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Quantum information theory has evolved into a rapidly expanding and significant field of research. The papers presented in this section address a specific subset of this discipline—namely, the nature of quantum entanglement and the fundamental question of whether quantum information must inherently rely on probabilities that are intrinsic features of nature, rather than mere reflections of our ignorance regarding the details of underlying physical events. These issues trace back to the Einstein–Bohr debates, which were given formal logical and mathematical structure following the seminal contributions of Einstein, Podolsky, and Rosen (EPR), and later through John Stuart Bell’s formulation of his celebrated inequality.
Subsequent experimental work, inspired by the ideas of EPR and Bell, led to major advances, particularly in polarization-based measurements capable of resolving single photon-pair detections. The paper by Carl Kocher in this section provides a detailed and lucid account of the first photon-based experiment demonstrating entanglement. Following this experimental milestone, it became reasonable to assert that EPR-type experiments offered compelling evidence for the entanglement—i.e., the significant correlation—of photon-pair measurements, consistent with the existence of certain intrinsic properties of the photon pairs responsible for the observed correlations, as originally suggested by EPR.
However, theoretical and experimental investigations by John Clauser and others soon revealed discrepancies between measurement results and Bell-type inequalities for specific sets of polarizer-angle pairs. After extensive theoretical analysis, Bell concluded that these discrepancies could only be explained by invoking nonlocal, instantaneous influences—faster than the speed of light—which contradicted the spirit of Einstein’s relativity and which Einstein famously described as “spooky.” Recognizing the extraordinary implications of his claim, Bell emphasized the necessity of definitive experimental proof that photon-pair measurements could not influence one another through any signal propagating at or below the speed of light. Alain Aspect and his collaborators provided a groundbreaking solution by developing experiments that rapidly switched polarizer angles in between measurement, ensuring that the actual pair-measurements could not influence each other within the light-speed limit.
These fast-switching experiments were later refined by research groups led by Alain Aspect, John Clauser, and Anton Zeilinger—whose team even conducted photon-pair measurements between distant Canary Islands. Their collective achievements were recognized with the 2022 Nobel Prize in Physics. In their Nobel lectures, they emphasized Bell’s postulated quantum nonlocalities. Many researchers have since endorsed this interpretation, arguing that such instantaneous influences underpin the computational advantages of quantum systems. However, no direct empirical proof of this claim exists, and Bell’s theoretical framework remains the principal foundation for associating quantum superposition with nonlocality. Consequently, Bell’s inequalities have become a central defense against more conventional, Einsteinian interpretations of quantum phenomena.
Despite extensive experimental progress, substantial doubts remain concerning the theoretical soundness of Bell’s framework—doubts that extend well beyond the familiar experimental loopholes. These reservations center on the mathematical consistency of Bell-type derivations, as numerous previously neglected mathematical and physical factors have been identified that can yield violations of Bell-type inequalities. The introduction of rapid polarizer switching partially mitigated these concerns by not only ensuring that photon pairs emitted at the source could not depend on the polarizer settings, but also by suggesting that the observing experimenters (conventionally named Alice and Bob) are spatially separated, mutually unaware of each other’s settings, and free to choose their polarizer orientations independently. Under these conditions, explanations of the observed correlations seem to necessarily invoke instantaneous, nonlocal influences.
The analyses presented in this section challenge that conclusion, showing, for example, that such reasoning implicitly disregards the stratagems of Einstein’s theory of relativity. Yes, Alice and Bob are causally disconnected during the pair-measurement process and cannot possibly perform any mutual or relative assessment of outcomes in real time. However, a relative assessment may be carried out by theoreticians who retrospectively can check the consistency of their model—after all measurement data have been collected.
Gerard ‘t Hooft identified fundamental problems in Bell’s framework early on and consistently expressed skepticism toward prevailing interpretations involving quantum superposition. Despite his distinguished reputation and profound contributions to theoretical physics, his deterministic perspective was largely disregarded and, at times, unfairly associated with “conspiratorial” thinking. This section includes one of ‘t Hooft’s important papers, which demonstrates that the standard quantum-mechanical harmonic oscillator possesses an exact duality with a fully classical system, thereby revealing the potential existence of hidden ontological variables—a possibility often denied in textbooks emphasizing Bell’s conclusions. ‘t Hooft’s ideas and findings indicate the need for a more extensive investigation into underlying classical variables that are more basic than the quantum variables usually employed.
Several other contributions in this section further demonstrate that Bell’s work possesses only limited validity and cannot be exclusively grounded in considerations of locality or determinism. Karl Hess and Jürgen Jakumeit show that crucial mathematical details within set-theoretic probability frameworks were neglected by Bell and his followers, despite their importance for the validity of Bell-type proofs. From a mathematical standpoint, the cardinality of the number M of Einstein’s “elements of reality” (the properties of entangled photons) relative to the number N of measurements determines whether Bell-type proofs hold; they do so only when M≪N. This insight also clarifies the success of Mermin’s well-known elementary proofs, which typically assume M = 8. There is, however, no physical justification for restricting the number of photon-pair properties to eight. Hess and Jakumeit further point out that for finite M, Bell-type inequalities can only be derived by neglecting the physically necessary symmetry associated with the invariance of average measurement outcomes under certain polarizer rotations.
Marian Kupczynski promotes a statistical interpretation of quantum mechanics and critically reexamines Bell’s theorem and its implications. Drawing upon Bertrand’s paradox, he emphasizes the contextual nature of probabilities and their intrinsic dependence on the specific experimental conditions and measurement protocols. Kupczynski argues that if one introduces additional setting-dependent local variables—representing the physical characteristics of measuring instruments and procedures—into Bell’s probabilistic framework, then quantum correlations can be accounted for without invoking nonlocalities.
Kupczynski’s explanation also relies on the invariance of certain global physical laws with respect to rotations of the coordinate system employed to describe the EPR experiments, thereby guaranteeing consistency with the observed quantum statistics. His conclusions are extensively supported by numerous references in his review, which collectively reinforce the contextual and statistical foundations of his interpretation.
Taken together, these analyses suggest that while the 2022 Nobel Prize recognized remarkable experimental achievements, its interpretative emphasis on instantaneous influences and quantum superposition may have led the field astray. The use of Bell-type inequalities by Aspect, Clauser, and Zeilinger remains conceptually problematic. The photon-pair entanglement-experiments described by Carl Kocher can, in fact, be interpreted consistently with Einstein’s notion of physical reality. Kocher’s contribution in this section elucidates the essential details of the first EPR experiment with entangled photons and provides clear explanations of the factors underlying entanglement.
The contribution by Ana Maria Cetto and Luis de la Peña offers an additional compelling rationale to reconsider quantum-mechanical interpretations by taking the underlying physics of quantum phenomena into account. They establish a link between particle spin and quantum statistics, which results from the particles’ response to the shared background radiation field. This approach has significant implications for understanding entanglement.
Finally, Theodorus Maria Nieuwenhuizen’s paper presents a rigorous Hamiltonian treatment of the Curie–Weiss measurement model for spin-1 systems, distinguishing the stages of dephasing, decoherence, and registration. The associated H-theorem for the “dynamical free energy” illustrates relaxation toward a stable pointer state. This ensemble-based treatment, in which the density matrix becomes diagonal, provides valuable insight into the quantum measurement problem, without solving it.
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The first experimental observation of entangled visible light was achieved by optically exciting free atoms of calcium and detecting pairs of photons emitted in a two-stage cascade. The polarizations of the entangled photons were observed to be correlated, in agreement with quantum theory. This review describes the rationale, methodology, challenges, and results, including experimental details not previously published.
Keywords: entanglement, EPR paradox, atomic cascade, photon counting, reduction postulate, polarization correlation, Bell inequalities

1 INTRODUCTION
In the mid-1960s, as a young experimental physicist at the University of California, Berkeley, I was fascinated by quantum theory and impressed by its success in describing small systems such as atoms and molecules. Of particular interest was the 1935 article by Einstein, Podolsky, and Rosen (Einstein et al., 1935), which notes that if particles have a common origin, measurements of their properties (such as spin states) may be correlated. The correlation remains, even if the particles move apart and are spatially separated. In this hypothetical situation, quantum effects would be apparent on a macroscopic scale.
Although the term “entanglement” was coined by Schrödinger in the 1930s, it was not in common use in the 1960s. In simple terms, entanglement is a property of a system containing two or more particles, in which the quantum state of a particle depends on, and is linked to, the states of others. Electrons, for example, are entangled in every atom, every molecule, every material. So it would be fair to say that entanglement is everywhere. And experiments on entangled systems can reveal aspects of Nature that may seem surprising and quite remarkable.
I was interested in finding the simplest possible system for studying the effects of entanglement, and began feasibility studies for a low-energy experiment that could be set up in a small laboratory with a limited budget. Inspired by the Einstein-Podolsky-Rosen gedanken experiment, it would deal with the spin states of just two entangled particles.
If the particles were electrically charged, like low-energy electrons, there would be no clean way to extract them without exposure to stray fields that would affect the spins. Therefore it seemed natural to consider visible light, in which the photons have no charge and are non-interacting. When atoms emit light, there is no need to extract the photons: Nature performs the extraction process for us.
2 EXPERIMENTAL CONCEPT
If a free atom is excited, it can make a transition to a lower-energy state, via the spontaneous emission of electromagnetic radiation in the form of a photon. Although the photon may be detected as a point-particle, it propagates as an extended wave packet, spreading as it moves out from the atom, carrying angular momentum (spin) as well as energy.
Figure 1 shows several singlet-state energy levels for an isolated calcium atom. If the atom is initially in state A, it can give up energy in two stages, A → B and B → C, with the emission of Photon 1 (green light, 551 nm) and Photon 2 (violet light, 423 nm). The corresponding spectral lines are seen in the emission spectrum of calcium.
[image: Energy level diagram illustrating electronic transitions in an atom. State A is labeled 6S, state B as 4P, and state C as 4S ground state. An arrow indicates a transition from 6S to 4P, emitting Photon 1 (green) at 551 nanometers, followed by a transition from 4P to 4S, emitting Photon 2 (violet) at 433 nanometers. An upward arrow points from ground state to 6P.]FIGURE 1 | Photons emitted in a two-stage cascade.
An ensemble of excited calcium atoms is shown at the center of Figure 2, with the green and violet photons detected by photomultiplier detectors (PM) along a common axis.
[image: Diagram showing an entangled photon experiment setup with an ensemble of atoms at the center, two linear polarizers, photon filters, lenses, and photon detectors labeled PM 1 and PM 2, all connected to a coincidence circuit.]FIGURE 2 | Experimental geometry, simplified.
Narrow-band interference filters pass the desired wavelengths while blocking other light. Pulses from the detectors are recorded as atoms proceed through the two-stage cascade A → B → C. For identification of photon pairs from the same atom, the detector pulses can be fed into a coincidence circuit that “clicks” only when photons arrive at the two detectors at nearly the same time.
Since light propagates as a wave, even in the quantum realm, the experiment can incorporate familiar optical components such as lenses, interference filters, linear polarizers, and glass vacuum windows, through which the photons can pass prior to detection.
The spin state of a photon corresponds to its polarization state, as noted in Section 3.2, where the two-photon final state is discussed. In the visible region of the spectrum, polarizations can be studied with ordinary linear polarizers, commonly known as Polaroid sheets. In the experiment, a rotatable linear polarizer is mounted in front of each detector, so that the coincidence counting rate can be recorded as a function of the angular orientations of the polarizers.
This experiment would be the first attempt to count and analyze single optical photons and pairs of photons emitted in an atomic cascade. (Kocher, 1967a; Kocher and Commins, 1967).
Why did I choose calcium? 1) Efficient linear polarizers are available for polarization measurements at the green and violet calcium wavelengths. 2) Single-photon detection by photomultiplier detectors is possible, although somewhat inefficient, for light at these wavelengths. 3) Entanglement calculations are simple and unambiguous for calcium, as the initial and final states, A and C, are spherically symmetric. Spherical symmetry requires that all internal angular momenta for the atom (orbital, electron spin, and nuclear spin) must be zero. States A and C are S-states, with no orbital angular momentum. Zero electron spin suggests an atom from the second column of the periodic table, with two valence electrons forming singlet states for which the spins cancel. It is also fortunate that essentially all the atoms in naturally occurring Ca (99.8%) have spin-zero nuclei. 4) The vapor pressure characteristics of calcium allow for the production of an atomic beam from a suitable oven in a vacuum chamber.
3 RELEVANT QUANTUM CONCEPTS
This section presents, in simplified form, a view of the theoretical background for the entanglement of photon polarization states.
3.1 Polarization measurements
A linear polarizer is an anisotropic flat plate with a transmission axis in its plane. In the classical domain, in which light behaves as a transverse electromagnetic wave, linearly polarized light passes undiminished through an ideal polarizer if its axis is parallel to the electric field in the wave. However, no light is transmitted if the electric field and polarizer directions are perpendicular. The meaning of “no light” can be extended to the quantum realm, where it means “no photons” are transmitted. Thus it is possible to regard the polarizer as a filter for quantum states.
In Figure 3, light travels along the experiment’s axis of symmetry, shown here as the z-axis, with a linear polarizer in the xy plane. Capital letter X will denote the photon state transmitted by a polarizer aligned along the x-axis, and similarly Y for the y-axis. The general polarization state Ψ for a single photon is a linear combination, or coherent mixture, of these states:
[image: Mathematical equation showing Psi equals a sub x times X plus a sub y times Y, labeled as equation one.]
where ax and ay are amplitudes (in general, complex) that tell how much of each state is present in the admixture.
[image: Diagram showing a light beam passing through a circular polarizer with its polarization axis indicated. Arrows show the direction of the light beam and polarization, with a nearby xyz coordinate system for reference.]FIGURE 3 | Linear polarizer geometry.
Quantum theory provides two ways for the state of a system to change in time:
	(1) The Time-dependent Schrödinger Equation is central to quantum mechanics. Solving it yields a wave function or state vector Ψ(t) that describes the system and its continuous evolution between measurements.


	(2) The Reduction Postulate determines how Ψ changes when a measurement is made. A measurement leads to a sudden collapse, or projection, of Ψ onto the observed state.

The state Ψ for a photon therefore changes discontinuously as a result of a polarization measurement. If the photon described by Eq. 1 is detected after passing through a polarizer with its transmission axis along x, that constitutes a measurement. In this case the reduction postulate requires that the Y term must drop out. Only the observed-state X term remains in Ψ after the measurement.
The experiment in Figure 2 explores the reduction postulate in a two-photon system.
3.2 Polarization states for entangled photons
Photon spin states for light traveling in the z-direction can be expressed in terms of linear polarization states X and Y (as above), or in terms of helicity. The two sets of basis states are related as follows (with normalization factors not shown):
Spin parallel to photon momentum: 
[image: Text reads: Positive helicity, psi superscript plus equals X plus i Y. Mathematical notation is displayed in a serif font consistent with scientific typesetting.]
Spin antiparallel to photon momentum: 
[image: Text reads: Negative helicity, psi superscript minus, equals X minus i times Y.]
Conservation laws for angular momentum and parity play a central role in quantum correlation phenomena. For the three-level radiative cascade in Figure 1, the initial atomic state A and final state C both have zero total angular momentum and even parity. Therefore, the two-photon final state Ψ must also satisfy the conditions of zero angular momentum and even parity:
[image: Mathematical equation showing psi equals psi sub one times psi sub two star plus psi sub one star times psi sub two, labeled as equation two.]
If the same z-axis is used for both photons and is directed to the right in Figure 2, the states for Photon 1 require i → - i. Then
[image: Mathematical equation displaying Psi equals the product of the quantity X sub 1 minus i Y sub 1 and the quantity X sub 2 plus i Y sub 2, plus the product of the quantity X sub 1 plus i Y sub 1 and the quantity X sub 2 minus i Y sub 2, labeled as equation three.]
in which the X1·Y2 and Y1·X2 terms drop out, yielding (without normalization factor) a simple and elegant result
[image: Mathematical equation showing psi equals x sub one times x sub two plus y sub one times y sub two, labeled as equation four.]
for the two-photon system, before either photon is detected. The reasoning in Eqs 2, 3, leading to Eq. 4, gives it a sense of universality, as no consideration is given to the internal structure of the source atom or its interaction with a quantized radiation field. Before any measurements have been made, each photon has a potential to pass through a linear polarizer with any orientation.
The two-particle quantum state Ψ is not a simple product, as it would be for photons having no common history. Instead it is a sum of products representing an entangled state. Entanglement of the photons is evident in Eq. 4, where neither photon has an independent identity. In each of the two terms, the amplitude for one of the photons is a wave function for the other.
Since the orientation for the x- and y-axes around z is arbitrary, the form of Eq. 4 will remain unchanged if the xy coordinate system is rotated through any angle about the z-axis.
3.3 Polarization correlation
If the first photon (green) passes through a linear polarizer transmitting the state X1, the reduction postulate removes the second term, containing Y1, from Ψ in Eq. 4. Only the first term remains, leaving the second photon (violet) unambiguously in polarization state X2. More generally, if one of the photons passes through a linear polarizer at any orientation, the remaining photon will then be in the same polarization state, pending future measurements.
Quantum theory makes specific predictions for the experiment shown in Figure 2.
	(1) If both polarizers are aligned with their axes parallel, coincidence counts will be observed.
	(2) If the polarizer axes are perpendicular, no coincidences will be observed—a conclusion that also follows directly from the absence of cross-terms X1·Y2 and Y1·X2 in Eq. 4. This signature of entanglement, which has no classical analog, is noteworthy and accessible to experimental observation.

These predictions may seem counterintuitive, bizarre, or weird, especially because there is no known evidence for physical transmission of information from one detector to the other. This question is addressed further in Section 6.
Additional remarks:
	(a) Taken separately, the green and violet beams are unpolarized.
	(b) If there is a general angle between the polarizer axes, Eq. 4 predicts a coincidence probability (and therefore a counting rate) that varies as the square of the cosine of this angle.
	(c) The reduction postulate also enables calculations of the time dependence for the detection of entangled photons emitted by an atom. (Kocher, 1971).

4 EXPERIMENTAL CONSIDERATIONS
4.1 Photon detection
A photomultiplier detector is an evacuated and sealed glass tube with a light-sensitive cathode on a window at one end. As Einstein first realized, the energy of a detected photon is conveyed to a single photoelectron from the cathode. This electron is accelerated toward a positively charged metal dynode, where additional electrons are knocked loose. This process is repeated at additional dynodes, producing a negative pulse that can be counted with standard electronics. Quantum efficiencies (output pulse probability per photon) are of order 10% (green) to 20% (violet). Photoelectrons released from different locations on the cathode travel a range of distances in reaching the first dynode, introducing some loss of time resolution, typically several nanoseconds. In addition, thermal processes can release electrons randomly from the cathode, resulting in spurious output pulses, or “dark noise.”
4.2 Atomic beam oven
The oven, shown in Figure 4, is 6.5 cm in length and machined from tantalum, a nonreactive refractory metal. It is heated by an electric current through internal resistive coils. A cylinder of calcium metal is loaded into the well. When the oven is installed in a vacuum chamber and heated, monatomic calcium vapor evaporates from the solid and comes out through an opening in the front, forming a beam.
[image: Metal mechanical device with several protruding rods, wires, and circular openings, positioned next to a small round container with a patterned surface, against a plain background.]FIGURE 4 | Atomic beam oven for calcium.
A thermocouple junction, set into a small hole in the oven, reads out the temperature. At 1000 K, an oven load of Ca (12 g) will empty in about 25 h, and a typical beam velocity for a Ca atom is about 105 cm/s. Since the radiative cascade requires about 10–8 s, the atom moves only about 10–3 cm—a negligible distance—while the photons are being emitted.
The oval at the center of Figure 2, labeled “Ensemble of Atoms,” represents a cross section of the atomic beam from this oven.
4.3 Excitation strategy
The two-stage cascade, as shown in Figure 1, requires excitation of calcium atoms from the 4S ground state to the 6S excited state. This is a challenging problem, since the direct 4S → 6S transition is “forbidden” for single-photon absorption. (Dipole matrix elements are zero.) An acceptable alternative would be to optically excite the 6P state (also shown in Figure 1) by an allowed transition, 4S → 6P. The 6P can decay to 6S by emitting an infrared photon that is not observed, and then the desired cascade can take place. The 4S → 6P excitation requires a 228 nm ultraviolet light source.
A minor complication is that while the 6P state can decay to 6S, it can also decay to 5S and several D-states (in total about 8 times as likely as 6S). All of these return to the ground state via the 4P state, producing a Photon 2 not time-correlated with a Photon 1. Detector pulses from unpaired violet photons can trigger false coincidences and are a source of noise.
In 1964 it was a major challenge to find an acceptable 228 nm UV excitation source for the 4S → 6P transition. No tunable lasers, UV lasers, or UV LEDs were available. (There were also no pocket calculators and no lab computers. It was still the slide rule era.)
A calcium discharge lamp could not be considered as a 228 nm source, as it would produce intense 423 nm (violet) radiation that could not be effectively blocked from reaching the Photon 2 detector. Electron impact excitation would pose a similar problem. A third possibility was a continuum source of ultraviolet light, in conjunction with a 228 nm bandpass interference filter. A high-pressure mercury lamp was considered, but even this produced far too much visible light.
Then I read about the UV continuum emitted by molecular hydrogen, with wavelengths spanning the range from about 180 nm to 450 nm. No suitable lamps were commercially available, so I designed and built a cylindrical low-voltage high-current H2 arc lamp in a brass chamber, using a porous tungsten dispenser cathode and a continuous flow of H2 gas. (Kocher, 1967b). This turned out to be essential to the eventual success of the experiment. The lamp operated at 17 V, 30 amps, with the discharge produced between the cathode and anode in the cross-sectional view of Figure 5. Fused quartz transmits 228 nm radiation, so a quartz focusing lens is mounted between the lamp and the excitation region.
[image: Technical diagram illustrating a cross-sectional view of a scientific apparatus featuring a glass inspection window, tungsten filament, cathode support, porous tungsten cathode, quartz plate, and connections for hydrogen gas, pressure gauge, and vacuum pump, with a lens assembly at the bottom.]FIGURE 5 | 500 watt H2 arc lamp.
If the broadband UV light were applied perpendicular to the Ca beam, only atoms within the natural linewidth (about 30 MHz) for the 4S → 6P transition could be excited, and all the useful radiation would be absorbed near the edge of the atomic beam. Atoms beyond this edge would not be excited. However, there is a spread in atomic velocities from a thermal oven, and the Doppler-broadened linewidth (1,000 MHz) exceeds the natural linewidth by a factor of about 30. In the experimental plan I therefore introduced the calcium beam at 45° relative to the observation z-axis, from lower left to upper right in Figures 2 and 6. With this configuration the much larger number of atoms in the Doppler-broadened absorption line can potentially be excited to the 6P state. The oblique angle between the atomic beam and the detector axis also effectively eliminates trapping and multiple scattering of the emitted 423 nm violet photons.
[image: Labeled technical diagram of a scientific apparatus featuring an excitation chamber, photomultiplier tubes, filters, linear polarizers, a hydrogen lamp, oven, and various components for directing, filtering, and detecting light, with dimensions marked in centimeters.]FIGURE 6 | Cross section of the apparatus, top view.
4.4 Coincidence rate estimate
It would not be wise to proceed with a complex experiment unless the signal and noise levels can be estimated. Therefore, before the major construction of a vacuum chamber and dealing with pumps, hoses, ion gauges, etc., an effort was made to calculate the coincidence counting rate under reasonable experimental conditions.
For each detector I considered the fractional solid angle of intercept, together with the quantum efficiency and the filter transmission, and found that about 106 cascade-emitting atoms are needed for each observable coincidence count—without the polarizers.
The atomic beam oven holds about 1023 atoms of Ca, but only 1 atom in 103 would pass through the excitation region.
I used a radiation thermopile to measure the intensity of the H2 arc lamp in conjunction with a 228 nm bandpass filter. I also searched the literature for transition rates in calcium and determined the branching ratios for the transitions.
It was a complex process putting these pieces together, attempting to identify every limitation and concern. In the end I estimated 1 coincidence per second (with the polarizers removed), with an uncertainty factor of about 5.
Under these conditions, reasonable statistics—and a clear experimental result—might be obtained with a multi-hour observation. It would be a difficult undertaking, requiring considerable care, patience, a long observation time, and some courage.
4.5 Apparatus details
The experimental plan employs a vacuum system with two diffusion-pumped brass chambers and removable flanges for access. A water-cooled source chamber holds the calcium beam oven. The excitation chamber, pumped to a lower pressure (10–6 Torr), contains the interaction region, where UV light from the H2 lamp would excite Ca atoms in the atomic beam, and from which the green and violet photons would be detected by photomultiplier assemblies outside the chamber.
Details of the experiment are shown in Figure 6 and in a photograph, Figure 7.
[image: Complex laboratory equipment with interconnected metal tubes, flanges, and circular ports sits on a support frame, featuring various cables, valves, and a funnel attached to an upright cylinder against a dark background.]FIGURE 7 | Apparatus photograph corresponding to Figure 6.
It took more than a year to reach the point where all the parts of the experiment could be assembled. The components were tested separately, to the extent possible, and then in tandem.
Two flags, shown in Figure 6, can be controlled from outside the chamber. One can block the calcium beam, and the other can block the UV radiation from the lamp so it cannot reach the beam. This flexibility made it possible to monitor and optimize the counting rate for each detector separately. It was then possible to determine the sources of extraneous coincidence counts, of which there were many, including stray light from the oven heating coils and visible-light fluorescence due to the UV from the lamp. I installed light-blocking baffles and applied lampblack to the chamber walls. The improvements were slow and incremental.
After this was done, photomultiplier “dark noise,” which had always been present, became noticeable at room temperature. To address this problem, I cooled the photomultipliers by soldering a helix of copper tubing around each brass photomultiplier enclosure and installing a refrigeration compressor that could circulate refrigerant through the tubing. The photocathode temperatures were cooled to −15°C, reducing the dark noise significantly.
Instead of using a simple coincidence circuit, I recorded coincidence counts versus the time delay between the pulses from the two detectors, using a time-to-pulse-height converter and a multichannel pulse-height analyzer, as in Figure 8.
[image: Diagram showing two detectors labeled one and two measuring an ensemble of atoms, with signals passing through a delay line, a time-to-pulse-height converter, and a pulse-height analyzer displaying a scatter plot labeled R(T) versus T.]FIGURE 8 | Basic electronics for recording and displaying coincidence counts.
The time-to-height converter produces an output pulse with an amplitude proportional to the time delay between the “start” pulse (from the Photon 1 detector} and the “stop” pulse (from the Photon 2 detector). A pulse-height analyzer stores these counts in an array of magnetic-core memory channels corresponding to a span of delay times. Each memory channel effectively represents a separate coincidence circuit, for which the time spread can be varied by changing the ramp rate. The time offset, corresponding to sliding the distribution to the right or left, can be adjusted by varying a delay line (a length of coaxial cable) on the Photon 2 side.
If the pulse pairs are from the same atom, they contribute to a central peak in the distribution, as viewed on an oscilloscope. Pulse pairs may also be due to photons from different atoms, or to stray light. In these cases the time intervals are random, contributing to a background signal, with fluctuating statistics, along the entire horizontal time scale.
5 FINAL TESTING AND RESULTS
Figure 9 shows the laboratory in 1966. Test runs were attempted with the calcium beam and H2 lamp running, without the polarizers. As expected, the Photon 2 detector recorded the most photons, and the single-detector counting rates increased encouragingly when the beam and the UV excitation were both on. Unfortunately the rate for coincidence counts was lower than the lower limit I had estimated, by a factor of about 10. Under these conditions the experiment could not yield clear results.
[image: Laboratory setup featuring an electron microscope or similar scientific instrument with numerous cables, dials, and control panels, surrounded by additional electronic equipment and a large cylindrical container.]FIGURE 9 | Overall view of the experiment.
Weeks passed, with considerable frustration, and I went into a deep search for an explanation. All questions had to be asked, and everything rechecked. Then I thought of a possible reason for the low coincidence rate. An interference filter was mounted on each photomultiplier assembly. These were high quality narrow-band filters, made from sets of dielectric plates and built-to-order for the calcium wavelengths. But dielectrics tend to be thermally sensitive, and I now realized that when I installed the refrigeration coils for cooling the photomultipliers, I also ended up cooling the filters. If the filters were thermally sensitive, the transmitted wavelength could have shifted. If the shift were large enough, the filter would end up being “tuned off-resonance” and the desired wavelength would be blocked instead of transmitted.
I removed the filters, got a bucket with dry ice, a thermometer, and some clean rags, and scanned the filters using a recording spectrophotometer. I started with the filters at room temperature and printed out the scans. The peak wavelengths were very close to what I had ordered, at 551.3 nm and 422.7 nm. Then I wrapped the filters, cooled them with dry ice to −20°C, and made repeated spectrometer scans as they warmed up. The violet filter, which had the narrower passband, was far off resonance at −20°C and also at −10°C. To correct for this shift I added a small heating coil for the violet filter and adjusted the current through it to bring the filter’s transmission peak back onto the wavelength for the violet-light photons. This is shown in Figure 6.
Then I loaded the oven with a full cylinder of calcium and pumped down the vacuum system. A clear, unequivocal coincidence signal was apparent within an hour. That afternoon I obtained the time correlation plot in Figure 10, showing coincidences in the form of a peak.
[image: Scatter plot showing data points clustered in a central peak with values decreasing symmetrically on both sides, forming a bell-shaped pattern, likely representing a normal distribution or related statistical data.]FIGURE 10 | Coincidence counts displayed from memory of pulse-height analyzer.
Here the horizontal separation between channels represents a time interval of 0.8 ns. The exponential decay of the 4P state, which has a mean lifetime of 4.5 ns, shows up as an asymmetry, although each photomultiplier smears out the time resolution by about 3 ns. The counts above the noise baseline are coincidences.
As noted previously, the separate Photon 1 and Photon 2 light beams are expected to be unpolarized. To check this I installed the polarizers and verified that the single-detector counting rates did not vary with the polarizer orientations.
Finally, a 25-h run with the polarizers installed, on December 17 and 18, 1966. The experiment continued through the night, with data recorded during 21 consecutive hours. Parallel and perpendicular polarizer configurations were alternated, with the recording of data switched in cycles between memory banks for horizontal and vertical polarizer combinations xx, yy, xy, and yx. Equal recording periods were allotted to parallel and perpendicular orientations of the polarizers. The results are shown in Figure 11, where each point represents a sum over three adjacent analyzer channels. Upper panel (A) shows a coincidence peak with the polarizer axes parallel. Lower panel (B) shows no peak with the axes perpendicular. 
[image: Two scatter plots labeled A and B show coincidence counts versus delay time in seconds. Plot A, with parallel polarizer axes, shows a distinct peak near zero delay. Plot B, with perpendicular polarizer axes, shows no significant peak. Both plots use an observation time of ten point five hours.]FIGURE 11 | Experimental Results: Coincidence counts recorded as a function of delay time: (A) With the polarizer axes parallel, a clear coincidence peak is observed, and (B) With the polarizer axes perpendicular, no peak is present.
The hint of a peak in (B) can be attributed entirely to the imperfect linear polarizers, which transmitted 6% of unpolarized violet light when crossed at 90°.
Most significantly: When the polarizer axes are perpendicular, no coincidences are recorded. This conclusion is in agreement with the predictions of quantum theory for entangled photons.
The photon detectors in this experiment were about 40 cm apart, a macroscopic distance. Each photon is a spherical wave, traveling outward from the atom at the speed of light. Before the photons are detected, their coupled (or entangled) waves occupy the entire space between the atom and the detectors. As a consequence the quantum system is macroscopic, with the two-photon wave function extending over a macroscopic region.
When this work was undertaken it was inconceivable that, decades later, unforeseen and breathtaking developments, including sophisticated lasers and parametric down-conversion, would enable the creation of entangled photons in great numbers, or that they might play a role in practical or useful technology. Yet we now understand that entanglement and quantum correlations can be exploited, leading to an exciting new field of “quantum information.”
6 REFLECTIONS AND OVERVIEW
In an experiment with non-interacting particles, how can a measurement here affect what happens there? It may seem profoundly strange that quantum theory—the best we have—does not introduce or incorporate a deterministic “causal mechanism” for correlations in the measurements. Could there be some identifiable process that allows one photon, or one measurement, to communicate with the other?
Einstein famously called these kinds of effects “spooky action at a distance.” What is now known as the “Einstein-Podolsky-Rosen paradox” led him to suggest that the theory might be “incomplete” in some way. Nevertheless the quantum theory of the 1920s and 30s does accurately predict and describe experimental results, including entanglement phenomena. It is a successful theory that has been tested repeatedly, including by others who used my apparatus years later and confirmed the results presented here. (Freedman and Clauser, 1972).
Could there be situations where quantum theory makes incorrect predictions, or where alternative theories give equally satisfactory explanations? Much effort has been devoted to theories involving hidden variables and to experiments probing the Bell inequalities. Yet none of these, so far, appear to have led to new physics.
Most of us have never lived in an overtly quantum world, and so it is tempting to proclaim a “paradox” when expectations based on classical phenomena are extrapolated into the quantum realm. A corollary might be offered—that credible experiments yielding strange results should be welcomed into our consciousness, celebrated for their insight, and incorporated into the life experience from which intuition derives.
From my perspective, performing an experiment of this kind was a rare opportunity for witnessing a strangely wonderful quantum phenomenon and bringing it into the domain of experience. It is a search for truth, and if the truth changes our outlook on the world, so much the better.
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The standard quantum mechanical harmonic oscillator has an exact, dual relationship with a completely classical system: a classical particle running along a circle. Duality here means that there is a one-to-one relation between all observables in one model, and the observables of the other model. Thus the duality we find, appears to be in conflict with the usual assertion that classical theories can never reproduce quantum effects as observed in many quantum models. We suggest that there must be more of such relationships, but we study only this one as a prototype. It reveals how classical hidden variables may work. The classical states can form the basis of Hilbert space that can be adopted in describing the quantum model. Wave functions in the quantum system generate probability distributions in the classical one. One finds that, where the classical system always obeys the rule probability in = probability out, the same probabilities are quantum probabilities in the quantum system. It is shown how the quantum x and p operators in a quantum oscillator can be given a classical meaning. It is explained how an apparent clash with quantum logic can be rationalized.
Keywords: ontological variable, quantum harmonic oscillator, quantum mechanics, duality, local hidden variable (LHV), classical ontological variable (COV)

