy) state vector will be
antisymmetric with respect to particle exchange, as in Equation 61.

We recall that Equation 61 is valid for |n〉 ≠ |m〉. If |n〉 � |m〉
and the spin is not taken into account, the state vector is simply the
product of the individual energy eigenvectors, |Ψ〉 � |n〉1|n〉2;
according to Equation 40 the particle variables are not
correlated and the bipartite system is obviously not entangled.
However, with the introduction of spin, the complete state
function is different from zero for |n〉 � |m〉, under the
condition that |γn〉 ≠ |γm〉. If this is the case, Equation 60 is
reduced to

Ψ| 〉 � n| 〉1 n| 〉2�
2

√ γ1
∣∣∣∣ 〉 γ2

∣∣∣∣ 〉 − γ2
∣∣∣∣ 〉 γ1

∣∣∣∣ 〉[ ]. (62)

In other words, entanglement can arise from energy degeneracy,
if E � En+Em with En≠ Em, or from spin degeneracy, if γ � γ1 + γ2
with γ1≠ γ2. Since for the electron (and other spin-1/2 particles)
γi � ± 1

2, Equation 62 takes the form (except for an irrelevant
overall sign)

Ψ| 〉 � n| 〉1 n| 〉2�
2

√ 1
2

∣∣∣∣∣∣∣ 〉 −1
2

∣∣∣∣∣∣∣ 〉 − −1
2

∣∣∣∣∣∣∣ 〉 1
2

∣∣∣∣∣∣∣ 〉[ ]. (63)

In Section 5, it was shown that the correlation between particle
variables results from the antiphase response to the single common
field mode of frequency ωmn with En≠ Em. On the other hand, when
|n〉 � |m〉, we note from Equation 25 that the two particles respond
in antiphase to all (common) field modes; in this case, correlation
is established as a result of the response of both particles to a
common field mode of circular polarization. In other words, the
entanglement results not from the response to a single mode
connecting two states separated by their energies, △Enm �
|En−Em| but from a mode connecting two states separated by
their spins, △γ12 � |γ1 − γ2|. Just as in the first case △E � Zωmn

is the energy exchanged with the field in a transition, in the second
case Z△γ12 � Z is the angular momentum exchanged with the field
in a transition.

Equation 63 leaves no room for a third electron in the same
energy state |n〉 because its spin parameter would be either equal
to γ1 or γ2. The conclusion holds for any pair of identical half-
integer spins because the condition △γij � |γi − γj| � 1 cannot be
satisfied simultaneously for i.j � 1, 2, 3: if two half-integer values
of γ satisfy △γij � 1, the third value of γ differs from the first two
by an even number. To illustrate, consider ΓF � 3

2. Possible pairs
(γ1, γ2) are (32, 12), (32, −32 ), and (−3

2,−1
2); there is no γ3 that

simultaneously satisfies △γ31 � |γ3 − γ1| � 1 and △γ32 � |γ3 −
γ2| � 1.

This is a clear example of Pauli’s exclusion principle. The present
discussion reveals the physical basis of the phenomenon: two
particles in the same energy state respond in antiphase to a
single (circularly polarized) mode of the field and a third particle
cannot respond in antiphase to the first two.

7 Discussion

In this work, the symmetrization postulate and the spin-
statistics theorem were shown to follow from the in-phase or
antiphase response of identical particles to specific modes of the
common background radiation field. The inclusion of spin in the
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analysis allowed the identification of the type B and F families
introduced in Section 4 as bosons and fermions and led to the Pauli
exclusion principle in the case of fermions.

Key quantum phenomena that were introduced as postulates
in the foundational phase of quantum mechanics and that have
been repeatedly confirmed both formally and experimentally thus
find a physical justification. The picture provided by the present
approach is very suggestive. In particular, it shows that the
collective behavior of identical particles, which leads to the
respective quantum statistics, is a consequence of the
mediation of specific field modes that “connect” the particles
and correlate their dynamics, producing entanglement. A
mysterious, apparently non-local connection between particles,
as described by quantum formalism, is thus shown to be an
entirely causal and local effect of the bridging role of the common
background field. Given the increasing attention paid to
entanglement phenomena and their applications, particularly
in the fields of quantum information, computing, and
communication, the insight gained from this perspective
should prove highly fruitful. In particular, since entanglement
and other quantum phenomena discussed here are shown to
depend critically on the correlations established between
identical particles by their coherent binding to certain
common field modes, the cancellation or significant
modification of these modes by Casimir cavity techniques (e.g.
Kleppner, 1986; Walther et al., 2006) could be an interesting way
to analyze the effect on such correlations.

The results reported here suggest further investigation. In
particular, extending the one-dimensional analysis carried out
here to three dimensions would allow an adequate treatment of
more general problems involving additional dynamical variables,
including orbital angular momentum.
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Appendix A

Equations 24, 25 must be satisfied for any pair of identical
particles—that is, ζ ij is either even or odd for identical particles
i, j � 1, 2, . . .. This means that ζ12 expresses a distinctive property
of the particles themselves, which manifests when the particles form
part of the same system and couple either in phase or antiphase to
the shared modes. This property is identified in Equation 26 and the
following with the parameters ζ iB, ζ iF, i � 1, 2, which must satisfy
either Equation 27a or 27b, respectively.

If we take the smallest possible value of ζ1 in the F
case, which is |ζ1m| � 1/2, any integer value of another type-F
particle would violate both Equations 27a, b; hence, type-F
particles can only have half-integer values of the parameter
ζ i. Similarly, taking the smallest possible value of ζ1 in
the B case, which is |ζ1m| � 0, any half-integer value for
another type-B particle would violate both Equations 27a, b,
so type-B particles can only have integer values of the parameter
ζ i.

This confirms the correctness of Equations 28a, b.
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Dynamics of the ideal quantum
measurement of a spin-1 with a
Curie–Weiss magnet

Theodorus Maria Nieuwenhuizen*

Institute for Theoretical Physics, University of Amsterdam, Amsterdam, Netherlands

Quantummeasurement is a dynamical process involving an apparatus coupled to
a test system. The ideal measurement of the z-component of a spin-12 (sz � ± 1

2)
has been modeled by the Curie–Weiss model for quantum measurement.
Recently, the model was generalized to higher spins, and its thermodynamics
were solved. Here, the dynamics are considered. To this end, the dynamics for the
spin-12 case are cast in general notation. The dynamics of themeasurement of the
z-component of a spin-1 (sz � 0,± 1) are solved in detail and evaluated
numerically. The energy costs of the measurement, which are macroscopic,
are evaluated. The generalization to higher spin is straightforward.

KEYWORDS

ideal quantummeasurement, dynamics, Curie–Weiss model, higher spin, exact solution

1 Introduction

This year, we celebrate the centennial of the formulation of quantum theory; see
Capellmann (2017) for the prehistory. After the “Zur Quantummechanik” by Born and
Jordan (1925), the Dreimänner Arbeit by Born et al. (1926) on the matrix mechanics was
soon followed by Schrödinger’s (1926) formulation of wave mechanics, inspired by the
insights of De Broglie (1924). The predictive power of the theory was expressed by Born’s
(1926) rule. For a compilation of historical contributions, see Wheeler and Zurek (2014).

The interpretation of quantum mechanics has been discussed throughout the century
since then. The Copenhagen interpretation— with the Born rule and the collapse
postulate—emerged as the most reasonable. Many attempts to deepen understanding
begin with these postulates. However, they are merely shortcuts for what happens in a
laboratory. With our collaborators Armen Allahverdyan and Roger Balian, we have taken
the viewpoint of starting from the uninterpreted quantum formalism and applied it to the
dynamics of an idealized measurement. The elements of this approach that have already
been solved do not need to be interpreted; interpretation is needed to put the results in a
proper, global context. As discussed below, this effort has led to a specified version of the
statistical interpretation of quantum mechanics, popularized by Ballentine (1970).

The present study deals with the dynamics of an ideal quantum measurement. It is
based on the Curie–Weiss model for measuring the z-component of a spin 1

2, introduced by
Allahverdyan et al. (2003a). After reviewing various models for quantum measurement, it
was considered in great detail by Allahverdyan et al. (2013). The apparatus consists of a
mean-field type magnet having N≫ 1 spins 1

2 coupled to a harmonic oscillator bath. The
magnet starts in a metastable, long-lived, paramagnetic state, which is separated by free
energy barriers from the stable states with upward or downward magnetization. It is in a
“ready” state for use in a measurement.
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When employed as an apparatus, the magnetization acts as
a pointer for the outcome. The coupling to the tested spin causes
a quick transition to one of the stable states, thereby
registering the measurement. For this to succeed, the coupling
must be large enough to overcome the free energy barrier. While
the final state of the magnet is described by thermodynamics,
much detail is contained in the dynamical evolution toward
this state.

In an ideal measurement, the Born rule appears due to the non-
disturbance of the measured operator. It provides probabilities for
the pointer, that is, for the final magnetization to be upward or
downward. The state of the microscopic spin is correlated with it and
inferred from the pointer indication.

