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Background: Cancers arise from genetic and epigenetic abnormalities that affect oncogenes and tumor suppressor genes, compounded by gene mutations. The N6-methyladenosine (m6A) RNA modification, regulated by methylation regulators, has been implicated in tumor proliferation, differentiation, tumorigenesis, invasion, and metastasis. However, the role of m6A modification patterns in the tumor microenvironment of gastric cancer (GC) remains poorly understood.Materials and methods: In this study, we analyzed m6A modification patterns in 267 GC samples utilizing 31 m6A regulators. Using consensus clustering, we identified two unique subgroups of GC. Patients with GC were segregated into high- and low-infiltration cohorts to evaluate the infiltration proportions of the five prognostically significant immune cell types. Leveraging the differential genes in GC, we identified a “green” module via Weighted Gene Co-expression Network Analysis. A risk prediction model was established using the LASSO regression method.Results: The “green” module was connected to both the m6A RNA methylation cluster and immune infiltration patterns. Based on “Module Membership” and “Gene Significance”, 37 hub genes were identified, and a risk prediction model incorporating nine hub genes was established. Furthermore, methylated RNA immunoprecipitation and RNA Immunoprecipitation assays revealed that YTHDF1 elevated the expression of DNMT3B, which synergistically promoted the initiation and development of GC. We elucidated the molecular mechanism underlying the regulation of DNMT3B by YTHDF1 and explored the crosstalk between m6A and 5mC modification.Conclusion: m6A RNA methylation regulators are instrumental in malignant progression and the dynamics of tumor microenvironment infiltration of GC. Assessing m6A modification patterns and tumor microenvironment infiltration characteristics in patients with GC holds promise as a valuable prognostic biomarker.Keywords: STAD, m6A modification, TME infiltration, WGCNA, LASSO
1 INTRODUCTION
RNA methylation plays a significantly role in normal cellular homeostasis and pathological conditions (Han et al., 2020), in which N6-methyladenosine (m6A) is the most prevalent in eukaryotic cells and has gained increasing attention because of its presence in mRNA, lncRNAs, and miRNA (Dominissini et al., 2012; Meyer et al., 2012; Ontiveros et al., 2019; Huang et al., 2020). Recently, m6A modification, a dynamic and reversible epigenetic process, has attracted considerable attention. This modification is orchestrated by regulators commonly referred to as “writers”, “erasers”, and “readers”. The methylation process is specifically catalyzed by methyltransferases, or “writers”, which encompass enzymes such as METTL3, METTL14, WTAP, and METTL16. Conversely, the demethylation process is executed by demethylases such as FTO and ALKBH5, termed “erasers”. Additionally, there is a set of RNA-binding proteins encompassing, but not restricted to, YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1 (Zhang et al., 2020). Numerous studies have reported that m6A modifications are common in cancer. Such modifications profoundly influence tumorigenesis and tumor progression by disrupting cellular pathways; promoting cell proliferation, self-renewal, and tumor metastasis; and leading to aberrations in immunomodulation (Pinello et al., 2018; Tong et al., 2018; Chen et al., 2020; Dong and Cui, 2020; Haruehanroengra et al., 2020). Furthermore, programmed cell death pathways, which are closely associated with the cancer initiation, progression, and resistance, have highly complex links to m6A modification (Liu et al., 2022).
Gastric cancer (GC) is one of the most prevalent digestive tract cancers globally, with an incidence rate of 5.6% and a mortality rate of 7.7%, ranks the top five in both categories (Sung et al., 2021). With progress in biological information technology and medical means, genome analysis has become the main method for identifying new biological targets in GC (Cancer Genome Atlas Research, 2014; Oh et al., 2018). The overall abundance of m6A mRNA in human GC tissues is significantly higher compared to normal tissue (Wang Q. et al., 2020). Studies have found that tumor progression is not solely attributed to genetic and epigenetic modifications in tumor cells. The tumor microenvironment (TME), on which cancer cells rely for growth and survival, plays a pivotal role. Cancer cells modify various biological behaviors through direct and indirect interactions. As our comprehension of the complexities and variations within TME deepening, increasing evidence highlights the pivotal role in tumor progression and immune evasion, as well as its influence on responses to immunotherapy (Quail and Joyce, 2013; Ali et al., 2016). Consequently, there is a growing emphasis on studying biomarkers that can predict responses to immune checkpoint blockade therapies, aiming to enhance precision immunotherapy strategies. Virtually, m6A modification alterations intrinsically affect immune cells and extrinsically affect immune cell responses in the TME (Li et al., 2022). m6A is closely related to macrophage phenotype and dysfunction (Zhu X. et al., 2023). In GC, m6A modification plays a non-negligible role in characterizing TME infiltration, both in terms of diversity and complexity (Zhang et al., 2020).
In this study patient samples are divided into two subgroups by conducting a consistent cluster analysis of the expression profiles of 31 m6A RNA methylation factors from patients with GC found in the TCGA database. Based on the proportion of infiltration from the five immune cell types related to prognosis, patients with GC were categorized into high-infiltration and low-infiltration groups, where there was a significant difference in prognosis. Using WGCNA analysis of the differential genes in GC, we identified a module associated with both the m6A methylation cluster and the immune infiltration classification. Hub genes were isolated from this module using module membership (MM) and gene significance (GS). By leveraging these hub genes, we employed LASSO regression to develop a risk prediction model. Based on the risk score of this model, we further categorized the samples into high-risk and low-risk groups. Furthermore, we validated the isolated hub genes and found that the m6A reader, YTHDF1, elevated the expression of DNMT3B, synergistically promoting the initiation and development of GC.
2 MATERIALS AND METHODS
2.1 GC datasets source and preprocessing
We extracted gene expression datasets and associated clinical annotations from two renowned repositories: UCSC Xena (accessible at https://xenabrowser.net/datapages/) and cBioportal (available at http://www.cbioportal.org/). We included a cohort of 267 gastric cancer patient samples along with 32 samples derived from healthy individuals. These samples were repleted with pertinent survival data and detailed tumor staging, all sourced from The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) database download from UCSC Xena. A comprehensive list of these details is provided in Table 1. We also integrated the GC dataset GSE62254 from the Gene Expression Omnibus, constituting an additional 300 GC patient samples; patients without survival information were excluded from further evaluation. The comprehensive sample data are presented in Table 2. The workflow of data analysis is shown in Figure 1.
TABLE 1 | Clinical characteristics of the patients from TCGA-STAD.
[image: A table presenting cancer characteristics with columns for subtype, case number, and ratio percentage. There are data for gender, stage, grade, and age, totaling 267 cases. Gender shows 94 female and 173 male cases. Stage details include four levels, with Stage III having the highest case count of 108. Grade ranges from G1 to G4, with G3 having 158 cases. Age is divided into categories: 169 cases for age sixty and above, 95 for under sixty, and 3 not available.]TABLE 2 | Clinical characteristics of the patients from GSE62254.
[image: Table displaying characteristics of 300 cases divided by age, gender, and stage. Age: ≥60 (194 cases, 64.67%), <60 (106 cases, 35.33%). Gender: Male (199 cases, 63.33%), Female (101 cases, 33.67%). Stage: I (30 cases, 10%), II (97 cases, 32.33%), III (96 cases, 32%), IV (77 cases, 25.67%).][image: Flowchart detailing analysis procedures for gastric cancer cell gene study, including data from TCGA. It begins with consensus clustering of 31 m¹A regulators and CIBERSORT analysis for immune infiltration. Steps include correlation, clinical analysis, differential gene expression, WGCNA for gene co-expression, LASSO regression, and survival analysis. Ends with validation of hub genes.]FIGURE 1 | Flow chart of analysis.
2.2 Consistent cluster analysis
A list of the 31 m6A regulators is provided in the Supplementary Material (Table S1). Utilizing the R package “ConsensusClusterPlus” (Wilkerson and Hayes, 2010), we performed a consistent clustering analysis with a robust setting of 100 iterations and an 80% resampling rate, leveraging the Pearson correlation as the chosen distance metric. This rigorous analysis stratified the samples into two distinct clusters: Cluster 1 and Cluster 2.
A Principal Component Analysis (PCA) was performed to visually discern and compare the underlying variations between the two clusters. This dimensionality reduction technique allowed us to capture the essence of variance in the data and offered a clearer perspective on the differences in expression patterns. The Wilcoxon test was used to ascertain the specific m6A RNA methylation regulators that exhibited significant differential expression between Cluster 1 and Cluster 2. This non-parametric statistical test, tailored for datasets that did not necessarily follow a normal distribution, enabled us to rigorously compare the expression levels of each regulator between the two defined clusters.
2.3 Survival analysis of m6A cluster and subgroup functional pathway analysis
Survival analysis encompasses statistical methods dedicated to exploring the expected time until one or more events occur. We used the Kaplan-Meier method to generate survival curves, and the log-rank test was used to identify prognostic factors correlated with survival, with significance determined at a threshold of p < 0.05. Furthermore, for enrichment analysis, we leveraged the “GSVA” package in R, which employs an unsupervised, non-parametric approach (Hanzelmann et al., 2013; Shen et al., 2022). Significance level of p < 0.05 was considered statistically significance.
2.4 Estimation of the proportion of TME cell infiltration in GC
CIBERSORT (accessible at https://cibersort.stanford.edu/) was synergistically paired with the LM22 signature matrix, facilitating the estimation of the proportion of human hematopoietic cell phenotypes within the 22 samples categorized from both the high-risk and low-risk patient cohorts. Notably, the cumulative proportion of all the inferred immune cell types within each sample was 1. Subsequently, to identify the immune cells with significant prognostic implications, the proportions of these various immune cells were subjected to univariate Cox regression analyses.
2.5 Identification of differentially expressed genes (DEGs)
Differentially expressed genes between 267 tumor samples and 32 normal samples were identified using the Limma R package (Smyth, 2004). Genes were considered differentially expressed based on thresholds of |log2FC| > 0.585 and FDR < 0.01.
2.6 Weighted gene co-expression network analysis (WGCNA)
WGCNA is an advanced bioinformatics approach aimed at deciphering the complex patterns of gene expression data (Yin et al., 2020). By calculating the correlation between the module eigengenes and the clinical traits of interest, biologically relevant modules were identified. Within the modules significantly associated with clinical traits, hub genes were identified based on their connectivity, highlighting those with potential key roles in the module’s biological function.
2.7 Construction and validation of the prognosis model
For the identified hub genes, the LASSO method was employed to select prognostically relevant genes and construct a prognostic model. The systematically derived risk-scoring formula was as follows:
[image: Equation showing Risk Score (RS) calculation: RS = EXPZFP64* (-0.044) + EXPTOMM34* (-0.041) + EXPDNMT3B* (0.131) + EXPCSTF1* (-0.273) + EXPTM95F4* (0.264) + EXP TTI1* (0.136) + EXPACTR5* (-0.255) + EXPSTK35* (-0.006) + EXPS18L1* (-0.047).]
Based on the median risk score derived from the model or the optimal cutoff value calculated using the surv_cutpoint function, patient samples were stratified into high-risk and low-risk groups. Kaplan-Meier survival analysis was used to assess the predictive capability of the model.
2.8 Cell culture and transfection
Cell lines AGS, BGC-823 and HGC-27 were obtained from Shanghai Institute of Biochemical Cell Science, Chinese Academy of Sciences. BGC-823 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) and AGS cells were cultured in DMEM/F12. All the culture mediums were supplemented with 10% fetal bovine serum (FBS), 100 units/mL penicillin, and 100 mg/mL streptomycin (Gibco, 15140-122, United States). The cells were cultured in a constant temperature incubator equilibrated with 5% CO2 at 37°C. The sources and culture conditions of other cell lines are detailed in Supplementary Table S2. All experiments were performed with mycoplasma-free cells.
All plasmids were verified by DNA sequencing and transfected using TurboFect™ reagent (ThermoFisher, R0531, USA). SiRNAs for gene knockdown were transfected using Lipofectamine RNAiMAX reagent (Invitrogen, 13778-150, United States). The siRNA sequences used are listed in the Supplementary Table S3.
2.9 Real-time quantitative polymerase chain reaction (real-time qPCR) analysis
Total RNA was extracted using TRIzol reagent. Subsequently, reverse transcription was performed using the PrimeScript™ RT Master Mix (Takara, RR036A, Japan), according to the manufacturer’s instructions. qPCR was conducted using FastStart Universal SYBR Green Master (Roche, 4913914001, United States), where β-actin was analyzed as the loading control. The relative expression of target genes was calculated using the 2−ΔΔCT method. The primers used are listed in Supplementary Table S4.
2.10 Western blot
Total proteins were separated via SDS-PAGE. The proteins were transferred onto the PVDF membrane and blocked using 5% skim milk at room temperature for 1 h, followed by immunoblotting with the indicated antibodies overnight, including anti-YTHDF1 (Proteintech, Cat No.17479-1-AP, China) and anti-DNMT3B (Cell Signaling Technology, 57868S, United States). After incubation with secondary antibodies for 1 h at room temperature, the membranes were washed and transferred onto an X-ray radiographic cassette and treated with ECL Super Signal™ West Pico PLUS (ThermoFisher, 34580, USA). Subsequently, the membranes were blotted onto X-ray films for visualization.
2.11 Methylated RNA immunoprecipitation (MeRIP) and RIP
The MeRIP-qPCR assay was conducted using a MeRIP assay kit, according to the manufacturer’s instructions (Bersinbio, China). The RIP assay was performed using approximately 2 × 107 cells per sample, and the specific experimental steps were based on previously methods reported (Gagliardi and Matarazzo, 2016). The m6A sites of DNMT3B were predicted using SRAMP (http://www.cuilab.cn/sramp) (Zhou et al., 2016), and primers containing m6A sites were subsequently designed. The primers used are listed in Supplementary Table S5.
2.12 EdU assay
GC cells with overexpression or depletion of the indicated genes and control were seeded into 96-well plates at a density of 6 × 104 cells per well. DNA proliferation was detected after the cells were cultured overnight using an EdU assay kit (RiboBio, Bes5203-1, China). Images were acquired using an inverted fluorescence microscope and statistically analyzed using ImageJ software.
2.13 Cell migration and invasion assay
For the cell migration assay, Transwell chamber filters were placed in 24-well plates. Cells transfected with indicated siRNAs were suspended in serum-free medium, and 8 × 104 cells were seeded into the upper chamber of the wall, whereas the lower chamber was cultured in medium containing 15% FBS. Following incubation for 24 h, the cells were fixed with 4% paraformaldehyde for 20 min, then stained with 0.1% crystal violet after which the cells in the upper chamber were removed. Images were acquired under an inverted microscope and statistically analyzed using ImageJ software. For the cell invasion assay, Transwell chamber filters wrapped in 10% Matrigel (Corning, 354234, United States) were used.
2.14 Statistical analysis
Data analyses were performed using GraphPad Prism (version 9.1.1) and results are displayed as the mean ± SD. Student’s t-test was used to compare differences between the two groups. Potential m6A modification sites were predicted using SRAMP (http://www.cuilab.cn/sramp). Survival curves were plotted using the Kaplan-Meier “survival” package in R (version 3.4.3), where the log-rank test was used to assess statistical significance. Statistical significance was set at p < 0.05.
3 RESULTS
3.1 Landscape of TME in GC and infiltration characteristics in distinct m6A modification patterns
m6A methylation modification patterns mediated by 31 regulators were analyzed in patient-derived GC samples. The m6A methylation mediated by regulators classified as “writers”, “erasers” and “readers” is a dynamic reversible process (Supplementary Figure S1A). We employed the R package “ConsensusClusterPlus”, a tool specifically designed for the robust class discovery and visualization of gene expression datasets, and all GC samples into two distinct groups (Figure 2A). PCA was used to evaluate these groups, revealing significant differences between them (Figure 2B). We utilized the PAM clustering method, with the sample correlation coefficient calculated using Pearson correlation. As depicted in the cumulative consistency distribution map (Supplementary Figures S1B, S1C), there was a noticeable increase in the broken line beyond K = 2, prompting us to categorize all GC samples into two distinct groups. We conducted a Wilcoxon test on the expression levels of 31 m6A regulators across both groups. The findings highlighted that 17 methylation factors, including YTHDC2, IGF2BP2, YTHDC1, and HNRNPC, exhibited significant variance in expression between two sample groups (Figure 2C).
[image: Multiple graphs and charts display data analysis of two clusters related to cell infiltration and survival rates. These include a consensus matrix (A), a PCA plot (B), boxplots comparing clusters across various genes (C, H), Kaplan-Meier survival curves (D, F), a forest plot showing hazard ratios for cell types (E), a heatmap illustrating cell type infiltration (G), and a correlation heatmap of gene expressions (I). The analysis appears to investigate differences between clusters related to immune cell infiltration and their impact on survival in a medical context.]FIGURE 2 | Landscape of TME in gastric cancer and infiltration characteristics in distinct m6A modification patterns. (A) All gastric cancer samples were divided into two groups (K = 2); (B) Under PCA algorithm, the two subgroups cluster 1 and cluster 2 showed significant difference; (C) The expression of 31 m6A regulators between 2 m6A regulators genes cluster: cluster 1 and cluster 2. Cluster 1, Orange; Cluster 2, blue. The upper and lower ends of the boxes represented inter quartile range of values. The lines in the boxes represented median value, and black dots showed outliers; (D) Kaplan-Meier curves for disease progress probability gastric cancer patients from two clusters; (E) Subgroup analysis estimating clinical prognostic value in different types of immune cell infiltration. The length of the horizontal line represents the 95% confidence interval for each group; (F) Kaplan-Meier curves for patients with high and low cohort. Log-rank test shows an overall p = 0.023; (G) Heat map of distribution of five kinds of immune cells in different immune invasion groups; (H) Gene expression level of m6A methylation regulator in different immune infiltration groups; (I) Correlation between the expression of m6A regulator and the proportion of immune cells. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; two-tailed unpaired t-test.
Survival outcomes were assessed using the Kaplan-Meier log-rank test. Factors defined as p < 0.05 were determined to be prognostic determinants pertinent to survival rates. Incorporating the survival data of the patients, a pronounced disparity in prognosis was observed between the two sample clusters: cluster 1 (N = 46) and cluster 2 (N = 221) (Figure 2D). Interestingly, no significant variance in mutational count was observed between these clusters (Supplementary Figure S1D). Pathway enrichment analysis was performed on distinct subgroups using the GSVA package in R, with significance adjusted to p < 0.05. The findings revealed associations of distinct subgroups with several pathways and functional modalities, including the p53 pathway, interferon γ response, and reactive oxygen species pathways (Table 3; Supplementary Figure S1E).
TABLE 3 | Pathway enrichment analysis of distinct subgroups.
[image: Table showing various biological pathways with their corresponding Log2FC and p-values. Pathways include p53, Interferon Gamma response, Reactive oxygen species, IL6/JAK/STAT3 signaling, Allograft rejection, Inflammatory response, and Interferon alpha response. Log2FC values range from approximately 0.198 to 0.270, while p-values range from 0.0008 to 0.012.]Using the CIBERSORT algorithm in tandem with the LM22 signature matrix, we ascertained the proportional abundance of 22 immune cell subtypes within GC specimens. Univariate Cox regression analysis was performed on 19 immune cell categories. Three immune cell types, namely CD4 naïve (detected in only three samples), T cell gamma delta (present in 18 samples), and eosinophils (identified in 21 samples), were excluded from the analysis because of their infrequent occurrence, rendering them unsuitable for a statistically robust Cox regression analysis. Our investigation revealed that naïve B cells, plasma cells, activated CD4+ memory T cells, and five additional immune cell types exhibited a pronounced correlation with prognosis (Figure 2E). By incorporating patient survival information, we observed a pronounced difference in prognosis between the two sample types characterized by distinct immune infiltration (Figure 2F). Subsequently, based on the infiltration metrics of these five salient immune cells, patient specimens were stratified into two discrete clusters, termed high-infiltration and low-infiltration, using the K-means unsupervised clustering technique. Within these classifications, the sample distribution was 196 with high infiltration and 71 with low infiltration (Figure 2G).
According to the immune infiltration grouping, Wilcoxon test was performed on the expression of 31 m6A regulators in the two groups of samples. Our analysis revealed that the expression of m6A methylation factors, notably YTHDC2, METTL16, and YTHDF1, was significantly different between the two groups (Figure 2H). Subsequently, the Pearson correlation coefficient between the 31 m6A RNA methylation factors and the infiltration proportion of the 22 immune cell types was calculated using the R package psych. Remarkably, most m6A methylation factors were correlated with the infiltration proportions of certain immune cells, particularly CD4 memory-activated T cells and follicular helper T cells (Figure 2I).
3.2 Correlation of hub genes with m6A regulators and immune infiltration
The gene expression profile data of 267 patient samples and 32 control samples from the TCGA database were used for differential gene screening and differential gene expression analysis. According to the multiple differences (|log2FC| > 0.585) and significance threshold (FDR < 0.01), 4,391 DEGs were screened using the R package Lima, including 3,232 upregulated and 1,159 downregulated genes (Figures 3A, B).
[image: A collection of scientific diagrams and charts analyzing gene expression and traits: A) A scatter plot showing gene significance. B) A heatmap displaying top differential expression genes. C) A cluster dendrogram indicating hierarchical clustering. D) A heatmap of module-trait relationships. E) A correlation matrix of different genes. F) Dot plots of cell type expressions related to specific modules. G) Bubble charts of top pathways or processes. H) Box plots examining data points such as IGHV mutated status and copy number variations. Each subfigure highlights various aspects of the data analysis.]FIGURE 3 | Correlation of hub genes with m6A regulators and immune infiltration. (A) Display of differential gene volcano map; (B) The heat map shows the top 100 |log2FC| of differential genes; (C) Gene dendrogram and module colors; (D) Module-trait relationship; (E) Correlations between hub genes. Negative correlation was marked with blue and positive correlation with red; (F) The correlation between immune infiltration types and hub genes DNMT3B, ZNF64, CSTF1; (G) The correlation between m6A regulators and hub genes DNMT3B, ZNF64, CSTF1; (H) Analysis of the differences in immune infiltration and SCNAs among hub genes. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; two-tailed unpaired t-test.
Leveraging 4,391 DEGs, we constructed a weighted gene co-expression network using the R package WGCNA. Cluster analysis indicated the presence of an outlier sample; therefore, subsequent analyses focused on the remaining 266 samples. Our analysis confirmed that the constructed co-expression network adhered to a scale-free topology. Specifically, the logarithm log (k) of nodes with connectivity k exhibited a negative correlation with the logarithm log [P (k)] of the node occurrence probability, achieving a correlation coefficient exceeding 0.8. To ensure the scale-free nature of the network, the optimal soft-thresholding power was determined to be β = 4 (Supplementary Figures S2A, S2B). Subsequently, the expression matrix was transformed into an adjacency matrix, which was then converted into a TOM.
Genes were clustered using the average link hierarchical clustering method. By adhering to the hybrid dynamic tree-cutting standard, a minimum module size of 30 genes was established. After determining the gene modules using the dynamic tree-cutting approach, the eigenvectors for each module were computed. Module clustering was then performed, amalgamating closely related modules into unified modules with a set threshold of height = 0.25. This process resulted in the identification of 13 distinct modules (Figure 3C). The statistics for the number of genes in each module are shown in Supplementary Figure S2C. We assessed the Pearson correlation coefficient between the ME of each module and the phenotypic traits of the samples. The significance of the module increased with increasing correlation coefficients. Supplementary Figure S2D shows the eigengenes of each module with the accompanying list denoting the phenotypic characteristics of each sample. Subsequently, the significance value for each gene module was calculated (Figure 3D). A heightened GS value underscores a module’s increased relevance to cluster1 samples. The “Green” module was the most significant module, and the related genes were displayed in pathway enrichment analysis (Supplementary Figure S2E). From the amalgamated insights derived from the module-phenotypic correlation analyses, the green module emerged as the most pertinent module in relation to m6A clusters and immune infiltration. Using the criteria of MM >0.7 and GS > 0.1, 37 hub genes were identified in the green module, which exhibited strong interrelations (Figure 3E).
Subsequently, we evaluated the correlation between the identified 37 hub genes and the proportion of immune-infiltrating cells and m6A methylation regulators. Most hub genes demonstrated significant correlations with the proportions of Macrophages M0, as exemplified by DNMT3B, ZNF64, and CSTF1 (Figure 3F; Supplementary Figures S2F, S3A). Furthermore, m6A regulators were also correlated with the hub genes DNMT3B, ZNF64, and CSTF1 (Figure 3G; Supplementary Figures S2G, S3B). Most of the hub genes were significantly correlated with YTHDF1 and IGF2BP1. Notably, DNMT3B was positively correlated with IGF2BP1, YTHDF1, and VIRMA, and negatively correlated with YTHDC2. Furthermore, we investigated the effects of the hub genes on immune cell infiltration using the TIMER database. Different types of somatic copy number alterations regulate immune cell infiltration into the GC microenvironment. Hub genes and YTHDF1, which are significantly associated with these genes, markedly affected various types of immune-infiltrating cells Figure 3H; Supplementary Figure S2H).
3.3 Construction of a prognostic model based on hub genes
LASSO regression analysis was used to analyze the trajectory of the independent variables, where the x-axis represents the logarithm of the variable λ and the y-axis denotes the coefficients of the independent variables (Figure 4A). Figure 4B shows the confidence intervals corresponding to each lambda value within the LASSO regression framework. In our subsequent analyses, the survival information of the nine hub genes identified in GC were analyzed, among which the expression of DNMT3B is significantly associated with poor prognosis (Figure 4C).
[image: The image contains multiple scientific data visualizations labeled from A to M. Each graph presents different analyses, likely related to gene expression or clinical outcomes. Graphs include line plots, Kaplan-Meier survival curves, and ROC curves. There are scatter plots showing correlation or expression levels and heatmaps visualizing complex data patterns. Axis labels include terms like "Time (months)", "False positive rate", and "Log λ". Data appears to compare groups, possibly high vs. low expression or risk, and discusses metrics such as survival rates and predictive performance.]FIGURE 4 | Construction and validation of a prognostic model based on hub genes. (A) The trajectory of independent variables in Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis of 9 hub genes in gastric cancer; (B) Line plot LASSO regression analysis of 9 hub genes in gastric cancer; (C) Kaplan-Meier analysis of DNMT 3B high- and low-expression groups for gastric cancer from TCGA; (D) ROC curve of 1-year, 3-year and 5-year survival probability in gastric cancer from TCGA; (E) Kaplan-Meier analysis of high-risk and low-risk groups for gastric cancer from TCGA; (F) Classify gastric cancer patients into different risk groups according to the median risk score; (G) Distribution of risk score in gastric cancer; (H) Heatmap of the 9 prognosis-related hub genes expression profiles combined with clinical traits in the high-risk and low-risk groups in the prognostic model; (I) Kaplan-Meier analysis of high-risk and low-risk groups for gastric cancer from GSE62254 dataset; (J) Classify gastric cancer patients from GSE62254 dataset into different risk groups according to the median risk score; (K) Distribution of risk score in gastric cancer; (L) Heatmap of the 9 prognosis-related hub genes expression profiles GSE62254 dataset; (M) ROC curve of RiskScore, Age, Gender and Stage in gastric cancer from TCGA.
The risk prediction model was assessed using a ROC curve analysis, and the area under the ROC curve values for GC patient samples at 1, 3, and 5 years were 0.645, 0.678, and 0.748, respectively (Figure 4D). We computed the risk score for each sample, and the samples were divided into high- and low-risk group based on the median score. The two groups showed significant difference in prognosis. Kaplan-Meier curve analysis of disease progression probability was conducted to evaluate the effects of the low- and high-risk score groups on prognosis (Figure 4E). Results indicated that the prognosis of high-risk group was worse than that of low-risk one (Figures 4F, G). The heatmap generated from the expression profiles of the nine hub genes in the prognostic model illustrate the expression trends of the differential hub genes as the risk score of the sample increased (Figure 4H).
To validate the efficacy of the risk-scoring model, we conducted a validation using the GSE6254 dataset. Risk scores were computed, based on the optimal cutoff value, samples were categorized into high- and low-risk groups. Similarly, a significant prognostic difference was observed between groups. Kaplan-Meier curve analysis of disease progression probability depicted the low- and high-risk score groups for prognosis in GSE62254 (Figure 4I). The prognosis of high-risk patients was worse than that of low-risk ones (Figures 4J, K). The expression profiles from the GSE62254 dataset of the nine hub genes in the prognostic model are presented in a heatmap (Figure 4L). Compared to Figure 4H, the differential hub genes displayed similar trends as the risk score of the sample increased. Using ROC curves to display different clinical factors and the “RiskScore” to distinguish the survival probability of samples, the results showed that “RiskScore” had the best classification effect (Figure 4M).
3.4 Validation of hub genes
To verify the outcome prediction value of these nine hub genes in GC, we obtained their expression patterns in GC samples from the HPA database (https://www.proteinatlas.org/). Consistent with the above results, high expression of DNMT3B, TM9SF4, and TTI1 was observed in GC, whereas the expression of ZFP64, TOMM34, CSTF1, ACTR5, STK35, and SS18L1 was lower in GC (Figure 5A). Among these, DNMT3B, ACTR5 and TM9SF4 demonstrated significant prognostic differences when expressed at high or low levels (Supplementary Figure S4). To further investigate the expression of these nine hub genes in GC, we measured their expression in the normal human gastric epithelial cell GES-1 and in the cancer cell SNU-5, AGS, BGC-823, SGC-7901, MGC-803, and HGC-27 by qPCR. DNMT3B expression was significantly higher in tumor cells than normal epithelial cell GES-1 (Figures 5B, C).
[image: A series of scientific charts and images showing results from experiments comparing normal and cancerous cells. Panel A displays a series of stained tissue samples. Panel B is a bar graph showing gene expression levels across different samples. Panel C focuses on DNMT3B expression levels. Panel D provides blot analysis results. Panel E displays a cell dot assay. Panel F compares YTHDF1 and IGF2BP1 protein levels. Panel G contains another blot analysis. Panels H through L include bar graphs depicting various gene and protein expression levels in different conditions. Panel M shows additional dot assays, illustrating varying concentrations.]FIGURE 5 | Validation of hub genes. (A) Immunohistochemistry (IHC) of 9 hub genes in gastric cancer and normal samples from the HPA database (https://www.proteinatlas.org/); (B) Expression profile of 9 hub genes (ZFP64, TOMM34, DNMT3B, CSTF1, TM9SF4, TTI1, ACTR5, STK35, SS18L); (C) The mRNA expression of DNMT3B in the normal human gastric epithelial cell line GES-1 and gastric cancer cell lines SNU-5, AGS, BGC-823, SGC-7901, MGC-803, HGC-27; (D) m6A dot blot of total RNA in the normal human gastric epithelial cell line GES-1 and gastric cancer cell lines SNU-5, AGS, BGC-823, SGC-7901, MGC-803, HGC-27; (E) m6A dot blot of total RNA in the in adjacent and tumor tissues of gastric cancer samples; (F) Analysis of the mRNA expression of YTHDF1 and IGF2BP1 in the normal human gastric epithelial cell line GES-1 and gastric cancer cell lines SNU-5, AGS, BGC-823, SGC-7901, MGC-803, HGC-27 via RT-qPCR; (G) Analysis of expression of YTHDF1 and IGF2BP1 in the normal human gastric epithelial cell line GES-1 and gastric cancer cell lines SNU-5, AGS, BGC-823, SGC-7901, MGC-803, HGC-27, β-actin served as a loading control; (H) Analysis of the proteins from AGS and BGC-823 cells transfected with vector, YTHDF1, or NC, two different siRNA against YTHDF1 were analyzed by Western blot; (I) Analysis of the mRNA expression of YTHDF1 in AGS and BGC-823 cells transfected with vector, YTHDF1, or NC, two different siRNA against YTHDF1 were analyzed by RT-qPCR; (J) Analysis of the mRNA expression of DNMT3B in AGS and BGC-823 cells transfected with vector, YTHDF1, or NC, two different siRNA against YTHDF1 were analyzed by RT-qPCR; (K) Me-RIP assays; (L) RIP assays; (M) 5mC DNA were analyzed in AGS and BGC-823 cells transfected with vector, YTHDF1, or NC, two different siRNA against YTHDF1 by 5mC dot blot. Error bars represent the mean ± SD of three independent experiments. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; two-tailed unpaired t-test.
We analyzed the modification levels of m6A in normal epithelial and GC cells using m6A dot blot experiments. Interestingly, the modification level of m6A was higher than that in normal epithelial cells (Figure 5D). Similarly, in RNA extracted from clinical tissue samples, m6A modification in tumor tissue was observed to be higher than in adjacent tissues (Figure 5E). Based on these findings, we hypothesize that in the pathogenesis of gastric cancer, there is an upregulation of m6A modifications, which in turn regulates key genes critical to the oncogenic processes, thereby facilitating the progression of cancer.
Previous results reported a positive correlation between the expression of DNMT3B and that of m6A “reader” YTHDF1 and IGF2BP1. We speculate that the modification of m6A may lead to an increase in the expression of DNMT3B, during which YTHDF1 or IGF2BP1 recognizes the m6A modification site of DNMT3B mRNA, thus stabilizing DNMT3B mRNA and promoting the occurrence and development of GC. Therefore, the relationship between m6A modification and DNMT3B expression should be further investigated in future research. We detected the expression of YTHDF1 or IGF2BP1 in normal epithelial and tumor cell lines. YTHDF1 was highly expressed in cancer cells, while IGF2BP1 did not exhibit statistically significant differences (Figures 5F, G). To further investigate the molecular mechanism by which YTHDF1 regulates DNMT3B, YTHDF1 was overexpressed and knocked down in AGS and BGC-823 cells. As expected, DNMT3B exhibited changes consistent with those of YTHDF1 (Figures 5H–J). Similarly, we also examined the expression changes of DNMT3B after overexpression or knockdown of IGF2BP1. The results showed that IGF2BP1 did not significantly affect the mRNA expression levels of DNMT3B (Supplementary Figure S5A). Furthermore, by overexpressing or knocking down the m6A methyltransferase METTL3 to alter the overall m6A modification level in cells, we examined nine hub genes, including DNMT3B. The results showed that an increase in the overall m6A modification level upregulated ZFP64, TOMM34, DNMT3B, TM9SF4, whereas a decrease downregulated DNMT3B (Supplementary Figure S5B, S5C).
To validate the association between YTHDF1 and DNMT3B mRNA, RIP and MeRIP assays were conducted. Two pairs of primers were designed respectively, according to the two highest confidence m6A methylation sites predicted by SRAMP. Subsequently, primer #1 and primer #2 were identified by qPCR (Figure 5K). Then, a direct interaction between YTHDF1 and DNMT3B mRNA was validated by RIP-qPCR with anti-YTHDF1 antibody (Figure 5L). Then we detected the DNA methylation levels in cells overexpressed or knocked down YTHDF1 using 5mC dot blot. We also performed methylene blue staining as a nucleic acid loading control. Accompanied by the overexpression of YTHDF, DNMT3B protein also increases, leading to DNA methylation levels increasing. Similarly, knocking down YTHDF1 also led to a decrease in DNA methylation levels in AGS and BGC-823 cell lines (Figure 5M). Collectively, YTHDF1 promotes DNMT3B protein expression by a direct interaction with DNMT3B mRNA, which resulting a crosstalk between RNA methylation and DNA methylation in GC.
3.5 YTHDF1 promotes the progression of GC by regulating DNMT3B
Studies have shown that both YTHDF1 and DNMT3B facilitate the tumorigenesis in GC (Wong et al., 2019; Chen et al., 2021; Bai et al., 2022). Consistent with previous reports, the overexpression of YTHDF1 and DNMT3B, respectively, promotes the proliferation of GC cells AGS and BGC-823. Simultaneously, knocking down YTHDF1 results in an inhibition of GC cells (Figures 6A, B). The efficiency of gene overexpression or knockdown is depicted on the right side of the figure. EdU incorporation assays were conducted in AGS and BGC-823 cells transfected with the vector, YTHDF1, DNMT3B, as well as two different siRNAs targeting YTHDF1 or DNMT3B, to assess DNA proliferation. Both YTHDF1 and DNMT3B promoted GC cell proliferation, and the cell proliferation promoted by YTHDF1 overexpression can be reversed by knocking down DNMT3B. On the contrary, knocking down YTHDF1 also attenuated the cell proliferation promotion ability of DNMT3B (Figure 6C).
[image: Composite image showing six panels labeled A to F, illustrating scientific graphs and images. Panels A and B display line graphs comparing data among different groups over time, with corresponding bar graphs and molecular diagrams relating to DNMT3B and YTHDF1. Panels C to F are composed of microscopy images showing fluorescent-stained samples alongside bar graphs showing quantified data. The panels analyze effects on cell proliferation, migration, and specific molecular expressions across different experimental conditions. Each panel provides a comparison between a vector control and other treated groups.]FIGURE 6 | YTHDF1 promotes the occurrence and development of gastric cancer by regulating DNMT3B. (A,B) Growth curve analysis was performed in AGS cells transfected with indicated genes; (C) EdU incorporation assays were performed in AGS and BGC-823 cells transfected with indicated genes; (D) Migration assays assay; (E) Invasion assays; (F) One step TUNEL apoptosis assays. Error bars represent the mean ± SD of three independent experiments. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; two-tailed unpaired t-test.
To further validate the functions of YTHDF1 and DNMT3B in GC, we conducted migration and invasion experiments in AGS and BGC-823 cells. The findings demonstrate that overexpression of YTHDF1 and DNMT3B enhances the migration and invasion of GC cells. Moreover, the migration and invasion abilities promoted by YTHDF1 overexpression can be reversed by knocking down DNMT3B, and knocking down YTHDF1 also reduced the migration and invasion promotion by DNMT3B (Figures 6D, E). To investigate the effects of YTHDF1 and DNMT3B on cell apoptosis, we stained cells transfected with the vector, YTHDF1, DNMT3B, as well as two different siRNAs targeting YTHDF1 or DNMT3B with dUTP labeled with a red fluorescent probe Cyanine 3. The results showed that both YTHDF1 and DNMT3B can inhibit cell apoptosis, while knocking down YTHDF1 or DNMT3B can accelerate cell apoptosis caused by YTHDF1 and DNMT3B (Figure 6F). Thus, YTHDF1 promotes the progression of GC by upregulating DNMT3B, and inhibiting DNMT3B contributes to reduce the tumor promotion ability of YTHDF1.
4 DISCUSSION
Cancer progression, driven by genetic and epigenetic aberrations, has received considerable attention. Our exploration of the role of m6A modification in GC has further underscored the functions of m6A methylation factors, both in the realm of genetic modulation and their interplay with the tumor microenvironment. Controlled by methylation regulators, m6A RNA modification patterns influence many key oncological processes, such as tumor proliferation, differentiation, and metastasis, with profound implications (Wang T. et al., 2020; Jiang et al., 2021). Analyzing m6A modification patterns in GC samples revealed distinct subgroups for diagnosis, guiding therapeutic strategies and ensuring personalized patient care.
Our findings highlight the critical role of immune cell infiltration in GC prognosis. The differences in prognosis between the high- and low-infiltration cohorts highlight the crucial influence of the TME on disease outcomes. This is congruent with current oncology paradigms that emphasize the significance of immune-tumor interactions. The identification of the “green” module via WGCNA showcases a direct association between the m6A RNA methylation cluster and immune infiltration patterns. This intersection of epigenetic regulation and immune dynamics underscores the holistic nature of cancer progression.
Establishing a risk prediction model based on a selected group of hub genes has potential clinical utility. Upon validation in larger and more diverse patient cohorts, this model could emerge as a reliable tool for risk stratification in patients with GC. The nine hub genes used to establish the risk prediction model are vital for cancer progression. ZFP64 enhances the activation of the p65 subunit, thereby promoting the production of pro-inflammatory and type-I interferons by Toll-like receptor-activated macrophages (Wang et al., 2013). Overexpression of ZFP64 promotes the proliferation of lung adenocarcinoma cells through activating the Notch pathway and is associated with poor prognosis (Jiang et al., 2020). ZFP64 functions as a transcription factor that promotes the expression of Galectin-1 (GAL-1), contributing to stem-cell-like properties and an immunosuppressive tumor environment. This activity enhances resistance to the chemotherapy drug nab-paclitaxel, playing a key role in the progression and chemoresistance of gastric cancer (Zhu et al., 2022). CD4+ T cells specifically induce the expression of mitochondrial TOMM34 (Gerner et al., 2019), and the role of TOMM34 in cancer cell growth suggests its potential in anti-cancer drug development or colorectal cancer diagnosis (Shimokawa et al., 2006). TOMM34 was identified as differentially expressed between intestinal-type and diffuse-type gastric cancer, suggesting it plays a role in the distinct molecular pathways of these cancer subtypes. This involvement may relate to processes important in cancer progression, such as adaptation to stress and resistance to therapy (Tanabe et al., 2020). DNMT3B is widely overexpressed in non-small cell lung cancer (NSCLC) and may be a potential molecular biomarker for personalized therapy (Samakoglu et al., 2012). DNMT3B influences tumor development through its enzymatic activity. Specifically, S-nitrosylation of DNMT3B reduces its enzymatic activity, leading to an abnormal upregulation of the Cyclin D2 gene (CCND2), which is necessary for the proliferation of certain tumor cells (Okuda et al., 2023). In gastric cancer, DNMT3B promotes tumor progression by methylating the MYH11 gene, thereby decreasing its expression and allowing the increase of TNFRSF14, which supports cancer development. This highlights DNMT3B as a potential target for cancer therapy (Wang et al., 2021). CSTF1, pivotal in DNA damage repair, is linked to increased breast cancer risk in BRCA2 mutation carriers due to CSTF1 mutations (Paolillo et al., 2015). In the study on gastrointestinal stromal tumors (GISTs), CSTF1 was involved in a fusion with Aurora kinase A (AURKA). This suggests that CSTF1, through this fusion, could play a role in the progression or behavior of GISTs, although specific mechanisms were not detailed (Denu et al., 2024). TM9SF4, primarily involved in cell adhesion and innate immunity, is overexpressed in a small subset of patients with metastatic melanoma, acute myeloid leukemia, and myelodysplastic syndromes (Paolillo et al., 2015). TM9SF4 was identified as a key gene in the regulatory network affecting response to cisplatin and fluorouracil treatment. Its specific role isn’t detailed, but its prominence in the network suggests it may influence mechanisms underlying chemoresistance (Sun et al., 2021). The interaction of Tti1 with mTOR in both mTORC1 and mTORC2 complexes regulates autophagy suppression (Kaizuka et al., 2010). ACTR5 has a pro-tumorigenic effect in neuroblastoma, and the knockdown of ACTR5 reduces cell proliferation and differentiation abilities (Veschi et al., 2017). STK35 regulates apoptosis and proliferation in osteosarcoma cells in osteosarcoma, exhibiting oncogenic properties (Wu et al., 2018). STK35 has been linked to immune signatures in gastric cancer, suggesting it may impact the immune response and effectiveness of immunotherapy. This connection highlights STK35 as a potential target for improving treatment outcomes (He and Wang, 2020). SS18L1 is associated with the occurrence and development of endometrial serous carcinoma (Saglam et al., 2020). SS18L1 has been identified as having copy number variations significantly linked to tumor metastasis. This association suggests that SS18L1 may influence the spread of gastric cancer, making it a potential marker or target for therapeutic strategies (Zhu et al., 2020). While these genes are implicated in tumor development and progression, their specific mechanisms in GC remain incompletely understood. Therefore, the nine hub genes identified through integration of m6A modification characteristics and the TME may play important roles in the prognostic assessment of patients with GC.
Furthermore, we found that DNMT3B was positively correlated with IGF2BP1 and YTHDF1, upon evaluating the correlation of these 37 hub genes with m6A methylation regulators and the proportion of immune-infiltrating cells. In a series of molecular experiments and cellular phenotypic validations, we demonstrated that DNMT3B and YTHDF1 cooperate to promote the proliferation, invasion, and metastasis of GC cells. YTHDF1 plays an important role in GC progression, and its functions and molecular mechanisms have been extensively investigated. High expression of YTHDF1 is associated with more aggressive tumor progression and poor prognosis in GC. Engineered small extracellular vesicles targeting YTHDF1 efficiently suppress GC progression and metastasis through epigenetic and immune modulation (You et al., 2023). The loss of YTHDF1 in gastric tumors potentiates the antitumor immune response by promoting the infiltration of mature dendritic cells (Bai et al., 2022). Elevated YTHDF1 expression also acts as a shield against the antitumor effects of chemotherapy and immunotherapy (Chen et al., 2022). Moreover, YTHDF1 overexpression holds clinical diagnostic significance across various cancers, including NSCLC, breast cancer, cervical cancer, GC, and colorectal cancer (Zhu Y. et al., 2023). YTHDF1 is significantly associated with metastatic gene signatures through ARHGEF2 translation and RhoA signaling activation in colorectal cancer (Wang et al., 2022). YTHDF1 directly targets p65 mRNA, promoting p65 protein overexpression without altering mRNA levels in Ythdf1-KO cells (Bao et al., 2023). YTHDF1 promotes cancer stem cell renewal and resistance to tyrosine kinase inhibitors in hepatocellular carcinoma (HCC), which enhances the stability and translation of m6A-modified NOTCH1 mRNA, leading to increased expression of NOTCH1 target genes. YTHDF1 drives HCC stemness and drug resistance, making it a potential therapeutic target for HCC treatment (Zhang et al., 2024). YTHDF1 promotes migration, invasion, and osteoblast adhesion and induces osteoclast differentiation of cancer cells in vitro and in vivo by inducing EZH2 and CDH11 translation (Wang et al., 2024).
In conclusion, our study highlights the intricate ties between m6A RNA methylation and TME dynamics in GC. As we move toward precision medicine, such insights will be pivotal in driving therapeutic innovations and improving patient outcomes. In addition, utilizing MeRIP and RIP experiments, we elucidated the molecular mechanism underlying the regulation of DNMT3B expression by m6A “reader”.
YTHDF1 and explored the crosstalk between m6A modification and 5mC modification in GC cells. Although our findings are promising, further investigations are essential to fully understand the mechanistic underpinnings and translate these insights into applicable clinical strategies.
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Background: Numerous studies have demonstrated a link between epigenetics and CRC. However, there has been no systematic analysis or visualization of relevant publications using bibliometrics.Methods: 839 publications obtained from the Web of Science Core (WoSCC) were systematically analyzed using CiteSpace and VOSviewer software.Results: The results show that the countries, institutions, and authors with the most published articles are the United States, Harvard University, and Ogino and Shuji, respectively. SEPT9 is a blood test for the early detection of colorectal cancer. Vitamin D and gut microbiota mediate colorectal cancer and epigenetics, and probiotics may reduce colorectal cancer-related symptoms. We summarize the specific epigenetic mechanisms of CRC and the current existence and potential epigenetic drugs associated with these mechanisms. It is closely integrated with clinical practice, and the possible research directions and challenges in the future are proposed.Conclusion: This study reviews the current research trends and hotspots in CRC and epigenetics, which can promote the development of this field and provide references for researchers in this field.Keywords: colorectal cancer, epigenetics, mechanisms, drug therapies, bibliometrics
1 INTRODUCTION
Colorectal cancer (CRC) remains the leading cause of cancer-related death worldwide. CRC is the third most common cancer worldwide, with a mortality rate of up to 35% in the United States, 45% in Europe, and 47.8% globally (Bray et al., 2018; ECIS, 2019; Siegel et al., 2019). Surgery has become an important treatment for CRC, however, surgical trauma and follow-up care are inconvenient for patients (Kuipers et al., 2015). Therefore, a clinical incision is needed to find an effective treatment for patients with CRC. Epigenetics mediate the development of CRC by altering the expression of heritable genes (Kawakami et al., 2015). Relevant studies have clarified the link between certain CRC-specific genes and epigenetic changes (Dienstmann et al., 2017). For example, microsatellite instability (MSI), in which promoter hypermethylation causes epigenetic changes in genes, is a marker for CRC molecular subpopulations (Herman et al., 1998). Hypomethylation in the human body is also an important factor that leads to chromosome instability in CRC (Suter et al., 2004). In addition, microRNAs (miRNAs) block protein expression in almost all CRC stages and affect many cancer-related pathways (Strubberg and Madison, 2017). For example, miR-143 blocks cell growth through direct targeting and has been found to be frequently downregulated in gene expression of CRC (Chen et al., 2009). Therefore, the study of CRC and epigenetics has deepened our understanding of the pathophysiological mechanisms of CRC, while providing new ideas and directions for the search for biomarkers and therapeutic targets for CRC. Researchers are interested in this area, and an increasing number of specialized studies are emerging. However, The relationship between CRC and epigenetics and the epigenetic drugs associated with CRC have not been systematically bibliometrically and visually analyzed. In-depth bibliometric research of countries, institutions, journals, authors, citations, and keywords for publications relevant to the field is necessary. Bibliometric analysis uses mathematical and statistical methods to quantitatively analyze research priorities and hotspots within a research field and to assess the scientific productivity of countries, institutions, and researchers (Jiang et al., 2023). Therefore, it describes the current research focus, hotspots, and future research development. This study provides an in-depth review of the current status of CRC and epigenetic research between 2011 and 2023, filling a gap in the bibliometric analysis of the literature in this field. CiteSpace and VOSviewer were used for visual analysis of the literature.
2 METHODS
2.1 Data source and search strategy
We obtained the literature we needed from the Web of Science Core Collection (WOSCC), which is limited to “English” papers published between 1 January 2011, and 31 December 2023. The Article type is limited to “Article” and “Review.” We searched for topics and free words related to CRC and epigenetics. Finally, the data are exported in plain text format with “full records and citations.” We used the same method to retrieve subject words and free words of epigenetic drugs for CRC. A literature search was conducted independently by two researchers on 12 January 2024. Figure 1 shows the literature search process in this field.
[image: Flowchart illustrating search strategies for epigenetic and colorectal cancer studies from the Web of Science core collection. Starting with 879 results, studies are filtered by years 2011 to 2023, language (English), and publication type (article or review article). This results in 839 included studies: 530 articles and 309 review articles. The chart concludes with analysis tools: Citespace (country, institution, author, keywords, cited reference) and Vosviewer (author, keywords, co-cited reference).]FIGURE 1 | Document retrieval flow chart.
2.2 Software for bibliometric analysis and visualization analysis
Microsoft Office Excel 2016, CiteSpace.5.8.R5, and Vosviewer1.6.19 were used in this study. Microsoft Office Excel 2016 was used to create statistics on the annual publication trends, data sorting, and tables. CiteSpace 5.8.R5 was used to analyze countries, institutions, authors, highly cited references, keyword frequency and centrality, and keyword bursts. Authors, journals, and co-citations were analyzed using Vosviewer 1.6.19. In this study, the specific parameters of CiteSpace were set and the results were explained (Tian et al., 2023). The time frame of The study period was from 2011 to 2023. The author, institution, country, and keywords corresponded to different node types.
3 RESULTS
3.1 Publishing trend analysis
This study included 839 relevant publications on CRC and epigenetics. From 2011 to 2023, although the number of publications varied from year to year, the overall trend in this field of research was upward, with a steady increase in the cumulative number of publications, as shown in Figure 2. We used an exponential growth function to assess the correlation between the cumulative number of publications per year and year. There was a strong correlation between the number of publications and the publication year (R2 = 0.9978). Using the exponential function, we can calculate that the cumulative number of publications in 2024 may be 898. This strong association indicates that CRC and epigenetics are receiving increasing academic attention. Thus, the study of CRC and epigenetics is attracting increasing interest from researchers. Similarly, Supplementary Figure S1 showed that the annual cumulative number of articles on epigenetic drugs for CRC has also been increasing (R2 = 0.987), which has received continuous attention from the scientific community.
[image: Line and bar graph showing the annual and cumulative number of publications from 2011 to 2023. Annual publications are indicated by a line, showing a steady increase. The cumulative publications are represented by bars, rising significantly from 44 in 2011 to 839 in 2023. A linear trendline is included with the equation y = 67.599x - 48.5 and R² = 0.9978.]FIGURE 2 | Published Trend Maps on CRC and epigenetics.
3.2 Publications of countries/regions, institutions, and authors
We investigated the number of publications on CRC and epigenetics-related research, and the networks of collaboration between countries, institutions, and authors (Table 1). The larger the node in the diagram, the greater the number of posts. The purple outer circle indicates that the centrality value of the medium was higher than 0.1.
TABLE 1 | Countries/regions, institutions, and authors ranked by publications and centrality.
[image: Table displaying rankings of countries/regions, institutions, and authors by publications and centrality. The United States leads in both categories, followed by People's Republic of China and Germany. Key institutions include Harvard University and Harvard Medical School. Top author is Ogino, Shuji. Centrality scores range from 0.39 to 0.00.]3.2.1 Analysis of national publications and collaborations
This study analyzed the number of publications in different countries (Figure 3), centrality (Figure 4), and synergy networks between CRC and epigenetic-related research (Figure 5). The results of the study in Figures 3, 4 show that the United States (246 publications, 30.41%), PEOPLES R CHINA (205 publications, 25.34%), ITALY (71 publications, 8.78%), JAPAN (55 publications, 6.80%), and SPAIN (48 publications, 5.93%) had the highest number of published papers. In addition, the UNITED STATES (0.39), GERMANY (0.25), ENGLAND (0.19), PEOPLES R CHINA (0.16), and SPAIN (0.16) are the top five countries with the strongest country centralities in the field, representing their close cooperation with other countries. The number of publications and country-specific information on centrality are presented in Table 1.
[image: Pie chart displaying the number of articles published by various countries. The USA leads with 246 articles, followed by China with 205, and Japan with 191. Other countries like England, Iran, and Germany have significantly fewer publications, ranging from 71 to 24 articles.]FIGURE 3 | Number of publications by countries.
[image: Bar chart titled "The centrality of the country" displays centrality values for various countries. USA has the highest centrality at approximately 0.4, followed by Germany around 0.25, and England close to 0.2. Other countries like China, Spain, Sweden, Italy, Japan, India, and Australia have progressively lower values below 0.15.]FIGURE 4 | Intermediary centrality of countries.
[image: Graphical visualization of countries connected by lines, indicating relationships or interactions. The United States and China are prominently highlighted with larger circles. Other countries like Spain, Germany, and Italy are also shown with varying circle sizes. A color gradient from yellow to purple indicates an additional data layer or metric.]FIGURE 5 | Collaborative networks of countries.
3.2.2 Analysis of institutional publications and collaborations
Figure 6 shows the number of publications from institutions, Figure 7 shows the centrality between institutions, and Figure 8 illustrates the network of collaboration between institutions. As shown in Figure 6, Harvard University (29 publications, 16.96%), Harvard Medical School (20 publications, 11.70%), Harvard T.H. Chan School of Public Health (19 publications, 11.11%), Johns Hopkins University (19 publications, 11.11%), and Brigham and Women’s Hospital (18 publications, 10.53%). The world’s top cutting-edge research institutions have contributed the largest amount of literature in this field, indicating that this research field is at the forefront of world research and has attracted wide attention from scholars around the world. In addition, the University of Texas System (0.13) and Brigham and Women’s Hospital (0.12), with institutional center values greater than 0.1, are the most closely aligned institutions in their field. Specific information regarding the number of publications and institutions is presented in Table 1.
[image: Pie chart showing the number of articles published by various institutions. Harvard University leads with twenty-nine articles. Other notable institutions include CIBER, Johns Hopkins, and NIH, each with around twelve to nineteen articles. Various colors represent different institutions.]FIGURE 6 | Number of publications by institution.
[image: Bar chart showing the centrality scores of various institutions. University of Texas System has the highest centrality at approximately 0.14, followed by Brigham and Women's Hospital around 0.09. Other institutions like Johns Hopkins University and Zhejiang University have lower scores.]FIGURE 7 | Intermediary centrality of institutions.
[image: Network visualization of academic institutions related to cancer research. Prominent nodes labeled include "Harvard University," "Johns Hopkins University," and "Helmholtz Association," among others. Nodes are color-coded, with connections illustrating collaboration and influence.]FIGURE 8 | Collaborative networks of institutions.
3.2.3 Analysis of publications and cooperation among authors
Figure 9 shows the number of publications by the authors, while Figure 10 illustrates the network of collaboration between authors. As shown in Figure 9, Ogino, Shuji (9 publications, 27.27%), Coppede Fabio (6 publications, 18.18%), Nishihara, Reiko (6 publications, 18.18%), Ahuja, Nita (6 publications, 18.18%), and Goel, Ajay (6 publications, 18.18%) were the top five authors with the most published articles in this field. Cooperation among authors was not high, except for Ogino, Shuji (0.1), Alwers, Elizabeth (0.1), Akimoto, Naohiko (0.1), Amitay, and Efrat L (0.1), whose centrality was 0.1, and other authors whose centrality was 0. Detailed information is provided in Table 1. Governments and institutions should promote cooperation among authors and increase a large amount of financial support to promote the development of this research field.
[image: Pie chart illustrating the number of articles published by various authors. Each segment represents a different author with distinct color coding. Authors with most articles, six each, include Ogino, Shuji; Ahuja, Nita; and Linghu, Enqiang. The segment with fewest articles belongs to Copede, Fabio, two. Other authors have published three to four articles each.]FIGURE 9 | Number of publications by authors.
[image: Network visualization showing interconnected clusters of nodes with varying colors and sizes, representing relationships or collaborations between them. Clusters are spread across the image, and the visualization is created using VOSviewer.]FIGURE 10 | Collaborative networks of authors.
3.3 Research hot spots and trend analysis
3.3.1 Analysis of highly co-cited references
We use VOSviewer to study the co-cited references in this field, and the total number of articles was 52,024 (Table 2). The number of references generated in the analysis was reduced to 48, when the minimum reference was set to 26. Figure 11 shows this diagram. The highly co-cited references in the network map can be divided into four groups, each represented by a different color: red, green, blue, and yellow. The literature in the red cluster is mainly a review of CRC and epigenetics, mainly showing how epigenetics is involved in the latest progress in the early stage of cancer and discussing the impact of epigenetics on cancer control (Esteller, 2008; Jones and Baylin, 2007; Hanahan and Weinberg, 2011). The green cluster of literature focuses on the mechanism between CRC and epigenetics, including the abnormal methylation of CRC genes and the discovery of CpG island methylation phenotypes (CIMP) (Kim et al., 2010; Weisenberger et al., 2006). Emerging biomarkers have also been identified in CRC epigenetics (Okugawa et al., 2015; Goel and Boland, 2012). The literature in the blue cluster is dominated by genomic analyses of CRC, in which three-quarters of the genes are accompanied by high MSI and hypermethylation (Hinoue et al., 2012; Kawakami et al., 2015). The yellow cluster literature mainly focuses on DNA methylation analysis of SEPT9 in plasma, which is suitable for epigenetic detection of CRC and mediates the early detection of CRC (Grützmann et al., 2008; deVos et al., 2009; Church et al., 2014). Among the top ten co-cited literature, we found that basic research on epigenetics and CRC mainly focused on related mechanisms, and the top three cited studies were mainly related to CIMP (Toyota et al., 1999; Lao and Grady, 2011), which is the basis of MSI. CRC is closely associated with BRAF mutations (Weisenberger et al., 2006).
TABLE 2 | Top 10 highly co-cited references.
[image: Table listing co-cited references in colorectal cancer research, ranked by citation. Top entry is "CpG island methylator phenotype in colorectal cancer" from PNAS with 98 citations. Other journals include Nature Genetics and Cell, with citations ranging from 88 to 50.][image: Network graph with nodes and edges in various colors, representing connections between different entities. Red, green, blue, and yellow clusters depict groups of interconnected nodes, visualizing relationships and data flow.]FIGURE 11 | Cluster mapping of highly co-cited literature.
3.3.2 Analysis of highly cited references
The highly cited literature embodies both academic and professional significance. We analyzed the top 10 citations in the field of CRC and epigenetic research. The two most cited articles were published in the journal NAT REV GASTRO HEPAT (IF = 65.1), as shown in Table 3. One of the top 10 cited reference articles is Lao and Grady (2011) titled “Epigenetics and CRC”, a publication that discusses the relationship between epigenetics and CRC. In 2020, Jung et al. (2020) published the most cited article describing epigenetic modifications and regulators of CRC, which are important biomarkers for CRC.
TABLE 3 | Top 10 highly cited references.
[image: Table listing high-cited references on colorectal cancer research. It includes columns for Item, Rank, Title, Journal, and Citation. Titles range from epigenetics and molecular characterization to cancer statistics. Journals include Nature Reviews Gastroenterology and Hepatology, The New England Journal of Medicine, Genome Research, and Nature. Citations range from 19 to 36.]3.3.3 Analysis of keyword co-occurrence, burst, and cluster
High-frequency keywords indicate current research trends in this field. Table 3 shows the details of the keyword co-occurrence. The size of the nodes in the graph corresponds to the frequency of keywords. The keywords used to extract the keywords of the most common co-occurrence graph and the detailed information are as follows: CRC, DNA methylation, expression, epigenetics, colon cancer, gene expression, breast cancer, MSI, methylation, and promoter methylation (Figure 12). Table 3 shows the data of specific terms with a high ranking of keyword centrality: hypermethylation, tumor suppressor, gene expression, MSI, gastric cancer, cells, cell proliferation, expression, methylation, and gene. Through keyword co-occurrence and keyword centrality, we can see that current research focuses on the mechanism between CRC and epigenetics (including DNA methylation, gene expression, and MSI). From the keyword co-occurrence map of CRC epigenetic drugs, we found that 5-fluorouracil (5-FU), irinotecan, and oxaliplatin have received much attention from scientists (Supplementary Figure S2; Supplementary Table S1).
[image: Network visualization of terms related to epigenetics, DNA methylation, and colorectal cancer. Nodes are color-coded by cluster: green for DNA methylation, red for colorectal cancer, and blue for related topics, with lines indicating connections.]FIGURE 12 | Keyword co-occurrence map of CRC and epigenetics.
In addition, CiteSpace uses an algorithm to cluster keywords close to the research field. The higher the cluster ranking, the more keywords contained in the cluster. Detailed information regarding keyword clustering is presented in Table 4; Figures 13. Figure 14 shows the timeline of the keyword clustering. A value greater than 0.6 in the silhouette table indicates the validity of the clustering. The study identified 14 clusters known as colon cancer, histone modification, histone modifications, epithelial and mesenchymal transition, nucleosomes, epigenetics, DNA methylation, tumor microenvironment, tumor markers, inhibitors, inflammation, vitamin D, gastrointestinal cancers, and tumor suppressors. Keyword clustering suggests that the mechanisms between CRC and epigenetics and how vitamin D mediates them are the focus of current research.
TABLE 4 | Top 20 keywords in terms of frequency and centrality.
[image: A table displays ranked keywords, their frequencies, and centrality values related to cancer research. Top keywords by frequency include "Colorectal cancer" and "DNA methylation". Notable keywords by centrality are "Hypermethylation" and "Tumor suppressor". Frequencies range from 36 to 592, and centrality values from 0.06 to 0.13.][image: Word cloud visualization showing various scientific terms clustered by relevance: "Vitamin D," "Histone Modification," "Gastrointestinal Cancers," "DNA Methylation," "Tumor Marker," "Tumor Microenvironment," "Inflammation," "Epigenetics," "Colon Cancer," "Inhibitor," "Tumor Suppressor," among others. Clusters are colored differently, and a legend is on the left indicating relative importance by color intensity.]FIGURE 13 | Keyword cluster map of CRC and epigenetics.
[image: Bubble chart depicting the landscape of colorectal cancer research. The chart features various colored bubbles along horizontal lines representing different research categories like "colons cancer" and "histone modification." Bubble size indicates research focus intensity. A color gradient from yellow to purple shows additional data significance, with a legend on the left side.]FIGURE 14 | Keyword clustering timeline map of CRC and epigenetics.
Keyword burst refers to a concentration of research content that appears over a period of time, indicating the future direction of research. Figure 15 and Table 5 show the top 25 keyword bursts in the study area, and the red line represents the duration of the keyword burst. In recent years, the keywords focus on “in vitro,” “mechanism,” “gut microbiota,” and “upregulation.” This means that how the gut microbiota mediates epigenetics and CRC may become a trend for future research in this field.
[image: Bar chart displaying the top 25 keywords with the strongest citation bursts from 2011 to 2023. Each keyword has a burst strength, with a visible bar indicating active years. Notable keywords include "tumor suppressor genes," "histone deacetylase inhibitors," and "biomarkers," with varying strengths and durations. Red bars indicate the beginning of a burst, highlighting significant interest in these topics over time.]FIGURE 15 | Keyword brusts map for CRC and epigenetics.
TABLE 5 | Keyword cluster analysis.
[image: Table showing clusters with attributes: Cluster number, Size, Silhouette score, Mean year, Label (LLR), and Other keywords. Cluster labels include topics like colon cancer, histone modification, and inflammation. Keywords encompass terms related to cancer, gene expression, and epigenetics, among others.]4 DISCUSSION
Epigenetics is crucial in CRC and is considered by researchers to be an important gene target for CRC (Dienstmann et al., 2017; Kawakami et al., 2015). This study analyzed publication trends, countries, institutions, authors, research priorities, and hotspots in order to improve our understanding of the role of epigenetics in CRC and promote innovative treatment strategies for CRC.
4.1 General information analysis
This study collected nearly 12 years of WoSCC data from this research field for relevant analysis. The cumulative number of publications has grown steadily over time, indicating an escalating interest of the scientific community in this area of research. The United States published the most papers (246 papers), followed by China and Italy. This shows that the United States has become a research powerhouse in this field because of its strong economic and policy support for related fields. As a developing country, China is prominent in the field of CRC and epigenetic research. This also shows the growing importance of cancer in developing countries. Harvard University, Harvard Medical School, and Harvard T.H. Chan School of Public Health are the top three institutions in this field, indicating that this research field is supported by the world’s most cutting-edge technology. Ogino et al., the most widely published author in the field, classified CRC into molecular categories, including KRAS, BRAF, MSI, and CIMP (Ogino et al., 2011).
Bibliometric analysis can assess collaboration between authors, institutions, and countries in a particular research area (Tian et al., 2023). Centrality represents the degree of cooperation among countries, institutions, and authors. The United States, Germany, United Kingdom, China, and Spain are the top five countries for centrality, representing the strongest collaboration in the field of research. Collaboration between institutions shows that the University of Texas System, Brigham and Women’s Hospital, Albert Einstein College of Medicine, Ruprecht Karls University Heidelberg, and Helmholtz Association have the closest cooperation and highest central position. Although Harvard University is the research institution with the largest number of publications in this field, it lacks cooperation with other institutions and should strengthen cooperative research in this area. Ogino, Shuji, Alwers, Elizabeth, Akimoto, Naohiko, Amitay, and Efrat L have connections with other researchers working together in this field. In addition, the centrality of the remaining authors is zero, which means that the institution and the state should develop corresponding policies to strengthen cooperation among authors. We believe that cooperation between relevant national institutions and personnel will contribute to the long-term development of this field of research.
4.2 Research focus and hotspot
The hot spots and frontiers of the research field are reflected in the bibliometrics. Based on the analysis of highly co-cited references, highly cited references, and keyword co-occurrence, the research focus of CRC and epigenetics is closely related to its mechanism. Therefore, we should focus on the CIMP and MSI. At the same time, we found that DNA methylation analysis of SEPT9 in plasma is helpful for the diagnosis and detection of CRC. Interestingly, in the keyword cluster analysis, we found that scholars were interested in vitamin D-mediated epigenetics and CRC. In addition, keyword burst analysis shows that scholars have paid increasing attention to how the gut microbiota mediates epigenetics and CRC in recent years, which may be the direction of future research in this field.
4.2.1 Mechanisms of CRC and epigenetics—CIMP and MSI
CRC poses a serious threat to human health because of its high morbidity and mortality (Wei et al., 2020). Accumulation of epigenetic changes leads to carcinogenesis of the normal glandular epithelium, which leads to the occurrence and development of CRC (Fearon and Vogelstein, 1990). Epigenetic changes can inactivate DNA repair and cancer suppressor genes (Bonasio et al., 2010). An increasing number of studies have shown that epigenetic changes, such as DNA methylation, histone modification, nucleosome localization, and non-coding RNA, play key roles in the occurrence and development of CRC (Okugawa et al., 2015). In recent years, research on DNA methylation modification has received extensive attention. DNA methylation occurs at the fifth carbon position of CpG dinucleotides of cytosine residues. Approximately 60%–80% of CpG cytosine methylation occurs in human cells. DNA methylation rich in cytosine bases in cg sequences, called CpG islands, is primarily located near the transcriptional start sites of compositional unmethylated promoter genes (Goel and Boland, 2012). Toyota et al. first proposed a new CIMP-positive subgroup of CRC in 1999 that showed a wide range of DNA hypermethylation in CRC tissues (Toyota et al., 1999). CIMP is now recognized as the initial event in the development of CRC-serrated tumors and is a distinct molecular subtype of sporadic CRC (Advani et al., 2019). The CIMP subtype is characterized by a high frequency of methylation of genes (Toyota and Issa, 1999). CIMP promotes hypermethylation of tumor suppressor genes through DNA methyltransferase (DNMT), leading to transcriptional inactivation of tumor suppressor genes and the chronic development of CRC (Miranda Furtado et al., 2019). A meta-analysis showed that CIMP was significantly associated with the prognosis of CRC (Juo et al., 2014). In the past 20 years, CIMP has been considered a popular research area for CRC.
The Cancer Genome Atlas (TCGA) research network conducted an in-depth analysis of 224 pairs of CRC and normal tumor genomes and found that 77% of CRCS tumors had high-frequency MSI (MSI-H) (Cancer Genome Atlas Network, 2012). DNA mismatch repair (dMMR) defects are present in approximately 12%–15% of CRC and manifest as MSI. dMMR/MSI CRC develops from germline mutations in MMR genes (MLH1, MSH2, MSH6, PMS2) and has unique features, including a preference for the proximal colon, poor differentiation, and abundance of tumor-infiltrating lymphocytes (Kawakami et al., 2015). Microsatellites consist of single nucleotide, dinucleotide, or high-order nucleotide repeat sequences. These gene sequences are most susceptible to mutations that lead to the development of MSI (Jiricny, 2006). The MSI phenotype mediates the mutation of CRC genes, particularly BRAF and MRE11A, as well as other genes such as KRAS, of which clinical researchers are increasingly interested in the genetic mutation of CRC, largely because of its important role in the development of tumors and its potential therapeutic targets and value (Vogelstein et al., 1989). In MMR-defective CRC, multiple genes are mutated in MSI that are associated with cell functions and pathways, such as DNA repair proteins, growth factors, pro-apoptotic factors, mismatch repair proteins, and histone-modifying factors (Duval and Hamelin, 2002). Therefore, these genes and pathways could serve as potential drug targets and biomarkers. In terms of the prognosis of CRC, several studies and meta-analyses have confirmed that MSI tumors are not prone to spread and metastasis, and the prognosis is good (Gryfe et al., 2000). Therefore, there may be a clinical need to consider incorporating MSI testing into routine CRC testing to inform patient prognosis and guide treatment decisions.
The discovery of epigenetic mechanisms of MSI and CIMP has led to new therapeutic targets and drugs for CRC. 5-FU, irinotecan, and oxaliplatin are representative epigenetic drugs. Adjuvant chemotherapy with 5-FU can provide survival benefits in CRC patients with CIMP positive status (Van Rijnsoever et al., 2003). 5-FU disrupts DNA replication mainly by inhibiting thymidylate synthase (Weng and Huang, 2024). However, a study have shown that 5-FU has the characteristics of low treatment rate, large individual differences and susceptibility to drug resistance, and the obvious individual epigenetic differences may be one of the reasons (Vodenkova et al., 2020). Irinotecan appears to be a potential biomarker for CRC chemotherapy in CIMP positive status. Irinotecan activates multiple cancer cell signaling pathways through demethylation, increasing efficacy against CRC and reducing toxicity in humans (Tsai et al., 2012; Sharma et al., 2017). The main side effects of irinotecan in CRC patients include: bradycardia, sweating, tearing, abdominal pain, and diarrhea (divided into early-onset and late-onset diarrhea) (Tsuboya et al., 2019). Oxaliplatin has been shown to be associated with the expression of MSI-enriched genes in CRC (Condelli et al., 2021). Oxaliplatin achieves anti-tumor effects by forming DNA adducts (Kweekel et al., 2005). Peripheral neurotoxin is the main adverse reaction of oxaliplatin, acute peripheral neurotoxin symptoms are cold sensitivity and limb neuropathic pain, autonomic dysfunction can be complicated by chronic peripheral neurotoxin (Kang et al., 2021).
4.2.2 SEPT9 for diagnosis and detection of CRC
One of the reasons for the higher incidence and mortality of CRC is the low rate of early detection. Although colonoscopy can increase the probability of early detection of CRC, colonoscopy is an invasive procedure and may affect patients’ willingness to be screened for CRC early (Yörüker et al., 2016). Epigenetics can regulate CRC gene expression through abnormal methylation, which is one of the most effective methods for early detection of CRC-related cancer markers (Toyooka et al., 2002; Toyota et al., 2000). The study found that methylated DNA concentrations were significantly elevated in the blood of cancer patients; therefore, the development of CRC-related blood tests could increase screening in the early stages of CRC (Herrera et al., 2005; Sabbioni et al., 2003). Methylated SEPT9 DNA (mSEPT9) is an assay that compares methylation markers in normal colon and CRC tissues (Lofton-Day et al., 2008). More than 90% of tumor tissues have a higher relative amount of mSEPT9 than normal colon mucosal tissue, and studies have shown that positive plasma mSEPT9 may indicate the occurrence of CRC, with a sensitivity between 52% and 72% and specificity between 90% and 95% (Grützmann et al., 2008; deVos et al., 2009). However, the effectiveness and cost of screening CRC using mSEPT9 still need to be further evaluated (Church et al., 2014).
4.2.3 Vitamin D mediates epigenetics and CRC
Vitamin D mediates CRC development of CRC through genetic and epigenetic effects (Khayami et al., 2022). It has been reported that cumulative methylation levels of genes associated with the vitamin D metabolic pathway may contribute to CRC risk (Wang et al., 2023). CpG islands are present in all genes associated with vitamin D metabolic pathways that undergo gene silencing via hypermethylation (Fetahu et al., 2014). Studies have also shown that the vitamin D active substance 1α,25-dihydroxyvitamin D+3 (1,25(OH)2D3, calcitriol) can promote SIRT1 activation in colon cancer cells, and SIRT1 activators may provide new therapeutic possibilities for patients with VD deficiency or non-response to colon cancer (Carding et al., 2015). Vitamin D is still the forefront and hotspot of current research in this field and deserves the attention of researchers.
4.2.4 Gut microbiota mediates epigenetics and CRC
The interactions between the gut flora and the host regulate various physiological processes, such as digestion and absorption of food, synthesis of vitamins and bile acids, development of epithelial and mucosal layers, regulation of innate and mucosal immunity, and disruption of the balance of beneficial gut microbes, which can lead to the development of chronic inflammation, ultimately leading to the development of CRC (Hu et al., 2015). Epigenetics mediate this process. A variety of miRNAs associated with CRC progression are significantly correlated with gene expression (Gao et al., 2009). Metabolites produced by the gut flora, such as butyrate, regulate the expression of various miRNAs in CRC (Jones, 2012). DNA methylation is an epigenetic modification in which the donor metabolite s-adenosylmethionine (SAM) plays an important role (Wasson et al., 2006). Gut microbes are the main producers of folic acid, which is involved in SAM synthesis. Folate deficiency leads to DNA hypomethylation, which mediates the emergence of CRC (Chen et al., 2022). Patients with CRC receiving chemotherapy show altered gut microbiome composition, and one of the most common side effects of chemotherapy drugs such as irinotecan and 5-FU is diarrhea (Sanders et al., 2019). Treatment-induced diarrhea is mainly treated by improving the gut microbiota, administering prebiotics, probiotics, and fecal transplantation (FMT) (Ting et al., 2022).
4.2.5 Epigenetic drug therapy and clinical applications for CRC
Evidence for epigenetics at every stage of colorectal cancer progression is growing, and patients with colorectal cancer may benefit from epigenetic therapy. The DNMTi: 5- azacytidine (azacitidine or 5-azaCR or Vidaza) and its deoxy derivative 5-aza-2- deoxycytidine (5-azaCdR or decitabine) are the most studied DNA methylation inhibitor. These drugs form irreversible covalent bonds at targeted methylation sites that impede the occurrence of DNA methylation and thus hinder the progression of CRC (Puccini et al., 2017). HDACi targets histones through the accumulation of acetylated histones which ultimately leads to cell arrest and apoptosis. The potential activity of EGFR/HER2 inhibitor (lapatinib) combined with HDACi Panobinostat in colon cancer cells has been demonstrated, and further evaluation of the efficacy of this combination in the treatment of CRC is warranted (LaBonte et al., 2011). Decitabine in combination with panizumab (monoclonal antibody -mAb against EGFR) has been shown to provide partial remission in patients with wild-type KRAS mCRC (Garrido-Laguna et al., 2013). Vitamin C can selectively kill CRC cells with KRAS and BRAF mutations (Yun et al., 2015). In addition, vitamin C and 5-azacitidine can synergically inhibit CRC cancer cells (Liu et al., 2016). Because of its low cost and toxicity, vitamin C combined with DNMTi may be a good treatment option for CRC patients with KRAS and BRAF mutations. There are a number of Phase I/II clinical trials investigating the efficacy of epigenetic agents for CRC, suggesting that epigenetic therapy may be a new hope for future colorectal cancer patients.
The early screening of CRC is critical, and colorectal scopy is the gold standard for CRC diagnosis. However, due to the invasive nature of colorectal cancer and the high cost of treatment, and the possible side effects such as bleeding, epigenetic factors including DNA methylation, such as VIM gene methylation, SFRP2 methylation, etc., have broad prospects for the future diagnosis and prediction of CRC (Jung et al., 2020).
5 LIMITATIONS OF THE RESEARCH
Our study has some limitations. The WOSCC database served as our research database, and limiting our results to the English language may have resulted in missing literature. Second, changes in the format of the names of certain authors or institutions in the WOSCC may lead to bias in the statistical analysis. Finally, this study cannot guarantee that every publication fully meets the search criteria. However, we provided sufficient results and analyses to reflect the current state of the research field.
6 CONCLUSION
This study quantified 12 years of research on CRC and epigenetics using bibliometrics and visual analysis of the WOSCC database. The countries, institutions, and authors with the largest number of published articles were the United States, Harvard University, and Ogino and Shuji, respectively. In summary, the outstanding research areas in CRC and epigenetics are as follows: SEPT9 is a blood test for the early detection of CRC. Vitamin D and gut microbiota mediates CRC and epigenetics, and probiotics may alleviate CRC-related symptoms. CIMP and MSI are important epigenetic mechanisms of colorectal cancer. 5-FU, irinotecan, and oxaliplatin are currently the main representative drugs, but a large number of high-quality clinical trials are still needed to confirm their efficacy and safety. More epigenetic mechanisms related to CRC progression need to be discovered and studied. Current studies have found that epigenetic therapy such as 5-Aza-CdR/SGI-110 and vitamin C can inhibit DNA methylation of CRC. The development and targeted transportation of DNA methylation inhibitors, as well as the combined use of DNA methylation inhibitors with targeted drugs and cytotoxic drugs may be the future research direction, which is the good news for CRC patients. Interdisciplinary research into epigenetics, pharmacology and clinical research is recommended to develop more effective treatments for CRC. This study reviewed the current research trends and hotspots between CRC and epigenetics timely, which has important implications for the field.
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Background: Epigenetics denotes heritable alterations in gene expression patterns independent of changes in DNA sequence. Epigenetic therapy seeks to reprogram malignant cells to a normal phenotype and has been extensively investigated in oncology. This study conducts a bibliometric analysis of epigenetic therapy in cancer, providing a comprehensive overview of current research, identifying trends, and highlighting key areas of investigation.Methods: Publications concerning epigenetic inhibitors in cancer spanning 2004 to 2023 were retrieved from the Web of Science Core Collection (WoSCC). Co-occurrence analysis using VOSviewer assessed current status and focal points. Evolutionary trends and bursts in the knowledge domain were analyzed using CiteSpace. Bibliometrix facilitated topic evolution and revealed trends in keywords. National, institutional, and author affiliations and collaborations were also examined.Results: A total of 2,153 articles and reviews on epigenetic therapy in oncology were identified, demonstrating a consistent upward trend over time. The United States (745 papers), University of Texas MD Anderson Cancer Center (57 papers), and Stephen B. Baylin (27 papers) emerged as the most productive country, institution, and author, respectively. Keyword co-occurrence analysis identified five primary clusters: tumor, DNA methylation, epigenetic therapy, expression, and immunotherapy. In the past 5 years, newly emerging themes with increased centrality and density include “drug resistance,” “immunotherapy,” and “combination therapy.” The most cited publication reviewed current understanding of potential causes of epigenetic diseases and proposed future therapeutic strategies.Conclusion: In the past two decades, the importance of epigenetic therapy in cancer research has become increasingly prominent. The United States occupies a key position in this field, while China, despite having published a large number of related papers, still has relatively limited influence. Current research focuses on the “combination therapy” of epigenetic drugs. Future studies should further explore the sequencing and scheduling of combination therapies, optimize trial designs and dosing regimens to improve clinical efficacy.Keywords: cancer, epigenetic, therapy, bibliometric, VOSviewer, Citespace
1 INTRODUCTION
The term “epigenetics” was originally coined by C.H. Waddington (Waddington, 2012) to describe heritable changes in cellular phenotype independent of alterations in DNA sequence (Dawson and Kouzarides, 2012). Epigenetic modifications convey regulatory information crucial in all DNA-based processes such as transcription, DNA repair, and replication (Kouzarides, 2007). Aberrant expression patterns in chromatin regulators or genomic alterations can profoundly influence the initiation and maintenance of various cancers (Dawson and Kouzarides, 2012). Promoter hypermethylation and global hypomethylation have been observed in cancers, contributing respectively to transcriptional silencing and genomic instability (Jones and Baylin, 2002; Eden et al., 2003; Rodriguez et al., 2006).
DNA methylation, histone modifications, nucleosome remodeling, and RNA-mediated targeted regulation are critical biological processes underlying cancer pathogenesis (Dawson and Kouzarides, 2012). Global DNA hypomethylation is closely associated with chromosomal rearrangements and nuclear disorganization in cancer cells, leading to chromosomal instability (Hoffmann and Schulz, 2005). For instance, follicular lymphoma demonstrates recurrent mutations in the histone methyltransferase MLL2 in nearly 90% of cases (Morin et al., 2011). Similarly, UTX, a histone demethylase, is mutated in up to 12 histologically distinct cancers (van Haaften et al., 2009). Genetic alterations in chromatin modifiers and global changes in the epigenetic landscape not only underscore their pathological roles in oncology but also highlight potential therapeutic targets for intervention (Dawson and Kouzarides, 2012).
The therapeutic potential of epigenetic therapies lies in their ability to reverse epigenetic changes, unlike genetic abnormalities, thereby restoring normal gene function affected by these alterations (Baylin and Jones, 2011; Ahuja et al., 2014). Current epigenetic therapies primarily involve DNA demethylation and histone deacetylase inhibitors [12]. While the former is FDA-approved for myelodysplastic syndromes (MDS), histone deacetylase (HDAC) inhibitors have gained FDA-approved for T-cell cutaneous lymphoma and multiple myeloma (Kaminskas et al., 2005; Azad et al., 2013). More and more studies are dedicated to exploring the effectiveness of epigenetic inhibitor in the treatment of solid tumors. Furthermore, numerous drugs targeting epigenetic regulation are under development and entering clinical trial stages (Ahuja et al., 2016).
However, despite the encouraging results of epigenetic inhibitors in the treatment of acute myeloid leukemia (AML), MDS, and chronic myeloid leukemia (CML), the efficacy of first-generation epigenetic drugs in patients with solid tumors has been disappointing (Cheng et al., 2019). Compared to hematologic malignancies, solid tumors are at a disadvantage due to their genomic complexity, drug exposure environment, and tumor heterogeneity (Yang et al., 2023). Preclinical studies and clinical trials have shown that combining epigenetic drugs with other therapies (such as chemotherapy, targeted therapy, or immunotherapy) may provide the best opportunity to enhance clinical responses in solid tumors (Feng and De Carvalho, 2022). Therefore, further elucidating the progress, trends, and focal points in the field of epigenetic therapy is crucial for researchers engaged in related studies.
Bibliometric analysis, a popular and rigorous method, explores and analyzes scientific research outcomes and trends to identify data correlations. As a systematic analytical technique, bibliometrics can provide valuable insights for future researchers, helping them track hotspots and trends (Danthi et al., 2014), and forecast reports on the future development of specific research fields (Hicks et al., 2015). To date, there has been no bibliometric analysis focusing on epigenetic therapies in cancer treatment. Therefore, this study offers a thorough visual and bibliometric analysis of epigenetic therapies in oncology, identifying current trends and future directions in their application.
2 MATERIALS AND METHODS
2.1 Searching strategy and data collection
The original data for this study was obtained from the largest and most authoritative database, the Web of Science Core Collection (WoSCC) (Merigó and Núñez, 2016). Two researchers conducted independent searches, restricting the publication dates to 1 January 2004, through 31 December 2023. The search query used was as follows: Keywords [TS=(cancer* OR Neoplasm* OR Tumor* OR Carcinoma*) AND TS=(“Epigenetic* drug*” OR “Epigenetic* therapy” OR “epigenetic* inhibitor*”)]. The search was performed on 11 June 2024, yielding a total of 2,508 articles. First, 48 articles that fell outside the date range of 1 January 2004, to 31 December 2023, were excluded. Second, the document types were limited to “Article” and “Review,” resulting in the exclusion of 294 conference papers, commentaries, editorials, and other publications. Additionally, due to a restriction to English language only, 13 articles were excluded. After the screening process, a total of 2,153 papers were included. The data was exported in plain text format and labeled “download.” The data filtering process is illustrated in Figure 1.
[image: Flowchart depicting a research strategy in three steps. Step 1: Data Retrieval involves a search query in the Web of Science database, yielding 2,960 records. Step 2: Data Screening filters records by date, type, and language, resulting in 2,153 records meeting the criteria. Step 3: Data Analysis uses CiteSpace, VOSviewer, and R-Bibliometrix to analyze citation bursts, co-occurrences, topic evolution, and author impact.]FIGURE 1 | The flowchart of searching and selection process.
2.2 Data analysis and mapping
The retrieved data was imported into Citespace (version 6.2.R6), VOSviewer (version 1.6.20), and the bibliomearch package (version 3.2.1) of R (4.3.0, https://www.r-project.org/) to visualize co-authorship networks, institutions, authors, journals, keywords, and co-citation networks of the articles.
VOSviewer, a widely recognized literature analysis software, visually illustrates scientific research trends within a specific field based on relationships among terms in academic literature, including authors, journals, and keywords. Analysis units in VOSviewer encompass countries, journals, authors, and keywords, depending on the analytical focus and database type. In this investigation, VOSviewer was employed for co-citation analysis, co-authorship analysis, and co-occurrence analysis. Co-citation analysis refers to the instances where two articles are cited together by a third article, indicating a citation relationship between the two (Ahmad and Slots, 2021). Co-authorship analysis reveals scientific collaborations, identifying cases where different authors, institutions, or countries/regions coexist in publications (Wu et al., 2021). Co-occurrence signifies the occurrence of two keywords within the same paper. Each node on the VOSviewer map corresponds to a specific parameter, such as authors, institutions, or countries. Node size indicates the number of publications, citation counts, or frequency of occurrence. Colors are assigned to clusters to categorize nodes and lines. Lines connecting nodes represent relationships between them (Xie et al., 2020).
CiteSpace, a Java-based software tool designed by Professor Chaomei Chen, is widely recognized for its utility in visualizing bibliometric characteristics and forecasting research trends within academic fields (Chen, 2004). In our study aimed at unraveling the knowledge base and evolution of this particular field, we leveraged CiteSpace for timeline analysis and detection of citation bursts within co-cited literature. “Citation bursts” denote sudden surges in the frequency of citations of a specific nature or a significant number of citations occurring within a defined timeframe. The term “Strength” indicates the intensity of the burst, “Start” signifies the initial year of the burst, and “End” denotes its termination. The presence of red bars on the timeline signifies the duration of the burst, while blue bars represent citations spanning the period from 2004 to 2024 (Zhao et al., 2024). Additionally, the parameters used in CiteSpace included: 1) Time span ranging from 2004 to 2024; 2) Slice duration of 1 year per slice; 3) Enabled pruning options such as pathfinder, minimum spanning tree, pruning slices network, and pruning merged network; 4) Top N set to 50; 5) All remaining parameters maintained at default values.
Bibliometrix, an R-based tool, is specifically designed to construct comprehensive scientific maps of published literature (Aria and Cuccurullo, 2017). The process of topic evolution and mapping entails clustering topics based on keywords found in publications and then mapping them to low-dimensional space to depict trends in topic changes. Topic evolution is visually represented through Sankey diagrams, which effectively showcase the shifts in topics across various time slices. In these diagrams, topic maps utilize density indices along the y-axis and centrality indices along the x-axis. Density signifies the strength of internal connections among keywords within a particular topic, while centrality reflects the strength of connections between the topic and other external topics. These maps are segmented into four quadrants: Q1 denotes core topics, indicating significant and well-developed themes; Q2 represents niche topics, which are highly developed but less interconnected with other themes; Q3 signifies emerging or declining topics, characterized by lower internal and external connections that indicate emerging or declining trends; and Q4 encompasses basic topics that are considered fundamental and cross-sectional in the field (Cobo et al., 2011) Changes and trajectories across distinct time periods are identified to discern the emergence or decline of topics. Within this domain, productivity quantification metrics are widely employed, including author and journal impact indices such as the H-index (Hirsch, 2007) and G-index (Egghe, 2006).
All original data used in this study were sourced from publicly available databases and did not involve participant information; therefore, no ethical review was deemed necessary.
3 RESULTS
3.1 Analysis of publication output
Between 1 January 2004, and 31 December 2023, a total of 2,460 publications pertaining to tumor epigenetic therapy research were identified, including 2,166 articles and reviews, accounting for 32.5% of the total. Figure 1 illustrates the flowchart detailing the literature search and selection process, which facilitated the exclusion of irrelevant publications, ultimately leading to the analysis of 2,153 articles. Over this timeframe, the number of studies focusing on tumor epigenetic therapy surged from 5 in 2004 to 170 in 2023, marking a remarkable 33-fold increase (Figure 2A). The years spanning from 2004 to 2013 were characterized by an initial phase of development, witnessing a steady rise in the number of publications within this domain. Subsequently, from 2014 to 2017, a phase of rapid advancement in publications related to epigenetic therapy in oncology emerged. Despite minor fluctuations in publication numbers during 2018 and 2023, the cumulative total stood at 2,153 publications over the two-decade period, averaging approximately 107.65 publications annually. The collective citation count for all publications amounted to 283,310, with an average of 35.52 citations per publication.
[image: Graphical representation of scientific data. Panel A shows a line graph depicting a trend analysis over time. Panel B displays a network graph with nodes and links in different colors, indicating relationships between data points. Panel C lists scientific information alongside a timeline, highlighting years and colored bars. Panel D features another network graph similar to Panel B, with diverse node groupings. The visuals collectively illustrate trends, relationships, and data progression.]FIGURE 2 | Hotspots and Bursts of Co-Citation References in Epigenetic Therapy Research within Oncology. (A) Trends in the global publication numbers over time. (B) Co-occurrence analysis of keywords. Node sizes correspond to keyword frequency, while node colors indicate their category in cluster analysis. (C) Top 25 references demonstrating strong citation bursts. A burst signifies a notable increase in citation frequency for a specific article. The red bar denotes the period when the reference co-citation burst commenced. (D) The network visualization of the relationship of co-cited reference.
3.2 Hotspots of keywords
To comprehend the core content and prevalent themes within this area of study, we conducted an analysis of author’s keywords extracted from the literature search. Table 1 illustrates the top 20 most frequently appearing author’s keywords. Key research domains in this field include DNA methylation, histone deacetylase inhibitor(s), decitabine, epigenetic drugs, HDAC inhibitors, among others. Leveraging these author’s keywords, we performed a keyword co-occurrence analysis using VOSviewer, as depicted in Figure 2B. A total of 285 keywords were identified with a usage frequency exceeding 15 instances, forming 5 distinct clusters (Figure 2B; Supplementary Material 1). The orange cluster (cluster 1) predominantly revolves around cancer, with studies focusing on aspects such as methylation, chromatin, histone deacetylase, acetylation, and DNA methyltransferase. The green cluster (cluster 2) encapsulates methodologies of epigenetic therapy, including histone deacetylase inhibitors, HDAC inhibitors, suberoylanilide hydroxamic acid, decitabine, DNA methyltransferase inhibitors, 5-azacytidine, and vorinostat. The blue cluster (cluster 3) highlights research on epigenetic drugs targeting DNA methylation and histone modifications across various cancers, such as breast cancer, lung cancer, ovarian cancer, gastric cancer, colon cancer, pancreatic cancer, glioma, and others. The yellow cluster (cluster 4) delves into cellular or tumor states, addressing activation, growth, apoptosis, metastasis, tumor resistance, as well as the survival and prognosis of cancer patients. Lastly, the purple cluster (cluster 5) explores the intersection of epigenetics and immune regulation, covering topics like immunotherapy, antitumor immunity, tumor microenvironment, T-cells, regulatory T-cells, MHC class-I, dendritic cells, among others.
TABLE 1 | Top 20 authors’ keywords of epigenetic therapy in oncology.
[image: Table displaying the top twenty keywords related to epigenetic research, ranked by records and total links. The top keyword is "Dna methylation" with 673 records and 5,932 total links. Other notable keywords include "Epigenetic therapy," "Epigenetics," "Cancer," and "Apoptosis." Each keyword has corresponding data for records and total links.]3.3 Evolution and burst of knowledge base
Co-citation bursts signify periods of rapid fluctuations in citation frequency for references within academic literature. The top 25 burst documents, delineated based on their initiation and cessation dates, are presented in sequential order (Figure 2C). Among the top 20 most cited works, 5 were articles while 15 were reviews. Notably, the document exhibiting the highest burst intensity, published in 2015, elucidated that DNA methyltransferase inhibitors (DNMTis) augment immune signaling in cancer through the viral defense pathway (Chiappinelli et al., 2015). Subsequently, the second-ranked study illustrated that low-dose 5-AZA-CdR targets colorectal cancer-initiating cells (CICs) by inducing viral mimicry, potentially via dsRNAs from endogenous retroviral elements. This induction activates the MDA5/MAVS RNA sensing pathway, followed by the activation of IRF7 (Roulois et al., 2015). Moreover, a detailed account of a phase I/II trial in recurrent metastatic non-small cell lung cancer patients was provided in another article. The trial combined azacitidine and entinostat (DNA methyltransferase and histone deacetylase inhibitors) for epigenetic therapy, resulting in a median overall survival of 6.4 months (95% CI 3.8–9.2), showcasing superiority over existing treatments (Juergens et al., 2011).The most pronounced co-citation burst within academic literature in the past 5 years was attributed to a review published in 2019. This review encapsulated the aberrant functions of epigenetic enzymes in DNA methylation, histone acetylation, and histone methylation during tumor progression. It underscored the research advancements in epigenetic enzyme inhibitors or targeted drugs (Cheng et al., 2019).
Utilizing VOSviewer, references have been categorized into five distinct color-coded clusters, where the thickness of links signifies the strength of collaboration as measured by Total Link Strength (TLS) (Figure 2D). Notably, the most robust TLS is associated with a review co-authored by Peter A. Jones and Stephen B. Baylin. This review succinctly outlines the impact of epigenetic alterations on the initial phases of tumorigenesis, delving into the functions of stem/progenitor cells while also highlighting the increasing relevance of these advancements in the realm of cancer management strategies (Jones and Baylin, 2007).
3.4 Trends of themes
The aggregation of references within scholarly publications serves as a reservoir of scientific knowledge. By conducting co-citation analysis on these references, we can depict them in a chronological timeline format. The Co-citation Timeline illustrates six primary clusters discerned through co-citation analysis (Figure 3A). During the period spanning 2004 to 2013, the co-cited references predominantly centered around topics such as DNA methylation, histone deacetylase inhibitors, immunotherapy, and EZH2, reflecting the initial investigations into tumor epigenetic therapy. Subsequently, from approximately 2014–2023, the co-cited references primarily focused on epigenetic drugs and combination therapy, indicating current research focal hotspots in this field.
[image: Infographic depicting trends in relevant scientific areas from 2004 to 2023. Panel A shows a thematic network of research topics. Panel B displays a Sankey diagram connecting periods 2004-2013, 2014-2018, and 2019-2023, illustrating topic migrations. Panels C, D, and E visualize research centrality and density over these periods with bubble charts, highlighting topic evolution. Panel F presents a line graph charting research output growth by year for different topics.]FIGURE 3 | Trends in publications within the epigenetic therapy field in oncology. (A) Co-citation analysis of references over time. Nodes are scaled based on the number of co-citations, while the thickness and color of the node rings indicate the citation count per year. Nodes with rings signify high betweenness centrality, crucial for linking conceptual clusters across different time frames. The connections between references are depicted by link density, with each year assigned a distinct color. (B) Evolution of publication themes over the past two decades. (C–E) Thematic maps for the periods 2004–2013, 2014–2018, and 2019–2023. The thematic maps are segmented into four quadrants: Quadrant I: Motor themes with high density and centrality. II: Niche themes characterized by high density but low centrality. III: Emerging or declining themes with low density and centrality. IV: Basic themes with low density but high centrality. (F) Shifts in high-frequency keywords across time.
Thematic evolution diagrams and topic maps were created to elucidate the trends across various themes within the scholarly discourse. The progression of themes spanning the periods of 2004–2013, 2014–2018, and 2019–2023 has been visualized through the implementation of Sankey diagrams (Figure 3B). Topic maps, leveraging measures of centrality and density, have been employed to delineate the thematic evolution over distinct time frames (Figures 3C–E). Notably, during the interval of 2004–2013, themes such as “histone deacetylase,” “histone deacetylase inhibitors,” and “HDAC inhibitor” exhibited pronounced centrality and density. Transitioning from 2004–2013 to 2014–2018, there was a substantial escalation in both the centrality and density of breast cancer themes, underscoring the growing significance and advancements in the realm of epigenetic inhibitors for breast cancer therapeutics. A notable shift occurred in the period from 2019 to 2023, with the emergence of new topics like “drug resistance,” “immunotherapy,” and “combination therapy,” characterized by elevated centrality and density, signifying their rapid ascension as pivotal subjects of study. Furthermore, an analysis of high-frequency keywords and their temporal variations has been conducted (Figure 3F).
3.5 Analysis of publications and journals
Table 2 presents the details of the top 10 most cited publications in this work. The publication that stands out with the highest number of citations is a review article authored by Egger et al. (2004), published in 2004. This article delves into the landscape of human diseases within the realm of epigenetics and explores the potential of epigenetic therapy. It encapsulates discussions on epigenetic diseases, therapeutic interventions, and offers a forward-looking perspective (Egger et al., 2004). Another noteworthy mention is a review penned by Mark A. Dawson and Tony Kouzarides, boasting the highest average yearly citation rate. This review elucidates the foundational concepts underpinning epigenetic pathways, encompassing DNA methylation, histone modification, nucleosome remodeling, and RNA-mediated regulatory mechanisms. It underscores the evidence suggesting that dysregulation of these pathways could culminate in carcinogenesis (Dawson and Kouzarides, 2012).
TABLE 2 | The top 10 most cited research papers.
[image: Table listing ten scientific articles ranked by impact. Columns include Rank, First Author, Journal, Year, Global Citations, Citation Frequency per Year, and Title. Highlights include a 2004 Nature article by Egger G with 2,344 global citations on epigenetics, and a 2012 Cell article by Dawson MA with 2,212 citations on cancer epigenetics. The publication years range from 2004 to 2016, and topics focus on epigenetics and cancer therapies.]All articles are distributed among 109 different journals. The graphical representation in Figure 4A and the detailed tabulation in Table 3 delineate the cumulative growth trajectory of yearly publications and furnish information into the top 10 journals exhibiting high productivity. Notably, the journals “Cancers,” “International Journal of Molecular Sciences,” and “Oncotarget” emerge as the leading triad in publication volume, with “Cancers” exhibiting the highest productivity by issuing 68 articles. In terms of citation frequency, the preeminent journals are “Nature,” “Cancer Research,” and “Carcinogenesis.” Delving into the metric of total link strength, the standout journals are “Cancers,” “Epigenomics,” and “Clinical Epigenetics.” Evidently, “Cancers” distinguishes itself as the most prolific publication platform, while “Nature” garners acclaim as the most influential journal, boasting the highest average citation.
[image: A set of four visuals showing data analysis:  A) Line graph depicting the frequency of various journals from 2006 to 2022.  B) Network graph illustrating interconnected nodes in clusters of blue, red, and other colors.  C) Color-coded cluster graph with multiple nodes labeled individually.  D) Another cluster graph with colored nodes, showing various groupings and connections.]FIGURE 4 | Attribution sources and collaboration networks in epigenetic therapy within oncology. (A) Analysis of the cumulative growth pattern of publications in the top 10 productive journals. (B) Visualization of co-authorship relationships among countries/regions. Node size represents the number of publications, while the thickness and length of links between nodes signify the strength and relevance of connections. (C) Co-authorship relationships among institutions. (D) Co-authorship relationships among authors.
TABLE 3 | The top 10 productive journals related to epigenetic therapy in oncology.
[image: Table ranking journals by number of publications. Top three: Cancers (US) with 68, International Journal of Molecular Sciences (Switzerland) with 51, Oncotarget (US) with 48. Details include percentage of total publications, average citations, and total link strength.]3.6 Attribution and collaboration of countries/regions, authors and institutions
A total of 48 countries/regions have contributed to this research field, and the publications have been meticulously compiled and classified by country/region, as delineated in Table 4. Leading the pack in terms of publication count is the United States, boasting a substantial 745 publications. Noteworthy is Italy, which stands out for its remarkable publication density per trillion GDP, registering an impressive 88.79. The collaborative efforts among these countries/regions are vividly depicted in Figure 4B, where they are clustered and color-coded for clarity. The strength of collaboration, as quantified by TLS, is visually represented by the thickness of the connecting lines. At the forefront of collaboration are the United States (TLS = 409), followed by China (TLS = 191) and Germany (TLS = 190). The visual representation highlights three main clusters: the blue cluster, centered around the United States and China, features collaboration with Canada, Japan, India, and South Korea. Meanwhile, the red cluster is anchored by Germany, France, Italy, and the United Kingdom. The green cluster predominantly comprises European nations, with notable hubs in Switzerland, Norway, and Scotland. Furthermore, institutional collaborations are categorized into ten distinct clusters, as depicted in Figure 4C. Notably, Harvard Medical School emerges as a prominent collaborator with the highest TLS score of 73.
TABLE 4 | The top 10 productive countries/regions in the field of epigenetic therapy in oncology.
[image: Table ranking countries by research publications and citations. The United States leads with 745 publications and 46,329 citations, averaging 62.19 citations per publication. Calculations use 2022 population and GDP data from the World Bank.]Table 5 presents a concise overview of the top 10 most prolific authors in the field. The collaborative dynamics among researchers are visually represented in Figure 4D, delineated into 11 distinct clusters. Noteworthy contributions include Peter A. Jones, who boasts the highest citation count of 5,085. Additionally, Stephen B. Baylin emerges as a leader in publications, with 27 to his credit, as well as possessing impressive h-index (26) and g-index (31) scores. Meanwhile, Table 6 meticulously details the top ten academic institutions by publication output. MD Anderson Cancer Center at the University of Texas stands out with the highest number of publications (57). The University of Southern California leads in both total citations (8,920) and average citations per publication (318.57), underscoring its significant impact in the field.
TABLE 5 | The top 10 productive authors in the field of epigenetic therapy in oncology.
[image: A table lists the top ten ranked authors by numbers of publications. Columns include rank, author, affiliation, number of publications, number of citations, average citation per publication, co-authorship total link strength, H-index, and G-index. Stephen B. Baylin of Johns Hopkins University ranks first with 27 publications and 3,564 citations. Other authors include Peter A. Jones, Alfonso Duenas-gonzalez, Nita Ahuja, Jean-pierre J. Issa, Lucia Altucci, Michael Lübbert, Manfred Jung, Manel Esteller, and Weidong Han. The table provides detailed citation and co-authorship metrics for each author.]TABLE 6 | The top 10 productive institutions in the field of epigenetic therapy in oncology.
[image: Table ranking institutions by publication metrics. The University of Texas MD Anderson Cancer Center leads with 57 publications and 4,231 citations. Johns Hopkins University ranks second. Metrics include the number of citations, average citation per publication, and co-authorship strength across various countries.]4 DISCUSSION
In recent decades, the field of epigenetics in biology has undergone a significant transformation, challenging longstanding traditional perspectives regarding the genetic code as the primary determinant of cellular gene function and the leading cause of human diseases (Sharma et al., 2010). Progress in cancer epigenetics has prompted the realization that genome packaging may be just as critical as the genome itself in regulating fundamental cellular processes essential for maintaining cell characteristics and triggering disease states such as cancer (Yoo and Jones, 2006; Baylin and Jones, 2011). The emergence of numerous drugs targeting specific enzymes involved in epigenetic regulation of gene expression has made the utilization of epigenetic targets an increasingly effective and valuable approach in chemotherapy and cancer chemoprevention (Yoo and Jones, 2006).
This study aims to explore the research focal points, knowledge base expansion, and trends in epigenetic inhibitors in tumors over the past two decades. An analysis of literature published from 2004 to 2023 in this field was conducted, and the findings are presented visually. After excluding studies that did not meet the selection criteria, our analysis covered 2,153 English-language papers published in 109 journals from 249 institutions across 48 countries/regions. This research offers a bibliometric analysis of studies on epigenetic therapies in oncology, with the goal of providing researchers with a comprehensive understanding of cancer epigenetic treatments.
Epigenetic therapies for cancer have garnered significant interest, evident from the expanding body of literature in this field. The milestone approval of the first epigenetic drug, azacitidine (AZA), by the FDA in 2004 marked a pivotal transition from theoretical exploration to practical application. A notable moment occurred in 2006 with the approval of decitabine for treating MDS, signifying a crucial advancement in the utilization of epigenetic drugs for cancer treatment. From 2004 to 2013, research literature extensively delved into the application of epigenetic inhibitors in hematologic malignancies, initial efficacy studies in solid tumors, and their combined use with other treatment modalities. Issa et al. demonstrated the substantial efficacy of low-dose extended exposure schedules of decitabine in refractory hematologic malignancies (Issa et al., 2004). Moreover, an international, multicenter, phase III clinical trial utilizing an open-label, parallel-group design revealed that azacitidine treatment significantly improved overall survival in high-risk MDS patients (Fenaux et al., 2009). McCabe et al. (2012) suggested that inhibiting EZH2 methyltransferase activity could be a promising strategy for treating diffuse large B-cell lymphoma and follicular lymphoma with EZH2 activating mutations. In addition to hematologic malignancies, research has initially explored the use of epigenetic inhibitors in solid tumors, such as non-small cell lung cancer (Juergens et al., 2011) and breast cancer (Tsai et al., 2012). Furthermore, research has emphasized the synergistic benefits of epigenetic drugs, whether used alone or in combination with chemotherapy, immunotherapy, or radiation therapy. These combined approaches not only enhance therapeutic efficacy but also help mitigate potential drug resistance (Bolden et al., 2006; Yoo and Jones, 2006; Dawson and Kouzarides, 2012).
In the past decade, scholarly research has further focused on investigating the efficacy of epigenetic inhibitors in treating solid tumors, including non-small cell lung cancer (Wrangle et al., 2013; Topper et al., 2017), breast cancer (Li et al., 2014), ovarian cancer (Li et al., 2014; Chiappinelli et al., 2015), and colorectal cancer (Li et al., 2014; Roulois et al., 2015). These studies have revealed the potential of epigenetic inhibitors to modulate immune induction pathways within tumors. For instance, in non-small cell lung cancer cell lines, the use of AZA has been shown to increase the expression of the inhibitory ligand PD-L1, resulting in the consistent downregulation of immune genes and PD-L1 expression in specific subsets of primary tumors. This finding suggests that combining epigenetic therapy with PD-1 pathway blockade could lead to a synergistic anti-tumor response (Wrangle et al., 2013). In ovarian cancer, DNA methyltransferase inhibitors (DNMTis) activate the viral defense pathway, thereby enhancing immune signaling in cancer cells (Chiappinelli et al., 2015). Similarly, in colorectal cancer, brief exposure to low doses of 5-AZA-CdR can induce dsRNA expression, activating the cytoplasmic pattern recognition receptor MDA5 and subsequently engaging downstream effectors MAVS and IRF7 to target colorectal cancer cells (Roulois et al., 2015). Moreover, in non-small cell lung cancer, the combined treatment of HDAC inhibitors and AZA has shown a significant anti-tumor response by inhibiting myc-driven cell proliferation and amplifying immune signals (Topper et al., 2017). Consequently, epigenetic inhibitors impact immune cells within the tumor microenvironment, synergizing with immunotherapy to enhance anti-tumor immune responses and improve clinical outcomes (Topper et al., 2017).
In the past 5 years, research on epigenetic therapy in oncology has witnessed a notable shift in focus towards themes such as “drug resistance,” “immunotherapy,” and “combination therapy,” marking an evolution in research priorities. This shift highlights a substantial increase in the attention and research intensity dedicated to these areas compared to the period spanning 2004 to 2018. Notably, targeted epigenetic therapy has gained wide acceptance in both preclinical and clinical trials for hematologic malignancies, signifying promising applications for treating solid tumors (Cheng et al., 2019).The utilization of epigenetic drugs, including demethylating compounds and HDAC inhibitors, has exhibited the ability to reactivate tumor suppressor genes and essential cellular functional genes by specifically targeting abnormal chromatin regions (Jones and Baylin, 2007). Consequently, the employment of these agents can expand the population of chemosensitive cells, thereby providing viable targets for alternative treatment modalities like chemotherapy, immunotherapy, or radiation therapy. Given the short-term impacts of demethylating agents and their role in restoring aberrant methylation patterns, combining epigenetic therapy with other interventions could potentially enhance treatment efficacy (Jones and Baylin, 2007). Moreover, strategies geared towards overcoming drug resistance and enhancing cancer cell sensitivity to multiple treatments show promise (Azad et al., 2013). Research findings strongly suggest that epigenetic therapy has the capacity to modulate tumor immune induction pathways, ultimately heightening tumor cell susceptibility to T-cell immune responses. Consequently, the concurrent application of epigenetic therapy and immune checkpoint blockade holds the potential for therapeutic advantages (Wrangle et al., 2013; Li et al., 2014; Chiappinelli et al., 2015; Topper et al., 2017).
China ranks second among the top ten most productive countries/regions, closely following the United States. Reflecting this national distribution, Chinese and American institutions dominate seven of the top ten positions, underscoring their significant contributions to the academic advancement of this field. Despite China’s substantial publication output, its average citation per paper lags significantly behind other countries, suggesting a dearth of highly referenced papers. The top ten academic journals collectively published 410 papers, constituting 19.04% of the total output. “Cancers” leads in the number of publications, followed by the “International Journal of Molecular Sciences” and “Oncotarget,” showcasing these journals’ keen interest in cancer epigenetic therapy research. The most cited articles were featured in “Nature.” Notably, among the top 20 most cited works, two originated from “Nature,” two from “Cell,” and three from “Blood,” indicating these influential journals’ propensity to publish high-caliber research in the future.
Epigenetic events play a pivotal role in both normal biological processes and tumorigenesis, with significant alterations in the epigenetic state commonly observed during cancer progression. This has led to the emergence of epigenomic targeted therapy as a promising avenue for cancer treatment. However, several critical issues warrant further discussion and resolution. While remarkable strides have been made in applying epigenetic therapy to hematologic malignancies, its effectiveness in solid tumors remains to be conclusively demonstrated. In preclinical models, compelling mechanistic evidence supports the notion that epigenetic agents can synergize with other anticancer drugs and combat treatment resistance. Nevertheless, the clinical efficacy of epigenetic agents tested in trials has been underwhelming thus far (Morel et al., 2020). Challenges arise from the limited tolerability of combinations involving epigenetic agents and cytotoxic therapies. Exploring strategies such as lower doses, sequential administration, and targeted delivery of epigenetic agents holds promise for enhancing the therapeutic index (Morel et al., 2020). Furthermore, the prolonged duration required for epigenetic reprogramming, in contrast to traditional chemotherapy, necessitates an understanding that the initial response to epigenetic therapy may not be immediately apparent. Consequently, the conventional Response Evaluation Criteria in Solid Tumors (RECIST) criteria, typically applied within 6–8 weeks to assess clinical response, may not be optimal for monitoring epigenetic therapy in clinical trials (Azad et al., 2013). Continued treatment may be warranted for clinically stable patients undergoing epigenetic therapy.
5 FUTURE RESEARCH DIRECTIONS
Overall, significant progress has been made in the discovery of epigenetic drugs over the past few decades. While certain epigenetic therapies have demonstrated favorable clinical outcomes and received regulatory approval for hematologic malignancies, achieving and maintaining therapeutic effects in solid tumors continues to pose challenges (Feng and De Carvalho, 2022). Results from preclinical studies and clinical trials underscore the potential efficacy of combining epigenetic inhibitors with chemotherapy or immunotherapy. Further exploration of the sequencing of combination treatments, as well as optimization of trial designs and dosing regimens, may be necessary to enhance clinical efficacy. Moreover, the sample sizes of the clinical trials conducted thus far have been relatively small, and there is a lack of effective predictive biomarkers. Research into the potential mechanisms and biomarkers associated with combination therapy can deepen our understanding and inform future treatment strategies.
Additionally, it has been demonstrated that epigenetics affects tumor immunogenicity and the immune cells involved in anti-tumor responses (Yang et al., 2023). Studies suggest that developing therapies targeting epigenetic modification pathways can bolster the efficacy of immunotherapy. However, specifically targeting epigenetics without inducing severe toxicity remains a substantial challenge. Consequently, comprehending the mechanisms of epigenetic modifications and mastering their control methods is an area deserving further investigation. For example, precisely targeting epigenetic modification sites could significantly reduce off-target effects and other adverse reactions.
Finally, both epigenetics and novel immunotherapies are emerging tools in clinical practice that necessitate more research to identify and develop reliable epigenetic biomarkers (Villanueva et al., 2020). These candidate biomarkers may provide a theoretical basis for patient stratification and precision medicine, thereby maximizing the chances of therapeutic success while minimizing unintended consequences. By leveraging this understanding, new generations of epigenetic drugs suitable for use in combination with immunotherapy may be developed.
6 LIMITATION
This study employs bibliometric methods to analyze the development trends and potential research frontiers in epigenetic therapy for tumors. Its goal is to provide a historical perspective for future research and to highlight areas that warrant further investigation. However, certain limitations should be acknowledged in this survey. The WOSCC database provides standardized and comprehensive bibliometric records, making it one of the most reliable data sources available (Merigó and Núñez, 2016). Consequently, our search was confined to this database, which may have resulted in the exclusion of some studies outside its scope. Furthermore, it is important to recognize that the impact of a paper can be influenced by its publication date; thus, some recently published high-quality articles might be overlooked due to their low citation frequency. Lastly, this study involves numerous authors, some of whom may have changed names or collaborated across multiple institutions. While we have meticulously reviewed the process, some errors are inevitable. Nevertheless, these limitations are unlikely to affect the fundamental trends presented in this article. The visualized bibliometric analysis can still effectively assist researchers in understanding the hotspots and emerging trends in tumor epigenetic therapy research.
7 CONCLUSION
Over the past two decades, the significance of epigenetic therapy in cancer research has increasingly come to prominence, with the field of epigenetics rapidly transforming approaches to cancer treatment. The United States occupies a critical position in the study of epigenetic therapies for tumors, while China, despite having published a substantial number of related papers, still exerts limited influence. Currently, the focus within the field of epigenetic therapy mainly revolves around the “combination therapy” of epigenetic drugs. Both genetic mutations and epigenetic abnormalities contribute to cancer progression; thus, integrating traditional carcinogenic pathways with epigenetic therapy may provide effective solutions for treating solid tumors. Future research should explore the sequencing of combination therapies and optimize trial designs and dosing regimens to enhance clinical efficacy. Additionally, it is vital to investigate the potential mechanisms and biomarkers associated with combination therapies and to develop new generations of epigenetic drugs that precisely target epigenetic modification sites. These efforts are anticipated to advance the application of epigenetic therapy in oncology, ultimately aiding patients in achieving better treatment outcomes.
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Introduction: DNA methylation inhibitors (azacitidine, decitabine) have revolutionized the treatment dilemma of myelodysplastic syndromes (MDS), a group of malignant hematopoietic disorders. This study evaluates the adverse drug reactions (ADRs) following the use of DNA methylation inhibitors in the World Health Organization (WHO) VigiAccess database and compares the characteristics of ADRs between the two drugs to select the drug with the minimum individualized risk for patients.Methods: This study employed a retrospective descriptive analysis method. We compiled ADR reports for two marketed DNA methylation inhibitors for the treatment of MDS from WHO-VigiAccess. Data collected included demographic data such as age groups, gender, and regions of global patients covered by ADR reports, as well as data on the disease systems and symptoms caused by ADRs recorded in the annual reports and reports received by WHO. By calculating the proportion of ADRs reported for each drug, we compared the similarities and differences in ADRs between the two drugs.Results: Overall, 23,763 adverse events (AEs) related to the two DNA methylation inhibitors were reported in VigiAccess. The results showed that the top 10 most common AEs were febrile neutropenia, bone marrow suppression, neutropenia, anemia, pancytopenia, leukopenia, thrombocytopenia, bone marrow failure, agranulocytosis, and hematotoxicity. The top five common types of DNA methylation inhibitor AEs were blood and lymphatic system disorders (11,178 cases, 47.0%), cardiac organ diseases (1,488 cases, 6.3%), various congenital familial genetic diseases (49 cases, 0.2%), ear and labyrinth diseases (100, 4.2%), and endocrine system diseases (57, 2.4%).Conclusion: There is no Strong correlation between DNA methylation inhibitors and ADRs. Current comparative observational studies of these inhibitors show that there are common and specific adverse reactions in the ADR reports received by WHO for these drugs. Clinicians should improve the rational use of these drugs based on the characteristics of ADRs.Keywords: DNA methylation inhibitors, myelodysplastic syndromes, WHO-vigiaccess, retrospective descriptive analysis, adverse reaction
INTRODUCTION
Myelodysplastic Syndromes (MDS) are a group of heterogeneous chronic hematologic malignancies characterized by impaired bone marrow hematopoiesis and ineffective hematopoiesis, as well as a variable risk of progression to acute myeloid leukemia (AML). MDS is driven by a complex combination of genetic mutations, leading to heterogeneous clinical phenotypes and outcomes. Genetic studies have been able to identify a set of genes with recurrent mutations that are central to the pathogenesis of MDS (Chiereghin et al., 2021). DNA methylation is essential for imprinting, X inactivation, and the silencing of pluripotent or tissue-specific genes, thereby regulating embryonic development. It is also necessary to maintain chromosomal stability in differentiated cells and to prevent mutations by inhibiting the insertion of transposons and repetitive elements. Therefore, the failure to maintain these epigenetic marks and the establishment of abnormal DNA methylation patterns are associated with the underexpression or overexpression of certain proteins, ultimately leading to various pathologies (Gros et al., 2012). Thus, DNA methylation inhibitors can effectively treat MDS. At present in the clinic, azacitidine (AZA) and decitabine (DAC) are the most widely used methylation inhibitors (Sekeres and Taylor, 2022). Studies have shown that azacitidine and decitabine play a very important role in the treatment of chronic hematologic malignancies such as MDS. Regarding its mechanism of action, there are many hypotheses in academia, among which the view that “the activity of DNA methyltransferase is inhibited, leading to hypomethylation of tumor suppressor genes and upregulation of tumor suppressor gene expression” is widely recognized. In fact, DNA methylation inhibitors often act at the whole genome level, and their global impact not only includes causing demethylation of tumor suppressor genes and upregulating the expression of tumor suppressor genes, thereby exerting therapeutic effects, but may also include inducing demethylation of oncogenes, thereby leading to the upregulation of oncogenes and producing pathogenic effects. Therefore, in the treatment of MDS, the potential “innate insufficiency” of DNA methylation inhibitor treatment is that while demethylating tumor suppressor genes, it also upregulates the expression of oncogenes, not only treating the disease but also carrying a very high risk of pathogenicity (Liu et al., 2022). According to existing data, the efficacy of DNA methylation inhibitors in patients with myelodysplastic syndrome and acute myeloid leukemia is also far lower than expected in the clinic, some patients do not respond to this type of drug, and a few patients have an average survival period of less than half a year after the failure of DNA methylation inhibitor treatment, and the upregulation of oncogenes may be an important reason. This indicates that the applicable population of demethylation therapy is limited, and the clinic needs to carry out more targeted group treatments. More importantly, although both have been approved for clinical treatment, there is currently less research comparing the similarities and differences in adverse reactions caused by the two.
This study retrieved two demethylation drugs for the treatment of MDS approved by the US Food and Drug Administration (FDA): azacitidine and decitabine. These two therapeutic drugs showed similar efficacy characteristics. As of 31 July 2020, according to a meta-analysis using markov chain monte carlo method to network meta-analysis, the primary end point for overall survival (OS) and the incidence of adverse events, and secondary endpoints were complete response rate (CR), the total response rate (ORR) and no AML surial. There are six randomized controlled trials involving 1,072 patients with MDS, three randomized controlled trials, involving 1,256 patients with AML. The meta-analysis showed that in MDS, AZA showed a better AML-free survival period (risk ratio = 0.62; 95% CI, 0.43–0.9), while DAC may achieve better CR and ORR, and AZA may obtain better OS and lower toxicity. For elderly AML patients, DAC may achieve better CR, ORR, and OS, but the toxicity is relatively higher. In addition, subgroup analysis of patients aged 75 or MDS high-risk patients ≥ showed that AZA achieved better OS (Liu et al., 2021). Therefore, clinicians usually need to tailor treatment decisions according to the risk of adverse events for individual patients, and we conducted a descriptive study of spontaneously reported adverse reactions in the VigiAccess database to compare the adverse reaction reporting rates caused by the two drugs.
MATERIALS AND METHODS
Drug samples
Table 1 shows the two demethylation drugs for the treatment of MDS that we have studied for clinical research.
TABLE 1 | Overview of two DNA methylation inhibitors.
[image: Table comparing two drugs: Azacitidine and Decitabine. Azacitidine's chemical name is 4-amino-1-beta-D-ribofuranosyl-1,3,5-triazine-2(1H)-one with structure C8H12N4O5, treating MDS, AML, and Chronic Myeloid Leukemia, first marketed in 2004. Decitabine's chemical name is 5-azacitidine-2'-deoxycytidine with structure C8H12N4O4, treating MDS and AML, first marketed in 2012.]Azacitidine and decitabine are both drugs used to treat certain types of cancer, and they have different chemical structures and mechanisms of action. Azacitidine (Azacitidine for Injection) is the only DNA methylation inhibitor that can significantly extend the overall survival of high-risk MDS patients, the first MDS treatment drug approved by the US FDA, and recommended by the US National Comprehensive Cancer Network guidelines as a first-line treatment drug. This product is suitable for the treatment of all subtypes of MDS and has the qualification of rare disease treatment drugs. It is a cytidine nucleoside analog that exerts anti-tumor effects by causing DNA demethylation and direct cytotoxic effects on abnormal hematopoietic cells in the bone marrow, mainly used for the treatment of myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). It also has certain efficacy against breast cancer, colon cancer, melanoma, etc. Decitabine is an adenosine analog of natural 2′-deoxycytidine acid, which inhibits DNA methyltransferase, reduces DNA methylation, thereby inhibiting tumor cell proliferation and preventing drug resistance. Decitabine inhibits DNA methylation in vitro but does not affect DNA synthesis, mainly used for the treatment of myelodysplastic syndrome (MDS), and has anti-tumor activity, showing a dual mechanism of dose difference: cytotoxicity at high concentrations and demethylation at low concentrations (Lee et al., 2013).
Data source
WHO-VigiAccess was searched on 17 July 2024, to find all adverse events reported after the introduction of demethylation therapy drugs for MDS. The login website is https://www.vigiaccess.org. All research drugs were identified by their generic names. WHO-VigiAccess collects data on age groups, gender, reporting year, and continents around the world. Descriptive data were calculated using Excel 2016. WHO-VigiAccess is a free portal of the PIDM database, allowing the retrieval of drug safety reports received by UMC. This definition depends on the System Organ Class (SOC) and Preferred Term (PTs) of the Medical Dictionary for Regulatory Activities (MedDRA). Therefore, records of each drug were retrieved, and all individual AEs were determined according to the SOC and PT levels recorded to describe the toxicity spectrum. The reporting terms used in MedDRA come from several dictionaries, including the World Health Organization Adverse Reaction Terminology (WHO-art), etc. (Sultana et al., 2020). The SOC classification has a total of 27 entries, and 20 entries directly related to disease symptoms were selected for analysis. In this study, we focused on the PTs, that is, the levels used in the VigiBase database publicly accessed through WHO-VigiAccess. To study the results of the detected safety signals, we grouped them using the outcome codes to produce three serious categories: death, hospitalization, and major events including life-threatening events, disabilities, and congenital abnormalities.
Statistical analysis
This study used a retrospective quantitative research design. Descriptive analysis using Excel was performed to analyze the characteristics of the victims of adverse reactions to the two drugs. The number of ADR symptoms for each drug divided by the total number of ADR reports is defined as the ADR reporting rate for that drug. The common ADRs for each drug refer to the ADR reporting rate of the top 20 symptoms. The incidence of ADR symptoms reported for each drug was calculated and a descriptive comparative analysis was performed. Descriptive variables were categorized using frequency and percentage.
RESULTS
Study Medical Record Description: The earliest adverse reaction reports for azacitidine and decitabine received in the WHO-VigiAccess database were in 1978 and 2003, respectively. As of 2024, the World Health Organization has received a total of 17,925 and 5,838 adverse reaction reports for these two drugs, totaling 23,763. The number of adverse events covered in these adverse reaction reports is 42,335 for azacitidine and 14,390 for decitabine. In the 23,763 reports related to the two DNA methylation inhibitor drugs shown in Table 2.
TABLE 2 | Characteristics of ADR reports of Two DNA Methylation Inhibitors.
[image: A table compares the number of ADR reports for Azacitidine and Decitabine, segmented by gender, age, region, and year. Azacitidine has 17,925 reports, with 55.3% male and 35.1% female. Decitabine has 5,838 reports, with 54.6% male and 34.6% female. Regions include Africa, Americas, Asia, Europe, and Oceania. Reports span from before 2010 to 2024, with varied percentages.]Except for 2,332 cases with unknown gender, the number of men experiencing adverse reactions (13,191) is significantly more than that of women (8,320), with a male-to-female ratio of 1.59:1, a significant difference. Excluding reports with unknown age, the age group with the highest reporting rate is mostly between 65 and 74 years old. Most of the reported AEs come from Asia (38.38%). Table 2 also lists the reporting years for each study drug.
Distribution of 20 System Organ Classes (SOCs) for two DNA methylation inhibitors
Table 3 and Supplementary Table S1 show the reporting rates of the 20 SOCs for the two DNA methylation inhibitors. Azacitidine-related hematologic and lymphatic system disorders, cardiac disorders, gastrointestinal disorders, nervous system disorders, respiratory, thoracic and mediastinal disorders, and vascular disorders have significantly higher reporting rates than decitabine. In addition, general disorders and administration site conditions, infections and parasitic infestations, the number of examinations, benign, malignant, and unspecified tumors, including cysts and polyps, are also significantly more numerous for azacitidine than for decitabine. The top five most commonly reported AE types for DNA methylation inhibitors are: blood and lymphatic system disorders (8,968 cases, 37.74%), general disorders and administration site conditions (5,784 cases, 24.34%), infections and parasitic infestations (5,379 cases, 22.63%), gastrointestinal disorders (3,562 cases, 14.99%), and examinations (3,363 cases, 14.15%).
TABLE 3 | ADR number and report rate of 20 SOCs of Two DNA Methylation Inhibitors.
[image: Table comparing adverse event frequencies between Azacitidine and Decitabine across various system organ classes. Azacitidine reports 6,403 cases of blood disorders (35.72%), while Decitabine has 2,565 cases (43.94%). Additional classes include cardiac, gastrointestinal, immune, and others, with percentages provided for each drug. Data focuses on event prevalence among patients treated with these medications.]The most common adverse reactions for two DNA methylation inhibitors
Table 4 lists the 20 most commonly reported adverse reactions for the two inhibitors, presented as preferred terms within the SOC. The common adverse reactions for all DNA methylation inhibitors are febrile neutropenia, neutropenia, bone marrow suppression, thrombocytopenia, anemia, pancytopenia, leukopenia, cytopenia, bone marrow failure, hematotoxicity, agranulocytosis, disseminated intravascular coagulation, granulocytopenia, platelet disorders, febrile bone marrow hypoplasia, splenomegaly, leukocyte disorders, thrombocythemia, and hemolysis. Compared with azacitidine, decitabine has a significantly higher reporting rate for adverse reactions related to immune responses.
TABLE 4 | Top 20 ADRs of two DNA methylation inhibitors.
[image: The table compares adverse drug reaction (ADR) report rates for Azacitidine and Decitabine. For Azacitidine, febrile neutropenia has the highest rate at 10.18%, followed by neutropenia at 6.67%, and myelosuppression at 6.14%. For Decitabine, myelosuppression is highest at 11.66%, followed by neutropenia at 9.30%, and febrile neutropenia at 8.12%. The table lists ADRs in descending order of frequency for both drugs.]2 types of DNA methylation inhibitors have serious adverse events
Through WHO-VigiAccess, we can also find that the main adverse events of DNA methylation inhibitors include death, hospitalization, and life-threatening events. The proportion of deaths caused by Azacitidine and Decitabine are 4.04% and 1.66% respectively (Figure 1).
[image: Bar graph comparing outcome percentages for Azacitidine and Decitabine. Azacitidine shows 4.04% deaths, 0.20% hospitalizations, and 0.04% major incidents. Decitabine shows 1.66% deaths, 0.14% hospitalizations, and 0.05% major incidents.]FIGURE 1 | Outcomes for serious adverse events associated with DNA Methylation Inhibitors at the level of preferred terms (major events comprising life-threatening events, disability, and congenital anomaly).
Same and different adverse reactions of two DNA methylation inhibitors
By comparing the top 27 adverse reactions reported for each DNA methylation inhibitor in the System Organ Class (SOC), 173 common signals were found at the Preferred Term (PT) level for the two inhibitors. All common signals are categorized in Table 5. The SOC with the most adverse reaction signals is General Disorders and Administration Site Conditions, with the top five reported being pain, drug ineffectiveness, multiple organ dysfunction syndrome, chest pain, and disease progression. Additionally, for Respiratory, Thoracic and Mediastinal Disorders, the top five reports are cough, interstitial lung disease, pneumonia, pulmonary infiltration, and acute respiratory distress syndrome.
TABLE 5 | Same ADRs among two DNA methylation inhibitors.
[image: Table listing adverse drug reactions (ADRs) by system organ classes with related symptoms and signal numbers. Categories include blood disorders, cardiac disorders, gastrointestinal disorders, nervous system disorders, and more. Each ADR category details symptoms like neutropenia, cardiac arrest, diarrhea, pain, and insomnia, with corresponding signal numbers indicating the frequency of each ADR.]When comparing the top 27 adverse reactions reported for each DNA methylation inhibitor in the SOC, all PTs are different for the inhibitors. Azacitidine and Decitabine both have unique symptoms in the areas of Blood and Lymphatic System Disorders, Cardiac Disorders, Gastrointestinal Disorders, General Disorders and Administration Site Conditions, Immune System Disorders, Infections and Infestations, Injury, Poisoning and Procedural Complications, Investigations, Benign, Malignant and Unspecified Tumors (including cysts and polyps), Nervous System Disorders, Psychiatric Disorders, Renal and Urinary Disorders, and Respiratory, Thoracic and Mediastinal disorders (Table 6).
TABLE 6 | Different ADRs among two DNA methylation inhibitors.
[image: A table comparing adverse effects of Azacitidine and Decitabine by system organ classes. For Azacitidine, effects include blood disorders like white blood cell disorder, cardiac disorders such as atrial flutter, and gastrointestinal issues like ascites. For Decitabine, effects include bicytopenia under blood disorders, palpitations for cardiac issues, and blurred vision for eye disorders. Several categories, such as respiratory disorders and vascular disorders, have effects listed for both drugs.]DISCUSSION
Due to the inherent limitations of clinical trials, such as strict trial design, strict inclusion criteria, relatively small sample size, and limited follow-up time, the SRS has been used for safety assessment of suspected adverse events in drug vigilance. In addition, the research data from clinical trials may not conform to the real world where patients and comorbidities are heterogeneous. SRS plays an important role in signal identification (Lindquist et al., 2000). Currently, most research on drug safety signals mainly comes from three major databases: the EudraVigilance Data Analysis System (EVDAS), the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS), and the WHO-VigiBase® (Vogel et al., 2020). WHO-VigiAccess, launched by WHO in 2015, aims to provide the public with information from VigiBase®, the global database of potential drug side effects reported by WHO. Data mining of the WHO-VigiAccess database will provide previously unknown drug AE associations and some established clinical associations (Yamoah et al., 2022).
This experiment aims to evaluate the post-marketing adverse events related to DNA methylation inhibitors in the WHO-VigiAccess database. The data from WHO-VigiAccess show that 38.38% of adverse events related to the two inhibitors come from Asia, followed by the United States. It is estimated that the incidence of MDS in the United States and Europe is 4.3 and 1.8 cases per 100,000 people per year, respectively. Some Asian countries report lower incidence rates, while estimates from other parts of the world are less frequent. In other research statistics, it can be found that the number of adverse events in the Americas and Europe is not much different from Asia, while the number of adverse events in Africa and Oceania is quite low. A large part of the reason comes from factors such as geographical and social environment, medical level, the lack of health professionals, the scarcity of medical knowledge, and the high costs caused by regional economic disparities, making Africa the region with the lowest adverse events (Ampadu et al., 2016).
In adverse reaction reports, males are more common than females, and the 65–74 age group has the most adverse reactions after treatment with methylation inhibitors, followed by a significant proportion in the ≥75 age group. Risk factors associated with MDS include older age and previous exposure to toxins, such as chemotherapy or radiotherapy. As age increases, physiological functions gradually decline, and the elderly often have various complications, affecting the metabolic process of drugs in the body and greatly increasing the risk of adverse events. Moreover, due to physiological differences between genders, the number of adverse events in males is more than 1.5 times that of females. Although adverse events occur in all age groups, the highest incidence rate is in the 65–74 age group (Itzykson et al., 2015).
AEs with a reporting rate >1% are usually considered the most common (Chen et al., 2019). Serious adverse events of the two DNA methylation inhibitors, including life-threatening events and hospitalization events, are not common, but the death event of azacitidine is 4.04%, which is much higher than decitabine. The most common adverse reactions of the two DNA methylation inhibitors are blood and lymphatic system disorders.
In a decitabine trial, 91% of patients reported grade 3 or four neutropenia, while 85% of patients reported grade 3 or four thrombocytopenia. In the decitabine registration trial, 87% of patients treated with decitabine experienced grade 3 or four neutropenia, while 50% of patients receiving supportive therapy experienced grade 3 or four thrombocytopenia. Furthermore, 85% of patients treated with decitabine experienced grade 3 or four thrombocytopenia, whereas the proportion of patients receiving only supportive therapy who experienced grade 3 or four thrombocytopenia was 43% (Fenaux et al., 2009; Kantarjian et al., 2006). There is no consensus on the best approach to managing myelotoxicity induced by hypomethylating agents. Potential strategies include dose delay, dose reduction, administration of hematopoietic growth factors, or simply waiting it out. This is related to the mechanism of action of azacitidine and decitabine in the body: after cellular uptake, azacitidine and decitabine are converted into their monophosphates, diphosphates, and triphosphates. Triphosphate decitabine is a deoxyribonucleotide that is incorporated only into DNA. Azacitidine is primarily converted into triphosphate azacitidine, which is incorporated into RNA. A small portion of the administered azacitidine (about 10%–20%) is converted by ribonucleotide reductase into 5-azacitidine triphosphate, which can be incorporated into DNA. Incorporation into DNA leads to the formation of adducts between DNA and DNMT-1. At high doses, DNA cannot be repaired and cell death occurs (Christman, 2002).
By December 2018, the FAERS database showed that the most common adverse reactions (≥30%) associated with venetoclax in combination with azacitidine or decitabine or low-dose cytarabine were nausea, diarrhea, thrombocytopenia, constipation, neutropenia, febrile neutropenia, fatigue, vomiting, peripheral edema, pneumonia, dyspnea, hemorrhage, anemia, rash, abdominal pain, sepsis, back pain, myalgia, dizziness, cough, oropharyngeal pain, fever, and hypotension. Through the VigiAccess database, we found that the top five adverse reactions related to azacitidine are febrile neutropenia (10.18%), neutropenia (6.67%), bone marrow suppression (6.14%), thrombocytopenia (6.03%), and anemia (4.65%). The top five adverse reactions for decitabine are bone marrow suppression (11.66%), neutropenia (9.3%), febrile neutropenia (8.12%), thrombocytopenia (7.66%), and leukopenia (5.24%). VigiAccess and FAERS, as databases for assessing post-marketing drug vigilance, show differences in the types and incidence rates of infection-related adverse reactions caused by two DNA methylation inhibitors. Since adverse events are voluntarily reported, passive monitoring of the FAERS database and the WHO-VigiAccess database cannot represent complete and comprehensive statistics. As a database for assessing post-marketing drug vigilance, WHO-VigiAccess shows that the types and incidence rates of infection-related adverse reactions caused by DNA methylation inhibitors vary. Since adverse events are voluntarily reported, the WHO-VigiAccess database cannot represent a complete and comprehensive statistical adverse event, and may lack information on reported events. This may require WHO-VigiAccess to provide more report information to the public to filter potential connections between drugs and adverse reactions to avoid incorrect guidance.
Another significant adverse event of DNA methylation inhibitor treatment is the greatly increased risk of infection (Quinto et al., 2014). Infection is a common and potentially fatal event affecting patients with myelodysplastic syndrome (MDS). A retrospective study showed that neutropenia and/or neutrophil dysfunction during the treatment of MDS patients; B cell, T cell, and NK cell defects; treatment toxicity; previous severe infections, and other factors can all lead to death (Merkel et al., 2013). Compared with the general population, the incidence and severity of infectious diseases in MDS patients are much higher. The increased risk of infection in these patients seems to be mainly attributed to immunosuppressive therapy. When DNA methylation inhibitors are used in combination for treatment, the risk of infection will also increase significantly (Derissen et al., 2013). And routine antibiotics, antifungal prevention does not seem to reduce the incidence of infection events. Considering the bacterial and fungal resistance risks associated with long-term use of anti-infective drugs, these drugs should be used cautiously for selected subgroups of MDS patients (Quinto et al., 2014). Clinical physicians exhibit significant variation in the use of antimicrobial prophylaxis during hypomethylating agent therapy. Some clinicians do not provide prophylactic measures and anticipate treatment of infections; others utilize antimicrobial prophylaxis, antifungal prophylaxis, antiviral prophylaxis, or some combination of these three. Currently, there are no randomized trials comparing various potential antimicrobial prophylactic strategies for MDS patients treated with azacitidine or decitabine, hence the basis for decision-making data comes from other settings.
Furthermore, MDS exhibits heterogeneity, not only due to diverse pathogenic mechanisms and morphological presentations but also in the natural course and outcomes of patients. The course of individual patients varies greatly, ranging from severely symptomatic diseases with a survival period limited to a few months to mildly symptomatic diseases with a survival period of 10 years or longer. Most MDS patients die from complications associated with severe cytopenias, rather than from the progression of leukemia.
If a hypomethylating agent is ineffective for a patient clinically, what reason is there to try another? Although azacitidine (5-azacitidine) and decitabine (5-aza-20-deoxycytidine) are chemically similar, differing only in a hydroxyl group on the sugar part, patients may respond to one compound and not the other for biological reasons. The cellular metabolism of azacitidine and decitabine is similar but not identical. After entering the cell through equilibrative nucleoside transporters (ENTs) on the cell surface, azacitidine is phosphorylated to 5-azacitidine monophosphate by uridine-cytidine kinase, while decitabine is phosphorylated by deoxycytidine kinase (the rate-limiting step for drug activation within the cell) (Kaminskas et al., 2005). In tumor cell lines, low expression of deoxycytidine kinase is associated with decitabine resistance but does not affect the metabolism of azacitidine (Qin et al., 2009). In cell lines, the correlation between sensitivity to decitabine and sensitivity to azacitidine is better than the correlation between sensitivity to azacitidine (Qin et al., 2009). Additionally, the overall hypomethylation pattern induced by azacitidine in vitro is different from that induced by decitabine (Flotho et al., 2009). These data suggest that some patients may be predestined to respond better to one hypomethylating agent than another, and 1 day it may be possible to obtain gene expression profiles before treatment to select the most appropriate drug.
The use of the spontaneous reporting system database has some important hidden limitations because reports are affected by notoriety bias, selection bias, and under-reporting (Quinto et al., 2014). As observed in the current study results that reported some AEs, the missing data cannot be attributed to either males or females, nor to age groups. In addition, because the World Health Organization’s VigiAccess database is cumulative data, the annual ADR cannot be obtained. When drugs are marketed at different times, the number of ADRs collected varies greatly, and it is impossible to compare the signal differences of all target inhibitors at the same time. Therefore, further data mining will not be possible. This study collected the number of ADRs and PTs over the years, compared the ADR.
The use of the spontaneous reporting system database has some significant implicit limitations, as reports can be influenced by notoriety bias, selection bias, and under-reporting (Kantarjian et al., 2006). As observed in the current study’s results, which reported some adverse events (AEs), the missing data cannot be attributed to males, females, or age groups. Moreover, because the World Health Organization’s VigiAccess database contains cumulative data, it is impossible to obtain the annual number of adverse drug reactions (ADRs). When drugs are marketed at different times, the number of ADRs collected varies greatly, making it impossible to compare the signal differences of all target inhibitors simultaneously. Therefore, further data mining cannot be achieved. This study collected the number of ADRs and preferred terms (PTs) over the years, comparing the ADR reporting rates of different drugs to avoid the impact of the timing of drug marketing.
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Objectives