1 INTRODUCTION
It has become customary to investigate quantum theories by proving that they cannot be represented in terms of ontological variables. These ontological variables, known as “local hidden variables” (LHV), are assumed to reproduce the results of all experiments that can be performed on a given quantum system, which is subsequently shown to lead to logical contradictions.
However, when the outcome of an extensively examined quantum experiment is compared with a classical theory, it is often the classical dynamics that is finished off in one short sentence: “This cannot be the result of a classical theory.” One may however suspect that the assumptions made concerning these LHV are too strict, so that there could be loopholes.1 Many investigations are aimed at closing these loopholes by making further assumptions (Bell, 1964; Bell, 1982; Bell, 1987; Conway and Kochen, 2008; Clauser et al., 1969; Greenberger et al., 1990).
This, we claim, may not be the only way to improve our understanding of quantum mechanics. Here, we approach the question concerning the interpretation of quantum mechanics from the other end: which quantum systems do allow for classical variables, and can these models be extended to include physically useful ones? Can these models be demanded to obey (some form of) locality? Can we use them as building blocks? We claim that this is a rich field for further investigation (Brans, 1988; Vervoort, 2013; ’t Hooft, 2016; ’t Hoofta, 2023).
Here, a very important example is exhibited: the quantum harmonic oscillator. As we shall see, it contains a variable that can explain everything we see in a quantum harmonic oscillator, in terms of completely classical mathematical logic. Our variables are not hidden at all, and completely ontological; therefore we call our variable “COV”, standing for “Classical Ontological Variable.” The letter [image: Uppercase italicized letter L in a serif font, appearing in black on a white background. Character is slightly slanted to the right, commonly used in mathematical notation.] is omitted, since locality may not be guaranteed, and anyway, we do not intend to contradict earlier no-go theorems, but rather search for ways out.2 Understanding the COV may be an important pathway that could lead us to new insights, perhaps even in model building (Jegerlehner, 2021; ’t Hooft, 2022).
The most important part of this paper is Section 2. Here we show how any quantum harmonic oscillator, contains an ontological degree of freedom. Using modern jargon, we observe that the quantum harmonic oscillator is dual to a classical particle on a circle.
Questions asked after a talk I presented at the Lindau Meeting, June/July 2024, made me realise that the features discussed below are not very well-known and therefore this short publication may be useful.
2 THE HARMONIC OSCILLATOR
In one space-like dimension, consider the Hamiltonian3 [image: Italicized uppercase letter H in a serif font, commonly used in mathematical or scientific notation to represent variables, matrices, or specific operators.] of an elementary quantum harmonic oscillator in terms of the variables [image: Lowercase italic letter x in a serif font, commonly used to represent a variable in mathematical expressions.] and [image: Lowercase italic letter p in a serif font, commonly used as a mathematical variable or symbol in scientific notation.],
[image: Mathematical equation showing the commutator of x and p equals i, and Hamiltonian H equals one half times the sum of p squared and x squared minus one, labeled equation one.]
Planck’s constant will always be set as [image: Mathematical expression showing h-bar, the reduced Planck constant, is set equal to one, often used in physics for simplification in natural unit systems.], and as such it merely relates the units of energy to the units of frequencies. Also the angular frequency [image: Lowercase Greek letter omega, black on a white background, commonly used to represent angular frequency, resistance in ohms, or variables in mathematics and science.] is set to 1. The operator equations are
[image: Mathematical expression showing two equations: d x over d t equals i times bracket H comma x bracket equals p, and d p over d t equals i times bracket H comma p bracket equals negative x, labeled as equation two.]
We shall need the annihilation operator [image: Lowercase italic letter “a” in a serif font centered on a white background.] and the creation operator [image: Italic lowercase letter a followed by a superscript dagger symbol, commonly used in mathematics or quantum mechanics to denote an adjoint or Hermitian conjugate operator.], defined by
[image: Mathematical equations defining operators: a equals one over square root of two times quantity x plus i times p; a dagger equals one over square root of two times quantity x minus i times p; x equals one over square root of two times a plus a dagger; p equals one over i times square root of two times a dagger minus a. Also shown are commutation relations: bracket a, a dagger equals one and bracket x, p equals i. Equation labeled as three on the right.]
(For practical reasons, the signs chosen in our definitions, deviate from the signs chosen in other work). The eigenstates [image: Mathematical expression in Dirac notation showing ket n, denoted as vertical bar n angle bracket, with a superscript capital E to the right.] of [image: Uppercase italic letter H rendered in a serif font, centered on a white background.], and their eigenvalues [image: Mathematical expression showing capital italic letter E with a subscript n.], are found as usual to obey:
[image: Mathematical equation showing H applied to ket n equals a dagger a ket n equals E sub n ket n, where E sub n equals n, for n equals zero, one, and so on. Equation labeled four.]
This, of course, is a completely standard, quantum mechanical procedure applied to the harmonic oscillator, but now we claim that it is dually related to a completely classical model. The classical system we have in mind is a particle moving on the unit circle, with fixed velocity [image: Mathematical expression displaying the Greek letter nu equals one.], and period [image: Mathematical expression showing an equals sign followed by two times pi, with pi represented by the Greek letter.]. The solution of its e.o.m. is:
[image: Mathematical expression showing phi of t equals phi of zero plus t mod two pi, equation labeled as five in parentheses.]
[image: Lowercase Greek letter phi, written in an italic serif font.] is constrained to the interval [image: Mathematical notation specifying the interval from zero inclusive to two pi exclusive, typically used to define a domain in trigonometric functions.], where the boundary conditions are periodic.
To make our point, it is important to introduce (temporarily) a large integer [image: Capital letter N in a serif font, displayed in black on a white background. Letter edges appear slightly blurred, creating a soft, shadowed effect.], and a variable [image: Mathematical expression showing s equals zero, then ellipsis, up to N minus one.], discretising the allowed values of [image: Lowercase Greek letter phi, written in a serif italic font, often used in mathematics or science to represent an angle, a function, or a variable in equations.], as follows:
[image: Mathematical expression showing phi equals two pi s divided by N, where s ranges from zero to N minus one.]
This matches with the introduction of small, finite time steps [image: Mathematical expression showing delta t equals two pi divided by N.]. The [image: Lowercase Greek letter phi, shown in a serif italic typeface commonly used in mathematical or scientific notation.] states span an [image: Uppercase serif letter N in bold black font displayed on a white background.]-dimensional vector space [image: Mathematical expression showing a set containing the quantum state ket S and the label "ont" in parentheses, both enclosed by curly braces.], where the superscript “ont” stands for ontological.
The energy eigenstates [image: Mathematical expression showing the ket notation vertical bar n angle bracket with superscript E, followed by n equals zero, comma, ellipsis, comma, and N minus one.], of this rotating particle are superpositions of the ontological states:
[image: Mathematical equation showing a quantum state as one over the square root of N times the sum from s equals zero to N minus one of e to the two pi i n s over N times ket s, labeled as equation six.]
with the inverse:
[image: Mathematical equation showing a quantum superposition state: s subscript out equals one over square root of N times the sum from n equals zero to N minus one of e to the power of minus two pi i n s over N times ket n, equation seven.]
Note that these equations are merely discrete Fourier transformations. By checking the time dependence of [image: Mathematical expression showing a ket vector labeled n, raised to the power of E as a superscript, commonly used in quantum mechanics notation.] and [image: Mathematical expression showing left vertical line, ket notation with s inside angle bracket, followed by the letters o, n, t in a serif font.], we see that
[image: Mathematical equation showing n superscript z of t equals e to the power of negative i n t multiplied by n superscript z of zero, labeled as equation 8.]
[image: Mathematical equation showing ket notation: the state ket s with superscript cnt at time t equals ket s minus t divided by two pi N with superscript cnt at zero.]
We now note that the first [image: Uppercase Latin letter N in a bold serif font with a slight italic slant, presented against a plain white background.] energy eigenstates of the harmonic oscillator, Equation 4, obey exactly the same Equation 8, and therefore Equations 6, 7 define [image: Uppercase serif letter N in bold black font on a white background.] states, obeying (Equation 5). There is an important reason to start with a finite number [image: Bold, uppercase letter N in a serif typeface displayed against a white background.]. We see that, in these equations, the energy spectrum not only has a lowest energy state, [image: Mathematical notation displaying ket zero, raised to the power of E, commonly used in quantum computing to represent a quantum state.], but also a highest energy state, [image: Mathematical expression showing the ket notation vertical bar N minus one angle bracket, with the superscript capital E to the right of the bracket.]. With strictly continuous angular variables [image: Mathematical notation displaying the quantum state ket symbol phi, vertical bar, right angle bracket, followed by the subscript “ont” in italics.], we could postulate an energy spectrum running from [image: Mathematical symbol displaying negative infinity, represented by a minus sign followed by the infinity symbol.] to [image: Mathematical symbol displaying plus sign followed by infinity symbol, representing positive infinity.]. This would not dually correspond to a harmonic oscillator.4 In this paper, we keep the lowest energy to be [image: Mathematical expression showing uppercase italic E equals zero.], while the highest energy will be unbounded. This enables us to take the limit [image: Mathematical notation showing uppercase N followed by a rightward arrow pointing toward the infinity symbol, representing the concept of N approaching infinity.], where we can write:
[image: Mathematical expression showing ϕ equals two pi s divided by N, dϕ equals two pi divided by N, and the state ket ϕ subscript ont equals ket s subscript ont divided by the square root of dϕ.]
This turns Equations 6, 7 into
[image: Mathematical equation showing quantum state relationships: left side, ket n to the epsilon equals one over square root two pi integral d phi times exponential i n phi times ket phi subscript ont; right side, ket phi subscript ont equals one over square root two pi sum from n equals zero to infinity exponential negative i n phi ket n to the epsilon.]
Thus we proved that harmonic oscillators can be described in terms of variables [image: Quantum mechanics notation displays the ket symbol, phi, followed by the subscript ont, representing the state vector labeled as phi in ontological quantum theory.] that evolve deterministically. It is easy to see that, due to Equation 5, the wave function in terms of the [image: Lowercase letter "s" in a bold, sans-serif font displayed in black on a white background.] variable (or the [image: Lowercase Greek letter phi, written in italicized mathematical style.] variable) does not spread. However, the wave function may not have been chosen to collapse. In that case, the probability distribution [image: Mathematical equation showing ϱ of phi sub one equals the absolute value squared of the inner product of phi sub one and phi, labeled with the superscript ont.] can be seen to rotate along the circle in the same way as [image: Lowercase Greek letter phi written in italic style, commonly used in mathematics, physics, and engineering to represent angles, functions, or variables. Black text on a white background.] itself, so that we easily conclude that this probability distribution merely reflects the probabilities of the initial state.
This is a typical feature of the COV in a theory: these variables can be projected on the basis states of any Hilbert space, in which case the theory reproduces the probability distribution of the final states in terms of that of the initial states. It is very important, however, that this identification between Hilbert space and the space of classical probability distributions, only applies to the ontological basis of Hilbert space, that is, the basis spanned by all ontological states (the states [image: Mathematical expression showing the quantum state ket phi followed by the subscript text "ont", commonly used in physics or quantum mechanics contexts.] in the case of the harmonic oscillator).
Thus we emphasise: any quantum harmonic oscillator is mathematically equivalent to a periodically moving particle on a unit circle, and the wave function of a quantum harmonic oscillator merely reflects the probability distribution on this circle, if the initial state is not known with infinite precision.
Some useful auxiliary functions are
[image: Mathematical notation showing G of z defined as the infinite sum from n equals one to infinity of the square root of n times z to the n, and g of phi equals G of e to the i phi. Equation labeled nine.]
Since the annihilation operator [image: Lowercase italic letter "a" in a serif font, displayed in black on a white background.], defined in Equation 3 obeys
[image: Mathematical expression showing the action of operator a on state n sub e equals the square root of n times state n minus one sub e.]
we can derive the matrix elements
[image: Equation showing matrix element notation: left angle phi sub one vertical bar a vertical bar phi sub two right angle sub c o n t equals one divided by two pi times e to the negative i eta sub one times g of phi sub one minus phi sub two.]
[image: Mathematical expression showing the matrix element of operator a between ontological states phi one and phi two, equal to one over two pi times e to the i phi two, times function g evaluated at the difference phi one minus phi two.]
and from this, using Equation 3, we find the matrix elements of the operators [image: Lowercase italic letter x in a serif font, commonly used as a variable or symbol in mathematical and scientific contexts.] and [image: Lowercase italic letter p in a serif font, commonly used to represent a variable or mathematical symbol in equations and scientific notations.] of the original quantum harmonic oscillator, in terms of the basis states [image: Mathematical expression showing the quantum state ket phi followed by the text "ont", suggesting part of the word "context" or "content."]:
[image: Mathematical equation showing the inner product of phi one and phi two equals one over two pi square root two times the sum of e to the negative i phi one and e to the i phi two, multiplied by g of phi one minus phi two. Equation is labeled as ten.]
[image: Mathematical equation displaying angle phi one, operator p, angle phi two, equals i divided by two pi multiplied by the square root of two, times quantity e to the negative i phi one minus e to the negative i phi two, times function g of phi one minus phi two, equation eleven.]
It is possible to combine [image: A bold, black uppercase letter N is centered on a white background, shown in a serif font style with smooth edges.] oscillators with different frequencies [image: Mathematical expression displaying the lowercase Greek letter omega with a subscripted lowercase letter i.], requiring us to generalise Equations 1–4 as
[image: Mathematical equations showing the sum of H equals the sum from i equals one to N of H sub i, where H sub i equals one half times open parenthesis omega sub i squared x sub i squared plus p sub i squared minus omega sub i close parenthesis, which equals omega sub i times a sub i dagger times a sub i.]
[image: Mathematical equation showing a sub i equals one divided by the square root of two, times open parenthesis, omega sub i to the one half power times x plus i times omega sub i to the negative one half power times p, close parenthesis.]
[image: Mathematical equation showing En superscript i equals n subscript i times omega subscript i, with variables in italics.]
This system of [image: Uppercase serif letter N displayed in black with a slight blur effect on a white background.] quantum harmonic oscillators, gives us [image: Uppercase letter N in a serif font displayed against a white background.] variables of the COV type,
[image: Mathematical equation showing phi sub i of t equals phi sub i of zero plus omega sub i t, modulo two pi, followed by the abbreviation "etc." and a period.]
Ideas of treating quantized field theories as systems in a box with periodic boundary conditions were investigated by Dolce (2023). The wave equation then fixes the timelike component of the periodicities, and systems of this kind may then be regarded as multiple systems of COV variables.
3 ON THE ANALYTIC STRUCTURE OF THE AUXILIARY FUNCTION [image: Mathematical expression showing a capital letter G followed by an opening parenthesis, a lowercase z, and a closing parenthesis.]
The auxiliary function [image: Mathematical expression showing uppercase G followed by an argument in parentheses, lowercase z, representing a function G of the variable z.] is defined by Equation 9, but this only converges for values of [image: Lowercase letter z in a bold, sans-serif font, displayed in black on a white background.] within the unit circle, that is, [image: Mathematical expression showing the absolute value of z is less than one, written as vertical bar z vertical bar less than one.]. Also, on the unit circle, this definition seems to diverge. Usually, expansions that oscillate wildly at some distance from the origin, can be defined by slightly smearing the coefficients, but here, this procedure is tricky. Indeed, the mathematics needed to show that the probabilities generated by applying [image: Mathematical expression showing the function g with the lowercase Greek letter phi as its argument, written as g open parenthesis phi close parenthesis.] are uniquely defined and real, is rather delicate, an understatement, as shown in this section.
This section is intended only for mathematically minded readers. Their comments would be appreciated.
At finite [image: Uppercase letter N in a bold serif typeface displayed in black on a white background.] the function
[image: Mathematical equation showing G sub N of z equals the sum from n equals one to N of the square root of n times z to the power n, labeled as equation twelve.]
has [image: Uppercase serif letter N in bold black font on a white background.] zeros. Most of these will be close to the unit circle, [image: Mathematical expression showing the absolute value of z sub n approaches one, using vertical bars, subscript n, a rightward arrow, and the numeral one.]. The questions we would like to see answered are:
	1. What will be the analytic structure of Equation 12 in the limit [image: Mathematical notation showing uppercase letter N followed by a right arrow pointing toward the infinity symbol, representing N approaches infinity.]?
	2. Is it possible at all to define and compute an analytic continuation for the function [image: Mathematical notation showing an uppercase letter G followed by a subscript uppercase letter N, commonly used to represent a sequence or family of objects indexed by N.] for [image: Mathematical expression showing the absolute value of z is greater than one.]?
	3. Where are the zeros and the poles of this analytic function?
	4. Can one prove that

[image: Mathematical equation showing G star of z is equal to G of z star, followed by a reference in parentheses labeled thirteen.]
so that the operators [image: Lowercase italic letter x in a serif typeface, typically used to represent a variable in mathematics or scientific notation.] and [image: Lowercase italic letter p in a serif font, commonly used in mathematical and scientific notation.] defined in Equations 10, 11 can be seen to be Hermitian?
The last question is not quite trivial because one must first redefine the limit function [image: Mathematical expression showing a lowercase italic g followed by an open parenthesis, a lowercase Greek letter phi, and a close parenthesis.], but by careful study of the equations, we found that Equation 13 is true, due to the fact that the coefficients [image: Mathematical expression showing the square root of the variable n.] are all real, see Figure 2.
[image: Diagram showing a ring of N yellow circles labeled one to N, with an arrow pointing from circle one to circle two. On the right, horizontal lines indicate energy levels from E equals zero to N minus one.]FIGURE 1 | The ontological states [image: Text reads “S>ont” in a thin, sans-serif font with the letter “S” slightly larger than the other characters. The text is presented at an angle on a white background.] when time is discrete, [image: Mathematical equation showing delta t equals two pi divided by N.]. In this picture, the choice [image: Mathematical equation showing N equals eleven, using an italic font for the variable and a standard equals sign and number.] was made. The energy spectrum is shown; the energies form the same sequence as in harmonic oscillators, in particular if we take the limit [image: Mathematical notation showing the variable N with a rightward arrow pointing toward the infinity symbol, indicating the concept of N approaching infinity.].
[image: Graph showing the real part of a function in blue and the imaginary part in red dashed lines. Both curves are plotted over the interval from negative pi to pi with labeled axes.]FIGURE 2 | An accurate calculation of the function [image: Mathematical expression showing the function f of phi, written as f left parenthesis phi right parenthesis, where phi is the Greek letter ϕ.], defined in Equation 14. Blue solid line: its real part, dashed red line: its imaginary part. Both real part and imaginary part have a divergence in their first and second derivatives, apparently only at the origin, [image: Mathematical expression showing the Greek letter phi followed by a rightward arrow pointing to zero.].
First, we find that [image: Mathematical expression showing an uppercase G followed by parentheses containing a lowercase z, representing a function G of variable z.] is the second derivative of a function [image: Mathematical expression showing capital F of open parenthesis z close parenthesis, with both characters in italic typeface.] that stays strictly finite on the unit circle (where [image: Mathematical expression showing the modulus of z equals one, indicating that the complex number z lies on the unit circle in the complex plane.]):
[image: Mathematical equations in serif font showing relations: G of z equals open parenthesis z partial sub z close parenthesis squared F of z, F of z equals sum from n equals one to infinity of z to the n over open parenthesis n square root of n close parenthesis, g of phi equals negative partial squared over partial phi squared of f of phi, f of phi equals F of e to the phi, and the equation is labeled fourteen.]
Therefore, [image: Mathematical expression showing F open parenthesis z close parenthesis, representing a function F with variable z.] is also accurately defined on the unit circle, but before using it to recuperate [image: Mathematical expression showing uppercase G followed by parentheses containing lowercase z, representing a function G of variable z.], one must carefully choose the order of the limits [image: Mathematical notation showing large italic N followed by a right arrow pointing toward the infinity symbol, representing the concept as N approaches infinity.] and [image: Mathematical notation showing the absolute value of z approaches one, with a rightward arrow indicating the limit process.]. In practice, one encounters no problems, see Figure 2. A useful transformation may be the following: 
[image: Mathematical equation showing y equals four z divided by the square of the quantity one plus z, followed by equation number fifteen in parentheses.]
and its inverse:
[image: Mathematical equation showing z equals negative one plus two divided by y times one minus the square root of one minus y, which equals one fourth y plus one eighth y squared plus ellipsis. Equation number sixteen.]
This can also be written as
[image: Mathematical expression showing the square root of y equals two divided by the sum of the square root of z and one divided by the square root of z, labeled as equation seventeen.]
The second Riemann sheet describes the solution with the opposite sign of the square root on Equation 16. There, we get the solution
[image: Mathematical equation showing z dot equals negative one plus two divided by y times the quantity one plus the square root of one minus y, equals one divided by z.]
which is easiest to see in Equation 17.
[image: Mathematical equation showing G sub N of z equals the sum from n equals one to N of the square root of n times z raised to the n, which equals the sum from n equals one to N of the square root of n times z raised to the negative n.]
Figure 3 shows how the unit circle (Figure 3A) is mapped on the first Riemann sheet (Figure 3B). by the function (Equation 15), and how the branch cut at the right connects the two sheets. The function G(z) does go to infinity where the branch cut begins; the function F stays finite. They are related through Equation 14. By using Cauchy’s theorem one may be able to use this branch cut to define faster converging nexpressions for the function f(φ), and with that, our auxiliary function g(φ). Our attempts to use these observations for obtaining more convergent expressions for G(z) were however unsuccessful; much more work must be done to realise this, but an excessive list of calculations on this matter was not the aim of this paper. The function [image: Mathematical expression showing uppercase G followed by parentheses containing lowercase z, commonly interpreted as the function G evaluated at z.] does go to infinity where the branch cut begins; the function [image: Uppercase letter F in a serif font, shown in black with slightly blurred or softened edges.] stays finite. They are related through Equation 14. Question (4) is now obviously answered in the positive.
[image: Panel A shows a polar plot with concentric colored rings and radial divisions, while Panel B displays a transformed version with the same colors radiating outward, illustrating a mathematical or geometric mapping.]FIGURE 3 | (A) [image: Lowercase italic letter y in a serif font displayed in grayscale.] space, regions where the function [image: Mathematical expression showing an uppercase G followed by an opening parenthesis, lowercase z, and a closing parenthesis, typically representing a function G of variable z.] converges: domains [image: Mathematical expression showing the absolute value of z is less than or equal to zero point zero five, one, and continuing up to one point zero.] are shown. (B) After the transformation (Equation 15), these domains turn into the regions shown here, that is, the entire [image: Lowercase letter z in a bold, black font against a white background. The edges of the character appear slightly blurred or pixelated.] plane up to the branch cut, will be singularity free if expressed in the new [image: Lowercase italic letter y in a serif font displayed in black on a white background.] variable.
4 EPILOGUE
We showed how one may consider the quantum harmonic oscillator as an ontological theory in disguise. This is important since it appears to contradict theorems claiming that such a behaviour in quantum theories is impossible. Of course those theories were assumed to be far more general than a single harmonic oscillator, or even a simple collection of harmonic oscillators, but this now is a question of principle. Where is the dividing line? Which other quantum systems allow for the definition of COV variables, variables that commute with themselves and others at all times? If for instance one considers the quantum field theory of bosonic free particles in a box of an arbitrary shape in multiple dimensions, one may observe that this is merely a collection of harmonic oscillators.
One would be tempted to conclude that, therefore, bosonic particles in a box should also contain COV states (’t Hooft, 2023), but there is a complication in such systems: it is not easy to restore locality in the COV, since they are defined in momentum space. Turning these into variables that are local in position space appears not to be impossible, but then there is another complication: the operators one obtains that way seem to violate Lorentz invariance. This happens since the box is not Lorentz invariant. It is conceivably possible to restore Lorentz invariance, but we presently do not know how to do this in the Standard Model.
Thus our observations do not imply that text books on quantum mechanics have to be rewritten, except where they state explicitly that classical ontological variables cannot exist. Are local ontological variables forbidden? Locality is a meaningless concept in a single quantum harmonic oscillator. In this paper we show exactly what an ontological variable is. Emphatically, the ontological variable may be assumed to have a probability distribution as in quantum mechanics and in classical theories:
	All uncertainties in the final state merely reflect the uncertainties in the initial state.

As soon as we claim that the initial state is exactly given, the wave function of the final state will collapse. The harmonic oscillator requires no special axiom for the collapse of the wave function – provided that we stick to the observables in [image: Lowercase Greek letter phi, presented in italic mathematical notation.] space. There, we do not need to assume the existence of many universes. Just one universe, ours, is all we need to understand.
We emphasise that what we found here as a modification of the usual picture of quantum mechanics, is presumably merely the tip of an iceberg. It will not only apply to pure harmonic quantum oscillators, but also to many systems that evolve and interact in more generic ways. It is the fact that harmonic oscillators are periodic that counts. Whenever we consider a simplified model of nature where variables become periodic (for instance if we consider a box with periodic boundary conditions), one may observe that the energy spectrum consists of regular sequences of spectral lines (see Figure 1), so that harmonically oscillating fields enter the picture. Time-periodic motion is always classical. All we then need to talk about is how the probability distributions evolve.
In all classical systems, probability distributions evolve in the same orbits as the classical variables do. Consequently: probability in = probability out. If, in [image: Lowercase Greek letter phi, commonly used in mathematics and science to represent variables such as angles or functions.] space, the initial state is defined with infinite precision, the final state will also be infinitely precise. This implies that the “typically quantum feature” of the collapse of the wave function, has its counter part in ontological theories. In the model we presented, the variables [image: Lowercase Greek letter phi in an italic serif font, commonly used in mathematical equations and scientific notation.] may be assumed to be infinitely sharply defined, but then also the final states will still be completely sharply defined; they always come in a collapsed form.
The clash with usual findings concerning the “impossible” physical reality of quantum mechanical phenomena and calculations, lies in the fact that the duality transformation is only applicable in one basis of Hilbert space: the one consisting of the ontological states. Choosing the conventional basis elements does not modify the results. The fact that we wish to emphasise is that, this “ontological” basis also never needs to be departed from, other than in approximative calculations: both the initial states and the final, observed states of any quantum process will be totally determined by the probabilities in the genuinely ontological basis; therefore, other choices of basis will never be necessary from a strictly logical viewpoint.
And it seems as if this possibility has never been considered before; however, see Refs Brans (1988) and Vervoort (2013). As for the numerous “quantum paradoxes” that have been formulated in the literature, the procedure needed, to formulate the probability patterns in an ontological basis has been worked out in Ref. Hooft et al. (2021). The guiding principle: always stay in the ontological basis.
The author benefitted from many discussions, notably with T. Palmer, C. Wetterich, M. Welling and D. Dolce.
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FOOTNOTES
1A very important loophole, not discussed further in this paper, is that models such as the Standard Model of the elementary particles, require perturbation expansions, which are known to be fundamentally divergent. This procedure introduces uncertainties (Hooft et al., 2021) that can be studied further, under the suspicion that this could be the cause of the tendency of quantum wave functions to spread.
2Locality is not a meaningful concept for the single harmonic oscillator.
3For convenience, we set the ground state energy to zero; ground-state energies can be returned whenever this might be needed.
4At finite [image: Uppercase serif letter N in bold black font on a white background.], there is an exact, dual relationship to the [image: Mathematical expression showing uppercase S and U in italics followed by parentheses containing the number two in italics, representing the special unitary group SU(2).] algebra, with [image: Mathematical equation displaying capital N equals two times lowercase script l plus one.].
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We present mathematical models that also may be formulated as computer models for experiments that feature single photon resolution and multiple pairs of polarizers to determine the sorting into ordinary and extraordinary channels. The models are based on Einstein’s hypothesis of elements of physical reality that determine the photon properties and are at first developed for Malus-type experiments. It is then shown that analogous models apply to the well-known Clauser-Aspect-Zeilinger experiments and violate all Bell-type inequalities without violating Einstein’s separation principle. The Bell-type inequalities do not apply to the actual experiments, because they cannot obey the physically necessary symmetry with respect to polarizer-pair rotations. We believe that these findings suggest a change of current interpretations of quantum entanglement away from instantaneous influences at a distance, as promoted in the physics Nobel-lectures 2022, and back toward Einstein’s ideas as well as the more recent ideas of Gerard ‘t Hooft.
Keywords: Bell-inequalities, CHSH-inequalities, quantum-entanglement, EPR-experiments, Monte-Carlo simulation