Understanding the dynamics also provides a natural route
toward the interpretation of quantum mechanics. Indeed, when
assuming the quantum formalism, the task is to work out its
predictions, and only then to interpret the results. This leads to
viewing the wave function, or, more generally, the density matrix, as
a state of best knowledge and the “collapse of the wave function” or
“disappearance of cat states” as an update of knowledge after the
selection of the runs with identical outcomes, compatible with the
quantum formalism. Notably, quantum theory is not a theory of
Nature based on an ontology; rather, it is an abstract construct to
explain its probabilistic features.

The “measurement problem,” that is, describing the
individual experiments that occur in a laboratory, is, in our
view, still the most outstanding challenge of modern science.
Many attempts have been made to solve it by making adaptations
or small alterations to quantum mechanics or by interpreting it
differently. We hold the opinion that this entire enterprise is in
vain; one should start completely from scratch to “derive
quantum mechanics,” that is to say, establish the origin of
quantum behavior in Nature1.

Various formalisms of quantum mechanics were reviewed by
David (2015). The insight that quantum mechanics is only
meaningful in a laboratory context, stressed in particular by
Bohr, is central to the approaches of Auffeves and Grangier
(2016) and Auffeves and Grangier (2020), it leads to new insights
regarding the Heisenberg cut between quantum and classical (Van
Den Bossche and Grangier, 2023). One century of interpretation of
the Born rule, including the modern one, was overviewed by
Neumaier (2025).

1.1 The Curie–Weiss model for quantum
measurement

A macroscopic material consists of atoms, which are quantum
particles. The starting point for their dynamics lies in quantum
statistical mechanics. For a measurement, the apparatus must be
macroscopic and have a macroscopic pointer so that the outcome of
the measurement can be read off or processed automatically. Hereto,
an operator formalism is required, with dynamics set by the
Liouville–von Neumann equation, the generalization of the
Schrödinger equation to mixed states.

Progress on solvable models for quantum measurement has
been made in recent decades when we, together with A.
Allahverdyan and R. Balian introduced and solved the so-called
Curie–Weiss model for quantum measurement (Allahverdyan A. E.
et al., 2003) in our “ABN” collaboration. Here, the classical
Curie–Weiss model of a magnet is taken in its quantum version
and applied to the measurement of a quantum spin 1

2. Various
further aspects were presented in Allahverdyan A. E. et al. (2003),
Allahverdyan et al. (2005a), Allahverdyan et al. (2005b),
Allahverdyan et al. (2007), and Allahverdyan et al. (2006). They
were reviewed and greatly expanded in Allahverdyan et al. (2013).
Lecture notes were presented by Nieuwenhuizen et al. (2014). A
straightforward interpretation for a class of these measurement
models was provided by Allahverdyan et al. (2017); it is a
specified version of the statistical interpretation made popular by
Ballentine (1970).

Simultaneous measurement of two noncommuting quantum
variables was worked out (Perarnau-Llobet and Nieuwenhuizen,
2017a), as well as an application to Einstein-Podolsky-Rosen type of
measurements (Perarnau-Llobet and Nieuwenhuizen, 2017b). A
numerical test on a simplified version of the Curie–Weiss model
reproduced nearly all of its properties (Donker et al., 2018).

Our ensuing insights, which are suitable for teachers of quantum
theory (at the high school, bachelor’s, or master’s levels), are
presented in Allahverdyan et al. (2024) and summarized in a
feature article (Allahverdyan et al., 2025).

1.2 Higher-spin Curie–Weiss models

The mentioned Curie–Weiss model was recently
generalized by us to measure a spin l> 1

2 (Nieuwenhuizen,
2022). This study will be termed “Models” henceforth. For spin
l, the state of the magnet is described by 2l order parameters. To
assure an unbiased measurement, the Hamiltonian of
the apparatus and the interaction Hamiltonian with the tested
system have Z2l+1 symmetry. The statics were solved for spin-1, 32,
2, and 5

2.
Here, the dynamics are worked out for spin-1, laying the

groundwork for higher-spin dynamics. In the spin 1
2 Curie–Weiss

model, it was found that Schrödinger cat terms disappear through
two mechanisms: dephasing of the magnet, possibly followed by
decoherence due to the thermal bath. Similar behavior is now
investigated for spin-1.

The setup of the article is as follows. In Section 2, we recall the
formulation of the Curie–Weiss model for general spin-l and discuss
aspects of its physical implementation for spin 1

2 and spin-1. In

1 An analogy is offered by the dark matter problem in cosmology.

Abandoning particle dark matter, we view dark “matter” as a form of

energy and assume new properties of vacuum energy. This provides a

description of black holes with a core rather than a singularity

(Nieuwenhuizen, 2023), aspects of dark matter throughout the history

and future of the Universe (Nieuwenhuizen, 2024a), and the giant dark

matter clouds around isolated galaxies (Nieuwenhuizen, 2024b),

explaining the “indefinite flattening” of their rotation curves (Mistele

et al., 2024). Remarkably, this approach is a generalization of the

classical Lorentz–Poincaré electron—a charged, non-spinning spherical

shell filled with vacuum energy (Nieuwenhuizen, 2025).
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Section 3, we revisit the spin-12 case and cast its dynamics in a general
form. In Section 4, we analyze the dynamics of the spin-1 situation.
We close with a summary in Section 5.

2 Higher-spin Curie–Weiss
Hamiltonian models

We start by recalling some properties of higher-spin models that
we introduced in “Models” (Nieuwenhuizen, 2022). The statics were
considered there; here, we define and study the dynamics, recalling
parts of the spin 1

2 case. We often refer to the review by Allahverdyan
et al. (2013) to be termed “Opus.”

In the following, we denote quantum operators by a hat,
specifically ŝ and ŝz for the measured spin and σ̂(i) and σ̂(i)z for
the spins of the apparatus. For simplicity of notation, we follow
Models and denote the eigenvalues without a hat, notably those of
ŝz by s and the ones of σ̂(i)z by σ i. Sums over i lead to the
operators m̂k and their scalar values mk for k � 1, 2, . . . , 2l.
Switching between these operators and their eigenvalues is
straightforward.

The strategy is to measure the z-component of a quantum spin-l
with (l � 1

2, 1,
3
2,/ ). The eigenvalues s of the operator ŝz lie in

the spectrum2

s ∈ specl � −l,−l + 1, . . . , l − 1, l{ }. (2.1)

The measurement will be performed by employing an apparatus
with N≫ 1 vector spins-l having operators σ̂(i), i � 1, . . . , N. They
have components σ̂(i)a (a � x, y, z), with eigenvalues σ(i)a ∈ specl.
These operators are mutually coupled in the Hamiltonian of M. For
each i � 1,/N, and for each σ̂(i)a , a � x, y, z, they are also coupled
to a thermal harmonic oscillator bath; for the case l � 1

2, this was
worked out by Allahverdyan et al. (2003a), Allahverdyan et al.
(2003b), and Allahverdyan et al. (2013). The generalization of
such a bath for arbitrary spin-l is straightforward and will be
applied to the spin-1 model.

2.1 Spin–spin Hamiltonian of the magnet

A quantum measurement is often assumed to be
“instantaneous.” In our idealized modeling, it will take a finite
time, but the tested spin will not evolve in the meantime. In
other words, the spin itself is “sitting still” and waiting to be
measured. Neither should it evolve during the “fast”
measurement. This is realized when its Hamiltonian ĤS

commutes with ŝz; we consider the simplest case: ĤS � 0.
In order to have an unbiased apparatus, the Hamiltonian of the

magnet should have degenerate minima and maximal symmetry. To
construct such a functional, we consider, in the eigenvalue
presentation, the form

C2 � ]2 ∑N
i,j�1

cos
2π σ i − σj( )

2l + 1
, ] ≡

1
N
, (2.2)

which is maximal in ferromagnetic states σ i � σ1 (i � 2, . . . , N).
In general, these interactions do not seem realistic,
but here, the cosine rule allows expressing this as spin–spin
interactions,

C2 � co2l + si2l , (2.3)

which is bilinear in the single-spin sums

col � 1
N

∑N
i�1

cos
2πσ i

2l + 1
, sil � 1

N
∑N
i�1

sin
2πσ i

2l + 1
. (2.4)

The discrete values of the spin projections allow expressing these
terms in the 2l spin moments,

mk � 1
N

∑N
i�1

σki , k � 1, . . . , 2l( ), (2.5)

while m0 ≡ 1. For l � 1
2, the values s � ± 1

2 imply

cos πs � 0, sin πs � 2s. (2.6)
Applying this for s → σ i and summing over i yields

co1
2
� 0, si1

2
� 2m1, m1 � 1

N
∑N
i�1

σ i. (2.7)

In the case l � 1, one has s � 0,± 1. The rule

cos
2πs
3

� 1 − 3
2
s2, sin

2πs
3

�
�
3

√
2

s, (2.8)

leads to s → σ i and summing over i leads to

co1 � 1 − 3
2
m2, si1 �

�
3

√
2
m1, (2.9)

Here, m2 ranges from 0 to 1 with steps of ] ≡ 1/N, while m1 ranges
from −m2 to m2 with steps of 2]. At finite N, one can label the
discrete m1,2 as

m1 � 2n1 − n2( )], m2 � n2],
0≤ n2 ≤N, 0≤ n1 ≤ n2( ). (2.10)

The results for s � 3
2, 2, and

5
2 are given in Models.