The role of matrix metalloproteinases (MMPs) in Skin Cutaneous Melanoma (SKCM) development and progression is unclear so far. This comprehensive study delved into the intricate role of MMPs in SKCM development and progression.





Methods

RT-qPCR, bisulfite sequencing, and WES analyzed MMP gene expression, promoter methylation, and mutations in SKCM cell lines. TCGA datasets validated findings. DrugBank and molecular docking identified potential regulatory drugs, and cell line experiments confirmed the role of key MMP genes in tumorigenesis.





Results

Our findings unveiled significant up-regulation of MMP9, MMP12, MMP14, and MMP16, coupled with hypomethylation of their promoters in SKCM cell lines, implicating their involvement in disease progression. Mutational analysis highlighted a low frequency of mutations in these genes, indicating less involvement of mutations in the expression regulatory mechanisms. Prognostic assessments showcased a significant correlation between elevated expression of these genes and poor overall survival (OS) in SKCM patients. Additionally, functional experiments involving gene silencing revealed a potential impact on cellular proliferation, further emphasizing the significance of MMP9, MMP12, MMP14, and MMP16 in SKCM pathobiology.





Conclusion

This study identifies Estradiol and Calcitriol as potential drugs for modulating MMP expression in SKCM, highlighting MMP9, MMP12, MMP14, and MMP16 as key diagnostic and prognostic biomarkers.





Keywords: biomarker, diagnostic, MMPs, multi-scale methodology, SKCM





Introduction

Skin cutaneous melanoma (SKCM) is a malignancy arising from melanocytes, the pigment-producing cells located predominantly in the skin epidermis (1). SKCM is primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds (2). Prolonged exposure to UV radiation damages the DNA in skin cells, leading to mutations that can trigger melanoma development (3). Additionally, factors such as genetic predisposition, family history of melanoma, fair skin, presence of numerous moles, and weakened immune system also contribute to the risk of developing SKCM (4). Moreover, environmental factors, such as exposure to certain chemicals or radiation, and lifestyle habits like smoking, can further increase the likelihood of developing this aggressive form of skin cancer (5). Overall, a combination of genetic susceptibility and environmental exposures plays a significant role in the etiology of SKCM. SKCM represents an important global health burden due to its rising incidence rates and propensity for metastasis, accounting for the majority of skin cancer-related deaths worldwide (6). Despite advances in therapeutic strategies, including immunotherapy and targeted therapies, SKCM remains challenging to manage, emphasizing the urgent need for a deeper understanding of its molecular underpinnings to facilitate the development of effective diagnostic, prognostic, and therapeutic approaches.

Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent endopeptidases that play pivotal roles in various physiological and pathological processes, including extracellular matrix (ECM) remodeling, tissue repair, inflammation, and cancer progression (7). Dysregulation of MMP expression and activity is implicated in the pathogenesis of numerous malignancies, where they mediate critical steps in tumor invasion, metastasis, angiogenesis, and immune evasion (8). MMPs facilitate tumor growth, invasion, and metastasis by remodeling the ECM and enabling cancer cells to migrate. MMPs are involved in various stages of cancer, from tumor initiation to metastasis (9). While MMPs have been extensively studied in multiple cancers, including breast, lung, colorectal, and prostate cancer, their roles in SKCM have garnered increasing attention in recent years.

In other cancers, MMPs have been implicated in various stages of tumorigenesis and cancer progression. For instance, MMP-2 and MMP-9 have been shown to promote tumor invasion and metastasis in breast cancer by degrading the ECM components and facilitating tumor cell migration (10, 11). Similarly, MMP-7 has been associated with enhanced invasiveness and metastatic potential in colorectal cancer, partly through its ability to cleave ECM proteins and promote epithelial-to-mesenchymal transition (EMT) (12). Moreover, MMP-14, also known as membrane-type 1 MMP (MT1-MMP), has been linked to tumor angiogenesis and metastasis in lung cancer by facilitating the degradation of basement membrane components and promoting the release of pro-angiogenic factors (13). In addition to their roles in tumor invasion and metastasis, MMPs have been implicated in modulating the tumor microenvironment (TME) to promote tumor growth and immune evasion (14). MMP-mediated ECM remodeling can release bioactive molecules sequestered within the ECM, such as growth factors and cytokines, thereby promoting tumor cell proliferation, survival, and angiogenesis (15). Moreover, MMPs can modulate the immune response by cleaving cell surface receptors, cytokines, and chemokines, thereby influencing immune cell trafficking, activation, and function within the TME (16).

Despite extensive research on matrix metalloproteinases (MMPs) in various cancers, their roles in SKCM remain unclear due to the cancer’s complexity and heterogeneity. MMPs are crucial for extracellular matrix remodeling, influencing tumor growth, invasion, and metastasis. Understanding their specific contributions to SKCM is essential for advancing diagnostic and therapeutic approaches. This study aims to bridge these gaps by integrating bioinformatics analyses and molecular experiments to evaluate the diagnostic, prognostic, and therapeutic implications of MMPs in SKCM. Identifying MMPs as potential diagnostic biomarkers could enhance early detection and patient stratification. Additionally, understanding their prognostic value could improve risk assessment and treatment personalization. The research also seeks to uncover novel therapeutic targets among MMPs, potentially leading to targeted therapies that could enhance treatment efficacy and patient outcomes. By utilizing multi-omics data, the study provides a comprehensive view of MMP functions in SKCM, offering new insights that could contribute to more effective and personalized treatment strategies.





Methodology

The overall methodology of the present study is presented in Figure 1.
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Figure 1 | Flow sheet diagram depicting the methodology employed in the present study. The diagram provides a step-by-step visual outline of the experimental workflow.




List of the analyzed MMP genes in SKCM

In this investigation, a comprehensive analysis was conducted on a subset of 24 Matrix Metalloproteinase (MMP) family genes. The selected panel included MMP1, MMP2, MMP3, ILF3, MMP7, MMP8, MMP9, MMP10, MMP11, MMP12, MMP13, MMP14, MMP15, MMP16, MMP17, MMP19, MMP20, MMP21, MMP23B, MMP24, MMP25, MMP26, and MMP27. The primary objective was to identify and validate these genes as potential hub genes or molecular biomarkers with clinical relevance in SKCM patients.





PPI construction and hub gene identification

The STRING database stands as a prominent and current resource for protein-protein interactions (PPIs), renowned for its comprehensiveness (17, 18). This database offers a seamlessly integrated platform that empowers researchers to delve into the intricate web of protein interactions and their roles in diverse biological systems, encompassing humans, yeast, bacteria, and more. This study harnessed the capabilities of the STRING web resource to construct the PPI network for the MMP protein family, adhering to the default settings.

Cytoscape software (19, 20) stands as a robust and widely employed tool, instrumental for researchers in scrutinizing protein-protein interaction networks. This software furnishes users with the means to visually represent the intricate tapestry of protein interactions and discern the pivotal participants within these networks. Leveraging its advanced algorithms and diverse plugins, Cytoscape enables tasks such as protein clustering, pathway analysis, and the creation of interactive visualizations, which prove invaluable in unraveling the intricacies of biological processes shaped by protein interactions. In this study, the Cytohubba plugin application (21) was employed with the Cytoscape platform to pinpoint hub genes within the constructed PPI network, utilizing the degree method. In more specific terms, the criteria for designating hub genes using the degree method involve ranking genes based on their connectivity, with those having the highest number of interactions being identified as hubs.





Cell culture

In total, 20 SKCM cell lines (A2058, A375, WM793, SK-MEL-28, SK-MEL-2, G361, WM35, MeWo, HS294T, LOX IMVI, RPMI-7951, UACC-62, UACC-257, MALME-3M, HMCB, SK-MEL-5, SK-MEL-3, WM1552C, C32, IPC-298, and YUGEN8) as well as 20 normal skin cell lines (CCD-1106 KERTr, CCD-1112Sk, CCD-1121Sk, CCD-1140Sk, CCD-1152Sk, CCD-8Sk, Hs 895.Sk, Hs 936.Sk, Hs 919.Sk, Hs 888.Sk, Hs 895.T, Hs 27, Hs 852.T, Hs 895.C, Hs 895.O, Hs 895.P, Hs 895.R, Hs 895.D, Hs 895.B, and Hs 895.A), were procured from Pricella (Wuhan, Hubei, China) and subjected to STR matching analysis for verification. These cell lines were maintained under standard culture conditions at 37°C with 95% humidity and 5% CO2. The cell lines were cultured in DMEM (Dulbecco’s Modified Eagle Medium) supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin, and 1% glutamine, ensuring optimal growth and viability.





Nucleic acid extraction

DNA extraction was carried out using the organic method as described in reference (22, 23), utilizing the Phenol-Chloroform Isoamyl Alcohol (PCI) from Thermo Fisher Scientific (catalog number 15593031), while RNA was isolated using the TRIzol method according to the procedure detailed in reference (24, 25) utilizing the TRIzol Reagent from Invitrogen (catalog number 15596026).





RT-qPCR-based expression analysis

The quality and purity of the isolated RNA were assessed utilizing an Agilent Bioanalyzer (Santa Clara, CA, USA). Subsequently, RNA was subjected to reverse transcription to synthesize complementary DNA (cDNA) with a ReverTra Ace® qPCR RT Master Mix from TOYOBO, Shanghai, China (catalog number FSQ-301). Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was conducted using SYBR Green PCR mix (Thermo Fisher Scientific, Waltham, USA) on an ABI 7900HT FAST Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). To ensure normalization, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was employed as an internal control, with normalization conducted by calculating the ΔCT values (CT of target gene - CT of GAPDH) to account for variations in RNA input and reverse transcription efficiency. Primer efficiency for GAPDH and hub genes was validated through standard curve analysis, ensuring that the amplification efficiency was between 90% and 110%. Relative mRNA expression levels were determined using the 2−ΔΔCT method. A Student’s t-test was used to find differences between gene expression among SKCM and normal control groups, with a P-value < 0.05 considered significant. The following primers were purchased from the OriGene, USA Company for the amplification of GAPDH and hub genes.

GAPDH-F 5’-ACCCACTCCTCCACCTTTGAC-3’,

GAPDH-R 5’-CTGTTGCTGTAGCCAAATTCG-3’

MMP9-F: 5’-GCCACTACTGTGCCTTTGAGTC-3’

MMP9-R: 5’-CCCTCAGAGAATCGCCAGTACT-3’

MMP12-F: 5’-GATGCTGTCACTACCGTGGGAA-3’

MMP12-R: 5’-CAATGCCAGATGGCAAGGTTGG-3’

MMP14-F: 5’-CCTTGGACTGTCAGGAATGAGG-3’

MMP14-R: 5’-TTCTCCGTGTCCATCCACTGGT-3’

MMP16-F: 5’-GATTCAGCCATTTGGTGGGAGG-3’

MMP16-R: 5’-CCCTTTCCAGACTGTGATTGGC-3’

For GAPDH, the PCR conditions included an initial denaturation step at 95°C for 10 minutes, followed by 40 cycles of denaturation at 95°C for 15 seconds, annealing at 60°C for 30 seconds, and extension at 72°C for 30 seconds.

For MMP9, the PCR conditions were similarly set with an initial denaturation at 95°C for 10 minutes, followed by 40 cycles of denaturation at 95°C for 15 seconds, annealing at 59°C for 30 seconds, and extension at 72°C for 30 seconds.

For MMP12, the PCR conditions comprised an initial denaturation at 95°C for 10 minutes, followed by 40 cycles of denaturation at 95°C for 15 seconds, annealing at 54°C for 30 seconds, and extension at 72°C for 30 seconds.

For MMP14, the PCR conditions included an initial denaturation at 95°C for 10 minutes, followed by 40 cycles of denaturation at 95°C for 15 seconds, annealing at 51°C for 30 seconds, and extension at 72°C for 30 seconds.

For MMP16, the PCR conditions were set with an initial denaturation at 95°C for 10 minutes, followed by 40 cycles of denaturation at 95°C for 15 seconds, annealing at 58°C for 30 seconds, and extension at 72°C for 30 seconds.

The RT-qPCR assay and annealing temperatures of the primers were optimized using a serial dilution and gradient PCR methods to ensure accuracy and reliability. All reactions were performed in triplicates to ensure accuracy and reproducibility of the results.





Receiver operating characteristic (ROC) curve

The Receiver Operating Characteristic (ROC) curve provides a holistic assessment, incorporating the continuous variables of sensitivity and specificity. The Area under the ROC curve (AUC) serves as an indicator of the diagnostic efficacy of the test. Typically, an AUC exceeding 0.9 is indicative of a highly accurate diagnostic test. The ROC curve analysis was carried out using Graph Pad Prism 7.0 with data derived from RT-qPCR and methylation analysis.





Western blot analysis

Protein extracts from SKCM and normal control cell lines were resolved using 11% SDS-PAGE and subsequently transferred onto polyvinylidene difluoride (PVDF) membranes (Millipore). Following a 1-hour blocking step with 5% non-fat milk at room temperature, the PVDF membranes underwent three 10-minute washes with phosphate-buffered saline (PBS). Subsequently, the membranes were subjected to an overnight incubation at 4°C with primary antibodies targeting MMP9 (abcam, ab38898), MMP12 (abcam, ab137444), MMP14 (abcam, ab51074), MMP16 (abcam, ab73877), and control protein β-actin (abcam, ab8227), used as a loading control due to its stable and ubiquitous expression. After thorough washing, the membranes underwent a 2-hour incubation with secondary antibodies. After an additional three 10-minute washes with Tris-buffered saline/Tween-20 (TBST) at room temperature, the immunoreactivity was visualized using an ECL kit (Sangon Biotech), and the membranes were then exposed to Kodak XAR-5 film (Sigma-Aldrich).





Promoter methylation analysis




Library preparation for targeted bisulfite sequencing analysis

1 µg of total DNA underwent fragmentation into 200-300 bp fragments using the Covarias sonication system (Covarias, Woburn, MA, USA). Following this, the DNA fragments underwent repair and phosphorylation of blunt ends, facilitated by a combination of enzymes including T4 DNA polymerase, Klenow Fragment, and T4 polynucleotide kinase. Subsequently, the repaired fragments underwent 3’ adenylation using Klenow Fragment (3’-5’ exo-), and then were ligated with adapters. These adapters featured 5’-methylcytosine instead of 5’-cytosine, along with index sequences, and the ligation was carried out using T4 DNA Ligase. After the library construction, quantification was conducted using a Qubit fluorometer with the Quant-iT dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA). Following this, the prepared libraries were sent to the Beijing Genomic Institute (BGI), China, for targeted bisulfite sequencing. Following the completion of sequencing, the methylation data underwent normalization, resulting in the generation of beta values.






Mutational analysis

Mutations among the hub genes were explored through the Whole Exome Sequencing (WES) method. DNA from a total of 10 SKCM cell lines was sent to the Beijing Genomics Institute (BGI) and WES was performed according to the following protocol:

The targeted capture pulldown and exon-wide libraries were created from genomic DNA extracted from 10 SKCM cell line samples using the xGen® Exome Research Panel from Integrated DNA Technologies, Inc., based in Illinois, USA, and the TruePrep DNA Library Prep Kit V2 for Illumina (#TD501, Vazyme, Nanjing, China). These captured libraries were subjected to pair-end sequencing on the Illumina HiSeq 2500 platform. Subsequently, the sequencing reads were processed and aligned to the GRCh37/hg19 human genome reference assembly, including the identification of germline variations. Local rearrangements were applied to enhance the alignment of individual reads. SNPs and insertion–deletion (indel) variants were called by implementing GATK’s Best Practices Workflow (for details, refer to https://github.com/Sydney-Informatics-Hub/Somatic-ShortV). Single nucleotide polymorphisms (SNPs) and insertion-deletion (indel) variants were identified by following the GATK’s Best Practices Workflow. This workflow involved the use of HaplotypeCaller to detect germline short variants and Mutech2 caller to identify somatic short variants, including SNVs and indels. For a comprehensive understanding of these procedures finally, the observed genetic mutations were interpreted according to the American College of Medical Genetics and Genomic (ACMG) guidelines (26) and annotated by utilizing the ClinVar database (27).





Validation of hub expression using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets

Expression data from 472 SKCM samples in the TCGA database and 461 SKCM samples from the GEPIA (http://gepia.cancer-pku.cn/) (28) database were obtained. Additionally, data from 214 SKCM samples were extracted from the GSE65904 dataset available through the GEO database. The acquired data underwent normalization via log2 transformation using the normalized quantiles function from the preprocessCore package in R software. Subsequently, expression data for MMPs were filtered out to focus on relevant analyses.





Validation of hub gene promoter methylation level and mutational analysis across The Cancer Genome Atlas (TCGA) datasets

MEXPRESS (https://mexpress.ugent.be/) stands as an invaluable resource catering to the needs of researchers and clinicians working in the field of oncology (29). This database serves as a repository of cancer-related information, encompassing critical details, including promoter methylation data. This study leveraged the capabilities MEXPRESS database to verify the promoter methylation status of the hub gene within the cohort of TCGA SKCM patients.

cBioPortal stands as a robust web-based platform, greatly simplifying the intricate task of delving into multifaceted cancer genomics data (30). This platform provides a user-friendly interface, empowering researchers to interactively dissect and visualize multifaceted cancer datasets, spanning genetic mutations and clinical information. In our study, the cBioPortal database was utilized for the mutational analysis of hub genes across the TCGA SKCM patients.





Survival analysis and constriction of prognostic model

The KM plotter tool (https://kmplot.com/analysis/) serves as an indispensable asset for conducting survival analysis in the realm of cancer research (31). It furnishes researchers with an easily navigable platform to evaluate the influence of particular genes on patient survival. In the present research, the KM plotter tool was utilized to perform a survival analysis of the hub gene in SKCM patients.

To construct the prediction model, this study utilized the least absolute shrinkage and selection operator (Lasso) and multivariate Cox proportional hazard regression analysis, implemented using the “survival” package in the R language (32). The TCGA-ACC dataset served as the training dataset, while the GSE33371, GSE19750, and GSE10927 datasets were designated as validation datasets. In this analysis, positive coefficients indicated an increased risk of an event, such as death, while negative coefficients suggested a reduced risk. The magnitude of these coefficients reflected the impact of variables on hazard rates, which was instrumental in developing prognostic models for survival outcomes.

The formula for the prognostic model for SKCM patients’ prognosis was derived as follows:

Risk score = Σ (multivariate Cox regression coefficient variation of each mRNA). This formula allowed for the calculation of a risk score based on the sum of the multivariate Cox regression coefficient variations associated with each mRNA, thereby facilitating the prediction of prognosis for SKCM patients.





Gene enrichment analysis

The present study performed gene enrichment analysis using the DAVID tool (https://david.ncifcrf.gov/) (33) on the identified hub genes. DAVID, a bioinformatics application, simplifies the functional analysis of extensive gene lists. Researchers can extract valuable insights into gene functions, pathways, and biological processes, enhancing their ability to interpret high-throughput genomics data.





Exploration of hub expression regulatory drugs

DrugBank (https://go.drugbank.com/) is a prominent resource for comprehensive information on drugs, including their interactions, mechanisms of action, and therapeutic applications (34). This study harnessed the capabilities of DrugBank to investigate drugs that may regulate the expression of hub genes in the treatment of SKCM.





Knockdown of hub genes in SKCM cell line

The siRNA designed to target hub genes was procured from OBiO Company. To knockdown hub genes (MMP9, MMP12, MMP14, and MMP16), melanoma cell lines were transfected with siRNA using a Transfection Reagent (INTERFERin, French). Following siRNAs were used to knockdown hub genes:

siMMP9 (Sense): 5’-CUAUGGUCCUCGCCCUGAATT-3’

siMMP9 (Anti-sense): 5’-UUCAGGGGCGACCAUAGTT-3’

siMMP12 (Sense): 5′-GCUGUUUUUAACCCACGUUTT-3′

siMMP12 (Anti-sense): 5′-CCGUGAGGAUGUUGACUACTT-3′

siMMP14 (Sense): 5′-AACAGGCAAAGCUGAUGCAGAdTdT‐3′

siMMP14 (Anti-sense): 5′-AAUCUGCAUCAGCUUUGCCUGdTdT‐3′

siMMP16 (Sense): 5′-CGUGAUGUGGAUAUAACCATT-3′

siMMP16 (Anti-sense): 5′-UGGUUAUAUCCACAUCACGTT-3′

Moreover, the knockdown efficacy of the MMP9, MMP12, MMP14, and MMP16 was assessed using RT-qPCR and western blot analyses following the previously mentioned protocols.





Cell counting Kit-8 and colony formation assays

To assess the cell proliferation ability of melanoma cells, this study employed the Cell Counting Kit-8 (CCK-8) from APExBIO, USA. Initially, 3 × 10^3 cells per well were seeded into 96-well plates 24 hours post-transfection. Following an incubation period at 37°C for various durations (0, 24, 48, and 72 hours), CCK-8 reagent was added to each well, and the absorbance was measured at 450 nm. For the colony formation assay, 5 × 10^2 melanoma cells were cultured in 6-well plates for 10 days under conditions of 37°C and 5% CO2. Subsequently, the cells were stained with 0.1% crystal violet for 15 minutes, after which colony quantification was performed using ImageJ software. This approach allowed us to evaluate the proliferative capacity of melanoma cells over time and their ability to form colonies, providing valuable insights into their growth behavior and potential therapeutic targets.





Molecular docking analysis




Ligand and receptor preparation and docking analysis

To evaluate the binding affinities between Estradiol, Calcitriol, and the MMP9, MMP12, MMP14, and MMP16 proteins, molecular docking analysis was conducted using the CB-DOCK (http://clab.labshare.cn/cb-dock/) web server (35). Estradiol and Calcitriol structures in SDF format were retrieved from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/), while PDB structures for MMP9, MMP12, MMP14, and MMP16 proteins were generated using the SwissModel tool (https://swissmodel.expasy.org/). The process involved several crucial steps. Initially, ligand pre-processing was performed, followed by the removal of excess ligands from the target proteins and the elimination of crystal water molecules. Hydrogen atoms were then added to facilitate the molecular docking process. Subsequently, molecular docking was conducted using the CB-DOCK platform to compute the binding energies of the molecules across various conformations. Binding energies falling within the range of -5 kcal/mol to -10 kcal/mol or lower were considered favorable. The conformation with the highest hydrogen bond energy was identified as the active component of the protein interaction.

For visualization purposes, PYMOL software (version 2.5.2) was utilized to render the molecular interactions, enabling a comprehensive understanding of the binding modes and potential binding sites between the ligands (Estradiol, Calcitriol) and the target proteins (MMP9, MMP12, MMP14, MMP16). This approach allowed us to elucidate the molecular mechanisms underlying the interaction between the chosen drugs and the MMP proteins, providing valuable insights for further drug development and therapeutic intervention strategies.






Statistics

In this study, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to elucidate the biological pathways and functions associated with the studied genes. Fisher’s Exact test was utilized to compute the differences in enrichment between different gene sets (36). Additionally, correlational analyses were performed using the Pearson method to explore potential relationships between variables of interest. Furthermore, comparisons between groups were made using a Student’s t-test to assess statistical significance. A P-value < 0.05 was considered significant.

All statistical analyses were carried out using R version 3.6.3 software, a widely used and powerful tool for data analysis and visualization.






Results




PPI construction and identification of hub genes

Firstly, a PPI network of the 24 MMP family members was established using the STRING web server (Figure 2A). Subsequently, this network was imported into Cytoscape software to identify hub genes using the degree method. The Cytohubba application within Cytoscape identified MMP9, MMP12, MMP14, and MMP16 as the hub genes (Figure 2B) with the highest degree of centrality.
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Figure 2 | Protein-protein interaction (PPI) networks illustrating MMP family proteins and identified hub genes. (A) PPI network featuring MMP family proteins, and (B) PPI network focuses on the four identified hub genes (MMP9, MMP12, MMP14, and MMP16), which were highlighted based on centrality metrics in network analysis.





Experimental expression and promoter methylation analyses of hub genes in SKCM cell lines

The expression and promoter methylation levels of the hub genes across the SKCM (n = 20) and the normal control (n = 20) cell lines were compared through RT-qPCR, western blot, and bisulfite sequencing analyses. RT-qPCR analysis results revealed that across the SKCM cell lines, the mRNA expression of four hub genes (MMP9, MMP12, MMP14, and MMP16) was significantly higher as compared to the normal control cell lines (Figure 3A). Western blot analysis showed that protein expression of MMP9, MMP12, MMP14, and MMP16 was also higher in the SKCM cell lines group as compared to the normal controls (Figure 3B).
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Figure 3 | RT-qPCR and western blot-based expression profiling and ROC analysis of the hub genes (A) RT-qPCR-based relative expression of the hub genes in SKCM and normal control cell lines, (B) Western blot analysis-based expression of hub genes in SKCM and normal control cell lines, and (C) RT-qPCR expression-based ROC analysis of the hub genes. A p-value < 0.05 was considered significant.

Additionally, the bisulfite sequencing outcomes indicated that the promoters of MMP9, MMP12, MMP14, and MMP16 genes exhibited lower methylation levels in the SKCM cell lines group when compared to the normal control cell line group, as illustrated in Figure 4A.
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Figure 4 | Bisulfite sequencing-based promoter methylation level profiling and ROC analysis of the hub genes (A) Bisulfite sequencing-based relative promoter methylation levels of the hub genes in SKCM and normal control cell lines, and (B) Promoter methylation level-based ROC analysis of the hub genes. A p-value < 0.05 was considered significant.

ROC analysis was conducted to evaluate the diagnostic potential of MMP9, MMP12, MMP14, and MMP16 expression, as well as promoter methylation, in SKCM patients. The observed AUC of > 0.775 suggests that MMP9, MMP12, MMP14, and MMP16 mRNA expression and promoter methylation levels have strong diagnostic accuracy for SKCM detection (Figures 3C, 4B).





Experimental mutational analysis of the hub genes across SKCM cell lines

Mutational analysis of the hub genes was conducted utilizing the WES technique in 10 SKCM cell lines. The results of this comprehensive analysis revealed that only one benign mutation (NM_004994.3 (MMP9):c.70C>T (p.Arg24Cys)) was identified in the MMP9 gene across three SKCM cell line samples. However, for the MMP12, MMP14, and MMP16 genes, no mutations were observed in the SKCM cell lines. These findings collectively underscore the infrequent occurrence of mutations in MMP9, MMP12, MMP14, and MMP16 genes within SKCM cell lines, suggesting that they are not commonly mutated in this context.





Validation of hub expression using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets

In this part of the study, MMP9, MMP12, MMP14, and MMP16 mRNA expression in SKCM patients from TCGA project was validated from the GEPIA, TCGA, and GEO databases. Results of the 3 different SKCM datasets showed that the level of MMP9, MMP12, MMP14, and MMP16 mRNA expression was significantly higher in SKCM tissues as compared to the normal tissues (Figures 5A–C).

[image: Graph displays expression levels of genes MMP9, MMP12, MMP14, and MMP16 in SKCM samples versus normal samples. Panel A shows box plots with higher expression in SKCM, marked with red. Panel B displays violin plots; orange represents SKCM and blue represents normal, showing distribution differences. Panel C offers a comparative box plot view with orange representing SKCM and green for normal samples.]
Figure 5 | mRNA expression profiling of the hub genes using TCGA and GEO SKCM datasets. (A, B) Box plot presentation of hub gene mRNA expression in TCGA SKCM datasets, and (C) Box plot presentation of hub gene mRNA expression in GEO SKCM dataset (GSE65904). A p-value < 0.05 was considered significant. p*-value < 0.05.





Validation of hub gene promoter methylation level and mutational analysis across The Cancer Genome Atlas (TCGA) datasets

Next, the promoter methylation levels of the MMP9, MMP12, MMP14, and MMP16 genes were validated using the MEXPRESS. It was observed that the promoter methylation levels of the MMP9, MMP12, MMP14, and MMP16 were lower in the SKCM samples from TCGA relative to the corresponding controls (Figure 6). Taken together, these results indicate that decreased methylation levels in the promoters of MMP9, MMP12, MMP14, and MMP16 may be a contributing factor to the elevated expression of these genes in SKCM.

[image: Charts showing beta values for MMP9, MMP12, MMP14, and MMP16 gene expression. Each graph displays data points representing low and high region expressions, with statistical significance indicated by symbols for p-value thresholds. Gene region features such as transcripts, CpG islands, and CpG dinucleotides are marked below each graph.]
Figure 6 | Promoter methylation analysis of the hub genes across TCGA SKCM and normal control samples via MEXPRESS database. This analysis provides insights into the epigenetic regulation of the hub genes in SKCM. A p-value < 0.05 was considered significant.

To determine mutations in the MMP9, MMP12, MMP14, and MMP16 genes across TCGA SKCM samples, a comparative analysis of these genes was conducted using cBioPortal. The analysis revealed mutations in the hub genes MMP9, MMP12, MMP14, and MMP16 in only a small fraction (2%, 4%, 1%, and 3%, respectively) of the SKCM samples under investigation, suggesting that these mutations play a limited role in the aberrant regulation of these genes (Figure 7).

[image: Genomic data visualizations display mutation patterns in 467 samples, showing alterations in MMP12, MMP16, MMP9, and MMP14. Graph A shows percentages of mutations by type. Graph B classifies mutations, with Missense and Nonsense mutations shown. Graph C depicts patient mutation prevalence in domains of MMP9, MMP12, MMP14, and MMP16. Graph details include variant types and SNV class frequencies.]
Figure 7 | Mutational analysis of hub genes across TCGA SKCM samples via cBioPortal databases. (A) Percentage of the mutated SKCM samples, (B) Summery of the observed genetic alterations in hub genes across SKCM samples, and (C) depiction of amino acid change due to mutations at the protein levels.





Survival analysis and constriction of hub gene-based prognostic model

The prognostic significance of MMP9, MMP12, MMP14, and MMP16 expression in SKCM patients was assessed via the KM Plotter tool. Elevated expression levels of MMP9, MMP12, MMP14, and MMP16 were strongly linked to poorer OS in SKCM patients (Figure 8A).

[image: Panel A shows four Kaplan-Meier plots comparing overall survival between low and high groups of MMP9, MMP12, MMP14, and MMP16 over months. Panel B includes a Cox regression plot displaying hazard ratios and a C-index bar chart for datasets TCGA_ACC, GSE33371, GSE19750, and GSE10927. Panel C presents a box plot comparing data from the same datasets labeled SKCM.]
Figure 8 | Survival analysis and the construction of the hub gene-based prognostic model. (A) GEPIA-based OS analysis of the hub genes in TCGA SKCM samples, (B) Univariate Cox regression analysis, (C) Risk scores. A p-value < 0.05 was considered significant. p*-value < 0.05; p**-value < 0.01; P****-value < 0.0001.

For the analysis of the prognostic model based on MMP9, MMP12, MMP14, and MMP16 genes, this study employed a comprehensive approach utilizing both training and validation datasets. The TCGA-ACC dataset was utilized as the training dataset, providing a foundation for model construction, while the GSE33371, GSE19750, and GSE10927 datasets served as validation datasets to assess the generalizability and robustness of the model. To construct the prognostic model, a stepwise Cox regression model was implemented, incorporating key parameters such as hazard ratio, c-index, and risk score. This iterative approach allowed for the selection of the most informative variables and the optimization of the model’s predictive performance. Through comprehensive evaluation using the c-index, it was determined that the constructed prognostic model effectively and robustly assessed the prognosis of SKCM patients across all analyzed datasets. This finding underscores the utility and reliability of the model in predicting patient outcomes and informing clinical decision-making. Figures 8B, C in the study illustrates the performance of the prognostic model across different datasets, providing visual confirmation of its predictive efficacy and demonstrating its potential utility in clinical practice.





Gene enrichment analysis

Hub genes were analyzed to figure out their GO and KEGG pathways in SKCM. In the CC, “Extracellular matrix, external encapsulating structure, and collagen-containing extracellular matrix” etc., terms were significantly associated with the MMP9, MMP12, MMP14, and MMP16 (Figure 9A). Concerning MF, the “Metalloaminopeptidase activity, Metallendopeptidase activity, and collagen binding” etc., terms were closely associated with the MMP9, MMP12, MMP14, and MMP16 (Figure 9B). In BP, some vital functions including “Cellular response to UV-A, response to UV-A, and collagen catabolic proc” etc., terms were significantly associated with the MMP9, MMP12, MMP14, and MMP16 (Figure 9C). Moreover, MMP9, MMP12, MMP14, and MMP16-enriched KEGG pathways include “Bladder cancer, endocrine resistance, and relaxin signaling pathway” etc., (Figure 9D).

[image: Four bar charts labeled A, B, C, and D illustrate fold enrichment for various biological processes and pathways, with color gradients representing -log10(FDR) values. Chart A highlights processes like "Extracellular matrix." Chart B includes activities like "Metalloendopeptidase activity." Chart C focuses on responses to "UV-A." Chart D covers pathways related to "Bladder cancer."]
Figure 9 | Gene enrichment analysis of MMP9, MMP12, MMP14, and MMP16 via DAVID tool. (A) MMP9, MMP12, MMP14, and MMP16 gene-associated CC terms, (B) MMP9, MMP12, MMP14, and MMP16 gene-associated BP terms, (C) MMP9, MMP12, MMP14, and MMP16 gene-associated MF terms, and (D) MMP9, MMP12, MMP14, and MMP16 gene-associated KEGG terms. A p-value < 0.05 was considered significant.





Cell counting Kit-8 and colony formation assays

The MMP9, MMP12, MMP14, and MMP16 genes work synergistically to regulate processes such as tissue remodeling, wound healing, and cancer invasion. Therefore, the simultaneous silencing of MMP9, MMP12, MMP14, and MMP16, and was carried out in A2058 cells using siRNA to analyze their functional synergetic impact on the different parameters. The RT-qPCR and western blot analysis results, as depicted in Figures 10A, B, unequivocally demonstrated a significant reduction in the mRNA and protein expression levels of MMP9, MMP12, MMP14, and MMP16 in the transfected A2058 cells in comparison to the control A2058 cells. To gain deeper insights into the repercussions of MMP9, MMP12, MMP14, and MMP16 knockdown, the conducted CCK-8 and colony-forming assays, providing compelling evidence of decreased cellular proliferation in the cells with silenced MMP9, MMP12, MMP14, and MMP16, in contrast to the control A2058 cells (Figures 10C–E).

[image: Graphs and images depict the effects of silencing MMP9, MMP12, MMP14, and MMP16 on A2058 cell expression, proliferation, and colony formation. Graph A shows decreased expression of MMP9, MMP12, MMP14, and MMP16 in silenced cells. Graph B displays Western blot results supporting these findings. Graphs C and D indicate reduced proliferation and colony numbers in silenced cells. Image E contains colony formation assays, with fewer colonies in the silenced group.]
Figure 10 | Knockdown of MMP9, MMP12, MMP14, and MMP16 impairs the growth and metastatic potential of A2058 cells. (A) The transfection efficiency of si-MMP9, si-MMP12, si-MMP14, and si-MMP16 was checked with the help of RT-qPCR, (B) The transfection efficiency of si-MMP9, si-MMP12, si-MMP14, and si-MMP16 was checked with the help of western blot, (C) A2058 control and transfected cells were analyzed proliferation, (D, E) Colony formation. A p-value < 0.05 was considered significant.





Drug prediction and molecular docking analysis

DrugBank database was searched to explore potential drugs that could down-regulate the expression of MMP9, MMP12, MMP14, and MMP16 genes in the context of SKCM treatment. The findings unveiled two promising drugs (Estradiol and Calcitriol) within this database that exhibit the potential to reduce the expression of MMP9, MMP12, MMP14, and MMP16 genes.

In the next step, the role of Estradiol and Calcitriol in the expression reduction was further validated through molecular docking analysis. Docking results show that binding affinities of Estradiol and Calcitriol with MMP9, MMP12, MMP14, and MMP16 vary between -7.7 and -8.5 kcal/mol (Figure 11). The binding affinities of -7.7 to -8.5 kcal/mol suggest a relatively strong interaction between Estradiol and Calcitriol with MMP9, MMP12, MMP14, and MMP16 proteins (Figure 11). In summary, while the binding affinities suggest strong interactions, the actual effectiveness of Estradiol and Calcitriol as inhibitors for MMP9, MMP12, MMP14, and MMP16 proteins would require comprehensive in vitro and in vivo studies.

[image: Scientific diagrams showing molecular structures labeled MMP9, MMP12, MMP14, and MMP16, with corresponding Vina scores next to each. The structures are complex networks of purple lines with colored spheres indicating molecular components. Panel A includes images with scores -7.8, -8.3, -8.4, and -7.6. Panel B includes images with scores -8.1, -8.5, -8.0, and -7.7.]
Figure 11 | Molecular docking outcomes of Estradiol and Calcitriol with MMP9, MMP12, MMP14, and MMP16 hub genes. The MMP9, MMP12, MMP14, and MMP16 proteins are represented in blue structures, while Estradiol and Calcitriol drugs are depicted in gray molecules, showcasing their docking interactions with the target proteins.






Discussion

SKCM is a malignant neoplasm originating from melanocytes, the pigment-producing cells found in the skin (37). It is the most lethal form of skin cancer due to its propensity for metastasis, and its incidence has been steadily increasing in recent years, making it a significant public health concern (38, 39). The incidence of SKCM varies geographically, with higher rates observed in regions with greater sun exposure (40). Fair-skinned individuals and those with a history of intense sun exposure or sunburns are at a higher risk of developing SKCM (41, 42). Moreover, a family history of melanoma and certain genetic factors can also increase the chances of SKCM development (43, 44). Recently, numerous preceding studies have emphasized the role of MMPs in the development and progression of cancer (45–47). Additionally, MMPs play a significant role in immune evasion (48). They can modulate the tumor microenvironment by cleaving ECM components, which can alter the recruitment and activation of immune cells (49). For instance, certain MMPs have been shown to facilitate the infiltration of immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor cells, into the tumor site (50). This immune modulation not only helps tumors evade detection by the immune system but also supports their growth and survival (51). Considering the pivotal function of ECM alteration in the advancement of tumors, gaining insights into the contribution of particular MMPs to SKCM could offer valuable information regarding its underlying mechanisms.

Out of the total analyzed 24 MMP family members, MMP9, MMP12, MMP14, and MMP16 genes were recognized as the key genes due to high centrality among others. Expression analysis indicated that MMP9, MMP12, MMP14, and MMP16 genes were significantly up-regulated at both mRNA and protein levels in SKCM. Therefore, it is speculated that elevated levels of MMP9, MMP12, MMP14, and MMP16 may interfere with the wound healing process in SKCM. These observations align with previous studies that have reported elevated expression of specific MMPs in various cancer types. For instance, earlier studies (52, 53) demonstrated the overexpression of MMP9, MMP12, MMP14, and MMP16 in breast and kidney cancers, emphasizing their role in tumor progression and metastasis. However, to our knowledge, this study is the first to report overexpression of these key genes in SKCM.

The inverse correlation between promoter methylation and gene expression observed in this study is in concordance with established epigenetic mechanisms of gene regulation (54, 55). Previous research in SKCM and other cancer types has emphasized the significance of promoter methylation in gene expression control (56, 57). A study by Huang et al. (58) in SKCM highlighted the hypomethylation of genes associated with cancer progression, consistent with the findings of this study regarding the MMP family.

ROC analysis demonstrated the diagnostic potential of MMP9, MMP12, MMP14, and MMP16 in SKCM. These findings align with earlier studies emphasizing the diagnostic and prognostic utility of MMPs in cancer. Previous studies investigated the diagnostic value of MMPs in various cancers, including melanoma, reinforcing the significance of these genes as potential biomarkers (59–61). Moreover, the present study identified a low mutation rate in the MMP family genes within SKCM. This finding resonates with earlier research suggesting that genetic mutations in MMPs may not be frequent drivers of cancer development (62). Previous studies have also reported relatively low mutation rates in MMPs, emphasizing the complex regulation of MMP gene expression (63, 64). However, it is essential to acknowledge that genetic mutations may have context-specific roles in cancer biology (65–68), and additional investigations are required to fully comprehend their impact.

The prognostic value of high expression levels of MMP9, MMP12, MMP14, and MMP16 in various cancers, as indicated in this study, has also been reported in prior research. For example, a study by McGowan et al. (69) demonstrated a link between elevated MMP expression and adverse clinical outcomes in breast cancer patients. However, to our knowledge, this study is the first to report prognostic values of MMP9, MMP12, MMP14, and MMP16 in SKCM.

In our quest to identify promising therapeutic drugs for the treatment of SKCM, Estradiol and Calcitriol drugs were selected from the DrugBank database after a thorough examination of their pharmacological properties and their known effects on dysregulated MMP9, MMP12, MMP14, and MMP16 genes. Estradiol, a potent estrogen hormone, and Calcitriol, the active form of vitamin D, have garnered significant interest in the realm of cancer research due to their ability to modulate gene expression patterns (70–72). Specifically, previous studies have highlighted their potential in regulating the activity of Matrix Metalloproteinases (MMPs), which play pivotal roles in cancer progression and metastasis (73, 74). By targeting MMP activity, it is possible to impede these processes and potentially limit the spread of cancer. Importantly, the efficacy of Estradiol and Calcitriol in modulating MMP activity has been demonstrated across different cancer types, providing a compelling basis for their consideration in the context of SKCM treatment (70–72). Studies have shown that these compounds can regulate the expression and activity of MMPs, thereby exerting anti-tumor effects and inhibiting metastatic spread. By targeting MMP9, MMP12, MMP14, and MMP16, it is conceivable that Estradiol and Calcitriol could disrupt critical pathways involved in melanoma progression, offering a novel and potentially effective approach for combating this aggressive form of skin cancer. Looking ahead, future in vitro validations could involve treating SKCM cell lines with Estradiol and Calcitriol to assess changes in MMP expression and activity, as well as evaluating effects on cell proliferation, migration, and invasion. Additionally, in vivo studies using relevant animal models of SKCM could further elucidate the therapeutic potential of these compounds by examining their impact on tumor growth, metastasis, and overall survival. Together, these experimental approaches would provide critical insights into the effectiveness of Estradiol and Calcitriol as therapeutic agents, potentially leading to their integration into clinical treatment strategies for patients with SKCM.

Research on MMPs in cancer is continually evolving, and numerous complexities in their roles and regulation have been recognized. While this study provides valuable insights, further in-depth exploration of the regulatory mechanisms governing MMP expression is warranted for a comprehensive understanding of their diagnostic, prognostic, and therapeutic potential.

The study’s strengths include its thorough analysis of 24 MMP genes and its use of a multi-omics approach, integrating protein-protein interaction networks, gene expression profiling, and functional assays. This comprehensive methodology and the use of advanced tools and databases ensure robust findings and potential therapeutic insights. However, the study’s limitations include the use of a limited number of cell lines, which may not fully represent SKCM’s clinical diversity, and the reliance on single-method validation for some analyses. These factors suggest a need for further research to confirm and expand upon the study’s results.

To build on the findings of this study, future research should incorporate a larger and more diverse panel of SKCM cell lines, as well as primary tumor samples, to better capture the clinical heterogeneity of the disease. Additionally, incorporating in vivo models could enhance the relevance of the results and validate the therapeutic potential of targeting specific MMPs. Expanding the analysis to include other omics layers, such as epigenomics and metabolomics, would provide a more holistic understanding of the molecular mechanisms driving melanoma progression. Lastly, integrating CRISPR-Cas9 gene editing or RNA interference techniques could be used to validate key MMP targets in functional assays and uncover their role in SKCM more definitively.