1 INTRODUCTION
The well-known debate between Einstein and Bohr can be summarized by the slogan “relativity versus probability”. Bohr maintained that, with respect to quanta, probability was a fundamental feature of nature and Pauli explained that in contrast to Bohr “… Einstein … considered quantum mechanics to be something like statistical gas theory … ” Einstein resisted indeed the Born-type probability theories that are defined without the involvement of elements of physical reality. At first glance, the differences of the two views appear minor. Probability theorists assume that Tyche, the goddess of fortune choses elements [image: Lowercase Greek letter omega in a serif font, presented in black with a white background.] of the sample space [image: Greek capital letter omega symbol in bold black font displayed on a white background. Used in mathematics, science, and engineering to represent ohms or as a variable.] and a particular [image: Mathematical variable omega subscript act, with all characters in italic font.] that determines the outcome of the measurement of the moment. Einstein in essence insists that in physical experiments we need to deal with physical properties [image: Mathematical notation showing a lowercase lambda symbol, an element-of symbol, and an uppercase lambda symbol, expressing that lambda is an element of the set Lambda.] and with corresponding [image: Mathematical variable lambda subscript a c t, with all characters in italic font.] that provide the related [image: Mathematical expression displaying the Greek letter omega followed by the subscript "a c t", typically representing a variable labeled as omega with subscript act.] with a physical meaning. However, Bohr and his school pointed to the fact that the possible physical properties of quanta that determine the actual events, such as the complementary values of location and velocity, cannot even exist before the moment of measurement, owing to the Uncertainty Principle.
It took Einstein years to produce an incisive response to Bohr and the teachings of the Copenhagen school. With Podolsky and Rosen he formulated a manuscript (now called the EPR paper (Einstein et al., 1935)) that offered a possibility to determine complementary properties of the quanta as follows: create pairs of quanta that are correlated by physical law. Then, if you measure the velocity of one piece of the pair you may deduce the velocity of the other from the physical law. Measuring the position of the other piece gives you, therefore, both properties. The Uncertainty Principle is not violated, because only one measurement is performed on each quantum, to obtain both complementary properties. We may, thus, believe that Tyche’s choices also represent elements of physical reality.
The actually performed first direct experiments related to EPR were a variation of a suggestion of Bohm: Kocher and Commins (Kocher and Commins, 1967) used measurements involving photon pairs and the concept of polarization. Judging from their results, Einstein’s ideas appeared to be possible. Kocher and Commins found excellent experimental correlations (entanglement) for equal polarizer angles that could be seen as representing a law of nature for the photon-pairs and the corresponding existence of properties.
However, the well-known inequality of J. S. Bell (Bell, 1964) has led to a different explanation of the photon-pair experiments. Note that Bell’s original theory was describing spin [image: Mathematical fraction showing numerator one over denominator two.] quantum entities and Stern-Gerlach measurements. His work and its important logical implications concerning such experiments, may be “translated” for photon (spin 1) related experiments by simply including a factor of two in the pertinent equations, which we have done below. We may then imagine that Bell’s work has considered experimental sequences, each having different polarizer directions and maintained that the average measurement outcomes must fulfill an inequality. Strangely enough, this inequality was not obeyed by the results of quantum mechanics. It also was convincingly shown by numerous groups related to the 2022 Nobel Laureates Clauser, Aspect and Zeilinger that the actual experiments also contradicted the inequality of Bell and a similar inequality derived by Clauser, Horn Shimony and Holt (CHSH) (Clauser et al., 1969). We assume at this point that the reader is familiar with Bell-CHSH-type inequalities. We will, however, include below a fairly detailed description of the CHSH inequality and its derivations.
The crucial question is why Bell’s model does not agree with quantum theory. Bell had an answer to this question. He was convinced that he, CHSH and others had derived the inequalities more or less exclusively based on Einstein’s physics and in particular Einstein’s separation principle and corresponding “local” properties of physical events (following from the limitations of all velocities to a maximum of the speed of light in vacuum). The violation of their inequalities indicated to Bell and CHSH that a special interpretation of the photon correlation (entanglement) that included “non-local” effects must be in order. As we will show, it is important to distinguish between different forms of “non-localities”, in order to understand what indeed the Bell-CHSH inequalities mean. The form that Einstein objected to was any instantaneous influences at a distance, such as a measurement in Tokyo influencing instantly the outcome of a measurement in New York. In contrast to this particular non-locality that Einstein called “spooky”, there are physically natural (at least to Einstein) non-localities. For example, any properly relativistic model requires the theoretician’s consideration of physical events relative to each other and involves, if these events are spatially separated, non-local theoretical considerations to start with. Such a non-locality may, however, retrospectively be explained without instantaneous influences by use of a space-time system. It is important to distinguish between the permitted global thinking of a theoretician using a space-time system and inappropriate introductions of instantaneous non-local occurrences. These subtle problems related to the physical nature of non-localities are enhanced by the mathematical complications of set theoretic probability that must be the basis of the derivation of the Bell-CHSH inequalities.
We highlight these problems and questions by detailed mathematical- and computer-models for two types of experiments: the Malus-type as explained in the Feynman lectures (Feynman Lectures, 1965) and the EPRB-type, including the experiments of Kocher and Commins (Kocher and Commins, 1967), of Aspect and coworkers (Aspect, 2015) and of Kwiat (Kwiat et al., 1999) and coworkers. Before doing so, however, we discuss what we mean by words like “local” or “measurement” etc. and how to avoid prejudicial conclusions about them.
2 DEFINITIONS AND PREJUDICES IN DISCUSSIONS RELATED TO THE BELL-CHSH INEQUALITIES
Concepts often involved when discussing Bell-CHSH, are those of entanglement, measurement, experiment, local vs. non-local, as well as deterministic vs. probabilistic. We also use these terms but only subject to the following considerations:
It is commonly claimed and believed that the Bell-CHSH inequalities must be valid within Einstein’s framework and definitions of physical principles. We put our main emphasis on the refutation of this important point and, therefore, do not involve concepts of quantum mechanics other than those pioneered by Einstein.
As a consequence, we never use any contemporary quantum mechanical meaning of the word “measurement”. What we mean by measurement follows from the most elementary explanations such as “a detector clicks”, or in another situation “a detector clicks after a photon has passed a polarizer”. We agree with the standard definition found on Internet-dictionaries: “Measurement is the quantification of attributes for an object or event, which can be used to compare with other objects and events.” It nicely encompasses the importance of the relative comparison of attributes and events. With the expression “experiment” we also refer to the dictionary meaning of “a scientific procedure undertaken to make a discovery, test a hypothesis, or demonstrate a known fact”.
When we talk about entanglement, we do mean something related to the quantum-entanglement as defined already by Schrödinger. In our present utilization of the word, we only refer to some basic correlation and hope that a future more detailed interpretation will benefit from our contributions to an understanding of the work of Bell-CHSH.
The concepts of “local” and “deterministic” appear in a vast Bell-CHSH-related literature, often with different meaning. We believe that what is acceptable as “local theory” spans a wide range that is not necessarily accepted by the followers of Bell-CHSH. For example, Einstein’s relativity teaches about measurement outcomes relative to each other. If these outcomes have a space-like distance, then naturally any relativistic thought-process of a theoretician involves non-local factors, as already mentioned. Yet, there are not many physicists who would think of such relativistic thinking as something that is physically undesirable or even forbidden. We, therefore, have limited ourselves to talk about “local” and “non-local” only in connection with specific experiments and measurements that we model also by computers to illustrate the non-local thought processes versus the local causal machinery that mother nature uses (according to Einstein) in a given measurement station.
We dismiss out of hand all definitions of “local” and “deterministic” that use certain conditional probabilities: Bell and followers have frequently used probabilities conditional to one particular element of physical reality (Gisin, 2012). Because the elements of physical reality may involve continua (distances, times, etc.), the Lebesgue measure of the probability that such a particular element of physical reality is actually encountered may be zero. Consequently, such a conditional probability cannot sensibly be defined within the confines of set theory (for additional explanations and problems see (Hess, 2023)).
Regarding the concepts of “deterministic vs. probabilistic”, we also adhere to the common-sense definition that: “Deterministic models produce the same exact outcome for any given exact same set of inputs, while probabilistic models do not.” However, we have to be cautious with this definition in the following respect. Bell’s model contains the symbols of Einstein’s elements of physical reality that may be randomly selected out of a continuum and may be modeled, as we will do below, by random real numbers out of the interval [-1, +1]. The subtle point is now that one may not be permitted to use the same real number again for different model-events. While it may be true then that we have the same exact outcome for the same exact input, the probability to encounter the same exact input may be zero. Such a model is, therefore, comparable to models of radioactive decay and must be seen as probabilistic. The consequences of this fact for the interpretation of experiments related to Bell-CHSH were discussed in (Jakumeit and Hess, 2024). Bell’s model is, therefore, probabilistic depending on the nature of his variable [image: Lowercase Greek letter lambda, commonly used in mathematics, science, and engineering to represent wavelength or eigenvalues in equations. Black symbol on a white background.], particularly whenever [image: Lowercase Greek letter lambda, commonly used in mathematics, statistics, and physics to represent wavelength, eigenvalues, or certain parameters depending on context. Black serif font on white background.] is used just like the general [image: Lowercase Greek letter omega in a serif font, shown in black on a white background. Commonly used in mathematics, science, and engineering contexts.] of probability theory (as used by many researchers).
We like furthermore to point to the fallacies of the very common Alice and Bob reasoning regarding locality considerations. Alice controls one polarizer angle without knowing anything about Bob, who controls the other polarizer angle. The confusion of the Alice-Bob stories arises from the fact that Alice and Bob are seen as somehow representing mother nature, who must, according to Einstein’s views, indeed be local causal. That does not mean however that a theoretician, say Charly, does not know global macroscopic instrument arrangements and designs the local causation of his model by using his global knowledge and the space-time system. For the particular case of EPRB experiments, Charly must know about the ancient principle that events may only be evaluated relative to each other, which Alice and Bob cannot accomplish to start with, because they do not know about each other. Without global physical laws and a space-time system, even the correlation of clocks in distant cities becomes a mystery.
We ask the reader not to abandon our reasoning, because of prejudices regarding the use and meaning of the discussed important terms.
We also like to point toward other important criticisms involving views more or less different to ours presented here. In particular, the concept of “contextuality” has been used in a number of ways to discuss violations of the Bell-CHSH inequalities. We do not use the loaded word “contextual” at all but only talk about “events being evaluated relative to each other”. Of course, in the case of spatially distant experiments relative evaluation encompasses a lot of the meaning of “contextuality”. Numerous important works have discussed related violations of Bell-CHSH. Particularly relevant points have been presented in the works of Khrennikov (2009) (see also the well-known Växjö conferences) and Kupczynski (2020) as well as references in their works.
3 MALUS-TYPE EXPERIMENTS FOR SINGLE PHOTONS WITH SEQUENTIAL POLARIZERS
3.1 Geometry and measurement-outcomes of the Malus-type experiments
Perhaps the most illuminating experiment, at least with respect to modeling and the Alice-Bob “locality” assumptions by Bell and followers, is the standard Malus-type experiment performed with single photon resolution. Consider two special polarizers, Wollaston prisms, in sequence to the right of a single-photon source [image: Lowercase letter "s" in a serif font, displayed in black against a white background.] (Wollaston prisms permit a clearer formulation of the arguments, although they have not necessarily been used in all actual experiments). The photons propagate in [image: Lowercase letter z in a bold, serif font displayed against a plain background.]- direction and are sorted by the Wollaston prisms into two sets one named ordinary [image: Mathematical notation showing an uppercase Greek letter lambda followed by a subscript lowercase letter o.] and the other extraordinary [image: Mathematical expression showing an uppercase Greek letter lambda with a subscript lowercase e.]. The properties of these sets depend, in general, on the geometric configuration of the Wollaston prisms. We characterize this configuration throughout this paper by an angle in the [image: Mathematical variables x and y are written in italics, separated by a comma, representing coordinates, variables, or other mathematical elements.] plane denoted by the variable [image: Mathematical expression showing j equals a, a prime, and so on, indicating a sequence or set of algebraic terms.] for the primary Wollaston [image: Mathematical expression showing an uppercase italic W with a subscript one, commonly used to denote the first element or index in a sequence or set.] and by [image: Mathematical expression showing j prime equals b, b prime, and an ellipsis indicating continuation.] for any secondary Wollaston [image: Mathematical notation showing an uppercase italicized letter W with the number two as a subscript, commonly interpreted as W sub two.].
Assume now that the source [image: Lowercase letter s in a serif font, black on a white background.] emanates [image: Bold uppercase letter N in a serif font centered on a white background.] photons that behave in the following way. Passing [image: Mathematical expression displaying an italic uppercase W with a subscript one, commonly read as W sub one.] with a given configuration angle, for example, [image: Mathematical expression showing j equals a.], leads to the sorting of about [image: Mathematical expression showing variable N divided by two using a horizontal fraction bar.] photons into the ordinary set that we denote now by [image: Mathematical expression showing the uppercase Greek letter Lambda with a superscript lowercase letter a and a subscript lowercase letter o.] and about [image: Mathematical expression showing the variable N divided by the number two, presented as a fraction.] photons into the extraordinary [image: Mathematical expression showing uppercase Greek letter Lambda with a superscript lowercase italic a and a subscript lowercase italic e.] . We cannot deduce from such measurements more than the fact that Wollaston prisms, no matter how configured, lead to binary sorting that may be influenced by the given polarizer direction (angle). This angle is just defined within our rather arbitrary global coordinate system and, therefore, single photon measurements performed with a single polarizer, have only limited significance for distant correlations.
Sequential measurements with two additional Wollaston prisms [image: Mathematical notation showing an uppercase W with a subscript two, commonly used to represent a variable or parameter labeled as W sub two.] and [image: Mathematical notation showing an italic capital W with a star superscript and a two exponent, representing W star squared.] (called analyzers), do give us more interesting information. [image: Mathematical notation showing an uppercase italic W with a subscript two.] is arranged to pick up the ordinary channel of [image: Mathematical notation displaying an italic uppercase W with a subscript 1.] and deals, thus, with the set [image: Mathematical expression showing the Greek capital letter lambda with superscript j and subscript o.], while [image: Mathematical expression showing an uppercase italic W with a superscript two and an asterisk directly above the two.] deals with the extraordinary channel of [image: Mathematical variable W with subscript one, indicating W sub one.] and the set [image: Mathematical expression showing uppercase Greek letter Lambda with superscript j and subscript e.]. We have illustrated the geometry of the Wollaston prisms including the source [image: Lowercase, bold black letter “s” in a serif font displayed on a white background.] in Figure 1. Note that one cannot have both [image: Mathematical notation showing an uppercase italic W with a subscript two.] and [image: Mathematical expression showing an italic uppercase W with a superscript asterisk and subscript two.] precisely perpendicular to the z-axis with their face in the x-y plane, but it is well known how to experimentally approximate this situation and we just assume for the mathematical model that all Wollaston prisms are perpendicular to the z-axis, which is the direction of the photon propagation. The Wollaston’s rotation-angle is in the x-y plane starting with zero in the x-direction.
[image: Diagram showing a light source directed at a series of beam splitters labeled W₁ and W₂, splitting the beam into four paths, each ending at detectors labeled Detector 1, Detector 2, Detector 3, and Detector 4.]FIGURE 1 | Experimental arrangement for single-photon Malus-type experiments. The polarizer is represented by Wollaston prism [image: Mathematical variable W with subscript one, presented in an italicized serif font.] and the analyzers by [image: Mathematical notation displaying a bold italic uppercase W followed by the number two in subscript, commonly representing a variable or symbol labeled W sub two.] and [image: Mathematical notation displaying a capital letter W with a subscript two and a superscript two, commonly read as W two squared.], respectively.
The two sets [image: Mathematical expression showing uppercase Greek letter Lambda with a superscript j and a subscript o.] and [image: Mathematical notation showing uppercase Greek letter Lambda with superscript j and subscript e.] are now analyzed by Wollaston prisms [image: Mathematical expression showing an uppercase italic W with a subscript two.] and [image: Mathematical expression showing an italic uppercase W with an asterisk as a superscript and the number two in superscript.] that sort these sets into the sets [image: Mathematical expression showing capital Lambda subscript o, with superscript j and j prime.], [image: Mathematical expression showing uppercase Lambda with superscript j and j prime, subscript e, followed by an exponent q prime.] and [image: Mathematical expression showing capital lambda with a star, j and j prime as superscripts, and a subscript o.], [image: Mathematical expression showing the Greek letter Lambda with a subscript e, an asterisk superscript, and superscript indices j and j prime separated by a comma.], respectively.
Einstein’s hypothesis is that the photons of these sets have certain properties. We denote these properties of the photons that are contained in the various sets above by the lower-case symbols: [image: Mathematical expression showing lowercase lambda with zero as a subscript and j, j prime as superscripts.], [image: Mathematical expression showing lambda with superscripts j and j prime, and subscript e.], [image: Mathematical expression showing lowercase lambda subscript o with a superscript j comma j prime and an asterisk before the superscript.] and [image: Mathematical expression showing lambda sub e with a superscript asterisk and variables j and j prime.] and take them as the basis for our Einstein-type model. This second (relative) sorting follows a law of nature, known for very large numbers [image: Mathematical expression showing the letter N divided by the number 2, arranged as a vertical fraction.] of photons as the law of Malus and states:
Of all the photons that transfer into the ordinary channel of [image: Mathematical notation showing an italic uppercase W with a subscript numeral one, commonly used to represent a variable or parameter in equations.], an approximate number of
[image: Mathematical expression showing N divided by 2 multiplied by the square of cosine of the difference between j and j prime in parentheses.]
photons will transfer into the ordinary channel of [image: Mathematical notation displaying the uppercase letter W with a subscript two.] for large [image: Uppercase Latin letter N in a serif font, displayed in bold with a slight blur effect on a white background.]. The numbers found in the extraordinary channel of [image: Mathematical expression showing an italic capital W with an asterisk superscript and the number two as a superscript, representing W star squared.] follow the same law. As is evident, this law is invariant to rotations of the coordinate system as well as the rotation of the Wollaston prisms around the z-axis. Therefore, we may choose [image: Mathematical expression displaying “j equals zero” in italic font style.], without restriction of generality, put [image: Mathematical expression showing j minus j prime equals theta.] and obtain in this way the Malus law in its usual notation:
[image: Mathematical expression showing N divided by two multiplied by cosine squared of theta in parentheses.]
The connection of the corresponding expressions in terms of the energy of macroscopic electromagnetic fields (instead of large numbers of photons), has been described in detail in introductory texts and also has been shown to be fully consistent with the laws of quantum mechanics (Feynman Lectures, 1965; Baym, 1973).
In order to provide an Einstein type model for the single photon Malus law we need to develop a model that is in principle described by a set theoretic probability theory that features events [image: Mathematical variable omega subscript act, shown in italic font style.] that also have a meaning as Einstein’s elements of physical reality [image: Mathematical variable lambda subscript act, with lambda in italic and subscript act in regular font, typically used to denote an action rate or parameter.]. We further need to link this element of physical reality to the measurement outcomes for the events of the photons interacting with the Wollaston prisms. This link may be achieved as follows.
3.2 Set theoretic mathematical model for the Malus-type experiments
It has been shown in great detail by David Williams in his textbook on probability theory (Williams, 2001) that experiments describing the possible machineries of our surrounding macroscopic world by using probabilities may be modeled by the set theoretically precise Fundamental Model of Probability Theory. The patient reader must remember that set-theoretic mathematics deals with a “fundamental triple” that includes a sample space [image: Greek uppercase omega symbol in bold black font on a white background. Commonly used to represent ohms in physics and electrical engineering.], a sigma algebra of subsets of [image: Black Greek uppercase letter Omega on a white background, with bold and smoothly curved lines forming an open arc above and two downward-facing tails at the base.] and a unique probability measure P.
The Fundamental Model of probability theory uses the interval [image: Mathematical notation displaying a closed interval from zero to positive one, written as an open bracket, followed by zero, comma, plus one, and a closed bracket.] of the real numbers for [image: Greek capital letter omega symbol depicted in black on a white background, commonly used to represent ohms in electrical resistance or the last item in a sequence.]. Every event of actual measurements may be simulated by a real number out of this interval. The events are, as usual, denoted by [image: Mathematical expression showing lowercase omega belongs to uppercase omega, represented as omega, element of, uppercase omega.]. As mentioned, Tyche, the goddess of fortune, picks one such [image: Lowercase Greek letter omega in a serif font, shown in black on a white background.] denoted by [image: Mathematical expression showing the lowercase Greek letter omega followed by the subscript letters a, c, t, representing omega sub act.] to instigate a certain actual event. For [image: Mathematical variable omega subscript a c t is shown in italicized font.] drawn uniformly from the interval [0,1] the probability that [image: Mathematical expression in italic font showing the Greek lowercase letter omega followed by the subscript letters a, c, and t.] lies in a sub-interval [image: Mathematical notation displaying a closed interval from zero to x, written as left bracket zero comma x right bracket.] is given by [image: Lowercase italic letter x in a serif font centered on a white background, commonly used as a mathematical variable or symbol.] (Williams, 2001).
To simulate the actual polarizer experiments by involving real numbers for the photon properties, it is convenient (as we will see below) to generalize the Fundamental model to include the extended interval [image: Mathematical expression showing a closed interval from negative one to positive one, denoted by square brackets as negative one comma positive one.] instead of [image: Mathematical notation showing a closed interval from zero to positive one, represented as bracket zero comma plus one bracket.], which is straightforward. We introduce now the notation and conventions similar to Bell and denote the measurement outcomes by two-valued functions, [image: Uppercase letter A in a serif font, displayed in black on a white background.] for polarizer [image: Mathematical notation displaying an italic uppercase W with a subscript one, commonly representing a variable or parameter labeled W one.] and [image: Uppercase italic letter B in a serif font displayed in black against a white background.] for polarizers [image: Mathematical notation showing a capital W followed by a subscript two, commonly representing a variable or parameter labeled W two in scientific or mathematical contexts.] as well as [image: Mathematical notation showing an italicized capital letter W with a star superscript followed by a superscript two.]. We define [image: Mathematical expression showing capital A equals capital B equals plus one.] if the photon is found always in the ordinary channel and [image: Mathematical expression showing the variables A and B are both equal to negative one.], if it is always found in the extraordinary channel. Our main postulate is that one can indeed model the photon properties for the particular experiment in question by the real numbers of the Fundamental model. The possibility of mapping the elements of physical reality onto the real interval [image: Mathematical expression showing the closed interval from negative one to positive one, written as open bracket negative one, comma, plus one, close bracket.] is indeed a plausible assumption, because we consider only relative outcomes. For a given polarizer angle [image: Lowercase italic letter j in a serif font, commonly used as a mathematical variable or index in scientific and technical notation.], we may then sort the outcomes of [image: Uppercase letter A in a serif font, displayed in black with slight blurring around the edges against a white background.] into two sets that depend only on the sign of the number that models the properties of the photon, because we know that the polarizer accomplishes just such sorting, hereby connecting these sets to the polarizer direction within our arbitrarily chosen coordinate system.
The sorting of the analyzers [image: Mathematical expression depicting an italicized uppercase W with a subscript two, typically used to represent a variable or parameter labeled as W sub two.] and [image: Mathematical notation displaying an uppercase W with an asterisk in the superscript position and a numeral two in the subscript position.] into ordinary and extraordinary sets can then be further modeled as follows: the photon stays with the same sorting that [image: Mathematical notation showing an uppercase italicized letter W with a subscript one on the lower right side.] has accomplished (extraordinary or ordinary), meaning [image: Mathematical expression showing the variable B is equal to the variable A, both written in italic font.] if and only if:
[image: Mathematical equation showing the absolute value of v sub out divided by v sub in is less than or equal to cosine squared theta, followed by the equation number in parentheses.]
According to the Fundamental Model, the probability measure that we indeed encounter such [image: Mathematical expression showing the absolute value of lambda sub e comma o raised to the power j, all within vertical bars.] equals precisely [image: Mathematical expression showing cosine squared of theta, written as cos raised to the power of two, followed by an open parenthesis, the Greek letter theta, and a close parenthesis.], which leads to the law of Malus-type for large [image: Bold, uppercase Latin letter N in a serif font styled in black against a white background. The character is centered and clearly legible.]. The absolute value is now used because we have extended the Fundamental interval to [image: Mathematical expression showing the closed interval from negative one to positive one, represented as left square bracket negative one, comma, plus one, right square bracket.].
Notice that the use of the relative polarizer angles [image: Lowercase Greek letter theta, frequently used as a mathematical symbol to represent an angle or a variable in equations.] in Equation 1 appears completely natural, because the photon has passed both polarizers and may be sorted into the appropriate sets due to its properties that are recognized by both polarizers. No “forbidden” non-locality has ever been attributed to the use of [image: Mathematical expression showing j prime minus j equals theta, enclosed in parentheses.] for that particular experiment in contrast to the EPRB-type experiments. We note in passing that mathematically there exists almost no difference between this Malus-type experiment and the EPRB-type as soon as Einstein’s hypothesis of elements of physical reality is made. One of the reasons for this fact is that we do not need to assume that the Wollaston polarizers change the properties of the photons. It is sufficient to assume that the photon properties are recognized by the polarizers and used for the sorting. In this connection it is important to realize the difference between the properties described by [image: Lowercase Greek letter lambda rendered in a serif font, commonly used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or a rate parameter in probability.] immediately after the emission of the photons and the properties (actual or model) that mark the photons and [image: Lowercase Greek letter lambda, shown in a standard serif font, often used in mathematics, physics, and engineering to represent wavelength, eigenvalues, or other scientific quantities.] after passing the polarizers. It is these properties that may be represented by markers related to the law of nature that determines the outcomes. We will return to this important point below.
4 POLARIZERS ON OPPOSITE SIDES OF A SOURCE
We now turn to the configuration with the polarizers on opposite sides of the source as illustrated in Figure 2, which shows the experimental arrangement along the lines of the EPR ideas with the modifications by Bohm and first implementation using photon-pairs and a stretched film of poly-vinyl alcohol containing oriented anisotropic molecules instead of a Wollaston prism, by Kocher and Commins (Kocher and Commins, 1967).
[image: Diagram showing a central light source emitting beams toward two paths, each with a birefringent crystal labeled W₁ or W₂ splitting the beams into ordinary and extraordinary rays detected by paired detectors, labeled 1, 2, 3, and 4.]FIGURE 2 | Experimental arrangement for entangled-photon for EPRB-Kocher-Commins-type experiments.
Unlike the Malus-type single-photon experiment, this experiment has been performed by many researchers starting with Kocher and Commins and continuing with significant extensions by groups around Clauser et al. (1969), Aspect (2015), Giustina et al. (2015), Kwiat et al. (1999) and others.
We use the same notation that we have used in the previous section, in order to highlight the important similarities and differences with respect to the modeling of the Malus-type. Wollaston [image: Mathematical variable in italics showing an uppercase W with a subscript 1.] is now arranged to the left of the source [image: Lowercase letter s in a serif typeface, displayed in black on a white background.] and Wollaston [image: Mathematical expression showing an uppercase W followed by a subscript two.] to the right as shown in Figure 2. Wollaston [image: Mathematical expression showing an italic capital letter W with a star symbol as a superscript and the number two as a subscript.] is being merged with [image: Mathematical notation displaying the variable W with a subscript of two, typically used to represent the Wasserstein-2 distance or a parameter indexed by two.].
The source emanates now correlated photon-pairs (see explanations by Kocher and Commins (1967)). We assume in the following theoretical discussions that the correlation of the photon-pair is ideal and such that each photon is being recognized according to its properties in identical fashion by [image: Mathematical notation showing an italic uppercase W with a subscript one, representing W sub one.] and [image: Mathematical expression displaying the uppercase letter W with the number two as a subscript, indicating the variable W sub two.]. In other words, the photons are identical twins as viewed with [image: Mathematical notation showing an uppercase italic W with a subscript one, commonly used to represent a variable or weight in equations.] or [image: Mathematical notation showing a capital letter W with a subscript two.].
As for the case of the Malus-type experiments, we need to maintain the principle that the measurements of events have only physical meaning relative to each other. Alice and Bob, knowing nothing about each other, may only judge their local measurements relative to their own previous measurements and thus conclude that the clicks of their detectors are random, corresponding to the detections for ordinary and extraordinary channels of [image: Mathematical notation showing a capital W with the subscript one, commonly used to represent the first element or weight in a sequence or series.] and [image: Mathematical notation showing an uppercase italicized W with a subscript two, commonly used to denote a variable or parameter in equations or formulas.], respectively. If we wish to probe into the distant relative measurement-outcomes, we need to employ a theoretician, Charly, who must involve global factors into his thinking, while still admitting only local causes for the interactions and measurement-outcomes on a given side. As Einstein told Heisenberg: “it is the theory that determines what we can measure” and it is historically true that great experimentalists have also had a deep grasp of theory and vice versa.
Therefore, if we wish to proceed to the understanding of the non-local distant correlations, we need to clearly distinguish on one hand between the theoretical knowledge that Charly must have about the global situation and on the other hand the local causality that must apply according to Einstein for the events in the respective stations.
The natural local interactions involve the polarizer angles [image: Lowercase italic letter j in a serif font, displayed in black on a white background.] and [image: Lowercase italic letter j with a prime symbol above and to the right, representing j prime, commonly used in mathematical or scientific notation.] at the time of interaction, which is measured by local synchronized clocks. Charly describes the local configurations by use of his global coordinate system. Therefore, the local configurations of the polarizers at the time [image: Mathematical notation showing t with subscript n and superscript 1.] for polarizer [image: Mathematical notation showing an italic uppercase W with a subscript one.] and [image: Mathematical expression showing t squared with subscript n.] for polarizer [image: Mathematical notation showing an italic uppercase W with a subscript two, typically representing a variable or parameter labeled W sub two.] may both assumed to be available to Charly within the space-time system, while Nature has available just the single local configurations. Charly, of course, can only find out later what the actual polarizer configurations were, by checking the records of measurement at the registered clock-times.
Note, that the experimenters must, as Charly does, involve more than their local knowledge of equipment configurations if they wish to consider relative outcomes. They too must have a global coordinate system and synchronized clocks (a space-time system), whenever they attempt to compare the outcomes [image: Italicized capital letters A and B separated by a comma, likely representing variables or sets in a mathematical context.] and determine whether [image: Mathematical equation showing capital letter A is equal to capital letter B.] (Aspect, 2015). They also have worked with fixed polarizers and without clocks during the whole sequence of measurements (see, for example, some of the measurements in (Kwiat et al., 1999)).
What is it then that can be measured, while the global rules of relative evaluation as well as the rules of local causes are strictly obeyed? Consider the case of registered detector clicks [image: Mathematical expression showing the variable A is equal to plus or minus one.] and [image: Mathematical expression showing capital B equals plus or minus one.]. Relatively speaking, we have then four possibilities of interesting physical outcomes and we collapse them by symmetry onto two: we either have [image: Mathematical expression showing capital letter A equals capital letter B.] or [image: Mathematical expression showing uppercase A is not equal to uppercase B using the not equal to sign.]. All relative physics must, therefore, be contained in the numbers of equal versus not-equal outcomes of the experimental runs. Importantly, it turns out that the results of [image: Mathematical equation showing uppercase A equals uppercase B.] vs [image: Mathematical expression showing capital A is not equal to capital B.] are also the only results used to obtain the Bell-CHSH inequalities. Charly needs to model, therefore, only the number [image: Mathematical expression representing an uppercase italic letter N with a subscript eq.] of equal outcomes [image: Mathematical equation displaying capital letter A equals capital letter B.] that contains all interesting physics. The number of not equal outcomes [image: Mathematical notation showing an uppercase italic N with the subscript n, e, q written in italic, commonly representing a variable with specification or condition in scientific or mathematical contexts.] is given by [image: Mathematical equation showing N subscript n e q equals N minus N subscript e q, where subscripts denote specific variables or conditions.]. Thus, Charly is not interested in modeling natures outcomes for [image: Capital letter A in a bold serif font displayed in black on a white background.] and [image: Italic, uppercase letter B in a serif font displayed on a white background.] separately but is satisfied to obtain a correct model for the product [image: Mathematical expression displaying capital letter A, dot symbol, and capital letter B, representing the dot product of vectors A and B.], which also happens to be all that Bell-CHSH have needed and used in their work.
We now apply the methods that we have developed for the Malus-type experiment in the previous section: [image: Mathematical notation showing an italic uppercase W with a subscript one, representing W sub one.] is thought to establish the connection of the actual experiment to the global coordinate system and sorts the incoming photon of the pair into two sets, while [image: Mathematical notation displaying an italic uppercase W followed by a subscript two, often used to represent a specific variable or parameter labeled W sub two.] analyzes the incoming twin-photon corresponding to its properties and “markers” that are for all practical purposes assumed identical for the twins. Because we treat [image: Mathematical expression showing the letter W with a subscript two, commonly read as W sub two.] as the analyzer we have a situation which is completely analogous to the Malus-type experiments. To see this fact, imagine the measurement of the [image: Mathematical variable W with a subscript one, denoting W one, commonly used to represent a specific indexed value or weight in equations.] detector to be performed slightly earlier, exactly as it is for the Malus type measurements. This analogy permits us to sorting the identical twins as we did in the Malus-type experiments and as is described next. Of course, we may also exchange the roles of [image: Mathematical notation showing an italic uppercase letter W with a subscript numeral one.] and [image: Mathematical notation displaying an uppercase italic W followed by a subscript two, commonly read as "W sub two."]. Imagining that the measurement involving [image: Mathematical expression showing an uppercase italic letter W with a subscript one, commonly used to denote the first element in a sequence or matrix.] happens before that involving [image: Mathematical notation showing an uppercase italic W with a subscript two, typically representing a variable or parameter labeled W sub two.], is only used to illustrate the analogy to the Malus type experiment.
There exists one big difference of the EPRB-type experiments to the Malus-type. For these latter, we could use [image: Mathematical notation showing the letter W with a subscript 2, commonly used to represent a variable or element indexed by two in equations or scientific contexts.] and [image: Mathematical expression showing an italic capital W with a star superscript and a subscript two.] to further process the ordinary and extraordinary channels. Without this possibility we must employ very careful procedures that avoid the introduction and appearance of instantaneous distant influences.
We still use Einstein’s elements of physical reality that may be imagined as “markers” of the single photons that are the causes for [image: Mathematical notation showing an italic uppercase W with a subscript one.] to guide the incoming photon of the pair toward the [image: Plus one, represented in a simple mathematical expression using a plus symbol followed by the numeral one in a serif font.] or the [image: Minus one is displayed in a serif font with a horizontal line followed by the number one on a white background.] detector and thus makes it a member of the sets [image: Mathematical expression showing uppercase Greek letter Lambda with superscript j and subscript o.] or [image: Mathematical expression showing an uppercase Greek letter lambda with subscript e and superscript j.], respectively, after being detected. Note that we must postulate that these sets depend on the angle [image: Lowercase italic letter j in a serif font displayed in black on a white background.], because otherwise the polarizer-geometry would have no influence. We have denoted their elements by [image: Mathematical expression showing the Greek letter lambda raised to the power of j, with a subscripted zero.] or [image: Mathematical expression showing the Greek letter lambda with a superscript j and a subscript e.] for the Malus-type experiments, but add now an index [image: Lowercase italic letter n in a serif font, commonly used as a mathematical variable or notation.] for the measurement number in order to obtain the notation of [image: Mathematical expression showing the Greek letter lambda with the subscript "on" and superscript j.] or [image: Mathematical expression showing the Greek letter lambda with a superscript j and the subscript "em", indicating a variable related to emission with an index j.], respectively.
In our opinion, this approach synthesizes the views of Einstein and Bohr. The properties of the photons and photon pairs are only known after at least one measurement (with say [image: Mathematical expression showing j equals a, where j is in italics and a is in bold type.]) was performed, relative to which other measurements are evaluated and analyzed.
We turn now to our model in which all of Einstein’s elements of physical reality are simulated by real numbers out of [-1, +1]. Each of the randomly selected numbers signifies different properties and is denoted by [image: Mathematical symbol lambda subscript m n written in italic serif font, commonly used to denote variables or parameters in mathematical equations or scientific contexts.] with [image: Mathematical expression showing the variable n defined as the sequence one, two, three, continuing up to N.]. We postulate further that there exists a one-to-one correspondence of the Einsteinian elements (that occur in the actual measurements for a given polarizer angle, e.g., [image: Mathematical expression showing j equals a, with both variables in italic font.]) and our model-numbers [image: Mathematical notation showing the Greek letter lambda followed by the subscript m and n.]. Each [image: Mathematical symbol lambda with subscript m n, commonly used to represent a variable or parameter indexed by m and n in scientific or mathematical contexts.] is, therefore being mapped to represent one of the specific elements [image: Mathematical notation showing the Greek letter lambda with subscript "on" and superscript "j".] or [image: Mathematical expression showing the Greek letter lambda with subscript e r n and superscript j.] arising from the measurements involving [image: Mathematical symbol showing an italic uppercase W with a subscript 1 to represent W one.] and belonging to the sets [image: Mathematical expression showing the uppercase Greek letter Lambda with a superscript j and a subscript o.] or [image: Mathematical notation showing capital Greek letter Lambda with superscript j and subscript e.] for the selected value [image: Mathematical expression showing j equals a, with both variables in italic font.]. The source has sent a twin element toward the analyzer [image: Mathematical expression showing uppercase italic letter W with a subscript two indicating W sub two.], and that analyzer is being represented by the function [image: Mathematical expression showing B of j prime equals b, lambda sub n equals lambda sub on raised to the j prime equals a.]. The evaluation of that function may, thus, depend on both [image: Mathematical expression showing j is equal to a, with both symbols in italic font.] and [image: Mathematical expression showing j prime equals b, with j featuring an apostrophe to denote the prime symbol.], because both angles appear in the entirely local domain of the function [image: Italic, uppercase letter B in a serif font, presented in black on a white background. Used frequently in mathematical or scientific notation to represent a variable or set.]. The concrete form of the function is not known for certain and may not even exist. Nevertheless, Charly may guess the value of [image: Lowercase italic letter j in a serif font displayed in black on a white background.] and base his model on this guess, while validating the model later on when the information about the value of [image: Lowercase italic letter j in a serif font on a white background.] is available to him (as in the model of (Jakumeit and Hess, 2024)).
Based on all these facts, Charly lets:
[image: Mathematical equation reads A(j, λₙ) equals sign of λₙ, labeled as equation two a.]
and
[image: Mathematical equation stating B of j prime and lambda n equals sign of lambda n if and only if the absolute value of lambda n is less than or equal to cosine squared of j prime minus j.]
in order to model the law of nature that determines the equal and not-equal relative outcomes [image: Mathematical expression showing an open parenthesis, uppercase A equals uppercase B, and a closing parenthesis.].
We do admit that our multiple assumptions, although very plausible, do not let us prove with certainty that quantum-non-localities are not involved in any way. Such proof can probably never be achieved. One simply cannot prove that “spooky” influences (in Einstein’s sense) do not exist.
There is just one minor modification necessary in order to fully compare this model with the experiments of Kocher, Clauser, Aspect and others. All these well-known actual experiments use complete anti-correlation instead of correlation. To obtain the results for anti-correlation, we just need to put
[image: Mathematical expression showing B sub i prime, lambda sub n equals sign of lambda sub n, followed by the label left parenthesis 2b right parenthesis to the right.]
If and only if:
[image: Mathematical expression showing the absolute value of lambda sub n is greater than cosine squared of the difference between j prime and j, labeled as equation two c.]
Equations 2a-c permit us to derive the well-known measured averages by our model. For any given polarizer-angle pair [image: Mathematical expression showing an ordered pair with elements j and j prime, enclosed in parentheses.], we denote the normalized sum of [image: Uppercase serif letter N in bold black font centered on a white background.] measurements by [image: Mathematical expression showing capital D as a function of variables j and j prime within parentheses.] [image: Abstract horizontal gradient consisting of three main bands: a dark gray area at the top, a wide white band in the middle, and another dark gray area at the bottom.]
[image: Mathematical equation showing D of j and j prime equals one over N times the sum from n equals one to N of A of j, lambda sub n times B of j prime, lambda sub n. Equation labeled as three.]
In the limit of [image: Mathematical notation showing capital N with a right arrow pointing to the infinity symbol, indicating that the variable N approaches infinity.], we obtain from expressions (Equations 2a-c) of our model:
[image: Mathematical expression showing D of j comma j prime equals negative cosine of two times open parenthesis j prime minus j close parenthesis, labeled equation four.]
This latter result agrees with the results of quantum mechanics, which appears entirely natural, because it represents in essence a Malus-type law and is very closely connected to the measurement-outcomes for single photon Malus type experiments.
This very result is, however, incompatible with the Bell-CHSH inequalities derived in (Clauser et al., 1969). How can that be? The obvious reason is that Bell-CHSH and followers have used the same measurement number [image: Lowercase italic letter n in a serif font, commonly used to represent a variable in mathematical expressions or equations.] for different polarizer setting pairs. As long as one considers only one polarizer-angle pair (no matter which), this is correct. However, as soon as one calculates the four sums [image: Mathematical expression showing D open parenthesis j comma j prime close parenthesis.] that are the basis for the Bell-CHSH inequality, one needs to realize that different polarizer-angle pairs must have, in general, a different measurement number. As we show next, this lack of precise mathematical labeling still permits the correct derivation of the Bell-CHSH-type inequalities if (and only if) Einstein’s elements of physical reality are countable (see also (Jakumeit and Hess, 2024)). However, just in this very case of countability, the so derived Bell-CHSH inequalities are not invariant under rotations of the polarizers around the z-axis and, therefore, physically speaking, unacceptable
5 BELL-TYPE INEQUALITIES AS DERIVED IN THE TERMS OF THE FUNDAMENTAL MODEL
Bell-CHSH deduced by elementary manipulations that one expects:
[image: Mathematical equation displaying the CHSH inequality: the absolute value of D of a comma b minus D of a comma b prime plus D of a prime comma b plus D of a prime comma b prime is less than or equal to two.]
Key to this finding is that they used identical [image: Mathematical notation showing the Greek letter lambda with subscript m and n, commonly used to represent an indexed variable or parameter in equations.] in all the sums of Equation 3 for all values of [image: Mathematical expression showing an ordered pair with variables j and j prime enclosed in parentheses.], meaning for [image: Mathematical notation displaying three ordered pairs: left parenthesis a comma b right parenthesis, left parenthesis a comma b prime right parenthesis, and left parenthesis a prime comma b right parenthesis.] and [image: Mathematical expression showing an ordered pair with variables a prime and b prime in parentheses, separated by a comma.].
Notice that identical [image: Mathematical notation showing the Greek letter lambda with the subscript m n.] permit the derivation of Equation 5 from Equation 3, because then all [image: Mathematical expression displaying the number four immediately followed by an uppercase italic letter N.] measurement-outcomes may be described by N quadruples of the form:
[image: Mathematical equation containing functions A and B with variables a, b, a prime, b prime, and lambda n; terms are added and subtracted in sequence, labeled as equation 6.]
which are now each cyclically connected (with three products known, the fourth is fully determined) and, therefore, all quadruples are equal to [image: Plus two symbol in black text on a white background, with the plus sign followed by the number two.] or [image: Mathematical symbol showing negative two, with a horizontal minus sign followed by the number two in a serif font, against a white background.]. However, for our Fundamental model, the [image: Mathematical notation showing the Greek letter lambda followed by the subscript letters m and n.] are represented by real numbers chosen randomly out of [image: Mathematical expression showing a closed interval from negative one to positive one, written as open bracket negative one comma plus one close bracket.]. The probability to obtain the same [image: Mathematical expression showing the Greek letter lambda followed by the subscript m and n.] for any different model-measurement is zero and this applies also to any actual measurement if Einstein’s elements of physical reality indeed correspond to a continuum that can be mapped onto (or modeled by) the interval [-1, +1] of real numbers.
As mentioned, Bell-CHSH have deduced their use of the identical [image: Mathematical expression showing the Greek letter lowercase lambda with the subscript m n.] in each of the four sums from the fact that the emitted elements of physical reality may not depend on the polarizer angles, because these may be chosen in the last moment just before the actual measurement and indeed have been so chosen in all Aspect-type (Aspect, 2015) experiments. As mentioned, however, that fact does not mean that the [image: Mathematical notation showing the lowercase Greek letter lambda followed by subscripts m and n.] of Equation 6 must be identical for all polarizer angle pairs. In strict mathematical terms, the [image: Mathematical notation displaying the Greek letter lambda with a subscript m and n.] are only identical in approximately all quadruples if their number [image: Bold, italic, uppercase letter M in a serif font style centered on a white background.] is countable (finite) and if the number of measurements [image: Mathematical expression showing N is much greater than M using a double greater-than symbol.]. (We do not include the case of countable infinite into our discussions in spite of the fact that similar situations can be constructed with countable infinite sets such as rational numbers.)
The astounding conundrum of the Bell-CHSH inequalities arose from the conviction of Bell and followers that their derivations followed mostly from Einstein’s separation principle. They did not realize that their derivation required additional mathematical conditions regarding the cardinality of Einstein’s elements of physical reality and a certain cyclicity of the polarizer angles. They also did not realize that these mathematical conditions have the consequence that the inequalities are physically not acceptable, because they are not invariant under rotations of the polarizer angle-pair around the z-axis. We show these facts in form of two theorems in the following section. We formulate these theorems in terms of the Fundamental Model that we have used all along. It is important to note that the theorems are derived without a direct use of Einstein’s separation principle (although it is indirectly guaranteed by the random draws of real numbers). All the above facts and following Theorems are also consistent with Gerard ‘t Hooft’s widely published ideas ('t Hooft, 2020) regarding the Einstein-Bohr debate and his recent additional important findings with regard to “hidden ontological variables” ('t Hooft, 2024).
6 PHYSICAL INCONSISTENCY OF MATHEMATICALLY CORRECT BELL-CHSH INEQUALITY: TWO THEOREMS
6.1 Theorem 1
Given the polarizer geometry of Section 4, a cyclical arrangement of the polarizer angle pairs such as ([image: Mathematical notation displaying four ordered pairs: a, b; a, b prime; a prime, b; and a prime, b prime, each separated by semicolons.] and a mathematical representation of Einstein’s elements of physical reality by real numbers of the interval [image: Mathematical expression showing an interval from negative one to positive one, inclusive, with square brackets indicating closed endpoints.] encompassing two possible cases: (i) Each real number of the interval [image: Mathematical notation showing the closed interval from negative one to positive one, enclosed in square brackets to indicate both endpoints are included in the range.] represents an element of physical reality, which is drawn randomly and uniformly for each different model-measurement. (ii) Einstein’s elements consist of a countable finite number [image: Uppercase italic letter M in a serif font, commonly used in mathematical notation or equations.] of reals randomly and uniformly chosen from the interval [image: Mathematical notation displaying an interval from negative one to positive one, inclusive, using square brackets to indicate both endpoints are included.]. In this case, the draws of the model-measurements are random choices from these finite subsets with given number [image: Italic uppercase letter M in a serif font on a white background.] independent of the polarizer angles. Given further the Bell-CHSH functions (of these drawn numbers and polarizer angles) with values [image: Mathematical expression displaying A equals plus or minus one, comma, B equals plus or minus one.], the following holds:
The Bell-CHSH-type inequalities may be validated if and only if the cardinality of the number of draws [image: Uppercase letter N in a bold serif font, rendered in black on a white background.] significantly exceeds the cardinality of the number [image: Italicized, uppercase letter M in a serif font is centered on a white background.] of Einstein’s elements of physical reality (which can never be true for case (i)).
6.2 Proof
6.2.1 Necessity
If Einstein’s elements are not countable and modeled by numbers selected randomly and uniformly from the interval [-1, +1] of the reals, all the chosen numbers are different with probability 1. We may, therefore, choose function-values [image: Italicized capital letters A and B separated by a comma, likely representing variables or sets in a mathematical or scientific context.] that model the [image: Uppercase bold serif letter N displayed in black on a white background.] quadruples of Equation 6 such that the Bell-CHSH inequalities are violated, because the necessary cyclicity of (Equation 6) may now be eliminated for all the quadruples in a suitable way.
6.2.2 Sufficiency
Given are the cyclical arrangement of polarizer angles from above and an arbitrary finite number [image: Italic, uppercase letter M rendered in a serif font against a white background.] of Einstein’s elements as well as a number of measurements (draws) [image: Mathematical notation showing capital letter N is much greater than capital letter M, using a double greater-than symbol.]. One can then build about [image: Mathematical expression showing the variable N divided by the variable M, represented as a vertical fraction with N as the numerator and M as the denominator.] stacks of the [image: Uppercase italic letter M in a serif font, typically used in mathematical notation or equations. Black character on a white background.] elements for each of the four pairs of polarizer angles that lead to the validity of Equation 6 and thus to the inequalities for [image: Mathematical expression showing a capital letter N with a rightward arrow pointing to the infinity symbol, representing that N approaches infinity.]. Q. E. D.
The facts of this theorem with regard to the cardinality of Einstein’s elements vs. the number of draws were unknown to Bell and followers. They believed that it was rather “locality” that was the virtually sole non-trivial basis for their inequalities, while, in fact, it is only locality together with cardinality. The locality requirement that, at the source, Einstein’s elements are independent of the polarizer angles, is automatically fulfilled by the randomness of the draws. Note that our proof above has not assumed any probability measure for the possible function-outcomes of [image: Italicized capital letters A and B separated by a comma, commonly used to represent variables or labels in mathematical or scientific contexts.]. As a consequence, Theorem 1 (and also Theorem two below) do not give us any actual degree of violation they only tell us that Bell-CHSH cannot be regarded as impossibility-proofs. To obtain the violations that correspond to the quantum results, we need the additional assumptions of our model as described above and also below in the computer model. In particular, we need to assume the evaluation of the model results relative to each other.
Some may wish to indeed accept a finite number of Einstein’s elements as a physical fact and, thus, have the physical validity of the Bell-CHSH inequalities guaranteed. There is, however, another important factor to be considered. The results of quantum mechanics for the data averages of the above experiments (Equation 3) are invariant under rotations of the polarizer-pairs around the z-axis and this invariance has also been proven experimentally for the photon-pair experiments beyond reasonable doubt [see 2, 4, 6, 7, 15]. Consequently, the sum of three (Bell) or four (CHSH) such data averages of experimental runs should be invariant with respect to rotations of the polarizer pairs around the z-axis for one or more such experimental runs. However, we prove in Theorem two below that for a finite number [image: Uppercase italic letter M is centered on a plain white background, rendered in a serif typeface commonly used for mathematical notation.] of elements of physical reality and, thus, valid Bell-CHSH inequalities, these inequalities are not rotationally invariant. The Bell-CHSH inequalities lead, therefore, to a contradiction: their mathematical proof of using finite numbers [image: Italic, uppercase letter M in a serif font displayed in black on a white background.] requires also that they are physically unacceptable, because they violate invariance to rotations of the polarizer pairs around the z-axis.
6.3 Theorem 2
Given the premises of Theorem 1 and a finite number [image: Italic, uppercase letter M displayed in a serif font, centered on a white background.] for Einstein’s elements of physical reality, the following holds:
The Bell-CHSH inequalities are not invariant to rotations of the polarizer pairs around the z-axis.
6.4 Proof
Take the four polarizer angles used by CHSH. Then, the Bell-CHSH inequalities are valid according to Theorem 1.
Now rotate the two polarizers for each of the separate experimental runs with polarizer angle pairs ([image: Mathematical notation showing four ordered pairs: a comma b; a comma b prime; a prime comma b; a prime comma b prime.] such that the left polarizer has always the angle [image: Large, bold black number zero centered on a white background.] (zero) in a given coordinate system. We have in this way removed the cyclicity, which is a necessary condition to arrive at the Bell-CHSH inequality as shown by expression (6) (and in much greater mathematical generality by the work of Vorob’ev for topological-combinatorial cyclicities (Vorob’ev, 1962)). Consequently, the inequality must no longer be fulfilled. Q. E. D.
The Bell-CHSH inequality is, therefore, not invariant with respect to rotations of the polarizer angles around the z-axis and violates, thus, both the results of quantum mechanics and of actual measurements. We emphasize again that we have not made the specific model assumptions of Equations 2a–c to derive the theorems. Theorem two does not tell us, for this reason, how large the violations of the Bell-CHSH inequalities are. The numerical experiment discussed in the next section shows that with the additional assumptions of our model, the violation is major and approximates the quantum results.
The above theorems leave us then with a very reasonable and physically acceptable corollary: the Bell-CHSH inequalities do simply not apply to the Clauser-Aspect-Zeilinger experiments. Furthermore, if we are willing to accept that Einstein’s elements of physical reality have the cardinality of a continuum, we can find a model that violates Bell-CHSH and is rotationally invariant. This model may also be implemented on two distant computers.
7 TWO-COMPUTER MODEL FOR EPRB EXPERIMENTS AND APPLICATION TO ACTUAL EXPERIMENTS
We present now a numerical EPRB experiment, executed by two computers [image: Mathematical notation shows the letter C followed by a subscript one.] and [image: Mathematical expression showing an uppercase italicized letter C with a subscript two, typically used to denote the chemical element diatomic carbon or a mathematical constant or variable.] precisely in the same way as done by the experimenters equipped with polarizer [image: Mathematical notation showing the uppercase italic letter W with a subscript 1.] and analyzer [image: Mathematical notation showing the uppercase letter W with a subscript two, typically used to represent a variable or parameter labeled as W two.] as well as photon detectors. The detection of photons and the correlation of events related to entangled photon pairs by the time stamp are assumed to be ideal. Therefore, every measurement is marked by an index [image: Lowercase italic letter n in a serif font, commonly used to represent a variable or integer in mathematical expressions or scientific notation.] of the photon pair property [image: Mathematical notation displaying the Greek letter lambda with subscript m n.]. The measurement times, meaning the times of the detector clicks, are also often recorded by synchronized clocks and denoted by [image: Mathematical variable t with superscript one and subscript n, written in italic font.] and [image: Mathematical notation showing t squared divided by n, where t is raised to the power of two and n appears as a subscript.], respectively. Also recorded at these times are polarizer angles [image: Lowercase italic letter j in a serif font, commonly used for mathematical or scientific notation.] and [image: Mathematical symbol showing the letter j with a prime symbol above and to the right, commonly used to represent a derivative or a related value in mathematics or physics.], which are available and used on the computers. Note that time-dependences innate in the experiments as explained by Kocher (Kocher and Commins, 1967) may be included into our computer simulation.
Overall, we use precisely the same model that we have developed above and Equations 2a–c with two exceptions: We use a computer random number instead of a mathematical real number for [image: Mathematical expression showing the Greek letter lambda with subscript m and n.]. The random numbers for computers are naturally countable and of number [image: Italic uppercase letter M displayed in a serif font on a white background. The character appears centered and clearly legible.]. They can be, however, made large enough so that for any simulated experiment [image: Mathematical expression showing the uppercase letter M is much greater than the uppercase letter N, using the double greater-than symbol.], which is all that is needed to show the important points. As we will see, Bell-CHSH is not valid anyway, because we do not use the cyclicity by involving the rotational invariance. Furthermore, in order to highlight the role of the cyclicity assumptions, we remove the cyclicity by the physically permitted and necessary rotational invariance with respect to rotations around the z-axis to obtain [image: Mathematical expression showing j equals zero in italicized font.] for all cases. Thus, we have:
[image: Mathematical expression showing A equals sign of lambda sub n, labeled equation seven a.]
And we guess the law of nature that
[image: Mathematical expression showing B sub i prime, lambda sub n equals sign of lambda sub n, followed by the label left parenthesis 2b right parenthesis to the right.]
if and only if
[image: Mathematical expression showing the absolute value of lambda sub n is greater than cosine squared of the difference between j prime and j, labeled as equation two c.]
Remember that the subscript [image: Lowercase italic letter n in a serif font, shown in black on a white background, commonly used in mathematical or scientific notation.] denotes the number of measurement and must be different for different polarizer-angle pairs and now for different [image: Italic lowercase letter j with a prime symbol directly above and to the right, representing j prime, commonly used in mathematics and scientific notation.] .
The computer-model outcomes compare well with the results of quantum mechanics. Of course, we have included a fair number of definitions and theoretical assumptions and have used global space and time coordinates as well as rotational invariance, in order to develop this “theory laden” computer experiment.
Notice that any fast changes of [image: Mathematical variable j with a prime symbol above and to the right, typically used to denote a derivative, transformed index, or related mathematical concept.] do not cause any differences in our computer-model. It is not Bell’s “locality” or spooky influences that play any role, it is our inclusion of rotational invariance that removes the cyclicity and, therefore, the validity of Bell-CHSH.
The necessary special and relative treatment of the [image: Mathematical variable W with a subscript one in italic font, typically used to denote the first element in a set or sequence.] polarizer in contrast to the [image: Mathematical notation showing the letter W followed by the number two as a subscript, commonly used to represent a variable or parameter labeled W sub two.] analyzer (or vice versa), becomes totally acceptable, as soon as one notices the absolute need of a global measure in order to consider correlations. For example, if we were to measure instead of polarization some kind of “length”, one clearly needs to agree globally on a length-measure. If Alice measures in units that she switches rapidly between Inches, Parsec and Angstrom and without telling Bob, clearly Bob cannot guess the correlations in the length of the identical twins that they investigate.
As a corollary, the Bell-CHSH inequalities should have never been considered as a staple of physical theory related to EPRB, because they violate rotational invariance that is a hallmark of quantum theory and the Malus law, and has been experimentally proven by countless single photon EPRB-type measurements.
7.1 Computer simulations illustrating Theorem 2
The just described computer model can be used in a straightforward way to simulate the results that are expected for a countable number of elements of physical reality. We just select randomly a set of [image: Uppercase italic letter M in a serif font, commonly used in mathematical and scientific notations to represent a variable or set.] numbers, for example, [image: Mathematical expression showing equals sign followed by the number ten thousand, written as ten comma zero zero zero.] , out of the interval [image: Mathematical expression showing a closed interval with endpoints negative one and positive one, denoted in set notation as bracket negative one comma positive one bracket.] and compute a consistent set of outcomes [image: Mathematical expression showing uppercase A dot B, representing the dot product of vectors A and B.] for all possible polarizer setting pairs by using expressions (7a-c) within a Monte Carlo framework, meaning that we determine and store the outcomes for the [image: Italic capital letter M in a serif font, commonly used in mathematical or scientific notation.] random numbers in a consistent way for [image: Mathematical expression displaying the number four followed by a capital letter N, indicating a value of four newtons, a unit of force.] measurements; [image: A large, bold, black uppercase letter N is displayed on a white background with a slightly blurred appearance.] for every one of the four different polarizer angle-pairs. We have used the CHSH polarizer orientations that lead to the largest violation of the CHSH inequality for the polarizer angle differences: [image: Mathematical expression showing a equals zero degrees, a prime equals forty-five degrees, and b equals twenty-two point five degrees.] and [image: Mathematical equation showing b prime equals sixty-seven point five degrees.]. We have published the precise procedure in (Jakumeit and Hess, 2024).
We have performed this calculation for the polarizer angles used by CHSH (Clauser et al., 1969) and Aspect (Aspect, 2015) for the given [image: Uppercase, italicized letter M in a serif font, displayed on a white background.] and varying [image: Uppercase serif letter N in black centered on a white background.]. The results are shown in Figure 3., which shows the values of CHSH as defined in Equation 4 (note that these are absolute values) as a function of the number [image: Capital letter N in a serif font displayed in black on a white background.] of measurements for a value of [image: Mathematical expression showing the variable M equals ten thousand.]. As expected from Theorem 1, the CHSH inequality must be fulfilled for [image: Mathematical expression showing capital N is much greater than capital M, using the double greater-than symbol.] and begins to be fulfilled approximately for [image: Mathematical expression showing uppercase M equals uppercase N.]. Big violations are clearly visible for [image: Mathematical expression showing N is less than or equal to M.], simply because then most of the [image: Mathematical expression showing the Greek letter lambda with subscripts m and n in italic font.] are different and we are free to choose outcomes [image: Mathematical notation showing the capital letters A and B in italics, separated by a comma, likely representing variables, points, or sets in a mathematical context.] commensurate with a Malus-type law.
[image: Line graph showing CHSH inequality scores on the vertical axis versus N on a logarithmic horizontal axis. Data points decrease steadily from about three to around one as N increases from ten to one hundred million.]FIGURE 3 | Model results for the values of CHSH (defined by Equation 4) plotted versus the number of measurements [image: A bold, uppercase letter N in black on a white background, with slightly blurred edges.]. Note the validity of the CHSH inequality for [image: Text reads capital N is much greater than capital M, using the mathematical symbol for much greater than.].
We then have rotated the four polarizer-angle-pairs in such a way around the z-axis that the angle [image: Italic lowercase letter j in a serif font, black on a white background.] of [image: Mathematical expression displaying an italicized uppercase W with the subscript one.] is always 0, while [image: Mathematical variable j with a prime symbol above it, indicating j prime, commonly used in equations or as an indexed variable.] of [image: Mathematical notation showing an uppercase W with a subscript two, commonly representing the variable W sub 2 in equations or formulas.] is chosen to obtain the desired differences [image: Mathematical expression showing the variable j minus the variable j with a prime symbol.] that CHSH and Aspect have used. For the concrete selection of CHSH angles mentioned above, this means to rotate D (a’, b) to D (a’-a’, b-a’) = D (0°, −22.5°) (previously D (45°,22,5°) and D (a’, b’) to D (a’-a’, b’-a’) = D (0°,22.5°) (previously D (45°,67.5°), by just using the rotational symmetry. The results of this procedure are shown in Figure 4.
[image: Line graph showing CHSH incompability score on the y-axis and number of samples on the x-axis, displaying a nearly constant score around 3 as sample size increases, with data points marked in purple.]FIGURE 4 | The CHSH values for a system of coordinates rotated such that we have [image: Mathematical expression showing j equals zero.] for all four terms of the CHSH inequality and [image: Mathematical notation displaying the variable j with a prime symbol indicating either a derivative, a transformed variable, or a related indexed term.] rotated appropriately to obtain the angle differences [image: Mathematical expression showing j prime minus j, using italicized variables and a subtraction symbol.] as used in Aspect-type experiments. Note that the CHSH inequality is always significantly violated, with a value close to the quantum result.
As clearly seen in Figure 4, the rotation of the polarizer angle-pairs has completely destroyed the validity of the CHSH inequality. Therefore, the CHSH inequality is not invariant to rotations of the polarizer angle-pairs and the coordinate system as is required by the results of quantum mechanics and by a world of experimental evidence including the classical limit for very large numbers of photons.
8 CONCLUSION
We have used the Fundamental Model of probability theory (Williams, 2001) for experiments using single photons or photon-pairs and polarizers in two very different configurations, one corresponding to Malus-type measurements, the other to EPRB-type measurements such as performed by Kocher and Commins (1967) and groups related to Aspect (2015), Clauser et al. (1969) and Kwiat et al. (1999); Giustina et al., 2015).
Our model shows a pronounced violation of the Bell-CHSH inequalities and agreement with the quantum result. We have shown that this unexpected violation of the highly respected inequalities arises, within the confines of the Fundamental Model (Williams, 2001), from the fact that there are precise premises that guarantee the mathematical validity of the inequalities. However, these mathematical premises lead to a mathematical-physical problem: The correctly derived Bell-CHSH inequalities are physically not acceptable, because they are not invariant to rotations of the polarizer-angle pairs. This lack of invariance makes Bell-CHSH physically unacceptable as a model for the actual experiments such as (Kocher and Commins, 1967; Clauser et al., 1969; Aspect, 2015; Kwiat et al., 1999; Giustina et al., 2015), which are invariant to such rotations. The paradox created by the work of Bell is, thus, resolved and proven to be no reason to suspect any failure of Einstein’s separation principle as well as the ideas of Einstein and ‘t Hooft ('t Hooft, 2020; 't Hooft, 2024) regarding the existence of ontological hidden variables and their local-causal nature.
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This year we celebrate 100 years of quantum mechanics (QM). Incorrect interpretations of QM and incorrect mental models of the invisible details of quantum phenomena lead to paradoxes. To explain these, we advocate the statistical contextual interpretation (SCI) of quantum mechanics. State vectors (wave functions) and various operators are purely mathematical entities that permit quantitative probabilistic predictions. “State vector” describes an ensemble of identically prepared physical systems, and a specific “operator” represents a class of equivalent measurements of a physical observable. A collapse of wavefunction is not a mysterious and instantaneous physical process; a collapsed quantum state describes a new ensemble of physical systems prepared in a particular way. A value of a physical observable, such as a spin projection, associated with a pure quantum ensemble is a characteristic of this ensemble created by its interaction with measuring instruments. Probabilities are objective properties of random experiments in which empirical frequencies stabilize. Following Einstein, SCI rejects the claim that QM provides a complete description of individual physical systems, but it remains agnostic about whether a more detailed subquantum description can be found or is necessary. In conformity with Bohr contextuality, SCI rejects Bell-local and Bell-causal hidden variable models. Nevertheless, by incorporating into a probabilistic model contextual hidden variable measuring instruments, long distance quantum correlations studied in Bell tests can be explained without evoking quantum nonlocality or retro-causality. SCI allows the explanation of several quantum phenomena without evoking quantum magic. SCI does not claim to provide a complete description of quantum phenomena; in fact, it is unknown whether quantum probabilities even provide a complete description of existing experimental data. Time series of experimental data may contain much more information than is obtained using empirical frequencies and histograms. Therefore, predictable completeness of QM must be tested and not taken for granted.
Keywords: EPR paradox, Bell-CHSH inequalities, Bell tests, entanglement, quantum nonlocality, contextuality, completeness of quantum mechanics