Let out of the N spins σ i, a number Nσ � ∑iδσi ,σ take
the value σ ∈ specl and let xσ � Nσ /N be their fraction.
The sum rule ∑σNσ � N implies m0 ≡ ∑σxσ � 1. The
moments read

mk � ∑l
σ�−l

xσσ
k, k � 1, . . . , 2l, (2.11)

Inversion of these relations determines the xσ as linear
combinations of the mk. For l � 1

2, one has

m1 � 1
2
x1

2
− 1
2
x−1

2
, x±1

2
� 1
2
± m1. (2.12)

For spin-1 (l � 1), one has

m1 � −x−1 + x1, m2 � x−1 + x1. (2.13)

2 To simplify the notation, we replace the standard notation for spins with

s → l and sz → s. For an angular momentum L2 � l(l + 1), the model also

applies to the measurement of L̂z with eigenvalues m → s. We employ

units Z � k � 1.
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With x−1 + x0 + x1 � 1, their inversion reads

x0 � 1 −m2, x±1 � m2 ± m1

2
. (2.14)

In a quantum approach, one goes to operators and sets s → ŝz,
σ i → σ̂(i)z , andmk → m̂k. For the Hamiltonian ĤM � NĤ, we follow
Allahverdyan et al. (2003a) and Allahverdyan et al. (2003b) and
adopt the spin–spin and four–spin interactions:

ĤM � NĤ, Ĥ � −1
2
J2Ĉ2 − 1

4
J4Ĉ

2

2. (2.15)

Multispin interaction terms like −1
6J6Ĉ

3
2 − 1

8J8Ĉ
4
2 can be added

without changing the overall picture.

2.2 The interaction Hamiltonian

The coupling between the tested spin S and the magnet M is
chosen similar to Equation 2.2,

ĤSA � NÎ, Î � g

N
∑N
i�1

cos
2π ŝzσ̂

(i)
z( )

2l + 1
, (2.16)

where g is the coupling constant. It takes the values

Is σ i{ }( ) � − g

N
∑N
i�1

cos
2πs
2l + 1

cos
2πσ i

2l + 1
(
+ sin

2πs
2l + 1

sin
2πσ i

2l + 1
),

(2.17)

This can be expressed as a linear combination of the moments
m1, / , m2l. For l � 1

2, one has

Is m1( ) � −4gsm1, (2.18)
and for l � 1, denoting m � (m1, m2),

Is m( ) � −g 1 − 3
2
s2( ) 1 − 3

2
m2( ) + 3

4
sm1[ ]. (2.19)

The total spin Hamiltonian,

Ĥ � ĤM + ĤSA � ĤM −NÎ, (2.20)

has Z2l+1 symmetry: on the diagonal basis, a shift s → s + �s with
�s � 1, 2, . . . , 2l + 1 can be accompanied by a shift σ i → σ i + �s for all i.
This is evident in the cosine expressions and implies a somewhat
hidden invariance in the formulation in terms of the momentsmk, as
discussed in Models.

2.3 Coupling to a harmonic oscillator bath

For a general spin l, the magnet–bath coupling is taken as the
spin–boson coupling of Opus Equation 3.10,

ĤMB ≡
�
γ

√ ∑N
i�1

∑
a�x,y,zσ̂

(i)
a B̂

(i)
a , (2.21)

with γ≪ 1, where the bath operators read

B̂
(i)
a � ∑

k

��
ck

√
b̂
(i)
k,a + b̂

† n( )
k,a( ), (2.22)

for each i, a, there is a large set of oscillators labeled by k, having a
common coupling parameter ck. These bosons have the
Hamiltonian

ĤB � ∑N
i�1

∑
a�x,y,z

∑
k

Zωkb̂
†(i)

k,a b̂
(i)
k,a, (2.23)

with the ωk also identical for all n, a. The autocorrelation function of
B defines a bath kernel K, which is identical for all i, a,

trB R̂B 0( )B̂(i)
a t( )B̂ j( )

b t′( )[ ] � δi,jδa,b K t − t′( ),
B̂
(i)
a t( ) ≡ eiĤBtB̂

(i)
a e−iĤBt.

(2.24)

Writing ck � c(ωk), this leads to

K t( ) � ∑kc ωk( ) eiωkt

eβωk − 1
+ e−iωkt

1 − e−βωk
( )

≡
1
2π

∫+∞

−∞
dω eiωt ~K ω( ).

(2.25)

The kernel ~K(ω) can be read off and expressed in the spectral
density ρc(ω) � ∑kc(ωk) δ(ω − ωk),

~K ω( ) � 2π
|ω|ρc ω| |( ) ω

eβω − 1
. (2.26)

We adopt an Ohmic spectrum with a Debye cutoff,

~K ω( ) � e−ω| |/Γ

4
ω

eω/T − 1
, (2.27)

where T � 1/β is the temperature of the phonon bath, and Γ the
typical cutoff frequency. In Opus, we also consider a Lorentzian
(power law) cutoff, for which the statics allows analytic results.

With the couplings in Equations 2.21, 2.22, and 2.23
independent of a, ĤMB is statistically invariant under Z2l+1.
Combined with the invariance of ĤM and ĤSA, this ensures an
unbiased measurement.

2.4 Evolution of the density matrix

The evolution of the density matrix of the total system is given
by the Liouville–von Neumann equation. On the eigenbasis of ŝz,
its elements R̂s�s evolve independently as given in Equation 4.8 of
Opus; this involves the apparatus spins and the bath. The
procedure of Opus for spin l � 1

2 appears to hold for general
spin-l operators.

Let us consider the time evolution of R̂s�s as given in Equation 4.8
of Opus (we now denote i → s, j → �s), where the action of the
harmonic oscillator bath has been expressed in the bath kernel K(t)
and which involves commutators of R̂s�s with the spin operators σ̂(i)a ,
a � x, y, z; i � 1, . . . , N.

Formally, the initial state (Equation 5.4) is a constant function of
the σ̂(i)z . In addition, _Rs�s(ti) is a function of them, so it is consistent to
assume that, at all t, R̂s�s only depends on the σ̂(i)z . As a result, the
a � z terms of Equation 4.8 in Opus have vanishing commutators
for any spin l. Left with the x, y commutators, we define (using the
index n rather than i to label the σ̂x,y)

σ̂(n)
± � σ̂(n)x ± iσ̂(n)y . (2.28)
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Because ∑ax,yσ̂
(n)
a Ôσ̂(n)a � 1

2∑α�±1σ̂
(n)
α Ôσ̂(n)−α for any operator Ô,

Equation 4.8 in Opus takes the form

dR̂s�s t( )
dt

� −iĤsR̂s�s t( ) + iR̂s�s t( )Ĥ�s

+ γ

2
∑

α,β�±1
∑N
n�1

∫t

0
du K βu( )Ĉ α,n( )

s�s,β u( ),
(2.29)

where

Ĉ
α,n( )

s�s,+ u( ) � e−iuĤs σ̂(n)
−α e

iuĤs R̂s�s t( ), σ̂(n)
α[ ],

Ĉ
α,n( )

s�s,− u( ) � σ̂(n)−α , R̂s�s t( )e−iuĤ�s σ̂(n)
α eiuĤ�s[ ], (2.30)

are commutators involving the Hamiltonian of M coupled to S
in state s, without the bath, viz.

Ĥs � ĤM + Ĥ
s

SA � NH m̂1( ) +NIs m̂1( ). (2.31)

The action of the bath is expressed in the kernelK(± u), with the
smallness of γ allowing truncation at its first order. Equations 2.29,
2.30 are valid for general spin l � 1

2, 1,
3
2,/ .

Most importantly, the R̂s~s are decoupled in the separate s, �s
sectors, a property of ideal measurement but absent in general.
Examples of these non-idealities are a spin S having nontrivial
dynamics during the measurement and a biased measurement, in
which the Hamiltonian of the magnet and/or the bath depends on
the state of S.

2.5 Physical implementation of the model

The spin-12 Curie–Weiss model for quantum measurement
(Allahverdyan A. et al., 2003) was initially conceived as a tool to
understand the dominant physical aspects of idealized quantum
measurements. It has served this purpose well. Let us look here at
possible realizations of the model.

Curie–Weiss models are mean-field types of spin models.
Their distance-independent couplings apply to a small
magnetic grain. The grain need not be very large. From studies
of spin glasses and cluster glasses, it is known that “fat spins,”
clusters of hundreds or thousands of coherent spins, are easily
detectable (Mydosh, 1993).

The Ising nature of the couplings refers to fairly anisotropic
spin–spin interactions. For spin 1

2, Equation 2.15 expresses the pair
and quartet couplings between the z-components of the spins.
Multispin interactions are a natural result of the overlap of
electronic orbits; here, they are approximated as not decaying
with the distance between the spins in the grain. How reasonable
this approximation is must be considered in each separate
application. The main feature of our modeling, a first-order
phase transition in the magnet, suggests that it represents a large
class of short-range systems. This is underlined by the model’s
support of the Copenhagen postulates of collapse and Born
probabilities.

