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Editorial on the Research Topic

Prevention, mitigation, and relief of compound and chained natural
hazards, volume II
s

Introduction

In the face of global climate change and intensifying environmental variability, the
frequency, magnitude, and complexity of natural hazards have significantly increased
(Masson-Delmotte et al., 2021; Xu and Xu, 2021; Huang et al., 2023; Gao et al., 2024;
Wang et al., 2025; Wu et al., 2025; Xu et al., 2025). These events rarely occur in isolation.
Instead, they interact spatially and temporally, generating compound and chained disasters
that amplify impacts across interconnected systems (Pescaroli and Alexander, 2015; Gill
and Malamud, 2017; Zscheischler et al., 2018; Van Wyk de Vries, 2025). This presents
unprecedented challenges to disaster risk science and emergency management.

Building upon the success of the first volume of this Research Topic, which focused
on earthquake-related hazard chains and geohazards (Xu et al., 2024), the second volume
expands its scope to encompass a broader array of hazard interactions, covering geophysical,
hydrological, and anthropogenic domains. It directly responds to the original call for
papers, which emphasized five core themes: (1) formation and evolution mechanisms
of compound and chained hazards, (2) multi-hazard model building and chain-breaking
strategies, (3) source detection and database construction, (4) intelligent early warning and
risk assessment technologies, and (5) emergency equipment and post-disaster recovery.

This editorial provides a structured synthesis of the 14 accepted contributions inVolume
II.The articles are grouped thematically and highlight emerging research frontiers including
artificial intelligence (AI), high-resolution geospatial analysis, integrated physical and
empirical modeling, and intelligent sensing technologies for real-time hazard monitoring.
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Mechanisms and models of
earthquake-triggered chained hazards

Earthquakes remain key initiators of cascading hazard
sequences such as landslides, ground ruptures, and surface
deformation (Keefer, 1984; Xu et al., 2014; Zhao et al., 2023; Li et al.,
2024; Yu et al., 2024; Zhang et al., 2024; Huang et al., 2025). Liu
et al. developed empirical relationships between Arias Intensity
(AI) and peak ground acceleration (PGA) for western China,
uncovering region-specific differences influenced by local site
conditions and providing a new framework for energy-based seismic
hazard metrics. Lu et al. compared a logistic regression-based
data-driven model Xu et al. (2019) and a physics-based Newmark
model to evaluate coseismic landslides after the 2022 Ms 6.8 Luding
earthquake. Results show that the logistic model achieved higher
accuracy and efficiency in emergency contexts.Wang et al. evaluated
the predictive impact of lithology and precipitation in machine-
learning models of earthquake-induced landslides. Surprisingly,
they found these commonly used factors negatively affect model
performance due to spatial clustering and data resolution issues. Hu
and Ren proposed a probabilistic displacement hazard model for
distributed surface ruptures along strike-slip faults in the Tibetan
Plateau. Their work enables engineers to assess fault displacement
risk for linear infrastructure exposed to large-magnitude events.
Together, these studies deepen our understanding of chained seismic
hazards and underscore the critical need for regionally adaptive,
data-informed modeling strategies.

Smart monitoring and early warning of
mining-induced geohazards

Mining operations represent hotspots for compound geological
risks due to induced stress fields, water infiltration, and roof
instability (Wang et al., 2018;Ma et al., 2022). Zhang et al. developed
a comprehensive early warning method for coal mine roof and
floor cracking and water inrush, using microseismic monitoring of
source parameters such as apparent stress and energy. Their tri-
dimensional model of fracture depth, intensity, and risk represents
a significant advancement in real-time hazard forecasting. Sun
et al. applied abrasive jet-based hydraulic fracturing technology for
gently inclined hard roof treatment. Field results confirmed effective
crack generation and reduced stress concentration, highlighting a
safer alternative to traditional blasting. Hou et al. analyzed surface
subsidence and crack development across super-long working faces.
Their findings offer new insights into asymmetric settlement curves
and secondary subsidence effects, vital for infrastructure protection
over mining zones. These contributions collectively reinforce the
value ofmulti-sensor integration andmechanistic insight formining
hazard mitigation.

Hydro-Geomechanical coupling and
ground deformation dynamics

Groundwater level fluctuations and geologic structures
play crucial roles in land subsidence and rebound phenomena
(Chaussard et al., 2014; Jeanne et al., 2019). Liu and Bai investigated

land deformation in Beijing’s Chaobai River plain using InSAR
and borehole extensometers. They discovered a previously
undocumented uplift zone driven by managed aquifer recharge
(MAR), controlled by fault permeability and lithologic variation—a
paradigm shift in subsidence control theory. This work illustrates
the evolving complexity of hydro-mechanical feedback loops in
anthropogenic hazard settings.

Landslide inventories, mapping, and
spatial distribution analysis

Reliable landslide inventories are foundational for hazard zoning
and regional risk assessment (Guzzetti et al., 2012; Xu, 2015; Shao
and Xu, 2022; Feng et al., 2024; Shao et al., 2024). Xue et al.
compiled 3,979 landslide relics in Zhenxiong County, Yunnan using
human-machine interactive visual interpretation. They identified
four high-density landslide zones, emphasizing terrain incision and
hydrological development. Wang and Xu built a database of 5,517
landslides in Minhe County, Qinghai, revealing the dominance of
slope angle (15°–25°), elevation (2000–2,100 m), and proximity to
rivers (0–2 km) in governing spatial susceptibility. Such granular
spatial datasets are key to advancing machine-learning-based
susceptibility mapping and chain hazard simulations.

Monitoring, reinforcement, and failure
simulation in complex geological
settings

Hazard dynamics in karst, loess, and liquefiable sites require
specialized monitoring and engineering solutions (Zhao et al.,
2012; Koseki et al., 2015; Lian et al., 2020). Wu Liang et al. used
MEMS sensors in a series of slope model experiments to monitor
internal displacements with high accuracy (<6% error), suggesting a
promisingalternative totraditionalPIVmethods indeepslopestability
monitoring. Wu Yi et al. conducted six model tests on geotextile
reinforcement of karst subgrades. They found that tensile membrane
effects significantly reduced displacement—up to 66% under static
loads—offering theoretical and design support for infrastructure
in karst-prone zones. Peng et al. performed fully coupled dynamic
effective stress analysis on liquefiable interlayers under bidirectional
ground motion. Their results confirm that near-field vertical seismic
components significantly increase ground settlement, reshaping our
understanding of site response mechanisms. Zhao et al. simulated a
loess landslide event in Shaanxi Province using discrete and finite
element models to quantify impact damage on housing. The findings
offer a blueprint for quantitative vulnerability assessment in loess
terrain, a critical step in pre-disaster planning.

Conclusion and outlook: toward
data-driven, intelligent multi-hazard
resilience

While the contributions in this volume provide valuable
insights into specific aspects of compound and chained
natural hazards—particularly in the contexts of earthquake-
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induced geohazards, mining-related instabilities, and site-specific
deformation phenomena—they only partially address the full
breadth of challenges outlined in the original call for papers.
Research gaps remain in areas such as meteorological hazard
interactions, hydrological-ecological feedbacks, and transboundary
disaster chains. Nevertheless, the application of machine learning,
microseismic monitoring, geospatial mapping, and physical
modeling across these case studies reflects a promising step forward
in hazard assessment and scenario-based analysis.

We recognize that a comprehensive understanding of multi-
hazard dynamics requires sustained and interdisciplinary efforts.
To that end, we are continuing this Research Topic in future
volumes, and we sincerely welcome further contributions that
address broader hazard types, integrative modeling approaches,
and proactive mitigation strategies. We invite researchers from
around the world to join us in advancing science-based solutions
for reducing the risks and cascading impacts of natural hazards.
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There is little available attenuation relationship for Arias Intensity (AI) in China.
Empirical relationships between AI and peak ground acceleration (PGA) provide
another option for predicting AI. We establish empirical relationships for AI and
PGA for western China, utilizing 3,169 horizontal and 979 vertical strong motion
records with PGA ≥0.01 g from 274 earthquakes (MS 4.0–8.0), originating in eight
provinces in southwest (Yunnan, Sichuan) and northwest China (Gansu, Shaanxi,
Ningxia, Qinghai, Inner Mongolia, and Xinjiang). The influences of MS epicenter
distance, and site conditions indicators VS30, generic site classes (i.e., rock and
soil) are explored. The results show that the logarithmof AI increases linearlywith
the increase of the logarithm of PGA and MS, and decreases with the logarithm
of VS30. However, the influence of site conditions on AI-PAG relationships can't
be recognized by the simple generic rock and soil site classes. The epicenter
distance has little effect on the AI-PAG relationships. Empirical relationships
are developed to estimate horizontal or vertical AI as a function of PGA (basic
model), PGA and MS (model 2) for southwest, northwest, and western China,
using all the records. Empirical relationships for AI as a function of PGA, MS, and
VS30 (model 1) are established using the 2,248 horizontal (70.9% of the total) and
670 vertical (68.4% of the total) records with VS30 between 148 and 841m/s. The
notable disparity between model 1 of the southwest and northwest regions is
chiefly attributed to local site conditions, indicating that the AI-PGA correlation
is region-dependent. These findings enable oneway of estimating AI for western
China and will contribute to a better understanding of AI attenuation.

KEYWORDS

Arias intensity, peak ground acceleration, conditional model for Arias intensity,
empirical correlations, western China

1 Introduction

As a mandatory national standard that is currently in force, the national seismic hazard
maps of China (GB 18306–2015) employed the attenuation relationships for peak ground
acceleration (PGA) developed using the transform method (Yu and Wang, 2007). This
is mainly due to the lack of strong motion recordings and sparse distribution of strong
ground motion stations, which limits the establishment of attenuation relations through
regression analysis. Benefiting from the National Strong Motion Observation Network
System (NSMONS) of China, which has been in formal operation since 2008, a large
number of high quality strong motion recordings have been obtained in the past decade
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FIGURE 1
Earthquakes and strong-motion stations selected for this study.

or so (Ji et al., 2017; Xie et al., 2022). In recent years, the China
Earthquake Administration has proposed the Next-Generation
Attenuation project. As part of a broader effort to update national
seismic hazard maps of China, this project aims to develop ground
motion prediction equations (GMPEs) that incorporate broadband
and multiple ground motion intensity parameter, such as PGA,
peak ground velocity (PGV), peak ground displacement (PGD),
response spectral andAI (Arias, 1970; Chousianitis et al., 2016; Zach
et al., 2017).

For some widely used parameters in China, such as PGA, PGV,
5% damped response spectrum, some researchers (Li et al., 2020a;
Zhang et al., 2021; Zhang et al. 2022; Zhang et al. 2023) investigated
the influences of magnitude, rupture distance, fault types, site
amplification and hanging-wall scaling on ground motions, and
developed GMPEs for southwest China and capital circle region of
China. These models incorporate parameters such as magnitude,
geometric attenuation, anelastic attenuation, hanging-wall effect,
and linear/nonlinear site response terms to improve the accuracy
of ground motion predictions. However, in the case of AI, there

is very little available attenuation relationship for this intensity
measure in China (Liu et al., 2018). Lee et al. (2012) developed
a regional AI attenuation relationship for Taiwan considering
VS30 (the equivalent shear-wave velocity of soil layers within a
depth of 30 m underground). Liu and Ren (2022) developed the
AI attenuation relationship for the Sichuan-Yunnan region. Their
functional forms were modified from that of Travasarou et al.
(2003), which was derived from a point-source model. Before
we propose the AI attenuation relation for the next-generation
national seismic hazard maps of China, the applicability of existing
AI attenuation models still needs further investigation. Moreover,
for the region with limited strong ground motions, predicting AI
through the relationships between AI and other seismic parameters
is another option (Liu et al., 2015; Ji et al., 2021;Macedo et al., 2022).
Moreover, correlations of AI and other intensity measures enable an
easily ground motion selection and vector hazard analysis (Wang
and Du, 2013; Bradley, 2015; Tao et al., 2020; Cheng et al., 2021).

In this study, we developed empirical AI-PGA relationships for
western China based on our global empirical relationships (Liu
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FIGURE 2
Distribution of strong-motion data used in this study: (A) magnitude and PGA, (B) magnitude and epicentral distance, (C) magnitude and VS30, and (D)
generic site class and magnitude.

TABLE 1 Numbers of earthquakes and records for different magnitude ranges.

Magnitude Number of
earthquakes

Number of
horizontal
records

Number of
horizontal

records with
VS30

Number of
vertical records

Number of
vertical records

with VS30

N S A N S A N S A N S A N S A

4≤Ms<4.5 55 15 70 275 11 286 157 6 163 70 3 73 39 3 42

4.5≤Ms<5 42 52 94 275 403 678 196 258 454 89 130 219 63 130 193

5≤Ms<5.5 29 26 55 303 352 655 263 218 481 87 120 207 69 120 189

5.5≤Ms<6 11 15 26 212 181 393 166 118 284 45 68 113 36 68 104

6≤Ms<6.5 6 7 13 168 187 355 151 135 286 50 53 103 47 53 100

6.5≤Ms<7 8 6 14 269 134 403 209 106 315 57 44 101 40 44 84

7≤Ms<7.5 0 0 0 0 155 155 0 111 111 0 59 59 0 59 59

7.5≤Ms 1 1 2 6 238 244 0 154 154 1 103 104 0 103 103

N, S and A represent northwest, southwest, and all west China areas.

et al., 2016). Our analysis involves 3,169 horizontal and 979 vertical
strong motion records from 274 earthquakes with surface wave
magnitude (MS) ranging from 4.0 to 8.0. We examine the influences
of earthquake magnitude and epicenter distance, as well as the

dependencies on local site conditions using VS30 and generic site
classes such as rock and soil. Finally, we develop models to predict
AI as a function of PGA, PGA and MS, PGA, MS, and VS30
for southwest, northwest, and western China, encompassing both
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TABLE 2 Regression coefficients for the horizontal and vertical AI and PGA relationships (Eq. 1).

Model parameter Horizontal Vertical

Northwest Southwest All west Northwest Southwest All west

Value SE Value SE Value SE Value SE Value SE Value SE

a 0.400 0.038 0.548 0.026 0.503 0.023 0.405 0.068 0.432 0.037 0.418 0.033

b 1.619 0.019 1.662 0.012 1.646 0.011 1.601 0.038 1.608 0.020 1.597 0.019

c 0.271 0.016 0.272 0.018 0.275 0.014 0.286 0.013 0.270 0.020 0.282 0.013

d −0.790 0.052 −0.198 0.039 −0.468 0.032 −0.589 0.090 −0.196 0.064 −0.341 0.056

σb 0.187 - 0.169 - 0.186 - 0.186 - 0.156 - 0.173 -

τc 0.048 - 0.092 - 0.071 - 0 - 0.090 - 0.057 -

σT
d 0.196 - 0.195 - 0.201 - 0.186 - 0.186 - 0.187 -

aa, b, c, d are the regression coefficients of equation 1; SE, means the standard error of coefficients.
bIntraevent Sigma.
cInterevent Sigma.
dTotal Sigma.

TABLE 3 Regression coefficients for the horizontal and vertical AI and PGA relationships (Eq. 2).

Model parameter Horizontal Vertical

Northwest Southwest All west Northwest Southwest All west

Value SE Value SE Value SE Value SE Value SE Value SE

a 0.567 0.034 0.560 0.023 0.566 0.021 0.502 0.063 0.439 0.032 0.455 0.030

b 1.626 0.017 1.659 0.011 1.641 0.010 1.607 0.035 1.597 0.018 1.590 0.016

c 0.260 0.017 0.272 0.016 0.262 0.013 0.248 0.021 0.273 0.018 0.255 0.014

σb 0.206 - 0.181 - 0.197 - 0.188 - 0.165 - 0.180 -

τc 0.065 - 0.088 - 0.076 - 0.056 - 0.086 - 0.075 -

σT
d 0.219 - 0.203 - 0.213 - 0.204 - 0.190 - 0.200 -

aa,b, c are the regression coefficients of equation 1; SE, means the standard error of coefficients.
bIntraevent Sigma.
cInterevent Sigma.
dTotal Sigma.

TABLE 4 Regression coefficients for the horizontal and vertical AI and PGA relationships (Eq. 3).

Model parameter Horizontal Vertical

Northwest Southwest All west Northwest Southwest All west

a 0.309 0.985 0.797 0.220 0.815 0.707

b 1.565 1.936 1.837 1.536 1.822 1.784

σT
a 0.317 0.388 0.365 0.298 0.408 0.374

a and b are the regression coefficients of Eq. 3 obtained through the least-squares estimation.
aTotal Sigma.
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FIGURE 3
Comparison between the observed data of northwest China with model 2 (A), and Intraevent residuals of model 1 against (B) PGA, (C) VS30, and (D)
Interevent residual against magnitude.

horizontal and vertical components. We investigate the region-
dependent of AI-PGA correlation by comparing our southwest
and northwest models with previous models, and discusse the
potential reasons. These findings provide a methodology for
estimating AI from PGA in western China, and contribute to a
deeper understanding of the attenuation characteristics of AI in
China overall.

2 Strong ground motion and empirical
model

2.1 Strong ground motion dataset

The database used for this study comprises accelerograms
from over 800 strong motion stations of NSMONS in western
China. These records capture earthquakes that occurred in eight
provinces of southwest (Yunnan, Sichuan) and northwest China
(Gansu, Shaanxi, Ningxia, Qinghai, Inner Mongolia and Xinjiang),
contributing nearly 71% earthquakes throughout China from 2009
to now, as documented by the unified earthquake cataloging of
China Seismographic Network operated by the China Earthquake
Networks Center (CENC). Tomitigate the influence of site response,
topographic and structural effects on ground motion, records
from vertical arrays, topographical arrays, and structural arrays
are excluded, with stations deployed at free field ground sites
considered. The strong motion records are processed using the
method of Zhang et al. (2022), with each horizontal component

treated independently. For engineering purposes, we select strong
motion data from stations with PGA larger than 0.01 g. By applying
these selection criteria, there are finally 3,169 horizontal and 979
vertical strong motion records recorded by 646 strong motion
stations.The currently available site information for all these stations
is generic site classes (rock and soil) as listed in strong-motion
record data files. Ji et al. (2017, 2022) provided site classification for
about 170 stations using an empirical H/V spectral ratio method.
Xie et al. (2022) developed a soil profile database of geotechnical soil
profiles and shear-wave velocity logs, and site parameters for 678
stations in western China (Yunnan, Sichuan, Gansu, and Xinjiang).
Unfortunately, there are still many stations without plausible site
classification and VS30 value due to the lake of borehole logs or
shear wave velocities profiles (Ren et al., 2023). Based on their
research, we obtain VS30 for 406 stations, and assign VS30 to 2,248
horizontal (70.9% of the total) and 670 vertical (68.4% of the total)
strong-motion records.

These strong-motion records are recorded in 274 earthquakes
with magnitude ranging from 4.0 to 8.0. Surface wave magnitude
(MS) is provided for majority of the earthquakes, while local
magnitude (ML) is used for only 15 earthquakes (13 with
4.1≤ML≤4.9, 1 with ML=6.2, and 1 with ML=6.6) when MS is
unavailable. According to the review of Li et al. (2014), the MS and
ML measurements are consistent, with the empirical equation by Li
et al. (2016) indicating a difference between estimated MS from ML
and measured MS of less than 0.1 for these few data. Consequently,
we believe that the mixed usage of MS and ML has negligible
influence on the final empirical relationships between AI and PGA.
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FIGURE 4
Comparison between the observed data of southwest China with model 2 (A), and Intraevent residuals of model 1 against (B) PGA, (C) VS30, and (D)
Interevent residual against magnitude.

FIGURE 5
Comparison between the observed data of all west China with model 2 (A), and Intraevent residuals of model 1 against (B) PGA, (C) VS30, and (D)
Interevent residual against magnitude.
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FIGURE 6
Intraevent residuals of model 1 for northwest China against (A) PGA,(B) magnitude, (C) VS30, and (D) Interevent residual against magnitude.

The spatial distribution of these earthquakes and strong-motion
stations is shown in Figure 1. The data distribution with respect
to PGA, magnitude, epicentral distance, VS30 and generic site class
are illustrated in Figure 2. Numbers of earthquakes and records for
different magnitude ranges are listed is Table 1. For the complete list
of the earthquake catalogue used, see Supplementary Tables S1, S2
in the electronic supplement to this article.

2.2 Model of empirical relationships

In previous study (Liu et al., 2016), we proposed global empirical
AI-PGA relationships as a function of moment magnitude Mw, and
VS30. We concluded that AI-PGA relationship was not significantly
affected by focal mechanism and fault distance. These global
empirical relationships represented a significant advancement by
incorporating such important features as magnitude and VS30 and
enable an improved way of estimating AI from PGA. Its function
was described as Eq. 1 (referred as model 1)

log (AI) = a+ b log (PGA) + c(MS − 6) + d log (Vs30/500) (1)

in which AI is Arias intensity in unit of m/s, and PGA is and
peak ground acceleration in unit of g (1g = 9.8 m/s2), MS is
the surface wave magnitude, VS30 is in unit of m/s, a, b, c
and d are regression parameters.

In this paper, we also investigate the influence of epicentral
distance using our data. We confirm that considering epicentral
distance is unnecessary due to the absence of any biased residual.
Eq. 1 is utilized for the dataset that included VS30 values. For the
data without VS30 values, we test the usage of the generic site
class (rock or soil) instead of VS30 by taking them as dummy
variables. However, it did not yield statistically significant results.
Consequently, Eq. 2 (referred to as model 2) is employed for the
entire dataset.

log (AI) = a+ b log (PGA) + c(MS − 6) (2)

in which AI and PGA are Arias intensity and peak ground
acceleration in unit of m/s and g (1g = 9.8 m/s2), MS
is the surface wave magnitude, a, b and c are regression
parameters.

In order to facilitate a comprehensive comparison with previous
models, we also establish a basic model that relates AI and PGA,
represented by Eq. 3:

log (AI) = a+ b log (PGA) (3)

where AI and PGA are Arias intensity and peak ground acceleration
in unit of m/s and g (1g = 9.8 m/s2), a and b are regression
parameters. This basic model is also widely recognized by the PGA
versus the Arias intensity graph from series of data (Lenti and
Martino, 2010; 2013).
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FIGURE 7
Intraevent residuals of model 1 for southwest China against (A) PGA,(B) magnitude, (C) VS30, and (D) Interevent residual against magnitude.

FIGURE 8
Intraevent residuals of model 1 for all west China against (A) PGA, (B) magnitude, (C) VS30, and (D) Interevent residual against magnitude.
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FIGURE 9
Comparison between the observed horizontal (A) and vertical (B) AI-PGA correlation during the Wenchuan earthquake for model 1 and 2.

FIGURE 10
Comparison between the observed horizontal (A) and vertical (B) AI-PGA correlation during the Gashi and Menyuan Ms 6.4 earthquakes for
model 1 and 2.

3 Development of correlation
relationship

3.1 Empirical relationships of AI and PGA
for west China

Using the dataset mentioned above, we develop empirical
relationships of AI and PGA for southwest, northwest, and western
China, considering both the horizontal and vertical components.
These relationships are represented by model 1, model 2, and the
basic model. The regression coefficients for model 1 and 2 are
obtained through the mix-effect model (Lee et al., 2012), and are
presented in Tables 2, 3, respectively. The coefficients for the basic
model are determined using the least square method, and are shown
in Table 4. The linear equation of the basic model can well explain
the logarithm of AI linearly increases with the increase of the
logarithm of PGA. However, there are noticeable discrepancies in

the intercept (the parameter a in Table 4) and slope (the parameter
b in Table 4) among the basic models for the southwest, northwest,
and western regions. This discrepancy primarily arises from the
lack of consideration for earthquake magnitude. By incorporating
earthquake magnitude into the analysis (as demonstrated in
Table 3), the regression coefficients a, b, and c of model 2 for
the southwest, northwest, and western regions exhibit relatively
close values within the same horizontal or vertical group. Without
consideration the influence ofVS30, the estimated horizontal/vertical
AI values are about 182%/177% higher for every one-unit increase
in magnitude in northwest China, and about 187%/187% higher in
southwest China for a given PGA value. In respect to all western
China, the estimated horizontal/vertical AI values are roughly
183%/180% higher for every one-unit increase in magnitude. The
goodness-of-fit to the observed data is well demonstrated across
the entire range of PGA and magnitude, as is illustrated in
Figures 3–5 (only horizontal results are shown here for simplicity).
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FIGURE 11
Comparison of the basic model for the northwest, southwest and all
west China with existing models.

FIGURE 12
Comparison of model 2 for the northwest, southwest and all west
China for selected magnitudes (Ms = 4, 6 and 8) with existing models.

The unbiased residuals (data minus model values), as functions of
PGA and magnitude, indicate that our models provide a good fit.
Furthermore, the addition of earthquake magnitude to the models
reduces the standard deviation from over 0.3 to approximately
0.20 log unit, as compared to the basic model. This decrease in
the standard deviation of model 2 further affirms the significant
influence of earthquake magnitude on the AI-PGA correlation. AI
not only increases with increasing PGA but also the increases of
magnitude.

For themodel with VS30 (model 1), the results reveal that the AI-
PGA correlation is significantly affected by earthquake magnitude
and site parameter VS30. Compared with model 2, the inclusion

of VS30 reduces the model standard deviation by approximately
0.01 log unit (Table 2). Given the fixed PGA and VS30 value,
the estimated horizontal/vertical AI values are about 187%/193%
higher for one-unit increase in magnitude in northwest China,
approximately 187%/186% higher in southwest China, and roughly
188%/191% higher in all western China. Likewise, with the fixed
PGA and earthquake magnitude, the estimated horizontal/vertical
AI values are about 32%/43% (northwest), 75%/75% (southwest)
and 51%/61% (all west) lower for a site with a VS30 value of 180 m/s
compared to a site with a VS30 value of 760 m/s. To evaluate any
potential bias in the regression, the residuals are plotted against
PGA, magnitude and VS30 in Figure 6 (northwest China), Figure 7
(southwest China) and Figure 8 (all west China), respectively. Only
the horizontal results are displayed here. Overall, no discernible
trend is observed in the residuals as a function of PGA, magnitude,
or VS30, suggesting that there is no bias present in the regression.
Consequently, these findings demonstrate that AI not only increases
with increasing PGA and increasing magnitude but also displays an
increase with decreasing VS30.

3.2 Evaluation and comparison with
previous models

The goodness-of-fit of the empirical relationships to the data is
further demonstrated through the actual data plots. As an example,
we can examine the case of the MS8.0 Wenchuan earthquake that
occurred on 12 May 2008 in Sichuan (Figure 9). In Figures 7D, 8D,
the intraevent residuals are seen to be close to zero, indicating a good
fit, while the interevent residual of Wenchuan earthquake appears
relatively large at around 0.2. According to the VS30 values of the
Wenchuan data, we subdivide the Wenchuan data into two groups:
data with VS30 values between 249 m/s and 500 m/s, and data with
VS30 values between 500 m/s and 826 m/s. We plot the prediction
of model 1 for southwest China plus its variability of interevent
residual with mean VS30 values as VS30 = 350 m/s and 650 m/s for
these twoVS30 bins.There is slight difference between these two sub-
data. The estimated AI from a site with a VS30 value of 650 m/s is
approximately 80% of that from a site with a VS30 value of 350 m/s
for Wenchuan earthquake. We can see that this slight difference can
be recognized by our model 1. Both model 1 and model 2 provide a
good fit with the observations.

The data of the Ms6.4 Gashi earthquake that occurred on 19
January 2020, in Xinjiang, and the Ms6.4 Menyuan earthquake
that occurred on 21 January 2016, in Qinghai are plotted
together in Figure 10. The VS30 values for the Gashi and Menyuan
data fall within the range of 220 m/s to 486 m/s, with the exception
of three records from the 65PKY strong motion station (with VS30
values being 512 m/s) in the Gashi earthquake. The prediction of
model 1 using a mean VS30 value of 370 m/s is provided. We can see
that the logarithms of the observed AI and PGA exhibit a very good
linear correlation, with nearly all the data points falling between the
predicted lines. This indicates a agreement between the observed
data and the predictions from model 1.

In order to assess the effectiveness of our models, we compare
our models with previous studies (Arias, 1970; Jibson, 1993; Romeo,
2000, Liu et al., 2016). Except our NGA models, these models
are established mostly using horizontal ground motion data sets
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FIGURE 13
Ratios of model 2 for the northwest and southwest to all west China versus PGA. See the text for more detail for the definition of the ratio. (A) Ms = 4.0.
(B) Ms = 6.0. (C) Ms = 8.0.

FIGURE 14
Comparison of model 1 for the northwest, southwest, and all west China or selected magnitudes (Ms = 4, 6 and 8) with the NGA model for (A) VS30 =
300 m/s, (B) VS30 = 500 m/s, and VS30 = 760 m/s.

from different earthquakes, and they did not take into account
the influence of earthquake magnitude. So our comparison is
focused on horizontal models. Without considering earthquake
magnitude, the slope of the regression lines of the basic model
(quantified by parameter b in Eq. 3) exhibits significant variation
(Figure 11). This can also explain the large discrepancy among
our northwest, southwest, and all western models. When we
divide the data as sub-data with different magnitudes and consider
the magnitude effect on AI-PGA correlation by model 2, we
observe a remarkable consistency in the values of parameters b
and c in our regression formula (Eq. 2) across earthquakes of
varying magnitudes and regions. The differences between these
parameter values are nearly within 0.03, as evidenced in Table 3.This
consistency is also shown in Figure 12, where the horizontal model
lines for the northwest, southwest, andwesternChina regions appear
almost parallel.

We future analyze the variability between model 2 for northwest
and southwest China.The ratio (defined as the prediction ofmodel 2
for northwest or southwest China divided by the prediction ofmodel
2 for all west China) with respect to PGA is plotted in Figure 13. For

northwest China, the mean ratios are 1.023, 1.014, and 1.005 for Ms
= 4.0, 6.0 and 8.0, respectively. For northwest China, the mean ratios
are 0.928, 0.972, and 0.987 accordingly. Consequently, the means
ratios of northwest to southwest are approximately 1.102, 1.043, and
0.987 for model 2 with Ms = 4.0, 6.0 and 8.0, respectively. These
results reveal that the AI-PGA correlation is region-dependent to
some extent, as evidenced by the slightly discrepancy betweenmodel
2 of northwest and southwest China.

In this study, our model 1 for northwest, southwest, and all
western China utilizes the same function form as our NGA model
(Liu et al., 2016). Here, we make a future comparison between
our relationships with our NGA relationships (Figure 14, horizontal
component only). The result confirms that AI is not only increases
with increasing PGA, but also increases with increasing earthquake
magnitude and decreasing VS30. These tendencies are consistent
across all these four relationships, but are different in details. The
ratio (defined as the prediction of model 1 divided by the prediction
of NGA model) with respect to PGA is plotted in Figure 15. Given
the fixed VS30 values, the mean ratios of northwest, southwest, and
all west China are generally decrease with the increase of earthquake
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FIGURE 15
Ratios of model 1 for the northwest, southwest, and all west China to the NGA model versus PGA. See the text for more detail for the definition of the
ratio. (A) Ms = 4.0 and VS30 = 180 m/s. (B) Ms = 6.0 and VS30 = 180 m/s. (C) Ms = 8.0 and VS30 = 180 m/s. (D) Ms = 4.0 and VS30 = 500 m/s. (E) Ms = 6.0
and VS30 = 500 m/s. (F) Ms = 8.0 and VS30 = 500 m/s. (G) Ms = 4.0 and VS30 = 760 m/s. (H) Ms = 6.0 and VS30 = 760 m/s. (I) Ms = 8.0 and
VS30 = 760 m/s.

magnitude from Ms = 4.0 to 6.0, and 8.0, and the difference among
these three regions remain relatively constant. Take VS30 =180 m/s
as an example, the mean ratios for northwest, southwest, and all
western China are 1.142, 0.844, and 1.001, respectively, for Ms = 4.0.
For Ms = 6.0, these values become1.013, 0.752, and 0.905. For Ms =
8.0, themean ratios are 0.899, 0.670, and 0.817. But the value ofmean
ratio northwest divided by that of southwest keeps remains 1.35.
Conversely, when we fix the earthquake magnitude, the changes in
mean ratios of northwest and southwest China exhibit a reversed
trend adjustment. Take Ms = 6.0 as an example. The mean ratios
for northwest shift from 1.013 (VS30 = 180 m/s) to 0.892 (VS30 =
500 m/s) and 0.625 (VS30 = 760 m/s), indicating a decreasing trend.
In contrast, the mean ratios for southwest change from 0.752 (VS30

= 180 m/s) to 0.977 (VS30 = 500 m/s) and 1.088 (VS30 = 760 m/s),
indicating an increasing trend.

4 Conclusion

In this paper, based on our previous empirical relation models
between AI and PGA using the NGA database, we develop
empirical relationships between AI and PGA for western China.
This effort focuses on strong motion records with PGA ≥0.01g,
obtained from eight provinces in southwest China (Yunnan,
Sichuan) and northwest China (Gansu, Shaanxi, Ningxia, Qinghai,
Inner Mongolia, and Xinjiang). This large set of data consists of
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3,169 horizontal and 979 vertical strong motion records from 274
earthquakes with surface wave magnitude (MS) ranging from 4.0 to
8.0. All the records are classed into generic site classes (rock and
soil), and VS30 values are assigned to 2,248 horizontal (70.9% of
the total) and 670 vertical (68.4% of the total) records. Empirical
relationships are developed to estimate AI as a function of PGA
(basic model), PGA and MS (model 2), PGA, MS, and VS30 (model
1) for the southwest, northwest, and west China, both for horizontal
and vertical components. The results confirm that the logarithm
of AI increases linearly with the increase of the logarithm of PGA
and MS, and decreases with the logarithm of VS30. However, the
influence of site conditions on AI-PAG relationships cannot be
recognized by the simple generic rock and soil site classes. The
epicenter distance has little effect on the AI-PAG relationships.
Furthermore, the significant difference between the model 1 of
southwest and northwest reveals that the AI-PGA correlation is
region-dependent, which is chiefly attributed to local site conditions.
The empirical AI-PGA relationships presented in this paper enable
one way of estimating AI from PGA for western China. It will
also contribute to a better understanding of the proposal of AI
attenuation equations, which is one of the objectives of the next-
generation seismic zonation map of China.

5 Discussion

In recent years, numerousGMPEs have been developed for PGA
and AI (Boore et al., 2014; Zach et al., 2017; Du and Wang, 2017;
Farhadi and Pezeshk, 2020; Bahrampouri et al., 2021; Davatgari-
Tafreshi and Bora, 2023; Hu et al., 2023). These studies implicitly
suggest that attenuation characteristic of PGA and AI, such as the
magnitude-scaling effects and site effects are different (Campbell
and Bozorgnia, 2012). Similarly, our proposed models demonstrate
a significant dependence of AI-PGA correlation on earthquake
magnitude and the VS30 value of the site. The distributions of the
residuals of model 2 against magnitude and the residuals of model 1
against magnitude and VS30 exhibit no observable trend or change,
indicating the absence of bias in our relationships. Notably, the
model standard deviation decreases by 0.1 and 0.01 log unit in
sequence, starting from the basicmodel tomodel 2 andmodel 1.This
reduction signifies that our relationships can effectively identify the
discrepancies in AI-PGA correlation across different earthquakes
and site conditions, representing a significant advancement.

However, it is worth noting that the AI-PGA correlation does
exhibit a certain degree of region-dependent. As we can see from
Table 3, the values of parameters b and c in Eq. 2 tend to be consistent
for earthquakes of different magnitudes and different regions, with
their differences almost within 0.03. In Figure 13, the mean predicted
value for northwest China from model 2 is about 110.0%, 104.3%
and 98.7% of that for southwest China, for MS = 4.0, 6.0 and 8.0,
respectively. It shows that there is a slightlydiscrepancybetweenmodel
2 of northwest and southwest China. With regard to model 1, the
discrepancy between northwest China and southwest China can be
up to 30%–40% as illustrated in Figure 15. As listed in Table 2, the
difference in the values of parameter b between the northwest and
southwest is 0.043, while the difference in the values of parameter c is
0.001. The values of parameter d for the northwest and southwest
China are −0.790 and −0.198, respectively. This discrepancy in

FIGURE 16
Variation of the VS30 term of model 1 for northwest, southwest China,
and the NGA model against VS30.

parameter d plays a significant role in determining the difference
between the models. The VS30 term, expressed as d log (Vs30/500)
in Eq. 1, is plotted against VS30 for model 1 of northwest, southwest
China, and the NGA model (Liu et al., 2016). It shows that the VS30
term of model 1 for northwest China has the highest descent rate
against VS30, while that of southwest China has the lowest descent rate
against VS30 (Figure 16). This discrepancy helps to explain the above
mentioned reverse trend adjustment observed in the mean ratios of
northwest and southwest China to the NGA model for VS30 values of
180 m/s, 500 m/s, and 760 m/s, given a fixed magnitude.

This means that the region-dependent of AI-PGA correlation is
primarily attributed to the local site conditions, represented by VS30
in this study. The research conducted by Li et al. (2020b) indicated
that geotechnical types and soil depths have significant effects on the
reliability of the relationship between shear wave velocity and buried
depth. Though VS30 provides unambiguous definitions of site classes,
there might still be high uncertainties associated with determining
soil type by VS30. For the strongmotion stations located in the plateau
basin of northwest China or ravine region of southwest China, even
if they have the same VS30 values, the soil depths in the northwest
basin region (which belongs to a sedimentary environment) may be
greater than those in the ravine region of southwest China (which is
predominantly dominated by downward cutting erosion). This could
potentially explain why the influence of site conditions on AI-PGA
relationships cannot be adequately captured by the currently available
rough and simplistic rock and soil site classes.
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Microseismic monitoring has proven to be an effective approach for detecting
and preempting water inrush incidents within mining operations. However,
challenges persist, particularly in terms of relying on a singular early warning
index and the complexities involved in quantification. In response to these
obstacles, a dedicated investigation was undertaken against the backdrop of
mining activities at the 11,023 working face of Paner Coal Mine. Primarily,
a novel methodology for categorizing the roof and floor into distinct zones
was established based on the vertical distribution of microseismic events.
Furthermore, this study delves into the dynamic evolution of key source
parameters, such asmicroseismic energy, apparent stress, and apparent volume,
amidst mining disturbances, enabling a comprehensive evaluation of the risk
associated with roof and floor cracking, as well as potential water inrush
incidents. A groundbreaking approach to early warning was proposed, operating
on three pivotal dimensions: the depth of fractures, the intensity of fractures,
and the likelihood of water inrush. Through rigorous validation during mining
operations at the 11,023 working face, the efficacy was substantiated. Ultimately,
the achievements offer invaluable insights and practical guidance for the
advancement and implementation of water inrush early warning systems in coal
mining contexts.

KEYWORDS

coal mine, water inrush, early warning, microseismic monitoring, periodic pressure

1 Introduction

Water inrush is a common geological disaster in coal mines. During the process of
mining, it is caused by the combined action of disturbed stress and water pressure, leading
to the failure of surrounding rocks and the sudden inrush of a large amount of groundwater
into the mine (Yin et al., 2022; Li et al., 2024). The water inrush disaster brings extremely
heavy economic losses and casualties to coal mining. In recent years, with the exhaustion
of shallow coal resources and the increase of mining intensity, coal mine water disasters
have become more severe. The incubation of coal mine water inrush is affected by many
factors and is a complex process involving the gestation, development and formation of
water channels. Researchers have carried out in-depth research on the mechanism of water
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inrush and reinforcement technology (Kang et al., 2023; Ren et al.,
2023; Wang et al., 2023). Zhang (2005) revealed that reduction of
confinement due to mining is a major cause of water-conducting
failure in the floor strata. Ding et al. (2014) pointed out that high-
intensity mining of water-rich coal seams can lead to changes in
stratum behavior, such as roof caving and water inrush. Zhang et al.
(2017) verified the role of stress fields and seepage fields in
the formation of water channels through physical experiments.
Mining-induced fractures in the surrounding rock of a coal mine
roof connect and extend upward to form these water channels
(Sun et al., 2022). Based on a large number of cases of water inrush
in karst tunnels, Li et al. (2016) proposed that the main factors
affecting water inrush are karst hydrogeology and engineering
disturbance. Li et al. (2021a) proposed a logistic regressionmodel to
describe the effects of compressive stress and grain size distribution
on permeability and nonlinear flow characteristics of fractured
rock mass. Ma et al. (2022a), Ma et al. (2022b) conducted one-
dimensional radial seepage test and numerical simulation to study
the process and law of water channel formation in fault rock until
water inrush. In summary, water inrush is closely related to the
redistribution of stress fields caused by excavation, cracking damage
to surrounding rocks.

It can be seen that micro-fractures are an important precursor
feature of water inrush disasters (Zhang et al., 2023; Liu et al., 2024;
Shen, 2024; Zhang et al., 2024). Therefore, to monitor and forecast
coal mine water inrush disasters, in addition to monitoring water
flow, temperature, and pressure, it is crucial to understand the
essential mechanism and precursor patterns of micro-fractures for
developing analytical and forecasting methods (Li et al., 2021b;
Feng et al., 2022; Gong et al., 2022; Feng et al., 2023a; Gong et al.,
2024). Microseismic monitoring technology has been proved to
be an effective method for coal mine water inrush monitoring
and early warning (Chen et al., 2023; Wang et al., 2024). It can
accurately locate the spatial position of water inrush channels,
and real-time monitor the occurrence and expansion of rock
bursting and micro-damage. For example, Liu et al. (2023) used a
microseismic monitoring system to accurately predict and locate
the water inrush path in a coal mine. Tu et al. (2021) proposed
an improved microseismic monitoring technology scheme for
locating the spatial position of water inrush channels in tunnel
construction. Wang et al. (2021) constructed a comprehensive
intelligent early warning recognition model for coal mine water
inrush based on analysis of multiple precursor factors using
long-term monitoring data. Ma et al. (2021) used microseismic
monitoring, theoretical calculation and numerical simulation
methods to analyze the failure characteristics of coal seam floor,
providing reference for preventing underground water inrush
disasters. Yu et al. (2022) proposed the use of mixed frequency
microseismic waveform recognition to identify potential water
hazards and achieve early warning. Yin et al. (2023) introduced
a data-driven method that combines machine learning and deep
learning models to analyze microseismic events, improving the
accuracy and effectiveness of water inrush prediction. However, the
precursor early warning of water inrush based on microseismic
monitoring faces challenges in quantifying warning indicators.
Water inrush is an occasional disaster, making it difficult to
determine the threshold values of disaster warning indicators based
on normal microseismic activity characteristics.

In addition, the division of three zones at the roof and floor
of coal mines is also conducive to risk assessment and prediction
of water inrush. Jing et al. (2006) emphasized the role of geological
features such as collapsing rocks and rock layer separation, as well
as the impact of overlying strata movements, on the formation of
water inrush. Qiu et al. (2022) highlighted the weakening effect of
faults on the key stratum, leading to multiple separation layers and
increased water-conducting fractures. Wu et al. (2022) simulated
the nonlinear water inrush process by solving the Darcy-Brinkman
flow equation for the host rock and the fault zone based on the
concept of “Three Zones” fault structure. Wei et al. (2010) predicted
the risk of water inrush in the water-bearing strata of the coal
seam floor based on the “lower three zones” theory. Building
on the three-zone theory, Cheng et al. (2017) proposed a more
detailed zoning method based on the elevation distribution of
microseisms. It can be seen that microseismic monitoring results
can help divide three zones and cracking depth at roof and floor,
assisting in dynamic early warning of water inrush risks. The
division of the three zones is mainly from the perspective of
microseismic spatial distribution and disturbance range of roof and
floor to assist water inrush early warning. Together, they used the
microseismic location results to measure the failure depth of the
roof and floor.

To address the issues and shortcomings in water inrush
warning, this study was conducted against the background of
the 11,023 working face mining in Paner Coal Mine. The roof
and floor three-zone classification criteria were established based
on the spatial distribution of microseismic activities during
initial back mining. The evolution patterns of microseismic
events in the roof and floor under mining disturbance were
analyzed. On this basis, a comprehensive warning method for
roof and floor cracking and water inrush risk was established
and applied for verification. The research results can provide
references for the research and application of coal mine water
inrush warning.

2 Engineering background

2.1 Working face overview

The 11,023 working face of Paner Coal Mine is located in the
eastern mining area, Panji District, Huainan City, Anhui Province.
The designed length of the upper gate road is 580 m, the lower
gate road is 760 m, the cutting length is 130 m, and the working
face elevation is −442.8 to −474.1 m. The working face is arranged
along the strike, with a mining direction length of 605 m, an
inclined width of 125 m, an area of 75,625 m2, and it employs
the retreat longwall mining method and fully mechanized top
coal caving mining process. The entire caving method is used to
manage the roof. The third coal seam thickness in the excavation
block of the 11,023 working face ranges from 4.0 to 5.8 m, with
an average thickness of 5.0 m. The coal seam angle is 3–15°,
with an average of 9°. The overlying fourth coal seam at −350 to
−400 m stage has been mined. The underlying 11,221 working face
has been connected. The plan view of the 11,023 working face
is shown in Figure 1.
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FIGURE 1
Plan view of the 11,023 working face.

2.2 Geological survey

Within the mining block of the working face, the immediate roof
consists of dark gray mudstone with a thickness of approximately
1.1–12.0 m and an average thickness of 7.0 m. The compressive
strength ranges from 22.2 to 35.1 MPa. The old roof is composed of
medium-fine sandstonewith a thickness of 7.9–17.0 m and an average
thickness of 12.0 m. The direct floor is mudstone with a thickness
of 1.0–2.0 m and an average thickness of 1.5 m. The average distance
between the thirdcoal seamandtheunderlyingfirst coal seamis1.5 m,
and the distance from the first coal bottom to the C3Ⅰ limestone roof
is 13.20–19.37 m. Details are provided in Table 1. Based on the above
information, the roof of the third coal seam is composed ofmudstone,
sandstone, and medium-fine sandstone. The lithology varies greatly,
the thickness is extremely unstable, mostly mud-calcium cemented,
and a small amount is silica-cemented. It belongs to an unstable to
moderately stable roof, and the overlying rock lithology is classified as
medium-hard to soft and weak types. According to the drilling and
geological data analysis of the 11,023 bottom extraction roadway, the
working face is located in the southernwing of the Panji anticline, and
the geological structure is relatively complex.There are 21 faults in the
mining area, with amaximum fault drop of 5 m, including three faults
with a drop greater than 3 m.

2.3 Threat of water hazards

Based onmining data, surface drilling, geophysical data, and the
analysis of the results of surface area management projects, there are
no collapsed columns or water-conducting faults within the scope
of the working face. The main factors affecting the advance of the
working face are water from Taiyuan Group limestone karst, water
from sandstone fractures in the roof, and fault water. The Taiyuan
Formation limestone can be divided into three groups from top to
bottom, namely, Group C3I, Group C3II, andGroup C3III, with each
group containing 3-6 layers of limestone. They are all weakly water-
rich. The bottom of 11,023 working face is 12.2–32.0 m away from
Group C3I limestone, with an average distance of 20.7 m. During
excavation, the direct source of water supply is the karst water from
Group C3I limestone in the floor, which is the main threat of water
damage during the mining period.

According to exploration data, Group C3I limestone includes
four layers of limestone, with C3 I1 and C3I

2 as thin layers without
water, and C3I

3upper and C3I
3lower as thicker layers with slight water

content. The thickness of Group C3I is 16.9–43.1 m with an average
of 32.5 m, and the total thickness of limestone is 11.4–23.1 m with
an average of 16.1 m. Two pumping tests and onewater injection test
were conducted within the mining area for Group C3I limestone,
with unit water inflow Q = 0.000009–0.0003L/(s.m), permeability
coefficient K = 0.000021–0.0013 m/d, weak water richness, and poor
water conductivity; the mineralization degree is 2.104–2.980 g/L,
and the water quality is Cl-HCO3-K+Na type with a temperature
range of 38°C–42°C.

3 Fiber optic microseismic monitoring
system

When cracks occur, propagate, and friction within rocks, the
cumulative energy is released in the form of stress waves, generating
microseismic events that propagate in the form of P-waves and S-
waves. The microseismic monitoring system uses seismic detectors
or acceleration sensors to convert received waveforms into electrical
signals, which are then transformed into data signals through a data
acquisition system. With specialized data processing software, the
system can accurately determine the time, location, and magnitude
(space-time strength) of microseismic events in three-dimensional
space. This enables qualitative and quantitative evaluations of the
extent, stability, and development trends of rock damage activities.

3.1 Basic principles and monitoring
mechanism

The adopted fiber optic microseismic monitoring system is
based on Michelson fiber optic vibration monitoring technology,
providing high-precision and intelligent monitoring of rock
microfractures. The fiber optic microseismic monitoring
instrument, with advantages such as high sensitivity, wide
frequency response, and large dynamic range, meets the monitoring
requirements for a broad frequency band of coal and rock fracture
vibrations from low seismic to high seismic frequencies. The fiber
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TABLE 1 Coal seam roof and floor conditions.

Roof/Floor Thickness (m) Rock type

Old roof 7.9–17.0 Medium-fine sandstone: Gray, thick-layered,
medium-fine grain structure, parallel bedding,
primarily composed of quartz with small amounts of
feldspar and muscovite, visible mudstone interlayers,
brittle, hard

3rd coal seam 4.0–5.8 Coal: Black, blocky to powdery, semi-dull to
semi-bright type

Parting rock 1.0–2.0 Mudstone: Dark gray, blocky, dominated by muddy
structure, visible plant-induced fragments, fragmented
in nature

1st coal seam 2.0–4.8 Coal: Black, blocky to powdery, semi-dull to
semi-bright type

Direct floor 0.8–2.2 Mudstone: Dark gray, blocky, dominated by muddy
structure, containing small amounts of sandy
components, visible plant-induced fragments,
unevenly developed coal seams, fragmented in nature

optic microseismic monitoring system in this project consists of one
host unit of a 16-channelmine explosion-proof and intrinsically safe
fiber optic microseismic monitoring device, 16 sensors, one set of
ground collection servers, and supporting microseismic collection
and processing software systems, all connected by armored fiber
optics, as shown in Figure 2.

(1) The mine explosion-proof and intrinsically safe fiber optic
microseismic monitoring device host is divided into three
main components: fiber optic laser module, signal acquisition
and demodulation module, and data acquisition module.
The host creates a fiber optic microseismic monitoring array
through a wavelength division multiplexing network using
the light generated by the fiber optic laser module. The
microseismic vibrations collected by the fiber optic sensors
are converted into analog signals by the signal acquisition and
demodulation module, then transformed into digital signals
by the data acquisition module before being sent to the data
processing and analysis warning center for further analysis.

(2) The fiber optic acceleration sensor uses a polarization-
independent fiber optic Michelson interferometer based on
a push-pull structure. Under the action of microvibrations
generated by rock fractures, the mass block stretches or
compresses the elastic body, causing deformation in the fiber
wound around the elastic body, creating interference phase
difference. The change in optical phase shift is proportional
to acceleration. Through backend phase demodulation
technology, the acceleration signal is restored, achieving
microseismic acceleration monitoring.

3.2 Microseismic monitoring scheme

Considering the geological conditions of the 11,023 working
face and ensuring the accuracy of event location, a total of

16 microseismic monitoring points were deployed in the 11,023
working face network, as shown by the cyan dot in Figure 1.
Eight microseismic monitoring points were arranged in the upper
gate road with a distance of approximately 80 m between adjacent
points, and eight were arranged in the lower gate road with
a distance of about 85 m between adjacent points. This spatial
arrangement provided comprehensive monitoring of the 11,023
working face in all directions. The first microseismic monitoring
point in the upper gate road was approximately 95 m from the
cutting head, while the first point in the lower gate road was
about 145 m from the cutting head. The collection station located
in the return airway and connected to the surface through fiber
optics for signal transmission to the ground server and storage.
The layout scheme of the microseismic monitoring system network
is shown in Figure 3. The detectors adopted the single-axis highly
sensitive acceleration sensors, which needed to be placed at the tail
of the support anchor rod (anchor rod length 2.5 m) with the help of
connecting joints.

3.3 Data processing approach

Once microseismic waveforms are collected, the system
uses a recursive STA/LTA algorithm for initial screening.
Waveforms triggered by four or more channels within 0.4 s
are marked as suspected events and saved. Suspected events
contain both microseismic signals (as shown in Figure 4A) and
a significant amount of construction noise and interference
signals, such as drilling, human movement, drainage pumps,
etc. (as shown in Figure 4B). Noise signals are identified and
removed through signal analysis. After picking the arrival times
of microseismic P waves, the simplex method is used for location.
Based on feedback from location results, the software calculates
theoretical Pwave arrival times for correcting and optimizing arrival
time picking and location errors.
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FIGURE 2
Fiber optic microseismic monitoring system.

FIGURE 3
The layout scheme of microseismic monitoring system on the 11,023 working face.

3.4 Solution of source parameters

After microseismic event location, source parameters can be
solved, focusing on seismic moment, energy, apparent stress, and
apparent volume, and energy density.

3.4.1 Seismic moment
The seismic moment numerically equals the work done during

the source tension or faulting process, causing corresponding non-
elastic deformation. It is a scalar quantity. A larger seismic moment

indicates more severe damage to the source area. The seismic
moment can be estimated using Eq. 1 (Aki, 1968):

M =
4πρvP,S

3RΩP,S

FP,S
(1)

where ρ is the density of the source rock, v is the P-wave or S-
wave velocity, R is the source distance, Ω is the low-frequency
displacement amplitude, and F is the root mean square of the
far-field displacement pattern mapped onto the source sphere for
P-waves (FP = 0.516), and for S-waves (FS = 0.632).
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FIGURE 4
Typical waveforms: (A) rock fracture waveform and (B) noise waveform.

3.4.2 Energy
Microseismic radiation energy (referred to as energy) is the

energy of stress waves radiated outward during the rock fracture
process. In the time domain, the radiated seismic energy of P-waves
or S-waves is proportional to the integral of squared velocity signal,
represented by Eq. 2 (Snoke, 1987):

E = 4πρvP,SR
2SV2 (2)

where SV2 is the integral of the square of the velocity spectrum.

3.4.3 Apparent stress
The apparent stress represents the stress level at the source,

expressed by Eq. 3 (Wyss and Brune, 1968; Wyss and Brune, 1971):

σA =
μE
M
=
ξ
2
(σ0 + σ1) (3)

where μ is the rigidity of the rock mass, ξ represents the seismic
efficiency, σ0 stands for the initial stress, σ1 is the residual stress.
The larger the apparent stress of the microseism, the greater the
energy released in the process of achieving the same non-elastic
deformation.

3.4.4 Apparent volume
The apparent volume measures the volume of rock body that

undergoes the corresponding non-elastic strain under the effect of
apparent stress, and the calculation formula is as follows:

VA =
M
2σA
= M2

2μE
(4)

In Eq. 4, the physical unit of the apparent volume is m3, so it is
convenient to accumulate and can also be analyzed in the form of
a heat map.

4 Spatial microseismic distribution
and division of three zones

The rock failure of the roof and floor and the evolution of
water-conducting fractures caused by mining in the working face
are essentially the macroscopic manifestations of micro-fracture
behaviors such as the expansion of the original cracks and the
formation of new cracks. Based on the spatial clustering properties
of microseismic events, the depth of the concentrated region of
micro-fracturing is regarded as the depth of roof and floor damage.
Therefore, it is reasonable to associate the spatial distribution of
microseismic events with the distribution of geological layers to
determine the depth of floor damage.

4.1 Spatial microseismic distribution

Based on the analysis of microseismic data from 11,023 working
face from October to November 2022, spatial analysis of the
microseismic events was conducted. Figure 5 represents the statistical
count of microseismic events changing with elevation. It can be
seen that microseismic events during different time periods show
similar distribution characteristics in terms of elevation. Most of the
microseismic events are distributed within the range of 0–30 m in the
floor and 0–20 m in the roof. There are more microseismic events in
the floor than in the roof, indicating that the floor is affected bymining
activities resulting in more extensive damage.

Additionally, the variation in the degree of microseismic event
clustering in the roof and floor can be observed. There are notable
turning points in the number of microseismic events within the
30–40 m range of the floor and the 20–30 m range of the roof.
This indicates that the failure depth of the floor is not completely
stratified according to the geological structure. Consequently, it is
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FIGURE 5
The distribution of microseismic events on elevation in different
time ranges.

necessary to determine the depth of roof and floor damage based
on the vertical distribution of microseismic events to dynamically
assess the damage situation.

Figure 6 shows the distribution of microseismic events in the
horizontal direction. It can be seen that during October and
November, microseismic events were mainly distributed within a
range of 100 m in front of the working face. The quantity and energy
of the events increased near the 1# fault anomaly area, mainly due to
themining activities that disrupted the static equilibrium of the fault
structure, causing the fault to release a large amount of energy and
inducing a great deal of microseismic activity. Early roadway sides
also saw microseismic activity, mainly due to mining disturbance-
caused stress changes in the surrounding rock, plus the extension of
the 1# fault anomaly area from the working face to beyond. The rock
on the outer side of the roadway is prone to fragmentation.

4.2 Division of the roof three zones

After the roof of a coalmining face collapses, the rock layers above
progressively fall, layer by layer, until the collapsed gangue comes into
contactwiththeoverlyingrocklayers.Thiszoneofcollapseanddamage
is known as the roof caved zone. After the free fall of the roof rock,
the rock layers above the collapse zone continue to sink and bend.
When this bending exceeds the strength of the rock layers, tensile
fractures and eventual breakage occur. This process develops layer by
layer upwards until the overall sinking and bending of the overlying
rock layers ceases. This part is referred to as the fractured zone.

Based on the range of microseismic activity in the roof, an
analysis of the damage height of the roof rock layers is conducted.
Since the distribution of microseismic events’ height may not
necessarily conform to the statistical distribution in Figure 5, using
the turning point of the statistical distribution as the basis for
dividing the three zones may not reflect the actual situation.
Therefore, the height of the caved zone is inferred from the height of
80%of themicroseismic events.The data analysis infers the height of
the caved zone to be about 31.72 m. The height of the fractured zone
is inferred from the height of the maximum distance between the

microseismic event and the roof.The inferred height of the fractured
zone is about 44.52 m according to data analysis.

According to the geological conditions of the 11,023 working
face. The heights of the caved zone and fractured zone of the roof
are calculated using empirical formulas from the Regulations on
the Preservation of Roof Pillars of Buildings, Water Bodies, Railways
and Main Wells and the Mining Procedure of Pressurized Coal (short
for Regulations) and the Standards for Hydro-geological Geological
Survey in the Mining Area (short for Standards). The calculations
are compared with the heights of the caved zone and fractured
zone of the roof inferred from the microseismic monitoring,
as shown in Table 2. It can be seen that compared with the
empirical formulas, the caved zone height inferred by microseismic
monitoring is higher, and the fractured zone height is in good
agreement.

4.3 Division of floor three zones

Due to the effect of mining pressure, the floor rock strata are
continuously damaged, and the layer zonewith significantly changed
water conductivity is called the floor damaged zone. The floor
water-blocking zone is the part where the rock layer at the bottom
of the coal seam maintains its integrity and original waterproof
performance. This zone is located between the floor damaged zone
and the confined water uplift zone. This zone plays a role in
preventing the connection between the floor damaged zone and the
confined water uplift zone. Since the Floor Direct Water-bearing
Layer of 3 Coal is a weak water-bearing layer, the confined water
uplift zone can be ignored. According to the range of microseismic
activity in the floor, the depth of floor damaged is analyzed. Using
the depth where 80% of the microseismic events are concentrated
to infer the height of the floor damaged zone, the data analysis
infers that the floor damaged zone is about 33.94 m below the coal
seam floor; using the deepest depth of the microseismic events
from the floor to infer the height of floor water-blocking zone,
according to the data analysis, the height of the water-blocking zone
is about 54.68 m.

According to the geological conditions of the 11,023 working
face, the height of the floor damaged zone of the floor is calculated
using the empirical formulas from theRegulations and the Standards.
The calculation results of the floor damaged zone height and the
water-blocking zone height are compared with the results inferred
from the microseismic monitoring, as shown in Table 3. It can be
seen that compared with the empirical formula, the height of the
floor damaged zone inferred by microseismic monitoring is higher.
There is no empirical formula for predicting the height of floor
water-blocking zone.

5 Microseismic evolution under the
action of mining disturbance

The formation of water-conducting fractures in coal mine
surrounding rock under mining activities is an evolutionary process
of stress and strain, inevitably accompanied by rock fracturing,
crack expansion, and other rock mechanics phenomena, leading
to microseismic events. Studying the evolution of microseismic
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FIGURE 6
The distribution of microseismic events in the horizontal direction.

TABLE 2 Inferred heights of roof caved zone and fractured zone from
empirical formulas and microseismic monitoring.

Method Roof caved
zone height (m)

Roof fractured
zone height (m)

Empirical formula in
Regulations

9.56–13.96 37.50–48.70

Empirical formula in
Standards

18.00 47.32–57.52

Inferred from
microseismic
monitoring

31.72 44.52

TABLE 3 Inferred heights of the floor damaged zone and water-blocking
zone from empirical formulas and microseismic monitoring.

Method Floor damaged
zone height (m)

Floor
water-blocking
zone height (m)

Empirical formula in
Regulations

13.96–15.78

Empirical formula from
Standards

14.62

Inferred from
microseismic
monitoring

33.94 54.68

parameters under the action of mining disturbance can be used to
evaluate the formation of water-conducting channels and the risk of
water inrush.

5.1 Correlation between construction
footage and micro-fractures

The correlation between the cumulative energy of daily
microseismic events, the cumulative number of events, and

the daily footage in November is statistically summarised,
as shown in Figure 7. It can be seen that the mining speed was
relatively high at the beginning of November. Correspondingly,
the number of microseismic events was also higher. As the
mining speed decreased, the degree of mining disturbance
reduced, and the number of microseismic events also showed a
downward trend. Overall, there is a certain positive correlation
between the two.

Similarly, the daily cumulative energy of the microseismic
events on the 11,023 working face is positively related to the
mining speed. Since the energy release size during the surrounding
rock destruction mainly depends on the original geostress field
and the coal rock geological conditions, the defects like joints,
structural planes, and other adverse geological bodies existing
in the surrounding rock make different sections have certain
differences in the stress field and geological conditions. Therefore,
the fluctuation of cumulative energy is relatively more apparent.
The advancement speed of the working face and the frequency
and energy of the microseismic events caused by disturbances
are somewhat related. When the mining speed is faster, the
intensity of microseismic activity will increase, thereby increasing
the risk of roof and floor fracturing and water inrush. Thus,
the risk of roof and floor fracturing and water inrush can
be reduced by reasonably controlling the mining speed of the
working face.

By taking daily excavating progress, microseismic event counts,
cumulative energy, apparent stress, and apparent volume as five
parameters inNovember, their correlation coefficients are calculated
and the resultant confusionmatrix is acquired, as shown in Figure 8.
The excavation progress has a low correlation coefficient with
various source parameters. The number of microseismic events and
the cumulative energy are significantly positively correlated, and the
apparent stress and apparent volume are negatively correlated at a
smaller degree. In short, thesemicroseismic parameters characterize
the evolution of rock micro-fractures under the influence of mining
disturbance from different dimensions. Through the statistical
analysis of the abnormal changes of these parameters, dynamic early
warning of roof and floor fracturing and water inrush risks can
be realized.
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FIGURE 7
Changes of microseismic parameters under excavation disturbance in November. (A) Relationship between daily microseismic event count and daily
footage, (B) Relationship between daily cumulative energy and daily footage.

5.2 Periodic changes in microseismic
parameters

Figure 9 shows the variation curves of the daily average apparent
stress and cumulative apparent volume of the roof microseismic
events from October to November. It can be seen that the apparent
stress and apparent volume are roughly negatively correlated.
Moreover, the apparent stress and apparent volume generally show
periodic changes. The time interval for the trough of the apparent
volume is about 3 days.