1 INTRODUCTION
In 1925, Werner Heisenberg, Max Born, and Pascual Jordan developed matrix mechanics (Heisenberg, 1925; Born and Jordan, 1925; Author anonymous, 2024a), the first consistent formulation of quantum mechanics (QM). To commemorate this achievement, 2025 has been declared the International Year of Quantum Science and Technology (IYQ) by the United Nations.
Despite the incredible advances made in quantum science and technology over the past century, there is still no consensus regarding its interpretation and limitations (Author anonymous, 2024b; Schlosshauer et al., 2013; Kupczynski, 2018a; Kupczynski, 2024a). Incorrect interpretations of QM and incorrect mental models of invisible details of quantum phenomena lead to paradoxes and speculations about quantum weirdness and quantum magic. Most of these paradoxes are due to the “individual” interpretation, according to which an instantaneous collapse of wave function describing individual physical system(s) is triggered by a single measurement performed on one of these systems.
We here review and advocate a statistical contextual interpretation (SCI) which is free of paradoxes (Einstein and Schilpp, 1949; Einstein, 1936; Ballentine, 1989; Ballentine, 1998; Kupczynski, 2007; Kupczynski, 1973; Kupczynski, 1987a; Kupczynski, 2005; Kupczynski, 2006; Kupczynski, 2015a; Kupczynski, 2016a; Kupczynski, 2017a; Khrennikov, 1999; Khrennikov, 2024; Khrennikov, 2009; Khrennikov, 2016; Allahverdyan et al., 2013). According to this interpretation, a quantum state is not an attribute of an individual physical system which can be changed instantaneously. The so-called collapse of the wavefunction is not a mysterious physical process. Quantum state/wavefunction is a mathematical entity representing an equivalence class of subsequent preparations of the physical systems. Quantum states together with specific operators representing physical observables are used to make probabilistic predictions for a statistical scatter of measured values of these observables in well-defined experimental contexts. A value of a physical observable, such as a spin projection, associated with a pure quantum ensemble is a characteristic of this ensemble created by its interaction with measuring instruments. Probabilities are objective properties of random experiments in which empirical frequencies stabilize. SCI rejects the claim that quantum mechanics provides a complete description of individual physical systems, but it remains agnostic on whether a more detailed subquantum description can be found or is necessary. In conformity with Bohr contextuality, SCI rejects Bell-local and Bell-causal hidden variable models. Nevertheless, by incorporation into probabilistic model contextual hidden variables measuring instruments, the quantum correlations studied in Bell tests can be explained without evoking quantum nonlocality. SCI does not claim to provide a complete description of quantum phenomena. In fact, it is not even known whether quantum probabilities provide a complete description of existing experimental data. Time series of experimental data may contain much more information than is obtained using empirical frequencies and histograms.
SCI (Kupczynski, 2006; Kupczynski, 2007; Kupczynski, 2016a; Kupczynski, 2017a) is similar but not identical to Ballentine’s statistical (Ballentine, 1989; Ballentine, 1998) and Khrennikov’s Växjö interpretation (Khrennikov, 1999; Khrennikov, 2024; Khrennikov, 2009; Khrennikov, 2016). In Ballentine’s statistical interpretation, the quantum state also describes an ensemble of similarly prepared systems, not individual systems. This interpretation avoids the need for wave function collapse. It is compatible with hidden variable theories but contrary to SCI and Växjö interpretation it acknowledges that such theories must be non-local to comply with Bell’s theorem (Ballentine, 1998). Växjö interpretation combines realism at the subquantum level with the contextuality of quantum observables. The value of an observable depends on the measurement context, in conformity with Bohr’s complementarity and contextuality. The quantum probabilities are conditional probabilities. In contrast to SCI, it introduces the concept of a “prespace,” suggesting that both classical and quantum spaces are reductions of a more fundamental reality.
A probability can have a different meaning (Khrennikov, 1999; Author anonymous, 2024c). In SCI, it is an objective property of a random experiment in which empirical frequencies stabilize. Thus, a probabilistic description of quantum phenomena can hardly be considered a complete description of individual physical systems (Einstein, 1936; Ballentine, 1989; Ballentine, 1998; Kupczynski, 2006).
Therefore, Einstein believed that QM is an emergent theory and that a more detailed description of quantum phenomena should be found (Einstein and Schilpp, 1949; Einstein, 1936; Ballentine, 1989). Bohr insisted that quantum probabilities were irreducible and that QM provided a complete description of quantum phenomena and experiments (Bohr, 1963; Bohr, 1987; Plotnitsky, 2009; Plotnitsky, 2012).
Heisenberg (1927) demonstrated the uncertainty principle according to which one may not measure simultaneously, with arbitrary accuracy, a linear momentum p and a position x of a sub-atomic particle, [image: Mathematical equation showing delta x times delta p is less than or equal to h, relating uncertainty in position and momentum to Planck’s constant.], where h is a Planck constant. The principle was generalized by Robertson (1929) and its precise statistical meaning was given by Kennard (1927). We have two experiments performed on two identically prepared beams/ensembles of “particles”. In one experiment, we measure their linear momenta and, in another, their positions. A statistical scatter of experimental data is described by respective standard deviations and [image: Mathematical expression showing the uncertainty principle: the standard deviation of position times the standard deviation of momentum is less than or equal to h-bar divided by two.] where [image: Mathematical equation showing h-bar equals h divided by two pi, expressing the reduced Planck constant in terms of Planck’s constant and pi.]. This interpretation only refers to a statistical scatter of measurement outcomes and not to positions and linear momenta of “particles” if no measurements are performed. According to the Copenhagen interpretation (CI), all speculations about the sharp unmeasured values of linear momenta and positions of sub-atomic particles are meaningless, and QM does not imply that an electron can be here and a meter away at the same time (Kupczynski, 2024a; Kupczynski, 2024b), as incorrectly claimed by several authors.
In 1935, Einstein, Podolsky and Rosen (Einstein et al., 1935) proposed a thought experiment—the “EPR paradox”—intended to demonstrate the incompleteness of quantum mechanics. They considered two entangled particles which interacted in the past moving away from each other in distant locations. According to the Copenhagen interpretation (CI), measuring the position or momentum of one particle would instantly give information about the position or momentum of its distant partner without disturbing it in any way. Thus, physical properties of objects exist independently of measurement, contrary to CI. Bohr (1935) explained that EPR inference requires different incompatible but complementary experiments and that it could not provide more information about an individual physical system than was allowed by QM.
The EPR paradox was rephrased by Bohm (1951) in terms of measurements of a particle’s spin. If you measure the spin of one particle, you instantly know the spin of the other. According to QM, outcomes are produced in irreducibly random ways, but in an ideal EPR-B experiment they are perfectly correlated or anti-correlated in specific randomly chosen experimental settings. This is called the “EPR-B paradox”, since a pair of fair dice cannot always produce correlated outcomes (Mermin, 1985; Mermim, 1993; Kupczynski, 2017b; Kupczynski, 2020).
(Bell, 1965, 2004) abandoned irreducible randomness and proposed the Local Realistic Hidden Variable Model (LRHVM) in which outcomes are predetermined at a source. Clauser and Horne (1974) abandoned predetermination and proposed the Stochastic Hidden Variable Model (SHVM). LRHVM describes entangled pairs/qubits as pairs of socks and SHVM as pairs of dice. In these models, correlations between distant outcomes coded ±1 must obey Bell–CHSH inequalities (Clauser et al., 1969).
Later, hidden variables were assumed to represent all common causes of events in distant laboratories, and the Local Hidden Variable Model (LHVM) (Mermin, 1993; Bell, 2004; Valdenebro, 2002; Wiseman, 2014) could be rejected in several Bell tests (Hensen et al., 2015; Giustina et al., 2015; Shalm et al., 2015; Handsteiner et al., 2017; The BIG Bell Test Collaboration, 2018; Rosenfeld et al., 2017; Zhang et al., 2022; Storz et al., 2023).
Since Bell–CHSH inequalities are violated by some quantum predictions and by experimental data, the majority of the physics community believes that no other locally causal explanation of quantum correlation is possible. Therefore, nature does exhibit non-locality, and entangled particles can influence each other instantaneously across huge distances. This is a source of extraordinary metaphysical speculation about experimenters’ freedom of choice, retro-causality, quantum nonlocality, and quantum magic.
It has been widely explained that such speculations are unfounded (Kupczynski, 2006; Kupczynski, 2007; Kupczynski, 2016a; Kupczynski, 2017a; Kupczynski, 2018a; Khrennikov, 1999; Khrennikov, 2024; Khrennikov, 2009; Khrennikov, 2016; Allahverdyan et al., 2013; Kupczynski, 1973; Kupczynski, 1987a; Kupczynski, 2005; Kupczynski, 2015a; Accardi, 1981; Accardi et al., 2002; Accardi, 2005; Accardi and Uchiyama, 2007; Aerts, 1982; Aerts, 1986; Aerts et al., 2000; Boughn, 2022; Czahor, 1988; Dzhafarov, 2021; Fine, 1982; Hance and Hossenfelder, 2022; Hess and Philipp, 2005; Hess, 2014; Hess et al., 2009; Hess et al., 2016; Hess, 2022; Jaynes and Skilling, 1989; Jung, 2017; Khrennikov, 2007; Khrennikov, 2008; Khrennikov, 2019; Khrennikov, 2020a; Khrennikov, 2022; Kupczynski, 1987b; Khrennikov, 1986; Khrennikov, 2012; Khrennikov, 2014; Khrennikov, 2018b; Khrennikov, 2021; Khrennikov, 2023a; Khrennikov, 2024a; Khrennikov, 2024b; De Muynck et al., 1994; De Muynck, 2002; Nieuwenhuizen, 2009; Nieuwenhuizen, 2011; Nieuwenhuizen and Kupczynski, 2017; Peres, 1978; Pitovsky, 1983; Pitovsky, 1994; De la Peña et al., 1972; Zhao et al., 2008).
	• In spin polarization correlation experiments (SPCE) and other Bell tests, we have four incompatible random experiments for different pairs of settings. LRHVM use a unique probability space and a joint probability distribution to describe these experiments, what is only possible in rare circumstances, and what is clearly incompatible with experimental protocols in Bell Tests (Kupczynski, 2007; Kupczynski, 2016a; Kupczynski, 2017a; Khrennikov, 1999; Kupczynski, 1987a; Kupczynski, 2005; Kupczynski, 2015a; Kupczynski, 2017b; Accardi et al., 2002; Accardi, 2005; Accardi et al., 2007; Accardi and Uchiyama, 2007; Aerts, 1982; Aerts, 1986; Czahor, 1988; Fine, 1982; Hess and Philipp, 2005; Hess, 2014; Hess et al., 2009; Hess et al., 2016; Hess, 2022; Khrennikov, 2007; Khrennikov, 2008; Khrennikov, 2019; Khrennikov, 2020a; Khrennikov, 2022; Kupczynski, 2024c; Pitovsky, 1994; De la Peña et al., 1972).
	• In 1982, Arthur Fine was the first to clearly demonstrate that the following statements are mutually equivalent (Fine, 1982). 1) There is a deterministic hidden-variables model for the experiment. 2) There is a factorizable, stochastic model. 3) There is one joint distribution for all observables of the experiment, returning the experimental probabilities. 4) There are well-defined, compatible joint distributions for all pairs and triples of commuting and non-commuting observables. 5) The Bell inequalities hold.
	• Bell and CHSH inequalities are trivial algebraic properties of experimental spreadsheets (Kupczynski, 2020; Hess and Philipp, 2005; Kupczynski, 2018b; De Raedt et al., 2017; De Raedt et al., 2023; De Raedt et al., 2024) containing quadruplets of ±1 which are, in fact, samples drawn from a statistical population described by some joint probability distribution of four compatible random variables. The outcomes of Bell tests are displayed using four spreadsheets each containing only couples ±1. The violation of Bell–CHSH inequalities only provides the evidence that the data in these four spreadsheets cannot be reshuffled to form quadruples (De Raedt et al., 2023; De Raedt et al., 2024).
	• In QM, interactions of instruments with physical systems during the measurement process may not be neglected, and outcomes are not passively registered pre-existing values of the physical observables. Therefore, the Bell-causal hidden variable model suffers from a theoretical “contextuality loophole” (Kupczynski, 2015a; Kupczynski, 2017b; Kupczynski, 2020; Kupczynski, 2021; Kupczynski, 2023a; Kupczynski, 2024e; Kupczynski, 2024a; Nieuwenhuizen, 2009; Nieuwenhuizen, 2011; Nieuwenhuizen and Kupczynski, 2017) because it fails to correctly include setting-dependent variables that describe measuring instruments at the moment of measurement.

A detailed discussion of EPR-type paradoxes and Bell Tests in the spirit of SCI may be found in Kupczynski (2006), Kupczynski et al. (2007), Kupczynski (2016a), and in a dedicated section of this study. As we conclude in Kupczynski (2024b) and Kupczynski (2024c), Bell tests allow only the rejection of probabilistic couplings provided by Bell-local and Bell-causal hidden variable models. If contextual variables, describing varying experimental contexts, are correctly incorporated into a probabilistic model, then Bell–CHSH inequalities cannot be proven, and nonlocal quantum correlations may be explained intuitively.
This study is organized as follows. Section 2 recalls different definitions of probability and Bertrand`s paradox. We explain that in physics, probabilities are objective properties of random experiments in which empirical frequencies stabilize. Section 3 compares classical and quantum observables and filters. Section 4 recalls EPR-B paradoxes and explains them using SCI. In Section 5, quantum predictions for an ideal EPR-B experiment are derived. Section 6 gives an explanation of how Bell–CHSH inequalities are trivial arithmetic properties of N×4 spreadsheets containing ±1 entries and can be rigorously derived only for random experiments described by four binary jointly-distributed random variables. Section 7 discusses hidden variable models proposed to explain EPR-B experiments. Section 8 is about loophole free Bell Tests, their interpretation, and their implications. Section 9 presents a contextual hidden variable model, which allows an explanation of long-range correlations observed in Bell tests. A more detailed analysis of existing time-series of data in order to elucidate the problem of completeness of quantum mechanics is advocated in Section 10. Additional conclusions are presented in Section 11.
2 PROBABILITY AND BERTRAND PARADOX
Probability and randomness are subtle notions long debated by mathematicians and philosophers. There are several definitions of probability (Khrennikov, 1999; Author anonymous, 2024a; Author anonymous, 2024b).
Classical probability is the ratio of the number of favorable outcomes to the total number of possible outcomes. For example, the probability of drawing a black king from a deck of 52 cards is 2/52 = 1/26. Geometric probability is the probability that a point chosen at random within a certain geometric figure will satisfy a given condition, and it is calculated as the ratio of the area (or length, volume, etc.) of the favorable region to the area of the entire region. For example, the probability of hitting a specific region on the dartboard can be calculated by dividing the area of that region by the total area of the dartboard.
Frequentist probability is the relative frequency of occurrence of an experiment’s outcome “in the long run” of outcomes (theoretically if the experiment could be repeated an infinite number of times). It is an objective property of a random experiment. Another objective probability is propensity, which is defined as the tendency of some experiments to yield a certain outcome, even if they are performed only once. A subjective probability is based on the personal judgment of an agent and quantifies her degree of belief of how likely an event is to occur.
The limitations of the classical and geometric probabilities became evident due to Bertrand’s paradox. This demonstrates how different methods of defining “randomness” can lead to different probabilities for the same event. In 1889, Bertrand posed the following problem. Consider an equilateral triangle inscribed in a circle. What is the probability that a randomly chosen chord of the circle is longer than a side of the triangle? He provided three different methods to choose a random chord, each yielding a different probability (Bertrand, 1889; Author anonymous, 2024c).
Bertrand’s paradox can be rephrased in a more intuitive way (Kupczynski, 1987a). If we consider two concentric circles on a plane with radii R and R/2 respectively, we can ask what the probability P is that a chord of the larger circle chosen at random cuts the smaller one at least one point? The various answers seem to be equally reasonable. If we divide the ensemble of all chords into sub-ensembles of parallel chords, we find that P = ½. If we consider sub-ensembles of chords having the same beginning, we find that P = ⅓. Finally, if we choose midpoints of chords lying in small circle, we find that P = ¼.
The solution of Bertrand’s paradox is simple. Different probabilistic models leading to different answers correspond to random experiments performed using different specific experimental protocols. It proves the contextual character of probabilities and their intimate relation to specific random experiments (Kupczynski, 2015a). Therefore, the probability of obtaining “heads” in a coin flipping experiment using a specific coin and a specific flipping device is neither a property of the coin nor of the flipping device. It is only a property of the whole experiment: “flipping this particular coin with that particular flipping device.” This is why in physics, probabilities are objective properties of phenomena and random experiments in which empirical frequencies stabilize.
3 CLASSICAL VERSUS QUANTUM: PROPERTIES, FILTERS, AND OBSERVABLES
In classical physics, measurement outcomes may contain experimental errors, but measurements are assumed to be non-invasive, meaning that they do not change the properties they measure. Therefore, macroscopic physical systems are described by properties pi (i = 1, … ,n) quantified by the values of classical compatible observables which can be measured in any order.
If we have a mixed statistical ensemble (a beam) B of macroscopic systems, we can choose systems having particular properties using classical filters. A classical filter Fi or a macro selector is a device which passes only through systems having a property pi. Classical filters operate according to Boolean yes-or-no logic. If we have n different properties, we have n filters corresponding to them. A lattice of classical filters have simple properties: Fi Fj =Fj Fi Fj =Fj Fi. There also exists a maximal filter F= F1 F2 …Fn which transforms a mixed statistical ensemble into a pure statistical ensemble in which all the systems have exactly the same properties (Kupczynski, 2015a). Mixed statistical ensembles of physical systems can be described by a joint probability distribution of random variables associated with measured physical observables.
In quantum experiments, the information obtained about invisible physical systems is indirect and obtained from their interactions with macroscopic measuring instruments. As Bohr correctly insisted, the atomic phenomena are characterized by “…the impossibility of any sharp separation between the behaviour of atomic objects and the interaction with the measuring instruments which serve to define the conditions under which the phenomena appear” (Bohr, 1987, v. 2, pp. 40–41). Quantum observables have the following properties of Bohr-contextuality (Khrennikov, 2020b; Kupczynski, 2021): the output of any quantum observable is indivisibly composed of the contributions of the system and the measurement apparatus.
The formalism of QM was inspired by optical experiments with polarized light. Linearly polarized light passes without noticeable attenuation by a subsequent identical polarizer. The intensity of linearly polarized light after a passage through another polarizer is reduced according to Malus law [image: Mathematical equation showing equals I naught times cosine squared theta.] , where I0 is the initial intensity and θ is the angle between the light’s initial polarization direction and the axis of the polarizer.
Discrete atomic spectral lines and the photoelectric effect proved that exchanges of energy between electromagnetic field and matter are quantized, and “carriers” of quantized exchanged energy are called “photons.” Therefore, linearly polarized monochromatic light is usually represented as a beam of linearly polarized photons carrying energy hν. This mental picture is misleading because we cannot see photons—they are not point-like objects. When a sophisticated photon detector, after several steps of signal enhancement, produces a click, we conclude that a photon was detected. The intensity of light is now measured by counting clicks on detectors. We say that each linearly polarized photon has a probability (propensity) [image: Mathematical expression showing equals cosine squared theta.] to pass through a polarizer if θ is the angle between the direction of the photon’s initial polarization and the axis of the polarizer.
After passing through a quantum filter, the linear polarization of light becomes a contextual property of photons. A quantum filter Fi is a device which creates a contextual property “i”: passing by Fi. A physical system having a property “ i” has a probability (propensity) pij to pass through another filter Fj, acquiring after the passage a new property“ j.” Quantum filters are idempotent, Fi Fi = Fi , but in general they do not commute Fi Fj ≠Fj Fi, and the lattice of quantum filters is isomorphic to the lattice of projectors on subspaces of a Hilbert space. Quantum filters are not selectors of pre-existing attributes of physical systems but are creators of the contextual properties defined above (Kupczynski, 2015a).
Incompatible filters, such as polarizers with non-parallel axes, create incompatible contextual properties which cannot be measured simultaneously and, if measured in a sequence a previous contextual property, is destroyed in a new measurement. As explained in the preceding section, the probabilities are objective properties of phenomena and random experiments, and thus considering propensity as the property of individual physical systems (here, invisible photons) is in fact unfounded. This is why vectors in SCI quantum state are not considered to be properties of the individual physical systems. Treating a wavefunction as an attribute of the individual physical system leads to the EPR paradox, which is discussed in the next section.
4 EPR PARADOX AND STATISTICAL CONTEXTUAL INTERPRETATION
Resumed here is the discussion of the EPR paradox in Kupczynski (2016a). Before the publication of the EPR paper, it was believed that:
	A1: Any pure state of a physical system is described by a specific unique wavefunction Ψ.
	A2: Any measurement causes a physical system to jump instantaneously into an eigenstate of the dynamical variable being measured. This eigenstate becomes a new wavefunction describing a state of the system.
	A3: A wave function Ψ provides a complete description of a pure state of an individual physical system.

EPR considers two particular individual systems, I + II, in a pure quantum state; they interacted in the past, separated, and evolved freely afterward (Einstein et al., 1935). Using A2, they concluded that
	• A single measurement performed on one of the systems—for example, on system I—gives instantaneous knowledge of the wave function of system II moving freely far away.
	• By choosing two different incompatible observables to be measured on system I, it is possible to assign two different wave functions to system II (the same physical reality: the second system after the interaction with the first).

Since a measurement performed in a distant location on system I does not disturb system II in any way, according to A1 and A3 system II should be described by a unique wavefunction and not by two different wave functions. Moreover, these wave functions are eigenstates of two non-commuting operators that represent incompatible physical observables which allow indirect deduction of the values of these incompatible physical observables for the same system II without disturbing it in any way which contradicts Heisenberg uncertainty relations and CI.
EPR discussed particle positions and momenta, and Bohm discussed an experiment in which a source produces pairs of particles prepared in a spin singlet state (Bohm, 1951). One of a pair (photon or electron) is sent to Alice and another to Bob in distant laboratories. According to A1, each pair of photons is described by a state vector:
[image: Mathematical expression showing the quantum state psi equals the sum of ket plus, ket minus, minus ket minus, ket plus, all divided by the square root of two, labeled as equation one.]
—where [image: Mathematical expression showing the ket notation vertical line, plus symbol, right angle bracket, and subscript P.] and [image: Mathematical expression showing a horizontal line followed by a rightward arrow pointing to the italic letter P.] are state vectors corresponding to photon states in which their spin is “up” or “down” in direction P, respectively. If we measure a spin projection of a photon I on direction P, we have an equal probability of obtaining result “1” or “–1”. If we obtain “1,” a reduced state vector of the photon II is [image: Mathematical notation showing a horizontal arrow pointing right toward a capital italicized letter P, commonly used to indicate mapping or function output in mathematics.]; if we obtain “-1,” a reduced state vector of the photon II is [image: Mathematical expression showing a vertical line, plus symbol, right-angle bracket, and subscript capital letter P, representing the quantum state ket notation plus P.]. By choosing direction P for the measurement to be performed on photon I, when “photons are in flight and far apart” we can assign different incompatible reduced state vectors to the same photon II. In other words, we can predict with certainty and without in any way disturbing the second photon that the P-component of the spin of photon II must have the opposite value to the value of the measured P- component of the spin of photon I (Ballentine, 1998). Therefore, for any direction P, the P-component of the spin of photon II has unknown but predetermined value which contradicts QM and is called the “EPR-B paradox”.
Bohr (1935) promptly replied to the EPR paper and explained that two different wave functions could be assigned to system II only in two different incompatible experiments in which both systems were exposed to different influences before the measurement on system I was performed. In order to make predictions concerning the individual physical systems in EPR scenario 1, much more detailed knowledge of how a particular pair was prepared in each of these incompatible experiments is necessary (Kupczynski, 2006).
In 1936, Einstein advocated a purely statistical interpretation of QM and explained that the EPR paradox disappears because “…Ψ function does not, in any sense, describe the state of one single physical system and reduced wave functions describe different sub-ensembles of systems” (Einstein, 1936). This statistical interpretation has been generalized and promoted with success by Ballentine 1989 and Ballentine 1998: “…the habit of considering an individual particle to have its own wave function is hard to break … though it has been demonstrated strictly incorrect”.
According to the statistical contextual interpretation of QM (SCI) (Ballentine, 1998; Kupczynski, 2006; Kupczynski, 2007; Kupczynski, 2016a; Khrennikov, 2009; Allahverdyan et al., 2013):
	1. A state vector Ψ is not an attribute of a single electron, photon, trapped ion, quantum dot, etc. A state vector Ψ or a density matrix ρ describe only an ensemble of identical state preparations of some physical systems.
	2. A wave function reduction is neither instantaneous nor non-local. In an EPR experiment, a state vector describing system II obtained by reduction of an entangled state (Equation 1) of two physical systems I + II describes only a sub-ensemble of systems II being partners of those systems I for which a measurement of some observable gave the same specific outcome. Different sub-ensembles are described by different reduced state vectors.
	3. A value of a physical observable, such as a spin projection, is not a predetermined attribute of a system but is a property of a pure ensemble of identically prepared physical systems created in the interaction with a measuring instrument (Kupczynski, 1987b, 2015a).