These features also hold for the spin-1 Curie–Weiss model.
However, on top of this, Equation 2.8 produces the combination
Σ̂i ≡ σ̂(i)2z − 2/3, which takes the values 1/3 for the “out-of-plane”
cases σ i � ± 1 and −2/3 for the “in-plane” case σ i � 0. Separate-spin
terms of the form ∑iDσ̂(i)2z are well known, stemming from crystal

fields. For the apparatus, the co21 term of Equation 2.3 relates to the
interaction ∑ijΣ̂iΣ̂j between the Σ̂i, so it involves both the
aforementioned D-term and also the terms σ̂(i)2z σ̂(j)2z . How to
implement these crystal-field-type spin–spin interactions in
practice is an open question.

Concerning numerical implementations, Donker et al. (2018)’s
approximation of the Curie–Weiss model can be generalized to
higher spin.

3 The spin 1
2 case revisited

3.1 Elements of the statics

We set the stage by considering the spin-12 situation, the original
Curie–Weiss model for quantum measurement in slightly adapted
notation3. The spin operators are σ̂x,y,z, with σ̂z � diag(12,−1

2). It
holds that [σ̂a, σ̂b] � iεabcσ̂c and σ̂2x + σ̂2y + σ̂2z � 3

4σ̂0 with σ̂0 �
diag(1, 1).

The magnet has N these spins σ̂(i)x,y,z, i � 1, 2, . . . , N. They have
magnetization operator

M̂1 � Nm̂1, m̂1 � 1
N

∑N
i�1

σ̂(i)
z , (3.1)

taking eigenvalues −1
2≤m1 ≤ 1

2. In the paramagnetic state,
m1 � 0. The Hamiltonian is taken as pair and quartet interactions,

ĤM � NĤ, Ĥ � −2J2m̂2
1 − 4J4m̂

4
1. (3.2)

With x̂σ � N̂σ/N, it holds that

m̂1 � 1
2
x̂1/2 − 1

2
x̂−1/2, x̂±1/2 � 1

2
Î ± m̂1. (3.3)

The spins have eigenvalues σ i � ± 1
2, so that m̂1 has eigenvalues

m1 � ]∑iσ1 ranging from −1
2 to

1
2 with steps of ].

3.2 The interaction Hamiltonian

To use the magnet coupled to its bath as an apparatus for a
quantum measurement, a system–apparatus (SA) coupling is
needed. According to Equation 2.18, it is chosen as a
spin–spin coupling,

ĤSA � −4g∑N
i�1

ŝσ̂(i)
z � −4gNŝm̂1, (3.4)

and takes the values Hs
SA(m1) � −4gsNm1. The full

Hamiltonian of S + A in the sector s thus reads

Ĥs � −2J2Nm̂2
1 − 4J4Nm̂4

1 − 4gsNm̂1. (3.5)

The eigenvalues of ŝz are s � ± 1
2 and those of σ̂

(i)
z are σ i � ± 1

2, so
that m̂1 has the eigenvalues ]∑N

i�1σ i. The degeneracy of a state with
magnetization m1 is

3 For the connection with the parameters in Opus, see ref 1.

Frontiers in Quantum Science and Technology frontiersin.org05

Nieuwenhuizen 10.3389/frqst.2025.1603372

61

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2025.1603372


GN � N!

N−1
2
! N1

2
!
� N!

Nx−1
2

( )! Nx1
2

( )!, (3.6)

and entropy SN � logGN. At largeN, we get the standard result
for the entropy SN � NS with

S � 1 − 2m1

2
log

1 − 2m1

2
− 1 + 2m1

2
log

1 + 2m1

2
. (3.7)

Combining Equation 3.5 and Equation 3.6, the free energy in the
s-sector reads

Fs m1( ) � −2J2Nm2
1 − 4J4Nm4

1 − 4gsNm1 − T logGN m1( ), (3.8)

which yields, for large N,

Fs

N
� −2J2m2

1 − 4J4m
4
1 − 4gsm1 − TS m1( ). (3.9)

3.3 Dynamics of the spin 1
2 model

At the initial time ti of the measurement, the state of the tested
system, S, here ŝ, a spin-12 operator, is described by its 2 × 2 density
matrix r̂(ti) with elements rs�s(ti) for s, �s � ± 1

2. The magnet M has
N≫ 1 quantum spins-12 σ̂

(i) (i � 1, . . . , N). In each s, �s sector, S + M
lie in the state R̂s�s(t) � R̂

†

�ss(t), which is an operator that can be
represented by a 2N × 2N matrix. At ti, M is assumed to lie in the
paramagnetic state wherein the spins are fully disordered and
uncorrelated. Multiplying by the respective element of r̂(ti) leads
to the elements of the initial density matrix of S + M

R̂s�s ti( ) � rs�s ti( ) σ̂
(1)
0

2
⊗
σ̂(2)
0

2
⊗/⊗

σ̂(N)
0

2
. (4.1)

3.4 Truncation for spin 1
2

The dynamics of the off-diagonal elements (cat terms) were
worked out in Opus. In the relevant short-time domain, the
spin–spin couplings are ineffective; therefore, it suffices to study
independent spins coupled by the interaction Hamiltonian and the
bath. These elements vanish dynamically, truncating the density
matrix R̂ to a form diagonal on the eigenbasis of ŝz. There is no
reason to repeat that here; for spin-1, this will be worked out
in Section 4.1.

3.5 Registration for spin 1
2

Registration of the measurement is described by the evolution of
the diagonal elements of the density matrix of the full system. For the
situation of higher spin, it is instructive to reconsider and slightly
reformulate the spin 1

2 situation.
For �s � s, the Hamiltonian terms drop out of Equation 2.29;

hence, the dynamics are a relaxation set by

dR̂ss t( )
dt

� γ

2
∑

α,β�±1
∑N
n�1

∫t

0
du K βu( )Ĉ α,n( )

ss,β u( ). (4.2)

For l � 1
2, the spin operators σ̂x,y,z anticommute; hence, for any

function f of the σ̂(i)z , it holds that

σ̂(n)α f σ̂(i)
z{ }( ) � f̂ −1( )δi,n σ̂(i)

z{ }( )σ̂(n)
α

≡ f(n) σ̂(i)
z{ }( )σ̂(n)

α .
(4.3)

This brings the σ̂(n)α and σ̂(n)−α next to each other, which allows to
eliminate them using the sum ∑α�±1σ̂

(n)
α σ̂(n)−α � σ̂(n)0 . With only

functions of the σ̂(i)z (i � 1, . . . , N) remaining, we can go to their
diagonal bases to work with scalar functions of their eigenvalues
σ i � ± 1

2 (see also Opus, Section 4.4). This expresses Equation 2.30 as

C(n)
s�s,+ u( ) ≡ ∑

α�±1
Cα n

s�s,+ u( ) � e−iuHs eiuH
(n)
s R(n)

s�s t( ) − e−iuH
(n)
s eiuHsRs�s t( ),

C(n)
s�s,− u( ) ≡ ∑

α�±1
Cα n

s�s,− u( ) � R(n)
s�s t( )e−iuH(n)

�s eiuH�s − Rs�s t( )e−iuH�s eiuH
(n)
�s ,

(4.4)
where for any function f({σ i}), f(n) has the sign of σn reversed,

f(n) σ i{ }( ) � f −1( )δi,nσ i{ }( ). (4.5)

We employed the obvious rules (fg)(n) � f(n)g(n) and
[f(g)](n) � f(g(n)). The terms in Equation 4.4, being scalars,
yield the relation C(n)

s�s,−(u) � C(n)
s�s,+(−u), which allows combining

the integrals of Equations 2.29 and 2.30 as a single one from u �
−t to t. Because γ≪ 1, the typical scale of t, the registration time 1/γT
is much larger than the bath equilibration time 1/T. Hence, we may
now take the integral over the entire real axis to arrive at the Fourier-
transformed kernel �K(ω) at specific frequencies.

The next step is to reduce the 2N × 2N matrix problem to a
problem of N + 1 variables by considering Rss({σ i}) � Rss(m1) to
be functions of the order parameterm1 � ]∑ σ i. This is formally true
at ti and valid for _Rs�s(ti); hence, it remains valid over time. Denoting
Ps(m1) as the probability that Rss({σ i})/rss(ti) involvesm1 � ]∑iσ i, it
picks up the degeneracy numberGN in Equation 3.6 of realizations {σ i}
with the same m1,

Ps m1( ) � GN m1( )Rss m1( )
rss ti( ) . (4.6)

To obtain the evolution of _Ps, we multiply Equation 4.2 by
GN(m1)/rss(ti). At given m1, one has m

(n)
1 � m1 − 2]σn, so we can

split the terms with σn � 1
2 (and −1

2) and perform the sum over n. The
fraction of terms that flips an up spin σn � 1

2 is x1
2
(m1), which

multiplies P(m1 − ]); flipping a down spin σn � −1
2 happens with

probability x−1
2
(m1), which multiplies P(m1 + ]). Due to Equation

4.6, these Ps involve the ratios

GN m1( )
GN m1 − ]( ) �

x−1
2
m1 − ]( )

x1
2
m1( ) ,

GN m1( )
GN m1 + ]( ) �

x1
2
m1 + ]( )

x−1
2
m1( ) ,

(4.7)

which has the effect of eliminating the x±1
2
(m1). Introducing the

operators E± and Δ± � E± − 1 by

E±f m1( ) � f m1 ± ]( ),
Δ±f m1( ) � f m1 ± ]( ) − f m1( ), (4.8)

the evolution of Ps gets condensed as
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_Ps m1( ) � γN

2
∑
α�±1

Δα x1
2 α

m1( ) ~K Ωsα m1( )[ ]Ps m1( ){ }. (4.9)

where

Ωs± m1( ) � Δ∓Hs � Hs m1 ∓ ]( )−Hs m1( ). (4.10)
This is now a problem for N + 1 functions P(m1; t) subject to the
normalization ∑m1

P(m1; t) � 1.