Periodic pressure is a phenomenon that occurs when themining
face continues to advance and the span of roof exposure reaches
a certain length, causing the roof to break and collapse along the
coal wall. Influenced by the advancement of the working face, this
collapse phenomenon often appears periodically. According to field
records, the periodic pressure time interval of the initial mining
face roof is about 4 days. Judging from the periodic changes of
the microseismic event parameters above, the two have a good
correspondence. Specifically, when periodic pressure occurs, the
averagemicroseismic apparent stress is often low, and the cumulative
apparent volume is often high. Then the average apparent stress
gradually increases and the apparent volume decreases. When
the next periodic pressure event occurs, the apparent stress of

a microseismic event drops again, and the cumulative apparent
volume increases simultaneously.

According to the periodic changes in microseismic parameters,
it can be considered that the rock mass has undergone a process of
stress accumulation and stress release. As the working face advances,
the roof continues to accumulate stress under its ownweight and the
load of the overlying rock layer, which ismanifested as an increase in
microseismic apparent stress. When the accumulated stress reaches
a certain level, the accumulated stress starts to be released and the
roof collapses as weight, manifested as an increase in microseismic
apparent volume. With the release of stress, the apparent stress also
starts to decrease. In summary, the apparent stress and apparent
volume effectively reflect the stress-strain process in the rock mass
under excavation disturbance. Apparent stress can serve as an
indicator to measure the degree of stress accumulation in the rock
mass, while the apparent volume can serve as an important index to
quantify the extent of rock fracturing.

5.3 Microseismic energy distribution

The energy released during rock fracturing involves dissipative
energy and elastic strain energy. Elastic strain energy is
positively correlated with high stress, which is a necessary
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FIGURE 8
Confusion matrix of excavation footage and microseismic parameters.

FIGURE 9
The daily average apparent stress and cumulative apparent volume of the roof microseismic events from October to November 2022.

condition for the fracturing and water permeability of the roof
and floor. Therefore, the vertical distribution of microseismic
energy obtained from monitoring can indirectly reflect the
high-stress distribution necessary for the formation of water-
conducting channels.

From October to November 2022, the maximum energy of a
microseismic event on the mine floor was 6,655.89 J. The number
of events in the energy ranges of 0J–100J, 100J–500J, 500J–1000J,
and above 1000 J were 401, 58, 5, and 1, respectively, accounting
for 86.24%, 12.47%, 1.08%, and 0.22% of the total. The energy
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FIGURE 10
The distribution of cumulative energy on elevation in different time ranges.

FIGURE 11
Cumulative apparent volume contour of the floor during October-November.

of microseismic events is low, indicating a lesser degree of rock
fracturing. Vertically, high-energy events are mainly concentrated
within 20 m of the mine floor (as shown in Figure 10). In
the Carboniferous II group limestone and below, only scattered
low-energy microseismic events were observed, with no deep
aquifer microseismic events detected. No hidden water-conducting
structures or weak areas were found in the monitored area
of the working face floor, making it impossible to form water
inrush channels.

5.4 Apparent volume and water inrush risk

Since apparent volume can quantify the degree of rock
fracturing, it can be used to assess the development of water-
conducting fracture zones in the mine floor and the risk of

water inrush. Project the microseismic events of the mine floor
onto a horizontal plane and divide the mining area into a
grid of 30 × 160. Calculate the cumulative apparent volume
of microseismic events in each grid. Based on the cumulative
apparent volume in each grid, draw an apparent volume cloud
map. By analyzing the apparent volume cloud map, the extent
of non-elastic deformation of the mine floor and the potential
locations of water-conducting fractures can be determined. Finally,
the potential directions of extension of water-conducting channels
can be identified based on areas with higher apparent volumes
on the map.

The apparent volume cloud map of the mine floor from
October to November is shown in Figure 11. It can be seen
that the areas with higher apparent volumes overlap with the
distribution of 1# fault anomaly area. The highest cumulative
apparent volume is 204,514 m3. According to hydrogeological
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TABLE 4 The range of warning indicators for the depth of fractures.

Indicator: Height (m) Roof caved zone Roof fractured zone Floor damaged zone Floor
water-blocking zone

Average 31.72 44.52 33.94 54.68

Standard deviation 10.75 14.25 8.87 13.32

Low level warning threshold 53.21 73.02 51.69 81.31

Medium level warning
threshold

63.96 87.27 60.56 94.63

High level warning threshold 74.71 101.53 69.44 107.95

TABLE 5 The range of warning indicators for the intensity of fractures.

Roof event count Roof cumulative
energy

Floor event count Floor cumulative
energy

Average 21.95 1,460.53 36.86 2060.14

Standard deviation 9.22 1,115.67 12.63 1,598.01

Low level warning threshold 40.39 3,691.87 62.12 5,256.15

Medium level warning
threshold

49.62 4,807.54 74.75 6,854.16

High level warning threshold 58.84 5,923.21 87.38 8,452.16

TABLE 6 The range of warning indicators for the water inrush risk.

The maximum cumulative apparent
volume in each grid cell

The elevation of the maximum
microseismic energy event

Average 122,231.20 −474.06

Standard deviation 39,700.23 17.94

Low level warning threshold 201,631.65 −509.93

Medium level warning threshold 241,331.88 −527.87

High level warning threshold 281,032.11 −545.81

conditions, this magnitude of cumulative apparent volume is
insufficient to form fault water. In early warning practices,
microseismic energy and apparent volume are often complementary
parameters. For example, a large apparent volume may
indicate a broad area of fracturing and deformation but does
not necessarily mean that these areas are accompanied by
a significant release of energy. On the other hand, high-
energy microseismic activity may indicate a localized area
undergoing severe damage, representing the manifestation of
high stress. Therefore, using both indicators in combination
can provide a more comprehensive assessment of the rock
damage status and water inrush risk.

6 Comprehensive warning method of
roof and floor cracking and water
inrush risk

6.1 Early warning method

Due to the fact thatmicroseismic activity is mainly concentrated
in the range of 0–20 m on the roof and 0–40 m on the floor, and the
microseismic energy is generally small, the risk of water inrush is
relatively low, making it difficult to establish a microseismic index
quantization early warning model based on traditional intelligent
algorithms and established water inrush disasters. Therefore, this
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FIGURE 12
The fracture depth and warning results from December 2022 to May 2023. (A) Roof, (B) Floor.

study adopts an anomaly detection approach to establish an early
warning model for water inrush risk based on anomaly judgment
criteria. From the three dimensions of fracture depth, fracture
strength, and water inrush risk, different discriminant indicators are
used for earlywarning. Based on the results of previousmicroseismic
monitoring, the distribution of each indicator is determined, and
the expected value and standard deviation of each indicator under
normal conditions are solved.Then, the double standard deviation is
taken as the early warning threshold.That is, if the indicator deviates
from the double standard deviation, it is considered abnormal and
an early warning judgment is made. The greater the degree of
deviation of the indicator, the higher the risk of cracking and water
inrush. Therefore, every time a standard deviation is exceeded, the
early warning level is raised one level.

During early warning, the size of the early warning indicator is
calculatedbasedonthecurrentmonitoringdata, and theearlywarning

level is determined. Finally, the comprehensive earlywarning results of
the depth of fractures, the intensity of fractures, and the water inrush
risk are provided, providing a reference for the prevention and control
of water disasters. This comprehensive early warning method can
be integrated with the microseismic data processing and positioning
interface based on artificial intelligence to achieve automatic early
warning and generate early warning reports automatically.

6.2 On-site performance

6.2.1 Quantification of early warning indicators
based on initial mining monitoring data
6.2.1.1 The depth of fractures

The depth of fractures mainly depends on the vertical
distribution ofmicroseismic events in the 3 days before the warning.
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FIGURE 13
The fracture intensity and warning results from December 2022 to May 2023. (A) Roof, (B) Floor.

Following the stratification criteria determined in Section 4, the
height at which 80% of the microseismic events are concentrated is
used to infer the height of the roof caved zone and the floor damaged
zone. The maximum distance between microseismic events and the
roof and floor are used to infer the height of the roof fractured
zone and the floor water-blocking zone. According to the statistical
results of monitoring from October-November, the average height,
standard deviation, and the range ofwarning indicators for the depth
of fractures obtained from thewarning criteria are shown in Table 4.

6.2.1.2 The intensity of fractures
The intensity of fractures is primarily determined based on the

number of microseismic events and the cumulative energy in the
roof andfloor during the 3 days preceding thewarning.According to
the statistical results of the monitoring from October to November,
the average number detected in the floor over three consecutive days
was 36.86, the average cumulative energy was 2060.14 J, and the

standard deviations were 12.63 and 1,598.01 J, respectively. For the
roof, the average number of events was 21.95, the average cumulative
energy was 1,460.53 J, and the standard deviations were 9.22 and
1,115.67 J, respectively. According to the warning criteria, the range
of the intensity of fracture warning indicators are shown in Table 5.
A warning is issued if any one of the event count or cumulative
energy exceeds the warning indicator.

6.2.1.3 The water inrush risk
The water inrush risk is primarily based on the cumulative

apparent volume cloud map of the floor in the 3 days preceding
the warning moment. To simplify calculations, only the maximum
cumulative apparent volume in each grid cell of the cloud map
is taken as the warning indicator for assessing the risk of water
inrush. According to the warning criteria, the range of warning
indicators for the water inrush risk is shown in the table. As a useful
supplement, the elevation of the daily maximum microseismic
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FIGURE 14
The water inrush risk and warning results from December 2022 to May 2023.

energy is also used as an indicator of water inrush risk warning, in
order to quantify the depth of stress accumulation. According to the
statistics of the monitoring results from October to November, the
range of the warning indicator obtained is shown in Table 6.

6.2.2 Evaluation of early warning effect
The proposed early warning method was applied to the roof and

floor cracking and water inrush warning for the 11,023 working face
since December. During the application process, input parameters
needed to update daily. Microseismic data were collected, input
classification and arrival picking algorithms. The location and
solution of the source parameters were carried out, and warning
indicators were calculated and the warning level determined, finally
giving the early warning result. The fracture depth and warning
results from December to May are shown in Figure 12. After
December 2022, as the mining face gradually moved away from
1# fault anomaly area, the roof fracture depth gradually decreased.
Then, during February 2023, while crossing 2# fault anomaly area,
the roof damage depth increased. Until April 2023, when themining
essentially crossed 3# fault and coal seam thinning anomaly area,
as the mining speed slowed down, the depth of roof fractures
decreased. In comparison, the change of depth was insignificant in
the floor damaged zone and the floor water-blocking zone. As the
warning indicators did not exceed the threshold, no fracture depth
warning was triggered.

The fracture intensity and warning results from December to
May are shown in Figure 13. Due to the slowdown of the mining
pace in December 2022, the number of roof microseismic events
was small. From February 2023, as the mining speed increased, the
number of roof microseismic events increased, but the cumulative
energy decreased. From March to April 2023, with a faster mining
speed, and crossing 3# fault and coal seam thinning anomaly
area, the disturbance caused the surrounding rock to fracture
more, thus the number of roof microseismic events and cumulative
energy reached their peaks. As the mining speed decreased in the

late period, the number and energy of microseismic events also
decreased. As the cumulative energy exceeded the threshold in
mid-April, a low and medium level warning was triggered for roof
fracture intensity. In comparison, the peak of floor microseismic
events occurred in March, and the peak of cumulative energy
occurred in April, overall being less influenced by geological
conditions. As the warning indicators exceeded the threshold in
March, a low-level warning was triggered for floor fracture intensity.

The water inrush risk and warning results from December to
May are shown in Figure 14. Since December 2022, as the mining
face gradually moved away from 1# fault anomaly area, the stress
release of the working face slowed down, keeping the apparent
volume low. From January to March 2023, as the face crossed
2# fault anomaly area, 3# fault and coal seam thinning anomaly
area, the apparent volume returned to the level established by
the warning indicators from October to November. After April,
the apparent volume continuously decreased. In comparison, the
elevation of the maximum microseismic energy event does not
show any apparent anomalies. Since the warning indicators did not
exceed the threshold, no warning was triggered for water inrush
risk. In summary, the changes in microseismic activity, geological
conditions, and early warning indicators during the mining period
have a good correspondence, which demonstrates the effectiveness
of the established early warning method.

7 Discussion

Based on the initial monitoring data from working face 11,023,
the early warning method for water inrush proposed in this study has
established a comprehensive early warningmodel.The characteristics
ofmicroseismicactivitymayvaryfordifferentprojects,butremainself-
similar within the same project. Figures 5, 10, as well as other figures,
alsodemonstratesimilarspatialandenergydistributioncharacteristics
of microseismic activity across different time periods. Therefore, it is
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reasonable todevelopanearlywarningmodelbasedon the self-similar
nature of microearthquakes.

However, due to variations in microseismic activity among
different projects, the actual distribution characteristics of
microseismic activity used to divide the three zones and establish a
comprehensive early warning model may differ significantly from
those observed in this case. For instance, at the Dongjiahe Coal
Mine, most microearthquakes are concentrated in the roof area
and occurrences within tens to hundreds of meters depth are
not uncommon (Cheng et al., 2017). In such cases, appropriate
adjustments should be made to the segmentation threshold of the
comprehensive early warning model based on actual microseismic
distribution and geological conditions.

Additionally, this study utilizes the standard deviation of
microseismic distribution to establish the warning threshold.
Depending on the degree of similarity of the specific problem,
the distribution characteristics of key early warning indicators,
and mathematical modeling skills, other types of early
warning methods can also be considered (Feng et al., 2023b;
Xiang et al., 2023; Cai et al., 2024).

8 Conclusion

This study focuses on assessing the cracking of both the roof
and floor within the 11,023 working face of the Paner Coal
Mine, particularly under the influence of mining disturbances and
hydraulic pressure, while also evaluating the potential risk of water
inrush incidents.Throughmeticulous analysis of the spatiotemporal
distribution of microseismic events and an in-depth exploration
of the interplay between key source parameters including energy,
apparent stress, and apparent volume, and excavation disturbances,
the research endeavors to gauge the extent of roof and floor cracking
and the associated risk of water inrush.Moreover, the study pioneers
the establishment of a comprehensive early warning methodology
tailored to predict roof and floor fractures as well as anticipate water
inrush risks. The conclusions can be drawn as follows:

(1) It proposes to use the height at which 80% of microseismic
events are concentrated to infer the height of the roof caved
zone and the floor damaged zone; and to use the maximum
distance betweenmicroseismic events and the roof and floor to
infer the height of the roof fractured zone and the floor water-
blocking zone. Compared to the three-zone height division
based on empirical formulas, the three-zone division through
microseismic monitoring can dynamically identify the current
fractured zone height of the roof and floor of the working
face, better predicting the impact of mining disturbances and
hydraulic pressure on them.

(2) The advancement speed of the working face has a certain
correlation with the frequency and energy of microseismic
events caused by disturbances.The periodic changes in average
apparent stress and cumulative apparent volume correspond
well with the roof pressure during back mining. Apparent
stress can be used as an indicator to measure the degree of
stress accumulation in the rock mass, while apparent volume
is an important indicator for quantifying the degree of rock
fracturing.

(3) It proposes a comprehensive early warning method for roof
and floor cracking and water inrush risk, considering three
dimensions: the depth of fractures, the intensity of fractures,
and the water inrush risk. Based on previous microseismic
monitoring results, twice the standard deviation of each
warning indicator is used as the warning threshold. The
application and verification during the back mining period of
the 11,023 working face show a good correspondence between
microseismic activity, geological conditions, and the change
in warning indicators, demonstrating the effectiveness of the
established warning method.
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Simulation and prediction of
dynamic process of loess
landslide and its impact damage
to houses

Zhou Zhao*, Yuhan Zhang, Xing Chen, Jiangbo Wei,
Jianquan Ma, Hao Tang and Fei Liu

College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China

The mountainous areas of the Loess Plateau in China are crisscrossed
with ravines, fragile ecological environment, and frequent landslide hazards.
Landslides often cause building collapses and casualties, seriously affecting the
sustainability of economic and social development in the region. In order to
study the damage of loess landslides to village and town buildings, the paper
takes the Xingwang landslide in Fugu County, Shaanxi Province, China as an
example, and uses discrete element method and finite element method to study
the dynamic process of landslide and its damage to houses. Firstly, the geological
characteristics of the landslide were identified by means of investigation,
surveying, engineering exploration and geotechnical testing. Secondly, a three-
dimensional numerical model of the landslide area was established by using
the particle flow code system (PFC3D). Finally, the entire movement process
of the landslide was simulated, and the impact damage to houses induced
from landslide was analyzed and predicted. The results show that the whole
movement of the landslide lasted a total of 180 s, with a maximum average
velocity of 2.01 m/s and a maximum average displacement of 73.7 m. The first
and second rows of houses located at the foot of the landslide will suffer
serious damage, with most bricks displacement ranging from 0.1 to 2.5 m and
a maximum displacement of 10.3 m, posing a serious safety risk to the houses.
Only a portion of the third row houses will be damaged, and the fourth row
houses will not be threatened by landslide. By comparing with the prediction
results of other methods and the current situation of buildings deformation, the
results of this paper have a certain credibility. This study provides a numerical
method for quantitative assessment of the risk and building damage for loess
landslide, which can be used as a reference. It also provides technical support for
formulating hazard prevention and reduction plans for the Xingwang landslide.

KEYWORDS

loess landslide, dynamic process, impact damage to houses, simulation and prediction,
the discrete element method, the finite element method

1 Introduction

Landslides are a common geological hazard in mountainous areas of China, with
strong destructiveness and huge harmfulness. Landslides on the Loess Plateau account for
at least one-third of the total number of landslides in China (Ji et al., 2024), and more
than 16,600 loess landslides have been developed in northern Shaanxi (Peng et al., 2016;
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Peng et al., 2019), which have caused a large number of casualties
and property losses, affecting the socio-economic development of
urban areas. For example, the Sale Mountain loess landslide in
1983 resulted in 220 deaths (Yan et al., 2018), the Baqiao loess
landslide occurred in 2011 with 32 deaths (Zhuang et al., 2015), and
the Jiangliu loess landslide in 1984 buried large areas of farmland
and houses (Liu and Kang, 1986). From the perspective of hazard
consequences, the mobility of landslide and its impact performance
on buildings are the key reasons for these casualties and losses.
Therefore, the prediction study on the whole process of loess
landslide movement and impact damage to houses of great practical
significance for landslide risk prevention and reduction.

The landslide movement is a dynamic process with a time effect.
Currently, research in this area mainly focuses on landslide velocity,
displacement, influence range and other indicators (Wang et al.,
2023; Wu et al., 2023; Xu et al., 2023). On the other hand, the
prediction of damage caused by landslides impact to buildings
needs to be based on the analysis of the landslide movement,
so the study of landslide dynamic processes has always been
a hot topic in the field of engineering geology. Considering
the significant difficulties in accurately measuring the dynamic
indicators of landslides during the sliding process, researchers have
begun to use numerical simulation methods to study the motion
characteristics in recent years (McDougall, 2006; Xiao and Lin, 2016;
Li et al., 2019; Wang et al., 2020; Li et al., 2021; Chang et al., 2022;
Song et al., 2023; Zhang et al., 2024), which not only reduces the
cost but also visualizes the process of landslide movement and the
physical law.

At present, in terms of numerical simulation of landslide
dynamic processes, there are generally two types of models:
finite element models and discrete element models. The former
mainly relies on the continuum theory for the study of landslides
dynamic characteristics, and the corresponding software system
mainly includes DAN3D (Delaney and Evans, 2015; Jordan and
Oldrich, 2016; Gao et al., 2023), FLOW-3D (Zhang et al., 2022;
Sabeti et al., 2024), MassMov2D (Monia et al., 2014; Ma et al.,
2021), etc. The latter mainly relies on the discontinuous theory
and is commonly used to study the dynamic characteristics,
energy evolution characteristics, and deformation characteristics
of buildings during landslide movement, mainly includes PFC
(Wei et al., 2019; Zhao et al., 2023; Li et al., 2021), UDEC (Luo et al.,
2021; Zabuski and Marcato, 2020; Li et al., 2021), 3DEC (Wu and
Hsieh, 2021; Mreyen et al., 2022) and so on. In contrast, finite
element method has the advantages of simple modeling, convenient
operation, and low computational complexity. However, it has
limitations in analyzing the flow and deformation characteristics
of granular materials and solving large deformations. In fact, the
most commonly used PFC (particle flow code) in the discrete
element method can treat the landslide as a body composed of
several particles, and simulate the deformation and motion process
of the landslide through the interaction between particles and
walls. Compared with the continuous medium model, the PFC
does not require the assumption of macroscopic continuity to
solve the problems. It can better simulate the deformation, failure,
and movement processes of loose rock and soil mass such as
loess landslides, and monitor their changes in velocity, impact
force, energy transfer, and other characteristics. Therefore, it is
increasingly widely used in the study of the dynamic process of

soil landslides (Tang et al., 2009; Lo et al., 2011; Hu et al., 2019;
Chen, 2022; Zhao et al., 2023). In the research of houses damage
induced from landslide, the existing cases have shown that the
discrete element model can effectively simulate the dynamic process
of masonry structure houses subjected to landslide, especially in
simulating the deformation and cracking of masonry. However,
it is difficult to express the continuous deformation of the wall
(Zhao et al., 2023).The finite elementmodel has obvious advantages
in analyzing the continuous deformation and overall displacement
of masonry, but it is difficult to express the failure characteristics
such as masonry cracking (Luo et al., 2019; Luo et al., 2019).

In the mountainous areas of the Loess Plateau in China, village
and town buildings are mostly single story houses with brick
and concrete masonry structures. Analyzing and predicting the
damage of these types of buildings induced from loess landslides
has become a key aspect for landslide quantitative risk assessment.
However, most of the available research results focus on the
damage to buildings caused by accumulation layers or debris
landslides, a few studies on loess landslides. The researchers of
this manuscript have used discrete element method and finite
element method to predict the dynamic process of a shallow
accumulation layer landslide and its impact damage to brick-
concrete buildings (Zhao et al., 2023), but whether these methods
are also applicable to the scenario simulation of a loess landslide is
a small task worthy of discussion. In view of this, the manuscript
takes the Xingwang loess landslide as an example. Based on field
investigation, UAV survey, geological exploration, and geotechnical
test analysis, a three-dimensional numerical model of landslide
was established by using PFC3D discrete element program. The
entire dynamic process of the landslide was simulated, and
dynamic parameters such as velocity, displacement, and impact force
were obtained. On this basis, discrete element model and finite
element model are used respectively to simulate and predict the
landslide damage of buildings. The relevant results have important
reference significance for risk assessment and hazard prediction of
loess landslides.

2 Materials

2.1 Landslide environment

The Xingwang landslide is located in the loess mountainous
area in the southern part of Fugu County, Shaanxi Province,
with geographical coordinates of 38° 59′37″N and 110°
44′16″E (Figure 1). The area belongs to the temperate continental
monsoon semi-arid climate, with large temperature differences
and variable climate. The rainfall in August is the largest, mostly
rainstorm, which is easy to cause landslide occurs. Except for the
Jurassic sandstone or mudstone exposed in some local valleys, most
areas are covered by Quaternary loess, and the fault structures are
not developed.

2.2 Landslide characteristics

The landslide is located on a loess slope northeast of Xingwang
Village (Figure 2), with a total length of about 300 m, an average
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FIGURE 1
Location and image of Xingwang landslide: (A) and (B) Location of landslide; (C) Image of landslide area; (D) A photo of landslide area.

width of about 90 m, an average thickness of about 32 m,
the height is about 38m, and the volume is about 4.37515 ×
105 m3. The main sliding direction is about 210°. The sliding
body is tongue shaped on the plane, and due to the influence
of engineering excavation, the front edge of the slope is steep
with a slope of about 45°. The upper part of the slope is
relatively flat, about 5°–10°, with gullies on both sides as the
boundary (Figure 2A).

Over the past 10 years, two tensile cracks with a width of
5–10 cm and a length of about 12 m have appeared at the rear edge
of the landslide (Figure 2B). Local collapse has occurred at the top
of the steep slope at the front edge (Figure 2C), and the original
retaining wall has undergone bulging deformation and cracking
(Figure 2D). The horizontal ground at the foot of the slope has
raised and cracked (Figures 2E, F). The first row of houses near the
foot of the slope threatened by the landslide have also gradually
deformed and cracked locally. All these signs of deformation
indicate that the Xingwang landslide is in a stage of creep
deformation.

Drilling data shows that the Xingwang landslide is a loess
landslide, with the sliding body mainly composed of Quaternary
loess (Figure 3).In addition; the sliding surface near the shear outlet
exhibits an anti-tilting characteristic and intersects with the ground
water level (Figure 3).

2.3 Buildings

At the foot of the landslide slope, there are four rows of buildings,
each row of 13 houses, all of which are single-storey brick-concrete
structures (as shown in Figure 1D). Each room is 7 m wide, 10 m
long and 4 mhigh, with a foundation depth of 0.6 m.The roofs of the
houses are 120 mm thick cast-in-place concrete floors, and the walls
are 240 mm thick ordinary sintered brick walls. The cross-section
size of the structure column and ring beam is 240 mm × 240 mm,
and the built-in longitudinal reinforcement bar is made of 4 bars
with the diameter of 12. The stirrup adopts the model diameter
of 6 steel bars, and the encryption spacing is 150 mm. The hoop
reinforcement is made of steel bars with a diameter of 6, with an
increased spacing of 150 mm.

3 Modeling methology

3.1 Modeling based on PFC

3.1.1 Calibration of landslide soil mesoscopic
parameters

The calibration of mesoscopic parameters in the PFC3D

determines the performance and accuracy of the landslide
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FIGURE 2
Details of the Xingwang landslide: (A) Gullies on both sides of the landslide; (B) scarp and cracks at the rear edge; (C) Collapse of the steep slope at the
front edge; (D) Cracks at the retaining wall; (E) Cracks at the slope foot; (F) Cracks at the house floor.

FIGURE 3
Geological profile of section II-IIʹ of Xingwang landslide. The location of the section is shown in Figure 2.

simulation, which is a key step in model construction, as well
as characterizing the macroscopic mechanical properties of the
landslide soils. The main mesoscopic parameters include particle
density, particle size, normal stiffness, tangential stiffness, friction
coefficient, etc. The inversion trial and error method is usually used
to conduct numerical triaxial tests on soil mass with calibrated
initial mesoscopic parameters of particles. When the test results
are consistent with the physical and mechanical test results
in laboratory, these mesoscopic parameters are applied to the
construction of landslide numerical models (Wu et al., 2023).

In this paper, the corresponding stress-strain curves under
different confining pressures were obtained through laboratory
tests (Figure 4A), the Mohr’s stress circle and Mohr’s-Coulomb

strength envelope were plotted (Figure 4B), and the macroscopic
parameters of the landslide soil mass under saturated conditions
were obtained - internal friction angle (13.2°) and cohesive force
(11.8 kPa). Numerical triaxial tests were carried out in PFC3D
(Figure 4C). After multiple calculations, when the macroscopic
shear strength of soil mass obtained by numerical tests is
consistent with that obtained by laboratory tests, the current
microscopic parameters of particles can be used to build a landslide
model (Table 1).

3.1.2 Calibration of houses parameters
For the buildings, considering that these houses are all single

story and brick concrete structures, the RBlock module in PFC
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FIGURE 4
(A) Stress-strain curve; (B) Numerical simulation model of triaxial compression test; (C). Mohr stress circle and Mohr-Coulomb strength envelope.

TABLE 1 Mesoscopic parameters of the landslide in PFC model.

Density (kg/m3) Rmin/Rmax Kratio Friction pb_ten (Pa/m) pb_coh (Pa/m) pb_rmul

1580 0.3 1.0 0.28 7e5 5e5 0.5

TABLE 2 Parameters related to the brick house model.

Parameter Value Parameter Value

Brick size (m) 0.24×0.12×0.06 Density (kg/m3) 1850

Damp 0.7 Friction 0.65

Normal to tangential bond stiffness ratio 1.0 Deformation modulus (Pa) 1e8

Pb_ten (N/m) 3e6 Pb_coh (N/m) 6e3

software was chosen for building modeling, and the mortar material
was replaced by the bonding between bricks. The parameters
for modeling have been detailed in another research paper of
the author (Zhao et al., 2023), and the relevant parameter values
are shown in Table 2.

3.1.3 Model generation
Thedetailed technical scheme for constructing landslidemodels

has been listed in in two other papers by the author (Zhao et al.,
2023; Wei et al., 2019), and will not be elaborated here. The

main steps include: Firstly, the DEM data of landslide area was
obtained through field survey and UAV mapping, and the sliding
surface DEM was generated in ArcGIS by analyzing the drill data.
Then, integrate the above two DEM data to produce a complete
landslide grid model. Finally, the grid model is imported into
the PFC3D system to complete the construction of the landslide
three-dimensional numerical model. Considering the limitation of
computer performance, 274,505 particles with size between 0.3 and
1.0 m were randomly generated to simulate the landslide body, of
which 12 particles were used as monitoring particles (as shown
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FIGURE 5
(A) Landslide model, the number represents the serial number of the monitored red particles; (B) Combined model of landslide and buildings, with
houses in small windows specifically designed to analyze the impact damage of landslide.

TABLE 3 Main parameters of building materials.

Materials Density (kg/m3) Elasticity modulus (MPa) Poisson’s ratio

Concrete 2.5× 103 2.8× 104 0.2

Reinforced bar 7.8× 103 2.1× 105 0.3

Masonry 1.8× 103 2.2× 103 0.15

TABLE 4 The parameters of houses numerical model.

Materials Expansion Angle(°) Eccentricity ratio fbo/ fco K Viscous parameter

Concrete 30 0.1 1.16 0.667 0.005

Masonry 15 0.1 1.16 0.667 0.005

FIGURE 6
The model produced from ABAQUS: (A) solid model; (B) grid model.

in Figure 5A). And then, the combination model of landslide and
buildings was established by using the RBlock module in PFC,
combined with the UAV surveying information and the house
characteristics shown in Table 2 (the model is shown in Figure 5B).

3.2 Modeling based on ABAQUS

In order to compare with the results of house damage based
on discrete element model (PFC model), a house model of
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the same size is produced based on ABAQUS finite element
program to simulate and predict the overall deformation and
damage of the houses. Considering the limitation of calculation
performance, this paper uses the integral modeling method in
ABAQUS to simulate the house located on the main sliding
section. In this study, according to the characteristics of buildings
investigation, the concrete with strength grade of C25 is selected
for building model. In terms of reinforcement, HRB400 was
selected for longitudinal reinforcement and HRB335 for stirrup
reinforcement. The blocks were selected as sintered ordinary bricks
with grade MU10 strength, while the mortar was selected with
grade M5 strength. The relevant parameters of the house model
are shown in Table 3 and Table 4, and the model is shown
in Figure 6.

4 Results and discussion

4.1 Simulation based on PFC

The simulation of the whole process of Xingwang landslide
movement and impact damage to houses is shown in Figure 7.

4.1.1 Velocity and displacement
According to the analysis of the velocity and displacement

curves of the monitored particles (as shown in Figure 8), the
average peak velocity of the Xingwang landslide is 2.01 m/s, and
the average maximum displacement reaches 73.7 m (Figure 9A),
this happens to be the distance where the back wall of the fourth
row house is located. Compared with the calculated results of
the Empirical model, frictional model (Scheidegger,1973; Seng,
1989) and the Li model (Li and Wang, 1989), the maximum
velocity and displacement at different reach positions in Figure 9A
are both smaller than the calculated values (Table 5; Table 6).
The displacement obtained from PFC model is close to the
calculation results of empirical model and Li model, while Li
models consider the slide conditions. Therefore, the blocking effect
of the houses on landslide reduces the maximum displacement,
and the influence on landslide velocity is particularly obvious.
On the other hand, as a kind of granular material, the collision
and friction between the particles of loess dissipate energy in
the process of landslide movement, which reduces the kinetic
energy, resulting in a decrease in the maximum velocity and
displacement.

4.1.2 Impact force of landslide to houses
The impact force of landslide is a key index to evaluate

the vulnerability of the elements at risk. By using PFC model,
rigid walls are constructed at different positions of slope
foot to monitor the impact force of landslide. Figure 9B
shows the dynamic variation of the impact force on the
rigid wall (8 m high and 60 m wide) at the first row of
houses, and the maximum force is about 19 × 106 N. When
the landslide stops moving, the impact force is constant at
about 14.5 × 106 N. The results of landslide impact force
change with time are basically consistent with those of
Shen et al. (2018), Zhao et al. (2023).

FIGURE 7
Cloud maps of landslide movement and houses displacement at
different times. (A–F) correspond to the cloud maps of landslide and
house displacement at times of 5 s, 10 s, 25 s, 50 s, 75 s, and 150 s,
respectively.

Compared with the dry granular flow impact tests (Jiang et al.,
2020), the normal impact force (Fn) calculation model is
shown in Eq. 1.

Fn = ρdv
2bh0 +

1
2
kρsgbh1

2 (1)

In Eq. 1, ρd is the dynamic density (kg·m−3), v is the averaged
velocity (m·s−1), b is the chute width (m), h0 is the thickness
of the flowing layer (m), k is the earth pressure coefficient,
ρs is the static density (kg·m−3), g is gravitational acceleration
(m·s−2), and h1 is depth measured vertically down from the front
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FIGURE 8
Velocity and displacement curves of the monitored particles: (A) Particle 1, 2, and 3; (B) Particle 4, 5, and 6; (C) Particle 7, 8, and 9; (D) Particle 10, 11,
and 12. The monitored particles are shown in Figure 5A.

FIGURE 9
Average velocity, displacement and impact force curves of landslide: (A) Average velocity and displacement; (B) Impact force.

TABLE 5 List of landslide maximum displacement.

Method Formula Maximum
displacement

(m)

PFC model —— 73.7

Empirical formula L=2H 76

Xieson formula lg (H/L) =
0.1‐0.094 lg V

102.33

Li Baoxiong formula L=n×H/tan ∅ 79.4

Here: H is the total vertical height of the path of the landslide, taking 38 m; V is landslide
volume, taking 4.37515 × 105 m3; L is maximum displacement (m); ∅ is the internal
friction angle of loess, taking 13.2°; n is the coefficient of sliding out conditions for
landslide, taking 0.49.

of the free surface (m). According to Eq. 1, for the Xingwang
landslide, k is equal to 1 (Ashwood and Hungr, 2016), ρd and ρs
are 1580 kg.m−3, g equals 9.81 m.s−2, b is a unit width of 60 m,
h0 = 1.0 m, h1 = 8.0 m. Thus, Fn = 29.8 × 106 N. Obviously,
the computational model is larger than the impact force in the
PFC model due to the failure to consider the bonding strength
between particles.

4.1.3 Damage of buildings
This study selects three houses from each row of the buildings in

front of the slope for analysis the damage induced from landslide (1
house in the east, 1 house in the middle, and 1 house in the west,
as shown in Figure 5B). From the simulation of building damage
(as shown in Figure 7), the landslide began to impact the first row
of houses after 10 s of movement (Figure 7B), and the deformation
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TABLE 6 List of landslide velocity at different displacement.

Method Formula Displacement (m)

10 20 30 50 70 80 90 100 102.33

Velocity (m/s)

PFC method —— 1.9 1.8 1.6 0.5 0.3 0.0 0.0 0.0 0.0

Scheidegger formula v = √2g(H ‐ f × l) 13.1 12.4 11.6 9.6 7.8 6.4 4.8 2.1 0.5

Here: H is the total vertical height of the path of the landslide, taking 38 m;; l represents the distance where the landslide reaches in horizontal direction, which is composed of the horizontal
length of the landslide body (295 m) and its displacement (here we take 10 m, 20 m, 30 m, 50 m, 70 m, 80 m, 90 m, and 100 m and 102.33 m, respectively); f is the friction coefficient of
landslide, expressed as the total vertical height H divided by the maximum l; v is the velocity at different displacements.

FIGURE 10
Characteristics of landslide impact force in height direction: (A) curves of dynamic impact force at different heights; (B) the fitting curve of equivalent
impact force and height.

FIGURE 11
Cloud maps of house damage based on finite element model: (A) Displacement cloud map; (B) Stress cloud map, right red box (inset): stress
distribution inside the impacted wall; (C) compression damage cloud map; (D) Tensile damage cloud map.
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FIGURE 12
Actual deformation and damage of houses: (A) and (B) The shear cracks at the foot of the wall; (B) and (C) The tensile cracks at the roof and
structural columns.

of the wall gradually expanded from the foot to the top, but there
was no significant displacement at this time. After 25 s, the impact
strength of the landslide gradually increased, and the deformation of
the first row of house walls intensified, causing the bricks are sunken
inward (Figure 7C). After 50 s, the first row of houses is completely
buried, and the maximum displacement of some bricks reached
8.2 m, while the foot of the second row of houses began to deform
(Figure 7D). At 75 s, the landslide soil flooded into the first row of
houses, and the deformation of the second row of houses intensified
(Figure 7E). After 150 s, the sliding motion gradually stops. At this
time, the first and second rows of houses at the foot of the slope
were severely damaged, with some bricks reaching a maximum
displacement of 10.3 m, and most of the brick displacement was
distributed between 0.1 and 2.5 m. The third row of houses is not
as severely damaged as the first two rows, with only part of the brick
detached from the wall at the window area and some landslide soil
pouring into the houses (Figure 7F).

4.2 Simulation based on ABAQUS

In order to comparewith the house damage prediction simulated
by discrete element model, the finite element system ABAQUS is
used to construct a new house model (Figure 6). Firstly, we need
to analyze the distribution characteristics of landslide impact force
at different heights to determine the load of the wall per unit area.
Because the impact force in Figure 9B is a dynamic force, we need to
convert it into an equivalent impact force by using Eqs 2, 3.

E = ∫
T3

T1
f(t)dt = S (2)

F = E
ΔT
= S
T3 −T1

(3)

where: T1 is the time when the landslide starts to move (s);
T3 is the time when the landslide stops moving (s); E is landslide
impulse (N·s); S is the area under the impact force curve (N·s); f (t)
is to monitor the horizontal impact force (N); F is the equivalent
impact force (N). The impact forces at different heights of rigid
walls in Figure 9B are shown in Figure 10A. According to Eqs 1,
2, the fitting curves of the equivalent impact force of landslide at
different heights of the wall are shown in Figure 10B. The linear
relationship between the equivalent impact force and the height is:
F = - 1.54 × 106 × H i + 1.96 × 107 (R2 = 0.98) and the horizontal
load is p = −17111.11 × H i + 217,778, with the maximum impact
load being 2.18 × 105Pa. The results demonstrate that the equivalent
impact force increases with the height of the wall. Then, we apply
the horizontal load to the house model in Figure 6, and the result of
house damage is shown in Figure 11.

The simulation results show that the wall moves towards the
interior of the room after being impacted by the landslide, with a
maximum displacement of 0.87 m (Figure 11A), and a maximum
stress of 8.03 Mpa at the foot of the wall (Figure 11B). A large
area of compressive and tensile damage occurs around the wall
impacted by the landslide (Figures 11C, D), which is completely
consistent with the deformation and failure characteristics of the
houses at the foot of the Xingwang landslide (Figure 12). Due to
the integral modeling method, the simulation results cannot display
the collapse situation of the house. However, from the displacement
cloud map, stress cloud map, compression and tensile damage
cloud map of the wall impacted by landslide, it can be seen that
the house located in the first row at the foot of the slope will
inevitably collapse and be damaged.
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5 Conclusion

Based on the above research, the dynamic process of the
Xingwang loess landslide was simulated using the discrete element
method, with a focus on predicting the consequences of landslide
damage to buildings using both discrete element and finite element
models. Through comparative analysis, the following conclusions
can be drawn.

(1) According to the results of discrete element simulation,most of
the displacements of wall bricks are between 0.1 and 2.5 m, and
the maximum is 10.3 m. The finite element model reveals the
displacement, stress and strain characteristics of the building
under the landslide impact. The maximum displacement of
the building is 0.87 m, the stress around the wall is the
most concentrated, and the deformation and damage are the
most obvious, which is basically consistent with the field
investigation.

(2) From the simulation results, the Xingwang landslide will cause
serious damage to the houses at the foot of the slope, and there
is a greater safety risk. Measures such as monitoring, early
warning and engineering treatment should be taken to reduce
the occurrence of landslide accidents and ensure the safety of
residents’ lives and property.

(3) The research shows that the discrete elementmethod is suitable
for the simulation of the dynamic process of loess landslide,
and can accurately predict the dynamic indexes such as the
velocity and displacement of landslide, but it is not perfect
in the analysis of the overall damage of houses. The finite
element model can well simulate the deformation and failure
characteristics of masonry structure and the whole buildings,
but the loading force is static force, and how to simulate the
dynamic impact process of landslide on the buildings is still
worthy of further study.

(4) This study improves the necessary reference for loess landslide
risk assessment using discrete element method and the finite
element method, especially the quantitative prediction of
vulnerability for the buildings. However, there are some
limitations in the study of this paper. For example, it fails to
establish a full simulation model for all buildings due to the
limitation of calculation performance. These deficiencies are
also the focus of our next research.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/SupplementaryMaterial, further inquiries can be directed
to the corresponding author.

Author contributions

ZZ: Investigation, Methodology, Project administration,
Validation, Writing–original draft, Writing–review and editing.
YZ: Software, Writing–original draft. XC: Software, Writing–review
and editing. JW: Software, Writing–review and editing. JM:
Investigation, Writing–review and editing. HT: Investigation,
Writing–review and editing. FL: Investigation, Writing–review
and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work was supported by the Scientific Research Project of Geological
Research Institute for Coal Green Mining, Xi’an University of
Science and Technology (MTy2019-22).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Ashwood, W., and Hungr, O. (2016). Estimating total resisting force in
flexible barrier im-pacted by a granular avalanche using physical and numerical
modeling. Can. Geotechnical J. 53 (10), 1700–1717. doi:10.1139/cgj-2015-
0481

Chang, W., Xu, Q., Dong, X., Zhuang, Y., Xing, A., Wang, Q., et al. (2022).
Dynamic process analysis of the Xinmo landslide via seismic signal and
numerical simulation. Landslides 19 (6), 1463–1478. doi:10.1007/s10346-022-
01876-w

Chen, X. (2022). Prediction study of movement characteristics and impact intensity
of accumulation landslide of southern Shaanxi-Taking Fenghuang Street landslide in
Ningqiang County as an example. Thesis. China: XI’an University of Science and
Technology.

Delaney, K., and Evans, S. (2015). The 2000 Yigong landslide (Tibetan Plateau),
rockslide-dammed lake and outburst flood: review, remote sensing analysis, and process
modelling. Geomorphology 246, 377–393. doi:10.1016/j.geomorph.2015.06.020

Gao, Y., Li, B., Gao, H., Gao, S., Wang, M., and Liu, X. (2023). Risk assessment
of the Sedongpu high-altitude and ultra-long-runout landslide in the lower Yarlung
Zangbo River, China. Bull. Eng. Geol. Environ. 82 (9), 360. doi:10.1007/s10064-023-
03374-2

Hu, X., Fan, X., and Tang, J. (2019). Accumulation characteristics and energy
conversion of high-speed and long-distance landslide on the basis of DEM: a case
study of Sanxicun landslide. J. Geomech. 25 (4), 527–553. doi:10.12090/j.issn.1006-
6616.2019.25.04.051

Ji, Q., Liang, Y., Xie, F., Yu, Z., and Wang, Y. (2024). Automatic and efficient
detection of loess landslides based on deep learning. Sustainability 16 (3), 1238.
doi:10.3390/su16031238

Jiang, Y. J., Fan, X. Y., Su, L. J., Xiao, S. Y., Sui, J., Zhang, R. X., et al. (2020).
Experimental validation of a new semi-empirical impact forcemodel of the dry granular
flow impact against a rigid barrier. Landslides 18 (4), 1387–1402. doi:10.1007/s10346-
020-01555-8

Frontiers in Earth Science 11 frontiersin.org51

https://doi.org/10.3389/feart.2024.1434519
https://doi.org/10.1139/cgj-2015-0481
https://doi.org/10.1139/cgj-2015-0481
https://doi.org/10.1007/s10346-022-01876-w
https://doi.org/10.1007/s10346-022-01876-w
https://doi.org/10.1016/j.geomorph.2015.06.020
https://doi.org/10.1007/s10064-023-03374-2
https://doi.org/10.1007/s10064-023-03374-2
https://doi.org/10.12090/j.issn.1006-6616.2019.25.04.051
https://doi.org/10.12090/j.issn.1006-6616.2019.25.04.051
https://doi.org/10.3390/su16031238
https://doi.org/10.1007/s10346-020-01555-8
https://doi.org/10.1007/s10346-020-01555-8
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhao et al. 10.3389/feart.2024.1434519

Jordan, A., and Oldrich, H. (2016). Dynamic simulation of the motion of
partially-coherent landslides. Eng. Geol. 205, 1–11. doi:10.1016/j.enggeo.2016.
02.006

Li, B., Zhu, Y., Qi, F., and Yuan, Z. (2021). Failure of an under-dip shale
slope and its response under excavation conditions. J. Eng. Res. 9 (1), 63–72.
doi:10.36909/jer.v9i1.8111

Li, B. X., and Wang, D. K. (1989). A new theory of space forecast for loess landslides.
J. Gansu Sci. 10 (3), 57–58. doi:10.16468/j.cnki.issn1004-0366.1998.03.014

Li, D., Zheng, D., Wu, H., Shen, Y., and Nian, T. (2021). Numerical simulation on the
longitudinal breach process of landslide dams using an improved coupled DEM-CFD
method. Front. EARTH Sci. 9, 673249. doi:10.3389/feart.2021.673249

Li, P., Shen, W., Hou, X., and Li, T. (2019). Numerical simulation of the propagation
process of a rapid flow-like landslide considering bed entrainment: a case study. Eng.
Geol. 263, 105287. doi:10.1016/j.enggeo.2019.105287

Liu, Z. Y., and Kang, W. L. (1986). Mechanism analysis of high-speed sliding of
Jiangliu landslide in Jingyang County. Soil Water Conservation China 1986 (02), 19–21.
doi:10.14123/j.cnki.swcc.1986.02.006

Lo, C. M., Lin, M. L., Tang, C. L., and Hu, J. C. (2011). A kinematic model of the
Hsiaolin landslide calibrated to the morphology of the landslide deposit. Eng. Geol. 123
(1–2), 22–39. doi:10.1016/j.enggeo.2011.07.002

Luo, H., Zhang, L.,Wang, H., andHe, J. (2021). Process of building collapse caused by
the Po Shan Road landslide in Hong Kong on 18 June 1972. Landslides 18, 3769–3780.
doi:10.1007/s10346-021-01745-y

Luo, H., Zhang, L., and Zhang, L. (2019). Progressive failure of buildings under
landslide impact. Landslides 16, 1327–1340. doi:10.1007/s10346-019-01164-0

Luo, J., Pei, X., Evans, S., andHuang, R. (2019).Mechanics of the earthquake-induced
hongshiyan landslide in the 2014 Mw 6.2 ludian earthquake, yunnan, China. Eng. Geol.
251, 197–213. doi:10.1016/j.enggeo.2018.11.011

Ma, S., Xu, C., Shao, X., Xu, X., and Liu, A. (2021). A large old landslide in sichuan
Province, China: surface displacement monitoring and potential instability assessment.
Remote Sens. 13 (13), 2552. doi:10.3390/rs13132552

McDougall, S. (2006). A new continuumdynamicmodel for the analysis of extremely
rapid landslide motion across complex three-dimensional terrain. Thesis. CA: The
University of British Columbia.

Monia, E. M., Massimiliano, C., and Claudia, M. (2014). r.massmov: an open-source
landslide model for dynamic early warning systems. Natrual Hazards 70, 1153–1179.
doi:10.1007/s11069-013-0867-8

Mreyen, A., Donati, D., Elmo, D., Donze, F., and Havenith, H. (2022). Dynamic
numerical modelling of co-seismic landslides using the 3D distinct element method:
insights from the Balta rockslide (Romania). Eng. Geol. 307, 106774–106790.
doi:10.1016/j.enggeo.2022.106774

Peng, J.,Wang, S.,Wang, Q., Zhuang, J., Huang,W., Zhu, X., et al. (2019). Distribution
and genetic types of loess landslides in China. J. Asian Earth Sci. 170, 329–350.
doi:10.1016/j.jseaes.2018.11.015

Peng, J., Wu, D., Duan, Z., Tang, D., Cheng, Y., Che, W., et al. (2016).
Disaster characteristics and destructive mechanism of typical loess landslide cases
triggered by human engineering activities. J. Southwest Jiaot. Univ. 51 (05), 971–980.
doi:10.3969/j.issn.0258-2724.2016.05.021

Sabeti, R., Heidarzadeh, M., Romano, A., Ojeda, G., and Lara, J. (2024).
Three-dimensional simulations of subaerial landslide-generated waves: comparing
OpenFOAM and FLOW-3D HYDRO models. Pure Appl. Geophys. 181, 1075–1093.
doi:10.1007/s00024-024-03443-x

Scheidegger, A. E. (1973). On the prediction of the reach and velocity of catastrophic
landslides. Rock Mech. 5 (4), 65–236. doi:10.1016/0148-9062(74)91709-4

Seng, X. K. (1989). Translated byWangN.Q.Geomorphologic prediction of landslide
movement distance. Railw. Geol. Subgrade 3, 42–∼47.

Shen, W., Zhao, T., Zhao, J., Dai, F., and Zhou, G. (2018). Quantifying the impact
of dry debris flow against a rigid barrier by DEM analyses. Eng. Geol. 241, 86–96.
doi:10.1016/j.enggeo.2018.05.011

Song, K., Ruan, D., Lyu, H., Han, L., and Huang, H. (2023). Material point method-
based simulation and dynamic characteristic analysis of instability-induced landslide
movement: a case study of the Yanguan landslide in the Three Gorges Reservoir area.
Coal Geol. Explor. 51 (7), 140–150. doi:10.12363/issn.1001-1986.22.11.0897

Tang, C. L., Hu, J. C., Lin, M. L., Angelier, J., Lu, C. Y., Chan, Y. C., et al. (2009). The
Tsaoling landslide triggered by theChi-Chi earthquake, Taiwan: insights from a discrete
element simulation. Eng. Geol. 106 (1-2), 1–19. doi:10.1016/j.enggeo.2009.02.011

Wang, G., Gong,W., Xing, L., and Li, B. (2023).Model tests of run-out and deposition
process of landslide debris considering influence of deposition zone width. J. Eng. Geol.
31 (5), 1637–1647. doi:10.13544/j.cnki.jeg.2022-0117

Wang, H., Liu, S., Xu,W., Yan, L., Qu, X., and Xie,W. (2020). Numerical investigation
on the sliding process and deposit feature of an earthquake-induced landslide: a case
study. Landslides 17 (1), 2671–2682. doi:10.1007/s10346-020-01446-y

Wei, J., Zhao, Z., Xu, C., and Wen, Q. (2019). Numerical investigation of landslide
kinetics for the recentMabian landslide (Sichuan, China). Landslides 16 (7), 2287–2298.
doi:10.1007/s10346-019-01237-0

Wu, F., Sun, W., Li, X., Guan, Y., and Dong, M. (2023). Material point method-based
simulation of dynamic process of soil landslides considering pore fluid pressure. Int. J.
Numer. Anal. Methods Geomechanics 47 (13), 2385–2404. doi:10.1002/nag.3581

Wu, J., and Hsieh, P. (2021). Simulating the postfailure behavior of the seismically-
triggered Chiu-fen-erh-Shan landslide using 3DEC. Eng. Geol. 287, 106113.
doi:10.1016/j.enggeo.2021.106113

Wu, M., Hu, A., Zhou, S., Mao, X., and Fei, W. (2023). Research on calibration
method ofmicroscopic parameters of siltstone based on gray theory. Sci. Rep. 13, 15802.
doi:10.1038/s41598-023-43008-x

Xiao, H., and Lin, P. (2016). Numerical modeling and experimentation
of the dam-overtopping process of landslide-generated waves in an
idealized mountainous reservoir. J. Hydraulic Eng. 142 (12), 04016059.
doi:10.1061/(ASCE)HY.1943-7900.0001203

Xu, Y., Fan, X., Yang, W., and Wang, J. (2023). Analysis of motion process and
dynamic parameters of high-speed and long-distance landslide in shuicheng, guizhou
Province. J. Disaster Prev. Mitig. Eng. 43 (5), 987–998. doi:10.13409/j.cnki.jdpme.
20220109002

Yan, Y. Z., Liu, G., Yang, X. Y., and Huang, D. (2018). Process simulation of the Sale
Mountain landslide based on continuum-based discrete element method. J. Lanzhou
Univ. Nat. Sci. 54 (06), 744–752. doi:10.13885/j.issn.0455-2059.2018.06.005

Zabuski, L., and Marcato, G. (2020). Analysis of potential landslide processes in the
passo della Morte (carnian alps, Italy). Geol. Q. 64 (3), 681–691. doi:10.7306/gq.1552

Zhang, C., Ma, M., Shan, W., and Guo, Y. (2024). Process and numerical simulation
of landslide sliding caused by permafrost degradation and seasonal precipitation. Nat.
Hazards 120 (6), 5429–5458. doi:10.1007/s11069-024-06433-3

Zhang, S., Huang, X., Cheng, Y., and Shen, B. (2022). Near and far field division of
landslide surge and analysis of water wave characteristics. J. Changjiang River Sci. Res.
Inst. 39 (5), 76–82. doi:10.11988/ckyyb.20201283

Zhao, Z. (2013). Study on landslide risk management of county region in southern
mountainous area of Shaanxi Province. Thesis. China: XI’an University of Science and
Technology.

Zhao, Z., Chen, X., Wei, J., Ma, J., and Ye, W. (2023). Numerical study on landslide
dynamic process and its impact damage prediction to brick-concrete buildings, a case
from Fenghuang street landslide in Shaanxi, China. Front. Earth Sci. 10, 1004710.
doi:10.3389/feart.2022.1004710

Zhuang, J. Q., Peng, J. B., Li, T. L., and Wang, F. W. (2015). J. Eng. Geol. 23 (04),
747–754. doi:10.13544/j.cnki.jeg.2015.04.024

Frontiers in Earth Science 12 frontiersin.org52

https://doi.org/10.3389/feart.2024.1434519
https://doi.org/10.1016/j.enggeo.2016.02.006
https://doi.org/10.1016/j.enggeo.2016.02.006
https://doi.org/10.36909/jer.v9i1.8111
https://doi.org/10.16468/j.cnki.issn1004-0366.1998.03.014
https://doi.org/10.3389/feart.2021.673249
https://doi.org/10.1016/j.enggeo.2019.105287
https://doi.org/10.14123/j.cnki.swcc.1986.02.006
https://doi.org/10.1016/j.enggeo.2011.07.002
https://doi.org/10.1007/s10346-021-01745-y
https://doi.org/10.1007/s10346-019-01164-0
https://doi.org/10.1016/j.enggeo.2018.11.011
https://doi.org/10.3390/rs13132552
https://doi.org/10.1007/s11069-013-0867-8
https://doi.org/10.1016/j.enggeo.2022.106774
https://doi.org/10.1016/j.jseaes.2018.11.015
https://doi.org/10.3969/j.issn.0258-2724.2016.05.021
https://doi.org/10.1007/s00024-024-03443-x
https://doi.org/10.1016/0148-9062(74)91709-4
https://doi.org/10.1016/j.enggeo.2018.05.011
https://doi.org/10.12363/issn.1001-1986.22.11.0897
https://doi.org/10.1016/j.enggeo.2009.02.011
https://doi.org/10.13544/j.cnki.jeg.2022-0117
https://doi.org/10.1007/s10346-020-01446-y
https://doi.org/10.1007/s10346-019-01237-0
https://doi.org/10.1002/nag.3581
https://doi.org/10.1016/j.enggeo.2021.106113
https://doi.org/10.1038/s41598-023-43008-x
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001203
https://doi.org/10.13409/j.cnki.jdpme.20220109002
https://doi.org/10.13409/j.cnki.jdpme.20220109002
https://doi.org/10.13885/j.issn.0455-2059.2018.06.005
https://doi.org/10.7306/gq.1552
https://doi.org/10.1007/s11069-024-06433-3
https://doi.org/10.11988/ckyyb.20201283
https://doi.org/10.3389/feart.2022.1004710
https://doi.org/10.13544/j.cnki.jeg.2015.04.024
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


TYPE Original Research
PUBLISHED 20 August 2024
DOI 10.3389/feart.2024.1429421

OPEN ACCESS

EDITED BY

Wentao Yang,
University of Leeds, United Kingdom

REVIEWED BY

Maria Francesca Ferrario,
University of Insubria, Italy
Kun He,
Southwest Jiaotong University, China

*CORRESPONDENCE

Siyuan Ma,
masiyuan@ies.ac.cn

RECEIVED 08 May 2024
ACCEPTED 07 August 2024
PUBLISHED 20 August 2024

CITATION

Lu Y, Ma S and Xia C (2024) Application of
different earthquake-induced landslide hazard
assessment models on the 2022 Ms 6.8 luding
earthquake.
Front. Earth Sci. 12:1429421.
doi: 10.3389/feart.2024.1429421

COPYRIGHT

© 2024 Lu, Ma and Xia. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Application of different
earthquake-induced landslide
hazard assessment models on
the 2022 Ms 6.8 luding
earthquake

Yao Lu1,2, Siyuan Ma3,4* and Chaoxu Xia3,4

1Shanxi Earthquake Administration, Taiyuan, China, 2National Continental Rift Valley Dynamics
Observatory of Taiyuan, Taiyuan, Shanxi, China, 3Institute of Geology, China Earthquake
Administration, Beijing, China, 4Key Laboratory of Seismic and Volcanic Hazards, Institute of Geology,
China Earthquake Administration, Beijing, China

Following the earthquake, prompt evaluation of the distribution of coseismic
landslides and estimation of potential disaster losses are crucial for emergency
response and resettlement planning. The Luding earthquake of 2022 offers a
valuable opportunity to conduct a rapid assessment of coseismic landslides
using various models. In this study, we utilize the Logistic Regression (LR)-
based Xu2019 model, a new-generation model developed in China, alongside
the Newmark model to perform the rapid hazard assessment of coseismic
landslides. Assessing the accuracy and applicability of these two models
based on the coseismic landslides from the Luding earthquake, we find
that within intensity area of IX, the high probability area identified by the
Newmark model aligns closely with the actual distribution of landslides.
However, the Newmark model’s prediction is overestimated in the intensity
area of VIII. For the Xu2019 model, the prediction results are in good
agreement with the distribution of actual landslides. Most landslides are
located in high probability areas, such as Detuo town, Wandong, and Xingfu
villages, indicating that the model has a higher prediction accuracy. Overall,
two models have good practical utility in emergency hazard assessment
of coseismic landslides. However, the Newmark model requires multi-
input parameters and the assignment of these parameters will increase the
uncertainty and subjectivity in the practical application of the modeling
assessment.

KEYWORDS

2022 Ms6.8 luding earthquake, coseismic landslide, emergency assessment, newmark
model, logistic regression (LR) model

1 Introduction

Powerful earthquakes often trigger numerous seismic geological disasters in
mountainous regions. The casualties and property losses resulting from these catastrophes
significantly contribute to the overall earthquake risk (Gorum et al., 2013; Fan et al., 2019;
Havenith et al., 2022). Earthquake-induced landslides are significant secondary geological
disasters, often occurring during or shortly after an earthquake (Keefer, 1984; Xu et al.,
2016; Shao et al., 2023a). They are characterized by their large quantity and scale, wide
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distribution, complex mechanisms, resulting in severe casualties
and economic losses, and prolonged post-earthquake effects
(He et al., 2023; He et al., 2024).

Rapid and precise acquisition of the spatial distribution
and potential hazard assessment of coseismic landslides
following an earthquake is crucial for emergency rescue and
resettlement planning (Tanyas et al., 2019a; Tanyas et al., 2019b;
Nowicki Jessee et al., 2019). Currently, the coseismic landslide
hazard assessment methods included the machine learning
methods (Shao et al., 2019; Ma et al., 2020; Huang et al., 2022;
Shao and Xu, 2022; Wang et al., 2023) and the Newmark method
based on mechanics mechanism (Chen et al., 2014; Jin et al.,
2018; Liu et al., 2018; Huang et al., 2020). Machine learning
methods face a challenge: they require detailed co-seismic
landslide data for model training. However, visually interpreting
earthquake-induced landslides is difficult and time-consuming
due to issues such as collecting and processing satellite or
aerial images, cloud cover, and the slow speed of manually
identifying massive landslides (Robinson et al., 2017). As a result,
the assessment results based on data-driven methods frequently
lag behind the actual emergency response, rendering them
ineffective for the prevention and mitigation of seismic landslides
(Nowicki et al., 2014; He et al., 2021).

In recent years, near-real-time assessment models of coseismic
landslides based on data-driven approaches have emerged as
powerful tools for quickly estimating the spatial location of
landslides (Kritikos et al., 2015; Xu et al., 2019; He et al., 2021).
The goal of these models is to create a near real-time prediction
model of seismic landslides at a large regional scale (global
or national) by utilizing the existing landslide inventories and
machine learning methods. The model can then be applied in a
sudden earthquake event by combining with the ground motion,
and topographic and geological data of the quake-affected area
(Tanyas et al., 2019a; Nowicki Jessee et al., 2019). For example,
Nowicki et al. (2014) used the logistic regression (LR) method
to create a globally applicable near real-time assessment model
with a 1 km resolution based on four global coseismic landslide
databases. Subsequently, Nowicki Jessee et al. (2019) updated the
existing coseismic landslide inventories and established a new
evaluation model based on the 23 earthquake events. Tanyas et al.
(2019a) established a global slope unit-based model for the near
real-time prediction of earthquake-induced landslides based on
seven influencing variables and 25 coseismic landslide inventories
around the world. Allstadt et al. (2018) chose the 2016 Mw 7.8 New
Zealand earthquake as a test case to assess the performance and
applicability of three globally published near-real-time models. The
evaluation results show that the global empirical model for near-
real-time assessment of coseismic landslides has great potential in
emergency assessment. Meanwhile, Xu et al. (2019) introduced a
real probability prediction method for coseismic landslides using
the Bayesian probability method and LR model. They established a
new generation earthquake landslide hazard model in China based
on nine real earthquake cases. These studies suggest that data-
driven near-real-time prediction models have promising prospects
and significant potential for rapidly assessing regional earthquake-
induced landslides.

The physically-based Newmark displacement method fully
considers the mechanism of earthquake-induced landslides. It

utilizes slope instability results and seismic displacement to
quantitatively classify the hazard level of coseismic landslides. This
method is widely used globally for rapidly assessing earthquake-
induced landslides (Jibson, 2011; Wang et al., 2018). This method
has also been applied to the emergency assessment of coseismic
landslides in many regions, such as the 1979 ML 5.7 Coyote lake
earthquake (Wilson and Keefer, 1983), 1994 Mw6.7 Northridge
earthquake (Jibson et al., 2000), 2008 Mw7.9 Wenchuan earthquake
(Godt et al., 2008), 2013 Mw6.7Lushan earthquake (Ma and
Xu, 2019b; Jin et al., 2019), 2014 Mw6.1 Ludian earthquake
(Chen et al., 2018), 2015 Mw7.9 Nepal earthquake (Gallen et al.,
2017), 2017 Mw7.0 Jiuzhaigou earthquake (Yue et al., 2018), 2017
Ms 6.9 Milin earthquake (Du et al., 2022), 2021Mw7.4 Maduo
earthquake (Wei and Chen, 2022). These cases demonstrate
the reliability and timeliness of the physically-based Newmark
model in emergency assessments of regional earthquake-induced
landslides.