The solution of the EPR-B paradox given by SCI is simple: the wave function reduction is not instantaneous, and a reduced one-particle state [image: Mathematical expression displaying a vertical bar, a plus symbol, and a ket notation with a subscript capital P, representing the quantum state ket plus sub P.] “describes” only an ensemble of partners of the particles I which were detected to have “spin down” in the direction P. For different directions P, we perform specific experiments, and we obtain a different sub-ensemble of particles II. Strong correlations between distant outcomes in EPR experiments are due to contextuality and various conservation laws. More detailed discussion of EPR and EPR-B paradoxes may be found, for example, in (Kupczynski, 2009).
5 KOLMOGOROV AND QUANTUM PROBABILISTIC MODELS
Outcomes of any random experiment are described by a specific probability space Ω, σ-algebra of its all sub-ensembles F, and a probabilistic measure μ. A sub-ensemble [image: Mathematical expression showing “E element of F”, indicating that E is a member or subset of the set F.] is an event corresponding to a subset of possible outcomes of a random experiment. A probability of observing this event is given by [image: Mathematical expression showing zero less than or equal to mu of E, which is less than or equal to one.]. In statistics, instead of Ω we use a sample space S which contains only the possible outcomes of a studied random experiment.
Every random experiment is defined by its experimental context C (Kupczynski, 2017a; Kupczynski, 2015a; Khrennikov, 1999; Khrennikov, 2024; Khrennikov, 2009; Khrennikov, 2016; Khrennikov, 2022). If its outcomes are discrete, it may be described by a random variable A and a probability distribution
[image: Mathematical expression showing the conditional probability P of a given C equals the probability that random variable A equals a given C, labeled as equation two.]
and its expectation value
[image: Mathematical expression showing the conditional expectation of A given C as the sum over a of a times the probability of a given C, labeled equation three.]
In quantum experiments, the context of an experiment is determined by a preparation of an ensemble of physical systems represented by a density operator ρ (or a state vector ψ) and by a Hermitian operator [image: Uppercase letter A with a caret symbol above it, representing A hat, commonly used in mathematics and statistics to indicate an estimated or predicted value.] representing the experimental set-up used to measure a physical observable A. Instead of (Equations 2, 3), we have
[image: Mathematical equation expressing the probability P of outcome a given state psi and operator A as the squared modulus of the inner product of a and psi, labeled equation four.]
—where [image: Mathematical notation displaying a left vertical bar, a lowercase italic letter a, and a right angle bracket, commonly representing a quantum state ket vector labeled a.] is a corresponding eigenvector of the operator [image: Uppercase letter A with a caret symbol above it, commonly used to denote an estimated value or a unit vector in mathematical equations.] and
[image: Mathematical expression showing expected value of operator A given state psi is equal to the inner product of psi with operator A acting on psi, labeled as equation five.]
If a density matrix [image: Lowercase Greek letter rho, often used in scientific contexts to represent density, resistivity, or correlation coefficient, displayed in a bold, italicized serif font on a white background.] is used to describe a pure or mixed prepared ensemble, then
[image: Mathematical equation displaying E of A given rho and A equals the trace of rho times A, labeled as equation six.]
In an idealized EPR-B experiment (Equation 1), which is impossible to implement, a source sends two correlated signals which arrive to distant laboratories, pass by polarization analyzers, and produce coincident counts on detectors. The experimental situation is much more complicated since clicks are not registered at the same time and one has to decide which clicks are correlated by introducing specific time windows and deciding how to use them in order to define coincident clicks (Kupczynski, 2017b; 2021).
An idealized EPR-B experiment is described by the following probabilistic model (Kupczynski, 2020, 2023a, 2024a; Cetto et al., 2020). Randomly chosen polarization measurement settings are (x, y), prepared ensemble E is described by [image: Mathematical expression showing the density matrix ρ is equal to the outer product of the quantum state psi with itself, represented as ρ equals vertical bar psi angle bracket times angle bracket psi vertical bar.], [image: Mathematical expression showing A sub x with a hat equals sigma vector dot n sub x vector.] and [image: Mathematical expression showing B sub y with a circumflex equals sigma vector dot n sub y vector, where sigma and n have arrows above indicating vectors.] represent spin projections on the corresponding unit vectors, and
[image: Mathematical equation for E(Ax, By) defined using the trace of operators, inner products, a summation over variables alpha and beta with probability terms, and equivalence to the negative cosine of theta_xy. Equation number seven appears in the lower right corner.]
—where [image: Mathematical expression showing operators Â sub x and  B̂ sub y acting on a quantum state labeled alpha beta sub x y, with a probability p sub x y of alpha comma beta defined as the squared modulus of the inner product of psi and alpha beta sub x y.] and α = ±1 and β = ±1 (Kupczynski, 2024b; Cetto et al., 2020).
The model is contextual because a triplet [image: Mathematical expression showing a set with three elements: lowercase rho, uppercase A sub x with a hat, and uppercase B sub y with a hat, all within curly braces.] changes if a preparation or defined by Equations 4-7 experimental settings change. For each choice of settings (x, y), QM provides a specific Kolmogorov model.
Since [image: Mathematical expression showing the expected value of A sub x times B sub y equals negative one.] for [image: Mathematical equation showing theta sub x y equals the difference of theta sub x and theta sub y, which equals zero.], it has been incorrectly claimed that QM predicts strict anti-correlations of two space-like events produced in an irreducibly random way. Since two space-like events produced randomly cannot be correlated ([image: Mathematical expression showing the expectation value of A sub x times B sub y equals zero, written as E of open parenthesis A sub x B sub y close parenthesis equals zero.], irreducible randomness was abandoned, and several hidden variable models were proposed to explain the correlations predicted by QM. In fact, QM does not predict strict correlations for EPRB-type experiments. Directions can only be defined by some small intervals Ix and Iy containing angles close to θx and θy respectively. Therefore, the correct quantum prediction for expectation values is (Kupczynski, 2016a, 1987b)
[image: Mathematical equation showing the expected value E of variables A sub x and B sub y as the negative double integral over sets I sub x and I sub y of cosine of the difference between theta one and theta two, multiplied by d p sub x of theta one and d p sub y of theta two, labeled as equation eight.]
After defining in the next section Bell–CHSH inequalities, we will discuss several hidden variable models proposed to explain quantum correlations Equations 7, 8.
6 EXPERIMENTAL SPREADSHEETS AND BELL–CHSH INEQUALITIES
Let us consider a random experiment described by four jointly distributed binary random variables (A, A’, B, B’) taking the values ± 1. In each trial of this experiment, four outcomes (a. a, b, b’) are obtained and displayed in an N×4 experimental spreadsheet (Kupczynski, 2020). Since b = b’ or b = -b’ thus
[image: Mathematical equation showing the absolute value of s as the sum of two absolute terms involving variables a, b, and b prime, resulting in an inequality less than or equal to two.]
From Equation 9 we obtain CHSH inequality:
[image: Mathematical formula expressing a CHSH inequality: absolute value of S is less than or equal to the sum over a, a', b, b' of the expression ab minus ab' plus a'b plus a'b' times the joint probability of a, a', b, b', which is less than or equal to the absolute value of the expectation value of AB minus the expectation value of AB' plus the expectation value of A'B plus the expectation value of A'B', all less than or equal to two, labeled as equation ten.]
—where p(a, a′, b, b’) is a joint probability distribution of (A, A′, B, B’), and [image: Mathematical expression showing the expected value of the product AB equals the sum over a and b of a times b times the joint probability p of a and b.] is a pairwise expectation of A and B obtained using a marginal probability distribution [image: Mathematical equation showing p of a and b equals the sum over a prime and b prime of p of a, a prime, b, and b prime.] (Kupczynski, 2020).
If all pair-wise expectation values in Equation 10 are estimated using the same N×4 experimental spreadsheet, then the inequality (Equation 10) is strictly obeyed by all finite samples. The inequalities (Equation 10) are in fact necessary and sufficient conditions for the existence of a joint probability distribution of only pairwise measurable ±1-valued random variables (Fine, 1982). The inequalities (Equation 10) are also valid if |A|≤1, |A’|≤1|, |B|≤1, and |B’|≤1. It is now well known that cyclic combinations of pairwise marginal expectations of jointly distributed binary random variables must obey non-contextuality inequalities (NCI) (Araujo et al., 2013). Bell–CHSH inequalities are a special case of NCI.
If we have four N×4 spreadsheets containing outcomes from four runs of the same random experiment, as discussed above, but we use each of these spreadsheets to estimate only one pairwise expectation E (A, B), E(A,B′), E (A’. B), and E(A’. B’) respectively, then 50% of the time, these estimates violate the inequality (Equation 10) (Kupczynski, 2016a; Kupczynski, 2023a; Gill, 2014), Only if N increases to infinity the probability of the violation of the inequality (Equation 10) tends to 0. Therefore, the violation of CHSH-inequality by experimental data in EPR-type experiments allows only the evaluation of the plausibility of particular probabilistic models (Kupczynski, 2024c). The next section will discuss such models.
7 LOCAL REALISTIC MODELS FOR THE EPR–BOHM EXPERIMENT
7.1 Local realistic hidden variable model (LRHVM)
In an attempt to explain correlations in an ideal EPR-B experiment, (Bell, 1965, 2004; Kupczynski, 2015a, 2024d) proposed a probabilistic model in which outcomes registered in distant laboratories are predetermined at a source:
[image: Mathematical equation showing the expectation value E of variables A sub x and B sub y as the sum over lambda in set capital lambda of A sub x of lambda times B sub y of lambda times P of lambda, labeled as equation eleven.]
—where [image: Mathematical expression showing A sub x of lambda equals plus or minus one.] and. [image: Mathematical expression showing By of lambda equals plus or minus one.] . In LRHVM, we have four jointly distributed random variables (Ax(L), By(L), Ax’(L), By’ (L)) being functions of the same random variable L. The random variable L describes a classical random experiment in which λ is sampled with replacement from a probability space Λ. For each value of λ, all outcomes can be calculated. LRHVM describes entangled pairs as pairs of socks, which can have different sizes and colors; for example, Harry draws a pair of socks, sends one sock to Alice and another to Bob, who in function of (x, y) record corresponding properties of color or size.
Since (Ax(L), By(L), Ax’(L), By’ (L)) are jointly distributed, they thus obey CHSH inequality:
[image: Mathematical formula showing the CHSH inequality: absolute value of S equals the sum of expected values E of pairs A and B minus one expected value, with the result bounded by two.]
Bell knew that in the EPR-B experiment, (Ax, By, Ax’, By’) are not jointly measurable and that their joint probability distribution does not exist. He did not notice that to prove his inequalities, he was tacitly using the existence of a joint probability distribution of (Ax(L), By(L), Ax’(L), By’ (L)). As explained in the preceding section, the inequalities (Equations 10 and 12) can be rigorously proven for a random experiment outputting in each trial four ±1 outcomes.
7.2 Stochastic hidden variable model (SHVM)
(Clauser and Horne, 1974; Kupczynski, 2024e) proposed a stochastic hidden variable model (SHVM) in which λ does not determine outcomes in a given trial but only their probability.
Using the notation of Big Bell Test collaboration (The BIG Bell Test Collaboration, 2018):
[image: Mathematical equation showing probability P of a and b given x and y equals the sum over lambda of P of a given x and lambda times P of b given y and lambda times P of lambda. Equation number thirteen.]
—where P(-|-) denotes a conditional probability. Equation 13 for a fixed setting (x, y) describes a family of independent random experiments labelled by λ and
[image: Mathematical formula showing E(A_x B_y) equals the sum over lambda of E(a|x, lambda) times E(b|y, lambda) times P(lambda), labeled as equation fourteen.]
Pair-wise expectations defined by Equation 13 are also constrained by CHSH inequalities Equation 12. In SHVM, entangled photon pairs are described as pairs of dice, and the correlations which can be created in this model are quite limited.
7.3 Local causal hidden variable model (LHVM)
LHVM is a generalization of the preceding two models, where λ represents all possible common causes of events happening in distant laboratories, and “…they may include the usual quantum state; they may also include all the information about the past of both Alice and Bob. Actually, the λ′s may even include the state of the entire universe” (The BIG Bell Test Collaboration, 2018; Kupczynski, 2024a) —except that inputs (x, y) cannot depend on them.
[image: Equation showing probability P(a, b, x, y) as the sum over lambda of P(a|x, lambda) multiplied by P(b|y, lambda), P(x, y|lambda), and P(lambda), labeled as equation fifteen.]
and
[image: Mathematical equation showing conditional independence: P of x and y given k equals P of x and y, labeled as equation sixteen.]
The condition (Equation 16) is called “measurement independence,” experimenters’ “freedom-of-choice” (FoC) or “no conspiracy” (The BIG Bell Test Collaboration, 2018; Hall, 2010; Myrvold et al., 2020; Blasiak et al., 2021; Kupczynski, 2024b, 2022). Since correlation does not mean causation, this terminology is based on the incorrect causal interpretation of conditional probabilities (Kupczynski, 2017a, 2021, 2023a, 2024a, 2024b, 2024c, 2022). In a probabilistic model, [image: Mathematical expression showing the conditional probability P of variables x and y given lambda does not equal the joint probability P of x and y.] does not imply that FoC is constrained by causal influences.
If λ represents ontic properties of entangled pairs or common causes, it thus cannot not depend in any sense on chosen settings:
[image: Mathematical equation illustrating conditional independence: P(lambda, x, y) equals P(lambda) times P(x, y), which implies P(lambda given x, y) equals P(lambda). Equation number seventeen.]
However, hidden variables can also describe measuring instruments, so they can depend on the chosen settings (Kupczynski, 2006; Kupczynski, 2016a; Kupczynski et al., 2007). As Theo Nieuwenhuizen explained, the model (Equations 13–16) suffers from a theoretical contextuality loophole because the hidden variables describing measuring instruments had not been included (Nieuwenhuizen, 2009; Nieuwenhuizen, 2011; Nieuwenhuizen and Kupczynski, 2017).
There is no doubt that experimenters can freely choose binary random labels of their setting (x, y), and this is what they do (Hensen et al., 2015; Giustina et al., 2015; Shalm et al., 2015; Handsteiner et al., 2017; The BIG Bell Test Collaboration, 2018; Rosenfeld et al., 2017; Zhang et al., 2022; Storz et al., 2023). However, this random choice of labels (x, y) is followed by a choice of corresponding specific instruments and setting-dependent measuring procedures. Since measuring instruments play an active role in quantum experiments, it is reasonable to assume that outcomes depend not only on setting-independent hidden variables that describe prepared physical systems but also on setting-dependent hidden variables that describe local instruments and measuring procedures; and thus statistical independence (Equation 17) is violated:
[image: Mathematical expression stating that the probability of lambda given x and y is not equal to the probability of lambda, labeled as equation eighteen.]
Bell was the first to notice that if hidden variables depend on settings; then Bell–CHSH inequalities could not be derived. However, since Equation 18 implied the violation of Equation 16, this option was rejected as violating FoC (Kupczynski, 2017a; The BIG Bell Test Collaboration, 2018; Myrvold et al., 2020; Kupczynski, 2023a, 2024a, 2024b). As explained above, the violation of Equation 16 does not constraint FoC.
Bell clearly demonstrated that LRHVM is inconsistent with QM because there exist four particular experimental settings for which, using Equation 7, one obtains [image: Mathematical expression showing the absolute value of S is less than or equal to two times the square root of two.] , which significantly violates Equation 12. Various Bell Tests (Hensen et al., 2015; Giustina et al., 2015; Shalm et al., 2015; Handsteiner et al., 2017; The BIG Bell Test Collaboration, 2018; Rosenfeld et al., 2017; Zhang et al., 2022; Storz et al., 2023) were performed in order to check the plausibility of local hidden variable models. Before explaining a contextual hidden variable model in which hidden variables depend on settings, the next section discusses recent Bell tests and their implications.
8 BELL TESTS AND WHAT THEY HAVE PROVEN
Bell tests are inspired by an ideal EPR experiment. Entangled pairs are created at a source and sent to distant locations or are created directly in distant laboratories using specific synchronized preparations/treatments such as entanglement swapping or entanglement transfer protocols (Kupczynski, 2024a). Despite differences, experimental protocols are subdivided into three steps:
	1) Preparation of an ensemble E of pairs of entangled physical systems.
	2) Random local choice of labels/inputs (x, y) using random number generators (RNG), and signals coming from distant stars (Handsteiner et al., 2017; The BIG Bell Test Collaboration, 2018) or/and human choices (The BIG Bell Test Collaboration, 2018; Rosenfeld et al., 2017; Zhang et al., 2022; Storz et al., 2023). This study uses four pairs of labels/inputs—(x, y), (x, y’), (x’, y), and (x’, y’) —which denote four incompatible experimental settings/contexts.
	3) Implementation of correlated and synchronized measurements in distant locations and readout of binary outcomes (a, b) (called outputs), which are the coded information corresponding to clicks on different distant detectors, etc.

In Bell Tests to each randomly chosen input (x,y) corresponds a specific pair of correlated distant experiments. Outcomes of these experiments are described by four pairs of binary random variables: (Axy, Bxy), (Axy’, Bxy’), (Ax’y, Bx’y), and (Ax’y’, Bx’y’) (Kupczynski, 2024a). Our notation is inspired by the contextuality-by-default approach (CbD) (Kupczynski, 2021; Dzhafarov and Kujala, 2014; Dzhafarov et al., 2015; Kujala et al., 2015) in which random variables measuring the same content in a different context are a priori stochastically unrelated, such as Axy and Ax’y. It is evident that in Bell tests, a joint probability distribution of these eight random variables does not exist, and Bell– CHSH inequalities cannot be derived without additional assumptions (Khrennikov, 2022).
A pair of random empirical variables (Axy, Bxy) describes a scatter of outputs in the experiment using settings (x, y). We have four random experiments described by specific empirical probability distributions. Using these distributions, we may test the plausibility of quantum and local hidden variable models proposed to explain a statistical scatter of outcomes in an ideal EPR-B experiment. If random variables in probabilistic models are denoted (A’xy, B’xy) in order to not be confounded with empirical random variables (Axy, Bxy), then we say that a probabilistic model provides a probabilistic coupling if:
[image: Mathematical equation showing expectations as follows: E(Aₓᵧ) equals E(A'ₓᵧ), E(Bₓᵧ) equals E(B'ₓᵧ), and E(Aₓᵧ Bₓᵧ) equals E(A'ₓᵧ B'ₓᵧ). Equation number 19 appears in parentheses at the right.]
Therefore, in Bell tests, we are testing the plausibility of different probabilistic couplings, in particular for LRHVM:
[image: Mathematical equation showing expectations: expectation of A sub x y prime equals expectation of A sub x y, equals expectation of A sub x, expectation of B prime sub x y equals expectation of B sub x y, equals expectation of B sub y, expectation of A sub x y B sub x y equals expectation of A sub x B sub y, labeled as equation twenty.]
where (Ax, By, Ax’, By’) are jointly distributed Equation 11. More detailed discussion may be found in Kupczynski (2024a).
There is still much confusion in journals, books, and in social media concerning the metaphysical implications of the results of Bell tests (The BIG Bell Test Collaboration, 2018; Rosenfeld et al., 2017; Zhang et al., 2022; Storz et al., 2023), so it is beneficial to explain it here. Using LHVM Equations 15–17, one derives inequalities which must be satisfied by specific combinations of probabilities of events to be observed in the experiments performed using different experimental settings. These combinations are denoted “S,” “J,” or “T,” which are called in brief “Bell parameters”. If the observed parameter violates inequality, one can conclude that measured systems were not governed by any LHVM. It should be noted that this conclusion is always statistical and typically takes a form of a hypothesis test, leading to a conclusion of the form: “…assuming nature is governed by local realism, the probability to produce the observed Bell inequality violation … is P(observed or stronger | local realism)≤ p. This p-value is a key indicator of statistical significance in Bell Tests” (The BIG Bell Test Collaboration, 2018)
Since p-values in several experiments are very small, one concludes: Local realism, i.e., realism plus relativistic limits on causation, was debated by Einstein and Bohr using metaphysical arguments, and recently has been rejected by Bell tests. Such a conclusion is imprecise and misleading. As correctly observed by Wiseman (2014), “the usual philosophical meaning of ‘realism’ is the belief that entities exist independent of the mind, a worldview one might expect to be foundational for scientists.” It is also claimed that Bell tests allow the rejection of local causality, where Bell-local causality is defined: Alice’s output a depends only on her input x and on λ describing all possible common causes included in the intersection of the of the backward light cones of a and b and independent of inputs x and y.
It is true that tested probabilistic models have been motivated by various metaphysical assumptions. Nevertheless, Bell tests allow only the rejection of a statistical hypothesis that says that LHVM Equations 15–17 provides a probabilistic coupling (Equation 20) consistent with experimental data. Therefore, the violation of Bell–CHSH inequalities does not allow for far reaching metaphysical speculations. We agree also with De Raedt et al., (2023):
…all EPRB experiments which have been performed and may be performed in the future and which only focus on demonstrating a violation BI-CHSH merely provide evidence that not all contributions to the correlations can be reshuffled to form quadruples … These violations do not provide a clue about the nature of the physical processes that produce the data….
Similar conclusions have been drawn (Kupczynski, 1987a, 2018b, 2020; Dzhafarov, 2021; Hess and Philipp, 2005; Khrennikov, 2007, 2008, 2019, 2020a, 2022; De Raedt et al., 2024).
Bell tests confirm the existence of long range correlations between outcomes of experiments performed in space-like locations. If additional context-dependent variables that describe measuring instruments and procedures are correctly incorporated into a probabilistic model (Equation 11), then Bell–CHSH inequalities cannot be derived and “nonlocal “correlations can be explained without evoking quantum magic. Such a model is discussed in the next section.
9 CONTEXTUAL HIDDEN VARIABLE MODEL AND THE VIOLATION OF STATISTICAL INDEPENDENCE
We incorporate into the model (Equation 11) additional variables that describe distant measuring contexts (Kupczynski, 2024a).
	• [image: Mathematical expression showing lowercase lambda subscript one belongs to uppercase lambda subscript one.] and [image: Mathematical expression showing lowercase lambda sub two belongs to uppercase Lambda sub two.] describe correlated physical systems and do not depend on measurement settings (x, y).
	• [image: Mathematical expression showing that mu sub x belongs to script M sub x.] and [image: Mathematical expression showing mu sub y is an element of script capital M sub y.] describe measurement procedures and instruments at the moment of measurement when settings (x, y) were chosen.
	• Inputs/labels (x, y) are randomly chosen in separate random experiments.
	• Outputs are created locally: [image: Mathematical expression showing a equals A sub x prime of lambda one and mu sub x, and this equals plus or minus one.] and [image: Mathematical equation showing b equals B sub y prime of lambda two and mu sub y, and the value is plus or minus one.]

The resulting contextual model (CHVM) is defined by three equations
[image: Mathematical equation showing the expected value E of A_x and B_y as a sum over lambda one, lambda two, mu_x, and mu_y, involving functions A_x, B_y, probability distributions P and P_x, with equation number twenty-one.]
—where [image: Mathematical equation showing capital lambda sub x y equals capital lambda sub one times capital lambda sub two times capital M sub x times capital M sub y.],
[image: Mathematical equation shows the joint probability P(a, b, x, y) expressed as a sum over λ₁, λ₂, μₓ, and μᵧ of the product of conditional and marginal probabilities, labeled equation 22.]
and
[image: Mathematical expression showing that the conditional probability of μx and μy given x and y equals Pxy of μx and μy and not equal to P of μx and μy, labeled as equation twenty-three.]
In Bell tests, P(x, y) = P(x) P(y), but in the contextual model Equation 21 and in QM, it does not matter how labels (x, y) are chosen. In general, spaces [image: Mathematical expression showing uppercase Greek letter Lambda with superscript variable x and subscript variable y, typically used to denote a function or transformation in mathematics or physics.] for different settings (x, y) do not overlap and, as Larsson and Gill (2004) demonstrated, Bell–CHSH inequalities cannot be derived and [image: Mathematical expression showing the absolute value of S is less than or equal to four.].
The model (Equations 21–23) violates statistical independence, and [image: Mathematical expression showing conditional probability P of x and y given mu sub x and mu sub y is not equal to the joint probability P of x and y.]:
[image: Mathematical equation expressing conditional probability: P(μx, μy, x, y) equals Pxy(μx, μy) times P(x, y), which equals P(μx, μy), leading to P(x, y | μx, μy), which simplifies to P(μx, μy) divided by P(μx, μy), equaling one. Equation is labeled as 24.]
The Equation 24: [image: Mathematical formula showing the probability P of vector x and y given parameters mu sub x and mu sub y equals one.] only “says” that if a hidden event [image: Mathematical notation displaying a set containing mu sub x and mu sub y, typically representing means or expected values in statistics.] “happened”, then the settings (x,y) were used (Kupczynski, 2017a, 2021, 2023a, 2024a, 2022). It has nothing to do with conspiracy or FoC.
Since inputs (x,y) were chosen using signals from distant stars (Handsteiner et al., 2017), random number generators or random human choices were made during online computer games (The BIG Bell Test Collaboration, 2018), and thus the freedom-of-choice loophole was successfully closed, but it did not prove statistical independence. As I proposed in preceding papers, a violation of statistical independence should be called “Bohr-contextuality”—not to be cofounded with CbD contextuality (Dzhafarov and Kujala, 2014; Dzhafarov et al., 2015; Kujala et al., 2015) or simply contextuality.
CHVM violates Bell-locality and Bell-causality, but outputs are created in a locally causal way. Hidden variables describing physical systems and measuring contexts in space-like separated laboratories can be statistically correlated, but the violation of statistical independence and apparently non-local correlations may be explained without evoking spooky influences. It may be the effect of setting dependent post-selection of data (Kupczynski, 2017b, 2021, 2024a), or it may be due to the global space-time symmetries (Kupczynski, 2023a, 2024a, 2023b).
The model (Equation 21) can be further simplified. For example, [image: Mathematical expression showing the Greek letter mu with subscript x, commonly representing the mean or expected value of the random variable x in statistics.] can be a fixed set of variables describing experimental procedures labeled by x. If in a distant laboratory, a setting labeled by y is used, then a measuring instrument and/or laser beam are rotated by angle [image: Mathematical equation showing theta sub x y equals theta sub x minus theta sub y.]. Therefore, due to global rotational symmetry, [image: Mathematical expression showing mu sub y equals function of mu sub x and cosine of theta sub x y, in italicized variables and standard mathematical notation.], and:
[image: Mathematical equation showing E of A sub x and B sub y equals the sum over lambda one and lambda two of A sub x, B sub y, a function f, and P of lambda one and lambda two, with additional arguments mu x, mu y, and theta x y, labeled as equation twenty-five.]
The model (Equation 25) seems to have enough flexibility in order to explain long range correlations in Bell tests depending on [image: Mathematical equation showing theta subscript x y equals theta subscript x minus theta subscript y.]. The model (Equation 25) does not allow the derivation of any Bell-type inequalities.
10 CAN A QUANTUM-MECHANICAL DESCRIPTION OF PHYSICAL REALITY BE CONSIDERED COMPLETE?
This question asked by Einstein, Podolsky, and Rosen (EPR) (Einstein et al., 1935) and answered by Bohr (1935) has been debated for 90 years. Many incorrectly believe that the results of recent Bell tests prove that if we reconcile QM with general relativity, we will obtain a complete description of physical reality. In fact, we should be much more humble (Kupczynski, 2024c) because we even do not know whether QM is predictably complete.
QM gives probabilistic predictions for distributions of the results obtained in long runs of one experiment or in several repetitions of the same experiment on a single physical system. It is unclear how and in what sense a claim can be made that QM provides a complete description of individual physical systems. This is why (Einstein, 1936; Einstein and Schilpp, 1949) never accepted that a statistical theory may provide a complete description of individual physical systems and believed that QM should be completed by some microscopic theory of sub-phenomena that enable the reproduction of quantum probabilistic predictions.
According to Bohr, quantum probabilities describe completely quantum phenomena and experiments, and no more detailed sub-quantum description is possible or necessary. Quantum probabilities are thus irreducible, and QM is not an emergent theory. In statistical mechanics, probabilities reflect a lack of knowledge about the properties of physical systems. In SCI, quantum probabilities reflect a lack of knowledge about the interactions of physical systems with measuring instruments in well-defined experimental contexts. The Bertrand paradox teaches that probabilities are not properties of individual physical systems but are only properties of random phenomena and experiments as a whole. In this sense, they do not provide a complete description of individual physical systems.
Whether a more detailed description of quantum phenomena does exist is an open question, and several hidden variable models have been proposed and discussed. Bell tests permit the rejection of several hidden variable models but neither prove the completeness nor non-locality of QM. Several years ago, we pointed out that the question about the completeness of QM cannot be answered by constructing ad hoc sub-quantum hidden variable models. It can only be answered by a different and a more detailed analysis of experimental data (Kupczynski, 2006; Kupczynski et al., 2007; Kupczynski, 2016a, 1986, 1984).
In quantum experiments, outcomes are registered by online computers as finite time series of data. It can be a laser beam which, after passing by a PBS (polarization beam splitter), produces clicks on detectors coded ±1. It can be a physical system in a trap, a physical observable is measured, an outcome is recorded, and initial conditions in the trap are reset.
No single result is predictable in all these experiments. Empirical frequency distributions are obtained from long-term series of counts and compared with probabilistic predictions of QT. In this way, predictable completeness of QT is taken for granted, and any fine structure of time-series, if it existed, would be averaged.
Let us consider two experiments repeated N times each. In the first experiment, we obtain a time series of the results, 1,-1,1,-1, … 1,-1 …, and in the second, 1,-1,-1,1,1,1,-1,-1, 1,-1,-1,1,1,1,-1 … By increasing the value of N, the relative frequency of achieving 1 can approach ½ as close as we wish. However, it is not a complete description of these time series. By searching for reproducible fine structures in experimental time series, we can investigate whether QM is emergent without constructing specific hidden variable models.
In any more detailed description of quantum phenomena, pure quantum ensembles become mixed statistical ensembles with respect to additional uncontrollable parameters that describe physical systems and measuring instruments. There is a principal difference between a pure statistical ensemble and a mixed one. For a pure ensemble, any sub-ensemble has the same properties. Sub-ensembles of a mixed statistical ensemble may differ from one to another if mixing is not perfect. These differences can be, in principle, detected by using so called purity tests (Kupczynski, 2006, 1986, 1984; Kupczynski et al., 2007), which I introduced in a different context (Kupczynski, 1974, 1977).
Let us consider time series of outcomes T(S, E, i) obtained in an ith run of an experiment E performed on physical system(s) S. Since we do not control the distribution of hidden variables, time-series T(S, E, i) may differ from run to run of the same experiment. Using the language of mathematical statistics, T(S, E, i) represents a random sample drawn from some statistical population. A pure ensemble is one characterized by such empirical distributions of various counting rates, which remain approximately unchanged for any rich sub-ensembles drawn from this ensemble in a random way (Kupczynski et al., 2007; Kupczynski, 1973, 1986). Therefore, we must test the null hypothesis H0:
Samples T(S, E, i) for different values of i are drawn from the same statistical population.
Various statistical non-parametric compatibility tests can be used to test H0.
Purity tests are not sufficient. To prove that QM is not predictably complete, it is necessary to study in more detail time series of data, detect some temporal fine structure, and find a stochastic model to explain it. Several methods are used to study and compare empirical time-series: frequency or harmonic analysis, periodograms, autocorrelation and partial autocorrelation functions, etc. (Kupczynski, 2009, 2011). The aim of most physical experiments is to compare empirical probability distributions with quantum probabilistic predictions. Therefore, all fine structures in time-series of data, if they exist, are averaged out and are not discovered.
Completeness of QM has been discussed for nearly 100 years, but a detailed study of experimental time series of existing experimental data is still to be done. As demonstrated recently with Hans de Raedt, sample inhomogeneity invalidates dramatically significance tests (Kupczynski and De Raedt, 2016); therefore, if sample homogeneity is not tested carefully enough, then the sample homogeneity loophole is not closed and statistical inference cannot be trusted (Kupczynski and De Raedt, 2016; Kupczynski, 2015b, 2016b).
11 CONCLUSION
This review article has explained why speculations about quantum nonlocality and quantum magic are rooted in incorrect interpretations of QM and/or in incorrect “mental pictures” and models that try to explain invisible details of quantum phenomena. In particular, it is not true that in Bell tests, entangled qubits behave as “a pair of dice showing always perfectly correlated outcomes.”
We advocate an abstract statistical contextual interpretation (SCI) of QM which is free of paradoxes. SCI rejects the existence of a universal wave function. Quantum probabilities are objective properties of quantum phenomena. Whether these probabilities can be explained as emergent is an open question which cannot be settled by philosophical discussions and no-go theorems; it can be only elucidated by more detailed study of experimental time series of data than is usual.
Bell tests are subtle experiments that are imperfect implementations of an ideal EPRB experiment. It is often claimed that the violation of Bell–CHSH inequalities in these tests allow the rejection with great confidence of local realism and local causality. Such conclusions, though, are misleading.
Bell–CHSH are trivial properties of N×4 spreadsheets on which the outcomes of measurements of four jointly distributed random variables (e.g., Ax, By, Ax’, By’) are displayed. In Bell tests, such experimental spreadsheets do not exist because there are four pairs of distant random experiments performed using four incompatible experimental settings (x, y). These experiments are described by empirical probability distributions of four pairs of random variables (Axy, Bxy). Bell–CHSH inequalities cannot be derived, and estimated pairwise expectations E(Axy Bxy) are not constrained by these inequalities.
Probabilistic couplings can be postulated in order to explain statistical regularities in experimental data, such as E(AxyBxy) = E(AxBy). The quantum probabilistic model and Bell-causal hidden variable model can only be tested as plausible probabilistic couplings (Kupczynski, 2024a). Quantum coupling (Equation 7) is constrained by quantum–CHSH inequalities: [image: Mathematical expression showing the absolute value of S is less than or equal to two times the square root of two.] (Kupczynski, 2020; Kupczynski, 2024a; Khrennikov, 2019; Cirel’son, 1980; Landau, 1987). Local hidden variable couplings (Equations 11,13, 15–17) are constrained by Bell–CHSH inequalities: [image: Mathematical expression showing the absolute value of S is less than or equal to two.].
It was incorrectly believed that if the freedom-of-choice loophole was closed then hidden variables could not statistically depend on randomly chosen binary inputs (settings’ labels). This is untrue because variables describing distant measuring instruments used in different settings can depend on inputs and may be correlated due to global rotational symmetry. Therefore, closing the freedom-of-choice loophole does not close the contextuality loophole.
In contextual hidden variable models (Equations 21–23) and (Equation 25), which are neither Bell-local nor Bell-causal, distant outcomes are locally determined by setting independent hidden variables that describe prepared qubits and setting dependent hidden variables that describe distant measuring instruments and procedures. This model is only constrained by [image: Mathematical expression showing the absolute value or cardinality of set S is less than or equal to four.]. Due to global rotational symmetry, the pairwise expectation values of distant random variables (describing Alice’s and Bob’s outcomes) have to depend on angle [image: Mathematical equation showing theta sub x y equals theta sub x minus theta sub y.], where [image: Mathematical expression showing a pair of variables in parentheses, theta sub x and theta sub y, denoted as (theta sub x, theta sub y).] are the respective angles by which distant qubits are rotated before local read-outs.
We can intuitively explain how parameters describing measuring devices in space-like locations may obey the equation [image: Mathematical equation displaying mu sub y equals function of mu sub x and cosine of theta sub x y within parentheses.], even if [image: Mathematical expression showing a coordinate pair with Greek letters theta sub x and theta sub y in parentheses.] are chosen perfectly randomly. We imagine two observers in front of two screens on which two identical triangles are projected. They record their observations by six coordinates μ=(x1, y1; x2, y2; x3, y3). Next, [image: Mathematical expression showing the ordered pair open parenthesis theta sub x comma theta sub y close parenthesis, representing two variables or angles labeled x and y.] are chosen randomly, and rotated triangles are projected onto respective screens. Now the observers’ recordings differ: [image: Mathematical equation showing mu sub x equals R of theta sub x times mu, with bold symbols indicating vectors or matrices.], [image: Mathematical equation showing mu sub y equals R of theta sub y multiplied by mu.] and [image: Mathematical equation stating mu sub x equals capital R of open parenthesis theta sub x y close parenthesis, multiplied by mu sub y.]. Variables describing distant measuring devices and procedures can be strongly correlated without any spooky influences. We used a shortened notation according to which the rotation 2 x 2 matrices are applied at the same time to coordinates of three triangle’s vertices.
Therefore, Bell tests prove only that the probabilistic coupling LHVM is inconsistent with the experimental data. They allow the rejection of Bell-locality and Bell-causality assumptions but have little to say about the completeness of QM or local causality in nature. As has been observed, quantum nonlocality is a misleading notion (Boughn, 2022; Czahor, 1988; Dzhafarov, 2021; Fine, 1982; Hance and Hossenfelder, 2022; Hess and Philipp, 2005; Hess, 2022; Jaynes and Skilling, 1989; Jung, 2017; Khrennikov, 2007; Khrennikov, 2008; Khrennikov, 2019; Khrennikov, 2020a; Khrennikov, 2022; Kupczynski, 2018b; Kupczynski, 2023a; Kupczynski, 2024a; Kupczynski, 2024b; Peres, 1978; Pitovsky, 1983; Pitovsky, 1994; Żukowski and Brukner, 2014; De Raedt et al., 2017; De Raedt et al., 2023; De Raedt et al., 2024; Żukowski and Brukner, 2014; Jung, 2020; Boughn, 2017), and extraordinary metaphysical speculations based on the results of Bell tests are unfounded.
Correlation does not mean causation. Alice’s and Bob’s experimental outcomes may be correlated, but a probabilistic scatter of Alice’s outcomes cannot depend on what Bob is measuring in his distant laboratory. This is called “no-signaling.” No-signaling was verified and confirmed for raw experimental data in all Bell tests. Nevertheless, to study correlations in some experiments involves rejecting single clicks and combining coincident clicks in pairs on Alice’s and Bob’s detectors. This has created an apparent signaling in some experiments (Hensen et al., 2015; Weihs et al., 2024; Adenier and Khrennikov, 2007; Adenier and Khrennikov, 2017; Bednorz, 2017) which could be explained without evoking spooky influences (Kupczynski, 2017b; Kupczynski, 2021; Kupczynski, 2024a; Khrennikov, 2022). The presence of signaling patterns in the experimental data means that these data have to be described by random variables labelled by both the content and context of the experiment, and of course a joint probability distribution of such variables does not exist.
An external world certainly does exist and it does not depend on whether it is observed or not. Our mathematical models describe only imperfectly its different layers (Kupczynski, 2024c). Quantum phenomena under investigation depend on the detailed contexts of our experiments. The information obtained is contextual and complementary, but quantum probabilities are objective properties of quantum phenomena.
Questions about the completeness of quantum mechanics can only be answered by a search of reproducible fine structures in time series of experimental data which were not predicted by QM. It would not only demonstrate that QM may not provide the most complete description of the individual physical systems but also that QM is not predictably complete (Kupczynski, 2006; Kupczynski, 2009; Kupczynski, 2011).
We finish this article with words of Einstein (1936):
Is there really any physicist who believes that we shall never get any insight into these important changes in the single systems, in their structure and their causal connections … To believe this is logically possible without contradiction; but it is so very contrary to my scientific instinct that I cannot forego the search for a more complete description.
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The connection between the intrinsic angular momentum (spin) of particles and quantum statistics is established by considering the response of identical particles to a common background radiation field. For this purpose, the Hamiltonian analysis previously performed in stochastic electrodynamics to derive the quantum description of a one-particle system is extended to a system of two identical bound particles subject to the same field. Depending on the relative phase of the response of the particles to a common field mode, two types of particles are distinguished by their symmetry or antisymmetry with respect to particle exchange. While any number of identical particles responding in phase can occupy the same energy state, there can only be two particles responding in antiphase. The calculation of bipartite correlations between the response functions reveals maximum entanglement as a consequence of the parallel response of the particles to the common field. The introduction of an internal rotation parameter leads to a direct link between spin and statistics and to a physical rationale for the Pauli exclusion principle.
Keywords: particle-field coupling, resonant response, quantum statistics, symmetry/antisymmetry, Pauli exclusion principle