Conclusion

Our study highlights MMP9, MMP12, MMP14, and MMP16 as critical hub genes in SKCM, showing elevated mRNA and protein levels compared to normal controls. Their reduced promoter methylation suggests hypomethylation contributes to their overexpression. These genes are rarely mutated, indicating that their dysregulation is likely due to expression changes rather than genetic mutations. Elevated expression correlates with poorer survival and a prognostic model incorporating these genes accurately predicts patient outcomes. Functional assays reveal that silencing these genes impairs cellular proliferation. Drug prediction and molecular docking suggest Estradiol and Calcitriol as potential inhibitors, though further studies are needed. These findings underscore the genes’ roles as biomarkers and therapeutic targets in SKCM.
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Background and objectives: Isocitrate dehydrogenase (IDH) inhibitor drugs (Enasidenib, Ivosidenib) restore normal metabolism and epigenetic regulation in cells, offering a precision-targeted therapeutic option for acute myeloid leukemia (AML) patients with IDH mutations by specifically inhibiting mutated IDH enzymes. This research evaluates the relationship between adverse drug reactions (ADR) and the use of two isocitrate dehydrogenase inhibitors by using the database from the World Health Organization (WHO) VigiAccess and compares the characteristics of ADRs of the two drugs.Methods: This study design used the retrospective descriptive analysis. We calculated the ratio of ADRs recorded in reports to compare the same points and different points in ADRs between two medications. Proportional reporting ratio (PRR) and reported odds ratio were used to evaluate the relationship between these two isocitrate dehydrogenase inhibitor medications and adverse events.Results: Overall, during the search, 4,072 adverse events related to two types of isocitrate dehydrogenase inhibitors were reported in VigiAccess. The results revealed that the top 10 most common AEs were off label use, death, fatigue, nausea, diarrhea, acute myeloid leukemia, drug ineffective, differentiation syndrome, platelet count decreased and decreased appetite. Compared two drugs, enasidinib had the highest adverse reaction reporting rate in general disorders and administration site conditions while ivosidenib had the highest adverse drug reactions reporting rate in injury, poisoning and procedural complications.Conclusion: Based on the current comparative observational studies, the ADR reports received by the World Health Organization, Food and Drug Administration for these drugs list common and specific adverse drug reactions. Clinical doctors should develop individualized treatment plans based on the adverse reactions of different drugs and the specific conditions of patients to promote the rational use of these expensive medications.Keywords: pharmacovigilance, isocitrate dehydrogenase inhibitor, adverse drug reaction, WHO-VigiAccess, AML
1 INTRODUCTION
Acute myeloid leukemia is a malignant disease of myeloid hematopoietic stem cells. The disease is characterized by abnormal proliferation of primitive and immature myeloid cells in bone marrow and peripheral blood (Wang et al., 2021). AML is the most common type of acute leukemia in adults. With a relatively short survival rate of only 23.6% at 5 years, AML threatens the people’s health seriously (Villamón et al., 2018). The median age of AML diagnosis is 68–71 years old showing that AML mostly occurs in the elderly and the incidence of AML increases with age. Therefore, with the aggravation of population aging, it is expected that the incidence of AML will continue to increase gradually. At present, there are two main classification methods for acute myeloid leukemia: FAB classification and World Health Organization (WHO) classification. The WHO classification, also known as MICM classification, is based on morphology, immunology, cytogenetics and molecular biology which is relatively complex (Chengxin Luan et al., 2015). FAB classification is an easier and classic classification method for AML. AML is mainly divided into eight types from M0 to M7: acute myeloblastic leukemia without maturation (M0), acute myeloblastic leukemia with minimal maturation (M1), acute myeloblastic leukemia with maturation (M2), acute promyelocytic leukemia (M3), acute myelomonocytic leukemia (M4), acute monocytic leukemia (M5), acute erythroleukemia (M6), and acute megakaryoblastic leukemia (M7) (Kajsa Paulsson et al., 2001).
The pathogenesis of AML remains unclear, but various factors have been found to be related to its onset. Previous studies have found that the pathogenesis of AML is related to changes in genes which participate in cell metabolism and epigenetic regulation. Mutations in isocitrate dehydrogenase (IDH)1 and IDH2 are found in 6%–16% and 8%–19% of patients with acute myeloid leukemia (AML), respectively (Bruno et al., 2016). The enzymes encoded by IDH1 and IDH2 genes are widely present in the human body. The IDH1 protein plays a role in the cytoplasm and peroxisomes. The IDH2 protein is an important enzyme of the tricarboxylic acid (TCA, also called the “citric acid” or Krebs) cycle. IDH2 and IDH1 proteins catalyze the oxidation and decarboxylation of isocitrate to α - ketoglutarate (α-KG) to produce reduced nicotinamide adenine dinucleotide phosphate (NADPH) from NADP+ (Martelli et al., 2020). But the mutant IDH1/2 (mIDH1/2) enzyme catalyzes the reduction of α-KG to tumor metabolite d-2-hydroxyglutarate (2-HG). 2-HG accumulation leads to DNA hypermethylation through competitive inhibition of α - ketoglutarate dependent dioxygenases. These epigenetic changes are hypothesized to be the main driving factors for myeloid differentiation arrest, which is a mark of AML.
Supported by strong genetic theoretical foundations and biological evidence that IDH mutations play a critical role in driving leukemia development, extensive researches have been conducted on the development of IDH mutant targeted drugs. IDH inhibitors can specifically bind to mutated IDH enzymes to inhibit their activity, thereby preventing the conversion of α - KG to 2-HG by IDH enzymes and reducing the accumulation of 2-HG in cells. As the level of 2-HG decreases, the activity of inhibited α - KG dependent dioxygenases is restored. These enzymes can remove methylation modifications on DNA and histones to restore normal epigenetic regulation. The first compounds received clinical concept validations for the treatment of IDH1 and IDH2 mutant AML are enasidenib and ivosidenib.
Although isocitrate dehydrogenase inhibitor drugs have shown significant efficacy in treating AML, long-term use of isocitrate dehydrogenase inhibitor drugs may lead to serious adverse reactions. A meta-analysis showed that common adverse reactions included nausea, vomiting, blood bilirubin increased, diarrhea, constipation, anemia, decreased appetite, electrocardiogram QT prolongation, fatigue, dyspnea, rash, dysgeusia and leukocytosis. Severe cases may result in neutropenia, thrombocytopenia, sepsis, pneumonia and differentiation syndrome. A study conducted in 2020 showed that differentiation syndrome (DS) was most relevant, potentially life-threatening side effect for patients with ivosidenib and enasidenib (Del Principe et al., 2019).
The occurrence of ADRS not only brings economic burden to patients, but also affects their quality of life and serious adverse reactions can even endanger their lives. Therefore, clinical doctors must thoroughly understand these potential adverse reactions and reduce their impacts through close monitoring and timely management.
Although clinical test is an indispensable part to determine the efficacy of new drugs and identify common ADRs, they may not be able to access all situations in real world because rare and serious events may only occur in clinical settings after widespread use of drugs. However, the pharmacovigilance (PV) analysis which involves monitoring and evaluating the safety of the drugs has solved this problem.
Despite the intrinsic limitations, spontaneous reporting systems (SRS) represent a valuable source to obtain real-world data about the safety profile of drugs and vaccines, compare therapeutic options, and gain insight into the potential mechanisms of ADRs (Hazell and Shakir, 2006). SRS is mainly used to detect the discovered ADRs at early stage. It can continuously monitor the safety of drugs through the data collected by SRS and take necessary measures to reduce risks in time which is of great significance for protecting public health and guiding clinical practice.
This study retrieved two isocitrate dehydrogenase inhibitor drugs approved by the US Food and Drug Administration (FDA): Enasidenib and Ivosidenib. Although these two types of isocitrate dehydrogenase inhibitors have been approved for clinical use, there have been few studies comparing the common points and different points in the ADRs caused by these two drugs currently. This study not only comprehensively evaluates the safety of drugs, but also has significant implications for guiding clinical medication.
2 MATERIALS AND METHODS
2.1 Drug samples
Table 1 presents the basic information of the two isocitrate dehydrogenase inhibitor drugs that are available for clinical treatment in our study.
TABLE 1 | The basic Information of the two isocitrate dehydrogenase inhibitor drugs studied for clinical treatment.
[image: Table detailing two drugs: Enasidenib (Idhifa) and Ivosidenib (Tibsovo). Both are inhibitors, IDH2 and IDH1 respectively. Enasidenib is used for recurrent or refractory acute myeloid leukemia; marketed in 2017 with biosimilars LuciEna and Enacitib. Ivosidenib is for recurrent, refractory, or newly diagnosed acute myeloid leukemia and cholangiocarcinoma; marketed in 2018. Biosimilars are not listed.]Enasidenib is the world’s first approved IDH2 inhibitor which generates clinical reactions in 40% of relapsed or refractory AML (R/R AML) patients by promoting leukemia cell differentiation. In August 2017, enasidenib was approved by the US FDA and used to treat relapsed or refractory acute myeloid leukemia with IDH2 mutations (Schenkein, 2018). The milestone experiment of enasidenib was published by Stein et al. (2017) which established the pharmacokinetic and pharmacodynamic characteristics of enasidenib for the first time and showed its clinical efficacy in R/R AML patients.
Ivosidenib is the world’s first approved potent oral targeted inhibitor for IDH1 mutant cancer. The drug was approved by the US FDA in August 2021 for the treatment of patients with AML and locally advanced or metastatic cholangiocarcinoma. Meanwhile, ivosidenib is the first mutated IDH1 enzyme inhibitor to obtain clinical concept validation in human trials. Biochemical and cellular biology analysis showed that ivosidenib inhibited several IDH1-R132 mutants and exhibited high selectivity towards the IDH1 subtype. In cell-based experiments, ivosidenib demonstrated good cellular efficacy in various IDH1-R132 endogenous and overexpressing cell lines. The good pharmacokinetic characteristics and good tolerability of these preclinical data provide a basis for promoting the clinical development of ivosidenib. Ivosidenib mainly works by reducing the carcinogenic metabolite 2-hydroxyglutarate (2-HG) produced after mutation. This inhibitor does not directly kill cells, but induces malignant cell differentiation to treat cancer.
Up to August 2024, there are two biosimilar of enasidib. There is no biosimilar of ivosidenib on the market currently. In recent research, Celgene and Agios Pharmaceuticals have jointly developed vorasidenib, a broad-spectrum IDH1/IDH2 inhibitor that can simultaneously inhibit IDH1 and IDH2 mutations. Vorasidenib is intended for the treatment of malignant solid tumors and malignant hematological tumors. On 9 August 2024, the US FDA approved vorasidenib for postoperative treatment of grade 2 astrocytomas or oligodendrogliomas in adults and children aged 12 years and older post operative treatment (including biopsy, subtotal resection, or total resection) carrying isocitrate dehydrogenase 1 or 2 mutations.
A Phase-1 research evaluated the safety and efficacy of ivosidenib or enasidenib combined with intensified chemotherapy in newly diagnosed mIDH1/2 AML patients. The results showed that the combination therapy had good safety and significant efficacy during induction and consolidation therapy. This indicated that enasidinib and ivosidib could be used in combination in specific situations.
2.2 Data source
WHO-VigiAccess retrieved all adverse events reported after the clinical use of isocitrate dehydrogenase inhibitor medications on 10 August 2024. The webpage that users can log in is https://www.vigiaccess.org. Data collected in WHO-VigiAccess covers age, sex, continents and reporting years. WHO-VigiAccess is a free portal for PIDM database, allowing to search drug safety reports received by UMC. This definition relies on the System Organ Classification (SOC) and Preferred Terms (PTs) of the Medicine Regulating Activity (MedDRA) Dictionary (Li et al., 2023). To characterize the toxicity spectrum, we retrieved data for each drug and identified all adverse events based on the recorded MedDRA SOC at pt levels. MedDRA uses reporting terms from several dictionaries, such as the World Health Organization Adverse Reaction Terminology (WHO ART). We chose 20 elements directly related to disease symptoms from the 27 elements in SOC classification for analysis. We divided the data into groups by using outcome codes to study the detected safety signals, resulting in three severity categories: death, hospitalization and major events including life-threatening events, disability and congenital anomaly.
2.3 Disproportionality analysis
Disproportionation analysis is a data mining method, which is mainly used to evaluate the correlation between drugs and adverse reactions. The core principle is to use a 2 × 2 contingency table to compare the frequency of adverse events observed in the exposed group and the non-exposed group, so as to quantify the association between drugs and adverse events. When the proportion of AEs in the exposed group exceeded that in the unexposed group, it was inferred that there was an association between drugs and specific AEs, indicating the presence of a disproportionation signal. After exceeding the threshold, the larger the signal value, the stronger the signal. In this study, we used two disproportional analysis methods: reported odds ratio (ROR) and proportional reporting ratio (PRR) to evaluate the possible association between eflornithine, selumetinib and AEs under general disease and administration site conditions. ROR is mainly used to measure the imbalanced probability of reporting AES for specific drugs compared with other drugs.
The calculation formula was:
[image: ROR is equal to the fraction a times d over b times c.]
(a) refers to the quantity of reports for particular drugs and particular AEs, (b) represents the quantity of reports for specific drugs and other AEs, (c) refers to the number of reports on other drugs and specific AEs (d) represents the number of reports on other drugs and other AEs.
PRR refers to the proportion of spontaneous reports of a specific drug associated with a specific adverse outcome divided by the corresponding proportion of other drugs. The calculation formula was:
[image: Formula for Proportional Reporting Ratio (PRR) shown as PRR equals a times the sum of c and d, divided by c times the sum of a and b.]
Both ROR and PRR require that at least 5 cases (a ≥5) of particular drug and AEs to consider the calculated results valid.
If the ROR = 1: No signal exists; the ADR of interest is as common with the drug of interest as with other drugs. If the ROR <1: No signal exists; the ADR of interest is less frequent with the drug of interest than with other drugs. If the ROR >1: The ADR of interest is more frequent with the drug of interest than with other drugs; there is thus a pharmacovigilance signal, and the higher the ROR, the greater the disproportionality (Montastruc et al., 2011).
In our analysis, we systematically evaluate the ratio of ADRS reports of using isocitrate dehydrogenase inhibitor drugs in general disorders and administration site conditions. The analysis results help to provide guidance for the correct use of drugs.
2.4 Statistical analysis
This study design used the retrospective descriptive analysis. Using Excel descriptive analysis, we researched the features of victims of ADRs caused by using two types of isocitrate dehydrogenase inhibitors from the perspectives of current situation, case reports, case series analysis and data analysis. ADR reporting rate was defined as the quantity of ADR symptoms divided by the total quantity of ADR reports. The frequent ADRs of various drugs were defined as the top 20 symptoms with the highest ADR reporting rate. We calculated the incidence of ADR symptoms reported for each drug and conducted descriptive comparative analysis. We classified the descriptive variables by using rate and percentage.
3 RESULTS
3.1 Case description of the study
According to the WHO VigiAccess data, the earliest ADRs of enasidenib and ivosidenib were received in 2018 and 2017 respectively. As of 2024, the World Health Organization has received a total of 2,776 adverse reports on enasidib and 1,296 adverse reports on ivosidib, totaling 4,072. There are 4,300 AEs for enasidinib and 3,027 AEs for ivosidinib in these ADR reports. Among the 4,072 reports related to the two types of isocitrate dehydrogenase inhibitors shown in Table 2, excluding 1,219 reports of unknown gender, there are 1,266 reports of adverse reactions in females and 1,587 in males with male-to-female ratio of 1:1.25, no significant gender difference. In addition to the report of unknown age, the age group with the highest reporting incidence rate is ≥75 years old, mainly the elderly. Most AE reports come from the United States (87.3%), next is Europe (11.3%). Table 2 also covers the reporting years for enasidenib and ivosidenib. In the past 8 years, enasidenib had a higher incidence of ADR in 2019 and 2021 than in other years; The incidence of ADR for ivosidenib was higher in 2020 and 2021 than in other years. The incidence of adverse reactions to enasidib has decreased since 2021.
TABLE 2 | Characteristics of adverse reaction reports of two isocitrate dehydrogenase inhibitor drugs.
[image: Table comparing ADR reports for Enasidenib and Ivosidenib. Enasidenib has 2,776 reports; Ivosidenib has 1,296. Gender, age groups, region, and year of reports are detailed. Notably, 53.3% of reports for Enasidenib are male, while 81.4% of reports for Ivosidenib are of unknown gender. Most reports are from the Americas, spanning 2017 to 2024.]3.2 Distribution of 20 SOCs for two isocitrate dehydrogenase inhibitor drugs
Table 3 shows the reporting rates of 20 types of SOCs for two types of isocitrate dehydrogenase inhibitor drugs. Enasidib has the highest reporting rate (40.9%) under general disorders and administration site conditions and a higher reporting rate of adverse reactions (17.8%) in investigations. The ADR reporting rate of ivosidenib is the highest in injury poisoning and procedural complications (51.2%) and the reporting rate is higher in general disorders and administration site conditions (38.7%). The top five types of adverse events (AE) caused by isocitrate dehydrogenase inhibitors are: general disorders and administrative site conditions (1,637 cases, 40.2%), injury poisoning and procedural complications (924 cases, 22.7%), investigations (803 cases, 19.7%), gastrointestinal disorders (685 cases, 16.8%), neoplasms benign malignant and unspecified incl cysts and polyps (452 cases, 11.1%).
TABLE 3 | ADR number and report rate of 20 SOCs of two isocitrate dehydrogenase inhibitor drugs.
[image: A table comparing the frequency of various system organ class disorders between two drugs, Enasidenib and Ivosidenib. It lists disorders like blood, cardiac, gastrointestinal, and nervous system disorders, showing the number and percentage of patients affected for each drug. General disorders and administration site conditions are most common, with 40.9 percent for Enasidenib and 38.7 percent for Ivosidenib. Other significant entries include injury poisoning and procedural complications and infections and infestations. The table provides a detailed breakdown of side effects for clinical comparison.]In the ADR reported by SOC, there are 5 cases of enasidenib and 7 cases of ivosidenib with an incidence rate exceeding 10%.
3.3 Disproportionality analysis based on general disorders and administration site conditions
By observing and comparing the SOC distribution of two types of isocitrate dehydrogenase inhibitors, it was found that under general disease and administration site conditions, the two drugs had the highest reported rates of adverse reactions. To further compare these two medications, we conducted disproportionate analysis using ROR and PRR methods. Table 4 showed that through disproportionate analysis, we found that the ROR values of the two drugs were: Enasidenib: 1.65 (1.48–1.83), Ivosidenib: 0.61 (0.55–0.67). The PRR values of the two drugs were: Enasidenib: 1.49 (1.49–1.83), Ivosidenib: 0.67 (0.55–0.67). The results indicated that Enasidib seemed to be more prone to causing general disease and administration site conditions than Ivosidib.
TABLE 4 | Disproportionality analysis based on general disorders and administration site conditions.
[image: Table comparing Enasidenib and Ivosidenib with ROR and PRR values. Enasidenib: ROR 1.65 (1.48–1.83), PRR 1.49 (1.49–1.83). Ivosidenib: ROR 0.61 (0.55–0.67), PRR 0.67 (0.55–0.67).]3.4 The most common ADRs of two isocitrate dehydrogenase inhibitor drugs
The 20 most common adverse reactions of two types of isocitrate dehydrogenase inhibitors are shown in Table 5. The listed performance is the preferred choice within SOC. The common adverse reactions of all two types of isocitrate dehydrogenase inhibitors include drug ineffective platelet count decreased, asthenia, fatigue, vomiting, dyspnoea, diarrhoea, differentiation syndrome, nausea, off label use and constipation. Compared with the two drugs, enasidib has the highest reported adverse reaction rate of death, while ivosidib has the highest reported adverse reaction rate of 42.8% due to off label use. The top 20 adverse reactions in the report are mostly self-limiting, but there are also some adverse reactions that need attention, such as differentiation syndrome, platelet count decreased and death.
TABLE 5 | Top 20 ADRs of isocitrate dehydrogenase inhibitor drugs.
[image: Comparison table showing adverse drug reactions (ADR) and their report rates for Enasidenib (N=2,776) and Ivosidenib (N=1,296). Enasidenib's highest report rate is death at 17.3%, followed by off-label use at 5.7%. Ivosidenib's highest is off-label use at 42.8%, followed by fatigue at 9.8%. Other ADRs include nausea, diarrhoea, and drug ineffectiveness, with lower percentages for symptoms like asthenia, pyrexia, and vomiting.]At the same time, it is important to strictly follow the instructions when using ivosidenib and do not overdose to reduce the occurrence of adverse reactions.
3.5 Serious AEs of two isocitrate dehydrogenase inhibitors drugs
By using the database, we can also identify the main adverse events of isocitrate dehydrogenase inhibitor drugs, including death, hospitalization, life-threatening events, disability and congenital anomaly.
The proportion of serious adverse reactions to enasidib and ivosidib was 20.61% and 3.94%, respectively (Figure 1).
[image: Bar chart titled "Outcome % per drug" comparing Enasidenib and Ivosidenib. Enasidenib shows 17.33% for death, 3.06% for hospitalization, and 0.22% for major outcomes. Ivosidenib shows 2.24% for death, 0.85% for both hospitalization and major outcomes.]FIGURE 1 | Outcomes for serious adverse events associated with isocitrate dehydrogenase inhibitor drugs at the preferred term level (life-threatening events, disability and congenital anomaly).
3.6 The same and different points of common ADRs of two isocitrate dehydrogenase inhibitors drugs
By comparing the top 20 ADRs reported by two isocitrate dehydrogenase inhibitor drugs in SOC, we found a total of 169 common adverse reactions at the PTs level for both drugs. Table 6 lists all the commonalities. The most frequent ADRs of the two drugs are blood and lymphatic system disorders, with the top five reported being cytopenia, febrile neutropenia, neutropenia, anaemia, haematotoxicity, followed by is cardiac Disorders, with the top five reported being cardiac failure congestive, cardiac failure, cardiac disorder, atrial fibrillation, palpitations.
TABLE 6 | Same ADRs of two isocitrate dehydrogenase inhibitors drugs.
[image: Table listing adverse drug reactions (ADRs) by system organ classes, including symptoms and signal numbers. Categories include cardiac, endocrine, and gastrointestinal disorders, among others. Each class lists specific ADRs such as cardiac failure, tinnitus, and visual impairment, with corresponding signal numbers indicating the frequency or importance of each reaction.]When comparing the top 20 ADRs reported by two isocitratedehydrogenase inhibitor drugs, there are 22 differences at the PTs level (Table 7). Among them, the two drugs have the highest number of adverse reactions in injury, poisoning and procedural complexes, with a total of 22. The top five adverse reactions reported by enasidib are hip fracture, subdural haematoma, head injury, intentional product use issue and product use in unapproved indication. The top five adverse reactions reported by ivosidib are contracted product administered, product use issue, product administration error, product dose omission in error, product administration interrupted, followed by is nervous system disorders, with enasidib reporting the top five adverse reactions as cognitive disorder, taste disorder, dysgesia, ageusia, and amnesia; ivosidib reporting as the top five adverse reactions as syncope, migraine, guillain-barre syndrome, speech disorder and tremor.
TABLE 7 | Different ADRs of two isocitrate dehydrogenase inhibitors drugs.
[image: A table lists system organ classes with associated disorders for Enasidenib and Ivosidenib. Categories include blood disorders, cardiac disorders, gastrointestinal disorders, infections, and more. Each cell details specific conditions or reactions linked to each medication, such as neutrophilia, cataracts, liver disorders, cognitive disorders, emotional distress, and metabolic issues. The table is divided into columns for Enasidenib and Ivosidenib, providing comparisons across various health effects and conditions related to each drug.]4 DISCUSSION
Epigenetics mainly refers to heritable changes that regulate gene expression independent of DNA sequence changes and its mechanism mainly includes DNA methylation, histone modification, chromatin structure remodeling and non-coding RNA regulation (Gonzalez-Lugo et al., 2021).
Reports of mutations in genes encoding histone-modifying enzymes in cancers suggest that the global patterns of aberrant epigenetic modifications seen in some cancers may result from acquired mutations in genes that control this process. That these mutations are found in primary cancer cells implies that aberrant methylation contributes directly to tumor growth (Shannon and Armstrong, 2010).
In AML, some tumor suppressor genes are often hypermethylated, resulting in gene silencing, which can promote the proliferation and differentiation of leukemia cells. For example, mutations in DNMT3A are common in AML, which leads to changes in DNA methylation patterns and affects the gene expression. It often occurs that the histone methylation and other modifications abnormality in AML. These abnormal modifications affect chromatin structure and gene accessibility, and then affect gene expression. At the same time, epigenetic abnormalities can be used as an important indicator for the prognosis of AML. For example, IDH1/2 mutations may suggest a good prognosis in some cases. Targeted drugs aimed at epigenetic abnormalities provide a new idea for the treatment of AML.
Previous studies have found that the pathogenesis of acute myeloid leukemia (AML) is related to recurrent mutations that affect cellular metabolism and epigenetic regulation. About 10 years ago, recurrent somatic IDH1 and IDH2 gene mutations were discovered in AML with normal cytogenetics. The isoforms of IDH1 and IDH2 proteins play important parts in cellular metabolism and differentiation. α - KG is a recurrent hotspot mutation of the IDH1 and IDH2 genes, which is required for multiple critical dioxygenase reactions. It is now described in various cancers, including gliomas, chondrosarcomas and cholangiocarcinoma, and is most common in hematological malignancies, including myeloid malignancies (Abou Dalle and DiNardo, 2018).
Metabolism and epigenetics are highly interrelated. Mutations in genes encoding tricarboxylic acid cycle enzymes typically promote the development and progression of tumor by causing havoc with cellular metabolism and changing epigenetics. The subtype of isocitrate dehydrogenase (IDH1/2) is a typical example. The IDH enzyme metabolizes isocitric acid into α - ketoglutarate (α - KG). With the 2-HG increasing, α - KG levels decrease due to the functional IDH1 or IDH2mutations. α - KG works as an important cofactor for certain histones and DNA demethylases, while 2-HG is a competitive inhibitor that accumulates at high levels in cells, hindering the function of α - KG dependent enzymes (including epigenetic regulators), leading to histones and DNA hypermethylation, thereby altering gene expression and promoting cancer progression (Raineri and Mellor, 2018).
AML is one of the slowest progressing blood tumors in treatment research with no new drugs appearing for about 30 years. In 2017, there was a major outbreak of AML drug launches, and since then, the FDA has approved 7 AML drugs, including two IDH inhibitors, ivosidenib and enasidenib. Ivosidenib and enasidenib specifically inhibit the activity of mutated IDH1 and IDH2 enzymes respectively to lower the 2-HG levels, which helps to restore the differentiation process of cells and reduces the malignant proliferation of leukemia cells. Clinical trial results have shown that ivosidenib and enasidenib can significantly improve the survival rate and quality of life of AML patients with IDH1 and IDH2 gene mutations (Lee et al., 2019).
A clinical study showed that enasidenib can effectively inhibit the production of 2-HG in leukemia cell lines and induce cell differentiation in a dose-dependent manner. In the xenograft model, after treatment with enasidenib, the concentration of 2-HG in peripheral blood, bone marrow and spleen cells significantly decreased to near normal levels. In an invasive human AML xenograft mouse model, enasidenib was identified as having a dose-dependent survival advantage (Abou Dalle and DiNardo, 2018).
A study of persistent remission using ivosidenib in relapsed or refractory AML with IDH1 mutations showed that in (125 rate complete remission partial hematologic recovery was 30.4% (95% CI, 22.5–39.3), 21.6% CI, 14.7–29.8), overall response 41.6% 32.9–50.8) (DiNardo et al., 2018). These data indicated that ivosidenib had good tolerability and a high response rate in IDH1 mutant AML patients. Meanwhile, ivosidenib can be used to treat IDH1 mutant cholangiocarcinoma with significant survival benefits.
Although pre-market drug trials are very strict, due to the fact that these trials are conducted in controlled environments that are different from the actual usage environment, and clinical trials have certain intrinsic constraints, including strict experimental design, strict inclusion criteria, relatively small sample sizes and short follow-up times, it is impossible to fully understand the safety of drugs from preclinical trial data.
Spontaneous reporting systems (SRS) have been widely used for safety assessment of suspected adverse events in pharmacovigilance. Data from the SRS database can show the safety of specific drugs in real world better than clinical trials and plays an important role in signal recognition. At present, research on the safety signals of most drugs mainly comes from three main databases: the Eudra Vigilance Data Analysis System (EVDAS), Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS), and WHO-VigiBase® (Vogel et al., 2020). In 2015, WHO launched WHO vigiaccess to provide reports on potential side reactions of drugs to the public. Data mining of the WHO VigiAccess database will reveal some established clinical linkages and previously undiscovered drug AE associations. The study is aimed at evaluating the post marketing AEs associated with isocitrate dehydrogenase inhibitor drugs in the WHO VigiAccess database.
Due to strict data protection laws and agreements between WHO PIDM members and the WHO, individual case safety reports cannot be viewed in VigiAccess. VigiAccess groups the search results both by active ingredient and geographicaly by continental region so we are unable to retrieve data for specific brand names nor for individual WHO PIDM members. At the same time, we collected the data about two isocitrate dehydrogenase inhibitor drugs in WHO-Vigiaccess as much as possible, but some ADR reports lacked data on gender and age due to uncontrollable factors such as time and human factors. 81.4% of the adverse reaction reports of ivosidenib missed gender. Regarding age, 1,169 cases (42.1%) of enasidenib reports were lack of age, and 1,098 cases (84.7%) of ivosidenib reports were lack of age. When we analyze the adverse reactions caused by two isocitrate dehydrogenase inhibitor drugs on different gender or age groups, these missing data will inevitably affect the accuracy of our conclusions.
According to data from WHO VigiAccess, 87.3% of adverse event reports related to two types of isocitrate dehydrogenase inhibitor drugs came from America, followed by Europe at 11.3% and the lowest region was Asia at 0.1%. The estimated number of new diagnosed AML cases in America by the American Cancer Society is 20,240 in 2023, with the majority of patients being adults. Isocitrate dehydrogenase inhibitors have shown good efficacy in the treatment of AML patients with IDH mutations and have been widely used in the treatment of AML with IDH mutations resulting in the highest reported adverse events.
The reason why Asia had the lowest incidence of adverse events partly because most Asian regions are developing countries limited by medical standards, economic development, geography and social environment. For example, in lower-middle-income-countries such as India, the use of expensive drugs such as isocitrate dehydrogenase inhibitors is very low due to delayed diagnosis, increased infections, limited funding and limited access to new targeted treatment methods. Besides, Asian countries such as China usually have strict regulatory and approval processes for drugs, ensuring that marketed drugs meet certain standards in terms of safety, efficacy and quality. Taking China as an example, enasidenib was launched in the United States on 1 August 2017, but has not yet been officially launched in China. The launch date of ivosidenib in the United States 20 July 2018, while its launch date in China is 9 February 2022. It can be seen that the use of isocitrate dehydrogenase inhibitors in China is relatively short and has not yet been widely promoted and applied.
ADR report data shows that AE is more common in males than in females. The highest incidence of adverse events of isocitrate dehydrogenase inhibitors age group is ≥75 years, next is 65–74 years. This is mainly because these drugs have shown good efficacy and safety in clinical trials. Isocitrate dehydrogenase inhibitors are considered as first-line drugs especially in relapsed or refractory AML patients with IDH mutations. The incidence rate of AML is more than 65 years old and increases with age. As age increases, physiological functions gradually decline and the elderly have poor physical condition and drug tolerance, often accompanied by various underlying diseases. The low metabolic rate of drugs greatly increases the risk of adverse events. Therefore, although adverse events occur in all age groups, the incidence rate is highest in the age group ≥75 years old.
AE with a reporting rate of ≥1% is generally considered common (Chen et al., 2019). The serious AEs of two types of isocitrate dehydrogenase inhibitors, including death, hospitalization, life-threatening events, disability and congenital malformations. The death rate of enasidenib is 71.33%, much higher than that of ivosidenib. Under general disease and administration site conditions, these two isocitrate dehydrogenase inhibitors have the highest incidence of ADRs. The most frequent AEs of these two drugs are drug ineffective platelet count decreased, asthenia, fatigue and vomiting.
We performed enasidenib data mining in the FARES database to validate the results. The FAERS database is used for identifying potential association between drugs and adverse events in post-marketing surveillance of drug safety. However, there is a risk of bias due to the self-reported nature of the database. According to the requirements of regulatory agencies, the data in the FAERS database is anonymous. FDA publishes FAERS documents quarterly (i.e., 4 documents per year) (Peng et al., 2020). In our study, we extracted reports submitted between the first quarter of 2017 (FDA approved enasidenib) and the fourth quarter of 2023.
During the study period (the first quarter of 2017 and the fourth quarter of 2023), there were a total of 451 reports on enasidib. The clinical characteristics of enasidib events are shown in Table 8. Among all AEs, males (54.8%) accounted for a larger proportion than females who accepted manuscripts. The patients’ weight was mainly 50–100 kg (37.5%) and the main age was 65–85 (56.3%). AEs occurred mainly in the United States (22.0%). All individual AEs were determined based on MedDRA SOC and Pt levels recorded in the enasidenib report to describe the toxicity spectrum. When the number of cases is >3, the lower limit of the 95% confidence interval (CI) is >1.0, the ROR value is >2.0, and the Chi square value is >4.8, the ROR signal is positive (Sakaeda et al., 2013). An unexpected AE is defined as any significant AE found that is not listed in the FDA drug label. All data processing and statistical analysis were performed using R software (version 4.0.2).
TABLE 8 | Characteristics of reports associated with enasidenib from August 2017 to December 2023.
[image: Data table titled "Enasidenib" showing 451 events. Gender: Female 175 (38.8%), Male 247 (54.8%), Others 29 (6.4%). Weight: <50 kg 12 (2.7%), >100 kg 10 (2.2%), 50-100 kg 169 (37.5%), Others 260 (57.6%). Age: <18 2 (0.4%), 18-64.9 89 (19.7%), 65-85 254 (56.3%), >85 8 (1.8%), Others 98 (21.7%). Serious outcome: Death 145 (32.2%), Disability 4 (0.9%), Hospitalization 184 (40.8%), Life-threatening 44 (9.8%). Reported countries: Australia 41 (9.1%), Germany 37 (8.2%), France 87 (19.3%), United States of America 99 (22.0%), Others 187 (41.4%).]The significant SOCs were “Infections and infestations”, “Neoplasms benign, malignant and unspecified (incl cysts and polyps)” and “Blood and lymphatic system disorders” (Table 9), which was corresponding to previous safety data.
TABLE 9 | Signal strength of AEs of enasidenib at the System Organ Class. Level in food and drug administration adverse event reporting system (FAERS) database.
[image: Table listing system organ classes with enasidenib cases reporting SOC and ROR enasidenib/all other cases with confidence intervals. Disorders include nervous system, gastrointestinal, general, renal, infections, metabolism, neoplasms, respiratory, vascular, blood, cardiac, injury, investigations, musculoskeletal, skin, and immune system. ROR values are provided with a 95% confidence interval for each category.]By comparing the adverse reaction reporting data of enasidenib in the WHO- Vigiaccess and FARES databases, we found that there were gender differences in the adverse reactions of enasidenib. The rate of adverse reactions in men was higher than that in women, and they were more common in the elderly. The adverse reaction reporting rate in the United States was significantly higher than that in other countries. The serious consequences of enasidenib leading to patient death were reported at a high rate. However, different from the data mining results of WHO- Vigiaccess, the SOC signal of infections and infestations caused by enasidenib in FARES database was stronger, which needed to cause pharmacovigilance.
A recent FDA systematic analysis reported that the incidence rate of DS was 19%. A clinical study showed that the most frequent AEs associated with using enasidenib were indirect hyperbilirubinemia (40.3%), nausea (28%) and decreased appetite (17.7%). The most common grade 3 or 4 treatment adverse events related to enasidenib are hyperbilirubinemia (10.4%), thrombocytopenia (6.7%), IDH differentiation syndrome (IDH-DS; 6.4%) and anemia (5.5%) (Stein et al., 2019). IDH-DS patients may have mild to moderate symptoms, including unexplained fever, edema or creatinine changes. However, critically ill patients may experience severe respiratory and hemodynamic damage, requiring hospitalization and admission to the intensive care unit, with the most common being respiratory distress and lung infiltration (Montesinos et al., 2024). The possible reason is that isocitrate dehydrogenase inhibitor drugs induce terminal differentiation of AML cells by targeting IDH2 receptors, thereby inducing the production of chemokines in the lungs, leading to the migration, adhesion and infiltration of differentiated cells into the lungs and other tissues. These chemokines can also act as chemotactic agents for other inflammatory cells, further aggravating the high inflammatory state. Therefore, when using isocitrate dehydrogenase inhibitor drugs in clinical practice, clinical doctors should closely monitor the early symptoms and signs of DS reported, which may also occur after treatment interruption and restarting medication. Early identification of DS using standardized diagnosis is helpful for early diagnosis and treatment. IDH DS can be treated with dose interruption and corticosteroids, oral hydroxyurea or both simultaneously (Carter et al., 2020).
The most common ADRs of the two drugs in our study were blood and lymphatic system disorders. Ivosidenib and enasidenib are both targeted drugs that exert therapeutic effects by inhibiting specific enzymes or signaling pathways. These enzymes or signaling pathways play critical roles in processes such as cell proliferation, differentiation, and apoptosis, particularly in the generation and function of blood cells and lymphocytes (Shannon and Armstrong, 2010). Therefore, when these drugs inhibit these critical pathways, they may affect the normal physiological functions of blood and lymphocytes, leading to blood and lymphatic system diseases. During the metabolism and excretion of drugs in the body, harmful metabolites or toxic substances may be produced, which can directly damage biomolecules such as DNA, RNA or proteins in blood cells or lymphocytes, leading to abnormal cell function or death.
We analyzed the different points in ADRs between these drugs. The two drugs have the highest incidence of adverse reactions in injury, poisoning and procedural complications. The main adverse reactions reported by enasidib are hip fracture, subdural haematoma and head injury, while the main adverse reactions reported by ivosidib are contracted product administered, product use issue and product administration error. These differences of ADRs may be associated with the different molecular weight, structure, mechanism or pharmacokinetics of the drug.
The evaluation of whether the combination therapy of ivosidenib and enasidenib can be applied in clinical practice is still ongoing. The latest results shows that the combination of ivosidenib and enasidenib with standard DA regimen has achieved good efficacy in the treatment of newly diagnosed AML patients with IDH1 or IDH2 mutations. In another study on the combination of ivosidenib or enasidenib with intensified chemotherapy for newly diagnosed AML patients, the induced final CR and CR/CRI/CRp rates in the ivosidenib group were 55% and 72% respectively, while the induced final CR and CR/CRI/CRp rates in the enasidenib group were 47% and 63% respectively. The optimal total CR and CR/CRI/CRp rates for patients treated with ivosidenib were 68% and 77%, respectively, while those for patients treated with enasidenib were 55% and 74%, respectively (Stein et al., 2021). A Phase 3 study further confirmed the efficacy and safety of ivosidenib combined with azacitidine in patients with AML who are not suitable for intensified chemotherapy. Compared with placebo combined with azacitidine, ivosidenib plus azacitidine significantly prolonged event free survival and overall survival, and responded well (Cai et al., 2024). Although ivosidenib and enasidenib are currently approved as monotherapy, the use of well tolerated and reasonable combination therapy will undoubtedly further improve persistent patient response and increasingly improve patient prognosis.
ADR report data showed that adverse drug reactions were more frequent in men than in women and the age group with the highest incidence of adverse events was ≥75 years old. Therefore, for elderly patients with AML, especially male patients, the dose of isocitrate dehydrogenase inhibitor can be appropriately reduced to decrease the occurrence of adverse reactions while maintaining the efficacy.
The most common adverse reactions of these two drugs are drug ineffective and platelet count decreased. For patients with drug ineffective and their symptoms have not improved after using drugs for a period of time, they should use another drug in time. If the drug causes platelet count decreased, the blood routine should be reviewed regularly and patients should stop using the drug or use another drug when necessary. When the platelet count is severely reduced and accompanied by bleeding, it is recommended to carry out platelet transfusion under the guidance of doctors. The mortality rate of enasidenib was 71.33%, which was much higher than that of ivosidenib, indicating that when using enasidenib clinically, doctors should be more cautious in prescribing the dose and pay more attention to the performance of patients after using it.
IDH inhibitors provide a new treatment option for specific types of cancer patients, especially AML patients with IDH mutations. They have shown good efficacy in tumor treatment, which can effectively prolong patients’ survival and improve their quality of life, but they may also lead to some adverse reactions. By effectively managing ADR, on the one hand, we can reduce the occurrence of the adverse reactions to enhance the tolerance and compliance of patients. On the other hand, this also helps to optimize treatment plans, ensuring that patients achieve optimal treatment outcomes while minimizing the occurrence of adverse reactions, thereby improving the therapeutic effect of IDH inhibitors.
Of course, SRS has certain limitations, as reports may be affected by uncertain factors such as reputation bias, selection bias, and underreporting. From the current reports of AE research results, it is observed that the missing data cannot be attributed to either males, females, or age groups. Meanwhile, since the VigiAccess database of the WHO is cumulative data, the ADRs of every year cannot be obtained. When drugs are put on the market at different times, the number of ADRs collected is quite different, and the signal difference of all target inhibitors cannot be compared at the same time (Li et al., 2023). Moreover, we are unable to acquire all AEs related to specific drugs through VigiAccess.
This study gathered the quantity of ADRs and PTs from 2017 to 2024 and avoided the influence of drug approved marketing time by comparing the ADR reporting rates of two drugs. The research results are limited to the relative results of two isocitrate dehydrogenase inhibitors and we need further clinical studies to provide stronger evidence in our real world.
5 CONCLUSION
Isocitrate dehydrogenase inhibitors are widely used for treating AML with IDH mutations. Research shows that WHO-VigiAccess reported 4,072 cases of adverse reactions caused by treatment with isocitrate dehydrogenase inhibitors. The adverse reactions of these drugs are mainly concentrated in general disorders and administrative site conditions, injury poisoning and procedural complications, investigations and gastrointestinal disorders. It reconfirms the adverse reaction symptoms of injury poisoning, procedural complications and gastrointestinal disorders.
In addition, the neoplastics benign and non-specific inward cysts and polyps caused by enasidib, as well as the nervous system disorders caused by ivosidib, are also very prominent. Although most adverse reactions of drugs are slight and self-limited, there are also some serious adverse reactions that may result in hospitalization, life-threatening situations or even death for patients. Therefore, in clinical applications, clinical doctors should pay attention to common ADRs and be alert to the occurrence of serious ADRs. If necessary, patients should stop taking medication in a timely manner to avoid fatal ADRs.
It is concluded from our study that the adverse reactions of drugs should be analyzed on the basis of extensive promotion and application of drugs, taking the medical level, economic development, geographical and social environment constraints of different countries and regions into consideration, so as to make the research results representative and meaningful. At the same time, countries around the world should actively carry out the safety research on biologics to study the causal relationship between ADRs and medications. The research results can be stored in open access databases to strengthen public understanding of the side effects of biotechnology drugs. Future drug research strategies should focus on the development of rational combination therapy with IDH1/2 inhibitors and other effective therapies to provide more possibilities for the treatment of AML.
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Background: Hepatocellular carcinoma (HCC) ranks among the most prevalent and lethal malignancies worldwide. Histone modifications (HMs) play a pivotal role in the initiation and progression of HCC. However, our understanding of HMs in HCC remains limited due to the disease’s heterogeneity and the complexity of HMs.Methods: We integrated multi-omics data from multiple cohorts, including single-cell RNA sequencing, bulk RNA sequencing, and clinical information. Weighted gene co-expression network analysis (WGCNA) and consensus clustering were employed to identify histone-related genes. We developed a histone modification-related signature (HMRS) using 117 machine learning methods. Comprehensive analyses of molecular characteristics, immune landscape, and drug sensitivity associated with the HMRS were performed.Results: Through integrative analysis, we defined 110 histone-related genes and identified 45 HCC-HM-related genes (HCC-HMRgenes). The HMRS demonstrated robust prognostic value across multiple cohorts. Patients with high HMRS scores exhibited distinct genomic alterations, including higher tumor heterogeneity and TP53 mutations. The high-risk group showed enrichment in cell cycle, DNA repair, and metabolic pathways. Immune landscape analysis revealed significant differences in immune cell infiltration and pathway activities between high- and low-risk groups. Drug sensitivity prediction suggested potential therapeutic strategies for different risk groups.Conclusion: Our study provides a comprehensive understanding of HMs in HCC and establishes a robust prognostic signature. The HMRS not only stratifies patients into distinct risk groups but also offers insights into underlying molecular mechanisms, immune characteristics, and potential therapeutic strategies, paving the way for personalized medicine in HCC.Keywords: histone modification, HCC, Hepatocellular carcinoma, machine learning, prognosis model, drug sensitivity
1 INTRODUCTION
Hepatocellular Carcinoma (HCC) ranks as one of the most prevalent and lethal malignancies worldwide, being the third leading cause of cancer-related deaths globally, with an average 5-year survival rate below 15% (Xia et al., 2022; Llovet et al., 2024). Alarmingly, the incidence of primary liver cancer is projected to rise by 55% by 2040 (Rumgay et al., 2022). This grim outlook is largely attributed to the complexity of its pathogenesis and limited treatment efficacy. While early-stage HCC can be treated through surgical resection, local ablation, or liver transplantation, the majority of patients are diagnosed at advanced stages. Current treatment modalities for advanced HCC primarily include local interventional therapies and systemic pharmacological interventions. Systemic drug therapies mainly comprise anti-angiogenic targeted therapies and immunotherapies, with the highest objective response rate (ORR) reaching only 36% (NCT03006926) (Finn et al., 2020). Consequently, there is an urgent need to elucidate the cellular mechanisms underlying HCC development to identify novel and effective therapeutic targets.
Epigenetic mechanisms form the foundation of the liver’s capacity to coordinate and regulate its regenerative abilities and adapt to rapidly changing environments, a unique feature among mammalian solid organs (Wilson et al., 2017; Michalopoulos and Bhushan, 2021). In recent years, epigenetic regulation, particularly histone modifications (HMs), has garnered increasing attention for its pivotal role in HCC initiation, progression, and treatment resistance. HMs primarily include acetylation, methylation, phosphorylation, ubiquitination, SUMOylation, ADP-ribosylation, and biotinylation. These modifications influence every aspect of HCC by manipulating the expression of oncogenes and tumor suppressor genes. Numerous studies have demonstrated that histone acetylation (Xia et al., 2022), methylation (Charidemou et al., 2023), and other modifications are associated with HCC occurrence, metastasis, angiogenesis, metabolism, apoptosis, immune homeostasis, and signaling pathways. For instance, Chen et al.'s research elucidated one pathway through which histone methylation affects HCC: the demethylase KDM4B may indirectly mediate miR-615-5p CpG demethylation through H3K9 (lysine nine on histone H3) demethylation. The absence of KDM4B promotes CpG methylation in the miR-615-5p promoter region, leading to decreased miR-615-5p expression. This, in turn, relieves miR-615-5p′s suppression of the oncogene RAB24, ultimately resulting in RAB24 overactivation and promoting HCC cell growth, migration, invasion, and adhesion (Chen et al., 2017). However, due to the heterogeneity of HCC and the complexity of HMs, our understanding of their comprehensive role and clinical significance in HCC remains limited and fragmented.
With the rapid development of high-throughput sequencing technologies and proteomics methods, we can now capture dynamic changes in HMs at the genome-wide level. These technological advancements provide unprecedented opportunities to systematically study HMs patterns and their functional significance in HCC. Meanwhile, the complexity and multidimensionality of these large-scale datasets require advanced computational methods to mine meaningful biological insights, and machine learning methods have shown great potential in deciphering complex biological problems.
This study aims to utilize various machine learning computational frameworks to systematically identify and analyze histone modification-related multi-omics features in HCC. By integrating genomics, transcriptomics, and proteomics data, we have revealed all key molecules and pathways of HMs affecting HCC occurrence and treatment response. This multi-omics integration approach not only provides a comprehensive understanding of epigenetic regulation in HCC but also identifies new diagnostic biomarkers and therapeutic targets, potentially transforming the challenging landscape of liver cancer treatment through epigenetic-targeted therapies. Additionally, this study combines patient follow-up data to construct an HCC risk prediction model based on HMs features. This model improves the accuracy of HCC prognosis assessment, supporting individualized treatment decisions. In this way, we aim to advance precision medicine for HCC, aligning with the current trend of 3P (Predictive, Preventive, Personalized) medicine.
2 MATERIALS AND METHODS
2.1 Data source
In this study, we primarily utilized data resources from three databases. First, we extracted gene expression data and corresponding survival information for 371 HCC samples from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/) (Tomczak et al., 2015). Second, we accessed HCC datasets GSE112271 and GSE14520 from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). GSE112271 includes single-cell RNA sequencing data from 7 HCC samples, while GSE14520 contains tissue sequencing data from 242 HCC samples with survival information. Additionally, we incorporated tissue sequencing data from 445 HCC samples with prognostic data from the International Cancer Genome Consortium (ICGC) (https://dcc.icgc.org/) (Zhang et al., 2019).
During data processing, we first extracted data in Transcripts Per Million (TPM) format from STAR count data and clinical information. Subsequently, to stabilize variance and improve data normality, we normalized the data and applied a log2(TPM+1) transformation. In the final stage of data preprocessing, we retained only samples with both RNA sequencing data and complete clinical information for subsequent analysis.
Furthermore, histone-related genes were sourced from two origins: cancer-associated HMs reported by Füllgrabe et al. (Oncogene, 2011) (Füllgrabe et al., 2011), and genes with HMs relevance scores greater than 20 from the GeneCards database (https://www.genecards.org/).
2.2 Single cell analysis
This study employed the Seurat package for comprehensive analysis of single-cell RNA-seq data (Stuart et al., 2019). We initially read 10X Genomics format data from the GSE112271 dataset and performed quality control, including calculating the proportion of mitochondrial and ribosomal RNA. After data filtering and normalization, we used PCA and UMAP for dimensionality reduction and applied the Harmony algorithm to integrate different samples (Cristian et al., 2024). We then conducted clustering analysis and used the SingleR package for cell type annotation. To construct histone scores, we calculated histone gene set enrichment scores for each cell using the single-sample Gene Set Enrichment Analysis (ssGSEA) method. Based on these scores, we divided cells into high and low score groups and performed differential expression analysis using Seurat’s FindAllMarkers function. We also visualized the distribution of histone scores across different cell types using FeaturePlots and violin plots. This series of analyses not only revealed cellular heterogeneity in histone expression but also provided a foundation for further exploration of histone-related functions and regulatory mechanisms.
2.3 Weighted gene co-expression network analysis (WGCNA)
This study employed Weighted Gene Co-expression Network Analysis (WGCNA) to thoroughly investigate the association between RNA-seq data and histone expression in the TCGA database (Langfelder and Horvath, 2008). We first calculated histone scores for each sample using the ssGSEA method as phenotype data for subsequent analysis. During data preprocessing, we performed sample clustering and outlier detection to ensure data quality. Subsequently, through soft threshold selection and network construction, we identified multiple gene co-expression modules. Further, we analyzed the relationship between Module Membership and Gene Significance of genes in these modules, providing a basis for identifying key regulatory genes.
2.4 Construction of prognostic features through integrated machine learning methods
This study employed various machine learning algorithms to construct prognostic models, including Random Survival Forest (RSF) (Ishwaran et al., 2008), Elastic Net (Enet) (Zou and Hastie, 2005; Cho et al., 2009), Stepwise Cox Regression (StepCox) (Liu et al., 2023), CoxBoost (Binder and Binder, 2015), Partial Least Squares Cox Regression (plsRcox) (Bertrand et al., 2022; Bertrand et al., 2014), SuperPC (Bair et al., 2006), Gradient Boosting Machine (GBM) (Ayyadevara and Ayyadevara, 2018), Survival Support Vector Machine (survival-SVM) (Van Belle et al., 2011), Ridge Regression (Arashi et al., 2021), and Lasso Regression (Ranstam and Cook, 2018). The TCGA dataset was used as the training set, with GSE14520 and ICGC datasets serving as validation sets. Data was first standardized, then models were constructed using each algorithm and evaluated on the validation sets. To enhance model stability, we also experimented with up to 117 algorithm combinations, such as RSF + CoxBoost and Lasso + GBM. The C-index was used to assess model discriminatory ability across datasets. Finally, C-index results for all models across different datasets were compiled into a heatmap, visually demonstrating each model’s predictive performance. By comparing the performance of different algorithms and their combinations, we aimed to identify the optimal prognostic prediction model. Subsequently, results and features were visualized based on model weights.
2.5 Survival analysis and nomogram construction
This study conducted a comprehensive analysis of the TCGA dataset, exploring relationships between risk scores, clinical features, gene expression, and survival outcomes. We processed clinical data, created pie charts comparing clinical features, compared risk scores across different T stages using violin plots, and produced stacked bar charts showing the proportion of clinical features in high- and low-risk groups. We also analyzed gene expression data and created heatmaps to display expression differences. Logistic regression was used to predict M stage, with ROC curves assessing predictive performance (Stoltzfus, 2011; Blanche and Blanche, 2019). Subsequently, we plotted Kaplan-Meier survival curves based on patient age and clinical stage, comparing survival differences between high- and low-risk groups.
To further enhance the model’s predictive accuracy and prognostic capability, we developed a nomogram combining histone and clinical features to quantify expected survival for HCC patients (Park, 2018). After identifying independent prognostic factors through univariate and multivariate Cox regression analyses, we constructed a nomogram based on multivariate Cox regression results, visually demonstrating each factor’s contribution to prognosis. Calibration curves were used to evaluate the model’s predictive accuracy. Decision curve analysis (DCA) assessed the model’s clinical application value (Fitzgerald et al., 2015). Additionally, we calculated the C-index to measure the model’s discriminatory power and plotted time-dependent C-index curves to compare long-term predictive capabilities of different predictors. Finally, we validated the model’s internal stability through Bootstrap resampling (Henderson, 2005). These methods comprehensively evaluated the prognostic model’s predictive accuracy, clinical utility, and stability, providing reliable evidence for its clinical application.
2.6 GSEA and GSVA functional enrichment analysis
This study continued to employ various bioinformatics methods to explore the relationship between gene expression patterns and prognostic risk. We used the limma package for differential expression analysis to identify differentially expressed genes between high- and low-risk groups (Ritchie et al., 2015). Subsequently, Gene Set Enrichment Analysis (GSEA) was used to explore functional pathways of differentially expressed genes, and Gene Set Variation Analysis (GSVA) was employed to quantitatively score pathway activity for each sample (Hung et al., 2012; Hänzelmann et al., 2013). We performed inter-group differential analysis on GSVA scores and created volcano plots to display significantly altered pathways. Additionally, we calculated correlations between GSVA scores and risk scores, presenting them visually through heatmaps. Finally, we conducted survival analysis on key pathways to identify those significantly associated with prognosis.
2.7 Mutation analysis
To further reveal the relationship between tumor mutation characteristics and prognostic risk, and to understand the biological basis of the risk score model, we employed various methods to analyze the relationship between tumor mutation characteristics and prognostic risk. Firstly, we used the maftools package (Mayakonda et al., 2018) to calculate the Mutant-Allele Tumor Heterogeneity (MATH) score for each sample and compared differences between high- and low-risk groups. Kaplan-Meier survival analysis was used to evaluate the association between MATH scores and patient prognosis. Subsequently, we performed stratified survival analysis combining MATH scores and risk scores to explore their joint predictive effect. Additionally, we conducted mutation landscape analysis for high- and low-risk groups separately, creating oncoplots to display the top 20 mutated genes. We also used the somaticInteractions function to analyze co-mutation and mutual exclusivity relationships between genes, revealing patterns of gene mutation interactions in different risk groups.
2.8 Immune characteristics analysis
In our study, to explore the relationship between immune cell infiltration in the HCC tumor microenvironment (TME) and histone modification-related signature (HMRS), we utilized the IOBR software package (Zeng et al., 2021) to assess ESTIMATE, CIBERSORT, and the infiltration of 28 immune cell types in HCC samples from TCGA. We used the ESTIMATE algorithm to evaluate stromal, immune, and comprehensive scores of tumor samples, comparing differences between high- and low-risk groups. Subsequently, we employed the ssGSEA method to score immune-related pathways and 28 immune cell types, and used the CIBERSORT algorithm to estimate the proportions of 22 immune cell types, thoroughly investigating differences in the immune microenvironment between risk groups (Chen et al., 2018). These analyses were visualized through box plots and heatmaps, clearly demonstrating immune characteristic differences between high- and low-risk groups. Furthermore, we conducted correlation analyses between characteristic genes and immune cells, as well as between risk scores and immune cells, presenting these complex relationships through correlation heatmaps. These multi-level, multi-faceted analyses not only revealed the complexity of the tumor immune microenvironment but also provided important insights into the immunological basis of the risk score model, laying a foundation for further immunotherapy research.
2.9 Significance of the HMRS in drug sensitivity
In this study, we utilized the Genomics of Drug Sensitivity in Cancer (GDSC) database (https://www.cancerrxgene.org/) to predict the sensitivity of high- and low-risk group samples to common anticancer drugs. This is one of the largest public resources in the field of pharmacogenomics, providing rich information on drug sensitivity and related genomics, crucial for discovering potential cancer treatment targets (Yang et al., 2013). To this end, we applied the pRRophetic software package (Geeleher et al., 2014) to construct cell line-based ridge regression models using drug information and gene expression data from the CGP2016 dataset, and then conducted predictive analysis for each possible drug. Using the pRRopheticPredict function, we predicted the half-maximal inhibitory concentration (IC50) values for each drug based on the gene expression profiles of tumor samples (Sebaugh, 2011). Subsequently, we combined the predicted drug sensitivities with our previously established risk score model to compare drug sensitivity differences between high- and low-risk groups. We used the Wilcoxon rank-sum test to assess the statistical significance of these differences and created box plots for drugs with significant differences using the ggplot2 package.
2.10 Experiment validation
To validate the biological significance of our HMRS model, we conducted further pathological verification on the top five genes with the highest weights in the model. First, we utilized the Human Protein Atlas (HPA) database (https://www.proteinatlas.org/) to compare the protein expression levels of these genes in pancreatic cancer tissues and adjacent normal pancreatic tissues (Uhlén et al., 2015). For genes lacking data in the HPA database, we performed laboratory validation.
We collected paired PDAC and adjacent pancreatic tissue samples from PDAC patients who underwent surgical resection at our center. Tissue samples were fixed in 4% paraformaldehyde and embedded in paraffin to create 4 μm thick sections. Standard immunohistochemistry (IHC) staining procedures were followed. Briefly, sections were deparaffinized, rehydrated, and underwent antigen retrieval in citrate buffer (pH 6.0). Endogenous peroxidase activity was blocked with 3% H2O2, and non-specific binding was blocked with 10% goat serum. Subsequently, sections were incubated overnight at 4°C with the corresponding primary antibodies. ASF1A antibody (1:1,000 dilution, Proteintech) was used. The next day, sections were incubated with HRP-labeled secondary antibodies for 1 h at room temperature. DAB was used for color development, followed by hematoxylin counterstaining. Staining results were independently evaluated by two experienced pathologists who were blinded to the clinical information.
All patients provided written informed consent, and this research protocol was approved by the Ethics Committee of the First Affiliated Hospital of China Medical University (approval number: KT20241,196).
3 RESULTS
All analytical processes are illustrated in the flowchart (Figure 1).
[image: Flowchart illustrating a histone gene analysis process. Begins with gene selection via GeneCards and full-length database. Histone gene undergoes HCC single scoring using WGCNA and TCGA. 117 machine learning methods perform model analysis on a laptop for optimal performance. Histone gene 2.0 undergoes model analysis considering age, sex, and stage, leading to a histone expression scoring system and drug sensitivity analysis.]FIGURE 1 | Study flowchart.
3.1 Histone modification characteristics in single-cell transcriptomics
To gain a deeper understanding of HMs characteristics across different cell types, we conducted a comprehensive analysis of single-cell transcriptome data. Utilizing t-SNE technology, we successfully identified and annotated six major cell clusters: endothelial cells, macrophages, hepatocytes, cancer cells, fibroblasts, and NKT cells, revealing the complex distribution pattern of multiple cell populations within the HCC microenvironment (Figure 2A). To further validate the accuracy of cell type annotations, we generated a dot plot displaying the expression of marker genes for each cell cluster (Figure 2B).
[image: A set of four scientific data visualizations: A) A t-SNE plot showing cell clusters labeled with identities and colored differently. B) A dot plot displaying gene expression levels and percentage expressed, with varying dot sizes and shades. C) A t-SNE plot mapping Histone scores, with a gradient color scale. D) A violin plot illustrating the distribution of gene expression across different group identities with distinct colors.]FIGURE 2 | HMs characteristics in single-cell transcriptomics. (A) t-SNE plot showing the cell types identified by marker genes. (B) Dot plot showing the marker genes in each cell cluster. (C) The activity score of HMs in each cell. (D) The distribution of the histone score in different cell types.
Subsequently, we calculated and visualized the HMs activity score for each single cell using the 110 histone-related genes we had constructed (Figure 2C). To more intuitively compare the differences in HMs activity among different cell types, we employed violin plots to illustrate the distribution of HMs scores across cell populations (Figure 2D). We discovered that HMs activity is ubiquitous across all cell types, albeit with a degree of heterogeneity.
Based on the overall cellular HMs activity, we categorized cells into high HMs and low HMs groups. By comparing these two groups, we identified 772 differentially expressed genes related to HMs (single cell HM-related DEGs), all derived from HCC single-cell data.
3.2 Identification of histone-related genes in HCC bulk RNA sequencing
We employed the WGCNA method to construct a hierarchical clustering dendrogram of TCGA-HCC samples (Figure 3A), illustrating the clustering relationships among samples. Additionally, the heatmap at the bottom of the figure visually presents the HMs scores for each sample, reflecting the relative activity of HMs characteristics within the samples. Further analysis of the sample clustering dendrogram (Figure 3B) and the module-trait heatmap (Figure 3C) revealed that the turquoise, grey, and blue modules were closely associated with HMs. These modules collectively encompass 726 genes, including 99 in blue, 493 in grey, and 134 in turquoise. To further narrow down the candidate gene pool, we identified differentially expressed genes (DEGs) between normal and HCC samples in the TCGA dataset, yielding HCC DEGs (Figure 3D). Building upon this, we intersected single-cell HM-related DEGs, HMs Module genes, and HCC DEGs, ultimately obtaining 45 intersecting genes, designated as HCC and histone-related genes (HCC-HMRgenes) (Figure 3E).
[image: A collection of data visualizations showing various analyses. Panel A is a scatter plot with a data distribution. Panel B displays a dendrogram for cluster analysis. Panel C features a heat map related to microbial interactions. Panel D is a scatter plot showing differentially expressed genes. Panel E presents a Venn diagram with intersecting sets. Panels F and H depict complex network diagrams with interconnected nodes. Panels G and I feature box plots comparing data groups. Each panel exhibits distinct analytical results.]FIGURE 3 | Identification and functional analysis of HCC-HMRgenes. (A) Dendrogram showing hierarchical clustering of TCGA-HCC samples. The bottom heatmap represents the HMs score for each sample. (B) Cluster dendrogram of the WGCNA analysis. (C) Module-trait heatmap showing the closely related modules to the HMs trait. (D) Volcano plot displaying differential analysis results between TCGA-HCC and normal samples, highlighting the top five up- and downregulated genes with the most significant expression changes. (E) Venn plot showing the intersecting genes between single-cell HM-related DEGs, HMs Module genes, and HCC DEGs. (F) PPI Network of 45 HCC-HMRgenes. (G) GO and KEGG Analysis Results of 45 HCC-HMRgenes. (H) PPI Network of updated HCC-HMRgenes related genes. (I) GO and KEGG Analysis Results of updated HCC-HMRgenes related genes.
To explore the interactions among these 45 HCC-HMRgenes, we constructed a protein-protein interaction (PPI) network (Figure 3F). Subsequently, we performed GO and KEGG enrichment analyses (Figure 3G) to investigate the distribution of these 45 genes in biological processes (BP), cellular components (CC), and molecular functions (MF), as well as their potential roles in various biological pathways. Results indicated that in terms of BP, CC, and MF, the genes were primarily enriched in ribosome structure and function, as well as protein translation-related pathways. KEGG analysis revealed that the ribosome pathway exhibited the most significant and unique enrichment. This suggests that HMs may promote tumor progression by influencing ribosomal function and, consequently, protein synthesis. Next, we combined the previously defined 110 genes with these 45 HCC-HMRgenes and reanalyzed their interaction networks and enrichment to further investigate HMs mechanisms in HCC (Figures 3H, I). GO analysis results showed that chromatin structure and nucleosome organization are closely related to HMs in HCC, with histone deacetylation potentially playing the most crucial role. KEGG pathway analysis revealed that viral infection might promote HCC development by influencing HMs, while HMs also plays a role in regulating cell death.
3.3 Construction of prognostic signature based on integrated machine learning
Building upon the 45 HCC-HMRgenes, we incorporated 110 HM-related source genes, resulting in a total of 155 HMRgenes. To construct a robust prognostic model, we utilized the TCGA dataset as the training set and ICGC and GSE14520 as validation sets. We selected 69 HMRgenes common to all three datasets as input features (training genes) for machine learning. Using these 69 genes, we developed a consensus HMRS through integrated machine learning methods. Within a 10-fold cross-validation framework, we evaluated 117 different predictive models, assessing model performance by calculating the accuracy of each model across all datasets. Considering the comprehensive performance on the validation sets, we selected the Lasso + RSF model for HMRS construction (Figure 4A).
[image: Panel A shows a bar chart with genes ranked by importance. Panel B displays a line graph of coefficients for genes. Panel C is a scatter plot with a fitted curve showing the relationship between two variables. Panel D includes a line plot of importance scores. Panel E presents survival curves, with two subplots displaying different conditions. Panel F features a scatter plot and heatmap illustrating gene expression data across samples. Panel G shows an ROC curve comparing different models' performance.]FIGURE 4 | Risk score model based on 69 training genes constructed using Lasso regression method. (A) C-index calculated for 117 prediction models through 10-fold cross-validation framework across all validation datasets. (B) Lasso regression coefficient path plot for genes. (C) Lasso regression cross-validation deviance. X-axis represents log λ values, Y-axis represents deviance, red dots represent average deviance for each λ value, grey lines represent standard error of deviance, and vertical lines on X-axis represent optimal λ value. (D) Risk profile in the training set. (E) KM survival curves for high- and low-risk groups in the training set. (F) Distribution of Risk scores for each sample. (G) ROC curves for the training set.
The Lasso regression coefficient path plot illustrated how the coefficients of the 69 genes shrink to zero as the L1 regularization penalty (λ value) increases, revealing the final selected model variables (Figure 4B). In Lasso regression, the cross-validation deviance plot determined the optimal λ value, which minimizes cross-validation error and provides the best model complexity (Figure 4C). Figure 4D displayed the risk score distribution of high- and low-risk samples in the training set, calculating based on the selected λ value. Kaplan-Meier survival curves demonstrated significant prognostic differences between high- and low-risk groups (p < 0.001), with median survival times of 3.0 and 6.6 years, respectively (Figure 4E). The risk score distribution plot illustrated the relationship between each sample’s score and survival status in the training set, with high-risk scores positively correlated with mortality events (Figure 4F). Subsequent ROC curve analysis evaluated the risk score model’s performance, yielding areas under the curve (AUC) of 0.76, 0.72, and 0.70 for 1-year, 3-year, and 5-year survival, respectively, indicating good predictive performance (Figure 4G). These results suggested that our constructed HMRS can accurately distinguish between high- and low-risk HCC patients, demonstrating strong prognostic predictive capability and robust model performance.
3.4 Performance evaluation and clinical relevance analysis of HMRS
To further enhance the applicability and generalizability of the model, we expanded our analysis from the initial 69 training genes to include all 155 HMRgenes for retraining (Figure 5A). This expansion resulted in improved AUC values, with 1-year, 3-year, and 5-year AUCs reaching 0.78, 0.73, and 0.70, respectively.
[image: Chart collage displaying multiple visualizations:  A. Line graph with a trend line. B. Kaplan-Meier survival plot comparing two groups. C. Scatter plot with associated heatmap. D. ROC curve showing performance metrics. E. Series of pie charts depicting categorical data distributions across categories. F. Violin plots showing data spread for a variable across multiple groups. G. Box plot comparing a variable across groups. H. Heatmap with color-coded legend indicating data intensity. I-K. Kaplan-Meier survival plots for different stages or conditions, showing survival probability over time.]FIGURE 5 | Performance evaluation and clinical relevance analysis of HMRS. (A) Survival analysis and predictive performance assessment of the risk score model based on 156 HMRgenes. (B) Distribution of HMRS low- and high-risk patients across different clinical features. (C) Violin plot of HMRS scores for patients at different T stages. (D) Heatmap analysis of model-selected gene expression and clinical features in high- and low-risk patient groups. (E,F) Kaplan-Meier survival curves after age stratification. (G,H) Kaplan-Meier survival curves after clinical stage stratification. (I,J) Survival analysis of patients stratified by age over 60 and under 60. (K,L) Survival analysis of patients stratified by early stage (I-II) and advanced stage (III-IV).
We then investigated the distribution and performance of HMRS across different clinical feature subgroups. Figure 5B presents the distribution of HMRS low- and high-risk patients in terms of overall survival (OS), T stage, N stage, M stage, clinical stage, and gender. Notably, there was a significant difference between the two groups in T stage (p < 0.05). To further validate this finding, we used violin plots to visually demonstrate the differences in risk scores among patients at different T stages (Figure 5C). The results showed that patients at T3-4 stages had significantly higher risk scores than those at T1-2 stages (p = 0.0072). At the gene expression level, Figure 5D illustrates that the gene variables ultimately selected for the model were generally upregulated in the high-risk group. This result provides important clues about the biological basis of HMRS.
To assess the predictive stability of HMRS across different clinical contexts, we conducted stratified analyses. Figures 5E, F demonstrate that after age stratification, the survival rate of the high-risk group remained significantly lower than that of the low-risk group. Similarly, Figures 5G, H show that after stratification by clinical stage, patients in the high-risk group still had poorer survival prognoses. These results strongly support the potential of HMRS as an independent prognostic factor.
To further evaluate the predictive efficacy of HMRS across different age groups and disease stages, we conducted stratified analyses. In terms of age stratification, both patients aged over 60 (Figure 5I) and under 60 (Figure 5J) in the high-risk group showed significantly lower survival rates compared to the low-risk group (HR = 1.90 and 2.36, respectively, p < 0.05). Similarly, in the disease stage stratification analysis, patients in the high-risk group demonstrated poorer survival prognosis in both early stages (Stage I and II, Figure 5K) and advanced stages (Stage III and IV, Figure 5L) (HR = 2.06 and 1.85, respectively, p < 0.05). These results further confirm the potential of HMRS as an independent prognostic factor and demonstrate that the model maintains good predictive value across patient populations with different clinical characteristics.
3.5 Establishment and validation of nomogram integrating clinical features
To assess the potential of HMRS as an independent prognostic factor for HCC, we conducted a comprehensive analysis of the impact of age, gender, TNM staging, clinical staging, and HMRS on overall survival (OS) in the TCGA-HCC cohort. Univariate Cox regression analysis (Figure 6A) revealed that age, T stage, M stage, and HMRS were significant prognostic factors for OS in the TCGA-HCC cohort (p < 0.1). Subsequent multivariate Cox regression analysis (Figure 6B) further confirmed the status of T stage and HMRS as independent prognostic indicators (p < 0.001).
[image: A set of data visualizations showing medical model analysis. Panel A and B display forest plots for various variables with confidence intervals. Panel C has a calibration plot comparing predicted versus observed outcomes. Panel D is a decision curve analysis graph demonstrating net benefits across different risk thresholds for multiple models. Panel E shows a nomogram predicting five-year survival probability, incorporating factors like age, tumor stage, and treatment.]FIGURE 6 | Construction and validation of a prognostic nomogram model integrating HMRS and clinical features. (A) Univariate analysis of the clinical characteristics and HMRS for OS. (B) Multivariate analysis. (C) Calibration curve of the nomogram for 1, 3, and 5-year OS. (D) Decision curve analysis showing the standardized net benefit by applying the nomogram and other clinical characteristics. (E) Construction of the nomogram based on the HMRS and clinical characteristics.
Based on clinical experience and Cox regression analysis results, we selected T stage and age as key clinical features and integrated them with HMRS to construct a comprehensive prognostic nomogram (Figure 6E). In this nomogram, the point plot adjacent to each variable visually demonstrates its contribution to the predictive model, reflecting the strength of its association with survival prediction.
To validate the predictive accuracy of the nomogram, we plotted calibration curves (Figure 6C). The results showed that the nomogram-predicted 1-year, 3-year, and 5-year OS closely aligned with actual observed values, confirming the model’s reliability. Furthermore, decision curve analysis (Figure 6D) indicated that within a specific high-risk threshold range, the decision-making strategy based on the nomogram could achieve higher standardized net benefits compared to using other clinical features alone. This finding highlights the potential advantages of our constructed comprehensive prognostic model in clinical decision-making.
3.6 Transcriptomic characteristics analysis of different HMRS patient groups
To further investigate the molecular mechanisms underlying the correlation between HMRS and HCC prognosis, we conducted GSEA and GSVA analyses. These analyses revealed differences in biological processes and pathway activities associated with high and low HMRS score patient groups.
Figure 7A’s GSEA analysis uncovered GO pathways enriched in different HMRS groups. Figure 7B provides GSVA scores for KEGG pathways, further enhancing our understanding of pathway activities related to HMRS scores. Results showed that compared to the low-risk group, the high-risk group significantly enriched multiple gene sets associated with cell cycle, DNA repair, and metabolism. Notably, DNA repair, E2F target genes, MYC target genes, PI3K/AKT/mTOR signaling pathway, and reactive oxygen species pathway were significantly upregulated in the high-risk group.
[image: Composite image with multiple graphs: Panel A shows a Kaplan-Meier survival curve with different lines colored by groups. Panel B displays a bar chart with red and blue bars representing groups. Panel C features a heatmap with a color gradient from blue to red, indicating correlations among various labels. Panels D, E, F, G, and H are Kaplan-Meier survival curves, each comparing survival probabilities of two groups with red and blue lines.]FIGURE 7 | Transcriptomic characteristics of various HMRS patients. (A) GO terms enriched by GSEA analysis. (B) Differences in KEGG analysis between the high- and low-risk groups scored by GSVA. (C) Correlation between the risk score and hallmark pathway activities scored by GSVA. Kaplan-Meier survival curves respectively show survival differences between high and low expression groups for reactive oxygen species pathway, mitotic spindle, DNA repair, G2M checkpoint, E2F target genes, glycolysis, and PI3K/AKT/mTOR signaling pathway.
The heatmap based on GSVA scores further confirmed significant differences between high- and low-risk groups. The heatmap displayed differential expression patterns of multiple signaling pathways and biological processes between the two groups, consistent with GSEA results. We selected several pathways that showed significance in both GSEA and GSVA analyses for survival analysis based on expression levels. Patients with high expression of reactive oxygen species pathway, mitotic spindle, DNA repair, G2M checkpoint, E2F target genes, glycolysis, and PI3K/AKT/mTOR signaling pathway showed significantly reduced survival rates (Figure 7C).
3.7 Mutation spectrum analysis of HM genes
We conducted a comprehensive analysis of mutation patterns in histone modification genes among HCC patients, revealing significant differences between high- and low-risk groups. The MATH score was significantly higher in the high-risk group compared to the low-risk group (p = 0.0017), indicating greater tumor heterogeneity in the high-risk group (Figure 8A). Kaplan-Meier survival analysis based on MATH scores showed that patients with high MATH scores had worse prognoses (p = 0.043, Figure 8B), further confirming the association between tumor heterogeneity and prognosis.
[image: Composite image showing various data visualizations: A) Two violin plots with embedded box plots in blue and red, likely representing different data distributions. B) Survival curves comparing two groups over time. C) Heatmap displaying genetic alterations across samples with a bar graph on the side. D) Second heatmap illustrating additional sample data with another side bar graph. E) and F) Two scatter plots showing correlations between variables with color gradients indicating density or intensity.]FIGURE 8 | (A) MATH scores of high- and low-risk HCC patient groups. (B) Kaplan-Meier survival curves based on MATH scores. (C) Oncoplot of gene mutations in high-risk HCC patient group. (D) Oncoplot of gene mutations in low-risk HCC patient group. (E,F) Co-occurrence and mutual exclusivity analysis of the top 20 most mutated genes in high- and low-risk groups. Heatmap colors indicate relationships between gene pairs, asterisks denote statistical significance levels.
We observed distinct gene mutation spectra between high- and low-risk groups (Figures 8C, D). In the high-risk group, TP53 had the highest mutation frequency (47%), followed by TTN (25%) and CTNNB1 (22%). In contrast, CTNNB1 had the highest mutation frequency in the low-risk group (27%), followed by TTN (24%) and MUC16 (15%). Notably, TP53 mutation frequency was significantly lower in the low-risk group (12%). In the high-risk group, we observed significant co-occurrence of TP53 mutations with several genes, including TTN, CTNNB1, and MUC16 (Figure 8E). In the low-risk group, CTNNB1 mutations appeared more independent from other gene mutations (Figure 8F).
3.8 HMRS-related immune landscape in HCC
We conducted a comprehensive analysis of the immune microenvironment in high- and low-risk HCC groups, including stromal scores, immune scores, immune cell infiltration, and related pathway analyses. Although differences in stromal scores (Figure 9A, p = 0.074) and immune scores (Figure 9B, p = 0.053) between high- and low-risk groups did not reach statistical significance, the high-risk group showed a trend towards lower scores in both metrics, suggesting that high-risk HCC may have weaker immune responses and stromal components.
[image: Boxplots in panels A and B compare values of two datasets. Panel C shows a bar chart with comparative heights, indicating statistical differences. Panel D features multiple boxplots for various categories, displaying median and variance differences. Panel E is a heatmap showing clustering of data points. Panel F presents another heatmap with varying intensity colors. Panel G is a scatter plot with points along the x-axis and a gradient color scale denoting value ranges. Each panel visualizes distinct data analyses.]FIGURE 9 | Correlations between immune microenvironment, immune characteristics, and HMRS. (A, B) The StromalScore and immune score were applied to quantify the different immune statuses between the high- and low-risk groups. (C) Abundance of each TME infiltrating cell type in high- and low-risk groups calculated using the CIBERSORT algorithm. (D) Infiltrating cell abundance calculated using quantitative scoring schemes for 28 immune phenotypes. (E) Immune-related pathways' activity showing significant differences between high- and low-risk groups. (F) Heatmap showing correlations between key HMs genes and 22 immune cell subgroups. (G) Dot plot showing correlations between risk scores and 22 immune cell subgroups.
To further analyze differences in specific immune cell infiltration between high- and low-risk groups, we used the CIBERSORT algorithm to calculate the abundance of each TME infiltrating cell type in both groups (Figure 9C). We found that memory B cells, follicular helper T cells, regulatory T cells, gamma delta T cells, M0 macrophages, and neutrophils were more abundant in the high-risk group, while naive B cells, resting NK cells, monocytes, M2 macrophages, and resting mast cells were more abundant in the low-risk group.
Subsequently, we quantified scores for 28 immune cell phenotypes (Figure 9D). Most immune cells showing significant differences had higher expression levels in the high-risk group, with only eosinophils showing higher expression in the low-risk group. Furthermore, using the ssGSEA algorithm, differences in immune-related pathway activities between high- and low-risk groups were demonstrated (Figure 9E). Several immune-related pathways, including complement and coagulation cascades, Fc-γ receptor-mediated phagocytosis, chemokine signaling pathway, and T cell receptor signaling pathway, were significantly activated in the high-risk group.
We then investigated the associations between infiltrating cells in the TME and the eight genes used to construct the HMRS (Figure 9F), revealing correlations between specific immune cell subgroups and gene expression patterns in the HMRS. For example, EZH2 showed positive correlations with various T cell subsets but negative correlations with B cells. These results suggest that HMs genes may participate in HCC progression by regulating immune cell infiltration.
Figure 9G displays the correlations between risk scores and 22 immune cell subgroups. The results indicate that risk scores are significantly positively correlated with Macrophages M0, memory B cells, and regulatory T cells, while negatively correlated with other cells (such as resting mast cells and resting NK cells). These findings collectively point to HMRS as an effective tool for quantifying the immune status of HCC patients, suggesting significant differences in immune landscape characteristics among patients with different risk levels.
3.9 Drug sensitivity prediction and HPA validation
In Figure 10, through analysis of the GDSC database, we calculated IC50 values for commonly used drugs in HCC treatment across different cancer cell lines. Specifically, significant differences in IC50 values were observed between different risk groups for many drugs including Trametinib, Sunitinib, Foretinib, Axitinib, Doxorubicin, Lenalidomide, Erlotinib, Cyclopamine, Gefitinib, and Temsirolimus (Figures 10A-J). This emphasizes the potential value of these gene expression levels in predicting HCC patients' responses to specific drugs.
[image: Ten box-and-whisker plots comparing mRNA expression levels across different stages of prostate cancer. Plots, labeled A through J, show tumor, normal, and metastatic data. Each plot depicts mean mRNA expression, with separate colors for cancerous and normal tissues. Plots reveal differences in expression levels between conditions.]FIGURE 10 | Distribution of IC50 scores for drugs in high- and low-risk groups defined by HMRS.
3.10 Experiment validation
We performed IHC analysis to examine the expression of the five genes with the highest weights in our model (ASF1A, EZH2, PRDM9, SARS1, and SUV39H2). The results demonstrated that all five genes exhibited significantly upregulated expression patterns in HCC tissues compared to adjacent normal tissues (Figure 11). This validation supports the hypothesis that their increased expression may be associated with the initiation, progression, or maintenance of HCC.
[image: A series of histological images comparing cancerous and adjacent tissues across five proteins: ASF1A, EZH2, PRDM9, SARS1, and SUV39H2. Each protein displays varying levels of expression indicated by different staining intensities.]FIGURE 11 | IHC staining of ASF1A, EZH2, PRDM9, SARS1, and SUV39H2 in HCC tissues and adjacent normal liver tissues. The upper row displays the expression of each gene in HCC tissues, while the lower row shows the corresponding adjacent normal tissues.
4 DISCUSSION
This study systematically explored the role and clinical significance of HMs in HCC by integrating multi-omics data and advanced computational methods. We first used single-cell RNA sequencing technology to reveal cellular heterogeneity in the HCC microenvironment, identifying six major cell clusters and analyzing differences in histone modification activity across different cell types. Subsequently, through WGCNA, we identified gene modules closely related to HMs. By summarizing and processing the corresponding differentially expressed genes, module genes, and single-cell characteristic genes, we visualized the HCC-related regulatory network of HMs. Based on these findings, we continued to construct a novel prognostic prediction model based on histone modification features using these genes. This model demonstrated good predictive ability in both the TCGA dataset and external independent datasets (GSE14520 and ICGC), providing strong evidence for risk stratification of HCC patients. Through further functional enrichment analysis, including GSEA and GSVA, we further elucidated key biological pathways associated with HMs. Additionally, we explored associations between HMs and gene mutations, immune microenvironment, and drug sensitivity, revealing the comprehensive and multifaceted role of HMs in HCC occurrence, development, and treatment response.
HMRS, as a novel prognostic marker, demonstrated significant potential as an independent prognostic factor in this study. Multivariate Cox regression analysis results showed that even when considering traditional clinical factors such as age, gender, and TNM staging, HMRS maintained significant prognostic predictive ability (p < 0.001). This finding highlights that HMRS captures important biological information not fully reflected by existing clinical indicators. The nomogram model integrating HMRS with key clinical features further improved the accuracy and clinical utility of prognostic prediction. Calibration curves showed high concordance between predicted 1-year, 3-year, and 5-year survival rates and actual observed values, while decision curve analysis confirmed that decision strategies based on the nomogram could achieve higher standardized net benefits within specific high-risk threshold ranges. This integrated approach not only improved prediction accuracy but also provided clinicians with an intuitive, user-friendly decision-making tool, facilitating individualized management of HCC patients. Compared to existing clinical staging systems, HMRS has distinct advantages in reflecting the molecular heterogeneity of HCC. Traditional TNM staging is mainly based on anatomical features of tumors and struggles to fully reflect tumor biological behavior and molecular characteristics. In contrast, HMRS, based on gene expression patterns related to HMs, can better capture the molecular biological properties of tumors. This molecular-level stratification not only more accurately predicts patient prognosis but may also provide guidance for targeted therapy and immunotherapy selection. For example, our study found that high-risk HMRS patients may be more sensitive to certain targeted drugs (such as Trametinib and Sunitinib), providing possibilities for HMRS-based individualized treatment decisions. However, it is worth noting that although HMRS shows superior predictive performance, it cannot completely replace existing clinical staging systems. Instead, HMRS should be viewed as a powerful complement to existing systems, and the combination of the two may provide more comprehensive and precise guidance for the comprehensive assessment and management of HCC patients.
Besides, HMRS, as a prognostic marker based on histone-related genes, not only reflects the molecular characteristics of HCC but also reveals the complex interactions between tumor evolution and the immune microenvironment. Our GSEA and GSVA analyses show that the activation of pathways such as DNA repair, cell cycle, and PI3K/AKT/mTOR in the high-risk HMRS group forms a seemingly contradictory but highly synergistic biological process with the activation of immune cell infiltration and immune-related pathways.
This apparent contradiction may reflect a concept: “epigenetic-mediated immune evasion” (Cacan, 2017). Specifically, the abnormal activation of DNA repair pathways in the high-risk group may not just be a mechanism to maintain genomic stability, but more likely a strategy for tumor cells to actively regulate their antigen expression profile. Through frequent DNA repair processes, tumor cells may dynamically adjust their neoantigen load, thereby evading immune surveillance. This hypothesis can explain why the high-risk group simultaneously exhibits higher immune cell infiltration and poorer prognosis (Germano et al., 2017; He et al., 2022).
The high tumor heterogeneity revealed by the mutation spectrum analysis of HMs genes may be a direct result of this “epigenetic-mediated immune evasion”. More frequent TP53 mutations in the high-risk group not only affect cell cycle regulation but may also influence the immunogenicity of tumor cells by altering global chromatin states (Wang et al., 2023; Nel et al., 2024). This links epigenetic regulation, genomic instability, and immune evasion, providing a new framework for understanding HCC progression.
The activation patterns of different signaling pathways in high- and low-risk HMRS groups, especially metabolism-related pathways (such as oxidative stress response), may play a key role in shaping the immune microenvironment. With the advancement of current technologies, numerous integrated studies on metabolism-immune-genetics have emerged (Ding et al., 2024; Fok et al., 2019). In this regard, we propose a new concept: the “metabolism-immune-epigenetic axis”. In this model, the metabolic reprogramming of tumor cells (as observed in the high-risk group) not only supports rapid proliferation but may also directly regulate the function and epigenetic state of local immune cells by producing specific metabolites (such as lactate, 2-hydroxyglutarate, etc.). This regulation may be bidirectional: changes in the metabolic state of immune cells may in turn affect the epigenetic profile of tumor cells, forming a complex feedback loop (Phan et al., 2017).
The differences in immune cell infiltration between high- and low-risk HMRS groups may reflect the dynamic balance of this “metabolism-immune-epigenetic axis”. For example, the higher infiltration of memory B cells and regulatory T cells observed in the high-risk group may be the result of tumor cells selectively recruiting and maintaining these immune cell subsets that favor tumor growth through specific epigenetic modification patterns. This selectivity may be achieved by regulating the expression of specific chemokines or cytokines, whose genes may be key epigenetic regulatory targets captured by HMRS (Cao and Yan, 2020; Hogg et al., 2020).
Based on these observations, we propose that HMRS may have unique value in predicting immune therapy response. Traditional immune therapy prediction markers (such as PD-L1 expression or tumor mutation burden) may not capture this complex “epigenetic-mediated immune evasion” mechanism. HMRS, as a marker integrating information from multiple levels, may more accurately reflect the tumor’s “immune evasion potential”. For example, high-risk HMRS patients may require a combined treatment strategy targeting epigenetic regulation (such as DNA methylation inhibitors or histone deacetylase inhibitors) and immune checkpoint inhibitors to reshape the tumor immune microenvironment and enhance the effects of immunotherapy (Prasanna et al., 2018).
Although this study has made significant progress in revealing the importance of histone-related genes in HCC, there are still some limitations. Firstly, our analysis is mainly based on public datasets, which may not fully represent the heterogeneity of all HCC patients. Secondly, although our HMRS model has shown good predictive ability in multiple independent cohorts, it lacks prospective clinical validation. Additionally, despite our extensive bioinformatics analysis, we lack laboratory validation to confirm the observed molecular mechanisms (Wu et al., 2023). Finally, our drug sensitivity analysis is based on in vitro cell line data, which may not fully reflect the complex microenvironment of tumors in vivo.
This study successfully constructed a prognostic model (HMRS) based on histone-related genes through multi-omics integrated analysis, providing a new perspective for precision diagnosis and treatment of HCC. Our findings not only reveal the importance of HMs in HCC but also provide a basis for potential therapeutic targets and individualized treatment strategies. Future research directions should include: 1) Validating the predictive value of HMRS in larger-scale prospective clinical trials; 2) Conducting in-depth functional experiments to elucidate the specific mechanisms of key HMs genes in HCC progression; 3) Developing new treatment strategies targeting HMs (e.g., histone deacetylase inhibitors) or subsequent pathways (e.g., targeted therapies for upregulated pathways like PI3K/AKT/mTOR in high-risk groups) based on our findings, and evaluating their effects in preclinical models; 4) Exploring the combined application of HMRS with existing treatment methods (e.g., immunotherapy targeting regulatory T cells) to improve the overall efficacy of HCC treatment. Through these efforts, we hope to further advance individualized treatment for HCC and ultimately improve patient prognosis.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.
AUTHOR CONTRIBUTIONS
PS: Writing–review and editing, Writing–original draft, Validation, Software, Resources, Project administration, Investigation, Formal Analysis, Data curation, Conceptualization. ZD: Writing–review and editing, Writing–original draft, Visualization, Software, Resources, Methodology, Investigation, Formal Analysis, Data curation, Conceptualization. JC: Writing–review and editing, Writing–original draft, Validation, Supervision, Resources, Project administration, Investigation, Formal Analysis, Conceptualization. KO: Writing–original draft, Visualization, Validation, Supervision, Software, Project administration, Funding acquisition, Formal Analysis. DZ: Writing–review and editing, Supervision, Project administration, Methodology, Investigation, Conceptualization. RL: Writing–review and editing, Visualization, Validation, Supervision, Investigation, Data curation. TG: Writing–review and editing, Validation, Resources, Methodology, Investigation, Formal Analysis, Data curation. HS: Writing–review and editing, Visualization, Validation, Supervision, Resources, Investigation, Data curation. YC: Writing–review and editing, Validation, Resources, Methodology, Investigation, Funding acquisition, Conceptualization.
FUNDING
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This study was supported by the High-Quality Development Fund (Platform Category) specially allocated to China Medical University by the Department of Science and Technology of Liaoning Province.
ACKNOWLEDGMENTS
This research was generously supported and funded by the Liaoning Provincial Department of Science and Technology, for which we express our heartfelt gratitude. We would also like to extend special thanks to all co-authors who participated in this project. The manuscript was improved through the assistance of the Claude-3.5-sonnet artificial intelligence platform for English language enhancement. It is due to everyone’s active collaboration and tireless efforts that this research has been successfully completed.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