Overall, although both methods are widely used in the
rapid assessment of earthquake-induced landslides, there is
still a lack of quantitative comparative analysis regarding the
applicability of data-driven models and the Newmark model in
rapid emergency assessment of coseismic landslides, especially
in the Sichuan and Yunnan area with frequent earthquake. On
5 September 2022, an Ms6.8 earthquake struck Luding County,
Ganzi Tibetan Autonomous Prefecture, Sichuan Province, with
an epicenter reported at 102.08 E, 29.59 N and a focal depth
of 16 km by the China Earthquake Networks Center (CENC).
The earthquake-produced shaking by the China Earthquake
Administration (CEA) assigned a maximum seismic intensity
of IX on the Mercalli scale, which is determined by the degree
of damage to buildings during an earthquake, instrumentally
measured ground motion, engineering damage, human perception,
and other macroscopic phenomena. As of September 13, the
earthquake had resulted in 93 deaths and 25 individuals missing.
Otherwise, this event triggered massive coseismic landslides,
mainly including shallow debris flows, collapses, topples and
a few large-scale debris slides (Zhao et al., 2022; Dai et al.,
2023; Yang et al., 2023). Many residential houses and roads
were destroyed, resulting in greater personnel and property
losses. Among them, casualties directly caused by building’s
collapses account for about 20%, and more than 80% are
related to earthquake-induced landslides (Fan et al., 2022), which
provides an excellent opportunity for us to carry out different
evaluation models in the regional rapid assessment of earthquake-
induced landslides.

This study utilized the Xu2019 model, a new generation
Chinese seismic landslide hazard model, along with a simplified
Newmark model to perform a rapid emergency assessment of
landslides triggered by the 2022 Ms6.8 Luding earthquake. Then,
Based on the coseismic landslide inventory derived from the
visual interpretation of pre and post-quake Planet images with
3 m resolution, a detailed quantitative analysis of the emergency
evaluation results was performed to investigate the applicability of
the two models in this earthquake event. This study is expected
to be useful for rapid emergency response, optimizing emergency
deployment, and improving emergency rescue efficiency for a single
earthquake event.
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FIGURE 1
Map showing the active faults, historical earthquakes and topography distribution near the Xianshuihe fault. The active fault lines are from Deng (2007).

2 Study area

The Xianshuihe fault is an active and large-scale strike-slip fault
zone that controls the relative movement and extrusion of sub-
plates. This occurs against the backdrop of continued southeastward
squeezing of crustal materials at the southeast margin of the
Tibetan Plateau due to the convergence of the India-Eurasia plate
(Tapponnier et al., 2001). The Xianshuihe fault is situated at the
boundary between the Songpan-Ganze block and the Chuan-Dian
block on the eastern margin of the Tibetan Plateau. It intersects
with the Longmenshan fault and the Anninghe fault, forming the
well-known “Y-shaped” fault zone in western Sichuan (Figure 1).
Stretching 350 km from the northwest of Donggu to the south
of Moxi, the fault has a strike ranging from about 130° to 148°
(Bai et al., 2018). The 2022 Ms 6.8 Luding earthquake happened
close to theMoxi fault in the southeastern segment of theXianshuihe
fault zone. Since 1700, there have been 17 earthquakes with a
magnitude of seven or higher along the Xianshuihe fault zone, with
nine of them occurring in themiddle segment of the fault (Figure 1).

The Luding area is situated in the Hengduan Mountains on the
southeastern edge of the Tibetan Plateau, characterized by alpine
and canyon landforms. The Dadu River flows through the region
from north to south, featuring a significant drop in elevation.
The epicenter of the Luding earthquake, at 102.08°E, 29.59°N, is
located in the Hailuogou Glacier Forest Park of Gongga Mountain,
standing at 7,556 m above sea level with an altitude difference of

6,570 m. The study area experiences a typical subtropical monsoon
climate, with an average annual temperature of 15.5 C and annual
rainfall of 664.4 mm. The formation lithology in the area is mainly
Quaternary alluvial proluvial deposits (Qh2apl) and fluvioglacial
deposits (Qp3−lgfl), Permian dolomite, middle Devonian limestone
and magmatic rock (Figure 2). The extensive tectonic activity and
weathering in this region have led to the development of rock
mass joints and fragmentation, creating favorable conditions for
landslides to occur (Li et al., 2022).

3 Method and data

3.1 Coseismic landslide inventory of 2022
luding earthquake

The coseismic landslide database relies on visual interpretation
of satellite images taken before and after the earthquake (Shao et al.,
2024). The post-earthquake images are Planet images with a
resolution of 3 m, collected from September 8 to 30 December 2022.
In order to verify that any landslides present before the earthquake
were not mistaken for coseismic landslides, the pre-quake Planet
images in July and August of the study area were acquired. The
results reveal that the earthquake triggered approximately 12,600
landslides with a total landslide area of 36.0 km2 in areas above
VIII intensity zones on the Mercalli scale. The largest landslide area
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FIGURE 2
Geological map of the study area; the red line is the seismogenic fault of luding earthquake event; the coseismic landslide inventory of this event is
obtained from Shao et al. (2024).

measures 120,000 m2, while the smallest is 65 m2, with an average
area of 2,700 m2 (Figure 2). Coseismic landslides are mainly found
on both sides of theMoxi fault and the Dadu River and concentrated
in intensity IX areas like Moxi, Detuo, and Wanggangping town
(Figure 2). Among them, Wandong village is the most affected
area by landslides in this earthquake. Field photos illustrating the
development of coseismic landslides in the landslide-prone areas of
this earthquake event are shown in Figure 3.

3.2 Newmark method

The Newmark displacement method was initially
introduced by Newmark (1965) for analyzing the stability of
dams under earthquake conditions. It posits that the instability
of the dam is influenced by the deformation resulting from
the earthquake rather than the minimum safety factor. This
method considers that the permanent displacement is caused by
constantly accumulated displacement along the most dangerous
sliding surface after the instantaneous instability of the sliding

body under the ground action. In this method, the critical
(or yield) acceleration (ac) of the potential sliding body is
determined by the pseudo-static method, and the permanent
displacement can be calculated by quadratic integration of the
portion of the ground motion acceleration time history that
exceeds the ac.

The cumulative displacement based on the Newmark model is
calculated in three steps including slope safety factor (Fs), critical
acceleration (ac), and permanent displacement:

(1) Through geometric properties of the slope (thickness of rock
and soil mass (t), saturation degree of rock and soil mass (m),
the inclination angle of the sliding surface (α) and mechanical
properties of rock and soil mass ( effective cohesion (c,),
internal friction angle (φ), the weight of rock and soil (γ)
and groundwater weight (γw)), we can obtain the slope safety
factor (Fs) by Equation 1.

Fs = c,

γtsinα
+
tanφ
tanα
−
mγw tanφ
γtanα

(1)
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FIGURE 3
The field photos of coseismic landslides triggered by the Luding earthquake event; (A) Shallow debris flows in the west of Hailuogou Bridge; (B)
Group-occurring collapses near Moxi Platform; (C) Shallow landslides near Detuo town; (D) Shallow landslides and collapses near Xingfu village.

(2) Using the infinite slope method, we can derive the ac from
the above Fs (Equation 2).

 ac = (Fs− 1)gsinα (2)

where g is the gravitational acceleration, α is the inclination angle of
the sliding surface, which is approximated by the slope angle.

(3) The Newmark displacement (Dn) of the study area can be
determined using a simplified Newmark equation (Equation
3). In this study, we selected the empirical Newmark equation,
derived from a dataset of 2,270 strong-motion records from 30
earthquakes worldwide (Jibson, 2007).

logDn = 0.215+ log[(1− ac
PGA
)

2.341
×( ac

PGA
)
−1.438
] (3)

The probability of slope failure (Pf) in the study area can
be calculated based on the spatial distribution of the Newmark
displacement (Dn). This calculation is performed using the
failure probability curve, which is fitted using data from the
2008 Wenchuan earthquake-induced landslide inventory (Ma and
Xu , 2019b) (Equation 4). This formula enables the estimation of
the instability probability of earthquake-induced landslides in the
Wenchuan and surrounding areas

P(f) = 0.1005[1− exp (−0.2217Dn0.6511)] (4)

where p(f) represents the probability of failure (Pf); Dn is the
calculated Newmark displacement.

3.3 Logistic regression method

The logistic regression (LR) model is a regression analysis used
when the dependent variable is a binary categorical variable. It's
widely employed as a nonlinear multivariate statistical model in
landslide hazard assessment. Moreover, it’s the preferred method
for establishing near-real-time prediction models of earthquake-
induced landslides (Tanyas et al., 2019a; Nowicki Jessee et al., 2019;
Shao et al., 2020). The LR model transforms the dependent variable
into a binary categorical variable, where landslide occurrence is
denoted by one and non-occurrence by 0. The relationship between
the probability of landslide occurrence and potential influencing
factors can be expressed as (Equations 5, 6):

Z = β0 + β1χ1 + β2χ2 + β3χ3…βiχi (5)

P = 1/(1+ e−z) (6)

Among them, p represents the occurrence probability of
landslide. Z represents the sum of the linear weights after
the independent variables are superimposed; χ3 represents the
independent variable, and βi is the regression coefficient.

This study utilizes the Xu2019 model, a new seismic landslide
hazard model, as the near real-time evaluation tool for coseismic
landslides (Xu et al., 2019). The model utilizes nine earthquake-
induced landslide inventories from various regions in China as
training samples. It incorporates 13 influencing factors, including
elevation, relative elevation, slope angle, and aspect, to develop
a near real-time evaluation model for coseismic landslides using
the LR method. This model enables rapid assessment of coseismic
landslides following individual earthquake events based on the
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actual distribution of Peak Ground Acceleration (PGA). Further
details about the model are available in the previous study by
Xu et al. (2019).

3.4 Data

The elevation data utilized in this study is derived from the
ALOS PALSAR Digital Elevation Model (DEM), with a resolution
of 12.5 m, obtained from the Alaska Satellite Facility (https://vertex.
daac.asf.alaska.edu). The slope gradient across the study area was
calculated based on this DEM data. As illustrated in Figure 4A,
the spatial distribution of slope angles shows steeper slopes in the
western region and gentler slopes in the eastern region. For the
ground motion data, we utilized the Peak Ground Acceleration
(PGA) map provided by the Xuanmei Fan team from Chengdu
University of Technology. This map was generated by interpolating
strong motion records collected within 100 km from the epicenter
of the earthquake in Sichuan. According to Fan et al. (2022), the
seismic stations recorded a maximum PGA value of 644.4 cm/s2,
with the corresponding station located approximately 20 km away
from the epicenter. The PGA distribution map indicates that areas
with higher PGA values are situated to the south of the epicenter,
while the northern areas exhibit relatively lower PGA values (https://
mp.weixin.qq.com/s/I7lHKb6c7GeJ-Z83T9rJqw).

Based on 1:200,000 geological maps published by the China
Geological Survey (http://dcc.cgs.gov.cn/), the lithology of the study
area was classified into engineering geological rock types, drawing
upon previous studies (Zhang et al., 2017; Ma and Xu, 2019b;
Wang et al., 2021), and considering the classification of rock masses
engineering GB/T 50,218–2014 (Ministry of Water Resources of the
People’s Republic of China, 2014). Consequently, the lithology of
the study area was divided into five categories: hard rock, relatively
hard rock, soft rock, weak rock, and loose rock groups, with
corresponding mechanical parameters assigned for each rock group
(see Table 1). It is noteworthy that granite and intrusive dikes in
this area are significantly affected by tectonic activity, leading to
highly developed joints and fissures in the rock mass, resulting in
the actual strength of the rock mass being notably lower than that
of the rock itself. Based on previous studies (Ma and Xu , 2019a;
Ma et al., 2020; Wang et al., 2021), appropriate adjustments were
made to the mechanical values of the hard rock group, with
a reduction coefficient set at 0.8. Considering that the majority
of landslides triggered by this earthquake event are shallow
disrupted landslides, it is assumed that the sliding depth of
the landslide (t) is 3 m, and the saturation degree of the rock
mass (m) is 0, based on previous studies (Dreyfus et al., 2013;
Ma and Xu , 2019b).

4 Result

According to Formulas 1, 2 in the above-mentioned Newmark
model and the corresponding terrain data and mechanical
parameters of rock mass, we can calculate the ac distribution results
of the study area (Figure 5A).The ac is used to characterize coseismic
landslide susceptibility. In general, the higher the ac, the less prone to
slope failure in ground motion. The lower the ac, the more unstable

the slope and the easier the slope is to lose stability in ground
motion (Chen et al., 2014). The results show that the majority of
the areas with lower ac values are located in the steep slopes (that
is, slopes greater than 50°, and the ac values in these areas, i.e.,
red area are generally less than 0.15 (Figure 5A). The ac value of
the study area is relatively small in most areas on the west side
of the seismogenic fault, while the ac value in the east side of the
seismogenic fault is large. By combining the Newmark model and
the corresponding PGA distribution (Figure 4B), the Dn value of
the Luding earthquake can be calculated. The result shows that the
majority of the areas with large Dn values are concentrated on both
sides of the valley. In particular, the concentrated areas with large
Dn value (that is, the blue area) are distributed in the north of the
Luding epicenter such as the nearby area of Detuo town, the western
area of Wandong village and Xingfu village (Figure 5B).

Combined with the above Dn distribution result, the estimation
of failure probability of the Newmarkmodel can be calculated by the
probability curve of slope failure (Figure 6A). As for the LR model,
we can also use the Xu2019 model to calculate the probability map
of this event through the PGA distribution (Figure 6B). The results
indicate that most landslides are mainly distributed along both sides
of the seismogenic fault, especially concentratedwithin a 5 km range
on either side of the fault. The Newmark model’s high probability
areas align reasonably well with actual landslide distributions in
seismic intensity IX zones, primarily situated along both sides
of the Dadu River, indicating areas of elevated failure likelihood.
However, in regions with seismic intensity VIII, the Newmark
model tends to overestimate landslide occurrences. Specifically, it
predicts high failure probabilities in the northwest and southern
areas of the epicenter, but the actual landslide distribution in these
areas is relatively sparse. Conversely, the LR model demonstrates a
strong agreement between its prediction results and the observed
landslide distribution, with the majority of landslides occurring
in high-probability areas. Several landslide abundance areas such
as Detuo town, Wandong village, and Xingfu village have high
predicted probability which demonstrates that the model has high
predictive accuracy.

To compare the spatial distribution of slope failure probability
with actual landslides, we selected Wandong Village, the area
most affected by landslides in this earthquake. Figure 7 displays
a locally enlarged area showing the estimated failure probability
calculated by different prediction models near Wandong Village.
Overall, the predictions of both models align well with the actual
landslide distribution in this area. For the Newmark model, high-
probability areas are concentrated on both sides of the Dadu
River, which corresponds to the actual landslide distribution in this
area (Figure 7A). Conversely, the Xu2019 model indicates that the
majority of landslides are distributed in regions with middle to high
probabilities of instability, with only sporadic landslides occurring
in areas of low probability (Figure 7B)

To quantitatively analyze the prediction results of the two
models, we divided the study area into grids measuring 1 km by
1 km, and then calculated the predicted landslide area and the actual
area under each grid (Figure 8). We computed the actual landslide
area for each grid, revealing that the majority of landslides are
concentrated in areas with a seismic intensity of IX (Figure 8A).
Particularly, most landslides occur along both sides of the Dadu
River, with few coseismic landslides observed in regions with a
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FIGURE 4
Map showing the distribution of slope angle and ground motion (PGA); (A) The spatial distribution of slope angle; (B) The spatial distribution of PGA (g)
is obtained by open peak ground acceleration (PGA) distribution maps published by Xuanmei Fan team of the Chengdu University of Technology.

TABLE 1 Classification of engineering geological lithology formations for Luding earthquake.

Rock groups Lithology Weight (kN/m3) Internal friction angle (°) Cohesion, (Kpa)

Loose rock group Quaternary alluvial proluvial deposits
(Qh2apl) and fluvioglacial deposits

(Qp3-lgfl)

20 18 15

Weak rock group Middle lower jurassic mudstone mixed
with thin quartz sandstone of Ziliujing
formation; middle silurian mudstone
mixed with argillaceous siltstone of

luoreping formation

23 25 25

Soft rock group Lower sinian rhyolite; upper ordovician
shale of wufeng formation; upper

ordovician argillaceous limestone of
baota formation

25 28 30

Relatively hard rock group Upper triassic grey quartz sandstone of
xujiahe formation; middle devonian

limestone; permian dolomite

27 32 35

Hard rock group Yajiageng plagioclase granite; detuo
migmatite granite; moxi diorite; intrusive

dyke

30 32 32
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FIGURE 5
Map showing the distribution of ac and Dn of this Lushan earthquake; (A) Critical acceleration (ac); (B) Newmark displacement (Dn).

seismic intensity of VIII. The total coseismic landslide area is
36.0 km2, with the largest landslide area within a single grid of
0.5 km2, located near Xingfu Village (Figure 8A). Figure 8B displays
the predicted landslide area for each grid using theNewmarkmodel.
The results indicate that the maximum landslide area within a single
grid is 0.045 km2, with the total predicted area by the Newmark
model estimated at 8.57 km2. Notably, the predicted results in the
northwest and southern areas of the epicenter are significantly
overestimated. Figure 8C presents the predicted landslide area for
each grid using the Xu2019 model. The predicted areas with high
values are largely consistent with the distribution of landslide-
prone areas. For example, the areas surrounding Detuo town,
Wandong, and Xingfu village have highly developed landslides,
and the prediction results indicate that these areas are also high-
hazard areas. The total predicted landslide area of the Xu2019 model
is 8.17 km2 and the maximum landslide area of a single grid is
0.047 km2.

Additionally, the modeling accuracy is assessed using the ROC
curve. The receiver operating characteristic (ROC) curve provides
a comprehensive measure of continuous sensitivity and specificity
variables (Swets, 1988). The evaluation criteria are as follows: AUC
= 0.5 indicates a stochasticmodel; AUCbetween 0.5 and 0.7 suggests
low accuracy; AUC between 0.7 and 0.9 indicates high accuracy;
AUC > 0.9 indicates very high accuracy (Brenning, 2005). For this

study, ∼12,600 landslides within seismic intensity VIII are utilized as
landsliding positive samples. Non-sliding negative samples consist
of ∼12,600 randomly selected points outside the buffer zone of
landsliding samples (buffer radius = 100 m), resulting in a total of
∼25,200 sample points. Based on the SPSS software, the prediction
accuracy of different models is calculated based on these sample
points. The prediction results reveal that the Xu2019-based model
demonstrates significantly higher accuracy than the Newmark
model, with a prediction accuracy of 0.76, whereas the Newmark
model exhibits relatively lower accuracy, at only 0.63 (Figure 9).

5 Discussion

Timing is critical during the post-earthquake emergency
response phase. Swift emergency assessments can promptly identify
high-risk areas of coseismic landslides, laying the groundwork
for optimizing emergency deployment (Robinson et al., 2017;
Ma et al., 2020). In recent years, few achievements have emerged
in the construction of near-real-time assessment models based
on the abundant earthquake-induced landslides data, but the
application and accuracy of these models in actual quake events are
rare. Allstadt et al. (2018) compared three globally near-real-time
prediction models and calculated the predicted landslide area of the
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FIGURE 6
Estimation of slope failure probability calculated by different prediction models; (A) Newmark model; (B) Xu2019 model.

2016 Kaikoura earthquake by constantly updating PGA distribution
results published by the USGS at different times. The results indicate
a significant overestimation of the actual landslide distribution,
with the predicted landslide area being 6.5–55 times larger than
the observed area. To address these issues, a new seismic landslide
hazard model of Xu2019 model, was developed using the Bayesian
probability method and the LR model, and subsequently applied to
the Luding earthquake. The result shows that the Xu2019 model can
more accurately predict the spatial location of coseismic landslides,
with most high-susceptibility areas distributed on both sides of
the seismogenic fault. However, there are still some deviations in
local areas. For example, the model underestimates the occurrence
of coseismic landslides in the northwest region, where coseismic
landslides are most developed. Conversely, for the southwest region
on the left side of the seismogenic fault, the predicted results are
overestimated.We believe the possible reasons for this phenomenon
are, firstly, the base data resolution of Xu2019 model is 100 m,
which affects the model’s prediction accuracy to some extent,
causing spatial prediction errors at local scales. Secondly, the nine
earthquake cases selected for Xu2019 model are events that triggered
landslides in China and neighboring areas since 1999, occurring
in regions with varying topography and geological conditions.
Only three of these cases are located in the Sichuan region, which

may weaken the applicability of the Xu2019 model in the Luding
earthquake, Sichuan province (Xu et al., 2019). Additionally, due
to the relatively sparse seismic station records in the region, the
interpolated PGA distribution might be lower than the actual
situation, which is another potential reason for the underestimation
of the predicted area. Otherwise, it is important to note that the
total landslide area predicted by the Xu2019 model is lower than
the landslide area triggered by the Luding earthquake. We believe
that the main reason for this phenomenon is the unique high
mountain and canyon terrain of the Luding region. Furthermore, the
earthquake is located at the Y-shaped junction of three major active
tectonic faults, and the rock and soil masses are relatively fractured,
making this area prone to landsliding. Therefore, compared to
earthquakes of similarmagnitude, the Luding earthquake has amore
pronounced ability to trigger landslides (Shao et al., 2024).

Emergency hazard assessment using the Newmark model
involves multiple parameters, such as terrain, geotechnical
mechanics, groundwater, and ground motion. However, there
are numerous uncertainties associated with these parameters,
both in their inherent nature and in the process of obtaining
them (Wang et al., 2015; Bojadjieva et al., 2018). To achieve more
precise predicted displacement, the Newmarkmethod requires clear
physical and mechanical properties of rocks, as well as accurate
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FIGURE 7
Locally enlarged area of estimated slope failure probability calculated by different prediction models; (A) Newmark model; (B) Xu2019 model.

FIGURE 8
Map showing the distribution of predicted landslide area and actual landslide area (fishnet is 1 km∗ 1 km); (A) Actual landslide area; (B) Newmark model;
(C) Xu2019 model.
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FIGURE 9
ROC curves and AUC values calculated by different models.

ground motion parameters (Dreyfus et al., 2013). Therefore, for the
Newmark model, the set of input parameters may be the key point
to affect the evaluation results, especially the assignment of rock
mass parameters. The combination of different lithology is required
in the process of engineering geological rock groups. Although this
simplified treatment is easier to calculate, itmay obliterate the spatial
difference in rock mass strength distributions (Wang et al., 2015).
Moreover, the rock mass in the source area of coseismic landslides
predominantly consists of weathered jointed-cracked rock mass,
exhibiting mechanical properties that deviate from typical rocks.
Consequently, empirical or measured rock strength parameters may
inadequately represent the strength characteristics of the in-situ rock
mass. This discrepancy can lead to assignment results that diverge
from the actual conditions during the stage ofmechanical parameter
assignment, ultimately resulting in significant disparities between
the predicted and actual landslide distributions (Wang et al., 2015).

From the predicted results of the Newmark model, we can
observe that the area with high instability probability has a certain
degree of agreement with the actual landslide distribution. Most
source areas of the coseismic landslides are located in the area
on both sides of the Dadu River, of which this area is also a
high hazard area. However, in the region with a seismic intensity
of VIII, the prediction results based on the Newmark model are
overestimated. According to the actual distribution of the coseismic
landslides, there are few landslides in this area. However, this area
is predicted to be a high-hazard area based on the Newmark model.
We believe that this phenomenon is caused by an underestimation
of the mechanical parameters of the rock during the combination of
different lithology in engineering rock group groups. Furthermore,
it should be noted that the PGA map used in this study is based
on the interpolation of ground motion records by strong motion
instruments within 100 km from the epicenter which are provided
by the Sichuan earthquake administration. While the PGA result
can roughly characterize the distribution of ground motion in

this earthquake event, it does not account for the site effect of
ground motion propagation, specifically ignoring local topography,
slope structure, and the propagation direction of seismic waves.
Therefore, As a result, we may be unable to obtain accurate
seismic motion information and underestimate seismic amplitude
in the middle and upper parts of the mountain which result in
predicted landslide displacement being less than the actual situation
(Wang et al., 2015; Li and Su, 2021).

Prompt and accurate identification and prediction of landslide
risk areas following earthquakes can effectively guide the
deployment of rescue personnel and allocation of resources,
thereby minimizing casualties and property losses (Shao et al.,
2023b). In comparing two models, the Xu2019 model demonstrates
better capability in identifying high landslide hazard areas,
aligning well with hazard levels and distribution characteristics
of Luding-induced landslides. This can provide decision-makers
with scientific guidance for deploying emergency rescue teams
and assessing property and casualty impacts. In contrast, the
Newmark model exhibits deviations between predicted and actual
landslide distributions, potentially leading to misjudgments in
coseismic landslide hazard assessment. Furthermore, both models
underestimated the landslide area for the Luding earthquake
and consequently underestimates its destructive impact and
complicating rescue resource deployment, but the Xu2019 model
effectively distinguishes between low and high landslide hazard
areas that can offer valuable insights for emergency response and
rapid risk assessment.

6 Conclusion

The aim of this study is to conduct a quantitative analysis
of different assessment models in the rapid emergency evaluation
of coseismic landslides triggered by the 2022 Ms 6.8 Luding
earthquake. The data-driven Xu2019 model and the physically-
based Newmark model are selected for this purpose. Using the
coseismic landslide inventory of this event, the applicability and
accuracy of these two models are discussed. The findings reveal that
the Newmark model predicts high probability areas that somewhat
align with the actual landslide distribution, primarily concentrated
on both sides of the Dadu River where failure probability is high.
However, the Newmark model tends to overestimate landslide
occurrence in regions with a seismic intensity of VIII. Conversely,
the LR model closely matches the actual landslide distribution,
indicating high prediction accuracy. To assess model accuracy,
the ROC curve is employed. Results indicate that the Xu2019
model outperforms the Newmark model, achieving a prediction
accuracy of 0.76 compared to 0.63 for the Newmark model. Both
models demonstrate good timeliness in rapid hazard assessment
of earthquake-induced landslides. However, while the Newmark
model theoretically considers the occurrence mechanism of seismic
landslides and has broader applicability, it requires multiple input
parameters, leading to increased uncertainty and subjective factors
in practical application.

Overall, compared to the Newmark model, the Xu2019 model
has a higher predictive capability. However, since the Xu2019
model is primarily trained on the earthquake-induced landslide
database from the Sichuan-Yunnan region, its applicability to other
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regions still needs further validation. Therefore, establishing a high-
precision geospatial database of basic geomechanical parameters
is crucial to improving the accuracy of the Newmark model in
emergency evaluation. For the Xu2019 model, continual enrichment
of earthquake-induced landslide inventories in mainland China
can lead to the development of a near-real-time model tailored to
the area, enhancing forecast accuracy in emergency assessments of
coseismic landslides.
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Managed Aquifer Recharge (MAR) has been implemented in the upper alluvial
plain of the Chaobai River, significantly affecting the groundwater level and
causing it to rise. However, the effects of the MAR on land subsidence,remain
largely unknown. To elucidate the effects of MAR on land subsidence,
a comprehensive analysis was undertaken, integrating interferometric
synthetic aperture radar (InSAR) data, extensometer measurements, and
groundwater level observations.Our analysis revealed a discernible land rebound
phenomenon, with rates escalating from 2.3 mm/a in 2015 to 20 mm/a in
2021. This rebound extends southwestward, following a dispersion pattern that
aligns with pre-existing fault structures, suggesting their controlling influence.
The groundwater level changes caused by the MAR can cause land rebound,
especially near fault footwalls. However,low permeability in fault zones hinders
groundwater flow in the hanging wall resulting in slight land deformation.
Lithology also affects rebound, with sandy soils showing more significant
land rebound, while low-sand areas exhibit limited or delayed rebound. These
findings offer crucial insights into the interplay between MAR, groundwater
dynamics, and land subsidence in the studied region. They provide a foundation
for informed decision-making in groundwater replenishment strategies and
precise subsidence prevention and control measures. Future research should
maintain a vigilant monitoring of the long-term consequences of MAR on land
subsidence to ensure sustainable regional development.

KEYWORDS

land rebound, pre-existing fault, low permeability, aquifer recharge, Beijing

1 Introduction

The groundwater over-exploitation has change the original stress state in the
aquifer system, resulting in a decrease in pore pressure and an increase in the
effective stress (Lofgren, 1968). When the stress exceeds the preconsolidation stress
that the soil has previously endured, inelastic consolidation occurs in the clay layer
and as the deformation gradually increases, land subsidence begins to form (Holzer,
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FIGURE 1
Location and geology of the study area: (A) The distribution and descriptions of the Quaternary sediments and preexisting faults in the study area. (B)
Hydrogeological cross-section A–A1 (the location is displayed in (A). The Ⅰ-Phreatic aquifers, the Ⅱ-The first confined aquifers, theⅢ-The second
confined aquifer, and theⅣ-The third confined aquifer.

1981; Galloway and Burbey, 2011). Land subsidence
poses a significant threat in the world (Bagheri-
Gavkosh et al., 2021; Negahdary, 2022; Ao et al., 2024),
According to UNESCO International Initiative on
Land Subsidence Working Group, land subsidence is
projected to affect 19% of the global population by 2040
(Herrera-García et al., 2021).

A variety of groundwater management strategies, which are
based on water allocation, are being implemented to mitigate
the land subsidence (Roose and Starks, 2006; Calderhead et al.,
2012; Zhu et al., 2020). These strategies have resulted in a shift

in the groundwater level from a decline to a rise, and some
regions found the land subsidence relief and, even land rebound
(Castellazzi et al., 2021; Tang et al., 2022). The state of land
deformation was intricate in the region with pre-existing fault
(Parker et al., 2021; Zhao et al., 2021). Many research found that
the pre-existing faults serve as boundaries for land deformation
and control the developed of the land deformation (Burbey, 2002;
Hu et al., 2019; Salehi Moteahd et al., 2019). Unfortunately, the
effect mechanism of pre-existing faults on the land deformation was
relatively weak, which restrict scientific replenishment of regional
groundwater.
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TABLE 1 The monitoring layers of extensometers and groundwater wells
in J1 extensometer station.

Extensometers F1 F3 F5 F7

Monitoring depth (m) 35.4 64.5 102 148.49

Groundwater wells D1 D3 D5 D7

Monitoring depth (m) 31 63.4 91.3 146.8

The study area, situated in the northern region of Beijing, has
been affected by severe land subsidence, with maximum cumulative
settlement above 80 cm (1955–2014). The pre-existing in the study
area has resulted in rapid formation of uneven subsidence and
earth fissures. Since 2015, the MAR has been operational, and land
rebound appeared in some area, offering a valuable opportunity to
gain a better understanding of this mechanism. Here, RadarSAT-
2 SAR data in the study area from 2015 to 2021 is utilized to
present the promising effects of the MAR on land subsidence. The
effect mechanism of geological structure on the land deformation
is analysed.

2 Description of the study area

2.1 Geological setting

The study area is in the upper and middle part of the
Chaobai River’s alluvial fan, which was formed in the Pleistocene
by the alluvial-diluvial action of the Chaobai and Wenyu Rivers
(Lei et al., 2022a). The geological environment in this area is
highly complex due to the heterogeneous distribution of alluvial
deposits (Wei, 2008). The thickness of the Quaternary deposits
varies between 50 m in the northeastern region and extends up
to 1,100 m in the southwestern region, change from an coarse
sand in the piedmont areas to fine clay in the floodplain zones
(Zhu et al., 2020).

Two buried geological faults are located: the northern section
of the Gaoliying (GLY) fault (Figure 1A) and the northern
section of the Shunyi (NSY) fault (Figure 1A). The GLY fault
is a tension normal fault with a length of 40 km, a strike
of 70°–80°, and a SE trend (Wei, 2008). The GLY fault has
experienced multiple periods of activity since the Cretaceous
Period and has been very active since the Cenozoic in controlling
the Palaeocene, Neoproterozoic, and Quaternary deposits (Wei,
2008). The average activity rates of the Early Pleistocene,
Middle Pleistocene, Late Pleistocene and Holocene faults were
0.07 mm/a, 0.04 mm/a, 0.23 mm/a and 0.10 mm/a, respectively
(Zhang et al., 2016).

The NSY fault is a tension normal fault with a length of
40 km, a strike of 40° and a SE trend (Wei, 2008). According to
the measurements and geochronological results, the average activity
rates of the Early Pleistocene, Middle Pleistocene, Late Pleistocene
and Holocene faults were 0.23 mm/a, 0.03 mm/a, 0.29 mm/a and
0.51 mm/a, respectively (Qi et al., 2020).

2.2 Hydrogeological setting and manged
aquifer recharge

The aquifers in the study area can be divided into
four groups (Figure 1B). Phreatic aquifers (PAs), the first confined
aquifers (FCAs), the second confined aquifer (SCA), and the third
confined aquifer (TCA). Phreatic aquifers (PAs) originated in the
Holocene and late Pleistocene and arewidely distributed in the study
area with thicknesses varying from 40 m to 50 m. Medium-coarse
sands with gravel were deposited along the PA layers. The PA is
supplied by atmospheric precipitation, infiltration from agricultural
irrigation and river water, and its own abundant groundwater
resources. The first confined aquifers (FCAs) were formed in the
mid-Pleistocene, with depths ranging from 80 to 120 m. The second
confined aquifer (SCA) is mainly distributed in the middle of the
alluvial fan. Its layers were formed in the lower Pleistocene. The
bottom depth of this group ranges from 150 to 180 m. The third
confined aquifer (TCA) is distributed south of Mapo village. It was
formed in the Lower Pleistocene, and the bedrock comprises the
bottom of this group.

The MAR commenced in 2015, with recharge operations
conducted annually from April to June. By the end of 2020, a total
of 501, 508, 900 cubic meters of groundwater had been recharged.
The South-to-North Water Diversion water, after being released
through the Lishishan Diversion Gate on the Jingmi Diversion
Canal, flows through the Xiaozhong River, Mangniu River, and
Huaihe River before entering the upstream groundwater recharge
site at theChaobai RiverNiulanshanRubberDam (Lei et al., 2022a).

3 Data set

In this paper, The InSAR data, extensometer data and
groundwater level data have been gathered. Those multi-source
monitoring datasets were used to analyze the changes of the land
deformation in the study area before and after the MAR, and the
effects of the pre-exising fault, and lithology on land deformation
under the background of groundwater level rise were also studied.

3.1 Interferometric synthetic aperture radar
(InSAR) data

Since its launch in 2007, the Radarsat-2 satellite has been in
operation. With a revisit period of 24 days, it employs a C-band
Synthetic Aperture Radar (SAR) featuring a 56 mmwavelength. The
satellite boasts a spatial resolution of 30 m,making the data it collects
ideal for monitoring regional subsidence (Ng et al., 2017; Samsonov
et al., 2017).

In this study, 70 scenes of the Radarsat-2 dataset in W1
mode between October 2014 and October 2021 were collected
to acquire the regional subsidence of the study area. Persistent
scatterer InSAR (PS-InSAR) technology was adopted to process
the SAR dataset and extract subsidence information. The basic
principle of the PS-InSAR technique is to use several SAR images
of the same area to find permanent scatterers (such as buildings,
bridges, roads, etc.,) that are not subject to temporal and spatial
baseline deconvolution and atmospheric effects by statistically
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FIGURE 2
The location of the study sites (A) and comparisons of the PS-derived land subsidence rates and levelling measurement rates (B). The orange triangle
indicates the levelling benchmark used in this study. The black triangle indicates the extensometer monitoring stations.

analysing the magnitude information of the images and then to
separate the errors from the differential interference phases one
by one using the network formed by connecting these PS points
and the spatiotemporal characteristics of each phase component
(Ferretti et al., 2001). Using the network of these PS points and the
spatial and temporal characteristics of each phase component, the
errors are separated from the differential interference phase one by
one, and the surface deformation phase of each PS point is finally
obtained (Ferretti et al., 2001). It can overcome the factors of spatial
and temporal incoherence and atmospheric delay in conventional
differential interferometry and thus obtain continuous and reliable
surface deformation information (Ferretti et al., 2001).The accuracy
of the annual average deformation rate obtained by the PS-InSAR
method can reach the millimetre level (Lei et al., 2022b). The data
were processed via the following steps:

The master image is determined based on information such as
the spatial and temporal baseline, the Doppler shift and the number
of datasets. The remote sensing images are then cropped according
to the extent of the study area to determine the processing area of
the remote sensing images. The coordinate mapping relationship
between the master image and all SAR imagery in the distance and
azimuth directions is calculated, and the mapping relationship is
used to perform coordinate mapping on all SAR imagery. Then,
the image is resampled to a new image to align all the SAR
images to the master image. The 30 m resolution SRTM data
are resampled into the SAR image coordinate system, and an
amplitude image is generated from the reference SRTM data. The
aligned images were then subjected to differential interferometry
to obtain N differential interferograms, with each image element
of each differential interferogram containing five components. To

avoid calculation errors caused by low coherence points, the high
coherence points in the differential interferograms were selected for
calculation. In this paper, the amplitude deviation index is used for
screening, and the time series amplitude extreme deviation values
are obtained by calculating the mean and standard deviation of the
PS points in each period and the ratio of the two. The threshold
value of the amplitude deviation index is set to filter the PS points,
and then the Delaunay triangulation network is used to construct
the point network of the PS point analysis. Once the PS points
are selected, strong reflection points with zero phase components
of deformation and elevation, high coherence and stable reflection
characteristics are selected as the reference points. Then, the phase
distributions of all other pixels are calculated based on the current
reference points, and the phase values are improved based on the
above phase distribution. The surface deformation of the study area
and the physical and statistical properties of the components of
the interferometric phase are used to establish an entangled phase
functionmodel with the elevation error, linear deformation, thermal
deformation and other factor parameters. The atmospheric phase is
analysed according to the pixel network using the phase difference
relationship between adjacent permanent scattering targets, and the
function model is solved based on the inverse residuals algorithm.
The phase of the elevation error, linear deformation and other
contributing factors of each pixel is solved, the phase of nonlinear
deformation and incoherent noise in the residuals is decomposed,
and finally, the entangled phase values of atmospheric delay
components such as the elevation difference and linear deformation
rate are accurately calculated. The above steps were completed using
the SARPROZ tool.
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FIGURE 3
Maps of land displacements (vertical magnitude in mm) in 2014 and 2021 and the profile cross the pre-exising faults.

3.2 In-situ deformation data

The J1 land subsidence monitoring station is equipped with
extensometers of varying depths. Data from these extensometers,
spanning from 2004 to 2021, have been selected for analysis to
discern the characteristics of soil deformation and to explore the
correlation between the deformation of stratified soil layers and
groundwater levels. The extensometer data at varying depths can be
analyzed by deducting the cumulative deformation of the underlying
layer from the total deformation. The monitoring layers of the
extensometers and the corresponding groundwater wells at the
monitoring station are detailed in Table 1.The geographical location
of the monitoring station is depicted in Figure 1.

3.3 Groundwater level data

Data collected from monitoring wells in groundwater level
directly reflect the hydraulic parameters of the aquifer. In this study,
GWL was collected from 53 monitoring wells. The data is gathered
on a monthly basis by the Beijing Institute of Geo-Environmental
Monitoring from 2014 to 2021. In addition, time series analysis was
conducted using data from 6 observation wells at both sides of the
NSY fault. W1, W2, S1, S2, S3 and S4 wells. The depths of the wells
are 111 m, 102 m, 60 m, 50 m, 80 m, and 102 m, respectively. In this
study, the groundwater level refers to the elevation of groundwater,
and the calculation method is to subtract the groundwater depth
from the surface elevation.
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FIGURE 4
Distribution of groundwater level changes in 53 wells from 2015 to 2021.

4 Result and discussion

4.1 Accuracy assessment

Fifteen levelling benchmarks evenly distributed across the study
regions were measured to verify the reliability of the PS-InSAR
processing results (Figure 2A). Owing to the absence of permanent
scatterers (PS) at the reference points, the average displacement of PS
points within a 100-m buffer zone surrounding these leveling points
was employed as the land deformation value in the reference point
during the calibration process.

As shown in Figure 2B, a cross-comparison levelling result in
2014 and 2021 and the PS-InSAR data was obtained via linear
regression analysis. The assessment results reveal that the PS-InSAR
data matched the levelling results, and the error ranged from 1 to
7.5 mm. The R-squared value was 0.976. The comparison validated
the PS-InSAR data, and the data could be used for further analysis
of the spatial pattern of land deformation.

4.2 Spatial pattern of land deformation

As depicted in Figure 3, a comparison of the velocity maps
from 2014 to 2021 reveals that both land subsidence relief have
been observed within the study area. The deformation values higher
than 0 indicate uplift, while the values lower than 0 indicate land
subsidence.

Significant land subsidence has been detected in the
southern region of the study area, with a maximum deformation
rate of −83.8 mm/yr. Conversely, in 2021, widespread uplift
was documented in the Shunyi district, with rates varying
between +10 and +20 mm/yr (Figure 3). The PS (Persistent
Scatterer) data within the land subsidence funnel indicate
subsidence rates exceeding −50 mm/yr in 2014. By 2021, the
region experienced land uplift at a rate as high as +5 cm/yr.
The maximum land rebound was observed in the region
around 2021, amounting to ten percent of the land subsidence
recorded in 2014.
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FIGURE 5
Time series of groundwater levels on both sides of the NSY fault. See the well locations of (A) in the Figure 4 and (B) in the Figure 6.

FIGURE 6
(A) The locations of the boreholes, the trenching, and the pumping test well. (B) The geological cross-section of the NSY fault.

Interesting, the visible uplift zone, the rebound rate above
20 mm/yr, is dominated spreading in a fan area striking
approximately NE‒SW. By jointly preexisting faults and land
deformation driven by the InSAR, the uplift zone is mainly
developed in the depression bounded by the GLY fault in the
northwest and the NSY fault in the southeast.

For further reveal the effect of pre-existing fault on the land
deformation, We drew a profile a-a (marked as the brown dashed
line in Figure 3B) perpendicular to the pre-existing fault.We plotted

the trend of vertical displacement (black line) and the gradient of
subsidence (brown line) based on the points (600 points total) within
the profile. As shown in Figure 3C, the deformation rate reveals an
decreasing trend at the hangingwall of NSY and footwall of GLY.The
maximum value of the vertical displacementis 38.89 mm. A visible
land rebound area were generated at the foot wall of NSY, with a
maximum rebound of 18.54 mm. The deformation rate exhibits a
distinct uneven changes crossing the GLY Fault and NSY fault, with
a maximum uneven deformation of 18.7 mm.

Frontiers in Earth Science 07 frontiersin.org72

https://doi.org/10.3389/feart.2024.1469772
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu and Bai 10.3389/feart.2024.1469772

FIGURE 7
Trench profile of the preexisting fault. (A) Trench profile excavated perpendicular to the GLY fault in Xiwanglu town. (B) Trench profile excavated
perpendicular to the NSY fault Shunyi petroleum company.

TABLE 2 Results of the pumping test on both sides of the NSY
fault. See Figure 6A for a map of the pumping test well locations.

Piezometer Piezometer end
depth(m)

Average saturated
hydraulic

conductivity value
(m/d)

S1 22.6 276.21

S2 21.5 402

S3 49.91 62.5

S4 47.69 38.55

4.3 Influences of groundwater on the
spatial extent of land rebound

Previous studies have shown that land uplift could result from
the expansion of the granular skeleton due to the increase in
pore pressure associated with recovery of the groundwater level
(Waltham, 2002; Wang et al., 2017). This phenomenon is referred
to as elastic or poroelastic rebound (Chen et al., 2007). Therefore,
we consider the change in groundwater levels on both sides of the
preexisting faults to likely be triggering factors that influence the
spatial extent of land rebound.

53 automatically monitored wells were used to investigate the
groundwater level changes from 2014 to 2021 at both sides of the
preexisting faults. As shown in Figure. During the MAR operation,
Groundwater levels exhibited a relative increase at 90% of the
monitoring well sites. Groundwater levels in the footwall of the NSY
fault have been observed to rise, with a peak increase of nearly 50 m.
In contrast, the groundwater levels at the hanging wall of the NSY
fault exhibited a relativelyminor upward trend. As the distance from
the fault increased, no discernible changes in groundwater levels
was observed.

To further examine groundwater level changes at both sides of
the preexisting fault, The monitoring wells, located at at both sides
of the fault, was selected. The location of the wells are shown in
Figures 4, 6 respectively. The groundwater level exhibited significant
difference on either side of the NSY fault. For instance, monitoring

well 3 showed an visible increase in response to the MAR with 10.71
increase after theMARoperation in 2018.WhileW1 record seasonal
variations associated with changes in precipitation throughout the
observation period Figure 5A.

A similar finding was made by Lapperre et al. (2022) for
the Peel Boundary Fault. They concluded that this effect may
caused by low normal permeability of the preexisting fault zone.
Previous studies have shown that the most direct cause of the low
permeability around the fault zone is because of fault throwing,
which can juxtapose low-permeability confining units against well-
permeability aquifers (Lapperre et al., 2019; Zhao et al., 2021).

The geological section of the NSY fault at a depth of 0–100 m
was revealed by drilling. As shown in Fig, notable stratigraphic
dislocation begins at a depth of 35 m, and the vertical throw
of the strata gradually increases, displaying a juxtapose of low-
permeability confining units against well-permeability aquifers
(Figure 6). The geophysical prospecting profiles also show that the
stratigraphic dislocation propagates downward into the sediments
and may extend to depths of more than 100 m (Qi et al., 2020).

The earth fissure trenches reveal the shallow characteristics of
pre-existing faults. There is a clear vertical offset of strata within the
trench’s range, resulting in the development of a clay smear along the
fault zone that cuts through the clay beds (Figure 7).

Based on the results of the trenching and geological section
analysis, significant stratigraphic displacement and distinct fault
surfaces were observed. The results indicates that the NSY Fault
displays pronounced brittle fault characteristics. As shown in Fig,
under the effect of the MAR, the water level rise was occurred in the
foot wall of NSY fault Figure 5B. The juxtapose of low-permeability
confining units against well-permeability aquifers caused by the
throwing lead to a gradual decrease in the hydraulic conductivity
of the fault zone. An obvious reduction in the permeability of
half the magnitude in the hanging wall of the NSY fault zone
compared to the aquifer in the footwall of the NSY fault zone was
found (Table 2).

As shown in Figure 8B The presence of a low-permeability
layer diminishes the hydraulic connection between the hanging
wall and footwall of the NSY fault, the groundwater in the deep
aquifers located in the footwall of the NSY fault have to circumvent
the aquiclude by moving upward and downward through aquifers
situated above and below it,resulting in reduced water transmission
from the MAR to the hanging wall of the NSY fault, as compared to
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FIGURE 8
Conceptual model of groundwater flow dynamics (A) Natural groundwater flow patterns. (B) Groundwater flow behavior across pre-existing fault.

FIGURE 9
Time series curve of the relationship between cumulative layer deformation and groundwater level at extensometer station. F1, F3, F5, and F7 represent
the monitoring data captured at various depth levels. See Figure 2A for a map of the monitoring station locations.

the natural state Figure 8A. Consequently, this results in a hysteresis
effect or a lack of groundwater level rise in response to the MAR.

According to the principle of effectiveness, MAR leads to an
obvious rebound of the aquifers located at the footwall of the NSY
fault. On the other hand, due to the sluggish recharge of water from
the footwall to the hangingwall aquifers, there was few rebound in
contrast to the deformation observed in the footwall of theNSY fault.

4.4 Influences of lithology on the spatial
extent of land rebound

Ground surface deformation is a result of the total deformation
of deep soil layers (Liu et al., 2019; Zhang et al., 2015). It can be
inferred that the spatial variation may be caused by the complex
loading and unloading in deep soil deformation caused by the
groundwater level rise. To better understand the relationship
between the groundwater level and the deep soil deformation,
the deformation of the soil layer measured at extensometer

station, located at the foot wall of the NSY fault, is plotted
in Figure 9.

As shown in Figure 9, the land rebound responds differently to
a rise in groundwater level. Land rebound can be broadly grouped
into two deformation modes.

Firstly, as the groundwater level rises, the deformation of the
aquifer is closely related to the change in the groundwater level
and exhibited the soil rebound. Secondly, the deformation of the
aquifer is no closely related to the change in the groundwater level.
The relieve of soil compaction was found during the monitoring
period following the rise inwater levels. Based on the boreholes data,
the former mainly occurred in the soil with higher proportion of
sand layer, while the latter mainly occurred in the soil with higher
proportion of the clay layer.

We made comparisons of the lithology at both sides of the
NSY fault to assess the effect of the lithology on the land
rebound. As shown in Figure 10, The fairly high proportion of sand
layer, suggested that this area may occurred significant elastic or
poroelastic rebound in soil during the groundwater level rise. In
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FIGURE 10
Lithology at both sides of pre-existing faults (A) Borehole locations (B) Proportion of sand layers on both sides of pre-existing faults.

contrast, lower proportion of sand layer was identified in hanging
wall of NSY fault. The information indicates that this area can
not experience the rebound immediately when the groundwater
level rise.

5 Conclusion

In summary, the most important new insight from our analysis
is that MRP is an effective measure for controlling land subsidence.
A certain deceleration of the process of land subsidence has been
detected in the MRP area.

The InSAR reveal a significant shift from land subsidence
to land uplift in the study area between 2014 and 2021. The
uplift zones, particularly those exceeding 20 mm/yr, exhibit a fan-
shaped pattern striking approximately NE-SW, closelymirroring the
preexisting fault.

The study highlights the influence of groundwater level
changes on land rebound. The MAR process led to a noticeable
rise in groundwater levels, particularly at the footwall of the
faults. The low permeability across the fault zone weakened the
hydraulic connection between the hanging wall and footwall,
further inhibiting groundwater flow and land deformation in the
hanging wall.

The study underscores the significance of lithology in
determining the spatial extent of land rebound. Soils with a higher
proportion of sand layers were found to exhibit more pronounced
rebound in response to groundwater level rise. Conversely, areas
with lower sand content, such as the hanging wall of the NSY fault,
demonstrated delayed or limited rebound.
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Earthquake-induced landslides (EQIL) are one of the most catastrophic
geological hazards. Immediate and swift evaluation of EQIL hazard in the
aftermath of an earthquake is critically important and of substantial practical
value for disaster reduction. The selection of influencing factor layers is crucial
when using machine learning methods to predict EQIL hazard. As important
input factors for EQIL hazard models, lithology and precipitation are extensively
employed in forecasting EQIL hazard. However, few work explored whether
these layers can improve the accuracy of EQIL hazard predictions. With Random
Forest (RF) models, we employed a traditional and a state-of-the-art sampling
strategy to assess EQIL modelling with and without lithology and precipitation
data for the 2022 Luding earthquake in China. First, by excluding both factors,
we used eight other influencing factors (land use, slope aspect, slope, elevation,
distance to faults, distance to rivers, NDVI, and peak ground acceleration) to
generate a landslide hazard map. Second, lithology and precipitation were
separately added to the original EQIL hazard models. The results indicate
that neither lithology nor precipitation have positive effects on the prediction
of EQIL for both sampling strategies. The high-risk areas (or low-risk areas)
tend to cluster within certain lithology types or precipitation ranges, which
significantly affects the accuracy of the hazard map. Additionally, the model
with the state-of-the-art sampling strategy deteriorates more than the model
with the traditional sampling strategy. We believe this is very likely due to the
strong spatial clustering of negative sample points caused by the latest sampling
strategy. Our findings will contribute to the assessment of post-earthquake
landslide hazards and the advancement of emergency disastermitigation efforts.
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1 Introduction

Earthquake-induced landslides pose significant threats to human life and property.
EQIL hazard maps, indicating the likelihood of landslides in areas affected post-
earthquake, are critical for enabling decision-makers to implement emergency responses.
Thus, accurately predicting and mapping the hazard of earthquake-induced landslides
is indispensable (Jibson et al., 2000; Marano et al., 2010; Raspini et al., 2017). Despite
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considerable research efforts, the accuracy of EQIL hazard
maps frequently falls short, leading to a substantial number
of areas being misjudged or their risk levels exaggerated
(Dreyfus et al., 2013; Allstadt et al., 2018). This situation hampers
decision-makers’ ability to devise accurate emergency response
strategies, thus making the creation of high-quality EQIL hazard
maps a particularly challenging task.

Machine learning methods are currently the mainstream
approach for creating EQIL hazard maps (Shao and Xu, 2022).
In machine learning approaches, selecting the influencing factors
for co-seismic landslides is a critical step that directly impacts
the outcomes of predictions. During the selection of influencing
factors, lithology factors and mean annual precipitation are
widely used by researchers (Shao et al., 2022; Aditian et al.,
2018; Pyakurel et al., 2024; Li et al., 2024; Khaliq et al., 2023;
Nefeslioglu et al., 2008). Especially, lithology factors are recognized
as one of the landslide-triggering factors considered in any
landslide susceptibility assessment using data-driven methods,
a fact well acknowledged in the field (Guzzetti et al., 1996;
Van Westen et al., 2006; Blahut et al., 2010). But whether these
factors positively impact the precision of EQIL hazard prediction
results has seldom been explored.

The classification of lithology is usually conducted through
stratigraphic ages, with rocks from various epochs exhibiting
distinct physical properties (Gallen et al., 2015). These differences
contribute to varying levels of landslide susceptibility. Although
there is a strong correlation between lithology and EQIL
hazard, lithology layers come in a wide variety and often
have lower resolution, with significant differences in lithology
across different regions. Therefore, lithology factors may not
always play a beneficial role in predicting EQIL hazards.
Precipitation increases pore water pressure and reduces the
shear resistance of soil and rock layers, thereby leading to
landslides (Aditian et al., 2018). Precipitation data (such as
mean annual precipitation) is also a significant factor affecting
landslide occurrence. However, the resolution of mean annual
precipitation layers is coarse, at 0.1°, and regional differences are
significant. Whether using mean annual precipitation layers can
effectively enhance the accuracy of EQIL predictions merits further
investigation.

To address these issues, this study utilized high-quality landslide
inventories from eight earthquake events in China to create
two sets of positive and negative sample points datasets for
machine learning, employing both traditional and contemporary
non-landslide point sampling strategies. Utilizing the Random
Forest model, eight influencing factors were selected: “land
use,” “slope aspect,” “slope,” “elevation,” “distance to fault lines,”
“distance to rivers,” “NDVI,” and “peak ground acceleration.”
These were used to predict the EQIL hazard for the VII degree
area affected by the 2022 Luding earthquake. The prediction
results were validated against the interpreted landslide inventory
for this earthquake, exploring the accuracy of the prediction
outcomes from the two sampling strategies. Subsequently,
lithology factors and mean annual precipitation were added to
the aforementioned eight influencing factors, while keeping the
machine learning model and sample datasets unchanged. This
allowed for an exploration of how the inclusion of lithology
or precipitation factors affects the differences in prediction

outcomes. The novelty of this study lies in its demonstration
of how lithology and mean annual precipitation impact the
accuracy of EQIL hazard predictions. It shows that both factors
have a significant effect on prediction accuracy. Avoiding these
factors can notably enhance the precision of EQIL hazard
forecasts.

2 Study area

The study area selected for this research encompasses the VII
degree zone affected by the 6.8 magnitude Luding earthquake
in 2022 (Figure 1), situated at the southeastern edge of the
Tibetan Plateau, covering the southern part of Luding County
and the northern part of Shimian County in Ganzi Prefecture.
The earthquake’s epicenter was located near the Moxi Fault,
close to the Gongga Mountain Hailuogou Glacier Forest Park,
along the southeastern edge of the Tibetan Plateau within
the Xianshuihe fault zone. The Xianshuihe fault zone is one
of the highly active and large-scale boundary strike-slip fault
zones, positioned at the eastern edge of the Tibetan Plateau,
where the Bayan Har block meets the Sichuan-Yunnan block.
It intersects with the Longmenshan Fault Zone and the Anning
River Fault Zone, forming the famous “Y-shaped” fault zone in
western Sichuan (Wang et al., 2015).

This earthquake triggered at least 5,007 landslides, with
preliminary spatial distribution analysis indicating that the
landslides were concentrated in areas of VIII and IX earthquake
intensity. There is a clear connection between the coseismic fault
and the distribution of landslides, with the landslides primarily
clustered around both sides of the causative fault. Notably, there
are more landslides on the northeast side compared to the
southwest side (Huang et al., 2023).

3 Materials and methods

3.1 Landslide inventories

We obtained open access lists of high-quality earthquake
landslides from publicly available research, as follows: the 2008
Wenchuan earthquake (Xu et al., 2014a), the 2010 Yushu earthquake
(Xu et al., 2013), the 2013 Lushan earthquake (Xu et al., 2015),
the 2013 Minxian earthquake (Xu et al., 2014b), the 2014 Ludian
earthquake (Wu et al., 2020), the 2017 Jiuzhaigou earthquake
(Xu et al., 2018), the 2017 Milin earthquake (Hu et al., 2019), the
2022 Lushan earthquake (Shao et al., 2022), and the 2022 Luding
earthquake (Huang et al., 2023). High-quality landslide inventories
from the first eight earthquakes were used to create the training
samples. The landslide inventory from the 2022 Luding earthquake
was used to validate the EQIL hazard prediction results for the
Luding study area.

3.2 Identifying influencing factors for EQIL

The occurrence of landslides is influenced by a variety of
factors, and scientifically selecting these factors is crucial for
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FIGURE 1
Overview of the study area for the Ms 6.8 Luding Earthquake in 2022.

conducting studies on regional landslide risk assessment. To
investigate the impact of lithology and mean annual precipitation
on the precision of EQIL hazard prediction, we selected ten
potential factors that could cause landslides. This selection
was made after a comprehensive process that included field
observations, collection of available data, review of relevant
literature, and numerous tests (Fan et al., 2021; Chen et al.,
2017; Pham et al., 2017; Tien et al., 2016; Youssef et al., 2016).
The factors are elevation, slope aspect, slope, land use, mean
annual precipitation (MAP), lithology, distance to faults,
distance to rivers, NDVI, and peak ground acceleration (PGA)
during earthquakes. The data sources for these factors can
be seen in Table 1.

It is noteworthy that, in the case of the 2022 Luding earthquake
event, there was some discrepancy between the epicenter location
and peak ground acceleration provided by the USGS and the
results of field investigations. Therefore, we estimated and mapped
the peak ground acceleration raster for the study area based on
intensity zones provided by the China Earthquake Administration.
Examples of influencing factor layers focused on the study area
are shown in Figure 2.

3.3 Creation of machine learning training
sample points

3.3.1 Creation of positive sample points
In this study, the landslide inventories from the eight

selected earthquake events are all represented as landslide
polygon layers. Centroids of the landslide polygons were
generated using ArcMap version 10.8. Given that many landslide
polygons are of irregular shapes, some centroids did not fall
within their respective polygons (Qiu et al., 2024). Therefore,
using ArcMap, all centroids located within the landslide
polygons were selected to serve as landslide points (positive
sample points).

3.3.2 Creation of negative sample points
In traditional landslide hazard assessments, the sampling ratio

of positive (landslide) to negative (non-landslide) sample points
is 1:1 (Hong et al., 2020). Zhu et al. (2017) proposed a method
in areas with landslide polygons where every seismic zone is
filled with a sampling grid at 100 m intervals. If a grid cell
contains a landslide point, or if 30% of the grid cell is covered
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TABLE 1 Sources and resolution of data layers for influencing factors.

Provider Spatial resolution Source

SRTM 30 m http://Ipdaac.usgu.gov/

SRTM 30 m Derived from the SRTM30 DEM

SRTM 30 m Derived from the SRTM30 DEM

Wuhan University 30 m 10.5821/zenodo.4417809

USGS 30 m http://earthquake.usgs.gov/earthquakes/search/

NASA GPM 0.1° http://gpm.nasa.gov/

Ye et al. (2017) 1:2,500,000 http://doi.org/10.12029/gc2017Z103

Ye et al. (2017) 1:2,500,001 http://doi.org/10.12029/gc2017Z103

OSM 30 m http://www.openstreetmap.org

Sentinel-2 30 m http://dataspace.copernicus.eu/

FIGURE 2
EQIL influencing factor layers in the study area.

by landslide polygons, that cell is marked as a landslide grid.
Then, non-landslide points are randomly selected from areas
not marked as landslide grids. In seismic zones where the
landslide inventory consists of point data, non-landslide points are
generated using the range of point buffers, ultimately balancing
the total number of landslide and non-landslide points at a one-
to-one ratio. M. A. Nowicki Jessee also utilized this method for
global sampling of positive and negative sample points for EQIL
(Nowicki et al., 2018). Huang and colleagues concluded that an
unequal number of positive and negative sample points affects
model performance and adopted a 1:1 ratio for sampling positive
and negative sample points (Huang and Zhao, 2018; Tien et al.,
2012). Currently, in studies concerning landslide hazard, traditional

methods predominantly utilize a sampling ratio of 1:1 for positive
and negative samples.

However, some studies have proposed alternative negative
sample sampling strategies that achieved results superior to
the traditional approach. Shao and colleagues argued that
the conventional 1:1 sampling method might exaggerate the
proportion of landslide samples in the study area, thereby
diminishing model performance. They introduced logistic
regression models constructed with different sampling intensities
and non-landslide/landslide sampling ratios, applying their method
to the Lushan earthquake (Shao et al., 2020). Yang H. et al.,
(2023) predicted landslide susceptibility using an uncertain
positive/negative sample ratio method, while Pourghasemi and
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colleagues explored three different ratios to identify the most
suitable ratio for model training, finding that a 1:2 ratio of positive
to negative samples yielded the best results (Pourghasemi et al.,
2020). After multiple trials of different ratios of positive to negative
samples, Sun and colleagues opted for a 1:5 ratio, randomly selecting
negative sample points within the study area (Sun et al., 2023).These
studies suggest that the 1:1 sampling strategy might not be the most
appropriate choice for selecting negative sample points.

Regarding the scope of negative sample point sampling,
traditional methods often lack detailed descriptions. He and others
suggested randomly sampling negative sample points within the
range provided by the USGS ShakeMap (He et al., 2021). Many
references simply state “selection within the study area,” where
the study area is usually a range delineated by the authors or
the boundaries of a province, city, or county (Wu et al., 2023;
Heo et al., 2023; Hu et al., 2021).

In the absence of a clear standard for the range of negative
sample point sampling and the ratio of positive to negative
sample points, Yang H. et al., (2023) proposed a heterogeneous
negative sample sampling strategy, which achieved commendable
results in the inversion of the Wenchuan earthquake. It significantly
reduced the areas overestimated for EQIL hazard, though this study
was not applied to predictions in areas without historical EQIL
landslide inventories. In order to fully consider the characteristic
differences between the landslide surface in the historical landslide
inventory and its surrounding non-landslide surface, we improved
the negative sample point sampling strategy of Yang et al., in order
to generate more high-quality negative sample points around the
landslide surface, and put them into the EQIL hazard prediction in
areas without historical earthquake landslide inventory.

3.3.2.1 Creation of negative sample points using the
improved heterogeneous sampling strategy

Using ArcGIS, a 2 km∗ 2 km grid (fishnet) is generated for the
landslide inventory, retaining grids that contain positive sample
points. Within each grid, the landslide area (a), non-landslide area
(b), and the number of landslide points (c) are calculated. The
number of negative sample points to be sampled in each grid (d)
is then calculated using the formula (d = b

a
× c). Corresponding

numbers (d) of random points are generated within each grid as
negative sample points. Given that all rasters used in this study have
a resolution of 30 m × 30 m, the aim is to sample as many high-
quality negative sample points as possible to cover non-landslide
areas surrounding the landslide zones. To prevent negative sample
points from falling within the same grid as landslide areas, causing
errors, and to avoid duplication of multiple negative sample points
in the same grid, the negative sample points must adhere to the
following rules: 1. Negative sample points should bemore than 43 m
away from landslide polygons (the length of the diagonal of a 30 m ×
30 m grid). 2.The distance between each non-landslide point should
be more than 50 m.

3.3.2.2 Creation of negative sample points using the
traditional strategy

To conduct comparative studies and investigate the impact of
lithology and mean annual precipitation on the accuracy of the
traditional negative sample point sampling strategy, we also need to
create negative sample points generated by the traditional strategy.