In Figure 1, the distribution of themagnetizationm1 is depicted at
various times. In Figure 2, this evolution is represented in a 3d plot.

3.6 H-theorem and relaxation to equilibrium

The dynamical entropy of the distribution Ps(m1; t) �
GN(m1)Rss({σ i}; t)/rss(ti) is defined as

FIGURE 1
Evolution of the magnetization distribution Ps(m1; t) for s � +1

2 at times 0, 1, . . . ,8 in units of 1/γT . The paramagnetic state at t � 0 is peaked around
m1 � 0; the coupling between S and A moves the peak toward m1 � +1

2. In doing so, it first broadens and later narrows significantly.

FIGURE 2
The case of Figure 1 plotted in 3d at intervals Δt � 0.2/γT .
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Ss t( ) � −Tr R̂ss t( )
rss ti( ) log

R̂ss t( )
rss ti( )

� −∑
m1

Ps m1; t( )logPs m1; t( )
GN m1( ) .

(4.11)

As in Opus, we introduce a dynamical free energy:

Fs
dyn t( ) � Us t( ) − TSs t( )

� ∑
m1

Ps m1; t( ) Hs m1( ) + T log
Ps m1; t( )
GN m1( )[ ], (4.12)

which adds the Ps logPs term to the average of the free energy
functional FN(m1) � Hs(m1) − TSN(m1). With β � 1/T, Equation
5.36 yields.

_F
s

dyn � T∑
m1

_Ps m1( )logPs m1( )eβHs m1( )

GN m1( )

� γNT

2
∑
α�±1

∑
m1

Δα x1
2 α
~K Ωs α( )Ps[ ]logPseβHs

GN
.

For general functions f1,2(m1) and α � ± 1, partial
summation yields

∑
m1

Δαf1( )f2 � ∑
m1

f1 Δ−αf2( ) � ∑
m1

Eα f1 Δ−αf2( )[ ]
� −∑

m1

Eαf1( ) Δαf2( ). (4.13)

provided that the boundary terms f1,2(m]
±) at m]

± � ± (1 + ])
vanish. As discussed, this holds for Ps but also for the logarithm in
Equation 4.13 because we may insert a factor (1 − δm1 ,m] − δm1 ,−m])
that makes this explicit. For α � +1, we now use the last expression,
and for α � −1, we use the second one, which yields, also using
Equation 4.10 and the property ~K(−ω) � ~K(ω)eβω satisfied in
(Equations 2.26, 2.27), the result

_F
s

dyn � −γNT∑
m1

~K Δ+Hs( ) × eΔ+βHs E+x1
2

( ) E+Ps( )x−1
2
Ps{ }Δ+ log

Pse
βHs

GN
.

(4.14)

The various x–factors are such that a term GN(m1)x−1
2
can be

factored out to yield

_F
s

dyn � −γNT∑
m1

∑
β�±1GNx−1

2
~K Δ+Hs( )

× eΔ+βHs E+
Ps

GN
( ) Ps

GN
{ }Δ+ log

Pse
βHs

GN
. (4.15)

With Δ+Hs � E+Hs −Hs, GN � exp(SN) and
Fs(m1) � Hs(m1) − TSN(m1), this can finally be expressed as

_F
s

dyn t( ) � −γNT∑m1
x−1

2
~K Δ+Hs( )e−βFs

× Δ+
Ps

e−βFs
( ) Δ+ log

Ps

e−βFs
( ). (4.16)

The last factors have the form (x′ − x)log(x′/x), which is
nonnegative, so that Fs

dyn is a decreasing function of time.
Dynamic equilibrium occurs when these factors vanish, which
happens when the magnet has reached the thermodynamic
equilibrium set by the Gibbs state Ps � e−βFs /Zs and
R̂ss � e−βĤs /Zs, with Zs � ∑m1

exp(−βFs) � ∑m1
GN(m1)

exp(−βHs) � Tr exp(−βĤs), as usual. The dynamical free energy
(Equation 4.12) indeed ends up at the thermodynamic one,

Fs
dyn ∞( ) � −T logZs � Fs g( ). (4.17)

This constitutes an example of the apparatus going dynamically
to its lowest thermodynamic state and the pointer state indicating
the measurement outcome s � ± 1

2. The temporal evolution from
Fdyn(0) to Fs(g) is depicted in Figure 3.

3.7 Decoupling the apparatus

Near the end of the measurement, at a suitable time tdc, the
apparatus is decoupled from the system, by setting g � 0; in
doing so, an energy Udc � −∑m1

Ps(m1; tdc)HSA(m1) must be
supplied to the magnet, which will then relax further its
nearby minimum of the g � 0 situation, to provide a stable

FIGURE 3
Evolution of the dynamical free energy Fsdyn(t), identical in both sectors s � ± 1

2, after coupling the apparatus to a spin-12 at time t � 0. Its approach to
the Gibbs state with Fs(g) (bottom line), exponential in t, expresses the registration of the measurement.
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pointer indication with a macroscopic order parameter M1 �
Nm1 that can be read off.

4 Dynamics of the spin-1 model

Wenow focus on the spin-1 case, in which the tested system, S, is
ŝ, a spin-1 operator with ŝz having eigenvalues sz � −1, 0, 1. Our
magnet M has N≫ 1 quantum spins-1 σ̂(i) (i � 1, . . . , N).
According to Equation 2.5, one now deals with two order
parameters,

m̂1 � 1
N

∑N
i�1

σ̂ i, m̂2 � 1
N

∑N
i�1

σ̂2
i . (5.1)

While m̂1 is the usual magnetization in the z-direction, m̂2 is a spin-
anisotropy order parameter that discriminates the sectors with
eigenvalues σ i � ± 1 from the sector with eigenvalues σ i � 0.

The quantity Ĉ2, the operator-form of Equation 2.2, is our
starting point for a permutation-invariant Hamiltonian that ensures
unbiased measurement. Expanding the cosine, employing Equation
2.8 for each spin σ̂ i, and summing over i yields a polynomial in the
moments m̂1,2,

Ĉ2 � 1 − 3
2
m̂2( )2

+ 3
4
m̂2

1. (5.2)

For the Hamiltonian, we take as in Equation 3.2

ĤN � NĤ, Ĥ � −1
2
J2Ĉ2 − 1

4
J4Ĉ

2

2. (5.3)

It can be understood as containing the single-spin term m̂2, the
pair couplings m̂2

1 � 1/N2∑ijσ̂ iσ̂j and m̂
2
2 � 1/N2∑ijσ̂

2
i σ̂

2
j , the triplet

couplings m̂2
1m̂2 and the quartet couplings m̂4

1, m̂
2
1m̂

2
2, and m̂4

2.
However, note its different conception in Section 2.5.

At the initial time ti of the measurement, its state is described by
its 3 × 3 density matrix r̂(ti) with elements rs�s(ti) for s, �s � −1, 0, 1.

In each s, �s sector, M lies in its state R̂s�s(t) � R̂
†

�ss(t), which is an
operator that can be represented by a 3N × 3N matrix. This
exponential problem gets transformed into a polynomial one, a
step that is exact for the considered mean-field-type Hamiltonian.

At ti, M is assumed to lie in a paramagnetic state, wherein the
spins are fully disordered and uncorrelated. For each spin, its state is
thus σ̂(i)0 /3 where σ̂(i)0 � diag(1, 1, 1). Multiplying by the respective
element of r̂(ti) leads to the elements of the initial density matrix of S
+ M in the s, �s � 0,± 1 sector,

R̂s�s ti( ) � rs�s ti( ) σ̂
(1)
0

3
⊗
σ̂(2)
0

3
/⊗

σ̂(N)
0

3
. (5.4)

For general angular momentum, the commutation relations
[L̂a, L̂b] � iεabcL̂c and L̂

2
x + L̂

2
y + L̂

2
z � l(ł + 1)Î carry over to

general spin

σ̂a, σ̂b[ ] � iεabcσ̂c, σ̂2x + σ̂2y + σ̂2
z � l l + 1( )σ̂0, (5.5)

While we considered l � 1
2 in Section 3, we now focus on l � 1.