1 INTRODUCTION
The statistics of identical particles is one of the most fundamental quantum features: all quantum particles are known to obey either Fermi–Dirac or Bose–Einstein statistics. It is also well known that the intrinsic angular momentum (spin) of a particle determines its statistics and vice versa, with integral-spin particles being bosons and half-integral-spin particles being fermions. The symmetrization postulate and the spin statistics theorem are central to a number of key quantum applications, including all of atomic, molecular, and nuclear physics and quantum statistical physics. Nevertheless, a century after their establishment (Pauli, 1925; Heisenberg, 1926; Dirac, 1926), they continue to be taken as mathematically-justified empirical facts. All known experimental data are consistent with Pauli’s exclusion principle, and experiments continue to be carried out to find possible violations of it (Kaplan, 2020). Pauli himself, who gave the first formal proof of the spin-statistics theorem in 1925, expressed his dissatisfaction with this state of affairs two decades later (Pauli, 1946; Pauli, 1950), but explanations continue to rely mainly on formal arguments based on topological properties, group-theoretical considerations, and the like.
All this leads to the conclusion that the physical underpinning of quantum statistics remains to be elucidated. What makes the state vectors of identical multipartite systems either symmetric or antisymmetric? What is the mechanism that “binds” identical particles in such a way that they obey either Fermi or Bose statistics?
The aim of this paper is to provide an answer to these questions based on general principles and previous results from stochastic electrodynamics (SED). Recent work has shown that consideration of the interaction of particles with the electromagnetic radiation field is key to understanding their quantum behavior (de la Peña et al., 2015). The ground state of the radiation field—the zero point field (ZPF)—has been identified as the source of quantum fluctuations and a key factor in driving a bound system to a stationary state. In addition, the quantum operator formalism has been obtained as the algebra describing the response of the particle’s dynamical variables to the background field modes responsible for the transitions between stationary states (Cetto and de la Peña, 2024). Furthermore, bipartite entanglement was derived as a consequence of the interaction of two identical particles with the same field modes (de la Peña et al., 2015). Against this background, the theory provides us with a physically grounded explanation of the origin of the symmetry properties of identical quantum particle systems and the resulting statistics.
The paper is structured as follows. Section 2 summarizes the SED Hamiltonian derivation of the quantum operator formalism, which gives sense to this formalism as an algebraic description of the linear (dipolar) resonant response of the particle to a well-defined set of modes of the background radiation field. In Section 3, the expression of the dynamical variables of the particle in terms of linear response coefficients is applied to the analysis of a system of two identical particles in a stationary state. Section 4 identifies two types of particles according to the relative phase of their coupling to a common field mode in the bipartite case, and the multipartite case is briefly discussed. Section 5 shows that the analysis of two-particle correlations leads to entangled symmetric or antisymmetric state vectors. In Section 6, the intrinsic rotation is introduced in order to establish the connection between the spin and the quantum statistics as reflected in the symmetry of the state vector, leading to the Pauli exclusion principle for particles with half-integer spin.
2 QUANTUM OPERATORS AS LINEAR RESPONSE FUNCTIONS
As shown in SED (de la Peña et al., 2015), the dynamics of an otherwise classical charged particle immersed in the zero-point radiation field of energy [image: Mathematical expression showing the reduced Planck constant multiplied by angular frequency divided by two, commonly written as h-bar omega over two.] per mode (ZPF) and subject to a binding force and its own radiation reaction evolves irreversibly into the quantum regime, characterized by the stationary states reached as a result of the average energy balance between radiation reaction and the action of the background field. Cetto and de la Peña (2024) showed by means of a Hamiltonian analysis of the particle–field system that the nature of the particle dynamical variables—the kinematics—changes in the transition to the quantum regime. In this regime, [image: Mathematical expression showing x of t comma p of t, where x and p are functions of variable t.] no longer refer to trajectories but to the linear, resonant response of the particle to the driving force of the background field, which effects the transitions between stationary states. The radiative transitions between two states [image: Mathematical expression showing an open parenthesis, variable n, comma, variable k, and a closing parenthesis, with both variables stylized in italic font.] involve precisely those field modes to which the particle responds resonantly. Thus, from the initially infinite, continuous set of canonical field variables [image: Mathematical expression showing an ordered pair with variables q and p inside parentheses, separated by a comma.], only those [image: Mathematical expression showing open parenthesis, bold q sub n k comma bold p sub n k, close parenthesis.] so defined are relevant for the description in the quantum regime. Since the memory of the initial particle variables [image: Mathematical notation showing x of zero comma p of zero, indicating initial values or conditions for variables x and p at time zero.] is lost and the dynamics are now controlled by the field, the Poisson bracket of the particle canonical variables, which initially is taken with respect to the complete set of (particle + field) variables, reduces to the Poisson bracket with respect to the (relevant) field variables. Therefore, for the particle in a stationary state [image: Lowercase italic letter n, commonly used in mathematics to represent a variable or integer. Black serif font on a white background.] (note that Roman letters are used for the canonical field variables),
[image: Mathematical equation displaying the inner product of x sub n of t and p sub n of t in the q p space equals one, labeled as equation one.]
where
[image: Mathematical formula showing a Poisson bracket for functions x sub n of t and p sub n of t, expressed as a sum involving partial derivatives with respect to q sub n k and p sub n k.]
Instead of the canonical field variables (the quadratures) [image: Mathematical expression showing an ordered pair with q sub n k and p sub n k in boldface, both enclosed within parentheses.], it is convenient to use the (dimensionless) normal variables [image: Mathematical equation showing a sub n k equals exponential of open parenthesis i times phi sub n k close parenthesis.], where [image: Mathematical notation displaying the Greek letter phi with subscript n and k.] is a random phase, which are related to the former by
[image: Mathematical equation showing q sub n k equals the square root of h over two times absolute omega sub n k, times the sum of a sub n k and a dagger sub n k. p sub n k equals negative i times the square root of h times absolute omega sub n k over two, times the difference of a sub n k and a dagger sub n k. Equation labeled as two.]
This transformation, which takes into account the energy of the field mode of frequency [image: Mathematical expression displaying a lowercase Greek letter omega with subscripts k and n.] being equal to [image: Mathematical expression showing h-bar multiplied by omega subscript k n.], is the entry point of Planck’s constant in the equations that follow.
With the transformation (2), the Poisson bracket with respect to the normal variables becomes
[image: Mathematical equation showing the Poisson bracket of x of t and p of t defined as a sum over k and n of the difference of partial derivatives with respect to a sub n k and its conjugate.]
[image: Mathematical equation showing a summation over indices k and n of the difference between partial derivatives of variables x and p with respect to each other, multiplied by i and h-bar, labeled as equation three.]
and, therefore, according to Equation 1, the transformed Poisson bracket must satisfy
[image: Mathematical expression showing the commutator of x of t and p of t equals i times h-bar, representing the fundamental quantum commutation relation, labeled as equation 4.]
From this and Equation 3, it is clear that [image: Mathematical expression showing variables x sub n of t and p sub n of t, both written in italics.] must indeed be linear functions of the normal variables [image: Mathematical expression showing a sequence with general term a sub n k in braces, followed by the condition k not equal to n.]. Thus, [image: Mathematical expression showing x sub n, in parentheses t, representing a function x subscript n of t.] becomes expressed in the form (in one dimension, for simplicity)
[image: Mathematical equation showing x_m of t equals x_mm plus the sum over k not equal to m of x_mk a_mk e to the power of negative i omega_mk t, plus complex conjugate, labeled as equation five.]
where the index [image: Lowercase italic letter k in a serif font, commonly used to represent a variable in mathematical equations or scientific formulas.] denotes any other state that can be reached by means of a transition from [image: Lowercase italic letter n in a serif font, typically used as a mathematical variable or symbol.] (hence [image: Mathematical expression showing the variable k is not equal to the variable n.]), and [image: Lowercase Greek letter omega with subscripts k, n in italic font.] is the corresponding transition frequency. The coefficient [image: Mathematical variable x with subscripts n and k in italic serif font.] is the response amplitude of the particle to the field mode of frequency [image: Mathematical expression showing the lowercase Greek letter omega followed by the subscripts k and n, formatted in italic font.]. More generally, since the field variables connecting different states [image: Mathematical notation showing the variables n and n prime, with n prime indicated by an apostrophe.] are independent random variables, [image: Mathematical expression showing the partial derivative of a n k with respect to a n prime k prime equals delta m n prime delta k k prime.] (for equal times, one may omit the time dependence in the expression) and
[image: Mathematical equation showing the commutator of x sub m and p sub n equals i times h-bar times delta m n, labeled equation six.]
Using Equation 5 for [image: Mathematical expression showing lowercase x subscript n of t, using italicized variables with n as the subscript and t in parentheses, commonly representing a function or signal dependent on t.] and
[image: Mathematical equation shows p_n(t) equals m times the time derivative of x_n(t), expressed as minus i m times the sum over k, n, l of omega_kn x_nk a_nk times exponential of minus i omega_nk t, plus complex conjugate, labeled as equation 7.]
to calculate the derivatives involved in Equation 3, we obtain
[image: Mathematical equation showing the commutator of x of t and p of t with subscript m n equals two i m times the sum over k not equal to m of omega m k times the absolute value squared of x m k, equaling i h bar. Equation labeled as eight.]
For [image: Lowercase italic letter x in a bold black font centered on a white background, commonly used as a mathematical variable or symbol.] and [image: Lowercase italic letter p in a serif font, commonly used as a variable in mathematical or scientific notation.] real, [image: Mathematical equation expressing that x_superscript_star_sub_ k n (omega_sub_n k) equals x_sub_k n (omega_sub_k n), p_superscript_star_sub_k n (omega_sub_k n) equals p_sub_k n (omega_sub_k n), and a_superscript_star_sub_k n (omega_sub_k n) equals a_sub_k n (omega_sub_k n).]. This allows us to write Equation 6 in the explicit form
[image: Mathematical equation shows a summation over index k from one to N, with the difference of x sub m k times p sub k n and p sub m k times x sub k n equal to i times h-bar times the Kronecker delta m n, labeled as equation nine.]
and to identify the response coefficients [image: Mathematical variables x sub n k and p sub n prime k in italicized font, separated by a comma.] as the elements of matrices [image: Mathematical notation displaying x hat and p hat variables, each with a caret symbol above the letter, often representing operators in quantum mechanics.] such that
[image: Quantum mechanics equation showing the commutator of position operator x-hat and momentum operator p-hat equals i times h-bar, labeled as equation 10.]
This central result of SED reveals the quantum commutator as the matrix expression of the Poisson bracket of the particle variables [image: Mathematical expression showing the ordered pair parentheses x sub n comma p sub n parentheses, where n is a subscript in both variables.] in any state [image: Lowercase italic letter n in a serif style, appearing in black on a white background.] with respect to the (relevant) normal field variables corresponding to the modes [image: Mathematical expression showing curly braces with the italicized variables n and k inside, representing a set containing n and k.] to which the particle responds resonantly from that state. Furthermore, Equation 8 is identified with the Thomas–Reiche–Kuhn sum rule,
[image: Mathematical equation showing two i m times the sum over k not equal to m of omega sub m k times the absolute value squared of x sub m k equals i h-bar, labeled as equation eleven.]
In summary, this is the physical essence of the quantum operators: they describe the linear, resonant response of the (bound) particle to a well-defined set of field modes. The response coefficients [image: Mathematical expression showing the variable x with subscripts n and k in italicized font.] and the transition frequencies [image: Mathematical expression showing the Greek lowercase omega followed by subscripts k and n.] contained in Equation 5 are characteristic of the mechanical system; the corresponding random normal variables [image: Mathematical notation displaying lowercase italicized a with subscripts n and k.] in turn contain information about the (stationary, random) background field. By taking the derivatives of [image: Mathematical notation showing the variable x with the subscripts m and n.] and [image: Mathematical expression showing the variable p with subscript n, both in italic font, commonly used to represent a specific element in a mathematical sequence or series.] given by Equations 5, 7 with respect to [image: Mathematical notation showing two variables: a sub n k and a sub n k with an asterisk, both in italics.] to calculate the Poisson bracket, the latter are removed from the description; the problem seems to be reduced to be purely mechanical, although it is in essence electrodynamic. Once the operator formalism is adopted, the factor [image: Mathematical symbol representing the reduced Planck constant, written as a lowercase letter h with a horizontal stroke through the upper stem, commonly used in quantum mechanics equations.], coming from the transformation expressed in Equation 2, remains the only conspicuous imprint left by the field.
We further note that the structure of the commutator is a direct consequence of the symplectic structure of the problem; this is a feature of the Hamiltonian dynamics that remains intact in the evolution from the initial classical to the quantum regime. The correspondence between classical Poisson brackets and quantum commutators, insightfully established by Dirac on formal grounds, thus finds a physical explanation.
To connect with quantum formalism in the Heisenberg representation, we consider an appropriate Hilbert space on which the operators act. In the present case, the natural choice is the Hilbert space spanned by the set of orthonormal vectors [image: Mathematical expression showing a set notation containing the ket vector symbol with variable n, commonly used in quantum mechanics to denote a set of quantum states.] representing the stationary states with energy [image: Mathematical expression showing a script capital E followed by a subscript n, commonly used to denote a sequence or family of entities indexed by n.]. With the components of [image: Mathematical expression showing x with a hat symbol, indicating estimation, as a function of t in parentheses.] given by [image: Mathematical expression showing bold x sub n k multiplied by e raised to the power of negative i times omega sub k n times t.] (see Equation 5), we have
[image: Mathematical equation displaying x-hat of t equals the sum over n, m, k of x sub n m k times e to the minus i omega n m k t, ket n bra k, with equation number twelve.]
The matrix elements of [image: Mathematical expression showing x-hat of t, where x has a circumflex accent, enclosed in parentheses with t representing a function of time.] are
[image: Mathematical equation: x sub m k of t equals the inner product of eta one k t with k, labeled as equation thirteen.]
in the Heisenberg picture, or
[image: Mathematical equation showing x sub m k of t equals inner product of eta of t with z k, k of t, labeled as equation fourteen.]
in the Schrödinger picture, where the time dependence has been transferred to the state vector,
[image: Equation n of t equals exponential of negative i epsilon sub n t over h bar, ket n, labeled as equation fifteen.]
Finally, with the evolution of [image: Mathematical notation showing two italicized variables, x and p, separated by a comma.] into operators, the initial Hamiltonian equations evolve in the quantum regime into the Heisenberg equations
[image: Mathematical equation showing, one over i h-bar multiplied by the commutator of position operator x-hat and Hamiltonian H equals x-dot, and one over i h-bar times the commutator of momentum operator p-hat and Hamiltonian H equals p-dot, labeled as equation sixteen.]
with [image: Mathematical equation showing the quantum Hamiltonian operator as the sum of the kinetic energy term, p-hat squared over two m, and the potential energy operator V-hat.], [image: Mathematical equation showing the time derivative of the position operator equals the momentum operator divided by mass, written as x hat with dot equals p hat divided by m.] and [image: Mathematical equation reads: p-hat equals negative derivative of V with respect to x, where p-hat and V both have vector notation.]. By taking the matrix element [image: Mathematical expression with the variables n and k in italics enclosed within parentheses.] of the first of these equations, we confirm that [image: Mathematical equation showing omega sub k n equals open parenthesis script E sub n minus script E sub k close parenthesis divided by h bar.]—that is, that the energy [image: Mathematical expression showing the product of Planck’s reduced constant, h-bar, and angular frequency, omega sub k n.] transferred to (or from) the field to the particle in a transition is equal to the energy difference between the two stationary states.
3 RESPONSE OF A BIPARTITE SYSTEM TO THE BACKGROUND FIELD
Now consider a system consisting of two identical particles. When the particles are isolated from each other, they are subject to different realizations of the background field, in which case their behavior can be studied separately for each particle using the procedure above. However, if they are part of one and the same system, they are subject to the same realization of the field and, being identical, they respond to the same set of relevant field modes, whether or not they interact with each other. In the following, we assume that the particles do not interact directly with each other.
Our purpose is to describe the response of the composite system to the background field when in a stationary state characterized by the total energy [image: Mathematical equation displaying calligraphic E subscript n m equals calligraphic E subscript n plus calligraphic E subscript m.] with [image: Mathematical equation showing calligraphic capital E sub n does not equal calligraphic capital E sub m, where n and m are subscripts.], the subindices [image: Lowercase italic letter n in a serif font, centered on a white background. Used commonly in mathematical or scientific notation to represent a variable or integer.] and [image: Lowercase italic letter m in a serif font, commonly used as a mathematical variable or symbol.] referring to single-particle states. If particle 1 is in state [image: Lowercase italic letter n in a serif typeface, commonly used in mathematical expressions or variables.], it responds to the set of modes [image: Mathematical expression showing a set containing the variables n and k in italics, enclosed within curly braces.], and similarly particle 2 in state [image: Italic lowercase letter m in a serif font, shown in black on a white background. Often used in mathematical or scientific contexts to represent variables or specific terms.] responds to the set [image: Mathematical expression featuring the lowercase letters m and l in italics enclosed by curly braces.],
[image: Mathematical equation showing x sub 1 m of t as the sum over k of e to the j phi x sub 1 mk a sub mk e to the minus i omega m t plus complex conjugate; x sub 2 m of t as the sum over l of e to the j phi x sub 2 ml a sub ml e to the minus i omega m t plus complex conjugate, labeled as equation seventeen.]
where we have added the factor [image: Mathematical expression showing exp left parenthesis i theta right parenthesis, representing the exponential function with an imaginary unit and a variable theta.] to each term to allow for the (random) phase of the response of the particle to the field modes.
When [image: Mathematical equation showing lowercase n is not equal to lowercase m.], the sums in Equation 17 involve the different, mutually independent normal variables [image: Mathematical expression showing a lowercase italic a with subscripts n and k, commonly used to denote a matrix or sequence element.] and [image: Mathematical expression showing the variable a with subscripts m and l, all in italic font.], except when [image: Mathematical expression showing k equals m, with both variables in italic font.] and [image: Mathematical expression showing lowercase letter l equals lowercase letter n.], since [image: Mathematical equation showing a subscript n m equals a subscript m n with an asterisk above, indicating complex conjugation or Hermitian symmetry.]. Therefore, the Poisson bracket of [image: Mathematical expression displaying x sub one, open parenthesis t close parenthesis, representing a time-dependent variable x one as a function of t.] and [image: Mathematical expression displaying x subscript two of t, commonly representing the second component of a time-dependent variable or function.], calculated in the state of the composite system [image: Mathematical text showing an italicized lowercase n and m enclosed in parentheses.], reduces to a single term:
[image: Mathematical equation showing the commutator of x sub 1 and x sub 2 for indices m n, represented by a matrix of partial derivatives, set equal to two i times the modulus squared of x sub m n times sine of theta sub m n to the power twelve, equation eighteen.]
Since the particles are identical, the interchange of labels 1 and 2 should not alter the value of the Poisson bracket, and therefore this equation must be equal to 0. This sets an important restriction on the possible values of the phase difference. With
[image: Mathematical expression showing theta sub m n squared minus theta sub m n prime squared equals the absolute value of theta sub m n squared, equivalent to pi squared times z sub m n squared, labeled as equation nineteen.]
we see that [image: Mathematical expression showing zeta sub twelve divided by zeta sub mmm, where zeta twelve is presented as a superscript twelve over the Greek letter zeta.] must be an integer so that
[image: Mathematical expression showing that the commutator of x sub n and x sub m equals zero when n does not equal m, labeled as equation twenty.]
Furthermore, with [image: Mathematical expression displaying p subscript two of t, with all variables shown in italic font.] obtained from the second Equation 17,
[image: Mathematical equation expressing p sub two m as negative i m times the sum over l of e to the i phi l, omega l m, s sub two m, a sub m l, e to the negative i omega m l t, plus complex conjugate.]
the Poisson bracket of [image: Mathematical expression displaying x subscript one of t, indicating a time-dependent variable or signal labeled as x one as a function of t.] and [image: Mathematical expression showing p subscript two of t, representing a function p two with variable t in parentheses.] calculated for the same state [image: Mathematical text displaying the unit nanometers in parentheses, written in italic font as left parenthesis, n, m, right parenthesis.] gives
[image: Mathematical equation showing the commutator of x₁ and p₂ with subscripts mn, involving partial derivatives, equaling 2i m omega sub mn times the squared magnitude of x sub mn times cosine squared theta sub mn, labeled as equation 21.]
In terms of the parameter [image: Mathematical expression showing the Greek letter zeta with superscript twelve divided by the variable r subscript minimum, all in italic font.] defined in Equation 19, we have
[image: Mathematical equation showing cos theta sub mm superscript one half equals negative one to the power of zeta sub mm superscript one half, where zeta sub mm superscript one half equals zero, one, two, and so on. Equation number twenty-two.]
and therefore, from Equation 21,
[image: Mathematical expression showing the commutator of x sub 1 and p sub 2 for the state m n equals open parenthesis negative 1 close parenthesis to the power n plus m times two i m omega sub m n absolute value of x sub m n squared. Equation labeled as twenty-three.]
This result shows that a correlation is established between the response variables of the two particles to the shared field mode [image: Mathematical expression showing the variable n and m in italics, enclosed in parentheses.] for [image: Mathematical equation showing n is not equal to m.]; in other words, the field mode serves as a bridge between the particles and correlates their responses. It is important to note that Equation 23 involves only the field mode connecting the two states with [image: Mathematical expression showing script capital E sub n not equal to script capital E sub m.], and it is different from O only when these states are connected by a dipolar transition element, [image: Mathematical expression showing x sub n m is not equal to zero.].
We now consider two equal particles in the same energy state: [image: Mathematical equation showing n equals m.]. In this case, the particles share all field modes, so that the Poisson brackets become, by virtue of Equation 22,
[image: Mathematical equation showing a commutator of x one and x two in a summation over k, involving partial derivatives and a term with sine squared theta multiplied by the squared modulus of x nk, equated to zero. Equation is labeled as twenty-four.]
[image: Mathematical equation showing the commutator of x sub one and p sub two, equals the sum over k of the products and differences of partial derivatives of x and p with respect to a and a star variables.]
[image: Mathematical expression showing the sum over k: two i m times the sum of omega sub k x cosine squared theta sub k l absolute value x sub k l squared, which equals two i m times the sum over k of negative one to the k x omega sub k l absolute value x sub k l squared, labeled as equation twenty-five.]
4 TWO FAMILIES OF PARTICLES
Equation 23 indicates that there are two distinct types of identical particles, depending on whether the phase parameter [image: Mathematical expression showing the Greek letter zeta with superscript twelve over the variable n, all in italics.] given by Equation 19 is an even or odd number. Since this condition applies to all modes that are shared by the two particles, we can write, using Equation 19:
[image: Mathematical equation showing xi sub m n squared equals zeta sub m n squared equals the absolute value of zeta one squared minus zeta two squared, labeled as equation twenty-six.]
so that the two types of particles are characterized by
[image: Mathematical expression stating Type B: ζ subscript β superscript n equals zero, two, four, and so on, labeled as equation twenty-seven a.]
[image: Text reads: Type F colon zeta sub j superscript h squared equals one, three, five, and so on. Equation numbered twenty-seven b in parentheses.]
In Appendix A, it is shown that for all [image: Mathematical notation showing a cursive lowercase zeta with a superscript twelve and a subscript uppercase B.] to be even, the individual [image: Greek letter zeta with a superscript i and a subscript capital B.] must be integers, and that for all [image: Mathematical expression showing the Greek letter zeta with subscript F and superscript twelve, commonly used to represent a function or value in mathematics or physics.] to be odd, the individual [image: Mathematical expression showing the Greek letter zeta with subscript F and superscript i.] must be half-integers:
[image: Mathematical expression displaying "Type B: absolute value of ζ sub j equals zero, one, two, up to uppercase gamma sub B" with the equation number twenty-eight a in parentheses aligned to the right.]
[image: Mathematical expression for Type F showing the absolute value of zeta sub n equals one half times three halves times five halves and so on up to r sub n, labeled as equation twenty-eight b.]
where [image: Uppercase Greek letter upsilon with a subscript capital letter B, shown in an italic serif font, commonly used in scientific and mathematical notation.] and [image: Greek capital upsilon symbol with a subscript uppercase F, likely representing a specific variable or mathematical notation in a scientific or technical context.] are the maximum values of the individual [image: Mathematical expression displaying the Greek letter zeta with subscript B and superscript i.], [image: Mathematical expression showing the Greek letter zeta with a superscript i and a subscript F.]. This means that [image: Italic capital letter B in a serif font, black on a white background.] and [image: Uppercase italic letter F in a serif font, displayed in black on a white background. The letter is centered with no additional symbols or markings visible.] actually stand for two distinct families of particles, the members of which are characterized by the respective value of [image: Uppercase Greek letter upsilon symbol, featuring a vertical line with two symmetrical curved arms extending upward and outward from the top, rendered in a bold, serif font in black on a white background.]. Identical particles of family [image: Italic capital letter B displayed in a serif font in black against a white background.] can have any value of [image: Mathematical notation showing the Greek letter zeta with subscript B and superscript i.] integer such that [image: Mathematical expression showing the absolute value of zeta sub B superscript i is less than or equal to uppercase upsilon sub B.], but when combined they must satisfy Equation 27a; similarly, those of family [image: Uppercase serif letter F in bold black font against a white background.] must satisfy Equation 27b. In other words, according to Equations 27a, b, only pairwise combinations of [image: Mathematical symbol showing the lowercase Greek letter zeta with a superscript i and a subscript uppercase B.] that are even and only pairwise combinations of [image: Mathematical expression showing the Greek letter zeta with a superscript i and subscript F.] that are odd are allowed. Since, in both cases, [image: Lowercase Greek letter zeta with a superscripted lowercase letter i indicating exponentiation.] can be positive or negative, this gives a total of [image: Mathematical equation showing g equals two times uppercase Greek letter upsilon plus one.] possible different states of the bipartite system.
With these results, Equation 17 take the form (except for a remaining common phase factor [image: Mathematical expression showing e raised to the power of i times theta, where e is the base of the natural logarithm, i is the imaginary unit, and theta is a variable.] that can be neglected)
[image: Mathematical equation displaying x sub i n of t equals e to the power of j pi t prime, summation over k of x sub i n k a sub n k e to the power of negative j omega n k t plus c.c., where j represents the imaginary unit.]
[image: Mathematical equation showing x sub m of t equals e raised to the j n k times the sum over l of x sub m l a sub m l e raised to the negative i omega m l t plus complex conjugate, labeled equation twenty-nine.]
and Equation 25 is reduced to
[image: Mathematical equation showing the commutator of x sub l and p sub l equals negative one to the power n times i times h-bar, labeled as equation 30.]
Therefore, in comparison with the one-particle commutator [image: Mathematical equation showing the commutator of x sub 1 and p sub 1 with subscripts m n equals i times h bar.], we note that in the [image: Italicized uppercase letter B in a serif font presented in bold black against a white background.] case—when Equation 27a holds—particle 2 responds in the same way as particle 1. Indeed, according to Equation 19, the response of the two particles to the shared field modes is in phase, and a correlation is established between the particles. By contrast, according to Equation 27b, [image: Mathematical expression zeta subscript F with superscript twelve.] is an odd number; hence, the response of the two identical type [image: Uppercase italic letter F in a serif font, black on a white background. The letter is displayed clearly and is centered within the image.] particles to the shared field modes is in antiphase.
4.1 Extension to three or more particles
In light of the above results, we now briefly analyze the possible correlations for a system composed of three or more identical particles.
In the first case of three type-[image: Italic uppercase letter B in a serif font on a white background.] particles, when total energy [image: Mathematical equation showing calligraphic E subscript m n l equals calligraphic E subscript n plus calligraphic E subscript m plus calligraphic E subscript l.] with [image: Mathematical equation showing calligraphic E sub n is not equal to calligraphic E sub m is not equal to calligraphic E sub l, with each E having a different subscript.], Equation 27a applies, and the three particles are pairwise correlated. According to Equation 30, correlation also exists when [image: Mathematical expression showing script capital E sub n does not equal script capital E sub m equals script capital E sub l.] or [image: Mathematical equation showing script E sub n equals script E sub m equals script E sub l, indicating three variables are equal.] because the responses of the three particles to common field modes are always in phase. Therefore, all three particles may in principle occupy the same state [image: Lowercase italic letter n in a serif font, centered on a white background.] and respond coherently. The argument can of course be extended to four or more particles; consequently, there may in principle be an arbitrary number [image: Capital letter N in a serif font, rendered in black on a white background. The edges of the letter appear slightly blurred, giving a soft appearance.] of type-[image: Italic, uppercase letter B in a serif font on a white background.] particles in the same state and responding coherently to the field modes, like a well-disciplined troop.
In the type-[image: Uppercase, bold, italicized black letter F on a white background, commonly used in mathematical or scientific notation.] case, we have already concluded that particles 1 and 2 respond in antiphase to a common mode, and the same applies of course to any pair of identical particles. When total energy [image: Mathematical expression showing script capital E subscript m n l equals script capital E subscript n plus script capital E subscript m plus script capital E subscript l.] with [image: Mathematical equation showing calligraphic capital E with subscripts n, m, and l, where each term is not equal to the others, written as script E sub n not equal script E sub m not equal script E sub l.], the three particles are pairwise correlated according to Equation 27b. However, when at least two energy levels coincide, two particles respond in antiphase to the shared modes, thus preventing a third one from responding in antiphase to the same modes and therefore from being correlated to the other two. Therefore, contrary to the type-[image: Italic uppercase letter B in a serif font, shown against a white background.] case, there can be no coherent response of more than two type-[image: Uppercase letter F in a serif font, displayed in bold with a slight rightward tilt, set against a white background.] particles in this case.
5 FIELD-INDUCED COVARIANCE AND ENTANGLEMENT
To calculate the effect of the background field on the correlation of the responses, we consider two generic dynamical variables associated with particles 1 and 2. These can be the variables [image: Mathematical expression showing a variable x as a function of t, commonly written as x parenthesis t and often used to represent a time-dependent variable.] and [image: Mathematical expression showing the function p of t, with p and t both in italics and t enclosed in parentheses.] considered so far, a linear combination of them, or any other variable of the form given by Equation 29, where [image: Mathematical notation in italics displaying lowercase variables n comma m.] are, as before, two stationary states of the system, with energies [image: Mathematical notation showing script E sub n comma script E sub m.],
[image: Mathematical equation showing f sub in of t equals f sub in m plus e to the i n k t times the sum over k not equal to n of f sub in k a n k e to the minus i omega n k t plus complex conjugate. Equation labeled 31.]
[image: Mathematical formula showing g_sub_nm of t equals g_sub_nnm plus e to the i pi k power times the sum over l not equal to m of g_sub_nl q_sub_nml e to the negative i omega_sub_nl t plus complex conjugate, labeled as equation thirty-two.]
The time-independent terms in these equations represent in each case the average value of the function, taken over the distribution of the normal variables [image: Mathematical equation showing a sub n k equals exp open parenthesis i phi sub n k close parenthesis, representing a complex exponential with a phase parameter.] where [image: Mathematical expression showing the Greek letter phi with subscripts n and k in italic font.] is a random phase, as mentioned in Section 2,
[image: Mathematical expression showing f sub in of t with a line overhead equals f sub in m, and g sub in m of t with a line overhead equals g sub in m, labeled equation thirty-three.]
To calculate the correlation, we take the average of the product of [image: Mathematical expression showing lower-case f sub one of t, written as f one of t in italics.] and [image: Mathematical expression in italic serif font showing g subscript 2 of t, written as g sub 2, open parenthesis, t, close parenthesis.]. When particles 1 and 2 do not form part of the same system, they respond to independent realizations of the field modes, and therefore the covariance is given by
[image: Mathematical equation showing capital gamma of f sub l m and g sub l m equals the product of the difference between the time-averaged f sub l m of t and f sub l m, and the difference between the time-averaged g sub l m of t and g sub l m, which equals zero; labeled as equation thirty-four.]
which simply confirms that the variables are not correlated.
However, when the particles form a bipartite system, they respond to the same realization of the field modes. To calculate the covariance in this case, we must take into account the double degeneracy of the combined state, [image: Mathematical expression showing uppercase script E equals script E sub one r plus script E sub two m, which equals script E sub one m plus script E sub two n.]. In order to distinguish between the two configurations, we define
[image: Mathematical equation showing εc equals εim plus εsw, and εp equals εim plus εsw, followed by equation number thirty-five in parentheses.]
Let us consider the first case, [image: Mathematical equation showing calligraphic E sub C equals calligraphic E sub one n plus calligraphic E sub two m.], and use Equations 31, 32 to calculate the average product of [image: Mathematical expression showing f sub one of t, with function name f, subscript one, and variable t in parentheses.] and [image: Mathematical expression showing g subscript two of t in italic font.], which we call [image: Mathematical expression showing f times g raised to the power c, with a horizontal bar above the entire expression.] (the left factor always refers to particle 1 and the right to particle 2, so that we omit the indices 1 and 2 in the following). Taking into account that, for random independent normal variables, [image: Mathematical equation showing overline a sub i j a sub j k equals a sub i j times a sub k j star with an overline, equals delta sub i k.] and hence
[image: Mathematical equation showing a bar over a_i_n a_j_m equals delta_i_j delta_n_m plus delta_i_m delta_j_n, labeled as equation thirty-six.]
we obtain
[image: Mathematical equation displaying f sub g with a bar over it raised to the cth power equals f sub m g sub mm plus negative one raised to the fth power times f sub m g sub mm. Equation is labeled as thirty-seven.]
Similarly, for the D configuration, we obtain
[image: Mathematical equation showing vector quantity f_g equals f sub m n g sub m n plus negative one to the power of j times f sub m n g sub m n, labeled as equation thirty-eight.]
Since the two configurations have the same weight, the averages of [image: Mathematical expression showing f subscript one of t, representing a function labeled f one evaluated at the variable t.] and [image: Mathematical expression displaying g subscript 2 of t in italic font.] are