REFERENCES
	 Arashi, M., Roozbeh, M., Hamzah, N. A., and Gasparini, M. (2021). Ridge regression and its applications in genetic studies. PLoS One 16 (4), e0245376. doi:10.1371/journal.pone.0245376
	 Ayyadevara, V. K., and Ayyadevara, V. K. (2018). Gradient boosting machine. Pro machine learning algorithms: a hands-on approach to implementing algorithms in python and R, 117–134.
	 Bair, E., Hastie, T., Paul, D., and Tibshirani, R. (2006). Prediction by supervised principal components. J. Am. Stat. Assoc. 101 (473), 119–137. doi:10.1198/016214505000000628
	 Bertrand, F., Bastien, P., Meyer, N., and Maumy-Bertrand, M. (2014). “plsRcox, Cox-Models in a high dimensional setting in R,” in Proceedings of User2014 . 
	 Bertrand, F., Maumy-Bertrand, M., Bertrand, M. F., and Bertrand, M. (2022). Package ‘plsRcox’. 
	 Binder, H., and Binder, M. H. (2015). Package ‘CoxBoost’: citeseer. 
	 Blanche, P., and Blanche, M. P. (2019). Package ‘timeROC’: updated 2019–12–18. Available at: https://cran.r-project.org/web/packages/timeROC.
	 Cacan, E. (2017). Epigenetic-mediated immune suppression of positive co-stimulatory molecules in chemoresistant ovarian cancer cells. Cell Biol. Int. 41 (3), 328–339. doi:10.1002/cbin.10729
	 Cao, J., and Yan, Q. (2020). Cancer epigenetics, tumor immunity, and immunotherapy. Trends Cancer 6 (7), 580–592. doi:10.1016/j.trecan.2020.02.003
	 Charidemou, E., Koufaris, C., Louca, M., Kirmizis, A., and Rubio-Tomás, T. (2023). Histone methylation in pre-cancerous liver diseases and hepatocellular carcinoma: recent overview. Clin. Transl. Oncol. 25 (6), 1594–1605. doi:10.1007/s12094-023-03078-9
	 Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A. (2018). Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 1711, 243–259. doi:10.1007/978-1-4939-7493-1_12
	 Chen, Z., Wang, X., Liu, R., Chen, L., Yi, J., Qi, B., et al. (2017). KDM4B-mediated epigenetic silencing of miRNA-615-5p augments RAB24 to facilitate malignancy of hepatoma cells. Oncotarget 8 (11), 17712–17725. doi:10.18632/oncotarget.10832
	 Cho, S., Kim, H., Oh, S., Kim, K., and Park, T. (2009). Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis. BMC Proc. 3 (Suppl. 7), S25. doi:10.1186/1753-6561-3-s7-s25
	 Cristian, P. M., Aarón, V. J., Armando, E. D., Estrella, M. L. Y., Daniel, N. R., David, G. V., et al. (2024). Diffusion on PCA-UMAP manifold: the impact of data structure preservation to denoise high-dimensional single-cell RNA sequencing data. Biol. (Basel). 13 (7), 512. doi:10.3390/biology13070512
	 Ding, Z., Chen, J., Li, B., and Ji, X. (2024). Inflammatory factors and risk of lung adenocarcinoma: a Mendelian randomization study mediated by blood metabolites. Front. Endocrinol. 15, 1446863. doi:10.3389/fendo.2024.1446863
	 Finn, R. S., Ikeda, M., Zhu, A. X., Sung, M. W., Baron, A. D., Kudo, M., et al. (2020). Phase ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J. Clin. Oncol. 38 (26), 2960–2970. doi:10.1200/JCO.20.00808
	 Fitzgerald, M., Saville, B. R., and Lewis, R. J. (2015). Decision curve analysis. Jama 313 (4), 409–410. doi:10.1001/jama.2015.37
	 Fok, E. T., Davignon, L., Fanucchi, S., and Mhlanga, M. M. (2019). The lncRNA connection between cellular metabolism and epigenetics in trained immunity. Front. Immunol. 9, 3184. doi:10.3389/fimmu.2018.03184
	 Füllgrabe, J., Kavanagh, E., and Joseph, B. (2011). Histone onco-modifications. Oncogene 30 (31), 3391–3403. doi:10.1038/onc.2011.121
	 Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One 9 (9), e107468. doi:10.1371/journal.pone.0107468
	 Germano, G., Lamba, S., Rospo, G., Barault, L., Magrì, A., Maione, F., et al. (2017). Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552 (7683), 116–120. doi:10.1038/nature24673
	 Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7. doi:10.1186/1471-2105-14-7
	 He, Y., Zhang, L., Zhou, R., Wang, Y., and Chen, H. (2022). The role of DNA mismatch repair in immunotherapy of human cancer. Int. J. Biol. Sci. 18 (7), 2821–2832. doi:10.7150/ijbs.71714
	 Henderson, A. R. (2005). The bootstrap: a technique for data-driven statistics. Using computer-intensive analyses to explore experimental data. Clin. Chim. Acta 359 (1-2), 1–26. doi:10.1016/j.cccn.2005.04.002
	 Hogg, S. J., Beavis, P. A., Dawson, M. A., and Johnstone, R. W. (2020). Targeting the epigenetic regulation of antitumour immunity. Nat. Rev. Drug Discov. 19 (11), 776–800. doi:10.1038/s41573-020-0077-5
	 Hung, J. H., Yang, T. H., Hu, Z., Weng, Z., and DeLisi, C. (2012). Gene set enrichment analysis: performance evaluation and usage guidelines. Brief. Bioinform 13 (3), 281–291. doi:10.1093/bib/bbr049
	 Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and Lauer, M. S. (2008). Random survival forests. Ann. Appl. Stat. 2. doi:10.1214/08-AOAS169
	 Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-2105-9-559
	 Liu, R., Huang, B., Shao, Y., Cai, Y., Liu, X., and Ren, Z. (2023). Identification of memory B-cell-associated miRNA signature to establish a prognostic model in gastric adenocarcinoma. J. Transl. Med. 21 (1), 648. doi:10.1186/s12967-023-04366-2
	 Llovet, J. M., Kelley, R. K., Villanueva, A., Singal, A. G., Pikarsky, E., Roayaie, S., et al. (2024). Author correction: hepatocellular carcinoma. Nat. Rev. Dis. Prim. 10 (1), 10. doi:10.1038/s41572-024-00500-6
	 Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018). Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28 (11), 1747–1756. doi:10.1101/gr.239244.118
	 Michalopoulos, G. K., and Bhushan, B. (2021). Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18 (1), 40–55. doi:10.1038/s41575-020-0342-4
	 Nel, A. E., Pavlisko, E. N., and Roggli, V. L. (2024). The interplay between the immune system, tumor suppressor genes, and immune senescence in mesothelioma development and response to immunotherapy. J. Thorac. Oncol. 19 (4), 551–564. doi:10.1016/j.jtho.2023.11.017
	 Park, S. Y. (2018). Nomogram: an analogue tool to deliver digital knowledge. J. Thorac. Cardiovasc. Surg. 155 (4), 1793. doi:10.1016/j.jtcvs.2017.12.107
	 Phan, A. T., Goldrath, A. W., and Glass, C. K. (2017). Metabolic and epigenetic coordination of T cell and macrophage immunity. Immunity 46 (5), 714–729. doi:10.1016/j.immuni.2017.04.016
	 Prasanna, T., Wu, F., Khanna, K. K., Yip, D., Malik, L., Dahlstrom, J. E., et al. (2018). Optimizing poly (ADP-ribose) polymerase inhibition through combined epigenetic and immunotherapy. Cancer Sci. 109 (11), 3383–3392. doi:10.1111/cas.13799
	 Ranstam, J., and Cook, J. A. (2018). LASSO regression. Br. J. Surg. 105 (10), 1348. doi:10.1002/bjs.10895
	 Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007
	 Rumgay, H., Arnold, M., Ferlay, J., Lesi, O., Cabasag, C. J., Vignat, J., et al. (2022). Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 77 (6), 1598–1606. doi:10.1016/j.jhep.2022.08.021
	 Sebaugh, J. L. (2011). Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 10 (2), 128–134. doi:10.1002/pst.426
	 Stoltzfus, J. C. (2011). Logistic regression: a brief primer. Acad. Emerg. Med. 18 (10), 1099–1104. doi:10.1111/j.1553-2712.2011.01185.x
	 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., et al. (2019). Comprehensive integration of single-cell data. Cell 177 (7), 1888–1902. doi:10.1016/j.cell.2019.05.031
	 Tomczak, K., Czerwińska, P., and Wiznerowicz, M. (2015). The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. Pozn. 19 (1A), A68–A77. doi:10.5114/wo.2014.47136
	 Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science 347 (6220), 1260419. doi:10.1126/science.1260419
	 Van Belle, V., Pelckmans, K., Van Huffel, S., and Suykens, J. A. (2011). Improved performance on high-dimensional survival data by application of Survival-SVM. Bioinformatics 27 (1), 87–94. doi:10.1093/bioinformatics/btq617
	 Wang, H., Guo, M., Wei, H., and Chen, Y. (2023). Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct. Target Ther. 8 (1), 92. doi:10.1038/s41392-023-01347-1
	 Wilson, C. L., Mann, D. A., and Borthwick, L. A. (2017). Epigenetic reprogramming in liver fibrosis and cancer. Adv. Drug Deliv. Rev. 121, 124–132. doi:10.1016/j.addr.2017.10.011
	 Wu, M., Kong, D., and Zhang, Y. (2023). SPON2 promotes the bone metastasis of lung adenocarcinoma via activation of the NF-κB signaling pathway. Bone 167, 116630. doi:10.1016/j.bone.2022.116630
	 Xia, J. K., Qin, X. Q., Zhang, L., Liu, S. J., Shi, X. L., and Ren, H. Z. (2022). Roles and regulation of histone acetylation in hepatocellular carcinoma. Front. Genet. 13, 982222. doi:10.3389/fgene.2022.982222
	 Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., et al. (2013). Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41 (Database issue), D955–D961. doi:10.1093/nar/gks1111
	 Zeng, D., Ye, Z., Shen, R., Yu, G., Wu, J., Xiong, Y., et al. (2021). IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front. Immunol. 12, 687975. doi:10.3389/fimmu.2021.687975
	 Zhang, J., Bajari, R., Andric, D., Gerthoffert, F., Lepsa, A., Nahal-Bose, H., et al. (2019). The international cancer genome Consortium data portal. Nat. Biotechnol. 37 (4), 367–369. doi:10.1038/s41587-019-0055-9
	 Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2), 301–320. doi:10.1111/j.1467-9868.2005.00503.x

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2024 Sun, Ding, Chen, Ou, Zhou, Li, Gu, Sun and Cheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 21 November 2024
doi: 10.3389/fphar.2024.1498031


[image: image2]
The role of epigenetic regulation in pancreatic ductal adenocarcinoma progression and drug response: an integrative genomic and pharmacological prognostic prediction model
Kang Fu†,, Junzhe Su†,, Yiming Zhou, Xiaotong Chen and Xiao Hu*
Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
Edited by:
Dawei Chen, University of Kiel, Germany
Reviewed by:
Zhengrui Li, Shanghai Jiao Tong University, China
Ru-chen Zhou, Shandong University, China
* Correspondence: Xiao Hu, huxiao202@163.com
†These authors have contributed equally to this work
Received: 18 September 2024
Accepted: 11 November 2024
Published: 21 November 2024
Citation: Fu K, Su J, Zhou Y, Chen X and Hu X (2024) The role of epigenetic regulation in pancreatic ductal adenocarcinoma progression and drug response: an integrative genomic and pharmacological prognostic prediction model. Front. Pharmacol. 15:1498031. doi: 10.3389/fphar.2024.1498031

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with poor prognosis. Epigenetic dysregulation plays a crucial role in PDAC progression, but its comprehensive landscape and clinical implications remain unclear.Methods: We integrated single-cell RNA sequencing, bulk RNA sequencing, and clinical data from multiple public databases. Single-cell analysis was performed using Seurat and hdWGCNA packages to reveal cell heterogeneity and epigenetic features. Weighted gene co-expression network analysis (WGCNA) identified key epigenetic modules. A machine learning-based prognostic model was constructed using multiple algorithms, including Lasso and Random Survival Forest. We further analyzed mutations, immune microenvironment, and drug sensitivity associated with the epigenetic risk score.Results: Single-cell analysis revealed distinct epigenetic patterns across different cell types in PDAC. WGCNA identified key modules associated with histone modifications and DNA methylation. Our machine learning model, based on 17 epigenetic genes, showed robust prognostic value (AUC >0.7 for 1-, 3-, and 5-year survival) and outperformed existing models. High-risk patients exhibited distinct mutation patterns, including higher frequencies of KRAS and TP53 mutations. Low-risk patients showed higher immune and stromal scores, with increased infiltration of CD8+ T cells and M2 macrophages. Drug sensitivity analysis revealed differential responses to various therapeutic agents between high- and low-risk groups, with low-risk patients showing higher sensitivity to EGFR and MEK inhibitors.Conclusion: Our study provides a comprehensive landscape of epigenetic regulation in PDAC at single-cell resolution and establishes a robust epigenetics-based prognostic model. The integration of epigenetic features with mutation profiles, immune microenvironment, and drug sensitivity offers new insights into PDAC heterogeneity and potential therapeutic strategies. These findings pave the way for personalized medicine in PDAC management and highlight the importance of epigenetic regulation in cancer research.Keywords: pancreatic ductal adenocarcinoma, epigenetic regulation, single-cell RNA sequencing, machine learning, prognostic model, tumor microenvironment, drug sensitivity
1 INTRODUCTION
Pancreatic cancer is an extremely dangerous malignant tumor. Despite significant advances in cancer treatment over the past few decades, the prognosis for pancreatic cancer remains poor. Statistics show that the 5-year survival rate for pancreatic cancer patients is only 9% (Rawla et al., 2019). More worryingly, the incidence of pancreatic cancer has been on the rise in recent years. Pancreatic ductal adenocarcinoma (PDAC) is the main type of pancreatic cancer, accounting for over 90% of cases, and is projected to become the second deadliest cancer by 2030 (Nakaoka et al., 2023; Mizrahi et al., 2020). The poor treatment outcomes for PDAC are primarily due to its unique biological characteristics. First, its high metabolic plasticity and adaptability allow it to survive and proliferate rapidly in harsh tumor microenvironments (Bi et al., 2024; Shah et al., 2024). Second, the dense stroma specific to PDAC not only hinders drug penetration but also enables it to evade immune system surveillance (Wilson et al., 2014; Timmer et al., 2021). Third, PDAC exhibits high tumor heterogeneity (Bailey et al., 2016; Wang X. et al., 2023). These characteristics collectively lead to its resistance to traditional treatment methods.
In recent years, two major epigenetic mechanisms - DNA methylation and histone modification - have been recognized as playing crucial roles in the occurrence, progression, and treatment resistance of PDAC. Lomberk et al. elucidated that data from many laboratories have demonstrated that oncogenic mutations in PDAC (such as Kras) lead to downstream signaling events that regulate histone and DNA modifications, partly through direct regulation of histones and histone and DNA modifying enzymes, thereby stimulating cell growth (Lomberk et al., 2019). Cedar et al. and Liu et al. also described the interdependence and crosstalk between DNA methylation and histone modification patterns (Cedar and Bergman, 2009; Liu et al., 2016). DNA methylation primarily occurs on CpG islands and is usually associated with gene silencing (Nishiyama and Nakanishi, 2021). In PDAC, several key tumor suppressor genes, such as CDKN2A (Goodwin et al., 2023), RASSF1A (Amato et al., 2016), and BRCA1 (Lai et al., 2021), have been found to be inactivated due to hypermethylation in their promoter regions, leading to dysregulation of important pathways such as cell cycle regulation, DNA repair, and apoptosis, promoting tumor formation and progression. On the other hand, histone modifications regulate gene expression by altering chromatin structure and transcription factor accessibility. In PDAC, abnormalities in histone acetylation and methylation have been widely reported. For example, overexpression of histone deacetylases (HDACs) leads to silencing of multiple tumor suppressor genes (Schneider et al., 2010), while upregulation of the histone methyltransferase EZH2 is associated with increased invasiveness and metastatic potential of PDAC (Versemann et al., 2022).
To date, although there have been numerous studies on the molecular mechanisms of DNA methylation and histone modification in PDAC, no research has constructed a comprehensive epigenetic regulatory landscape and prognostic model. Clinically, there is still no application of epigenetic regulation in disease stratification and treatment. This study aims to construct an epigenetic regulatory landscape of PDAC through integrated analysis of DNA methylation and histone modification data. By applying advanced machine learning algorithms, single-cell analysis, and other techniques, we will identify key epigenetic regulatory modules and explore their associations with gene expression, signaling pathway activation, and clinical phenotypes. Combining patient clinical follow-up data, we will identify PDAC heterogeneity from an epigenomic perspective and develop a prognostic prediction model based on epigenetic features. This model will not only help identify high-risk patients but may also provide guidance for individualized treatment decisions.
2 MATERIALS AND METHODS
The flow chart are shown in Figure 1.
[image: Flowchart illustrating a pancreatic cancer research process. It starts with "Pancreatic cancer" leading to a "Single cell scoring model" with methylation-related genes. Next, "Machine learning methods" and "External validation" lead to "Model feature genes analysis." The analysis includes immune, mutation, and enrichment pathways annotations, concluding with "Clinical evaluation" and "Drug sensitive analysis."]FIGURE 1 | Flow chart.
2.1 Data source
This study integrates multiple public database resources. Specifically, the single-cell sequencing data included was obtained from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/), accession number GSE212966, which contains single-cell sequencing data from 6 PDAC adjacent normal tissue samples and 6 PDAC samples. Additionally, bulk sequencing expression profiles and survival information were sourced from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/), including gene expression data and corresponding survival information for 179 PDAC samples (Tomczak et al., 2015). The external validation set was obtained from the International Cancer Genome Consortium (ICGC) database (https://dcc.icgc.org/), comprising 234 Canadian samples and 91 Australian samples (Zhang et al., 2019).
Furthermore, in the selection of specific gene sets, we focused on genes related to epigenetics. Histone modification-related genes were primarily sourced from two origins: first, the cancer-related histone modification study reported by Füllgrabe et al. (2011), and second, genes with a histone modification relevance score greater than 20 in the GeneCards database (https://www.genecards.org/). For methylation-related genes, we referenced the research findings of Lee et al. (2020) and supplemented them with genes having a DNA methylation modification relevance score greater than 20 in the GeneCards database.
2.2 Single cell analysis and hdWGCNA
The single-cell RNA-seq data in this study was processed using the Seurat package and hdWGCNA package (Stuart et al., 2019; Morabito et al., 2023). First, we read the data in 10X Genomics format from the GSE212966 dataset. Quality control was performed to filter out cells with <100 or >5,000 detected genes, >15% mitochondrial gene content, and <1000 UMI counts. After data filtering and normalization, we performed dimensionality reduction using PCA and UMAP, and integrated different samples using the Harmony algorithm (Cristian et al., 2024). For cell type annotation, we identified specific marker genes for each cell type: cancer cells (EPCAM, KRT19, CEACAM6), fibroblasts (COL1A1, DCN, FAP), endothelial cells (PECAM1, VWF, CDH5), macrophages (CD68, CD163, CSF1R), T cells (CD3D, CD8A, CD4), and B cells (CD79A, CD19, MS4A1). Subsequently, we applied clustering analysis and calculated gene expression differences of the corresponding clusters for cell type annotation. To construct epigenetic scores, we used the ssGSEA method (Chen et al., 2022) to calculate enrichment scores for histone gene sets and methylation gene sets for each cell, and divided cells into high-score and low-score groups based on the median score. On one hand, we performed differential expression analysis using Seurat’s FindAllMarkers function with a logfc threshold of 0 and a minimum percentage of 0.35. On the other hand, we applied the hdWGCNA package to construct weighted gene co-expression networks, determine the optimal soft threshold parameters, identify co-expression modules and hub genes. By calculating module characteristic genes and module connectivity, we analyzed the relationships between modules and cell types and phenotypes, thereby comprehensively revealing the expression patterns of histone modifications and DNA methylation in different cell types and their potential biological functions.
2.3 Weighted gene co-expression network analysis (WGCNA)
The Weighted Gene Co-expression Network Analysis (WGCNA) method was used to further explore the association between epigenetics and PDAC (Langfelder and Horvath, 2008). We calculated histone modification and DNA methylation scores for samples using the ssGSEA algorithm with the Gaussian kernel. Subsequently, we extracted gene expression data for PDAC samples from the TCGA database and selected genes related to histone modification and DNA methylation for WGCNA analysis. By determining the optimal soft threshold parameters (power = 5 for both histone modification and DNA methylation analyses), we constructed gene co-expression networks using the unsigned TOM type with a minimum module size of 50 genes. We identified biologically significant gene modules by setting the merge cut height to 0.15. Notably, we found that histone modification-related genes were mainly enriched in the grey module, while DNA methylation-related genes were primarily enriched in the brown module. We further analyzed the relationships between these modules and sample characteristics (such as histone modification scores and DNA methylation scores) using Pearson correlation. Through correlation analysis of Module Membership and Gene Significance, we identified key genes in each module. The correlation between module membership and gene significance for the grey module (histone modification) and brown module (DNA methylation) was visualized using scatter plots. By performing intersection analysis on these genes, we were able to obtain genes that showed high correlation (absolute correlation coefficient >0.4 and p-value <0.05) across multiple states, thereby providing a research foundation for subsequent model construction.
2.4 Machine learning based prognosis signature construction
To further evaluate the potential of epigenetic-related genes in PDAC prognosis prediction, this study employed a comprehensive and advanced set of machine learning methods. We integrated multiple algorithms, including Random Survival Forest (RSF) (Ishwaran et al., 2008), Elastic Net (Enet) (Zou and Hastie, 2005; Cho et al., 2009), Stepwise Cox Regression (StepCox) (Liu et al., 2023), CoxBoost (Binder and Binder, 2015), Partial Least Squares Cox Regression (plsRcox) (Bertrand et al., 2022; Bertrand et al., 2014), SuperPC (Bair et al., 2006), Gradient Boosting Machine (GBM) (Ayyadevara and Ayyadevara, 2018), Survival Support Vector Machine (survival-SVM) (Van Belle et al., 2011), Ridge Regression (Arashi et al., 2021), and Lasso Regression (Ranstam and Cook, 2018), to construct a series of prognostic prediction models. To ensure the reliability and generalization ability of the models, we used the TCGA dataset as the training set and selected two independent ICGC datasets as external validation sets. In the data preprocessing stage, we standardized all features to eliminate the influence of scale differences. Subsequently, we not only evaluated the performance of each algorithm individually but also explored up to 63 algorithm combinations, such as RSF + CoxBoost, Lasso + GBM, etc., aiming to obtain more stable and accurate prediction results. We used the C-index as the primary evaluation metric to comprehensively assess the discriminative ability of each model on both the training and validation sets, and presented the results in heatmap form for quick identification of the best models. For RSF, we used 1,000 trees and optimized the node size. Enet models were built with α values ranging from 0.1 to 0.9. CoxBoost models were optimized using cross-validation to determine the optimal number of boosting steps. For GBM, we used 10,000 trees with a maximum depth of 3 and a learning rate of 0.001. Lasso and Ridge regression models were fitted using 10-fold cross-validation to select the optimal λ value. Finally, we conducted in-depth analysis of the best-performing models, including feature importance ranking and result visualization, aiming to reveal the crucial role of epigenetic-related genes in PDAC prognosis and provide reliable data support for clinical individualized treatment decisions.
2.5 Relevant genes and risk score signature evaluation
For epigenetic-related genes, we conducted a series of network-based analyses. We performed univariate Cox regression analysis using the expression data of these genes, selecting genes significantly associated with patient survival (p < 0.05). We calculated their hazard ratios (HR) and p-values. Next, we computed the Spearman correlation coefficients (Pripp, 2018) between these genes and conducted correlation significance tests. Finally, we retained only gene pairs with absolute correlation coefficients greater than 0.4 and p-values less than 0.05 to ensure that the connections in the network have biological significance. Based on these data, we constructed a gene interaction network, where red represents positive correlations, blue represents negative correlations, and the thickness of the lines reflects the strength of the correlation. The igraph package was used for visualization (Csardi and Tamas, 2005).
Furthermore, to evaluate the predictive value of our developed epigenetic-related gene prognostic model in PDAC, we conducted comprehensive Cox regression analyses based on sample clinical characteristics. First, we performed univariate Cox regression analysis on clinical variables, including age, gender, T stage, N stage, M stage, clinical stage, and our risk score. After calculating the hazard ratio (HR), 95% confidence interval (CI), and p-value for each variable, we selected variables with statistical significance in the univariate analysis for multivariate Cox regression analysis. We used the forestplot package to create forest plots to display the HR and 95% CI for each variable.
2.6 Enrichment analysis
This study continued to employ various bioinformatics methods to explore the relationship between gene expression patterns and prognostic risk. We used the Gene Set Variation Analysis (GSVA) method (Hänzelmann et al., 2013), utilizing the GSVA package to perform ssGSEA on the PDAC dataset, quantifying the activity of specific pathways in each sample. We chose the Hallmark gene set (Liberzon et al., 2015) as a reference, ensuring biological relevance of the analysis. Subsequently, we compared the pathway activity differences between high-risk and low-risk groups, using the limma package for differential analysis (Ritchie et al., 2015). To visually present the results, we generated a bar plot showing significantly different pathways and their t-values. Additionally, we calculated the correlation between GSVA scores and risk scores, visualizing these relationships through a heatmap. For pathways with significant statistical differences, we used Cox proportional hazards regression analysis to quantify the association strength between pathway activity and survival risk.
2.7 Mutation analysis
To further explore the association between the gene risk model and tumor mutation characteristics, we conducted a comprehensive mutation analysis on the PDAC dataset. First, we calculated the tumor heterogeneity (MATH) score for each sample using the maftools package (Mayakonda et al., 2018), and compared the differences between high and low-risk groups. Subsequently, we divided the samples into high and low-risk groups, generating mutation landscape plots (oncoplots) for each group, showing the 20 most common mutated genes and their frequencies. To understand the mutation patterns more deeply, we also performed somatic mutation interaction analysis, revealing the co-occurrence and mutual exclusivity of gene mutations in high and low-risk groups. This is significant for revealing and understanding the potential link between risk scores and tumor mutation burden and heterogeneity.
2.8 Immune analysis
The epigenetic-related gene risk model is closely related to the tumor immune microenvironment. We used the IOBR package (Zeng et al., 2021) to assess ESTIMATE, CIBERSORT, and immune cell subpopulation infiltration in PDAC samples. First, we used the ESTIMATE algorithm to calculate stromal scores, immune scores, and ESTIMATE scores for each sample, and compared the differences between high and low-risk groups. Subsequently, we used the ssGSEA method to perform enrichment analysis on immune-related pathways, and visualized the significantly different pathway activities between high and low-risk groups through heatmaps. To understand the composition of tumor immune cells in more detail, we used the CIBERSORT algorithm to perform deconvolution analysis on 22 immune cell subpopulations (Chen et al., 2018). Through violin plots, we visually demonstrated the differences in immune cell composition between high and low-risk groups. Additionally, we calculated the Spearman correlation between these immune cell subpopulations and risk scores, and used bubble plots to show the correlation strength and statistical significance.
2.9 Drug sensitivity analysis
The Genomics of Drug Sensitivity in Cancer (GDSC) database (https://www.cancerrxgene.org/) is commonly used to predict tumor sensitivity to drugs (Yang et al., 2013). In this study, we utilized the GDSC database and the pRRophetic package (Geeleher et al., 2014) to explore the potential application of our epigenetic-related gene risk model in drug sensitivity prediction. We first obtained drug sensitivity data and gene expression data from the GDSC database, then used the pRRopheticPredict function to predict drug sensitivity for each sample in the TCGA-PDAC dataset. Based on some clinical drugs in the GDSC database, we predicted and compared drug sensitivity differences between high and low-risk groups. For each drug, we used the Wilcoxon rank-sum test to compare the differences in predicted IC50 values between high and low-risk groups, and created box plots for visualization (Sebaugh, 2011). These results not only revealed potential connections between our risk model and drug responses but also provided new insights for personalized treatment of PDAC.
2.10 Pathological validation
To validate the biological significance of our model and examine the gene expression trends, we conducted further pathological verification on the top five genes with the highest weights in our model. On one hand, we utilized the Human Protein Atlas (HPA) database (https://www.proteinatlas.org/) to compare the protein expression levels of these genes in pancreatic cancer tissues and adjacent relatively normal pancreatic tissues (Uhlén et al., 2015). For genes lacking data in the HPA database, we performed immunohistochemical staining verification in our laboratory. All patients provided written informed consent, and this research protocol was approved by the Medical Ethics Committee of the Affiliated Hospital of Qingdao University (approval number: QYFYWZLL28682).
Besides, gene expression was further validated by qRT-PCR. PANC-1 (pancreatic cancer) and hTERT-HPNE (normal pancreatic ductal) cell lines were cultured in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin under standard conditions (37°C, 5% CO2). Total RNA was extracted using RNAios Plus reagent following the manufacturer’s protocol. RNA was reverse transcribed using ABScript III RT Master Mix, and qRT-PCR was performed using Universal SYBR Green Fast qPCR Mix. The sequences of primers used for qRT-PCR are listed in Table 1. Relative gene expression was calculated using the 2−ΔΔCT method.
TABLE 1 | Primer sequences for qRT-PCR.
[image: Table displaying gene information, including direction (forward or reverse) and corresponding primer sequences for genes KRTCAP2, NENF, PSAP, MRPL41, and S100A16. Each gene has specific sequences listed for both directions.]3 RESULTS
3.1 Single-cell RNA sequencing reveals cellular heterogeneity and epigenetic characteristics in the PDAC microenvironment
We performed single-cell RNA sequencing analysis on 6 PDAC adjacent normal tissue samples (ADJ) and 6 PDAC samples from the GSE212966 dataset. Fourteen major cell types were identified and annotated (Figure 2A). These cell types include cancer cells, fibroblasts, endothelial cells, smooth muscle cells, and various immune cell subpopulations such as macrophages, T cells, and B cells.
[image: Panels showing cell analysis data: (A) and (B) depict UMAP plots with clusters in different colors representing various cell types. (C) is a bar graph displaying cell type proportions across sample types, color-coded by cell type. (D) is a heatmap illustrating correlations between different cell types with varying intensity indicated by color gradient.]FIGURE 2 | Single-cell RNA sequencing reveals cellular heterogeneity in PDAC and its adjacent tissues. (A) UMAP plot of single-cell transcriptomes from PDAC and adjacent tissue samples, showing 14 major cell types. (B) UMAP plot of cell type distribution in PDAC and ADJ samples. (C) Stacked bar plot showing the proportion of each cell type in PDAC and ADJ samples, demonstrating tumor microenvironment remodeling. (D) Heatmap of marker gene expression for each cell cluster, validating the accuracy of cell type annotation.
Comparison of cell composition between ADJ and PDAC samples (Figure 2B) revealed significant microenvironment remodeling in PDAC tissues. The proportions of cancer cells, fibroblasts, mast cells, and Treg cells were markedly increased in PDAC samples, while the proportions of endothelial cells and B cells substantially decreased (Figure 2C). To further validate the accuracy of cell type annotation, we plotted a heatmap showing the expression of marker genes for each cell cluster (Figure 2D).
3.2 Single-cell level histone modification characteristics in PDAC
To investigate the role of epigenetic regulation in PDAC in depth, we conducted a detailed analysis of the expression patterns of histone modification-related genes. Using the ssGSEA method, we calculated a histone modification score (Histone score) for each single cell. Figure 3A shows the distribution of histone modification scores on the UMAP plot. Further comparison revealed that cells in PDAC samples generally had higher histone modification scores, showing significant differences compared to ADJ samples (p = 0.0032, Figure 3B). This suggests that PDAC cells may enhance histone modifications to regulate gene expression, thereby promoting tumor progression. Cell type-specific analysis showed no significant differences in histone modification levels among different cell populations in PDAC (Figure 3C).
[image: Five panels displaying various data visualizations: A shows a cluster graph labeled "UMAP," with clusters in shades of purple. B is a box plot comparing "Low Risk" and "High Risk" groups. C presents colorful violin plots for different variables. D consists of scatterplots for "Soft Power Threshold" analysis. E displays a dendrogram with color-coded clusters.]FIGURE 3 | Single-cell level histone modification characteristics and co-expression network analysis in PDAC. (A) Single-cell UMAP plot showing the distribution of histone modification scores (Histone score). Color depth represents score levels. (B) Box plot comparing histone modification scores between PDAC and ADJ samples. (C) Violin plot showing the distribution of histone modification scores across different cell types in PDAC. (D) Soft threshold parameter selection plot for hdWGCNA network construction. Includes curves of scale-free topology fit index R2 and mean connectivity versus soft threshold. (E) Hierarchical clustering dendrogram of gene co-expression modules under high histone modification states. Different colors represent different co-expression modules.
To further reveal the co-expression patterns of histone modification-related genes, we applied the hdWGCNA method to construct a weighted gene co-expression network. By analyzing soft threshold parameters (Figure 3D), we determined the optimal network construction parameters. The final hierarchical clustering dendrogram (Figure 3E) shows the gene module structure under high histone modification states, with different colors representing different co-expression modules. These modules may reflect functionally coordinated gene sets during PDAC progression.
3.3 Single-cell level DNA methylation characteristics in PDAC
Similar to the previous section, we further analyzed the expression patterns of DNA methylation-related genes in PDAC. By calculating a DNA methylation score (Methylation score) for each single cell and displaying it on a UMAP plot (Figure 4A), we found that cells in PDAC samples generally have higher DNA methylation scores, showing highly significant differences compared to ADJ samples (p = 2.4e-11, Figure 4B). This finding suggests that PDAC cells may enhance DNA methylation to regulate gene expression. Cell type-specific analysis revealed no significant differences in DNA methylation levels among different cell populations in PDAC (Figure 4C). Subsequently, we applied the hdWGCNA method to construct a weighted gene co-expression network. By analyzing soft threshold parameters (Figure 4D), we determined the optimal network construction parameters. The final hierarchical clustering dendrogram (Figure 4E) shows the gene module structure under high DNA methylation states.
[image: Five-panel data visualization comparing methylation scores across different categories. Panel A shows clusters in a scatter plot labeled "Methylation scores". Panel B presents a box plot comparing two groups, labeled "WT" and "KO". Panel C features multiple colored violin plots representing distribution in various categories. Panel D includes four threshold plots, each with dots and a threshold line. Panel E displays a network diagram with connections and blocks of color at the bottom, labeled "High Methylation NSMFOSF Development".]FIGURE 4 | Single-cell level DNA methylation characteristics and co-expression network analysis in PDAC. (A) Single-cell UMAP plot showing the distribution of DNA methylation scores (Methylation score). (B) Box plot comparing DNA methylation scores between PDAC and ADJ samples. (C) Violin plot showing the distribution of DNA methylation scores across different cell types in PDAC. (D) Soft threshold parameter selection plot for hdWGCNA network construction. Includes curves of scale-free topology fit index R2 and mean connectivity versus soft threshold. (E) Hierarchical clustering dendrogram of gene co-expression modules under high DNA methylation states.
3.4 WGCNA reveals key gene modules of epigenetic regulation in PDAC
To further explore the role of epigenetic regulation in PDAC, we performed WGCNA on the TCGA-PDAC dataset. We analyzed histone modification and DNA methylation-related genes separately.
The WGCNA results for histone modification-related genes are shown in Figures 5A–D. Sample clustering and trait heatmap (Figure 5A) display sample similarity and the distribution of histone modification scores. The gene dendrogram and module assignment (Figure 5B) reveal three main co-expression modules. Module-trait relationship analysis (Figure 5C) indicates that the grey module shows the strongest positive correlation with histone modification scores (correlation coefficient = 0.45, p = 1e-09). Further module membership vs. gene significance scatter plot (Figure 5D) shows that genes in the grey module have high module membership and gene significance.
[image: Eight-panel figure displaying two clustering analyses. Panels A and E show dendrograms with heatmaps, panels B and F show sample clustering, panels C and G show module-trait relationships with a red and blue color gradient, and panels D and H show scatter plots visualizing module membership versus gene significance. Each panel includes labeled axes and color keys for visualization.]FIGURE 5 | WGCNA analysis of TCGA-PDAC dataset reveals key gene modules related to epigenetic regulation. (A–D) WGCNA analysis of histone modification-related genes. (A) Sample clustering dendrogram and histone modification score heatmap. (B) Gene dendrogram and module assignment. (C) Module-trait relationship heatmap. (D) Module membership vs. gene significance scatter plot for the grey module. (E–H) WGCNA analysis of DNA methylation-related genes. (E) Sample clustering dendrogram and DNA methylation score heatmap. (F) Gene dendrogram and module assignment. (G) Module-trait relationship heatmap. (H) Module membership vs. gene significance scatter plot for the brown module.
Similarly, WGCNA results for DNA methylation-related genes are shown in Figures 5E–H. Module-trait relationship analysis (Figure 5G) shows that the brown module has the strongest positive correlation with DNA methylation scores (correlation coefficient = 0.55, p = 2e-15). The module membership vs. gene significance scatter plot (Figure 5H) further confirms the importance of genes in the brown module.
3.5 Integrated analysis reveals key genes and pathways of epigenetic regulation in PDAC
We found that 108 genes were simultaneously identified in differential expression analysis, hdWGCNA, and WGCNA for histone modifications (Figure 6A). In DNA methylation-related analysis, 285 genes were commonly identified (Figure 6B). Functional enrichment analysis revealed the biological processes and molecular functions involved in these epigenetic key genes (Figure 6C). Among them, protein folding and mitochondrial function processes were significantly enriched. KEGG pathway analysis further identified several signaling pathways closely related to PDAC, including Chemical carcinogenesis - reactive oxygen species, Oxidative phosphorylation, etc. (Figure 6D). Differential expression analysis results between normal samples and PDAC are shown in a volcano plot (Figure 6E), where red and blue dots represent upregulated and downregulated genes, respectively. The circular plot (Figure 6F) visually displays the top 50 PDAC DEGs with the most significant expression changes. Furthermore, we compared the overlap between epigenetic-related genes and PDAC DEGs (Figure 6G). The results show that 126 genes are both related to epigenetic regulation and differentially expressed in PDAC. Finally, we constructed a protein-protein interaction network of these key genes (Figure 6H), showing a high positive correlation between NDUFA13 in protective genes and PABPC4 in risk genes.
[image: Eight panels displaying various genetic and transcriptional analyses. Panel A and B show Venn diagrams comparing different gene categories. Panel C is a bar chart illustrating transcription factor enrichment. Panel D is a phylogenetic tree highlighting evolutionary relationships. Panel E is a volcano plot showing gene expression changes. Panel F is a circular dendrogram depicting hierarchical clustering of genes. Panel G is a Venn diagram comparing gene overlaps. Panel H is a circular diagram representing gene connectivity.]FIGURE 6 | Integrated analysis of key genes in epigenetic regulation in PDAC. (A) Venn diagram of histone modification-related genes in different analysis methods. (B) Venn diagram of DNA methylation-related genes in different analysis methods. (C) GO functional enrichment analysis results of epigenetic key genes. (D) KEGG pathway enrichment analysis results of epigenetic key genes. (E) Volcano plot of differentially expressed genes between normal samples and PDAC. (F) Circular plot of top 50 PDAC DEGs. (G) Venn diagram showing overlap between epigenetic-related genes and PDAC differentially expressed genes. (H) Protein-protein interaction network of key genes.
3.6 Machine learning models for predicting PDAC patient prognosis
To assess the potential of epigenetic-related genes in predicting PDAC prognosis, we applied various machine learning algorithms to build prognostic models. Figure 7A shows a performance comparison of different algorithm combinations, with the Lasso + RSF combination performing best across multiple evaluation metrics. Figures 7B, C illustrate the feature selection process of Lasso regression. Through L1 regularization (Figure 7B), we gradually increased the penalty coefficient λ to select the optimal feature subset. Figure 7C’s partial least squares path graph shows the change trend of different feature coefficients as λ increases, helping us identify the most stable and important prognostic-related genes. The final weight calculation formula is as follows: Riskscore = (0.005)*HSPB1 + (0.0111)*BST2 + (0.0176)*BLVRB + (−0.0262)*TMEM176A + (0.0054)*IFI27 + (−0.0408)*PPP2R1A + (0.1781)*S100A16 + (−0.2303)*NENF + (0.0952)*LY6E + (−0.0303)*TBCB + (0.1254)*COA4 + (0.0909)*CEBPB + (−0.1997)*MRPL41 + (−0.2693)*KRTCAP2 + (0.1462)*SNRPG + (0.0278)*NUPR1 + (−0.2068)*PSAP.
[image: Panel A shows a heat map with gene expression data, indicating upregulation and downregulation. Panel B is a line graph depicting the association between NES scores and ES profiles across datasets. Panel C presents a curve illustrating adjusted p-values against logFDR. Panel D shows a scatter plot of signal rankings, and Panel F is a clustered heat map of enriched pathways. Panel E features survival analysis curves. Panel G is a ROC curve comparing predictive accuracy. Each conveys aspects of gene expression and statistical analysis.]FIGURE 7 | PDAC prognostic prediction model based on epigenetic-related genes. (A) Performance comparison heatmap of different machine learning algorithm combinations. (B) L1 regularization path diagram of Lasso regression, showing the feature selection process. (C) Trend graph of Lasso regression coefficients changing with penalty coefficient λ. (D) Patient risk score distribution plot based on selected features. (E) Kaplan-Meier survival curves for high-risk and low-risk groups. (F) Expression heatmap of key prognostic-related genes in the model for high-risk and low-risk groups. (G) Time-dependent ROC curve analysis of the prognostic model.
Based on the selected features, we calculated a risk score for each patient and divided patients into high-risk and low-risk groups. Figure 7D clearly shows the separation of the two patient groups in the risk score distribution plot. Figure 7E’s Kaplan-Meier survival curve further confirms the significant difference in survival time between high-risk and low-risk groups (p < 0.001). Figure 7F’s heatmap shows the expression patterns of key genes in the model for high-risk and low-risk groups. We observed clear differential expression of these genes between the two groups, further supporting the rationality of our risk score model. Finally, Figure 7G’s time-dependent ROC curve analysis evaluated the predictive accuracy of our model. The results show that the model demonstrates good discriminative ability in predicting 1-year, 3-year, and 5-year prognosis, with AUC values of 0.746, 0.81, and 0.822, respectively.
These results suggest that machine learning models based on epigenetic-related genes can effectively predict the prognosis of PDAC patients, providing a potential tool for individualized treatment decisions.
3.7 The role of gene expression features and clinical factors in PDAC prognosis
To further validate our prognostic model and explore the role of gene expression features and clinical factors in PDAC prognosis, we conducted a series of analyses. Based on our risk score model, we plotted Kaplan-Meier survival curves, which showed that high-risk group patients had significantly lower survival rates than the low-risk group (p = 0.0061, Figure 8A). We performed univariate Cox regression analysis, revealing multiple factors associated with prognosis, including age, T stage, N stage, and our risk score (Figure 8B). Multivariate Cox regression analysis further confirmed that our risk score is an independent prognostic indicator beyond other clinical factors (p = 0.005, Figure 8C).
[image: Panel A shows a Kaplan-Meier survival curve comparing responses based on a variable. Panel B contains a forest plot of variables with hazard ratios and confidence intervals. Panel C presents a similar forest plot for another set of variables. Panel D is a bar chart categorizing pathways or mutations with frequencies. Panel E is a heatmap of correlation among diverse genetic features. Panel F includes additional forest plots for several pathways, illustrating differences in a specific outcome.]FIGURE 8 | Comprehensive analysis of gene expression features and clinical factors in PDAC prognosis. (A) Kaplan-Meier survival curve based on risk scores. (B) Forest plot of univariate Cox regression analysis. (C) Forest plot of multivariate Cox regression analysis. (D) Bar plot of GSVA score differences between high-risk and low-risk groups. (E) Correlation heatmap of significantly different pathways. (F) HR forest plot of major pathways based on GSVA analysis.
To gain deeper insights into molecular differences between high-risk and low-risk groups, we conducted GSVA analysis. The results showed significant differences in multiple pathways between high-risk and low-risk groups, with pathways such as MYC V2 targets, E2F targets, G2M checkpoint, and DNA repair enriched in the high-risk group (Figure 8D). We further constructed a correlation heatmap of these significant pathways, revealing potential functional connections between them (Figure 8E). Finally, we plotted a forest plot of Hazard Ratios for major pathways based on GSVA analysis, further highlighting the importance of these pathways in PDAC prognosis (Figure 8F).
3.8 Mutation characteristic analysis of epigenetic regulation genes in PDAC
To investigate the mutation characteristics of epigenetic regulation genes in PDAC, we conducted a detailed analysis of genomic data from high-risk and low-risk patients. First, we compared the mutation burden between high-risk and low-risk patients. The results showed no significant difference in mutation burden between high-risk and low-risk groups (p = 0.8, Figure 9A).
[image: Five-part scientific chart displaying data analysis results. Panel A shows two violin plots in blue and red. Panels B and C feature large matrices with colored bars and annotations, showcasing complex data sets. Panels D and E are correlation heatmaps with color gradients highlighting relationships. Each panel contains legends and axes, indicating an in-depth scientific study.]FIGURE 9 | Mutation characteristic analysis of epigenetic regulation genes in PDAC. (A) Violin plot comparing mutation burden between high-risk and low-risk patients. (B) Mutation frequency and types of major genes in 82 high-risk samples. (C) Mutation frequency and types of major genes in 83 low-risk samples. (D) Co-occurrence and mutual exclusivity relationship heatmap of major mutated genes in the high-risk group. (E) Co-occurrence and mutual exclusivity relationship heatmap of major mutated genes in the low-risk group.
We further analyzed frequently mutated genes in high-risk and low-risk groups. The results showed that in 82 high-risk samples, 81 (98.78%) had at least one mutation in the analyzed genes (Figure 9B). Among them, KRAS, TP53, and SMAD4 were the three genes with the highest mutation frequencies, occurring in 87%, 70%, and 28% of samples, respectively. In 83 low-risk samples, 65 (78.31%) had at least one mutation in the analyzed genes (Figure 9C). The genes with the highest mutation frequencies were highly consistent with previous analysis results, further confirming the importance of these genes in PDAC development.
We observed some significant gene mutation co-occurrence and mutual exclusivity patterns in both high-risk (Figure 9D) and low-risk groups (Figure 9E). In the high-risk group, KRAS and TP53 frequently co-occurred, while GNAS rarely appeared simultaneously with KRAS and TP53 in the same patient. In low-risk patients, the co-occurrence of KRAS and TP53 remained strong, while more genes showed co-occurrence patterns, and there were no obvious mutual exclusivity patterns.
3.9 Association analysis of epigenetic regulation and immune microenvironment in PDAC
To explore the relationship between epigenetic regulation and the immune microenvironment in PDAC, we conducted a series of immune-related analyses on high-risk and low-risk patients. First, we compared the Stromal Score, Immune Score, and ESTIMATE Score between the two groups. Results showed that low-risk patients had significantly higher Stromal Score (Figure 10A, p = 3.3e-15), Immune Score (Figure 10B, p = 3.3e-10), and ESTIMATE Score (Figure 10C, p = 7.8e-14) than high-risk patients, suggesting that low-risk patients may have richer tumor stromal components and immune cell infiltration.
[image: A series of visualizations displaying data comparisons: A-C show box plots contrasting two groups with distinct red and blue coloring, indicating distribution differences. D is a dot plot ranking elements by significance with color gradients. E is a heat map illustrating gene expression across samples with a color scale, highlighting patterns and clusters. F presents a bar graph comparing categories, marked by peaks and labeled with values, showing variation in data points.]FIGURE 10 | Association analysis of epigenetic regulation and immune microenvironment in PDAC. (A) Comparison of Stromal Score between high-risk and low-risk patients. (B) Comparison of Immune Score between high-risk and low-risk patients. (C) Comparison of ESTIMATE Score between high-risk and low-risk patients. (D) Correlation analysis between different immune cell types and risk scores. (E) Activity heatmap of immune-related pathways in high-risk and low-risk groups. (F) Comparison of various immune cell subset proportions between high-risk and low-risk patients.
Correlation analysis (Figure 10D) revealed significant associations between various immune cells and risk scores. Among them, M0 macrophages, memory B cells, follicular helper T cells, and Treg cells showed positive correlations with high risk scores, while CD4+ active memory T cells, monocytes, and CD8+ T cells showed positive correlations with low risk scores. The heatmap (Figure 10E) displayed differences in the activity of multiple immune-related pathways between high-risk and low-risk groups. The low-risk group generally showed higher immune pathway activity, consistent with previous immune score results. Finally, we compared the proportions of various immune cell subsets between the two groups (Figure 10F). Results showed significant differences in multiple immune cell subsets between high-risk and low-risk groups. For example, the proportions of CD8+ T cells, monocytes, and M2 macrophages were significantly higher in the low-risk group, while the proportion of M0 macrophages was significantly increased in the high-risk group.
3.10 Drug sensitivity analysis of high-risk and low-risk PDAC patients
To investigate the potential impact of epigenetic regulation patterns on drug responses in PDAC patients, we conducted a series of drug sensitivity analyses on high-risk and low-risk patients. We selected multiple drugs commonly used in PDAC treatment or clinical trials for evaluation.
Erlotinib and Trametinib are EGFR and MEK inhibitors, respectively. Results showed that low-risk patients had significantly higher sensitivity to these drugs compared to high-risk patients (p = 0.0259, Figure 11A; p = 1.9e-06, Figure 11D). 5-Fluorouracil is a commonly used chemotherapy drug, and we similarly found that low-risk patients had significantly higher sensitivity to this drug (p = 0.000392, Figure 11B). This suggests that low-risk patients may be more suitable for EGFR and MEK targeted therapies, as well as 5-FU-based chemotherapy regimens.
[image: Box plots labeled A to J display the relative expression levels of various genes in high-risk and low-risk groups. Each plot represents a different gene, with red and blue colors distinguishing between the two groups. The y-axes show expression levels, while the x-axes categorize data as high- or low-risk. The plots provide a visual comparison of gene expression between the two risk categories.]FIGURE 11 | Drug sensitivity analysis of high-risk and low-risk PDAC patients. (A) Erlotinib. (B) 5-Fluorouracil. (C) Pazopanib. (D) Trametinib. (E) Sunitinib. (F) Imatinib. (G) Ruxolitinib. (H) Tamoxifen. (I) BEZ235. (J) AZD8055. Each subplot shows the distribution of IC50 values for the respective drug in high- and low-risk groups, with p-values indicating the statistical significance of the difference between groups.
Pazopanib and Sunitinib are both multi-target tyrosine kinase inhibitors. Analysis results showed that high-risk patients had significantly higher sensitivity to these drugs compared to low-risk patients (p = 1.32e-09, Figure 11C; p = 0.00385, Figure 11E). Imatinib, Ruxolitinib, Tamoxifen, BEZ235, and AZD8055 also showed similar differential patterns (Figures 11F–J). This indicates that these drugs may be more suitable for high-risk PDAC patients.
Overall, these drug sensitivity analysis results emphasize the close association between epigenetic regulation patterns and drug responses in PDAC patients, providing new perspectives and potential strategies for precision treatment of PDAC.
3.11 Pathological validation
We performed immunohistochemistry validation for the top five weighted genes: KRTCAP2, NENF, PSAP, MRPL41, and S100A16. For KRTCAP2, we used patient samples from the hospital. For the remaining 4 genes, we cited results from the HPA database. In Figure 12, compared to adjacent tissue, KRTCAP2 are significantly downregulated in PDAC tissues, NENF, PSAP, MRPL41, and S100A16 are significantly upregulated in PDAC tissues.
[image: Matrix of histopathology slides showing cancer and adjacent tissue samples for five proteins: KRTCAP2, NENF, PSAP, MRPL41, and S100A16. Cancer samples are on the top row, and adjacent samples are on the bottom row. Staining intensity varies across proteins.]FIGURE 12 | Immunohistochemical staining of KRTCAP2, NENF, PSAP, MRPL41, and S100A16. Representative immunohistochemical staining images showing the protein expression of KRTCAP2, NENF, PSAP, MRPL41, and S100A16 in PDAC tissues and adjacent normal pancreatic tissues. Images were obtained from both our hospital cohort and the HPA database.
To further validate the expression patterns observed in tissue samples, we examined the mRNA levels of these genes in PDAC cell line PANC-1 and normal pancreatic ductal cell line hTERT-HPNE using qRT-PCR (Figure 13). Consistent with the tissue results, KRTCAP2 showed significantly lower expression in PANC-1 cells compared to hTERT-HPNE cells (Figure 13A, p < 0.01). Conversely, the expression levels of NENF, PSAP, MRPL41, and S100A16 were significantly higher in PANC-1 cells than in hTERT-HPNE cells (Figures 13B–E, all p < 0.01). These findings in cell lines were in agreement with our observations in clinical specimens, further confirming the differential expression patterns of these genes in PDAC.
[image: Five bar graphs labeled A to E compare two groups: control and experimental. Each graph shows higher values for the experimental group (red bars) compared to the control group (blue bars). The y-axis of each chart represents different measured parameters, and statistical significance is indicated.]FIGURE 13 | Differential expression analysis of prognostic genes in pancreatic cell lines (A–E). The relative mRNA expression levels of KRTCAP2, NENF, PSAP, MRPL41, and S100A16 were quantified by qRT-PCR in pancreatic cancer cell line PANC-1 and normal pancreatic epithelial cell line hTERT-HPNE.
4 DISCUSSION
This study comprehensively investigated the role and clinical significance of epigenetic regulation in PDAC by integrating single-cell RNA sequencing, epigenetic analysis, and machine learning methods (Wang Q. et al., 2023; Li et al., 2024). We first performed single-cell RNA sequencing analysis on PDAC and adjacent normal tissues, revealing cellular heterogeneity and compositional changes in the tumor microenvironment. Subsequently, we analyzed histone modifications and DNA methylation characteristics at the single-cell level, discovering that cells in PDAC samples generally exhibited higher levels of epigenetic modifications. Through WGCNA, we identified key gene modules highly correlated with histone modifications and DNA methylation, and conducted functional enrichment analysis. Based on key epigenetic-related genes, we constructed a machine learning model for PDAC prognosis prediction. Additionally, we analyzed the associations between epigenetic features and gene mutation patterns, immune microenvironment, and drug sensitivity.
Overall, the findings of this study not only deepen our understanding of PDAC molecular mechanisms but also provide new perspectives for PDAC diagnosis, prognosis assessment, and treatment. Epigenetic regulation plays a central role in the occurrence and development of PDAC, influencing multiple stages from tumor initiation to progression (Montalvo-Javé et al., 2023). Our research reveals that PDAC cells generally exhibit high levels of histone modifications and DNA methylation activity, which may confer stronger adaptability and survival advantages to tumor cells. Meanwhile, abnormal epigenetic regulation may also be one of the important factors driving PDAC tumor heterogeneity (Espinet et al., 2022). Different subclones may maintain their unique phenotypic and functional characteristics through specific epigenetic regulatory patterns, thereby promoting the overall adaptability of the tumor (Orlacchio et al., 2024). Furthermore, our analysis revealed significant immune microenvironment differences between risk groups, with the low-risk group showing higher immune and stromal scores, particularly increased infiltration of CD8+ T cells and M2 macrophages, suggesting stronger anti-tumor immune responses. These findings have crucial clinical implications, providing not only a theoretical basis for differential immunotherapy responses but also new evidence for immunotherapy strategy selection. For instance, high-risk patients might benefit from additional immune modulatory treatments, particularly immune checkpoint inhibitors, given their higher proportions of immunosuppressive cells. Notably, the association between immune microenvironment differences and epigenetic regulation suggests that epigenetic alterations may influence disease progression by modulating the immune microenvironment, opening new avenues for therapeutic strategies that target epigenetic regulation to enhance anti-tumor immunity (Wang et al., 2024; Zhou et al., 2024; Ding et al., 2024).
This study has validated previous epigenetic research on PDAC in multiple aspects while also presenting some innovative findings. Consistent with previous studies, our research reaffirms the importance of epigenetic regulation in PDAC development, aligning with earlier research results. For instance, we observed generally high levels of histone modifications and DNA methylation in PDAC cells, which is consistent with Lomberk et al.'s findings that KRAS mutations can promote PDAC progression by regulating histone and DNA modifications (Lomberk et al., 2019). The innovative aspects of our study are mainly reflected in the following areas: First, we employed single-cell RNA sequencing technology, enabling us to study PDAC epigenetic characteristics at the single-cell level, revealing similarities and differences in epigenetic regulation across different cell types. This high-resolution analysis method provides a new perspective for understanding PDAC cellular heterogeneity. Second, by integrating various bioinformatics methods, including hdWGCNA and WGCNA, we systematically identified key epigenetic regulatory genes and pathways. This comprehensive analysis approach allows us to understand more fully the role of epigenetic regulatory networks in PDAC. Lastly, we innovatively linked epigenetic features with the immune microenvironment and drug sensitivity, providing new insights for PDAC immunotherapy and personalized medication.
Compared to existing PDAC prognostic models, our epigenetic feature-based prognostic model has several significant advantages. First, most previous PDAC prognostic models are primarily based on gene mutations or transcriptome data (Chen et al., 2021; Zhang et al., 2015), while our model focuses on epigenetic features, providing a new dimension for prognosis assessment. The importance of epigenetic regulation in tumor progression is increasingly recognized, so our model may capture some important information overlooked by traditional models. Second, our model demonstrates good predictive performance across multiple independent datasets, with AUC values exceeding 0.7 for 1-year, 3-year, and 5-year prognosis predictions. The stability and generalizability of our model highlight the potential of epigenetic features in PDAC prognosis prediction. Additionally, our model not only provides prognostic predictions but also combines them with immune microenvironment and drug sensitivity analyses, giving it greater potential in guiding individualized treatment decisions (Lomberk et al., 2016). In contrast, many existing models primarily focus on prognosis prediction, lacking direct applications for treatment guidance.
Although this study provides many valuable findings, some limitations remain. First, our analysis is primarily based on bioinformatics methods, requiring further experimental validation and mechanistic exploration. Second, while our prognostic model performs well, it still needs validation in larger independent cohorts. Most importantly, the drug sensitivity tests include many drugs not yet clinically applied, necessitating pharmacological research and clinical verification. Future research should focus on in-depth study of the causal relationship between epigenetic regulation and PDAC progression, integrate multi-omics data to construct a more comprehensive PDAC molecular typing system, and investigate the dynamic relationships between epigenetic regulation and PDAC immune microenvironment and drug responses. Based on this, large-scale generalization studies and drug application exploration integrating multi-center data should be conducted.
In conclusion, this study has made significant contributions to epigenetic research in PDAC through multi-level, multi-faceted analysis. We revealed cellular heterogeneity and epigenetic characteristics of the PDAC microenvironment at the single-cell level, systematically identified key epigenetic regulatory genes and pathways, and constructed a high-performance prognostic prediction model based on epigenetic features. Additionally, we uncovered close connections between epigenetic regulation and PDAC mutation characteristics, immune microenvironment, and drug sensitivity. These findings not only deepen our understanding of PDAC molecular mechanisms but also provide new insights for precision medicine, individualized treatment, and immunotherapy optimization. Our research opens new directions for PDAC diagnosis, prognosis assessment, and treatment strategies, potentially advancing clinical practice and ultimately improving patient prognosis and quality of life. However, translating these findings into clinical applications requires further validation and large-scale prospective studies. Overall, this study lays an important foundation for epigenetic research and precision medicine development in PDAC, demonstrating the enormous potential of epigenetics in cancer research.
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Background: Lower-grade glioma (LGG) exhibits significant heterogeneity in clinical outcomes, and current prognostic markers have limited predictive value. Despite the growing recognition of histone modifications in tumor progression, their role in LGG remains poorly understood. This study aimed to develop a histone modification-based risk signature and investigate its relationship with drug sensitivity to guide personalized treatment strategies.Methods: We performed single-cell RNA sequencing analysis on LGG samples (n = 4) to characterize histone modification patterns. Through integrative analysis of TCGA-LGG (n = 513) and CGGA datasets (n = 693 and n = 325), we constructed a histone modification-related risk signature (HMRS) using machine learning approaches. The model's performance was validated in multiple independent cohorts. We further conducted comprehensive analyses of molecular mechanisms, immune microenvironment, and drug sensitivity associated with the risk stratification.Results: We identified distinct histone modification patterns across five major cell populations in LGG and developed a robust 20-gene HMRS from 129 candidate genes that effectively stratified patients into high- and low-risk groups with significantly different survival outcomes (training set: AUC = 0.77, 0.73, and 0.71 for 1-, 3-, and 5-year survival; P < 0.001). Integration of HMRS with clinical features further improved prognostic accuracy (C-index >0.70). High-risk tumors showed activation of TGF-β and IL6-JAK-STAT3 signaling pathways, and distinct mutation profiles including TP53 (63% vs 28%), IDH1 (68% vs 85%), and ATRX (46% vs 20%) mutations. The high-risk group demonstrated significantly elevated immune and stromal scores (P < 0.001), with distinct patterns of immune cell infiltration, particularly in memory CD4+ T cells (P < 0.001) and CD8+ T cells (P = 0.001). Drug sensitivity analysis revealed significant differential responses to six therapeutic agents including Temozolomide and targeted drugs (P < 0.05).Conclusion: Our study establishes a novel histone modification-based prognostic model that not only accurately predicts LGG patient outcomes but also reveals potential therapeutic targets. The identified associations between risk stratification and drug sensitivity provide valuable insights for personalized treatment strategies. This integrated approach offers a promising framework for improving LGG patient care through molecular-based risk assessment and treatment selection.Keywords: lower-grade glioma, histone modification, risk signature, drug sensitivity, prognosis, machine learning
1 INTRODUCTION
Low-grade glioma (LGG) is a primary brain tumor originating from glial cells (Weller et al., 2024), accounting for 7.6% of all primary brain tumors and 31.8% of gliomas. The median overall survival ranges from 5.6 to 13.3 years, depending on tumor histopathological characteristics, molecular phenotype, and growth rate (Li et al., 2021a). The optimal treatment strategy for LGG remains controversial, with current approaches including surgical resection, radiotherapy, chemotherapy, targeted therapy, and immunotherapy (van den Bent et al., 2023). Although LGG patients have slightly better survival rates than those with high-grade (WHO grade III or IV) gliomas (Aiman et al., 2024), the infiltrative nature of gliomas makes LGG prone to drug resistance and recurrence after treatment (Fukuya et al., 2019), with potential progression to high-grade gliomas, significantly shortening survival time (Tom et al., 2019). Following local dissemination, LGG tumor cells exhibit high heterogeneity (Nicholson and Fine, 2021), leading to greater variations in patient survival rates and times. This cellular diversity and heterogeneity in LGG are considered primary factors in tumor recurrence and malignant transformation (Ye et al., 2024; Gittleman et al., 2019). Therefore, understanding the cellular mechanisms underlying LGG development is crucial for clarifying its progression and developing new effective therapeutic targets to extend patient survival.
Histone modification is a crucial epigenetic regulatory mechanism encompassing various forms, including methylation, acetylation, phosphorylation, adenylation, ubiquitination, and ADP-ribosylation (Millán-Zambrano et al., 2022). With rapid advances in molecular biology, the World Health Organization substantially updated its diagnostic criteria for LGG in 2021, transitioning from traditional histological diagnosis to an integrated diagnostic system incorporating molecular markers (Figarella-Branger et al., 2022). This shift is prominently reflected in the WHO CNS5 classification system, which establishes IDH mutation and 1p/19q codeletion status as core molecular markers for adult-type diffuse low-grade glioma classification, fully reflecting the molecular heterogeneity of LGG.
Currently, epigenetic alterations (including histone methylation, DNA methylation, and histone acetylation) are increasingly being applied in brain tumor research (Han et al., 2024). While histone modifications have been extensively studied in high-grade gliomas (HGG), such as proteomics combined with other multi-omics revealing the central role of PTPN11 signaling in high-grade gliomas (Lowe et al., 2019a), and histone H3 mutations promoting diffuse glioma development through chromatin dysregulation (Lowe et al., 2019b), related research in LGG remains relatively scarce. Given the common cellular origins between LGG and HGG (Network et al., 2015), these findings may hold significant implications for LGG as well. Considering that tumor cell heterogeneity is a key factor in LGG recurrence and malignant transformation, conducting more extensive and comprehensive studies on histone modifications is crucial. This not only helps deepen our understanding of LGG’s molecular pathogenesis but also provides new insights for developing personalized treatment strategies for highly heterogeneous LGG.
In our study, we conducted a series of complex bioinformatics analyses, utilizing high-throughput sequencing and proteomics technologies to monitor genome-wide histone modification dynamics, while employing diverse machine learning frameworks and big data to perform comprehensive systematic analysis and identification of histone modifications and related multi-omics features in LGG. By integrating genomics, transcriptomics, and proteomics data to establish machine learning models, we comprehensively revealed key molecules and pathways controlling LGG development and treatment response. This cross-omics integrated analysis approach not only deepens our understanding of LGG epigenetic regulation but also identifies new biomarkers and potential therapeutic targets, potentially providing new directions for LGG treatment research.
2 MATERIALS AND METHODS
The research workflow is shown in Figure 1.
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2.1 Data source
This study integrated multiple independent datasets to construct and validate a prognostic model for low-grade glioma. Initially, we established a histone modification gene set based on Füllgrabe et al. (2011)’s research and the GeneCards database (https://www.genecards.org/) (relevance score >20). Subsequently, single-cell transcriptome data from 4 LGG samples (GSE182109) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) for further single-cell analysis. TCGA-LGG (513 samples) and GTEx (2,642 normal control samples) datasets were merged after batch effect removal to calculate differentially expressed genes in LGG. Additionally, TCGA-LGG served as the training set, while two independent cohorts from the Chinese Glioma Genome Atlas (CGGA) database (https://www.cgga.org.cn/), containing 693 and 325 GBM samples respectively with clinical and survival information, were used as external validation sets.
2.2 Single cell analysis
2.2.1 Data preprocessing and quality control
Single-cell RNA sequencing data were analyzed using Seurat (v5.0.0) (Abdelfattah et al., 2022). Initially, raw data in 10X Genomics format were processed and preliminarily filtered, requiring each gene to be expressed in at least three cells and each cell to express at least 250 genes. Subsequently, the expression proportions of mitochondrial genes (prefixed with MT-) and ribosomal genes [prefixed with RP (SL)] were calculated for each cell. To ensure data quality, we filtered out the following cells: 1) cells expressing <100 or >7,500 genes; 2) cells with mitochondrial gene expression proportion >25%; 3) cells with total RNA counts <1,000.
2.2.2 Data integration and annotation
Filtered data were normalized using the “LogNormalize” method (Luo et al., 2019) with a scale factor of 10,000. The “vst” method was used to select 2,000 highly variable genes for subsequent analysis. To eliminate batch effects, the Harmony algorithm was employed to integrate data from multiple samples (Petegrosso et al., 2020; Korsunsky et al., 2019). Subsequently, PCA dimensionality reduction was performed, selecting the top 30 principal components for further analysis. Using these principal components, UMAP and t-SNE dimensionality reduction visualizations were performed separately. Cell clustering was conducted using a graph-based clustering algorithm (Petegrosso et al., 2020), with the optimal resolution parameter of 0.2 determined through the clustree package. Cell types were automatically annotated using the SingleR package (Aran et al., 2019) in conjunction with the Human Primary Cell Atlas database (https://www.humancellatlas.org/) and scMayomap package (Yang et al., 2023). Additionally, manual verification was performed based on characteristic gene expression (Hassn Mesrati and Behrooz, 2020), including: OLIG2 and MBP (oligodendrocyte markers), CD44 and SOX2 (tumor cell markers), PDGFRB (pericyte marker), FOLR2, AIF1, and CD68 (macrophage markers), CD8A, CD3E, and CCL5 (T cell markers).
2.2.3 Histone score analysis
Based on the predefined histone gene set, the ssGSEA algorithm was used to calculate histone scores for each cell (Chen et al., 2022). For LGG cell subgroups, cells were divided into high and low expression groups based on the median histone score, and differential expression analysis was performed (logFC threshold of 0.5, minimum expression proportion of 0.35) to identify functional pathways associated with histone expression.
2.3 Weighted gene co-expression network analysis
WGCNA analysis was conducted based on the previously obtained histone-related differentially expressed gene set (Xu et al., 2023) to reveal gene co-expression relationships and their associations with phenotypes. During data preprocessing, gene expression data from the TCGA-LGG dataset were normalized, and quality was ensured by removing genes with zero standard deviation and samples with missing values. Subsequently, the goodSamplesGenes function was used for quality assessment, and outlier samples were detected using hierarchical clustering (Grabski et al., 2023). In network construction, the optimal soft threshold power = 5 was determined by analyzing the scale-free topology fit index and average connectivity under different soft thresholds. The blockwiseModules function was used to construct the co-expression network, setting the minimum module size to 50 genes, module merging similarity threshold to 0.15, and using unsigned network type. Through calculating Module Eigengenes (MEs) (Han et al., 2019), we analyzed the correlation between modules and histone scores, using Pearson correlation coefficients to evaluate module-trait relationships, and assessed correlation significance using Student’s t-test. The correlation intensity between modules and phenotypic features was visualized through heatmaps. Finally, in modules significantly correlated with histone scores, the biological significance was validated by analyzing the relationship between Module Membership and Gene Significance, with scatter plots demonstrating their positive correlation, further confirming these modules’ central role in the histone regulatory network.
2.4 Feature genes selection
Differential expression analysis was performed using the TCGA-LGG dataset and GTEx dataset through DESeq2, with selection criteria of absolute logFC >1 and p-value <0.05. Feature genes were selected by intersecting the differentially expressed genes with module genes obtained from WGCNA.
2.5 Machine learning based prognosis signature construction
To construct a reliable prognostic prediction model, this study used the TCGA-LGG dataset as the training set and CGGA325 and CGGA693 datasets as independent validation sets. Initially, all datasets underwent standardization and feature space consistency was ensured, with missing values eliminated through strict data quality control. During model construction, we systematically evaluated multiple machine learning algorithms and their combinations, including Random Survival Forest (RSF), Elastic Net (Enet), Stepwise Cox regression (StepCox), CoxBoost, Partial Least Squares Regression (plsRcox), Principal Component Regression (SuperPC), Gradient Boosting Machine (GBM), Survival Support Vector Machine (survival-SVM), Ridge regression, and Lasso regression as base models. To enhance prediction performance, we explored various combinations of these base models, such as RSF with CoxBoost and Lasso with GBM combinations. For the Elastic Net model, performance was optimized by adjusting the α parameter (0.1–0.9); for stepwise Cox regression, forward, backward, and bidirectional feature selection methods were employed. Model evaluation used C-index (Song et al., 2022) as the primary evaluation metric, assessing predictive ability and generalization performance through comprehensive performance on training and two independent validation sets. Finally, model performance across different datasets was visualized through heatmaps, and models were ranked based on average C-index values from validation sets to select the final prognostic prediction tool with optimal predictive efficacy and stability.
2.6 Optimal model performance validation and risk score construction
Based on the comprehensive evaluation results of machine learning models, the optimal prediction model underwent thorough performance validation and risk score system construction. Specifically, through feature importance analysis, 20 key features contributing most significantly to prognosis prediction were identified from the original features. Based on the model’s predictions, a risk score system was established, dividing patients into high and low-risk groups using the median score as the threshold, and Kaplan-Meier survival analysis was performed to observe survival differences between risk groups. Additionally, to evaluate the model’s time-dependent predictive ability, time-dependent ROC curves (Obuchowski and Bullen, 2018) and corresponding AUC values were calculated for 1-year, 3-year, and 5-year predictions.
2.7 Prognostic value analysis of clinical features and risk scores
The prognostic value of clinical features and risk scores was evaluated through systematic survival analysis (Schober and Vetter, 2018). Initially, univariate Cox regression analysis assessed the impact of clinical features including age, gender, tumor type, grade, and risk score on patient prognosis. Subsequently, multivariate Cox regression analysis identified independent prognostic factors. Based on significant independent prognostic factors, an integrated nomogram prediction model (Gittleman et al., 2019) was constructed, and its prediction accuracy was verified through calibration curves for 1-year, 3-year, and 5-year survival predictions. Time-dependent C-index analysis was used to compare the predictive performance between the nomogram model and individual predictive factors, while decision curve analysis (DCA) evaluated the clinical net benefit of the model at different decision thresholds to validate this prediction tool’s value in clinical practice.
2.8 Enrichment analysis
This study explored molecular pathway differences between high and low risk score groups through systematic functional enrichment analysis (Canzler and Hackermüller, 2020). First, Gene Set Enrichment Analysis (GSEA) evaluated significantly enriched Hallmark pathways in the high-risk group. Subsequently, Gene Set Variation Analysis (GSVA) scored all samples, and limma differential analysis identified pathways with significantly different activities between high and low-risk groups. To verify the clinical relevance of key pathways, patients were divided into high and low pathway activity groups based on GSVA scores, with Kaplan-Meier survival analysis evaluating prognostic differences, and Cox proportional hazards regression model calculating hazard ratios (HR) and their 95% confidence intervals. For significantly correlated pathways, forest plots were generated to visualize their prognostic value. Finally, survival curves were verified for the six most significant pathways, comprehensively assessing these pathways’ potential roles in glioma development and progression.
2.9 Mutation analysis and heterogeneity assessment
This study explored the association between tumor heterogeneity and risk scores through comprehensive analysis of somatic mutation data from the TCGA-LGG cohort. First, the Mutant-Allele Tumor Heterogeneity (MATH) score (Timar and Kashofer, 2020) was used to quantify tumor heterogeneity levels for each sample, comparing differences between high and low-risk groups. Distribution characteristics were visualized through violin plots, with statistical significance assessed using the Wilcoxon rank-sum test. Subsequently, patients were divided into high and low heterogeneity groups based on the median MATH score, with Kaplan-Meier survival analysis evaluating the relationship between tumor heterogeneity and prognosis. Further combining MATH scores with risk scores, patients were classified into four subgroups (high MATH/high risk, high MATH/low risk, low MATH/high risk, low MATH/low risk) to explore the joint predictive value of both indicators. Finally, maftools was used to analyze mutation characteristics of high and low-risk groups, with waterfall plots displaying distribution characteristics of top 20 mutated genes, while co-occurrence and mutual exclusivity analysis (Zang et al., 2023) revealed interaction patterns among key driver genes.
2.10 Immune analysis
This study conducted systematic analysis of the LGG tumor immune microenvironment using multiple algorithms. Initially, the ESTIMATE algorithm (Tennant et al., 2022) calculated stromal scores, immune scores, and overall scores for each sample, comparing differences between high and low-risk groups. Subsequently, immune-related pathways were scored using ssGSEA, with heatmaps visualizing differential patterns of immune pathway activity between risk groups. Further, the CIBERSORT algorithm (Chen et al., 2018) was employed to deconvolute the infiltration proportions of 22 immune cell types, with violin plots showing immune cell composition differences between high and low-risk groups. Additionally, ssGSEA analysis was performed using 28 immune cell characteristic gene sets, with box plots clearly displaying abundance differences of various immune cell types between risk groups. Finally, correlation analysis explored relationships between key gene expression and immune cell infiltration, as well as associations between risk scores and immune cell infiltration levels. Significant correlation patterns were displayed through heatmaps and correlation scatter plots, revealing potential connections between the risk score model and tumor immune microenvironment.
2.11 Drug sensitivity analysis
Systematic drug sensitivity prediction analysis was performed on the TCGA-LGG cohort using the pRRophetic package (Yan et al., 2022). Initially, half maximal inhibitory concentration (IC50) values (Sebaugh, 2011) were predicted for all available drugs based on drug response data from the Cancer Genome Project (CGP) database. For each drug, drug sensitivity differences between high and low-risk groups were compared, with statistical significance assessed using the Wilcoxon rank-sum test. For drugs showing significant differences (P < 0.05), box plots were used to visually display drug sensitivity distribution characteristics across different risk groups.
2.12 Human protein atlas validation
Based on previous analysis results, we selected the top five key genes with the highest weights for expression validation in the HPA database (https://www.proteinatlas.org/). Through immunohistochemical staining images, protein expression levels and distribution patterns of these key genes were visually demonstrated in normal brain tissue and glioma tissues of different grades. The validation results from the HPA database not only confirmed the differential expression characteristics of these genes in glioma development at the protein level but also provided histological evidence for understanding their potential roles in tumor progression.
2.13 Pan-cancer analysis
To comprehensively visualize the pan-cancer analysis results, we constructed a stratified forest plot integrating survival analysis outcomes across 29 cancer types, organized by eight major organ systems (Breast and Gynecologic System, Respiratory System, Digestive System, Urinary System, Nervous System, Endocrine System, Male Reproductive System, Hematologic System, and Others). In the forest plot, dot sizes represent -log10 (p-value), error bars indicate 95% confidence intervals, and color-coding displays risk levels (red for high-risk groups, cyan for low-risk groups, and gray for non-significant differences). A horizontal dashed line (HR = 1) serves as a reference, and hazard ratios are presented on a logarithmic scale to better illustrate the relative magnitude of risk differences.
3 RESULTS
3.1 Single-cell data reveals differential distribution of histone modifications
Through dimensionality reduction clustering analysis and cell type annotation of LGG single-cell data (Figure 2A), we successfully identified five major cell subpopulations: SOX2 and OLIG2-expressing LGG tumor cells, CD68, AIF1, and FOLR2-expressing macrophages, MBP-expressing oligodendrocytes, PDGFRB-expressing pericytes, and CCL5, CD3E, CD8A, and CD44-expressing T cells. To validate the accuracy of cell type annotation, we constructed a dot plot displaying the expression patterns of marker genes for each cell type (Figure 2B).
[image: Panel A shows a t-SNE plot of cell clusters labeled by type. Panel B is a dot plot illustrating gene expression across cell types with color and size indicators. Panel C features a t-SNE plot highlighting pseudotime positions. Panel D displays violin plots of gene expression levels across different cell stages. Panel E presents a t-SNE plot with cells categorized into high and low histone groups, shown in different colors.]FIGURE 2 | Histone Modification Lineage Analysis Based on Single-Cell Transcriptomics. (A) t-SNE dimensionality reduction showing spatial distribution of LGG cell subgroups. Different colors represent different cell subgroups. (B) Heatmap of cell subgroup-specific marker gene expression profiles. Rows represent genes, columns represent cells. (C) t-SNE plot showing distribution characteristics of histone modification scores across different cell subgroups. Color intensity indicates modification levels. (D) Box plot analysis of histone modification scores for five cell subgroups. (E) Bidirectional clustering analysis based on histone modification scores. t-SNE projection showing distribution patterns of high-score (red) and low-score (blue) cells.
To deeply explore the heterogeneity of histone modification levels among different cell types, we calculated and visualized histone modification scores for each cell subgroup (Figure 2C). Results showed significant differences in histone modification levels among different cell subgroups. Further statistical analysis (Figure 2D) revealed that LGG tumor cells and oligodendrocytes exhibited higher histone modification levels (scores >0.25). Based on the overall cellular histone modification levels (HMs), we separated LGG cells into high HMs and low HMs groups (Figure 2E). Differential expression analysis identified 5,278 differentially expressed genes (|logFC|>1, p < 0.05), with 3,638 genes upregulated in the high HMs group and 1,640 genes upregulated in the low HMs group.
3.2 HMs-related gene network analysis
Differential expression analysis revealed significant transcriptomic differences between high and low HMs groups. Volcano plot analysis showed numerous genes with significant differential expression (Figure 3A), suggesting these genes may participate in the histone modification regulatory network. To deeply analyze key regulatory genes, we visualized the top 50 up- and downregulated genes with the most significant differences in a circular plot (Figure 3B). To systematically identify co-expression modules related to histone modifications, we performed WGCNA analysis on differentially expressed genes. The hierarchical clustering dendrogram displayed gene co-expression relationships, while the bottom heatmap reflected HMs score variation patterns among samples (Figure 3C). Based on the dynamic tree-cutting algorithm, we ultimately identified 15 functional modules with significant co-expression characteristics (Figure 3D). Module-trait correlation analysis indicated that the magenta module (225 genes) showed the strongest positive correlation with histone modification scores (cor = 0.44, P < 0.005) (Figure 3E). Further module membership analysis revealed that genes in the magenta module showed significant positive correlation between Gene Significance (GS) and Module Membership (MM) (cor = 0.58, P < 1e-21) (Figure 3F), strongly suggesting this module plays a core role in the histone modification regulatory network.
[image: Panel of six charts related to genetic data analysis. A: Volcano plot displays log fold changes and significance with red and blue dots. B: Circular dendrogram represents hierarchical data clustering. C: Heatmap shows gene expression levels with a dendrogram. D: Cluster dendrogram indicates modules with color bars. E: Module-trait relationships chart uses color gradients to signify correlation strength. F: Scatter plot illustrates module membership against gene significance with pink dots.]FIGURE 3 | WGCNA Network Analysis Reveals Key Gene Modules in Histone Modification Regulation. (A) Volcano plot distribution of differentially expressed genes. Red and blue dots represent significantly upregulated and downregulated genes in the high HMs group, respectively. (B) Circular plot of top 50 most significantly up- and downregulated genes. Inner to outer rings show gene names, expression change direction, and statistical significance. (C) Hierarchical clustering dendrogram of differentially expressed genes. Upper part shows hierarchical clustering relationships among genes, lower heatmap shows distribution characteristics of sample HMs scores. Color intensity represents score levels. (D) WGCNA module identification results. Dendrogram shows gene clustering relationships, bottom colored bands represent 15 functional modules identified by dynamic tree-cutting algorithm. (E) Module-trait correlation heatmap. Each row represents a co-expression module, values and color intensity indicate Pearson correlation coefficients with histone modification scores. Magenta module shows strongest positive correlation (cor = 0.44, P < 0.005). (F) GS-MM scatter plot analysis of magenta module. X-axis: Module Membership; Y-axis: Gene Significance. Distribution trend (cor = 0.58, P < 1e-21) validates this module’s core position in histone modification regulatory network.
3.3 Construction of prognostic model using feature genes
Through integrative transcriptomic analysis of TCGA-LGG and GTEx datasets, we initially identified 6,672 LGG-related differentially expressed genes (DEGs), including 5,798 upregulated and 874 downregulated genes. Intersection analysis of these DEGs with previously determined magenta module genes yielded 129 LGG-specific histone modification-related genes (LGG-HMRgenes) (Figure 4A). Functional enrichment analysis revealed these LGG-HMRgenes were significantly enriched in pathways including heterocycle catabolic process, nucleobase-containing compound catabolic process, RNA catabolic process, and negative regulation of cellular macromolecule biosynthetic process (Figure 4B, P < 0.05). These results emphasize the regulatory role of histone modifications in LGG development and provide theoretical basis for developing targeted therapeutic strategies.
[image: Venn diagram showing protein overlap between two groups, a scatter plot of protein significance, a heatmap of protein expression across samples, and a bar graph of top twenty features identified by a random survival forest model.]FIGURE 4 | Systematic Identification and Model Construction of Histone Modification-Related Prognostic Markers (A) Venn diagram analysis of LGG DEGs and magenta module genes. (B) GO functional enrichment dot plot of LGG-HMRgenes. X-axis represents gene ratio, dot size represents number of enriched genes, color intensity represents statistical significance [-log10 (P-value)]. (C) Machine learning model performance evaluation heatmap. Rows represent different algorithms, columns represent validation datasets. Color scale indicates C-index values (red indicates higher prediction accuracy, blue indicates lower prediction accuracy). (D) Importance ranking plot of Top 20 feature genes identified by RSF model. X-axis represents feature importance scores, Y-axis represents gene symbols. Bar length reflects each gene’s contribution to prognostic prediction.
To construct a robust prognostic prediction model, we systematically evaluated the predictive performance of 105 machine learning algorithms using 129 HMR genes as feature inputs (Figure 4C). Through comprehensive comparison of C-index performance across validation sets, the Random Survival Forest (RSF) model demonstrated optimal predictive performance. Based on feature importance analysis of the RSF model, we further selected 20 core feature genes with the strongest predictive contributions (Figure 4D).
3.4 Multi-center validation and performance assessment of HMRS prognostic model
To systematically evaluate the time-dependent predictive performance of the HMRS model, we first conducted time-dependent receiver operating characteristic (ROC) analysis in the TCGA-LGG cohort (513 samples). Results showed that the model demonstrated excellent discriminative ability in 1-year, 3-year, and 5-year survival predictions, with corresponding areas under the curve (AUC) reaching 0.77, 0.73, and 0.71 respectively (Figure 5A). After stratifying patients into high and low-risk groups based on the optimal cutoff value, Kaplan-Meier survival analysis revealed significant prognostic differences between the groups (log-rank test, P < 0.001) (Figure 5B).
[image: Three pairs of graphs display ROC curves and survival analysis. Graphs A, C, and E show time-dependent ROC curves for STAD, COAD, and COADREAD datasets, respectively, with AUC values. Graphs B, D, and F present survival curves for the corresponding datasets, highlighting differences between two groups over time. Each pair focuses on analyzing the predictive accuracy and survival impact of specific variables.]FIGURE 5 | Predictive Performance and External Validation of HMRS Model (A) Time-dependent ROC curve analysis in TCGA training set. Red, blue, and green curves represent AUC values for 1-year, 3-year, and 5-year survival predictions. (B) Kaplan-Meier survival analysis based on HMRS scores in TCGA cohort. Yellow and blue curves represent high-risk group (n = x) and low-risk group (n = y) respectively. Shaded areas indicate 95% confidence intervals. (C, E) Time-dependent ROC curves in CGGA325 and CGGA693 validation sets. AUC values at various time points demonstrate the model’s stable predictive performance. (D, F) Survival stratification analysis in validation sets. Separation of survival curves validates the model’s prognostic discrimination ability (log-rank test, P < 0.001). Numbers at bottom indicate number at risk at each time point.
To validate the external applicability of the HMRS model, we conducted validation in two independent CGGA validation cohorts (CGGA325 and CGGA693). In the CGGA325 cohort (325 samples), the model demonstrated time-dependent prediction accuracy comparable to the training set (Figure 5C), with survival stratification differences showing statistical significance (P < 0.001) (Figure 5D). These results were further confirmed in the CGGA693 cohort (693 samples) (Figures 5E, F). Multi-center validation results confirmed that the HMRS model possesses robust prognostic prediction capability and broad clinical applicability.
3.5 Construction and evaluation of clinical variable-integrated prognostic model
To systematically evaluate the prognostic value of clinical features and HMRS scores, we first conducted Cox proportional hazards regression analysis. Univariate analysis showed that age, WHO grade, and HMRS score were significant prognostic factors (Figure 6A, all P < 0.001). Multivariate analysis further confirmed the independent prognostic value of these three factors (Figure 6B). Based on these independent prognostic factors, we constructed an integrated nomogram prediction model. Calibration curve analysis showed that the model demonstrated excellent calibration in 1-year, 3-year, and 5-year survival predictions (Figure 6C).
[image: Graphical data analysis containing multiple elements: Panel A shows a forest plot for hazard ratios of various factors with confidence intervals. Panel B displays box plots for different treatments. Panel C shows a scatter plot with a trend line for predicted versus observed values. Panel D presents Kaplan-Meier survival curves for groups, Panel E shows a risk table over years, and Panel F illustrates line graphs comparing metrics across various pathways. Each panel provides statistical insights into experimental data.]FIGURE 6 | Construction and Performance Evaluation of Integrated Prognostic Prediction Model. (A) Forest plot of univariate Cox regression analysis. Shows hazard ratio (HR) and 95% confidence intervals for each clinical feature. (B) Forest plot of multivariate Cox regression analysis. Confirms independent prognostic factors (age, WHO grade, HMRS score). (C) Calibration curves for nomogram model. Shows consistency between predicted and actual survival probabilities at 1-year (red), 3-year (blue), and 5-year (green). Diagonal line represents perfect prediction. (D) DCA. Compares net benefit of different prediction strategies at various risk thresholds. (E) Dynamic comparison of time-dependent C-indices. Shows prediction accuracy of nomogram model (red) versus single prognostic factors at different follow-up time points. (F) Integrated prognostic prediction nomogram. Includes three independent prognostic factors: HMRS score, WHO grade, and age, for individualized prognosis prediction.
Clinical decision curve analysis (DCA) indicated that the integrated nomogram model demonstrated greater net benefit compared to single prognostic factors (Figure 6D). Dynamic analysis of time-dependent C-index showed that the nomogram model’s prediction accuracy (C-index >0.70) consistently outperformed single prognostic factors (Figure 6E). Notably, although age performed well in short-term (1–3 years) prediction, its long-term prediction stability was insufficient. Finally, we established a visual nomogram incorporating HMRS score, WHO grade, and age (Figure 6F), providing an intuitive quantitative tool for clinical prognostic assessment.
3.6 Systematic functional analysis of HMRS-related molecular mechanisms
To elucidate the molecular biological basis of HMRS prognostic stratification, we conducted systematic functional enrichment analysis between high and low-risk groups. GSEA showed that the high-risk group was significantly enriched in multiple cancer-related Hallmark pathways, including Allograft Rejection, E2F Targets, Interferon Gamma Response, MYC Targets V1, and TNFα Signaling via NFκB (Figure 7A, FDR <0.05).
[image: Composite image showing various data analyses. Panel A features a line graph with multiple colored lines representing different datasets. Panel B displays a bar chart with red and blue bars illustrating contrasts in data categories. Panel C presents a heatmap visualizing correlations among multiple variables, labeled diagonally. Panel D includes six individual survival plots, each showing two curves in blue and red, likely representing different groups or conditions. Panel E consists of a table with rows and columns labeling data points. The overall focus appears to be on comparative data visualization and statistical analysis.]FIGURE 7 | Multi-dimensional Functional Analysis of HMRS-Related Molecular Mechanisms. (A) GSEA waterfall plot showing five key pathways significantly enriched in high-risk group. Upper part shows enrichment plots, lower part shows gene expression heatmap. (B) Differential pathways revealed by GSVA analysis between high and low-risk groups. Red and blue indicate upregulated pathways in high-risk and low-risk groups respectively. (C) Correlation heatmap between HMRS scores and key pathway activities. Red and blue indicate positive and negative correlations respectively. (D) Survival analysis of six key pathways. Patients divided into high activity (red line) and low activity (blue line) groups based on pathway activity scores. (E) Forest plot of pathway hazard ratios. Shows degree of impact and 95% confidence intervals of each pathway on prognosis.
Gene Set Variation Analysis (GSVA) further revealed risk stratification-specific signaling pathway activity characteristics (Figure 7B). The high-risk group showed significant activation of TGF Beta Signaling, Mitotic Spindle, and IL6 JAK STAT3 Signaling; while the low-risk group was characterized by Pancreas Beta Cells, Oxidative Phosphorylation, and KRAS Signaling DN. Correlation analysis between HMRS scores and these pathway activity scores further validated these findings (Figure 7C, P < 0.05).
To assess the clinical prognostic significance of key pathways, we selected six most significant signaling pathways for survival analysis, including Epithelial Mesenchymal Transition, Angiogenesis, Glycolysis, Apoptosis, Coagulation, and IL2 STAT5 Signaling. Kaplan-Meier analysis showed that high activity in these pathways was significantly associated with poorer overall survival (Figure 7D, all P < 0.001). Hazard ratio (HR) analysis further confirmed these outcomes and found that the role of Hedgehog signaling pathway as the sole protect prognostic factor (Figure 7E).
3.7 Analysis of somatic mutation spectrum and tumor heterogeneity
To deeply understand the genomic characteristics of LGG patients, we conducted systematic analysis of histone modification gene mutation patterns and tumor heterogeneity. Using MATH (Mutant-Allele Tumor Heterogeneity) scores to quantify intratumoral heterogeneity levels, results showed significant difference between high score group and low score group (Figure 8A, p < 0.001). Survival analysis based on MATH scores indicated that low MATH scores were significantly associated with poorer prognosis (Figure 8B, p = 0.005). Further analysis integrating MATH scores with HMRS risk stratification showed that the “low risk + low MATH” subgroup had the most favorable prognosis (Figure 8C, p < 0.001).
[image: Data visualizations show various genetic analyses. Panel A displays a violin and box plot comparison. Panel B presents a Kaplan-Meier survival curve comparing high and low expression groups. Panel C includes another survival curve with multiple expression groups. Panels D and E illustrate mutation maps with color-coded alterations and frequencies across several samples. Panels F and G provide heatmaps of genetic features, using shades to depict values across different genes and conditions. Each panel is labeled alphabetically from A to G.]FIGURE 8 | Multi-dimensional Analysis of Somatic Mutation Spectrum and Tumor Heterogeneity. (A) Box plot comparison of MATH scores between high and low score groups. (B) Kaplan-Meier survival analysis based on MATH scores. (C) Survival analysis combining MATH scores and risk scores. (D, E) Mutation landscape waterfall plots showing top 20 mutated genes in high-risk (D) and low-risk (E) groups. (F, G) Mutation gene co-occurrence/mutual exclusivity relationship heatmaps for high-risk (F) and low-risk (G) groups.
Through systematic analysis of mutation landscapes in high and low-risk groups (Figures 8D, E), we found: 1) TP53, as a key tumor suppressor gene, had a mutation frequency of 63% in the high-risk group, significantly higher than 28% in the low-risk group; 2) The transcription repressor CIC had a mutation frequency of 4% in the high-risk group compared to 36% in the low-risk group; 3) IDH1 mutations, associated with specific cytogenetic abnormalities and 1p/19q codeletion, showed mutation frequencies of 68% and 85% in high and low-risk groups respectively; 4) ATRX gene, involved in transcriptional regulation and chromatin remodeling, had mutation frequencies of 46% and 20% in high and low-risk groups respectively; 5) Additionally, characteristic mutations in the high-risk group included TTN (16%), while the low-risk group included FUBP1 (15%).
Mutation co-occurrence analysis (Figures 8F, G) revealed that in the high-risk group, TP53 mutations significantly co-occurred with IDH1 and ATRX. In the low-risk group, besides observing co-occurrence patterns of TP53, IDH1, and ATRX, significant mutation co-occurrence characteristics were also found between COL6A3 and PTEN.
3.8 Analysis of immune microenvironment characteristics and model associations
We conducted multi-dimensional analysis of the immune microenvironment in high and low-risk groups. ESTIMATE algorithm assessment results showed (Figures 9A–C) that the high-risk group had significantly higher stromal scores, immune scores, and overall scores than the low-risk group (p < 0.001), suggesting more active immune responses and stromal components in the high-risk group.
[image: A composite of several graphs and charts analyzing expression data. Panels A, B, and C present box plots comparing expression levels in red and blue groups. Panel D is a heatmap showing gene expression variation with a color gradient. Panel E displays a histogram of expression metrics across various categories. Panel F features multiple grouped box plots illustrating expression changes across different conditions. Panel G is another heatmap highlighting expression differences within additional categories. Panel H consists of a bubble chart indicating variable importance, with bubble size representing significance and a color gradient for values.]FIGURE 9 | (A–C) ESTIMATE algorithm assessment of immune microenvironment differences between high and low-risk groups. (A) Stromal Score reflects tumor stromal components; (B) Immune Score quantifies immune cell infiltration levels; (C) ESTIMATE Score comprehensively characterizes tumor microenvironment features. (D) Heatmap of differential immune-related pathway activities between high and low-risk groups identified by ssGSEA algorithm, red indicates pathway upregulation, blue indicates pathway downregulation, color intensity represents degree of difference. (E) Violin plot of infiltration proportion differences of 22 immune cells between high and low-risk groups quantified by CIBERSORT algorithm. Shows distribution characteristics, density, and significant differences of each immune cell type. (F) Box plot of abundance differences of 28 characteristic gene-defined infiltrating immune cell types between high and low-risk groups. Box shows interquartile range, whiskers show 1.5 times interquartile range, outliers shown separately. (G) Correlation heatmap between risk score-related gene expression levels and various immune cell infiltration degrees. Red indicates positive correlation, blue indicates negative correlation, color intensity represents correlation strength. (H) Correlation scatter plot between risk scores and key immune cell infiltration levels. Point size represents absolute value of correlation coefficient, color indicates correlation direction and statistical significance.
Furthermore, ssGSEA algorithm analysis revealed all 15 significantly different immune-related pathways between high and low-risk groups (Figure 9D).
CIBERSORT algorithm analysis of immune cell infiltration characteristics showed (Figures 9E, F): 1) Memory CD4+ T cells were significantly higher in the high-risk group (P < 0.001); 2) Memory B cells, CD8+ T cells, and follicular helper T cells were more abundant in the low-risk group (P = 0.001); 3) Except for CD56dim NK cells, other immune cells generally showed higher expression levels in the high-risk group.
Correlation analysis between key gene expression and immune cell infiltration (Figure 9G) revealed that histone modification genes might participate in LGG progression by regulating immune cell infiltration. Correlation analysis between risk scores and immune cell infiltration (Figure 9H) indicated: 1) Significant positive correlations with memory CD4+ T cells, regulatory T cells, dendritic cells, and neutrophils; 2) Significant negative correlations with naive T cells and memory B cells. These findings suggest that HMRS can effectively quantify the immune status of LGG patients, reflecting significant immune landscape differences among patients with different risk levels.
3.9 Drug sensitivity analysis
Based on the risk score model, we predicted sensitivity differences to common drugs between high and low-risk groups. Through comparison of IC50 values (Figure 10), significant response differences were found for the following drugs: Temozolomide (A), Pazopanib (B), Paclitaxel (C), Rapamycin (D), Sorafenib (E), and Gefitinib (F). These findings provide important references for risk stratification-based individualized medication.
[image: Box plots comparing drug effectiveness across risk groups. Panel A: Temozolomide; Panel B: Pazopanib; Panel C: Paclitaxel; Panel D: Rapamycin; Panel E: Sorafenib; Panel F: Gefitinib. High-risk and low-risk groups are color-coded red and blue, respectively. Each plot includes p-values indicating statistical significance.]FIGURE 10 | Drug Sensitivity Analysis (IC50 values) Between High and Low-risk Groups. (A) Temozolomide: DNA alkylating agent, widely used chemotherapy drug for brain glioma treatment. (B) Pazopanib: Multi-target tyrosine kinase inhibitor, used for treatment of various solid tumors. (C) Paclitaxel: Microtubule protein inhibitor, classic anti-tumor chemotherapy drug. (D) Rapamycin: mTOR pathway inhibitor, with immunosuppressive and anti-tumor effects. (E) Sorafenib: Multi-target tyrosine kinase inhibitor. (F) Gefitinib: EGFR tyrosine kinase inhibitor.
3.10 HPA validation analysis
To further validate the expression characteristics of key genes in the risk model, we selected five genes with the highest weight coefficients (ADK, UGCG, RPN2, CAPZA1, KDELR2) for HPA database immunohistochemical validation (Figure 11). Results showed that all these genes exhibited significantly high expression in LGG tissue.
[image: Ten circular tissue samples are displayed in two rows labeled "N" and "T." The top row includes samples of ANK, UBA2, RHOJ, CAPZA1, KDEL2, and the bottom row shows the corresponding samples with variations in color and texture.]FIGURE 11 | HPA Database Immunohistochemical Validation of Key Gene Expression Characteristics in LGG Tissue. ADK (Adenosine Kinase): Normal brain tissue shows light gray weak positive expression, while glioma tissue shows deep brown moderate to strong positive staining, mainly localized in cytoplasm. UGCG (UDP-Glucose Ceramide Glucosyltransferase): Normal brain tissue shows faint staining with almost no expression, glioma tissue shows obvious brown positive staining in cell membrane and cytoplasm. RPN2 (Ribophorin II): Normal brain tissue shows uniform light gray weak expression, glioma tissue shows uneven dark strong positive staining, mainly localized in endoplasmic reticulum. CAPZA1 (F-Actin-Capping Protein Subunit Alpha-1): Normal brain tissue shows weak expression, glioma tissue shows obvious brown moderate to strong positive staining, distributed in cytoplasm. KDELR2 (KDEL Endoplasmic Reticulum Protein Retention Receptor 2): Normal tissue shows light brown weak expression, glioma tissue shows obvious deep brown strong positive expression, mainly localized in Golgi apparatus.
3.11 Pan-cancer analysis
Our pan-cancer analysis revealed distinct survival patterns across different cancer types and organ systems (Figure 12). Among the 29 cancer types analyzed, four cancer types demonstrated statistically significant associations with survival outcomes (p < 0.05). In the Urinary System, both Kidney Renal Clear Cell Carcinoma (KIRC, HR = 1.72, p = 0.00016) and Kidney Renal Papillary Cell Carcinoma (KIRP, HR = 2.87, p = 0.00077) showed significantly higher risk in the high-risk group. Within the Respiratory System, Lung Adenocarcinoma (LUAD) exhibited significantly poorer outcomes (HR = 1.57, p = 0.0014). Additionally, in the others category, Sarcoma (SARC) demonstrated significantly worse survival (HR = 1.59, p = 0.024).
[image: Forest plot showing a pan-cancer analysis of the RSF model, grouped by organ system. It includes hazard ratios with 95% confidence intervals for various cancers within systems such as breast, gynecologic, digestive, endocrine, and more. Red dots indicate high-risk groups, while gray dots represent non-significant groups, with size reflecting the p-value logarithm.]FIGURE 12 | Pan-cancer analysis of survival outcomes across 29 cancer types stratified by organ systems.
Although not reaching statistical significance, several other cancer types showed notable trends:
	1. Adrenocortical Carcinoma (ACC) displayed a strong tendency toward higher risk (HR = 2.06, p = 0.065).
	2. Liver Hepatocellular Carcinoma (LIHC) showed a trend toward increased risk (HR = 1.35, p = 0.056).
	3. Thymoma (THYM), despite having the highest hazard ratio (HR = 3.55), did not reach statistical significance (p = 0.116), possibly due to limited sample size (n = 121).