In the traditional approach, the ratio of positive to negative sample
points is set at 1:1.Thus, within the aforementioned grid (fishing net)
scope, we generate a number of negative sample points equal to the
number of positive sample points. Other than the difference in the
number of negative sample points, all other rules remain the same.

3.4 Random forest model

Random Forest is a powerful machine learning model known
for its exceptional performance in several areas. First, it excels in
handling large datasets. Thanks to the parallel nature of Random
Forest, it can efficiently process data containing millions of samples
without leading to overfitting. This makes it highly advantageous
for applications in big data environments. Secondly, Random Forest
boasts remarkable robustness. It tolerates outliers andnoisy datawell
due to its foundation on ensemble learning from multiple decision
trees. By aggregating the outcomes of various trees, Random Forest
minimizes the impact of individual tree errors on the overall
model, thereby enhancing the model’s robustness. Furthermore,
Random Forest can effectively assess the importance of features.
This capability is incredibly useful as it aids in identifying which
features play critical roles in prediction. This contributes to feature
selection, simplifying the model and improving its interpretability.
Increasingly, studies have demonstrated the efficacy of Random
Forest models in landslide susceptibility research.

4 Results

4.1 Results of positive and negative sample
point creation

Sample points were created for the historical earthquake events
using both the traditional strategy and the improved heterogeneous
sampling strategy. The numbers of positive sample points and
negative sample points created by the two strategies are presented
in Table 2. Figure 3 illustrates the sample point creation results using
the 2017 Jiuzhaigou EQIL inventory as an example. Figure 3A shows
the landslide polygon inventory, Figure 3B displays the positive
sample points, Figure 3C represents the negative sample points
generated by the traditional strategy (Strategy 1), and Figure 3D
depicts the negative sample points generated by the improved
heterogeneous sampling strategy (Strategy 2).

4.2 EQIL hazard prediction using eight
influencing factors under two sampling
strategies

This section utilizes two sampling strategies and employs eight
influencing factors: “land use,” “slope aspect,” “slope,” “elevation,”
“distance to faults,” “distance to rivers,” “NDVI,” and “peak ground
acceleration.” These are used for predicting the EQIL hazard in
the VII degree area affected by the 2022 Luding earthquake. The
accuracy and precision of the prediction results are validated using
the interpreted landslide inventory from this earthquake event.
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TABLE 2 Number of landslide inventories, positive samples, and negative samples for eight historical earthquake events.

Mw UTC Landslide polygons Positive sample Negative samples
(strategy 1)

Negative samples
(strategy 2)

Wenchuan, china 7.9 2008.05.12 197,481 196,037 196,037 1,760,754

Yushu, China 6.9 2010.04.13 2036 1872 1872 73,637

Minxian, China 5.9 2013.07.21 2,330 2,137 2,137 15,284

Lushan, China 6.6 2013.04.20 15,546 14,943 14,943 108,996

Ludian, China 6.2 2014.08.03 1,024 1,016 1,016 17,066

Jiuzhaigou, China 6.5 2017.08.08 4,834 4,248 4,248 19,656

Milin, China 6.4 2017.11.17 766 684 684 21,108

Lushan, CHina 5.8 2022.06.01 2,352 2,334 2,334 22,297

sum ∼ ∼ 226,369 223,271 223,271 2,038,798

4.2.1 Modeling results of the two sampling
strategies

The Random Forest model can directly output the contribution
of influencing factors. The contributions of the eight influencing
factors under the two sampling strategies are presented in Figure 4.

The EQIL hazard prediction results under the two sampling
strategies are shown in Figure 5.

4.2.2 Validation of prediction results
4.2.2.1 ROC curve

The ROC curve and AUC value are utilized to assess the
performance of the models. The samples were randomly divided
into two subsets, with 70% serving as the training data and the
remaining 30% used for validation. The Random Forest models
were then applied to their respective validation datasets to estimate
the probability of landslides. These predicted probabilities of
landslides were compared against their known labels to determine
the predictive capability of the models. The Area Under the Curve
(AUC) was calculated for this purpose. As shown in Figure 6, both
strategies achieved high AUC values. The traditional strategy’s AUC
(0.8909)was slightly higher than that of the improved heterogeneous
strategy (0.8816), indicating that the models constructed from
datasets prepared by both strategies performed well.

4.2.2.2 Validation against the interpreted landslide
inventory

Earthquake-induced landslides are universally acknowledged
as stochastic events (36), making it impossible for EQIL
landslide hazard predictions to achieve 100% accuracy. As
illustrated in Figure 7, by selecting areas near the epicenter with
a dense concentration of landslide inventories for comparison, it is
clear that the spatial distribution of medium to high hazard levels in
both prediction results closelymatches the spatial distribution of the
interpreted landslide inventory. The vast majority of landslide areas
fall within the regions predicted to have medium or higher hazard
levels, demonstrating the reliability of both prediction outcomes.

We selected six densely landslide-populated areas, each
measuring 4 km by 6 km (as shown in Figure 8), for a closer
comparison of the two prediction results. This comparison clearly
reveals that all landslide areas fall within the predicted regions of
medium or higher risk. However, in both sets of results, there are
sectionswithin themedium to high hazard areaswhere no landslides
occurred.Therefore, we quantified the number of non-landslide grid
cells within the areas classified as medium or higher hazard for each
region, with the results presented in Table 3.

It is evident that the improved heterogeneous sampling strategy
(Strategy 2) resulted in fewer areas classified as medium or higher
hazard on non-landslide surfaces compared to the traditional
sampling strategy (Strategy 1). This demonstrates that the actual
predictive performance of the improved negative sample point
heterogeneous sampling strategy surpasses that of the traditional
negative sample point sampling strategy, with a performance
improvement of approximately 30% in areas prone to landslides.

4.3 EQIL hazard prediction with the
addition of lithology factors

In this section, the set of influencing factors is expanded.
Building upon the previously utilized eight influencing factors,
lithology factors are added, making a total of nine influencing
factors. The lithology layer is categorized into 14 classes based on
stratigraphic age. This section explores the EQIL hazard prediction
results under the two strategies with the inclusion of lithology
factors, comparing the differences with predictions made without
using lithology factors.

4.3.1 Prediction results after adding lithology
factors using the traditional sampling strategy

The contributions of the nine influencing factors and the
ROC curve of the model are presented in Figure 9. It can
be seen from the contribution table that the contribution of
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FIGURE 3
Using the 2017 Jiuzhaigou Earthquake Landslide Inventory as an Example, (A) shows the landslide inventory polygons, (B) displays the created positive
sample points, (C) illustrates the negative sample points generated by Strategy 1, and (D) shows the negative sample points generated by Strategy 2.

lithology factors is about 10%. The trends in contributions from
other factors remain essentially consistent with those observed
when lithology factors were not included. This indicates that the
addition of lithology factors does have a certain impact on the
prediction results. The ROC curve reveals that the AUC value of
the model constructed with lithology factors is 0.9104, slightly
higher than the AUC value of 0.8909 when lithology factors were
not used. Based solely on the ROC curve, the modeling results
incorporating lithology factors appear superior. However, this
conclusion is drawn purely from themodel construction perspective
and requires further comparative analysis with actual prediction
effectiveness.

Figure 10 sequentially presents the results without using
lithology factors from earlier sections, the current prediction results,
and the lithology factor layer. Overall, a significant segmentation

phenomenon in the current prediction results is clearly visible. By
comparing with the lithology factor layer, it is observed that the
boundaries of the apparent segmented blocks in these results align
with the boundaries of different lithology classifications within the
lithology layer. This demonstrates that, despite lithology factors
contributing only about 10%, they have a significant impact on
the actual prediction effectiveness. We selected areas where the
differences between the two sets of results are most pronounced,
marked with blue boxes. Within these blue-boxed areas, regions
classified as “Archaeozoic” exhibit a wide range of relatively higher
hazard levels compared to the results without lithology factors. We
zoom into these blue-boxed areas for a closer comparison with
the landslide inventory from this earthquake to explore whether
the addition of these medium to high hazard regions is justified,
as shown in Figure 11.
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FIGURE 4
Contribution of eight influencing factors under two strategies.

FIGURE 5
(A) shows the prediction results using the traditional strategy, and (B) displays the prediction results using the improved heterogeneous strategy.
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FIGURE 6
ROC Curves for the Training Sets of the Two Strategies. (A) Shows the ROC curve for the traditional strategy, and (B) displays the ROC curve for the
improved heterogeneous sampling strategy.

FIGURE 7
Epicentral Area and Interpreted Landslide Inventory Maps for the Two Prediction Outcomes. (A) Represents the epicentral area using the traditional
strategy, and (B) shows the epicentral area with the improved heterogeneous sampling strategy.
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FIGURE 8
Selected six area locations and comparison of results for each area using the two strategies.

TABLE 3 Verification grid number results for six areas.

Number Strategy 1 Strategy 2 Number of grids
on non-slip
surfaces

Percentage of
high-hazard

areas in strategy
1 non-landslide
surfaces (%)

Percentage of
high-hazard

areas in strategy
2 non-landslide
surfaces (%)

1 20,877 13,083 25,576 81.63 51.15

2 23,048 15,098 25,029 92.09 60.32

3 22,610 16,440 23,972 94.32 68.58

4 22,532 15,766 24,341 92.57 64.77

5 20,394 10,780 25,341 80.48 42.54

6 17,976 6,749 25,161 71.44 26.82

FIGURE 9
Contributions table and ROC curve for the traditional strategy using lithology factors.
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FIGURE 10
(A) shows the results using the eight factors from earlier sections, (B) displays the current results, and (C) illustrates the lithology factor layer.

FIGURE 11
Enlarged comparison of the blue areas in Figure 10. (A) Figure 10A's detail view, and (B) Figure 10B's detail view.

It is evident that in both images, landslide areas are located
within regions classified as medium or higher hazard. However,
the prediction results utilizing lithology factors contain more
mistakenly predicted medium to high hazard areas compared to
those without lithology factors. Therefore, we can conclude that
under the traditional sampling strategy, employing lithology factors
does not enhance the precision of predictions. On the contrary, it
affects the original prediction outcomes, resulting in a significant
number of incorrectly predicted areas.

4.3.2 EQIL hazard prediction results with the
addition of lithology factors under the improved
heterogeneous sampling strategy

The contributions of the nine influencing factors and the ROC
curve of the model are presented in Figure 12.

The contribution table shows that under the improved sampling
strategy, the contribution of lithology factors is lower than that
under the traditional strategy (about 10%), accounting for only
about 6%. The ROC curve indicates that incorporating lithology
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FIGURE 12
Contributions of various factors and ROC curve with the addition of lithology factors using the improved heterogeneous strategy.

factors under the improved strategy results in a higher AUC
value compared to not using them. Similar to the traditional
sampling strategy, the inclusion of lithology factors improves the
model’s simulation effect. Moving on to an analysis of the actual
prediction results, Figure 13 compares the outcomes without using
lithology factors under the improved strategy, the current results,
and the outcomes with lithology factors under the traditional
strategy. Under the improved heterogeneous sampling strategy, the
overall prediction results exhibit a more pronounced difference
compared to the results obtained without incorporating lithology
factors. As previously demonstrated, the improved heterogeneous
sampling strategy enhances prediction accuracy, reduces areas of
medium to high hazard, and increases the proportion of low
hazard areas predicted. Therefore, after adding lithology factors,
the segmentation phenomenon becomes more marked compared
to using the strategy without lithology factor. Within the blue-
boxed areas in Figure 13, regions classified as “Archaeozoic”
lithology also show a significant number of areas where the hazard
level has been mistakenly overestimated, compared to predictions
made without lithology factors.

As the previous article verified, the prediction results without
lithology factors under the two sampling strategies are reliable.
However, the two sets of results with lithology factors added in
this chapter have large errors. The use of lithology factors will lead
to excessively high hazard levels in some lithology areas in the
study area. From this, we can conclude that lithology has a negative
effect on the prediction of EQIL hazard. On the contrary, not using
lithology factors will have a better prediction effect.

4.4 EQIL hazard prediction including
precipitation factors

Having explored the EQIL hazard prediction with the addition
of lithology factors previously, this section investigates the EQIL
hazard prediction incorporating precipitation factors. Similarly, the
analysis employs the eight influencing factors plus the mean annual
precipitation, making a total of nine factors. The hazard predictions
are conducted using the two sampling strategies, with a comparative
validation to verify the accuracy of the prediction results.

4.4.1 Prediction results after adding precipitation
factors using the traditional sampling strategy

The contributions of the nine factors, the ROC curve, and the
prediction results are shown in Figure 14, and the prediction results
are illustrated in Figure 15.

From the contribution table, it is noticeable that the contribution
of the mean annual precipitation factor is second only to peak
ground acceleration, with a contribution significantly higher than
other influencing factors, at about 19%. This indicates that the
mean annual precipitation factor has a substantial impact on
predicting landslide hazard. The ROC curve reveals a higher AUC
value (0.9216) after incorporating the mean annual precipitation
factor, but the actual prediction performance requires further
comparative research. The comparison and validation against the
landslide inventory are shown in Figure 16. Sequentially, Figure 16
presents the prediction results using the eight factors under the
traditional sampling strategy, the current prediction results, and the
mean annual precipitation layer. Given the high contribution of
mean annual precipitation, there’s a strong consistency between the
prediction effect graph and the distribution trend of mean annual
precipitation. Compared to the results without using precipitation
factors, the lower part of the map shows lower hazard levels, while
the upper part shows higher hazard levels. Considering the landslide
inventory for this earthquake event, many landslide areas in the
lower part of the current prediction results are underestimated in
terms of hazard level, whereas the upper part has many medium to
high hazard areas without landslides occurring, leading to severe
underestimation and overestimation of hazard levels. Under the
traditional sampling strategy, despite the superior AUC value with
precipitation factors, the prediction results were poorer, failing to
enhance prediction accuracy and resulting in numerous incorrectly
predicted areas.

4.4.2 Prediction results after adding precipitation
factors under the improved heterogeneous
sampling strategy

The contributions of the nine influencing factors and the ROC
curve of the model are presented in Figure 17, and the results are
illustrated in Figure 18. Under the heterogeneous sampling strategy,
the mean annual precipitation contributes more significantly than
the peak ground acceleration, approximately 20% compared to

Frontiers in Earth Science 12 frontiersin.org88

https://doi.org/10.3389/feart.2024.1431203
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2024.1431203

FIGURE 13
(A) shows the results of the eight factors using the improved heterogeneous strategy from earlier sections, (B) displays the current results, and (C)
illustrates the results of adding lithological factors using the traditional strategy from earlier sections.

FIGURE 14
Contributions of various factors and ROC curve with the addition of mean annual precipitation using the traditional strategy.

about 14% for the latter. This indicates an unrealistic dominant
role of mean annual precipitation, given that our study focuses on
landslides triggered by earthquakes, where seismic factors (peak
ground acceleration) should logically have the highest contribution.
Despite a higher AUC value with the inclusion of precipitation
factors, the actual outcomes, as shown in Figure 19, present some
concerns. Comparing previous results without precipitation factors
and the current prediction outcomes, the current results exhibit
a more pronounced segmentation phenomenon. In the prediction
map, lower hazard levels are assigned to landslide areas in the
lower part of the layer, while higher hazard levels are attributed
to non-landslide areas in the upper part. This leads to a more
distinct regional segmentation than seen with the traditional
sampling strategy predictions, aligning closely with themean annual
precipitation layer. It is evident from the map that areas with higher
annual precipitation generally have higher EQIL hazard levels, and
areas with lower annual precipitation have lower EQIL hazard levels,
which is unreasonable.

Based on the prediction results using mean annual precipitation
factors under both the traditional sampling strategy and the
improved heterogeneous sampling strategy, we can conclude that
using the annual average precipitation factor will have a significant
negative effect on the prediction results, not favorably for enhancing
the precision of earthquake-induced landslide hazard predictions.

5 Discussion

In landslide susceptibility mapping, the quality of input
data decisively influences the quality of landslide susceptibility
assessment (Pradhan, 2013; Pradhan et al., 2014; Kalantar et al.,
2018). Hence, the sampling of training sample points and the
selection of influencing factors are critical steps that determine
the quality of input data. During the process of negative sample
sampling, the improved heterogeneous sampling strategy can
generate a large number of non-landslide points around landslide
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FIGURE 15
Result map with the addition of mean annual precipitation using the traditional strategy.

areas. There are fewer non-landslide points in densely landslide-
affected areas and more in sparsely affected areas. This strategy
enables a focused differentiation between the characteristics
of historical co-seismic landslide areas and surrounding non-
landslide areas. In existing studies, nearly all EQIL hazard maps
overestimate the hazard level of the seismic area, especially
giving excessively high hazard ratings to the epicentral region
(Dreyfus et al., 2013; Allstadt et al., 2018). This study demonstrates
that the improved heterogeneous sampling strategy can more
accurately predict the spatial location of EQIL occurrences, reducing
the overestimated hazard areas around the epicenter.This proves the
strategy to be reasonable and advanced, making the investigation
into the effectiveness of using lithology and precipitation
factors under this strategy and the traditional strategy highly
persuasive.

Lithology factors and mean annual precipitation are important
influencing factors for the occurrence of EQIL (Duman et al., 2006;
Yalcin, 2008; Ercanoglu and Temiz, 2011; Nefeslioglu et al., 2012;
Das et al., 2013; Nefeslioglu et al., 2008). However, the results of
this study indicate that under both sampling strategies, the use
of lithology and mean annual precipitation factors has an adverse
impact on EQIL hazard prediction. We believe this is closely
related to the model training sample dataset. Initially, the training
samples for EQIL hazard prediction following an earthquake event
should be created using the historical EQIL inventory from the
location of that earthquake. However, in reality, historical landslide
inventories from the same location area are scarce. To address
this issue, we considered creating a large sample dataset using
high-quality landslide inventories from eight historical earthquake
events in China, aiming to identify the patterns of EQIL occurrence
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FIGURE 16
Comparison using the landslide inventory. (A) Shows the results of the eight factors under the traditional strategy from earlier sections, (B) displays the
current results, and (C) illustrates the Mean Annual Precipitation layer.

FIGURE 17
Contributions of various factors and ROC curve with the addition of mean annual precipitation using the improved heterogeneous strategy.

through machine learning and then apply these insights to EQIL
hazard prediction after an earthquake event. These eight historical
earthquake landslide inventories are distributed across different
regions in Southwest China, where there is a significant variation
in lithology and mean annual precipitation across regions. This
variation is likely a reason for the poor performance of lithology
and mean annual precipitation factors. It is possible that certain
lithologies or ranges of annual precipitation have a large number of
historical earthquake landslide samples (or non-landslide samples),
leading to a higher (or lower) hazard level being predicted for
these lithologies or precipitation ranges in the prediction area, thus
resulting in poor performance when using lithology and mean
annual precipitation factors.

Secondly, the resolution of lithology and mean annual
precipitation layers is relatively low, resulting in significant
segmentation. The scale of lithology data is 1:2,500,000, which
corresponds to a spatial resolution of approximately 660 m.
After classifying lithology by geological age, the segmentation

phenomenon becomes pronounced. If mispredictions occur, it
can easily lead to hazard levels being generally overestimated or
underestimated within certain lithology regions. In such cases, the
segmentation phenomenon in prediction results is inevitable unless
higher precision lithology data are used, a more detailed lithology
classification method is applied, or lithology factors are not utilized
at all. The resolution of mean annual precipitation is 0.1°, and
even after interpolation to a 30 m resolution grid, the variability
between different regions remains significant. The impact of layer
resolution differences on lithology and mean annual precipitation
factors cannot be overlooked.

Furthermore, the two sampling strategies used in this study
generate non-landslide sample points in areas near landslide
samples, emphasizing the differences in characteristics between
landslide and surrounding non-landslide areas, thereby achieving
better prediction results. However, this approach also results in a
strong clustering of non-landslide sample points, especially with
the improved heterogeneous sampling strategy, which produces ten
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FIGURE 18
Result map with the addition of mean annual precipitation using the improved heterogeneous strategy.

times as many negative sample points as the traditional strategy,
leading to even greater clustering. This could explain why, in the
experiments described earlier, the use of lithology or precipitation
factors led to a more pronounced segmentation phenomenon with
the heterogeneous sampling strategy compared to the traditional
strategy. Coupled with the regional differences and lower resolution
of lithology and mean annual precipitation factors, this might cause
negative sample points to cluster around certain lithology types
and precipitation ranges, resulting in these areas being assigned
lower hazard levels and affecting the accuracy of the prediction
results.

To verify this hypothesis, we analyzed the number of positive and
negative sample points located within each lithology classification
in the study area under the traditional sampling strategy,
as shown in Table 4.

It was observed that the number of landslide sample points in the
“Archaeozoic” lithology category is about three times the number
of non-landslide sample points. This disproportion could lead to
the “Archaeozoic” lithology areas in the study region generally
being assigned a higher EQIL hazard level, resulting in erroneous
predictions.

Finally, although lithology and precipitation factors are
important, why are the results without using these two factors
so reliable? We believe that the other influencing factors used
may have a certain degree of correlation with these two factors.
Topography can influence precipitation distribution patterns
through its impact on large-scale weather systems, atmospheric
flows, and the microphysics of clouds (Wu et al., 2005; Beniston,
2006; Liu et al., 2024; Yang, D. et al., 2023). Elevation, slope aspect,
and slope gradient have been shown to have strong correlations
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FIGURE 19
(A) shows the result map using eight factors with the improved heterogeneous strategy from earlier sections, and (B) displays the current result map.

TABLE 4 Number of positive and negative sample points in each
lithology classification.

Positive samples Negative samples

Quaternary 205 1704

Jurassic 2,411 13,069

Triassic 27,761 56,202

Permian 10,616 12,741

Devonian 25,389 34,389

Silurian 29,334 40,092

Ordovician 2,202 2,241

Proterozoic 92,710 40,045

Archaeozoic 13,723 3,127

with precipitation (Liu et al., 2018; Zhang et al., 2014). Distance
to rivers and proximity to seas also share a strong correlation
with precipitation levels (Zheng et al., 2017). The Normalized
Difference Vegetation (NDVI) is used to assess the condition
of surface vegetation. The relationship between precipitation
and NDVI is dynamic, influenced by various factors, including
geographical location, season, soil type, and vegetation type. To
a certain extent, there is a strong correlation between NDVI and

precipitation (Ding et al., 2007; Kawabata et al., 2001). The link
between landslides and lithology considers the geological strength
index and cohesion of rocks (Gallen et al., 2015). Although rocks
from different geological ages can have significant differences
in shear strength, but the actual strength of rock is affected by
many factors (Gallen et al., 2015; Li et al., 2020; Schmidt and
Montgomery, 1995; Hoek and Brown, 1980; Ye et al., 2024). It
is difficult to characterize shear strength on global and regional
scales (Dreyfus et al., 2013). However, environmental factors are
very likely to affect the strength of near-surface rocks (Gallen et al.,
2015), and there is a certain correlation between environmental
factors and lithology. Factors such as slope aspect, slope gradient,
elevation, land use, distance to rivers, and the NDVI all affect
environmental conditions to some extent, thereby affecting rock
strength. In summary, although lithology and precipitation factors
were not directly used, employing other factors may have indirectly
considered these two factors as well.

6 Uncertainties and prospects

This study employs traditional and novel negative sample
sampling strategies to create sample points from historical
earthquake-induced landslides and investigates the impact of
lithology factors and mean annual precipitation on the accuracy
of earthquake-induced landslide hazard predictions. This is of
significant importance for future research on the influencing factors
and precision of earthquake-induced landslide hazard predictions.
However, there are still some limitations that need to be further
improved and explored.
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We improved the latest EQIL negative sample point sampling
strategy proposed by Yang, H. et al., (2023). However, the 2 km
× 2 km grid for negative sample points may not be suitable for
all EQIL inventories used in this study. Therefore, in the future,
grids of appropriate sizes can be customized for each earthquake
event’s landslide inventory, considering factors such as the range
of the landslide inventory and the area of landslide polygons.
Moreover, the approach is not limited to grids; methods such as
buffer zones can also be used to define the sampling range for
non-landslide points.

This study found a significant discrepancy between the ROC
curves of machine learning methods and the actual prediction
outcomes, indicating that ROC curves can be misleading. A higher
AUC value does not necessarily equate to better prediction results.
Future efforts should focus on evaluating models based on actual
outcomes or developing more sophisticated methods to assess
model quality.

Lithology and precipitation factors are considered significant
influencing factors for EQIL. However, this study found that their
impact on the accuracy of actual predictions was poor. Future
research should explore how to improve these two factors to
make them more effectively applicable to EQIL prediction, such as
enhancing the precision of lithology and mean annual precipitation
layers or using alternative layers that can represent lithology and
precipitation more accurately.

This study utilized sample points created from eight historical
EQIL inventories. In the future, more high-quality EQIL lists can be
added to improve the sample point data, allowing for the selection of
influencing factors that are more suitable for the dataset to construct
the model. The broader the coverage of sample points, the wider the
prediction range can be, leading to higher prediction accuracy. The
more appropriate the influencing factors, the better the prediction
outcomes will be.

This study exclusively employed the Random Forest
model for modeling and did not engage in a series of
studies with other machine learning models. Therefore, the
effectiveness of the methodologies and datasets used in this
research when applied to other machine learning models
remains uncertain.

7 Conclusion

This study exploring the impact of lithology factors, classified
by geological age, and mean annual precipitation on the accuracy
of earthquake-induced landslide hazard predictions. The use
of lithology and mean annual precipitation factors was found
to reduce the accuracy of the predictions. Without these two
factors, both strategies demonstrated good predictive performance,
with the improved heterogeneous sampling strategy showing an
approximate 30% improvement in predictive performance in the

epicentral region compared to the traditional strategy. In summary,
lithology factors classified by geological age and mean annual
precipitation factors have a significant negative impact on EQIL
hazard predictions.They are not suitable for EQILhazard prediction.
This research holds significant implications for the selection of
influencing factors and the precision of future earthquake-induced
landslide hazard predictions.
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In order to explore a new method and mode of gently inclined hard roof
treatment, the hydraulic fracturing axial roof cutting technology based on
abrasive jet is introduced, and the key technical parameters of abrasive jet axial
cutting and fracturing are determined based on indoor experiments and field
industrial experiments. Taking the mining of working face under the condition
of hard roof in Kuangou Coal Mine as the background, the implementation
process and the effect of mining process are tested by means of water
pressure gauge, drilling peep and observation well water level observation, mi-
croseismic monitoring, support fracture monitoring and coal stress monitoring.
The research results show that the key technical parameters of slotting and
fracturing are mastered in the axial cutting test of abrasive jet. Wherein the kerf
depth is 200 m, the kerf length is 300 m, the kerf pressure is 40–50 mpa, the
fracturing pressure is 50–55 mpa, and the fracturing time is 20–30 min. After
grooving fracturing, the cracks in the roof strata are effectively generated and
expanded, which destroys the integrity of the roof, and the fracturing radius
is 10–20 m. During the mining period, compared with the tradi-tional blasting
technology, the concentrated area of microseismic events was shifted from
80 m in front of the working face to 130 m after the combined treatment
of abrasive jet axial roof cutting and blasting, and the microseismic energy
release was mainly small energy events. After the application of abrasive jet
axial roof cutting and scour prevention technology in hard roof, the periodic
weighting step is obviously reduced, the influence range of mining stress and
stress concentration coefficient are obviously reduced, the activity intensity and
dynamic load effect of surrounding rock are obviously weakened. The research
results provide a basis for effective prevention and control of rockburst disasters
under the condition of hard roof.

KEYWORDS

hard roof, rockburst, hydraulic fracturing, pressure relief regulation, axial fracture
cutting and fracturing of abrasive jet

1 Introduction

With the increasing depth of coal mining, rockburst accidents occur frequently. Ac-
cording to statistics, there are more than 170 rockburst mines in China. Hard roof is one
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of the main disaster-causing factors of rock burst or strong ground
pressure during coal mining. Its hard roof has the characteristics
of good integrity, high strength and strong ability to bear overlying
load, which provides high static load and strong dynamic load for
the occurrence of rock burst (Pan et al., 2003; Pan et al., 2012).

At present, the methods of blasting roof breaking and hydraulic
fracturing are widely used at home and abroad to weaken the
hard roof. In view of the large-area hanging roof of the working
face during the initial mining under the condition of hard roof,
Zhao (2021) put forward the cooperative anti-scour mechanism
of deep-hole roof pre-splitting blasting. Kuangou Coal Mine has
been seriously affected by hard roof for a long time. A systematic
study was carried out on the reasonable control height of hard
roof in close-distance coal seam in Kuangou Coal Mine, and
the key technical parameters of roof blasting presplitting were
optimized, which effectively reduced the activity intensity of hard
roof and the stress concentration of coal body. The combined
method of directional long-distance drilling and blasting roof
cutting was used to effectively relieve the pressure of the hard
roof (Zhang et al., 2019; Jia et al., 2022; Jia et al., 2024). As an
effective method to weaken the hard roof and relieve the pressure
of sur-rounding rock, hydraulic fracturing technology has been
widely used in the prevention and control of rock burst of hard
roof (Junzhe et al., 2020). On the basis of scaling analysis, Ali
Naghi Dehghan and others scaled the laboratory experimental
parameters to simulate the hy-draulic fracturing process under
field conditions (Dehghan, 2020). Some scholars use numerical
simula-tion and rock mechanics test methods to analyze the
influence of natural fractures on hy-draulic fracturing aperture
and fracture propagation geometry (Cruz et al., 2018; Liu et al.,
2014). Qingyuan He et al. obtained that the homogeneity of rock
mass significantly affects the propagation distance of hydraulic
fracture from its starting point in its predetermined direction
before reorienta-tion (He et al., 2017). Shuai Heng et al. developed
a two-dimensional numerical model of hydraulic fracturing to
clarify the evolution of hydraulic fractures and their non-planar
behavior at the level (Heng et al., 2019). Based on the finite-
discrete method, Mingyang Wu et al. mastered that when the
elastic modulus of discrete embedded blocks and the number of
discrete embedded cracks reach a certain level, the propagation
of hydraulic cracks will suddenly change (Wu et al., 2021). Mingqi
Qin and others studied the mechanism of hydraulic frac-turing
of layered rock mass based on the hydraulic fracturing model of
surrounding dy-namics (Qin et al., 2021). Ayaka Abe et al. studied
the formation law of fracture network when hydrau-lic fractures and
pre-existing fractures interact through laboratory-scale hydraulic
frac-turing experiments (Abe et al., 2021). Arash Dahi Taleghani
and others discussed the linear elastic fracture mechanics, cohesive
element method and continuous damage mechanics tech-niques
for understanding the interaction between hydraulic fractures and
natural frac-tures (Taleghani et al., 2016). Amir Ghaderi and others
combine the extended finite element method (XFEM) with the
discrete element method (DEM) to identify the propagation of
hydraulic fractures in porous media containing natural fracture
blocks (Ghaderi et al., 2018). Ali Naghi Dehghan et al. con-ducted
laboratory experiments on the size synthetic rock samples, and
grasped the influ-ence of the pre-dip angle and strike of fractures
on the propagation behavior and geometry of hydraulic fractures

(Dehghan et al., 2018). Kang et al. (2023) developed a complete
set of technology and equipment for hydraulic fracturing in
underground areas of coal mines, focusing on the propagation law
of hydraulic cracks at different scales. Junfeng et al. (2023) put for-
ward the method of hydraulic fracturing “artificial liberation layer”
to relieve pressure and prevent rockburst in the area of thick hard
roof where the overlying coal seam caused dis-aster, and Mengshan
mining area introduced hydraulic fracturing technology to explore
a new mode of rockburst control (Weng et al., 2019). In addition,
relevant scholars have studied the impact of land settlement caused
by tunnel excavation and the coordination of cable-soil deformation
under different anchoring conditions. It provides conditions for the
safe conduct of the project site (Junfeng et al., 2021; Wu et al., 2020;
Irani et al., 2022).

With the rapid development of high-pressure abrasive water
jet technology in recent years, Junfeng et al. (2021) obtained the
variation law of fracture characteristic index values such as rock
failure depth, width and erosion volume under different hydraulic
parameters through laboratory tests. Xia et al. (2020) developed a
new technology of axial top-cutting fracturing with abrasive jet in
hole and hydraulic reaming and cutting in coal seam, and further
developed the hydraulic fracturing technology and technology.
Domestic scholars (Feng, 2012; Li et al., 2009) established the
empirical model of cutting depth and surface roughness in smooth
area of abrasive water jet machining hard and brittle materials, and
put forward the pressure relief mechanism of high-pressure water jet
grooving coal seam. In addition, in other aspects of research on rock
burst, some scholars have analyzed the precursor characteristics of
rock burst, and introduced loading and unloading response ratios
to study the reasonable advancement speed of their working faces
(Feng et al., 2022; Lai et al., 2022).

The research results of the above scholars have made effective
research on the preven-tion and control of blasting pressure relief,
hydraulic fracturing and pressure relief of hard roof. However, there
is relatively little research on the application of pressure relief pre-
vention and control of abrasive jet. In view of this, this paper
takes the mining of I010206 working face in Kuangou Coal Mine
as the research object, and carries out the determina-tion of key
technical parameters of axial roof cutting with abrasive jet. Using
this technology, the pre-splitting engineering practice of combining
abrasive jet with blasting is carried out, and the effect is tested. It is
verified that the axial cutting technology of hard roof abrasive jet can
achieve the effect of conventional blasting treatment in hard roof.
The purpose of this paper is to lay a foundation for comprehensive
application in the practice of rock burst prevention and control of
hard roof in Kuangou Coal Mine.

2 Engineering background

2.1 General situation of working face

Kuangou Coal Mine is located in Hutubi County, Xinjiang,
China. The mine mainly mines B4-1 coal seam, B2 coal seam
and B1 coal seam. Now it is mined to I010206 working face
of B2 coal seam, with an average thickness of 10.5 m, which
belongs to extra-thick coal seam. Before expansion, the inclined
length is 85 m, after expansion, the inclined length is 137.8 m, the
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FIGURE 1
The layout of I010206 working face.

recoverable strike length is 1,672 m, the average inclination angle
of working face is 14, and the average buried depth is 434 m. The
width of I010206 working face is ir-regular during mining, and
the layout of I010206 working face is shown in Figure 1. I010206
working face of B2 coal seam adopts comprehensive mechanized
top-coal cavingmining technology, with amining thickness of 3.2 m
and a caving thickness of 7.3 m, with a mining-caving ratio of
about 1: 2.4.

According to the analysis of borehole data in Kuangou Coal
Mine, there are multiple sandstone roofs within 50 m above the
coal seam. The lithology statistics of B2 coal seam and its roof
are shown in Table 1. There are 13.59 m thick medium-grained
sandstone and 12.51 m thick fine-grained sandstone in the roof
of coal seam. Among them, 13.59 m me-dium-grained sandstone
is a sub-critical stratum, with uniaxial compressive strength of
115.25 MPa, uniaxial tensile strength of 7.48 MPa, elastic modulus
of 31.65 GPa and Pois-son’s ratio of 0.24.

2.2 The strata behavior of previous working
face mining in B2 coal seam

After I010203 working face of B2 coal seam is mined, I010206
working face is mined. During the mining period of I010203
working face in the past, rock burst and many mine earthquakes
occurred. Taking the large energy appearance of mine earthquake
on 8 March 2018 as an example, the source distribution of mine
earthquake and its roadway defor-mation are drawn as shown in
Figure 2. During the mining of I010203 working face in B2 coal
seam, a mine earthquake occurred at the side of coal pillar in
the lower gateway. The energy of mine earthquake is 9.7 × 106 J,
and the source is at the side roof of coal pillar in the lower
gateway of I010203, as shown in Figure 2A. The mine earthquake
was accompanied by loud noise, which caused floor heave and
net pocket at the bottom of roadway in the area of 148–198 m
ahead of the working face in the lower gateway of I010203. The
floor heave of the roadway where the mine earthquake occurred is
about 20 cm, and the local top coal sinks about 30 cm, as shown
in Figure 2B.

TABLE 1 Statistical table of lithology of B2 coal seam and its roof.

Serial number Rock character Thickness/m

1 B4-1 coal seam 3.93

2 Mudstone 7.99

3 Fine grained sandstone 5.29

4 B3 coal seam 2.35

5 Siltstone 6.16

6 Fine grained sandstone 12.51

7 Medium grained sandstone 13.59

8 Fine grained sandstone 0.69

9 Mudstone 2.15

10 B2 coal seam 11.11

2.3 I010206 working face impact risk
analysis

This paper comprehensively analyzes themain geological factors
and mining tech-nology factors that affect the risk of rock burst in
I010206 working face of Kuangou Coal Mine. The main geological
factors include physical properties of coal and rock, buried depth,
hard rock stratum, faults, local fold areas and so on. The main
mining factors are overlying structure, section coal pillar, roof
activity, liberated layer, bottomcoal, roadway crossing and so on.The
comprehensive index method is used to carry out the impact risk
assessment, and the multi-factor coupling method is used to draw
the results of impact risk area division as shown in Figure 3.

B2 coal seamand its floor haveweak impact tendency, andB2 coal
seam roof has strong impact tendency. As can be seen from Figure 3,
whenI010206working face isadvancing, thedanger-ousareaalongthe
gatewayontheworkingfacechangesfromamediumimpactdangerous
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FIGURE 2
The source distribution of mine earthquake and its roadway deformation. (A) Focal location of mine earthquake; (B) Roadway deformation caused by
mine earthquake.

FIGURE 3
Division result of impact danger zone.

area to a strong impact dangerous area near the wide working face.
Among them, the range of 790–1,130 m in the upper gateway is a
medium impact danger zone, and the range of 690–790 m is a strong
impact danger zone. In the mining process of the working face, the
lower gateway area is a medium impact danger area.

3 Principle and technology of axial top
cutting with frosted jet

3.1 Principle of axial roof cutting with
abrasive water jet to prevent impact

The technology of axial cutting of hard roof with abrasive jet
is to drill holes in the roof, and the initial cracks with a depth of
300–500 mm are formed on the wall of the hole with abrasive jet

technology.Fracturing iscarriedoutalongthecuttingdirection, so that
a fracturenetworkdominatedbyaxialcracks is formedinthehardroof,
andacluster frac-turenetworkalongthestrikeor inclinationis formed.
Undertheactionofminepressure, thetechnologyofdirectionalcutting
off the roof is realized (Wu et al., 2020).

According to the related theory of rock burst, the energy sources
of rock burst are mainly static load of foundation and additional
dynamic load.When the combined action of dynamic and static loads
reaches the critical condition of rockburst, rockburst will occur, and
the conditions for rockburst can be expressed as Equation 1:

σj + σd ≥ σb min (1)

In the formula, σ j is the static load in coal and rock mass; σd is
the dynamic load in-duced impact in coal and rock mass; σbmin is
the critical stress when rock burst occurs.
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The technology of axial roof cutting with abrasive jet can reduce
the bending elastic energy caused by roof hanging and the dynamic
load caused by roof fracture. At the same time, the goaf fully
collapses, which plays a supporting role for the roof, thus reducing
the compressive elastic energy of coal and the dynamic load caused
by roof collapse.

3.2 Construction technology of axial
topcutting technology with scrubbed
water jet

The construction technology mainly includes “drilling-slotting-
fracturing” three links, and the schematic diagram of the frosted jet
construction technology is shown in Figure 4. Firstly, a drilling rig,
a matching drill bit and a drill pipe are used to drill a hole with
a certain aperture in the roadway roof. Secondly, connect the hole
sealer with the abrasive jet device and send it to the preset position
of drilling, start the water jet system and adjust it to the jet mode.
Operate the drilling rig to retreat the drill pipe at a uniform speed,
and form prefabricated cracks on both sides of the drilling axis.
Finally, turn off the abrasive pump, adjust the high-pressure pump
to hole sealing mode, and inject high-pressure water into the hole
sealer to seal the upper and lower hole sealers of the crack. Switch
the water jet system to fracturingmode, and the high-pressure water
continues to expand along the crack tip.

When the pump pressure drops suddenly or the fracturing time
reaches the design time, turn off the high-pressure pump, relieve the
pressure with the hole sealer, and com-plete the fracturing work in
this section. Start the drilling rig and operate the drill pipe to move
the ejector to the next slot position, and construct the next section
according to the above method.

4 Experimental study on main
technical parameters of axial
topcutting of grinding jet

4.1 Design of experimental scheme for
axial topcutting of scrubbing jet

The purpose of “slotting” technology in abrasive jet axial
cutting technology is to prefabricate slotting and provide

FIGURE 4
The schematic diagram of the frosted jet construction technology.

guidance for “fracturing.” According to the theoretical
research foundation and field engineering experience of the
research group at present, combined with the laboratory test
results, equipment capacity and operational safety, the kerf
radius and kerf length that meet the engineering needs are
comprehensively set to be 200 mm and 300 mm for this kerf
test analysis.

The layout of slotting test scheme is shown in Figure 5. On
I010206 working face, the gateway is 300 m ahead of the working
face to avoid the influence of mining. Slotting is carried out from
hole B to hole A, and hole A is observation well, so as to determine
lithol-ogy, adjust fracturing position and test the effect. When the
kerf radius is 200 mm, the rela-tionship between kerf pressure and
kerf time is determined, and the kerf is planned to be carried out
in hole B in four sections to hole A with a spacing of 200 mm.
This time, two schemes are designed to carry out slotting test
analysis. In Scheme 1, the slotting direction is B→A, the slotting
pressure is 40 MPa, so that the slotting hole can be slotted with
the 200 mm rock stratum in observation well, and the slotting
length is 300 mm. Record the slotting time and sand consumption,
and move the slotting downwards. In Scheme 2, the kerf pressure
is changed to 50 MPa, and other kerf parameters are consistent
with Scheme 1.

The layout of fracturing test scheme is shown in Figure 6. There
are 4 boreholes in the fracturing test, among which E and H
boreholes are observation well, and F boreholes and I boreholes are
slotting and fracturing boreholes. After the cutting and fracturing
of the F hole and I hole, the internal conditions of the E hole and
the H hole are detected, and the fracturing test results are analyzed
accordingly. Using the determined parameters of abrasive kerf, the
fracturing experiment after abrasive jet is further carried out to
determine the fracturing radius.

In the first scheme, the cutting direction is F→E, the cutting
radius is 200 mm, the cutting length is 300 mm, the sand
consumption is 25 kg, and the fracturing pressure is 50 MPa. Based
on this, the feasibility of 5 m fracturing radius is analyzed. In the
second scheme, the cutting direction is F→E and the fracturing
pressure is 60 MPa. Based on this, the feasibility of 5 m fracturing
radius is analyzed. In the third scheme, the cutting direc-tion is
I→H, and the fracturing pressure is 60 MPa. Based on this, the
feasibility of 10 m fracturing radius is analyzed. The remaining
parameters of Scheme 2 and Scheme 3 are consistent with those
of Scheme 3.

FIGURE 5
The layout of slotting test scheme.
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FIGURE 6
The layout of fracturing test scheme.

TABLE 2 Statistical table of slit test results.

Scheme
serial
number

Slotting
direction

Kerf
radius/mm

Slotting
pressure/MPa

Sand
consumption/kg

Slotting
time/min

Scheme 1 B→A 200 40 25 1.5

Scheme 2 A→B 200 50 25 1

4.2 Analysis of experimental results of axial
topcutting of scrubbing jet

During the slotting test, slotting was conducted from the
position of hole B at 17 m to the direction of hole A at a distance
of 200 mm. The pressure of water injection pump was 40 MPa, the
amount of sand added was 25 kg, the slotting length was 300 mm,
the slotting duration was 1.5 min, the rock stratum at a distance
of 200 mm between holes A and B was cut, and water came out
from hole A. From the 15 m position of hole B, cut the seam in the
direction of hole A with an interval of 200 mm. The water injection
pump gives a pressure of 50 MPa, the sand addition is 25 kg, the
length of the seam is 300 mm, and the length of the seam is 1 min.
Cut through the rock strata with an interval of 200 mm between
holes A and B, and the water comes out of hole A.

The main parameters such as kerf radius, kerf pressure, kerf
time and sand consump-tion are determined through experiments,
as shown in Table 2.

Based on the experimental study of fracturing radius parameters
of two sections of hole F with 5 m, the fracturing radius
of two sections with 5 m was successfully completed. Its kerf
length is 300 mm, kerf radius is 200 mm, and kerf pressure is
40–55 MPa. The frac-turing parameters include fracture initiation
pressure of 50–55 MPa, fracturing time of 10–12 min and fracturing
radius of 5 m.

According to the experimental study on the parameters of
fracturing radius of I hole in four stages of 10 m, the fracturing
radius of 10 m for three times was successfully com-pleted. Its
kerf length is 500 mm, kerf radius is 200 mm, and kerf pressure is
40–55 MPa. The fracturing parameters include fracture initiation
pressure of 55–60 MPa, fracturing time of 10–20 min and fracturing
radius of 10–20 m. The test results are shown in Table 3.

As the kerf radius increases from 5 to 10 m, the fracturing
pressure increases accordingly.The results show that higher pressure

TABLE 3 Fracturing test results.

Scheme
serial
number

Slotting
direction

Fracturing
position/m

Fracturing
pressure/MPa

Fracturing
time/min

Fracturing
radius/m

Scheme 1 F→E 25 50 12 5

Scheme 2
F→E 20 55 10 5

I→H 28 55 12 10.3

Scheme 3

I→H 25 55 20 10.3

I→H 19 60 24 10

I→H 15 60 34 Without
water

is needed to overcome the fracture strength and friction of rock in
order to reach a longer crack propagation radius, thus promoting
the crack to extend further. At the same time, when the fracturing
pressure is 55 MPa, the fracturing time to reach the fracturing
radius of 5 and 10.3 m is 10 and 24 min respectively. The fracturing
time is significantly prolonged with the increase of fracture radius,
which reflects the gradual accumulation and release of energy in
the process of fracture propagation and the longer time required
for a larger fracture volume to form stably. Through industrial
experimental study, the main parameters of kerf depth of 200 m
and kerf length of 300 m are determined as follows: kerf pressure of
40–50 MPa, sand con-sumption of 25 kg and kerf time of 1–1.5 min.
By determining the main parameters of kerf, the fracturing pressure
is 50–55 MPa with a kerf radius of 5 m and the fracturing time is
10–12 min, and the fracturing pressure is 55–60 MPa with a kerf
radius of 10 m and the frac-turing time is 20–24 min.

5 Practice of axial top cutting and
scour prevention of frosted jet

5.1 I010206 partition scour prevention
scheme for working face

In the process of mine production, roof control measures are
taken to prevent scour. According to the impact risk evaluation
results of the working face, that is, area I, with a mileage of
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FIGURE 7
The layout of the upper partition scour prevention scheme of I010206 working face.

690–790 m, is a strong impact risk area, area II, with a mileage of
930–1,030 m, is a medium impact risk area, and area III, with a
mileage of 1030–1,130 m, is a medium impact risk area. The area I
mainly adopts the methods of axial cutting and blasting presplitting
of frosted jet to control the roof, while the area II and area III adopt
the traditional blasting presplitting method to control the roof. The
layout of the upper partition scour prevention scheme of I010206
working face is shown in Figure 7.

According to the results of field test parameters, the designed
kerf pressure is 50–55 MPa, kerf time is 3–5 min, sand content
is 25 kg, and kerf length is 300–500 mm. The cutting direction
is strike direction to cut off the connection with goaf, and the
inclined direction is tangent to the lateral roof. The fracturing
pressure used this time is 50–65 MPa, the fracturing time
is 15–20 min, and each hole is designed to be divided into
four sections.

The main parameters of roof blasting presplitting in area I are
that four holes are fan-shaped perpendicular to the center line of
roadway. The drilling length is 47, 41, 38, and 58 m respectively,
the inclination angles are 39, 52, 66 and 65 respectively, and the
charge density is 2.75 kg/m. The main parameters of roof blasting
presplitting in areas II and III are fan-shaped with three holes
perpendicular to the center line of the roadway. The drilling length
is 47, 41, and 38 m respectively, the inclination angles are 39, 52
and 66 respectively, and the charge density is 2.75 kg/m. Three-
stage emulsion explosive, instant detonator and forward charging are
used, and the connectionmode is parallel connection in the hole and
series connection outside the hole.

5.2 Implementation process of axial
topcutting project of scrubbing jet

During the implementation of axial roof cutting by abrasive
jet, the data of hydraulic pressure gauge and the on-site slotting
and fracturing process are used for control. The typical abrasive
jet curve is taken to analyze the implementation process, and its
sectional slotting and fracturing curves are shown in Figure 8.
Through the monitoring data of hydraulic pressure instrument,
it can be clearly seen that the single-stage process includes
three processes: pipeline testing and pressure testing, slotting and
fracturing. The main purpose of pipeline testing and pressure
testing is to check whether the pipeline is normal and to judge
the primary fracture of rock stratum. The cutting and fracturing
process is controlled on site according to themain design parameters
and the field observation of water production, and 4 stages of
fracturing are designed for each hole. The operation process of
other sections is mainly the process of circular cutting, judging
primary cracks and fracturing. Then, enter the circulation of
the next hole.

After the completion of the process, the drilling peep
is used to observe the propagation of kerf and fracturing
cracks in the hole, and the kerf and fracture can be
displayed intuitively through the peep. Through strict on-
site supervision, on-site monitoring and observation, the
application of abrasive jet axial roof cutting technology in hard
roof control and scour prevention of I010206 working face
was completed.
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FIGURE 8
Sectional slotting and fracturing curve. (A) typical curve of the first section of a hole; (B) typical curve of other sections of a hole; (C) fracture hole
peep diagram.

5.3 Inspection of scour prevention effect in
mining process of working face

Microseismic monitoring can monitor the time, space and
energy of coal and rock fracture events during mining. Therefore,
firstly, the anti-scour effect of mining face is an-alyzed through
microseismic monitoring and analysis.

The microseismic monitoring results of different zones
are shown in Figure 9. The results of microseismic monitoring
show that the distribution range of microseismic events in area I is
mainly 200 m ahead of the working face, and the peak distribution
area is 130 m ahead of the working face. The distribution range
of microseismic events in Area II is mainly 200 m ahead of the
working face, and the peak distribution area is 80 m ahead of the
working face. The distribution range of microseismic events in area
I is mainly 200 m ahead of the working face, and the peak area of
concentrated distribution is 80 m ahead of the working face.

According to the monitoring results of microseisms, the
statistical table of average en-ergy-cumulative frequency of
microseisms in different areas is summarized as shown in Table 4.

The average released energy of area I is 137.64 J, which is about 10%
lower than that of area II and 52.4% lower than that of area III.
There were 1998 microseismic events in area I, which was about
20% higher than that in area II and 34.5% higher than that in
area III. Compared with the traditional blasting presplitting area,
the concentrated distribution of microseismic events in the roof
combination presplitting area I shifts to the front away from the
working face, which makes the rock activity far away from the stope
operation area.The safety of operators in themining influence range
is increased. Advance promotes the energy release of surrounding
rock, and releases it with small energy. It reduces the ac-tivity
intensity of surrounding rock and weakens the dynamic load effect
of impact danger.

5.4 Support pressure monitoring and
analysis

The greater the periodic weighting step of roof strata, the
stronger the dynamic load, and the higher the possibility of
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FIGURE 9
The microseismic monitoring results of different zones. (A) comparison of energy advance distribution of microseismic events; (B) comparison of
frequency advance distribution of microseismic events.

TABLE 4 The statistical table of average energy-cumulative frequency
of microseisms in different areas is summarized.

Location Average energy of
microseisms/J

Cumulative
frequency of

microseisms/N

Area 1 137.64 1,998

Area 2 152.97 1,667

Area 3 289.56 1,485

inducing impact danger. According to the monitoring re-sults of
the support pressure, the comparison chart of periodic weighting
is drawn as shown in Figure 10. In the process of working face
mining, combined with the field caving observation, it shows
that the hard roof can collapse in time. The combination of
axial roof cutting with abrasive jet and blasting presplitting can
effectively weaken the intact hard rock stratum of the roof
and avoid large-scale rock stratum collapse. Compared with
the blasting area only, the weighting step under the combined
mode of axial cutting of abra-sive jet and blasting presplitting
is reduced. The optimization of pressure relief mode effec-
tively improves the working condition of hydraulic support, and
the periodic weighting step is reduced from 12.0∼19.2 m to
8.0∼14.4 m, which provides a new method for the treatment of
hard roof erosion in the later stage of mine. The average periodic
weighting step is reduced from 15.84 to 11.20 m, with a reduction
rate of 29.29%.

Strong rock movement is the main cause of impact danger
during initial mining, and the cloud map of support pressure
distribution in working face is shown in Figure 11. In the process
of working face mining, combined with field caving observation, it

shows that the hard roof can collapse in time, and the axial cutting of
abrasive jet can effectivelyweaken the complete hard rock layer of the
roof.Thus, large-scale rock caving is avoided, and the expanded non-
abrasive jet area is larger, which effectively improves the working
conditions of the hydraulic support. Therefore, the effect of the roof
on the coal wall of the working face in the axial roof cutting area
of the abrasive jet is obviously improved, which realizes the effect of
the first roof caving compared with the traditional blasting, and pro-
vides an effective new method for the treatment of the hard roof in
the later stage of the mine.

5.5 Measurement and analysis of coal body
stress

In order to further control the impact hazard, through the
measurement of coal stress, the static load control effect and stress
level of the working face after takingmeasures are analyzed. Because
area I is a dangerous area of strong impact, it is treated by increasing
the axial cutting top hole of frosted jet because of the distance
between the pre-splitting holes of area II and area III measures. On
the other hand, the layout distance of pre-splitting holes in single-
sided square and double-sided square area blasting is the same as
that in area I, only in the axial cutting of frosted jet and blasting
pre-splitting mode.

For this reason, a comparative analysis is made between the
area I with combined pressure relief and the measured area of static
load of coal with one-sided square and double-sided square with
blasting presplitting.Themeasured results of coal stressmoni-toring
are shown in Figure 12. The significant influence range of coal static
load in area I is 20 m, the peak value is 8–10 m, and the stress
concentration factor is 1.68. The significant influence range of static
load on one side square area is 45 m, the peak value is 8–10 m
in the leading face, and the stress concentration factor is 2. The
significant influence range of static load in the double-sided square
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FIGURE 10
The comparison chart of periodic weighting.

FIGURE 11
The cloud map of support pressure distribution in working face.

area is 80 m in the leading face, the peak value is 8–10 m in the
leading face, and the stress concentration factor is 4.4. Compared
with the traditional blasting pre-splitting area, the influence range
of the leading abutment pres-sure in the blasting combined pre-
splitting area is greatly reduced, and the stress concen-tration factor
is obviously reduced, thus achieving a good effect of coal static load
control in the combined pre-splitting area.

The stress change curve of coal before and after fracturing
is shown in Figure 13. After the width of the working face increases,
the coal stress curve is measured at the 5 m posi-tion of the upper
trough leading working face. After the axial cutting of the frosted jet,
the stress concentration of the coal body gets a rapid response, and the
stress of the coal body has an obvious stress drop, reaching 2.9 MPa.
After the axial cutting of the frosted jet, the stress concentration of
the coal body gets a rapid response, and the stress of the coal body

drops obviously, and the maximum reduction of the stress reaches
2.9 MPa, with a decrease of about 41.85%. During the mining period
of face expansion, the stress concentration of coal has been significantly
improved. Under the influence of mining, the stress concentration of
coal body in the axial cutting area of frosted jet does not increase again,
which has a good effect of pressure relief of coal body.

Based on the combination of frosted jet axial roof cutting and
roof deep-hole pre-splitting blasting, the prevention and control of
rock burst in I010206 working face is car-ried out. The construction
management and control of the new technology of frosted jet
axial roof cutting and the analysis of anti-scour effect in the
mining process are realized. The anti-scour practice shows that the
control effect of dynamic and static load is good, the strong impact
dangerous area mentioned above is safely pushed over and the mine
safety production is realized.
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FIGURE 12
The measured results of coal stress monitoring.

FIGURE 13
The stress change curve of coal before and after fracturing.

6 Conclusion

(1) The main contents of this paper are as follows: (1) through the
analysis of hard roof frosted jet axial cutting and anti-scour
test, the key technical parameters of hard roof frosted jet axial
cutting suitable for Kuangou Coal Mine are determined. The
slotting test results show that the slotting depth is 200 m, the
slotting length is 300 m, the slotting pres-sure is 40–50 MPa,
the sand consumption is 25 kg, and the slotting time is
1–1.5 min. The fracturing pressure of 50–60 MPa and the
fracturing time of 20–24 min are obtained by axial topping of
frosted water jet.

(2) After the implementation of the new technology of frosted jet
axial roof cutting, the cracks in the roof strata are produced
and expanded effectively after slotting and fractur-ing, and

the cracks break during the fracturing period, and the crack
extends in the range of 10–20 m, which destroys the integrity
of the roof. The periodic pressure step distance de-creased
obviously, the pressure step distance decreased from 12.0 ∼
19.2 m to 8.0 ∼ 14.4 m, the influence range of mining stress
and stress concentration factor decreased obviously, and the
activity strength and dynamic load effect of surrounding rock
decreased obvious-ly.

(3) Compared with the traditional blasting roof cutting
technology, after the combined treatment of frosted jet axial
cutting and blasting, the concentration area of microseismic
events during mining is transferred from 80 to 130 m. After
the axial cutting of the frosted jet, the stress concentration of
the coal body gets a rapid response, and the stress of the coal
body has an obvious stress drop, reaching 2.9 MPa. The energy
release of microearthquakes is mainly small energy events,
which achieves a good anti-erosion effect.
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and horizontal ground motion

Xiao-Bo Peng1*, Yuan Gao2, Ying-Ying Xue1, Xiao-San Tao1 and
Ling-Yu Xu2*
1Jiangsu Earthquake Risk Prevention Center, Earthquake Administration of Jiangsu Province, Nanjing,
China, 2Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing, China

This study uses a fully coupled dynamic effective stress analysis method
to evaluate the seismic response of a site containing silty sand which is a
liquefiable interlayer. A generalized plasticity model is employed to describe
the liquefaction behavior of silty sand under seismic action, and a nonlinear
constitutive model is used to account for the nonlinear and hysteretic
characteristics of non-liquefiable soils. The parameters of constitutive model
were calibrated from the shear wave velocity and results of resonant column
tests on different soils in a borehole. The results indicated that (1) A new spike
with a period of approximately 1 s was observed at the top of the liquefiable
interlayer compared to that at the bottom of the interlayer, reflecting a common
seismic response characteristic induced by the rise in the excess pore water
pressure (EPWP); (2) The low-frequency input motion caused higher EPWP
within the liquefiable interlayer andmore ground settlement at the consolidation
stage; (3) The increase in either peak horizontal acceleration or peak vertical
acceleration of input motions resulted in higher increase in the EPWP and
ground surface settlement. Moreover, the vertical seismic component in near-
field earthquakes has much more significant effect on the ground settlement in
liquefiable sites than that in far-field earthquakes.

KEYWORDS

biot theory, liquefaction, nonlinear constitutive model, resonant column tests, spectral
acceleration

1 Introduction

Earthquakes, as a powerful dynamic force of nature, pose a significant threat to human
society and engineering structures, especially at liquefiable sites, where earthquake-induced
ground damage is particularly severe (Fan et al., 2023; Sui et al., 2024). The destruction
of soil structure and the sharp rise in excess pore water pressure EPWP lead to soil
liquefaction during earthquakes, which in turn causes significant ground settlement and
lateral spreading, severely damaging buildings, bridges, roads, and other infrastructure.
Therefore, it is of great theoretical and practical importance to conduct in-depth analysis
on the liquefaction effects of sites induced by earthquakes.
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FIGURE 1
WX-03 borehole: (A) distribution of the shear velocity of soil layers and (B) finite element mesh.

The seismic response characteristics of liquefiable sites are a
well-established yet challenging topic in geotechnical earthquake
engineering. Scholars have extensively investigated seismic response
characteristics of liquefiable sites through physical model tests,
theoretical analysis, numerical simulation, and field seismic record
analysis. Jia and Wang (2013) showed that interlayer thickness
significantly affects liquefaction resistance of layered sand. Ecemis
(2021) found that the thickness of the silt seam plays a crucial
role in determining the liquefaction resistance of stratified sand
deposits located beneath it. Cubrinovski et al. (2019) emphasizes
the necessity of considering the system response of liquefying
soils when assessing the occurrence and severity of liquefaction-
induced damage. Xiu et al. (2020) noted that the powdery sand
interlayer can effectively impede the transmission of pore water
pressure within layered sand. Adampira and Derakhshandi (2020)

experimentally found that site liquefaction is more severe when
the liquefiable interlayer is thicker and shallower, leading to more
attenuation of peak ground motion and greater ground settlement.
Shen et al. (2022) discovered that the dilatancy of liquefied soil can
significantly amplify the peak horizontal acceleration in liquefiable
layers. Yao and Lin (2023) conducted numerical studies revealing
that the location of liquefiable interlayers significantly impacts the
internal force response of subway station structures. Youd and
Carter (2005) recorded accelerations at liquefiable sites and found
that soil softening or liquefaction has little effect on short-period
response spectral accelerations but can significantly amplify long-
period spectral accelerations. Sun and Yuan (2004) demonstrated
that liquefaction can extend the predominant period of acceleration
response spectra, amplifying long-period spectral accelerations
while slightly suppressing short-period spectral accelerations.
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TABLE 1 Parameters of PZ III model for the silty sand interlayer.

Descriptions (unit) Silty sand interlayer

Mfc Failure line constant 1.028

Mgc Critical state line constant 1.89

αf Yield constant 0.45

αg Plastic flow constant 0.45

Kevo Bulk modulus constant 165

Geso Shear modulus constant 300

mv Exponent of bulk modulus 0.5

ms Exponent of shear modulus 0.5

β0 Soil softening constant 10

β1 Soil softening constant 0.135

H0 Loading plastic modulus constant 1,450

HU0 Unloading plastic modulus (kPa) 12,000

γR Reloading plastic modulus constant 12

γU Unloading plastic modulus constant 10

Therefore, site liquefaction may have more severe adverse effects
on long-period and highly flexible structures (Sun et al., 2014).
However, most existing studies focus on unidirectional seismic
excitation, with relatively few studies on the response of liquefiable
sites under both vertical and horizontal seismic excitations.

Horizontal seismic motions are often accompanied by vertical
seismic motions during actual earthquakes. Considering combined
effects of vertical and horizontal input motions can help provide
a more comprehensive understanding of the seismic response of
liquefiable sites, offering a more scientific basis for seismic risk
assessment of engineering structures. Yang et al. (2002) found that
the peak horizontal ground acceleration and frequency content
of spectral accelerations depend on the intensity of the input
motions and the nonlinearity of soils, while the input motion
intensity has minimal effect on the amplification factor of vertical
ground motions. Tsai and Liu (2017) proposed a method for
equivalent nonlinear analysis of soil considering vertical seismic
motion, emphasizing the importance of soil nonlinearity on vertical
seismic wave propagation. Song et al. (2024) found that vertical
seismic components greatly increase the influence of the approach
bridge on the lateral displacement and internal forces of piles in
liquefiable sites. Chen et al. (2018) investigated the impact of vertical
seismic motion on the transient liquefaction of the seabed, finding
that increasing the hydraulic coefficient of the surface soil can
effectively inhibit seabed liquefaction. Xu et al. (2021a) numerically
investigated the effect of vertical seismic motion on the settlement
of pile groups, showing that vertical seismic motion significantly
increases the settlement of pile groups in liquefied sites. Tsaparli et al.
(2016) found that vertical input motion could increase liquefaction

depth and post-liquefaction ground settlement. Thus, the dynamic
response of liquefiable sites under combined horizontal and vertical
input motions is more complex than that under unidirectional
horizontal input motion alone. However, existing research has
rarely considered the impact of the frequency of horizontal and
vertical input motions on the dynamic response of liquefiable
sites, particularly under conditions where liquefiable interlayers
are present.