We proceed as for spin 1
2. The a � z commutator in Equation

2.29 does again not contribute. We introduce σ̂α � σ̂x + iασ̂y for
α � ± 1. From Equation 5.5, it follows for general l that

σ̂ασ̂−α � l l + 1( )σ̂0 + ασ̂z − σ̂2z
σ̂ασ̂−α( )σσ′ � l + 1 − ασ( ) l + ασ( )δσσ′. (5.6)

In the present case l � 1, this has nontrivial values

σ̂ασ̂−α( )σσ � 2δσ,α + 2δσ,0, σ � 0,± 1( ), (5.7)
with Equation 5.6 implying that the σ � −α term indeed drops out.
The SO(3) generators

σ̂x � 1�
2

√
0 1 0
1 0 1
0 1 0

⎛⎜⎝ ⎞⎟⎠, σ̂y � 1�
2

√
0 −i 0
i 0 −i
0 i 0

⎛⎜⎝ ⎞⎟⎠,

σ̂z �
1 0 0
0 0 0
0 0 −1

⎛⎜⎝ ⎞⎟⎠,

(5.8)

allow verifying these relations. Each of the σ̂(i) (i � 1, . . . , N)
has such a presentation. In Equation 2.30, the interchange of the σ̂(i)α

with the σ̂(n)z will be needed. For i ≠ n, they commute, while for i � n,

σ̂ n( )
α σ̂ n( ) k

z � σ̂(n)
z − ασ̂(n)

0( )kσ̂ n( )
α ,

σ̂(n) k
z σ̂ n( )

α � σ̂ n( )
α σ̂(n)

z + ασ̂(n)
0( )k. (5.9)

Valid for k � 1, induction yields this for higher k. For functions
of the {σ̂(i)z }, (i � 1, . . . , N), that can be expanded in a power series, it
follows that

σ̂ n( )
α f σ̂(i)

z{ }( ) ≡ f n,α( ) σ̂(i)
z{ }( )σ̂ n( )

α ,

f n,α( ) σ̂(i)
z{ }( ) � f σ̂(i)z − δi,nασ̂

(n)
0{ }( ). (5.10)

Now the σ̂± can be eliminated using Equation 5.6, which leaves
functions of only the σ̂(i)z , with the shifts in their arguments arising as
the cost for this. As before, we can assume that R̂s�s(t) � Rs�s({σ̂(i)z }, t),
where Rs�s({σ i}, t) is a scalar function of the eigenvalues σ i � 0,± 1 of
the σ̂(i)z . Valid at ti, this holds for (dR̂s~s/dt)(ti), so it remains valid in
time. Hence, it is possible to go from the matrix equations to scalar
equations. With the equality in Equation 5.6 applied for spin n, we
end up with the scalar expressions

C(n,α)
s�s,+ u( ) � δσn ,−α + δσn,0( )e−iuHs eiuH

(n,α)
s R(n,α)

s�s t( )
− δσn,α + δσn,0( )e−iuH(n,−α)

s eiuHsRs�s t( ),
C(n,α)

s�s,− u( ) � C(n,α)
s�s,+ −u( ),

(5.11)

where for any function Rs�s expandable in powers of the σ i �
0,± 1 (i � 1, . . . , N), it holds that

R(n,α)
s�s � Rs�s σ i → σ i + αδi,n{ }( ), (5.12)

Now that all terms are scalar functions of the σ̂(i)z , it is seen that
C(n,α)
s�s,− (u) � C(n,α)

s�s,+ (−u;Hs → H�s). We no longer need to track the
operator structure and can work with scalar functions of the
eigenvalues.

4.1 Off-diagonal sector: truncation of
Schrödinger cat terms

In the spin 1
2 Curie–Weiss model, it was found that the

Schrödinger cat terms disappear by two mechanisms: dephasing
of the magnet, possibly followed by decoherence due to the thermal
bath. Similar behavior is now investigated for spin-1.
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4.1.1 Initial regime: dephasing
Truncation of the density matrix (disappearance of the cat states)

is a collective effect that takes place within an initial time window, in
which the magnet stays in the paramagnetic phase, so that the mutual
spin couplings J2,4 and the coupling to the bath can be neglected. The
spins of M act individually by their coupling to the tested spin S and
do not get correlated yet. In the sector where the eigenvalue of the
operator ŝz is s, the Hamiltonian of the magnet is

ĤSA � ∑
n

Ĥ
sn

SA,

Ĥ
sn

SA � −g 1 − 3
2
s2( ) σ̂(n)0 − 3

2
σ̂(n) 2
z( ) + 3

4
sσ̂(n)

z[ ]. (5.13)

At a given s, this is a trace-free diagonal matrix with elements 1
2g

(twice) and −g,
Hsn

SA( )σ ~σ � g

2
δσ,~σ 1 − 3δσ,s( ),

δσ,s � 1
3
+ 2

3
− s2( ) 1 − 3

2
σ2( ) + 1

2
sσ,

(5.14)

for (s, σ, ~σ � 0,± 1). In this approximation, the 3N × 3N density
matrix of the magnet in each sector s�s maintains the product structure
(Equation 5.4) of uncorrelated spins at t � ti,

R̂s�s t( ) � rs�s ti( )ρ̂(1)s�s t( )/⊗ ρ̂ 2( )
s�s t( )/⊗ ρ̂(N)

s�s t( ), (5.15)
where, setting ti � 0, for each n,

ρ̂(n)s�s t( ) � e−itĤ
s,n
SA
σ̂(n)
0

3
eitĤ

�s,n
SA � ρ̂(n)�ss t( )( )†,

ρ(n)s�s t( )( )
σ ~σ

� 1
3
δσ,~σ exp

3
2
igt δσ,s − δσ,�s( )[ ]. (5.16)

Diagonal elements s � �s thus essentially do not evolve in this
short-time window. The off-diagonal ones imply for s ≠ �s

rs�s t( ) � TrMR̂s�s t( ) � rs�s 0( ) 1
3
+ 2
3
cos

3
2
gt( )N

. (5.17)

For small t, this decays as rs�s(0) exp(−t2/τ2dph) with the dephasing
time τdph � 2/g

���
3N

√
, very short for large N. The undesired

recurrences at tn � 4πn/3g, where the cosine equals 1 again, can
be suppressed by assuming that the g → gn � �g + δgn values in
Equation 5.16 have a small spread δgn (see Opus, Section 6.1.1). If
the thermal oscillator bath has proper parameters, it will cause
decoherence, as seen next.

4.1.2 Second step: decoherence
To include the bath in Equation 5.16, we now make the

generalized Ansatz:

ρ̂(n)s�s t( )( )
σ ~σ

� δσ,~σ
1
3
exp −Bσ t( )[ ] × exp −itH s,n( )

SA σ( ) + itH �s,n( )
SA σ( )[ ].

(5.18)
In the commutators (Equation 5.11),Hs now reduces to theHs,n

SA

of Equation 5.14, and the terms are identical for all n. We can neglect
B ~ γ in the exponents of Equation 2.29 and find, putting −α → α in
the minus terms,

_Bσ � γ

2
∑

α
Kt> Δσ

αHs( ) +Kt< Δσ
αH�s( )[ ]{

− Kt> −Δσ
αHs( ) + Kt< −Δσ

αH�s( )[ ]eασs�s t( )}, (5.19)

with

Kt> ω( ) � ∫t

0
du K u( )e−iωu,

Kt< ω( ) � ∫0

−tdu K u( )e−iωu. (5.20)

Here, Kt>(ω) � Kt>* (ω) because the kernel ~K(ω) is real valued;
see the example in Equation 2.27, and

Δσ
αHs � Hs σ + α( ) −Hs σ( )

� 3g
2

1 − 3
2
s2( ) 1 + 2ασ( ) − 1

2
sα[ ], (5.21)

with a similar expression for Δσ
αH�s, and finally

eασs�s t( ) � exp −it Δσ
αHs − Δσ

αH�s( )[ ]. (5.22)

For �s � s, one has eασs�s (t) � 1. For t≫ 1/2πT, one gets,
using ~K(−ω) � eβω ~K(ω),

_Bσ � γ

2
∑

α
~K Δσ

αHs( ) − ~K −Δσ
αHs( )

� γ

2
∑

α
Δσ
αHs( )e−|Δσ

αHs |/Γ ~
γ

N
,

(5.23)

because Hs ~ N, Δσ
αHs ~ N0, and ∑αΔσ

αHs ~ 1/N. Therefore,
for s � �s, this confirms that hardly any dynamics take place in this
time window. In the next subsection, we show that they occur on a
longer time scale τreg � 1/γT.

For off-diagonal elements �s ≠ s, it is seen that eασs�s (t) has terms
e±3igt/2 and e±3igt, so that

eασs�s t( ) � ∑
j�−2,−1,1,2

cje
3ijgt/2,

∫t

0
du eαs�s σ; u( ) � ∑

j�−2,−1,1,2
cj
e3ijgt/2 − 1
3ijg/2 .