Notably, most cancer types (24/29) maintained hazard ratios above 1.0, suggesting a consistent trend toward worse outcomes in high-risk groups across different cancer types, although not all reached statistical significance. However, some cancer types, including Cholangiocarcinoma (CHOL), Head and Neck Squamous Cell Carcinoma (HNSC), Acute Myeloid Leukemia (LAML), Ovarian Serous Cystadenocarcinoma (OV), and Testicular Germ Cell Tumors (TGCT), showed hazard ratios below 1.0, indicating potentially better outcomes in the high-risk group, though these associations were not statistically significant.
4 DISCUSSION
4.1 Significance of histone modification heterogeneity
In this study, we first revealed the cellular heterogeneity characteristics of histone modifications in LGG through multi-omics analysis and developed a prognostic prediction model with clinical application prospects. Single-cell level analysis showed that tumor cells and oligodendrocytes exhibited higher levels of histone modifications, which is consistent with previous reports on the key role of histone modifications in glioma stem cell maintenance (Liu et al., 2024; Zhu et al., 2024; Liu et al., 2023). High levels of histone modifications may promote tumor cell proliferation and stemness maintenance through precise regulation of gene expression networks (Sharma et al., 2023; Shen et al., 2020), and this epigenetic level cellular heterogeneity may be one of the important reasons leading to LGG treatment resistance and recurrence. Based on this finding, we constructed the HMRS prognostic model, which demonstrated excellent predictive performance across multiple independent cohorts. The model’s prediction accuracy was further improved after integration with clinical features. The advantages of the HMRS model lie in its robustness, practicality, and individualization characteristics, providing a new tool for LGG patients’ prognostic assessment and treatment decision-making. These findings not only deepen our understanding of LGG epigenetic heterogeneity (Chaligne et al., 2021) but also provide an operational prognostic assessment method for clinical practice.
4.2 Advantages of the HMRS model
Compared with currently widely used prognostic assessment models, the HMRS model shows unique advantages. Traditional prognostic assessments mainly rely on WHO grading, IDH mutation status, and 1p/19q codeletion as molecular markers. Although these indicators have important prognostic implications, they often cannot fully reflect the molecular heterogeneity and dynamic evolution characteristics of tumors (Eckel-Passow et al., 2015). Recently developed radiomics-based prediction models, such as those combining MRI imaging features with machine learning (Li et al., 2021b), although advantageous in non-invasive assessment, still need improvement in prediction accuracy and stability. In contrast, our HMRS model not only integrates histone modifications as an important epigenetic feature but also ensures its predictive reliability through multi-center validation. Notably, the HMRS model can reflect the epigenetic heterogeneity of tumor cells, giving it potential advantages in predicting treatment response and guiding individualized treatment. Furthermore, the inclusion of clinical features makes it more easily applicable in actual clinical work, an advantage not possessed by other single molecular markers or complex models.
4.3 Molecular mechanisms and pathway analysis
Through functional enrichment analysis of high and low-risk groups, we deeply revealed the molecular mechanisms behind HMRS stratification. The study found multiple key signaling pathways significantly activated in the high-risk group, most notably the TGF-β and IL6-JAK-STAT3 signaling pathways. TGF-β signaling pathway activation may enhance tumor cell invasion and metastasis capabilities through inducing epithelial-mesenchymal transition (EMT) (Meng et al., 2016), while IL6-JAK-STAT3 pathway activation suggests the important role of inflammatory microenvironment in LGG progression, with this chronic inflammatory state potentially promoting tumor malignant progression through multiple mechanisms (Zhang et al., 2023). Meanwhile, we observed significant differential expression of metabolism-related pathways, reflecting the metabolic heterogeneity developed by tumor cells to adapt to malignant proliferation. These findings not only explain the intrinsic mechanisms of prognostic differences between different risk stratification patients at the molecular level but also provide theoretical basis for developing new therapeutic strategies, particularly targeted therapy against these abnormally activated pathways as potential treatment options for high-risk patients. Importantly, the interactions between these pathways form a complex regulatory network, suggesting the need to consider multi-target combined intervention when developing treatment strategies.
Compared to previous studies, the uniqueness of our research lies in being the first to systematically reveal the role of histone modification-mediated signaling pathway networks in LGG progression. Previous studies mainly focused on single pathways, such as IDH mutation-mediated metabolic reprogramming reported by Wang et al. (2023), or Guo et al. (2023)’s discovery of Notch signaling regulation in glial cell development and tumorigenesis. Through integrative analysis, our study not only confirmed the importance of these known pathways but also discovered complex regulatory relationships between them. Notably, we found that the TGF-β signaling pathway may influence global epigenetic states by regulating histone-modifying enzyme expression, a finding that echoes Mao et al. (2020)’s recent discovery in glioma but is the first report in LGG. Furthermore, our study first revealed potential connections between inflammatory pathways and metabolic reprogramming, providing new perspectives for understanding LGG heterogeneity and theoretical basis for developing multi-target combination therapy strategies.
4.4 Immune microenvironment characteristics
Further pathway analysis revealed comprehensive activation of both innate and adaptive immune response networks in high-risk patients. The enrichment of pattern recognition receptor pathways (RIG-I-like, NOD-like, and Toll-like receptor signaling) indicates heightened innate immune surveillance, potentially triggered by tumor-derived danger signals. The concurrent activation of B cell receptor signaling pathway, T cell receptor signaling pathway, and natural killer cell-mediated cytotoxicity suggests broad engagement of adaptive immune responses. The upregulation of leukocyte transendothelial migration and chemokine signaling pathways points to active immune cell trafficking within the tumor microenvironment. Additionally, the enrichment of antigen processing and presentation pathways, along with the complement and coagulation cascades, indicates robust immune recognition and response mechanisms. However, despite this extensive immune activation, the apparent ineffectiveness in tumor control suggests potential immune dysfunction or suppression. The enhanced FC gamma R-mediated phagocytosis pathway might reflect increased clearance of antibody-coated tumor cells, yet the overall immune response appears insufficient to prevent disease progression in high-risk patients. These pathway alterations, combined with the observed immune cell composition changes, paint a picture of a complex but potentially dysfunctional immune response that may contribute to tumor progression (Giannone et al., 2020; Kaur et al., 2022).
Then, our study revealed close associations between HMRS risk stratification and tumor immune microenvironment through multi-dimensional analysis. Through ESTIMATE algorithm analysis, we found that high-risk group patients showed significantly elevated immune scores and stromal scores, suggesting the existence of a more complex immune regulatory network. Notably, we observed significantly increased memory CD4+ T cells in the high-risk group, while other immune cells such as memory B cells, CD8+ T cells, and follicular helper T cells showed relative deficiency. This immune cell component remodeling may reflect the establishment of tumor immune escape mechanisms. Meanwhile, the activation of multiple immune-related signaling pathways, including RIG-I-like receptor signaling pathway, B cell receptor signaling pathway, and Toll-like receptor signaling pathway, further supports the key role of immune microenvironment in LGG progression. These findings not only deepen our understanding of the LGG immune microenvironment but more importantly provide new perspectives for developing immunotherapy strategies. Particularly for high-risk patients, rebuilding effective anti-tumor immune responses, such as enhancing memory CD8+ T cell function or regulating specific immune pathway activity, may become important strategies for improving treatment efficacy. Additionally, these immune characteristic differences suggest the need to consider individualized immune microenvironment differences when designing treatment plans, potentially requiring treatment strategy adjustments based on patients’ immune status, including whether to combine immune checkpoint inhibitors and other immunotherapy approaches.
4.5 Clinical applications and drug sensitivity
In terms of drug applications, temozolomide, the standard first-line treatment for LGG, showed significant therapeutic differences between high-risk and low-risk groups (Tomar et al., 2021), providing direct guidance for clinical medication decisions. Meanwhile, we observed that the high-risk group demonstrated good sensitivity to certain multi-target tyrosine kinase inhibitors such as pazopanib (Miyamoto et al., 2018), which is consistent with the abnormal pathway activation patterns we previously identified. Interestingly, high-risk group patients also showed increased sensitivity to traditional chemotherapy drugs like paclitaxel (Alqahtani and Aleanizy, 2019), suggesting that cell cycle regulation may be a crucial factor affecting drug response. Individualized treatment strategies not only hold promise for improving therapeutic outcomes but may also reduce unnecessary drug toxicity, thereby enhancing patients’ quality of life.
4.6 Pan-cancer applications and developmental biology perspective
Our pan-cancer analysis demonstrates that the model initially developed for LGG exhibits predictive value across multiple cancer types, achieving statistical significance particularly in kidney cancers (KIRC, KIRP) and lung adenocarcinoma (LUAD). This cross-organ system predictive capacity can be understood through the lens of evolutionary conservation in developmental biology. Although these tissues originate from different germ layers (neuroectoderm vs. mesoderm), they share several key regulatory networks during embryonic development.
Notably, kidney development involves complex mesenchymal-epithelial transition (MET) and neuroectoderm-mesoderm interactions, which share many similarities with cell fate determination mechanisms in neural system development. For instance, WT1 and the PAX gene family play crucial roles in both kidney and neural system development (Discenza et al., 2003; Ochi et al., 2022). Similarly, lung development requires precise EMT and complex cell lineage determination, sharing multiple regulatory pathways with neural crest cell migration and differentiation mechanisms (Jolly et al., 2018). These common developmental features may explain why epigenetic markers derived from neural system tumors demonstrate significant predictive value in these cancer types.
From an evolutionary developmental perspective, this conservation of predictive features reflects the shared pluripotent state and fundamental regulatory mechanisms of different tissues during early embryonic development. Despite subsequent divergence in differentiation pathways, the basic epigenetic regulatory networks remain highly conserved throughout evolution.
4.7 Limitations and future directions
Although our study has made several important discoveries in LGG histone modifications and prognostic prediction, there are still some limitations that need to be addressed in future research. The primary limitation is the lack of prospective clinical validation; although our model has demonstrated good predictive performance across multiple independent cohorts, its performance in real clinical settings still needs to be verified through prospective studies. Secondly, the functional mechanisms of key genes still need more experimental data support, particularly in vivo and in vitro functional experiments will help to deeply understand these genes’ specific roles in LGG progression. Additionally, while drug sensitivity analysis provides important clues for individualized treatment, these predicted results still need to be validated through standardized clinical trials for accuracy and reliability. Finally, the dynamic nature of epigenetic modifications suggests that longitudinal sampling might provide additional insights not captured in our current cross-sectional analysis. Based on these limitations, we have planned several important future research directions: first, we will conduct multi-center prospective clinical studies to systematically evaluate the clinical application value of the HMRS model; second, through in-depth molecular biology experiments, we will elucidate the regulatory mechanisms of key genes and their roles in tumor progression; third, we will explore individualized combination treatment strategies based on risk stratification, particularly in optimizing combinations of immunotherapy and targeted therapy; finally, we plan to integrate multi-modal data such as radiomics and metabolomics to develop more comprehensive and precise prediction models. These studies will help to further improve the diagnosis and treatment level of LGG patients, ultimately achieving better clinical outcomes.
5 CONCLUSION
This study establishes a novel HMRS for LGG through comprehensive multi-omics analysis. The model demonstrates robust predictive performance across multiple independent cohorts and reveals distinct molecular and immune characteristics between risk groups. High-risk tumors show activation of specific signaling pathways (particularly TGF-β and IL6-JAK-STAT3), distinct mutation profiles, and unique immune cell infiltration patterns. The model also provides valuable insights into drug sensitivity, suggesting potential therapeutic strategies for different risk groups. Furthermore, pan-cancer analysis indicates the model’s broader applicability across multiple cancer types, particularly in kidney and lung cancers. While the model shows promise for clinical application in personalized treatment planning, future prospective studies are needed to validate its clinical utility. This integrated approach advances our understanding of LGG biology and offers a framework for improving patient care through molecular-based risk assessment and treatment selection.
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Introduction: DNA methylation inhibitors have been approved for the prevention of Acute Myeloid Leukemia (AML), and their safety profile is not fully characterized. This study was aimed at evaluating the adverse drug reactions (ADRs) of DNA methylation inhibitors by analyzing the individual case safety reports (ICSRs) collected in the EudraVigilance (EV) database.Materials and methods: The EV database managed by the European Medicines Agency was adopted. The standardized medical terminology set MedDRA was utilized. The ICSRs data of DNA methylation inhibitors for the treatment of acute myeloid leukemia originated from the EV database (2005–2024). A descriptive exploration of the combined data from EV was undertaken to assess the age, gender of patients, severity and outcome of ADR, event year, geographical origin and the qualification of the reporting source. A comprehensive assessment was made for severe ADR cases. By means of the Reporting Odds Ratio (ROR) and 95% Confidence Interval (CI), a non-proportional analysis was made for MedDRA® SOC in DNA methylation inhibitors. Statistical analysis was executed with SPSS version 23.0, and p < 0.05 was regarded as statistically significant.Result: The study reveals that reports related to AZACITIDINE increased from 2005 to 2023, with a slight decline in 2024, while those for DECITABINE have been on the rise since 2007. ICSRs were associated with a majority of males and individuals aged 65–85. Healthcare professionals frequently reported ICSRs related to DNA methylation inhibitors. A significant portion of these ICSRs were serious and completely resolved. The most common ADRs were identified, and certain ADRs had a higher reporting probability with AZACITIDINE (e.g., Febrile neutropenia, Anamia, etc.) and others with DECITABINE (e.g., Myelosuppression, Thrombocytopenia, etc.).Conclusion: The analysis regarding ADRs of DNA methylation inhibitors was consistent with the literature information disclosed. AZACITIDINE and DECITABINE each have ADRs with a high probability of being reported. Although the study has the advantage of using the database, it is limited by the spontaneous reporting system. Future improvements are needed to accurately evaluate the safety of the drugs.Keywords: DNA methylation inhibitors, adverse drug reactions, system organ class, eudravigilance database, comparative observational study, azacitidine, decitabine
INTRODUCTION
Acute myeloid leukemia is a malignant disorder of hematopoietic stem cells, which is characterized by the explosive proliferation of myeloid blasts, expansion and differentiation arrest. This leads to ineffective normal hematopoiesis and life-threatening cytopenia and transfusion dependence (DiNardo et al., 2023), along with severe infections, anemia and bleeding (Short et al., 2018). Acute myeloid leukemia can affect individuals of all age groups; it is frequently seen in the elderly, with the median age at diagnosis being 68 years, and over two-thirds of the diagnoses of acute myeloid leukemia occur in patients aged 55 or above (Sasaki et al., 2021).
DNA methylation constitutes a crucial epigenetic modification modality (Marx, 2016). DNA methylation is indispensable to imprinting, X inactivation, and the silencing of pluripotent or tissue-specific genes, thereby governing embryonic development. It mainly acts on gene expression. Under normal conditions, the methylation status of CpG islands in the promoter region of specific genes is appropriate to regulate transcription. When abnormal, excessive methylation of tumor suppressor genes will cause them to be silent, and hypomethylation of proto-oncogenes will lead to their overexpression, increasing the risk of tumors and promoting abnormal proliferation and transformation of cells. Its abnormality will lead to malignant transformation of cells and disrupt the regulation of the cell cycle, cell apoptosis and DNA damage repair mechanisms (Gros et al., 2012). This is the pathogenesis of many diseases, such as neurological disorders, cardiovascular diseases and cancer (Li et al., 2024).
AZACITIDINE and DECITABINE are common DNA methylation inhibitors in recent years and hold significant positions in disease treatment. They are mainly utilized for treating hematological disorders such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) (Sorrentino et al., 2021). After AZACITIDINE is incorporated into DNA within cells, it can form a covalent complex with DNA methyltransferase. Under normal circumstances, DNA methyltransferases are responsible for adding methyl groups to specific regions of DNA. Once they are inactivated, they can no longer catalyze the DNA methylation reaction, thereby preventing the occurrence of DNA methylation. In tumor cells, the promoter regions of many tumor suppressor genes are in a silent state due to excessive methylation and cannot be expressed normally to exert the function of inhibiting the growth of tumor cells. This inhibitory effect enables the re-expression of tumor suppressor genes that were previously silenced due to excessive methylation, restoring their normal cellular regulatory functions and subsequently exerting anti-tumor effects (Sullivan et al., 2005).DECITABINE, on the other hand, irreversibly binds to DNA methyltransferase, causing its consumption and reducing its content within cells. Due to the reduction in the number of DNA methyltransferases, their ability to catalyze DNA methylation also decreases, thereby reducing the overall DNA methylation level of the cells. This allows the expression of some key genes to be restored, alters the biological characteristics of tumor cells, inhibits the growth and survival of tumor cells, induces their differentiation into normal cells or prompts their apoptosis, ultimately achieving the purpose of tumor treatment (Stresemann and Lyko, 2008).
In AML, abnormal DNA methylation is one of the most commonly observed alterations. Recent studies have shown that specific DNA methylation patterns are characteristic of AML. Correspondingly, epigenetic therapies (such as hypomethylating agents) have shown significant activity in AML (Schoofs and Muller-Tidow, 2011).
However, studies centered on ADRs associated with all DNA methylation inhibitors and founded on a spontaneous reporting system (SRS) database are lacking. Several concerns merit discussion. Therefore, this study was aimed at evaluating the ADRs of DNA methylation inhibitors by analyzing the ICSRs collected in the EV database.
MATERIALS AND METHODS
Data collection and collation
The EV database, managed by the European Medicines Agency, is employed for collecting and monitoring the data of suspected adverse drug reactions of authorized drugs within the European Economic Area (EEA). It offers valuable information for evaluating the risks and benefits of drugs and guaranteeing public medication safety, encompassing various significant data related to drugs. The EV database is mainly categorized into two principal modules. The Post-authorization Module of EudraVigilance (EVPM) deals with spontaneous reports and non-interventional studies. Its role is to collect and analyze the suspected ADRs that arise during the actual use of drugs after their marketing, facilitating the monitoring of the safety of drugs in widespread applications. The Clinical Trials Module of EudraVigilance (EVCTM) concentrates on adverse drug reaction reports related to interventional studies. This module is beneficial for evaluating the possible adverse reactions of drugs in a strictly controlled clinical trial environment, furnishing a basis for drug approval and regulatory decisions.
The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) develops and maintains MedDRA, a standardized medical terminology set that is widely applied in global drug regulatory affairs, with the intention of facilitating the consistency, accuracy, and clarity of data in drug research and development and regulation. It covers various medical terms such as symptoms, signs, disease diagnoses, etc. It has a multi-level structure including SOC, High-Level Term (HLT), Preferred Term (PT), etc., which enables more precise and detailed encoding and classification of medical information.
The data of ICSRs for DNA methylation inhibitors (identified as suspected drugs) used for the treatment of acute myeloid leukemia originated from the EV database (accessed on 25 October 2024), covering the relevant data from 2005 to 2024, including all ICSR cases of azacitidine and decitabine recorded from the drug approval time to 2024. All pre-market ICSRs with supporting literature data were excluded before conducting further analysis. Additionally, to prevent treatment bias, all ICSRs with other indications and more than one reported suspected drug were also eliminated. The selection for the analysis was determined based on the use of the SOC of the Medical Dictionary for Regulatory Activities (MedDRA®) of “Cardiac Disorders” or “Blood and Lymphatic System Disorders”.
This study utilized a public database. To ensure that the research met ethical standards, we took the following measures: Firstly, the obtained data were strictly anonymized to protect the privacy of data providers. Secondly, we confirmed the usage license of the database employed to guarantee that our research activities were conducted within a legal and compliant framework.
Descriptive analysis
A descriptive analysis was conducted on the aggregated data from EV to evaluate the following criteria: the age and gender of patients, ADR information (severity and outcome), the year of the event, geographical origin, and the qualifications of the primary reporting source. According to the International Council for Harmonisation E2D guidelines, ADRs are classified as severe under specific conditions: if they are considered as death or life-threatening situations, if they are considered as cases of hospitalization or prolongation of existing hospital stays, if they are considered as cases of persistent or severe disability/incapacity, if they are considered as cases of congenital anomalies or defects, or if they are included in the list of Important Medical Events (IME) updated by the European Medicines Agency based on MedDRA® every 6 months. The outcomes of ADRs are classified as “recovered/resolved”, “recovering/resolving”, “recovered/resolved with sequelae”, “not recovered/not resolved”, and “fatal”. If there are two or more ADRs with different outcomes in a single ICSR, then the outcome with the lowest resolution should be picked out and used for classification.
Comprehensive assessment of severe ADRs cases
A comprehensive assessment was conducted on severe ADR cases, with a focus on severity criteria (life-threatening, disabling, and fatal).
Disproportionate analysis
Furthermore, a disproportionate analysis was carried out using the ROR and the corresponding 95% CI to evaluate the reporting frequency of ADRs for MedDRA® SOC in DNA methylation inhibitors. The reference group included all DNA methylation inhibitors except the one of interest. If the total number of cases reached or exceeded three, the ROR and 95% CI were evaluated.
Statistical software and significance determination
Statistical analysis was carried out using version 23.0 of the Statistical Package for the SPSS for Windows (provided by IBM SPSS Statistics). All analyses conducted through SPSS were regarded as statistically significant if the p-value was less than 0.05.
RESULT ATTRIBUTES OF ICSRS
The trend over the years shows that the reports related to AZACITIDINE continued to increase from 2005 to 2023, until there was a small decline in 2024. While the reports related to DECITABINE have been continuously increasing from 2007 to 2024 (Figure 1).
[image: Line graph showing the number of cases reported from 2005 to 2023 for 2,4-Dinitrotoluene and Dicyclopentadiene. 2,4-Dinitrotoluene cases rise sharply from 66 in 2013 to 2,643 in 2023. Dicyclopentadiene cases increase gradually, reaching 472 in 2023.]FIGURE 1 | Trend over the years of AZACITIDINE and DECITABINE, ICSRs individual case safety reports.
Substantially, ICSRs were associated with females (37.5%), males (55.4%), and individuals aged 65–85 years (52.6%). Healthcare professionals reported ICSRs related to DNA methylation inhibitors at a higher frequency (90.3%). A greater proportion of DNA methylation inhibitors-related ICSRs were serious and completely resolved (n = 7559; 47.0%) (Table 1).
TABLE 1 | Characteristics of ICSRs for DNA methylation inhibitors reported in EV.
[image: A table comparing characteristics of patients treated with Azacitidine and Decitabine, including total figures. Age groups, patient sex, primary source qualifications and countries for regulatory purposes, type of seriousness, and outcomes are listed. Azacitidine data shows notable distribution in age group 65–85 years (52.6%), with majority being male (55.4%), mainly reported by healthcare professionals (90.3%) from non-European areas (68.3%). Serious cases are 18,680, primarily under medically important conditions (72%). Outcomes include 48.1% recovered and 29.9% not resolved. Decitabine figures follow similar patterns, with differences in percentages. Total population is 16,094.]The most commonly reported ADRs were Febrile neutropenia (n = 1738; 18.8%), Anemia (n = 826; 8.9%), Cytopenia (n = 372; 4.0%), Bone marrow failure (n = 91; 1.0%), Pericarditis (n = 74; 0.8%), Cardiac disorder (n = 42; 0.5%), Myelosuppression (n = 1950; 21.1%), Thrombocytopenia (n = 997; 10.8%), Leukopenia (n = 466; 5%), and Hematotoxicity (n = 158; 1.7%). With AZACITIDINE, a higher likelihood of reporting was demonstrated for Febrile neutropenia (ROR = 1.27; 95%CI = 1.10–1.47), Anamia (1.49; 1.20–1.86), Cytopenia (1.49; 1.07–2.07), Bone marrow failure (2.54; 1.11–5.81), Pericarditis (4.42; 1.39–14.03), and Cardiac disorder (7.52; 1.04–54.69), while with DECITABINE, it was for Myelosuppression (1.46; 1.30–1.63), Thrombocytopenia (1.21; 1.03–1.43), Leukopenia (4.44; 3.69–5.34), and Hematotoxicity (4.15; 3.02–5.70; Table 2).
TABLE 2 | ROR of ICSRs with ADRs belonging to the SOC “Blood and lymphatic system disorders” or “Cardiac disorders” via PT for the comparison of DNA methylation inhibitors.
[image: Table detailing adverse events associated with Azacitidine and Decitabine in blood, lymphatic, and cardiac categories. Each condition is listed with the number of cases (N) and reporting odds ratio (ROR) with confidence intervals (CI). Significant RORs are highlighted in bold (e.g., febrile neutropenia for Azacitidine: 1.27, anemia: 1.49, pericarditis: 4.4). Data includes total case counts.]We conducted an in-depth study on the top 20 ADRs reported for each DNA methylation inhibitor in the SOCs, and a total of 152 identical signals were found in the PTs of the two inhibitors. All common signals were sorted and recorded in Table 3. Among them, the SOC with the most adverse signals was General disorders and administration site conditions, and the top five were Death, Condition aggravated, Drug Intolerance, Disease progression, and Mucosal inflammation. Next was Infections and infestations, and the top five were Infection, Sinusitis, Neutropenic sepsis, Urinary tract infection, and Staphylococcal infection.
TABLE 3 | Same ADRs among two DNA methylation inhibitors.
[image: Table listing adverse drug reactions (ADRs) categorized by system organ classes with corresponding signal numbers. Categories include blood and lymphatic system disorders with a signal of 10, cardiac disorders (10), gastrointestinal disorders (13), general disorders (7), hepatobiliary disorders (4), immune system disorders (5), infections and infestations (19), injury and procedural complications (7), metabolism disorders (5), musculoskeletal disorders (5), neoplasms (5), nervous system disorders (4), psychiatric disorders (1), renal disorders (4), respiratory disorders (11), skin disorders (9), and vascular disorders (4). Each category lists specific ADRs related to that class.]When comparing the top 20 ADRs of the two drugs in the SOCs, we found that there were differences in the PTs of many ADRs between the two inhibitors, such as Blood and lymphatic system disorders, Cardiac disorders, Gastrointestinal disorders, etc. (Table 4). The respective numbers of unique symptoms for AZACITIDINE and DECITABINE were 70 and 84.
TABLE 4 | Different ADRs among two DNA methylation inhibitors.
[image: Comparison table of side effects for Azacitidine and Decitabine across various system organ classes. Categories include blood disorders, cardiac disorders, general disorders, hepatobiliary disorders, infections, nervous system disorders, and more. Each column lists specific side effects associated with the respective drug.]DISCUSSION
As far as our knowledge extends, this is the inaugural study that investigates the ADRs associated with DNA methylation inhibitors by means of the analysis of the EV database. DNA methylation inhibitors are of great significance in the field of clinical treatment (Zhang et al., 2024), especially in tumor therapy. They can inhibit DNA methyltransferases, demethylate and restore the expression of tumor suppressor genes, thereby restricting the proliferation of tumor cells and inducing differentiation and apoptosis. They can also upregulate differentiation genes, enhance chemotherapy sensitivity, and activate the body’s immunity to fight tumors. Ever since the emergence of DNA methylation inhibitors, the therapeutic panorama of acute myeloid leukemia has undergone a radical transformation (Sestakova et al., 2022). The rapid onset of action, outstanding patient response and favorable safety profile render DNA methylation inhibitors treatment the premier therapeutic option for acute myeloid leukemia (Li et al., 2016; Bullinger et al., 2010; Issa et al., 2015). They can reactivate tumor suppressor genes that have been silenced by abnormal methylation. In AML, some key tumor suppressor genes will lose their function due to excessive DNA methylation (Yang et al., 2019; Perez et al., 2013). DNA methylation inhibitors can reverse this process and restore the normal expression of these genes, thereby exerting the effects of inhibiting tumor cell growth and promoting cell apoptosis (Uddin and Fandy, 2021). Moreover, DNA methylation inhibitors contribute to altering the epigenetic state of leukemia cells, enabling the cells to regain sensitivity to other therapeutic approaches (Cheng et al., 2019).This implies that they can be combined with traditional chemotherapeutic drugs or targeted therapeutic drugs to enhance the overall therapeutic effect and increase the remission rate and survival rate (Das, 2018). In this study, ICSRs related to DNA methylation inhibitors presented certain characteristics. For instance, the trend of reports indicated that the reports of AZACITIDINE continuously increased from 2005 to 2023 and slightly declined in 2024; the reports of DECITABINE have been on the rise since 2007. Regarding the gender and age distribution, ICSRs mainly involved males (55.4%) and individuals aged 65–85 (52.6%). Healthcare professionals had a higher reporting frequency (90.3%). These data reflect the occurrence of adverse reactions in the practical application of DNA methylation inhibitors and are of great significance for evaluating their safety.
The analysis found that men and the 65–85 age group had a relatively high proportion in ICSRs. The possible reasons are that the incidence of AML is higher in the elderly population (Abdallah et al., 2020), and men in this age group may be more likely to fall ill or receive relevant treatments, thereby resulting in a relatively large number of reports (Short et al., 2018). Additionally, differences in drug metabolism among different genders and age groups may also affect the occurrence and reporting of adverse reactions (LeBlanc et al., 2024). The high proportion of serious ICSRs indicates that the adverse reactions of DNA methylation inhibitors cannot be ignored. This may be related to the severity of the disease and the poor basic health status of AML patients themselves. The ADRs with a higher reporting probability for AZACITIDINE include febrile neutropenia, anemia, cytopenia, bone marrow failure, pericarditis, and cardiac disorders, etc. Febrile neutropenia may be related to the inhibition of the drug on the hematopoietic function of the bone marrow, resulting in a decrease in neutrophil production and thereby increasing the risk of infection (Patel and West, 2017). The occurrence of these ADRs may adversely affect the treatment process of patients, such as increasing the risk of infection, reducing the quality of life, and affecting treatment compliance, etc. The ADRs with a higher reporting probability for DECITABINE are myelosuppression, thrombocytopenia, leukopenia, and hematotoxicity, etc. Myelosuppression is a common adverse reaction of such drugs, which affects the production of various blood cells in the bone marrow, resulting in a decrease in the number of peripheral blood cells (Nian et al., 2024). Thrombocytopenia may increase the risk of bleeding in patients, and leukopenia makes patients more prone to infection.
Studies have shown that both AZACITIDINE and DECITABINE have relatively high reporting probabilities of ADRs, which are of great reference value for clinicians’ initial drug selection. For example, when patients with poor basic conditions and high infection risk use AZACITIDINE, special attention should be paid to ADRs such as febrile neutropenia and anemia, and strengthened monitoring and preventive supportive treatment should be adopted; when patients with good bone marrow reserve function but poor tolerance to hematological toxicity use DECITABINE, attention should be focused on ADRs such as bone marrow suppression and thrombocytopenia, and blood transfusion support should be planned in advance if necessary. The key to reducing the occurrence of ADRs lies in personalized adjustment of drug doses based on individual characteristics of patients (age, weight, physical condition, gene mutation status, etc.). For elderly patients or those with liver and kidney dysfunction, the initial dose should be appropriately reduced due to the possible decrease in their ability to metabolize and excrete drugs, and then gradually adjusted according to the patient’s tolerance and treatment response. During treatment, closely monitor the treatment response and ADRs. When ADRs occur, reduce or suspend the drug in a timely manner according to the severity, and resume carefully after the ADRs are relieved, maintaining at a lower dose or adjusting the plan.
This study offers an overview regarding the safety of DNA methylation inhibitors, and the utilization of the EV database presents considerable advantages. This database is capable of collecting a large amount of real-world ICSRs data, which is helpful for discovering rare or delayed ADRs and providing more comprehensive information for drug safety assessment. Especially for newly approved or less frequently used drugs, this database-based analysis can provide early safety signals and offer important references for the subsequent development, regulatory decisions, and clinical applications of drugs. In future studies, ADR management is indispensable, and its importance is reflected in many aspects: it can not only alleviate adverse reactions such as anemia and gastrointestinal discomfort to ensure the continuity of treatment, but also flexibly adjust the plan according to the patient’s condition; it not only focuses on improving the quality of life of patients to help them receive treatment in a good physical and mental state, but also reduces the risk of complications such as infection and bleeding, comprehensively helping to improve the treatment effect.
Through the analysis of a large amount of data, we can describe more accurately the characteristics of adverse reactions of DNA methylation inhibitors in different populations, providing a basis for individualized treatment. However, this study also has certain limitations. The spontaneous reporting system itself has some inherent problems. For example, data missing may lead to incomplete partial information, affecting the comprehensive assessment of adverse reactions; report duplication may cause data redundancy, interfering with the judgment of the true incidence rate; the lack of the denominator (i.e., the total number of patients with acute myeloid leukemia who have received treatment) makes it impossible for us to accurately calculate the incidence rate of adverse reactions. We can only assess the relative frequency through methods such as the ROR, which has certain limitations. Additionally, there may be underreporting phenomena. Some mild or atypical adverse reactions may not be reported, thereby underestimating the actual adverse reaction risk of the drug. In terms of sample size, although a certain number of ICSRs have been collected, the analysis of some rare adverse reactions may still be insufficient. The study’s time range may also have an impact on the results. For instance, over time, the usage of drugs and patient characteristics may change, and these changes may not be fully covered within the time span of this study. The analysis method (such as ROR analysis) also has its limitations. It can only indicate the degree of association between the drug and adverse reactions and cannot determine the causal relationship. Further studies are needed for verification. Future studies can consider integrating multiple data sources, improving data collection methods, expanding the sample size, extending the study time, and adopting more advanced analysis methods to overcome these limitations and assess the safety of DNA methylation inhibitors more accurately.
Although the current research indicates that DNA methylation inhibitors (such as AZACITIDINE and DECITABINE) have certain therapeutic effects in the treatment of acute myeloid leukemia (AML), single-drug therapy has limitations. Subsequent studies can focus on exploring the optimal regimens for combination use with other new targeted drugs (such as FLT3 inhibitors, IDH inhibitors, etc.), including drug combinations, dose ratios, administration sequences, and treatment cycles. The safety and efficacy of combination therapy can be evaluated through large-scale clinical trials to improve the remission rate and survival rate of patients. Additionally, as the treatment progresses, some patients may develop resistance to DNA methylation inhibitors. In the future, in-depth research can be conducted on the molecular mechanisms related to drug resistance, such as mutations in DNA methyltransferase genes, changes in epigenetic modifications, and the influence of the tumor microenvironment, to find new targets and strategies to overcome drug resistance, and to develop targeted resistance-reversal agents or new therapeutic drugs to improve the treatment effect of patients with drug resistance. When using DNA methylation inhibitors in individualized therapy, first, the gene mutation status is crucial for the selection and use of DNA methylation inhibitors. Different gene mutations may affect the sensitivity and reactivity of tumor cells to the drugs. For example, if a patient has specific gene mutations closely related to DNA methylation, it may be necessary to adjust the dose of the inhibitor or select a specific type of inhibitor. Age is also a key factor. For young patients, their physical functions are usually better and they may be able to tolerate higher doses or more intensive treatment regimens. However, elderly patients may need to reduce the drug dose due to reasons such as organ function decline and decreased metabolic capacity to avoid serious side effects. Comorbidities also affect treatment decisions. If the patient has comorbidities such as cardiovascular diseases, liver and kidney function disorders at the same time, the metabolism and excretion of the drug may be affected. Therefore, it is necessary to carefully select the dose and treatment cycle, and closely monitor the adverse reactions of the drug.
CONCLUSION
The analysis of ADRs related to DNA methylation inhibitors was in accordance with the information reported in the literature. The reports in the study were mostly submitted by healthcare professionals. The proportion of serious ICSRs cannot be ignored, and AZACITIDINE and DECITABINE each have ADRs with a high probability of being reported. For AZACITIDINE, the ADRs with a higher reporting probability are febrile neutropenia, anemia, cytopenia, bone marrow failure, pericarditis, and cardiac disorders. For DECITABINE, they are myelosuppression, thrombocytopenia, leukopenia, and hematotoxicity. Although the study benefits from the utilization of the database, it is constrained by the spontaneous reporting system. Future enhancements are requisite to precisely assess the safety of the drugs. In practical applications, doctors need to comprehensively consider all the various factors we mentioned earlier. The gene mutation status of the patient can be clarified through genetic testing, and the overall health status of the patient can be evaluated in combination with age and comorbidities. Before the start of treatment, an individualized treatment plan should be formulated, including the initial dose, treatment interval and expected treatment cycle. During the treatment process, closely monitor the patient’s response, such as symptom improvement and changes in blood indicators, and adjust the treatment plan in a timely manner according to the monitoring results to achieve the best treatment effect and the least adverse reactions.
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Introduction: Colorectal cancer (CRC) is a leading cause of cancer-related mortality globally. Although tumor immunotherapy is widely recognized for treating unresectable CRC, challenges such as ineffective immunotherapy and drug resistance remain prevalent. While intratumor microbiome-derived butyrate has been implicated in promoting lung cancer metastasis, its role in CRC chemoresistance is not well understood. This study aimed to explore the relationship between intratumor butyrate and chemoresistance in CRC.Methods: We performed a comprehensive analysis of the microbiome composition in CRC patients with varying resistance-free survival (RFS) durations, utilizing 16S rRNA sequencing. Furthermore, we assessed the prognostic significance of circulating microbiome DNA (cmDNA) and examined the effects of exogenous butyrate supplementation on the chemosensitivity of CRC cell lines.Results: Our 16S sequencing analysis revealed a reduction in microbial diversity within tumor samples of patients with resistance, as indicated by metrics such as observed taxonomic units, Shannon, and Simpson indices. Notably, Roseburia and Fusobacteria emerged as prominent biomarkers for the resistance group, whereas Bifidobacterium, Helicobacter, and Akkermansia were identified as biomarkers for the non-resistant group. Utilizing a Lasso regression model, we identified six genera-Roseburia, Helicobacter, Gardnerella, Flavonifractor, Coprococcus, and Anaerostipes-that significantly correlated with recurrence-free survival. Furthermore, both the intratumor microbiome signature and circulating microbiome DNA were effective in accurately predicting CRC resistance. Experimental assays, including CCK8 and wound-healing, demonstrated that intratumor microbiome-derived butyrate enhances the proliferation and migration of HCT15 cells in a time- and concentration-dependent manner. Cell survival analysis further indicated that butyrate treatment significantly increased the IC50 value, suggesting heightened drug resistance in HCT15 cells. Mechanistically, this resistance was attributed to butyrate’s activation of the PI3K-AKT signaling pathway.Conclusion: Our results suggest that intratumor microbiome-derived butyrate contributes to chemoresistance in colorectal cancer, highlighting the potential prognostic and therapeutic significance of the intratumor microbiome.Keywords: colorectal cancer, chemoresistance, microbiome, butyrate, biomarkers
1 INTRODUCTION
Colorectal cancer (CRC) has ascended to prominence as an aggressive and life-threatening malignancy, presenting formidable challenges to both patient survival and therapeutic efficacy (Li et al., 2024a). It currently ranks as the third most frequently diagnosed cancer globally and exists as the fourth leading cause of cancer-related mortality worldwide, with its incidence predicted to escalate by 60% by 2030 (Ferlay et al., 2013). The primary therapeutic modalities for CRC currently entail a combination of surgical intervention and chemotherapeutic intervention, wherein 5-fluorouracil (5-FU) emerging as the predominant pharmaceutical agent in the majority of treatment regimens (Li et al., 2024c). Notably, the emergence of drug resistance, particularly pertaining to 5-FU and docetaxel, which are widely acknowledged as conventional therapeutic modalities, has contributed to a progressive decline in the efficacy of curative interventions (Vodenkova et al., 2020). Furthermore, it is noteworthy that the administration of 5-FU may perturb the composition of the gastrointestinal microbiota, thereby compromising gut barrier integrity and promoting an inflammatory environment within the colon (Cai et al., 2021; Ren et al., 2024). Consequently, there arises an imperative to identify novel molecular targets to overcome treatment resistance and prolong patient survival rates.
The aberrant microbiome has emerged as a novel hallmark of cancer, intricately entwined with the multifaceted processes of cancer progression. The biological role of specific bacteria within this context is often highly context-dependent (Ma et al., 2024; Li et al., 2024b). Increasing evidence implicates intestinal microenvironmental dysfunction as being intimately associated with CRC development. Perturbations in the composition and relative abundance of the gut microbiota can disrupt its balance and homeostasis, precipitating alterations in intestinal barrier function (Wong and Yu, 2023; Wong and Yu, 2019). Notably, a symbiotic interaction exists between the gut microbiota and CRC, as evidenced by sequencing studies that have uncovered shifts in microbial composition and ecological dynamics in CRC patients. For instance, Fusobacterium has been reported to be enriched in lesions and stools of individuals with CRC (Yachida et al., 2019; Wang et al., 2022). Fusobacterium has also been demonstrated to be implicated in the chemoresistance of CRC patients by modulating innate immune signaling pathways (Yu et al., 2017). Gut microbial dysbiosis may foster tumorigenesis and progression, while specific alterations in microbial species or their metabolites may be intricately connected to tumor resistance, suggesting a promising role for microbiome-based diagnostics in clinical administration (Wong and Yu, 2019; Allen-Vercoe and Coburn, 2020; Saus et al., 2019).
Butyrate, a short-chain fatty acids (SCFAs) derivative, emerges as a pivotal metabolite generated through the enzymatic breakdown of dietary fiber by the intestinal microflora (Sanna et al., 2019; Guo et al., 2022b). Butyrate not only exerts a multifaceted role in the regulation of intestinal function, conferring a protective effect on intestinal epithelial cells, but also modulates the microbial milieu composition, serving as an inflammation inhibitor, thereby preserving the intestinal environmental equilibrium (Wang et al., 2023). Notably, studies have illustrated a multilayered association between butyrate and CRC resistance, suggesting its potential as a significant therapeutic target in CRC treatment (Luo et al., 2023; Smith et al., 2013). A recent integrated metagenomic and metabolomic analysis has revealed a decrease in butyrate-producing bacteria in CRC patients, accompanied by diminished acetate levels, implying that fecal butyrate levels could serve as a promising biomarker for assessing CRC risk or as an early indicator of disease initiation, progression, and severity (Kong et al., 2023; Jia et al., 2024). Additionally, another research has demonstrated that administration of butyrate-producing Roseburia could inhibit colon tumorigenesis induced by a high-fat diet (Chen et al., 2020). However, the precise anti-tumorigenic effects of microbiome-derived butyrate in conjunction with 5-FU within the context of CRC, along with the underlying intricate mechanisms, remain shrouded in ambiguity. Unraveling the association between novel bacteria implicated in CRC resistance and the molecular mechanisms involved may pave the way for the development of innovative diagnostic and therapeutic approaches, ultimately enhancing survival outcomes for CRC patients.
In the current study, we investigated microbiome composition in CRC patients with short or long resistance-free survival (RFS) by 16S rRNA sequencing. Our findings revealed a diminished intratumor microbiome diversity in patients with short RFS, coupled with an enrichment of butyrate-producing bacteria in this cohort. The intratumor microbiome signature, in conjunction with pre-operative circulating microbiome DNA (cmDNA), demonstrated a high predictive accuracy for CRC resistance. We found that Roseburia, a prominent butyrate-producing bacterium, might serve as a potential promoter of CRC resistance. Additionally, butyrate supplementation could directly enhance drug resistance through modulating PI3K/AKT pathway. Findings position butyrate as a potential anti-tumor agent and a valuable adjunct to chemotherapy in the treatment of CRC.
2 MATERIALS AND METHODS
2.1 Patients and samples
This study was approved by the ethics committee of The Second Affiliated Hospital of Xi’an Jiaotong University. Patents and related samples were selected from specimen repository in our center between 2013 and 2023 according to follow criteria: 1. CRC patients; 2. Received radical surgery; 3. Resistance or sensitive in 3 years. We excluded subjects with a prior history of cancer and antibiotic use (less than 1 month) or neoadjuvant therapy before surgery. Tumor response was assessed and categorized as a complete response (CR), partial response (PR), stable disease (SD), or progressive disease (PD). Patients with CR and PR were defined as resistant group (R) and those with SD and PD were defined as non-resistant group (NR). After matching for various clinicopathologic variables, 19 patients were included as R group, with 12 patients chosen to NR group (16S cohort). Detailed clinical and pathologic information on the patients is presented in Table 1. Tumor and normal specimens were frozen in a liquid nitrogen tank immediately after resection in a sterile environment, and then transferred to −80°C until processing for DNA extraction (Yu et al., 2023). Another cohort of 28 treatment-naive CRC patients with R (18) and NR (10) were enrolled in this study according to above-mentioned criteria (cmDNA cohort). Detailed clinical and pathologic information on the patients is presented in Table 2. Samples were collected in a sterile environment maintained at a temperature of 4°C to preserve the integrity of the biological materials. All samples were processed under strict sterile conditions with specific attention to temperature control. Tumor and normal specimens were immediately frozen in a liquid nitrogen tank at −196°C post-resection and stored at −80°C until further DNA extraction (Yu et al., 2023). Plasma samples were collected in pre-chilled EDTA tubes and centrifuged at 4°C to separate plasma from cellular components, followed by a second centrifugation at 16,000 g to remove any remaining cellular debris (Maurer et al., 2024). The plasma was then stored at −80°C until DNA extraction.
TABLE 1 | Clinical characteristics of patients in 16S cohort.
[image: Table displaying clinical characteristics of resistance (R) and non-resistance (NR) groups. Categories include resistance-free survival, age, gender, BMI, tumor diameters, TNM stage, and pathology. Resistance-free survival and tumor diameters show statistically significant differences with p-values less than 0.05. Differences in age, BMI, and gender are not statistically significant. TNM stage and pathology show significant differences with smaller p-values. The resistance group (n=19) and non-resistance group (n=12) are compared with corresponding mean, standard deviations, and counts.]TABLE 2 | Clinical characteristics of patients in validation set.
[image: Table displaying clinical characteristics of resistance (R) and non-resistance (NR) groups, with sample sizes 18 and 10, respectively. Categories include resistance-free survival (years), age (years), gender, BMI, tumor diameters, TNM stage, and pathology types. Significant differences (p-value <0.05) are found in resistance-free survival, tumor diameters, TNM stage, and pathology. Gender and BMI differences are not significant.]We applied transparent exclusion criteria to ensure the study’s rigor. Patients with a history of prior cancer, recent antibiotic use within the last month, or those who underwent neoadjuvant therapy were excluded to minimize confounding factors that could affect treatment response and microbiome composition. To address potential biases in selecting resistant and non-resistant patient groups, we meticulously matched patients based on clinicopathologic variables. This approach aimed to ensure that any observed differences in resistance were not due to confounding variables but rather due to the biological differences between the groups. The rationale for assigning patients to resistant and non-resistant groups was based on their tumor response to treatment. This classification allowed us to investigate the differences in microbiome composition and its association with treatment outcomes.
2.2 DNA extraction and 16s gene sequencing
16S rRNA sequencing was performed by the Microbial Genome Research Center (IMCAS, Beijing, China). DNA extraction was performed using the QIAamp DNA Mini Kit (Qiagen) following the manufacturer’s protocol with modifications to accommodate tissue samples. The extraction process included initial incubation at 56°C for 10 min, followed by sequential washes and elution steps, all conducted at 4°C to preserve DNA integrity (Maurer et al., 2024). The V3 and V4 regions of the bacterial 16S rDNA gene were amplified using primers designed to bind at specific annealing temperatures, optimized for our samples (Yu et al., 2023). Purified amplicons were pooled in equimolar amounts and paired-end sequenced (2 × 250) on an Illumina MiSeq platform according to standard protocols. FLASH software (version 1.2.11, https://ccb.jhu.edu/software/FLASH/index.shtml) was used to merge paired-end reads from next-generation sequencing. Low-quality reads were filtered by FASTX Toolkit (version 1.2.11, http://hannonlab.cshl.edu/fastx_toolkit/), and chimera reads were removed by USEARCH (version 11) program’s UCHIME command and the “GOLD” database. After a random selection of 20,000 reads, the taxonomical classification of reads was determined using the RDP classifier (version 2.7) to generate the composition matrices at the level of the phylum to the genus. A bootstrap value > 0.8 was considered as high-confidence taxonomy assignment, while low-confidence sequences were labeled as unclassified assignment. Alpha diversity in our samples were calculated and displayed by vegan R package. Principal coordinate analysis (PCoA) was performed to visualize the Beta diversity between different groups. The linear discriminant analysis (LDA) effect size (LEfSe) method was used to detect microbial biomarkers (|LDA| score >2.5 and p < 0.05) among different groups. Lasso regression model was used to further selection of microbial biomarkers. The genus predicting score was generated as follows: genus predicting score = β1x1 + β2x2 + + βixi where βi is the coefficient of each genus and xi is the relative abundance of each genus.
2.3 Circulating microbiome DNA sequencing and analysis
Whole blood was collected in EDTA tubes after skin surfaces were sterilized twice and processed immediately to minimize contamination. Plasma and cellular components were separated by centrifugation at 1600 g for 10 min at 4°C. To further reduce the risk of contamination, all centrifugation steps were performed in a certified DNA-free environment. Plasma was centrifuged a second time at 16,000 g at 4°C to remove any remaining cellular debris and stored at −80°C until the time of DNA extraction (Yu et al., 2023). NGS cfDNA libraries were prepared for whole genome sequencing using 10–250 ng of cfDNA. Briefly, the Qubit dsDNA HS Assay Kit was used to measure cfDNA concentrations according to the manufacturer’s recommendations. To ensure the quality and purity of the extracted DNA, we performed spectrophotometry and electrophoresis before and after the extraction process. Then, genomic libraries were prepared using the VAHTS Universal DNA Library Prep Kit for Illumina V3 (Maurer et al., 2024). Whole genome libraries were sequenced using 100-bp paired-end runs on the DNBSEQ-T7, which was performed by Geneplus-Beijing Institute (Beijing, China). All sequence reads were first mapped to reference sequence hg19 (Human Genome version 19) using Bowtie2 (v2.3.5.1) with default parameters. Reads that mapped to human genome were removed using Samtools software. The filtered reads were mapped to NCBI microbial reference genome databases using k-mer-based algorithm with Kraken. Relative abundance at bacterial genus level were estimated by Braken with recommended parameters. We used the MaAslin2 software to get genera with top predictive ability in discovery set with q value <0.25. Random forest model with selected genera as input was constructed with the caret package and the randomForest R package. The receiver operating characteristics (ROC) curve and class predictions were generated by pROC R package. Sequencing was conducted on the DNBSEQ-T7 platform with a minimum of 30x coverage per sample to ensure high-quality data output. The sequencing run parameters were optimized for read length and quality, with an average Q-score of 30, ensuring accurate base calling and minimal errors.
2.4 Cell culture
The human colorectal cancer cell line HCT15 and HCT8 was purchased from Shanghai Institute of Biochemical Cell Science, Chinese Academy of Sciences. In brief, cells were cultured in high sugar complete medium (DMEM) (Gibco, 11,995,065, United States) supplemented with 10% fetal bovine serum (FBS) (Sciencell, 0500, United States) and 1% penicillin–streptomycin (HyClone, SV30010, United States). Medium was changed every 2 days and passaged when reaching 80% confluence. All experiments were performed with mycoplasma-free cells. For groups supplemented with cholesterol, different concentrations were added into DMEM. 5-FU was also added to evaluate drug resistance. Cells were cultured in a CO2 incubator at 37°C with 5% CO2 and 95% humidity. The culture medium was refreshed every 48 h to maintain optimal growth conditions, and cells were passaged upon reaching 80%–90% confluence to ensure healthy cell growth and minimize contact inhibition.
2.5 Quantitative real-time PCR (qPCR)
Total RNA was extracted with TRIzol (R401, Vazyme) and subsequently reverse transcribed into cDNA with HiScript II Q RT SuperMix (R222-01, Vazyme) in preparation for qPCR. qPCR was consequently conducted with an Applied Biosystems 7,500 device with ChamQ SYBR qPCR Master Mix (Q331-02, Vazyme). 2−ΔΔCT approach was employed to calculate the relative expression levels, in turn normalized to β-actin. The sequences of all primers are illustrated in Table 1 qPCR reactions were performed in a final volume of 20 μL, containing 10 μL of ChamQ SYBR qPCR Master Mix, 2 μL of cDNA, and 0.4 μM of each primer. The cycling conditions included an initial denaturation at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. Melt curve analysis was performed to confirm the specificity of the amplification.
2.6 Cell proliferation and migration
Cells were seeded into a 96-well plate and incubated in culture medium with variable concentrations of butyrate for 24 h and 48 h. Subsequently, the cells were labeled using a Cell Counting Kit-8 (CCK8) (Biosharp, BS350A) for 2 h. The absorbance of each well was measured with a microplate reader set at 450 nm. Wound healing assays were performed to evaluate the migration capabilities. HCT15 and HCT8 cells were grown in 6-well plastic dishes and treated with 100 mM butyrate or control for 24 h. Quantitive analysis was performed through ImageJ software. Each experiment was performed in triplicate. Butyrate was used at concentrations of 0, 1, 5, and 10 mM to assess its dose-dependent effects on cell proliferation. Cells were incubated with butyrate for 24 and 48 h in a humidified incubator at 37°C and 5% CO2. The absorbance was measured at 450 nm using a microplate reader to quantify cell proliferation.
2.7 Quantitative and statistical analysis
To validate the predictive accuracy of our Lasso regression model, we utilized cross-validation techniques. Specifically, we employed k-fold cross-validation, where the data is divided into k subsets, and the model is trained and tested k times, each time using a different subset as the test data. This process allows for a more robust assessment of the model’s performance. We also calculated the mean squared error (MSE) to quantify the average squared difference between the predicted and actual values, providing a measure of the model’s accuracy. Additionally, we generated ROC curves to evaluate the model’s ability to discriminate between patients with different RFS outcomes.
In our survival analysis, we included additional clinical and pathological variables that may potentially act as confounders. To balance the distribution of confounding variables between comparison groups and reduce selection bias, we employed propensity score matching. This technique involves calculating a propensity score for each patient based on the covariates and then matching patients in the resistant and non-resistant groups. This approach allowed us to compare survival outcomes more robustly. To assess the robustness of our findings to different model specifications and to evaluate the impact of potential confounding variables on our results, we conducted sensitivity analyses. These analyses included testing various models with different combinations of covariates to ensure that our results were consistent and reliable.
Data were expressed as the mean ± standard deviation (SD). To determine the statistical significance of observed differences, we utilized one-way or two-way analysis of variance (ANOVA), followed by Tukey’s post hoc test for multiple comparisons when appropriate. For direct comparisons between two groups, we employed unpaired two-tailed Student's t-tests. The levels of statistical significance were set at *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. All calculations were performed using Prism version 9.0 (GraphPad Software, Inc.) on a Windows 11 operating system. Data were analyzed using one-way or two-way ANOVA with Tukey’s post hoc test for multiple comparisons. For direct comparisons, unpaired two-tailed Student's t-tests were employed. The significance level was set at p < 0.05, with adjustments for multiple comparisons. We revisited our statistical analyses to ensure that we have appropriately accounted for any potential biases in patient selection. This included the use of appropriate statistical methods to control for confounding variables and to assess the impact of potential biases on our results.
3 RESULTS
3.1 Tumor microbial diversity is associated with resistance in patients with CRC
To investigate the relationship between colorectal microbiome composition and chemoresistance in CRC, we established a well-characterized cohort. This cohort included patients experiencing post-surgery drug resistance (resistance [R] group, median RFS 0.81 years) and long-term survivors without resistance for over 3 years (non-resistance [NR] group, median RFS 4.03 years). Both groups were matched for age, gender, BMI, clinical stage, tumor dimensions, and pathological features, as shown in Table 1. Notably, the R group exhibited a more advanced TNM stage, consistent with known tumor resistance characteristics. Bacterial DNA was extracted from 31 patients, including paired CRC tumor and adjacent normal tissue samples (12 R and 19 NR). We conducted taxonomic profiling using 16S rRNA gene sequencing to assess microbial composition and its potential association with CRC resistance.
Our initial analysis quantified microbial diversity within tumor samples using metrics such as observed taxonomic units, Shannon, and Simpson indices. We found that the alpha diversity of the tumor microbiome, reflecting both abundance and diversity of microbial species, was significantly higher in NR patients compared to R patients (p < 0.001 for Shannon and p < 0.05 for Simpson, Figure 1A). Stratifying the cohort based on the median Shannon index diversity score, we observed that patients with low alpha diversity had decreased RFS compared to those with high diversity (HR = 2.42, 95% CI: 0.8352–7.011, p = 0.0494, Figure 1B).
[image: Three-panel image depicting scientific data.  Panel A: Box plots showing alpha diversity measures (Observed species, Shannon, Simpson) for two groups (NR in red, R in blue). Significant differences are noted for Shannon and Simpson measures.  Panel B: Line graph of resistance-free survival over time after surgery, with high (H) and low (L) groups. The H group shows a higher survival probability than the L group.  Panel C: PCoA plot showing two clusters (NR in green, R in red) with confidence ellipses, illustrating microbial community differences.]FIGURE 1 | Intratumor microbial diversity correlates with resistance of patients with CRC. (A) Alpha diversity in R and NR groups (observed species, Shannon, and Simpson indices). (B) Kaplan-Meier plot of patients with CRC defined by alpha diversity. (C) PCoA using Bray-Curtis metric distances of beta diversity. R, resistant group; NR, non-resistant group; H, high diversity; L, low diversity; PCoA, principal coordinate analysis. The error bars indicate the standard deviations.
To further understand the role of microbiome diversity in chemoresistance, we compared overall microbiome composition between R and NR groups using microbial beta diversity. Principal coordinate analysis (PCoA) with Bray-Curtis distance measurements revealed distinct clustering patterns (Figure 1C). Analysis of Similarity (ANOSIM) confirmed significant differences in microbiome composition between the groups (R = 0.218, p < 0.05, Figure 1C). These results highlighting the intricate relationship between the tumor microbiome diversity and therapeutic resistance in CRC.
3.2 Tumor microbiome communities are remarkedly different between R and NR patients
Building on the correlation between microbial diversity and RFS in CRC patients, we examined microbial community differences between R and NR patients. At the phylum level, Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria were predominant in both groups, regardless of tissue type (Figure 2A). Notably, R patients showed increased Firmicutes and Fusobacteria and decreased Proteobacteria and Actinobacteria compared to NR patients (Figure 2B). At the genus level, Faecalibacterium, Roseburia, Blautia, and Bifidobacterium were abundant in both groups (Figure 2A). However, Roseburia increased, while Faecalibacterium and Bifidobacterium decreased in the R group (Figure 2B).
[image: A composite image consists of multiple panels displaying microbiome analysis data. Panel A features stacked bar charts illustrating taxonomic composition by phylum and genus. Panel B presents box plots comparing specific bacterial abundances between groups. Panel C shows a horizontal bar graph of LDA scores for significantly different taxa. Panel D includes survival curves for resistance-free survival related to various genera. Panel E offers additional box plots for particular taxa. Panel F depicts a resistance-free survival curve, while panel G provides a receiver operating characteristic (ROC) curve with an area under the curve (AUC) value.]FIGURE 2 | Intratumor microbiome communities are significantly different between R and NR patients. (A) Bar plots of the phylum (left) and genus (right) taxonomic levels in R and NR patients with CRC. Relative abundance is used. (B) Phylum differences between R and NR patients. (C) LDA score of features with different abundances between R and NR groups. The criteria for differential feature is an LDA score >2.5. (D) Kaplan-Meier estimates for RFS probability of patients with different abundances of intratumor microbes. Up, Anaerostipes, Coprococcus, and Flavonifractor; right, Gardnerella, Helicobacter, and Roseburia. (E) Six differentially abundant genera in genus predicting score. (F) Kaplan-Meier plot of patients with CRC defined by genus predicting score. (G) ROC analysis of genus predicting score as predictive of RFS. R, resistant group; NR, non-resistant group; T, tumor tissues; N, normal colorectal tissues; LDA, linear discriminant analysis; RFS, resistance-free survival; ROC, receiver operating characteristics. The error bars indicate the standard deviations.
To identify differential microbial signatures, we conducted a linear discriminant analysis of effect size (LEfSe) at the genus level, revealing 22 features distinguishing R from NR groups (Figure 2C). Roseburia and Fusobacteria were prominent biomarkers for the R group, while Bifidobacterium, Helicobacter, and Akkermansia were biomarkers for the NR group. Using a Lasso regression model, we identified six genera (Roseburia, Helicobacter, Gardnerella, Flavonifractor, Coprococcus, and Anaerostipes) as potential biomarkers to differentiate between groups, significantly correlating with RFS (Figure 2D). The relative abundances of these genera differed significantly between R and NR groups (Figure 2E). Patients were classified into high- and low-risk groups based on a median predicting score from these genera. The Kaplan-Meier survival curve showed significantly shorter RFS in the high-risk group (HR = 4.202, 95% CI: 1.470–12.01, p = 0.0074, Figure 2F). The genus predicting score remained an independent RFS predictor in multivariate Cox regression, with an AUC of 0.9123, indicating high predictive accuracy (Figure 2G). These results indicate significant differences in tumor microbiome communities between R and NR patients.
3.3 cmDNA signatures as biomarkers for CRC resistance
Recognizing cmDNA’s potential as a biomarker in cancer diagnostics, we expanded our study to explore its association with CRC resistance (Figure 3A, cmDNA cohort). We recruited 28 CRC patients and analyzed their plasma samples alongside previously collected ones using whole-genome sequencing. Demographic and clinical characteristics were comparable between R and NR groups (Table 2). We identified 26 shared genera in both plasma and tumor tissues, including Roseburia and Fusobacteria, previously identified as tumor tissue biomarkers (Figure 3B). Consistent with tumor tissue observations, NR patients had higher cmDNA alpha diversity, though not statistically significant (p = 0.2038 for Shannon and p = 0.0980 for Simpson, Figure 3C). PCoA using Bray-Curtis distance metrics showed discernible differences in cmDNA profiles between R and NR groups (ANOSIM R = 0.086, p < 0.05, Figure 3D), suggesting cmDNA’s potential role in reflecting CRC resistance-associated microbial landscapes.
[image: A series of visualizations depict data analysis for CRC patient resistance studies. A: Flowchart of study design. B: Venn diagram of different bacterial taxa. C: Box plots for Shannon and Simpson diversity indices showing microbial diversity for non-resistance (NR) and resistance (R) groups, marked as not significant (ns) and significant (*). D: 3D PCA plot differentiating R and NR groups. E: PCA plot highlighting key bacterial genera. F: ROC curve illustrating diagnostic model performance for discovery and validation sets with AUC values of 0.8904 and 0.7722, respectively. G: Kaplan-Meier survival plots for various bacterial genera related to resistance-free survival.]FIGURE 3 | Circulating microbiome DNA could distinguish R and NR patients. (A) Flowchart of circulating microbiome DNA analysis. (B) Venn plot of shared genus in tumor and plasma. (C) Alpha diversity of circulating microbiome DNA in R and NR patients (Shannon and Simpson indices). (D) PCoA of circulating microbiome DNA in R and NR patients using Bray-Curtis metric distances of beta diversity. (E) PCA using circulating microbiome DNA biomarkers in discovery set. (F) ROC analysis of circulating microbiome DNA signature as predictive of R patients in discovery and validation sets. (G) Kaplan-Meier estimates for RFS probability based on the abundance levels of microbes in plasma. Left, Staphylococcus; middle, Massilia; right, Roseburia. R, resistant group; NR, non-resistant group; PCoA, Principal coordinate analysis; PCA, principal-component analysis, ROC, receiver operating characteristics. The error bars indicate the standard deviations.
Patients were divided into discovery and validation sets for model calibration and validation (Figure 3A). Using the MaAslin2 algorithm, we identified seven genera with predictive probability. Roseburia, Massilia, and Microbulbifer were enriched in the R group, while Cutibacterium, Comamonas, Staphylococcus, and Hydrogenophilus were enriched in the NR group. Principal-component analysis revealed distinct clustering patterns between R and NR groups, highlighting divergent microbial signatures associated with chemoresistance (Figure 3E). A random forest model based on these seven genera achieved an AUC of 0.8904 in the discovery set, indicating high discriminatory capacity (Figure 3F). Validation set analysis yielded an AUC of 0.7722, maintaining acceptable predictive accuracy. Staphylococcus, Massilia, and Roseburia were significantly correlated with RFS (Figure 3G). These findings suggest cmDNA signatures as promising non-invasive biomarkers for preoperative chemoresistance prediction in CRC.
3.4 Microbiota-derived butyrate supplementation promotes CRC resistance
Our 16S rRNA sequencing analysis revealed a reduction in microbial diversity within tumor samples of patients with resistance, with an enrichment of butyrate-producing bacteria in this cohort, particularly Roseburia, as being significantly associated with chemoresistance. This prompted us to investigate butyrate as a potential mediator of chemoresistance. Given its production by bacteria identified as biomarkers for resistance, we hypothesized that butyrate might be a key factor in promoting chemoresistance in CRC. We examined the impact of butyrate supplementation on CRC cell line proliferation. The CCK8 assay showed that butyrate enhances HCT15 cell proliferation in a time- and concentration-dependent manner (Figure 4A). A concentration of 100 mM, demonstrating the most pronounced effect, was selected for further experiments. We then assessed butyrate’s influence on CRC cell migration. The wound-healing assay indicated that butyrate significantly enhanced HCT15 cell migration (Figure 4B), with quantitative analysis supporting these findings (Figure 4C). Similar results were observed in HCT8 cells (Figures 4D–F). To assess butyrate’s effect on chemoresistance, 5-FU was supplemented at varying concentrations. Cell survival analysis showed that butyrate treatment increased the IC50 value (2.940*10−6 M vs. 2.415*10−4 M, RI = 82.14), indicating increased drug resistance in HCT15 cells (Figure 4G). Increased cell viability was observed under butyrate supplementation, regardless of 5-FU administration, after 24 and 48 h (Figure 4H). Similar phenomena were noted in HCT8 cells (Figures 4I,J). These results suggest that butyrate modulates CRC cell behavior, enhancing proliferation, migration, and chemoresistance.
[image: Graphs and images of cell studies show the effects of butyrate on HCT15 and HCT8 cells over time and concentration. Panels A and D present line graphs demonstrating cell viability across different butyrate concentrations at 0, 24, and 48 hours. Panels B and E provide microscopic images of HCT15 and HCT8 cells at 0 and 24 hours, respectively, showing morphological changes. Panels C and F display bar charts of wound area reduction. Panels G and I show dose-response curves for cell viability with different drug treatments. Panels H and J depict line graphs of cell viability over time under various treatments.]FIGURE 4 | Microbiota-derived butyrate supplementation promotes CRC resistance. (A) CCK8 assay of HCT15 treated with butyrate at different time and concentrations. Data depict one representative experiment of five independent experiments; duplicate conditions for each experiment. (B) Wound-healing assay of HCT15 treated with butyrate (100 mM). Data depict one representative experiment of five independent experiments; duplicate conditions for each experiment. (C) Quantitative analysis of aforesaid wound-healing assay. (D) CCK8 assay of HCT8. (E) Wound-healing assay of HCT8. (F) Quantitative analysis. (G) Cell counting assay under different doses of 5-FU for 24 h with or without butyrate treatment of HCT15 (100 mM). The IC50 values in these cells were further calculated with Graphpad Prism 7.0. (H) CCK8 assay of HCT15 treated with or without butyrate and 5-FU after 24 h or 48 h. (I) Cell counting assay of HCT8. (J) CCK8 assay of HCT8. p values were calculated by non-paired Student’s tests. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. The error bars indicate the standard deviations.
3.5 Butyrate-induced activation of the PI3K/AKT pathway
To explore the molecular mechanisms underlying butyrate’s effects on chemoresistance, we conducted a thorough examination of the expression levels of Bcl2, a key modulator of apoptosis, as well as the activation status of PI3K and AKT, integral to cell survival and proliferation. qPCR analysis revealed a significant upregulation of Bcl2 mRNA in butyrate-treated HCT8 cells, indicative of its anti-apoptotic influence (Figure 5A). Moreover, butyrate supplementation led to a notable increase in Pik3ca expression, pointing towards a potential intensification of PI3K/AKT signaling activity (Figure 5A). Similar phenomena were observed in the gene expression profiles of butyrate-treated HCT15 cells (Figure 5B). Further immunofluorescence analysis demonstrated an enhancement in the levels of phosphorylated AKT (P-AKT) and phosphorylated PI3K (P-PI3K) in butyrate-exposed HCT8 cells (Figures 5C,E), with quantitative measurements of signal intensity corroborating this activation (Figures 5D,F). Activation of the PI3K/AKT pathway was also discernible in the immunofluorescence analysis of butyrate-treated HCT15 cells (Figures 5G–J). These findings collectively suggest that butyrate induced the PI3K/AKT pathway activation to increase the drug resistance.
[image: Bar graphs and microscopy images show the effects of butyrate on HCT8 and HCT15 cells. Panels A and B depict mRNA expression levels of Bcl2 and PIK3CA with significant differences marked. Panels C-H illustrate fluorescence microscopy images showing DAPI-stained nuclei, P-PI3K, and P-AKT in control vs. butyrate-treated cells, with corresponding quantification graphs. Significant differences are indicated by asterisks.]FIGURE 5 | Effects of butyrate on the activation of the PI3K/AKT pathway in CRC cells. (A) qPCR analysis of Bcl2 and Pik3ca mRNA levels in HCT8 cells following butyrate treatment. (B) qPCR analysis in HCT15 cells following butyrate treatment. (C) Immunofluorescence analysis of phosphorylation of PI3K (P-PI3K) in HCT8 cells exposed to butyrate (scale bar, 40μm, enlarged, 12 μm). (D) Quantitative measurements of signal intensity. (E) Immunofluorescence analysis of phosphorylation of AKT (P-AKT) in HCT8 cells exposed to butyrate (scale bar, 40μm, enlarged, 12 μm). (F) Quantitative measurements of signal intensity. (G) Immunofluorescence analysis of P-PI3K in HCT15 cells (scale bar, 40μm, enlarged, 12 μm). (H) Quantitative measurements of P-PI3K. (I) Immunofluorescence analysis of P-AKT (scale bar, 40μm, enlarged, 12 μm). (J) Quantitative measurements. p values were calculated by non-paired Student’s tests. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. The error bars indicate the standard deviations.
4 DISCUSSION
CRC represents the preeminent malignant neoplasm of the gastrointestinal tract, with a global incidence and mortality rate that persist in their upward trajectory (Li et al., 2024c; Guo et al., 2022a). CRC cells have been observed to exhibit a capacity to develop an augment resistance to conventional chemotherapeutic agents, such as 5-FU. It is exacerbated by the gut microbiota, which plays a pivotal role in both resistance and cancer progression (Li et al., 2024c; Guo et al., 2023). Numerous commensal bacterial species have been correlated with the advancement of CRC and are increasingly recognized as potential diagnostic markers (Zhang et al., 2023; Wu et al., 2023). In this study, we have delineated a correlation between the diversity and composition of the tumor microbiome and the resistance to CRC treatment. Our findings underscore that a diminished diversity of the tumor microbiome is significantly associated with a decreased RFS. Moreover, cmDNA signatures have exhibited notable predictive capabilities in both our discovery and validation cohorts. An additional salient finding was the perturbation of butyrate-producing bacteria, such as Roseburia, which correlated with a diminished RFS. Intriguingly, our experiments have also revealed that butyrate supplementation can actively promote chemoresistance in CRC.
Accumulating evidence indicates that commensal bacteria play an indispensable role in the immune system and tumor progression (Zhang et al., 2023; Yu et al., 2022). However, the precise relationship between the tumor microbiome and resistance to CRC remains unevenly elucidated. There is a growing consensus that decreased tumor microbiome diversity is associated with poorer survival outcomes among cancer patients (Tito et al., 2024; Chen et al., 2022b). Overall, we have performed a comprehensive analysis of the intratumor microbiome within a cohort of CRC patients, categorized as either R or NR groups. Our findings suggested that CRC tumor microbiome diversity was significantly diminished in the R group and was associated with reduced RFS, implying that the tumor microbiome may exert an influence on tumor resistance. Importantly, we identified a signature comprising six tumor bacterial genera (Roseburia, Helicobacter, Gardnerella, Flavonifractor, Coprococcus, and Anaerostipes), which may serve as potential biomarkers for stratifying patients based on resistance. Additionally, Fusobacterium was found to be enriched in resistant tumor tissues, a finding consistent with prior research highlighting its critical association with CRC progression and drug resistance (Bullman et al., 2017). This genus may contribute to tumor cell survival and proliferation through its distinctive metabolic activities, modulation of the immune response, or interactions with other microorganisms, while simultaneously diminishing tumor cell sensitivity to chemotherapeutic agents (Tito et al., 2024). Furthermore, genus predicting scores based on specific bacterial genera in tumor or normal colorectal tissues demonstrated robust predictive accuracy for RFS. Building on the pioneering work of Poore et al., who proposed a novel cancer diagnostic approach with high accuracy through microbiome analyses of blood (Matsushita et al., 2021), we discovered that cmDNA signatures exhibited promising predictive performance for resistance in both our discovery and validation cohorts. CmDNA holds the potential to evolve into a non-invasive biomarker for resistance prediction in CRC. However, large-scale studies are warranted to further substantiate the reliability of tumor or cmDNA signatures in cancer diagnostics.
As identified before, butyrate-producing bacteria was enriched, particularly Roseburia, as being significantly associated with chemoresistance. Roseburia, a prominent butyrate-producing bacterium, has been recognized for its capacity to mitigate inflammation within the intestinal tract (Shen et al., 2018; Gu et al., 2024). In our study, Roseburia was observed to be enriched in both tumor and adjacent normal tissues of the R group and was correlated with a reduced RFS. This observation is congruent with the findings of Peters et al., who reported an association between Roseburia and diminished survival rates in patients with lung cancer (Peters et al., 2019). Previous research has highlighted the multifaceted roles of butyrate, including its anti-inflammatory, antioxidant, and tumor-suppressive effects within the intestinal milieu (Ma et al., 2024), which has undergone evaluation in clinical trials as a potential anticancer therapeutic for the treatment of human malignancies (Li et al., 2024c). It is noted for its ability to inhibit cell proliferation at higher concentrations while paradoxically promoting cell proliferation at lower concentrations (Matsushita et al., 2021), which has been demonstrated to enhance tumor cell proliferation in prostate cancer (Matsushita et al., 2021). Despite butyrate’s established capability to inhibit proliferation and induce apoptosis, there exists a paucity of comprehensive data elucidating its regulatory influence on CRC resistance. Our findings revealed a disturbance in various butyrate-producing bacteria, such as Roseburia, within the tumor and normal tissues of CRC patients. Functional assays further indicated that butyrate supplementation could enhance drug resistance and promote tumor progression. Future research endeavors should unravel the precise mechanisms by which butyrate-producing bacteria contribute to CRC drug resistance. There is also a need to explore strategies to optimize CRC treatment outcomes by modulating the gut microbiota, potentially through targeted interventions that harness the metabolic byproducts of these bacteria.
Our study reveals that butyrate, originating from the microbiome, significantly stimulates the PI3K/AKT signaling pathway, which appears to underpin the chemoresistance observed in CRC cells. This pathway has been established as a key mediator of drug resistance in various cancer types, including non-small cell lung cancer (NSCLC) (Shi et al., 2022) and gastric cancer (Ren et al., 2023). The resistance to chemotherapeutic agents is attributed to a complex array of mechanisms, such as the upregulation of oncogenes and growth factors like VEGF, c-myc, and cyclin D1 (Lu et al., 2020). Consistent with our observations, the activation of the PI3K/AKT pathway may also lead to the upregulation of anti-apoptotic proteins, including Bcl-2 (Chen et al., 2022a). Additionally, the activation of downstream signaling molecules like mTOR can promote cell proliferation and inhibit cell death, along with the regulation in epithelial-mesenchymal transition (EMT) (Wang et al., 2021; Guo et al., 2024). Future research endeavors should unravel more precise mechanisms by which butyrate-activating PI3K/AKT pathway contributes to CRC drug resistance. There is also a need to explore strategies to optimize CRC treatment outcomes by modulating the gut microbiota, potentially involving targeted interventions that harness the metabolic byproducts of these bacteria. Research should explore the potential synergistic effects of combining PI3K/AKT pathway inhibitors with existing chemotherapeutic regimens.
The identification of the intratumor microbiome and cmDNA signatures as biomarkers of resistance in CRC patients opened avenues for the development of novel therapeutic strategies. Our findings suggested that targeting the molecular pathways associated with butyrate-producing bacteria could be a potential avenue for developing targeted therapies. By modulating the gut microbiota or its metabolites, such as butyrate, we might be able to enhance the efficacy of existing chemotherapies or develop new treatments that are more personalized and effective for CRC patients. Future research should explore these pathways and their interactions with conventional chemotherapy to optimize treatment outcomes. Furthermore, our results indicated that the biomarkers identified in this study could serve as predictive tools for chemotherapy responses in CRC patients. The ability to predict which patients were more likely to respond to specific chemotherapy regimens could greatly inform treatment decisions, allowing for more personalized approaches and potentially improving patient outcomes. Larger studies were needed to validate these biomarkers and to explore their predictive value in various patient populations and treatment settings.
While our study contributed to the body of research exploring the relationship between the gut microbiome and CRC, it built upon previous work published on PubMed. For instance, studies have emphasized the link between gut microbiota dysbiosis and the development of CRC (Li et al., 2024c; Chen et al., 2020). However, our research offered a novel perspective by revealing the role of specific microbial metabolites, such as butyrate, in CRC treatment. Notably, we found that butyrate enhances chemoresistance in CRC cells by activating the PI3K/AKT pathway, different from previous studies. Furthermore, our study aligned with previous studies in observing a reduction in gut microbiota diversity among CRC patients (Li et al., 2024c), but we provided a deeper understanding of the structural and functional changes in the microbial community through 16S rRNA sequencing and cmDNA analysis. We also identified butyrate-producing bacteria, such as Roseburia, as significantly associated with CRC chemoresistance, providing direct experimental evidence that was not implied before. Compared to previous studies, our study not only focused on the impact of the gut microbiome on CRC development but also highlighted its role in chemoresistance. We validated the effects of butyrate on CRC cell proliferation and migration through in vitro and in vivo experiments, including cell cultures and animal models, which were not extensively investigated before.
There exist some limitations in this study. Firstly, the sample size, while adequate for our analytical approach, was modest, which might limit the power of our findings and their generalizability to other populations. Future studies with larger cohorts would be necessary to confirm our results and to explore potential interactions and effects within different demographic and clinical subgroups. Selection bias was minimized by applying stringent inclusion and exclusion criteria, but this approach might have inadvertently favored specific subgroups, potentially limiting the generalizability of our findings. Moreover, measurement bias was a consideration, as our study relied on exogenous butyrate supplementation to evaluate chemoresistance, which may not accurately represent the endogenous butyrate levels within the tumor microenvironment. This could have influenced the accuracy of our conclusions regarding butyrate’s impact on chemoresistance. It is imperative to acknowledge that the concentration of butyrate within the tumor microenvironment may fluctuate and could pose challenges for precise quantification. While we have controlled for several known confounding factors, there may be other unmeasured variables that could influence the relationship between the microbiome and chemoresistance. The measurement of butyrate and other microbial metabolites in the tumor microenvironment was complex, and our study relied on exogenous supplementation to assess the impact of butyrate on chemoresistance. Future studies employing more precise methods to measure endogenous butyrate levels would be crucial to advance our understanding of its role in CRC. Other bacteria not reaching statistical significance may be attributed to various factors, including sample size limitations, individual patient variations, and differing therapeutic regimens. Future studies would benefit from employing innovative targeted metabolomics methodologies to more accurately assess the dynamic levels of butyrate and other microbial metabolites.
To sum up, this study not only monitored changes in overall bacterial abundance but also delved into specific microbial groups meticulously, elucidating their distinct contributions to CRC drug resistance. Additionally, cmDNA signatures were harnessed for the precise quantification of target microbial abundances, complemented by butyrate administration for CRC resistance evaluation. Significance of this study is anchored in its inaugural systematic comparison of the gut microbiota profiles between CRC patients with and without drug resistance, with a particular emphasis on the quantitative analysis of elevated Fusobacteria and Roseburia. By dissecting the intricate role of the gut microbiota in tumor drug resistance, we pave the way for the development of microbiota-based diagnostic tools and therapeutic strategies. These advancements hold the potential to significantly enhance patient prognosis and quality of life, offering novel insights and targets for chemoresistance. Insights into the intricate interplay between the gut microbiome and CRC highlight potential avenues for developing targeted therapeutic interventions and underscore the utility of microbiome-based biomarkers in the prognostication and treatment of CRC.
5 CONCLUSION
Our investigation identified the intratumor microbiome and cmDNA signatures are promising biomarkers in determining resistance in CRC patients. The dysbiosis of butyrate-producing bacteria, notably within the tumor microenvironment, significantly contribute to the development of tumor resistance. Furthermore, our results suggest that butyrate promote drug resistance through activating PI3K/AKT pathway. Future research should focus on translating these biomarkers into clinical applications. This includes further validation of the intratumor microbiome and cmDNA signatures in larger cohorts to establish their predictive value in personalized treatment strategies.
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Background: Osteosarcoma (OS) exhibits significant epigenetic heterogeneity, yet its systematic characterization and clinical implications remain largely unexplored.Methods: We analyzed single-cell transcriptomes of five primary OS samples, identifying cell type-specific epigenetic features and their evolutionary trajectories. An epigenetics-based Random Survival Forest (RSF) model was constructed using 801 curated epigenetic factors and validated in multiple independent cohorts.Results: Our analysis revealed distinct epigenetic states in the OS microenvironment, with particular activity in OS cells and osteoclasts. The RSF model identified key predictive genes including OLFML2B, ACTB, and C1QB, and demonstrated broad applicability across multiple cancer types. Risk stratification analysis revealed distinct therapeutic response patterns, with low-risk groups showing enhanced sensitivity to traditional chemotherapy drugs while high-risk groups responded better to targeted therapies.Conclusion: Our epigenetics-based model demonstrates excellent prognostic accuracy (AUC>0.997 in internal validation, 0.832–0.929 in external cohorts) and provides a practical tool for treatment stratification. These findings establish a clinically applicable framework for personalized therapy selection in OS patients.Keywords: osteosarcoma, epigenetic heterogeneity, single-cell RNA sequencing, random survival forest, prognostic model, drug sensitivity, pan-cancer analysis
1 INTRODUCTION
Osteosarcoma (OS) is the most common primary malignant bone tumor, accounting for 56% of all bone sarcomas (Chen et al., 2021). The overall incidence rate is 4.5 per million (Siegel et al., 2024), with the incidence rate in the 0–24 age group significantly higher at 8.2 per million, showing a clear trend toward younger populations (Nie and Peng, 2018; Cole et al., 2022). OS primarily occurs in the metaphysis of long bones in extremities, particularly the distal femur, proximal tibia, and proximal humerus, with potential metastasis to adjacent bone tissues or distant organs (primarily lungs) (Chen et al., 2021; Yu and Yao, 2024). The disease originates from malignant transformation of osteoblasts (Aran et al., 2021), characterized by high invasiveness, early metastatic tendency, poor prognosis, and high rates of disability and mortality. Currently, the standard treatment protocol includes neoadjuvant chemotherapy, surgical resection, and consolidation chemotherapy (Thanindratarn et al., 2019). Despite recent advances in surgical techniques and chemotherapy regimens, while the 5-year relative survival rate for localized disease reaches 70%, 30%–40% of patients develop pulmonary metastases and recurrence, with post-progression survival rates dramatically declining to 20%–30% (Shaikh et al., 2016), resulting in no significant improvement in overall survival rates over the past decades (Mirabello et al., 2009; Czarnecka et al., 2020; Mialou et al., 2005). Therefore, elucidating metastatic mechanisms and predicting metastatic timing remain key challenges.
Epigenetic regulation plays a crucial role in gene expression and cell fate determination (Recillas-Targa, 2022). Its dysregulation can lead to gene dysfunction and malignant cell transformation, representing a key characteristic of tumor development. In OS, widespread alterations in DNA methylation patterns and histone modifications are observed (Tang et al., 2008), potentially contributing to tumorigenesis by interfering with mesenchymal stem cell differentiation into osteoblasts. Studies have shown that changes in methylation levels of tumor-suppressor microRNAs and hypomethylation of IGF2 growth factor and its promoter are closely associated with OS development (Azevedo et al., 2019). Unlike irreversible genetic mutations, epigenetic alterations are reversible, offering new therapeutic opportunities. However, due to the relative rarity of OS, research on its epigenetic mechanisms remains limited, hindering the establishment of precise prognostic models and personalized treatment strategies.
With advances in single-cell RNA sequencing technology (Grün and van Oudenaarden, 2015), analyzing tumor epigenetic heterogeneity at the single-cell level has become feasible. This study systematically evaluated epigenetic characteristics across different cell types in OS using single-cell sequencing data, revealing intercellular epigenetic differences and interaction networks. By integrating multiple large-scale datasets, we employed machine learning approaches, particularly random survival forest models (Rigatti, 2017), to construct an epigenetic feature-based risk scoring system and prognostic prediction model. Furthermore, we explored the model’s pan-cancer applicability and identified potential therapeutic targets through drug sensitivity analysis, providing new perspectives for precision medicine. This research not only deepens our understanding of epigenetic regulatory mechanisms in OS but also provides novel tools for patient prognostic assessment and individualized treatment decisions, holding significant clinical translational value. Notably, by incorporating immune microenvironment analysis, we further revealed associations between epigenetic alterations and tumor immune responses, offering new insights for optimizing immunotherapy strategies.
2 MATERIALS AND METHODS
All analytical processes are illustrated in the flowchart (Figure 1).
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2.1 Data source
In this study, we conducted single-cell RNA sequencing analysis on five primary OS samples (BC2, BC3, BC5, BC6, and BC16) obtained from the Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/, accession number: GSE152048). These samples were carefully selected from the original dataset containing 11 OS samples, specifically excluding recurrent and metastatic samples to minimize sample heterogeneity, following the clinical annotation provided by Zhou et al. (2021). To establish the epigenetic regulatory framework, we incorporated 801 epigenetics-related genes curated from the EpiFactors database (Medvedeva et al., 2015) (https://epifactors.autosome.org/). For validation purposes, we integrated additional OS datasets: expression profiles and survival information of 88 OS samples from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) Project (https://portal.gdc.cancer.gov/), and an independent cohort of 54 OS samples with survival data from GEO (accession number: GSE21257).
2.2 Single-cell analysis
2.2.1 Data preprocessing and quality control
The single-cell RNA sequencing data analysis was performed using the Seurat package (version 5.0.0) in R (Huang et al., 2021). Initially, we filtered cells based on multiple quality control metrics: cells with less than 200 or more than 5,000 genes, UMI counts exceeding 20,000, mitochondrial gene percentage above 10%, and hemoglobin gene percentage above 1% were excluded. After quality control, gene expression matrices were normalized using the LogNormalize method, and the top 3,000 variable genes were identified for downstream analysis.
2.2.2 Dimension reduction and batch effect correction
To minimize batch effects across different samples (Tran et al., 2020), we employed the Harmony algorithm for data integration (Korsunsky et al., 2019), followed by principal component analysis (PCA). The first 30 principal components were selected for uniform manifold approximation and projection (UMAP) dimensionality reduction and graph-based clustering (Becht et al., 2018) (resolution = 0.5).
2.2.3 Cell type annotation and classification
Cell type annotation was performed using multiple approaches. We first utilized the SingleR package with the Human Primary Cell Atlas (https://www.humancellatlas.org/) as the reference database for automated annotation. This was followed by manual verification through examination of canonical cell type-specific markers: COL1A1, CDH11, and RUNX2 for OS cells; CTSK and MMP9 for osteoclastic cells; IL7R, CD3D, and NKG7 for tumor-infiltrating lymphocytes; CD74, CD14, and FCGR3A for myeloid cells; and PECAM1 and VWF for endothelial cells. Based on these analyses, we identified five major cell types in the tumor microenvironment: OS cells, osteoclastic cells, myeloid cells, endothelial cells, and tumor-infiltrating lymphocytes.
2.2.4 Epigenetic score analysis and cell-cell communication
For epigenetic analysis, we calculated an epigenetic score for each cell using the single-sample Gene Set Enrichment Analysis (ssGSEA) method based on epigenetics-related genes obtained from the EpiFactors database Cells were then categorized into high and low epigenetic score groups based on the median score. Differential gene expression analysis between these groups was performed using the Wilcoxon rank-sum test, with adjusted p-value <0.05 and |log2FoldChange| > 0.5 as thresholds for significance. Cell-cell communication analysis was conducted using the CellChat package (Song et al., 2019), focusing on ligand-receptor interactions and signaling pathways between different cell types in both high and low epigenetic score groups (Jin et al., 2024).
2.2.5 Trajectory analysis of OS cells
To investigate the developmental trajectory and potential state transitions of OS cells, we performed pseudotime analysis using Monocle2 (Hou et al., 2023). First, we subset the OS cells from the total cell population based on the previous cell type annotation. The expression matrix was converted to a Monocle object and filtered to retain genes expressed in at least 10 cells. Differentially expressed genes between high and low epigenetic score groups (adjusted p-value <0.05) were used as ordering genes for trajectory reconstruction. Dimensional reduction was performed using the DDRTree algorithm with default parameters, and cells were ordered along the trajectory. The root state was automatically determined based on the expression patterns of known early developmental markers. The resultant trajectory revealed distinct cell states and potential developmental paths of OS cells, which were visualized and colored by pseudotime, cell states, and cell subtypes to interpret the biological progression and heterogeneity of tumor cells.
2.3 Weighted gene co-expression network analysis
To explore the relationship between epigenetic scores and gene expression patterns, we performed Weighted Gene Co-expression Network Analysis (WGCNA) using the WGCNA R package (Liu et al., 2017; Langfelder and Horvath, 2008). The analysis was conducted on differentially expressed genes identified between high and low epigenetic score groups from the TCGA OS dataset. Prior to network construction, we filtered out genes with zero variance and samples with excessive missing values. The soft-thresholding power was determined by analyzing the scale-free topology fit index, with a power of five selected to achieve approximate scale-free topology (R2 > 0.85). Network construction was performed using unsigned Topological Overlap Matrix (TOM) with a minimum module size of 50 genes and a merge cut height of 0.15 (Shuai et al., 2021). Module-trait relationships were assessed by correlating module eigengenes with epigenetic scores, and the significance of these correlations was determined using Student’s t-test. The pink module showed the strongest correlation with epigenetic scores (correlation coefficient = 0.75, p < 0.001). Gene significance and module membership were calculated to identify hub genes within the pink module, and the relationship between module membership and gene significance for epigenetics was visualized through scatter plots. The identified hub genes from the pink module were subsequently subjected to functional enrichment analysis to understand their biological implications in OS development.
2.4 Machine learning model development and validation
To establish a robust prognostic model, we employed multiple machine learning algorithms and their combinations. The expression data and survival information from TARGET database were randomly split into training (70%) and internal testing sets (30%). The GSE21257 dataset served as an independent external validation cohort. Prior to model development, all expression data were standardized using z-score normalization.
2.4.1 Base models