To address these issues, we thoroughly investigated a typical
boreholewith a liquefiable interlayer in the Yangtze RiverDelta Plain
region of China. A fully coupled dynamic effective stress analysis
method was adopted to evaluate the seismic response of a site
containing a liquefiable interlayer. A generalized plasticity model is
employed to describe the liquefaction behavior of silty sand under
seismic action, and a nonlinear constitutivemodel is used to account
for the nonlinear and hysteretic characteristics of non-liquefiable
soils. The parameters of constitutive model were calibrated from the
shear wave velocity and results of resonant column tests on different
soils in the borehole. The effect of peak horizontal acceleration,
frequency content, and peak vertical acceleration of input motions
on the seismic response of the liquefiable site was discussed.

2 Finite element model

2.1 Site conditions

Figure 1 shows the borehole WX-03 with the distribution of
shear wave velocity of different soils. In the finite element model,
the total thickness of soil layers is taken as 73 m. In this study, the
instrument employed in the field test was the ZD16 hole excitation
wave tester, which utilizes a single-hole method to measure the
wave velocity of the soil layers. This approach allows for the
direct determination of the shear wave velocity in various soil
layers. Following the” GB50011-2010 Code for Seismic Design of
Buildings”, the equivalent shear wave velocity (V se) was confirmed as
185 m/s by averaging the values obtained from five measurements.
Accordingly, this site is classified as a type III. According to the site
investigation, the averaged actual standard penetration test (SPT)
blow count is 7, which is below the critical SPT blow count range
of 11–13, as calculated according to GB50011-2010. Therefore, the
silty sand (i.e., third layer) located between the silty clay layers is
deemed to be potentially liquefiable. The borehole is located near
JiangyinCity in theYangtzeRiverDelta Plain region ofChina, and its
representativeness and uniqueness lie in the presence of a liquefiable
silt interlayer, as shown in Figure 1.

2.2 Governing equation

In the seismic analysis, the solid and fluid phases of the soil are
modeled using Biot’s theory with the u-p formulation (Biot, 1956;
Zienkiewicz et al., 1999) and the governing equations are given by
Equations 1, 2, respectively:

Mü+Cu̇+Ku−Qp = fu (1)

Qu̇+ Sṗ+Hp = fp (2)
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TABLE 2 Model parameters of non-liquefiable soils at WX-03 borehole.

Soil type Thickness
(m)

Vs (m/s) Density
(g/cm3)

G0 (MPa) Poisson’s
ratio(υ)

c(kPa) φ(°) p´(kPa) b n Rf

Plain fill 1.3 135 1.4 25.5 0.33 7 22 5.9 10,630 2.0 1.42

Silty clay① 7.2 144 2.14 44.4 0.33 36 10.9 39.8 8,060 1.6 1.49

Silty clay② 28 365 1.95 256.7 0.33 28 12.4 494.2 5,915 1.7 0.59

Silty clay③ 3.1 409 2.09 349.9 0.33 38 12.7 693.8 4,641 1.7 0.51

Silty clay④ 12.5 432 2.12 395.3 0.33 58 16.1 798.9 4,095 1.7 0.61

Silty clay⑤ 7 461 2.09 445.2 0.33 56 15.7 915.7 4,096 1.7 0.56

TABLE 3 Key influence factors considered in parametric studies.

Case PHA(g) PVA/PHA Input
motions

1 Kobe-0.3-0.00 0.3 0.00 Kobe

2 Kobe-0.4-0.00 0.4 0.00 Kobe

3 Kobe-0.5-0.00 0.5 0.00 Kobe

4 Kobe-0.5-0.37 0.5 0.37 Kobe

5 Kobe-0.5-0.67 0.5 0.67 Kobe

6 Nahanni-0.5-0.00 0.5 0.00 Nahanni

7 Nahanni-0.5-0.37 0.5 0.37 Nahanni

8 Nahanni-0.5-0.67 0.5 0.67 Nahanni

9 Liuan-0.5-0.00 0.5 0.00 Liuan

10 Liuan-0.5-0.37 0.5 0.37 Liuan

11 Liuan-0.5-0.67 0.5 0.67 Liuan

where M is the mass matrix, u, is the displacement vertor, C
is Rayleigh damping matrix, K is the stiffness matrix, Q is the
coupled matrix, p is the pore water pressure vector, H is the
seepage matrix, S is the compression matrix, and fu and fp are
the external load vectors. Note that a single dot and two dots
above a variable represents the first and second derivative of that
variable with respect to time, respectively. The u-p formulation is
solved by the UWLC program, a fully coupled dynamic effective
stress finite element analysis software, which is adopted in this
study (Forum 8 Co. Ltd, 2005; Xu et al., 2013; Xu et al., 2019;
Xue et al., 2023).

Soil damping plays a critical role in the dissipation of seismic
energy and significantly affects the seismic response of the ground.
In the study, soil damping was modeled by incorporating Rayleigh
damping at small-strain level and bymaterial damping characterized
by constitutive models at large-strain level.

2.3 Constitutive modeling of soils

2.3.1 Generalized plasticity model for silty sand
interlayer

To simulate earthquake-induced liquefaction of the silty sand
interlayer in the WX-03 borehole, this study employed a modified
generalized plasticity model, Pastor-Zienkiewicz III (PZ III) model,
to represent the silty sand interlayer. The generalized plasticity
model used in the studywas specifically chosen because it can handle
complex behaviors, such as cyclic loading and liquefaction in silty
soils.Thismodel accounts for the plastic strain accumulation during
seismic events, which is crucial in accurately capturing the buildup
of EPWP (Pastor et al., 1990; Xue et al., 2023; Xu et al., 2023). The
generalized plasticity model is originally proposed by Zienkiewic
et al. (1999) and modified by Cai et al. (2002) and calculates the
stress increment (dσ) using strain increment (dε) through an elasto-
plastic matrix Dep. The dε and Dep are given by Equations 3, 4,
respectively:

dσ =Depdε (3)

Dep =De −
DengL/Un

TDe

HL/U +n
TDengL/U

(4)

where De is the elastic matrix, HL/U is the plastic modulus, n is
the loading direction vectors, and ngL/U is the plastic flow direction
vector. The subscripts L and U indicate loading and unloading,
respectively. Detailed information about the model is referred to the
literature (Cai et al., 2002; Xu et al., 2023).

The parameters of the PZ III model were calibrated using the
liquefaction resistance (RL), which is estimated based on the shear
wave velocity (Amoly et al., 2016):

RL = 0.68× 10
−5 ×V2

s1 (5)

where

Vs1 = Vs(p
′
0/Pa)
−0.25 (6)

V s and p′0 are the shear velocity and the effective mean stress.
These values were taken at the midpoint of the silty sand interlayer,
where V s= 233.5 m/s and p′0 =106 kPa, resulting in RL=0.357. RL
was defined as the cyclic stress ratio (CSR) needed to produce 2.5%
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FIGURE 2
Comparison between the measurements and model simulations: (A) the G/Gmax ∼ γ relationship and (B) λ ∼ γ relationship.

single-amplitude axial strain over 20 cycles (Amoly et al., 2016).
Equations 5, 6 applied to sandy soils with shear wave velocities
ranging from 120 to 250 m/s. According to Amoly et al. (2016),
the RL value derived from this formula tends to be greater than
the value calculated using the method proposed by Andrus and
Stoke (2000). Table 1 presents the parameters of PZ III model for
the silty sand interlayer.

The generation and dissipation of EPWP were modeled using
a fully coupled dynamic effective stress approach together with
the generalized plasticity constitutive model, which simultaneously
solves the equations of motion and fluid flow in the soil. The
numerical model has been validated through various laboratory
tests and model tests in the literature (Pastor et al., 1990;
Xu et al., 2023).

2.3.2 Nonlinear constitutive model for
non-liquefiable soils

The Wakai and Ugai (2004) model was employed to model
dynamic characteristics of non-liquefiable soils in this study.

The backbone and hysteresis curves of the model are given by
Equations 7, 8 respectively:

τ =
G0γ

1+G0γ/τf
(7)

τ =
aγn +G0γ
1+ bγ

(8)

where τ and γ represent shear stress and shear strain, respectively,G0
is the initial shear modulus and was calculated from the shear wave
velocity, b and n are two model constants, a is the internal variable,
G0 and τf were given by Equations 9, 10, respectively:

G0 = G0,rPa(
p′

Pa
)
m

(9)

τf =
√3
2
(c cos φ+ p′ sin φ)(cos Θ−

sin Θ sin φ
√3
)/Rf (10)

where p′ is the mean effective stress, Pa is the standard atmospheric
pressure, Θ is Lode angle, and G0,r, m, and Rf are model constants.
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FIGURE 3
Time history of Fourier amplitude of the horizontal (EW) and vertical (UD) input motions: (A) Kobe, (C) Nahanni, and (E) Liuan input motions; (B) Kobe
(D) Nahanni (F) Liuan Fourier amplitudes.

To accurately calibrate the parameters of the Wakai and Ugai
(2004) model, this study used the GZZ-50 type resonant column
apparatus to conduct element tests on different soils at WX-03
borehole, obtaining the shear modulus and damping curves of
soils. Resonant column tests were conducted on samples with
diameter of 5.0 cm and height of 10.0 cm. The test procedure is
detailed in (ASTM, 2015). The Wakai and Ugai (2004) model
parameters were then inversely determined using the UWLC model
parameter calibration program. As shown in Figure 2, the model’s
simulation results corresponded well with the measurements. Table
2 gives model parameters of non-liquefiable soils at WX-03
borehole.

Note that P-wave velocity is indeed a crucial parameter in
seismic analysis, especiallywhen vertical ground shaking is involved.
However, the calculation process typically focuses on the seismic
effects of vertically propagating S-waves, and P-wave testing is
generally more challenging than S-wave testing (Zhubayev and
Ghose, 2012). Thus, only the shear wave velocity was measured
in this study. In the finite element analysis, the soil was assumed
to be isotropic, so the shear modulus derived from shear wave
velocity results and Poisson’s ratio, were used to calculate Young’s

modulus in the constitutive model for dynamic analysis under
vertical seismic loading.

2.4 Boundary conditions

Static analysis is required before the dynamic analysis.The initial
displacement and strain from the static analysis are reset to zero
before starting the dynamic analysis. The purpose of the static
analysis is to provide the initial stress for the dynamic analysis. In
the static analysis, the lateral boundaries are fixed in the horizontal
direction but are free to move in the vertical direction. In the
dynamic analysis, the two lateral boundaries use the Multi-Point
Constraints (MPC) boundary condition. The bottom boundary of
the model is fixed in both static and dynamic analyses.

3 Results and discussions

To consider the impact of the spectral characteristics of input
ground motions on site seismic response, this study selected three
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FIGURE 4
Effect of PHA on the (A) distribution of EPWP ratio after earthquake, (B) time history of EPWP ratio (C) and vertical displacement (uz).

(i.e., Liu’an, Kobe, and Nahanni) seismic input ground motions
with distinct spectral differences. Figure 3 shows the horizontal
accelerations and Fourier amplitude for these three input motions
with peak horizontal acceleration (PHA) of 0.5 g. It can be observed
that the Kobe input motion has a uniform frequency distribution,
indicating that its energy is evenly distributed across different
frequency components. The Nahanni input motion is rich in high-
frequency components, suggesting that it has stronger energy in
the higher frequency range, which may significantly impact on the
short-period response of structures. The Liu’an input motion is
richer in low frequencies, which may have a greater impact on the
long-period response of structures. The predominant frequencies
( fd) corresponding to the Liu’an, Kobe, and Nahanni input motions
are 0.34 Hz, 1.45 Hz, and 4.02 Hz, respectively. Liuan wave is
considered far-field seismic input motion, whereas Kobe and
Nahanni waves are classified as near-field seismic input motions.

This study also considers the variation of PHA and peak vertical
acceleration (PVA), with PHA ranging from 0.3g to 0.5 g. According
to GB 50011-2010, 2016 and American Society of Civil Engineers,
2017, the general peak vertical ground motion is approximately
2/3 of the peak horizontal ground motion, thus, the ratio of
PVA to PHA varies from 0 to 0.67. The vertical accelerations and
corresponding Fourier amplitude of for PVA/PHA = 0.67 are also
plotted in Figure 3. This study focuses on investigating the effects of
the input motion frequency, PHA, and PVA on the site response at
typical points, including the horizontal acceleration and acceleration
response spectra, excess pore water pressure, and ground settlement.

In Sections 3.1, 3.2, we focus solely on the impact of horizontal
ground excitation, setting PVA = 0. In Section 3.3, we examined the
effects of vertical ground excitation, considering scenarios where

both horizontal and vertical ground shaking occur simultaneously,
with peak acceleration ratios of PVA/PHA = 0, 0.37, and 0.67. Table
3 gives the key influence factors considered in parametric studies.

3.1 Effect of PHA

Figure 4A shows the effect of PHA on the distribution of EPWP
in the silty sand interlayer after the Kobe inputmotion. It can be seen
that when PHA = 0.3g, the EPWP ratio in the entire silt interlayer
was less than unity, indicating that liquefaction did not occur. Note
that the EPWP ratio was defined as the ratio of EPWP to the initial
effective vertical stress. Additionally, the peak value of the EPWP
ratio in the silty sand interlayer also increased as the PHA increases.
Particularly, when PHA = 0.4g, the EPWP ratio at the top of the
silty sand interlayer reached unity, indicating that liquefaction has
occurred (see Figure 4B). Moreover, when PHA increases from 0.4 g
to 0.5 g, the liquefaction depth increased by approximately 7.4% in
the silty sand interlayer.

A consolidation analysis was performed on the liquefiable site
after earthquake, showing that the EPWP ratio decreased gradually
with the time due to pore pressure dissipation under various
PHAs (see Figure 4B). In the consolidation phase, the dissipation
of EPWP relies on the magnitude of the EPWP following the
earthquake; therefore, the settlement during this phase is mainly
affected by the residual EPWP. The results indicate that the EPWP
in the silty sand interlayer can completely dissipate after 10,000 s.
Furthermore, PHA significantly affected the dissipation rate of the
EPWP. In the case that liquefaction did not occur (PHA = 0.3 g),
the EPWP ratio dropped to around 0.1 after approximately 212 s. In
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FIGURE 5
Effect of PHA on the time history of horizontal acceleration and spectral acceleration at different depths: (A) ax and (B) Sa at z = 0 m; (C) ax and (D) Sa at
z = −8.5 m; (E) ax and (F) Sa at z = −22.4 m.

contrast, the EPWP ratio took about 667 s to decrease to 0.1 when
liquefaction occurred. Additionally, the PHA did not significantly
impact the pore pressure dissipation rate after the silty sand
interlayer liquefied.Moreover, the ground settlement induced by the
earthquake increases with the peak ground motion (see Figure 4C).
When the liquefaction did not occur at silty sand interlayer (PHA
= 0.3 g), the maximum ground settlement was about 36.2 mm.
However, the ground settlement increased by 119% at PHA = 0.4g
and 135% at PHA = 0.5g, indicating that the EPWP associated
to the liquefaction greatly affected the ground settlement. Thus,
the residual EPWP, particularly after seismic events, can result
in prolonged settlement due to the slow dissipation of excess
pressures.Thismay lead to ongoing ground subsidence long after the
earthquake, which poses a risk to long-term stability of underground
structures.

Figure 5 shows the effect of PHA on the acceleration time
histories and Fourier amplitude at typical points, including S1, S2,
and S3 representing the point at the ground surface, the top and
bottom of the silty sand interlayer, respectively. Overall, the peak

horizontal acceleration at the top of the silty sand interlayer was
greater than that at the bottom, indicating that even though the
EPWP in the silty sand interlayer developed during the earthquake,
the peak horizontal acceleration was still significantly amplified for
various PHAs. As the PHA increased, the ratio of the peak horizontal
acceleration at the top of the silty sand interlayer to that at the
ground surface gradually increased. Especially, the peak horizontal
acceleration at the top of the silty sand interlayer was much greater
that that at the ground surface when PHA = 0.5 g. This is primarily
because the silty sand interlayer exhibited significant cyclic mobility
after liquefaction, which in turn leads to larger peak horizontal
acceleration at this point.Moreover, the acceleration at the top of the
silty sand interlayer becomes very small after liquefaction, at 14.7 s
when PHA = 0.4 g and after 14.1 s at PHA = 0.5 g.

Figure 5 further illustrates that the spectral acceleration peak
generally increased as PHA increased. Notably, the spectral
acceleration the top of the silty sand interlayer and the ground
surface exhibited largest spikes centered around a 1-s period,
indicating that the rise in EPWP decreases high-frequency
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FIGURE 6
Effect of PHA on Fourier amplitude of horizontal acceleration at different depths: (A) z = 0 m; (B) z = −8.5 m; (C) z = −22.4 m.

FIGURE 7
Effect of input motion frequency on the (A) distribution of EPWP ratio after earthquake, (B) time history of EPWP ratio (C) and vertical displacement (uz)
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FIGURE 8
Effect of input motion frequency on the time history of horizontal acceleration and spectral acceleration at different depths: (A) ax and (B) Sa at z =
0 m; (C) ax and (D) Sa at z = −8.5 m; (E) ax and (F) Sa at z = −22.4 m.

components of seismic input motions while amplifying the low-
frequency components.TheFourier amplitude also shows the largest
spike at 1 Hz, and the Fourier amplitudes surrounding this spike
gradually increased as the PHA increased (see Figure 6).

It is concluded that the increase in PHA results in a rise
in EPWP within the silty sand interlayer, an increase in ground
surface settlement, and a significant acceleration amplification at
the top of the silty sand interlayer. These results demonstrate that
PHA significantly impacts dynamic responses of ground containing
liquefiable interlayers, and the presence of liquefiable interlayers
may amplify the propagation effect of seismic input motions,
resulting in more intense responses at the ground surface and
in structures. These findings are important for understanding
seismic liquefaction phenomena, assessing earthquake risks, and
designing seismic mitigation measures in the case of the ground
containing liquefiable interlayer.

3.2 Effect of input motion frequency

Figure 7 shows that liquefaction occurred in the silty sand
interlayer under different input motions with identical PHA of
0.5 g. Moreover, the liquefaction depth was significantly greater
under Nahanni and Liuan input motions compared to that under
Kobe input motion. This is because the former two motions have
richer low-frequency components; as shown in Figure 3, the Fourier
amplitude within 1 Hz for these two motions is significantly greater
than that of the latter. Additionally, the liquefaction depth caused by
the Nahanni input motion was about 9.1% greater than that under
the Liuan input motion. This was mainly due to the richer high-
frequency components of the Nahanni motion, which can generate
higher oscillatory EPWP in deeper soil layers. However, the Liuan
input motion, which is rich in lower frequencies, resulted in higher
residual EPWP in the silty sand interlayer. This further caused
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FIGURE 9
Effect of input motion frequency on Fourier amplitude of horizontal acceleration at different depths: (A) z = 0 m; (B) z = −8.5 m; (C) z = −22.4 m.

the slowest dissipation rate of EPWP at the top of the silty sand
interlayer and the greatest ground settlement at the consolidation
stage. Moreover, the maximum ground settlement under the Kobe
input motion is only about 29.9% of that under Liuan input motion,
primarily because the overall EPWP was lowest in the silty sand
interlayer under Kobe input motion.

Figure 8 shows that the frequency content of input motions
had a minimal impact on the peak horizontal acceleration at the
bottom of the silty sand interlayer. However, the peak horizontal
accelerations at the ground surface and the top of the silty sand
interlayer under Kobe input motion were significantly higher than
those under Nahanni and Liuan input motions. This is mainly
because the liquefaction of the silty sand interlayer occurred after
the peak of Kobe input motions, but the liquefaction occurred
before the peak of Nahanni and Liuan ground motions. Moreover,
a new spike with a period of approximately 1 s was observed
at the top of the silty sand interlayer compared to that at the
bottom of the silty sand interlayer (see Figures 8D–F). This reflects
a common seismic response characteristic induced by the rise
in EPWP within the silty sand interlayer. Moreover, a spike was
observed at around 3 s in the spectral acceleration at both top and
bottom of the silty sand interlayer, and the spectral acceleration with
T > 2 s is not affected by the generation of EPWP in the silty sand
interlayer.

Figure 9 further shows that Fourier amplitude of the
high-frequency components (i.e., frequency larger than 3 Hz)
significantly decreased after the Nahanni input motion passed
through the silty sand interlayer. In contrast, there was a notable
increase in the amplitude around 1 Hz at the top of the silty sand
interlayer, which corresponds to the peak spectral acceleration
observed at T = 1 s.

3.3 Effect of PVA

Figure 10A shows the effect of PVA on the distribution of EPWP
ratio after earthquake. In this comparison, the PVA/PHA varies from
0 to 0.67. It can be observed that the liquefaction depth increased as
PVA increased.This is because the increase in PVA resulted in higher
EPWP within the silty sand interlayer, especially causing significant
oscillations of EPWP (see Figure 10B), which is consistent with
results reported in the existing literature (Xu et al., 2021b).
Additionally, the lowest dissipation rate of EPWP was observed at
PVA/PHA = 0.67, further indicating that higher PVA induces greater
residual EPWP in the silty sand interlayer. The numerical results
also confirms that the ground settlement increased with increasing
PVA, as also reported by Tsaparli et al. (2016). This study further
investigated the impact of input motion frequency on the maximum
ground settlement under both horizontal and vertical inputmotions.
As the PVA/PHA increased from 0 to 0.67, the maximum ground
settlement under Nahanni input motion increased by 28%, followed
by 22% under Kobe input motion, and 4% under Liuan input
motion (see Figure 10C). This indicates that the vertical seismic
component in near-field earthquakes has much more significant
effect on the ground settlement in liquefiable sites than that in
far-field earthquakes. Thus, the adverse effect of vertical seismic
motion with combination of the input motion frequency should be
carefully considered in practical engineering. As shown in Figure 12,
the vertical seismic motion had minimal effect on the horizontal
seismic response of liquefiable sites, including the acceleration time
history and spectral acceleration. A new spike with a period of
approximately 1 s was observed at the top of the silty sand interlayer
compared to that at the bottom of the silty sand interlayer, reflecting
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FIGURE 10
Effect of PVA on the (A) distribution of EPWP ratio after earthquake, (B) time history of EPWP ratio (C) and vertical displacement (uz).

FIGURE 11
Effect of PVA on the maximum ground settlement for various input motions.

a common seismic response characteristic induced by the rise
in EPWP within the silty sand interlayer. Moreover, a spike was
observed at around 3 s in the spectral acceleration at both top and
bottom of the silty sand interlayer, and the spectral acceleration with
T > 2 s is not affected by the generation of EPWP in the silty sand
interlayer.

In summary, the interaction between vertical and horizontal
ground motions can significantly affect the seismic response of
liquefiable soils. In our study, the vertical ground motion influences

the generation of excess pore water pressure, while the horizontal
motion contributes to shearing and displacement of the soil layers.
The interaction is particularly important in near-field seismic events
where vertical acceleration can amplify the liquefaction potential.
Moreover, we recommend that engineers consider both horizontal
and vertical seismic components when designing foundations for
structures in liquefiable areas. In particular, structures in regions
with rich low-frequency seismic input, such as near-field earthquake
zones, should be designed to accommodate increased ground
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FIGURE 12
Effect of PVA on the time history of horizontal acceleration and spectral acceleration at different depths: (A) ax and (B) Sa at z = 0 m; (C) ax and (D) Sa at
z = −8.5 m; (E) ax and (F) Sa at z = −22.4.

settlement and the potential for deeper liquefaction. Additionally,
the use of ground improvement techniques, such as soil compaction
or drainage systems, may be necessary to reduce the risk of long-
term settlement.

4 Conclusion

A typical borehole with a liquefiable interlayer in the Yangtze
River Delta Plain region of China was thoroughly and numerically
investigated in this study, the following conclusions were
obtained.

• The increase in PHA leads to a rise in EPWP within the
silty sand interlayer, an increase in ground settlement, and a
significant acceleration amplification at the top of the silty sand
interlayer. The acceleration at the ground surface becomes very
small after liquefaction of the silty sand interlayer.

• The liquefaction depth was significantly greater under Nahanni
and Liuan input motions compared to that under Kobe input

motion.This is because the former twomotions have richer low-
frequency components.

• The Liuan input motion, which is rich in lower frequencies,
resulted in higher residual EPWP in the silty sand interlayer.
This further caused the slowest dissipation rate of EPWP at
the top of the silty sand interlayer and the greatest ground
settlement at the consolidation stage.

• Theground settlement generally increasedwith increasingPVA.
As the PVA/PHA increased from 0 to 0.67, the maximum
ground settlement under Nahanni input motion increased by
28%, followed by 22% under Kobe input motion, and 4% under
Liuan input motion. This indicates that the vertical seismic
component in near-field earthquakes hasmuchmore significant
effect on the ground settlement in liquefiable sites than that in
far-field earthquakes.

The findings are particularly relevant for sites with similar soil
compositions, such as those with liquefiable interlayers. However,
the methodology, including the fully coupled dynamic analysis and
the use of generalized plasticity models, can be applied to other
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regions with different soil conditions by recalibrating the model
parameters based on local soil characteristics.
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Large strike-slip earthquakes are generally characterized by long surface rupture
zones and relatively concentrated displacement distribution. The displacements
on main seismogenic faults have been well studied and assessed by numerous
empirical relations. Detailed mapping of the deformation zone of strike-slip
earthquakes in the past decades indicates that distributed ruptures beyond
the main faults have controlled the width of surface deformation zones and
influenced the distribution of damages and earthquake-induced geological
disasters. Therefore, the displacement hazard assessment from distributed
surface rupture along strike-slip faults is urgent for disaster prevention and
mitigation and the seismic safety of linear engineering. The Tibetan Plateau
is marked by a series of strike-slip faults accompanied by lateral extrusion of
material due to the Cenozoic collision of the Indian and Eurasian plates. In
this study, we collected the surface rupture data of five strike-slip earthquakes
in the Tibetan Plateau during the past decades, including the 1997 Mani (MW

7.5), 2010 Yushu (MW 6.9), 2014 Yutian (MW 6.9), 2021 Maduo (MW 7.4), and
2022 Menyuan (MW 6.6) earthquakes. Then, we preprocess the original data
to form the standardized dataset after removing the fractures due to non-
tectonic factors such as landslides, gravity instability under seismic ground
motion, and so on. Based on the standardized dataset, the surface rupture
displacements generated by strike-slip faults are incorporated into a probabilistic
displacement hazard analysis framework, and a probability model of the surface
rupture displacement distribution is established for the Tibetan Plateau. This
model estimates the probability per unit area of finding a distributed rupture
that allows a displacement that exceeds a displacement threshold at a given
distance from the principal fault. This study not only provides a framework for the
probabilistic displacement hazard of distributed ruptures from strike-slip faults
but also supports the seismic hazard assessment of linear engineering crossing
strike-slip faults in the Tibetan Plateau.

KEYWORDS

distributed rupture, strike-slip fault, probabilistic displacement hazard, Tibetan plateau,
displacement threshold
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1 Introduction

Large strike-slip earthquakes are marked generally by long
surface ruptures and relatively narrow deformation zones (Xu et al.,
2006; Choi et al., 2018; Antoine et al., 2022; Nurminen et al.,
2022). The displacement on a strike-slip fault is always estimated by
empirical relations between magnitude and coseismic displacement
based on surface rupture measurements of large earthquake cases
(Wells and Coppersmith, 1994; Cheng et al., 2020; Shaw, 2023).
However, detailed mapping of surface ruptures of recent strike-
slip earthquakes demonstrates that the coseismic displacement of
surface ruptures occurs on the main fault plane and associated
secondary structures (e.g., Antoine et al., 2022; Liu-Zeng et al.,
2024). The displacement on the secondary structures is commonly
accommodated by the distributed ruptures in awide zone (Figure 1).
In some cases, the role of distributed displacement is more than that
on the main fault (Antoine et al., 2022; Liu-Zeng et al., 2024). This
type of distributed displacement caused awider surface rupture zone
and affected the distribution of coseismic damages and earthquake-
triggered geological hazards. It is urgent to assess the distributed
displacement hazard of strike-slip faults for seismic safety of large
linear engineering and seismic disaster prevention and mitigation.

Increasing studies in the past 20 years have been conducted on
evaluating the displacement from active strike-slip faults (Lee and
Trifunac, 1995; Peter, 2010; Inoue et al., 2020; Nurminen et al.,
2020; Visage et al., 2023). A Probabilistic fault displacement
hazard analysis (PFDHA) framework was first proposed based
on permanent fault displacements and the classical probabilistic
seismic hazard analysis was applied to assess the seismic risk of
the Yucca Mountain nuclear waste disposal project in the United
States (Youngs et al., 2003). When more attention focused on
the distribution of surface displacement, six types of regression
curves were used to fit the coseismic surface slip distribution
of historical earthquakes and the spatial distribution pattern of
surface displacement of large earthquakes along their seismogenic
fault strike were explored (Wesnousky, 2006; Wesnousky, 2008).
Since many related studies had been carried out in America,
researchers tried to conduct similar method in other regions, using

the actual seismic data in Japan with the PFDHA method to
establish a surface-rupturing fault displacement prediction model
which is applicable to Japan (Takao et al., 2013). But these studies
do not consider the effect of distributed ruptures on the spatial
distribution of coseismic displacement along a strike-slip fault. A
unified method for calculating on-fault and off-fault displacement
was presented based on fault sections with different geometry
and structures. The off-fault displacement is similar to distributed
displacement and may include some deformation that does not
generate surface ruptures (Antoine et al., 2022). In addition, the
distribution curve of coseismic displacements perpendicular to
the fault strike is inconsistent with the specific coseismic offset
data of large earthquakes (Petersen et al., 2011). Further work
tried to mainly focus on distributed ruptures, the distance from
the main fault was taken into account in a probability model to
predict the displacement distribution of distributed rupture crossing
the fault traces using surface rupture data from five strike-slip
earthquakes in northern America. These five earthquakes span a
range of magnitudes between MW 6.4 and 7.3, four of which are
from MW 7.1 to 7.3 (Rodriguez Padilla and Oskin, 2023). However,
the applicability of this model to strike-slip faults in other areas
is unknown.

In western China, the increasing seismic potential of many
strike-slip faults poses a high risk of the displacement of linear
engineers across active faults. Especially the 2022 Menyuan
earthquake (MW 6.6) offset the railway tunnel (Li et al., 2023),
stimulating the displacement hazard of distributed ruptures along
strike-slip faults. The probability of permanent displacement was
estimated across faults of the second line of West-East natural gas
transmission pipeline by using the potential focal region parameters
of China’s groundmotion parameter zoningmap (Zhao et al., 2008).
Based on the surface-rupturing data of strike-slip faults in China,
both parabolic and elliptic prediction equations related to surface
displacement and surface rupture length were presented. Similarly,
the permanent displacement risk curve of surface-rupturing zones
of the Zemuhe active fault zone was obtained combined with the
practical application of PFDHA method (Jin, 2019). However, these
earlier studies only use the uniform models and do not consider the

FIGURE 1
Schematic diagram of surface rupture patterns caused by a large strike-slip earthquake.
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FIGURE 2
Active faults of the Tibetan Plateau and the recent well-studied surface-rupturing strike-slip earthquakes. Adapted from Tapponnier et al. (2001). Yellow
stars represent the epicenters of the five earthquakes used in this study. Red lines show the surface rupture zones of the five earthquakes used in
this study.

application of these models in China. Also, the distributed ruptures
along a strike-slip fault are not taken into account.

In the Tibetan Plateau, several large earthquakes along large
strike-slip faults have been well studied, and associated detailed
surface ruptures have been mapped (Figure 2) (Li et al., 2012;
Ren and Zhang, 2019; Yuan et al., 2021; Ren et al., 2022;
Li et al., 2023; Liu-Zeng et al., 2024), providing an opportunity to
construct the model of displacement hazard of distributed ruptures
from strike-slip faults in China. In this study, we collected the recent
surface rupture data of five strike-slip earthquakes in the Tibetan
Plateau and built the probability model to predict the displacement
hazard of distributed rupture crossing the fault trace when a certain
magnitude occurs. This study not only proposes a workflow for
the probabilistic displacement hazard of distributed ruptures from
strike-slip faults but also supports the seismic hazard assessment of
linear engineering crossing strike-slip faults in the Tibetan Plateau.

2 Tectonic setting of the Tibetan
plateau

The Tibetan Plateau, controlled by the Cenozoic Indian-
Eurasian collision, forms the most intense area of tectonic activity
in China. Accompanied by the uplift of the plateau, the material

began to the outward extrusion and produced many large strike-
slip faults, such as the Kunlun, Altyn Tagh, Haiyuan, Ganze-Yushu-
Xianshuihe faults (Molnar and Tapponnier, 1978; Xu et al., 2005;
Ren et al., 2013).These faults undergo the lateQuaternary slip rate of
∼5–10 mm/yr and have ruptured in serval large earthquakes in the
past 20 years (Kirby et al., 2007; Ren et al., 2013; Yao et al., 2019).

We choose five strike-slip earthquakes in the northern Tibetan
Plateau: the 1997Mani (MW 7.5), 2010 Yushu (MW 6.9), 2014 Yutian
(MW 6.9), 2021 Maduo (MW 7.4), and 2022 Menyuan (MW 6.6)
earthquakes (Figure 2) (Table 1). The original datasets are mainly
obtained by scanning published papers or from relevant experts and
researchers. When the specific methods collecting raw data may
vary from person to person, field measurement and optical image
correlation are usually chosen in current studies. In addition to the
basic data of the five earthquakes in TableX, since they happened
in different regions and seasons along with other possible factors,
the actual geological and structural characteristics and the surface
condition of every earthquake are significantly different, resulting
in different surface fractures.

The 1997 Mani earthquake ruptured the left-lateral Mani fault, a
possible westernmost segment of the Kunlun fault (Shan et al., 2006;
Ren and Zhang, 2019). This earthquake occurred in November 1997
when the temperature was below freezing point and the epicentral
area was covered by permafrost. The rupture zone of the Baixue
Lake section is located in the lacustrine plain and passes through
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TABLE 1 The basic characteristic information of the five earthquakes in our study.

Eq_name Eq_date MW Length/km Maximum offset/m Average offset/m

Mani 1997.11.8 7.5 ∼170 ∼7 ∼5–6

Yushu 2010.4.14 6.9 ∼65 ∼2.4 ∼1.3

Yutian 2014.2.12 6.9 ∼37 ∼0.84–0.9 ∼0.39–0.52

Maduo 2021.5.22 7.4 ∼151 ∼3.6 ∼0.35

Menyuan 2022.1.8 6.6 ∼27 ∼3.7 ∼1.0–1.5

a series of large-scale ice water alluvial fans, and the Chaoyang-
Shuangduan Lake section created a fault-plug pond formed by
seismic steep ridges blocking the flow of melting ice and snow (Ren
and Zhang, 2019).

The 2010 Yushu earthquake occurred on the Yushu segment
of the Ganz-Yushu fault (Li et al., 2012; Sun et al., 2012). Located
in the alpine region at a high altitude, Longbao Lake and the
surrounding water were frozen during this earthquake, leading to
a unique surface rupture trace in such frozen regions: ice cracks.
The ice fissure zone is distributed in a planar shape and large scale,
accompanied by sand liquefaction, showing a normal component
dipping the Longbao Lake (Sun et al., 2012).

The 2014 Yutian earthquake mainly ruptured the left-lateral
strike-slip Altyn Tagh fault (ATF) system with normal-slip (Li et al.,
2016; Yuan et al., 2021). The earthquake vibrations near the
Xiaoerkule Lake caused the instability of the diluvial fan, and the
landslide and graben system formed after the slide of the salty lake’s
shoreline due to gravity, which belongs to the associated shallow
deformation. This earthquake was located in the inner flow area
of the Tibetan Plateau, in the middle of the rupture zone a thick
loose sedimentary cover was formed based on the lake, which would
magnify the seismic rupture in the shallow surface and enlarge the
surface rupture width (Yuan et al., 2021).

The 2021 Maduo earthquake mainly ruptured the left-lateral
strike-slip fault with a partly normal slip, the southeastern branch
of the Kunlun fault zone, the Jiangcuo fault (Ren et al., 2022).
This earthquake ruptured across a long-range area with complex
landform, including many valleys, lakes, wetlands, grasslands,
mountains and some sand dunes, etc (Pan et al., 2021; Ren et al.,
2022). In the rupture section across Mustan Bridge, north of
Huanghe Township and the valley of Yellow River, as the rupture
zone is mainly distributed along the valley, a large number of
tensile fractures parallel to the river channel are formed due to
slope instability, accompanied by sandblasting water and sand
liquefaction (Liu-Zeng et al., 2024).

The 2022 Menyuan earthquake mainly ruptured the left-lateral
strike-slip fault with a slight thrust component, the middle segment
of Qilian-Haiyuan fault (Xue et al., 2022; Li et al., 2023). This
earthquake happened in winter when the Liuhuanggou River was
frozen, causing the ice river surface and flood plain to break in
the nature of thrust with the phenomenon of tension cracks on the
bank slope and slope slide under the effect of gravity from slope
instability on the right bank of the river, which may amplify the
actual left-lateral offsets (Li et al., 2023).

With the continuous development of western China, a large
number of pipeline projects have been built or are being built
in the Tibetan Plateau region. The damages of strike-slip faulting
can be found in these five earthquakes selected in this study:
Maduo earthquake caused the serious collapse of Mustan Bridge
as part of the Gongyu Expressway, which is a major traffic route
(Ren et al., 2022); The dislocation of the Lanzhou-Urumqi High-
speed Railway’s Daliang Tunnel caused by Menyuan earthquake
directly disrupted the traffic in this section for up to 18 months
(Li et al., 2023); Yushu earthquake caused serious damage
to the national and provincial trunk roads and transportation
infrastructure in the Yushu area, with an affected area of 20,000
square kilometers (Li et al., 2012). Therefore, predicting the
distribution of surface rupture caused by strike-slip earthquakes
in the Tibetan Plateau region can help maintain the safety of
transportation arteries in the region and provide reference for
avoidance locations for transportation arteries currently being built
or planned to be built in the region, in order to reduce potential
damage in the future.

3 The rupture displacement
probability model

Rodriguez Padilla and Oskin (2023) proposed a mathematical
approach to estimate fault displacement based on data from detailed
surface-ruptures strike-slip earthquakes:

P(S > S0|x,MW) = P(rupture|x)P(S > S0|x, rupture,MW). (1)

Equation 1 shows the probability per unit area of finding
a distributed rupture that accommodates a displacement that
exceeds a displacement threshold at a given distance from the
principal fault. The equation is produced by the joint probability
of two parts: the former P(rupture|x) is the probability of rupture
occurring per unit area at a distance x from the fault; The latter
P(S > S0|x, rupture,MW) is the probability of finding a displacement
that exceeds the threshold at a given distance from the fault for
a given earthquake magnitude, given the presence of a rupture.
In the following paragraphs, the process of establishing these two
parts will be carried out separately before being combined into the
final equation (Rodriguez Padilla and Oskin, 2023).

P(rupture|x) can be calculated by studying the spatial
distribution of the rupture density, which can be given by the inverse
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power law (e.g., Padilla et al., 2022):

V(x) = V0(
x+ x fr
x fr
)
−γ
. (2)

In which V0 is the rupture density at the origin in number
of ruptures per unit area ( 1m2), x fr is a normalized factor which
is related to the uncertainty of the location of the principal fault
trace in meters, the exponent γ is the slope of the decay of rupture
density with distance for values of x≫ d in log-log space or scaling
exponent. V(x) is the probability of a rupture occurrence per unit
1m2.

With reference to the inverse power law used in Equation 2,
we try to analyze the relationship between the displacement
measurements and the distance to the principal fault trace:

λ(x) = β(
x+ xS
xS
)
−n
. (3)

In which λ is the mean of the displacement at every distance
bin, β is the average displacement at the origin, x is the location
away from the principal fault in meters, xS is a normalized factor
which we set as 1m in this equation, and n is the slope of
the relationship between mean displacement and distance in log-
log space or scaling exponent.

To deeply understand the meanings of above parameters, we
put them back in actual situation to help with this. The parameter
V0 describes the amount of the surface ruptures per unit area on
the principal fault trace, so as the parameter β which describes
the average displacement value on the principal fault trace. These
two parameters are used to describe the surface-ruptures and the
displacement on the principal fault. Unlike V0 and β, the parameter
γ and n are both the slope of the best-fitting curve in log-log space
which can describe the state of decay.

By comparing several distribution functions, it is found that
the population of displacement measurements can be better
described by exponential distributions, and the distribution can be
described as follows:

f(S|x) = 1
λ
e
−S
λ . (4)

Combining Equations 3, 4 yields:

f(S|x) = 1
β
(
x+ xS
xS
)
n
e−

S
β
( x+xS

xS
)
n

. (5)

This equation is a probability density function (PDF) of
displacement measurements with distance x from the principal fault
trace. To solve the probability of finding a displacement that exceeds
S0 with a given earthquake magnitude:

P(S > S0|x, rupture,MW) = ∫
Smax

S0

1
β
(
x+ xS
xS
)
n
e−

S
β
( x+xS

xS
)
n

dS

= −e−
S
β
( x+xS

xS
)
n

|Smax
S0

(6)

Since the model focuses on the displacements on the distributed
ruptures which do not tend to be of large value, the evaluation limits
the threshold S0 ≪ Smax to appropriately predict the probability of
distributed displacements above the threshold S0. Completing the
integration of Equation 6 with this application can yield:

P(S > S0|x, rupture,MW) = e
−S0
β
( x+xS

xS
)
n

. (7)

Combining Equations 2, 7 yields the final model:

P(S > S0|x,MW) = V0(
x+ x fr
x fr
)
−γ
e
−S0
β
( x+xS

xS
)
n

. (8)

This model is presented to calculate the probability per unit area
of finding a distributed rupture that accommodates a displacement
that exceeds a displacement threshold at a given distance from the
principal fault (Rodriguez Padilla andOskin, 2023).This probability
model can quantify the displacement hazard of surface ruptures and
estimate the expected displacement distribution caused by strike-
slip faults, to provide reference data for the design, evaluation, and
maintenance of engineering structures and lifelines located near or
across strike-slip faults.

The entire probability model involves the calculation of multiple
unknown parameters, which will all influence the final results.
Therefore, after clarifying the model-building process, a brief
analysis of the characteristics of each parameter is needed, and then
the expected results of the theoretical model should be summarized
as a reference for further research.

The origin rupture density V0 and the origin average
displacement β reflect the rupture and displacement conditions
along each principal fault trace of the earthquake, and further affect
the establishment of their respective models. A larger V0 and β will
result in higher P(S > S0) at the same location. The influence of
parameter V0 on P(S > S0) is greater than that of parameter β when
S0 = 0.01,0.1 m, the probability curve with a larger V0 gradually
dissociates above other curves with the increase of distance x;
When the threshold S0 is large, the influence of parameter β on
P(S > S0) becomes prominent, which actually reflects themagnitude
dependence of parameter β: the small magnitude earthquake event
tend to have a small β, and its probability curve gradually dissociates
below other curves with the increase of distance x.

For themagnitude dependence of parameter β, the equation was
proposed between moment magnitudeMW and mean displacement
β to explore the empirical relationship between them (Wells and
Coppersmith, 1994):

log10(β) = bMW − a, (9)

where parameters a and b are regression coefficients derived from
the best fit of the data using the least square method, and all fitted
data used are strike-slip earthquakes.When S0 = 0.5m, theP(S > S0)
of the smallest magnitude earthquake is significantly smaller than
that of other earthquakes. In other words, for strike-slip earthquakes
with smaller magnitude, the probability of large rupture occurring
at a certain distance from the fault will be significantly lower than
that of earthquakes with larger magnitude, which also matches
our prediction about the characteristics of the surface rupture
displacement distribution for strike-slip earthquakes.

According to the definition, the values of the exponents γ
and n obtained by fitting are affected by the rupture density and
average displacement of each earthquake respectively, but there is a
reasonable range of values. After obtaining the respective parameters
and models of each earthquake, a theoretical model is established.
The parameters of the theoretical model are obtained by combining
all the seismic data used and fitting through Equations 2, 3, and the
range of the exponents γ and n obtained by the joint fitting will be
affected by all the seismic data used.
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The reasonable outputs of theoretical model should also be
summarized after the analysis of the characteristics of each
parameter. The reasonable results obtained after the establishment
of the theoretical model are consistent. The rupture density curve
from the fit of Equation 2 shows a downward trend, with certain
fluctuations at the end; The scatter-fitting curve of displacement
measurements from Equation 3 also showed a downward trend, and
the scatters concentrated around the best fitting curve with a little
isolated from the entirety.

Then comes to the final model output by Equation 8, it can be
seen from the curve that the theoretical P(S > S0) decreases with
the increase of fault-perpendicular distance, and the slope keeps
increasing. Set with the input of moment magnitude MW = 7 and
threshold S0 = 0.1 m, P(S > S0) has dropped to about 1/1,000 when
the distance reaches about 100 m, and at 1,000 m it has dropped to
less than 1/1,000, reaching a relatively small risk probability value.
Such results indicate that there is a very low probability for the
surface ruptures in the area far away from the principal rupture trace
to accommodate a large value of displacement.

In this study, we introduce the approach of Rodriguez Padilla
and Oskin (2023) to the surface rupture dataset of large strike-slip
earthquakes in the Tibetan Plateau and then build the displacement
probability distribution model. By analyzing the model building
process and output results of the theoretical model, we can
summarize the reasonable results of the theoretical model and
use it as a reference to guide the subsequent model-building
work in China.

4 Data preprocessing

Detailed analysis of the surface rupture dataset indicates that
the coseismic surface rupture zone of a large strike-slip earthquake
consists primarily of principal ruptures along the main fault
and secondary ruptures caused by the secondary fault or fault
branch (Figure 1). In addition, minor fractures occurred outside
of the main fault zone. These fractures are related to non-tectonic
factors such as landslides, and gravity instability under seismic
ground motion (Liu-Zeng et al., 2024). These minor fractures are
generally located in the local environment and are not directly
produced by fault displacement. Therefore, we should remove
these minor fractures, and only tectonic ruptures are involved in
our analysis.

After preliminary sorting of the five original earthquake
data (map documents and statistical tables of displacement
measurements at the rupture), it is found that the original data will
record the surface rupture traces with event particularity caused
by the earthquake itself due to structural characteristics and some
other causes (Li et al., 2012; Li et al., 2016; Ren and Zhang, 2019;
Pan et al., 2021; Xue et al., 2022). Since the model is expected to
be applied to a wide range of the Tibetan Plateau, to reduce the
impact of non-tectonic factors (such as seismic motion) on the
model results, we formulate criteria for the screening of the original
data combined with the rupture characteristics of the five typical
earthquakes on the Tibetan Plateau, hoping to get more consistent
data to obtain a more uniform result and model.

For the convenience of data storage and search, we store all the
data in a standardized format after data filtering. After comparing

the data processing methods of standardized empirical databases
that have been generated in recent years (e.g., Ancheta et al., 2013;
Chiou et al., 2008; Nurminen et al., 2022), we chose to refer to the
Fault Displacement Hazards Initiative (FDHI) database hosted and
maintained by the Natural Hazards Risk and Resilience Research
Center at the University of California, Los Angeles, to conduct
standardized processing of surface rupture data form these five
earthquakes in China (Sarmiento, 2021). The buildup of the model
in this study mainly needs two parts of data: surface rupture maps
and surface rupture displacement measurement, which are sorted
into ESRI Shapefile (∗.SHP format) and table form, respectively, after
standardized processing.

Based on the original data collected from these five earthquakes,
we first screened the surface rupture traces based on the following
four criteria (Figure 3):

(1) Through image comparison, the rupture traces around the
water body are generally interpreted as resulting from the
instability of the water body under seismic ground motion.
These ruptures strike along the boundary of thewater body and
do not have a similar strike to the main fault. Such fractures
are removed.

(2) The ruptures associated with landsliding of a local topography
that deviate significantly from the orientation of the main
fault were eliminated. These ruptures are generally distributed
around a landslide and do not have a uniform direction.

(3) Remove the rupture traces originating from surface
deformation in complex structural areas, such as large
stepovers, the tips of a strike-slip fault, and so on.

(4) Previous studies indicate that the tectonic-related coseismic
deformation generated by a strike-slip fault is generally not
distributed in the area too far away from the principal fault
(Xu et al., 2006; Sun et al., 2012; Antoine et al., 2022.)
Combining the original rupture traces of these five typical
earthquakes, we opted to retain the rupture traces within 1 km
from the principal fault and exclude those located beyond
this distance.

After completing the standardized filtering of the original
surface rupture traces maps, the displacement measurements
located on the removed rupture traces are also deleted to ensure the
uniformity of the data used. Then we unified the format of surface
rupture displacement measurements according to that of FDHI
(Sarmiento, 2021). Currently, the displacement measurements for
each earthquake as recorded by various scholars are typically
documented and reported separately in the original data, including
horizontal slip and vertical component (e.g., Li et al., 2012; Li et al.,
2016; Pan et al., 2021; Li et al., 2023). It is important to note that we
focus on the horizontal slip of a strike-slip rupture and the influence
of other factors causing vertical slip in a local area is not considered
in this study. Therefore, all original displacement measurements
should be classified before calculation and organized into a uniform
representation of net horizontal slip.

After all original data have been preprocessed, we conduct
the following work such as quantifying the fracture density and
describing the variation in displacement measurements at the
fracture point with the distance from the main fault. We integrated
the FDHI database’s definitions of principal rupture and the location
of principal faults in each seismic event, and consequently, a
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FIGURE 3
The mapped surface rupture traces of the Mani, Yushu, Yutian, Maduo, and Menyuan earthquakes. The traces in a light color are non-tectonic fractures,
and the traces in a dark color are principal and secondary ruptures used in this study. The surface rupture data of Mani earthquake are from Ren and
Zhang (2019). The data of Yushu earthquake are from Li et al. (2012), Sun et al. (2012). The data of Yutian earthquake are from Yuan et al. (2021). The
data of Maduo earthquake are from Liu-Zeng et al. (2024), Pan et al. (2021), Ren et al. (2022), and the Menyuan data are from Li et al. (2023).

FIGURE 4
Preprocessing of the surface ruptures of the Yutian earthquake. (A) The original surface ruptures from high-resolution imagery and field observations.
(B) The non-tectonic factures are removed after data preprocessing, and the main fault is highlighted in red.

simplified principal rupture trace was delineated (Figure 4). A
singular, continuous fault trace was defined along the densely
distributed and consistent principal ruptures. This approach can
enhance the convenience of data processing in the subsequentmodel
development by utilizing a limited number of rupture trace lines.

5 Results of rupture-displacement
probability model

After pre-processing of the original surface rupture data of these
five earthquakes, we built our model based on these data. Firstly,
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FIGURE 5
Rupture density distribution for the Mani, Yushu, Yutian, Maduo, and Menyuan earthquakes.

TABLE 2 Distribution of best-fit parameters for each event in Equation 2.

Parameter Mani Yushu Yutian Maduo Menyuan

V0 0.051 0.013 0.063 0.062 0.112

X fr(m) 21.259 38.355 73.423 13.297 43.893

γ 2.169 1.722 2.665 1.179 2.999

the spatial distribution of surface rupture density is studied based
on Equation 2. When all the rupture traces have been separated
into segments at a 1 m interval, we calculated the smallest distance
from each segment to the principal rupture trace, and fit the
attenuation of surface rupture density for each earthquake based on
these data (Figure 5).

When the surface rupture density distribution for each
earthquake has been obtained, we fit each decay with an affine-
invariant ensemble sampler for Markov chain Monte Carlo
(Goodman and Weare, 2010; Foreman-Mackey et al., 2013), setting
the prior ranges of the values of the three unknown parameters in
Equation 2 to estimate the maximum-likelihood values by using the
actual surface rupture data of each earthquake (Table 2).

We follow a similar method to estimate the attenuation of
displacement distribution with the fault-perpendicular distance
in Equation 3: With the smallest distance of each displacement
measurement point to the principal rupture trace calculated, we
calculate the attenuation of the surface rupture displacement
measurements for each earthquake (Figure 6).

When the decay of displacement measurements with fault-
perpendicular distance for each earthquake has been obtained,
we set the prior ranges of the values of the two unknown
parameters in Equation 3 to estimate the maximum-likelihood
values by using the actual surface rupture data of each earthquake
(Table 3). Then, we build the probability model for each of
the five earthquakes after obtaining the parameters for the
final model (Figure 7).

As the individual models are built, we fit the parameters of
the general model based on all the surface rupture data from
these five earthquakes according to the above method (Table 4).
About the value of β, according to Equation 9 we give the input
of MW. Using the parameters in Table 3, we build the general
model for the Tibetan Plateau and set different values of MW,
S0 to observe the rationality of the results (Figure 8). In the
establishment of the model, we imported the code into Jupyter
Notebook, enabling end users to input the displacement threshold
S0 and earthquake moment magnitude MW to obtain outputs for
P(S > S0) (Figure 9).
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FIGURE 6
Distribution of displacement measurements for the Mani, Yushu, Yutian, Maduo, and Menyuan earthquakes.

TABLE 3 Distribution of best-fit parameters for each event in Equation 3.

Parameter Mani Yushu Yutian Maduo Menyuan

β(m) 4.197 1.334 0.631 0.530 3.482

n 0.051 0.357 0.173 0.173 0.698

FIGURE 7
Curves representing the probability per square meter of finding a rupture hosting a displacement that exceeds threshold S0 for the Mani, Yushu, Yutian,
Maduo, and Menyuan earthquakes. These models generated by using Equation 5 show models for (A) S0 = 0.01m, (B) 0.1 m, and (C) 0.5 m, respectively.

TABLE 4 Distribution of best-fit parameters for
general model in Equation 8.

Parameter V0 Xfr(m) γ β(m) n

0.045 33.933 1.803 MW 0.291

6 Discussion

6.1 The effect of the data preprocessing on
the model

As mentioned above, the original data of surface ruptures from
field observations and high-revolutionary imagery include a large

number of fractures related to non-tectonic factors. These non-
tectonic fractures are distributed along a local environment and are
not directly related to fault slip during the earthquake. Therefore, it
is hard to be assessed by a general model. We compare the model
result using the data before and after data preprocessing to address
the role of data filtering.

The effect of the data-preprocessing work can be reflected in
some results during the establishment of the general model. Before
and after data filtering, the best-fitting rupture density attenuation
for each of the five earthquakes demonstrates a downward trend,
which aligns with expectations. Although the curves derived from
the original data generally follow this downward trend, they exhibit
several peaks and abrupt increases and decreases towards the end.
Compared to the original data, these peaks correspond to fracture
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FIGURE 8
Curves showing the probability per unit area of finding a rupture accommodating a displacement that exceeds threshold S0 for a surface-rupturing
strike-slip earthquake. The models are generated by using Equation 5. (A) Models for MW 6, 6.5, 7, and 7.5, in which S0 = 0.1m. (B) Models for S0 =
0.01m,0.1m,0.5m and 1m for a MW 7 event. (C) Probability versus displacement hazard curves for a MW 7 event at distances of 10m,100m,1000m, and
5000m from the fault.

FIGURE 9
The general probabilistic fault displacement hazard analysis model expressing the probability of finding a rupture accommodating a displacement that
exceeds threshold S0 = 0.01m for a surface-rupturing strike-slip earthquake of Mw 7.

traces far from the principal fault, where surface fractures at these
distal locations are predominantly influenced by local complicated
structures, stopovers, or seismic vibrations similar to the Yutian
earthquake (Yuan et al., 2021). The comparative results indicate that
the filter of the original surface rupture traces of the five earthquakes
based on established criteria can, to some extent, remove the
discrepancies in peak distributions at the end of the rupture density
attenuation curve arising from individual variations (Figure 10).The
differences in distribution are primarily reflected in the number of
peaks and their respective locations.

Similar to the rupture density distribution, the best-fitting
attenuation of displacement values also exhibits a decreasing trend,
consistent with our expectation that surface rupture displacement
values diminish with increasing distance from the principal fault.
However, the distribution of the original actual displacement
values markedly differs from that of the best-fitting case. The
measurement and collection of original data primarily stem from
field investigations, which can introduce measurement deviations.
For instance, in the case of the Yushu earthquake, the displacement
measurements show a small proximal value and a larger distal value,
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FIGURE 10
Comparison of rupture density before and after the data screening. (A) Before data screening. (B) After data screening.

FIGURE 11
Comparison of the attenuation of the displacement distribution before and after the data screening. (A) Before data screening. (B) After data screening.

resulting in a lack of an obvious downward trend in the overall
distribution (Figure 11). Consequently, the best-fitting situation
approaches a horizontal line. The comparative results indicate that
the selected displacement values, based on the established screening
criteria, are generally too small near the principal fault or excessively
large at greater distances. This suggests that the removal of these
outliers can enhance the best-fitting results to some extent.

The comparative results demonstrate that screening the original
seismic data according to established standards can improve the
data quality. Upon completion of the screening process, the data
consistency is initially enhanced through the organization of data

formats, thereby increasing the efficiency of follow-up search and
use. This enhancement is subsequently reflected in the model
establishment, which exhibits more reasonable and consistent
parameters and results, collectively validating the effectiveness of
data filtering.

It should be pointed out here that the fitting curves of
displacement values of Yutian, Yushu and Menyuan earthquakes
were still not very good compared with that of Maduo and Mani
earthquakes after the completion of data filtering, with the best-
fitting curves tended to be horizontal which don’t show the ideal
downward trend (Figure 11). Combined with the establishment
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FIGURE 12
Overall workflow of the buildup of the model.

principles of Formula 3 and the analysis of the distribution
characteristics of displacement values of the ideal curves, the
displacement values in the original seismic data will have the
most intuitive impact on the fitting situation: Since the original
seismic datasets we used were all from the field investigation and
measurement work of different experts and scholars, the specific
measurement and sorting methods involved were different, and
such differences could not be completely eliminated by our current
work; Besides, the original datasets of these three earthquakes
includes fewer displacement values, for which the removal of several
values may cause more obvious impact on the best-fitting curve.
Considering the above two characteristics of every original seismic
dataset, we only to some extent improved the quality of the results
after the completion of data filtering, improving the best-fitting
curve from basically being horizontal to decay with a relatively slow
decline trend.

Therefore, the data filtering work established in our study
can improve the quality of the original seismic data to a certain
extent, but the differences existing in the field investigation and
measurement process of the original data cannot be completely
removed through this work, and will finally remain in the best-
fitting curve after filtering: Usually the most intuitive manifestation
is that the displacement values are not completely in line with
our prediction of the theoretical value, resulting in the attenuation
trend of the best-fitting curve is too small. Our data filtering
is mainly established to obtain relatively uniform datasets under
certain criterion to make the results of theoretical model more
consistent. For the specific situation of Yutian, Yushu and Menyuan
earthquakes, the quality of the data is improved as much as possible
on the basis of the above differences in the process of data-collection.

6.2 The general model

After the establishment of the general model, we provide a
Jupyter Notebook that allows users to put a displacement threshold
S0 and earthquake moment magnitude MW to obtain results of
models in different conditions. Besides deriving the probability of
significant damage in areas at varying distances from the principal

fault by altering the distance x, we can extend our predictions from
the distribution of surface ruptures in a specified region to the width
of the rupture zone: In existing seismic fortification specifications
for pipeline projects, avoidance width or fortification displacement
is typically provided as a reference, with this displacement serving
as a default for model outputs. By considering P(S > S0) set at
1/10000, we can ascertain the width of the surface rupture zone that
has a defined probability of encountering displacements exceeding
the fortification value, represented by the value of x. Compared
with current models, our model not only predicts the displacement
hazard from distributed ruptures of strike-slip faults, but also try
to give a roughly referable fracture zone width, which corresponds
to some existing fortification criterion for the avoidance width for
engineering projects, providing more reference value.

We preprocessed raw data fromfive earthquakes to enhance data
standardization and established a general probability model of the
surface rupture displacement distribution of strike-slip earthquakes.
The magnitudes of these five earthquakes range from Mw 6.6 to 7.5,
covering a wide range of probable magnitudes of large strike-slip
earthquakes, which lets our model fairly representative. The final
model can be applicable for this magnitude range. If a large strike-
slip fault with a potential of earthquake larger than Mw 7.5, the
applicability of thismodel is unknown.Maybemore data from larger
earthquakes like the 2001 Mw 7.8 Kunlunshan earthquake needs to
be added to our database. In addition, the five earthquakes in this
study are from the Tibetan Plateau. The general model could be
applied in other regions with caution.

This study assumes that only horizontal displacement occurs
on the strike-slip fault, without considering the effect of fault
dip changes on surface rupture. Many factors may influence the
distribution characteristics of surface ruptures on strike-slip faults:
(1) variations in fault dip angles can affect the distribution of
surface ruptures; (2) complicated fault geometry such as fault
bend, and stepover may enhance the width of deformation zone
(Visage et al., 2023); (3) the near-surface properties of covers
above the fault tip, such as overburden thickness, geological
characteristics, and consolidation,may influence the rupture pattern
on the surface (Nurminen et al., 2020).
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These factors may have influenced the surface ruptures of the
five earthquakes used in this study. In the Yutian earthquake, the
thicker loose sedimentary cover around the lake amplified the
seismic rupture and rupture width at shallow depths (Yuan et al.,
2021). In the Maduo earthquake, an extremely wide deformation
zone in the epicentral region was probably related to a stepover
covered by the sand layer in the upper reach of the Yellow River
(Ren et al., 2022; Liu-Zeng et al., 2024). In future work, we will
consider more factors in the establishment of a model and improve
the applicability of the general model.

7 Conclusion

Based on a systematic analysis of surface ruptures from the five
strike-slip earthquakes in the Tibetan Plateau in the past decades,
we construct a general probabilistic model for displacement hazards
associated with distributed ruptures from strike-slip faults. The
following conclusions can be drawn:

(1) This study summarizes a workflow for building localized
models of displacement hazard for active faults based on
surface ruptures from large earthquake cases (Figure 12).

(2) Data preprocessing of the original surface rupture data is
essential to enhancing the reliability of the general model.
We set criteria to screen the original data to improve the
consistency of our model’s results to mainly make our model
focused on the tectonic influence from strike-slip faults. We
can add more actual seismic data and other possible factors in
our future work to extend our research.

(3) The general probability model can be used to predict
displacement hazard for distributed ruptures from surface-
rupturing strike-slip faults with an earthquake potential ofMW
6.6–7.5 of the Tibetan Plateau.

(4) Current work has several limitations. Our model mainly
focuses on the structural influence on the characteristics
of surface ruptures for strike-slip faults with other factors
removed during the data filtering, the range of our model’s
application will be limited. When applied to the events with
other factors, the rationality of the results should be assessed.
Besides, with the magnitudes of the five earthquakes ranging
from Mw 6.6 to 7.5, when applied out of such range the
rationality of the results should be assessed.
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Introduction: With the increased application of super-long working faces in
coal mining, the surface movement and crack development laws of super-
long working faces present an urgent problem to be studied and solved.
This study aimed to determine the surface movement and crack development
laws of super-long working faces when mining medium-depth buried
coal seams.

Methods: The research area in Xiaobaodang No. 2 coal mine, China,
was the adjacent working faces 01, 02 and 03, with inclination widths of
300 m and 450 m, respectively. The laws were determined by applying
methods such as manual surface movement observation, GNSS automatic
surface movement observation, surface crack observation, and crack
morphology tracing.

Results: Compared to the working face with an inclination width of 300 m, the
maximum subsidence, maximum horizontal movement value, and maximum
subsidence coefficient of the super-long working face with an inclination width
of 450 m increased by 15.31%, 4.56%, and 16.13%, respectively. Under the
influence of mining the 02 working face, the maximum subsidence of the 01
working face increased by 15% and the surface subsidence patterns of the
01 and 02 working face inclination observation lines showed an asymmetric
W shape.

Discussion: The widths of the cracks parallel to the open-off cut followed the
dynamic development law of opening first, then closing or semi-closing. The
widths of the cracks parallel to grooves followed the dynamic development law
of opening first, then remaining open. The study results are important to protect
mining buildings and the ecological environment.