[image: Mathematical expression showing mean values: f bar equals one half times the sum of f sub m and f sub mm, and g bar equals one half times the sum of g sub m and g sub mm.]
and the average of the product of [image: Mathematical expression showing f sub one of t, with f and t in italics and the one as a subscript.] and [image: Mathematical expression showing g sub two of t, written as g with a subscript two followed by parentheses enclosing the variable t.] is given by
[image: Mathematical equation showing that the average of f times g is equal to one half times the sum of the average of f times g at point C and the average of f times g at point D.]
[image: Mathematical equation showing one half times the sum of f sub m g sub nm plus negative one to the k times f sub m g sub nm plus f sub nm g sub m plus negative one to the k times f sub nm g sub m, with the equation labeled thirty-nine.]
The covariance is therefore given by
[image: Mathematical expression showing r of open parenthesis f g close parenthesis equals f g with a bar over both letters, minus f with a bar over it times g with a bar over it.]
[image: Mathematical expression showing negative one fourth times the product of the differences f sub m n minus f sub m m and g sub m n minus g sub m m, plus one half times negative one to the k, multiplying the sum f sub m n g sub m m plus f sub m m g sub m n, equation forty.]
In this equation, the two contributions to the covariance are of a very different nature: the first is a classical covariance of [image: Mathematical expression showing a lowercase italic f with a subscript one, commonly read as f sub one.] and [image: Mathematical expression showing a lowercase italic letter g with a subscript two.] due to the different average values of these functions in states [image: Mathematical expression in italic serif font showing two variables, n and m, separated by a comma.] under the condition of degeneracy, [image: Mathematical equation showing script capital E sub one n plus script capital E sub two m equals script capital E sub one m plus script capital E sub two n.]. The second term, though, has no classical counterpart: it is entirely due to the joint response of particles 1 and 2 to the shared mode [image: Mathematical notation showing a pair of parentheses containing the lowercase italic letters n and m, typically representing variables.] and is therefore a signature of the matter–field interaction. Evidently, both particles must respond to the mode [image: Mathematical expression showing nanometers in parentheses, with the letters n and m in italic style.] for this term not to be zero; if any of the two matrices [image: Mathematical notation showing f-hat and g-hat, with each variable marked by a circumflex accent, separated by a comma.] is diagonal, there is no quantum contribution to [image: Mathematical expression showing uppercase Greek letter Gamma followed by an open parenthesis, lowercase f, lowercase g, and a closing parenthesis.].
5.1 Emergence of entanglement
In quantum formalism, entanglement is reflected in the non-factorizability of the bipartite state vector. Therefore, in order to show the emergence of entanglement in the present context, we will translate Equation 40 into the language of the product Hilbert space [image: Mathematical expression showing H sub one tensor product symbol H sub two.], where [image: Mathematical notation showing the symbols H sub one comma H sub two, commonly used to represent two different hypotheses or states in statistics or mathematics.] are respectively spanned by the sets of orthonormal state vectors [image: Mathematical expression showing a set containing a single element denoted by the Dirac ket notation vertical bar n right angle bracket, read as ket n.] of particles 1 and 2 (see Section 2 for the one-particle case). In the shorthand notation introduced above, configurations [image: Italicized mathematical variables C and D separated by a comma.] are represented by the product state vectors
[image: Mathematical equation showing C equals vertical bar m sub one close vertical bar m sub two sub x, D equals vertical bar m sub two close vertical bar m sub one sub x, followed by equation number forty-one in parentheses.]
In this notation, Equation 40 reads
[image: Mathematical formula showing capital gamma of open parenthesis f times g close parenthesis equals negative one fourth times open parenthesis f sub mm plus f sub m m m close parenthesis times open parenthesis g sub mm plus g sub m m m close parenthesis.]
[image: Mathematical expression displaying one half multiplied by the inner product of C plus negative one raised to the power j times D and f g, with a right angle bracket and equation number forty-two in parentheses on the right.]
In writing the second term, we have used the fact that [image: Mathematical equation showing open parenthesis negative one close parenthesis raised to the power of zeta equals plus or minus one.] according to Equations 27a and b. Note that the average of [image: Mathematical expression displaying the product of the variables f and g in italic font.] is now taken over the (normalized) state vector
[image: Mathematical expression showing Psi is defined as one divided by the square root of two times the quantity ket C plus negative one to the power of j times ket D, labeled equation forty-three.]
or in terms of the individual state vectors,
[image: Mathematical equation representing a quantum state: Psi equals one divided by the square root of two times the sum of ket m1, m2 and negative one to the m1 times ket m2, m1, labeled as equation forty-four.]
As a result, we obtain
[image: Mathematical equation showing the covariance of operators: capital gamma of f and g equals the expectation value of psi hat f hat g psi minus the product of expectation values of psi hat f psi and psi hat g psi, labeled equation forty-five.]
which is exactly the quantum covariance of [image: Mathematical expression showing f with a circumflex above it, followed by q with a circumflex above it, both in italic font.] calculated in the entangled state given by Equation 44. The covariance coincides with the correlation of [image: Lowercase italic letter f, commonly used as a mathematical function symbol or variable in equations and scientific notation.] and [image: Lowercase italic letter g in a serif font with a curved descender and slight shadowing, centered on a white background.] since the state vector [image: Mathematical notation displays the Greek letter psi followed by a right angle bracket, representing a quantum state in Dirac or bra-ket notation as used in quantum mechanics.] is normalized to unity.
We stress that the above calculation is restricted to the case [image: Mathematical expression showing n is not equal to m, with both variables in italic font and a not-equal sign between them.]; when [image: Mathematical equation showing n equals m.], there is no field mode correlating the responses of the two particles, so there is no entanglement. On the other hand, if there is degeneracy—that is, [image: Mathematical equation showing script E subscript C equals script E subscript D, indicating equality between two variables or quantities labeled C and D.]—the two-particle system is necessarily in an entangled state if [image: Mathematical variables f subscript m n and g subscript m n written in italic font, typically used to denote indexed functions or elements in equations.] are different from zero—that is, if the response variables [image: Mathematical notation showing the variables f and g separated by a comma, both presented in italic font.] connect the single-particle states [image: Mathematical expression with two italic lowercase variables n comma m.]. The origin of the entanglement is thus traced back to the action of the common relevant field mode [image: Mathematical expression showing two italicized variables n and m enclosed in parentheses.], and the responses of the two particles to this mode are maximally correlated (anticorrelated) according to Equation 40 with [image: Mathematical equation showing open parenthesis negative one close parenthesis raised to the power of zeta equals plus one.] [image: Mathematical expression showing the number negative one enclosed in parentheses.]. More generally, entanglement occurs whenever there is degeneracy, be it in energy or any other variable that defines the state of the bipartite system, as discussed in the next section.
Equations 43–45 were previously obtained in the context of SED by a somewhat laborious procedure using the Hilbert-space formalism. In contrast to such an abstract procedure, the present derivation has the advantage of keeping track at every moment of the physical quantities involved: the field mode variables, the particles’ response variables, and the phase difference of the responses.
It is clear from Equation 44 that the two families of identical particles identified in Section 4 are distinguished by their entangled state vectors. The symmetry or antisymmetry of the state vector is uniquely linked to the phase difference of the responses of the two particles to the shared field mode. When the coupling is in phase (type B particles), the state vector is symmetric with respect to the exchange of particles; when the relative coupling is out of phase (type F particles), the state vector is antisymmetric.
It should be stressed that no direct interaction between the components of the system is involved in the derivation leading to entangled states; entanglement arises as a result of their indirect interaction via the shared field modes and, therefore, does not entail a non-local action.
6 THE PAULI EXCLUSION PRINCIPLE
6.1 Introduction of spin
Among the various proposals that have been made to justify the spin-statistics theorem, some that are relevant to this work involve the inclusion of the internal (spin) coordinates among the parameters affected by the exchange operation (e.g. Hunter et al., 2005 and Jabs, 2010, and additional references cited the latter). In particular, in Jabs (2010), the spin–statistics connection is derived under the postulates that the original and the exchange wave functions are simply added and the azimuthal phase angle, which defines the orientation of the spin part of each single-particle spin component in the plane normal to the spin-quantization axis, is exchanged along with the other parameters.
In dipolar transitions, atomic electrons interact with field modes of circular polarization, as expressed in the selection rule [image: Mathematical expression showing delta l equals plus or minus one.], and is increasingly exploited for practical applications in spin-resolved spectroscopy and magneto-optics (e.g. Okuda et al., 2011; De et al., 2021). Furthermore, the interaction of the particle with circular polarized modes of the ZPF, which are known to have an intrinsic angular momentum equal to [image: Mathematical expression showing the reduced Planck constant, represented by h-bar, divided by two.] (Sobelman, 1979; Mandel and Wolf, 1995), was indeed shown in Cetto et al. (2014) to be responsible for the origin of the electron spin itself. It is reasonable to assume that a similar mechanism is responsible for the neutron spin, since the neutron has a magnetic moment that couples to the radiation field.
Therefore, following Jabs (2010) and Cetto and de la Peña (2015), in order to include the spin in the present analysis, we add an (internal) rotation angle [image: Lowercase Greek letter phi, written in italic font.] to the expression for the dynamic variables. Strictly speaking, the problem becomes a three-dimensional one. However, for simplicity, we can still use our one-dimensional expressions for the dynamic variables if we decompose the radiation field into (statistically independent) modes of circular polarization. So instead of (31) and (32), we write
[image: Mathematical equation showing f_in as a function of t and phi, involving an exponential term, a sum over k, an integral over a function multiplied by exponential factors, plus complex conjugate, labeled as equation forty-six.]
[image: Mathematical equation showing g sub 2m of t equals e to the power of j pi k multiplied by the sum over l of g sub 2m l a sub m l e to the power of j 2 pi k e to the power of negative i omega m l t plus complex conjugate, labeled as equation forty seven.]
where [image: Mathematical expression showing the Greek letter gamma with subscripts n and k, followed by the Greek letter phi.] is the difference of two rotation angles,
[image: Mathematical equation shows gamma sub phi times phi equals parenthesis gamma sub n minus gamma sub k parenthesis times phi comma labeled as equation forty-eight.]
and [image: Mathematical notation showing the Greek letter gamma with subscripts n and k, separated by a comma.] stand for counterclockwise (clockwise) rotation. If [image: Italicized lowercase variables n and m separated by a comma, presented in a mathematical style.] are two stationary states of a system of identical particles, as before, we obtain for the partial covariances in configurations [image: Lowercase italic letter c in a serif font displayed in black against a white background.] and [image: Uppercase letter D in a serif font displayed in black on a white background.] (see Equations 37 and 38)
[image: Mathematical expression showing the conjugate of fg equals f m n g m n plus negative one to the power f times f m n e to the i gamma m n star g m n e to the i gamma m n f, labeled equation forty-nine.]
[image: Mathematical equation labeled fifty shows a summation: conjugate f sub g superscript D equals f sub m n g sub m n plus negative one to the power j times conjugate f sub m n e to the i m phi times g sub m n e to the negative i m phi.]
and, therefore,
[image: Mathematical equation showing that the symmetrized product of two tensors, denoted as T super g, equals one-half times the sum of T super g c and T super g d, which also equals one-half times the sum of f m n g m n and f n m g n m.]
[image: Mathematical expression showing one-half times negative one to the power of n, multiplied by the sum of two terms involving functions f and g with subscripts m and n, each term including products with exponential expressions e to the i m omega star and e to the i n omega star, labeled as equation fifty-one.]
By translating this result into the language of the product Hilbert space and using Equation 48, we obtain after some algebra
[image: Mathematical formula showing capital gamma of f and g equals the expected value of psi with f hat g hat psi minus the expected value of psi with f hat psi, times the expected value of psi with g hat psi, equation fifty-two.]
where [image: Bra-ket notation displaying the quantum state symbol psi inside a right angle bracket, used to represent a quantum state vector in quantum mechanics.] now stands for the complete bipartite state vector, including the internal rotation components,
[image: Mathematical equation showing psi equals one divided by the square root of two times the sum of the ket vector e to the power i gamma sub c times e to the power negative i gamma sub n times C, plus negative one to the vth power times e to the power negative i gamma sub c times e to the power i gamma sub n times D.]
[image: Mathematical equation showing a quantum state: one over square root of two times the sum of an exponential phase factor times ket m one, exponential phase factor times ket m two, plus or minus one times an exponential phase factor times ket m one, negative exponential phase factor times ket m two, labeled equation fifty-three.]
In Equation 53, the first angular factor is always associated with particle 1 and the second with particle 2. This suggests writing each individual state vector in the form [image: Mathematical expression showing e to the power of negative i gamma phi multiplied by the ket vector labeled n.]. In quantum language, this implies the introduction of two orthonormal vectors [image: Mathematical expression showing a quantum state in Dirac notation: ket psi equals ket plus, ket minus.] spanning the two-dimensional Hilbert space, [image: Mathematical expression showing the equivalence between the tensor product of two quantum states, written as ket n tensor ket y, and a single ket labeled n y.]; Equation 53 thus takes the form
[image: Mathematical equation showing Psi equals one over the square root of two times the sum of state m gamma one with m gamma two and negative one to the s times state m gamma two with m gamma one, equation fifty-four.]
Since the parameter [image: Lowercase Greek letter gamma in italic font, typically used in mathematics or science contexts to represent a variable or specific constant.] is associated with the internal rotation, we identify it with the spin of the electron, which means that
[image: Mathematical equation showing gamma sub n, m equals plus or minus one half, labeled as equation fifty-five.]
6.2 The connection between spin and symmetry
We now examine the symmetry properties of the complete entangled state function (53) under particle exchange. When particles 1 and 2 are exchanged, in addition to switching their positions in three-dimensional space, their internal angles change: particle 1 rotates to the azimuthal position of particle 2 and vice versa, with both rotations occurring in the same direction (clockwise or counterclockwise). Consider a clockwise rotation. As shown in Jabs (2010) and Cetto and de la Peña (2015), when [image: Mathematical expression showing the Greek letter phi sub two is greater than phi sub one.] [image: Mathematical symbol phi sub one, represented by the Greek letter phi with a subscripted number one.] transforms into [image: Mathematical expression displaying the Greek letter phi with a subscript two, representing phi sub two.] and [image: Mathematical symbol displaying the Greek letter phi followed by the subscript two, representing phi sub two.] transforms into [image: Mathematical expression showing phi subscript one plus two pi.], 
[image: Mathematical equation showing phi sub two minus phi sub one transforms to phi sub one minus phi sub two plus two pi, labeled as equation fifty-six.]
and [image: Bra-ket notation for a quantum state using the Greek letter psi and a right angle bracket, commonly representing a ket vector in quantum mechanics.] given by Equation 53 transform into
[image: Quantum mechanics equation showing the wavefunction psi for lambda equals one and minus one, expressed as a superposition of two terms with normalization factor one over square root of two, exponential phase factors, and basis states labeled m sub p and m sub p2.]
Since [image: Mathematical notation displaying gamma sub n comma gamma sub m.] are half-integers, the overall effect of the particle exchange is to multiply the original state vector by a factor of
[image: Mathematical expression showing the state psi sub one right arrow two equals negative one to the power j times negative one to the power j plus two times psi, with equation number fifty seven in parentheses.]
If instead [image: Mathematical notation showing phi subscript two is less than phi subscript one.], [image: Lowercase Greek letter phi followed by the subscript two, representing phi sub two in mathematical notation.] transforms into [image: Mathematical symbol phi sub one, represented as a lowercase Greek letter phi followed by the subscript numeral one.] and [image: Greek letter phi in italic font followed by a subscript one, representing the mathematical variable phi sub one.] transforms into [image: Mathematical expression showing phi sub two plus two pi.], so that
[image: Mathematical equation showing phi sub two minus phi sub one transforms to phi sub one minus phi sub two minus two pi, labeled equation fifty-eight.]
and the transformation of the state vector is again given by Equation 57. Of course, the same result is obtained if the rotation is anticlockwise. Since particles 1 and 2 are identical, their exchange should have no effect on the state vector, which implies that
[image: Mathematical equation showing open parenthesis negative one close parenthesis to the power n multiplied by open parenthesis negative one close parenthesis to the power n divided by two equals one, with equation number fifty-nine in parentheses on the right.]
Therefore, taking into account Equation 55, we conclude that [image: Mathematical expression showing open parenthesis negative one close parenthesis to the power of xi equals negative one.]. Thus, symmetry of the total state vector under particle exchange, obtained from Equation 54 with [image: Mathematical expression showing open parenthesis negative one close parenthesis raised to the power of zeta equals negative one.],
[image: Mathematical equation displaying the wave function psi as one over the square root of two times the sum of ket psi sub m one, ket psi sub m two, minus ket psi sub m two, ket psi sub m one, enclosed in brackets, labeled as equation sixty.]
implies antisymmetry of the (energy) state vector (44),
[image: Quantum state Ψ equals one divided by the square root of two, multiplied by the difference between ket m sub one tensor ket m sub two and ket m sub two tensor ket m sub one, as shown in equation sixty-one.]
6.3 The Pauli principle
The above procedure is of course applicable to particles with higher spin; thus, for any half-integer value of [image: Lowercase Greek letter gamma, represented in italic mathematical style.], [image: Mathematical equation showing open parenthesis negative one close parenthesis raised to the power of two gamma equals negative one.] and according to Equation 59, the bipartite (energy) state vector will be antisymmetric with respect to particle exchange, as in Equation 61.
We recall that Equation 61 is valid for [image: Mathematical expression showing the quantum states ket n is not equal to ket m, represented as vertical bars with n and m, separated by the not equal symbol.]. If [image: Mathematical equation showing the bra-ket notation where the ket n is equal to the ket m, both represented with angled brackets and italic lowercase letters.] and the spin is not taken into account, the state vector is simply the product of the individual energy eigenvectors, [image: Mathematical equation displaying ket Psi equals ket n subscript one tensor product ket n subscript two, representing a quantum state expressed as a product of two number states.]; according to Equation 40 the particle variables are not correlated and the bipartite system is obviously not entangled. However, with the introduction of spin, the complete state function is different from zero for [image: Mathematical expression showing the quantum state ket n is equal to the quantum state ket m.], under the condition that [image: Mathematical notation showing that the quantum state ket gamma sub n is not equal to ket gamma sub m.]. If this is the case, Equation 60 is reduced to
[image: Quantum physics equation showing Psi equals the product of kets n one and n two divided by square root of two, multiplied by the difference between ket n one ket n two and ket n two ket n one, labeled equation sixty-two.]
In other words, entanglement can arise from energy degeneracy, if [image: Mathematical expression shown as calligraphic E equals calligraphic E sub n plus calligraphic E sub m.] with [image: Mathematical expression showing script capital E sub n not equal to script capital E sub m.], or from spin degeneracy, if [image: Mathematical equation showing gamma equals gamma sub one plus gamma sub two.] with [image: Mathematical expression showing gamma sub one is not equal to gamma sub two.]. Since for the electron (and other spin-[image: Mathematical fraction showing one divided by two, representing the value one-half. Black text on a white background.] particles) [image: Mathematical expression showing gamma subscript i equals plus or minus one half.], Equation 62 takes the form (except for an irrelevant overall sign)
[image: Equation sixty-three shows psi equals kets n1 and n2 over square root of two, multiplied by a bracket term with two ket one-halves minus two ket negative one-halves.]
In Section 5, it was shown that the correlation between particle variables results from the antiphase response to the single common field mode of frequency [image: Mathematical expression showing the lowercase Greek letter omega with subscripts m, n, and l, rendered in italic font style.] with [image: Mathematical expression showing calligraphic E sub n is not equal to calligraphic E sub m, with both E symbols styled in italics.]. On the other hand, when [image: Mathematical expression showing a quantum state ket n equals quantum state ket m.], we note from Equation 25 that the two particles respond in antiphase to all (common) field modes; in this case, correlation is established as a result of the response of both particles to a common field mode of circular polarization. In other words, the entanglement results not from the response to a single mode connecting two states separated by their energies, [image: Mathematical equation showing the energy difference between states n and m as delta script E sub nm equals the absolute value of script E sub n minus script E sub m.] but from a mode connecting two states separated by their spins, [image: Mathematical equation showing delta gamma one two equals the absolute value of gamma one minus gamma two.]. Just as in the first case [image: Mathematical equation showing delta E equals h-bar times omega sub m n.] is the energy exchanged with the field in a transition, in the second case [image: Mathematical equation showing h-bar times delta gamma sub one two equals h-bar.] is the angular momentum exchanged with the field in a transition.
Equation 63 leaves no room for a third electron in the same energy state [image: Mathematical notation showing a Dirac ket with the variable n, often representing a quantum state labeled by n in quantum mechanics.] because its spin parameter would be either equal to [image: Mathematical symbol showing a lowercase italicized gamma with a subscript one.] or [image: Greek letter gamma in italic font with a subscript two, representing gamma sub two in mathematical notation.]. The conclusion holds for any pair of identical half-integer spins because the condition [image: Mathematical expression showing delta gamma sub i j equals the absolute value of gamma sub i minus gamma sub j, which equals one.] cannot be satisfied simultaneously for [image: Mathematical notation showing indices i and j each equal one, two, or three.]: if two half-integer values of [image: Lowercase Greek letter gamma, represented in a serif italic font style against a white background. Commonly used in mathematics, physics, and engineering notation.] satisfy [image: Mathematical expression showing delta gamma sub i j equals one.], the third value of [image: Lowercase Greek letter gamma displayed in a serif font, commonly used in mathematics, physics, and engineering contexts.] differs from the first two by an even number. To illustrate, consider [image: Mathematical expression showing the Greek letter uppercase Gamma with subscript F equals three divided by two as a fraction.]. Possible pairs [image: Mathematical expression showing the ordered pair gamma one, gamma two in parentheses.] are [image: Mathematical expression showing a two by two matrix with entries three halves, one half in the first row and two, two in the second row.], [image: Mathematical expression showing the quantity open parenthesis three halves divided by two, close parenthesis, raised to the power of three.], and [image: Coordinate pair with components negative three halves and negative one half, both written as fractions, enclosed in parentheses.]; there is no [image: Mathematical notation displaying the variable y with a subscript 3.] that simultaneously satisfies [image: Mathematical expression showing delta gamma sub thirty one equals the absolute value of gamma sub three minus gamma sub one, which equals one.] and [image: Mathematical expression showing delta gamma sub thirty-two equals the absolute value of gamma sub three minus gamma sub two equals one.].
This is a clear example of Pauli’s exclusion principle. The present discussion reveals the physical basis of the phenomenon: two particles in the same energy state respond in antiphase to a single (circularly polarized) mode of the field and a third particle cannot respond in antiphase to the first two.
7 DISCUSSION
In this work, the symmetrization postulate and the spin-statistics theorem were shown to follow from the in-phase or antiphase response of identical particles to specific modes of the common background radiation field. The inclusion of spin in the analysis allowed the identification of the type B and F families introduced in Section 4 as bosons and fermions and led to the Pauli exclusion principle in the case of fermions.
Key quantum phenomena that were introduced as postulates in the foundational phase of quantum mechanics and that have been repeatedly confirmed both formally and experimentally thus find a physical justification. The picture provided by the present approach is very suggestive. In particular, it shows that the collective behavior of identical particles, which leads to the respective quantum statistics, is a consequence of the mediation of specific field modes that “connect” the particles and correlate their dynamics, producing entanglement. A mysterious, apparently non-local connection between particles, as described by quantum formalism, is thus shown to be an entirely causal and local effect of the bridging role of the common background field. Given the increasing attention paid to entanglement phenomena and their applications, particularly in the fields of quantum information, computing, and communication, the insight gained from this perspective should prove highly fruitful. In particular, since entanglement and other quantum phenomena discussed here are shown to depend critically on the correlations established between identical particles by their coherent binding to certain common field modes, the cancellation or significant modification of these modes by Casimir cavity techniques (e.g. Kleppner, 1986; Walther et al., 2006) could be an interesting way to analyze the effect on such correlations.
The results reported here suggest further investigation. In particular, extending the one-dimensional analysis carried out here to three dimensions would allow an adequate treatment of more general problems involving additional dynamical variables, including orbital angular momentum.
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APPENDIX A
Equations 24, 25 must be satisfied for any pair of identical particles—that is, [image: Mathematical expression showing the Greek letter zeta with superscript i and j.] is either even or odd for identical particles [image: Mathematical expression showing variables i and j, with j equal to one, two, and continuing with an ellipsis.]. This means that [image: Mathematical notation showing the Greek letter zeta with a superscript twelve, representing zeta raised to the twelfth power.] expresses a distinctive property of the particles themselves, which manifests when the particles form part of the same system and couple either in phase or antiphase to the shared modes. This property is identified in Equation 26 and the following with the parameters [image: Mathematical notation showing zeta sub B superscript i, zeta sub F superscript i, where i equals one or two.], which must satisfy either Equation 27a or 27b, respectively.
If we take the smallest possible value of [image: Greek lowercase zeta symbol with a superscript one in bold, representing zeta to the power of one, typically used in mathematical or scientific notation.] in the [image: Uppercase serif letter F rendered in black with a slightly blurred effect on a white background.] case, which is [image: Mathematical expression showing the absolute value of zeta sub m superscript one equals one half.], any integer value of another type-[image: Uppercase serif letter F in bold, with slightly blurred edges, displayed against a white background.] particle would violate both Equations 27a, b; hence, type-[image: Uppercase letter F in a serif font, displayed with a bold and slightly italicized style on a white background.] particles can only have half-integer values of the parameter [image: Greek lowercase letter zeta with a superscript letter i, commonly used in mathematical and scientific notation.]. Similarly, taking the smallest possible value of [image: Mathematical symbol zeta with a superscript one, typically denoting a variable or function with an exponent in mathematical or scientific notation.] in the [image: Italic uppercase letter B in a serif font on a white background.] case, which is [image: Mathematical expression displaying the absolute value of zeta sub em superscript one equals zero.], any half-integer value for another type-[image: Uppercase italic letter B in a serif font, commonly used in mathematical or scientific notation.] particle would violate both Equations 27a, b, so type-[image: Italic uppercase letter B in a serif font on a white background.] particles can only have integer values of the parameter [image: Greek lowercase letter zeta with a superscript i, rendered in italic mathematical font.].
This confirms the correctness of Equations 28a, b.
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Dynamics of the ideal quantum measurement of a spin-1 with a Curie–Weiss magnet
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An analogy is offered by the dark matter problem in cosmology. Abandoning particle dark matter, we view dark “matter” as a form of energy and assume new properties of vacuum energy. This provides a description of black holes with a core rather than a singularity (Nieuwenhuizen, 2023), aspects of dark matter throughout the history and future of the Universe (Nieuwenhuizen, 2024a), and the giant dark matter clouds around isolated galaxies (Nieuwenhuizen, 2024b), explaining the “indefinite flattening” of their rotation curves (Mistele et al., 2024). Remarkably, this approach is a generalization of the classical Lorentz–Poincaré electron—a charged, non-spinning spherical shell filled with vacuum energy (Nieuwenhuizen, 2025).
To simplify the notation, we replace the standard notation for spins with s→l and sz→s. For an angular momentum L2=l(l+1), the model also applies to the measurement of L̂z with eigenvalues m→s. We employ units ℏ=k=1.
For the connection with the parameters in Opus, see ref 1.
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Quantum measurement is a dynamical process involving an apparatus coupled to a test system. The ideal measurement of the z-component of a spin-12 (sz=±12) has been modeled by the Curie–Weiss model for quantum measurement. Recently, the model was generalized to higher spins, and its thermodynamics were solved. Here, the dynamics are considered. To this end, the dynamics for the spin-12 case are cast in general notation. The dynamics of the measurement of the z-component of a spin-1 (sz=0,±1) are solved in detail and evaluated numerically. The energy costs of the measurement, which are macroscopic, are evaluated. The generalization to higher spin is straightforward.
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1 INTRODUCTION
This year, we celebrate the centennial of the formulation of quantum theory; see Capellmann (2017) for the prehistory. After the “Zur Quantummechanik” by Born and Jordan (1925), the Dreimänner Arbeit by Born et al. (1926) on the matrix mechanics was soon followed by Schrödinger's (1926) formulation of wave mechanics, inspired by the insights of De Broglie (1924). The predictive power of the theory was expressed by Born's (1926) rule. For a compilation of historical contributions, see Wheeler and Zurek (2014).
The interpretation of quantum mechanics has been discussed throughout the century since then. The Copenhagen interpretation— with the Born rule and the collapse postulate—emerged as the most reasonable. Many attempts to deepen understanding begin with these postulates. However, they are merely shortcuts for what happens in a laboratory. With our collaborators Armen Allahverdyan and Roger Balian, we have taken the viewpoint of starting from the uninterpreted quantum formalism and applied it to the dynamics of an idealized measurement. The elements of this approach that have already been solved do not need to be interpreted; interpretation is needed to put the results in a proper, global context. As discussed below, this effort has led to a specified version of the statistical interpretation of quantum mechanics, popularized by Ballentine (1970).
The present study deals with the dynamics of an ideal quantum measurement. It is based on the Curie–Weiss model for measuring the z-component of a spin 12, introduced by Allahverdyan et al. (2003a). After reviewing various models for quantum measurement, it was considered in great detail by Allahverdyan et al. (2013). The apparatus consists of a mean-field type magnet having N≫1 spins 12 coupled to a harmonic oscillator bath. The magnet starts in a metastable, long-lived, paramagnetic state, which is separated by free energy barriers from the stable states with upward or downward magnetization. It is in a “ready” state for use in a measurement.
When employed as an apparatus, the magnetization acts as a pointer for the outcome. The coupling to the tested spin causes a quick transition to one of the stable states, thereby registering the measurement. For this to succeed, the coupling must be large enough to overcome the free energy barrier. While the final state of the magnet is described by thermodynamics, much detail is contained in the dynamical evolution toward this state.
In an ideal measurement, the Born rule appears due to the non-disturbance of the measured operator. It provides probabilities for the pointer, that is, for the final magnetization to be upward or downward. The state of the microscopic spin is correlated with it and inferred from the pointer indication.
Understanding the dynamics also provides a natural route toward the interpretation of quantum mechanics. Indeed, when assuming the quantum formalism, the task is to work out its predictions, and only then to interpret the results. This leads to viewing the wave function, or, more generally, the density matrix, as a state of best knowledge and the “collapse of the wave function” or “disappearance of cat states” as an update of knowledge after the selection of the runs with identical outcomes, compatible with the quantum formalism. Notably, quantum theory is not a theory of Nature based on an ontology; rather, it is an abstract construct to explain its probabilistic features.
The “measurement problem,” that is, describing the individual experiments that occur in a laboratory, is, in our view, still the most outstanding challenge of modern science. Many attempts have been made to solve it by making adaptations or small alterations to quantum mechanics or by interpreting it differently. We hold the opinion that this entire enterprise is in vain; one should start completely from scratch to “derive quantum mechanics,” that is to say, establish the origin of quantum behavior in Nature1.
Various formalisms of quantum mechanics were reviewed by David (2015). The insight that quantum mechanics is only meaningful in a laboratory context, stressed in particular by Bohr, is central to the approaches of Auffeves and Grangier (2016) and Auffeves and Grangier (2020), it leads to new insights regarding the Heisenberg cut between quantum and classical (Van Den Bossche and Grangier, 2023). One century of interpretation of the Born rule, including the modern one, was overviewed by Neumaier (2025).
1.1 The Curie–Weiss model for quantum measurement
A macroscopic material consists of atoms, which are quantum particles. The starting point for their dynamics lies in quantum statistical mechanics. For a measurement, the apparatus must be macroscopic and have a macroscopic pointer so that the outcome of the measurement can be read off or processed automatically. Hereto, an operator formalism is required, with dynamics set by the Liouville–von Neumann equation, the generalization of the Schrödinger equation to mixed states.
Progress on solvable models for quantum measurement has been made in recent decades when we, together with A. Allahverdyan and R. Balian introduced and solved the so-called Curie–Weiss model for quantum measurement (Allahverdyan A. E. et al., 2003) in our “ABN” collaboration. Here, the classical Curie–Weiss model of a magnet is taken in its quantum version and applied to the measurement of a quantum spin 12. Various further aspects were presented in Allahverdyan A. E. et al. (2003), Allahverdyan et al. (2005a), Allahverdyan et al. (2005b), Allahverdyan et al. (2007), and Allahverdyan et al. (2006). They were reviewed and greatly expanded in Allahverdyan et al. (2013). Lecture notes were presented by Nieuwenhuizen et al. (2014). A straightforward interpretation for a class of these measurement models was provided by Allahverdyan et al. (2017); it is a specified version of the statistical interpretation made popular by Ballentine (1970).
Simultaneous measurement of two noncommuting quantum variables was worked out (Perarnau-Llobet and Nieuwenhuizen, 2017a), as well as an application to Einstein-Podolsky-Rosen type of measurements (Perarnau-Llobet and Nieuwenhuizen, 2017b). A numerical test on a simplified version of the Curie–Weiss model reproduced nearly all of its properties (Donker et al., 2018).
Our ensuing insights, which are suitable for teachers of quantum theory (at the high school, bachelor’s, or master’s levels), are presented in Allahverdyan et al. (2024) and summarized in a feature article (Allahverdyan et al., 2025).
1.2 Higher-spin Curie–Weiss models
The mentioned Curie–Weiss model was recently generalized by us to measure a spin l>12 (Nieuwenhuizen, 2022). This study will be termed “Models” henceforth. For spin l, the state of the magnet is described by 2l order parameters. To assure an unbiased measurement, the Hamiltonian of the apparatus and the interaction Hamiltonian with the tested system have Z2l+1 symmetry. The statics were solved for spin-1, 32, 2, and 52.
Here, the dynamics are worked out for spin-1, laying the groundwork for higher-spin dynamics. In the spin 12 Curie–Weiss model, it was found that Schrödinger cat terms disappear through two mechanisms: dephasing of the magnet, possibly followed by decoherence due to the thermal bath. Similar behavior is now investigated for spin-1.