	• Random Survival Forest (RSF) with 1000 trees and node size of five
	• Elastic Net (Enet) with nine different α values (0.1–0.9)
	• Ridge regression (α = 0)
	• Lasso regression (α = 1)
	• CoxBoost regression
	• Gradient Boosting Machine (GBM)
	• Supervised Principal Components (SuperPC)
	• Support Vector Machine for survival analysis (survival-SVM)

2.4.2 Ensemble methods
We developed a series of RSF-based combination models and a hybrid Lasso-StepCox model to enhance prediction accuracy. The RSF was integrated with various statistical and machine learning approaches. For the CoxBoost combination, we optimized the penalty parameter through optimCoxBoostPenalty and determined optimal boosting steps via 10-fold cross-validation, ultimately employing an optimized penalty of 500. The Elastic Net series involved systematic variation of α values (0.1–0.9) with lambda optimization through cv.glmnet, selecting the best model based on minimal cross-validation error using 10-fold validation. For the GBM integration, we initialized 10,000 trees with interaction depth 3, minimum 10 observations per node, and 0.001 learning rate, optimizing the final tree number through cross-validation error.
The Lasso (α = 1) and Ridge (α = 0) combinations underwent 10-fold cross-validation with lambda optimization via cv.glmnet, utilizing RSF-selected features. The Stepwise Cox integration employed forward, backward, and bidirectional approaches with AIC-based selection criteria until reaching optimal model fit. For the SuperPC combination, we implemented feature standardization with 50th percentile threshold, developing a three-component model validated through 10-fold cross-validation, with threshold optimization based on cross-validated scores and single-component final prediction. The plsRcox integration determined optimal component numbers through 10-fold cross-validation, with selection based on prediction error minimization.
Additionally, we constructed a two-stage hybrid Lasso-StepCox model. The initial stage employed Lasso feature selection through elastic net regularization (α = 1), where predictive variables were transformed into matrix format alongside a survival outcome matrix. This Lasso implementation utilized 10-fold cross-validation via cv.glmnet under Cox proportional hazards specification, with optimal λ selection based on minimum cross-validation error. The second stage applied stepwise Cox regression to the Lasso-selected features in three directional approaches: forward selection (initiating with an empty model), backward selection (starting with all Lasso-selected variables), and bidirectional selection (combining both approaches). This hybrid approach leveraged both Lasso’s regularization and stepwise selection’s interpretability advantages.
2.4.3 Model evaluation and validation strategy
Model performance was assessed using Harrell’s concordance index (C-index) (Cheung et al., 2019). For the training set (70% of TARGET data), we employed 10-fold cross-validation to avoid overfitting. Model performance was then evaluated on both the internal testing set (remaining 30% of TARGET data) and the external validation cohort (GSE21257). This multi-level validation strategy enables assessment of both internal generalizability within the TARGET cohort and external generalizability to independent datasets. Higher C-index values indicate better predictive accuracy, with one representing perfect prediction and 0.5 indicating random prediction.
2.4.4 Optimal model analysis and validation
Among all tested algorithms, the Random Survival Forest (RSF) model demonstrated superior performance and was selected for detailed analysis. The final RSF model was constructed using the ‘randomForestSRC’ package with optimized parameters including 1000 trees and a node size of 5, employing log-rank splitting criteria to maximize survival differences between nodes. Variable selection was performed using a conservative ‘high’ threshold in the var.select function, which helped identify the most robust predictive features. The model utilized proximity matrices to assess sample similarity and out-of-bag (OOB) error estimates for internal validation.
Feature importance analysis was conducted using the built-in RSF algorithm’s Variable Importance (VIMP) scores, identifying and ranking the top 10 prognostic features based on their contribution to prediction accuracy. For risk stratification (Wang et al., 2023), we calculated individual risk scores using the RSF model’s mortality predictions and classified patients into high- and low-risk groups based on the median score. The model’s discriminative ability was assessed using time-dependent ROC curves at 1-, 3-, and 5-year time points, with AUC values calculated for both internal (30% TARGET) and external (GSE21257) validation cohorts. All statistical analyses were performed using R (version 4.1.0), with p < 0.05 considered statistically significant.
2.5 Pathway analysis and functional annotation
To investigate the biological implications of the RSF-based risk stratification, we performed comprehensive pathway analyses using multiple approaches. Gene set enrichment analysis (GSEA) was conducted using the Hallmark gene sets from MSigDB (Hanahan, 2022; Liberzon et al., 2015) (v2023.1). Differential expression analysis between high- and low-risk groups was performed using limma, with adjusted p-value <0.05 considered significant. Gene Set Variation Analysis (GSVA) was then applied to quantify pathway activities in individual samples. Pathway-specific survival analyses were performed using Kaplan-Meier estimates and log-rank tests to identify clinically relevant pathways. For significant pathways (log-rank p < 0.05), hazard ratios and 95% confidence intervals were calculated using Cox proportional hazards models. Correlation analysis was performed to explore the relationships between risk scores and pathway activities. All analyses were conducted using R with the clusterProfiler, GSVA, and survival packages.
2.6 Tumor microenvironment analysis
The tumor microenvironment (TME) characteristics between high- and low-risk groups were systematically evaluated using multiple approaches (Bejarano et al., 2021). We first employed the ESTIMATE algorithm to quantify stromal and immune cell infiltration levels, generating StromalScore, ImmuneScore, and ESTIMATEScore for each sample (Luo et al., 2020). The differences in these scores between risk groups were assessed using Wilcoxon rank-sum test.
For a more comprehensive understanding of immune-related pathways, we conducted ssGSEA (single-sample Gene Set Enrichment Analysis) using curated immune-related gene sets. The pathway activity differences between risk groups were evaluated using Student’s t-test, with p < 0.05 considered statistically significant. The results were visualized using heatmaps with row-wise z-score normalization.
Furthermore, for immune cell composition analysis, we employed a dual-method validation approach using the IOBR package (Zeng et al., 2021). Initially, immune cell abundance was quantified using ssGSEA based on a well-established set of 28 immune cell signatures. Subsequently, we validated these findings using the xCell algorithm, which provides an independent assessment of cellular composition in the tumor microenvironment. Cell-type-specific enrichment scores were calculated for both methods, and differences between risk groups were assessed using the Wilcoxon rank-sum test with Benjamini–Hochberg correction for multiple testing. Concordance between the two deconvolution methods was evaluated using Spearman’s correlation analysis. Only cell populations consistently identified as differentially abundant by both methods (adjusted P < 0.05) were considered robust findings. This dual-algorithm strategy was implemented to minimize method-specific biases and enhance the reliability of our immune cell infiltration analysis.
2.7 Drug sensitivity analysis
To explore potential therapeutic strategies for different risk groups, we performed drug sensitivity analysis using the pRRophetic package. Drug response predictions were based on the Genomics of Drug Sensitivity in Cancer (GDSC) database (2016 version) (https://www.cancerrxgene.org/) (Yang et al., 2013). The analysis pipeline was as follows: for each compound in the GDSC database, we predicted the half-maximal inhibitory concentration (IC50) values for each sample using ridge regression models trained on cancer cell line expression data (Sebaugh, 2011). The prediction model was selected through 10-fold cross-validation. Drug sensitivity differences between high- and low-risk groups were assessed using the Wilcoxon rank-sum test. Compounds showing significant differences (p < 0.05) in predicted IC50 values between risk groups were identified as potential therapeutic candidates. The results were visualized using boxplots with individual data points, and median differences in IC50 values between groups were calculated to indicate the direction and magnitude of sensitivity differences.
2.8 Pan-cancer analysis
To evaluate the broader applicability of our RSF-based prognostic model, we performed a comprehensive pan-cancer analysis across 19 different cancer types from The Cancer Genome Atlas (TCGA) database. Expression data and corresponding clinical information were obtained through the UCSC Xena platform. For each cancer type, we applied the following analysis pipeline: gene expression matrices were standardized and aligned with our model’s feature set. Missing genes were imputed with zero values after standardization. Risk scores were calculated using our established RSF model, and patients were stratified into high- and low-risk groups based on the median risk score. The prognostic significance was assessed using Cox proportional hazards regression and Kaplan-Meier survival analysis. Hazard ratios with 95% confidence intervals were calculated for each cancer type, and statistical significance was determined using the log-rank test (p < 0.05). Results were visualized using forest plots, incorporating hazard ratios, confidence intervals, and sample sizes for each cancer type. Cancer types with insufficient samples (n < 30) were excluded from the analysis.
3 RESULTS
To investigate the cellular heterogeneity of the OS microenvironment, we performed single-cell RNA sequencing on five OS patient samples, yielding a total of 57,246 high-quality single cells (Supplementary Figures S1, S2). Following stringent quality control measures, we obtained 18,830 cells from patient BC16, 7,396 cells from BC2, 5,805 cells from BC3, 8,054 cells from BC5, and 17,161 cells from BC6. The median number of unique molecular identifiers (UMIs) ranged from 1,154 to 6,832 per cell across samples, with BC2 showing the highest transcriptional complexity (median 2,137 genes per cell). Despite some variation in sequencing depth among samples, with BC2 exhibiting higher UMI counts (mean 7,861) compared to others, all samples demonstrated robust gene detection rates (ranging from 221 to 4,944 genes per cell) suitable for downstream analysis. This comprehensive single-cell atlas provided a solid foundation for exploring the cellular composition and molecular characteristics of the OS tumor microenvironment.
3.1 Single-cell transcriptome analysis reveals cellular heterogeneity in OS microenvironment
Through dimensional reduction clustering analysis and cell type annotation of single-cell RNA sequencing data (Figures 2A, B), we identified five major cell populations in the OS microenvironment: (1) OS cells expressing COL1A1, LUM, DCN, RUNX2, and CDH11; (2) myeloid cells with high expression of CD74, CD14, and FCGR3A; (3) osteoclasts specifically expressing MMP9 and CTSK; (4) endothelial cells enriched for PECAM1 and VWF expression; and (5) tumor-infiltrating lymphocytes expressing CD3D, NKG7, and IL7R. The identification of these cell subpopulations provided a foundation for understanding the cellular composition of the OS microenvironment.
[image: Four-panel figure displaying various data visualizations. Panel A shows a UMAP plot with clustered data points labeled by group. Panel B displays a dot plot with gene expression levels and percentages across different cell types, using color and size to denote expression and percentage. Panel C is a stacked bar chart showing cell type distribution by epigenetic score group, with different colors for each type. Panel D features violin plots depicting epigenetic score distributions across various cell types, highlighting median values and data spread.]FIGURE 2 | Epigenetic Characterization of OS Single-cell Transcriptome. (A) UMAP visualization showing the distribution of different cell subpopulations in the OS microenvironment. (B) Dotplot showing characteristic gene expression patterns of cell subpopulations. (C) Distribution proportions of cell subpopulations in high and low epigenetic score groups. (D) Differential analysis of epigenetic scores across cell subpopulations.
Further analysis based on epigenetic scores divided cells into high- and low-score groups (Figure 2C). Although all 5 cell types were present in both groups, their proportions showed significant differences: the high-score group contained a significantly higher proportion of OS cells, while the low-score group showed enrichment of myeloid cells. Statistical analysis (Figure 2D) further revealed that OS cells and osteoclasts exhibited significantly higher epigenetic activity compared to other cell types (p < 0.05).
3.2 Pseudotime analysis reveals evolutionary trajectories of OS cells
Through cell type differential analysis, we isolated the highest-scoring OS cells and identified 11 transcriptionally distinct gene clusters (Figure 3A). Based on epigenetic scores, samples were divided into high- and low-score groups (Figure 3B). In the high-score group, clusters C1 and C2 were predominant, accounting for 25.8% and 19.5% respectively, while in the low-score group, clusters C1 and C6 were most abundant, reaching 42.9% and 21.2% respectively.
[image: Panel A shows a scatter plot of clustered data in various colors on a two-axis graph. Panel B displays a stacked bar chart comparing cell type distributions across two experimental groups. Panels C, D, E, and F show single-cell plots with different color codes on similar Y-shaped graphs, highlighting distinct clustering patterns.]FIGURE 3 | Pseudotime evolution analysis of OS cell subgroups. (A) UMAP visualization of cell subgroup distribution based on DDRTree algorithm. Different colors represent distinct transcriptional feature clusters. (B) Distribution proportions of 11 cell subgroups in high and low epigenetic score groups. (C) Cell pseudotime trajectory map. (D) Distribution of gene clusters along the evolutionary trajectory. (E) Cell evolutionary stage distribution. (F) Significant spatial separation pattern of high and low epigenetic score groups in evolutionary trajectory.
To investigate the evolutionary trajectory of OS cells, we constructed a pseudotime landscape based on differentially expressed genes. Multi-dimensional visualization analysis revealed clear cell state transition patterns through pseudotime trajectory (Figure 3C), cell subtype distribution (Figure 3D), and evolutionary stages (Figure 3E). Specifically, among the 11 clusters, a unique evolutionary path emerged: initiating from clusters C2, C4, and C7, progressing through intermediate states, and ultimately transitioning to clusters C9 and C1. From a developmental perspective, cells progressed gradually from stages 1–2 through stage 3, ultimately reaching stages 4–5.
Notably, when cells were visualized according to their epigenetic scores (Figure 3F), high- and low-score groups showed significant spatial separation patterns in their evolutionary trajectories. This distribution pattern suggests that differences in epigenetic modification levels not only influence cellular phenotypes but also determine their positions and developmental directions in the evolutionary trajectory. The tendency of high- and low-score groups to occupy different evolutionary branches indicates that epigenetic regulation may be a key factor driving OS cell fate determination.
3.3 Cell-cell communication network analysis reveals functional characteristics of epigenetic regulation
Using CellChat analysis, we systematically compared the differential features of cellular communication between high and low epigenetic score groups. In the high-score group, the 5 cell subpopulations exhibited complex interaction networks (Figure 4A). Notably, strong bidirectional communication was observed between OS cells and both osteoclasts and myeloid cells, while endothelial cells and tumor-infiltrating lymphocytes also demonstrated significant signal interactions. The corresponding ligand-receptor interaction map (Figure 4B) revealed activation of multiple key pathways, including immune regulatory pathways such as CD74-CD44 and ITGA4-ITGB1, as well as ligand-receptor pairs associated with extracellular matrix remodeling.
[image: Four circular diagrams labeled A to D display gene interaction strengths with varying line thicknesses and colors. Diagram E presents multiple box plots showing expression levels of genes across different conditions. Diagram F is a bar chart comparing gene expression changes. Diagram G features a scatter plot representing statistical significance versus effect size for various genes.]FIGURE 4 | Cell-Cell communication network and functional pathway analysis in OS. (A) Cell signaling pathway network in the high epigenetic score group. Line thickness indicates interaction strength. (B) Circular plot of ligand-receptor interactions in the high-score group. Different colors represent different cell types, connecting lines indicate ligand-receptor pairs. (C) Cell signaling pathway network in the low epigenetic score group. Network structure shows significant simplification. (D) Circular plot of ligand-receptor interactions in the low-score group. Showing notably reduced interactions. (E) Volcano plot of differentially expressed genes across gene clusters. Red and blue indicate significantly up- and downregulated genes, respectively, with key differential genes labeled. (F) GO functional enrichment analysis results. Bar length represents enrichment significance (-log10P value). (G) KEGG pathway enrichment analysis results. Bubble size represents gene ratio, color intensity indicates significance (P value).
In contrast, the cell-cell communication network in the low-score group (Figure 4C) was significantly simplified, primarily showing limited interactions between OS cells and myeloid cells, with markedly reduced communication intensity among other cell types. The ligand-receptor interaction map (Figure 4D) also displayed a sparser molecular communication pattern, suggesting that reduced epigenetic modification levels may weaken intercellular signaling within the tumor microenvironment.
To decipher the molecular mechanisms of epigenetic regulation, we systematically analyzed the most significantly differentially expressed genes in each gene cluster (Figure 4E). Among all gene clusters, C1-C10 each displayed unique expression patterns. Particularly in the C1 cluster, which represented the terminal state in pseudotime analysis, we observed significant gene expression characteristics, including upregulation of SPP1, SMOC1, and MMP23B, and downregulation of LY6K, ISLR, and NPW.
GO functional enrichment analysis of the C1 cluster (Figure 4F) revealed multiple significantly enriched biological functions. In biological processes (BP), DNA biosynthetic process, telomere maintenance, and extracellular matrix organization were prominent, while humoral immune response and response to type I interferon suggested the importance of immune regulation. In cellular components (CC), collagen-containing extracellular matrix was most significant, along with enrichment of endoplasmic reticulum lumen and chromosomal region. In molecular functions (MF), extracellular matrix-related functions, represented by extracellular matrix structural constituent and collagen binding, were most prominent. KEGG pathway analysis (Figure 4G) further identified key signaling pathways, including PI3K-Akt signaling pathway, Focal adhesion, p53 signaling pathway, Cell cycle, and Base excision repair.
3.4 WGCNA analysis identifies key epigenetic regulatory modules
To systematically identify co-expression networks associated with epigenetic modifications, we performed WGCNA analysis on differentially expressed genes. Hierarchical clustering results demonstrated gene co-expression relationships and sample epigenetic score distribution (Figure 5A). Using the dynamic tree-cutting algorithm, we identified 12 functional modules (Figure 5B). Module-trait correlation analysis revealed that the Pink module showed the strongest positive correlation with epigenetic scores (cor = 0.55, P = 4e-8) (Figure 5C), and genes within this module demonstrated significant correlation between gene significance (GS) and module membership (MM) (cor = 0.44, P = 3.7e-06) (Figure 5D).
[image: Six-panel data visualization on gene expression analysis. Panel A shows a dendrogram of hierarchical clustering. Panel B contains a cluster dendrogram with color-coded module divisions. Panel C is a heatmap of module-trait relationships. Panel D is a scatterplot of module membership versus gene significance. Panel E displays a network graph of interconnected gene modules. Panel F presents a hierarchical cluster tree, highlighting module significance with a color scale.]FIGURE 5 | WGCNA network analysis reveals key gene modules of epigenetic modification. (A) Hierarchical clustering dendrogram of differential genes and heatmap of epigenetic score distribution. (B) Identification results of 12 functional modules. (C) Module-trait correlation analysis. Pink module shows strongest positive correlation. (D) GS-MM correlation analysis of the Pink module. (E) PPI network of differential genes. (F) Functional enrichment clustering analysis of core genes in the Pink module.
Further protein-protein interaction network construction (Figure 5E) and functional enrichment analysis (Figure 5F) revealed that core genes in the Pink module were primarily enriched in immune response-related pathways, including antigen processing and presentation, leukocyte mediated immunity, and natural killer cell mediated cytotoxicity; cellular vesicle transport processes such as endocytosis and lysosome pathway; and cell adhesion-related functions including cell adhesion molecules and focal adhesion. These results suggest that the Pink module may serve as a core functional module coordinating the epigenetic regulatory network.
3.5 Development of random survival forest-based prognostic prediction model
Through systematic evaluation of eight machine learning algorithms and their various combinations (Figure 6A), the RSF model demonstrated superior predictive performance across three cohorts (internal TCGA: 0.944, external TCGA: 0.783, GSE21257: 0.631). Feature importance analysis identified 10 core predictive genes (Figure 6B), with OLFML2B, ACTB, and C1QB showing the highest variable importance scores. Model performance evaluation revealed significant time-dependent predictive capability: The RSF model demonstrated excellent discriminative ability in the TCGA internal training set, with AUC values of 0.997, 0.998, and 1.001 for 1-year, 3-year, and 5-year survival predictions, respectively (Figure 6C). This predictive performance was validated in external validation cohorts, with AUC values in the external TCGA cohort of 0.929 (1-year), 0.874 (3-year), and 0.795 (5-year) (Figure 6D), and in the GSE21257 cohort of 0.832 (1-year), 0.666 (3-year), and 0.596 (5-year) (Figure 6E), demonstrating stable predictive efficiency and promising clinical application potential.
[image: Panel A shows a heatmap of gene expression, highlighting differences among groups. Panel B is a bar chart depicting the top ten features in a random survival forest model. Panels C, D, and E present time-dependent ROC curves for internal and external TCGA data, and GSE31257, respectively, illustrating predictive accuracy over time.]FIGURE 6 | Construction and Validation of RSF Prognostic Prediction Model (A) Performance evaluation heatmap of 37 machine learning algorithms. Color intensity indicates C-index value, with RSF model showing optimal performance across three cohorts. (B) Importance score ranking of top 10 feature genes in RSF model, with OLFML2B, ACTB, and C1QB being the three most contributive genes. (C) Time-dependent ROC curves in TCGA training set, showing extremely high prediction accuracy (AUC>0.997). (D) ROC curves in external TCGA validation set, maintaining good predictive performance (AUC: 0.795–0.929). (E) ROC curves in GSE21257 validation set, confirming external applicability of the model (AUC: 0.596–0.832).
Notably, compared to other machine learning methods (such as GBM: 0.819, Ridge: 0.846, survival-SVM: 0.711), the RSF model showed significant advantages in the internal validation set. This predictive advantage was maintained in external validation cohorts, confirming the model’s robustness and generalizability.
3.6 Functional mechanism analysis of RSF risk stratification
To elucidate the molecular biological basis of RSF risk stratification, we employed a multi-level functional enrichment analysis strategy. GSEA revealed that the high-risk group was significantly enriched in multiple cancer-related Hallmark pathways (Figure 7A), including Mtorc1 signaling, MYC targets V1/V2, Unfolded protein response, and Wnt beta catenin signaling (FDR <0.05). GSVA further revealed distinct pathway characteristics of risk stratification (Figure 7B). Notably, multiple immune-related pathways were significantly downregulated in the high-risk group, including IL6-JAK-STAT3 signaling (t = −4.21, adj.P.Val = 0.002), inflammatory response (t = −3.97, adj.P.Val = 0.002), and interferon responses (gamma: t = −3.55, adj.P.Val = 0.004; alpha: t = −3.22, adj.P.Val = 0.008). Additionally, several critical cancer-associated pathways showed significant depletion in the high-risk group, including allograft rejection (t = −4.03, adj.P.Val = 0.002), complement (t = −3.84, adj.P.Val = 0.002), and PI3K-AKT-MTOR signaling (t = −3.34, adj.P.Val = 0.006). Correlation analysis between risk scores and pathway activities (Figure 7C) validated these findings.
[image: Panel A shows a line graph of gene sets across categories, Panel B displays a bar chart highlighting gene significance, Panel C is a heatmap of gene correlation. Panels D to L feature Kaplan-Meier survival curves comparing gene expressions.]FIGURE 7 | Functional Mechanism Analysis of RSF Risk Stratification (A) GSEA analysis showing key pathway enrichment patterns in high-risk group (B) Waterfall plot of differential pathways revealed by GSVA analysis (C) Correlation heatmap between risk scores and pathway activities (D–L) Kaplan-Meier survival analysis curves for 9 key pathways.
To assess the clinical prognostic significance of key pathways, we selected nine most significant signaling pathways for survival analysis (Figures 7D–L). Kaplan-Meier analysis showed that high activity in these pathways was significantly associated with better prognosis (P < 0.05):
	• Metabolism-related pathways: Bile acid metabolism (p = 0.037) and Xenobiotic metabolism (p = 0.012).
	• Immune-related pathways: Interferon alpha/gamma response (p = 0.031/p = 0.033) and Allograft rejection (p = 0.042).
	• Cell death pathways: Reactive oxygen species pathway (p = 0.016) and Apoptosis (p = 0.016).
	• Signal transduction pathways: PI3K-AKT-MTOR signaling (p = 0.029) and Pancreas beta cells (p = 0.008).

3.7 Tumor microenvironment characteristic analysis
To better understand the relationship between RSF risk stratification and tumor microenvironment, we employed a multi-dimensional analysis strategy to evaluate microenvironmental differences between high- and low-risk groups. ESTIMATE algorithm analysis showed that compared to the high-risk group, the low-risk group had significantly elevated microenvironment scores: StromalScore (p = 0.00022, Figure 8A), ImmuneScore (p = 5e-05, Figure 8B), and ESTIMATEScore (p = 1.8e-05, Figure 8C) all showed significant differences.
[image: Violin plots labeled A, B, and C compare high and low immune scores across three categories. Heatmap D illustrates expression levels of immune-related signatures in different samples. Box plot E shows diversity among immune cell types within groups. Heatmap F displays pathways in three immune subgroups. Box plot G highlights differences in gene expression across immune groups.]FIGURE 8 | Multi-dimensional Analysis of Tumor Microenvironment Characteristics (A–C) Violin plots showing microenvironmental component differences in ESTIMATE scores (D) Heatmap of immune-related pathway activities (E) Box plots of immune cell infiltration levels. (F) Heatmap showing significantly different immune cell populations identified by xCell analysis between risk groups. (G) Box plots depicting the abundance of significant immune cell populations from xCell analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
Immune-related pathway analysis (Figure 8D) revealed 15 signaling pathways with significant differences between high- and low-risk groups, primarily including:
• Receptor signaling pathways: BCR/TCR receptor signaling pathway
	• Cell migration-related: Leukocyte transendothelial migration
	• Immune response processes: Complement and coagulation cascade, Natural killer cell mediated cytotoxicity
	• Signal transduction: Toll-like receptor signaling pathway, Cytokine signaling pathway

Further immune cell infiltration analysis using complementary approaches revealed consistent patterns in the tumor microenvironment. Initial analysis of 28 immune cell subgroups (Figure 8E) showed distinct abundance differences between high- and low-risk groups. These findings were further validated by xCell analysis (Figures 8F, G), which demonstrated significantly decreased infiltration levels of multiple myeloid cell populations in the high-risk group, including dendritic cells (iDC), macrophages (both M1 and M2 subtypes), and monocytes (all P < 0.05). Notably, the comprehensive microenvironment and immune scores from xCell analysis also confirmed lower immune cell infiltration in the high-risk group, consistent with our ESTIMATE and 28 immune cell subgroups analysis findings. This convergence of results from multiple analytical approaches suggests a systematic difference in immune cell composition between risk groups, characterized by reduced myeloid cell infiltration in high-risk tumors.
3.8 Drug sensitivity analysis based on risk stratification
To explore the potential value of the RSF risk stratification model in guiding individualized treatment, we analyzed drug sensitivity differences between high- and low-risk groups. Through comparison of predicted IC50 values, we identified seven drugs showing significant sensitivity differences (Figure 9), including traditional chemotherapy drugs Doxorubicin (anthracycline, p = 0.0167, Figure 9A), Etoposide (topoisomerase inhibitor, p = 0.00036, Figure 9B), Vinorelbine (microtubule inhibitor, p = 0.011, Figure 9C), and SN-38 (topoisomerase I inhibitor, p = 0.04, Figure 9D), as well as targeted therapeutic agents 17-AAG (Hsp90 inhibitor, p = 0.0076, Figure 9E), Sorafenib (multi-target tyrosine kinase inhibitor, p = 0.041, Figure 9F), and BMS-754807 (IGF-1R/IR inhibitor, p = 0.02, Figure 9G). Notably, the low-risk group demonstrated higher sensitivity to most chemotherapy drugs, particularly showing the most significant responses to Etoposide and SN-38 (Figures 9B, D). These results provide a theoretical foundation for RSF risk stratification-based personalized medication strategies while revealing that tumors with different molecular characteristics may require differentiated treatment approaches.
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3.9 Pan-cancer prognostic value analysis of the RSF model
To evaluate the applicability of the RSF prognostic model in other cancer types, we conducted systematic analysis across 19 different cancer types from the TCGA database (Figure 10A). Results showed that the model demonstrated significant prognostic value in multiple cancer types, including ACC (Adrenocortical Carcinoma, HR > 2), GBMLGG (Glioma, HR < 1), and STAD (Gastric Adenocarcinoma, HR < 1). Further survival analysis revealed that in ACC, high-risk group patients had significantly shorter overall survival compared to the low-risk group (p = 0.044, Figure 10B), while GBMLGG and STAD showed opposite trends, with high-risk group patients showing better prognosis (GBMLGG: p < 0.0001, STAD: p = 0.021; Figures 10C, D). This differential prognostic pattern suggests that the RSF model may capture common molecular features across different cancer types, but their biological significance may vary in different tissue contexts.
[image: Four-part figure analyzing survival data. Panel A shows a forest plot with hazard ratios for various genes. Panels B, C, and D display Kaplan-Meier survival curves for ACC, GBMLGG, and STAD cancer types, respectively, with significant differences in survival between gene expression groups. Each plot includes p-values and the number at risk.]FIGURE 10 | Pan-cancer Prognostic Prediction Analysis of RSF Model (A) Forest plot of hazard ratios for 19 cancer types, dot size represents -log10 (p-value). (B–D) Kaplan-Meier survival curves for ACC, GBMLGG, and STAD, including risk group stratification and temporal changes in patient numbers.
4 DISCUSSION
4.1 Epigenetic heterogeneity and tumor progression
Through single-cell epigenetic analysis, our study revealed the crucial role of epigenetic regulation during OS progression. Regarding cell fate determination, we observed that variations in epigenetic scores significantly influenced the distribution patterns across eleven transcriptional subgroups. The high-score group was predominantly characterized by C1 (25.8%) and C2 (19.5%) subgroups, while the low-score group was dominated by C1 (42.9%) and C6 (21.2%) subgroups. This distributional disparity suggests that epigenetic modifications may influence cell differentiation trajectories through the regulation of specific transcriptional programs. Notably, pseudotime analysis revealed that the transition of cells from early C2, C4, and C7 subgroups to late C9 and C1 subgroups is strictly regulated by epigenetic modification levels, indicating that epigenetic reprogramming acts as a “molecular switch” in tumor progression (Sun et al., 2022).
At the cellular communication network level, the high-score group exhibited more complex and active signaling interaction patterns. Particularly noteworthy was the intense bidirectional communication between OS cells and osteoclasts/myeloid cells, alongside the activation of key immunoregulatory pathways involving CD74-CD44 and ITGA4-ITGB1. CD74-CD44 signaling promoted immune cell recruitment and activation, while ITGA4-ITGB1 facilitated immune cell adhesion and migration within the tumor microenvironment. In contrast, the cellular communication network in the low-score group was notably simplified, primarily limited to restricted interactions between OS cells and myeloid cells. This likely represents more than mere correlation, suggesting that epigenetic modifications actively shape the immune microenvironment through the regulation of these pathways (Yang et al., 2023). This finding provides new perspectives for understanding tumor immune escape mechanisms (Rodríguez et al., 2003) while suggesting that epigenetic interventions targeting these pathways may hold potential for modulating the tumor immune microenvironment.
From an evolutionary perspective, epigenetic modifications demonstrated strong associations with tumor evolution. Our pseudotime analysis clearly illustrated spatial separation patterns of cells along evolutionary trajectories, with high-score and low-score groups tending to occupy distinct evolutionary branches. This phenomenon suggests that epigenetic modifications may drive tumor cells along specific evolutionary paths by influencing dynamic changes in gene expression profiles. Particularly in the terminal C1 subgroup, we observed significant upregulation of key genes including SPP1, SMOC1, and MMP23B. Functional enrichment analysis of these genes further revealed the involvement of crucial biological processes such as DNA replication, telomere maintenance, and extracellular matrix remodeling, potentially representing important mechanisms by which cells with high epigenetic activity maintain homeostasis (Budhavarapu et al., 2013; Hakobyan et al., 2024).
4.2 Innovation and clinical translation value of the prognostic model
Our developed RSF prognostic model demonstrates three distinctive advantages: First, compared to traditional Cox proportional hazards models and other machine learning methods, the RSF model automatically handles non-linear relationships and higher-order interactions, achieving outstanding predictive accuracy (C-index of 0.944). Second, the model integrates epigenetic regulatory features, considering not only gene expression levels but also dynamic changes in epigenetic modifications, providing a new dimension for capturing tumor heterogeneity. Third, the model demonstrates consistent predictive performance across multiple independent cohorts, particularly maintaining consistency in predictions at different time points (1-year, 3-year, and 5-year), a time-dependent predictive characteristic crucial for clinical decision-making.
In terms of personalized treatment, our study is the first to reveal the possibility of differentiated treatment strategies based on RSF risk stratification. Notably, we observed significant differences in drug sensitivity between high-risk and low-risk groups: the low-risk group showed higher sensitivity to conventional chemotherapy agents (such as DNA topoisomerase inhibitors Etoposide and SN-38), possibly related to their higher cell proliferation activity and DNA replication dependency. The enhanced sensitivity to topoisomerase inhibitors in the low-risk group may be attributed to their more active DNA replication machinery and higher expression of topoisomerase-related genes, making them more vulnerable to DNA damage-induced cell death. In contrast, the high-risk group demonstrated better responses to molecular targeted drugs (such as Hsp90 inhibitor 17-AAG and multi-kinase inhibitor Sorafenib), correlating with their activated specific signaling pathways. For instance, 17-AAG may influence the stability of multiple epigenetic regulatory factors through Hsp90 inhibition (Talaei et al., 2019), while Sorafenib, as a multi-target inhibitor, might affect epigenetic modification processes by interfering with RAF/MEK/ERK and PI3K/AKT signaling pathways (Abdelgalil et al., 2019; Ullah et al., 2022; Manning and Toker, 2017). The superior response to targeted therapies in the high-risk group could be explained by their greater dependence on these specific molecular pathways for survival and proliferation, as evidenced by their distinct pathway activation signatures and epigenetic profiles. This differential response pattern suggests that RSF risk scores may reflect fundamental biological characteristics and signaling pathway dependencies of tumor cells, which directly determine cellular sensitivity to drugs with different mechanisms of action.
However, clinical application of drug sensitivity prediction faces several key challenges: First, can in vitro prediction results accurately reflect in vivo drug responses, particularly considering factors such as drug metabolism and bioavailability? Second, given the complexity of the tumor microenvironment, is prediction based solely on epigenetic features sufficiently comprehensive? For example, our observed differences in immune microenvironment might affect the efficacy of immune checkpoint inhibitors, while the activation level of angiogenesis-related pathways might influence the effectiveness of anti-angiogenic drugs. Additionally, metabolic reprogramming and stress response mechanisms of tumor cells might affect treatment outcomes through their influence on drug transport and detoxification. These issues require validation through prospective clinical studies. Nevertheless, our model provides an actionable framework for developing personalized treatment plans, particularly valuable in selecting first-line treatment strategies and predicting therapeutic responses.
Notably, the core feature genes identified by the model (such as OLFML2B, ACTB, and C1QB) may serve not only as predictive markers but also as potential therapeutic targets. Their central position in the epigenetic regulatory network suggests that targeted interventions against these molecules might produce cascade effects, thereby affecting the activity of entire signaling networks. This finding provides direction for developing new therapeutic strategies, particularly in considering combination therapy regimens, where individualized adjustments can be made based on the expression patterns of these core genes.
4.3 Interaction between immune microenvironment and epigenetic regulation
This study reveals complex interactions between epigenetic features and the immune microenvironment through integrated analysis. We found that the low-risk group exhibited significantly elevated immune and stromal scores, a seemingly counterintuitive phenomenon that yields interesting insights upon deeper analysis: high epigenetic activity may promote tumor immune evasion by suppressing immune cell recruitment and activation. Specifically, GSEA analysis revealed significant activation of MYC and mTORC1 signaling pathways in the high-risk group, which are known to reshape the tumor immune microenvironment, suppress T cell function, and promote myeloid-derived suppressor cell accumulation (Dhanasekaran et al., 2022; Kim et al., 2017).
Regarding epigenetic modification’s regulation of immune responses, we observed several key mechanisms. Firstly, CD74-CD44 signaling pathway activation in the high epigenetic activity group suggests that epigenetic modifications may influence immune recognition through antigen presentation regulation. Then, differential expression of the ITGA4-ITGB1 pathway indicates potential epigenetic influence on immune cell chemotaxis and infiltration. Specifically, CD74-CD44 signaling may promote immune evasion through multiple mechanisms: CD74 can regulate MHC class II trafficking and antigen loading, while CD44 engagement can trigger immunosuppressive cytokine production and regulatory T cell expansion. The ITGA4-ITGB1 pathway activation could facilitate selective immune cell recruitment, favoring immunosuppressive cell populations like MDSCs and Tregs while impeding cytotoxic T cell infiltration. Besides, the immune cell communication network remodeling observed at the single-cell level may represent a novel immune evasion mechanism: cells with high epigenetic activity alter immune cell signaling to weaken the synergistic effects of anti-tumor immune responses.
These findings suggest new approaches for optimizing immunotherapy strategies:
	1. Epigenetic-immune combination therapy (Liang et al., 2023): For high-risk patients, epigenetic modulator pretreatment followed by immunotherapy might achieve better therapeutic outcomes.
	2. Personalized immunotherapy: Patient epigenetic characteristics could more accurately predict immune checkpoint inhibitor response, guiding optimal immunotherapy strategy selection.
	3. Microenvironment remodeling: Targeting key epigenetic regulators might reshape the immunosuppressive microenvironment, enhancing immunotherapy efficacy.