KEYWORDS

medium-depth buried coal seam,mining subsidence, super-longworking faces, surface
movement and deformation, surface cracks

1 Introduction

The lack of gas and oil but comparatively abundant coal in China indicates that
coal is the country’s primary energy source (Shang et al., 2017). Coal resources
in western China account for more than 70% of its total coal resources, and the
northern Shaanxi coal mining area has become a billion-ton coal production base
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(Bai et al., 2018; Zhang et al., 2023). Coal mining frequently causes
ecological and environmental problems such as land destruction,
soil erosion, and building and road destruction in coal mining
areas to varying degrees (Qiao et al., 2017; Guo Q. L. et al., 2019;
Zha and Xu, 2019; Song et al., 2021). Those are due mainly to
mining destroying the rock strata overlying the working face and
the surface movement above the working face. The primary damage
from surface movement and deformation is both surface subsidence
and surface cracking. Surface movement and deformation, as well as
surface cracks, are caused by the movement and destruction of the
rock strata overlying the mined-out area (Yi et al., 2022; Yan et al.,
2023). Their laws are influenced by a combination of geological
and mining factors (Guo W. B. et al., 2019; Dudek et al., 2022).
Determining the laws of surfacemovement deformation and surface
crack development from coal mining has an important theoretical
significance and practical application value for preventing and
controlling the problems of surface movement destruction.

The degrees of surface movement deformation and surface
crack development are affected by various factors, such as the
coal mining method, the mine depth and height, the inclination
width of the working face, the structure of the rock and soil
layers overlying the coal seam, and the mechanical strength of
the coal seam. Therefore, it has become important to explore
the characteristics, laws, and formation mechanisms of surface
movement deformation and surface cracks under the conditions of
several factors.

Themost basic way to study surfacemovement and deformation
is to establish a surface movement and deformation observation
station for continuous on-site observation. Material and numerical
simulations are also frequently used (Zhou et al., 2015; Prakash et al.,
2018; Zhu et al., 2019). For the surface movement characteristics
and laws for coal mining faces with various inclination widths,
existing research has focused mainly on the surface movement
and deformation above mining faces with inclination widths not
more than 350 m. Guo et al. (2010) and Guo et al. (2011) analysed
the surface subsidence characteristics of the 11,206 working face
with its medium-depth buried thick coal seam and an inclination
width of 170 m in Zhaojiazhai coal mine in Henan Province,
China. Zhang B. C. et al. (2022) observed the surface subsidence
of the 24,213 working face with its shallowly buried inclined coal
seam, an inclination width of 180 m, and a mining height of 2 m
in the 1930 coal mine in Xinjiang, China. Chen et al. (2019)
observed and analysed the surface subsidence characteristics of the
52,305 working face with its deeply buried, thick coal seam, an
inclination width of 280 m, and a mining height of 6.7 m in the
Daliuta colliery in China’s Shendong coalfield. Zou et al. (2023)
studied the surface movements of the 22,108 and 42,108 working
faces with an inclination width of 300 m in the Buertai coal mine
in China’s Shendong coalfield through on-site measurement and
numerical simulation methods. Fu et al. (2021) monitored the
surface subsidence of the S12013 working face with an inclination
width of 330 m and a mining height of 4 m in the Ningtiaota
coal mine in the northern Shaanxi province of China. Xie et al.
(2021) studied the surface movements of the 112,201 working face
with a deeply buried, thick coal seam and an inclination width
of 350 m in the No.1 Xiaobaodang coal mine in the northern
Shanxi province of China.These studies obtained surfacemovement
characteristic parameters such as subsidence amount, subsidence

coefficient, subsidence velocity, advance influence distance, and
delay distance ofmaximumsubsidence velocity through observation
and analysis. Yin et al. (2022) analysed and predicted the surface
movement characteristics of deeply buried Jurassic coal seam
mining in the Hujierte mining area in western China and
concluded that there was a certain positive correlation between
the ratio of mining width to mining depth and the coefficients
of subsidence.

On-site observation and mapping of surface cracks are standard
methods for studying surface cracks. In recent years, UAV remote
sensing technology has also been applied to surface crack research
(Yang et al., 2022; Fu et al., 2023). Zhang Y. J. et al. (2022) observed
surface cracks above the working face with its deeply buried coal
seam, an inclination width of 180 m, and a mining height of 10 m
in the gully terrain of a coal mine in the southern Shanxi province
of China. Li et al. (2017) and Xu et al. (2017), Xu et al. (2019)
observed surface cracks above the working face of the Bulianta coal
mine in China’s Shendong coalfield, which had a medium-depth
buried coal seam and an inclination width of 300 m. Feng et al.
(2022) and Feng et al. (2023) observed characteristics of surface
cracks width variation above the 125,203 working face in the
gully terrain of Anshan coal mine in northern Shaanxi province
of China, which had a shallow-depth buried coal seam and an
inclination width of 270 m. Hou et al. (2021) observed surface
cracks in the working face of the No.1 Xiaobaodang coal mine in
China’s northern Shaanxi province, which had a medium-depth
coal seam, an inclination width of 350 m, and a mining height
of 5.8 m. These studies found that surface cracks caused by coal
mining mainly included cracks inside the working face and cracks
at the boundary of the working face. The width of cracks within
the working face showed a characteristic of opening first, then
closing, while the width of cracks at the working face boundary
showed a characteristic of only opening and not closing. The width
of surface cracks including its dynamic change in the loess gully
region was greatly influenced by terrain, and the degree of surface
cracks development was relatively strong. When the mining height
of the medium-depth buried coal seam was 5.8 m, the depth of
surface cracks development in the blown-sand region would not
exceed 3.5 m.

In recent years, there have been many studies on the laws
of surface movement deformation and surface crack development
above working faces with inclination widths of less than 350 m.
However, research is lacking on the laws of surface movement
deformation and surface crack development in super-long working
faces with inclination widths greater than 350 m. Since August
2021, a 450 m super-long working face was successfully mined in
the No.2 Xiaobaodang coal mine, which improved coal production
and economic benefits. The developers of many other coal mines
have begun experimenting with super-long working face mining.
The present study was done on the No. 2 Xiaobaodang coal mine
in the aeolian (wind deposited) sand area of northern Shaanxi
Province, China. It focused on the 01 working face with an
inclination width of 300 m, the 02 super-long working face with
an inclination width of 450 m and the 03 super-long working faces
with an inclination width of 450 m. It explored the laws of surface
movement deformation and surface crack development above
the super-long working faces caused by mining medium-depth
coal seams.
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FIGURE 1
Location of study area.

2 Study area and method

2.1 Study area

The study area was at the 01, 02 and 03 working faces of the
13 panel area of the Xiaobaodang No. 2 coal mine in the Yushen
mining district in northern Shaanxi Province, China (Figure 1).
Those working faces were adjacent, and their surface was covered
by an aeolian sand layer. Based on borehole exploration data and
stratigraphic maps, the stratigraphy of the study area from old
to new groups was as follows: Jurassic Yan’an, Zhiluo, Anding,
Neogene Pliocene Baode, and Quaternary. The attitude of strata in
the study area was nearly horizontal, and the structure was simple
without faults.

The 01, 02 and 03 working faces adopted a longwall retreating
mining method, and the roof was managed by the all-caving mining
method. The 01 working face was the first mining face in the 13
panel area, with an inclination width of 300 m and a strike length of

4,002 m.The 2−2 coal seam in that face was 311 m deep. Its thickness
ranged from 1.60 to 2.60 m; the average thickness was 2.14 m. The
01 working face started mining at a mining height of 2.60 m from
July 2020 to August 2021.

The 02 super-long working face was on the northwest side of the
01 working face, with an inclination width of 450 m and a strike
length of 3,868 m. The 2−2 coal seam in that face was 312 m deep.
Its thickness ranged from 1.70 to 3.60 m; the average thickness was
2.50 m. The 02 working face started mining at a mining height
of 2.60 m from August 2021 to July 2022. The northwest side of
the 02 working face was the 03 super-long working face with an
inclination width of 450 m, which has the same geological and
mining conditions as the 02 working face.

The burial depth of medium-depth coal seams was generally
greater than 150 m and less than 600 m. The 2−2 coal seam mined
in the study area was a medium-depth buried coal seam. In the
01, 02 and 03 working face, the coal seams were horizontally
mined, with the mining characteristics of low mining height,
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medium mining depth and a mining depth to height ratio of
approximately 120.

2.2 Methods

2.2.1 Design of manual surface movement
observation stations

Manual observation comprises independent overall observation
before mining, daily observation during mining, and observation
of surface stabilisation after mining. First, the control points of
the mining area and the observation line are connected so that
measurement can determine the benchmark for surface subsidence
and horizontal displacement observation.Then, independent overall
observations are made, and the results are used as the benchmark
for data processing. After that, daily observations and surface
stability monitoring are done from the start of mining until the
ground surface stabilises. In observation of surface movement,
the instrument of real-time kinematic (RTK) was used for planar
observation, and the instrument of electronic level was used
for elevation observation. The error of plane measurement was
controlled within 10 mm, and the error of elevation measurement
was controlledwithin 3 mm. Surfacemovement observation stations
are arranged in the form of strike observation lines and inclination
observation lines.

The strike observation line of the 01 working face was 900 m
long, comprising 540 m on the inner side of the open-off cut and
360 m on its outer side. Along the strike observation line of the
01 working face, a total of 46 observation points numbered Z01 to
Z46 were set up with a spacing of 20 m, and three control points
numbered KZ01 to KZ03 were set up with a spacing of 100 m.
The strike observation line of the 02 working face was 900 m long,
comprising 550 m on the inner side of the open-off cut and 350 m
on its outer side. Along the strike observation line of the 02 working
face, a total of 37 observation points numbered Z01 to Z37 were set
up with a spacing of 25 m, and three control points numbered KZ01
to KZ03 were set up with a spacing of 100 m. A same inclination
observation line with a length of 1,420 m was used on the surface
of working faces 01 and 02. That line was 500 m away from the
open-off cut of the 01 and 02 working faces and perpendicular to
the strike observation lines. Along the inclination observation line,
74 observation points were set up with a spacing of 20 m, including
Q1 to Q72 points, Z44 point of the 01 strike observation line and
Z35 point of the 02 strike observation line point. On the inclination
observation line, there were four control points numbered KQ1
to KQ4 with a spacing of 100 m. The Q1 to Q50 points and Z44
point of the 01 strike observation line were used to observe the
01 working face surface movement in the inclination direction; the
observation line composed of themwas 1,000 m long.TheQ1 toQ35
points, Q51 to Q72 points, Z44 point of the 01 strike observation
line, and Z37 point (closed to Q6) of the 02 strike observation line
were used to observe the 02 working face surface movement in the
inclination direction; the observation line composed of them was
1,140 m long (Figure 2).

Before and aftermining of the 01 working face, two independent
overall observations and 52 daily observations and surface stability
observations were made. Among them were included observations
of the secondary surface movement affected by the mining of the

02 working face. Before and after mining of the 02 working face,
two independent overall observations and 16 daily observations and
surface stability observations were made (Supplementary Table S1).

2.2.2 Design of GNSS automatic surface
movement observation stations

Global Navigation Satellite System (GNSS) automatic surface
movement observation stations were based on the measurement
principle of calculating the 3D coordinates of observation points
by receiving signals from multiple satellites and using the time
differences of the signals. Unlikemanual observation stations, GNSS
observation stations have the advantages of high frequency, many
data collected, and greater accuracy in analysing the dynamic change
characteristics of surface subsidence.TheGNSS observation stations
numbered ZK2 and ZK3 were installed in the centres of the 02 and
03 working faces surface respectively. The observation stations were
1,800 m away from the open-off cut and were set to obtain one set
of surface movement data every 10 min (Figure 3).

2.2.3 Surface crack investigation methods
To study the development characteristics of surface cracks

caused by super-long working face coal mining, manual on-site
investigation, observation of surface crack width and drop changes,
and excavation observations of surface crack development depths
were adopted. The manual on-site investigation involved mainly
investigating and mapping surface cracks’ location, length, width,
and drop. The location of surface cracks was determined by real-
time kinematic instruments. The length, width, and drop of surface
cracks were measured using a small steel ruler. The steps to measure
the dynamic changes in the width and drop of crack development
were to spray-paint markings on crack monitoring points and
measure them once a day. The steps to measure the depth of crack
development included first injecting a mixed slurry of putty powder
and water along the crack for tracing, then excavating manually or
using an excavator, and finally observing and measuring.

The surfaces of working faces 01 and 02 were covered by
aeolian sand, and the widths of the surface cracks were small.
The actions of wind and rainwater erosion quickly buried them.
Consequently, complete data of the dynamic evolution of surface
crack widths of the 01 and 02 working faces were not obtained.
Afterwards, surface crack observations were made near the open-
off cut of the 03 working face. The development width and drop
changes of 18 surface cracks were monitored, and relevant data on
them were obtained. Among them, 11 surface cracks were grouted,
traced, excavated, and observed, and their development depth data
were obtained (Figure 4).

3 Results

3.1 Surface movement characteristic
parameters and laws of the 01 working
face mining

3.1.1 Changes of subsidence along surface strike
and inclination observation lines

Along the strike observation line, when the 01 working face was
mined to 87 m, the surface above it began to be affected. Within the
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FIGURE 2
Design of surface movement observation lines for working faces 01 and 02.

FIGURE 3
Design of GNSS surface movement automatic observation stations for working faces 02 and 03.

range of 40–100 m inside the open-off cut, namely from observation
points Z21 to Z24, the surface subsidence reached 10 mm. When
the face was mined to 540 m, point Z28 at 180 m inside the open-
off cut was the maximum surface subsidence point. Its maximum
subsidence was 1,570 mm, and it lagged behind the mining position
by 360 m. With continuous mining of the working face, a surface
subsidence basin gradually formed and eventually stabilised. After
6 months of mining the face, when the 01 working face was
mined to 1,182 m, point Z28 on the surface had a subsidence
value of 1,613 mm (Figure 5A). The maximum coefficient of surface
subsidence was 0.62.

The gray shadow represented the unmined coal seam in
Figure 5B. When the 01 working face was mined to 355 m, the
mining position was 167 m away from the surface inclination
observation line, and the maximum surface subsidence of the
inclination observation line was 18 mm. When the face was mined
to 540 m, the mining position exceeded the inclination observation

line by 30 m, and the maximum subsidence point of the inclination
observation line was Z44 at 180 mm. Point Z44 was at the centre
position in the inclination direction of the working face, and the
face’s surface subsidence curve had a V shape. When the mining
of the face was completed, its surface subsidence was generally
stable. Point Z44’s maximum subsidence was 1,528 mm. The surface
subsidence curve in the inclination direction of the face had a
V shape, and its symmetrical centre was located at the mine-
out area (Figure 5B).

3.1.2 Surface horizontal strain and displacement
The surface horizontal movement in the strike line of the 01

working face was mainly towards the centre of the subsidence basin.
Along the mining direction, the surface horizontal displacement
fluctuation increased from the outer side to the vicinity of the open-
off cut. The surface horizontal displacement on the inner side of the
open-off cut initially increased, then decreased, and finally tended
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FIGURE 4
Distribution of observation points for surface crack width and depth near the open-off cut above the 03 working face.

to be relatively stable. The horizontal displacement near the open-
off cut was generally large and peaked at 414.1 mm at 100 m medial
to the open-off cut. The surface horizontal strain value ranged from
−11.62 to +11.75 mm/m.Theproportions of tensile and compressive
deformations on the outer side of the open-off cut were similar,
whereas compressive deformation was the main deformation on the
inner side of the open-off cut (Figure 6).

3.1.3 Durations of phases of surface movement
and deformation

The duration phases of surface movement and deformation
were start-up, active, and decline. During the start-up phase of
surface movement, the value and speed of surface subsidence
slowly increased. The surface subsidence and deformation activities
were intense, with surface subsidence of 1,551 mm accounting
for approximately 96.15% of the total cumulative subsidence
of 1,613 mm (Figure 7).

During the decline phase, the velocity of surface subsidence
slowly decayed until the surface movement and deformation
stabilised. The total surface movement and deformation
duration averaged approximately 185 d, including the start-
up phase of 6 d, the active phase of 54 d, and the decline
phase of 125 d (Supplementary Table S2). Therefore, the surface
movement and deformation of the 01 working face mining had a
short start-up phase, a short active phase, and a long decline phase.

3.1.4 Maximum surface subsidence velocity
The maximum subsidence velocity curves at different periods

all had a similar “unimodal” shape. As the working face mining

continued to advance, the maximum subsidence velocity of
the surface at each period along the strike observation line
increased from low to high, then decreased again, and finally
stabilised.Themaximumsubsidence velocity reached approximately
103.3 mm/d (Figure 8).

3.1.5 Delay distance and angle of maximum
subsidence velocity

The average delay distance of the maximum subsidence velocity
of the 01 working face was 102.14 m. According to the Equation 1
for calculating the delay angle of maximum subsidence velocity, its
average value was 71.8° (Table 1).

φ = arccot L
H

(1)

where φ was the delay angle of maximum subsidence velocity, L
was the delay distance of maximum subsidence velocity, H was the
mining depth.

3.1.6 Distance and angle of advance influence
The average distance of the advance influence of the 01

working face was 128 m. According to the Equation 2 for
calculating the angle of advance influence, its average angle was
67.6° (Table 2).

ω = arccot l
H

(2)

where ω was the angle of advance influence, l was the distance of
advance influence, H was the mining depth.
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FIGURE 5
Surface subsidence curve of 01 working face. (A) in strike direction (B)
in inclination direction.

FIGURE 6
Surface horizontal displacement and strain curve in strike direction of
01 working face.

3.1.7 Characteristic parameters of surface
movement after stability

The angular characteristic parameters of the ground surface
movement after stability were calculated in accordance with the
measured data and related formulas, as shown in Table 3. The

FIGURE 7
Duration curve of surface movement in the strike direction of 01
working face.

FIGURE 8
Maximum subsidence velocity curve in the strike direction of 01
working face.

angle of draw in the strike direction was 57.2°. The angle in the
inclination direction was 49.7°. The angle of critical deformation
in the strike direction was 80.8°. The angle in the inclination
direction was 86.8°. The angle of crack in the strike direction
was 86.7°. The angle in the inclination direction was 86.8°. The
subsidence limit angle was 90°, and the angle of full subsidence
was 59.9°.

3.2 Surface movement characteristic
parameters and laws of the 02 working
face mining

3.2.1 Changes of subsidence along surface strike
and inclination lines

Along the strike observation line, when the 02 working face was
mined to 103 m, its surface subsidence exceeded 10 mm, and its
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TABLE 1 Calculation result of delay distance and delay angle of maximum subsidence velocity in the 01 working face.

Mining distance of
the 01 working

face/m

Observation points
of maximum
subsidence

Distance from
maximum

subsidence point to
open-off cut/m

Delay distance of
maximum
subsidence
velocity/m

Delay angle of
maximum
subsidence
velocity/°

154 Z23 80 74 76.6

196 Z24 100 96 72.8

288 Z26 140 148 64.6

316 Z29 200 116 69.5

336 Z31 240 96 72.8

413 Z35 320 93 73.3

492 Z39 400 92 73.5

Average — — 102.14 71.8

TABLE 2 Calculation result of distance and angle of advance influence in the 01 working face.

Observation points
of initial surface

movement

Mining distance of
the 01 working

face/m

Distance from initial
surface movement
point to open-off

cut/m

Distance of advance
influence/m

Angle of advance
influence/°

Z36 196 340 144 65.2

Z39 277 400 123 68.4

Z42 343 460 117 69.4

Average — — 128 67.6

surface began to be affected by the mining. When the working face
was mined to 653 m, the maximum subsidence point on the surface
was Z25 at 250 m inside the open-off cut. Its maximum subsidence
was 1,802 mm, and it lagged behind the mining position by 403 m.
When the 02 working face was mined to 3,665 m, the surface of the
observation range had formed a stable subsidence basin. By June
2022, 10 months after the 02 working face wasmined, themaximum
subsidence point Z25 on the surface had a subsidence value of
1,860 mm, and the maximum coefficient of surface subsidence was
0.72 (Figure 9A).

When the 02 working face was mined to 330 m, the mining
position was 170 m away from the surface inclination observation
line, and the maximum surface subsidence of the line was 10 mm.
Afterwards, as the working face continued to be mined, the
inclination observation line continued to subside. Compared to the
area near the solid coal body of the 03 working face, which had not
yet beenmined, the surface subsidence in the area near themine-out
of the 01 working face was larger. By June 2022, 10 months after the
02working facewasmined, the surface subsidence on the inclination
observation line of that face was generally stable. The maximum
subsidence point Z35 was at the centre position in the inclination

direction of the 02 working face with a maximum subsidence value
of 1,758 mm. The surface subsidence curve of the 02 working face
had a U shape, with its symmetrical centre located at the mine-out
area.The surface subsidence on the side of the area near themine-out
of the 01 working face was relatively large, and the subsidence curve
was relatively flat. However, the subsidence on the side of the area
near the 03 working face, which had not been mined, was relatively
small, and the subsidence curve was steep (Figure 9B).

Affected by the 01 working face mining, the 02 working face
surface had already experienced varying degrees of subsidence
before mining. Its surface subsidence ranged from 3 to 91 mm
on the inclination observation line from Q01 to Q17. During
the mining of the 02 working face, the 01 working face surface
had a secondary subsidence whose maximum was 875 mm at
point Q18 at the boundary between working faces 01 and 02.
Affected by the secondary subsidence, the maximum subsidence
point of the 01 working face moved from Z44 to Q25. The
secondary subsidence value of Q25 was 185 mm, which increased
by 12.3% compared to the first subsidence value. The cumulative
surface subsidence at the coal pillar section (Q17 to Q18)
were 1,005 to 1,019 mm. The surface subsidence curve on the
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FIGURE 9
Surface subsidence curve of 02 working face in mining period of 02
working face. (A) in strike direction. (B) in inclination direction.

inclination observation line had an asymmetric W shape as
a whole (Figure 10).

3.2.2 Surface horizontal strain and displacement
The surface horizontal displacement in the strike line of the 02

working face was mainly towards the centre of the subsidence basin.
Along the mining direction, the surface horizontal displacement
of the strike direction first increased, then decreased, and finally
stabilised within a certain range. The horizontal displacement near
the open-off cut was relatively large, with a peak of 433 mm
at a distance of 50 m on the inner side of the open-off cut.
The horizontal strain of the surface ranged from −2.64 to
4.64 mm/m (Figure 11).

3.2.3 Durations of surface movement and
deformation phases

The total duration of surface movement and deformation
was on average approximately 243 d, including a start-
up phase of approximately 4 d, an active phase of
approximately 53 d, and a decline phase of approximately 186 d
(Supplementary Table S3). During the active phase, the surface
subsidence of 1798 mm was severe, accounting for 96.66%
of the total subsidence of 1860 mm. During that period, the
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FIGURE 10
Accumulated surface subsidence curve of inclination direction in the working faces 01 and 02.

FIGURE 11
Surface horizontal displacement and strain curve in strike direction of
02 working face.

FIGURE 12
Duration curve of surface movement in the strike direction of 02
working face.

FIGURE 13
Maximum subsidence velocity curve in the strike direction of 02
working face.

surface subsidence’s speed increased rapidly, then decreased
rapidly (Figure 12).

3.2.4 Maximum surface subsidence velocity
As the 02 working face continued to be mined, the maximum

subsidence velocity of the surface in each period along the
observation line had a trend of increasing from low to high, then
decreasing and tending towards stability. The maximum subsidence
velocity was 139.8 mm/d (Figure 13).

3.2.5 Delay distance and angle of maximum
subsidence velocity

The average delay distance of the maximum subsidence velocity
of the 02 working face was 112.8 m. According to the Equation 1
for calculating the delay angle of maximum subsidence velocity, its
average value was 70.1° (Table 4).
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TABLE 4 Calculation result of delay distance and delay angle of maximum subsidence velocity in the 02 working face.

Mining distance of
the 02 working

face/m

Observation point of
maximum
subsidence

Distance from
maximum

subsidence point to
open-off cut/m

Delay distance of
maximum
subsidence
velocity/m

Delay angle of
maximum
subsidence
velocity/°

237 Z20 122 115 64.5

300 Z23 197 103 71.7

413 Z27 297 116 69.6

521 Z32 422 99 72.4

628 Z35 497 131 67.2

Average — — 112.8 70.1

TABLE 5 Calculation result of distance and angle of advance influence in the 02 working face.

Observation point of
initial surface
movement

Mining distance of
the 02 working

face/m

Distance from initial
surface movement
point to open-off

cut/m

Distance of advance
influence/m

Angle of advance
influence/°

Z26 123 272 149 64.5

Z29 175 347 172 61.1

Z33 270 447 177 60.4

Z34 330 472 142 65.5

Average — — 160 62.9

3.2.6 Distance and angle of advance influence
The average distance of advance influence of the 02

working face was 160 m. According to the Equation 2 for
calculating the angle of advance influence, its average angle was
62.9° (Table 5).

3.2.7 Characteristic parameters of surface
movement after stability

The angular characteristic parameters of the ground surface
movement after stability were calculated in accordance with the
measured data and related formulas, as shown in Table 6. The 02
working face’s draw angle in the strike direction was 46.1°. The
draw angle near the 03 face in the inclination direction was 49.2°.
The draw angle near the 01 face in the inclination direction was
39.8°. The 02 working face’s critical deformation angle in the strike
direction was 80.8°. The critical deformation angle near the 03
face in the inclination direction was 82.7°. The critical deformation
angle near the 01 face in the inclination direction was 83.6°. For
the 02 working face, the crack angle in the strike direction was
86.3°, the average of crack angle in the inclination direction was
86.8°, the subsidence limit angle was 90°, and the angle of full
subsidence was 52.4°.

3.2.8 Result of GNSS automatic surface
movement observation stations for the 02
working face

The ZK2 point of the GNSS automatic surface movement
observation station was at the centre of the 02 working face.
According to the observation data, the surface began to subside
with a value of 12.3 mm when the working face was mined to
a distance of 201 m before ZK2. When the 02 working face was
mined 668 m beyond the ZK2 point, the surface subsidence at that
observation point was basically stable, with a maximum subsidence
value of approximately 1,700.0 mm. As of the completion of mining
of the 02 working face, the maximum subsidence of the ZK2
observation point stabilised at about 1,720.0 mm with a subsidence
coefficient of 0.66 (Figure 14A).

The overall trend of the surface subsidence velocity was a slow
increase, then a rapid increase, then a rapid decrease, then a slow
decrease, and finally approaching zero. After the surface subsidence
velocity approached zero, the surface subsidence value remained
basically stable. When the mining of the 02 working face exceeded
115 m after ZK2, the surface subsidence velocity of ZK2 peaked at
153.6 mm/d(Figure 14B).Thetotaldurationof surfacemovementand
deformation at the ZK2 GNSS observation averaged approximately
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FIGURE 14
Surface subsidence characteristics curve of ZK2 point in the 02
working face. (A) surface subsidence. (B) velocity of surface
subsidence.

246 d, including a start-up phase of approximately 10 d, an active
phase of approximately 56 d, and a decline phase of approximately
180 d. During the active phase, the surface subsidence velocity of the
ZK2 GNSS observation was high, and its duration was short. When
the adjacent working face 03 was mined before and after the ZK3
observation point, the surface subsidence value of the ZK2 GNSS
observation point, which was on the surface of the mine-out in the
02 working face, increased from 1,720.0 mm to 1,814.4 mm. The
secondary surface subsidence of the ZK2GNSS observation pointwas
approximately94.4 mm.Inaccordancewiththeobservationdataof the
ZK2GNSS observation station, it could be calculated that the distance
of advance influence was 247 m, the angle of advance influence was
51.6°, and the delay distance and angle of the maximum subsidence
velocity were 15 m and 69.8° respectively.

3.3 Development characteristics and laws
of surface cracks caused by mining

In the study area including the 01, 02, and 03 working faces, the
mining height was relatively small, and the ratio of mining depth to
mining height was relatively large. The surface of the study area was
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FIGURE 15
Dynamic evolution curve of width of cracks parallel to the open-off cut. (A) Width of crack 1. (B) Width of crack 5.

coveredmainly by an aeolian sand layer.Themining surface cracks in
the study area were generally weak and buried by aeolian sand soon
after mining. Based on the observation results of surface cracks in the
02 and 03 working faces, it was found that the main types of surface
cracksdevelopedduringminingwerecrackswith theminingdirection
parallel to the open-off cut and cracks with the spreading direction
of parallel grooves. In the area around the open-off cut, the width of
surface cracks parallel to the open-off cut was relatively large, in the
0.1–0.5 cm range. In the area within the working face, the width of
surface cracks parallel to the open-off cut was relatively small, in the
0.05–0.2 cmrange.Thedistancebetween thesurfacecrackswasmostly
between 3 and 5 m, and they had almost no drop. The surface crack
widths of the parallel grooves were slightly larger than those parallel
to the open-off cut inside the working face and slightly smaller than
those parallel to the open-off cut near the open-off cut area.

The width of surface cracks parallel to the open-off cut had
a dynamic evolution law pattern of opening first, then closing
over time. That specifically showed that the width of the surface
cracks was basically unchanged within 3–4 d after they were
generated, then the cracks were completely closed or semi-closed
within 1 d (Figure 15). The width of the surface crack parallel
grooves had a dynamic evolution law pattern of only opening first
and not matching over time. Over time, both types of surface cracks
were buried by aeolian sand and lost their traces.

Based on the observation results of grouting and excavating for
11 surface cracks near the open-off cut on the 03 working face,
the depth of surface crack development ranged from 4 to 68 cm,
most of which ranged from 20 to 40 cm. The profile morphology
of surface cracks included mainly “falling wedge” and “associated
bifurcation” types (Figure 16).

4 Discussion

Determining the characteristics and laws of surface movement
and surface crack development caused by coal mining is the

scientific basis for protecting surface buildings, land resources, and
ecological environments in coal mining areas. Some coal mining
enterprises have begun to adopt super-long working faces with an
inclinationwidth greater than 350 m. To acquire their characteristics
and laws of surface movement deformation and surface crack
development, this study took the adjacent mining working faces
01 and 02 of the No. 2 Xiaobaodang coal mine as an example,
which had the same mining heights, depths, and methods, nearly
horizontal coal seams, and a similar geotechnical structure of
the coal seam overburden. Through applying methods of manual
observation of surface movement deformation, GNSS automatic
observation of surface movement deformation, manual observation
of surface cracks, and tracing excavation of surface cracks, the
characteristics and laws of surface movement and surface crack
development of working faces with inclination widths of 300 m and
450 m were studied.

Table 7 compares surfacemovementanddeformationobservation
results in the strike direction of the 01 and 02 working faces. The
inclinationwidthsof the01and02workings,whoseminingdepthsand
heights were basically the same, were 300 m and 450 m respectively.
The average mining speed of the 02 working face, 12.2 m/d, was
faster than that of the 01 face with 6.4 m/d. Compared with the 01
working face, the maximum subsidence point of surface movement
deformation in the strike direction of the 02 workface was 70 m
farther away from the open-off cut, with an increase ratio of 39%.
Its maximum subsidence was 247 mm larger with an increase ratio of
15.31%, themaximumcoefficientof subsidencewas0.10 largerwithan
increase ratio of 16.13%, and the maximum horizontal displacement
was 18.9 mm larger with an increase ratio of 4.56%. The increases
in maximum subsidence, coefficient of subsidence, and maximum
horizontal displacement were related mainly to the fact that the
inclination width of the 02 working face exceeded that of the 01
working face. Compared with the 01 working face, the angles of
advance influence, draw, and full subsidence, and the delay angle of
maximum subsidence velocity of the 02 working face, decreased by
4.7°, 11.1°, 7.5°, and 1.7° respectively.
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FIGURE 16
Development depth and profile morphology of cracks parallel to the open-off cut. (A) Point 7. (B) Point 8.

TABLE 7 Comparison of surface movement observation results in the strike direction between working faces 01 and 02.

Parameters 01 working face 02 working face

Length of inclination line/m 300 450

Height mining/m 2.5 2.6

Position of maximum surface subsidence point 180 m inside the open-off cut 250 m inside the open-off cut

Value of maximum surface subsidence/mm 1,613 1,860

Efficient of maximum surface subsidence 0.62 0.72

Position of maximum surface horizontal movement point 100 m inside the open-off cut 50 m inside the open-off cut

Value of maximum surface horizontal displacement/mm 414.1 433.0

Angle of advance influence/° 67.6 62.9

Angle of draw/° 57.2 46.1

Angle of critical deformation/° 80.8 80.8

Angle of crack/° 86.7 86.3

Subsidence limit angle/° — —

Angle of full subsidence/° 59.9 52.4

Delay angle of maximum surface subsidence velocity/° 71.8 70.1

Frontiers in Earth Science 14 frontiersin.org151

https://doi.org/10.3389/feart.2024.1526950
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Hou et al. 10.3389/feart.2024.1526950

The decreases in the angle of advance influence and the delay
angle of the maximum subsidence velocity were related mainly
to the fact that the mining speed of the 02 working face was
faster than that of the 01 working face, and the decreases in the
angles of draw and full subsidence might have been related to the
larger inclination width of the 02 working face. Critical deformation
and crack angles were essentially the same for working faces 01
and 02. Therefore, the inclination width of a coal mining face
has some influence on the surface movement deformation of the
working face under similar conditions of geology andmining.When
the inclination width of the working face increased from 300 m
to 450 m, the maximum subsidence, subsidence coefficient, and
maximum horizontal displacement of the ground surface increased,
the angles of the draw and full subsidence decreased, and the
range and depth of the moving basin increased. Because 450 m
super-long faces were developed in only recent years, there are no
research reports on its surface movement characteristics and laws
or its differences from conventional faces. This study determined
the surface movement characteristics and laws of 450 m super-long
working faces by observing and comparing the surface movement
of conventional working faces with an inclination width of 300 m
to those of super-long working faces with inclination widths of
450 m. That was important to understanding the influence of
the inclination width of the working face on surface movement
deformation to prevent and control subsidence disasters of super-
long working faces.

As shown in Table 8 and Figure 17, under the influence of the
adjacent 02 working face mining, the surface above the mined-
out area of the 01 working face underwent obvious secondary
subsidence from points Q27 to Q18, with a secondary subsidence
valueexceeding100 mm.ThemaximumsubsidencepointZ44inthe
inclination observation line centre of the 01 working face shifted to
the direction of the adjacent 02 working face with an offset distance
of20 m. In theareaof thecoalpillar surfacebetweenthe twoworking
faces and its surrounding surface, the secondary subsidence of the
surface was notable, with a maximum of 875 mm. Relative to the
solid coal seam side of the 02 working face, the surface subsidence
amplitude increased obviously, and its curve of cumulative surface
subsidence was relatively gentle, so the cumulative subsidence
curves of the two working faces were in an asymmetric W shape.
That indicated that the coal seam’s overlying rock and soil mass
had undergone secondary fracturing and movement in the area of
the coal pillar between the two working faces and its vicinity, but
those activities of secondary breaking and movement were limited.
After mining, the subsidence curve of the 01 working face was
close to a V shape. Due to the influence of the mining of the 02
working face, the bottom of the subsidence curve of the 01 working
face became flatter when the face was approaching full extraction.
The maximum subsidence point of the 02 working face was at
the centre of the working face, and the bottom of the subsidence
curve was close to flat within a range of approximately 100 m. That
indicates that the centre and its vicinity of the super-long working
face with an inclination width of 450 m reached full extraction in
the inclination direction. In the study area, it could be concluded
that the inclination width of the full extraction for the working face
in the inclination direction was slightly greater than 300 m, while
the mining depth-to-height ratio was approximately 120. Previous

studies focused mainly on the surface movement deformation of a
single working face caused by coal mining (Guo et al., 2010; 2011;
Chen et al., 2019; Fu et al., 2021; Xie et al., 2021; Yin et al., 2022;
Zhang B. C. et al., 2022; Zou et al., 2023). There have been fewer
studies on the surface subsidence changes of working faces and
the characteristics of subsidence curves in the inclination direction
caused by adjacent working face mining. From this study, based on
the analysis of surface subsidence observations in the inclination
direction of. From this study, based on the analysis of surface
subsidence observations in the inclination direction of working
faces 01 and 02, the surface cumulative subsidence curve of the
adjacent faces had an asymmetric W shape. The study found that
the rock surrounding the coal pillar and its vicinity experienced
secondary fractures and movement and provided evidence that the
centre area of the super-longworking facewith an inclinationwidth
of 450 m had reached full mining. Those findings have important
reference value for preventing and controlling surface subsidence
disasters caused by coal mining of working faces.

In the study area, medium-depth coal seams with thick, loose
layers were mined in the upper part of the overlying strata. The
mining heights were low at 2.6 m, and the mining depth-to-height
ratio reached 120. Two types of surface cracks were caused by
mining on theworking face: thosewith a spreading direction parallel
to the open-off cut and those with a spreading direction parallel
to grooves. The crack development width was less than 0.5 cm
without a drop, and the depth was less than 1 m. After mining
of the working face, the surface cracks could be closed quickly by
aeolian sand. The surface cracks in the study area were developed
in unconsolidated loose sand layers. This loose sand layer was
mainly subjected to plastic deformation, which was not conducive
to stress transmission and crack propagation. Therefore, under the
same level of stress, the depth of crack development was smaller on
the surface covered by unconsolidated loose sand layers, while the
depth of crack development was larger on the surface of loess with
relatively better consolidation and fully consolidated rock layers.
The widths of surface cracks near the working face’s open-off cut
and groove had a dynamic change characteristic of opening first,
then remaining open, whereas the widths inside the working face
opened first, then closed. Xiaobaodang No.1 coal mine adjacent
to the study area had geological conditions similar to those of the
study area, but its working face had a relatively large mining height
of 5.8 m, with a mining depth-to-height ratio of 52. In that mine’s
area, the maximum width and drop of surface cracks were 15 cm
and 20 cm respectively (Xie et al., 2021). It was evident that, for
working faces with similar geological conditions, higher depth-to-
height ratios and lowermining heights result in smaller surface crack
development widths andweaker surface crack development degrees.
Unlike previous research, this study found that the surface cracks
of a coal mining face with a mining depth-to-height ratio of 120
were weakly damaging and could self-repair. That provides a basis
for evaluating the degree of surface destruction faced by coal mining
working faces.

The surface movement and deformation caused by coal
seam mining were influenced by various factors such as
topographic features, coal seam depth, overlying rock and soil
structure, rock mechanical strength, inclination length of working
face, mining height. The 01 conventional working face and
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TABLE 8 Accumulated surface subsidence of inclination observation points in working faces 01 and 02.

Observation point Surface subsidence after completion
of 01 working face mining/mm

Surface subsidence after completion
of 02 working face mining/mm

Left boundary point Q33 of 01 working face 83 100

Center point Z44 of 01 working face 1,528 1,674

Point Q25, 20 m away from the center of 01working
face

1,502 1,686

Right boundary point Q18 of 01 working face 130 1,005

Left boundary point Q17 of 02 working face 92 1,018

Center point Z35 of 02 working face 15 1,773

Right boundary point Q57 of 02 working face 0 235

FIGURE 17
Cumulative surface subsidence curve of inclination observation line in working faces 01 and 02.

02 super-long working face observed in this research could
not represent all situations. Therefore, with the promotion
and application of super-long working faces, further research
was needed on the surface movement and surface cracks
development laws of super-long working faces under different
topographic features, mining heights and overlying rock structures
in the future.

5 Conclusion

(1) Through on-site measurement and calculation, the parameters
and characteristics of surface movement and deformation
of working faces with different inclination widths, the same
geological conditions and the same mining height were
obtained. The 01 working face, with an inclination width of
300 m, had a maximum surface subsidence of 1,613 mm, a
maximum horizontal displacement of 414.1 mm, a maximum
surface subsidence coefficient of 0.62, and a surface subsidence
active phase of 54 d. The 02 working face, with an inclination

width of 450 m, had a maximum surface subsidence of
1,860 mm, a maximum horizontal displacement of 433 mm,
a maximum surface subsidence coefficient of 0.72, and a
surface subsidence active phase of 53 d. Compared to the 01
working face, the maximum subsidence, maximum horizontal
movement value, and maximum subsidence coefficient of the
02 super-long working face increased by 15.31%, 4.56%, and
16.13%, which indicated that the inclination width of the coal
mining working face had some effect on its surface movement
and deformation.

(2) Affected by the mining of the 02 working face, the 01 working
face experienced secondary subsidence with a maximum
increase of 12.3%. Along the direction of the inclination
observation line, the surface subsidence curve of the 01
working face had a V shape after the mining, and the overall
surface subsidence curve of working faces 01 and 02 had
an asymmetric W shape after the mining of the 02 working
face. The middle of the 02 working face surface subsidence
curve was approximately flat bottomed, and a short distance
at the bottom of the 01 working face surface subsidence curve
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became flat when it was affected by the mining of the 02
working face. That indicated that a super-long working face
could achieve full extraction in the inclination direction, and
the full extraction’s mining depth-to-height ratio was slightly
greater than 120.

(3) Surface cracks caused by mining of the two main types
included cracks with a spreading direction parallel to the
open-off cut and cracks with a spreading direction parallel to
grooves. The crack widths ranged from 0.1 to 0.5 cm, and their
depths were less than 1 m. The width dynamic evolution law of
surface cracks with a spreading direction parallel to the open-
off cut was opening first, then closing over time. The width
dynamic evolution law of surface cracks with the spreading
direction parallel to grooves was opening first, then remaining
open.The greater themining depth-to-height ratio, the weaker
the development degree of surface cracks. The development
degree of surface cracks was very weak in the coal mining face
whose mining depth-to-height ratio was 120, and those cracks
could be closed quickly by aeolian sand.
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Introduction: Landslides occur frequently in Zhenxiong County, posing
significant threats to residents’ lives and property. A comprehensive
understanding of the development patterns of landslide disasters in this region
is crucial for disaster prevention, land-use planning, and risk assessment.

Methods: This study utilized high-resolution satellite imagery from the
Google Earth Pro platform and employed a human-machine interactive visual
interpretation approach to investigate landslide occurrences. A comprehensive
landslide inventory comprising 3,979 landslide outlines was established through
extensive literature review and data cleaning techniques. The spatial distribution
characteristics and statistical patterns of landslides were analyzed.

Results:The total landslide-affected area is 319.20 km2, with the largest landslide
covering 4.55 km2 and the smallest measuring 1,779 m2. The average landslide
area is 80,215 m2, with the majority (73.54%) classified as medium-sized
landslides. The landslide area percentage (LAP) is 8.64%, and the landslide
number density (LND) is 1.077 landslides per km2, with the highest recorded
landslide density being 3.380 landslides per km2. Landslides are predominantly
concentrated in four key areas: the confluence of the Baishui River and Yanxi
River, Dashuigou Reservoir, both sides of the valley from Heitang Village to
Hongyan Village, and Xiaogou Village. These areas are characterized by well-
developed water systems, middle and low mountains, and heavily dissected
landscapes.

Discussion: The landslide database established in this study provides essential
scientific data for analyzing the spatial distribution of landslide disasters in
Zhenxiong County. It offers valuable insights for local governments and relevant
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authorities in disaster prevention, land-use planning, and risk assessment. The
findings highlight the significant impact of complex terrain and developed
water systems in middle and low mountain regions on landslide disasters.
Future studies should further integrate geological and meteorological factors
for deeper analysis.

KEYWORDS

geological disasters, landslide inventory, visual interpretation, disaster prevention and
control, Zhenxiong County

1 Introduction

Landslides, as a common geological hazard (Huang et al.,
2023b; Feng et al., 2024b), are widespread globally and occur
with particular frequency in mountainous and hilly regions. These
events pose significant threats to human life and property while
also adversely impacting transportation, infrastructure, agriculture,
and ecological systems. According to the United Global Landslide
Database (UGLD), from 1903 to 2020, 37,946 severe landslide
events were recorded across 161 countries, resulting in 185,753
fatalities (Gómez et al., 2023). In China alone, landslides claimed
28,139 lives between 1950 and 2016. Notably, in recent decades,
the frequency and intensity of landslides have been increasing
due to the exacerbation of climate change and intensified human
activities (Frodella et al., 2018; Coviello et al., 2024).This rising trend
presents significant challenges for disaster forecasting, mitigation,
and management (Hwang and Lall, 2024).

Fortunately, the critical issue of landslides has garnered extensive
attention over the past decade, leading to a steady growth in
landslide research (Xu and Li, 2021; Huang et al., 2022; Chicas et al.,
2024; Hosseini et al., 2024; Huu et al., 2024; Jallayu et al., 2024).
Landslide inventories have emerged as invaluable resources for
advancing our understanding of these hazards. These inventories are
crucial for studying landslide processes, types, and triggers, while
also providing insights into spatial distribution patterns and risk
assessment (McGovern et al., 2024). Many countries have developed
detailed landslide inventories (Conforti et al., 2014; Posner and
Georgakakos, 2015; Sepúlveda and Petley, 2015; Rosser et al., 2017;
Barella et al., 2019; Sultana, 2020). For example, Aristizábal and
Sánchez compiled a comprehensive landslide inventory for Colombia,
documenting 30,730 landslides between 1900 and 2018 and analyzing
their spatiotemporal patterns and socioeconomic impacts (Aristizábal
and Sánchez, 2020). Similarly, Bueechi et al. created an inventory
of shallow landslides in Peru’s Cordillera Blanca, identifying 254
landslides from 2013 to 2017 using Google Earth imagery and
developing a regional-scale susceptibility model (Bueechi et al.,
2019). In Nicaragua, the Nicaraguan Institute for Earth Sciences
(INETER) documented approximately 17,000 landslides from 1826
to 2003 in mountainous and volcanic terrains. This database has
been instrumental for hazard assessment, emergency management,
land-use planning, early warning systems, and policy implementation
(Devoli et al., 2007). Italy’s national IFFI project, initiated in 1999, has
mapped over 620,808 landslides, providing critical data for managing
this pervasive hazard (Trigila et al., 2010).

China, with its diverse landforms—including mountains, hills,
basins, plains, and plateaus—offers a geological environment highly
conducive to landslides. Consequently, substantial research has
been dedicated to developing landslide inventories (Li et al., 2021;
Cui et al., 2023; Huang et al., 2023a; Li et al., 2024d; Sun et al.,
2024b; Wang W. et al., 2024; Zhang et al., 2024; Zhao et al., 2024).
For instance, Xu et al. leveraged high-resolution satellite imagery to
create a detailed inventory of landslide relics on the Loess Plateau,
identifying approximately 80,000 landslides (Xu et al., 2020). Wang
et al. mapped 605 landslides covering a total area of 24.53 km2

in Jiyuan City, Henan Province, using Google Earth imagery
(Wang et al., 2022). In Shaanxi Province, Chen et al. compiled a
comprehensive database of landslide relics in Xianyang, analyzing
their spatial distribution (Liu et al., 2023). In the Qinling region,
Feng et al. developed an extensive inventory of landslide relics,
providing key data for this mountainous area (Feng et al., 2024a;
Feng et al., 2024b). Furthermore, Zhao et al. documented 1,073
landslides along the Sichuan-Tibet Engineering Corridor, validating
their findings through a two-month field survey (Zhao et al., 2023).
Similarly, Shao et al. constructed a database of paleo-landslides for
the Wudongde Hydropower Station area, applying the data for
hazard assessments (Shao et al., 2024b). These efforts underscore
the critical role that landslide inventories play in mitigating risks
and enhancing our understanding of this complex geological
phenomenon.

Although China has developed numerous landslide
inventories, county-level data often lack the necessary detail
and comprehensiveness. This shortfall impedes a thorough
understanding of regional landslide dynamics, diminishes
the accuracy of risk assessments, and undermines the
effectiveness of disaster prevention, mitigation, and response
efforts. These challenges are particularly pronounced in
southwestern China, a region highly prone to geological hazards
(Shen et al., 2022; Shu et al., 2022). For instance, on 22 January
2024, a catastrophic landslide in Zhenxiong County, Yunnan
Province, resulted in significant casualties and severe economic
losses. Addressing this gap, our study employed a human-
computer interactive visual interpretation approach to construct
a detailed inventory of landslide relics within Zhenxiong County.
Furthermore, we conducted a preliminary analysis of their spatial
distribution patterns. The findings of this research provide a solid
scientific foundation for future investigations and offer valuable data
to support disaster prevention, mitigation, and response strategies
in the region.
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2 Study area

Zhenxiong County is situated in the northeastern part of
Yunnan Province, at the junction of Yunnan, Guizhou, and
Sichuan Provinces. It borders Xuyong County, Sichuan, along
the Chishui River to the east; Bijie and Hezhang in Guizhou
to the south; Yiliang to the west; and Weixin to the north.
Geographically, the county lies between 104°10′ to 104°45′E
and 27°13′ to 27°45′N, characterized by a rugged terrain of
intersecting mountain ranges and valleys. The area features
significant topographical relief and deep dissection, forming multi-
level stepped landforms and deeply incised valleys (Figure 1).
Elevation generally increases from northeast to southwest, with
typical altitudes ranging between 1,000 and 2,000 m, creating a
karst-erosion mid-mountain landscape (Yin et al., 2013; Yin et al.,
2015). Geologically, Zhenxiong County features a complex structure
as part of the Yunnan-Guizhou Plateau, shaped primarily by
the convergence of the Yangtze and Kang-Dian tectonic blocks.
Long-term tectonic activity has resulted in multiple stratigraphic
overlays and intricate fault systems. The county is dominated
by Huaxia-type structural features, characterized by a series of
northeast-southwest trending folds of varying scales, accompanied
by compressional-shear faults that run nearly parallel to these folds.
Additionally, east-west and north-south trending structures, along
with smaller torsional features, are present. Key tectonic elements
include the Zhenxiong-Tangfang fault, Yuhe-Tanglangba wrench
fault, Shanlin fault, and Guanmenshan fault, while seismic activity
remains generally low. The region exhibits relatively complete
stratigraphic sequences, with the oldest formations dating back
to the Lower Cambrian. The most widespread lithologies include
terrestrial-dominated, coal-bearing sandstones and shales of the
Upper Permian, with interspersed marine layers, as well as Lower
Triassic shallow marine sandstones and shales, limited carbonate
rocks, and Quaternary deposits (Figure 2). Stratigraphically, the
Upper Permian Longtan Formation, comprising shales, siltstones,
fine sandstones, and coal seams, is primarily found downstream
of the Hekou dam site near Poji Town, with limited outcrops near
Tangfang Town at the reservoir tail. Overlying this, the Upper
Permian Changxing Formation features shale interbedded with
bioclastic limestone. The Lower Triassic Feixianguan Formation
includes siltstone, fine sandstone, shale interbedded with limestone,
and oolitic limestone, while Quaternary deposits are composed
of sand, gravel, angular fragments, silt, and clay. The Upper
Permian Emeishan Basalt Formation, extensively distributed in the
area, is notable for its weak interlayers, which soften significantly
upon water exposure, reducing strength and increasing the
likelihood of soil layer slippage. Furthermore, sandstone, mudstone,
shale, and coal-bearing strata with transitional marine-terrestrial
facies exhibit strong permeability, facilitating water infiltration
and softening of interbedded shales and mudstones, which in
turn promote landslides. The sand-shale formations, interspersed
with coal layers, possess low strength and high weathering
susceptibility, further amplifying the region’s vulnerability to
landslides (Zheng et al., 2021).

Zhenxiong County has a subtropical plateau monsoon
climate, characterized by distinct altitudinal variations. Due to its
topography, with higher elevations in the south and lower elevations
in the north, the mountain ranges predominantly run north-south

or southwest-northeast. Cold air masses from the northwest are
forced upward, resulting in frequent fog and fewer sunny days.
The average annual temperature is around 15°C, with moderate
summers and relatively cold winters. The county’s diverse terrain
and significant altitude differences create distinct climate zones:
high-altitude areas are cool and humid, while lower elevations are
warmer. Rainfall is concentrated during the rainy season from June
to August, accounting for 47%–76% of the annual precipitation,
and the region experiences an average of 130 rainy days per year,
making it one of the wettest areas in China. The combination
of complex geology, steep terrain, abundant rainfall, and intense
human activities—such as widespread coal mining and rapid
infrastructure development—has led to considerable environmental
degradation. As a result, Zhenxiong County is highly susceptible to
geological hazards.

3 Methods

To construct the landslide disaster database, we primarily
utilize human-computer interactive visual interpretation,
supplemented by 3S technologies (GIS, RS, GPS) and literature-
based validation methods for landslide identification and
cataloging. This process involves two key steps: (1) digitizing
landslide identification graphical data to establish a graphical
database and (2) inputting associated attribute data to form
an attribute database. Through calibration, processing, editing,
and verification, a comprehensive and accurate landslide catalog
database is ultimately created. The method’s workflow is
illustrated in Figure 3.

3.1 Construction method of graphic
database

The graphical construction method primarily employs
human-computer interactive visual interpretation, a technique
that combines expert observation with computer-based image
processing to enhance accuracy and efficiency in geological
hazard identification, particularly for landslides. This approach
effectively leverages human expertise alongside the computational
power of modern image processing tools. Unlike traditional visual
interpretation methods, it integrates real-time analysis software,
such as GIS, which provides immediate statistical feedback on
identified results. This capability allows operators to monitor
overarching landslide trends dynamically during the identification
process. Recent advancements in machine learning-based image
recognition have further supported landslide detection (Yang and
Xu, 2022; Saha et al., 2024; Sharma et al., 2024; Yang et al., 2024).
However, compared to these machine learning techniques, human-
computer interactive visual interpretation retains a key advantage:
the incorporation of expert judgment. This method enables users
to interact with the system, guiding it to refine identification
parameters for greater accuracy. Additionally, it facilitates deeper
insights by allowing experts to interpret and expand on computer-
generated data. This iterative feedback loop between expertise and
computational analysis significantly enhances both precision and
efficiency.
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FIGURE 1
Location of the study area.

FIGURE 2
Geological map of the study area.
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FIGURE 3
Flow chart of landslide database construction.

This work primarily utilizes high-resolution, three-dimensional
optical remote sensing imagery provided by the Google Earth Pro
platform. The satellite imagery is an integration of multisource
remote sensing data, including SPOT5 (2.5 m resolution imagery),
QuickBird commercial satellite (0.6 m resolution), IKONOS (1 m
resolution), Landsat8, WorldView-1 and WorldView-2 satellites
(0.5 m resolution), WorldView-3 (0.3 m resolution), WorldView-4
(panchromatic resolution 0.3 m), and GeoEye-1 (0.5 m resolution).
Google Earth continuously expands its imagery database and
employs advanced data-mining techniques to reduce the effects
of cloud cover and atmospheric interference, thereby improving
image clarity and usability for analysis. This platform enables
multi-angle, comprehensive observation of regional terrain
features and landform characteristics (Yu et al., 2024), providing
advantageous conditions for human-computer interactive visual
interpretation (Yu et al., 2022). In this study, the research area
is defined and divided into multiple sub-regions to ensure no
areas are missed during the interpretation process. Occasionally,
cloud cover obscures some sections; however, Google Earth Pro’s
historical imagery function allows us to review these regions over
time, enabling more accurate and complete landslide identification
across the entire study area.

Landslide identification primarily depends on human visual
judgment, requiring personnel to have specialized knowledge of
landslide characteristics and assessment criteria. The process relies
on identifying discrepancies in color, shape, and texture between
the landslide mass and the surrounding geological context, such
as landforms and rivers. Key morphological features, including the
back scarp, perimeter, and accumulation body, serve as fundamental
criteria. Special attention is given to areas with abrupt topographic
changes, where regions showing landslide characteristics are
accurately delineated using vector polygons. A fully developed
landslide should include the following components: the landslide

mass, landslide bed, slip surface, back scarp, landslide tongue,
landslide steps, and landslide depression, as shown in Table 1.
However, not all landslides possess all of these features; nonetheless,
the landslide mass and back scarp are present in all cases.

The direct interpretation indicators of landslides primarily focus
on the characteristics of the landslide itself in remote sensing
images, such as shape, tone, and texture. Shape characteristics:
Due to the downward movement of the landslide body, the terrain
in the three directions (left, right, and rear) of the landslide
tends to be slightly higher, giving it an overall shape resembling
a horseshoe, circular chair, bullhorn, or tongue, with the rear
wall opening towards the slope base. Tone characteristics: Newly
occurred landslides often appear in light tones such as grayish-
white or bluish-white due to the destruction of surface vegetation
and soil fragmentation. The tone distribution is uneven. Landslide
scars tend to appear lighter in tone because they reflect more
light, while landslide depressions may appear darker, especially
when water accumulates. For older landslides, the recovery
of surface vegetation diminishes these color features, but they
can still be differentiated from the surrounding tones. Texture
characteristics: The original stratigraphic integrity is disrupted,
resulting in exposed soil, overturned vegetation, and a fragmented
surface. This leads to a rough texture with patchy shadow effects
visible in the imagery. The indirect interpretation indicators of
landslides primarily focus on environmental factors around the
landslide, such as vegetation distribution, topography, geological
structure, hydrological information, and ecological landscapes.
Vegetation characteristics: For slow-moving or old landslides, the
continuous downward movement of the landslide body, combined
with the upward growth of trees, results in phenomena like
“scythe trees” and “drunken forest” on the landslide surface,
which are particularly evident in high-resolution aerial imagery.
Hydrological characteristics: Irregular water system patterns on
the landslide body, sudden changes in river flow directions at the
base of the slope, or narrowing of river channels can indirectly
indicate the presence of a landslide. Topographical features: Poor
continuity of the landform often results in unique “steep slope
+ gentle slope” landforms, and the area below the landslide
body may exhibit uneven terrain due to the pressure exerted
by the sliding mass.

Frequent operations during the identification process may lead
to geometric self-intersection issues. Although apparent errors can
often be detected manually, smaller discrepancies may evade visual
inspection,making algorithmic identification necessary. Unresolved
self-intersection issues can hinder the conversion of features into
the required GIS format, causing complications in subsequent
analyses. Verification is therefore essential after data construction to
ensure database integrity and accuracy.This involves using topology
checking tools inGIS software to detect self-intersections in polygon
features. Identified geometric issues are then corrected to maintain
data quality.

3.2 Construction method of attributing
database

Collected information is structured into a database, where
each landslide point corresponds to a unique attribute record,
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TABLE 1 Landslide elements and their meanings.

Landslide elements Meaning

Landslide body The mass of rock and soil sliding downward along the slope surface

Landslide base The stationary rock and soil mass to which the landslide body is attached during its downward movement

Landslide surface The interface between the landslide body and the landslide base

Landslide scarp The exposed interface at the rear edge of the landslide body, resembling a circular chair, where it separates from the stationary slope

Landslide toe The tongue-shaped protrusion at the front end of the landslide body

Landslide step Displaced steps formed due to inconsistent sliding times and speeds of different parts of the landslide body

Landslide depression A closed depression with a low center and higher surrounding areas, formed due to the collapse of the landslide body part connecting to the
landslide scarp

ensuring precise matching between graphical and attribute data.
This includes details such as location, area size, geometric
perimeter, and associated geographical factors like elevation,
slope, curvature, lithology, and proximity to faults. After data
entry, the attribute data undergoes verification and correction to
ensure accuracy and completeness. Different experts independently
interpret landslide areas using identical satellite imagery and
topographic data, recording key characteristics such as location,
area size, and boundaries. Their results are compared to calculate
consistency indices that quantify the accuracy and reliability of
interpretations. Discrepancies are collectively reviewed to identify
error sources and refine unified interpretation standards. The
final database is stored in shapefile format, comprising the main
(.shp), index (.shx), and attribute (.dbf) files, which enable
standardized management of geological disaster data. Statistical
analysis of attribute data reveals patterns and characteristics of
disaster occurrences. For instance, analyzing disaster frequency and
regional distribution helps identify high-risk areas and temporal-
spatial patterns, providing critical support for disaster early
warning and prevention.

4 Results

4.1 The result of landslide identification

Based on the high-resolution optical remote sensing images
provided by the Google Earth Pro platform, a detailed interpretation
of landslides in the Zhenxiong County area (covering 3,696 km2)
was conducted using a human-computer interaction visual
interpretation method. A total of 3,979 landslides were identified,
encompassing a combined area of 319.20 km2. The largest landslide,
measuring 4.55 km2, represents a significant ancient slide that
diverted a river by filling a valley. In contrast, the smallest landslide
covered just 1,779 m2, while the average landslide area across
the study area was 80,215 m2 (Figure 4A). Statistical analysis
revealed that there are 72 landslides larger than 0.5 km2, accounting
for 1.81% of the total number of landslides, with 15 landslides
exceeding 1 km2. Additionally, there are 758 landslides with areas
between 0.10 km2 and 0.5 km2, 880 landslides between 0.05 km2

and 0.10 km2, and 2,046 landslides ranging from 0.01 km2 to
0.05 km2. Only 223 landslides have an area smaller than 0.01 km2,
as illustrated in Figure 4B. Landslides were categorized by area
into small (<10,000 m2), medium (10,000 m2–100,000 m2), and
large (>100,000 m2) landslides. It was found that the vast majority
(73.54%) of landslides in Zhenxiong County are medium-sized
landslides, followed by large landslides, which account for 20.86%
of the total number. Small landslides constitute only 5.60%
of the total landslide count. Several factors contribute to the
prevalence of larger landslides: 1) The morphological features and
geomorphology of large landslides are more pronounced, making
them easier to identify; 2) Smaller landslides tend to lose their
characteristics over time due to erosion, making them difficult
or even impossible to recognize; 3) Smaller landslides are more
susceptible to vegetation cover, which hampers identification. To
gain a deeper understanding of the development of landslide relics
in Zhenxiong County, GIS software was utilized to calculate the
landslide area percentage (LAP) and landslide point density (LND)
across the entire study area. The results showed that LAP and LND
were 8.64% and 1.077 landslides per km2, respectively, indicating a
significant development of both the number and area of landslides
in the county.

4.2 Spatial distribution of landslide

Overlaying the identified landslides on the elevation map
reveals that most are distributed between 1,000 and 2,000 m
in elevation, as shown in Figure 5. Statistical analysis of the
landslide distribution based on geographic coordinates indicates
that landslide density is significantly higher between 104°17′E
and 104°47′E compared to other longitudinal areas. Similarly, in
the latitudinal range of 27°40′N to 27°25′N, landslide density is
notably higher than in other latitudes. Consequently, landslides in
Zhenxiong County are primarily concentrated in the northwestern
and southwestern regions. To clearly identify areas with higher
landslide densities, we used the kernel density tool in GIS
software to calculate landslide point density, setting the search
radius to 5 km. As shown in Figure 6, the highest density reaches
3.38 landslides per km2. The maximum density is concentrated
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FIGURE 4
Distribution of landslide area scale, (A) Area histogram, (B) Distribution of landslide area and quantity.

in four specific regions: the confluence of the Baishui River
and Yanxi River in the northwest, the Dahuigou Reservoir, the
valleys along both sides of the river from Heitang Village to
Hongyan Village, and Xiaogou Village. These areas feature well-
developed drainage systems and mid-to-low mountainous terrain,
with the western canyons being particularly significant for landslide
occurrences. In contrast, the eastern part of Zhenxiong County has
relatively flat terrain, with a more uniform landslide distribution.
The area around Hongjiayuanzi Village shows a concentrated
landslide distribution, where higher elevations and significant
topographic variations (with a maximum elevation of 2,300 m)
make the terrain more susceptible to geological factors contributing
to landslides.