The setup of the article is as follows. In Section 2, we recall the formulation of the Curie–Weiss model for general spin-l and discuss aspects of its physical implementation for spin 12 and spin-1. In Section 3, we revisit the spin-12 case and cast its dynamics in a general form. In Section 4, we analyze the dynamics of the spin-1 situation. We close with a summary in Section 5.
2 HIGHER-SPIN CURIE–WEISS HAMILTONIAN MODELS
We start by recalling some properties of higher-spin models that we introduced in “Models” (Nieuwenhuizen, 2022). The statics were considered there; here, we define and study the dynamics, recalling parts of the spin 12 case. We often refer to the review by Allahverdyan et al. (2013) to be termed “Opus.”
In the following, we denote quantum operators by a hat, specifically ŝ and ŝz for the measured spin and σ̂(i) and σ̂z(i) for the spins of the apparatus. For simplicity of notation, we follow Models and denote the eigenvalues without a hat, notably those of ŝz by s and the ones of σ̂z(i) by σi. Sums over i lead to the operators m̂k and their scalar values mk for k=1,2,…,2l. Switching between these operators and their eigenvalues is straightforward.
The strategy is to measure the z-component of a quantum spin-l with (l=12,1,32,⋯ ). The eigenvalues s of the operator ŝz lie in the spectrum2
s∈specl=−l,−l+1,…,l−1,l.(2.1)
The measurement will be performed by employing an apparatus with N≫1 vector spins-l having operators σ̂(i), i=1,…,N. They have components σ̂a(i) (a=x,y,z), with eigenvalues σa(i)∈specl. These operators are mutually coupled in the Hamiltonian of M. For each i=1,⋯N, and for each σ̂a(i), a=x,y,z, they are also coupled to a thermal harmonic oscillator bath; for the case l=12, this was worked out by Allahverdyan et al. (2003a), Allahverdyan et al. (2003b), and Allahverdyan et al. (2013). The generalization of such a bath for arbitrary spin-l is straightforward and will be applied to the spin-1 model.
2.1 Spin–spin Hamiltonian of the magnet
A quantum measurement is often assumed to be “instantaneous.” In our idealized modeling, it will take a finite time, but the tested spin will not evolve in the meantime. In other words, the spin itself is “sitting still” and waiting to be measured. Neither should it evolve during the “fast” measurement. This is realized when its Hamiltonian ĤS commutes with ŝz; we consider the simplest case: ĤS=0.
In order to have an unbiased apparatus, the Hamiltonian of the magnet should have degenerate minima and maximal symmetry. To construct such a functional, we consider, in the eigenvalue presentation, the form
C2=ν2∑i,j=1Ncos2πσi−σj2l+1,ν≡1N,(2.2)
which is maximal in ferromagnetic states σi=σ1 (i=2,…,N). In general, these interactions do not seem realistic, but here, the cosine rule allows expressing this as spin–spin interactions,
C2=col2+sil2,(2.3)
which is bilinear in the single-spin sums
col=1N∑i=1Ncos2πσi2l+1, sil=1N∑i=1Nsin2πσi2l+1.(2.4)
The discrete values of the spin projections allow expressing these terms in the 2l spin moments,
mk=1N∑i=1Nσik,k=1,…,2l,(2.5)
while m0≡1. For l=12, the values s=±12 imply
cos⁡πs=0,sin⁡πs=2s.(2.6)
Applying this for s→σi and summing over i yields
co12=0,si12=2m1,m1=1N∑i=1Nσi.(2.7)
In the case l=1, one has s=0,±1. The rule
cos2πs3=1−32s2,sin2πs3=32s,(2.8)
leads to s→σi and summing over i leads to
co1=1−32m2,si1=32m1,(2.9)
Here, m2 ranges from 0 to 1 with steps of ν≡1/N, while m1 ranges from −m2 to m2 with steps of 2ν. At finite N, one can label the discrete m1,2 as
m1=2n1−n2ν,m2=n2ν,0≤n2≤N,0≤n1≤n2.(2.10)
The results for s=32, 2, and 52 are given in Models.
Let out of the N spins σi, a number Nσ=∑iδσi,σ take the value σ∈specl and let xσ=Nσ/N be their fraction. The sum rule ∑σNσ=N implies m0≡∑σxσ=1. The moments read
mk=∑σ=−llxσσk,k=1,…,2l,(2.11)
Inversion of these relations determines the xσ as linear combinations of the mk. For l=12, one has
m1=12x12−12x−12,x±12=12±m1.(2.12)
For spin-1 (l=1), one has
m1=−x−1+x1,m2=x−1+x1.(2.13)
With x−1+x0+x1=1, their inversion reads
x0=1−m2,x±1=m2±m12.(2.14)
In a quantum approach, one goes to operators and sets s→ŝz, σi→σ̂z(i), and mk→m̂k. For the Hamiltonian ĤM=NĤ, we follow Allahverdyan et al. (2003a) and Allahverdyan et al. (2003b) and adopt the spin–spin and four–spin interactions:
ĤM=NĤ,Ĥ=−12J2Ĉ2−14J4Ĉ22.(2.15)
Multispin interaction terms like −16J6Ĉ23−18J8Ĉ24 can be added without changing the overall picture.
2.2 The interaction Hamiltonian
The coupling between the tested spin S and the magnet M is chosen similar to Equation 2.2,
ĤSA=NÎ, Î=gN∑i=1Ncos2πŝzσ̂z(i)2l+1,(2.16)
where g is the coupling constant. It takes the values
Isσi=−gN∑i=1Ncos2πs2l+1cos2πσi2l+1+sin2πs2l+1sin2πσi2l+1,(2.17)
This can be expressed as a linear combination of the moments m1, ⋯ , m2l. For l=12, one has
Ism1=−4gsm1,(2.18)
and for l=1, denoting m=(m1,m2),
Ism=−g1−32s21−32m2+34sm1.(2.19)
The total spin Hamiltonian,
Ĥ=ĤM+ĤSA=ĤM−NÎ,(2.20)
has Z2l+1 symmetry: on the diagonal basis, a shift s→s+s̄ with s̄=1,2,…,2l+1 can be accompanied by a shift σi→σi+s̄ for all i. This is evident in the cosine expressions and implies a somewhat hidden invariance in the formulation in terms of the moments mk, as discussed in Models.
2.3 Coupling to a harmonic oscillator bath
For a general spin l, the magnet–bath coupling is taken as the spin–boson coupling of Opus Equation 3.10,
ĤMB≡γ∑i=1N∑a=x,y,zσ̂a(i)B̂a(i),(2.21)
with γ≪1, where the bath operators read
B̂a(i)=∑kckb̂k,a(i)+b̂k,a†n,(2.22)
for each i,a, there is a large set of oscillators labeled by k, having a common coupling parameter ck. These bosons have the Hamiltonian
ĤB=∑i=1N∑a=x,y,z∑kℏωkb̂k,a†(i)b̂k,a(i),(2.23)
with the ωk also identical for all n,a. The autocorrelation function of B defines a bath kernel K, which is identical for all i,a,
trBR̂B0B̂a(i)tB̂bjt′=δi,jδa,b Kt−t′,B̂a(i)t≡eiĤBtB̂a(i)e−iĤBt.(2.24)
Writing ck=c(ωk), this leads to
Kt=∑kcωkeiωkteβωk−1+e−iωkt1−e−βωk≡12π∫−∞+∞dω eiωtK̃ω.(2.25)
The kernel K̃(ω) can be read off and expressed in the spectral density ρc(ω)=∑kc(ωk) δ(ω−ωk),
K̃ω=2π|ω|ρcωωeβω−1.(2.26)
We adopt an Ohmic spectrum with a Debye cutoff,
K̃ω=e−ω/Γ4ωeω/T−1,(2.27)
where T=1/β is the temperature of the phonon bath, and Γ the typical cutoff frequency. In Opus, we also consider a Lorentzian (power law) cutoff, for which the statics allows analytic results.
With the couplings in Equations 2.21, 2.22, and 2.23 independent of a, ĤMB is statistically invariant under Z2l+1. Combined with the invariance of ĤM and ĤSA, this ensures an unbiased measurement.
2.4 Evolution of the density matrix
The evolution of the density matrix of the total system is given by the Liouville–von Neumann equation. On the eigenbasis of ŝz, its elements R̂ss̄ evolve independently as given in Equation 4.8 of Opus; this involves the apparatus spins and the bath. The procedure of Opus for spin l=12 appears to hold for general spin-l operators.
Let us consider the time evolution of R̂ss̄ as given in Equation 4.8 of Opus (we now denote i→s, j→s̄), where the action of the harmonic oscillator bath has been expressed in the bath kernel K(t) and which involves commutators of R̂ss̄ with the spin operators σ̂a(i), a=x,y,z; i=1,…,N.
Formally, the initial state (Equation 5.4) is a constant function of the σ̂z(i). In addition, Ṙss̄(ti) is a function of them, so it is consistent to assume that, at all t, R̂ss̄ only depends on the σ̂z(i). As a result, the a=z terms of Equation 4.8 in Opus have vanishing commutators for any spin l. Left with the x,y commutators, we define (using the index n rather than i to label the σ̂x,y)
σ̂±(n)=σ̂x(n)±iσ̂y(n).(2.28)
Because ∑ax,yσ̂a(n)Ôσ̂a(n)=12∑α=±1σ̂α(n)Ôσ̂−α(n) for any operator Ô, Equation 4.8 in Opus takes the form
dR̂ss̄tdt=−iĤsR̂ss̄t+iR̂ss̄tĤs̄+ γ2∑α,β=±1∑n=1N∫0tdu KβuĈss̄,βα,nu,(2.29)
where
Ĉss̄,+α,nu=e−iuĤsσ̂−α(n)eiuĤsR̂ss̄t, σ̂α(n),Ĉss̄,−α,nu=σ̂−α(n), R̂ss̄te−iuĤs̄σ̂α(n)eiuĤs̄,(2.30)
are commutators involving the Hamiltonian of M coupled to S in state s, without the bath, viz.
Ĥs=ĤM+ĤSAs=NHm̂1+NIsm̂1.(2.31)
The action of the bath is expressed in the kernel K(±u), with the smallness of γ allowing truncation at its first order. Equations 2.29, 2.30 are valid for general spin l=12,1,32,⋯ .
Most importantly, the R̂ss̃ are decoupled in the separate s,s̄ sectors, a property of ideal measurement but absent in general. Examples of these non-idealities are a spin S having nontrivial dynamics during the measurement and a biased measurement, in which the Hamiltonian of the magnet and/or the bath depends on the state of S.
2.5 Physical implementation of the model
The spin-12 Curie–Weiss model for quantum measurement (Allahverdyan A. et al., 2003) was initially conceived as a tool to understand the dominant physical aspects of idealized quantum measurements. It has served this purpose well. Let us look here at possible realizations of the model.
Curie–Weiss models are mean-field types of spin models. Their distance-independent couplings apply to a small magnetic grain. The grain need not be very large. From studies of spin glasses and cluster glasses, it is known that “fat spins,” clusters of hundreds or thousands of coherent spins, are easily detectable (Mydosh, 1993).
The Ising nature of the couplings refers to fairly anisotropic spin–spin interactions. For spin 12, Equation 2.15 expresses the pair and quartet couplings between the z-components of the spins. Multispin interactions are a natural result of the overlap of electronic orbits; here, they are approximated as not decaying with the distance between the spins in the grain. How reasonable this approximation is must be considered in each separate application. The main feature of our modeling, a first-order phase transition in the magnet, suggests that it represents a large class of short-range systems. This is underlined by the model’s support of the Copenhagen postulates of collapse and Born probabilities.
These features also hold for the spin-1 Curie–Weiss model. However, on top of this, Equation 2.8 produces the combination Σ̂i≡σ̂z(i)2−2/3, which takes the values 1/3 for the “out-of-plane” cases σi=±1 and −2/3 for the “in-plane” case σi=0. Separate-spin terms of the form ∑iDσ̂z(i)2 are well known, stemming from crystal fields. For the apparatus, the co12 term of Equation 2.3 relates to the interaction ∑ijΣ̂iΣ̂j between the Σ̂i, so it involves both the aforementioned D-term and also the terms σ̂z(i)2σ̂z(j)2. How to implement these crystal-field-type spin–spin interactions in practice is an open question.
Concerning numerical implementations, Donker et al. (2018)’s approximation of the Curie–Weiss model can be generalized to higher spin.
3 THE SPIN 12 CASE REVISITED
3.1 Elements of the statics
We set the stage by considering the spin-12 situation, the original Curie–Weiss model for quantum measurement in slightly adapted notation3. The spin operators are σ̂x,y,z, with σ̂z=diag(12,−12). It holds that [σ̂a,σ̂b]=iεabcσ̂c and σ̂x2+σ̂y2+σ̂z2=34σ̂0 with σ̂0=diag(1,1).
The magnet has N these spins σ̂x,y,z(i), i=1,2,…,N. They have magnetization operator
M̂1=Nm̂1,m̂1=1N∑i=1Nσ̂z(i),(3.1)
taking eigenvalues −12≤m1≤12. In the paramagnetic state, m1=0. The Hamiltonian is taken as pair and quartet interactions,
ĤM=NĤ,Ĥ=−2J2m̂12−4J4m̂14.(3.2)
With x̂σ=N̂σ/N, it holds that
m̂1=12x̂1/2−12x̂−1/2,x̂±1/2=12Î±m̂1.(3.3)
The spins have eigenvalues σi=±12, so that m̂1 has eigenvalues m1=ν∑iσ1 ranging from −12 to 12 with steps of ν.
3.2 The interaction Hamiltonian
To use the magnet coupled to its bath as an apparatus for a quantum measurement, a system–apparatus (SA) coupling is needed. According to Equation 2.18, it is chosen as a spin–spin coupling,
ĤSA=−4g∑i=1Nŝσ̂z(i)=−4gNŝm̂1,(3.4)
and takes the values HSAs(m1)=−4gsNm1. The full Hamiltonian of S + A in the sector s thus reads
Ĥs=−2J2Nm̂12−4J4Nm̂14−4gsNm̂1.(3.5)
The eigenvalues of ŝz are s=±12 and those of σ̂z(i) are σi=±12, so that m̂1 has the eigenvalues ν∑i=1Nσi. The degeneracy of a state with magnetization m1 is
GN=N!N−12! N12!=N!Nx−12!Nx12!,(3.6)
and entropy SN=logGN. At large N, we get the standard result for the entropy SN=NS with
S=1−2m12log1−2m12−1+2m12log1+2m12.(3.7)
Combining Equation 3.5 and Equation 3.6, the free energy in the s-sector reads
Fsm1=−2J2Nm12−4J4Nm14−4gsNm1−T⁡logGNm1,(3.8)
which yields, for large N,
FsN=−2J2m12−4J4m14−4gsm1−TSm1.(3.9)
3.3 Dynamics of the spin 12 model
At the initial time ti of the measurement, the state of the tested system, S, here ŝ, a spin-12 operator, is described by its 2×2 density matrix r̂(ti) with elements rss̄(ti) for s,s̄=±12. The magnet M has N≫1 quantum spins-12 σ̂(i) (i=1,…,N). In each s,s̄ sector, S + M lie in the state R̂ss̄(t)=R̂s̄s†(t), which is an operator that can be represented by a 2N×2N matrix. At ti, M is assumed to lie in the paramagnetic state wherein the spins are fully disordered and uncorrelated. Multiplying by the respective element of r̂(ti) leads to the elements of the initial density matrix of S + M
R̂ss̄ti=rss̄tiσ̂0(1)2⊗σ̂0(2)2⊗⋯⊗σ̂0(N)2.(4.1)
3.4 Truncation for spin 12
The dynamics of the off-diagonal elements (cat terms) were worked out in Opus. In the relevant short-time domain, the spin–spin couplings are ineffective; therefore, it suffices to study independent spins coupled by the interaction Hamiltonian and the bath. These elements vanish dynamically, truncating the density matrix R̂ to a form diagonal on the eigenbasis of ŝz. There is no reason to repeat that here; for spin-1, this will be worked out in Section 4.1.
3.5 Registration for spin 12
Registration of the measurement is described by the evolution of the diagonal elements of the density matrix of the full system. For the situation of higher spin, it is instructive to reconsider and slightly reformulate the spin 12 situation.
For s̄=s, the Hamiltonian terms drop out of Equation 2.29; hence, the dynamics are a relaxation set by
dR̂sstdt=γ2∑α,β=±1∑n=1N∫0tdu KβuĈss,βα,nu.(4.2)
For l=12, the spin operators σ̂x,y,z anticommute; hence, for any function f of the σ̂z(i), it holds that
σ̂α(n)fσ̂z(i)=f̂−1δi,nσ̂z(i)σ̂α(n)≡f(n)σ̂z(i)σ̂α(n).(4.3)
This brings the σ̂α(n) and σ̂−α(n) next to each other, which allows to eliminate them using the sum ∑α=±1σ̂α(n)σ̂−α(n)=σ̂0(n). With only functions of the σ̂z(i) (i=1,…,N) remaining, we can go to their diagonal bases to work with scalar functions of their eigenvalues σi=±12 (see also Opus, Section 4.4). This expresses Equation 2.30 as
Css̄,+(n)u≡∑α=±1Css̄,+α nu=e−iuHseiuHs(n)Rss̄(n)t−e−iuHs(n)eiuHsRss̄t,Css̄,−(n)u≡∑α=±1Css̄,−α nu=Rss̄(n)te−iuHs̄(n)eiuHs̄−Rss̄te−iuHs̄eiuHs̄(n),(4.4)
where for any function f({σi}), f(n) has the sign of σn reversed,
f(n)σi=f−1δi,nσi.(4.5)
We employed the obvious rules (fg)(n)=f(n)g(n) and [f(g)](n)=f(g(n)). The terms in Equation 4.4, being scalars, yield the relation Css̄,−(n)(u)=Css̄,+(n)(−u), which allows combining the integrals of Equations 2.29 and 2.30 as a single one from u=−t to t. Because γ≪1, the typical scale of t, the registration time 1/γT is much larger than the bath equilibration time 1/T. Hence, we may now take the integral over the entire real axis to arrive at the Fourier-transformed kernel K̄(ω) at specific frequencies.
The next step is to reduce the 2N×2N matrix problem to a problem of N+1 variables by considering Rss({σi})=Rss(m1) to be functions of the order parameter m1=ν∑σi. This is formally true at ti and valid for Ṙss̄(ti); hence, it remains valid over time. Denoting Ps(m1) as the probability that Rss({σi})/rss(ti) involves m1=ν∑iσi, it picks up the degeneracy number GN in Equation 3.6 of realizations {σi} with the same m1,
Psm1=GNm1Rssm1rssti.(4.6)
To obtain the evolution of Ṗs, we multiply Equation 4.2 by GN(m1)/rss(ti). At given m1, one has m1(n)=m1−2νσn, so we can split the terms with σn=12 (and −12) and perform the sum over n. The fraction of terms that flips an up spin σn=12 is x12(m1), which multiplies P(m1−ν); flipping a down spin σn=−12 happens with probability x−12(m1), which multiplies P(m1+ν). Due to Equation 4.6, these Ps involve the ratios
GNm1GNm1−ν=x−12m1−νx12m1,GNm1GNm1+ν=x12m1+νx−12m1,(4.7)
which has the effect of eliminating the x±12(m1). Introducing the operators E± and Δ±=E±−1 by
E±fm1=fm1±ν,Δ±fm1=fm1±ν−fm1,(4.8)
the evolution of Ps gets condensed as
Ṗsm1=γN2∑α=±1Δαx12αm1K̃Ωsαm1Psm1.(4.9)
where
Ωs±m1=Δ∓Hs=Hsm1∓ν−Hsm1.(4.10)
This is now a problem for N+1 functions P(m1;t) subject to the normalization ∑m1P(m1;t)=1.
In Figure 1, the distribution of the magnetization m1 is depicted at various times. In Figure 2, this evolution is represented in a 3d plot.
[image: Line graph with five overlapping, color-coded Gaussian-like peaks, each shifted horizontally along the x-axis labeled m1, and a tall final peak at the right edge. The y-axis is labeled Ps and ranges from 0 to 80.]FIGURE 1 | Evolution of the magnetization distribution Ps(m1;t) for s=+12 at times 0,1,…,8 in units of 1/γT. The paramagnetic state at t=0 is peaked around m1=0; the coupling between S and A moves the peak toward m1=+12. In doing so, it first broadens and later narrows significantly.[image: Three-dimensional surface plot with orange-yellow waves showing the relationship among variables Ps (vertical axis), t times gamma T (horizontal axis), and m sub 1 (depth axis, zero to zero point four), over a gray grid background with dashed blue reference lines.]FIGURE 2 | The case of Figure 1 plotted in 3d at intervals Δt=0.2/γT.3.6 H-theorem and relaxation to equilibrium
The dynamical entropy of the distribution Ps(m1;t)=GN(m1)Rss({σi};t)/rss(ti) is defined as
Sst=−TrR̂sstrsstilogR̂sstrssti=−∑m1Psm1;tlogPsm1;tGNm1.(4.11)
As in Opus, we introduce a dynamical free energy:
Fdynst=Ust−TSst=∑m1Psm1;tHsm1+T⁡logPsm1;tGNm1,(4.12)
which adds the Ps⁡logPs term to the average of the free energy functional FN(m1)=Hs(m1)−TSN(m1). With β=1/T, Equation 5.36 yields.
Ḟdyns=T∑m1Ṗsm1logPsm1eβHsm1GNm1
=γNT2∑α=±1∑m1Δαx12αK̃ΩsαPslogPseβHsGN.
For general functions f1,2(m1) and α=±1, partial summation yields
∑m1Δαf1f2=∑m1f1Δ−αf2=∑m1Eαf1Δ−αf2=−∑m1Eαf1Δαf2.(4.13)
provided that the boundary terms f1,2(m±ν) at m±ν=±(1+ν) vanish. As discussed, this holds for Ps but also for the logarithm in Equation 4.13 because we may insert a factor (1−δm1,mν−δm1,−mν) that makes this explicit. For α=+1, we now use the last expression, and for α=−1, we use the second one, which yields, also using Equation 4.10 and the property K̃(−ω)=K̃(ω)eβω satisfied in (Equations 2.26, 2.27), the result
Ḟdyns=−γNT∑m1K̃Δ+Hs×eΔ+βHsE+x12E+Psx−12PsΔ+⁡logPseβHsGN.(4.14)
The various x–factors are such that a term GN(m1)x−12 can be factored out to yield
Ḟdyns=−γNT∑m1∑β=±1GNx−12K̃Δ+Hs×eΔ+βHsE+PsGNPsGNΔ+⁡logPseβHsGN.(4.15)
With Δ+Hs=E+Hs−Hs, GN=exp(SN) and Fs(m1)=Hs(m1)−TSN(m1), this can finally be expressed as
Ḟdynst=−γNT∑m1x−12K̃Δ+Hse−βFs×Δ+Pse−βFsΔ+⁡logPse−βFs.(4.16)
The last factors have the form (x′−x)log(x′/x), which is nonnegative, so that Fdyns is a decreasing function of time. Dynamic equilibrium occurs when these factors vanish, which happens when the magnet has reached the thermodynamic equilibrium set by the Gibbs state Ps=e−βFs/Zs and R̂ss=e−βĤs/Zs, with Zs=∑m1⁡exp(−βFs)=∑m1GN(m1)exp(−βHs)=Tr⁡exp(−βĤs), as usual. The dynamical free energy (Equation 4.12) indeed ends up at the thermodynamic one,
Fdyns∞=−T⁡logZs=Fsg.(4.17)
This constitutes an example of the apparatus going dynamically to its lowest thermodynamic state and the pointer state indicating the measurement outcome s=±12. The temporal evolution from Fdyn(0) to Fs(g) is depicted in Figure 3.
[image: Line graph with a blue curve and a highlighted red circle at the upper left, showing F sub s dyn of t versus t times gamma T. The curve decreases from about negative zero point one five to negative zero point four. F sub s of g is labeled near the horizontal axis.]FIGURE 3 | Evolution of the dynamical free energy Fdyns(t), identical in both sectors s=±12, after coupling the apparatus to a spin-12 at time t=0. Its approach to the Gibbs state with Fs(g) (bottom line), exponential in t, expresses the registration of the measurement.3.7 Decoupling the apparatus
Near the end of the measurement, at a suitable time tdc, the apparatus is decoupled from the system, by setting g=0; in doing so, an energy Udc=−∑m1Ps(m1;tdc)HSA(m1) must be supplied to the magnet, which will then relax further its nearby minimum of the g=0 situation, to provide a stable pointer indication with a macroscopic order parameter M1=Nm1 that can be read off.
4 DYNAMICS OF THE SPIN-1 MODEL
We now focus on the spin-1 case, in which the tested system, S, is ŝ, a spin-1 operator with ŝz having eigenvalues sz=−1,0,1. Our magnet M has N≫1 quantum spins-1 σ̂(i) (i=1,…,N). According to Equation 2.5, one now deals with two order parameters,
m̂1=1N∑i=1Nσ̂i,m̂2=1N∑i=1Nσ̂i2.(5.1)
While m̂1 is the usual magnetization in the z-direction, m̂2 is a spin-anisotropy order parameter that discriminates the sectors with eigenvalues σi=±1 from the sector with eigenvalues σi=0.
The quantity Ĉ2, the operator-form of Equation 2.2, is our starting point for a permutation-invariant Hamiltonian that ensures unbiased measurement. Expanding the cosine, employing Equation 2.8 for each spin σ̂i, and summing over i yields a polynomial in the moments m̂1,2,
Ĉ2=1−32m̂22+34m̂12.(5.2)
For the Hamiltonian, we take as in Equation 3.2
ĤN=NĤ,Ĥ=−12J2Ĉ2−14J4Ĉ22.(5.3)
It can be understood as containing the single-spin term m̂2, the pair couplings m̂12=1/N2∑ijσ̂iσ̂j and m̂22=1/N2∑ijσ̂i2σ̂j2, the triplet couplings m̂12m̂2 and the quartet couplings m̂14, m̂12m̂22, and m̂24. However, note its different conception in Section 2.5.
At the initial time ti of the measurement, its state is described by its 3×3 density matrix r̂(ti) with elements rss̄(ti) for s,s̄=−1,0,1.
In each s,s̄ sector, M lies in its state R̂ss̄(t)=R̂s̄s†(t), which is an operator that can be represented by a 3N×3N matrix. This exponential problem gets transformed into a polynomial one, a step that is exact for the considered mean-field-type Hamiltonian.
At ti, M is assumed to lie in a paramagnetic state, wherein the spins are fully disordered and uncorrelated. For each spin, its state is thus σ̂0(i)/3 where σ̂0(i)=diag(1,1,1). Multiplying by the respective element of r̂(ti) leads to the elements of the initial density matrix of S + M in the s,s̄=0,±1 sector,
R̂ss̄ti=rss̄tiσ̂0(1)3⊗σ̂0(2)3⋯⊗σ̂0(N)3.(5.4)
For general angular momentum, the commutation relations [L̂a,L̂b]=iεabcL̂c and L̂x2+L̂y2+L̂z2=l(ł+1)Î carry over to general spin
σ̂a,σ̂b=iεabcσ̂c,σ̂x2+σ̂y2+σ̂z2=ll+1σ̂0,(5.5)
While we considered l=12 in Section 3, we now focus on l=1.
We proceed as for spin 12. The a=z commutator in Equation 2.29 does again not contribute. We introduce σ̂α=σ̂x+iασ̂y for α=±1. From Equation 5.5, it follows for general l that
σ̂ασ̂−α=ll+1σ̂0+ασ̂z−σ̂z2σ̂ασ̂−ασσ′=l+1−ασl+ασδσσ′.(5.6)
In the present case l=1, this has nontrivial values
σ̂ασ̂−ασσ=2δσ,α+2δσ,0,σ=0,±1,(5.7)
with Equation 5.6 implying that the σ=−α term indeed drops out. The SO(3) generators
σ̂x=12010101010,σ̂y=120−i0i0−i0i0,σ̂z=10000000−1,(5.8)
allow verifying these relations. Each of the σ̂(i) (i=1,…,N) has such a presentation. In Equation 2.30, the interchange of the σ̂α(i) with the σ̂z(n) will be needed. For i≠n, they commute, while for i=n,
σ̂αnσ̂zn k=σ̂z(n)−ασ̂0(n)kσ̂αn,σ̂z(n) kσ̂αn=σ̂αnσ̂z(n)+ασ̂0(n)k.(5.9)
Valid for k=1, induction yields this for higher k. For functions of the {σ̂z(i)}, (i=1,…,N), that can be expanded in a power series, it follows that
σ̂αnfσ̂z(i)≡fn,ασ̂z(i)σ̂αn,fn,ασ̂z(i)=fσ̂z(i)−δi,nασ̂0(n).(5.10)
Now the σ̂± can be eliminated using Equation 5.6, which leaves functions of only the σ̂z(i), with the shifts in their arguments arising as the cost for this. As before, we can assume that R̂ss̄(t)=Rss̄({σ̂z(i)},t), where Rss̄({σi},t) is a scalar function of the eigenvalues σi=0,±1 of the σ̂z(i). Valid at ti, this holds for (dR̂ss̃/dt)(ti), so it remains valid in time. Hence, it is possible to go from the matrix equations to scalar equations. With the equality in Equation 5.6 applied for spin n, we end up with the scalar expressions
Css̄,+(n,α)u=δσn,−α+δσn,0e−iuHseiuHs(n,α)Rss̄(n,α)t−δσn,α+δσn,0e−iuHs(n,−α)eiuHsRss̄t,Css̄,−(n,α)u=Css̄,+(n,α)−u,(5.11)
where for any function Rss̄ expandable in powers of the σi=0,±1 (i=1,…,N), it holds that
Rss̄(n,α)=Rss̄σi→σi+αδi,n,(5.12)
Now that all terms are scalar functions of the σ̂z(i), it is seen that Css̄,−(n,α)(u)=Css̄,+(n,α)(−u;Hs→Hs̄). We no longer need to track the operator structure and can work with scalar functions of the eigenvalues.
4.1 Off-diagonal sector: truncation of Schrödinger cat terms
In the spin 12 Curie–Weiss model, it was found that the Schrödinger cat terms disappear by two mechanisms: dephasing of the magnet, possibly followed by decoherence due to the thermal bath. Similar behavior is now investigated for spin-1.
4.1.1 Initial regime: dephasing
Truncation of the density matrix (disappearance of the cat states) is a collective effect that takes place within an initial time window, in which the magnet stays in the paramagnetic phase, so that the mutual spin couplings J2,4 and the coupling to the bath can be neglected. The spins of M act individually by their coupling to the tested spin S and do not get correlated yet. In the sector where the eigenvalue of the operator ŝz is s, the Hamiltonian of the magnet is
ĤSA=∑nĤSAsn,ĤSAsn=−g1−32s2σ̂0(n)−32σ̂z(n) 2+34sσ̂z(n).(5.13)
At a given s, this is a trace-free diagonal matrix with elements 12g (twice) and −g,
HSAsnσσ̃=g2δσ,σ̃1−3δσ,s,δσ,s=13+23−s21−32σ2+12sσ,(5.14)
for (s,σ,σ̃=0,±1). In this approximation, the 3N×3N density matrix of the magnet in each sector ss̄ maintains the product structure (Equation 5.4) of uncorrelated spins at t=ti,
R̂ss̄t=rss̄tiρ̂ss̄(1)t⋯⊗ρ̂ss̄2t⋯⊗ρ̂ss̄(N)t,(5.15)
where, setting ti=0, for each n,
ρ̂ss̄(n)t=e−itĤSAs,nσ̂0(n)3eitĤSAs̄,n=ρ̂s̄s(n)t†,ρss̄(n)tσσ̃=13δσ,σ̃⁡exp32igtδσ,s−δσ,s̄.(5.16)
Diagonal elements s=s̄ thus essentially do not evolve in this short-time window. The off-diagonal ones imply for s≠s̄
rss̄t=TrMR̂ss̄t=rss̄013+23cos32gtN.(5.17)
For small t, this decays as rss̄(0)exp(−t2/τdph2) with the dephasing time τdph=2/g3N, very short for large N. The undesired recurrences at tn=4πn/3g, where the cosine equals 1 again, can be suppressed by assuming that the g→gn=ḡ+δgn values in Equation 5.16 have a small spread δgn (see Opus, Section 6.1.1). If the thermal oscillator bath has proper parameters, it will cause decoherence, as seen next.
4.1.2 Second step: decoherence
To include the bath in Equation 5.16, we now make the generalized Ansatz:
ρ̂ss̄(n)tσσ̃=δσ,σ̃13exp−Bσt×exp−itHSAs,nσ+itHSAs̄,nσ.(5.18)
In the commutators (Equation 5.11), Hs now reduces to the HSAs,n of Equation 5.14, and the terms are identical for all n. We can neglect B∼γ in the exponents of Equation 2.29 and find, putting −α→α in the minus terms,
Ḃσ=γ2∑αKt>ΔασHs+Kt<ΔασHs̄−Kt>−ΔασHs+Kt<−ΔασHs̄ess̄ασt,(5.19)
with
Kt>ω=∫0tdu Kue−iωu,Kt<ω=∫−t0du Kue−iωu.(5.20)
Here, Kt>(ω)=Kt>*(ω) because the kernel K̃(ω) is real valued; see the example in Equation 2.27, and
ΔασHs=Hsσ+α−Hsσ=3g21−32s21+2ασ−12sα,(5.21)
with a similar expression for ΔασHs̄, and finally
ess̄ασt=exp−it ΔασHs−ΔασHs̄.(5.22)
For s̄=s, one has ess̄ασ(t)=1. For t≫1/2πT, one gets, using K̃(−ω)=eβωK̃(ω),
Ḃσ=γ2∑αK̃ΔασHs−K̃−ΔασHs=γ2∑αΔασHse−|ΔασHs|/Γ∼γN,(5.23)
because Hs∼N, ΔασHs∼N0, and ∑αΔασHs∼1/N. Therefore, for s=s̄, this confirms that hardly any dynamics take place in this time window. In the next subsection, we show that they occur on a longer time scale τreg=1/γT.
For off-diagonal elements s̄≠s, it is seen that ess̄ασ(t) has terms e±3igt/2 and e±3igt, so that
ess̄ασt=∑j=−2,−1,1,2cje3ijgt/2,∫0tdu ess̄ασ;u=∑j=−2,−1,1,2cje3ijgt/2−13ijg/2.(5.24)
The exponentials are equal to unity, making Ess̄α=1, at the times tn=4πn/3g, n=1,2,⋯ , encountered below Equation 5.17, when appearing in the dephasing process, and thus also as times where Ḃσ(t)=0. To suppress recurrences like in the dephasing, we again set in each n-term g→gn=ḡ+δgn with small Gaussian distributed δgn. For times well exceeding the coherence time 1/2πT of the bath, the Kt> and Kt< reach their finite limits, so that we have
∫0tdt′ Kt′>ωEss̄ασ;t′=∫0tdt′ Kt′>ω−K∞>ωEss̄ασ;t′+K∞>ω∫0tdu Ess̄ασu,(5.25)
The first part is small, and the second is given in Equation 5.24. After canceling out its exponents by the δgn, an imaginary part remains. Hence, for t≫1/2πT, the Ess̄ασ terms can be neglected in RB. We keep
RBσt≈RḂσ×t,RḂσ≈γ2∑αK̃ΔασHs+K̃ΔασHs̄,(5.26)
which is positive, so that |exp(−NBσ)|=exp(−NRBσ) with NRBσ∼γNgt leads for large enough values of N to a decoherence of the off-diagonal elements rss̄(t) of the density matrix at the characteristic decoherence time tdec=1/γgN and γNgτreg∼Ng/T.
Decoherence is a combined effect of the N apparatus spins; despite it, the individual elements of R̂ss̄ hardly decay in this time window, behaving as exp(−γgt)=exp(−t/Ntdec)≈1.
4.2 Registration dynamics for spin-1
In Section 3, a difference equation was derived for the distribution of the magnetization of the magnet for any number N of spins-12. Our aim here is to derive an analogous equation for the spin-1 case.
In the paramagnet, one has the form Rss({σi})=rss(ti)/3N. Let Ps(m) with m=(m1,m2) be the probability for a state of the magnet M characterized by the moments m1,2. It gathers the value Rss(m)/rss(ti) for all sequences {σi} compatible with m1,2, the number of which is the degeneracy factor GN=expSN,
Psm;t=GNmRssm;trssti,GNm=N!N−1! N0! N1!,Nσ=xσN,(5.27)
with the x±1=12(m2±m1) and x0=1−m2 from Equation 2.14. The normalizations are
∑σ(1)=−11⋯∑σ(N)=−11Rssσ(i);t=rssti,∑m2=01∑m1=−m2m2Psm1,m2;t=1.(5.28)
Due to the relations described by Equations 2.13 and 2.14 between the spin moments m0,±1 and the spin fractions x0,±1, the shifts in m1,2 induce the shifts Nσ′=Nσ+δNσ and xσ′=xσ+νδNσ, with
δN±1=1±α2+ασn, δN0=−1−2ασn,(5.29)
which are integers, as they should be. The degeneracies for σn=−α,0,α lead to the respective factors
GNGN′=N−1′!N0′!N1′!N−1!N0!N1!=x0+νx−αδσn,−α+xα+νx0δσn,0+x−1+νx1+ν+xα+2νx0x0−νx0−2νδσn,α,(5.30)
where Nσ=Nxσ is used. The complicated last term is fortunately not needed, while the denominators of the first two will factor out.
Going to the functions Ps of the moments m1,2, we proceed as for the spin 12 situation. The C± terms of Equation 5.11 can again be combined and performing the u-integrals in Equation 4.2 leads for t≫1/T to the kernel K̃(ω) at the frequencies
Ωαβm=Hsm1α−ν,m2−βν−Hsm,(5.31)
for α,β=±1. Multiplying Equation 4.2 by GN and summing over α, there results an evolution equation for the distribution Ps at each discrete value of m1,2,
Ṗsm1,m2;t=γN∑α=±1x0+νK̃−Ωs,−α+Psα−m1,m2;t+xα+νK̃−Ωs,−α −Psα+m1,m2;t−xαK̃Ωsα++x0K̃Ωsα−Psm1,m2;t.(5.32)
Let us condense notation and introduce the shift operators Eαβ and Δαβ=Eαβ−1 by their action
Eαβfm=fm1+αν,m2+βν,Δαβfm=fm1+αν,m2+βν−fm.(5.33)
on any f(m). They have the properties
EαβΔ−α−β=−Δαβ,Ωs αβ=Δ−α−βHs,EαβΩsαβ=−ΔαβHs=−Ωs,−α−β.Eαβxα=xα+1+β2ν,Eαβx0=x0−βν.(5.34)
Hence, Equation 5.32 can be expressed as
Ṗsm1,m2;t=γN∑α=±1Δα+xαK̃Ωsα+Ps+Δα−x0K̃Ωsα −Ps,(5.35)
which has a remarkable analogy to Equation 4.9 and Equation 4.16 of Opus for the spin-12 case. By denoting xα+=xα above and xα−=x0, this is condensed further,
Ṗsm1,m2;t=γN∑α,β=±1ΔαβxαβK̃ΩsαβPs.(5.36)
4.3 H-theorem and relaxation to equilibrium
We now exhibit a H theorem that assures the relaxation of the magnet towards its Gibbs equilibrium state and, thus, a successful measurement. The dynamical entropy of the distribution Ps(m;t)=GN(m)Rss({σi})/rss(ti) is defined as
Sst=−TrR̂sstrsstilogR̂sstrssti=−∑mPsm;tlogPsm;tGNm.(5.37)
Following Opus and Equation 4.12 above, we consider the dynamical free energy
Fdynst=Ust−TSst=∑mPsm;tHsm+T⁡logPsm;tGNm.(5.38)
It appears to depend on s. The simultaneous change s→−s, m1→−m1 implies that Fdyn1(t)=Fdyn−1(t) at all t, as happened for s=±12 in the spin 12 case, but the Fdyn±1(t) differ from Fdyn 0(t), except in the thermal situations at t=0 and t→∞.
With β=1/T, not to be confused with the index β=±1, Equation 5.36 yields
Ḟdyns=T∑mṖsmlogPsmeβHsmGNm=γNT∑α,β=±1∑mΔαβxαβK̃ΩsαβPslogPseβHsGN.(5.39)
For general functions f1,2(m) with vanishing boundary terms, partial summation yields
∑mΔαβf1f2=∑mf1Δ−α−βf2=∑mEαβf1Δ−α−βf2=−∑mEαβf1Δαβf2.(5.40)
For α=+1, we use the last expression, and for α=−1, we use the second one, while taking β→−β, and also using Equation 5.34 and the property K̃(−ω)=K̃(ω)eβω satisfied generally in Equation 2.26, which yields the result
Ḟdyns=−γNT∑m∑β=±1K̃Δ+βHs×eΔ+ββHsE+βx+βE+βPs−x−1−βPsΔ+β⁡logPseβHsGN.(5.41)
The various parts are such that a term GN(m)x−1−β can be factored out, to express this as
Ḟdyns=γNT∑m∑β=±1GNx−1−βK̃Δ+βHs×eΔ+ββHsE+βPsGN−PsGNΔ+β⁡logPseβHsGN.(5.42)
With Δ+βHs=E+βHs−Hs, GN=exp(SN), and Fs(m)=Hs(m)−TSN(m), this is equal to
Ḟdynst=−γNT∑m∑β=±1x−1−βK̃Δ+βHse−βFs×Δ+βPse−βFsΔ+β⁡logPse−βFs.(5.43)
The last factors have the form (x′−x)log(x′/x), which is nonnegative, implying that Fdyns is a decreasing function of time. Dynamic equilibrium occurs when these factors vanish, which happens when the magnet has reached thermodynamic equilibrium, that is, the Gibbs state Ps=e−βFs/Zs and R̂ss=e−βĤs/Zs, with Zs=∑m⁡exp(−βFs)=∑mGN(m)exp(−βHs)=Tr⁡exp(−βĤs), as usual. The dynamical free energy (Equation 5.38) then ends up at the thermodynamic free energy,
Fdyns∞=−T⁡logZs,(5.44)
which actually does not depend on s due to the invariance map of the static state, reflecting that the measurement is unbiased. This constitutes an explicit example of the apparatus going dynamically to its lowest thermodynamic state, the pointer state registering the measurement outcome.
Although the statics are identical for s=0,±1, this does not hold for the dynamics. While it is similar for s=±1 (to change the sign of s=±1, also change the sign of m1), this deviates from the s=0 dynamics. For s=0, all Ωαβ(m) are finite, but for s=±1, there are cases where Ωαβ(m) vanishes, which leads to a slower dynamics; see Figure 5.
4.4 Numerical analysis
The initial spin-1 Hamiltonian leads to a 3N×3N matrix problem, which is numerically hard. For the considered mean-field-type model, the formulation in terms of the order parameters m1,2 is exact; it lowers the dimensionality considerably. The variable m2=(1/N)∑i=1Nσi2 can take N+1 values between 0 and 1. The value of M2=Nm2 indicates that N−M2 of the σi take the value 0, while the other M2 of the σi are ±1. Given this number, m1=(1/N)∑i=1Nσi can take M2+1 values between −m2 and m2. Accounting for conservation of total probability, this leads to N(N+3)/2 dynamical variables, a polynomial problem.
(Concerning higher spin: For spin 32, one separates terms with si=±32 from those with si=±12; for spin-2, one selects terms with si=0, ±1, or ±2, etc.)
Equation 5.32 can be solved numerically as a set of linear differential equations. Programming it is straightforward; the vanishing of boundary terms and conservation of the total probability must be verified as a check on the code.
The magnet starts in the paramagnetic initial state
Psm;0=13NGNm≈33/22πNexp−N34m12+32m2−12.(5.45)
The sum of Ps over m1,2 equals unity and, with the mesh Δm1Δm2=2ν2, so does its integral.
The dynamics (Equation 5.32) can be solved numerically, and the results are presented in upcoming figures. We consider the parameters, with g large enough,
N=100,J2=0,J4=1,g=0.15,T=0.2,Γ=10.(5.46)
We plot in Figures 4A,B snapshots of Ps/(2ν2) at four times, for s=0 and s=1. The case s=−1 follows from the case s=1 by setting m1→−m1.
[image: Two 3D surface plots show probability distributions Ps as functions of variables m1 and m2, with color gradients from blue to orange. The top plot is labeled for s equals 0, and the bottom for s equals 1, with both sharing identical parameters J2 equals 0, J4 equals 1, T equals 0.2, g equals 0.15, and N equals 100. Both plots have similar grid layouts and axes ranges.]FIGURE 4 | Snapshots of the distribution Ps of the magnetization moments m1,2 for registration of the spin-1 measurement. Upper: Ps≥10−3 data in the s=0 sector at times t=(0,1,2,3)×2/γT from right to left. Lower: the s=1 sector at t=(0,1,2,3)×5/γT from left to right; it evolves more slowly. The parameters are listed in Equation 5.46.Figure 5 shows the evolution of the dynamical free energy Fdyns(t).
[image: Line chart showing F superscript s subscript dyn of t versus t times gamma times T, with two blue curves labeled s equals zero and s equals plus or minus one both starting at a red point at the top left and decreasing before leveling off near negative zero point four.]FIGURE 5 | The spin-1 dynamical free energy Fdyns of Equation 5.38 relaxes from its t=0 value to its thermodynamic value. Fs(g) of Equation 5.44, thereby registering the measurement. Parameters are as in Figures 4A,B, and time is expressed in units of 1/γT. The relaxation for s=±1 is slower than for s=0 due to the occurrence of zero frequencies. The initial “shoulders” describe the initial broadenings in Figures 4A,B.4.5 Decoupling of the apparatus
Near the end of the measurement, the interaction between the system and the apparatus is cut off by setting g=0; in doing so, at decoupling time tdc, Equation 5.13 expresses that an amount of energy
Udc=−∑mPsm;tdcHSAm=+gN×∑mPsm;tdc1−32s21−32m2+34s m1,(5.47)
must be supplied to the magnet, leaving it with the post-decoupling free energy
Fdc=∑mPsm;tdcHM−T⁡logGN.(5.48)
This post-decoupling state is not an equilibrium state; the magnet will now relax to the nearby minimum of the g=0 case. There follows a relaxation driven by bath, with the magnet evolving under the g=0 Hamiltonian HM(m) to its Gibbs state PG(m)=GN⁡exp[−HM(m)/T]/ZG, with free energy FG=∑mPG(m)[HM(m)−TSN(m)].
When the decoupling time tdc is large enough, the magnet M lies in its Gibbs state at coupling g, Ps(tdc)∼exp[−βHs(m)]. Due to the invariance of the g=0 situation, the approach to it is identical for starting in any of the sectors s=0,±1.
To compare with the dynamics that end up in one of the minima, one must restrict the Gibbs state, which has three degenerate minima, to the nearby minimum. This is achieved numerically even at moderate N by discarding exp(−βHs) well away from the peak of Ps(tdc), also in ZG. For s=0, it suffices to keep exp(−βHs) for m2<13; for s=±1 by doing that for m1s>13.
The change of the state is also seen in ⟨m2⟩(t)=∑mm2Ps(m;t). Let us consider the sector s=0, where ⟨m1⟩=0 at all t. Here, the coupling HSA=gN(32m2−1) has the tendency to suppress m2, so after decoupling, m2 will relax to a larger value. For N→∞, we get from the Gibbs states at g and at g=0, respectively,
〈m20〉=3.63 10−4,〈m2∞〉=11.5 10−4.(5.49)
The full-time behavior for N=100 and couplings as in Equation 5.46 is presented in Figure 6, with the finite-N values increasing from ⟨m2(0)⟩=9.975 10−4 to ⟨m2(∞)⟩=12.69 10−4.
[image: Line graph showing an exponentially decaying blue curve starting at a red point near minus zero point two five zero sixteen on the y-axis. The vertical axis is labeled F subscript dyn superscript s with argument t subscript dc plus t, and the horizontal axis is labeled t times gamma T. A black horizontal line indicates the value F at minus zero point two five zero twenty four.]FIGURE 6 | After decoupling the apparatus from the system, the magnet relaxes to its nearby g=0 equilibrium. If this happens at a time tdc where finite-g equilibrium has been reached, this goes identical in the sectors s=0,±1. The dynamical free energy is plotted with parameters as in Figures 4, 5, relaxing from its decoupled value (indicated by the dot) to its g=0 thermodynamic limit F (lower line). Compared to Figure 5, this macroscopic energy cost is a permille effect.The relaxation in the sectors s=±1 follows immediately from this. The map (Equation 5.50) yields. The maps (4.11) and (4.13) of Models lead to
⟨m1⟩s=±1=±1−32⟨m2⟩s=0,⟨m2⟩s=±1=1−12⟨m2⟩s=0.(5.50)
4.6 Energy cost of quantum measurement
The Copenhagen postulates obscure one of the facts of life in a laboratory: a firm cost for the energy needed to keep the setup running. In this work, we consider two intrinsic costs. In the previous subsection, we established the cost of decoupling the apparatus from the system. Here, we consider resetting the magnet for another run. It must be set from its stable state back to its metastable state. Being related to the magnet, both costs are macroscopic.
Our initial state, the paramagnet (pm), has zero magnetic energy and maximal entropy
Fpm=−NT⁡log⁡3,(5.51)
The energy needed to reset the Gibbs state of the magnet to the paramagnetic one is
Ureset=Fpm−FG=−∑mPGmHM−T⁡logGN/3N.(5.52)
It is evidently macroscopic. The condition that Ureset is positive was identified in Opus and in Models as the condition that the initial paramagnetic state is metastable but not stable.
5 CONCLUSION
This article dealt with the dynamics of an ideal quantum measurement of the z-component of a spin-1. The statics for this task were worked out recently in our “Models” article (Nieuwenhuizen, 2022); it generalized to any spin l>12 the Curie–Weiss model to measure a spin 12; the latter was considered in great detail in “Opus” (Allahverdyan et al., 2013). Here, we first reformulated the dynamics of the known case for spin 12 and worked out some further properties. The resulting formalism is suitable as a basis for models to measure any higher spin.
The dynamics of measurement in the spin-1 case were analyzed in detail. Off-diagonal elements of the density matrix (“cat states”) were shown to decay very fast (“truncation of the density matrix”) due to dephasing, possibly followed by decoherence.
The evolution of the diagonal elements of the density matrix was expressed as coupled first-order differential equations for the distribution of two magnetization-type-order parameters, m1,2. The approach to a Gibbs equilibrium was certified by demonstrating a H-theorem. The resulting scheme was found to be numerically a polynomial problem. These are easily solved with the present power of laptops for an apparatus consisting of a few hundred spins. The evolution of the probability density was evaluated, and the H-theorem was verified. The macroscopic energy costs for decoupling the apparatus from the spin and for resetting it from its stable state to its metastable state for use in the next run of the measurement were quantified.
For general spin l, this method simplified the numerically hard problem of dimension (2l+1)2N−1 by a polynomial problem of order N2l for its 2l-order parameters. For more complicated models of the apparatus, it will likewise pay off to focus on the order parameter of the dynamical phase transition of the pointer that achieves the registration of the measurement. The fact that the phase transition in the magnet is of first order underlines that our mean-field-type models, although of mathematical convenience, are not essential for the fundamental description of quantum measurements.
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