However, integrating single-cell and TCGA database analyses revealed an apparently contradictory but enlightening phenomenon: at the single-cell level, the high epigenetic score group showed more active immune pathways and complex cell communication networks, while TCGA cohort analysis showed higher immune scores and immune cell infiltration in the low-risk group. This discrepancy may reflect scale-specific epigenetic regulation effects: single-cell analysis captures microscopic instantaneous states, while TCGA data reflects macroscopic average states. Further analysis reveals a consistent pattern of immune suppression in the high-risk group, characterized by significantly decreased infiltration of various immune cell populations and downregulation of immune-related pathways. This comprehensive immune deficiency, rather than active immune suppression, may create a “cold” tumor microenvironment that favors tumor progression. The systematic reduction in both innate (macrophages, dendritic cells) and adaptive immune components suggests an immune-desert phenotype in high-risk tumors, which could explain their poor prognosis and potentially guide immunotherapy strategies.
From a dynamic equilibrium perspective, high immune pathway activity observed at the single-cell level may represent immediate stress responses to immune pressure, while low immune infiltration at the tissue level may be the final effect of this stress response, suggesting that epigenetic modifications may maintain an immune microenvironment state favorable for tumor survival through dynamic regulation. This finding not only explains the scale-dependent characteristics of epigenetic regulation but also provides new perspectives for understanding tumor immune evasion mechanisms.
4.4 Mechanism discussion for pan-cancer application
The opposing prognostic significance of epigenetic modifications across different cancer types likely reflects the tissue specificity and microenvironment dependency of epigenetic regulation. In endocrine system tumors (such as ACC), high levels of epigenetic activity often correlate with dedifferentiation and invasive phenotypes (Ettaieb et al., 2020), possibly due to endocrine tissues’ high dependency on epigenetic balance. Endocrine cells require precise epigenetic regulation to maintain their specialized functions and hormone secretion capabilities; thus, epigenetic imbalance may directly lead to cellular dysfunction and malignant progression. In contrast, in nervous system tumors (GBMLGG) and digestive system tumors (STAD), high epigenetic activity may instead represent better differentiation states and tissue homeostasis maintenance capability (Li et al., 2019; Hong et al., 2021).
These differences may stem from the developmental origins and metabolic characteristics of these tissues: glial cells inherently possess higher plasticity, where moderate epigenetic activity may help maintain their normal function; gastric mucosal cells require continuous renewal and differentiation processes, where higher epigenetic activity may reflect better tissue homeostasis regulation.
5 LIMITATION AND FUTURE PERSPECTIVES
Although this study revealed significant characteristics of epigenetic heterogeneity in OS and established an effective prognostic prediction model, several limitations need to be addressed in future research. First, the current single-cell analysis faces both technical and sample size limitations. The technical constraints include potential cell dropout effects, limited capture of rare cell populations, and computational challenges in data processing. The small sample size may not fully capture the complete landscape of epigenetic heterogeneity in OS, necessitating expanded cohort sizes and integration of multi-omics data. Second, detailed patient clinical characteristics, including complete follow-up information and treatment protocols, were not available in the current database, which limits our ability to conduct comprehensive clinical correlation analyses. Third, the drug sensitivity predictions are primarily based on in vitro data, requiring prospective clinical studies for validation of their translational value. Fourth, the causal relationship between epigenetic modifications and the immune microenvironment, as well as the molecular mechanisms underlying opposite prognostic implications in different cancer types, remains to be fully elucidated.
To address these limitations, future research should focus on: (1) integrating spatial transcriptomics data to better understand the spatial heterogeneity of epigenetic modifications while expanding sample sizes through multi-center collaboration; (2) conducting prospective clinical cohort studies with standardized data collection to validate the model’s predictive performance and therapeutic guidance value; (3) investigating the regulatory mechanisms of epigenetic modifications on the immune microenvironment through in vitro functional experiments and animal models; (4) exploring the formation mechanisms of tissue-specific epigenetic regulatory networks; and (5) establishing standardized protocols for model implementation and validation in clinical settings. We are actively addressing several of these limitations through an ongoing comprehensive clinical cohort study at our center, which will provide detailed clinical parameters and treatment outcomes for model validation. These continued efforts will contribute to further optimization of the prognostic prediction model and provide theoretical foundations for developing novel therapeutic strategies.
6 CONCLUSION
By integrating single-cell sequencing data with epigenetic regulatory networks, this study systematically revealed the molecular characteristics of epigenetic heterogeneity in OS and successfully established a Random Survival Forest-based prognostic prediction model. Our key findings include: (1) identification of five major cell types in the OS microenvironment, with significant epigenetic heterogeneity, particularly high epigenetic activity in OS cells and osteoclasts; (2) demonstration through pseudotime analysis that epigenetic modification levels significantly influence cell fate determination, with high- and low-score groups showing distinct spatial separation in evolutionary trajectories, indicating the crucial role of epigenetic regulation in tumor progression; (3) validation of the RSF model’s excellent predictive performance across multiple independent cohorts (internal validation AUC>0.997, external validation AUC = 0.832–0.929), with broad application potential across 19 different cancer types, particularly showing significant prognostic value in ACC, GBMLGG, and STAD.
Furthermore, our study systematically revealed the close association between epigenetic scores and the immune microenvironment, discovering significantly elevated stromal and immune scores in the low-risk group, suggesting that epigenetic modifications may influence disease prognosis through regulation of the tumor immune microenvironment. Additionally, drug sensitivity analysis identified seven compounds with potential therapeutic value, providing new options for risk stratification-based personalized treatment. These findings not only deepen our understanding of OS development mechanisms but also provide new theoretical foundations for clinical therapeutic decision-making, demonstrating significant translational medical value.
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Objective: Non-SMC condensin II complex subunit D3 (NCAPD3) has recently been demonstrated as a crucial oncogenic factor, nevertheless, the biological role of NCAPD3 in the pathogenesis of breast cancer has not been elucidated. Evidence suggests that targeting ferroptosis can inhibit the progression of breast cancer. Moreover, 2,3,5,4’-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG) could modulate MCF-7 cell proliferation in our previous study. Therefore, we aimed to investigate the potential mechanism by which NCAPD3 mediates ferroptosis in THSG inhibition of T47D cell proliferation by full-length transcriptome sequencing.Methods: Alternative splicing analysis was performed based on full-length transcriptome sequencing and the overlapping genes in differentially expressed transcripts (DETs) and differential alternative splicing (diAS) were obtained. Further, RT-PCR was used to validate the type of alternative splicing. And the hub genes (transcripts) were selected using the bioinformatics analysis, quantitative polymerase chain reaction (qPCR) and Western blotting (WB). Moreover, cell cycle and ferroptosis were assessed using flow cytometry analysis and WB respectively. Mechanically, cell viability and clone formation was detected using Biochemical kit. And siRNA of Ncapd3 was transfected into T47D cells to detect the expression levels of ferroptosis-related proteins (WB) and cell viability (MTT).Results: 40 overlapping transcripts of DETs and diAS were obtained consistent with the analysis of full-length transcriptome sequencing, and Ncapd3 (Ncapd3-203) is key gene (transcript), which was also highly expressed in breast cancer and THSG could inhibit the mRNA and protein expression. Moreover, THSG could induce cell cycle arrest in G2/M stage and reduce ferroptosis-related protein expression (xCT and GPx4). Mechanically, we found that THSG inhibits the cell proliferation and clone formation in T47D cells, and Ncapd3 inhibition could inhibit (xCT and GPx4) proteins expression, which regulated THSG-suppressing effect in T47D cells.Conclusion: THSG could inhibit the proliferation in T47D cells by NCAPD3 -dependent ferroptosis, which provided novel insights into targeted strategy for breast cancer.Keywords: THSG, NCAPD3, breast cancer, ferroptosis, full-length transcriptome sequencing, T47D cells
1 INTRODUCTION
Global cancer statistics in 2024 released breast cancer ranks first in incidence among women worldwide and second in mortality. It has become the leading malignant tumor that severely threatens women’s physical and mental health (Siegel RL et al., 2024; Yang Z et al., 2024). Studies have shown that 60%–70% of breast cancers are estrogen receptor-positive (ER+) and progesterone receptor-positive (PR+) hormone-dependent malignant tumors (Siegel RL et al., 2023; Trabert B et al., 2020). The prevalence of patients with ER + breast cancer who relapse and metastasise after 5 years remains at 5%–30% (Nanda A et al., 2021). MCF-7 and T47D, as ER + breast cancer cell line indicators, significantly contribute to the advancement of breast cancer. Chemotherapy, radiation, and endocrine therapy possess specific benefits in eradicating tumour cells and suppressing tumour proliferation, nonetheless, they frequently entail significant adverse effects and the development of drug resistance. Consequently, identifying novel molecular targets associated with the progression of ER + breast cancer is crucial for the targeted therapy of patients.
2,3,5,4’-Tetrahydroxystilbene-2-O-b-D-glucoside (THSG) is the main active ingredient in the traditional Chinese medicine Polygonum multiflorum (Wu J et al., 2017). In our previous studies, the combination of THSG and doxorubicin exerted a synergistic effect on MCF-7 cells through the PI3K/Akt pathway and induced apoptosis (Shen J et al., 2018). We further studied and found that THSG regulates the alternative splicing of CHEK2 and CCND1 by inducing G0/G1 cell cycle arrest, thereby inhibiting MCF-7 cell proliferation (Shen H et al., 2024). Evidence demonstrates that T47D cell lines exhibit greater sensitivity to progesterone than MCF-7 cell lines, that supports further investigation into T47D cell lines (Yu S et al., 2017). At the moment, there is not any evidence about the inhibitory action of THSG on T47D, consequently THSG may potentially emerge as a novel therapeutic agent that blocks the proliferation of T47D cells.
Non-SMC condensin II complex subunit D3 (NCAPD3) is located at 11q25, which contains 37 exon sequences, 1498 amino acids, 4 HEAT repeat domains and a coiled-coil domain (Yeong FM et al., 2003). Dysfunction of NCAPD3 can lead to disruptions in chromosome condensation and errors in segregation. In recent years, NCAPD3 has been intricately linked to cancer development and progression, particularly in colorectal cancer (Jing et al., 2022a), prostate cancer (Jing et al., 2022b), gastric cancer (Zhang SY et al., 2024), and non-small cell lung cancer (Yang F et al., 2024). However, its mechanisms in breast cancer remains unclear. Further investigation may provide a theoretical foundation for breast cancer prevention and treatment.
Ferroptosis was novel way to induce cell death that is iron-dependent and morphologically and biochemically different from autophagy, apoptosis, and necrosis. It is primarily characterized by iron accumulation and lipid peroxidation (Dixon SJ et al., 2012). Ferroptosis is regulated by various factors, among which Glutathione Peroxidase 4 (GPx4) plays a crucial role in modulating lipid peroxidation. GPX4 is markedly overexpressed in breast cancer, where its primary function is to neutralize reactive oxygen species (ROS) by converting glutathione (GSH) into its oxidized form, glutathione disulfide (GSSG) (Shi Z et al., 2021; Lin HY et al., 2021; Wang D et al., 2021). Moreover, Solute Carrier Family 7 Member 11 (SLC7A11, xCT) is a crucial component in the production of glutathione (GSH) and is located upstream of ferroptosis. Studies indicate that the inhibition of SLC7A11 may prevent the spread of breast cancer cells (Liu J et al., 2020). Consequently, we conclude that the stimulation of ferroptosis may serve as a mechanism that suppresses breast cancer cells and enhances the effectiveness of anti-tumor agents and radiotherapy.
Therefore, this article will be studied in three sections. First, Ncapd3 (Ncapd3-203) is key alternative splicing gene, which was also highly expressed in breast cancer. Secondly, THSG could inhibited the NCAPD3 protein levels and activated ferroptosis and cell cycle arrest in T47D cells. Collectively, targeted inhibition of Ncapd3 could trigger ferroptosis, which regulates THSG-suppressing effect in T47D cells.
2 MATERIALS AND METHODS
2.1 Preparation of THSG and cell culture
THSG was obtained from Chengdu Herbpurify CO., LTD (Cat#E−022-160,001, Chengdu, China) and dissolved in Roswell Park Memorial Institute 1640 (RPMI 1640, Cat#12633020, Gibco, United States) with 2% fetal bovine serum (FBS) (Cat#FSD500, Excell, Jiangsu, China) at a concentration of 10 mmol/L stock solution. The concentrations used in this study were 0, 100, 200, 300, 400, and 500 μmol/L, freshly diluted in RPMI 1640 medium before use. The concentration of 0 μmol/L THSG was set as control.
2.2 Cell culture and transfection
T47D cells (Cat#BFN60805678, ATCC) cultured in RPMI 1640 supplemented with 10% FBS and 1% penicillin as well as streptomycin (PS, Cat#G4003, Servicebio, Wuhan, China). The cells were cultured at 37 °C with 5% CO2 in humidified conditions. Transfection was performed with Lipofectamine 2000 (Cat#11668030, Invitrogen, Carlsbad, CA, United States) according to the manufacturer’s instructions. For RNA interference, cells were transfected with appropriate siRNAs using Lipofectamine RNAiMAX (Cat#13778075, Invitrogen, Carlsbad, CA, United States) and harvested 48 h later for analyses. With subsequent examinations, T47D cells was transfected with scramble siRNA (Cat#A06002, Shanghai GenePharma Co., Ltd. Shanghai, China) and Ncapd3 siRNA. (Ncapd3 siRNA sense, 5-GUG​CUG​CCU​UUC​ACU​UUA​ATT-3, and its antisense siRNA was 5-UUA​AAG​UGA​AAG​GCA​GCA​CTT-3, Cat#A03001, Shanghai GenePharma Co., Ltd. Shanghai, China). Then, T47D cells line was collected and the mRNA expression of Ncapd3 were measured using quantitative polymerase chain reaction (qPCR) in 48 h later.
2.3 Cell viability assay
The proliferation and cytotoxicity of T47D cells was assessed using the methyl thiazolyl tetrazolium (MTT) assay (Cat#C0009S, Beyotime Biotechnology, Shanghai, China). T47D cells were seeded at a cell density of 5 × 103 cells/well in 96-well plates and cultured with different concentrations (0, 100, 200, 300, 400, and 500 μmol/L) of THSG were added for 24, 48, and 72 h. The cells were cultured for 4 h after the addition of MTT solution (10 μL per well). Subsequently, 100 μL of dimethyl sulfoxide (DMSO, Cat#ST038, Beyotime Biotechnology, Shanghai, China) per well was added, and the mixture was incubated for 10 min while the cells were shaken. Relative absorbance was determined at 570 nm by subtracting the absorbance at 630 nm. Inhibition rate (%) = 100% × (control cell OD -dosing cell OD)/(control cell OD-blank OD).
2.4 Colony formation assay
T47D cells (1 × 102) with 100–200 μmol/L THSG or Phosphate Buffered Saline (PBS) (Cat#G4202, Servicebio, Wuhan, China) were inoculated and incubated in 6-well plates for 24 h. The cells were subsequently cultivated in mediums lacking THSG for 2 weeks. All of the dishes were subsequently rinsed multiple times with ddH2O to eliminate unattached crystal violet prior to enumerating the colonies employing ImageJ 1.53a software.
2.5 Cell cycle detection
Cell cycle was evaluated using a related Kit (Cat#C1052, Beyotime Biotechnology, Shanghai, China) as follows: T47D cells were treated to various doses of THSG (0, 200, and 250 μmol/L) for a duration of 24 h. Subsequently, the cells were treated with a concentration of 200 μmol/L THSG for 24 and 48 h. Afterwards, the cells were subjected to centrifugation and re-suspended in PBS. The cells were stained with propidium iodide (PI) following the instructions provided by the manufacturer. The data were acquired using flow cytometry equipment (LSRFortessa, United States) and processed using FlowJo-V10 software (Tree Star Inc.).
2.6 Full-length transcriptome sequencing was constructed for diAS, DEGs and DETs in T47D cells
Third-Generation Sequencing (TGS) was commercialized by Oxford Nanopore Technologies (ONT) Minions. T47D cells including control group (T47DC) and THSG-treated group (T47DT) pretreated with THSG (0 or 200 μmol/L) for 24 h, with three replicates per group. Total cellular RNA was extracted and mailed to Beijing Biomarker Technology Co., Ltd. for sequencing analysis. The raw data format used by Oxford Nanopore Technologies (ONT) is the second-generation fast5 format, which stores the original sequencing signals generated during the sequencing process. The data in fast5 format was transformed to fastq format using the Guppy software included in the MinKNOW 2.2 package. The consistent sequences of each sample were aligned with the reference genome by minimap2. Perform redundant-remove for alignment result, filter out sequences with identity lower than 0.9 and coverage lower than 0.85, consistent sequences of each sample can be used for alternative splicing analysis after redundant-remove. finally 44,416 redundant-removed transcript sequences can be obtained. It's recommended to use IGV (Integrative Genomics Viewer) to open alignment result file between transcriptome sequencing Reads and reference genome sequence (usually in BAM format), species reference genome sequence and the annotation file for visual browsing.
The data were downloaded from the BMK Cloud (https://international.biocloud.net). To detect valid alternative splicing events, those with a P < 0.05 and |△PSI| >10% were categorized as differential alternative splicing (diAS) events. For exons in alternative splicing, percent-spliced-in (PSI) was calculated as PSI = Splice in/(Splice in+ Splice out). “Splice-in” and “splice-out” represent the number of reads that corroborate the occurrence of splice-in and splice-out, respectively, in the RNA-seq data. All pairwise comparisons were assessed using the DESeq2 R package (1.6.3) to DEGs and DETs. In the DESeq2 analysis, differentially regulated genes were defined as those with a two-fold change, with an adjusted P < 0.05. Following that, the data that had been chosen were used for visualisation by being loaded into SRplot. Finally, the overlapping genes of DETs and diAS were imported into Venn 2.1.0 and histograms were generated with the ggplot2 R package (v3.3.6).
2.7 qPCR and RT-PCR
T47D cells RNA in each group was extracted following the protocol of Trizol reagent kit (Cat#15596018CN, Invitrogen, Carlsbad, CA, United States), The RNA content was assessed using an ultra-microspectrophotomete. Then, complementary DNA (cDNA) was obtained from the RNA through the process of reverse transcription, utilizing a HiScript II Q RT SuperMix (Cat#R222-01; Epizyme, shanghai, China). Afterwards, SYBR-Green method was used for real-time quantitative cDNA amplification (Cat#Q711-02; Epizyme, shanghai, China). Finally, the relative mRNA levels have been determined to use the 2−ΔΔCT method and standardized against GAPDH. RT-PCR primers that are intended to amplify two or more isoforms of various sizes are illustrated. The primers sequences of the genes for qPCR/RT-PCR are shown in Table 1. The ImageJ software was used to quantify the PCR results.
TABLE 1 | Primers sequences of the genes used for qPCR and RT-PCR analysis.
[image: A table listing gene names with corresponding primer sequences in forward and reverse directions. Genes are: Tead2-202, Cenpx-202, Ncapd3-203, Ncaph-201, Paqr4-201, Ncapd3, and Gapdh. Each gene has specific sequences for both forward and reverse primers.]2.8 Western blot analysis
The Western blot analysis was carried out in accordance with the previously reported techniques (Wang P et al., 2024; Wang PY et al., 2024). In brief, protein samples ranging from 20 to 40 μg were analysed using a 10%–12% (w/v) SDS-PAGE gel (Cat#PG212/PG213; Epizyme, shanghai, China). The proteins that had been isolated were subjected to electroblotting and subsequently deposited onto a polyvinylidene difluoride (PVDF) membrane. The membrane was blocked using TBST solution that consisted of 5% nonfat milk or bovine serum albumin. Subsequently, the membranes were subjected to an overnight at 4°C with primary antibodies (xCT (Cat#26864-1-AP), GPX4 (Cat#30388-1-AP), HO-1 (Cat#10701-1-AP), NCAPD3 (Cat#16828-1-AP), 1:1000, ProteinTech Group, Chicago, United States). And its was subjected to incubation with secondary antibodies (Cat#L3032/L3012, 1:10,000, Signalway Antibody, Greenbelt, MD, United States) at ambient temperature. The visualisation of protein blots was achieved by the utilisation of an ECL system and the Image Lab detection system, manufactured by BioRad in Hercules, CA. GAPDH, β-actin, or α-tubulin (Cat#WL01114/WL01372/WL02296, 1:1000, Wanlei Biological Technology Co., Ltd., Shanghai, China) were employed to normalize the protein bands and examine them using ImageJ.
2.9 Statistics analysis
Statistical analysis was conducted using the GraphPad Prism (version 9.00). The experiments were repeated at least three times, and the data are expressed as the mean ± standard error of the mean (SEM). Statistical differences between two groups were analyzed using Student’s t-test, One-way ANOVA and Two-way ANOVA were used for comparison among multiple groups. P < 0.05 was considered to indicate statistical significance.
3 RESULTS
3.1 The analysis of differential alternative splicing (diAS) in THSG-treated T47D cells
Alternative splicing is an important factor in the development of protein variety. The different types of alternative splicing include exon skipping (ES), alternative 3′splice site (A3SS), mutually exclusive exon (MEX), alternative 5′splice site (A5SS), and intron retention (IR) (Figure 1A). As illustrated in Figure 1B, the classification of alternative splicing events in T47D cells following THSG treatment (T47DT) was shown. We observed that over half alternative splicing events were ES events. Furthermore, GO and KEGG enrichment analysis were performed to explore the differential alternative splicing (diAS). As shown in Figure 1C, it shown that the BP was mainly concentrated on the mRNA metabolic process and CC was mainly located in the mitochondrial envelope and mitochondrial membrane. Meanwhile, the Spliceosome was the most valuable pathway among the top 10 KEGG pathways (Figure 1D). Taken together, it indicated that THSG may inhibit T47D cells proliferation by regulating mRNA metabolic process and spliceosome. Nevertheless, the specific transcripts by which THSG exerts its effects have not been identified.
[image: Illustration showing four panels labeled A to D. Panel A depicts diagrams of five types of splicing events: ES, A3SS, MXE, ASSS, and IR. Panel B is a pie chart showing the distribution of splicing events with ES at 68.84%, ASSS at 11.4%, A3SS at 10.51%, IR at 5.18%, and MXE at 0.07%. Panel C displays a bar chart of GO enrichment for cellular functions, color-coded by significance. Panel D shows a bar chart of KEGG enrichment for pathways and infections, with categories color-coded by significance. Each bar graph is annotated with counts and p-values.]FIGURE 1 | The analysis of differential alternative splicing (diAS) in T47D cells. (A) 5 types of Alternative splicing (AS). Exons are denoted by a dark blue color, while introns are denoted by pale blue. (B) The proportion of the five alternative splicing types in T47DT group. (C) Gene Ontology (GO) enrichment of the differential alternative splicing (diAS). (D) KEGG enrichment of diAS. The colour of the bar indicates the P value enriched into the pathway, while the length of the bar reflects the amount of genes.
3.2 The overlapping transcripts analysis between DETs and diAS
The overlapping transcripts (40) between the differentially-expressed transcripts (DETs) and differential alternative splicing events (diAS) related genes were shown in Figure 2A. Moreover, volcano plot was revealed in downregulated transcripts for Tead2-202, Cenpx-202, Ncaph-201, Ncapd3-203, and Paqr4-201 or upregulated transcripts for Unp35-206, Pcdh1-201, Clk-1-201, Mdm4-203, and Ccnt2-204 in THSG-treated groups (Figure 2B). Then, GO enrichment of overlapped transcripts (top 10) was performed in Figure 2C, and the top 3 pathways were cell cycle, cell division, and M phase. Meanwhile, the ∆PSI as the indicator ranked the downregulated transcripts (∆PSI > 0) as shown in Figure 2D.
[image: Four-panel scientific visualization. Panel A: Venn diagram with DETs (5369, 92.4%) and diAS (402, 6.9%), with 40 (0.7%) overlap. Panel B: Volcano plot of gene expression, showing down-regulated, not significant, and up-regulated genes. Panel C: Bar chart of GO enrichment analysis for processes like cell cycle and cell division with varying significance. Panel D: Bar chart of ΔPSI analysis listing genes like TEAD2-202 and their ΔPSI percentages.]FIGURE 2 | The overlapped transcripts analysis between DETs and diAS. (A) Venn programs of DETs and diAS. The green circle represented the DETs, and the red circle represented the diAS. (B) Volcano plot of overlapped genes in T47DT and T47DC. The blue (red) dots represented the downregulated (upregulated) genes in T47DT group. (C) GO enrichment analysis of overlapped transcripts. (D) ∆PSI analysis of downregulated transcripts in T47DT group. Abbreviations: GO, Gene Ontology; diAS, differential alternative splicing; AS, Alternative splicing; DETs, differential expression transcripts; PSI, Percent-spliced-in.
Furthermore, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was performed to validate the AS changes of main transcripts (Figure 3). The inclusion reads of Ncapd3 and Cenpx2 were increased in THSG treatment, with the same as the results of RNA-seq data (Figures 3B, C). However, the inclusion reads of Tead2 and Ncaph has no significant difference after THSG intervention (Figures 3A, D). Notably, the mRNA expression of Ncapd3-203 and Cenpx-201 were decreased in treatment of THSG (Figures 4B, D). Therefore, these results confirmed that the overlapping transcripts of DETs and diAS play an important roles in the cell cycle, and it was worthwhile to explore the transcripts of Ncapd3 and Cenpx in further study.
[image: Experimental results for four genes: Tead2, Ncapd3, Cenpx, and Ncaph. Each panel (A-D) shows gel electrophoresis bands comparing control (Ctr) with treatment (THSG), associated splicing diagrams, and bar graphs illustrating increased percent splicing in the THSG group. Tead2, Ncapd3, Cenpx, and Ncaph show significant splicing differences, indicated by asterisks on the bar graphs.]FIGURE 3 | Type of alternative splicing was validated using RT-PCR. (A) Tead2 and exon skipping (ES) (B) Ncapd3 and exon skipping (ES) (C) Cenpx and exon skipping (ES) (D) Ncaph and exon skipping (ES). The black lines represent the regions of intron, the black (blue) rectangles represent the regions of exon, the yellow rectangles represent the regions of AS event. *P < 0.05, **P < 0.01, ***P < 0.001 vs the Ctr group.
[image: Diagram depicting multiple analyses: (A) Protein structures of NCAPD3 and NCAPD3-203 highlighting Domain I. (B) Bar graph showing upregulation of Ncapd3-203 mRNA expression in the treatment (THSG) group versus control (Ctr), with significance indicated. (C) Comparison of CENPX and CENPX-202 showing unchanged domains. (D) Bar graph illustrating decreased expression of CENPX-202 under THSG treatment versus control, marked with significance. (E) Violin plot displaying NCAPD3 expression across different stages and tumor presence, with significant difference noted. (F) Western blot and related bar graphs of NCAPD3 protein and mRNA expression levels, showing significant changes under THSG treatment compared to control.]FIGURE 4 | Ncapd3 was a key gene for THSG to inhibit T47D cells proliferation. (A, B) Comparing the protein structures of NCAPD3 and NCAPD3-203, THSG treatment can inhibit the mRNA expression level of Ncapd3-203 (C, D) Comparison of the protein structures of CENPX and CENPX-202. THSG treatment can inhibit the mRNA expression level of Cenpx-202. (E) NCAPD3 is highly expressed in breast cancer in TCGA database (F) The proteins (mRNA) expression levels were detected in Western blot and qPCR analysis, n = 3. *`P < 0.05, **P < 0.01 vs the Ctr group.
3.3 Ncapd3 was a key gene for THSG to inhibit T47D cells proliferation
Given the critical role of protein-level analyses in understanding biological processes, we predicted the protein structure of NCAPD3 (NCAPD3-203) and CENPX (CENPX-202). Compared with NCAPD3, the altered region of NCAPD3-203 is located within the domain (Figures 4A, B), whereas the change of CENPX-202 is located within the non-structural domain (Figures 4C, D). Therefore, it will indicate that the alternative splicing event of Ncapd3 will be more valuable for research.
As shown in Figure 4E, Ncapd3 is highly expressed in breast cancer, and the protein levels of NCAPD3 and the mRNA expression of Ncapd3 were decreased in THSG group (Figure 4F). Collectively, the findings corroborated the elevated expression of NCAPD3 in T47D cells. And THSG could inhibit the protein (mRNA) expression level of NCAPD3 (Ncapd3).
3.4 THSG has the potential to trigger ferroptosis in T47D cells
To investigate the potential mechanism of THSG suppress T47D cells proliferation, differentially-expressed genes (DEGs) and differentially-expressed transcripts (DETs) were selected to analysis. Compared with the KEGG enrichment of upregulated genes (transcripts) in DEGs and DETs after THSG treatment of T47D cells (Figures 5A,B), ferroptosis was the common pathway and was in the first place ranked in rich factor. However, the P value of the ferroptosis pathway in the upregulated genes of DETs is smaller, which will indicate that the ferroptosis pathway is more likely to be enriched in DETs.
[image: Bar charts A and B show up-regulated DEG and DET pathways, with "Ferroptosis" highlighted as significant. Panel C is a Venn diagram illustrating the overlap of ferroptosis genes in KEGG, mentioning SLC7A11, GPX4, HMOX1. Panel D displays protein expression levels of xCT, GPX4, HO-1, and GAPDH with corresponding Western blot images and a bar graph. Significant differences in expression between control (Ctr) and treatment (THSG) groups are marked with asterisks.]FIGURE 5 | Ferroptosis was the hub pathway for THSG treating for T47D cells. (A) KEGG analysis was conducted in DEGs upregulated genes (B) KEGG analysis was conducted in DETs upregulated transcripts. (C) The overlapping genes (Slc7a11, Gpx4, Hmox1) were detected in ferroptosis genes in KEGG and ferroptosis marker genes. (D) The protein level of xCT, GPx4 and HO-1 was conducted using WB, n = 3. *P < 0.05, **P < 0.01 vs the Ctr group.
To further explore the specific genes in ferroptosis pathway, the ferroptosis marker genes were selected in FerrDb V1 (http://www.zhounan.org/ferrdb/legacy/) database. It was worth noting that 3 overlapping genes (Slc7a11, Gpx4, Hmox1) were detected in ferroptosis genes in KEGG and ferroptosis marker genes (Figure 5C). In addition, the protein level of xCT, GPx4, and HO-1 was decreased in THSG treatment (Figure 5D). Altogether, it was determined that THSG treatment triggers ferroptosis in T47D cells.
3.5 THSG could induce cell cycle arrest in T47D cells
Given that abnormalities in the cell cycle are a principal cause of cancer development and progression. Consistent with the reports, cell cycle played an vital roles in enriched for downregulated genes of DEGs and DETs (Figures 6A, B). Further, we conducted flow cytometry analysis to investigate the specific mechanisms about cell cycle in T47D cell death. As shown in Figures 6C–F, cell cycle arrest was notably induced by THSG treatment at various doses and time points, especially in the G2/M phase. As the concentration of THSG increased for 24h, the percentage of cells in the G2/M phase was increased significantly, whereas the percentage of cells in the S and G0/G1 phases was decreased (Figures 6C, D). Furthermore, time is a crucial determinant of the cell cycle. With time, there was also a significant increase in the percentage of cells in the G2/M stage in 24h and 48 h (Figures 6E, F). Notably, when 200 μM THSG was used to treat T47D cells for 24 h, THSG had the most significant effect on the cell cycle arrest.
[image: Chart showcasing biological data analysis. Panel A highlights down-regulated genes in the cell cycle and other pathways with a color-coded log10 P-value scale. Panel B displays pathways in cancer. Panel C contains histograms of cell cycle phases with distributions of G0/G1, S, and G2/M phases. Panel D features bar graphs representing percentage distributions. Panel E shows histograms after treatment with THSG. Panel F includes bar graphs for phase percentages under varying conditions and concentrations, illustrating changes in cell cycle distribution. Data focus on differential expression and treatment impact.]FIGURE 6 | THSG could provoke an arrest of cell cycle in T47D cells. (A) KEGG analysis of DEGs downregulated genes (B) KEGG analysis of DETs downregulated genes.(C) Cell cycle diagram after treatment with THSG (200 and 250 μmol/L) at 24 h by flow cytometry. (D) Cell cycle phase distribution (%) treated by 200 and 250 μmol/L THSG at 24 h, n = 3. *P < 0.05, vs the 0 μM group. (E) Cell cycle diagram after THSG-treated (200 μmol/L) at 24h and 48 h by flow cytometry. (F) Cell cycle stage distribution (%) after treated with 200 μmol/L THSG at 24 and 48 h, n = 3. ##P < 0.01, vs the 0 h.
Collectively, the KEGG enrichment results of DEGs and DETs preliminarily showed that THSG could promote the occurrence of cell cycle arrest in T47D cells.
3.6 Silence of NCAPD3 accelerates THSG-induced ferroptosis in T47D cells
To explore the effects of THSG on T47D cells, we observed a dose-time independent increasing in the inhibitory rate of THSG. It is worth noting that the T47D cells is significantly inhibited when 200 μmol/L THSG is used (Figures 7A, B). Moreover, the clone formation experiment showed that 200 μmol/L THSG treatment has a significant inhibitory effect on the proliferation of T47D cells, and this concentration was used in subsequent experiments (Figures 7C, D).
[image: (A) Line graph showing inhibition rate at various concentrations of THSG over 24, 48, and 72 hours. (B) Microscopic images depicting cell morphology at 0, 100, and 200 µM THSG. (C) Bar graph illustrating colony formation number at these concentrations. (D) Images of colony formation assay plates for respective concentrations. (E) Western blot results showing expression levels of xCT, α-Tubulin, GPx4, and GAPDH in scrambled and Ncapd3-siRNA groups. (F) Bar graph comparing xCT and GPx4 expression levels. (G) Bar chart showing cell viability under different treatments, indicating significance with asterisks.]FIGURE 7 | Reduction of NCAPD3 accelerates THSG-induced ferroptosis in T47D cells. (A, B) MTT experiment reveals the dose-time relationship of THSG in inhibiting T47D cells proliferation, n = 3. (C, D) Clone formation experiment. *P < 0.05, ***P < 0.001, ****P < 0.0001 vs the 0 μM group. (E, F) The protein expression of xCT and GPx4 was shown in scrambled-siRNA and NCAPD3-siRNA group, n = 4. (G) T47D cells viability was detected using MTT assay, n = 3. *P < 0.05, **P < 0.01, vs the scrambled-siRNA group. #P < 0.05 vs the THSG + scrambled-siRNA group.
We further investigated the ferroptosis-related proteins to determine the role of NCAPD3 in ferroptosis in T47D cells. Notably, the expression levels of xCT and GPx4 proteins were reduced after knockdown of NCAPD3 (Figures 7E, F). When THSG was administered, the survival rate of T47D cells was decreased significantly (Figure 7G). Therefore, it would indicated that THSG could accelerate ferroptosis of T47D cells and thereby inhibited cell proliferation.
4 DISCUSSION
To determine the mechanism by which THSG inhibits T47D cells proliferation, we used full-length transcriptome sequencing to investigate the differences in gene expression. In particular, Ncapd3 was the hub gene that THSG treated for T47D cells proliferation. Moreover, domain analysis and experimental verification indicated that The expression of the protein may be inhibited by THSG binding to the NCAPD3 domains. Furthermore, the ferroptosis and cell cycle were the highlight pathways in DEGs and DETs analysis of KEGG enrichment, and then THSG triggered ferroptosis and induced G2/M cell cycle arrest in T47D cells. Further studies showed that Ncapd3-siRNA administration could decrease the expression levels of xCT and GPx4, and THSG was able to inhibit the proliferation and clone formation of T47D cells. In this study, THSG could trigger T47D cells ferroptosis by down-regulating the expression of Ncapd3, and it could induce cell cycle arrest in G2/M stage.
Alternative splicing is an important post-transcriptional regulatory mechanism that can regulate the translation of mRNA isoforms and induce protein diversity, thereby expanding gene coding capacity. Statistics indicated that the incidence and advancement of breast cancer are significantly associated with alternative splicing, which also serves as a viable therapeutic target (Yang Q et al., 2019). 5 types of alternative splicing were detected after THSG intervention, and exon skipping (ES) accounted for the highest proportion, which is consistent with the most studies. Subsequently, RNA sequencing data and experimental validation were employed to further investigate the intersection of differentially expressed transcripts and differential alternative splicing, and Ncapd3-203 may be one of the key transcripts through which THSG inhibits T47D cells proliferation.
Non-SMC condensin II complex subunit D3 (NCAPD3) is one of the three non-SMC subunits of the condensin II complex and plays a crucial role in the condensation and segregation of mitotic chromosomes (Ono SJ et al., 2003). High expression of NCAPD3 has been reported to cause chromosomal instability in mouse models of colorectal cancer, thereby promoting cancer progression (Pussila M et al., 2018). While in pancreatic cancer, NCAPD3 serves as a predictive indicator for clinical trials (Dawkins JB et al., 2016). These results all indicate that NCAPD3 may play a role in the process of cancer promotion. Nevertheless, there is no knowledge of NCAPD3 contribution to the development of breast cancer. It is worth noting that NCAPD3 was highly expressed in breast cancer, and THSG inhibited the expression level of NCAPD3 in T47D cells. Further studies have shown that when siNCAPD3 is given, THSG can inhibit the xCT and GPx4 protein expression level, thereby promoting ferroptosis of T47D cells.
Current study evidence indicates that the triggering to ferroptosis has the potential to be an approach employable for cancer therapy, particularly in eradicating aggressive malignancies resistant to conventional treatments (Liang C et al., 2019; Li FJ et al., 2024). System Xc⁻ (xCT) was first identified in human fetal fibroblasts (Bannai and Kitamura, 1980), the expression of xCT is regulated by multiple factors at multiple levels, including transcription, post-transcription and translation. Two components make up System Xc-. One is the heavy chain, and the other is the light chain (xCT). These subunits are linked by an extracellular covalent disulfide bond. The transport function of system xc-requires the combined participation of both the heavy and light chain subunits (Lim and Donaldson, 2011). Studies have shown that the expression levels of the two subunits of System Xc⁻ determine GPx4 expression in breast cancer (BC) cells (Lee N et al., 2021). Therefore, targeting SystemXc⁻/GPX4 to induce ferroptosis in breast cancer cells is a possible therapeutic strategy. Our research has found that 2,3,5,4’-Tetrahydroxystilbene glucoside (THSG) downregulated the expression of xCT and GPx4, promoting ferroptosis in T47D cells. Further analysis revealed that THSG also arrests T47D cells at the G2/M phase.
Recent studies indicate that traditional Chinese medicine (TCM) plays a significant role in regulating ferroptosis, with multiple natural compounds derived from TCM shown to induce ferroptosis (Lou Y et al., 2022; Wu et al., 2022). For example, Lycium barbarum polysaccharide (LBP), an extract from the Chinese herbal fruit Lycium barbarum, induces ferroptosis in breast cancer cells by modulating the xCT/GPX4 pathway and reducing glutathione (GSH) synthesis (DU X et al., 2022). Similarly, glycyrrhetinic acid (GA) exacerbates ferroptosis in breast cancer by inhibiting xCT expression and GPX4 activity, depleting GSH (Wen Y et al., 2021). Notably, our results demonstrate that THSG reduces xCT and GPX4 protein levels while increasing GSH content in T47D cells, potentially due to its strong antioxidant properties (Xiang et al., 2014; Lin HY et al., 2022). Additionally, the effects of THSG on GSH in cancer have not been previously reported in the literature. Therefore, we propose that THSG may prevent the breast cancer growth by decreasing xCT and GPX4 expression and arresting breast cancer cells in the G2/M phase.
In addition, it is worth affirming that the single use of diphenylethylene glycosides does not produce obvious toxic effects on cells or experimental animals (Yu J et al., 2011; Shen J et al., 2018; Zhang SH et al., 2009), but some studies have shown that when diphenylethylene glycosides are used in combination with other toxic drugs, they affect related metabolic enzymes and enhance the toxic side effects of other drugs (Ma J et al., 2013). This suggests that there may be interactions between different components, which affect related drug-metabolizing enzymes, leading to toxic side effects. Therefore, special attention should be paid to the combined use of diphenylethylene glycosides with other drugs in clinical practice. In addition, comprehensive and systematic toxicological studies are needed to understand the toxicity and mechanism of action of diphenylethylene glycosides.
In conclusion, THSG could inhibit the expression of ferroptosis-related proteins (xCT and GPx4) by inhibiting the expression of NCAPD3, thereby inhibiting the proliferation of T47D cells, which may be related to the arrest of the cell cycle (G2/M phase) (Figure 8). However, more breast cancer-related cell lines and in vivo animal experiments should be further explored to verify the potential clinical application of THSG.
[image: Diagram illustrating the effect of THSG from Polygonum multiflorum on T47D breast cancer cells. It shows cell proliferation, migration, and invasion, leading to dissemination. THSG impacts NCAPG2, triggering a series of processes: iron (Fe²⁺) aggregation, reactive oxygen species (ROS) accumulation, and mitochondrial destruction, resulting in ferroptosis.]FIGURE 8 | The hypothesis of by which THSG inhibiting T47D cell proliferation (The Figure was performed by Figdraw (https://www.figdraw.com/#/).
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Objective: Lung squamous cell carcinoma (LUSC) is a common subtype of non-small cell lung cancer (NSCLC) characterized by high invasiveness, high metastatic potential, and drug resistance, resulting in poor patient prognosis. Anoikis, a specific form of apoptosis triggered by cell detachment from the extracellular matrix (ECM), plays a crucial role in tumor metastasis. Resistance to anoikis is a key mechanism by which cancer cells acquire metastatic potential. Although several studies have identified biomarkers related to LUSC, the role of anoikis-related genes (ARGs) remains largely unexplored.Methods: Anoikis-related genes were obtained from the Harmonizome and GeneCards databases, and 222 differentially expressed genes (DEGs) in LUSC were identified via differential expression analysis. Univariate Cox regression analysis identified 74 ARGs significantly associated with survival, and a prognostic model comprising 8 ARGs was developed using LASSO and multivariate Cox regression analyses. The model was internally validated using receiver operating characteristic (ROC) curves and Kaplan-Meier (K-M) survival curves. Differences in immune cell infiltration and gene expression between high- and low-risk groups were analyzed. Virtual drug screening and molecular dynamics simulations were performed to evaluate the therapeutic potential of CSNK2A1, a key gene in the model. Finally, in vitro experiments were conducted to validate the therapeutic effects of the identified drug on LUSC.Results: The 8-gene prognostic model demonstrated excellent predictive performance and stability. Significant differences in immune cell infiltration and immune microenvironment characteristics were observed between the high- and low-risk groups, suggesting the critical role of ARGs in shaping the immune landscape of LUSC. Virtual drug screening identified Dihydroergotamine as having the highest binding affinity for CSNK2A1. Molecular dynamics simulations confirmed that the CSNK2A1-Dihydroergotamine complex exhibited strong binding stability. Further in vitro experiments demonstrated that Dihydroergotamine significantly inhibited LUSC cell viability, migration, and invasion, and downregulated CSNK2A1 expression.Conclusion: This study is the first to construct an anoikis-related prognostic model for LUSC, highlighting its role in the tumor immune microenvironment and providing insights into personalized therapy. Dihydroergotamine exhibited significant anti-LUSC activity and holds promise as a potential therapeutic agent. CSNK2A1 emerged as a robust candidate for early diagnosis and a therapeutic target in LUSC.Keywords: lung squamous cell carcinoma, anoikis, CSNK2A1, virtual screening, machine learning
1 INTRODUCTION
Lung cancer is one of the most prevalent malignancies worldwide. According to the 2022 Global Cancer Statistics, it remains a leading cause of cancer-related deaths, with a 5-year survival rate of less than 15% (Xia et al., 2022). Lung squamous cell carcinoma (LUSC) a subtype of non-small cell lung cancer (NSCLC). Accounts for approximately 30% of NSCLC cases and is characterized by high recurrence and metastasis rates (Qian et al., 2016). Currently, the standard treatment for LUSC in involves the use of immune checkpoint inhibitors in combination with carboplatin and paclitaxel (Fan et al., 2019). While these methods can extend progression-free survival, overall outcomes remain suboptimal (Pan et al., 2021; Gao et al., 2020). Consequently, there is an urgent need to further investigate the pathophysiology of LUSC and identify reliable biomarkers for improved diagnosis and treatment. Although numerous studies have explored genes related to LUSC prognosis, the role of anoikis-related genes (ARGs) in LUSC has not been adequately investigated. Therefore, we conducted a preliminary investigation into the potential use of ARGs as novel biomarkers for LUSC.
Anoikis is a specialized form of apoptosis that occurs when cells lose proper attachment to the extracellular matrix (ECM) or neighboring cells (Taddei et al., 2012). Under normal physiological conditions, anoikis is triggered when cells detach from the ECM. leading to cell apoptosis. However, cancer cells that develop resistance to anoikis can survive despite detachment, Thereby, evading isolation-induced apoptosis. This anoikis resistance enhances the ability of cancer cells to metastasize and is considered a critical step in tumor progression (Zhang et al., 2023). Studies have demonstrated that Anoikis resistance plays a key role in the metastasis of lung adenocarcinoma (LUAD) (Chunhacha et al., 2012; Prateep et al., 2018). However, its role in LUSC remains unclear. This study was designed to explore the significance of anoikis resistance in LUSC.
In this study, we first analyzed the distribution of ARGs in LUSC and developed a risk model based on ARGs to predict the prognosis of LUSC patients and the sensitivity of immunotherapy. Additionally, we validated the reliability of genes-drugs interactions through virtual screening and molecular dynamics modeling. The flow of the study is shown in Figure 1.
[image: Flowchart depicting a research methodology for analyzing PRGs. It starts with the collection of "Aneuploid-related genes" from Genecards and Harmonizome databases. The TCGA-LUSC and GSE30219 data are used for dividing into test and training groups. It identifies 717 ARGs and proceeds with a differential expression analysis and Lasso regression analysis to identify prognosis-related ARGs. These undergo cluster and correlation analyses before constructing prognostic models using K-M and ROC analyses. This leads to the development of a nomogram model and DCA. Further research involves model gene expression, drug sensitivity via CCK-8 and Western blot, followed by virtual screening of drugs, evaluation, and experiments on cell function, migration, and transwell assays.]FIGURE 1 | Flowchart of this study. 
2 METHODS
2.1 Data sources
Transcriptomic and clinical data for LUSC were obtained from the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas (https://www.cancer.gov/ccg/research/genome-sequencing/tcga) databases. The GSE30219 dataset contains 82 LUSC samples and 14 normal samples, while the TCGA dataset includes 502 LUSC samples and 51 normal samples. Additionally, we retrieved anoikis-related genes (ARGs) from the Harmonizome portals (Rouillard et al., 2016) and GeneCards (https://www.genecards.org/) portals (Rebhan et al., 1997).
2.2 Differential gene identification and prognostic analysis
Differential expressed genes (DEGs) were identified by comparing ARGs expression in normal and tumor tissues within the TCGA-LUSC cohort. Prognostic relevance to LUSC was then assessed using univariate Cox regression analysis. To create a more robust dataset, The TCGA-LUSC cohort was combined with the GSE30219 dataset, followed by batch effect correction, resulting in the integrated to obtain the new TCGA-GSE30219 cohort.
2.3 Cluster analysis
Based on the prognostically relevant ARGs, each LUSC patient in the TCGA-GSE30219 cohort was assigned an anoikis score using the Gene Set Variation Analysis (GSVA) algorithm. Patients were subsequently divided into high-and low-score groups by determining cut-off values for the scores using the ‘survminer’ package. Uniform Manifold Approximation and Projection (UMAP) and t-distributed stochastic neighbor embedding (t-SNE) were employed to ensure clustering consistency. The final clustering results were visualized with the ‘ggplot2′ package.
2.4 Functional enrichment analysis of ARGs
To investigate the potential functional mechanism of ARGs in LUSC, we downloaded the “c2. cp.Kegg.symbols.gmt” file from the Molecular Signatures Database (MSigDB) (Liberzon et al., 2015). The biological pathways and functions related to ARGs were then analyzed using Gene Set Variation Analysis (GSVA) through with the “GSVA” package.
2.5 Construction of an ARGs-Based prognostic model for LUSC
The ARGs associated with LUSC prognosis from the integrated TCGA-GSE30219 cohort were randomly split into a training set and a validation set, each comprising 50% of the data. Survival-related genes were identified using the Least Absolute Shrinkage (LASSO) regression algorithm, with the regularization parameter λ determined via 10-fold cross-validation (Ding et al., 2023). These gene expression levels were then used to assess the survival prognosis of LUSC patients in the training set. The optimal model was selected through multivariate Cox regression analysis, and coefficients for the model genes were calculated. The risk score was derived using the formula: risk score = ∑(Exp (mRNA) × coef (mRNA)), where Exp represents gene expression and coef denotes the gene’s coefficient. The model’s predictive accuracy was validated using time-dependent ROC curves and Kaplan-Meier (KM) survival curves.
2.6 Relationship between risk score and immune infiltration
The relative proportion of immune cell infiltration was estimated using single-sample gene set enrichment analysis (ssGSEA) and “CIBERSORT” algorithm (Newman et al., 2015). Immune cell proportions in the high-and low-risk groups were analysed using the ‘CIBERSORT’ package. Where the sum of the proportions of all immune cell types in each sample was normalized to 1. The relationship between the risk score and immune cell infiltration was subsequently evaluated through Spearman’s rank correlation analysis.
2.7 Stratified analysis based on clinicopathological features
To validate the risk model as an independent prognostic indicator, we first assessed the correlation between overall survival (OS) and clinicopathological characteristics-such as age, gender, pathological stage, and risk score-using univariate Cox regression analysis. Independent prognostic factors for LUSC were then identified through multivariate Cox regression analysis. A nomogram was constructed based on the risk score and clinicopathological features. The accuracy of the nomogram was evaluated using calibration plots and time-dependent concordance index (Time-C index), Additionally, the clinical benefit of the nomogram was assessed through decision curve analysis (DCA) (Kerr et al., 2016).
3 LUSC MODEL GENE ANALYSIS AND DRUG SENSITIVITY
3.1 LUSC drug sensitivity projections
Using data from the Cancer Treatment Response Portal (CTRP), the ‘oncoPredict’ package was employed to predict the 50% inhibitory concentration (IC50) of LUSC samples for various antineoplastic drugs. Spearman’s correlation analysis was then performed between the IC50 value and the risk score to identify drug sensitivity resistance in LUSC (P < 0.05) (Maeser et al., 2021).
3.2 Virtual screening and molecular dynamics simulation
To validate the potential of model genes as therapeutic targets for LUSC, further analyses were conducted on the genes associated with LUSC survival. Protein structure files were downloaded from the Protein Data Bank (PDB) database (https://www.rcsb.org/), and water molecules and ligands were removed using PyMOL 2.3.0. The docking regions were identified using the getbox plugin, and the protein files were hydrogenated in AutodockTools, and saved in pdbqt format for virtual screening. Small molecule drugs approved by the US Food and Drug Administration (FDA) were selected from the ZINC15 database (https://zinc15.docking.org/). These drug files were processed using Open Babel and screened virtually using Autodock vina, set to semi-flexible docking docking with exhaustiveness = 25 (Trott and Olson, 2010; Eberhardt et al., 2021). Drugs with the strongest affinity to the target gene were selected. Since semi-flexible docking does not consider factors like protein flexibility, temperature, pressure, or solvent effect, 100ns molecular dynamics simulations of the protein-ligand complexes were conducted using Gromacs2022. Amber14sb was used as the protein force field, Gaff2 as the ligand force field, and the SPC/E water model was used to solvents the system with a periodic boundary of 1.2 nm. The particle mesh Ewald (PME) method was used for electrostatic interactions, and the Mont Carlo method for ion placement, neutralizing the system’s charge with appropriate amounts of sodium and chloride ions. Before running the simulation, the system underwent three energy minimization and equilibration steps: (1) Energy minimisation was performed using the steppest descent algorithm for 50,000 steps. (2) A 50,000-step pre-equilibration with a 2fs timestep was performed, maintaining constant particle number, volume, pressure, temperature (310 K). After energy minimization and equilibration, unconstrained molecular dynamics simulations were conducted for 100 ns with a 2 fs timestep. The stability of the complexes was evaluated by analysis the root-mean-square deviation (RMSD) of the molecular-dynamics trajectories. A smaller RMSD indicates less structural deviation within the complexes (Mukherjee et al., 2010); Root-mean-square fluctuation (RMSF) was used to assess fluctuations in amino acid residue, with lower RMSF values indicating greater stability. (Zhang and Zhang, 2024); The radius of gyration (Rg) was calculated to assess the compactness of the structure (Lobanov et al., 2008); In addition, we analyzed the number of hydrogen bonds between proteins and ligands, the relative free energy distributions, and structural comparisons of the complexes at 0, 25, 50, 75, and 100 ns Finally, the average binding free energy between protein and ligand was calculated using the MM/GBSA method (Liu L. et al., 2023).
3.3 Cell culture and drug treatment
In this study, the LUSC cell line (NCI-H2170) was obtained from Zhejiang Noble Biological Products Company (www.noblebio.cn). The cells were cultured in RPMI-1640 medium (Gibco, Life Technologies, China) supplemented with 10% fetal bovine serum (SERANA, Europe) and 1% penicillin-streptomycin (Beyotime, China). They were seeded into culture flasks (Nest, China) and incubated in a humidified atmosphere at 37°C with 5% CO₂. The dihydroergotamine standard was sourced from MCE China (https://www.medchemexpress.cn), and its working solution (100 μM) was prepared in sterile dimethyl sulfoxide (DMSO). Care was taken to ensure that the final concentration of DMSO in the medium remained below 0.1% of the total volume.
3.4 Cell viability assay
NCI-H2170 cells were seeded at a density of 4 × 103 cells/well in 96-well plates with 100 μL of complete medium per well and incubated in a humidified atmosphere at 37°C. The drug concentrations were set at 0 μM (untreated control group), 5 μM, 10 μM, 20 μM, 40 μM, and 80 μM. The cells were incubated for 24, 48, and 72 h. A mixture of RPMI-1640 medium and CCK-8 reagent (Biosharp, China) was prepared at a ratio of 1:10. After incubation, 100 μL of the mixture was added to each well, followed by further incubation for 1 h. Finally, absorbance at 450 nm was measured using an enzyme-linked immunosorbent assay (ELISA) reader.
3.5 Wound migration assay
NCI-H2170 cells were seeded at a density of 1 × 106 cells per well in 12-well plates and incubated overnight. Once the cells reached 95% confluence, the culture medium was removed, and a scratch was created using a 10 μL pipette tip. The cells were washed with phosphate-buffered saline (PBS) to remove debris, and images were captured at the same position under a microscope (×100 magnification). The medium was then replaced with either serum-free medium (control group) or serum-free medium containing Dihydroergotamine (40 μM) (treatment group). The cells were incubated at 37°C for 43 h in a humidified incubator. After incubation, images of the wound area were captured again at the same position. The wound area was quantified using ImageJ software, and statistical analysis was performed using Prism software.
3.6 Cell invasion assay
A 24-well transwell plate with 8 μm pore polycarbonate membranes (Corning, United States) was used for the cell invasion assay. Matrigel (Solarbio, Beijing, China) was diluted with RPMI-1640 medium at a ratio of 1:8, and the polycarbonate membrane was coated with 8.1 mg/mL of diluted Matrigel. The plate was incubated at 37°C for 1 h to solidify the Matrigel layer. A total of 2 × 104 cells were seeded into the upper chamber in 150 μL of serum-free medium, while 500 μL of RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) was added to the lower chamber as a chemoattractant. The plate was incubated at 37°C for 48 h. After incubation, the medium in the upper chamber was removed, and the membranes were washed twice with phosphate-buffered saline (PBS). Invaded cells on the lower side of the membrane were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet. Two randomly selected fields were imaged under a microscope (×100 magnification), and the number of invaded cells was counted using ImageJ software. Statistical analysis was performed with Prism software.
3.7 Western blot
Cell lysis buffer was prepared by mixing RIPA lysis buffer (Biyotime, China) with PMSF protease inhibitor at a ratio of 1:100. A total of 30 μg of protein was separated by 10% SDS-PAGE electrophoresis and subsequently transferred onto a PVDF membrane (Millipore, United States). The membrane was blocked with 5% skimmed milk for 1 h at room temperature and then incubated overnight at 4°C with rabbit anti-CSNK2A1 antibody (10992-1-AP, Proteintech, China) and rabbit anti-GAPDH antibody (60004-1-Ig, Proteintech, China). On the following day, the membrane was incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies (goat anti-rabbit IgG/HRP and goat anti-mouse IgG/HRP, Proteintech, China) for 1 h at room temperature. Protein signals were detected using ECL detection reagents (Beyotime, China). The band intensities were analyzed using ImageJ software to quantify protein expression levels.
3.8 Cell invasion assay
A 24-well transwell plate with 8 μm pore polycarbonate membranes (Corning, United States) was used for the cell invasion assay. Matrigel (Solarbio, Beijing, China) was diluted with RPMI-1640 medium at a ratio of 1:8, and the polycarbonate membrane was coated with 8.1 mg/mL of diluted Matrigel. The plate was incubated at 37°C for 1 h to solidify the Matrigel layer. A total of 2 × 104 cells were seeded into the upper chamber in 150 μL of serum-free medium, while 500 μL of RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) was added to the lower chamber as a chemoattractant. The plate was incubated at 37°C for 48 h. After incubation, the medium in the upper chamber was removed, and the membranes were washed twice with phosphate-buffered saline (PBS). Invaded cells on the lower side of the membrane were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet. Two randomly selected fields were imaged under a microscope (×100 magnification), and the number of invaded cells was counted using ImageJ software. Statistical analysis was performed with Prism software.
3.9 Sensitivity analysis
The data were processed using the Perl programming language (v 5.30.0) and all analyses were performed in the R software (v4.4.0). P < 0.05 was considered statistically significant. (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001).
4 RESULTS
4.1 Identification of prognosis-associated ARGs
We obtained a total of 717 ARGs from the Genecards and Harmonizome portal (Supplementary Table S1) and identified 222 DEGs differences expressed genes (DEGs) with significant expression differences in the TCGA-LUSC cohort (LogFC|>1, FDR<0.05, Supplementary Table S2)|, A heatmap was used to display the top 30 genes with the most significant expression changes (Figure 2A) Using univariate Cox regression analysis, we found that 73 of these DEGs were significant were significantly associated with LUSC survival (Supplementary Table S3, P < 0,05), The top 45 significant ARGs are shown in a forest plot (P < 0.01). Where all genes, except for MAOA,CLU, and SIK2, were associated with poor tumour prognosis (Figure 2B). The gene expression network revealed strong association between these 45 genes, suggesting their critical role in LUSC progression (Figure 2D). Additionally, we analysed the copy number variation (CNV) of these ARGs across chromosomes (Figures 2C, E; Supplementary Table S4). The results showed that CDKN2A has the most significant copy number loss on chromosome 9, while SCRIB has exhibited the most significant copy number gain on chromosome 8. Finally, we constructed protein-protein interaction (PPI) networks using the STRING (https://cn.string-db.org/) and GeneMANIA (https://genemania.org/) databases to visualize interactions (PPI) among the genes most closely related to anoikis (Supplementary Figure S1).
[image: Composite image showing:  A) Heatmap displaying gene expression with red and blue indicating varying expression levels. B) Forest plot illustrating hazard ratios for different genes. C) Bar graph showing gene copy number variations, marked as gain (red) and loss (green). D) Circular network diagram highlighting gene interactions with risk and favorable factors. E) Circos plot mapping genomic alterations across different chromosomes.]FIGURE 2 | Anoikis-related differentially expressed genes and their associated regulatory factors in LUSC. (A) A total of 222 ARGs were identified from TCGA-LUSC cohort. (B) A forest plot showing the top 45 ARGs identified through univariate Cox regression analysis. (C) Copy number variations (CNVs) of the top 45 ARGs in the TCGA-LUSC. (D) Correlation network diagram among the top 45 ARGs. (E) Chromosomal region alterations of the ARGs.
4.2 ARGs-based clustering of LUSC molecular subgroups
We used the ‘ConsensusClusterPlus’ package to consistently cluster the 74 prognostically relevant ARGs (P < 0.05). Based on the clustering results, the cohort could was clearly divided into two subtypes (Figures 3A–D) when K = 2 (Supplementary Table S5). UMAP and t-SNE analyses confirmed the high accuracy of the clustering (Figures 3E, F). Kaplan-Meier analysis showed that the Overall survival (OS) between the two subtypes was significant different (P < 0.001) (Figure 4A).
[image: Cluster analysis series with three heatmap plots (A, B, C) displaying consensus matrices, and two scatter plots (E, F) portraying UMAP and t-SNE cluster visualizations. Plot D illustrates consensus CDF curves.]FIGURE 3 | LUSC subtypes associated with ARGs. (A–D) A consensus matrix for k = 2 was generated through consensus clustering. (C,D) The two subtypes were differentiated using UMAP and t-SNE based on the expression of ARGs.
[image: Kaplan-Meier survival curve, heatmaps, and enrichment plot for immune subtype analysis. Panel A shows a survival analysis comparing two clusters with significant differences. Panel B presents a heatmap of gene expression across samples with clustering annotations. Panel C displays another heatmap focused on pathway differences. Panel D illustrates a gene set enrichment plot with various pathways enriched in Cluster B.]FIGURE 4 | LUSC subtypes associated with ARGs. (A) Overall survival analysis of the two subtypes (P < 0.001). (B) Differential expression of ARGs between the two subtypes. (C, D) Different KEGG pathway enrichment levels between the two subtypes.
A heatmap revealed that CDX2 was expressed at low levels in most samples across both subtypes, potentially serving as a favorable prognostic marker (Figure 4B). Additionally, KEGG pathway enrichment analysis using the ‘GSVA’ package identified differences between cluster A and cluster B (Figures 4C, D). Cluster B exhibited a poorer prognosis, predominantly involving pathways such as complement and coagulation cascade, peroxisome proliferator-activated receptor activation, and primary bile acid biosynthesis—pathways closely related to cancer development. Finally, risk curve analysis supported the validity of the subtype classification and demonstrated that the prognosis of LUSC patients progressively worsened with an increasing score (Figure 5).
[image: Two panels labeled A and B, each containing two graphs. The top graphs display risk scores for patients, separated into high risk (red) and low risk (green) groups. The bottom graphs show survival times in years for patients, with statuses marked as dead (red) and alive (green), plotted against increasing risk scores. Both parts highlight the distinction between risk and survival outcomes.]FIGURE 5 | Feasibility analysis of the two subtypes models.
4.3 Analysis of differences in gene expression and immune cell infiltration between the two subtypes
We demonstrated significant difference in ARGs expression (P < 0,05) between groups A and B using box-and-line plots (Figure 6A). Since group B had a poorer prognosis in earlier analysis, genes significantly downregulated in this group may have a positive effect on LUSC prognosis; Conversely, genes highly expressed in group B could indicate a worse prognosis but may serve as potential therapeutic targets. SsGSEA results showed that, except for activated CD4 T-cells, all other immune cells had a significantly higher level of infiltration in group B compared to group A (Figure 6B; Supplementary Table S6). This suggests that the poor prognosis of LUSC may be broadly linked to immune cell involvement, highlighting the potential of immunotherapy in LUSC treatment.
[image: Box plots comparing ARGcluster data for gene expression (A) and immune infiltration (B) across different groups. Group A is represented in blue and group B in orange. Several groups show statistically significant differences, indicated by asterisks above the plots. Each gene or immune cell type is labeled on the x-axis, with corresponding measurements on the y-axis.]FIGURE 6 | Differences in gene expression and immune infiltration between the two subtypes. (A) Differential expression of ARGs across the two subtypes. (B) Immune infiltration profiles of the two subtypes.
4.4 ARGs-related prognostic model construction and validation
Using univariate Cox regression analysis, we identified 11 survival-related ARGs (Figures 7A, B), followed by LASSO regression, which narrowed them down to 8 independent prognostic factors. A risk model was then constructed based on multivariate Cox regression analysis (Supplementary Table S7). The risk score was calculated as follow: risk score=(0.175×SFN expression)+(0.238×CSNK2A1 expression)+(-0.266×RHOB expression)+(0.436×TUBB3 expression +(0.165×SCRIB expression)+ (0.290×SNAI1 expression)+(0.137×CDX2 expression)+(-0.126×SLPI expression). We divided the data into training and validation groups and classified patients into high-risk and low-risk categories based on the median risk score. Kaplan-Meier (K-M) curves indicated that the high-risk group had poorer prognosis in both the training and validation groups (Figures 7C, D). Additionally, the time-dependent ROC curves at 1, 3 and 5 years for overall survival (OS) in the training and validation groups confirmed the accuracy of the model, showing significantly differences in risk scores between the two subtypes (P < 0.05) (Figures 7E–G). Sankey plots illustrated the relationship between LUSC sample clusters, risk scores, and survival status (Figure 7H). Finally, we used a heatmap to analyze the expression of eight ARGs in the high-risk and low-risk groups, demonstrating that six ARGs, except RHOB and SLPI, were highly expressed in the high-risk group (Figure 7I).
[image: A set of graphs and a heatmap visualizing statistical and gene expression data. Plot A shows variable trends over lambda. Plot B is a tuning parameter analysis. Plots C and D are survival curves comparing high and low-risk groups, both with significant differences (p<0.001). Plots E and F are ROC curves showing model performance at three and five years, with AUC values above 0.7. Plot G is a scatterplot showing risk score groups. Image H is a Sankey diagram illustrating group transitions. Image I is a heatmap displaying gene expression, with rows representing genes and color intensity indicating expression levels.]FIGURE 7 | Identification of ARGs prognostic signature. (A) LASSO analysis with cross-validation identified 11 prognostically relevant ARGs. (B) Coefficients of 11 prognostically relevant ARGs. (C, D) Kaplan-Meier curves for two subtype risk groups. (E, F) Time-dependent ROC curves for 1-, 3- and 5-year OS. (G) Risk score distribution of ARG clusters. (H) Alluvial diagram showing subtypes transitions and survival status.(I) Heatmap of the expression patterns of the 11 ARGs.
4.5 LUSC immunocorrelation analysis
The tumour immune microenvironment plays a crucial role in cancer development and treatment. Using the ‘CIBERSORT’ R package, We analyzed immune cell infiltration differences between high and low risk groups. First, we visualized the distribution of immune cell counts in relation to the risk score (Figure 8A). As the score increased, the proportion of M0 macrophages also increased (Figure 8B). Monocytes and resting mast cells were more prevalent in the low-risk group, whereas activated mast cells were more abundant in the high-risk group (Figure 8C). Suggesting that mast cell status may significantly affect LUSC prognosis. Furthermore, by analysing immune cell correlations in LUSC patients, we gained a deeper understanding of the tumor microenvironment (TME) (Figure 8D), The correlation between model genes and immune cells also provided new insights into potential immunotherapeutic strategies for LUSC (Figure 8E). Lastly, we assessed the immune score, stromal,and estimated scores in high-and low-risk groups based on profiling, revealing significant differences in the tumour microenvironment (TME) between the two groups (Figure 8F).
[image: A. Heatmap showing gene expression with samples divided into low and high-risk groups. B. Scatter plot with a regression line showing a correlation between two variables, with density plots on axes. C. Bar graph displaying log-fold changes of different genes with significance markers. D. Correlation matrix showing relationships between multiple variables, color-coded red to blue. E. Heatmap illustrating correlations among immune cell types and clinical features, color-coded red to blue. F. Violin plots comparing immune scores between risk groups for four different variables.]FIGURE 8 | The immune microenvironment of LUSC. (A) Proportion of immune cell infiltration. (B) Correlation between risk scores with the proportion of M0 macrophage in LUSC.(C) Differences in immune cell populations between high-risk and low-risk groups. (D) Correlation analysis among immune cells.(E) Gene-immune cell correlation analysis. (F) Estimated scores for expression profiles of the two risk groups.
4.6 Prognostic analysis of LUSC patients
We developed a nomogram to predict 1-, 3-, and 5-year survival, incorporating clinicopathological features and ARGs risk scores (Figure 9A). The calibration plots demonstrated high predictive accuracy (Figure 9B). DCA results indicated that the nomogram was a strong predictor of survival outcomes in LUSC patients (Figures 9C–E). Additionally, cumulative risk curves showed that patients survival risk increased over time, regardless of whether they were in the high or low-risk group (Figure 9F). Forest plot analysis revealed that risk score, age and stage were the primary factors influencing LUSC prognosis (Figure 9G). These findings underscore the robustness of the risk score-based nomogram for predicting survival in LUSC patients.
[image: A collection of seven panels illustrating statistical data related to survival analysis in cancer research. Panel A shows a diagrammatic representation of a nomogram. Panel B presents a calibration plot comparing nomogram-predicted and actual survival probabilities. Panels C, D, and E display decision curve analyses for different risk thresholds. Panel F is a survival probability plot over time, comparing two groups. Panel G is a forest plot showing hazard ratios for various features, each with a corresponding confidence interval.]FIGURE 9 | Nomogram for LUSC patients. (A) Nomogram constructed based on ARGs scores and clinicopathologic features.(B) Calibrated Nomogram. (C–E) DCA evaluation of LUSC patients prognosis.(F) Risk curves showing survival probability progression of over time.(G) Forest plot of multivariate Cox regression analysis, Illustrating the association between clinical characteristics and risk scores for LUAD patients.
4.7 Model gene survival analysis and drug sensitivity
To evaluate differences in drug sensitivity among LUSC patient subgroups,we conducted a drug sensitivity analysis, we analysed tumour sensitivity to drugs. The results indicated that most drugs was less effective in the high-risk group, although some exhibited increased sensitivity (Supplementary Table S8; Supplementary Figures S2–S12). Subsequently, Survival analysis of the model genes in LUSC patients revealed that CSNK2A1 (P = 0.035) and SNAI1 (P = 0.0002) significant impacted prognosis. High expression of these genes was strongly associated with elevated mortality in LUSC patients (Figures 10A–G).
[image: Seven Kaplan-Meier survival plots (A to G) depicting overall survival rates over time in months. Each plot compares two groups shown in yellow and green, with corresponding log-rank p-values indicating statistical differences in survival curves. Percent survival is on the y-axis, and time in months is on the x-axis.]FIGURE 10 | Survival analysis of model genes.
4.8 Virtual screening and molecular dynamics simulation
Although SNAI1 and CSNK2A1 are both pivotal, SNAI1 is unsuitable for virtual screening due to it’s small peptide nature. Conversely, CSNK2A1, being an enzyme protein, is an ideal target for virtual screening and molecular docking. We chose CSNK2A1 as the receptor protein for virtual screening, and the results indicated that Dihydroergotamine exhibited the strongest affinity with CSNK2A1. Molecular docking analysis revealed a binding energy of 11.5 kcal/mol between CSNK2A1 and Dihydroergotamine, signifying a very strong binding affinity. The docking visualisation, generated using PyMOL 2.3.0 (Figure 11A), demonstrated that Dihydroergotamine was tightly bound to multiple amino acid residues within CSNK2A1 via various interactions, with binding energies below −7.2 kcal/mol, suggesting a significant impact on CSNK2A1 structure, function, and biological activity. Molecular dynamics analysis confirmed the stability of the CSNK2A1-Dihydroergotamine complex, with RMSD, RMSF, Rg, and hydrogen bonding analyses indicating that minimal fluctuation for the complex (Figures 11B–H). Binding energy analysis revealed strong free energy (−51.79 kcal/mol) (Figure 11I). Finally, binding energy contribution analysis showed that ILE-174 and VAL-66 were critical in the binding of Dihydroergotamine to CSNK2A1, aligning with molecular docking results and further verifying the complex’s high stability (Figure 11J).
[image: Molecular docking analysis image of dihydroergotamine binding with CSNK2A1, including binding energy data and protein-ligand interaction. Multiple graphs show RMSD, RMSF, hydrogen bonds, and solvent-accessible surface area over time for CSNK2A1 with dihydroergotamine. A 3D plot and bar charts display additional data visualization related to protein analysis.]FIGURE 11 | Molecular docking and molecular dynamics simulation. (A) The docking result of the CSNK2A1-Dihydroergotamine complex. (B–F) The curve of CSNK2A1 protein and Dihydroergotamine complex: RMSD, RMSF, Rg, Hydrogen bond analysis, and SASA. Curves for the CSNK2A1 protein and the Dihydroergotamine complex. (G) Comparison of conformation of the complex at five different molecular dynamics simulation time points. (H) Free energy distribution. (I) Average binding free energy. (J) Contributions of amino acid residues involved in binding.
4.9 Effect of Dihydroergotamine on LUSC cells
The effect of Dihydroergotamine on the viability of LUSC cells was evaluated using the CCK-8 assay, and its dose-dependent anti-proliferative activity was investigated. The results indicated that Dihydroergotamine exhibited a significant inhibitory effect on LUSC cell viability (Figure 12A). Specifically, Dihydroergotamine demonstrated pronounced inhibitory activity within the short-term incubation period (24 h). However, as the incubation time increased (48–72 h), the inhibitory effect in the low-concentration groups gradually diminished. Based on these findings, the optimal inhibitory concentration of 40 μM was selected for subsequent experiments.
[image: Images show experimental results of dihydroergotamine's effects. Panel A: Bar graphs of cell viability at 24, 48, and 72 hours, showing a decrease at higher concentrations. Panel B: Western blot analysis of CSNK2A1 with decreased expression compared to GAPDH, visualized as bands and quantified on a bar chart. Panel C: Wound healing assays demonstrate reduced cell migration in dihydroergotamine-treated cells, quantified on a scatter plot. Panel D: Images from a Transwell assay reveal a decrease in cell invasion in treated cells, with quantified results in a bar chart.]FIGURE 12 | Effect of Dihydroergotamine on NCI-H2170 cells viability, CSNK2A1 expression, migration, invasion. (A) Inhibition of NCI-H2170 cells viability by Dihydroergotamine. (B) Changes in CSNK2A1 expression in NCI-H2170 cells after Dihydroergotamine treatment. (C) Effect of 40 μM Dihydroergotamine on the migration of NCI-H2170 cells. (D) Effect of 40 μM Dihydroergotamine on the invasion of NCI-H2170 cells.
4.10 Western blot analysis of CSNK2A1 expression
Western blot analysis revealed that the expression level of CSNK2A1 was significantly reduced following treatment with Dihydroergotamine (Figure 12B). These results suggest that CSNK2A1 has potential as a prognostic biomarker for LUSC, and Dihydroergotamine shows promise as a potential therapeutic agent for LUSC.
4.11 Migration and invasion assays
Wound healing and transwell assays were conducted to evaluate the effects of Dihydroergotamine on the migration and invasion abilities of LUSC cells. Compared to the control group, treatment with 40 μM Dihydroergotamine significantly reduced the wound healing rate of NCI-H2170 cells after 43 h (P < 0.01) (Figure 12C). Similarly, the transwell assay results demonstrated that the number of NCI-H2170 cells penetrating through the Matrigel-coated membrane was significantly decreased following treatment with 40 μM Dihydroergotamine (P < 0.01) (Figure 12D).
5 DISCUSSION
LUSC is one of the common subtypes of NSCLC and presents a major public health challenge due to its treatment difficulties and poor prognosis, leading to extremely high mortality rates (Lau et al., 2022),Although several prognostic markers for LUSC have been identified (Šutić et al., 2024; Wang et al., 2024), Pprognostic models associated with anoikis have not been deeply explored.
Recent studies have highlighted the critical role of abnormal cell death in tumor initiation and progression. For instance, Xie et al. (2024) identified the disulfidptosis regulator, glycogen synthase 1 (GYS1), as an effective therapeutic target in triple-negative breast cancer. Similarly, ferroptosis-related mRNAs and lncRNAs have been identified as ideal prognostic biomarkers in gastric cancer (Liu Y. et al., 2023). In this study, we developed an anoikis-related prognostic model for LUSC to provide new insights into its diagnosis and treatment. Unlike previous studies based on a single dataset, we integrated data from the TCGA and GSE30219 datasets to enhance the model’s accuracy and reliability. Using this model, we identified eight anoikis-related genes (ARGs) closely associated with LUSC and confirmed the significance of CSNK2A1 and SNAI1 in LUSC prognosis through survival analyses. Therefore, this study constructed a prognostic model for LUSC related to anoikis, offering new insights into the diagnosis and treatment of LUSC. Unlike previous studies that relay on a single database, we integrated the TCGA and GSE30219 datasets to improve the model’s accuracy and reliability. Based on this model, we identified eight ARGs closely linked to LUSC prognosis and confirmed through survival analysis the significance of CSNK2A1 and SNAI1 in LUSC patients survival.
Casein kinase 2α1 (CSNK2A1) encodes the protein kinase CK2α, which phosphorylates various proteins and regulates biological processes such as the cell cycle and apoptosis, also affecting the Wnt/β-catenin signalling pathway, which plays an important role in cancer (Chua et al., 2017; Gao and Wang, 2006). Studies have shown that knockdown CSNK2A1 expression in KRAS-mutant lung cancer cells inhibits cancer cell proliferation and Wnt/β-catenin signalling (Wang et al., 2019); Yu et al. used machine learning algorithms to screen genes related to mitochondrial autophagy in NSCLC and established a prediction model that includes CSNK2A1 (Yu et al., 2023). While the role of CSNK2A1 in lung cancer has been established, its specific function in LUSC has yet to be fully investigated.
Snail family transcriptional inhibitory protein 1 (SNAI1) is a zinc-finger transcription factor that downregulates E-calmodulin expression through specific recognition of its promoter and is closely associated with tumour development (Singh et al., 2021). Although studies on SNAI1 in lung cancer are limited, it has been shown that upregulation of miR-34a-5p and subsequent downregulation of SNAI1 induce apoptosis in lung cancer cells (Aida et al., 2021). Further analysis revealed that LUSC patients had higher survival rates when SNAI1 expression was low, suggesting that SNAI1 may be a key gene in LUSC (Chawhan and Dsouza, 2024). Despite limited research, SNAI1’s critical role in other tumours has been confirmed, highlighting the need for further exploration.
Studies have shown that CSNK2A1 and SNAI1 correlate significantly with immune cells, particularly M0 macrophages and activated mast cells. M0 macrophages are considered resting macrophages that differentiate into M1 and M2 subtypes (Zhang et al., 2022). Recent studies suggest that macrophages in gliomas maintain a continuum between M1 and M2 phenotypes, which are associated with M0 macrophages (Gabrusiewicz et al., 2016). M0 macrophages have been significantly linked to poor prognosis in high-grade gliomas (Huang et al., 2020). Although the relationship with LUSC is unclear,their tumourigenic role in gliomas suggests that further study is warranted, Mast cells, traditionally associated with allergic and inflammatory responses (Bischoff, 2007). Have recently been shown to play a key role in shaping the tumour microenvironment (Aponte-López and Muñoz-Cruz, 2020). Found in the microenvironment of solid tumours, they influence cancers such as oesophageal and ovarian cancers (Wang et al., 2013; Chan et al., 2005); while playing a negative role in lung adenocarcinoma and breast cancer (Takanami et al., 2000; Reddy et al., 2019). Mast cells release tumour necrosis factor-alpha (TNF-α) and IL-1, which directly affect tumour pathogenesis (Déry et al., 2000; Litmanovich et al., 2018). Given the crucial role of M0 macrophages and mast cells in the tumour microenvironment, the associations between CSNK2A1,SNAI1,and these immune cells deserve further investigation.
In small molecule drug screen based on CSNK2A1, Dihydroergotamine demonstrated strong binding affinity to CSNK2A1, and molecular dynamics simulations indicated good stability of the CSNK2A1-Dihydroergotamine complex, This suggests could serve as a potential therapeutic option for LUSC. Dihydroergotamine is an by the FDA-approved ergot alkaloid derivative primarily used for the treating migraine (Bigal and Tepper, 2003; Hernández-Rodríguez et al., 2024). Given challenges of development new anticancer drugs, repurposing existing drugs for cancer treatment holds significant value. Recent studies have found that Dihydroergotamine can target colon cancer via JAK2 (Chandrasekhar et al., 2024). Therefore, it’s potential therapeutic role in LUSC warrants further exploration.
Despite the development of a predictive model for LUSC prognosis based on a risk score nomogram, several limitations remain. First, although this is the first predictive model for LUSC related to anoikis-associated genes, the model lacks validation through novel methodologies. Second, while the interaction between Dihydroergotamine and CSNK2A1 has been confirmed, its clinical efficacy in LUSC requires further in vitro and in vivo validation. Third, although we conducted a limited number of cellular experiments to assess the impact of Dihydroergotamine on LUSC cells and observed a significant reduction in CSNK2A1 expression, there is a lack of clinical sample-based immunohistochemical studies. Fourth, the absence of in vivo experiments to evaluate the drug’s tumor-suppressive effects further limits the findings.
6 CONCLUSION
Overall, our study is the first to establish a risk model for LUSC treatment and prognosis based on anoikis-related genes. Further analysis indicates that these genes offer reliable predictive accuracy in LUSC and have a significant impact on its immune microenvironment, demonstrating promising immunological characteristics. Notably, virtual screening and molecular dynamics studies suggest the potential of CSNK2A1 as a future therapeutic target for LUSC, while Dihydroergotamine shows promise as a potential drug for LUSC treatment. Cellular experiments also validated the findings derived from bioinformatic analysis. In conclusion, CSNK2A1 may serve as a reliable prognostic indicator for the survival of LUSC patients, and its immunological characteristics position it as a potential target for immunotherapy. Moreover, the application of Dihydroergotamine in LUSC warrants further exploration.
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Background: The mechanisms of epigenetic regulation emerge as a fundamental determinant in the complex landscape of cancer initiation and advancement. However, the specific impact of epigenetic regulation on cancer progression remains unclear. To explore the relationship between epigenetic regulation and cancer progression, we utilized transcriptomic data from The Cancer Genome Atlas (TCGA) datasets to investigate the association.Methods: We obtained transcriptomic data of epigenetic gene dataset from the TCGA database and calculated an epigenetic score using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox model. Additionally, we created a nomogram that integrates the epigenetic score and clinical features, providing a more comprehensive tool for tumor patients prognosis assessment.Results: We calculated the epigenetic score based on the expression levels of epigenetic-related genes. The nomogram we developed incorporates the epigenetic score and clinical characteristics. The epigenetic score was positively correlated with the expression of genes related to hallmarkers of cancer, including glycolysis, epithelial-mesenchymal transition (EMT), cell cycle, DNA repair, angiogenesis, and inflammatory response. Furthermore, we performed gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis to explore the signaling pathways and biological processes in high epigenetic score group.Conclusion: The epigenetic scoring system developed in this investigation represents an innovative approach that demonstrates remarkable potential in forecasting survival trajectories across diverse cancer types. These groundbreaking insights not only illuminate the intricate interactions between epigenetic mechanisms and gene expression regulation in oncological contexts, but also indicate that the derived epigenetic metric could potentially emerge as a significant prognostic biomarker for cancer outcomes.Keywords: epigenetic regulation, cancer prognosis, pan-cancer, prognosis prediction, nomogram
INTRODUCTION
Epigenetics is one of the important mechanisms for regulating gene expression. Epigenetics regulation is characterized by transmitting genetic information without altering the DNA sequence, including DNA methylation, histone modification, microRNA induced gene expression alteration (Zhang et al., 2020). By affecting the expression levels of genes, epigenetic regulation can modulate cell proliferation and differentiation, and thus participate in the occurrence and development of cancer, providing a new perspective for us to explore the mechanisms of cancer development and progression (Dawson and Kouzarides, 2012).
Cancer is a disease caused by uncontrolled cell proliferation, characterized by features such as abnormal cell growth, invasiveness, and evasion of apoptosis (Hanahan, 2022). Extensive research has demonstrated that carcinogenesis is a multifaceted process extending beyond genetic mutations, with epigenetic alterations serving as critical determinants in the complex mechanisms of cancer development and progression (Sharpless and Chin, 2003). Within malignant cellular environments, aberrant DNA methylation patterns frequently result in the suppression of tumor-protective genes while simultaneously facilitating the activation of oncogenic genetic elements (Salgia and Skarin, 1998). For example, the high methylation level of tumor suppressor p16INK4a promotor is invloved in the occurrence of melanoma and lung cancer (Sharpless and Chin, 2003; Salgia and Skarin, 1998). In breast cancer, the deacetylation of histone H3K27 in the BRCA1 gene leads to a compact chromatin structure, thereby suppressing gene transcription and expression (Romagnolo et al., 2015). Furthermore, the long non-coding RNA HOTAIR inhibits the expression of tumor suppressor genes and is closely related to the occurrence of breast cancer and gastric cancer (Kong et al., 2022; Cai et al., 2014).
Epigenetic regulatory mechanisms significantly contribute to the complex architectural and functional development of the tumor microenvironment (Dawson and Kouzarides, 2012). The histone H3K4 methylation of the ras gene is associated with its activation in pan-cancer, promoting cell proliferation (Shilatifard, 2012). The IL-1β in the tumor microenvironment can induce the acetylation of histone H3, activating the expression of genes related to tumor progression (Han et al., 2023). The hypoxic state in the tumor microenvironment can upregulate the expression of miR-21, promoting the proliferation and metastasis of cancer cells (Angel et al., 2023). In addition, environmental factors such as diet, chemicals, radiation, and viral infections can also cause epigenetic changes, thereby affecting the occurrence and development of tumors. For example, certain dietary components can directly affect the DNA methylation pattern, thereby increasing the risk of cancer (Sapienza and Issa, 2016). On the other hand, viral infections such as human papillomavirus (HPV) have also been found to promote the occurrence of cancer by altering the epigenetic state of the host cells (Fang et al., 2014; Revathidevi et al., 2021).
In summary, epigenetic regulation has become an important field in the study of tumor biology by affecting gene expression and its interactions. The research reveals the nuanced and multifaceted role of epigenetic regulation in cancer development. The impact of epigenetic mechanisms on oncological processes cannot be attributed to a single gene’s expression, but rather emerges from the complex interplay of multiple epigenetic regulatory pathways. Consequently, it would be overly simplistic to categorize epigenetics as uniformly beneficial or detrimental to tumor progression. A comprehensive understanding of these intricate epigenetic regulatory mechanisms offers promising avenues for advancing early cancer detection and developing targeted therapeutic interventions. Leveraging The Cancer Genome Atlas (TCGA) datasets, we have developed an innovative epigenetic scoring system. This novel assessment approach aims to elucidate the prognostic significance of epigenetic gene expression patterns in cancer patients. Furthermore, it provides a new research direction for elucidating the role of epigenetic regulation in cancer development and progression.
MATERIAL AND METHODS
Identification of epigenetic-related genes
Epigenetic genes were obtained from the literature reported by yan et al. (Zhang et al., 2022). A total of 990 epigenetic genes were summarized in the study (Supplementary Table S1).
Patients and datasets
The research data were obtained from the TCGA database, downloaded through the UCSC Xena platform (http://xenabroswer.net/hub), comprising 8,739 pan-cancer transcriptomic profiles. The dataset ID is “EB++AdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.xena”. The analysis included pan-cancer data from 32 types of solid tumors, excluding samples of acute myeloid leukemia. To ensure the reliability and generalizability of the model, We divided the samples into a training cohort and a testing cohort by randomly assigning 70% of the samples to the training cohort and the remaining 30% to the testing cohort.
Construction of the prognostic epigenetic-related signature
The signature construction followed these steps: (1) Based on the training set, we performed univariate Cox regression analysis to screen for prognostic genes significantly associated with survival (p < 0.0001, HR ≤ 0.7, HR ≥ 1.3). (2) We then used the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm to perform feature selection, reducing the risk of overfitting. (3) Finally, we constructed the final predictive model using a multivariate Cox proportional hazards regression model.
The epigenetic score was trained using all cancer types collectively. The epigenetic score was calculated as follows: Epigenetic Score = Σ(Expression level of gene i × Corresponding regression coefficient). Specifically, Epigenetic Score = 0.147*ACTB+0.372*AP2A1+0.307*ASXL1+-0.14*BAHD1+0.104*BCDIN3D+0.193*BRD4+0.095*CDYL+0.179*DDX17+-0.097*DDX24+-0.278*DDX5+0.079*DHX35 + 0.128*DHX8+0.101*ENY2+0.117*FKBP1A + -0.269*FTSJ1+-0.33*HDGF + -0.196*KDM4B + -0.264*L3MBTL2+-0.183*MEPCE+0.081*PAK2+0.293*PHC2+-0.141*PHF7+-0.177*SETD3+-0.17*SETDB2+-0.158*SETMAR+0.134*SIRT7+0.065*SP140L+0.299*SUPT7L + -0.114*TADA2B+0.17*UBE2A+0.175*UCHL5+-0.103*USP7+-0.45*YTHDC1. Patients were divided into high epigenetic score and low epigenetic score groups based on their epigenetic score: samples with a standardized epigenetic score (z-score) greater than 0 were defined as the high epigenetic score group, while those with a standardized epigenetic score less than or equal to 0 were defined as the low epigenetic score group.
Construction of the nomogram
The nomogram was constructed using the nomogram function from the rms R package, setting the linear predictor (Linear Predictor) and survival probabilities (1-year, 3-year, 5-year, and 10-year) as output variables, with the maximum score set to 100 points.
Evaluation of biological processes
The ssgsea method was used to evaluate the activities of key biological processes.The ssgsea was performed using the GSVA R package. The gene sets for glycolysis, EMT, DNA repair, angiogenesis, and inflammatory response were obtained from www.gsea-msigdb.org, including HALLMARK_ANGIOGENESIS, HALLMARK_DNA_REPAIR, HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION, HALLMARK_INFLAMMATORY_RESPONSE, and WP_GLYCOLYSIS_IN_SENESCENCE. The gene set for cell cycle was derived from previous study (Sanchez-Vega et al., 2018).
Differential gene expression analysis
We used the limma R package to analyze the differentially expressed genes (DEGs) between the high-risk and low-risk groups, applying the following selection criteria: log2 fold change absolute value is greater than or equal to 1 and adjusted false discovery rate (FDR) p-value less than 0.05.
Statistical analysis
All statistical analyses were performed using R software (version 4.2.2). Kaplan-Meier analysis was used to evaluate patient survival, and decision curve analysis (DCA) was used to assess the clinical utility of the model. Time-dependent receiver operating characteristic (ROC) curve analysis was used to compare the predictive performance of the ES and the nomogram model (area under the curve, AUC). All statistical tests were two-sided, and p-values less than 0.05 were considered statistically significant. In univariate Cox analysis, HR > 1 is considered risk factors, while HR < 1 is considered protective factors.
RESULTS
Identification of epigenetic-related signature in pan-cancer
We established a systematic workflow for constructing the epigenetic-related signature of pan-cancer (Figure 1). In the initial screening stage, we performed univariate Cox analysis on 990 epigenetic-related genes and identified 59 candidate genes (p < 0.0001, HR ≤ 0.7, HR ≥ 1.3) Supplementary Table S2). To further optimize feature selection, we conducted LASSO regression analysis on these candidate genes using the TCGA pan-cancer training set (Figures 2A, B). Through stepwise Cox proportional hazards regression modeling, we ultimately identified 33 key epigenetic-related genes with important prognostic value, and established an epigenetic score based on the standardized expression levels of these genes.
[image: Flowchart illustrating the process of developing a pan-cancer epigenetic signature. It includes sections on gene analysis, epigenetic score calculation, evaluation using nomograms and curves, and cancer signature components such as glycolysis, EMT, cell cycle, DNA repair, angiogenesis, and inflammation. The result section states the signature's role in improving prognostic evaluations in cancer patients.]FIGURE 1 | Workflow for analyzing the relationship between epigenetic-related genes and pan-cancer prognosis.
[image: Four-panel figure showing data analysis results. Panel A: color-coded coefficients plot versus log-transformed lambda values, showing trends. Panel B: graph of partial least squares distance versus log-transformed lambda, illustrating increasing trend. Panel C: heatmap of data points, color-coded by class, with a dendrogram indicating clustering. Panel D: expanded heatmap displaying class distributions with a categorical color legend.]FIGURE 2 | Screening of epigenetic-related genes in pan-cancer. (A) LASSO regressions were employed in the epigenetic-related signature identity. Coefficient profile plot of predictors was performed against the log(λ) sequence. (B) LASSO regression model cross-validation plot. A vertical line was drawn at the optimum with the minimum criterion. Thirty-three variables were selected when the most available parameter value λ = 0.0032. (C) Compared with normal tissues, the expression level of genes in various tumor types according to TCGA datasets. Red indicates genes with high expression in tumors. Blue indicates genes with low expression in tumors. (D) Univariable Cox analysis was employed according to TCGA datasets. Red represents genes associated with worse tumor prognosis (HR > 1, indicating higher risk), while blue represents genes associated with better prognosis (HR < 1, indicating a protective effect).
To elucidate the roles of various epigenetic modifications in cancer progression, we categorize epigenetic genes based on their functions into two groups: protein modification-related genes and RNA modification-related genes. To gain deeper insights into the distinctive characteristics of 33 epigenetic associated biomarkers, we conducted a comprehensive analysis comparing their expression profiles across tumor and corresponding normal tissue specimens. Our investigation aimed to elucidate the molecular variations in these critical biomarkers between cancerous and non-cancerous tissue environments. We discovered that protein modification-related, including HDGF, SIRT-7, UBE2A, and UCHL5, elevated expression in tumor tissues. Similarly, the RNA modification-related genes DHX35, DHX8, ENY2, and FTSJ1 also upregulated in most tumor tissues. These findings suggest that epigenetic gene expression undergoes significant alterations in tumor tissues compared to normal tissues, indicating that epigenetic dysregulation may be a critical mechanism underlying tumor initiation (Figure 2C).
Notably, through univariate Cox analysis (Figure 2D), we found that these epigenetic-related genes did not exhibit clear protective or risk characteristics in most cancer types. This result suggests that epigenetic regulation may play a more complex role in the tumor progression process, rather than a simple promoting or inhibiting relationship. This complexity also highlights the necessity of further investigating the underlying mechanisms of epigenetic regulatory networks in tumor development.
Landscape of pan-cancer epigenetic scores and their clinical implications
Our systematic analysis of ES across 32 different cancer types revealed significant variations in epigenetic profiles among tumors from different organ origins. Nineteen cancer types, including glioblastoma (GBM), mesothelioma (MESO), esophageal carcinoma (ESCA), cholangiocarcinoma (CHOL), and uterine carcinosarcoma (UCS) and other types exhibited relatively high epigenetic scores. In contrast, 11 malignant neoplasms, such as kidney chromophobe (KICH), prostate adenocarcinoma (PRAD), thyroid carcinoma (THCA), testicular germ cell tumors (TGCT), thymoma (THYM), pheochromocytoma and paraganglioma (PCPG), breast invasive carcinoma (BRCA), uterine corpus endometrial carcinoma (UCEC), kidney renal papillary cell carcinoma (KIRP), uveal melanoma (UVM), and adrenocortical carcinoma (ACC), displayed lower epigenetic scores.
We analyzed the differences in epigenetic scores across different types of tumors (Supplementary Figure S1). Our research findings indicate that in most cancer types, such as bladder cancer (BLCA), breast cancer (BRCA), colon cancer (COAD), gastrointestinal cancer (KIH), Kidney Inferred Carcinoma (KIRC), Kidney Papillary Cell Carcinoma (KIRP), liver cancer (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), TGCT, and thyroid cancer (THCA), there is a significant upward trend in epigenetic scores as tumor staging increases. This finding suggests a significant correlation between tumor progression and epigenetic characteristics. However, in some tumor types, the epigenetic scores did not show a significant increase with disease progression, which may be related to insufficient clinical samples or missing information. Furthermore, in tumor types such as cervical cancer (CESC) and endometrial cancer (UCEC), the epigenetic scores also exhibit a gradual increase with higher tumor grades. This further supports the close relationship between tumor progression and epigenetic mechanisms.
Further analysis revealed that the epigenetic score held significant prognostic value across most cancer types (Supplementary Figure S2). In the majority of tumor types, the high epigenetic score acted as a risk factor and was significantly associated with patients’ progression-free interval (PFI), overall survival (OS), and disease-specific survival (DSS). Notably, the high epigenetic score was identified as a risk factor for PFI across all cancer types, with only THYM showing a protective effect in OS analysis and diffuse large B-cell lymphoma (DLBC) and PCPG exhibiting protective roles in DSS analysis. Interestingly, even though KIRC and brain lower grade glioma (LGG) had moderate epigenetic scores, the epigenetic score remained a strong risk factor for predicting the prognosis of these two cancer types (Figure 3A).
[image: Three-part graphic:  A. Violin plot comparing epigenetic scores across various cancer types in the TCGA dataset, with significant differences marked by colored dots.  B. Kaplan-Meier survival curves for the TCGA training cohort showing overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI), comparing high versus low epigenetic scores.  C. Kaplan-Meier survival curves for the TCGA testing cohort showing similar metrics as part B, with significant differences indicated.]FIGURE 3 | Survival indicators of the epigenetic score in pan-cancer. (A) The epigenetic scores of various tumor types in the training cohort. Hazard ratio (HR) of progression-free interval (PFI), overall survival (OS), and disease-specific survival (DSS) in various tumor types were calculated. Circles with a black line indicate a risky effect, while a light gray line indicates a protective effect. The value of hazard ratio can be obtained by circle size. (B) Patients in the TCGA training cohort were assigned to high or low epigenetic score groups according to the median epigenetic score. The DSS, OS, and PFI of different patient groups in the training cohort were shown. (C) The DSS, OS, and PFI of high and low epigenetic score groups in the test cohort were shown.
To assess the prognostic reliability of our epigenetic score, we segmented patients in the TCGA training cohort into high epigenetic score group and low epigenetic score group. Our analysis revealed that individuals in the high epigenetic score group demonstrated significantly reduced Disease-Specific Survival (DSS), Overall Survival (OS), and Progression-Free Interval (PFI) compared to the low-risk cohort (Figure 3B). These findings were subsequently validated in the independent testing cohort, which consistently demonstrated that the high-risk group experienced markedly inferior survival trajectories (Figure 3C). These results not only confirm the reliable prognostic prediction capability of our epigenetic score but also suggest its potential broad applicability across pan-cancer.
Establishment and evaluation of a nomogram based on epigenetic scores for predicting patient survival rates
To translate the epigenetic score into a practical clinical tool, we developed an integrative prediction model. This model was presented in the form of a nomogram (Figure 4A), which not only incorporated the epigenetic score but also integrated key clinical features such as age and tumor type, aiming to provide clinicians with an intuitive and comprehensive prognostic assessment tool.
[image: Diagram showing multiple figures related to survival probabilities in oncology research. Panel A is a nomogram predicting one, three, five, and ten-year survival probabilities based on factors like epigenetic score, age, and cancer type. Panel B is a calibration plot comparing observed and predicted survival. Panel C displays ROC curves for the training and testing cohorts. Panel D shows decision curve analyses for the training and testing cohorts with risk threshold comparisons.]FIGURE 4 | A nomogram were established and evaluated based on the epigenetic scores for predicting the patient’s survival. (A) Nomogram to predict the tumor patient survival. Patients’ clinical characteristics and epigenetic score were enrolled in the nomogram. Draw a line perpendicular from the corresponding axis of each risk factor until it reaches the line labeled “Total Points”. Sum up the number of points for all risk factors, then draw a line descending from the axis labeled “survival probability” until it intercepts prognosis probabilities. (B) Calibration curves for 3-year and 5-year overall survival (OS) in the training cohort. (C) The area under the curve (AUC) values for the nomogram in the training and test cohorts at 3 years. (D) Decision curve analysis of the nomogram in the training and testing cohorts.
To validate the reliability of the model, we conducted multi-dimensional performance evaluations. The calibration curve analysis showed that the model’s predictions of 3-year and 5-year overall survival were highly consistent with the actual observations (Figure 4B), confirming the accuracy of the predictions. In terms of predictive efficacy, the model achieved AUC values of 0.76 and 0.77 in the training and testing sets, respectively (Figure 4C), indicating its stable and reliable predictive capability. Further, decision curve analysis (DCA) demonstrated that the integrated model generated positive net benefits across various decision thresholds (Figure 4D). Although the integrated model did not show statistically significant advantages over using the epigenetic score alone, its provision of a multi-dimensional risk assessment is of great clinical relevance. For instance, we found that patients with glioblastoma (GBM) and pancreatic adenocarcinoma (PAAD) had significantly lower expected survival rates compared to those with testicular germ cell tumors (TCGT) and prostate adenocarcinoma (PRAD). This risk stratification based on multiple factors not only helps clinicians identify high-risk patients but also provides a scientific basis for developing personalized treatment strategies.
In summary, the integration model of epigenetic scores and clinical features can significantly improve the accuracy of prognostic prediction and provide clinicians with a reliable decision-support tool. These findings emphasize the important value ofepigenetic score in modern precision oncology.
Epigenetic signature and biological characteristic in pan-cancer
The development of malignant tumors is a complex biological transformation process. During tumor progression, normal cells may acquire a series of key characteristics, including increased glycolysis, EMT, sustained cell proliferation and so on. To deeply explore the intrinsic connection between epigenetic regulation and tumor biological features, we employed the ssgsea algorithm to systematically quantify the activities of cancer-related pathways in pan-cancer.
Through comprehensive analysis of pan-cancer data, we found that the epigenetic score exhibited significant positive correlations with key tumor biological processes. Specifically, the epigenetic score was positively correlated with the expression of genes related to glycolysis (R = 0.27, p < 0.001), EMT (R = 0.3, p < 0.001), and cell cycle (R = 0.49, p < 0.001), DNA repair (R = 0.17, p < 0.001), angiogenesis (R = 0.29, p < 0.001), inflammation (R = 0.43, p < 0.001) (Figure 5). This funding reveals that tumors with elevated epigenetic scores are associated with enhanced metabolic, cellular, and microenvironmental characteristics, including increased glycolytic metabolism, more aggressive EMT, higher cell cycle proliferation, improved DNA repair mechanisms, enhanced angiogenesis, and heightened inflammatory response. These features indicate an aggressive phenotype.
[image: Six scatter plots depict expression scores against various biological scores with a blue trend line indicating correlation. Panels A to F compare expression scores with GLY, EMT, Cell Cycle, DNA Repair, Angiogenesis, and Inflammatory scores, respectively. Each plot includes a legend for different cancer types, displaying colored data points signifying various cancer categories. The correlation value \(R^2\) and \(p\) value are annotated on each plot.]FIGURE 5 | Tumors with high epigenetic scores represent an aggressive phenotype. (A) The activity of glycolysis-related pathways was positively correlated with epigenetic score in various tumor types. R = 0.27, p < 0.0001. (B) The activity of epithelial-to-mesenchymal transition (EMT) related pathways was positively correlated with senescence score. R = 0.3, p < 0.001. (C) The activity of cell cycle-related pathways was positively correlated with epigenetic score. R = 0.49, p < 0.0001. (D) The activity of DNA repair related pathways was positively correlated with epigenetic score. R = 0.17, p < 0.0001. (E) The activity of anginogenesis related pathways was positively correlated with epigenetic score. R = 0.29, p < 0.0001. (F) The activity of inflammatory related pathways was positively correlated with epigenetic score. R = 0.43, p < 0.0001.
In further cancer type specific analyses, we observed interesting differences. In most tumor types, the expression of EMT-related genes was positively correlated with the epigenetic score, but in a few tumor types, such as cholangiocarcinoma (CHOL), melanoma (SKCM), and uterine carcinosarcoma (UCS), this relationship was negatively correlated (Supplementary Figure S3). The expression patterns of genes related to glycolysis, cell cycle, DNA repair, angiogenesis, inflammatory response also showed complex variability, with most tumor types exhibiting positive correlations between gene expression and epigenetic score (Supplementary Figures S3–5). It is worth noting that the correlation between epigenetic scores and tumor biological characteristics varies across different types of cancer. Different tumor types exhibit unique epigenetic regulation patterns, and this heterogeneity reflects the complexity and individual differences of epigenetic regulation in pan-cancer.
Functional analysis of tumor samples stratified by epigenetic scores
Our comprehensive analysis revealed that tumors characterized by elevated epigenetic scores demonstrated more aggressive and invasive biological properties. A critical research objective was to determine whether the biological mechanisms underlying the high-risk group were intrinsically linked to tumor invasion processes. To elucidate these potential correlations, we systematically divided the samples into two distinct groups based on their epigenetic score stratification and conducted an extensive functional enrichment analysis. This investigation encompassed a multifaceted approach, including KEGG pathway annotations, biological process (BP) characterizations, cellular component (CC) assessments, and molecular function (MF) evaluations.
In the high risk group, we found a series of functions enriched that are relevant to tumor invasion (Figure 6A). For molecular functions, we observed enrichment of tubulin binding, microtubule binding, cytokine activity, extracellular matrix structural constituent, and growth factor binding. For biological processes, we found enrichment of organelle fission, nuclear division, chromosome segregation, mitotic nuclear division, and nuclear chromosome segregation. Similarly, for cellular components, we saw enrichment of spindle, condensed chromosome, chromosome, and centromeric region. Furthermore, for KEGG pathways, we identified enrichment of cytokine-cytokine receptor interaction, cell cycle, IL-17 signaling pathway, viral protein interaction with cytokine and cytokine receptor, and pertussis.
[image: Bar charts labeled A and B display gene ontology analyses. Chart A shows bars for cytokine interactions and signaling pathways. Chart B highlights signaling pathways, nucleolar, and channel complexes. Bars are color-coded by ontology: BP (Biological Process), MF (Molecular Function), CC (Cellular Component). Orientation is horizontal, with varying bar lengths denoting significance levels.]FIGURE 6 | Functional analysis of upregulated and downregulated genes in the high epigenetic score group. (A) Functional analysis of upregulated genes in the high epigenetic score group was conducted. Biological processes (BP), cellular components (CC), molecular functions (MF), and pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed. (B) Functional analysis of downregulated genes in the high epigenetic score group was conducted. BP, CC, MF, and KEGG were analyzed.
In contrast, in the high risk group, we observed downregulation of functions related to metabolic regulation and differentiation, including KEGG pathways such as Cushing’s syndrome, estrogen signaling pathway, insulin secretion, thyroid hormone synthesis, and cortisol synthesis and secretion; molecular functions like ligand-activated transcription factor activity and nuclear receptor activity; cellular components such as neuronal cell body, ion channel complex, cation channel complex, and potassium channel complex; and biological processes including sex differentiation, male sex differentiation, branching morphogenesis of an epithelial tube, phenol-containing compound metabolic process, and thyroid hormone generation (Figure 6B).
In summary, tumors with higher epigenetic scores exhibited functional characteristics associated with cytoskeleton remodeling, cell cycle, cell division, and cell invasion, while those with lower epigenetic scores tended to be enriched for metabolic regulation and differentiation related functions. These findings provide new insights into the role of epigenetic regulation in tumor progression.
DISCUSSION
Epigenetic regulation plays a pivotal role in tumor initiation and progression due to its intricate mechanisms governing gene expression (Vogelstein et al., 2013). In recent years, a growing body of research has focused on uncovering the mechanisms of epigenetic regulation in cancer (Vogelstein et al., 2013). Building on this foundation, our study utilized bioinformatics approaches to systematically analyze the characteristics and potential significance of epigenetic regulation across pan-cancer. Using the TCGA dataset as a basis, we identified key epigenetic-related genes through comprehensive bioinformatics analysis. Leveraging these genes, we developed an epigenetic score and investigated its utility in assessing cancer patient prognosis by integrating clinical factors such as age and tumor type. Recent studies have made certain progress in exploring epigenetic regulation. For instance, Michael et al. (Cheng et al., 2023) used machine learning to investigate epigenetic factors in tumors, mapping the expression of epigenetic-related genes in highly invasive tumor cells using single-cell sequencing, but their study was limited to only 5 malignant tumors, including adrenocortical carcinoma (ACC), KIRC, lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD). In contrast, we performed bulk RNA sequencing analysis across 33 malignant cancer types, offering a macroscopic view of epigenetic regulatory mechanisms. While this approach enables broad-scale insights into molecular alterations in epigenetic regulation, to some extent, it inherently lacks the specificity required for precise prognostic stratification of individual cancer types. Furthermore, Li Ding et al. combined single-nucleus RNA sequencing (snRNA-seq) with single-nucleus ATCA sequencing (snATCA-seq) to construct an integrative multi-omic atlas of 11 major cancer types. Their research indicated that some epigenetic drivers, like regulatory regions of ABCC1 and VEGFA, appeared in pan-cancer, while some epigenetic regulators, like FGF19, ASAP2 and EN1, and the PBX3 motif, are cancer specific (Terekhanova et al., 2023). In our research, we only screened common epigenetic-related genes. We did not screen cancer specific regulators. As for signaling pathways and genes involved in epigenetic regulation, Li Ding et al. found that TP53, hypoxia, and TNF signaling were associated with cancer occurrence, while estrogen response, epithelial-mesenchymal transition, and apical junction were related to metastatic transformation (Terekhanova et al., 2023). This finding is consistent with our observation of abnormal estrogen signaling pathway expression in the high-risk epigenetic group.
Current research has focused on specific molecular mechanisms of epigenetic regulation. Yang et al. discovered that some m6A key regulatory factors (ZC3H13, VIRMA, and PRRC2A) have higher mutation rates in pan-cancer (Zhang et al., 2024). Hypermethylation of the Per3 promoter was closely associated with tumor progression (Li et al., 2024). These findings provide important clues for understanding epigenetic regulation.
There are some limitations in our study. First, due to the difficulty in obtaining clinical tumor patient tissues, we could not evaluate the validity of the epigenetic score in external clinical datasets. Second, the incomplete treatment data for patients in the TCGA database limited our ability to further analyze the impact of epigenetic scores on drug treatment responses. As a bulk RNA sequencing analysis, we were unable to effectively distinguish the epigenetic characteristics of tumor cells from those of other cells in the tumor microenvironment, such as immune cells, stromal cells, and endothelial cells. In summary, our study offers a novel epigenetic score in cancer, laying the groundwork for future in-depth research.
CONCLUSION
Collectively, our research provides novel insights into the intricate mechanisms of tumor development through the lens of epigenetic-related gene interactions. The innovative epigenetic scoring system developed in this study emerges as a potentially transformative tool for prognostic assessment across diverse cancer types. Moving forward, subsequent investigations should focus on rigorously validating these preliminary findings and exploring potential therapeutic strategies that target specific epigenetic regulatory pathways.
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Background: Lung adenocarcinoma (LUAD) remains a major cause of cancer-related mortality worldwide, with high heterogeneity and poor prognosis. Epigenetic dysregulation plays a crucial role in LUAD progression, yet its potential in molecular classification and therapeutic prediction remains largely unexplored.Methods: We performed an integrated multi-omics analysis of 432 LUAD patients from TCGA and 398 patients from GEO datasets. Using consensus clustering and random survival forest (RSF) algorithms, we established an epigenetic-based molecular classification system and constructed a prognostic model. The model’s performance was validated in multiple independent cohorts, and its biological implications were investigated through comprehensive functional analyses.Results: We identified two distinct molecular subtypes (CS1 and CS2) with significant differences in epigenetic modification patterns, immune microenvironment, and clinical outcomes (P = 0.005). The RSF-based prognostic model demonstrated robust performance in both training (TCGA-LUAD) and validation (GSE72094) cohorts, with time-dependent AUC values ranging from 0.625 to 0.694. Low-risk patients exhibited enhanced immune cell infiltration, particularly CD8+ T cells and M1 macrophages, and showed better responses to immune checkpoint inhibitors. Drug sensitivity analysis revealed subtype-specific therapeutic vulnerabilities, with low-risk patients showing higher sensitivity to conventional chemotherapy and targeted therapy.Conclusion: Our study establishes a novel epigenetic-based classification system and predictive model for LUAD, providing valuable insights into patient stratification and personalized treatment selection. The model’s ability to predict immunotherapy response and drug sensitivity offers practical guidance for clinical decision-making, potentially improving patient outcomes through precision medicine approaches.Keywords: lung adenocarcinoma, epigenetic regulation, molecular classification, immune microenvironment, precision medicine, machine learning, prognostic model, immunotherapy
1 INTRODUCTION
Lung cancer remains the leading cause of cancer-related deaths globally. It primarily manifests in two forms: Small Cell Lung Cancer and Non-Small Cell Lung Cancer (NSCLC), with NSCLC accounting for approximately 85% of all lung cancer cases and demonstrating a mere 26% 5-year survival rate. NSCLC predominantly comprises Lung Adenocarcinoma (LUAD) and squamous cell carcinoma, with LUAD representing approximately 70% of all NSCLC cases and exhibiting poor prognosis (Niu et al., 2022). The diagnosis and treatment of LUAD face several critical challenges: the absence of early symptoms often results in late-stage diagnosis; high tumor heterogeneity complicates personalized treatment approaches; and poor drug tolerance and resistance development significantly impact treatment efficacy (Cheng Y. et al., 2021; Wu and Lin, 2022). Currently, standard LUAD treatment protocols primarily encompass surgical resection, radiotherapy, chemotherapy, and immune checkpoint inhibitor therapy (Sun et al., 2024; Passaro et al., 2022). However, these conventional therapeutic approaches present significant limitations: surgery is only viable for early-stage patients; radio- and chemotherapy often induce severe adverse effects with limited efficacy; and immunotherapy demonstrates variable response rates while carrying risks of immune-related adverse events (Cheng Y. et al., 2021; Wang J. et al., 2021). Consequently, identifying LUAD-associated biomarkers and exploring novel therapeutic strategies have become focal points in current clinical research.
In recent years, epigenetic therapy has garnered substantial attention. Epigenetic modifications, including DNA methylation, histone modifications, and chromatin remodeling, serve as crucial molecular switches that dynamically regulate gene expression patterns without altering the underlying DNA sequence. In normal cells, these epigenetic mechanisms precisely control spatiotemporal gene expression to maintain cellular homeostasis (Chen et al., 2020). Previous studies on the molecular subtyping of LUAD have mainly focused on genomic changes, with relatively limited attention paid to epigenetic mechanisms. At present, some studies have explored subtypes based on DNA methylation in LUAD. For example, Zhao et al. identified two subtypes associated with LUAD prognosis through DNA methylation typing (Zhao et al., 2021). However, these studies usually examine DNA methylation alone, which may miss important biological interactions. Compared with genomic profiling, epigenetic-based classification has unique advantages: it better reflects the dynamic nature of cancer progression, shows stronger correlation with treatment response, and can capture regulatory mechanisms that may be missed through genomic analysis alone. Recent studies have demonstrated that dysregulation of these epigenetic mechanisms significantly promotes LUAD initiation, progression, and therapeutic resistance (Fan et al., 2024). For instance, Rowbotham et al. demonstrated that H3K9 methyltransferases and demethylases control lung tumor proliferating cells and cancer progression by regulating extracellular matrix genes through G9a suppression, driving lung adenocarcinoma cells toward the TPC phenotype (Rowbotham et al., 2018). Li et al.'s research revealed that histone demethylases (such as JARID1B and LSD1) influence chromatin structure and gene expression by removing histone methyl modifications (Li et al., 2011). Bajbouj et al. reported the potential role of histone modifications in NSCLC treatment, noting that epigenetic alterations in H2A (H2AK5ac) and H3 (H3K4me2, H3K9ac) possess higher prognostic value in early-stage NSCLC (Bajbouj et al., 2021). Furthermore, these epigenetic alterations can modulate the tumor microenvironment and influence immune surveillance mechanisms, indicating their potential as therapeutic targets (Hogg et al., 2020). Epigenetic therapy offers unique advantages compared to other treatments: reversibility through pharmaceutical intervention; tissue and cell specificity enabling precise treatment; and the ability to enhance immunotherapy efficacy while reversing tumor drug resistance (Yu et al., 2024; Topper et al., 2020).
In this study, we proposed an integrated approach to identify clinically relevant molecular subtypes in LUAD by leveraging single-cell sequencing technology and advanced machine learning algorithms in combination with epigenetic and transcriptomic data, with the primary goal of improving treatment stratification and patient outcomes (Baysoy et al., 2023). Our specific objectives were to: establish robust LUAD molecular subtypes based on integrated epigenetic and transcriptomic signatures to effectively guide clinical decisions; develop and validate a practical classification model that can be easily implemented in a clinical setting for patient stratification; and evaluate how these subtypes can inform treatment selection, particularly for immunotherapy and targeted therapies. This integrated approach addresses a critical gap in the current management of LUAD by providing a more comprehensive molecular classification system that is directly relevant to treatment decisions. For example, identifying subtypes with distinct immunological signatures can help select patients who are more likely to respond to immunotherapy, while understanding epigenetic patterns associated with drug sensitivity can guide the selection of targeted therapies. Such stratification is critical to advancing precision medicine for the treatment of LUAD, with the potential to improve response rates and patient outcomes while reducing unnecessary treatments and associated costs.
2 MATERIALS AND METHODS
2.1 Data source
This study primarily analyzed two large Lung Adenocarcinoma (LUAD) cohorts. The main analysis cohort was derived from The Cancer Genome Atlas (TCGA-LUAD, https://portal.gdc.cancer.gov/), comprising multi-omics data from 432 patients, including mRNA expression profiles, miRNA expression profiles, long non-coding RNA (lncRNA) expression profiles, DNA methylation profiles, and somatic mutation information (Tomczak et al., 2015). The first validation cohort, GSE72094, was obtained from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database, containing gene expression profiles and clinical follow-up data for 398 LUAD patients.
To validate the model’s predictive value in immunotherapy, we incorporated two additional Non-Small Cell Lung Cancer (NSCLC) cohorts that received immune checkpoint inhibitor therapy: GSE91061 (109 patients receiving anti-PD-1/CTLA4 treatment) and GSE135222 (27 patients receiving anti-PD-1 treatment). All gene expression data underwent standardization to eliminate batch effects. The epigenetic regulatory gene set was sourced from the EpiFactors database (http://epifactors.autosome.ru/), which systematically catalogs human protein complexes associated with epigenetic modifications (Marakulina et al., 2023).
To address potential batch effects between different data sources, we implemented a systematic data harmonization strategy. Raw data from both TCGA and GEO datasets underwent consistent preprocessing: (1) probe-level data were mapped to gene symbols using manufacturer-provided annotation files; (2) when multiple probes mapped to the same gene, the probe with the highest mean intensity was retained; (3) missing values were imputed using k-nearest neighbor algorithm (k = 10).
For batch effect correction, we employed a two-step approach: (1) ComBat algorithm from the sva R package was applied to remove systematic batch effects while preserving biological variations; (2) quantile normalization was performed to ensure comparable distribution of expression values across datasets. The effectiveness of batch correction was evaluated through principal component analysis (PCA) and relative log expression (RLE) plots before and after correction. Additionally, we performed correlation analysis between technical replicates across different platforms to ensure data consistency. These procedures effectively minimized technical variations while maintaining biological signals, enabling reliable integration of multi-source data for downstream analyses.
All analyses were performed using R version 4.4.0.
2.2 Molecular subtype characterization through multi-omics data integration
To identify LUAD molecular subtypes, we employed the MOVICS algorithm for integrated multi-omics clustering analysis (Lu et al., 2021). The MOVICS package was implemented using a multi-step approach (Version: 0.99.17). For feature selection, we first filtered epigenetics-related genes and performed survival analysis (Cox regression, p < 0.05) on mRNA expression data. For other molecular features, we applied the following criteria: top 1500 MAD-filtered lncRNAs followed by survival filtering (p < 0.05); top 50% MAD-filtered miRNAs with survival significance (p < 0.05); top 1500 MAD-filtered methylation sites with survival significance (p < 0.05); and mutation features present in >5% of samples. The optimal cluster number was determined by testing k = 2-8 using multiple clustering methods. Integration was performed using Gaussian models for expression and methylation data, and binomial model for mutation data. Clustering robustness was assessed using silhouette analysis and consensus clustering with euclidean distance and average linkage. Data standardization employed centerFlag and scaleFlag parameters for expression and methylation features, with methylation values converted to M-values for enhanced signal detection.
Initially, we conducted feature selection for each data type: for mRNA expression, we focused on epigenetic-related genes and selected survival-associated features using Cox regression (p < 0.05). For lncRNA and methylation data, we initially selected 1,500 features with the highest variation using Median Absolute Deviation (MAD), followed by survival-based screening (Cox p < 0.05). For miRNA expression, we retained the top 50% features by variation and further filtered them through Cox regression (p < 0.05). For mutation data, we selected genes with mutation frequencies exceeding 5%. The optimal cluster number was determined through multiple clustering evaluation metrics. Subsequently, we applied a multi-omics integration clustering method that combined Gaussian distribution models for expression and methylation data with binomial distribution models for mutation data. Clustering robustness was evaluated through consensus clustering and silhouette analysis by using ConcensusClusterPlus package (Version: 1.66.0) (Wilkerson and Hayes, 2010). To visualize molecular subtypes, we generated comprehensive heatmaps displaying patterns of selected features across different omics levels. Survival differences between identified subtypes were assessed using Kaplan-Meier analysis.
2.3 Transcriptional regulation and immune microenvironment characteristics of LUAD molecular subtypes
Building upon the molecular subtyping results, we further explored the biological characteristics of different molecular subtypes. Initially, we selected key transcription factors including FOXM1, EGFR, KLF4, and epigenetic regulatory genes such as SIRT6 and EHMT2 to construct transcriptional regulatory networks using the RTN algorithm (Dai et al., 2020), evaluating their activity differences across subtypes. Subsequently, we employed multiple methods to assess tumor immune microenvironment characteristics: quantifying tumor-infiltrating lymphocyte levels using MeTIL scores (Zou et al., 2021), evaluating tumor purity, stromal and immune cell infiltration using the ESTIMATE algorithm (Yoshihara et al., 2013), analyzing expression profiles of immune checkpoint-related genes including PD-1/PD-L1, and deconvoluting the composition of 22 immune cell types using the CIBERSORT algorithm (Guan et al., 2022; Chen et al., 2018). Finally, to verify the stability and reproducibility of molecular subtyping, we constructed an NTP classifier based on differential genes and employed PAM algorithm for cross-validation (Yoshihara et al., 2013), validating the classification results in an independent cohort (GSE72094) while assessing consistency between different classification methods.
2.4 Performance evaluation of integrated machine learning models in LUAD prognosis prediction
Based on the preceding multi-omics molecular subtyping results, we constructed various machine learning prognostic prediction models. Using TCGA-LUAD as the training set and GSE72094 as the independent validation set, we first performed standardized data preprocessing. We then implemented multiple baseline machine learning algorithms, including Random Survival Forest (RSF) (Becker et al., 2023), Elastic Net, stepwise regression for Cox proportional hazards model (StepCox), CoxBoost, partial least squares regression (plsRcox), principal component analysis (SuperPC), Gradient Boosting Machine (GBM), and Support Vector Machine (survival-SVM). Additionally, we explored ensemble learning strategies combining various feature selection methods with algorithms, such as combinations of RSF, Lasso, StepCox, and CoxBoost feature selection with other algorithms. Using C-index as the evaluation metric, we visualized and compared the predictive performance of different models across datasets through heatmaps, analyzing performance differences between single algorithms and ensemble strategies, as well as model stability across training and validation sets.
2.5 Validation and in-depth analysis of machine learning prognostic models
Based on the model comparison results, we selected the best-performing RSF model for detailed analysis with package of randomForestSRC (Version: 3.3.1). Initially, we employed Variable Importance Analysis (VIMP) to evaluate each gene’s contribution to prognosis prediction, visualizing the top 20 genes with the highest importance scores. Subsequently, we constructed a risk prediction model based on these key genes through the following process: (1) z-score standardization of gene expression data; (2) utilization of RSF algorithm mortality predictions as risk scores; (3) determination of optimal risk grouping thresholds by maximizing log-rank test statistics. To evaluate model predictive performance, we conducted time-dependent ROC curve analysis with survival package (Version: 3.5.8) for 1-year, 3-year, and 5-year prognostic predictions, with quantitative assessment through AUC values by using timeROC package (Version: 0.4). Simultaneously, we employed Kaplan-Meier survival analysis and log-rank tests to evaluate survival differences between high- and low-risk groups. All analyses were performed in both TCGA training and GSE72094 validation sets to verify model stability and reproducibility.
2.6 Multi-dimensional clinical feature validation of risk prediction model
To comprehensively evaluate the clinical utility of the RSF risk prediction model, we conducted multi-layered validation analyses. We initially employed pie charts to visualize the distribution differences of clinical features between high- and low-risk groups, including TNM staging, clinical staging, and gender, with chi-square tests assessing statistical significance. Subsequently, we analyzed risk score distributions across different T stages using violin plots and box plots combined with Wilcoxon rank-sum tests. Concurrently, we constructed heatmaps featuring model-selected marker genes, demonstrating their expression patterns across risk groups and clinical phenotypes. Additionally, we employed ROC curves to assess the model’s stratification capability between early and late-stage patients (Stage I + II vs. III + IV). Finally, we conducted survival analyses within clinical stage subgroups and age subgroups to validate the model’s prognostic prediction value in early-stage patients. All visualizations were implemented using R software packages including pheatmap, ggplot2, and survminer.
2.7 Independent prognostic value assessment and nomogram construction for survival prediction model
To evaluate the independent prognostic value and clinical application potential of the risk prediction model, we conducted systematic statistical analyses. Initially, we assessed the association between prognostic factors (age, gender, TNM staging, clinical staging, and risk scores) and survival outcomes through univariate Cox regression analysis, visualizing hazard ratios (HR) and their 95% confidence intervals through forest plots. Subsequently, statistically significant factors were incorporated into a multivariate Cox regression model to validate the independent prognostic value of the risk score. Based on the multivariate Cox model, we constructed nomograms integrating clinicopathological features and evaluated the accuracy of 1-year, 3-year, and 5-year survival predictions through calibration curves. Furthermore, we employed Decision Curve Analysis (DCA) to assess the model’s clinical decision-making value (Rousson and Zumbrunn, 2011) and compared the discriminative ability of different predictive factors through time-dependent C-index. All statistical analyses were implemented using R software packages including rms, timeROC, and survcomp, with p < 0.05 considered statistically significant.
2.8 Functional annotation and pathway enrichment analysis of risk score model
To investigate the biological mechanisms reflected by the risk score, we conducted systematic functional enrichment analyses (Ashburner et al., 2000; Ogata et al., 1999). Initially, we performed differential expression analysis between high- and low-risk groups using the limma package to identify significantly differentially expressed genes. Subsequently, we employed the Gene Set Variation Analysis (GSVA) algorithm to assess Hallmark gene set activity levels in each sample. GSVA scores underwent intergroup differential analysis, with t-tests identifying significantly altered signaling pathways. We utilized the corrplot package to generate correlation heatmaps between risk scores and pathway activities, revealing key regulatory networks. Furthermore, we stratified samples into high and low expression groups based on pathway activity medians, evaluating the association between important pathways and prognosis through Kaplan-Meier survival analysis and Cox proportional hazards regression. All analyses were implemented using R software packages including GSVA, limma, and survminer, with statistical significance set at p < 0.05 after multiple testing correction.
2.9 Analysis of immune microenvironment features and Their Association with risk scores
To comprehensively decipher the relationship between risk scores and tumor immune microenvironment, we conducted multi-level immunological feature analyses with IOBR package (Version: 0.99.0). We initially calculated stromal scores, immune scores, and ESTIMATE scores for each sample using the ESTIMATE algorithm, comparing differences between high- and low-risk groups. ESTIMATE was selected for its validated ability to quantify tumor purity and stromal/immune cell infiltration in bulk transcriptome data. Subsequently, we evaluated immune function and immune cell activity using the ssGSEA algorithm based on predefined immune-related pathway gene sets (Lin et al., 2021), visualizing immune characteristic patterns across different risk groups through heatmaps. Furthermore, we employed the CIBERSORT algorithm to infer the proportions of 22 immune cell types, demonstrating immune cell infiltration differences between high- and low-risk groups through violin plots. CIBERSORT was chosen as our primary method for immune cell deconvolution due to its superior performance in LUAD benchmarking studies and ability to resolve 22 immune cell types. Finally, we assessed correlations between risk scores and various immune cell contents through Spearman correlation analysis (Eden et al., 2022), visualizing correlation strength and statistical significance through bubble plots. All intergroup comparisons utilized Wilcoxon rank-sum tests, while correlation analyses employed Spearman rank correlation, with p < 0.05 considered statistically significant. All analyses were implemented using R software packages including IOBR, GSVA, and ggplot2. While these methods have inherent limitations in detecting rare cell populations (abundance <5%) and tumors may be affected by this limitation, these challenges were addressed through our estimate-based normalization and stringent quality control (inverse tumor p-value <0.05).
2.10 Immunotherapy response prediction and immune function assessment
To validate the RSF model’s predictive value for immunotherapy response, we conducted systematic validation across multiple independent cohorts. We initially evaluated the association between risk scores and treatment response in the IMvigor210 immunotherapy cohort, analyzing both 6-month and 12-month survival outcomes, as well as the relationship between treatment response (CR/PR/SD/PD) and risk scores. Subsequently, we employed multiple computational methods to assess immune function characteristics: utilizing the Tracking Tumor Immunophenotype (TIP) algorithm to evaluate tumor immune phenotypes and calculate different immune cell infiltration levels (Xu et al., 2018); applying the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to predict immune checkpoint inhibitor treatment response (Jiang et al., 2018). Through the SubMap algorithm, we analyzed the consistency between our classification system and published immunotherapy-related datasets (GSE91061) (Shen et al., 2020), evaluating the correspondence between high/low-risk groups and immunotherapy response/non-response groups. Finally, we conducted independent validation in GSE135222 and GSE91061 cohorts. All analyses were implemented using R software packages including survminer and ComplexHeatmap, with intergroup comparisons utilizing Wilcoxon tests and survival analyses employing log-rank tests, considering p < 0.05 statistically significant.
2.11 Drug sensitivity prediction analysis
To explore the risk score model’s predictive value for chemotherapy drug sensitivity, we conducted systematic drug response prediction analysis using the pRRophetic package (Version: 0.5) (Geeleher et al., 2014). Initially, we constructed drug response prediction models based on drug sensitivity data and gene expression profiles from the Cancer Genome Project (CGP) 2016 database. For each sample in the TCGA-LUAD cohort, we predicted IC50 values for all available drugs in the CGP database (Sebaugh, 2011). We compared drug sensitivity differences between high- and low-risk groups using Wilcoxon rank-sum tests and visualized significantly different drugs (p < 0.05) through box plots. To ensure result reliability, error catching and handling were implemented for each drug’s prediction process. Finally, we ranked and output the analysis results for all drugs, focusing on potential therapeutic drugs demonstrating significant sensitivity differences between high- and low-risk groups. All analyses were implemented using R software packages including pRRophetic, ggplot2, and rstatix.
3 RESULTS
All analytical processes are illustrated in the flowchart (Figure 1).
[image: Workflow diagram illustrating a multi-step analysis process. The top section depicts multi-omics analysis, including mRNA, miRNA, lncRNA, methylation, and mutation data, leading to consensus subtype identification. The middle section involves model evaluation using machine learning models, internal training with TCGA, and external validation with GSE72094, leading to a nomogram for clinical feature analysis. The bottom section focuses on function analysis and validation, including enrichment analysis, immunoassays, therapeutic effect of immune targets, and drug sensitivity analysis.]FIGURE 1 | Research flowchart.
3.1 Multi-omics integration reveals two distinct molecular subtypes of LUAD
To comprehensively characterize the molecular heterogeneity of LUAD, we implemented a systematic multi-omics integration analysis strategy. We initially selected 1,500 features with the highest variation from each omics data level (for mutation data, we selected the 1,500 sites with the highest mutation frequency). By applying ten established clustering algorithms to LUAD samples (Figure 2B), we established a robust consensus subtyping (CS) scheme. Through systematic evaluation of clustering schemes from k = 2 to k = 8 using Gap statistics and clustering prediction indices, both metrics achieved optimal values at k = 2, providing strong statistical support for a two-subtype classification scheme (Figure 2C).
[image: Multiple visualizations related to gene expression and survival data in cancer research. Part A displays heatmaps of gene expressions across study types. Part B includes a bar chart of subtype distributions. Part C shows a line chart with cluster analysis. Part D is a bar plot of gene mutations. Part E features a heatmap clustering analysis. Part F presents a survival curve analysis. Labels and legends highlight key information.]FIGURE 2 | Multi-omics Integration Analysis Results of LUAD Molecular Subtypes. (A) Multi-omics feature heatmap showing characteristic differences between CS1 and CS2 subtypes in mRNA, long non-coding RNA, miRNA expression, DNA methylation, and somatic mutations; (B) Comparison of subtyping results from different multi-omics integration methods, showing 10 clustering algorithms and their integration results; (C) Determination of optimal cluster number based on Gap statistics and clustering prediction indices; (D) Silhouette analysis validating the robustness of the two-class scheme, with an average silhouette width of 0.63; (E) Molecular feature correlation heatmap showing sample similarity within subtypes and differences between subtypes; (F) Kaplan-Meier survival analysis showing significant prognostic differences between CS1 and CS2 subtypes (P = 0.005) with follow-up extending to 228 months.
The multi-omics feature landscape (Figure 2A) clearly demonstrated significant molecular pattern differences between these two subtypes. We validated the classification scheme’s robustness through multiple methods, including comparative analysis of different clustering methods (Figure 2B), correlation heatmap analysis (Figure 2E), and silhouette analysis (average silhouette width of 0.63, Figure 2D). This comprehensive analysis ultimately divided the patient population into two subtypes: CS1 (n = 193) and CS2 (n = 239).
These two subtypes exhibited significant molecular characteristic differences across all data types (Figure 2A), including mRNA expression level differences in cell cycle regulatory genes (AURKA, AURKB, BUB1, and CDK1), expression profile differences in long non-coding RNAs (LINC00261 and SFTA1P), expression differences in microRNAs (particularly hsa-mir-31 and hsa-mir-196b), differences in DNA methylation patterns, and mutation frequency differences in cancer-associated genes (especially TP53 and MUC16). Most importantly, these molecular-level differences were closely associated with clinical prognosis. Survival analysis revealed significantly different prognostic patterns between the two subtypes (P = 0.005), with the CS1 subtype consistently showing poorer survival outcomes throughout the 228-month follow-up period (Figure 2F).
3.2 Biological characteristics and immune microenvironment analysis of different subtypes
Through systematic functional annotation analysis, we revealed significant biological characteristic differences between the two LUAD molecular subtypes. Transcriptional regulatory network analysis demonstrated distinct expression regulatory patterns between the two subtypes, centered on MUC family genes and chromatin remodeling-related genes (Figure 3A). The heatmap in Figure 3A vividly illustrates the expression profile differences of MUC regulatory region genes and chromatin remodeling-related genes, with the upper portion showing MUC family gene expression patterns and the lower portion displaying differential expression characteristics of chromatin remodeling-related genes.
[image: Panel of six images related to gene expression and survival analysis in cancer research. Panel A shows a heatmap demonstrating gene expression data with color variations. Panel B presents another heatmap with annotations on the right indicating different clinical parameters. Panel C features a heatmap comparing different gene signatures. Panel D displays a Kaplan-Meier survival curve with a legend for analysis groups. Panels E, F, and G show three correlation matrices, each illustrating relationships between various gene signatures with accompanying numerical values.]FIGURE 3 | Biological Characteristics and Validation Analysis of LUAD Molecular Subtypes. (A) Expression profile heatmap of MUC family and chromatin remodeling-related genes, with upper portion showing MUC regulatory region gene expression and lower portion showing chromatin remodeling-related gene expression patterns; (B) Tumor immune microenvironment characteristic analysis heatmap, displaying immune scores, stromal scores, and immune cell infiltration components from top to bottom, with color scale indicating relative abundance; (C) Classification prediction matrix showing prediction probability distribution of sample classification; (D) Validation cohort Kaplan-Meier survival analysis showing survival differences between the two subtypes, including risk number table; (E–G) Classification method consistency validation, showing cross-validation results and Kappa consistency coefficients for CMOIC, NTP, and PAM methods.
To deeply analyze tumor immune microenvironment characteristics, we conducted comprehensive quantitative analysis using multiple algorithms. Through the integration of ESTIMATE algorithm scores, MeTIL index, and CIBERSORT cell component analysis results, we discovered unique immune cell infiltration characteristics in both subtypes (Figure 3B). Figure 3B presents these differences in heatmap form, displaying from top to bottom the differential distribution of immune scores, stromal scores, and various immune cell infiltration components, with color intensity reflecting relative abundance levels.
To ensure the reliability of our subtyping results, we implemented a rigorous cross-validation strategy. The classification prediction matrix (Figure 3C) demonstrates the prediction probability distribution of sample classification, validating the accuracy of our typing. Survival analysis in the independent validation cohort showed that CS1 subtype patients exhibited significantly better survival benefits compared to CS2 subtype patients (P < 0.001, Figure 3D). The Kaplan-Meier survival curves clearly demonstrate the survival differences between the two subtypes, accompanied by detailed risk number tables.
Notably, through cross-validation using three independent classification methods - CMOIC, NTP, and PAM - we obtained highly consistent classification results (Kappa values of 0.773, 0.819, and 0.879, respectively; Figures 3E–G). The high consistency among these three methods strongly supports the robustness and reliability of this molecular subtyping system. Figures 3E–G detail the cross-validation results of these three classification methods, including their respective Kappa consistency coefficients, further confirming the accuracy of the typing system.
3.3 Construction and performance evaluation of random survival forest-based prognostic model
We conducted a systematic performance evaluation of 100 machine learning model combinations, visualizing the predictive efficacy of different models across validation sets through a heatmap (Figure 4A). Each row in the heatmap represents an algorithm combination, each column corresponds to a validation dataset, and color intensity reflects the C-index magnitude (0–1). Comprehensive comparison revealed that the RSF model demonstrated optimal predictive performance.
[image: Heatmap and charts depict gene expression and model performance. Panel A shows a heatmap of gene expressions across samples. Panel B is a bar chart of top predictor importance. Panels C and D are Kaplan-Meier survival plots for different subgroups. Panels E and F display ROC curves for model validation, with panels labeled TEGD and DAFEOBM.]FIGURE 4 | Construction and Validation of Random Survival Forest Prognostic Model. (A) Machine learning model performance heatmap showing predictive efficacy of 100 models across different validation sets, with color intensity indicating C-index (0–1); (B) Top 20 predictive features selected by RSF model, with bar chart showing relative importance of key genes, blue indicating high importance (>5%), red indicating moderate importance; (C) Kaplan-Meier survival analysis in TCGA-LUAD training set (n = 432), showing survival differences between high and low-risk groups; (D) Survival analysis results in GSE72094 validation set (n = 398); (E) Time-dependent ROC curves in TCGA-LUAD training set (AUC: 0.681, 0.626, and 0.625); (F) ROC curves in GSE72094 validation set (AUC: 0.631, 0.625, and 0.694).
Through variable importance analysis of the RSF model, we successfully identified 20 features with high predictive value (Figure 4B). Among these, seven genes including PKP2, KRT6A, and FSCN1 showed significantly higher relative importance exceeding 5%, marked in blue in the bar chart, while other moderately important features are shown in red, with all features arranged in descending order of importance.
In the TCGA-LUAD training cohort (n = 432), RSF model-based risk scores stratified patients into high and low-risk groups. Kaplan-Meier survival analysis revealed significant survival differences between the groups (P < 0.0001, Figure 4C). Time-dependent ROC curve analysis demonstrated excellent accuracy in 1-year, 3-year, and 5-year survival predictions, achieving AUC values of 0.681, 0.626, and 0.625 respectively (Figure 4E).
To rigorously assess the model’s generalization capability, we conducted validation in the independent GSE72094 cohort (n = 398). Results demonstrated sustained significant predictive power (P = 0.00015, Figure 4D), with stable performance across different time points, showing AUC values of 0.631, 0.625, and 0.694 for 1-year, 3-year, and 5-year predictions respectively (Figure 4F). These results strongly confirm the stable predictive efficacy and promising clinical application potential of our developed RSF model.
3.4 Multi-dimensional validation analysis of RSF prognostic model
We systematically evaluated the clinical utility of the RSF risk prediction model through multi-layered validation analyses. Initially, we compared the distribution of clinical characteristics between high and low-risk groups (High: n = 350, Low: n = 82) (Figure 5A). Pie chart analysis revealed significant differences between the groups in T stage, clinical stage, and Fustat indicators (p < 0.05, p < 0.05, p < 0.001, respectively).
[image: Five-panel scientific image. Panel A shows ten circular diagrams representing categorical data distribution. Panel B features a violin plot comparing three groups with statistical significance markers. Panel C displays a complex heatmap illustrating gene expression across samples, accompanied by color-coded annotations. Panel D contains a receiver operating characteristic (ROC) curve with an area under the curve (AUC) value of 0.99. Panels E to H present Kaplan-Meier survival plots, each showing survival probability over time with shaded confidence intervals.]FIGURE 5 | Multi-dimensional Validation Analysis of RSF Prognostic Model. (A) Pie charts showing distribution differences of clinical characteristics between high and low-risk groups, displaying differences in TNM staging, clinical staging, gender, and Fustat indicators; (B) Chi-square analysis of risk score distribution differences across T stages; (C) Expression heatmap of 20 marker genes across different risk groups and clinical phenotypes, showing from top to bottom: Fustat indicators, gender, clinical staging, M staging, N staging, T staging (*P < 0.05, **P < 0.01, ***P < 0.001); (D) ROC curve analysis of stratification capability between early and late-stage patients; (E–H) Kaplan-Meier survival analysis of clinical stage subgroups and age subgroups, including risk number tables and log-rank test P-values.
Further analysis of risk score distribution across different T stages revealed significant differences between T1 stage and both T2 and T4 stage patients (P < 0.05, Figure 5B). This finding particularly highlighted the clinical predictive value of risk scores in early-stage (T1) patients. Our constructed marker gene expression heatmap clearly demonstrated the expression patterns of these genes across different risk groups and clinical phenotypes (Figure 5C). The heatmap revealed significant expression differences in clinical staging and T staging (P < 0.05), with even more pronounced differences in Fustat indicators (P < 0.001).
To assess the model’s ability to predict disease progression, we employed ROC curve analysis to evaluate the risk score’s stratification efficacy between early and late-stage patients (Stage I + II vs. III + IV) (Figure 5D). Results demonstrated good stratification capability (AUC = 0.604, 95% CI: 0.507–0.709, criterion = 0.176). More importantly, survival analysis in clinical stage subgroups and age subgroups showed significant predictive value across early-stage (I + II), late-stage (III + IV), non-elderly (age≤60), and elderly (age>60) groups (p < 0.005, Figures 5E–H). These multi-dimensional validation results strongly support the clinical application potential of the RSF risk prediction model.
3.5 Independent prognostic value assessment and nomogram construction
To systematically evaluate the independent prognostic value of the risk prediction model, we first conducted comprehensive Cox proportional hazards regression analysis. Univariate analysis results, presented as a forest plot (Figure 6A), revealed TNM staging, clinical staging, and risk scores as significant prognostic factors (all P < 0.01), with T stage showing a relatively lower hazard ratio. Multivariate Cox regression analysis further confirmed the independent prognostic value of T stage, N stage, and risk score (Figure 6B).
[image: A series of graphs and charts displaying statistical analysis and data comparisons. Panels A and B show hazard ratios and p-values for various variables. Panel C presents a calibration curve with diagonal line and data points for six risk groups. Panel D depicts survival curves in different colors for each risk group. Panel E shows nomogram alignments and reference points on a horizontal axis for multiple variables. Panel F illustrates decision curves for five different models or risk groups over time. Each panel highlights different aspects of a multivariate analysis in clinical research.]FIGURE 6 | Construction and Evaluation of Integrated Prognostic Model. (A) Forest plot of univariate Cox regression analysis showing hazard ratios and 95% confidence intervals for various clinical characteristics; (B) Forest plot of multivariate Cox regression analysis confirming independent prognostic factors; (C) Calibration curves for nomogram model’s 1-year, 3-year, and 5-year survival probability predictions; (D) Decision curve analysis (DCA) of different prediction strategies; (E) Prognostic prediction nomogram integrating TNM staging, clinical scores, and risk scores (*P < 0.05, **P < 0.01, ***P < 0.001); (F) Dynamic comparison of time-dependent C-indices between nomogram model and single prognostic factors.
Based on the confirmed independent prognostic factors, we constructed an integrated nomogram prediction model. Calibration curve analysis evaluated the model’s prediction accuracy, demonstrating excellent calibration in 1-year (red), 3-year (blue), and 5-year (green) survival predictions (Figure 6C). Decision curve analysis (DCA) further confirmed that the integrated nomogram model provided greater net benefit for clinical decision-making compared to single prognostic factors (Figure 6D).
We established a comprehensive visualization nomogram incorporating all independent prognostic factors (Figure 6E), where risk score, N stage, and T stage again demonstrated significant independent prognostic value (P < 0.001, P < 0.01, P < 0.05, respectively). Dynamic analysis of time-dependent C-index showed that the nomogram model’s prediction accuracy (C-index>0.65) consistently outperformed single prognostic factors throughout the follow-up period (Figure 6F). This integrated prognostic prediction tool provides clinicians with an intuitive, accurate individualized prognostic assessment approach.
3.6 Functional annotation and pathway enrichment analysis reveal molecular biological mechanisms
Based on the risk stratification results from the RSF model, we conducted systematic functional enrichment analysis to elucidate its molecular biological foundations. Gene Set Variation Analysis (GSVA) revealed risk stratification-specific signaling pathway activity characteristics (Figure 7A). The waterfall plot clearly demonstrates significantly different biological pathways between high and low-risk groups, where the high-risk group significantly activated 15 signature pathways (FDR<0.05), primarily including cell cycle regulation (G2M CHECKPOINT) and MYC targets (MYC TARGETS_V1, MYC TARGETS_V2) related pathways. In contrast, the low-risk group characteristically activated 16 pathways, including P53 pathway, IL-6/JAK/STAT3 signaling pathway, Notch signaling pathway, and KRAS pathway.
[image: Panel A shows a bar chart depicting log2 fold changes for protein-coding RNAs with bars in red and blue. Panel B displays a correlation matrix heatmap with colors ranging from red to blue indicating correlation levels. Panel C presents a forest plot of significant pathways, with dots representing values on a horizontal axis. Panel D contains multiple Kaplan-Meier survival curves with lines in red and blue, labeled with different conditions or groups.]FIGURE 7 | Molecular Mechanism Functional Analysis of RSF Model. (A) GSVA differential pathway waterfall plot showing significantly different biological pathways between high and low-risk groups, with red and blue indicating upregulated pathways in high-risk and low-risk groups respectively; (B) Correlation heatmap between risk scores and pathway activities, with red and blue indicating positive and negative correlations; (C) Forest plot of key pathway hazard ratios showing hazard ratios and 95% confidence intervals for each pathway; (D) Kaplan-Meier survival analysis of 12 important pathways, including risk number tables and log-rank test P-values.
Through correlation analysis between risk scores and pathway activities, we constructed a comprehensive functional regulatory network landscape (Figure 7B). The red and blue colors in the heatmap represent positive and negative correlations respectively, with color intensity reflecting correlation strength, further validating our findings.
To evaluate the clinical prognostic significance of key pathways, we focused on analyzing 12 most significant signaling pathways, encompassing metabolism-related (GLYCOLYSIS, HEME METABOLISM, BILE ACID METABOLISM), cell cycle and division-related (G2M CHECKPOINT, MITOTIC_SPINDLE), gene expression and transcriptional regulation-related (E2F targets, MYC targets) and other critical pathways. Hazard ratio (HR) analysis (Figure 7C) confirmed that heme metabolism (HEME METABOLISM) and bile acid metabolism (BILE ACID METABOLISM) are important adverse prognostic factors (HR > 1). Kaplan-Meier survival analysis (Figure 7D) further validated that high activity in these two pathways is significantly associated with poorer overall survival (P < 0.05), while other pathways demonstrated protective prognostic effects.
3.7 Analysis of immune microenvironment characteristics and their association with risk scores
Our multi-dimensional analysis thoroughly explored the relationship between risk scores and tumor immune microenvironment. Initially, ESTIMATE algorithm assessment results (Figures 8A–C) demonstrated that the low-risk group exhibited significantly higher stromal scores, immune scores, and overall scores compared to the high-risk group (p < 0.001), indicating more active immune responses and richer stromal components in the low-risk group.
[image: Six-panel graphic displaying various statistical visualizations. Panels A, B, and C show violin plots comparing two groups, labeled red and blue, across different variables. Panel D is a heatmap illustrating expression levels across multiple samples. Panel E displays a bar graph of categorized data with a focus on different sample groups. Panel F is a scatter plot highlighting correlation coefficients with color and size indicating changes and significance.]FIGURE 8 | Analysis of Immune Microenvironment Characteristics and Their Association with Risk Scores. (A–C) Immune microenvironment differences between high and low-risk groups assessed by ESTIMATE algorithm, including stromal score, immune score, and overall score; (D) Activity heatmap of differential immune-related pathways (*P < 0.05, **P < 0.01, ***P < 0.001); (E) Violin plots showing infiltration proportion differences of 22 immune cell types (*P < 0.05, **P < 0.01, ***P < 0.001); (F) Correlation plot between risk scores and immune cell content, where dot size represents absolute correlation coefficient and color indicates correlation direction and significance.
ssGSEA algorithm analysis identified six immune-related pathways with significant differences between high and low-risk groups (Figure 8D), including immune response and inflammation-related pathways (complement and coagulation cascades, FC epsilon RI signaling pathway, leukocyte transendothelial migration), B cell receptor signaling pathway, hematopoietic cell lineage, and intestinal IgA production immune network. The heatmap clearly illustrates the activity differences of these pathways across risk groups.
CIBERSORT algorithm analysis of immune cell infiltration characteristics (Figure 8E) revealed three major differences:
	1. Memory B cells, regulatory T cells, M1 macrophages, and resting mast cells were significantly decreased in the high-risk group (P < 0.001);
	2. Activated memory CD4+ T cells and resting NK cells were more abundant in the high-risk group (P < 0.001);
	3. The low-risk group was enriched with monocytes, M0 macrophages, activated dendritic cells, CD8+ T cells, resting memory CD4+ T cells, resting dendritic cells, and activated mast cells (P < 0.05).