4.3 Typical landslide

This database includes several typical landslide morphologies,
such as “hoop chair,” tongue-like, oval, and “shovel” shapes.
Geomorphologically, the features typically exhibit dual ditches
with a common source, cracks and cliff faces at the back of the
landslide, a distinct boundary between the landslide mass and
surrounding mountains, steep steps or benches on the landslide
body, and landslide deposits that obstruct rivers, causing unusual
river diversions. Most of the landslide relics are ancient, having
undergone long-term geological evolution that oftenmodifies them,
making identification challenging. However, the boundaries of
the landslides are usually clearly visible, and the deposits are
distinctlymarked, with color differences that set themapart from the
surrounding vegetation and terrain. As shown in Figure 7, the thick
white dashed line indicates the overall boundary of the landslide,
the white arrows denote the rear edge where material has slid down
from the highest point, the yellow arrow shows the direction of
landslide movement, and the thin white dashed line represents the
landslide deposits.

Figure 7A illustrates a typical landslide located in Zhangzhai
Village, covering an area of 0.31 km2. As shown in the figure, the
landslide mass has slid down from the southern mountain, forming

deposits below. Upon closer inspection, the length of the deposits
on the left side of the landslide is notably greater than on the right
side.This discrepancymay be attributed to the heterogeneous nature
of the rock masses on the left and right sides during the sliding
process. Alternatively, it is possible that the left half of the landslide
experienced a secondary sliding event after some time, resulting in a
larger deposit area on that side. This has led to a noticeable anomaly
in the valley’s orientation. Given the long time since the event,
settlements have been constructed on the landslide mass. Figure 7B
shows another typical landslide located on the southernmountain of
Zhongzhai Village, covering 0.09 km2.The landslide has an elliptical
shape, with a clear boundary between the landslide scarp and
the landslide body, as well as a distinct demarcation between the
landslide deposits and the surrounding environment. Similar to
the previous example, this landslide has caused an abnormal valley
orientation. Over time, human activity has resulted in the creation
of terraced fields on the landslide mass. Figure 7C depicts a typical
landslide situated on the south bank of the Huangshui River, with
an area of 0.08 km2. This landslide is narrow at the top and widens
at the bottom, sliding down the mountain at an inclined angle.
Moreover, based on the vegetation on the southern bank of the river
below, it can be inferred that a small section on the left side of the
landslide deposits has also undergone secondary sliding, indicating
the instability of the surrounding mountains and their susceptibility
to future landslides. Figure 7D depicts a typical landslide located in
Fengyan Village, covering an area of 0.30 km2. This landslide slid
northwest from the eastern side of FengyanVillage, with its rear edge
still visible. Due to the long time elapsed since the landslide event,
settlements have been built on the landslide mass. The landslide
has created a significant elevation difference from east to west on
the mountain, causing the terraces built by humans to display a
discontinuous topography stretching from northeast to southwest.
The original southwest-northeast oriented valley was disrupted by
the landslide deposits, resulting in the valley shifting approximately
180 m to the northwest. Figure 7E features another typical landslide
in Sunjiagou Village, covering an area of 1.21 km2, classified as a
large landslide. Erosion gullies have developed on both sides of the
landslide, demonstrating the typical dual-ditchmorphologywith the
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FIGURE 5
Spatial distribution of landslides.

FIGURE 6
Number density map of landslide points.
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FIGURE 7
Pictures of typical landslides. (A–F) are images of landslides with relatively clear morphology from the landslide inventory.

same source. Due to the considerable size of the landslide, numerous
settlements and terraced fields have developed on and around the
landslide mass. Lastly, Figure 7F illustrates a landslide that occurred
on 11 January 2013, in Zhaojiagou Village, with an area of 0.91 km2.
The source, sliding area, and slope morphology of the landslide
exhibit a zigzag shape (indicated by the yellow arrows), resembling
“boot-shaped terrain.”The overall slope of the rear edge ranges from
approximately 50°–90°, with the ridge consisting of steep limestone
cliffs at an elevation of about 1800–2000 m. Beneath the cliffs lies
a gently sloping “bulge” with an elevation of around 1,690–1800 m.
Additionally, a smaller landslide, located southeast of the primary
landslide, is enclosed by the blue dashed line in Figure 7F, with a
height difference of approximately 151 m between the source and
deposit areas.

5 Discussion

5.1 Landslide identification technology

In the past decade, landslide identification technology has
advanced from traditional field geological survey methods
(Wei et al., 2010) to semi-automatic recognition through
human-computer interaction, and more recently, to fully
automated recognition using machine learning algorithms
(Van Den Eeckhaut et al., 2012; Moosavi et al., 2014; Wang Y. et al.,
2024). These new landslide identification methods offer several
advantages over traditional techniques, such as faster processing
and lower costs (Xun et al., 2019; Pang et al., 2022). However,
despite these advances, landslide relic identification still primarily
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relies on semi-automated methods, particularly human-computer
interaction visual interpretation. Machine learning technologies
have become widely applied in landslide identification due to
continuous improvements in algorithm performance (Wang et al.,
2023; Bhuvaneswari et al., 2024; Yang et al., 2024). Nonetheless,
the accuracy of identification remains inconsistent (Moosavi et al.,
2014). For example, when geological environment data are used as
training samples, machine learning algorithms may mistakenly
classify non-landslide areas as landslides due to similarities in
environmental features, which reduces identification accuracy.
Additionally, automatic recognition technologies based on image
or pixel comparison may merge multiple adjacent landslides into a
single large landslide, compromising the accuracy of area size and
impact assessments. Furthermore, landslide recognition methods
based on visible remote sensing imagery can erroneously identify
cultivated land or deforested areas as landslides due to color
differences (Li C. et al., 2024). This issue is especially problematic
for ancient landslides, whose characteristics may have gradually
faded due to vegetation changes and human engineering activities,
significantly reducing the effectiveness of automatic landslide
identification.

Human-computer interaction visual interpretation technology
can partially compensate for the limitations of automatic
identification methods, offering significant advantages in the
accuracy and completeness of landslide relic identification (Li et al.,
2021; Huang et al., 2023a; Wang W. et al., 2024). However, this
technology also faces several challenges. For example, optical
remote sensing relies on favorable optical conditions, making
it difficult to capture clear surface images in foggy or cloudy
weather. Additionally, this method requires human experts to
have substantial geological and geomorphological knowledge
to effectively guide the system’s analysis and decision-making.
Furthermore, current technology cannot identify landslides in the
initial sliding stage or those experiencing minor deformations,
requiring the integration of other techniques, such as InSAR, for
more comprehensive identification and analysis (Antonielli et al.,
2019; Li N. et al., 2024). Moreover, this identification method still
incurs significant labor and time costs. In terms of objectivity,
past experiences often necessitate field surveys for validation.
However, the areas accessible to humans and the perspectives
available during on-site investigations are frequently limited.
To address this, researchers often use small devices like drones
for observation (Yavuz et al., 2023), which offers advantages
similar to satellite imagery. As a result, the application of human-
computer interaction visual interpretation on satellite images
is nearly indistinguishable from field surveys, and this method
has been validated in other studies (Li et al., 2021; Liu et al.,
2023; Wang W. et al., 2024; Zhang et al., 2024), fully meeting the
requirements for identifying landslide relics. However, enhancing
the precision of landslide recognition while maximizing automation
remains an area of ongoing research. With the advancement of
deep learning technology, future landslide identification techniques
will likely increasingly rely on artificial intelligence algorithms,
such as Convolutional Neural Networks (CNN) and Generative
Adversarial Networks (GAN), to improve both the automation and
accuracy of identification. As the quality of landslide data continues
to improve, the accuracy of automatic landslide recognition will
also increase. This highlights the importance of high-quality

basic landslide data, suggesting that future automatic landslide
recognition technologies and the quality of existing data will be
mutually reinforcing.

5.2 Application of landslide data

A highly accurate, complete, and detailed landslide data
inventory is playing an increasingly important role in the field
of landslide geological hazard research. Firstly, the establishment
of the landslide inventory will fill the gap in the basic data on
landslide disasters in the study area, providing solid data support
for disaster prediction and risk assessment. The landslide inventory
is a core foundational dataset for landslide disaster management. It
includes key information such as the location and size of landslides,
providing a reliable basis for governments and relevant departments
to develop precise disaster prevention and reduction strategies. For
example, the inventory can help identify high-frequency landslide
areas and potential hazard zones, supporting disaster risk zonation
and management.

Secondly, the landslide inventory provides essential parameter
inputs for landslide susceptibility assessment. Based on the landslide
inventory, regional landslide susceptibilitymodels can be developed,
especially as recent studies increasingly focus on using landslide
databases to establish regional landslide susceptibility, hazard
assessment, and risk evaluation (Miao et al., 2023; Abdo and Richi,
2024; Chicas et al., 2024; Guo et al., 2024; Kassa, 2024; Kaur et al.,
2024). Such studies require substantial data as the foundational
basis for model development (Huang et al., 2024; Ma et al., 2024a;
Ma et al., 2024b; Shao et al., 2024a; Sun et al., 2024a;Wu et al., 2024),
particularly for training samples in machine learning algorithms
(Tang et al., 2023; Zhuo et al., 2023; Singh et al., 2024).These data are
crucial for determining the reliability and accuracy of the models.
For instance, due to the inability to obtain a complete landslide
database for the high-altitude regions of the Himalayas, Du et al.
developed a quantitative method that combines heuristic and multi-
class statistical models to assess landslide susceptibility in areas
with incomplete inventory data and high uncertainty in landslide
interpretation (Du et al., 2020). While this method somewhat
mitigates the issue of sparse landslide data, it still faces challenges
in verifying model accuracy. With a relatively complete landslide
inventory, there would be enough samples to validate the accuracy of
model methods and further enhance model precision. Sahrane et al.
found that studying landslide susceptibility in homogeneous and
heterogeneous environments requires the use of different datasets
(Sahrane et al., 2023). Landslide inventories with limited data
may be reliable in monotonous and repetitive areas, but they
often prove unreliable in regions with significant geological and
geomorphological diversity (Fu et al., 2020). In contrast, this study
effectively addresses the issue of inaccurate risk assessment models
by conducting detailed identification of landslide geological hazards
in Zhenxiong County.

Finally, the establishment of the landslide inventory provides
a data foundation for optimizing monitoring and early warning
systems. The inventory data enables the identification of key
monitoring areas, optimization of monitoring point layouts,
and improvement in the accuracy and efficiency of disaster
monitoring. For example, deploying comprehensive monitoring
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TABLE 2 Study on identification of landslide relics in relevant areas of Zhenxiong County.

No. Location Landslide
acquisition methods

Landslide number Quantity density
(/km2)

Source

1 Dongchuan District, Yunnan
Province

Satellite image + visual
interpretation

106 0.0570 Zhu et al. (2023)

2 Funing County, Yunnan
Province

UAV imagery + field
investigation + previous

reports

122 0.0228 Wu et al. (2023)

3 Yuanyang County, Yunnan
Province

Field investigation 228 0.1031 Liu et al. (2022)

4 Daguan County, Yunnan
Province

UAV imagery + field
investigation + previous

reports

194 0.1127 Gao and Wang (2016)

5 Jinping County, Yunnan
Province

Field investigation 361 0.0982 Hu et al. (2021)

6 Qiaojia County and Ludian
County in Yunnan Province

Satellite image+field
investigation

1818 0.3885 Cheng et al. (2021)

7 Yunnan Province Field investigation 3,242 0.0082 Wang et al. (2014)

8 Yunnan Province Satellite image+field
investigation

11,327 0.0287 Wu (2015)

9 Bijie City, Guizhou Province Satellite image + visual
interpretation

770 0.0287 Ji et al. (2020)

10 Zhenxiong County, Yunnan
Province

Satellite image + visual
interpretation

3,979 1.077 This work

The bold type indicates that the results of this study have the highest database integrity compared to other work.

equipment such as surface displacement sensors, rain gauges,
and groundwater level meters in high-risk landslide zones
can significantly enhance early warning capabilities. Moreover,
the inventory can serve as calibration data for landslide
simulations. By analyzing historical landslide events, it helps
improve the accuracy and reliability of numerical simulations,
supporting research on dynamic evolution and triggering
mechanisms of landslides.

5.3 Compared with previous studies

Research on regional landslide disasters has been increasingly
prevalent, leading to the establishment of numerous landslide
inventories across various regions (Shen et al., 2023; Rüther et al.,
2024; Shi et al., 2024).Most of these inventories have been created for
the purpose of training machine-learning models or investigating
landslide disasters in specific scenarios (Gao et al., 2024; Li et al.,
2024c; Yingze et al., 2024). As a result, the completeness of the
landslide data in these inventories may not be fully representative
of the areas in question. Table 2 presents previous studies related to
landslide disasters in the vicinity of Zhenxiong County, all of which
include landslide relic inventories. To evaluate the completeness
and detail of these inventories, the authors used landslide density
(i.e., the number of landslides per unit area) as a metric. Since

Zhenxiong County is located in the northeastern part of Yunnan
Province, the sources of these studies were selectively drawn from
this region whenever possible. In total, the authors reviewed ten
research outcomes, nine of which were conducted within Yunnan
Province, with two covering the entire province. Additionally, one
study was from Bijie City in neighboring Guizhou Province, which
borders Zhenxiong. This approach ensures the comparability of the
landslide inventories.

A comparative analysis of landslide inventories from Zhenxiong
County and surrounding areas reveals deficiencies in detail and
completeness in inventories from other regions. These deficiencies
are mainly reflected in the following aspects: (1) Differences
in the purposes of landslide inventory compilation have led to
varying levels of data completeness. Some landslide inventories
were created primarily for machine learning training or specific
geological phenomena studies (Gao and Wang, 2016; Ji et al.,
2020; Cheng et al., 2021). In such cases, data collection often
emphasizes the representativeness of landslide features rather than
the comprehensiveness of landslide events. (2) The scope of the
study area influences the detail of landslide records. Certain
studies encompass broad areas, which limits detailed records of
landslide disasters within smaller, specific areas. Compared with
Wang et al. and Wu’s research, inventories covering the entire
Yunnan Province provide broad coverage but often overlook
landslide events in localized areas like Zhenxiong County, thus
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failing to fully capture landslide distribution and frequency in
such regions (Wang et al., 2014; Wu, 2015). (3) The methods of
landslide data collection also impact inventory detail. Studies that
incorporate high-resolution satellite imagery and drone data tend
to achieve more comprehensive landslide information compared
to those relying solely on field surveys or historical records. (4)
Variations in inventory standards and data processing approaches
lead to discrepancies. Some studies apply differing landslide
definitions or data filtering methods, resulting in biases in landslide
density calculations. For instance, certain inventories record only
large-scale or high-impact landslides, omitting smaller or non-
lethal events. These landslide lists cannot fully reflect the actual
situation of regional landslides, especially in mountainous areas
with frequent landslides but small scale. This study aims to
achieve a comprehensive identification of historical landslide relics
to accurately reflect the landslide hazards in the study area.
Consequently, the landslide inventory presented here shows a higher
density (1.077 landslides per km2) than those in previous studies.

5.4 Research prospects

Zhenxiong County, located in northeastern Yunnan Province, is
characterized by a complex geological environment and frequently
experiences landslide disasters. The severe landslide event in
Liangshui Village, Tangfang Town, on 22 January 2024, has
underscored the urgent need for landslide research and early
warning systems in the region. This study primarily focuses on
establishing a comprehensive and accurate inventory of landslide
relics within Zhenxiong County and provides a preliminary analysis
of landslide size and spatial distribution. Moving forward, we
plan to conduct a more detailed analysis of landslide distribution
in relation to various environmental factors, including elevation,
slope, aspect, proximity to rivers, and lithology. Based on this
understanding of landslide spatial distribution, the study will
then assess landslide susceptibility across Zhenxiong County.
Additionally, by incorporating local rainfall and seismic activity
data, we will conduct an analysis of landslide hazards to develop a
comprehensive risk assessment model. This model aims to evaluate
the potential risks of landslides in the study area, providing critical
technical support for the prevention and mitigation of regional
landslide disasters.

6 Conclusion

This study utilizes a human-computer interactive visual
interpretation method on the Google Earth Pro platform to conduct
a detailed identification of landslides in Zhenxiong County, Yunnan
Province.As a result, themost comprehensive landslide relic inventory
to date for Zhenxiong County has been developed. Findings indicate
that, within Zhenxiong’s 3,696 km2 area, at least 3,979 landslide
relics have occurred. Landslide-affected areas total approximately
319.20 km2,with the largest single landslidecovering4.55 km2 and the
smallest extendingover1,779 m2.Theaverage landslideareaacross the
study region is 80,215 m2. Statistical analysis reveals that the majority
(73.54%) of landslides in ZhenxiongCounty are classified asmedium-
sized landslides, followed by large landslides, accounting for 20.86%

of total landslide occurrences, while small landslides constitute only
5.60% of the total. Landslides in Zhenxiong County are primarily
concentrated in four areas: the confluence of the Baishui River and
Yanxi River in the northwest, Dashuigou Reservoir, the valley along
both sides from Heitang Village to Hongyan Village, and the Xiaogou
Village area. The water systems in these areas are generally well-
developed, and the landforms are mostly middle and low mountains.
The landslide relic inventory developed in this study at the county
scale for Zhenxiong County provides a reliable dataset for future
landslide geological hazard research and offers a scientific basis for
comprehensivedisasterpreventionandmitigationefforts intheregion.
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Introduction: Karst subgrade collapse has the characteristics of suddenness and
concealment, which poses a major challenge to the stability of infrastructure.

Methods: A scale model test was designed to investigate the effects of different
reinforcing conditions and different loading modes on the load transfer and
distribute of reinforced cushions, with emphasis on monitoring the vertical
pressure, internal fill and surface displacements in the subsided area and the
stable area during the collapse process.

Results: Theresults showthatduringsubsidence, vertical stressesdecrease in the
subsidenceareaandincreaseinthestablearea.Theloadaffectsthesoilarcheffect,
with dynamic loads having a greater impact on soil stability compared to static
load and unloaded conditions. Geotextile reinforcement enhances the soil arch
and tensile membrane effects, reducing vertical displacement by 5.58%–10.95%
under dynamic loads and by 34.76%–66.56% under static load and unloaded.

Discussion: This research provides theoretical and experimental support
for geotextile reinforcement design in karst subsidence, helping to prevent
karst collapse.

KEYWORDS

karst subgrade collapse, geotextiles, mode tests, static and dynamic loading, earth
pressure

1 Introduction

Karst subsidence is a problem that cannot be ignored when developing roads,
railways, motorways and other engineering projects in karst areas. Karst subgrade
collapse often occurs without warning, with sudden and hidden characteristics,
seriously affecting the safety of human life and property in karst areas, and hindering
regional engineering construction and economic development (Guo et al., 2020;
Jiang et al., 2024; Yao et al., 2023; Shi et al., 2019). Previous studies have shown that
the occurrence of karst collapse is influenced by various factors, including soil
characteristics, external loads, changes in geological conditions, and alterations to
the water environment (Li et al., 2023; Gao et al., 2023; Yin et al., 2018; Al Heib et al.,
2021). Consequently, to ensure the safety of engineering projects in karst
areas, researchers must carefully consider the mechanisms, specific causes,
and treatment methods of karst collapse.
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FIGURE 1
Test equipment. (A) Test chamber, (B) Electro-hydraulic servo fatigue testing machine.

FIGURE 2
Particle grading curve of test sand.

At present, the research into the causes and mechanisms of karst
collapse is primarily driven by indoor model tests or numerical
simulationmethods. Baryakh and Fedoseev (2011) used the discrete
element method to analyze the correlation between the final span
and depth of the karst cave, and simulated the process of karst
collapse using iterative methods. Wang et al. (2022) proposed an
equivalent numerical simulation method for karst collapse, and the
calculation results show that the karst collapse of the overlying
sand layer has a significant impact on the surrounding strata and
engineering structures. Islam et al. (2024) analyzed the impact of
karst collapse on railway disasters and found that the presence of
karst caves in railway embankments significantly increased vertical
dynamic displacement, especially in soil layers, which increased by
72%. In some cases, karst areas are not only subjected to static
loads, but also to dynamic loads, such as vehicle loads, earthquake
and vibrations generated by the process of produce and construct.
Bi et al. (2020) carried out the test under cyclic loading, and study
the displacement and morphology of soil arch during collapse,
found that vertical stress redistributed to stable areas and resulted
in a triangular soil arch morphology. Jiang et al. (2015) found that

the influence depth of vehicle load on soil can reach 10 m, and
the longitudinal tensile stress can increase by 15 times. Wen et al.
(2025) conducted a series of physical model experiments and
numerical simulations of karst collapse. Their findings revealed that
the width of karst channels exerts a substantial influence on the
velocity and magnitude of collapse, and the presence of dynamic
loads was found to exacerbate these effects. It can be seen that
karst collapse is a highly destructive process, with an occurrence
mechanism that is extremely complex and difficult to monitor.
Research on karst collapse is predominantly limited to single cases,
i.e., unloaded and static loads are considered, with a paucity of
research on the influence of dynamic loads on karst collapse.
Due to the varying loading conditions, the formation of karst
subsidence and the corresponding treatment effect also vary. It is
imperative to devise a novel experimental methodology to elucidate
the mechanism of karst subsidence under unloaded, static and
dynamic loads.

The use of geosynthetics to prevent karst subgrade collapse
offers significant advantages over traditional methods such as
backfill compaction method and grouting method, which are often
associated with issues like secondary collapse, high costs, and
substantial environmental impacts (Hou et al., 2024; Zheng et al.,
2024; Wu D. et al., 2022; Zheng et al., 2023). Based on the results
of experimental and numerical simulation studies, many scholars
have conducted in-depth studies on the mechanism of geotextiles
reinforced cushion under collapse as well as the design method.
Rui et al. (2021) investigated the earth pressure distribution and
surface subsidence through multi-group model tests, revealing that
differential subsidence leads to an increase in upper earth pressure
and a decrease in lower earth pressure, with the maximum surface
subsidence occurring at the center and increasing as the collapse
width expands. Wu Y. et al. (2022) classified the load evolution
process into four stages, and proposed a simplified foundation
reaction curve. Pham et al. (2018) analyzed the load transfer
mechanism based on the experimental results, focusing on the effect
of geometric and physical parameters on load transfer, and obtained
the conclusion that the vertical stress of soil increases after collapse
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TABLE 1 Geotextile mechanical properties.

Material Mass per unit
area/g·m-2

Tensile strength/kN·m−1 Ultimate elongation/% Thicknesses/
mm

Radial
direction (≥)

Latitude
direction (≥)

Radial
direction

Latitude
direction

Geotextile 200 50 35–50 35 30 2

TABLE 2 Model test similarity constants.

Physical quantity Quality systems Similar constant Physical quantity Quality systems Similar constant

Accelerations/g LT−2 Cg = 1 Stresses/σ ML−1T−2 Cσ = 5

Densities/ρ ML-3 Cρ = 1 Modulus of elasticity/E ML−1T−2 Cσ = 5

Cohesive force/c ML−1T−2 Cc = 5 Area/A L2 CA = 25

Poisson ratio/μ 1 Cμ = 1 Geometric size/l L Cl = 5

Internal friction angle/ϕ 1 Cϕ = 1 Strains/v 1 Cv = 1

Force/F MLT−2 CF = 125 — — —

FIGURE 3
Measurement equipment. (A) Micro earth pressure box, (B) MEMS sensor.

and decreases with the increase of the distance from the center of
collapse. Eskişar et al. (2012) showed the arch formation process
of soil arches intuitively and efficiently through CT scanning and
investigated the load transfer mechanism of the reinforced subgrade
with geogrids. Villard and Laurent (2008) examined the relative
sliding between reinforcement and soil, and the corresponding
increase in reinforcement stress under a uniformly distributed load
applied to the upper portion of the reinforced cushion layer, leading
to an improved design approach for reinforced subgrades. It can be
acknowledged that the presence of differential subsidence in karst
collapse leads to an earth arching effect, where part of the load in the
collapsed area is able to be transferred to the stable area. The present
study demonstrates that the load transfer above the geosynthetics-
reinforced bedding is predominantly concentrated in the subsided

area, particularly in the case of multi-layer reinforcement. However,
the load sharing and transfer efficiency for the stable area remains
to be elucidated, underscoring the necessity for a more profound
investigation into the load transfer mechanism of geosynthetics
reinforcement.

In this paper, the effects of varying reinforcement (reinforced
and unreinforced) and loading modes (unloaded, static and
dynamic) on the performance of geotextiles in karst subsidence
treatment was investigated by means of scaled-down models,
focusing on monitoring the vertical stresses, internal and
surface displacements of the fill in subsided and stable areas,
as well as the distribution of the loads, and the efficiency of
the load transfer in the subsided areas during the collapse
process.
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FIGURE 4
Arrangement of measuring instruments (mm). (A) Unreinforced condition. (B) Reinforcement condition.

2 Scale model test

2.1 Test equipment

The external framework of this scale model test box is welded by
square tube and steel plate, and the dimensions of the test chamber
are as follows, The test chamber has dimensions of 1,500 mm in
length (L), 1,000 mm in width (W), and 1,000 mm in height (H), as
shown in Figure 1A.With 18 mm thick density board to separate the
test box into two parts, the actual test space dimensions are, L∗W∗H
= 1,500 mm∗500 mm∗600 mm. The subsided area is 200 mm wide,
while the stable areas on both sides measure 650 mm in width.
The sinking plate is securely attached through screws and a lifter

flange connector, with axial movement controlled by a three-phase
motor to simulate subgrade collapse. An electro-hydraulic servo
fatigue testing machine with a total stroke of 200 mm is used, with
a test frequency range of 0.001–50 Hz and a dynamic/static test
force measurement range of 2.0–500 kN, as shown in Figure 1B.
Once the load has been applied, a square plate is positioned on
the surface of the soil. The top indenter of the testing machine
then makes direct contact with the plate, ensuring that the load
applied to the soil is uniform. Under static loading conditions,
the top indenter applies continuous downward pressure, whereas
under dynamic loading, the indenter exerts intermittent pressure
at a specified frequency. This setup is designed to simulate various
causes of loading during karst collapse and to investigate the load
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FIGURE 5
Vertical stress distribution on reinforced cushion.

sharing and transfer efficiency of the soil under different loading
conditions.

2.2 Test material

The test fill soil was made of Guilin Lijiang River sand, which
was sieved with 2 mm sieve after natural drying and indoor drying,
and the effective particle size of sand and soil was obtained by sieving
method is d10 = 0.08 mm, the median particle size is d30 = 0.13 mm,
and the limiting particle size is d60 = 0.22 mm, and its coefficient of
inhomogeneity isCu = 2.75, and coefficient of curvature isCc = 0.96,
which was poorly graded silt, and the gradation curve was as shown
in Figure 2.

The filament woven geotextile was selected as the reinforcing
material for the test. The total length of the test geotextile
reinforcement is 800 mm, the anchorage length on both sides is
300 mm, and the width is 500 mm. Other technical specifications
of the geotextile are shown in Table 1 below.

2.3 Experimental and measurement
procedure

This test simulates the collapse event at a site on Guilin
Road, Heping District, Tianjin, with a collapse length of about
3 m, a width of about 1 m, and a depth of about 2 m. Based on
similarity theory, the geometrical similarity constant Cl = 5, so
the model similarity ratio of 1:5 is selected (Pai and Wu, 2021).

The similarity constants for physical quantities such as gravity
acceleration, cohesion, and other related parameters are presented in
Table 2. The design of geotextiles to prevent karst subgrade collapse
was carried out under the condition of 200 mm collapse width,
500-mm fill height and 1.5 times anchorage length. The primary
focus of this study was to examine the effects of different reinforced
conditions (reinforced, unreinforced) and different loading modes
(unloaded, static, dynamic) on the load transfer and sharing of
reinforced cushion. Key parameters monitored included vertical
stresses in both subsided and stable areas, as well as displacements
within the soil and at its surface. The study also analyzed how
reinforced and unreinforced conditions affect the subgrade under
both static and dynamic loading, with particular attention to the
distribution of vertical stresses and vertical displacements.The static
load applied was 2.5 kN, while the dynamic load consisted of a
sinusoidal wave with an amplitude of 2 kN, a frequency of 5 Hz, and
a repetition rate of 1,000 cycles (Gao, 2021).

Vertical stressesweremonitored by a strainmicro-earth pressure
box, internal displacements were recorded with MEMS sensors,
and surface displacements of the fill were measured with a
displacement sensor. The MEMS sensors employ high-performance
microprocessors to monitor internal displacement of soil, utilizing
dynamic solution algorithms and Kalman filter techniques for data
processing (Han et al., 2023). The earth pressure box, displacement
sensor, andMEMS sensor were integratedwith a strain gauge system
and connected to a computer for real-time data acquisition. Data
was collected at a frequency of one sample per second through
dedicated data acquisition and analysis software. The equipment is
shown in Figure 3.
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FIGURE 6
Vertical stresses in unreinforced condition. (A) Position T7 (B) Position T8 (C) Position T1 (D) Position T2.

The reinforced and unreinforced conditions in model test
are shown in Figure 4. The test simulated the karst collapse
process through the lower fall of the movable plate structure in
the lower part of the model box. In the reinforced condition,
70 mm of sand was utilized to the soil, followed by the
placement of a geotextile measuring 800 mm in length and
500 mm in width. This geotextile was then filled with 30 mm
in thick of sand and compacted, resulting in an overall
thickness of 60 mm for the reinforced bedding (Zhang et al.,
2021). In contrast, under unreinforced test conditions, no
geotextile was employed. The monitoring devices were installed
in the same position in both cases, with the earth pressure
box positioned at 100 mm and the three MEMS sensors
installed at 350 mm at positions designated as D4, D3 and
D2 to monitor the internal displacement of the soil. After the
completion of the fill, three displacement gauges were installed
on the fill surface at locations noted as D7, D6 and D5 to
monitor subsidence on the fill surface.

3 Analysis of test result

3.1 Analysis of load distribution under
static and dynamic loads

Figure 5 demonstrates the vertical stress distribution on the
reinforced cushion at the end of subsidence (Chen et al., 2020).
The end-of-subsidence phase of the test is defined as the relative
subsidence d = subsidence/collapse width∗100% = 10%.The vertical
stresses of the fill soil in the subsided area and the stable area are
not uniformly distributed. Instead, there is a tendency for the center
of the subsided area to have a larger vertical stress, while the edges
have a smaller vertical stress. As the distance from the collapse center
increases, the vertical stress of the fill soil in the stable area initially
rises steeply, then declines steeply, and finally levels off.The decrease
of vertical stress shows roughly exponential trend.

A comparison of the vertical stress distribution under dynamic
and static loading reveals distinct differences. In the subsided area,
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FIGURE 7
Vertical stresses under reinforced condition. (A) Position T7 (B) Position T8 (C) Position T1 (D) Position T2.

the vertical stress under dynamic loading is higher than that under
static loading, while in the stable area, the vertical stress under static
loading is greater. For example, atmeasurement point T8 in subsided
area, the vertical stress is 3.57 kPa under static load and 11.40 kPa
under dynamic load, with a difference of 68.68%. Conversely, at
point T2 in the stable area, the maximum vertical stress under
static loading is 20 kPa, while under dynamic loading, it is 16.06 kPa
at point T1, showing a 19.7% difference. This discrepancy can
be attributed to the shorter application time of dynamic loads
compared to static loads, which results in a more immediate impact.
Additionally, dynamic loading exacerbates the instability of the
fill, causing adjacent soil particles to shift towards the subsided
area. Consequently, dynamic loading exerts a more pronounced
weakening effect on the geotechnical archmechanism in the collapse
zone than static loading.

The variation in vertical stress with subsidence at locations
T7 and T8 in the subsided areas, and T1 and T2 in the stable
areas under unreinforced conditions is shown in Figure 6. In the

figure, the grey squares represent the initial earth pressure, the
pink solid circles indicate the unloaded condition, the hollow
circles correspond to static loading, and the central crosses denote
dynamic loading. As seen in Figures 6A, B, the vertical stresses
at positions T7 and T8 in static load and unload conditions
initially decrease during the early stages of subsidence, falling below
the initial earth pressure. In contrast, under dynamic loading,
the vertical stresses at these locations exceed the initial earth
pressure. For example, at measurement point T7, the initial earth
pressure was 9 kPa. At the onset of subsidence, the vertical stress
decreased to 3.37 kPa under the unloaded condition, 3.93 kPa
under static loading, and increased to 12.34 kPa under dynamic
loading. This behavior can be attributed to the interaction between
the fill at the edge of the subsided area and the stable fill
on both sides. During subsidence, part of the vertical stress
is transferred into friction with the edges. Additionally, the
primary stress within the fill is redirected due to the constraints
imposed by the edges, resulting in a more significant reduction
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FIGURE 8
Vertical displacements at different fill heights. (A) Vertical displacement of soil surface (B) Vertical displacement in the middle of the soil.

in earth pressure near the edge compared to the center of the
subsidence area (Chen et al., 2019).

From Figures 6C, D, the vertical stresses at T1 and T2 in
the stable area are greater than the initial earth pressure, with
vertical stresses under static loading being greater than those
under dynamic loading. Take T1 as an example, its initial earth
pressure is 9 kPa, the vertical stress rises to 10.39 kPa and then
slowly decreases to 9.50 kPa under unloaded condition, first rises
to 17.88 kPa and then decreases to 16.86 kPa under static loaded
condition, and rises to 17.33 kPa and then slowly decreases to
16.06 kPa under dynamic loaded condition. These observations
indicate that, under static loading, the soil arch effect rapidly
distributes the load from the onset of loading, enhancing load
transfer. In contrast, under dynamic loading, the soil arch effect
is weakened, preventing effective load sharing, including the self-
weight of the fill. As a result, the vertical stress under dynamic
loading initially increases and then decreases. Additionally, the
primary locations of load transfer differ between static and dynamic
loading conditions.

Figure 7 presents the vertical stress curves of the subsided areas
T7 and T8 and the stable areas T1 and T2 with relative subsidence
under the reinforced condition at the end of subsidence. Under
the reinforced condition, the vertical stress change curves of each
position in the subsided area and stable area have basically the
same trend as that of the vertical stress curve in the unreinforced
condition. In the subsided area, for example, at point T7, the vertical
stresses under unload, static, and dynamic load are 1.06kPa, 1.31kPa,
and 11.14kPa, respectively. The reductions in vertical stress without
reinforcement for the three loading scenarios is 68.55%, 69.21% and
9.72% respectively. In the stable area, for example, at point T1, the
vertical stresses under unload, static load, and dynamic load are
10.98kPa, 18.02kPa, and 17.74kPa, respectively. The vertical stresses
increased by 15.09%, 6.88% and 10.46% respectively.

By analyzing Figures 6, 7, it is evident that under unloaded and
static loading conditions, load sharing and transfer in the stable
area primarily occur at location T2. However, the introduction of
dynamic loading disrupts this balance. Under dynamic loading, the
soil arch effect is weakened, and the tensile membrane effect comes
into play, causing the load transfer in the stable area to shift from T2
to T1. Additionally, when considering the impact of reinforcement,
a significant change in the vertical stress distribution is observed.
Under the reinforced condition, the vertical stresses at T7 and T8
in the subsided area are smaller than those in the unreinforced
condition, and the vertical stresses at T1 and T2 in the stable area
are larger than those in the unreinforced condition, which indicates
that the reinforcement of geotextiles can reduce the load on the
unstable soil in the subsided area and enhance the stability of the
soil. Furthermore, the tensile membrane effect facilitates effective
load transfer to the stable area.

3.2 Analysis of soil deformation under
static and dynamic loads

Figure 8 illustrates the vertical displacements of the fill surface
and the midsection of the fill under various reinforcement
conditions and loading scenarios at the end of subsidence (relative
subsidence d = 10%). As shown in Figure 8, at the end of subsidence,
the vertical displacement of the fill soil within the subsided area and
the fill soil in the stable area near a certain range of the subsided area
is larger, the vertical displacement of the fill soil in other areas of the
stable area is obviously reduced, and the vertical displacement of the
fill soil without loading and under static loading is nearly zero.

Under unloaded condition, the vertical displacement of the
soil under the unreinforced and reinforced conditions exhibits
a trend where the displacement is larger at the midsection of
the soil compared to the surface. Furthermore, the displacement
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FIGURE 9
Vertical displacements of the fill surface and the location of each measurement point in the center. (A) Position D2 (B) Position D5 (C) Position D4 (D)
Position D7 (E) Position D3 (F) Position D6.

increases with decreasing height within the soil. Under both static
and dynamic loading conditions, the vertical displacement of the
soil, for both unreinforced and reinforced conditions, is greater
at the surface than at the midsection, indicating that the loads

are primarily applied to the soil surface. The vertical displacement
of the fill soil under loading is most pronounced at the surface
and in the surrounding areas of the applied load, with dynamic
loading resulting in notably higher displacements compared to static
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TABLE 3 Load sharing and transfer efficiency in the stable area under different conditions.

Group Vertical loads at
start of

subsidence/kPa

Transfer
efficiency/%

Vertical loads at the
end of

subsidence/kPa

Transfer
efficiency/%

Initial state 9 — 9 —

Unreinforced-unloaded
T1 9.88 9.78 9.50 5.56

T2 13.07 45.22 14.34 59.33

Unreinforced-static load
T1 16.48 83.11 16.86 87.33

T2 16.95 88.33 20.00 122.22

Unreinforced-dynamic load
T1 17.27 91.89 16.06 78.44

T2 15.54 72.67 14.64 62.67

Reinforced-unloaded
T1 11.67 29.67 10.94 21.56

T2 14.12 56.89 15.20 68.89

Reinforcement-static load
T1 19.43 115.89 18.03 100.33

T2 19.15 112.78 22.58 150.89

Reinforcement-dynamic load
T1 19.98 122.00 17.74 97.11

T2 14.85 65.00 16.15 79.44

Note: Bold values represent maximum and minimum transfer efficiencies.

TABLE 4 Load sharing and transfer efficiency of soil arching effect and
tensile membrane effect.

Test conditions T1 T2

Soil arching effect

Unloaded 5.60% 59.33%

Static load 87.33% 122.22%

Dynamic load 78.44% 62.67%

Tensile membrane effect

Unloaded 16.00% 9.56%

Static load 13.00% 28.67%

Dynamic load 18.67% 16.77%

loading. Additionally, it is evident that the geotextile-reinforced
cushion significantly restricts vertical displacement. Compared
to the unreinforced condition, the vertical displacement at all
measured locations is substantially reduced under the reinforced
condition.

Figure 9 shows the vertical displacement of the fill at the
surface and the center of the fill soil under different loading
conditions. The vertical displacement is greatest under dynamic
loading, followed by static loading, with the smallest displacement
observed under unloaded conditions. In the relative subsidence
range of 0%–1%, the vertical displacement at each measurement
point increases approximately linearly with relative subsidence. In

the 1%–10% relative subsidence range, the vertical displacement
under dynamic loading continues to increase roughly linearly
with subsidence, though at different rates. Conversely, under both
unloaded and static loading conditions, the vertical displacement
increases with subsidence, but the change is less pronounced. The
vertical displacement of D2 is measured at 24.07 mm in the case
of an unreinforced-dynamic load, and 22.73 mm in the case of a
reinforced-dynamic load, exhibiting a reduction ratio of 5.58%. The
vertical displacement of D5 is 21.73 mm in the case of unreinforced-
dynamic load and 19.35 mm in the case of reinforced-dynamic
load, resulting in a reduction ratio of 10.95%. It is evident that
soil damage is more severe under dynamic load conditions and
geotextile reinforcement can also reduce the vertical displacement
of the soil. Compared with the unloaded and static load case,
the reduction in vertical displacement is not as apparent. The
vertical displacement of the soil under the reinforced condition is
smaller than that under the unreinforced condition in difference
load conditions, indicating that the reinforcement of geotextiles
can effectively limit the soil and reduce the vertical displacement
of the soil.

3.3 Load transfer efficiency analysis under
static and dynamic loads

In order to quantify the load transfer efficiency by the soil arch
effect and the tensile membrane effect, the load transfer efficiency
is introduced, which is obtained by the ratio of the load increment
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in the stable area to the initial earth pressure (Wu et al., 2021),
as shown in Equation 1.

n =
σ0 − σ
σ
× 100% (1)

where σ0 denotes the vertical stress (kPa) at each location in the
stable area and σ denotes the initial earth pressure (kPa).

The load transfer efficiencies obtained from the calculation of
the vertical stresses at the beginning of subsidence (0.2% relative
subsidence) and the end of subsidence (10% relative subsidence)
phases in the selected stable areas T1 and T2 locations are shown
in Table 3.

As shown in Table 3, the load sharing and transfer efficiency
under reinforced conditions is higher than that under unreinforced
conditions. The maximum efficiency is observed under the
reinforced-static loading condition, with a value of 150.89%, while
the minimum efficiency occurs under the unreinforced-unloaded
condition, at 5.56%.

Under unreinforced conditions, the load transfer efficiency
is solely attributed to the soil arch effect. In contrast, under
reinforced conditions, the load transfer efficiency consists
of two components: the soil arch effect and the tensile
membrane effect. When disregarding the limiting influence of
geotextile reinforcement on the soil arch effect, the load transfer
efficiency due to the tensile membrane effect is represented by
Equation 2 (Van Eekelen et al., 2013).

nL = n− nT (2)

Where n is the load transfer efficiency under reinforced
condition, nT is the soil arch effect load transfer efficiency under
reinforced condition and nL is the membrane effect load transfer
efficiency.

Table 4 presents a comparison of the load sharing effect of
the soil arch effect and the load transfer efficiency of the tensile
membrane effect. As shown in Table 4, the load sharing efficiency of
soil arch effect is basically greater than the load transfer efficiency of
fabric tensile membrane effect, which indicates that the load sharing
and transfermainly rely on the stress redistribution under the action
of soil arch effect, and the tensile membrane effect of fabric also
plays its role in load transfer, but it is much smaller than that of soil
arch effect.

4 Conclusion

Based on a practical case study of a subgrade collapse project, six
model test schemes were designed to investigate the load transfer
and sharing performance of reinforced cushions under various
reinforcement and loading conditions. The main conclusions are
as follows.

(1) During the subsidence process, vertical stresses in the subsided
area decrease, while those in the stable area increase. The
load applied influences the soil arch effect, with dynamic
loads having a more significant impact on soil stability in
the subsided area compared to unloaded and static loading
conditions. It is recommended to use higher reinforcement
strengths in karst areas subjected to dynamic loads.

(2) The synergy between the soil arch effect and the tensile
membrane effect, resulting from geotextile reinforcement,
leads to a reduction in vertical soil displacement. Under
dynamic loading, vertical displacement is reduced by
5.58%–10.95%, while under unloaded and static loading
conditions, displacement is reduced by 34.76%–66.56%. These
findings demonstrate that geotextiles are highly effective in
treating karst subsidence when the anchorage length is 1.5
times the width of the subsided area.

(3) This study provides both theoretical insights and experimental
data to support the design of geotextile reinforcement in karst
subsided areas, contributing to the effective prevention of
karst collapse.
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Introduction: The monitoring of soil displacement during highway slope
instability currently faces challenges such as poor stability, low accuracy, and
high costs. In this study, a Micro-Electro-Mechanical System (MEMS) sensor is
proposed for measuring internal soil displacement during slope movement. A
method for convertingMEMS-based acceleration signals into displacement data
is also developed.

Methods: To evaluate the applicability of MEMS technology for deep
displacement monitoring, an indoor model test was conducted using a highway
slope composed of gravelly soil from Jiangxi Province as a case study. Three
slopemodelswith varying gravel contents (20%, 40%, and 60%)were designed to
simulate displacement caused by slope instability. Displacement data obtained
from the MEMS sensors were analyzed and compared with Particle Image
Velocimetry (PIV) data.

Results and Discussion: The results showed that the average relative errors
of vertical displacement for the MEMS sensor compared to PIV at three
measurement points in the sliding area were 5.79%, 5.54%, and 5.89% for
slopes with 20%, 40%, and 60% gravel content, respectively. Similarly, the
average relative errors of horizontal displacement were 6.11%, 5.21%, and 4.73%.
These findings indicate that the trends in soil movement within the sliding
area correspond to changes in gravel content. Furthermore, the relatively small
average relative errors of the MEMS sensor demonstrate its feasibility and
potential for deep soil displacement monitoring in slope stability studies.

KEYWORDS

MEMS sensors, slope with gravelly soil, gravel content, model test, deep soil
displacement

1 Introduction

Among the various types of road hazards (Li et al., 2016;Wen and Jiang, 2017; Liao et al.,
2018), the destabilization of highway cut slopes poses a particularly significant risk
(Ren et al., 2021; Zhang et al., 2022; Zhou et al., 2023; Ren et al., 2024; Guthrie et al., 2009).
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In practical engineering scenarios, highway slopes are often
composed predominantly of gravelly soils, characterized by the
presence of lumps and gravels with inter-particle disorder. Key
external factors contributing to slope destabilization include rainfall,
seismic activity, blasting operations, and excavation at the slope
base. Among these, gravel content plays a critical role in influencing
the stability of gravelly soil slopes, significantly impacting their
physical and mechanical properties as well as their deformation
characteristics.

In studies on the influence of gravel on slope stability, Fang
(Fang et al., 2024; Fang et al., 2023a) used particle image velocimetry
(PIV) to conduct physical model tests, the analysis revealed that
soil arches expand and elongate during excavation. The inverse
velocity method proved effective for predicting slope failure time.
Li and Hu (Li et al., 2024) using the Zaharnur open-pit coal
mine in China as a prototype, investigated the arching effect
unique to soft rocks. Based on the deformation characteristics
of the slope, they proposed that the optimal ratio ranges of
slope excavation width to the height and width of the outermost
crack are 0.36–0.49 and 0.72–1.00, respectively. Bai and Wang
(Wang et al., 2024a) investigated confluence flow generation
on slopes with varying gradients and gravel cover conditions.
Their results showed that gravel cover effectively reduces runoff
under low rainfall intensities. Additionally, the lattice Boltzmann
model accurately simulated soil flow formation. Bian and Wang
(Bian et al., 2024) conducted consolidated undrained triaxial
shear tests on modified gravel soil specimens and observed that
gravel soil exhibits greater compactness and higher load-bearing
capacity compared to homogeneous soil of equivalent volume.
Numerical simulations further revealed that a threshold gravel
content of 30% significantly influences the mechanical properties
and deformation characteristics of the soil. In model test studies
on slope displacement monitoring, Park and Lim (Park et al.,
2019) integrated sensors with an Internet of Things (IoT) system
to monitor slope damage using modeled slope cutting tests.
Their proposed instrumentation standard relies on cumulative and
inverse displacement trends. Wang and Peng (Wang et al., 2024b)
developed a multi-degree-of-freedom method for monitoring
slope displacement and conducted experiments to evaluate its
accuracy and stability. Experimental results demonstrated that
the measurement error was less than 1 mm for distances under
40 m and less than 5 mm for a distance of 90 m. Numerous
studies (Liu et al., 2018; Wang et al., 2022a; Sheng et al., 2024;
Wang et al., 2022b) have highlighted the significant impact of
gravel content on the shear strength of gravelly soil slopes,
which directly influences slope displacement during instability.
Understanding the internal deformation characteristics of slopes is
therefore critical for analyzing highway cut slope instability. Current
methods for monitoring deep slope displacements include optical
fiber sensing, ground-penetrating radar (GPR), and time domain
reflectometry (TDR). Optical fiber sensors (Wu et al., 2019)measure
surface deformation by detecting strain within embedded fibers,
offering high accuracy but limited effectiveness in detecting large
deformations in deep soils. GPR (Liu et al., 2024; Pajewski and
Benedetto, 2012) provides high-precision subsurface imaging using
electromagnetic radiation but is cost-prohibitive for widespread
adoption. TDR (Guan et al., 2013; Ho et al., 2019), which relies on
electrical pulse signals to detect deformation, offers convenience but

lacks the ability to accurately determine displacement depth and is
prone tomeasurement errors.These limitations indicate the need for
a novel, reliable technique for monitoring deep slope displacements.

In recent years, advancements in MEMS technology have
inspired novel applications proposed by researchers (Algamili et al.,
2021; Gutierrez et al., 2023; Ge et al., 2024; Victor, 2023;
Barzegar et al., 2022). The core principle of MEMS accelerometers is
to capture acceleration signals from soil bodies. By applying dynamic
solution algorithms combined with Kalman filtering for dynamic
estimation, displacement information can be accurately derived
from acceleration data, enabling precise soil movement monitoring.
Li and Song (Li et al., 2023) introduced a method for real-time
monitoring of reservoir bank slope deformation using MEMS
inertial sensors. Their approach extended traditional displacement
measurement by incorporating rotational angle analysis. Using
inertial navigation principles, linear acceleration and angular
velocity were converted into motion velocity and displacement
at observation points, facilitating early slope failure detection.
Tao and Yang (Tao et al., 2021) developed a novel dam stability
sensing system utilizing a dual MEMS sensor structure embedded
within the dam. This system converted spatial deflection and
torsion angle outputs into endpoint coordinates of the sensor array,
which were then used to calculate dam settlement displacement
values. Additionally, numerous researchers (Freddi et al., 2023;
Shentu et al., 2020; Ge et al., 2021; Abraham et al., 2022;
Najafabadi et al., 2024; Jiao et al., 2023) have designed a variety
of MEMS-based deep displacement sensing devices for flexible
geotechnical structures. These devices have been successfully
applied in engineering projects, including slopes and excavation
pits. In summary, MEMS inertial sensors demonstrate exceptional
performance inmonitoring various geotechnical structures, offering
significant potential for practical applications.

This study investigates the feasibility of using MEMS
technology for monitoring displacement data under highway slope
instability. Based on a real gravelly soil slope project, three slope
instability tests were designed with varying gravel contents (20%,
40%, 60%) (Zhang et al., 2023). The displacement data captured
by MEMS sensors were compared with those obtained through
Particle Image Velocimetry (PIV). Additionally, the study evaluates
the effectiveness of MEMS in slope displacement monitoring
and explores the influence of gravel content variations on slope
displacement during failure events.

2 Deep soil displacement sensing
algorithm

2.1 Preprocessing of acceleration signals

The processing of deep soil displacement signals primarily
focuses on the precise acquisition of linear acceleration from the
moving soil. Before further analysis, the acceleration signal from
the sensor must undergo several preprocessing steps. The first step
involves eliminating zero-bias and random errors. To correct for
zero-bias error in the acceleration signal, the de-mean method is
applied (Zhang et al., 2020). Consider the X-axis as an example.
After embedding the sensor module in the soil and initiating
accelerometer calibration via the host computer’s software, the
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sensor’s default navigation coordinate system is transformed into
the carrier coordinate system, aligned with the target measurement
point. In this setup, the coordinate system is centered at the sensor
measurement point, and the X-axis ideally outputs 0 m/s2, though
occasional zero-bias errors may occur. To address these errors, the
sensor is left stationary for a duration of t minutes, during which n
acceleration data points are collected and averaged. The average of
the sampled acceleration data and individual sampled acceleration
values as shown in Equations 1, 2.

a = 1
N

N

∑
k−1

ak (1)

a′k = ak − a(k = 1,2,3,4...N) (2)

a -Average of the sampled acceleration data, ak-Individual
sampled acceleration values, a′k-Individual acceleration values
after preliminary de-meaning.

To eliminate random errors, a wavelet threshold
denoising function (Hu et al., 2023) was applied to remove the noise
component from the signal. Additionally, a least squaresmethodwas
employed to correct for baseline drift during sensor displacement.

The acquired acceleration values are adjusted by subtracting
the components of gravitational acceleration ( gx, gy, gz) along
each axis of the carrier coordinate system, thereby filtering out
the gravity component. Taking the X-axis linear acceleration
as an example, it is expressed by the following equation, with
similar expressions for the Y-axis and Z-axis. The sampled linear
acceleration as shown in Equation 3.

axlinear = a
′
x − gx (3)

a - Sampled linear acceleration along the X-axis, with the gravity
component removed, ak- Preprocessed sampled acceleration
along the X-axis, a′k-Sampled gravitational component along
the X-axis.

Following the preprocessing of the acceleration signal, the three-
axis linear acceleration can be derived. This linear acceleration is
then numerically integrated to obtain the sensor’s linear velocity,
and a second integration provides the three-axis linear displacement
of the sensor. In this study, Simpson’s rule is employed for the
integration of both linear acceleration and velocity. This method
has been shown to offer superior stability compared to the Newton-
Cotes formula and greater precision than the trapezoidal rule. The
velocity and displacement are obtained from Equations 4, 5.

vlinear(t) = vlinear(t− 1) +
alinear(t− 1) + 4alinear(t) + alinear(t+ 1)

6
×Δt

(4)

slinear(t) = slinear(t− 1) +
vlinear(t− 1) + 4alinear(t) + vlinear(t+ 1)

6
×Δt

(5)

t = 0,1,2, N-1, Δt represents the sampling time. By applying
the aforementioned equation, we can obtain Slinear, which is the
processed MEMS displacement signal.

FIGURE 1
Fixed-distance sliding rail test.

2.2 Validation of displacement sensing
algorithm based on fixed-distance sliding
rail test

The objective of this study is to validate the effectiveness of
the time-domain integration algorithm in processing the original
acceleration signal and assess the accuracy of the resulting
displacement signal. To achieve this, a sliding rail test is designed
for verification. The test setup consists of a linear track, 1 m in
length, with a slider attached. Before initiating the test, the sensor
is securely bonded to the slider to ensure that the sensor’s motion
is synchronized with that of the slider. The entire test process is
documented via video. A schematic diagram of the fixed-distance
sliding rail test is provided in Figure 1.

The experimental design consisted of ten distinct groups. The
aggregate results from these ten sets of fixed-distance sliding rail
tests are summarized in Table 1 To further assess the distribution
of the algorithmic displacement values, the Quantile-Quantile (Q-
Q) and error bar plot were examined. As shown in Figures 2, 3,
the algorithmic displacement values are predominantly clustered
around the reference line, thereby supporting the hypothesis that the
fixed-distance sliding rail test results obtained from the algorithm
are normally distributed.

Given the limited sample size, the displacement values from
the ten groups were subjected to a normality test. The Shapiro-
Wilk (S-W) test was applied, yielding a p-value of 0.179 (p > 0.05),
indicating that the data follow a normal distribution. The fixed-
distance sliding rail test algorithm displacement values were found
to follow a normal distribution. Therefore, a T-test was conducted
to evaluate whether any significant systematic errors were present in
the data. The formula for the T-test is as shown in Equation 6.

t = (x− u0)
√n
s

(6)

x represents the mean value of the fixed-distance sliding rail test
displacement, and u0 denotes the standard value. The displacement
data from the 10 groups of fixed-distance sliding rail tests are
individually substituted into the formula to perform a two-sided
T-test. The two-sided T-test formula as shown in Equation 7.

|t| <
ta
2

(7)

Using a two-sided T-test, the obtained p-value is 0.665 <
t0.025 = 2.262. This finding indicates the absence of significant
systematic error in the 10 sets of fixed-distance sliding rail test
displacement data. Thus, the accuracy and feasibility of the method
proposed in this study for converting MEMS acceleration signals
into displacement signals are confirmed.
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TABLE 1 Fixed-distance sliding rail test results reference table.

Number of test groups Actual displacement (mm) Algorithm displacement
(mm)

Relative error (absolute
value)

1 1,000 1,037.2 3.72%

2 1,000 968.6 3.14%

3 1,000 1,022.6 2.26%

4 1,000 1,069.7 6.97%

5 1,000 956.2 4.38%

6 1,000 947.9 5.21%

7 1,000 1,056.1 5.61%

8 1,000 963.2 3.68%

9 1,000 935.6 6.44%

10 1,000 975.2 2.48%

FIGURE 2
Quantile-Quantile plot of the fixed-distance sliding rail test.

3 Model test

The actual slope with gravelly soil is shown in Figure 4. The
model slopes featured a gradient of 45° and a 1:1 slope ratio,
primarily composed of weathered sandstone and gravelly soils. A
model box was used to form the slope, inducing an unstable, sliding
configuration. MEMS sensors were strategically placed in both
the unstable and slip-prone areas to monitor slope displacement.
The displacement data recorded by the MEMS sensors were then
compared to those obtained via Particle Image Velocimetry (PIV).
Furthermore, as the test is based on an actual gravelly soil slope,
gravel content was varied as a parameter. To investigate the impact of
gravel content on slope displacement during instability, three groups

FIGURE 3
Error bar of the fixed-distance sliding rail test.

of MEMS-based slope monitoring tests were conducted, each with
different gravel contents.

In accordance with the principles outlined in the Buckingham
π-theorem, the design of the gravel-soil slope model test was
conducted to ensure the accurate determination of the similarity
index. The key parameters considered in the soil-gravel mixture
slope model test include, slope angle (θ), gravel content (ω), soil
unit weight (γ), elastic modulus of the gravel-soil mixture (E),
Poisson’s ratio (μ), cohesion (c), and the angle of internal friction (φ).
The similarity ratio was determined using the magnitude analysis
method, resulting in a geometric similarity constant of n = 31.25.
Based on this, the prototype slope was found to be 25,000 mm in
height, while the model slope was scaled to a height of 800 mm.
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FIGURE 4
Photograph of slope destabilization on a highway in Jiangxi Province.

3.1 Model box

The model box dimensions are 1,500 mm in length, 600 mm
in width, and 1,500 mm in height. To observe lateral movement
of the fill material, a 25 mm thick glass surface was used at the
front of the model box. The physical and schematic diagrams of the
model box are shown in Figure 5. The lower part of the model box is
designed with a movable base plate, which can be manually lowered
to allow the bottom plate to shift downward by 50 mm. The sliding
device facilitates soil movement within the designated sliding and
unstable areas, simulating slope destabilization.This processmimics
the scenario where upper soil layers lose support from underlying
soils, either through excavation at the slope toe or sliding of the lower
layers. The sliding base plate has a width of 300 mm, with the upper
area designated as the sliding-causing area, and the unstable area
situated 600 mm above it.

The surface roughness of the test model box is a primary source
of friction, which can significantly affect the results. Tomitigate this,
the lateral boundaries of the model box are smoothed to reduce
frictional effects. To further minimize the influence of boundary
conditions on the test outcomes, pre-testing and model calibration
are conducted. These steps ensure the necessity of any further
adjustments to the boundary conditions, thereby enhancing the
reliability of the test results. Additionally, themodel box is reinforced
with steel bars along its perimeter to reduce lateral deformation and
maintain structural integrity during testing.

3.2 Test materials

Thesand and gravel used in the experimental setupwere sourced
from the Lijiang River in Guilin. In accordance with the definition
of gravelly soil from relevant studies (Design of building foundation,
2013), particles larger than 2 mm must constitute more than 50% of
the total weight. During preparation, gravel sieved in the ranges of
10–19 mm and 5–10 mm was uniformly mixed in a 1:1 mass ratio,
while particles sieved in the range of 2–5 mm were blended with
soil at a 1:1 mass ratio. This mixing procedure ensures that particles

larger than 2 mm make up more than 50% of the total mass. The
resulting soil-gravel mixture was then used to prepare the necessary
amount of raw materials for the model slopes. The slope model was
constructed with three gravel content levels (20%, 40%, and 60%)
for the first layer, utilizing a combination of soil, river sand, and
gravelly soil. The second layer of the model slope was composed
solely of gravel.

A vibrating sieve machine with a 4-mesh screen was used to
obtain sufficient soil and gravel materials. A series of large-scale
comprehensive direct shear tests were conducted to determine the
physical properties of soils with varying gravel contents.Thephysical
parameters obtained from these tests are presented in Table 2.

3.3 MEMS and PIV

The MEMS sensor utilized in this experimental evaluation is the
HWT901B nine-axis sensor, manufactured by a Chinese company,
as shown in Figure 6. This sensor offers a data output frequency of
up to 200 Hz, with an attitude angle measurement accuracy of 0.05°,
a precision of 0.05° for theX andY-axes, and 1° for the Z-axis. In the
experimental setup of this study, considering the prolonged duration
of the test, the sensor’s sampling frequency was configured to 1 Hz.

The Particle Image Velocimetry (PIV) diagram used in the
test is presented in Figure 7. PIV enables the determination of
point displacements within the observation area by analyzing time
intervals and displacement rates derived from successive images.
Once the commissioning of the PIV equipment is completed, the
lifting and sliding screw in the sliding area is rotated to induce a
uniform downward movement of the slope’s foot. Simultaneously,
the CCD camera begins capturing sequential images of the slope,
while the PIV host system receives and processes the image data
in real time.

3.4 Testing and monitoring procedures

To effectively collect displacement data from the deep soil layer
during soil movement in the slip-inducing area of the slope, MEMS
sensors in this experiment were strategically deployed in accordance
with the slope’s layered construction. Initially, sensors were placed at
designated points A5, A1, and A2 on the second layer. Subsequently,
as the gravel soil slope was modeled, additional sensors were
positioned at points A3, A4, A6, A7, A8, and A9. Sufficient slack
was provided in the connecting wires to allow the MEMS sensors
adequate displacement space, ensuring minimal interference from
the wires. The tests were categorized based on gravel content, 20%
gravel content was designated as Test A, 40% as Test B, and 60%
as Test C. Each test category was conducted twice, resulting in a
total of six tests. The sensor configuration for Test A is illustrated
in Figures 8A–C, while the configurations for Tests B and C are
identical to that of Test A.The test number of different gravel content
as shown in Table 3.

The sliding device of the model box was operated to ensure a
uniform descent of the sliding base plate. During this operation, the
upper computer systems for the MEMS sensors and the PIV system
simultaneously received data in parallel. Once the sliding base plate
reached its maximum displacement of 50 mm, the operation of the
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FIGURE 5
Indoor model test device for slope. (A) Composition of the model box (B) Downward sliding induced by the slip device.

TABLE 2 Physical properties of gravelly soil.

Soil-gravel ratio Density g/cm3 Maximum dry density
g/cm3

Optimum moisture
content

%

Internal friction angle
°

80:20 2.14 1.91 12.1% 30.59

60:40 2.20 2.11 9.7% 33.22

40:60 2.37 2.29 8.8% 35.40

settling device was terminated, marking the conclusion of the test.
After the test, the gravel soil and gravel were separately extracted,
and the MEMS sensors embedded in the slope mass were carefully
removed. Following the complete excavation of the gravel soil and
gravel, a subsequent series of sub-tests was conducted in accordance
with the predefined experimental procedures.

4 Analysis of test results

4.1 Vertical displacement analysis

The modeled slopes with varying gravel contents, both before
and after testing, are shown in Figure 9. It was observed that
the destabilized area of the slope decreases as the gravel content
increases. During the test, the front of the slope exhibited sliding
behavior caused by destabilization, with the rate of displacement
growth positively correlated with the distance from the source
of destabilization. The sensors at A3, A4, and A7 recorded the
most significant vertical displacements, whereas A6 and A8 showed
relatively minor vertical displacements. The data indicate that the
impact of slope failure on the unstable area diminishes gradually
with increasing height. This is attributed to the descent of the
movable plate, which induces a downward displacement of the soil
in the slip-causing area. As a result, the soil in the unstable area
partially fills the upper part of the slip-causing area. Consequently, as
the vertical displacement in the slip-causing area decreases, the soil

in the unstable area becomes increasingly stable. Additionally, the
slopes with 40% and 60% gravel content showed reduced vertical
displacement due to the higher gravel content, further enhancing
slope stability.

Figure 10A illustrates the displacement data from slope sensors
for the 20% gravel content test. Points A1, A2, and A5 recorded
no displacement (0 mm), while the maximum displacement was
observed at point A3, reaching 47.97 mm. Notably, point A3
exhibited a significant displacement at the beginning of the test.This
behavior can be attributed to the minimal gravitational influence
at the slope’s summit, which had little effect on displacement. In
contrast, the gravitational forces at the slope’s base were substantial,
leading to displacement influenced by the pressure and thrust
of the overlying soil mass. As a result, the maximum vertical
displacement occurred at A3. During the initial 10 s of the test,
notable displacement reductions were observed at points A7, A6,
and A8. After this period, the displacement curves at these points
began to stabilize and decrease gradually. This behavior is explained
by the gravel soil at A3 sliding first, creating a void that was
subsequently filled by the soil from points A7, A6, and A8. As the
slope continued to slide, the frictional forces increased, causing a
progressive smoothing of the displacement curves at these locations.