(5.24)

The exponentials are equal to unity, making Eα
s�s � 1, at the times

tn � 4πn/3g, n � 1, 2,/ , encountered below Equation 5.17, when
appearing in the dephasing process, and thus also as times where
_Bσ(t) � 0. To suppress recurrences like in the dephasing, we again
set in each n-term g → gn � �g + δgn with small Gaussian
distributed δgn. For times well exceeding the coherence time
1/2πT of the bath, the Kt> and Kt< reach their finite limits, so
that we have

∫t

0
dt′ Kt′> ω( )Eα

s�s σ; t′( ) � ∫t

0
dt′ Kt′> ω( ) − K∞> ω( )[ ]Eα

s�s σ; t′( )
+ K∞> ω( )∫t

0
du Eασ

s�s u( ), (5.25)

The first part is small, and the second is given in Equation 5.24.
After canceling out its exponents by the δgn, an imaginary part
remains. Hence, for t≫ 1/2πT, the Eασ

s�s terms can be neglected in
RB. We keep

RBσ t( ) ≈ R _Bσ × t,

R _Bσ ≈
γ

2
∑

α
~K Δσ

αHs( ) + ~K Δσ
αH�s( )[ ], (5.26)

which is positive, so that | exp(−NBσ)| � exp(−NRBσ) with
NRBσ ~ γNgt leads for large enough values of N to a
decoherence of the off-diagonal elements rs�s(t) of the density
matrix at the characteristic decoherence time tdec � 1/γgN and
γNgτreg ~ Ng/T.
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Decoherence is a combined effect of the N apparatus spins;
despite it, the individual elements of R̂s�s hardly decay in this time
window, behaving as exp(−γgt) � exp(−t/N tdec) ≈ 1.

4.2 Registration dynamics for spin-1

In Section 3, a difference equation was derived for the distribution
of the magnetization of the magnet for any numberN of spins-12. Our
aim here is to derive an analogous equation for the spin-1 case.

In the paramagnet, one has the form Rss({σ i}) � rss(ti)/3N. Let
Ps(m) with m � (m1, m2) be the probability for a state of the
magnet M characterized by the moments m1,2. It gathers the
value Rss(m)/rss(ti) for all sequences {σ i} compatible with m1,2,
the number of which is the degeneracy factor GN � exp SN,

Ps m; t( ) � GN m( )Rss m; t( )
rss ti( ) ,

GN m( ) � N!

N−1( )! N0( )! N1( )!, Nσ � xσN,
(5.27)

with the x±1 � 1
2 (m2 ± m1) and x0 � 1 −m2 from Equation

2.14. The normalizations are

∑1
σ(1)�−1

/ ∑1
σ(N)�−1

Rss σ(i){ }; t( ) � rss ti( ),

∑1
m2�0

∑m2

m1�−m2

Ps m1, m2; t( ) � 1.

(5.28)

Due to the relations described by Equations 2.13 and 2.14
between the spin moments m0,±1 and the spin fractions x0,±1, the
shifts in m1,2 induce the shifts Nσ′ � Nσ + δNσ and
xσ′ � xσ + ]δNσ , with

δN±1 � 1 ± α

2
+ ασn, δN0 � −1 − 2ασn, (5.29)

which are integers, as they should be. The degeneracies for σn �
−α, 0, α lead to the respective factors

GN

GN( )′ �
N−1′ !N0′!N1′!
N−1!N0!N1!

� x0 + ]
x−α

δσn ,−α

+xα + ]
x0

δσn,0 +
x−1 + ]( ) x1 + ]( ) + xα + 2]( )

x0 x0 − ]( ) x0 − 2]( ) δσn,α,
(5.30)

where Nσ � Nxσ is used. The complicated last term is fortunately
not needed, while the denominators of the first two will factor out.

Going to the functions Ps of the momentsm1,2, we proceed as for
the spin 1

2 situation. The C± terms of Equation 5.11 can again be
combined and performing the u-integrals in Equation 4.2 leads for
t≫ 1/T to the kernel ~K(ω) at the frequencies

Ωβ
α m( ) � Hs m1α − ], m2 − β]( ) −Hs m( ), (5.31)

for α, β � ± 1. Multiplying Equation 4.2 by GN and summing
over α, there results an evolution equation for the distribution Ps at
each discrete value of m1,2,

_Ps m1, m2; t( ) � γN ∑
α�±1

x0 + ]( ) ~K −Ω+
s,−α( )P−

sα m1, m2; t( ){
+ xα + ]( ) ~K −Ω −

s,−α( )P+
sα m1, m2; t( )

− xα
~K Ω+

sα( ) + x0
~K Ω−

sα( )[ ]Ps m1, m2; t( )}.
(5.32)

Let us condense notation and introduce the shift operators Eβ
α

and Δβ
α � Eβ

α − 1 by their action

Eβ
αf m( ) � f m1 + α], m2 + β]( ),

Δβ
αf m( ) � f m1 + α], m2 + β]( ) − f m( ). (5.33)

on any f(m). They have the properties

Eβ
αΔ−β

−α � −Δβ
α, Ωβ

s α � Δ−β
−αHs,

Eβ
αΩβ

sα � −Δβ
αHs � −Ω−β

s,−α.

Eβ
αxα � xα + 1 + β

2
], Eβ

αx0 � x0 − β].
(5.34)

Hence, Equation 5.32 can be expressed as

_Ps m1, m2; t( ) � γN ∑
α�±1

Δ+
α xα

~K Ω+
sα( )Ps[ ] + Δ−

α x0
~K Ω−

sα( )Ps[ ]( ),
(5.35)

which has a remarkable analogy to Equation 4.9 and Equation 4.16
of Opus for the spin-12 case. By denoting x

+
α � xα above and x−

α � x0,
this is condensed further,

_Ps m1, m2; t( ) � γN ∑
α,β�±1

Δβ
α xβ

α
~K Ωβ

sα( )Ps[ ]. (5.36)

4.3 H-theorem and relaxation to equilibrium

We now exhibit a H theorem that assures the relaxation of the
magnet towards its Gibbs equilibrium state and, thus, a successful
measurement. The dynamical entropy of the distribution Ps(m; t) �
GN(m)Rss({σ i})/rss(ti) is defined as

Ss t( ) � −Tr R̂ss t( )
rss ti( ) log

R̂ss t( )
rss ti( )

� −∑
m

Ps m; t( )logPs m; t( )
GN m( ) .

(5.37)

Following Opus and Equation 4.12 above, we consider the
dynamical free energy

Fs
dyn t( ) � Us t( ) − TSs t( ) � ∑

m

Ps m; t( ) Hs m( ) + T log
Ps m; t( )
GN m( )[ ].

(5.38)
It appears to depend on s. The simultaneous change s → − s,

m1 → −m1 implies that F1
dyn(t) � F−1

dyn(t) at all t, as happened for
s � ± 1

2 in the spin 1
2 case, but the F

±1
dyn(t) differ from F 0

dyn(t), except
in the thermal situations at t � 0 and t → ∞.

With β � 1/T, not to be confused with the index β � ± 1,
Equation 5.36 yields

_F
s

dyn � T∑
m

_Ps m( )logPs m( )eβHs m( )

GN m( )
� γNT∑α,β�±1∑mΔβ

α xβ
α
~K Ωβ

sα( )Ps[ ]logPse
βHs

GN
.

(5.39)

For general functions f1,2(m) with vanishing boundary terms,
partial summation yields

∑
m

Δβ
αf1( )f2 � ∑

m

f1 Δ−β
−αf2( ) � ∑

m

Eβ
α f1 Δ−β

−αf2( )[ ]
� −∑

m

Eβ
αf1( ) Δβ

αf2( ). (5.40)
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For α � +1, we use the last expression, and for α � −1, we use the
second one, while taking β → − β, and also using Equation 5.34 and
the property ~K(−ω) � ~K(ω)eβω satisfied generally in Equation 2.26,
which yields the result

_F
s

dyn � −γNT∑
m

∑
β�±1

~K Δβ
+Hs( )

× eΔ
β
+βHs Eβ

+x
β
+( ) Eβ

+Ps( ) − x−β
−1Ps{ }Δβ

+ log
Pse

βHs

GN
. (5.41)

The various parts are such that a term GN(m)x−β−1 can be
factored out, to express this as

_F
s

dyn � γNT∑
m

∑
β�±1

GNx
−β
−1 ~K Δβ

+Hs( )
× eΔ

β
+βHs Eβ

+
Ps

GN
( )[ ] − Ps

GN
{ }Δβ

+ log
Pse

βHs

GN
. (5.42)

With Δβ
+Hs � Eβ

+Hs −Hs, GN � exp(SN), and Fs(m) �
Hs(m) − TSN(m), this is equal to

FIGURE 4
Snapshots of the distribution Ps of the magnetization moments m1,2 for registration of the spin-1 measurement. Upper: Ps ≥ 10−3 data in the s � 0
sector at times t � (0, 1,2,3) × 2/γT from right to left. Lower: the s � 1 sector at t � (0, 1, 2, 3) × 5/γT from left to right; it evolves more slowly. The
parameters are listed in Equation 5.46.
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_F
s

dyn t( ) � −γNT∑
m

∑
β�±1

x−β
−1 ~K Δβ

+Hs( )e−βFs

× Δβ
+
Ps

e−βFs
( ) Δβ

+ log
Ps

e−βFs
( ). (5.43)

The last factors have the form (x′ − x)log(x′/x), which is
nonnegative, implying that Fs

dyn is a decreasing function of time.
Dynamic equilibrium occurs when these factors vanish, which
happens when the magnet has reached thermodynamic equilibrium,
that is, the Gibbs state Ps � e−βFs /Zs and R̂ss � e−βĤs /Zs, with Zs �∑m exp(−βFs) � ∑mGN(m) exp(−βHs) � Tr exp(−βĤs), as usual.
The dynamical free energy (Equation 5.38) then ends up at the
thermodynamic free energy,

Fs
dyn ∞( ) � −T logZs, (5.44)

which actually does not depend on s due to the invariance map
of the static state, reflecting that the measurement is unbiased. This
constitutes an explicit example of the apparatus going dynamically
to its lowest thermodynamic state, the pointer state registering the
measurement outcome.