Figures 10B, C illustrate the slope sensor displacements for 40%
and 60% gravel content. Significant displacements were detected
at sensors B3, B4, and B7, concentrated in the slip-causing area.
The maximum vertical displacement occurred at B3 (42.15 mm),
comparable to A3 in the 20% gravel test. However, the overall
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FIGURE 6
MEMS sensor.

FIGURE 7
Diagram of slope with gravelly soil in PIV system.

displacements at 40% and 60% gravel content were notably smaller,
attributed to increased gravel content, which enhanced friction and
shear strength, reducing slope instability. At 60% gravel content, the
maximum displacement at C3 was 37.03 mm, slightly lower than
at 40% gravel content. The greater gravel content further improved
particle interlocking and solidification, enhancing the structural
integrity of the gravel skeleton. As the mechanical properties
approached those of a rock mass, vertical displacement in deeper
soil layers exhibited a significant decline, stabilizing the slope further
during sliding.

The study aims to evaluate the influence of varying gravel
contents on slope displacement, as well as the displacement
characteristics at different locations. Additionally, it seeks to validate
the effectiveness ofMEMS sensors inmonitoring slope displacement
by comparing displacement data obtained from PIV and MEMS
systems. To achieve this, five measurement points were selected
from the PIV system as reference points for vertical displacement
in the slope with 20% gravel content. These PIV-derived vertical
displacement values served as the true reference values, while the
displacement data recorded by MEMS sensors during the model
tests were considered the test values. A comparison of the vertical
displacement data from MEMS sensors and PIV measurements
is presented in Figure 11. Furthermore, the mean relative error
between MEMS and PIV vertical displacement data was calculated
using the formula as shown in Equation 8.

δ =
∑| SMEMS−SPIV

SPIV
| × 100

N
(8)

The parameter δ represents the mean relative error, where
SMEMS denotes the vertical displacement endpoint value measured
by the MEMS sensor, SPIV represents the vertical displacement
endpoint value measured by the PIV system, and N is the total
number of sensors used for data acquisition. Table 4 summarizes the
vertical displacement values obtained from both theMEMS and PIV
systems. In the primary displacement zones of slopes with gravel
contents of 20%, 40%, and 60%, the calculated mean relative errors
between the MEMS and PIV vertical displacement data are 5.79%,
5.54%, and 5.89%, respectively.

4.2 Horizontal displacement analysis

During the test, in the slip-causing area, the horizontal
displacements of A3 and A4, both buried at a depth of 100 mm,
were the largest within the first 90 s, exhibiting similar movement
trends. In contrast, the horizontal displacement of A7, buried at a
depth of 300 mm, was smaller than that of A3 and A4 prior to 90 s
but increased rapidly thereafter. Sensors A6 and A8, located in the
unstable area, experienced displacement due to insufficient support
from the underlying soil, which was mobilized by movement in
the slip-causing area. Sensors A4 and A7 were positioned at the
same horizontal location (L = 600 mm), as were A6 and A8 (L
= 400 mm). A comparative analysis of horizontal displacement
data from sensors at the same horizontal positions but different
burial depths revealed that sensors at shallower depths (A7 and
A8) recorded larger horizontal displacements than those at deeper
depths (A4 and A6). This indicates that during the descent of the
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FIGURE 8
The layout of sensor for Test A 4. (A) Schematic diagram of sensor layout for Test A (unit: mm, schematic diagram of sensor layout for Test B and Test C
is identical to that of Test A. (B) Layout of sensors on the first layer of Test A. (C) Layout of sensors on the second layer of Test A.

TABLE 3 Test number of different gravel content.

Test name Soil-gravel ratio Sensor number

A 20% A1, A2, A3, A4, A5, A6, A7, A8,
A9

B 40% B1, B2, B3, B4, B5, B6, B7, B8, B9

C 60% C1, C2, C3, C4, C5, C6, C7, C8,
C9

sliding device, the horizontal displacement in the unstable area
predominantly affects the shallow soil layer rather than the deeper
soil mass. Additionally, the horizontal displacements at A6 and A8
were greater than at A9, confirming that the bottom of the unstable
area exhibited the largest horizontal displacement over time. This
finding aligns with the hypothesis that sliding of the lower soil layers
in highway slopes triggers subsequent movement of the overlying
upper soil layers.

Figure 12A illustrates the slope sensor displacements for
20% gravel content, with the maximum horizontal displacement
recorded at point A7 (35.12 mm). During the first 90 s, A7 exhibited

smaller displacement compared to A3 and A4. However, after 90 s,
A7’s displacement increased significantly. This behavior reflects
typical traction slope instability, where the lower soil mass slides
first, triggering movement in the upper layers. Sensors A6 and
A8 in the stabilization area recorded displacements of 5.94 mm
and 18.58 mm, respectively. Their movement resulted from a lack
of support caused by soil displacement in the slip-causing area.
Comparing displacement data at the same horizontal position but
varying burial depths, A7 and A8 (shallow sensors) exhibited
greater horizontal displacement than A4 and A6 (deeper sensors),
indicating that the shallow soil experienced more pronounced
horizontal movement. Additionally, sensors at different horizontal
positions but the same depth revealed higher displacements at A4
and A7 in the slip-causing and unstable junction areas compared
to A8 and A6 in the upper unstable area. Displacement at A8
and A6 also exceeded that at A9 in the stabilized upper zone.
These observations confirm that initial movement in the lower slope
induces a pushing force, propagating displacement to the upper
soil layers.

Figure 12B illustrates the horizontal displacement of slope
sensors for the 40% gravel content test. Initially, the horizontal
displacements at points B3 and B4 were greater than that of B7.
However, after 50 s, the displacement at B7 increased significantly,
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FIGURE 9
Comparison diagram of slope before and after the test. (A) 20% gravel
content. (B) 40% gravel content. (C) 60% gravel content.

reaching a maximum of 34.31 mm, while the displacements at
B3 and B4 were comparatively smaller, at 9.88 mm and 9.36 mm,
respectively. A similar trend was observed in the 60% gravel
content test, as shown in Figure 12C. At the outset, the horizontal
displacements at C3 and C4 exceeded that of C7. After 30 s,
however, the displacement at C7 escalated sharply, peaking at
28.21 mm, compared to 6.75 mm and 6.28 mm for C3 and C4,
respectively. Among the three tests with varying gravel contents,
point 7 consistently exhibited the highest horizontal displacement,
underscoring its susceptibility to significant movement during slope
destabilization.

A comparative analysis was performed on the horizontal
displacement of points A4, B4, and C4 versus A7, B7, and C7
in slopes with 20%, 40%, and 60% gravel content, respectively.
As shown in Figure 12, at equivalent horizontal positions but
different vertical depths, the horizontal displacement at point 7
consistently exceeded that at point 4. This can be attributed to the
characteristics of shallow soil, which is typically looser and more
susceptible to external loads, leading to greater shear deformation
and, consequently, larger horizontal displacement. The surface soil
generally has a looser structure and lower shear strength, making
it more susceptible to displacement under sliding forces. For the

slope with 20% gravel content, a comparison between A6 and A8
reveals that A6 exhibits greater horizontal displacement than A8
at equivalent horizontal positions but varying vertical depths. This
observation is consistent with the tendency of landslides to initiate
destabilization in the central region, where the sliding surface is
typically more gradual. The localized instability induces outward
horizontal displacement of the gravel soil within this area.

The measurement points from the PIV system were selected
as reference values for horizontal displacement in the slope with
20%, 40% and 60% gravel content, based on sensor deployment
locations.These reference values were compared with the horizontal
displacement data obtained from MEMS sensors during the model
test. Figures 13A–C presents the comparison between the horizontal
displacement values measured by the MEMS sensors and those
recorded by the PIV system. In the primary displacement areas of
slopes with gravel contents of 20%, 40%, and 60%, the mean relative
errors between the MEMS and PIV horizontal displacement data
were 6.11%, 5.21%, and 4.73%, respectively. PIV and MEMS sensor
horizontal displacement relative error as shown in Table 5.

4.3 Impact analysis of gravel content on
slope stability

Figure 14A illustrates the vertical displacement at point 3 for
slopes with varying gravel contents. The slope with 20% gravel
content exhibits the highest vertical displacement, while increasing
gravel content results in a gradual reduction in displacement.
Compared to the A3 curve, which shows the greatest displacement,
the slopes with 40% and 60% gravel content demonstrate reductions
of 5.83 mm and 10.95 mm, respectively, at the same location.
This indicates that higher gravel content at measurement point 3
enhances slope soil stability. Furthermore, a comparison of the time-
displacement curves for B3 and C3 reveals similar trends in soil
movement, suggesting that the mechanical behavior of the 40% and
60% gravel content slopes closely resembles each other and differs
from the 20% gravel content slope. In the 20% gravel content slope,
the soil exhibits characteristics akin to sandy soils, whereas the 40%
and 60% gravel content slopes demonstrate properties more typical
of gravelly soils.

The vertical displacement at points 4 and 7 for slopes with 40%
and 60% gravel content was analyzed. After 80 s at point 4 and
90 s at point 7, the 40% gravel content slope exhibited accelerated
soil movement, with displacements gradually diverging from those
of the 60% gravel content slope. As shown in Figures 14B, C, the
progressive descent of the sliding device resulted in greater vertical
movement in the 40% gravel content slope compared to the 60%
gravel content slope at both measurement points.

Compared to the A3 curve, the slopes with 40% and 60%
gravel content exhibited reductions in displacement of 2.69 mm and
5.82 mm, respectively, at the same location. Further analysis reveals
that the slow deformation phase at point 3 lasts approximately 30 s
for the 20% gravel content slope, 40 s for the 40% gravel content
slope, and 50 s for the 60% gravel content slope. This indicates that
the transition from the slow deformation stage to the accelerated
horizontal displacement stage in deeper soil layers occurs more
gradually with higher gravel content, as shown in Figure 15A.
Combined with the observed trend of decreasing horizontal
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FIGURE 10
Vertical displacement analysis of measurement points at different locations with the same gravel content. (A) 20% gravel content (B) 40% gravel
content (C) 60% gravel content.

FIGURE 11
Comparison of vertical displacement test and PIV. (A) 20% gravel content (B) 40% gravel content (C) 60% gravel content.

TABLE 4 PIV and MEMS sensor vertical displacement relative error analysis table.

Soil-gravel ratio Number of the
sensor

MEMS vertical
displacement

(mm)

PIV vertical
displacement

(mm)

Relative error/%
(absolute value)

Mean relative
error/%

(absolute value)

80:20

3 47.98 45.74 4.90

5.79

4 35.47 33.43 6.10

7 22.70 23.71 4.26

6 4.03 4.3 6.28

8 8.84 8.23 7.41

60:40

3 42.15 39.35 7.12

5.544 17.17 16.34 5.08

7 16.52 15.82 4.42

40:60

3 37.03 34.95 5.95

5.894 9.59 9.02 6.32

7 9.37 8.89 5.40
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FIGURE 12
Horizontal displacement analysis of measuring points at different positions on slopes with the same gravel content. (A) 20% gravel content (B) 40%
gravel content (C) 60% gravel content.

FIGURE 13
Comparison of horizontal displacement test and PIV. (A) 20% gravel content (B) 40% gravel content (C) 60% gravel content.

TABLE 5 PIV and MEMS sensor horizontal displacement relative error analysis table.

Soil-gravel ratio Number of the
sensor

MEMS
horizontal

displacement
(mm)

PIV horizontal
displacement

(mm)

Relative error/%
(absolute value)

Mean relative
error/%

(absolute value)

80:20

3 12.57 12.01 4.66

6.11

4 12.00 11.56 3.81

7 35.12 33.54 4.71

6 18.58 17.83 4.21

8 5.94 5.25 13.14

60:40

3 9.88 9.22 7.16

5.214 9.36 9.12 2.63

7 34.31 32.42 5.83

40:60

3 6.75 6.42 5.14

4.734 6.28 6.03 4.15

7 28.21 26.89 4.91
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FIGURE 14
Vertical displacement analysis of measuring points at the same location with different gravel contents. (A) 20% gravel content (B) 40% gravel content
(C) 60% gravel content.

FIGURE 15
Horizontal displacement analysis of measuring points at the same location with different gravel contents. (A) 20% gravel content (B) 40% gravel
content (C) 60% gravel content.

displacement with increasing gravel content, these findings
suggest that higher gravel content enhances slope stability at
measurement point 3.

The time-displacement curves of A4, B4, and C4 in Figure 15B
exhibit a pattern similar to that observed at measurement point 3,
indicating that the soil nearmeasurement point 4 undergoes distinct
phases of slow deformation, acceleration, and gradual stabilization
in horizontal movement. At measurement point 7, the horizontal
displacement exceeds 20 mm, as shown in Figure 15C, marking it
as the location of maximum horizontal displacement among all
measurement points. Notably, this maximumdisplacement does not
occur at the slope foot but rather at the shallow burial position at the
junction of the slip-causing area and the stabilization area.

The test results demonstrate a clear correlation between slope
stability and gravel content, with stability decreasing as gravel
content diminishes. In slopes with 20% gravel content, the rapid
expansion of the slip area is attributed to smaller soil particles
and reduced cohesive forces, which significantly compromise slope
stability. Conversely, slopes with 60% gravel content exhibit high
stability due to the higher proportion of gravel, which enhances
shear strength and soil stiffness. Slopes with 40% gravel content
show moderate stability, further confirming the critical role of
gravel content in determining slope stability. Higher gravel content

contributes to a robust skeletal structure and increased soil density,
which strengthenmechanical properties and improve slope stability.
Large gravel particles inhibit the accumulation of fine-grained soils
and provide enhanced support. In contrast, slopes with low gravel
content exhibit alterations in pore structure, leading to an increased
proportion of fine particles that weaken the soil’s mechanical
properties. Furthermore, in practical applications, the fine particles
in low-gravel-content soils are prone to water absorption and
swelling, reducing friction and further diminishing slope stability.
In conclusion, increasing gravel content enhances slope stability by
improving the soil’smechanical properties, thereby reducing vertical
and horizontal displacements during slope destabilization.

In slopes with 20%, 40%, and 60% gravel content, the slip-
causing area represents the primary region of vertical and horizontal
displacement. This study conducts a comparative analysis of the
relative errors in vertical and horizontal displacements at measuring
points 3, 4, and 7 within the slip-causing area. For slopes with
20%, 40%, and 60% gravel content, the average relative errors in
vertical displacement measured by MEMS sensors compared to PIV
were 5.79%, 5.54%, and 5.89%, respectively. Similarly, the average
relative errors in horizontal displacement for the same slopes were
6.11%, 5.21%, and 4.73%, respectively. While the trends in soil
movement within the slip-causing areas of slopes with different
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TABLE 6 Summarized protocol for a physical model test.

gravel contents exhibit some variation, the mean relative errors for
both vertical and horizontal displacement measurements remain
below 1%. This indicates that MEMS sensors provide reliable and
accurate measurements of soil movement, demonstrating their
effectiveness in monitoring slope stability.

Unlike previous studies that focused on measuring surface
displacement, this research investigates internal acceleration
signals within the soil during slope failure. By employing MEMS
sensors as monitoring tools, acceleration signals are converted into
displacement data, enabling direct and intuitive measurements
of internal slope displacements. In simulated gravelly soil slope
experiments, MEMS sensors demonstrated good monitoring
capabilities, suggesting their potential for validation in real-world
highway gravelly soil slopes. However, challenges remain with this
sensing method. For instance, rotational changes in the sensor’s
orientation may introduce minor data deviations, and groundwater

interference can affect sensor performance. Future experimental
optimizations will integrate orientation calculations to achieve
precise three-dimensional positioning of sensors within the soil,
while also addressing issues related to ensuring the reliable operation
ofMEMS sensors in subterranean environments. Table 6 presents an
example of a standard protocol for a physical model test (Fang et al.,
2023b). In this table, a concise summary of the key information for
the test is provided, highlighting the essential details rather than
including every specific aspect.

5 Conclusion

This study investigates the potential of utilizing MEMS
technology to monitor displacements in slope models. Indoor
model tests were conducted to collect displacement data from deep
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measurement points in slopes with varying gravel contents. The
primary objective of this research is to analyze the influence of gravel
content on the displacement characteristics of deep soil masses in
slopes. The accuracy of the displacement data obtained from MEMS
sensors in the model tests was validated through PIV, leading to the
following key conclusions.

(1) This study demonstrates the effectiveness of MEMS sensor
technology for deep displacement monitoring in slopes
through a series of modeling tests. A comparison between
PIV and MEMS displacement data reveals that the vertical
and horizontal displacement endpoints calculated by PIV
align closely with those measured by MEMS sensors at
the same locations. The mean relative error of vertical and
horizontal displacements at measurement points within the
slip-causing area exhibited a maximum variation of only 1%.
These findings validate the accuracy of the algorithmically
processed MEMS signals and confirm the reliability of MEMS
technology for monitoring slope displacements. However, it
is important to acknowledge the limitations of the current
experiments, which have not fully addressed the effects of
sensor orientation changes, groundwater interference, and
large slope displacements on sensor performance. These issues
will be incorporated into more advanced and comprehensive
future investigations.

(2) Additionally, vertical and horizontal displacement values at
measurement points with varying gravel contents 20%, 40%,
and 60% but identical spatial locations were analyzed. The
results indicate a clear trend of decreasing displacement values
with increasing gravel content, highlighting the significant
influence of gravel content on enhancing slope stability.

(3) In practical engineering applications, the composition
of highway slopes and the factors contributing to slope
instability are often more complex. Future field tests on
actual slopes can further investigate these complexities and
validate the effectiveness of MEMS technology in diverse
conditions. Additionally, integrating MEMS sensors with
other monitoring technologies, such as fiber optic sensors
and ground-penetrating radar, can form a multi-sensor fusion
system. This advanced integration holds significant potential
to enhance the accuracy, reliability, and robustness of slope
monitoring and early-warning frameworks.
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Landslide relic inventories serve as essential data for geological disaster
investigations and risk assessments. Using a previously developed landslide relic
inventory for Minhe County, Qinghai Province, this study employs landslide
number density (LND) and landslide area percentage (LAP) to thoroughly
investigate the spatial distribution characteristics of landslides in the region.
Utilizing a GIS platform, we selected ten factors for in-depth analysis, including
elevation, slope aspect, slope gradient, relief degree of land surface, distance
to faults, lithology, land use type, distance to rivers, rainfall, and NDVI. The
results show that at least 5,517 landslide relics have developed in Minhe County,
with a total landslide coverage area of 434.43 km2. These landslides are mainly
distributed in regions with elevations of 2000–2100 m, slope gradients of
15°–25°, Neogene strata, grassland, and within 0–2 km of rivers. Both slope
and aspect are the most significant factors influencing the landslide relics in
Minhe County. The findings of this study contribute to a better understanding
of the development characteristics and spatial distribution of landslides in the
Huangshui River Basin and provide valuable data support for future landslide
assessments and disaster prevention efforts.

KEYWORDS

huangshui river basin, upper yellow river, landslide inventory, google earth, visual
interpretation, spatial analysis

1 Introduction

Landslides are a common geological hazard worldwide (Li et al., 2021a; Petley, 2012;
Qiu et al., 2018;Wang et al., 2021; Li et al., 2021b).Many landslides are characterized by large
scale, high frequency, and rapid occurrence, often resulting in catastrophic consequences
that pose significant threats to human life, property, and socio-economic development
(Lin et al., 2008; Wang et al., 2018; Ma et al., 2024c; Shao et al., 2024b; Nanehkaran et al.,
2022). China is one of the countries most severely affected by landslides worldwide
(Xue et al., 2023; Ma et al., 2023d; Zhao et al., 2024). Between 1950 and 2016, China
recorded 1,911 fatal landslides, resulting in 28,139 deaths (Froude and Petley, 2018). These
statistics highlight the devastating impact of landslide hazards. Therefore, understanding
the mechanisms behind landslides and conducting research on landslide prevention are
crucial (Huang et al., 2023). Current research on landslides primarily focuses on landslide
inventories (Valenzuela et al., 2017; Wang et al., 2022), spatial distribution patterns
(Frattini and Crosta, 2013; Korup, 2005; Shao et al., 2024a), susceptibility assessments
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(Cui et al., 2022; Liu et al., 2022; Cemiloglu et al., 2023; Ali et al.,
2021), hazard evaluation (Ma et al., 2022; Shao et al., 2023c),
numerical simulations (Cui et al., 2021; Xia et al., 2021), stability
analysis (Wu et al., 2023), and monitoring and early warning
systems (Yin et al., 2010a). Among these, constructing landslide
inventories is a fundamental basis for conducting further research
(Zhao et al., 2023). Landslide inventories typically provide detailed
information on the location, type, and spatial distribution of
landslides in a given region (Guzzetti et al., 2012; Piacentini et al.,
2018; Wieczorek, 1984; Xu, 2015), which is essential for subsequent
studies on their spatial patterns and risk assessment.

Building on the establishment of landslide inventories, scholars
both domestically and internationally have conducted extensive
studies on the spatial distribution patterns of landslides, utilizing
a variety of methods such as field surveys, historical aerial
imagery analysis (Kubwimana et al., 2021), satellite imagery and
the integration of InSAR technology (Chen et al., 2022). By
analyzing these spatial distribution characteristics, we can effectively
identify high-risk landslide areas and provide scientific support
for disaster prevention efforts. Moreover, to better understand
the causes of landslides, researchers often explore vital factors
influencing their occurrence. Landslides are typically the result
of the combined effects of various factors, including geological,
geomorphological, and climatic conditions (Huang et al., 2022).
Currently, there is no consensus on the selection of factors that
influence landslides in academic research. Most studies use eight
common factors: elevation, slope, aspect, lithology, distance to faults,
distance to rivers, rainfall, and land use. Additionally, depending
on the region and purpose of the study, scholars may introduce
additional influencing factors to enrich their findings. For example,
in studies of rainfall-induced landslides, researchers have included
factors such as the topographic wetness index (TWI) (Xie et al.,
2023), the relief degree of land surface (Ma et al., 2023c), the
normalized difference vegetation index (NDVI) (Li et al., 2024a). For
earthquake-induced landslides, common additional factors include
the topographic position index (TPI) (Chen et al., 2023c), peak
ground velocity (PGV) (Ma et al., 2023a), peak ground acceleration
(PGA) (Ma et al., 2024d; Shao et al., 2022), and earthquake intensity
(Shao et al., 2023b; Xiao et al., 2023). In studies on landslide
relics, factors such as curvature (Naseer et al., 2021), soil type
(Quan et al., 2014), stream power index (SPI) (Chen et al., 2023b),
and distance to roads (Bui et al., 2012) have been introduced.
Although current research offers valuable insights into the spatial
distribution patterns and triggering factors of landslides, studies on
landslides in China remain incomplete, and many landslide-prone
areas still require further exploration.

The Huangshui River Basin, situated in the upper reaches
of the Yellow River, lies in the transition zone between the first
and second steps on the northeastern edge of the Qinghai-Tibet
Plateau. This region is characterized by intense tectonic activity
and complex lithology, with large landslides widely distributed
(Zhang et al., 2023). The hilly areas in the middle and lower
reaches of the basin are highly prone to geological disasters, both
within Qinghai Province and across the country (Cui et al., 2015;
Zhou et al., 2002). According to surveys conducted by the Qinghai
Hydrology and Environmental Engineering Department, loess
landslides in the Huangshui River Basin have caused 26 deaths,
destroyed 1,007 houses, and resulted in direct economic losses

exceeding 4 million yuan (Zhou et al., 2013). In recent years,
significant progress has been made in the study of landslide spatial
distribution patterns and causal mechanisms in the upper reaches of
the Yellow River (Li Z. et al., 2024; Tu et al., 2023). Existing research
has primarily focused on critical parameters such as slope gradient,
geotechnical structure, and stratigraphic chronology (Zhang and
Liu, 2010; Zhao et al., 2025; Huang et al., 2022; Li Z. et al., 2024),
offering in-depth insights into the developmental mechanisms
and spatial characteristics of landslides in this region. However,
despite substantial advancements, the spatial heterogeneity and
evolutionary processes of landslide hazards across different
subregions remain insufficiently explored and require further
refinement. The Huangshui River, one of the most significant
tributaries of the upper Yellow River, flows through a geologically
complex and tectonically active landscape. This river basin also
constitutes the political, economic, and cultural center of Qinghai
Province, where its geographical and environmental conditions
exert profound influences on regional socioeconomic development
and ecological security. Among the areas within this basin, Minhe
County, located in the lower reaches of the basin, has emerged as
a high-risk area for landslide hazards due to its highly undulating
topography, loosely consolidated geotechnical materials, and the
compounded effects of multiple contributing factors. Building
upon prior research, this study utilizes a systematically compiled
landslide inventory for Minhe County to analyze the spatial
distribution characteristics of landslides. Ten key influencing
factors were selected, including elevation, aspect, slope gradient,
topographic relief, distance to faults, lithology, land use type,
distance to rivers, precipitation, and the NDVI. Through a
comprehensive spatial analysis, we investigated the relationships
between these factors and landslide occurrence, providing
preliminary insights into the primary controlling mechanisms of
landslide activity in the region. This research not only enhances the
understanding of landslide formation processes and evolutionary
patterns in Minhe County but also provides a robust scientific
foundation for regional disaster risk assessment, infrastructure
safety planning, and land-use optimization. Ultimately, the
findings contribute to the development of an integrated
disaster prevention and mitigation framework, supporting the
long-term sustainability and resilience of the region against
geohazards.

2 Study area overview

Minhe Hui and Tu Autonomous County (referred to as Minhe
County) is located in the eastern part of Haidong City, Qinghai
Province, China (coordinates: 102°26′–103°04′E, 35°45′–36°26′N),
covering a total area of 1,890 square kilometers (Figure 1). Minhe
County lies in the transition zone between the Loess Plateau
and the Qinghai-Tibet Plateau, featuring a complex terrain with
deep ravines and overlapping mountain ranges. The topography
is generally higher in the northwest and lower in the southeast,
with the southwestern part dominated by high mountains. The
Huangshui and Yellow Rivers flow from west to east through the
northern and southern parts of the county, forming the Huangshui
andYellowRiver valleys.The region experiences a temperate, plateau
continental arid climate with an average annual temperature of 9°C.
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FIGURE 1
Overview of the study area.

Precipitation is unevenly distributed throughout the year, mainly
concentrated between May and September, with an average annual
rainfall of approximately 292.2 mm.

Minhe County is situated between the South Qilian and
North Qilian geosynclinal fold belts and primarily falls within
the eastern extension of the Central Qilian fold belt. The main
geological structures include the Sangjia-Guantan thrust fault, the
Baijiasi-Zhaojia thrust fault, and the Zhaerleng-Keer’ao thrust
fault. Stratigraphically, the region is dominated by formations
from the Quaternary, Paleogene, Neogene, and Cambrian
periods. The Quaternary loess, along with the Paleogene and
Neogene red beds, constitutes the main landslide-prone units in
the region (Kou et al., 2017).

According to the earthquake catalog published by the China
Seismic Network (CSN), the earthquake data for the study area are
presented in Supplementary Table S1.

3 Data and methods

3.1 Selection and processing of influencing
factors

3.1.1 Selection of influencing factors
To analyze the spatial distribution of landslides in Minhe

County, we referenced studies conducted by previous scholars
(Wang et al., 2022). Landslide number density (LND) and
landslide area percentage (LAP) were selected as key indicators
for measuring the spatial distribution of landslides in the study

area. LND describes the concentration of landslides, representing
the number of landslides per square kilometer (Equation 1).
LAP, on the other hand, represents the scale of landslides,
expressed as the percentage of the landslide area relative to various
influencing factors (Equation 2).

LND = Landslidenumber
Classif ied areaof variable I

(1)

LAP = Landslidearea
Classif ied areaof variable I

(2)

By comparing the number of landslides and the areas affected
under different influencing factors, we can analyze the spatial
distribution patterns of landslides. This method is regarded as the
simplest and most fundamental approach for studying landslide
spatial distribution (Cui et al., 2024). We used a GIS platform for
this analysis. By reclassifying the raster layers of each influencing
factor and extracting the values for multiple factors at each landslide
point, we determined the number and area of landslides within each
factor category. Based on these data, we calculated the LND and LAP
values for each category and conducted an in-depth investigation of
landslide spatial distribution patterns.

In this study, considering the availability of existing data and
drawing on previous research, we selected 10 influencing factors
for analysis. These include four topographic factors (elevation, slope
aspect, slope gradient, Relief degree of land surface), three geological
and geomorphological factors (distance to faults, lithology, land
use), and three hydrological and ecological factors (distance to
rivers, rainfall, NDVI).
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3.1.2 Processing of influencing factors
For the convenience of subsequent calculations in our study, we

processed the raw data of the influencing factors to transform them
into a format suitable for machine learning model analysis. In this
study, two types of factor data need to be processed and converted:
continuous factors and categorical factors.

For continuous factors, such as DEM, slope, rainfall, and
topographic relief, we discretized the data. Discretization involves
dividing the numerical range of continuous factors into several
intervals, with each interval representing a specific factor level.
For example, for DEM values (which represent the elevation of
the region), we typically start with the lowest value in the area
and divide it into intervals of 100 m, creating multiple levels. The
methods used for discretization include equal interval classification
and natural breaks classification. Discretization helps simplify the
model analysis process, making the model easier to understand and
interpret.

For categorical factors, such as lithology and land type, we
convert their attribute information into numerical format by
assigning specific values, so that the model can accurately identify
and analyze the influence of different categories. For example,
the lithology factor contains information about various geological
ages, and we can convert this information into numerical values
(such as assigning values like 1, 2, 3) to facilitate further analysis
in the model.

3.1.3 Correlation of influencing factors
We selected the Pearson Correlation Coefficient (PCC) to

further investigate the correlations between the influencing factors.
The Pearson Correlation Coefficient is a statistical measure
that quantifies the degree of linear correlation between two
variables (Ullah et al., 2024). The value of the Pearson Correlation
Coefficient ranges from −1 to 1. A positive rxy indicates a positive
correlation between the two factors, while a negative rxy indicates a
negative correlation. If rxy is close to 0, it suggests that there is almost
no linear correlation between the two factors.

When the absolute value of the correlation coefficient between
two factors exceeds 0.7, a strong correlation is considered to
exist between them (Hong et al., 2020; Qin et al., 2021).
By calculating the Pearson Correlation Coefficients between
the influencing factors, we can effectively identify factor pairs
with strong correlations and selectively retain one factor from
such pairs, thereby avoiding interference between factors and
addressingmulticollinearity issues (Selamat et al., 2024). Specifically,
the formula for calculating the Pearson Correlation Coefficient
is as follows:

rxy =
∑n

i=1
(Xi −X)(Yi −Y)

√∑n
i=1
(Xi −X)

2 ×√∑n
i=1
(Yi −Y)

2

Where:
R = Correlation Coefficient.
Xi = Values of x-variable.
X = mean of x-variable.
Yi = Values of y-variable.
Y = mean of y-variable.

3.1.4 Importance of influencing factors
Variable Importance Measure (VIM) is a quantitative method

used to describe the contribution of each feature to classification
or regression tasks. In this study, we utilize the Random Forest
(RF) model to calculate the relative importance of influencing
factors.

Random Forest is an ensemble learning method introduced
by Breiman (2001). It works by constructing multiple decision
trees and combining their predictions to improve the accuracy
of data analysis and forecasting (Cutler et al., 2012). RF models
generally exhibit high predictive accuracy (Chowdhury et al.,
2024) and are capable of effectively analyzing data with non-
linear relationships, collinearity, and interactions. Additionally,
Random Forest not only provides prediction results but also
assigns relative importance scores to each variable, making it a
widely used and effective tool for evaluating feature importance.
In the RF model, feature importance is determined by evaluating
the contribution of each feature to the prediction results during
the model training process. These importance scores reflect the
relative influence of each feature within the model, helping us
identify which features have a greater impact on the subsequent
susceptibility evaluation results. Therefore, feature importance
assessment not only improves the interpretability of the model but
also provides a critical basis for further feature selection and model
optimization.

3.2 Data sources

The data and sources used in this study are
presented in Supplementary Table S2. We clipped the layers of each
factor to fit the study area and applied the Universal Transverse
Mercator (UTM) projection within the WGS84 coordinate system.
The data were resampled to a uniform raster resolution of 12.5 m
× 12.5 m. The Digital Elevation Model (DEM), with a resolution
of 12.5 m × 12.5 m, was primarily used to extract elevation, slope,
aspect, and Relief degree of land surface.

3.3 Landslide data

An accurate and comprehensive landslide inventory is
essential for subsequent research, risk assessment, prediction,
and disaster management (Du et al., 2020; Wang et al., 2022).
In recent years, an increasing number of scholars have focused
on constructing landslide relic inventories. For example, using
high-resolution remote sensing imagery, scholars have developed
landslide inventories for major mountain ranges in China, such
as the Yin Mountains (Sun et al., 2024), Taihang Mountains
(Zhang et al., 2024), and Qinling Mountains (Feng et al., 2024).
Additionally, relatively complete inventories have been created
for landslide-prone regions like the Loess Plateau (Peng et al.,
2019) and the Qinghai-Tibet Plateau (Wang W. et al., 2024).
However, no comprehensive landslide relic inventory has yet
been established for Minhe County, the area selected for
this study.

In response to this gap, we previously constructed the most
comprehensive landslide inventory to date for Minhe County
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FIGURE 2
(a) Overall spatial distribution of landslides in Minhe County; (b) Distribution of landslides of varying magnitudes across different latitudes and
longitudes.

(Wang Q. et al., 2024), which serves as the data source for this
study. A total of 5,517 landslide relics were identified in the
Minhe region, covering a total area of 434.43 km2, approximately
22.98% of the county’s area. The overall distribution of landslides
is shown in Figure 2a. The largest single landslide covers an area
of 1.62 × 106 m2, while the smallest measures 880.22 m2, with
an average landslide area of 78,743.04 m2. Statistics indicate that
there are 437 landslides with an area smaller than 10,000 m2,
accounting for approximately 7.92% of all landslides. Additionally,
2,547 landslides have an area between 10,000 m2 and 50,000 m2,
accounting for 46.17% of the total. Moreover, there are 1,318
landslides with an area between 100,000 m2 and 500,000 m2,
and 1,141 landslides with an area between 500,000 m2 and
1,000,000 m2, representing 23.89% and 20.68% of the total,
respectively. There are also 74 large landslides with areas exceeding
1 × 106 m2.

As shown in the landslide distribution map, landslide features
are widely distributed throughout Minhe County, except in
the high-altitude areas in the west and small parts of the
northern and southern regions. Additionally, a significant number
of landslides are concentrated along the tributaries of the
Huangshui and Yellow Rivers, with denser distributions around
river bends. Figure 2b illustrates the geographical distribution of
landslides of different sizes. The map clearly shows that small
landslides are concentrated in the northwest, east, and southeast
regions of the county, while larger landslides are primarily located
in the northern and southwestern parts.

4 Results

4.1 Spatial distribution of landslides

Using landslide data from previous work, we utilized a GIS
platform and applied the Kernel Density method with a 2 km
search radius to generate landslide point density and landslide area
percentage maps for Minhe County (Figures 3a,b). The results show
that the maximum point density in the region is 13.17 km−2, and
the maximum area percentage is 87.38%. The spatial distribution of
areas with high area percentages largely coincides with those of high
point densities, though some regional differences exist. For instance,
in the southwestern part of the county, particularly in Xinger
Township andGuanting Town, the landslide area percentage ismore
prominent compared to point density, suggesting that landslides in
these areas tend to be larger in scale. In contrast, in the northwestern
part of the county, near Xinmin Township and Songshu Township,
the landslide point density is more pronounced, indicating a higher
number of landslides, though these tend to be smaller in size.

4.2 Analysis of influencing factors

4.2.1 Topographic factors
Theelevation of the landslide-affected areas ranges from1,686 m

to 3,565 m. We divided the elevation into 15 intervals, starting from
1,600 m, with each interval spanning 100 m. The statistical results
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FIGURE 3
Landslide density map. (a) Point density map; (b) area density map.

are shown in Figure 4. In the 2,000–2,100 m interval, the LND
and LAP reach their maximum values of 5.798 km−2 and 39.23%,
respectively, indicating that both the number of landslides and the
total landslide area in this range are significantly greater than in
other intervals. A total of 1,122 landslides occurred in this interval,
covering an area of 75.91 km2, accounting for 20.35% of the total
number of landslides and 39.23% of the total landslide area.

The slope range of the study area is 0°–78.59°, but the maximum
slopewithin the landslide-affected areas is 59.86°.Therefore, we only
considered slopes in the 0°–60° range, divided into intervals of 5°.
The results are shown in Figure 5. In the 15°–20° slope range, LAP
peaks at 29.84%, while LND reaches its secondary peak at 3.45 km−2.
Conversely, in the 20°–25° slope range, LND reaches its peak at
3.88 km−2, while LAP reaches its secondary peak at 28.94%.

Slopes with different orientations receive varying amounts of
solar radiation, leading to significant differences in vegetation cover,
soil conditions, and evaporation rates (Ma et al., 2024a). In areaswith
stronger solar radiation, higher evaporation reduces soil moisture,
making the soil more prone to weathering, which increases the risk
of landslides.The results (Figure 6) indicate that landslides inMinhe
County are predominantly concentrated on slopes facing northeast,
northwest, west, east, and north, with the northeast-facing slopes
covering an area of 54.17 km2. Both LND and LAP reach their peak
values on west-facing slopes, at 3.77 km−2 and 30.78%, respectively.
On northwest-facing slopes, LND and LAP reach secondary peak
values, at 3.39 km−2 and 27.88%, respectively.

Relief degree is one of the key parameters in geomorphology,
used to describe and reflect the macro features of a region’s surface
topography. It refers to the difference in elevation between the highest
and lowest points within a specific area. Previous studies have shown
that the greater the relief degree, the higher the likelihood of landslide
occurrence (Wang et al., 2010). The relief degree in Minhe County
ranges from4 to 530, but in the landslide-affected areas, theminimum
value is 51 and the maximum value is 453. Therefore, we divided
the relief degree into intervals of 50, starting from 50. Due to the
smaller number of data points above 250, values between 250 and 413
were merged into a single interval, resulting in five total relief degree
intervals. The spatial and numerical distribution of these intervals
is shown in Figure 7. As can be seen from the figure, most landslides
are distributed in the 100–150 relief degree interval, covering an area
of 173.29 km2, accounting for 41.22% of the total landslide area. The
second largest landslide distribution occurs in the 150–200 interval,
but the LND and LAP values reach their peak in this interval, at
5.05 km−2 and 33.96%, respectively.

4.2.2 Geological and geomorphological factors
The distance between landslide occurrence points and faults in

the study area ranges from 0 to 21,204 m. Considering that faults
located more than 18 km away have a limited impact on landslides,
we combined all distances beyond 18 km into one category, while
setting intervals of 3 km for the remaining distances. The statistical
results are shown in Figure 8. It is evident that although the landslide
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FIGURE 4
Relationship between elevation and landslide distribution. (a) Elevation distribution in the study area. (b) Statistics of landslide indicators in the elevation
intervals.

FIGURE 5
Relationship between slope and landslide distribution. (a) Slope distribution in the study area. (b–e) Statistics of landslide indicators in the slope
intervals.

area percentage is highest within the 0–3 km range from faults,
the LAP and LND values are the lowest, at only 1.04 km−2 and
2.23%, respectively. The LAP and LND values reach their peak in
the 12–15 km range, at 4.88 km−2 and 6.29%, respectively.

The oldest stratigraphic units in the study area date back to the
Early Paleozoic Cambrian period, while the youngest units consist
of Quaternary Holocene alluvium and Late Pleistocene glacial
deposits, along with other types of sedimentary deposits. Due to the
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FIGURE 6
Relationship between aspect and landslide distribution. (a) Aspect distribution in the study area. (b–e) Statistics of landslide indicators in the aspect
intervals.

complex lithology, the stratigraphic sections were categorized based
on geological age. The statistical results are presented in Figure 9.
These results show that the Neogene (N) and Paleogene (E) units
exhibit significantly higher LAP and LND values compared to other
strata. The Neogene units display the highest LND and LAP values,
reaching 4.74 km−2 and 42.89%, respectively, while the Paleogene
units rank second, with LND at 4.20 km−2 and LAP at 32.02%.

The study area has diverse land types, including cropland,
grassland, forest land (evergreen broadleaf forest, deciduous
broadleaf forest, evergreen coniferous forest), shrubs, grasslands,
wetlands, bare land, artificial surfaces, water bodies, and
glaciers/snow. However, landslides only occur in seven types
of land cover: cropland, grassland, forest land (deciduous
broadleaf forest and evergreen coniferous forest), bare land,
herbaceous-covered areas, and sparsely vegetated areas. The land
use summary is presented in Figure 10. Notably, compared to
other land use types, grassland shows the highest LND and
LAP values, at 4.23 km−2 and 27.39%, respectively. Cropland
follows with LND and LAP values of 2.58 km−2 and 22.95%,
respectively.

4.2.3 Hydrological and ecological factors
The study area is located in the Huangshui Valley, with the

Yellow River and Huangshui River flowing through it, making
rivers widely distributed. The farthest landslide from a river in
the study area occurred at a distance of 8,128 m. Given that
only two landslides occurred more than 8 km from a river, we

divided the distances into five intervals of 2 km each. The statistical
results are shown in Figure 11. As seen from the figure, the
area of each interval decreases with increasing distance from the
river. Simultaneously, both the LND and LAP values decrease
as the distance from the river increases, with both reaching
their peak in the 0–2 km interval at 2.55 km−2 and 21.62%,
respectively.

The maximum annual average rainfall in the study area
is 482.9 mm, while the minimum is 151.4 mm. In landslide-
affected areas, the maximum annual average rainfall is 324.3 mm.
Therefore, starting from 150 mm, we divided the rainfall into
intervals of 50 mm, resulting in four categories. The statistical
results are shown in Figure 12. The figure clearly indicates that
landslide areas are primarily concentrated in the 150–200 mm
rainfall interval, followed by the 300–350 mm interval. However, the
LND and LAP peak in the 250–300 mm interval, at 4.03 km−2 and
27.28%, respectively. Both values show an increasing trend before
this interval, followed by a decline.

The NDVI index in the study area ranges from −0.2006 to
0.9989, while the NDVI values within the landslide-affected areas
fall between 0.1313 and 0.959. Based on this, we set 0 as the
starting point, with an interval increment of 0.2, resulting in five
categories. The statistical results are shown in Figure 13. In the
0.4–0.6 interval, LND and LAP reach their peak values at 3.62 km−2

and 27.16%, respectively. The second highest values for LND
and LAP occur in the 0.2–0.4 interval, at 3.29 km−2 and 25.20%,
respectively.
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FIGURE 7
Relationship between relief degree and landslide distribution. (a) Distribution of relief degree in the study area;(b) Statistics of landslide indicators in the
relief degree intervals.

FIGURE 8
Relationship between fault distance and landslide distribution. (a) Spatial distribution of faults and landslides within the study area. (b) Statistical
distribution of landslide occurrences across different distance intervals from faults.

4.3 Correlation and importance analysis of
influencing factors

To avoid collinearity issues among the factors, this study
conducted a correlation analysis of the 10 factors using the Pearson
correlation coefficient. As shown in Figure 14, the absolute values
of the correlations between all factors are below 0.7, indicating
that there is no collinearity among them. Therefore, the factors are
suitable for input into the model for further training.

Based on the analysis results from the Random Forest model,
this study systematically ranks the importance of the influencing
factors. The results show that slope (0.43428) and aspect (0.38838)
have the most significant impact on the landslide relics in Minhe
County (Figure 15). In addition, DEM (0.06263), topographic
relief (0.03861), and NDVI (0.02697) also exhibit significant
statistical correlations. These factors interact through various
physical processes such as tectonic movements, human engineering
activities, and climate change, collectively affecting surface stability.
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FIGURE 9
Relationship between lithology and landslide distribution. (a) Lithology distribution in the study area. (b) Statistics of landslide indicators in the lithology
intervals. (Strata:Є-Cambrian,C-Carboniferous,E-Paleogene,J-Jurassic,K-Cretaceous,N-Neogene,O-Ordovician,P-Permian,Q-Quaternary,S-Silurian,γ-
Intrusive rock).

FIGURE 10
Relationship between land use type and landslide distribution. (a) Land use type distribution in the study area. (b) Statistics of landslide indicators in the
land use type intervals.

Slope, as an important intrinsic condition for landslide occurrence
(particularly shallow landslides), is one of the primary controlling
factors for landslide development (Guo et al., 2013). Generally,
the steeper the slope, the stronger the gravitational forces acting
on the soil and rock masses, which reduces shear strength and

makes landslides more likely (Mao et al., 2024). Aspect, on the
other hand, influences the degree of solar radiation and precipitation
received by a slope, further adjusting the degree of weathering
and moisture content in the soil, thus significantly affecting slope
stability. Additionally, aspect affects vegetation growth on the slope;
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FIGURE 11
Relationship between the distance from rivers and the landslide distribution. (a) The distribution of the distance from rivers in the study area. (b)
Statistics of landslide indicators in the intervals of the distance from rivers.

FIGURE 12
Relationship between average precipitation and landslide distribution. (a) Average precipitation distribution in the study area. (b) Statistics of landslide
indicators in the average precipitation intervals.

sunny slopes typically have sparse vegetation and weaker erosion
resistance, while shady slopes have denser vegetation but accumulate
more moisture, potentially leading to shallow landslides.

In contrast, the influence of lithology (0.0048) and land use
(0.0051) on the landslide relics in this region is relatively small.
We hypothesize that the lower weight of lithology’s impact may
be related to several factors: first, the significant topographic relief
in the study area makes the influence of gravity on slope stability
more direct, overshadowing the effect of lithological differences

on landslide formation. Second, the weathering degree of different
lithological layers within the region may be relatively similar, which
weakens the control of lithology on landslides. As for land use,
its limited influence on landslides may be attributed to the fact
that most of Minhe County is located in mountainous areas, where
extensive natural vegetation is likely present, and land use changes
are minimal. In such areas, vegetation plays a role in reinforcing
slopes and conserving soil andwater, thus reducing the direct impact
of land use changes on landslide occurrence.
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FIGURE 13
Relationship between NDVI and landslide distribution. (a) NDVI distribution in the study area. (b) Statistics of landslide indicators in the NDVI intervals.

FIGURE 14
Pearson correlation coefficient analysis of influencing factors.

5 Discussion

5.1 Landslide inventory

A landslide inventory refers to the systematic organization of
landslide characteristic information for a specific region, forming

a database. The completeness of such an inventory is crucial to
the accuracy of disaster assessments (Guo et al., 2024). Landslide
inventories can be divided into event-based landslide inventories
and historical landslide inventories. Event-based inventories record
landslides triggered by a single event, such as earthquakes (Dai et al.,
2011; Xu et al., 2014; Ma et al., 2024b; Shao et al., 2023a) or
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FIGURE 15
Importance of influencing factors.

rainfall (Ma et al., 2023c; Xie et al., 2023; Gao et al., 2024;
Shao et al., 2023d). Historical landslide inventories, on the other
hand, encompass landslide events accumulated over hundreds or
even thousands of years (Chen J. et al., 2023; Li et al., 2022a;
Li et al., 2022b; Shao et al., 2020). In our previous work, we focused
on historical landslides and, using high-resolution satellite remote
sensing imagery for interpretation, created the most comprehensive
landslide relic inventory for Minhe County to date.

However, existing landslide surveys in Minhe County still need
further refinement. Most current research in this region has focused
on individual landslides (Mu et al., 2020), clustered landslides
(Cui et al., 2008), or landslides triggered by single events. Only
a few scholars have studied landslide distribution and disaster
assessments in Minhe County. For instance, Kou et al. in their
geological hazard investigation and zoning project, identified 224
landslide disasters in Minhe County (Kou et al., 2017). Zhao et al.
used historical geological disaster data provided by the Qinghai
Provincial Geological Environment Monitoring Station and found
569 landslide traces in Minhe (Zhao et al., 2021). Additionally,
Peng et al. focused on the Loess Plateau region, conducting
landslide interpretation and analysis of triggering mechanisms.
They identified 14,544 landslides across the entire Loess Plateau,
with 1,823 landslides located in the Haidong-Lanzhou-Tongwei
area (HLTZ), covering a total area of 3,530 km2 (Peng et al.,
2019).Meng et al. using InSAR technology, created a comprehensive
landslide inventory for the Huangshui River region, identifying 31

landslide traces in the 16,000 km2 area (Meng et al., 2020). While
these studies provided valuable references for our interpretation
and cross-verification, the number of landslides identified in
previous studies is far lower than the 5,517 landslide relics
we identified.

Additionally, the southern Guanting Basin in Minhe County,
located along the Longyangxia-Liujiaxia section of the upper
Yellow River, is a region with frequent landslide disasters. In
recent years, many scholars have studied the characteristics and
mechanisms of landslides in this area. For example, Yin et al.
identified 205 landslides of various sizes along this river section,
with seven landslides located in the Guanting Basin, primarily
mudstone landslides (Yin Z. et al., 2010). He et al. also obtained
similar results (He et al., 2017). Among the landslide relics we
identified, 260 are located in the Guanting Basin, far exceeding the
number reported in existing studies.

In conclusion, the landslide inventory we developed in previous
work is themost comprehensive and high-quality landslide database
for Minhe County and its surrounding regions to date. Using
this inventory, we analyzed the spatial distribution and possible
controlling factors of landslides in Minhe, providing valuable
insights. However, there are some limitations to our study. The
method we used is based on human-assisted visual interpretation.
For smaller landslides, due to the resolution limitations of satellite
imagery or subjective interpretation, some landslidesmay have been
missed. However, these omissions have a relatively small impact on
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the overall accuracy of the inventory. In future research, we will
consider integrating additional methods to address this limitation.

5.2 Spatial distribution of landslides

The areas with high point density and high area density
of landslide relics in Minhe County generally exhibit similar
spatial distributions, although some differences still exist. In the
southwestern part of the county, the area density of landslides is
more prominent compared to the point density, suggesting that the
landslides in this region tend to be larger in scale. Conversely, in the
northwestern part of the county, the point density of landslides is
more significant.

The higher area density of landslides in the southwestern part
of the county indicates that the region experiences more large-
scale landslides. Our preliminary analysis suggests that the frequent
occurrence of large-scale landslides in this area is the result of
multiple geological, geomorphological, and environmental factors.
The relatively steep slopes and topographic relief lead to the
accumulation of gravitational potential energy, while fault structures
cause rock fragmentation and weakening. The easily weathered
Paleogene strata provide abundant landslide material, and river
erosion continually undermines slope stability. Additionally, the
abundant precipitation increases pore water pressure, and sparse
vegetation exacerbates slope instability. These factors interact
spatially, reinforcing one another, making large-scale, long-runout,
and far-reaching landslides more likely to occur in this region.

In contrast, the more significant point density of landslides in
the northwestern part of the county suggests a higher frequency
of landslides, but the landslides are relatively smaller in scale. We
believe this is mainly due to the relatively gentle slopes, stable
geological structures, and widespread loose deposits in this region.
While local topographic relief and rainfall conditions may trigger
landslides, the lack of fault zones, weaker erosion at the slope toes,
and limited thickness of loose materials contribute to the prevalence
of shallow, small-scale landslides. Furthermore, the low vegetation
coverage further reduces slope stability, increasing the frequency of
landslides, though it does not significantly affect the scale of the
landslides.

In addition, as noted by Kou et al. (2017), landslides in
the study area show a certain degree of clustering, with high-
risk landslide zones in Minhe County mainly distributed along
the middle and lower reaches of the Huangshui River and the
tributaries of the Yellow River. Our findings are consistent with
this pattern. Wei et al. (2021) summarized the spatial distribution
patterns of landslide hazards in Qinghai Province, taking into
account administrative regions, geomorphology, agricultural and
pastoral zones, and watershed divisions. Their study demonstrated
that landslides are predominantly concentrated in the agricultural
areas of the Huangshui River Basin in eastern Qinghai, further
supporting our results.

Additionally, earthquakes, as a typical representation of
neotectonic activity, can lead to a “sheet-like” dense distribution of
landslides in loose soil (Li et al., 2021b), a phenomenon also reflected
in our study. For example, following the 1987 earthquake in Xigou
Township, Minhe County (magnitude 4.1), many landslides were
densely distributed around the epicentral area (Figure 16). Active

faults are potential sources of destructive earthquakes (Wu et al.,
2024), and further research is needed to determine whether the
landslides triggered by this earthquake are related to active faulting.
We will continue to collect detailed geological data from the region
to conduct an in-depth analysis of the mechanisms behind these
earthquake-induced landslides.

5.3 Correlation between landslides and
influencing factors

In terms of topographic factors, the majority of landslides in the
study area occurred at elevations between 1,900 and 2,400 m,mostly
in mid-high altitude, moderately rugged mountainous terrain,
accounting for about 85.6% of the total. Other researchers have
also found similar results (Li et al., 2021b; Qiu et al., 2018), where
landslides are concentrated at elevations of 2,000–2,800 m. This
range corresponds to mid-low mountain hilly areas, adjacent to
river valley alluvial plains. We believe that the dense distribution
of landslides in this elevation range is closely related to the
well-developed erosion gullies in the area. Additionally, the
intensity of human activity in this elevation range plays a
significant role in landslide development (Tian et al., 2024;
Zhang et al., 2015; Zhao et al., 2021).

Slope gradient is another crucial factor influencing slope
stability (Ma et al., 2023b). Our results show that most landslides
occurred on slopes with gradients between 10° and 40°, mainly
concentrated in the 15°–20° range. This is consistent with previous
studies. For example, Li et al. (2024b) found that in the upper reaches
of the Yellow River, including the Guanting Basin in Minhe County,
landslides are primarily concentrated on slopes between 15° and
40°, with most in the 15°–20° and 35°–40° ranges. Field surveys
also revealed that most landslides in the 15°–20° range are relatively
stable, with a low likelihood of further movement. However, those
in the 35°–40° range are more unstable and may reactivate under
heavy or prolonged rainfall. Wang et al. (2015) reached similar
conclusions, noting that slopes with a gradient of 15°–30° contribute
themost to landslide development, followed by slopes of 10°–15° and
30°–40°, while slopes less than 10° and greater than 40° contribute
the least. However, Zhou et al. (2013) presented a different view,
suggesting that geological disasters in the Huangshui River Basin,
particularly in loess regions, occurmainly on steep slopes of 30°–60°.
Variations in slope gradients across different studies are common
in landslide research. We believe that, aside from the southwestern
mountainous area, the overall terrain in Minhe County is relatively
flat, leading to lower overall slope gradients in landslide-affected
areas. Furthermore, landslide relics often represent older events,
and over time, unstable landslides may move or shift, resulting in
a gradual decrease in slope gradients.

The properties of the soil and rock also affect slope stability. In
terms of lithostratigraphy, the study area is primarily composed
of Quaternary deposits, Paleogene strata, and Neogene strata.
Among these, Quaternary deposits have the largest exposed
area, covering 54.77% of the total study area and predominantly
distributed across the northern, central, and eastern regions of
Minhe County. The Paleogene and Neogene formations follow,
accounting for 15.13% and 9.87% of the study area, respectively.
The occurrence of landslides is closely associated with lithological
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FIGURE 16
Distribution of landslides in the vicinity of the earthquake.

characteristics. Studies have demonstrated that landslides are
most prevalent in Quaternary loess deposits, with a total of 3,150
recorded landslides in these formations, a trend consistent with the
findings of Li et al. (2021a). Additionally, the primary lithological
components of regional slopes include Late Pleistocene loess and
Neogene mudstone, both of which significantly influence slope
stability due to their unique geotechnical properties. Neogene
mudstone is characterized by a high clay mineral content (Xin et al.,
2017), making it highly susceptible to softening upon water
infiltration. This hydration-induced weakening substantially
reduces shear strength, facilitating the formation of sliding zones
and increasing the likelihood of slope failure. Similarly, Quaternary
loess exhibits large porosity, well-developed vertical joints, and
high permeability. These attributes render it particularly prone to
softening and slope instability when subjected to prolonged rainfall
infiltration (Huang et al., 2022). Collectively, these lithological
and hydrogeological characteristics create favorable conditions
for landslide initiation and evolution in the region. A deeper
understanding of the influence of different lithological units on
slope stability is essential for improving landslide susceptibility
assessment and providing a scientific foundation for regional
geohazard prevention and mitigation strategies.

Land use in Minhe County is predominantly grassland,
cropland, and forest. Landslides mainly occur in grassland
and cropland areas, likely influenced by human activities and
agricultural irrigation (Huang et al., 2022). Agriculture is the main
livelihood in the loess regions, and long-term irrigation raises the
groundwater level, leading to soil deformation at the base of slopes
and slope instability.The frequent landslides in theHeifangtai region
of Gansu are a typical example of this (Xu and Yan, 2019).

The Huangshui River is the most important tributary of the
upper Yellow River, and its river channel is highly meandering in
the study area. In this phase, intense river erosion leads to stress

transfer in the valleys, causing slope unloading and fracturing,
which increases the instability of rock masses (Zhao et al., 2021).
Our results show that most landslides occur within 0–2 km from
the river, and both the number and area of landslides decrease as the
distance from the river increases. This indicates that river erosion is
one of the main factors influencing landslides in the region.

The NDVI reflects the extent of vegetation cover, with higher
NDVI values representing denser vegetation. Landslides in the study
area are primarily concentrated in areas with NDVI values between
0.4 and 0.8. This result differs from the commonly held view that
landslides are more likely to occur in areas with sparse vegetation
(Chen et al., 2021). Minhe County is mostly composed of mid-low
mountain hilly areas, except for its western highlands. We speculate
thatmost of the area has relatively good vegetation cover, but the root
systems are shallow, primarily concentrated in the topsoil layer. The
significant difference in soil properties between the root layer and
the subsoil makes it easy to trigger large-scale shallow landslides,
especially during short periods of heavy rainfall (Xu et al., 2022).
Huang Hengwei (Huang, 2017) also supports a similar viewpoint.
Additionally, with the implementation of the “Green is Gold”
ecological protection policy, vegetation cover in Minhe County has
been increasing, which may have affected the NDVI values used in
this study, potentially introducing some statistical bias.

In our analysis of fault-related factors, we found no significant
correlation between landslide distribution and distance from faults.
If we only consider the number and area of landslides, we observe
that both decrease as the distance from faults increases. However,
this does not necessarily suggest an objective or reliable conclusion.
Our analysis shows that LND and LAP peak at a distance of
12–15 km from faults, while the values are lowest at 0–3 km. This
suggests that the influence of faults is limited and that landslide
causality in the region is highly complex. Further research will be
required to explore this in more detail.
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5.4 Policy recommendations and future
research directions

Based on the spatial distribution characteristics of landslides,
the study found that landslide relics in Minhe County are
primarily distributed in areas with an elevation of 2,000–2,100 m,
slopes of 15°–25°, aspects facing west or northwest, Quaternary
strata, and within 0–2 km from rivers. Given these spatial
characteristics, future disaster prevention and mitigation efforts
should prioritize monitoring and management of areas near
riverbanks and those with vulnerable lithology.The government and
relevant departments can use these spatial data to scientifically plan
monitoring areas, especially in regions with critical infrastructure
and high population density, to effectively reduce the potential risks
of landslide disasters (Nanehkaran et al., 2023). Moreover, these
spatial data provide a solid foundation for subsequent risk prediction
and emergency management, enabling rapid identification of high-
risk areas and the scientific allocation of disaster prevention
resources.

In the quantitative analysis of the overall spatial distribution
of landslides, the LND and LAP indices clarified the spatial
distribution density of landslides inMinheCounty, providing amore
precise basis for landslide disaster risk assessment. Through the
analysis of these quantitative indicators, the study found that the
landslide area density is more significant in the southwestern region,
while the landslide point density is higher in the northwestern
region. This suggests that, in subsequent geological disaster risk
prevention and control efforts, special attention should be given
to the larger-scale landslides in the southwestern region, while
strengthening the monitoring and prevention of shallow and
medium-sized landslides in the northwestern region. Based on these
regional risk characteristics, differentiated landslide monitoring and
management strategies should be implemented. In areas with high
landslide point density, it is essential to strengthen emergency
response mechanisms and develop detailed contingency plans to
ensure rapid and effective emergency response during disaster
events, thereby reducing the harm caused by landslides and
protecting public safety.

From the perspective of key influencing factors, slope and aspect
are the most important factors affecting landslide occurrence in
Minhe County. The study indicates that landslides are frequent in
areas with a slope of 15°–25° and a westward or northwestward
aspect. Therefore, disaster prevention and mitigation strategies
should prioritize addressing these key topographic factors. For
example, in areas with steeper slopes, measures such as slope
reinforcement and vegetation restoration should be implemented
to enhance slope stability. In regions with significant aspects,
monitoring of precipitation and water flow should be strengthened
to reduce water-induced erosion and prevent slope instability.
Additionally, landslide occurrences are typically the result of the
interaction of multiple factors (Nikoobakht et al., 2022). For other
factors that show significant statistical correlations (e.g., elevation,
topographic relief, NDVI), comprehensive mitigation measures
should be adopted based on specific regional conditions, such as
improving slope drainage systems, reinforcing slope structures, and
restoring vegetation, to effectively reduce the risk of landslides.

Overall, the findings of this study not only contribute to a
deeper understanding of the triggering factors and distribution

patterns of landslide relics in Minhe County, but also provide a
scientific basis for subsequent landslide evaluation, early warning,
and disaster prevention efforts. Moreover, the analytical methods
used in this study are not only applicable to Minhe County but
also have strong generalizability. These methods can be widely
applied to other regions with similar geological and environmental
conditions, providing effective support for landslide disaster risk
assessment,monitoring and earlywarning, and emergency response.
Similar research methods have already been successfully applied
in several landslide-prone areas, providing valuable insights for
disaster prevention in these regions. In future work, we will integrate
field investigation data to validate and deepen our findings. We
will optimize evaluation models, conduct landslide susceptibility
assessments, and comprehensively consider the impact of multiple
environmental factors and potential additional influences, thereby
achieving a more comprehensive understanding of landslide
causality. This will provide a more scientific basis for the prediction
and management of geological disasters in Minhe County.

6 Conclusion

Based on the GIS platform, this study conducted an in-depth
exploration of the spatial distribution and triggering factors of
landslides, using the previously constructed landslide relic inventory
of Minhe County, Qinghai Province, China. The earlier work
identified 5,517 landslide features in Minhe County, with a total
coverage area of 434.43 km2, accounting for approximately 22.98%
of the county’s total area. Using landslide number density (LND)
and landslide area percentage (LAP) as evaluation indicators, we
performed a statistical analysis of the correlation between landslides
and influencing factors. The results indicate that the LND and LAP
indices for Minhe County are 13.17 km−2 and 87.38%, respectively.
Furthermore, landslide relics are mainly distributed in the elevation
range of 2,000–2,100 m, where the number of landslides and
the landslide area account for 20.35% and 39.23% of the total,
respectively. The 15°–25° slope gradient range is the most favorable
for landslide development in the study area. Due to factors such
as solar radiation and soil conditions, landslides are more likely to
occur on west and northwest-facing slopes. Relief degree of land
surface values between 150 and 200 are favorable for landslide
development, and the 12–15 km range from fault lines is where
LAP and LND peak, at 4.88 km−2 and 6.29%, respectively. Neogene
strata are the main geological formations promoting landslide
development. Compared to other land types, grasslands exhibit a
higher probability of landslide occurrence. LND and LAP values
decrease as the distance from rivers increases, with the 0–2 km range
being more prone to landslides. The 250–300 mm annual rainfall
range is the most favorable for landslide development, while areas
with NDVI values of 0.4–0.6 are more susceptible to landslides.
Slope and aspect are the most significant factors influencing the
landslide relics in Minhe County, while the influence of lithology
and land use is relatively low. The results of this study contribute
to a better understanding of the triggering factors and spatial
distribution patterns of landslide relics in the region, providing
crucial support for future landslide risk assessments and local
disaster prevention and mitigation efforts.
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