Although the statics are identical for s � 0,± 1, this does not
hold for the dynamics. While it is similar for s � ± 1 (to change the
sign of s � ± 1, also change the sign of m1), this deviates from the
s � 0 dynamics. For s � 0, allΩβ

α(m) are finite, but for s � ± 1, there
are cases where Ωβ

α(m) vanishes, which leads to a slower dynamics;
see Figure 5.

4.4 Numerical analysis

The initial spin-1 Hamiltonian leads to a 3N × 3N matrix
problem, which is numerically hard. For the considered mean-
field-type model, the formulation in terms of the order parameters
m1,2 is exact; it lowers the dimensionality considerably. The variable
m2 � (1/N)∑N

i�1σ
2
i can takeN + 1 values between 0 and 1. The value

ofM2 � Nm2 indicates thatN −M2 of the σ i take the value 0, while

the otherM2 of the σ i are ± 1. Given this number,m1 � (1/N)∑N
i�1σ i

can take M2 + 1 values between −m2 and m2. Accounting for
conservation of total probability, this leads to N(N + 3)/2
dynamical variables, a polynomial problem.

(Concerning higher spin: For spin 3
2, one separates terms with

si � ± 3
2 from those with si � ± 1

2; for spin-2, one selects terms with
si � 0, ± 1, or ± 2, etc.)

Equation 5.32 can be solved numerically as a set of linear
differential equations. Programming it is straightforward; the
vanishing of boundary terms and conservation of the total
probability must be verified as a check on the code.

The magnet starts in the paramagnetic initial state

Ps m; 0( ) � 1

3N
GN m( ) ≈

33/2

2πN
exp −N 3

4
m2

1 +
3
2
m2 − 1( )2[ ]{ }.

(5.45)
The sum of Ps over m1,2 equals unity and, with the mesh

Δm1Δm2 � 2]2, so does its integral.
The dynamics (Equation 5.32) can be solved numerically, and

the results are presented in upcoming figures. We consider the
parameters, with g large enough,

N � 100, J2 � 0, J4 � 1, g � 0.15, T � 0.2, Γ � 10.

(5.46)
We plot in Figures 4A,B snapshots of Ps/(2]2) at four times, for

s � 0 and s � 1. The case s � −1 follows from the case s � 1 by
setting m1 → −m1.

Figure 5 shows the evolution of the dynamical free energy
Fs
dyn(t).

4.5 Decoupling of the apparatus

Near the end of the measurement, the interaction between the
system and the apparatus is cut off by setting g � 0; in doing so, at

FIGURE 5
The spin-1 dynamical free energy Fsdyn of Equation 5.38 relaxes from its t � 0 value to its thermodynamic value. Fs(g) of Equation 5.44, thereby
registering the measurement. Parameters are as in Figures 4A,B, and time is expressed in units of 1/γT . The relaxation for s � ± 1 is slower than for s � 0
due to the occurrence of zero frequencies. The initial “shoulders” describe the initial broadenings in Figures 4A,B.
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decoupling time tdc, Equation 5.13 expresses that an amount
of energy

Udc � −∑
m

Ps m; tdc( )HSA m( )

� +gN ×∑
m

Ps m; tdc( ) 1 − 3
2
s2( ) 1 − 3

2
m2( ) + 3

4
sm1[ ], (5.47)

must be supplied to the magnet, leaving it with the post-
decoupling free energy

Fdc � ∑
m

Ps m; tdc( ) HM − T logGN( ). (5.48)

This post-decoupling state is not an equilibrium state; the
magnet will now relax to the nearby minimum of the g � 0 case.
There follows a relaxation driven by bath, with the magnet evolving
under the g � 0 Hamiltonian HM(m) to its Gibbs state
PG(m) � GN exp[−HM(m)/T]/ZG, with free energy FG �∑mPG(m)[HM(m) − TSN(m)].

When the decoupling time tdc is large enough, the magnet M lies
in its Gibbs state at coupling g, Ps(tdc) ~ exp[−βHs(m)]. Due to the
invariance of the g � 0 situation, the approach to it is identical for
starting in any of the sectors s � 0,± 1.

To compare with the dynamics that end up in one of the
minima, one must restrict the Gibbs state, which has three
degenerate minima, to the nearby minimum. This is achieved
numerically even at moderate N by discarding exp(−βHs) well
away from the peak of Ps(tdc), also in ZG. For s � 0, it suffices to
keep exp(−βHs) for m2 < 1

3; for s � ± 1 by doing that for m1s> 1
3.

The change of the state is also seen in 〈m2〉(t) � ∑mm2Ps(m; t).
Let us consider the sector s � 0, where 〈m1〉 � 0 at all t. Here, the
coupling HSA � gN(32m2 − 1) has the tendency to suppress m2, so
after decoupling,m2 will relax to a larger value. ForN → ∞, we get
from the Gibbs states at g and at g � 0, respectively,

〈m2 0( )〉 � 3.63 10−4, 〈m2 ∞( )〉 � 11.5 10−4. (5.49)

The full-time behavior forN � 100 and couplings as in Equation
5.46 is presented in Figure 6, with the finite-N values increasing
from 〈m2(0)〉 � 9.975 10−4 to 〈m2(∞)〉 � 12.69 10−4.

The relaxation in the sectors s � ± 1 follows immediately from
this. The map (Equation 5.50) yields. The maps (4.11) and (4.13) of
Models lead to

〈m1〉s�±1 � ± 1 − 3
2
〈m2〉s�0( ),

〈m2〉s�±1 � 1 − 1
2
〈m2〉s�0.

(5.50)

4.6 Energy cost of quantum measurement

The Copenhagen postulates obscure one of the facts of life in a
laboratory: a firm cost for the energy needed to keep the setup
running. In this work, we consider two intrinsic costs. In the
previous subsection, we established the cost of decoupling the
apparatus from the system. Here, we consider resetting the
magnet for another run. It must be set from its stable state back
to its metastable state. Being related to the magnet, both costs are
macroscopic.

Our initial state, the paramagnet (pm), has zero magnetic energy
and maximal entropy

Fpm � −NT log 3, (5.51)

The energy needed to reset the Gibbs state of the magnet to the
paramagnetic one is

Ureset � Fpm − FG � −∑mPG m( ) HM − T log GN/3N( )[ ].
(5.52)

It is evidently macroscopic. The condition that Ureset is positive
was identified in Opus and in Models as the condition that the initial
paramagnetic state is metastable but not stable.

FIGURE 6
After decoupling the apparatus from the system, the magnet relaxes to its nearby g � 0 equilibrium. If this happens at a time tdc where finite-g
equilibrium has been reached, this goes identical in the sectors s � 0,± 1. The dynamical free energy is plotted with parameters as in Figures 4, 5, relaxing
from its decoupled value (indicated by the dot) to its g � 0 thermodynamic limit F (lower line). Compared to Figure 5, this macroscopic energy cost is a
permille effect.
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5 Conclusion

This article dealt with the dynamics of an ideal quantum
measurement of the z-component of a spin-1. The statics for this
task were worked out recently in our “Models” article
(Nieuwenhuizen, 2022); it generalized to any spin l> 1

2 the
Curie–Weiss model to measure a spin 1

2; the latter was considered
in great detail in “Opus” (Allahverdyan et al., 2013). Here, we first
reformulated the dynamics of the known case for spin 1

2 and worked
out some further properties. The resulting formalism is suitable as a
basis for models to measure any higher spin.

The dynamics of measurement in the spin-1 case were
analyzed in detail. Off-diagonal elements of the density matrix
(“cat states”) were shown to decay very fast (“truncation of the
density matrix”) due to dephasing, possibly followed by
decoherence.

The evolution of the diagonal elements of the density matrix was
expressed as coupled first-order differential equations for the
distribution of two magnetization-type-order parameters, m1,2.
The approach to a Gibbs equilibrium was certified by
demonstrating a H-theorem. The resulting scheme was found to
be numerically a polynomial problem. These are easily solved with
the present power of laptops for an apparatus consisting of a few
hundred spins. The evolution of the probability density was
evaluated, and the H-theorem was verified. The macroscopic
energy costs for decoupling the apparatus from the spin and for
resetting it from its stable state to its metastable state for use in the
next run of the measurement were quantified.

For general spin l, this method simplified the numerically hard
problem of dimension (2l + 1)2N − 1 by a polynomial problem of
orderN2l for its 2l-order parameters. For more complicated models
of the apparatus, it will likewise pay off to focus on the order
parameter of the dynamical phase transition of the pointer that
achieves the registration of the measurement. The fact that the phase
transition in the magnet is of first order underlines that our mean-
field-type models, although of mathematical convenience, are not
essential for the fundamental description of quantum
measurements.
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