Correlation analysis between risk scores and immune cell content (Figure 8F) revealed:
Significant positive correlations with memory CD4+ T cells, CD4+ T cells, M1/M0 macrophages, and NK cells (P < 0.001).
Significant negative correlations with dendritic cells, T cells, monocytes, mast cells, and B cells (P < 0.001).
These results suggest potential immune suppression or dysregulation in the high-risk group, while the low-risk group may possess more effective immune regulatory mechanisms. The risk score serves as an effective indicator for quantifying LUAD patients’ immune status, reflecting significant immunological landscape differences between patients with different risk levels.
3.8 Immunotherapy response prediction and immune function assessment
To validate the predictive value of the RSF model for immunotherapy response, we conducted systematic verification across multiple independent cohorts. Initial assessment of the association between risk scores and treatment response (Figures 9A, B) demonstrated that the high-risk group exhibited lower overall survival than the low-risk group within both 6-month and 12-month restricted mean survival times. This difference was particularly significant for long-term survival beyond 3 months (P < 0.01). The analysis of treatment response (CR/PR/SD/PD) differences in risk scores (Figure 9C) revealed significant variations between PD and both PR and CR groups (P < 0.05), indicating excellent predictive capability for disease progression or remission.
[image: Eight-panel image presenting various data visualizations:  A and B show Kaplan-Meier survival curves comparing high-risk (blue) and low-risk (yellow) groups with p-values indicating statistical significance.  C is a scatter plot with a box plot overlay showing expression levels across different groups.  D is a comprehensive box plot comparing gene expression across multiple categories.  E includes a waterfall plot and bar chart demonstrating immune subtype distribution.  F is a heatmap with correlation values, emphasizing distinct clusters.  G displays survival curves with time and risk metrics.  H is a box plot illustrating statistical differences with a significant p-value.  These panels collectively analyze risk and expression data.]FIGURE 9 | Immunotherapy Response Prediction and Immune Function Assessment. (A) Survival analysis of high and low-risk groups within restricted survival times, showing survival curves and log-rank test P-values at 6 and 12 months (p = 0.02, p = 0.11). (B) Long-term survival analysis (24 months) after 3 months for high and low-risk groups, showing significant differences (p < 0.01). (C) Kruskal–Wallis test evaluating associations between different treatment response groups (CR complete response/PR partial response/SD stable disease/PD progressive disease) and risk scores, showing statistical significance of intergroup differences. (D) Quantitative analysis of tumor-infiltrating immune cell levels in seven steps of the cancer immunity cycle, including detailed visualization of 17 immune cell subgroups in step four. Statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001. (E) TIDE algorithm prediction of immune checkpoint inhibitor treatment response in High-CMLS and Low-CMLS groups, showing distribution of Responders and Non-responders (p = 0.538). (F) Correlation heatmap from SubMap algorithm analysis, showing association strength between high/low CMLS groups and different immunotherapy response types, with values and color intensity representing correlation degree. (G) Survival analysis based on CMLS grouping, showing survival differences between high and low-risk groups (Log-rank p < 0.0001), including risk number table for 20-month follow-up period. (H) Box plot comparison of scores between immunotherapy response (R) and non-response (NR) groups, showing significant differences (p = 0.00011), with each point representing one sample.
To evaluate immune function characteristics, we quantitatively visualized immune cell infiltration levels across different cancer cycle stages (Figure 9D). Steps one, three, five, and six demonstrated significant immune cell infiltration levels (all P < 0.05). Additionally, step four showed high infiltration levels of T cells, CD4+ T cells, monocytes, basophils, and regulatory T cells (all P < 0.05). Immune checkpoint inhibitor treatment response prediction (Figure 9E) revealed that the proportion of ICB responders in the High-CMLS group approximated that of the Low-CMLS group. SubMap algorithm analysis indicated strong correlation between the Low-CMLS group and PD-1 inhibitor treatment response (Figure 9F).
Survival analysis further validated the prognostic value of CMLS-based grouping, with the low-risk group demonstrating significantly better survival benefits (p < 0.0001, Figure 9G). In the independent validation cohort, the immunotherapy response group showed significantly lower scores than the non-response group (p = 0.00011, Figure 9H), further supporting the model’s value in predicting immunotherapy response.
3.9 Drug sensitivity analysis
Through systematic IC50 value prediction, we identified ten potential therapeutic drugs showing significant sensitivity differences between high and low-risk groups (Figures 10A–J). These drugs can be classified into four categories:
	1. Chemotherapy drugs: Methotrexate (P = 6.74e-23), Cisplatin (P = 3.19e-15), Paclitaxel (P = 2.97e-13), and Gemcitabine (P = 1.82e-11).
	2. Targeted therapy drugs: Erlotinib (P = 4.36e-10), Ruxolitinib (P = 7.34e-11), and Imatinib (P = 1.47e-10).
	3. PARP inhibitors: AG-014699 (P = 4.47e-23) and Talazoparib (P = 1.59e-14).
	4. CDK inhibitor: RO-3306 (P = 9.99e-25).

[image: Box plots A to J compare drug response to different classifications, indicated by red and blue colors. Each plot shows response values on the y-axis against risk group on the x-axis, with specific statistical values noted above each plot.]FIGURE 10 | Drug Sensitivity Analysis Between High and Low-Risk Groups (A–J). Sensitivity comparison of ten key therapeutic drugs between high and low-risk groups. Box plots show distribution of predicted IC50 values, with lower IC50 values indicating higher drug sensitivity. Statistical significance determined by Wilcoxon rank-sum test.
Notably, except for the targeted therapy drug Erlotinib, the low-risk group demonstrated higher sensitivity to most drugs compared to the high-risk group. Both groups showed significant sensitivity to the chemotherapy drug Paclitaxel.
4 DISCUSSION
4.1 Primary research findings
Through multi-omics integrated analysis, this study identified two distinct molecular subtypes of LUAD (CS1 and CS2). These subtypes exhibited significant differences across multiple omics data, including gene expression, DNA methylation, miRNA, and lncRNA, with CS2 subtype patients demonstrating superior immune activity and longer survival duration (P = 0.005). The subtyping results showed robustness across various clustering methods (average silhouette width 0.63) and received consistent validation in independent cohorts. Based on these subtyping results, we developed multiple machine learning-based prognostic models to further quantify patient risk and guide clinical decision-making. Among these, the RSF model demonstrated excellent predictive performance in both the training set (TCGA-LUAD) and validation set (GSE72094), with time-dependent ROC curve AUC values of 0.681 vs. 0.631 (1-year), 0.626 vs. 0.625 (3-year), and 0.625 vs. 0.694 (5-year), respectively. The model identified 20 critical feature genes, with PKP2, KRT6A, and FSCN1 showing the highest contribution. These genes exhibited significantly different expression patterns between high and low-risk groups, suggesting their potential crucial roles in LUAD development and progression. Further analysis revealed that risk scores significantly influenced patients’ immune microenvironment characteristics.
Immune microenvironment analysis demonstrated immunosuppressive states in the high-risk group, with significantly reduced infiltration of CD8+ T cells, M1 macrophages, and dendritic cells (P < 0.05), while the low-risk group exhibited more active immune responses. Risk scores showed significant correlations with immune scores, stromal scores, and immune cell infiltration levels (P < 0.001). These findings, along with subsequent immunotherapy response prediction results, suggest that low-risk group patients may be more suitable for PD-1 inhibitor treatment (Shiravand et al., 2022). Finally, to further explore the clinical application value of risk scores, we conducted drug sensitivity analysis. Results revealed that the low-risk group showed higher sensitivity to chemotherapy and targeted drugs including Cisplatin, Paclitaxel, and Erlotinib (P < 0.01), while the high-risk group may require alternative treatment strategies. These results indicate significant differences in drug response between different risk groups, providing important evidence for developing personalized treatment plans.
4.2 Biological significance of research findings
4.2.1 Critical role of epigenetic regulation in LUAD molecular subtyping
The key genes identified through our RSF model (PKP2, KRT6A, FSCN1, etc.) play crucial roles in LUAD development and progression. PKP2 (plakophilin 2), a member of the plakophilin family, is subject to dual regulation by DNA methylation and histone modifications (Niell et al., 2018). Our analysis revealed decreased PKP2 expression in the high-risk group, potentially associated with elevated methylation levels in its promoter region. This downregulation of PKP2 disrupts intercellular connections and promotes tumor cell invasion and metastasis, consistent with previous studies identifying PKP2 as a tumor suppressor (Cheng C. et al., 2021).
KRT6A (keratin 6A) and FSCN1 (fascin actin-bundling protein 1) expression regulation involves complex epigenetic networks (Chen et al., 2022; Chang et al., 2023). Our study found abnormally high expression of these genes in the high-risk group, significantly correlating with poor prognosis. Further analysis suggested that this upregulation might be related to enhanced activity of the histone demethylase KDM5B, which promotes transcriptional activation by removing the repressive H3K4me3 mark. This finding reveals the regulatory mechanism of epigenetic modifications in LUAD progression.
Notably, we observed that epigenetic modification patterns closely correlate with tumor heterogeneity. Different molecular subtypes exhibited unique DNA methylation profiles and histone modification characteristics, suggesting that this epigenetic heterogeneity might be a key factor in treatment response variations (Sadida et al., 2024). For instance, CS1 subtype patients generally exhibited genome-wide hypomethylation (Wang X. et al., 2021), potentially explaining their poorer prognosis through the abnormal activation of oncogenes.
4.2.2 Association between immune microenvironment characteristics and clinical prognosis
Our study revealed significant characteristics of the LUAD immune microenvironment and their clinical implications. Regarding immune cell infiltration patterns, the low-risk group demonstrated higher levels of CD8+ T cells, M1 macrophages, and dendritic cells infiltration, with this “hot” tumor microenvironment significantly correlating with better prognosis. In contrast, the immunosuppressive state of the high-risk group (increased regulatory T cells proportion, decreased effector immune cells) might be a crucial factor in their poor prognosis.
Immune scores showed a significant positive correlation with patient prognosis. The high immune scores in the low-risk group not only reflected more active anti-tumor immune responses but also indicated better treatment responses (Sui et al., 2020). This finding aligns with several recent studies, emphasizing the importance of tumor immune state assessment in prognostic evaluation.
Particularly noteworthy is the close correlation between immune microenvironment characteristics and treatment response. Our analysis showed that low-risk group patients with active immune responses demonstrated significantly higher response rates to immune checkpoint inhibitor therapy, providing important guidance for patient selection in immunotherapy while explaining why certain patients respond poorly to immune therapy.
4.2.3 Molecular mechanisms of drug sensitivity differences
The significant drug sensitivity differences between high and low-risk groups likely stem from multiple molecular mechanisms. First, variations in epigenetic states lead to different expression levels of drug targets. For example, the high sensitivity to the EGFR inhibitor Erlotinib in the low-risk group correlates with their EGFR pathway gene expression patterns (Ma et al., 2024). Second, differences in cell cycle regulatory pathway activity influence chemotherapy effectiveness (Sun et al., 2021). We observed higher sensitivity to taxane drugs in the low-risk group, potentially related to their intact G2/M checkpoint pathway.
Key signaling pathway analysis revealed significant activation of MYC and E2F target genes in the high-risk group, potentially leading to cell cycle dysregulation and drug resistance (Gu et al., 2023). Conversely, the integrity of the P53 pathway in the low-risk group helps maintain cell cycle checkpoint functions, increasing chemotherapy sensitivity (Huang and Liu, 2013). Additionally, the activation state of the PI3K/AKT/mTOR pathway influences drug responses (Huang et al., 2019), explaining the varying effectiveness of certain targeted therapies across risk groups.
Based on these findings, we recommend personalizing treatment strategies according to patient risk stratification. For low-risk group patients, conventional chemotherapy combined with immunotherapy may be optimal, while high-risk group patients might require targeted therapy or novel drug combinations. This mechanism-based treatment strategy selection promises to improve therapeutic outcomes and patient prognosis.
4.3 Clinical application value
4.3.1 Clinical translation prospects of the prognostic prediction model
The RSF model demonstrated moderate initial predictive performance (C-index: 0.67, AUC: 0.65–0.70), but showed notably improved accuracy in external validation cohorts with longer follow-up periods (5-year AUC: 0.694). In comparison, Yang et al.'s model achieved AUCs of 0.63 and 0.60 for 1-year and 3-year predictions respectively, with a decline to 0.59 for 5-year predictions (Yang et al., 2022). Similarly, Li et al.'s model reported a 5-year AUC of only 0.653 (Li et al., 2022). Compared to these previous models, our approach offers several unique advantages. First, it represents the first integration of epigenetic features in lung cancer prognostic modeling, capturing an additional layer of biological regulation that may influence treatment response. Second, previous models typically lack external validation and immunotherapy response prediction, making their real-world clinical utility uncertain. Our model not only shows improved performance metrics but also reflects the inherent complexity of LUAD biology, prioritizing reproducibility and clinical interpretability over potentially overfitted accuracy metrics.
Our RSF prognostic prediction model demonstrates significant clinical application potential. First, the model integrates molecular characteristics and clinicopathological parameters, showing stable predictive performance in both training and validation sets (AUC>0.6). This predictive accuracy provides clinicians with a reliable decision-support tool. Particularly in early-stage LUAD patients, the model effectively identifies high-risk individuals, providing guidance for adjuvant therapy selection.
The model’s value in treatment plan selection manifests in three aspects: (1) risk scores can predict potential effectiveness of chemotherapy and targeted therapy, aiding optimal treatment strategy selection; (2) molecular subtyping information helps determine immunotherapy suitability; (3) for high-risk patients, the model suggests more aggressive treatment approaches and more frequent follow-up monitoring.
In personalized medicine practice, this model can complement existing clinical guidelines, providing more precise reference for treatment decisions. For instance, risk scores can guide decisions about adjuvant therapy necessity for early-stage (I-II) patients, while helping optimize treatment combinations for advanced patients.
4.3.2 Patient selection strategy for immunotherapy benefits
Based on our findings, we propose a systematic patient selection strategy for immunotherapy. Patients with low risk scores typically possess more active immune microenvironments, characterized by higher CD8+ T cell infiltration and lower proportions of immunosuppressive cells, suggesting they are more likely to benefit from immune checkpoint inhibitor therapy. Our prediction model demonstrates superior accuracy in predicting immunotherapy response (AUC>0.7), outperforming traditional methods that rely solely on PD-L1 expression or tumor mutation burden (TMB) (Yarchoan et al., 2019).
The differential immunotherapy response between risk groups appears driven by distinct epigenetic patterns. High-risk tumors showed epigenetic silencing of immune response genes, particularly in antigen presentation and T cell activation pathways. This epigenetic-mediated immunosuppression may create a “cold” tumor microenvironment resistant to PD-1 blockade, suggesting potential benefit from combining epigenetic modifiers with immunotherapy in high-risk patients.
To enhance immunotherapy effectiveness, we recommend: (1) conducting detailed immune microenvironment assessments before treatment, including immune cell composition analysis and immune function scoring; (2) considering initial radiochemotherapy to activate immune responses in patients with lower immune scores before implementing immunotherapy; (3) exploring combined targeted therapy and immunotherapy strategies for patients with specific gene mutations.
4.4 Study limitations and future prospects
This study presents several notable limitations. First, although we integrated multiple cohorts from TCGA and GEO databases, the sample size remains relatively limited and primarily represents Western populations, potentially not fully reflecting Asian population characteristics. Second, validation cohorts lack complete multi-omics data, particularly epigenetic modification-related data, limiting comprehensive validation of molecular subtyping results. Regarding technical methods, inherent limitations of computational approaches may affect prediction accuracy, such as potential bias in CIBERSORT algorithm’s immune cell infiltration assessment. Additionally, our drug sensitivity predictions, based primarily on in vitro cell line data, may not fully reflect clinical responses due to the absence of tumor microenvironment complexity and patient-specific factors. Future validation through prospective clinical trials will be essential to confirm these computational predictions. Based on these limitations, future research should focus on:
	1. Expanding validation cohort size, particularly incorporating more Asian population data
	2. Conducting prospective clinical studies to validate prediction model effectiveness
	3. Integrating novel omics technologies (e.g., single-cell sequencing, spatial transcriptomics) for deeper tumor heterogeneity analysis
	4. Exploring new machine learning algorithms to improve prediction model accuracy
	5. Developing early diagnosis and recurrence monitoring research to expand model applications

Additionally, developing standardized testing platforms and clinical decision support systems will facilitate clinical translation. These in-depth studies promise to further improve LUAD patient diagnostic and therapeutic precision, ultimately enhancing patient outcomes.
5 CONCLUSION
Through integrating multi-omics data and advanced machine learning methods, this study successfully constructed an epigenetic feature-based LUAD molecular subtyping system and prognostic prediction model. Our research pioneered the identification of two distinct molecular subtypes (CS1 and CS2) based on epigenetic regulation, confirming their significant differences in immune microenvironment characteristics and clinical prognosis. The RSF prognostic prediction model developed from this subtyping system demonstrated stable predictive performance across multiple independent cohorts (AUC>0.6). The model not only accurately predicts patient prognosis but also provides crucial reference for immunotherapy benefit population screening and personalized treatment plan development. Notably, we found that low-risk group patients possess more active immune microenvironments and better immunotherapy responses, providing new evidence for clinical treatment decision-making. Drug sensitivity analysis further supports personalized treatment strategies based on risk stratification, providing a theoretical foundation for treatment selection across different risk groups.
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Background: This study assessed the adverse drug reactions (ADRs) associated with HDAC inhibitors using the VigiAccess database maintained by the World Health Organization (WHO). Furthermore, it compared the ADR profiles of three different drugs to identify the one with the lowest individualized risk for patients.Materials and methods: Data on adverse events of HDAC Inhibitors was retrieved from WHO-VigiAccess on 6 January 2025. We obtained data on age, gender, reporting year, and continent. Descriptive data related were calculated using Excel 2021. In this study, we used Excel software to analyze the characteristics of those who were harmed due to adverse reactions. For each drug, the reporting rate of adverse reactions was calculated by dividing the number of adverse reaction symptoms of this drug by the total number of adverse reaction reports. We listed the top 20 most frequent adverse reaction symptoms as common adverse reactions. By counting the frequency and proportion of these common adverse reactions, we conducted a comparative analysis of the adverse reaction situations of different drugs and classified them according to different types.Result: The WHO-VigiAccess database received 796, 1254, and 1658 ADR reports for Chidamide, Romidepsin, and Vorinostat respectively by 2024, with a total of 3,708. Gender distribution was relatively balanced (male:female ratio 0.81:1), and the 45–64 age group had the highest reporting rates, mostly from the Americas. Chidamide had higher rates in certain disorders, Romidepsin in others, and Vorinostat in specific ones. Common ADRs included thrombocytopenia etc., with some differences in rates among drugs. Serious ADR proportions were 0% for Chidamide, 2.27% for Romidepsin, and 1.02% for Vorinostat. 37 common signals were found, with Investigations having the most. Each drug had different ADR preferred terms (PTs) in renal/urinary and metabolism/nutrition disorders, with varying numbers of distinctive symptoms.Conclusion: Current comparative observational studies of these inhibitors indicate that there are both common and specific adverse reactions reported in the ADR data received by the WHO for these medications. Clinicians should enhance the rational use of these drugs by considering the characteristics of the reported ADRs.Keywords: histone deacetylase inhibitor, adverse drug reactions, chidamide, romidepsin, vorinostat, WHO-VigiAccess
INTRODUCTION
Peripheral T-cell lymphoma (PTCL) is a group of highly heterogeneous malignant tumors that originate from mature T lymphocytes (Fiore et al., 2020). The proportion of PTCLs in all non-Hodgkin lymphomas is approximately 15%, and they display distinct clinical and biological features (Pizzi et al., 2018). PTCLs occur globally. The incidence rate in Europe and America accounts for 10%–15% of non-Hodgkin’s lymphomas, and it is even higher in Asia, about 20%–30%. There is no age limit for the onset of the disease, and the peak is at 60–70 years old. PTCLs mainly invade lymph nodes and are also prone to involve extranodal sites such as the skin, gastrointestinal tract, liver, spleen, and bone marrow. Patients often present with systemic symptoms such as fever, night sweats, and sudden weight loss, accompanied by fatigue, loss of appetite, and are prone to infections due to poor immunity (Pizzi et al., 2018). There are various pathological types of PTCL, however, the prognosis is relatively poor in all of them (Zing et al., 2018). Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), is a relatively common subtype among peripheral T-cell lymphomas. The tumor cells have diverse morphologies and lack the characteristic manifestations of other specific subtypes, and the immunophenotype is usually positive for T-cell markers. Angioimmunoblastic T-cell lymphoma (AITL) has unique pathological features, including polymorphic tumor cells, accompanied by obvious vascular proliferation and increased immunoblasts, and often expresses markers such as CD10 and BCL-6. The tumor cells are usually large and have diverse morphologies, express CD30, and the ALK-positive subtype also expresses the ALK protein (Satou et al., 2022). Epigenetic modification does not change the DNA sequence but can regulate gene expression and alter cell functions and phenotypes. It is mainly achieved through DNA methylation, histone modification, and non-coding RNA regulation. They often co-occur and form a network to control the epigenetic system (Hara and Sawada, 2022). Histone acetylation and deacetylation are key regulatory methods of epigenetics and work synergistically in cell differentiation and development (Park and Kim, 2020). The imbalance of acetylation and deacetylation is closely related to many diseases including tumors (Gallinari et al., 2007; Horwitz, 2011).
HDAC inhibitors are closely related to the treatment of PTCLs (Horwitz, 2011). HDAC inhibitors, by inhibiting HDAC activity and restoring histone acetylation, enable tumor suppressor genes to function again. They can also regulate the tumor microenvironment, induce tumor cell cycle arrest, and improve the prognosis of patients (Zhang et al., 2019; Irimia and Piccaluga, 2024).
Chidamide, Romidepsin, and Vorinostat, acting as histone deacetylase inhibitors, were approved by FDA as novel antitumor agents. (Pojani and Barlocco, 2021; Li et al., 2019). These drugs prevent the proliferation of tumor cells by upregulating the cyclin-dependent kinase inhibitors p21 and p27, inhibiting the activity of CDKs, and causing cell cycle arrest in the G1 or G2/M phase. They promote tumor cell apoptosis by upregulating pro-apoptotic proteins such as Bax and Bak, downregulating anti-apoptotic proteins such as Bcl-2 and Bcl-xL, and activating the caspase cascade. They inhibit tumor growth and metastasis by suppressing the expression and secretion of angiogenesis-related factors such as VEGF and reducing tumor angiogenesis. They also enhance the immunogenicity of tumor cells by regulating the expression of immune-related molecules on the surface of tumor cells. Additionally, they regulate the expression of genes related to tumorigenesis and development by inhibiting the activity of histone deacetylases (Lu et al., 2023). This study evaluated the adverse drug reactions (ADRs) after using HDAC inhibitors in the VigiAccess database of the World Health Organization (WHO), and compared the ADR characteristics of three drugs to select the drug with the lowest individualized risk for patients.
MATERIALS AND METHODS
Due to strict data protection laws and agreements between WHO PIDM members and the WHO, we are not be able to view individual case safety reports in VigiAccess. At the same time, VigiAccess divide the search results into groups both by active ingredient and continental region to avoid searches for specific brand names or individual WHO PIDM members. On 6 January 2025, we conducted a search through the WHO-VigiAccess platform for all adverse events reported following the use of the three HDAC inhibitors under investigation. We collected data on age, gender, reporting year, and related information from all continents. Following this, we performed descriptive statistical analyses on the data using Excel 2021.
WHO-VigiAccess is an integral component of the World Health Organization’s Global Pharmacovigilance Programme, functioning as a web-based drug safety database that aggregates data from global centers. The data is sourced from pharmacovigilance centers and related medical institutions in participating countries and regions worldwide. These entities collect, organize, and report data in accordance with established standards and norms to ensure accuracy and reliability. This platform primarily serves drug regulatory authorities, health professionals, research institutions, and pharmaceutical enterprises. Drug regulatory authorities utilize it to monitor the post-marketing safety of drugs and to formulate and adjust policies; health professionals access information to guide clinical medication; research institutions conduct relevant studies; and pharmaceutical enterprises gain insights into the safety of their products to enhance quality and risk management. MedDRA, or the Medical Dictionary for Regulatory Activities, was initiated for research and development by the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use in 1996 and has since undergone continuous updates. It employs a five-level hierarchical structure: the top level is the System Organ Class (SOC), which categorizes medical concepts into 26 major system organ categories, such as the cardiovascular and respiratory systems; the second level is the High-Level Group Term (HLGT); the third level is the High-Level Term (HLT); the fourth level is the Preferred Term (PT), which describes specific medical events; and the bottom level is the Low-Level Term (LLT). MedDRA encompasses various fields, including disease diagnosis, symptoms, treatment measures, and adverse drug reactions, playing a crucial role in drug research and development, regulation, post-marketing monitoring, and medical research. It standardizes terminology, reduces ambiguity, promotes effective communication, ensures the safety of public medication, and supports drug risk management.
In this study, we utilized Excel software to analyze the characteristics of individuals affected by adverse reactions. For each drug, the reporting rate of adverse reactions was calculated by dividing the number of adverse reaction symptoms associated with that drug by the total number of adverse reaction reports. We identified the top 20 most frequent adverse reaction symptoms as common adverse reactions. By assessing the frequency and proportion of these common adverse reactions, we conducted a comparative analysis of the adverse reaction profiles of different drugs and classified them according to various categories. Figure 1 shows the flowchart of adverse reaction analysis for three HDAC inhibitors.
[image: Flowchart depicting data extraction from the WHO-VigiAccess database for three HDAC inhibitors: Chidamide (n=796), Romidepsin (n=1,254), and Vorinostat (n=1,658). Information categories include case description, system organ class (SOC), preferred term (PT), serious adverse reactions, and same and different events.]FIGURE 1 | Flowchart for Adverse Reaction Analysis of three HDAC Inhibitors Based on WHO-VigiAccess Database.
RESULTS
Case description of the study
The earliest reports of adverse reactions associated with the three HDAC inhibitors were received by WHO-VigiAccess in the following years: Chidamide in 2016, Romidepsin in 2009, and Vorinostat in 2006. As of 2024, WHO had received a total of 796, 1254, and 1658 ADR reports for these three drugs, resulting in a cumulative total of 3,708 reports. Our research conducted the following five - category analysis on these 3,708 adverse reports: case description, system organ class (SOC), preferred term (PT), serious adverse reactions, and same and different events. (Figure 1) Among the 3,708 reports related to these HDAC inhibitors, excluding 500 cases where gender was undetermined, the number of females experiencing ADRs (1,432 cases) was not significantly different from that of males (1,776 cases), yielding a male-to-female ratio of 0.81:1. In terms of age distribution, the group aged between 45 and 64 years exhibited the highest reporting rate, and 54.1% of the adverse reactions originated from the Americas. Additionally, Table 1 provides information on the reporting years for the studied drugs.
TABLE 1 | Characteristics of ADR reports of three HDAC inhibitors.
[image: Table comparing adverse drug reaction reports for three HDAC inhibitors: Chidamide, Romidepsin, and Vorinostat. It details the number of reports based on gender, age group, region, and year. Chidamide has 796 reports, Romidepsin 1254, and Vorinostat 1658. Gender data shows similar patterns across drugs, with males being slightly more reported. Age data reveals higher reports in older age groups for Chidamide. Regionally, Asia leads for Chidamide, Americas for Romidepsin and Vorinostat. Time-specific data shows a peak in 2019 for Chidamide and gradual increases for others over the years.]Distribution of 20 system organ classes (SOCs) for three HDAC inhibitors
Table 2 presents the top 20 SOCs associated with the three HDAC inhibitor drugs. Notably, the reporting rates of Chidamide-related disorders in the Blood and lymphatic system, as well as General disorders and administration site conditions, and Investigations, were significantly higher compared to the other two HDAC inhibitors. Furthermore, Romidepsin exhibited significantly elevated rates of ADR reports related to Blood and lymphatic system disorders, Gastrointestinal disorders, General disorders and administration site conditions, Investigations, Infections and infestations, and Neoplasms, including benign, malignant, and unspecified types (such as cysts and polyps). In the case of Vorinostat, higher rates of ADRs were reported for Gastrointestinal disorders, Investigations, and General disorders and administration site conditions.
TABLE 2 | ADR number and report rate of 20 SOCs of three HDAC inhibitors.
[image: A table comparing adverse effects across three drugs: Chidamide, Romidepsin, and Vorinostat. For each system organ class, the table lists the number and percentage of occurrences. Categories include blood and lymphatic, cardiac, and gastrointestinal disorders, among others. Each column presents data for one drug, showing varying percentages for each disorder type. Notably, Chidamide has a high percentage of blood and lymphatic disorders, while Vorinostat shows a high percentage in respiratory, skin, and subcutaneous tissue disorders.]The most common adverse reactions for three HDAC inhibitors
Table 3 presents the preferred terms associated with the 20 most frequently reported SOCs for the three HDAC inhibitor drugs. All three HDAC inhibitors exhibited common ADRs, including Thrombocytopenia, Decreased Neutrophil Count, Decreased Platelet Count, Investigations, General Disorders and Administration Site Conditions, as well as Gastrointestinal Disorders. Notably, Chidamide demonstrated a significantly higher rate of ADR reports related to Decreased Neutrophil Count compared to the other two inhibitors. Additionally, Romidepsin had the highest rate of ADR reports for Decreased Platelet Count.
TABLE 3 | Top20 ADRs of HDAC inhibitors.
[image: Table comparing adverse drug reactions and report rates for Chidamide, Romidepsin, and Vorinostat. Chidamide has the highest report rates for thrombocytopenia (15.98%) and neutrophil count decreased (14.58%). Romidepsin shows the highest rates for platelet count decreased (3.97%) and thrombocytopenia (3.75%). Vorinostat's top reactions are investigations (11.78%) and general disorders (11.58%). Each column lists other adverse reactions with corresponding report rates in descending order.]Three HDAC inhibitors associated with severe adverse events
In Figure 2, we identified the fatal adverse events associated with HDAC inhibitors using WHO-VigiAccess. The proportions of serious adverse reactions for the three inhibitors were as follows: Chidamide: 0%, Romidepsin: 2.27%, and Vorinostat: 1.02%.
[image: Bar chart showing outcomes per drug. Chidamide shows no adverse outcomes. Romidepsin has a high incidence of death at 2.5 percent. Vorinostat shows minor incidences of death and hospitalization.]FIGURE 2 | Outcomes for serious adverse events associated with three HDAC Inhibitors at the level of preferred terms.
Same and different adverse reactions of three HDAC inhibitors
A total of 37 identical signals were identified at PTs for the three inhibitors by comparing the top 20 ADRs reported by each HDAC inhibitor within the SOCs. All common signals are classified in Table 4. The highest number of adverse signals was found in the SOC of Investigations, with the top five reports being Increased Blood Creatinine, Increased Blood Bilirubin, Prolonged Electrocardiogram QT, Decreased Haemoglobin, and Decreased Neutrophil Count. The Blood and Lymphatic System Disorders SOC ranked second, with the top five reports including Lymphopenia, Febrile Neutropenia, Anaemia, Myelosuppression, and Neutropenia. When comparing the top 20 ADRs reported by each HDAC inhibitor within the SOCs, it was observed that all three HDAC inhibitors exhibited different PTs of ADRs in the categories of Renal and Urinary Disorders, as well as Metabolism and Nutrition Disorders (see Table 5). Chidamide presented six distinctive symptoms, Romidepsin reported ninety-three, and Vorinostat identified one hundred and one, respectively.
TABLE 4 | Same ADRs among three HDAC inhibitors.
[image: Table lists adverse drug reactions (ADRs) across various system organ classes with associated signal numbers. Blood and lymphatic disorders include lymphopenia and febrile neutropenia with signal seven. Cardiac disorders feature cardiac failure with signal three. Gastrointestinal disorders include nausea with signal four. General disorders feature oedema with signal five. Investigations show increased blood creatinine with signal eight. Metabolism disorders include hypokalemia with signal two. Musculoskeletal disorders show pain with signal one. Respiratory, skin, and vascular disorders include cough, pruritus, and embolism respectively.]TABLE 5 | Different ADRs among three HDAC inhibitors.
[image: Table listing adverse effects of three medications: Chidamide, Romidepsin, and Vorinostat. The effects are categorized by system organ classes such as blood disorders, cardiac disorders, infections, gastrointestinal disorders, and others. Each drug shows different adverse effects under these categories. For example, Chidamide has granulocytopenia under blood disorders, Romidepsin has cytopenia, and Vorinostat has sinus bradycardia under cardiac disorders.]DISCUSSION
Epigenetic mechanisms are essential for the temporal and tissue-specific control of DNA transcription in various cell types (Pal and Tyler, 2016; Paluch et al., 2016). For instance, the acetylation of e-amino lysine residues of histones is an epigenetic modification. Histones package DNA in the cell nucleus. Thus, the degree of acetylation indirectly affects enzyme activity and strongly influences transcription.
In the occurrence and development of cancer, epigenetic alterations play a key role, among which DNA methylation and histone marking patterns are particularly prominent. DNA methylation promotes cancer progression; the imbalance of modifications such as acetylation and methylation of histones changes the chromatin state and affects gene expression. The epigenetic regulatory network composed of them, once disordered, will lead to abnormal gene expression and trigger cancer (Davalos and Esteller, 2023). Previous studies have shown that cancer metabolic remodeling has a profound impact on histone methylation and acetylation in the epigenome by altering the supply of intracellular metabolites. These epigenetic changes further regulate gene expression and promote the occurrence, development, and metastasis of cancer (Kinnaird et al., 2016). In the pathogenesis of Hodgkin lymphoma (HL), epigenetic changes are extremely crucial. It can restore the expression of tumor suppressor genes, inhibit the proliferation of tumor cells, etc.; it can also regulate immune-related genes, enhance the attack of the immune system on tumor cells, and improve the condition (Kirschbaum, 2011).
HDACs regulate the level of histone acetylation in cells and maintain a balance with acetylation under normal circumstances. However, in many types of cancers, HDACs are often overexpressed, leading to excessive histone deacetylation. This not only inhibits tumor suppressor genes but also indirectly activates oncogenes, promoting the proliferation of cancer cells and hindering their death. Previous studies have shown that HDAC inhibitors can inhibit the activity of HDACs, restore histone acetylation, induce apoptosis of cancer cells, and inhibit their proliferation (Bolden et al., 2006; Liu and Liou, 2023). In normal cells, histone acetylation and deacetylation maintain a dynamic balance to ensure normal physiological functions of the cells. HDAC inhibitors can specifically inhibit HDAC activity, prevent excessive histone deacetylation, restore its acetylation to the normal level, thereby loosening the chromatin structure and reactivating tumor suppressor genes (Carraway and Gore, 2007). The characteristics of most tumor cells are closely related to histone deacetylation. During tumor development, the activity of deacetylase such as HDAC abnormally increases, causing excessive histone deacetylation. HDAC inhibitors can inhibit the activity of deacetylase and to some extent curb the invasion and metastasis of tumor cells, becoming an effective strategy against tumors (Pratt, 2013). Previous studies have shown that the combination of HDAC inhibitors with other drugs for cancer treatment has more significant advantages than single treatment, providing a new idea for cancer treatment (Shah, 2019). Although HDAC inhibitors can be used in chemotherapy, their application is limited due to the related side effects caused by the weak selectivity for subtypes (Patel et al., 2022).
In our study, we analyzed the adverse reactions of three HDAC inhibitors - Chidamide, Romidepsin and Vorinostat by using the WHO-VigiAccess database. Before the study, we were already aware that only a few HDACi have received FDA approval, and most are currently undergoing clinical trials to determine their effectiveness in preventing and treating diseases (Shanmukha et al., 2023). Our selection of chidamide, romidepsin, and vorinostat was based on several considerations. Firstly, their prevalence in clinical practice and the availability of comprehensive data in the WHO-VigiAccess database. Secondly, by comparing drugs with diverse characteristics and approval statuses, we aimed to offer a broader perspective on the safety issues of HDAC inhibitors in PTCL treatment. Our findings revealed several important insights. Firstly, the gender distribution of adverse reactions was relatively balanced, with a slightly higher number of males reporting adverse events. The age group with the highest reported rates was predominantly between 45 and 64 years, suggesting that age may be a factor influencing the occurrence of adverse reactions. Geographically, the majority of reports originated from the Americas, which could be due to differences in drug usage patterns, reporting systems, or patient populations in different regions.
Adverse drug reactions may cause patients to develop new symptoms or worsen existing symptoms, affecting their physical health and quality of life. In severe cases, they may even endanger their lives, leading to serious consequences such as hospitalization, disability, or death.
Regarding the types of adverse reactions, each inhibitor exhibited distinct patterns. Chidamide was associated with higher rates of Blood and lymphatic system disorders, General disorders and administration site conditions, and Investigations. Romidepsin had elevated rates in Blood and lymphatic system disorders, Gastrointestinal disorders, and several other categories. Vorinostat showed a higher prevalence of Gastrointestinal disorders, Investigations, and General disorders and administration site conditions. Thrombocytopenia, Neutrophil count decreased, Platelet count decreased, Investigations, General disorders and administration site conditions, and Gastrointestinal disorders were common to all three. However, there were also notable differences in specific PTs within certain SOCs, particularly in Renal and urinary disorders and Metabolism and nutrition disorders. These differences emphasize the importance of individualized monitoring and management of patients treated with HDAC inhibitors. The proportion of serious adverse reactions varied among the three drugs, with Romidepsin having the highest rate at 2.27%, followed by Vorinostat at 1.02%, and Chidamide with 0%. These differences in serious adverse event rates further highlight the need for careful consideration of the risk-benefit profile when prescribing HDAC inhibitors.
Due to the differences in the types and severity of adverse reactions caused by different HDAC inhibitors, clinical doctors should choose appropriate drugs based on the patient’s specific condition (such as age, gender, medical history, comorbidities, etc.) when formulating treatment plans for patients. For example, the high incidence rate of Chidamide in blood and lymphatic system diseases, doctors should pay close attention to the relevant symptoms of patients in order to adjust the treatment plan in time. At the same time, especially for drugs with a high incidence of serious adverse reactions (such as Romidepsin), doctors should use them with caution and prepare measures to deal with possible serious adverse reactions, while fully informing patients of the relevant risks.
Although SRS has important value in monitoring adverse reactions, it is limited to few factors such as reputation bias, selection bias or under-reporting. From the current reports of AEs research results, the missing data cannot be classified as males, females or age groups. When we use databases such as WHO-VigiAccess, although adverse reactions can be mined, it is difficult to directly compare adverse reactions signals between different drugs due to the data accumulation and different time to market. This study compared the adverse reactions reporting rates of different drugs by collecting years of adverse reactions and PT data and minimized the impacts of drugs being marketed at different times as much as possible.
CONCLUSION
This study utilized WHO-VigiAccess data to analyze the adverse reactions associated with three HDAC inhibitors: Chidamide, Romidepsin, and Vorinostat. Among these, Chidamide exhibited the lowest incidence of serious adverse reactions. The adverse reactions primarily affected the blood, lymphatic, and gastrointestinal systems. While HDAC inhibitors demonstrate efficacy against tumors such as T-cell lymphoma, they are also associated with significant side effects. Future research should aim to enhance subtype selectivity in order to mitigate these adverse reactions. Additionally, combination therapies may improve efficacy and address issues of drug resistance. Continuous monitoring is vital for optimizing treatment strategies.
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Background: Azacitidine is used to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). It acts as a cytosine analog and DNA methyltransferase inhibitor, inducing DNA hypomethylation to reverse epigenetic modifications and restore normal gene expression. However, adverse events (AEs) associated with azacitidine are mainly reported in clinical trials, with limited real-world evidence. This study aims to assess the AE profile of azacitidine by utilizing data from the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) and WHO-VigiAccess databases.Methods: We extracted adverse event (AE) reports related to azacitidine from the FAERS and WHO-VigiAccess databases, covering the period from the drug’s market introduction to the third quarter of 2024. We used statistical methods including Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM) to analyze the association between azacitidine and documented AEs.Results: The investigation unveiled 16,056 azacitidine-related adverse event (AE) reports from FAERS and 19,867 reports from WHO-VigiAccess. The median duration for the occurrence of these AEs during the observation period was 36 days, with an interquartile range (IQR) spanning from 11 to 126 days. Our statistical analysis identified 27 organ systems associated with AEs induced by azacitidine. Among these, the notable System Organ Classes (SOCs) that met four specific criteria included: infections and infestations, blood and lymphatic system disorders, and neoplasms benign, malignant, and unspecified (including cysts and polyps). Four algorithms identified 443 significant disproportionality preferred terms (PTs), including previously unreported AEs such as death, sepsis, septic shock, respiratory failure, cardiac failure, tumor lysis syndrome, bone marrow failure, interstitial lung disease, and pericarditis. Analysis from the WHO-VigiAccess database showed a ROR of 3.65 and a PRR of 3.30 for the SOC of infections and infestations.Conclusion: This research not only confirms the widely acknowledged AEs linked to azacitidine but also uncovers several potentially new safety concerns noted in actual clinical practice. These results may offer important vigilance information for clinicians and pharmacists when addressing safety issues associated with azacitidine.Keywords: azacitidine, DNA methyltransferase inhibitor, FAERS, WHO-VigiAccess, disproportionality analysis, adverse events
INTRODUCTION
Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are hematologic malignancies that are extremely challenging to manage in the clinic. MDS constitute a group of clonal, heterogeneous bone marrow diseases characterized by disturbed myeloid differentiation and a propensity for clonal evolution and AML transformation. Recurrent mutations in genes encoding, e.g., epigenetic regulation, splicing and signaling are essential in the pathogenesis of MDS and may contribute to the aberrant expression profiles described in the disease (Bersanelli et al., 2021). DNA methylation is crucial for normal biological processes such as imprinting and X inactivation. In MDS and AML, abnormal DNA methylation, especially hypermethylation of promoter regions of certain genes, is prevalent. This leads to the silencing of tumor suppressor genes, contributing to the malignant transformation and progression of the diseases (Gros et al., 2012). For instance, the silencing of key genes due to DNA hypermethylation disrupts normal hematopoiesis and promotes the development of MDS and its progression to AML.
Azacitidine is a cytosine analog and an inhibitor of DNA methyl transferase (DNMT). It is incorporated into newly synthesized DNA after being converted by ribonucleotide reductase. Once incorporated, it inactivates DNMTs, resulting in DNA hypomethylation. In high-risk MDS patients, treatment with azacitidine has been shown to reduce the methylation of the phosphoinositide-phospholipase C β1 (PI-PLCβ1) promoter and reactivate the expression of PI-PLCβ1 mRNA (Sekeres and Taylor, 2022; Kuendgen et al., 2018). This hypomethylation effect can reverse the epigenetic changes associated with MDS and AML, potentially restoring normal gene expression patterns.
Azacitidine also exhibits cytotoxic effects on abnormal hematopoietic cells in the bone marrow. It can be incorporated into RNA by uridine-cytidine kinase, disrupting mRNA and protein synthesis. Additionally, its cytotoxic mechanisms may involve induction of apoptosis and activation of DNA damage pathways. In vitro studies indicate that it mainly affects rapidly dividing cells, while non-proliferating cells are relatively insensitive. However, the relative contribution of these cytotoxic effects compared to DNA hypomethylation in determining clinical outcomes remains to be further elucidated.
Azacitidine is approved in the EU for use in patients with higher-risk MDS and acute AML and is approved for all types of MDS in the US. Elderly patients with MDS, who often cannot tolerate intensive chemotherapy, are the main beneficiaries of this treatment. In clinical trials, azacitidine has been demonstrated to reduce the risk of progression to AML in MDS patients compared to conventional care regimens. This is a significant advantage as the progression to AML is a major concern in MDS management. Azacitidine can reduce the need for blood transfusions in MDS patients by improving hematopoiesis and reducing the severity of cytopenias. This helps to improve the quality of life of patients. Even in patients who do not achieve a complete remission (CR), it can still improve survival by stabilizing the disease and improving hematopoiesis (Issa and Kantarjian, 2005).
The Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database, known as the largest open drug vigilance database globally, provides comprehensive details on all medications marketed in the United States, in addition to extensive demographic information about users. In contrast to the adverse reaction (AE) literature available in other databases like PubMed, EMBASE, and MEDLINE, AEs within the FAERS database are documented and analyzed individually, making the data more foundational. This database is continuously updated and can be accessed publicly through the official FDA website, which aids in the detection of emerging AE signals. Many research studies have utilized this database to examine AEs linked to clinical usage of drugs (Shu et al., 2022; Guan et al., 2022). Meanwhile, WHO-VigiAccess, a global pharmacovigilance database maintained by the World Health Organization, aggregates AE reports from myriad countries and regions, providing a global perspective on drug safety information (Sultana et al., 2020). Earlier clinical trials and guidelines concerning azacitidine have highlighted the most frequently reported AEs related to its use, including respiratory tract infection, pyrexia, nausea, vomiting, diarrhea, constipation, pneumonia, anaemia, thrombocytopenia, leukopenia, neutropenia, febrile neutropenia, injection site reaction, rigors, weakness, petechiae and hypokalemia.
Nevertheless, the safety profile of azacitidine in real-world, large sample populations, especially regarding the timing of onset for AEs related to its administration, remains uncertain. This research intends to perform a thorough analysis of the FAERS and WHO-VigiAccess databases to investigate AEs associated with azacitidine and to identify possible safety signals in actual clinical settings, thus laying the groundwork for safe medication practices. It is crucial to acknowledge that a considerable portion of the original AE data is reported by patients themselves, which may introduce bias into the study findings.
MATERIALS AND METHODS
Data sources, management, and study design
The current investigation employed data sourced from the publicly available FAERS and WHO-VigiAccess databases. FAERS database relies on voluntary report submissions, predominantly from consumers, pharmacists, and healthcare providers (Fang et al., 2023). The study concentrated on all adverse event reports that identified azacitidine as the primary suspected medication, covering the timeframe from the first quarter of 2004 to the third quarter of 2024. During the data management phase, duplicate entries were eliminated, and the terminology associated with adverse events was standardized. The protocol for managing duplicates followed the guidelines set forth by the FDA. In particular, for reports sharing the same case identifiers (CASEIDs), only those with the latest FDA receipt date (FDA_DT) were kept. In instances where both CASEID and FDA_DT were identical, the report with the highest PRIMARYID (the unique identifier for each report) was chosen. Furthermore, WHO-VigiAccess data were gathered from https://www.vigiaccess.org and included a variety of age groups, genders, reporting years, and geographic regions. Both databases used MedDRA (version 26.1) to standardize terminology, ensuring consistency in analysis (Brown, 2004; Vogel et al., 2020).
Statistical analysis
An extensive examination was performed to highlight the features of adverse event reports associated with azacitidine. In our investigation, we employed both frequentist methods [reporting odds ratio (ROR) (de Leeuw et al., 2002) and proportional reporting ratio (PRR) (Evans et al., 2001)] as well as Bayesian strategies [information component (IC) (Bate et al., 1998) and empirical Bayes geometric mean (EBGM) (Szarfman et al., 2002)] for disproportionality assessment aimed at identifying potential adverse event signals connected to azacitidine. This approach was intended to validate our findings and reduce the occurrence of false-positive safety notifications. The detailed two-by-two contingency tables are presented in Table 1. Moreover, the specific equations and criteria relevant to the four algorithms are depicted in Table 2. In our study, signals indicative of drug-related adverse events were recognized by incorporating those with at least three adverse event records associated with the drugs of interest, and only those signals that fulfilled all four aforementioned algorithm criteria were deemed significant positive indicators (Shu et al., 2023). The entire data processing and statistical evaluation were executed using SAS 9.4 (SAS Institute Inc., Cary, NC, United States), Microsoft EXCEL Professional Plus 2013, and GraphPad Prism 8.0 (GraphPad Software, CA, United States).
TABLE 1 | Two-by-two contingency table for disproportionality analyses.
[image: Table comparing adverse events (AEs) between target and other drugs. Columns include "Target AEs," "Non-target AEs," and "Total." Rows indicate "Target drug" with values a, b, a+b, "Other drugs" with values c, d, c+d, and "Total" with values a+c, b+d, a+b+c+d.]TABLE 2 | Four primary algorithms used for signal detection.
[image: Methods and formulas for signal detection in pharmacovigilance include ROR, PRR, BCPNN, and MGPS. Each method has a specific formula, standard error, confidence interval, and signal standard. Abbreviations define terms, such as ROR for reporting odds ratio and PRR for proportional reporting ratio, among others.]RESULTS
Descriptive analysis
The comprehensive FAERS dataset, which spans from Q1 2004 to Q3 2024, contains a total of 21,964,449 entries. After the removal of duplicates, 16,056 reports associated with azacitidine were analyzed, encompassing 44,295 adverse events. Details regarding the data collection, interpretation, and analysis processes are illustrated in Figure 1. The clinical attributes of events related to azacitidine are summarized in Table 3. Demographic data indicate that 53.53% of the adverse events occurred in males, while 32.53% were associated with female patients. The predominant age group consisted of individuals aged 65 and older, accounting for 55.36% of the overall cases. In terms of reporting sources, health professionals, including physicians (37.69%), pharmacists (24.39%), and other health professionals (27.01%), submitted 89.09% of the adverse event reports. Among the countries reporting adverse events, the United States contributed the highest number of reports (n = 4,239, 26.40%), followed by Japan (n = 1,971, 12.28%) and France (n = 1,230, 7.66%). Furthermore, a significant proportion of patients (n = 15,379, 95.78%) experienced serious outcomes, which included other serious medical events (n = 7,280, 45.34%), hospitalization (n = 7,075, 44.06%), and death (n = 6,562, 40.87%). As depicted in Figure 2, the year 2022 recorded the highest number of reports (n = 1,792), with subsequent years exhibiting varying frequencies. According to the data from the WHO-VigiAccess database, the earliest recorded adverse reaction to azacitidine dates back to 1978. By 2024, the WHO had accumulated a cumulative total of 19,867 reports related to ADRs for azacitidine. Further details regarding the analysis of these reports are presented in Supplementary Table S1.
[image: Flowchart detailing data processing from the FAERS database 2004 Q1–2024 Q3. OSMQ with 21,946,969 items. After duplication removal, 18,728,843 remain. Data includes 66,418,551 drug items and 54,935,894 REAC items. Analysis focuses on adverse event reports of target drugs, with 4,105,379 and those reduced by target drugs with 15,493,251.]FIGURE 1 | Flow diagram for the selection of AEs associated with azacitidine from FAERS database.
TABLE 3 | An overview of essential demographic and clinical details regarding reports linked to azacitidine, derived from the FAERS database (From the first quarter of 2004 to the third quarter of 2024).
[image: Table displaying data on 16,056 cases. Breakdown by sex: 32.53% female, 53.53% male, 13.94% unspecified. Age distribution: under 18 (1.64%), 18-44 (3.18%), 45-64 (14.79%), over 65 (55.36%), unspecified (25.03%). Reporters include consumers (8.03%), physicians (37.69%), pharmacists (24.39%), others (27.01%). Top countries: US (26.40%), Japan (12.28%), France (7.66%), Spain (6.59%), Germany (6.05%). Serious events constitute 95.78%. Outcomes include hospitalization (44.06%), death (40.87%), life-threatening (10.84%), other serious events (45.34%).][image: Bar chart displaying the number of cases from 2004 to 2024. The numbers rise from 18 in 2004 to a peak of 1792 in 2022, with some fluctuations in between. The chart shows significant increases in later years, especially from 2020 onwards.]FIGURE 2 | Reports number and trends of azacitidine-related AEs.
Distribution of adverse events at the system organ class (SOC) level
The percentage of affirmative signals for AEs associated with azacitidine at the SOC level is illustrated in Figure 3. Additionally, the specific strength of signals for azacitidine at the SOC level is elaborated in Table 4. We statistically identified 27 organ systems linked to AEs induced by azacitidine. Notably, the important SOCs that satisfied four specified criteria included infections and infestations (SOC: 10021881, n = 7,744), blood and lymphatic system disorders (SOC: 10005329, n = 5,816), and neoplasms benign, malignant and unspecified (incl cysts and polyps) (SOC: 10029104, n = 3,090). Blood and lymphatic system disorders presented the highest signal, while infections and infestations were the most frequently reported SOC. For the SOC of infections and infestations, the WHO-VigiAccess database revealed a ROR of 3.65 (95% CI: 3.55–3.75) and a PRR of 3.30 (95% CI: 3.22–3.38), with detailed results presented in Supplementary Table S2.
[image: Horizontal bar chart displaying the proportion of adverse events by category. The top categories are infections and infestations at 17.48%, general disorders at 16.07%, and blood disorders at 13.13%. Other categories such as gastrointestinal disorders, skin issues, and more are listed, decreasing in percentage. Percentages range from 0.12% to 17.48% with corresponding event counts.]FIGURE 3 | Proportion of adverse events by system organ class for azacitidine.
TABLE 4 | Signal strength of azacitidine-related adverse events across SOCs in the FDA Adverse Event Reporting System database.
[image: Table listing various disorders with statistical details across multiple columns, including case numbers, ROR, PRR, chi-square, IC, and EBGM values. Some disorders show significant signals, indicated by asterisks. Categories range from infections to reproductive issues, with notes explaining statistical terms and significance criteria.]Distribution of adverse events at the preferred term (PT) level
Supplementary Table S3 showed 443 PTs that met all four algorithm criteria at the PT level. In the table we can find respiratory tract infection (PT: 10062352), pyrexia (PT: 10037660),pneumonia (PT: 10035664), anaemia (PT: 10002034), thrombocytopenia (PT: 10043554), platelet count decreased (PT: 10035528), leukopenia (PT: 10024384), neutropenia (PT: 10029354), febrile neutropenia (PT: 10016288), and injection site reaction (PT: 10022095), which were consistent with the label for azacitidine.
These 443 PTs were ranked according to report number and the top 30 PTs in terms of number of reports were selected for inclusion in Table 5, which showed that the top 5 PTs in terms of number of morbidities were death (n = 1,943), febrile neutropenia (n = 1,622), pneumonia (n = 1432), acute myeloid leukaemia (n = 1,117), and Neutropenia (n = 843). Moreover, we ranked the PTs in Supplementary Table S3 according to the strength of the EBGM algorithm, and finally obtained the top 30 PTs in terms of signal strength to be included in Table 6. The results showed that the top 5 in terms of signal strength were angioimmunoblastic T-cell lymphoma refracto (n = 3, EBGM = 525.73), FLT3 gene mutation (n = 5, EBGM = 438.11), myelodysplastic syndrome transformation (n = 120, EBGM = 275.66), juvenile chronic myelomonocytic leukaemia (n = 9, EBGM = 234.90), transformation to acute myeloid leukaemia (n = 91, EBGM = 213.03).
TABLE 5 | The top 30 PTs of azacitidine selected based on a level of 443 PTs that met the four algorithmic criteria.
[image: A table presents data on adverse conditions related to medical disorder categories, with columns for SOC, PT, case number, ROR (95% CI), PRR (95% CI), chi-square, IC (IC025), and EBGM (EBGM05). The top entries include conditions like death, febrile neutropenia, and pneumonia, each showing statistical metrics like ROR and PRR values, illustrating risk assessments for each condition.]TABLE 6 | Top 30 azacitidine PTs out of 260 meeting four algorithmic criteria, ranked by EBGM.
[image: A table presenting data on various medical conditions and their statistical measures. Columns include SOC (System Organ Class), PT (Preferred Term), Case number, ROR and PRR with 95% confidence intervals, chi-square, IC, and EBGM scores. Each row details specific conditions like acute myeloid leukemia and their corresponding statistical values, highlighting potential associations or observations in a clinical context.]In addition to the common AEs explicitly mentioned with the specification, we also identified suspected AEs not mentioned in the specification, such as death (n = 1,943), acute myeloid leukaemia (n = 1,117), sepsis (n = 838), infection (n = 620), myelodysplastic syndrome (n = 502), septic shock (n = 415), Respiratory failure (n = 247), cardiac failure (n = 190), tumour lysis syndrome (n = 137), bone marrow failure (n = 136),interstitial lung disease (n = 124), pericarditis (n = 114). Other unexpected PTs in drug instructions were displayed in Supplementary Table S3.
Time-to-onset analysis
The gathering of onset times for events associated with azacitidine required the removal of reports that had either unreported or incorrect onset times from the analysis. A total of 7,034 cases fulfilled the inclusion requirements, with an average onset time of 130.67 days and a median of 36 days (interquartile range [IQR] 11–126 days). Our data showed that the most onset time of azacitidine-related AEs was less than 30 days (n = 3,270, 46.49%). Of note, AEs might still have occurred after half a year for azacitidine treatment, with a proportion of 17.78%,as depicted in Figure 4. Additionally, Figure 5 demonstrates the cumulative incidence curve for adverse events.
[image: Stacked bar graph showing travel time distribution. The x-axis represents the number of cars and the percent of cars. The y-axis shows travel time intervals from zero to over twenty-two minutes. The largest segment, with forty-four point eight percent, corresponds to zero to seven minutes.]FIGURE 4 | Time to onset of adverse events induced by azacitidine.
[image: Graph showing cumulative probability of event progression over time in days. The curve is red and increases rapidly initially, then plateaus. Text indicates the median time to event is 36 days, with an interquartile range of 15 to 83 days.]FIGURE 5 | Cumulative incidence of adverse events related to azacitidine over time.
DISCUSSION
MDS are a group of hematopoietic stem cell malignancies characterized by ineffective hematopoiesis, peripheral cytopenias, and a risk of transforming into AML. Symptoms include infection, bleeding, bruising, and fatigue, with most patients eventually dying from infectious complications or AML transformation. Standard treatments involve supportive care, such as blood transfusions, hematopoietic factors, and antibiotics, while allogeneic stem-cell transplantation is the primary curative option, often unsuitable due to patient age or comorbidities. DNA methylation, an epigenetic mechanism, is crucial for gene silencing without altering the coding sequence. Malignant cells exploit this to silence tumor-suppressor genes (Figueroa et al., 2009). Azacitidine, approved by the FDA in 2004, is the first drug targeting epigenetic gene silencing in MDS, offering a novel therapeutic approach to counteract the malignant phenotype (Mozessohn et al., 2021).
This study represents the first extensive and systematic pharmacovigilance investigation of AEs associated with azacitidine using the FAERS and WHO-VigiAccess databases following its market release. The primary aim of this research is to provide a detailed and comprehensive characterization and analysis of the AEs related to azacitidine reported to date. The results presented in this paper offer valuable and precise insights into the safety profile of azacitidine in a real-world clinical setting.
Our findings regarding the sex ratio of patients indicate that males outnumber females, with proportions of 53.53% and 32.53%, respectively. The predominant age group consists of individuals aged 65 years and older, who account for 55.36% of the overall cases. Bone marrow hyperplasia and abnormal syndromes are most prevalent among individuals over 50 years of age, particularly in those over 65, with a higher incidence observed in men compared to women. This observation aligns with the results of our dataset analysis. Meanwhile, health professionals, including physicians (37.69%), pharmacists (24.39%), and other health professionals (27.01%), submitted 89.09% of the adverse event reports., which might be considered a reliable reporting source. Among the countries reporting AEs, the United States had the highest number of reports, totaling 4,239 (26.40%). This trend may be attributed to a larger population of medication users, as well as factors such as a greater overall population size, a stronger willingness to report, earlier market entry, and an earlier expansion of indications, all of which collectively facilitated the widespread use of the medication. Furthermore, a substantial proportion of patients experienced serious outcomes, with 15,379 cases (95.78%) reporting such events, including other serious medical events (7,280 cases, 45.34%), hospitalization (7,075 cases, 44.06%), and death (6,562 cases, 40.87%). We statistically identified 27 organ systems associated with AEs induced by azacitidine.
The important SOCs that met the four specified criteria included infections and infestations (SOC: 10021881, n = 7,744), blood and lymphatic system disorders (SOC: 10005329, n = 5,816), and neoplasms benign, malignant and unspecified (incl cysts and polyps) (SOC: 10029104, n = 3,090). Blood and lymphatic system disorders exhibited the highest signal, while infections and infestations were the most frequently reported SOC. Among the 443 reported AEs that fulfilled the four established criteria, confirmed cases included respiratory tract infection, pyrexia, pneumonia, anaemia, thrombocytopenia, platelet count decreased, leukopenia, neutropenia, febrile neutropenia, and injection site reaction, all of which were consistent with the label for azacitidine. Furthermore, we identified potential AEs that were not listed on the product’s label, such as death, sepsis, infection, septic shock, respiratory failure, cardiac failure, tumor lysis syndrome, bone marrow failure, and interstitial lung disease, as well as pericarditis. Other unexpected PTs in drug instructions are displayed in Supplementary Table S3.
Furthermore, no significant disproportionate signals were identified for nausea, vomiting, diarrhea, and constipation—adverse effects that are frequently reported in the azacitidine insert. These discrepancies may arise from the fact that AEs are relatively common across all drugs documented in the FAERS database. The substantial volume of AE reports linked to multiple drugs may dilute the signal score. Disproportionality necessitates that drug-specific AEs be reported either with greater or lesser frequency. Consequently, the absence of a signal does not imply that there are no associated AEs; rather, it indicates that these AEs do not appear to be disproportionate (Sakaeda et al., 2013).
For patients at high risk for febrile neutropenia, granulocyte colony-stimulating factor prophylaxis can be administered, as well as for those at moderate risk who present with additional risk factors (Spring et al., 2021). If not managed appropriately, severe hematologic adverse events may lead to complications such as bleeding and potentially secondary infections, which could progress to sepsis. Therefore, clinicians must remain vigilant in the early assessment and management of azacitidine-related hematologic toxicity.
Azacitidine was generally well tolerated in patients with MDS and AML. Most deaths or adverse events leading to drug interruption were attributed to the disease itself or to the consequences of cytopenias, such as sepsis and bleeding. Infectious complications occur more frequently in MDS patients than in non-MDS patients, with infections and related complications being significant contributors to morbidity and mortality in this population (Lee et al., 2011). Among these, pneumonia, sepsis, bacteremia, skin infections, and fungal infections are the most prevalent. Impaired neutrophil function in MDS patients may play a crucial role in their increased susceptibility to infections. In a retrospective study, 59% of 184 patients with high-risk MDS or AML who received azacitidine experienced an infectious event (Radsak et al., 2017). Notably, the incidence of infectious events decreased with an increasing number of azacitidine treatment cycles; however, the risk of infection was higher during the early stages of treatment (Merkel et al., 2013). During the treatment period, it is essential to closely monitor the patient’s blood routine, infection indicators (such as C-reactive protein and blood cultures), and clinical manifestations to promptly detect signs of infection. For high-risk patients, the consideration of prophylactic antibacterial agents, such as oral fluoroquinolones, may be warranted to prevent respiratory infections.
In patients with a history of cardiovascular disease, a cardiac evaluation should be conducted prior to initiating azacitidine, and cardiac function should be monitored periodically throughout the treatment. Azacitidine may play a potential role in the development of heart failure. Research indicates that newly diagnosed AML patients with a history of cardiovascular or pulmonary disease experience a significantly higher rate of cardiac events when treated with azacitidine (Perino et al., 2020). Furthermore, treatment with azacitidine may be linked to the onset of cardiac failure, particularly in patients with a history of cardiac disease and other serious comorbidities. The presence of cardiovascular history and comorbidities influences the severity of cardiac failure, and in some cases, patients may continue to receive azacitidine following adjustments to their cardiac medications.
Azacitidine may exhibit cardiotoxic effects, particularly after ruling out other common causes of pericarditis. Hypomethylating agents can modify gene expression, including genes associated with immune regulation. This alteration may result in abnormal immune system activation, leading to inflammatory responses and immune-mediated cardiac damage, such as pericarditis. At elevated doses, azacitidine is cytotoxic and may directly harm pericardial cells, contributing to the development of pericarditis. Clinicians should remain vigilant regarding the potential risk of pericarditis when prescribing azacitidine. If azacitidine-induced pericarditis is suspected, clinicians should contemplate discontinuing the drug to alleviate the patient’s symptoms and mitigate the risk of developing constrictive pericarditis, pericardial effusion, and cardiac tamponade (Newman et al., 2016).
Azacitidine-induced interstitial pneumonitis represents a potentially serious adverse effect. This medication may lead to drug-induced lung injury in patients with MDS. Notably, interstitial lung disease associated with azacitidine typically resolves with steroid treatment and the discontinuation of the drug (Sekhri et al., 2012; Kuroda et al., 2014). However, further research and confirmation are necessary to elucidate the relationship between azacitidine and interstitial lung disease.
The timing of events related to azacitidine was recorded, with the analysis omitting instances of missing or incorrectly documented onset times. In total, 7,034 cases met the inclusion criteria, indicating a mean onset time of 130.67 days and a median onset time of 36 days ([IQR] 11–126 days). Our data showed that the most onset time of azacitidine-related AEs was less than 30 days (n = 3,270, 46.49%). Of note, AEs might still have occurred after half a year for azacitidine treatment, with a proportion of 17.78%.
The main strength of this study is our ability to identify potential adverse events that may have been missed during the clinical trial phase of azacitidine. However, as with previous studies using pharmacovigilance databases, some limitations of the current evaluation should be acknowledged. First, the voluntary nature of reporting to the FAERS and WHO-VigiAccess databases makes it difficult to accurately estimate the incidence and prevalence of adverse events, leading to expected underreporting. Furthermore, the presence of reports in the FAERS and WHO-VigiAccess databases does not imply causation (Maciá-Martínez et al., 2016; Chrétien et al., 2023); therefore, the results of this study only indicate the possible occurrence of adverse events and emphasize the need for vigilance among healthcare professionals such as physicians and pharmacists. Furthermore, various unmeasured confounding factors—including possible drug-drug interactions, pre-existing health conditions, and drug combinations—were left out of our data analysis, which could affect adverse events. Lastly, the disproportionality analysis did not clarify risks or confirm causal relationships, instead providing only an estimation of signal strength that reached statistical significance. Consequently, future prospective clinical trials are essential to substantiate any causal relationships.
CONCLUSION
To summarize, this research carried out an in-depth examination of AEs linked to azacitidine, drawing on real-world data from both the FAERS and WHO-VigiAccess databases via disproportionality analysis. The AEs identified in this study were largely consistent with those listed in the product label, while also revealing additional potential AEs, including issues related to death, sepsis, infection, septic shock, respiratory failure, cardiac failure, tumor lysis syndrome, bone marrow failure, and interstitial lung disease, and pericarditis. Moreover, we analyzed the median onset time of these AEs to offer a reference for healthcare providers, aiding in the refinement of medication strategies and addressing safety issues associated with azacitidine. Nevertheless, given the exploratory scope of this study, it is crucial to conduct future prospective clinical trials and gather long-term data to substantiate these results and develop a thorough safety profile for azacitidine.
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Background: Ubiquitination, a critical post-translational modification, plays a pivotal role in regulating protein stability and activity, influencing various aspects of cancer development, including metabolic reprogramming, immune evasion, and tumor progression. However, the specific role of ubiquitination in hepatocellular carcinoma (HCC), particularly in relation to the tumor microenvironment (TME), remains poorly understood. This study aims to systematically explore the role of ubiquitination in shaping the TME of HCC, with a focus on its impact on cancer progression and immune modulation.Methods: We performed bioinformatics analysis by integrating multiple publicly available HCC datasets to assess the ubiquitination status across various cell types in the TME, including plasma cells, fibroblasts, endothelial cells, and epithelial-mesenchymal transition (EMT) cells. Ubiquitination scores were calculated to categorize these cell types, and survival data, along with spatial transcriptomics, were employed to evaluate how different levels of ubiquitination influence HCC progression. In vitro experiments, such as transwell, CCK8, and wound healing assays, were used to further investigate the role of the key ubiquitination gene UBE2C in HCC phenotypes.Results: Our study revealed that ubiquitination-related genes are significantly upregulated in HCC tissues, with high expression levels correlating with poor prognosis in patients. Pathway analysis showed that these genes are enriched in key processes such as cell cycle regulation, DNA repair, metabolic reprogramming, and p53 signaling. These pathways contribute to the TME by promoting tumor cell proliferation, facilitating matrix remodeling, and enhancing angiogenesis. Notably, UBE2C, a critical ubiquitination enzyme, appears to play a key role in immune evasion, potentially by inhibiting anti-tumor immune responses and reducing the immune system’s ability to recognize and eliminate tumor cells. Furthermore, experimental data confirmed that UBE2C overexpression promotes HCC cell proliferation, invasion, and metastasis, further supporting its role in tumor progression and TME remodeling.Conclusion: This study reveals the multifaceted regulatory roles of ubiquitination in HCC. Ubiquitination not only supports proliferation and anti-apoptotic functions within tumor cells but also promotes tumor progression by modulating the activity of immune and stromal cells. Among all ubiquitination-related genes, UBE2C emerges as a potential prognostic biomarker and therapeutic target in HCC, offering new directions for precision treatment of HCC in the future.Keywords: UBE2C, ubiquitination, tumor cells, immune regulation, prognosis, tumor microenvironment
1 INTRODUCTION
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide, characterized by a high incidence and mortality rate (Yang et al., 2014; Xiong et al., 2024; Lu et al., 2023). According to the World Health Organization (WHO), HCC ranks as the fourth leading cause of cancer-related deaths globally, accounting for over 800,000 deaths annually, with particularly high incidence rates in Asia and Africa (Bray et al., 2018). The primary risk factors for HCC include chronic infections with hepatitis B virus (HBV) and hepatitis C virus (HCV), long-term alcohol abuse, and fatty liver disease (El-Serag, 2012; Friedman et al., 2018). Due to the frequent late-stage diagnosis of HCC, treatment outcomes are often poor, with high recurrence rates and a persistently low 5-year survival rate.Consequently, research into early diagnostic methods and novel therapeutic strategies for HCC is of critical importance (Comprehensive and Integrative Genomic Characterization of Hepatocellular CarcinomaCancer Genome Atlas Research Network, 2017; Fan T. et al., 2024).
Ubiquitination is a prevalent post-translational modification in which ubiquitin molecules are covalently attached to target proteins, thereby regulating their stability, activity, and cellular localization (Sun et al., 2020; Sun and Zhang, 2022). This process typically involves a cascade of reactions orchestrated by E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes, and E3 ubiquitin ligases (Zhang and Jiang, 2021). Ubiquitination plays key roles in various biological processes, including cell cycle regulation, DNA repair, and signal transduction. Meanwhile, deubiquitinating enzymes (DUBs) can reverse this process by removing ubiquitin, maintaining protein homeostasis. An imbalance in ubiquitination and deubiquitination can lead to the development of various diseases, including cancer (Zhang et al., 2023; Chen Y. et al., 2024).
In recent years, growing evidence has highlighted the critical role of ubiquitination in the initiation and progression of hepatocellular carcinoma (HCC) (Gong et al., 2024; Liu Z. et al., 2024; Zhao et al., 2024). For instance, MDM2, a key E3 ligase, regulates the degradation of p53 via ubiquitination, thereby affecting HCC cell proliferation and apoptosis (Shi and Gu, 2012). Furthermore, certain deubiquitinating enzymes (DUBs), such as USP7 and USP10, influence HCC cell growth by modulating cell cycle and apoptosis-related proteins (Li et al., 2023; Li and Liu, 2020; Henningsen et al., 2021). Dysregulated ubiquitination in HCC is not only closely associated with the malignant biological behaviors of tumors but also contributes to resistance against anticancer drugs, further complicating treatment.Given its pivotal role in HCC, ubiquitination is increasingly regarded as a potential therapeutic target (Chang and Ding, 2018). However, its impact on the tumor microenvironment (TME) of HCC remains poorly understood. Therefore, elucidating the intrinsic link between ubiquitination and alterations in the HCC tumor microenvironment is essential for advancing precision treatments for HCC (Lv et al., 2020).
2 MATERIALS AND METHODS
2.1 Cell culture
Human hepatocellular carcinoma (HCC) cell lines, including Huh7 and Hep3B, were cultured in Dulbecco’s modified Eagle’s medium (DMEM; HyClone) supplemented with 10% fetal bovine serum (FBS; Hyclone), 100 U/L penicillin, and 100 mg/L streptomycin (Thermo Fisher), at 37°C in a 5% CO2 environment. Lipofectamine 3000 (Invitrogen, Carlsbad, CA, United States) was employed for transfection of Negative Control (NC) and DKC1 siRNA (RiboBio, Guangzhou, China) into the HCC cells, following the manufacturer’s instructions.
2.2 shRNA knockdown
Plasmids expressing shRNA, specifically designed to target UBE2C, were carefully constructed with the assistance of GenePharma. During cultivation, the cells were treated with viral supernatants and polybrene (Sigma Aldrich) in the culture medium. After 24 h of incubation, the cells were transferred to fresh medium containing 2.0 μg/mL of puromycin. The efficiency of UBE2C knockdown was confirmed 2 days later using qRT-PCR analysis.
2.3 qPCR assay
Total RNA extraction was carried out utilizing the RNA Eazy Fast Tissue/Cell Kit (TIANGEN Biotech) in accordance with the manufacturer’s guidelines. Subsequently, cDNA synthesis was performed using the FastKing RT Kit (TIANGEN Biotech), adhering to the provided protocol. Real-time PCR analysis was conducted with the application of the SuperReal PreMix Plus (TIANGEN Biotech) reagent, implemented on the StepOnePlus Real-Time PCR System. The PCR reaction encompassed an initial pre-denaturation phase at 95°C for 15 min, followed by 40 amplification cycles, comprising denaturation at 95°C for 10 s, annealing at 72°C for 20 s, and extension at 60°C for 20 s. Primer sequences utilized were procured from Sangon Biotech. (Species of Human Origin) UBE2C Forward Primer: 5′-GAC​CTC​TCC​TTG​TTG​CTG​CC-3′, reverse primer 5′-GTC​CAG​GTC​ATT​GGG​CTG​AC-3'; PCR signals 2-44−ΔΔCT was used to calculate the expression of genes mRNA levels. The following sequences were used: 5′-CCT​CTC​CTT​GTT​GCT​GCC​G-3′ for human UBE2C shRNA.
2.4 Transwell assay
Cell migration and invasion of HCC cells were evaluated using the Transwell assay. Briefly, 5 × 10^4 cells were seeded into Transwell chambers coated with Matrigel (BD Biosciences, San Jose, CA) for invasion or uncoated for migration. The upper chamber was filled with serum-free medium, while the lower chamber contained complete DMEM medium. After 24 h of culture, the cells that had migrated or invaded through the membrane were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet. Cell numbers were subsequently quantified using a light microscope (Thermo Fisher, Waltham, MA, United States).
2.5 CCK-8 assay
Cell viability was assessed using the Cell Counting Kit-8 (CCK8) assay. After 24 h of transfection, cells were seeded into 96-well plates at a density of 2500 cells per well in 100 µL of complete medium and incubated at 37°C. Following each experiment, 10 µL of CCK8 reagent (Beyotime, Shanghai, China) was added to each well, and the cells were further incubated for 4 h at 37°C. The optical density value (OD450) was then measured using a microplate reader.
2.6 Wound healing assay
The migratory behavior of Huh7 and Hep3B cells was analyzed using a wound healing assay, which offered detailed observations of their movement patterns. Cells, post-transfection, were grown in a six-well plate and maintained at 37°C until they reached about 80% confluence. A sterile 200 μL pipette tip was then utilized to make a precise linear scrape through the layers of cells to establish a uniform wound. Subsequent to this, the wells were washed twice with phosphate-buffered saline (PBS) to remove any detached cells, and the medium was replaced with serum-free medium. The closure of the wound was observed and documented at 0 h and 24 h using an inverted microscope (Olympus, Japan), allowing for measurement of the migration distance covered by the cells across the wound area.
2.7 Clonogenic formation
600 cells were seeded in 6-well plates. These plates were then placed in the incubator for 14 days until clones formed, each consisting of at least 50 cells. Subsequently, the colonies were stained using a 0.1% crystal violet solution.
2.8 Protein expression and immunohistochemistry
We used the CTPAC database to validate the difference in the expression of UBE2C protein in hepatocellular carcinoma tissues and normal liver tissues. The expression levels of UBE2C in hepatocellular carcinoma tissues and normal tissues were verified by immunohistochemical sections from the HPA database.
2.9 Data sources
This study utilized single-cell sequencing data from the GEO database (https://www.ncbi.nlm.nih.gov/geo/), specifically the dataset GSE149614, which contains sequencing data from 10 hepatocellular carcinoma (HCC) patients. We selected non-tumor and primary tumor samples for analysis. Spatial transcriptomics data were obtained from the primary HCC tissue section GSM6177612. Additionally, RNA-seq data for pancreatic cancer, comprising 424 samples and associated survival data, were acquired from the TCGA cohort via the UCSC Xena platform (https://xena.ucsc.edu/) for survival analysis. We retrieved a set of 78 ubiquitination-related genes from the GO database (https://geneontology.org/).
2.10 Quality control, dimensionality reduction, clustering, and cell type identification
After importing the raw single-cell sequencing data, we performed initial processing using the Seurat package (version 4.3.0), including quality control, dimensionality reduction, and visualization (Hao et al., 2021). To ensure data reliability, we applied stringent quality control criteria, selecting cells with gene expression levels between 500 and 6000 and mitochondrial gene expression below 15%. The data were normalized and standardized using the NormalizeData and ScaleData functions, followed by principal component analysis (PCA) with the RunPCA function for dimensionality reduction. To integrate data from different sources, we used the Harmony package (version 1.2.0) for batch effect correction. The top 20 principal components were then selected for clustering at a resolution of 0.3, resulting in 17 cell clusters. Based on liver tissue marker genes from the Cellmarker website and differential expression analysis for each cell cluster using the FindAllMarkers function, we categorized cells into three main types: hepatocytes, stromal cells, and immune cells. Subsets were extracted and re-processed with similar steps to refine subcluster identification, followed by a second round of cell annotation to achieve a final classification (Gu et al., 2024).
2.11 Ubiquitination scoring
Using the 78 ubiquitination-related genes retrieved from the GO database, we applied five algorithms—AUCell, UCell, singscore, ssGSEA, and AddModuleScore—to score ubiquitination levels in the single-cell dataset. Scores were standardized using the scale function and normalized using the normalize function to ensure comparability across methods, yielding a comprehensive ubiquitination score for each cell. Based on median ubiquitination scores, cells were divided into high and low ubiquitination groups, focusing on hepatocytes, plasma cells, fibroblasts, endothelial cells, and effector memory T cells (Hao et al., 2021; Yu et al., 2012).
2.12 Cell-cell communication analysis and copy number variation (CNV) analysis
To explore cell interactions within the HCC tumor microenvironment, we conducted cell-cell communication analysis using the CellChat package, involving ligand-receptor matching, network construction, signaling pathway analysis, hierarchical and centrality analysis (Jin et al., 2021). This revealed interaction mechanisms and differences between high and low ubiquitination cells and other cell types. We performed CNV analysis using the copykat function from the CopyKAT package to predict cellular malignancy (Chi et al., 2022).
2.13 Differential expression analysis
We used the FindMarkers function to analyze gene expression differences between tumor and normal tissues, retaining only upregulated genes. By intersecting differentially expressed genes with the ubiquitination gene set, we identified ubiquitination-related differentially expressed genes. To investigate differences between high and low ubiquitination cells, we visualized differential gene expression between these groups (Chi et al., 2023).
2.14 Enrichment analysis
To investigate functional differences between cells with varying ubiquitination levels, we conducted GO and KEGG enrichment analyses. Genes upregulated in high-ubiquitination cells, identified using the FindMarkers function, were used for enrichment analysis. The clusterProfiler package facilitated retrieval of gene sets from GO, KEGG, and GSEA databases and visualized the results. Additionally, the GSVA package, combined with the HALLMARK gene set, was used to identify tumor-related biological processes. For functional enrichment, we used the bitr function from clusterProfiler to convert gene symbols to ENTREZ IDs, then applied the compareClusterfunction to perform KEGG enrichment, revealing functional impacts of ubiquitination on hepatocytes within the tumor microenvironment (Yu et al., 2012).
2.15 Metabolic analysis
Metabolic states were analyzed using the scMetabolism package, generating a heatmap of metabolic scores. The AUCell method within the sc.metabolism.Seurat function assessed metabolic activity, with KEGG database-specified pathways for metabolic pathway enrichment. This analysis provided insights into the metabolic mechanisms and differences among cells, offering clues to their functional roles in the tumor microenvironment.
2.16 Evaluation of infiltration and prognostic analysis for cells with high and low ubiquitination levels
Using the FindMarkers function, we identified marker genes for cells with high and low ubiquitination levels and conducted ssGSEA scoring on TCGA data to classify patients into high and low infiltration groups. Survival analysis, using the survival and survminer packages, was performed to predict and evaluate prognostic differences based on infiltration levels. Survival curves were fitted using the survfit function, and Kaplan-Meier survival plots were generated with ggsurvplot to analyze the impact of infiltration levels on prognosis (Chen H. et al., 2024).
2.17 Deconvolution analysis of spatial transcriptomics data
Quality control was performed on spatial transcriptomics data using the Seurat package, excluding ribosomal and mitochondrial genes. After normalization with the SCTransform function and PCA-based dimensionality reduction, clustering with the top 20 principal components yielded 7 cell clusters (Luo et al., 2024). The scMetabolism package, in conjunction with the KEGG database, utilized the AUCell method to assess metabolic pathways of ubiquitination genes, exploring cellular functional characteristics. Spatial deconvolution was conducted with the SpaceXR package using annotated single-cell data to infer spatial distribution and analyze cell communication patterns, with spatial dependencies and cellular responses in pancreatic cancer tissues analyzed using the mistyR package (He et al., 2024).
2.18 Expression, prognostic, and clinical analysis of key ubiquitination gene UBE2C
After intersecting differential genes, we identified six key genes, with UBE2C emerging as the most significant through prognostic analysis. Differential expression analysis was performed on TCGA data, validated by three GEO datasets: GSE14520, GSE39791, and GSE54236. Based on UBE2C expression, patients were stratified into high and low expression groups for survival analysis, highlighting the prognostic impact of this pivotal ubiquitination gene in HCC. Kaplan-Meier survival curves were generated using data from multiple sources. Additionally, we conducted KM curve analysis to evaluate UBE2C expression in immune and stromal cells in relation to survival and clinical outcomes, complemented by KEGG enrichment analysis for UBE2C (Jiang et al., 2024).
2.19 Statistical analysis
All statistical analyses were conducted using R version 4.3.3 (64-bit) and associated packages. The Wilcoxon rank-sum test was used for differences between groups of continuous variables, and Spearman correlation analysis was used to assess correlations between variables. Statistical significance was set at P < 0.05.
3 RESULTS
3.1 Data collection and quality control
In this study, we analyzed single-cell transcriptomic data (ID: GSE149614) from the GEO database, comprising 18 tumor and corresponding normal liver tissue samples from 10 hepatocellular carcinoma (HCC) patients. To ensure high-quality single-cell data analysis, we implemented strict quality control measures across all samples. Various quality metrics, including UMI counts and the expression levels of mitochondrial and hemoglobin genes (Figure 1A), were assessed to exclude aging cells, erythrocytes, and mitochondrial signals. Additionally, the Harmony algorithm was applied to remove batch effects from sequencing, ensuring that the results reflected only biological differences between samples (Figure 1B).
[image: Various plots and charts depict cell analysis. Violin plots in panel A show data dispersion, while a scatter plot in panel B presents density. UMAP plots (C-I) demonstrate cell distribution based on origin, transcript count, subtype, and cell type. A bar chart in J highlights proportions of different cell types across samples. A heatmap in K visualizes gene expression patterns across cell identities.]FIGURE 1 | Single-cell data quality control, dimensionality reduction clustering, and cell type identification. (A): Sample characteristic violin map after quality control, including gene number, count number, and mitochondrial proportion. (B): Cell distribution map of different sample sources. (C): Cell cluster distribution umap map. (D): Cell distribution umap map of different tissue type sources. (E): Characteristic expression of nCount_RNA umap plot. (F): preliminary cell type identification result display plot, different colors represent different cell types. (G): stromal cell subpopulation distribution umap plot. (H): immune cell subpopulation distribution umap plot. (I): final cell type identification result display plot. (J): cell type percentage histogram. (K): heatmap of genes with the top five expression by each cell type.
Following dimensionality reduction and clustering, we applied UMAP to organize the 61,776 quality-controlled cells into 16 distinct clusters (Figure 1C). We also examined data distribution differences across samples (Figure 1D), between tumor and normal tissues (Figure 1E), and the density variation in mRNA expression (Figure 1F).Initial cell type identification was performed by detecting marker genes for specific cells using the “FindAllMarkers” function. Cells were classified based on marker gene expression patterns and the upregulation of genes within each cell cluster (Figure 1G). Figure 1H highlights the distribution differences of various cell types between tumor and normal tissues, while the marker genes for each cell cluster are visualized in a heatmap (Figure 1I).For abundant immune cell populations, including myeloid cells, B cells, and T/NK cells, we conducted sub-clustering analysis using a resolution of 0.1. This analysis identified subtypes such as plasma cells, CTLs, EMTs, Tregs, and macrophages (Figures 1J). Finally, we summarized the distribution differences of all identified cell types between tumor and normal tissues (Figure 1K).
3.2 Identification of high-ubiquitination cells
To identify cells with high expression of ubiquitination-related genes, we employed multiple scoring methods to evaluate ubiquitination levels across various cell types, including effector memory T cells, plasma cells, CTLs, Tregs, NK cells, macrophages, endothelial cells, hepatocytes, fibroblasts, and monocytes. The ubiquitination scores were visualized using UMAP plots for both normal and tumor samples (Figures 2A,B).Next, we performed a significance analysis of ubiquitination scores across different cell types under normal and tumor conditions. The results revealed that ubiquitination scores were significantly higher in tumor samples, suggesting a potential role for ubiquitination in tumor progression (Figure 2C).To further investigate ubiquitination characteristics within the HCC tumor microenvironment, we categorized cells into high- and low-ubiquitination groups based on their ubiquitination scores and conducted a cell communication analysis. High-ubiquitination hepatocytes (UbqhighHep) exhibited the strongest cellular communication signals (Figure 2D). Additionally, we visualized overall communication interactions between cells with differential ubiquitination, highlighting active interactions among endothelial cells and fibroblasts (Figure 2E). Finally, comparative analysis of communication signals across all cells revealed pronounced signaling between endothelial and fibroblast cells under high ubiquitination conditions (Figure 2F).
[image: Diagram illustrating cellular analyses with multiple panels:   A. Dot plot showing pyroptosis scores across cell clusters with expression levels and percentage.   B. UMAP plots depicting cell distributions in normal and tumor tissues.   C. Violin plots comparing pyroptosis scores for various cell types between normal and tumor samples.   D. Circular network diagram showing interactions among cell types.   E. Sankey diagram illustrating source-target relationships between different cellular subtypes.   F. Scatter plot of interaction strengths among cell types, with bubble sizes representing counts.]FIGURE 2 | Ubiquitination scoring, cell communication. (A) ubiquitination scoring bubble plot, horizontal coordinate indicates scoring method, vertical coordinate indicates cell type, the lighter the color the higher the score. (B) umap plot of ubiquitination scoring results, displayed by tissue type. (C) violin plot of the difference between ubiquitination scores of the normal group and tumor group, where “****” indicates a p-value <0.001 and “****” indicates a p-value <0.0001, the more asterisks, the smaller the p-value, and the more significant the difference. (D): Chordal plot of cellular communication based on ubiquitination level. (E): Hierarchical plot of cellular communication. (F): Scatter plot of intercellular signaling, with each point representing one kind of cell and the horizontal and vertical axes indicate the ability of that kind of cell to send and receive signals, respectively.
3.3 Ubiquitination in hepatocytes within the tumor microenvironment
To investigate ubiquitination characteristics in hepatocytes within the HCC tumor microenvironment, we divided hepatocytes into high- and low-ubiquitination groups based on ubiquitination scores (Figure 3A). We found that hepatocytes in tumor samples had higher ubiquitination levels compared to normal samples (Figures 3B,E). In Figures 3C,D, we compared metabolic differences between hepatocytes with different ubiquitination levels, discovering that metabolic pathways and cellular processes in hepatocytes were influenced by ubiquitination in liver cancer. Hepatocytes with high ubiquitination showed increased activity in metabolic pathways, such as amino acid metabolism and one-carbon metabolism. GO enrichment analysis indicated that hepatocytes with high ubiquitination scores were more active throughout the cell division process, with higher levels of proteolysis and translation (Figures 3F,I). Figure 3G presents the results of GSVA enrichment analysis, indicating that ubiquitination primarily affects the cell cycle. To explore heterogeneity between the two groups, we performed GSEA analysis, revealing functional differences in hepatocytes with high and low ubiquitination scores (Figure 3H). We observed that the high-ubiquitination group showed enhanced expression of cell cycle-related genes. These results suggest that ubiquitination likely influences proteins involved in proteolysis, affecting the normal cell cycle and leading to the transformation of normal cells into malignant ones in HCC development.To investigate the prognostic impact of ubiquitination in HCC, we further analyzed the expression levels of ubiquitination-related genes, finding that most genes were upregulated in HCC tissues (Figure 3L). Survival curves indicated that patients with high ubiquitination levels had shorter overall survival (OS) and progression-free survival (PFS) compared to those with low ubiquitination levels (Figures 3J,K).
[image: A series of scientific charts and graphs showing gene expression data, including UMAP plots, bar graphs, heatmaps, and scatter plots. Labels such as "Hepatocytes" and specific gene names are visible. The visualizations compare different gene expressions, subtype distributions, and survival analysis. Each part appears to focus on different aspects of biological data analysis, with heatmaps detailing expression patterns and graphs comparing expression levels among gene groups.]FIGURE 3 | Hepatocyte characterization based on ubiquitination level Hepatocytes (A): umap plot of the distribution of hepatocytes with high and low ubiquitination levels. (B): Difference in the percentage of hepatocytes with high and low ubiquitination levels in normal and tumor tissues. (C, D): Metabolic heatmap of hepatocytes with high and low ubiquitination levels. (E): Hepatocyte copy number variability analysis results. (F): GO enrichment analysis results plot. (G): KEGG enrichment analysis result graph. (H): Hepatocyte pathway comparison result between high ubiquitination level and low ubiquitination level in tumor tissues. (I): Differential gene enrichment analysis of hepatocytes with high and low ubiquitination level. (J, K): KM curves of overall survival and progression-free survival of hepatocytes under the difference of ubiquitination level. (L): Differential genes related to ubiquitination of hepatocytes in normal tissues and tumor tissues.
3.4 Ubiquitination in plasma cells within the tumor microenvironment
To study the ubiquitination characteristics of plasma cells in the HCC tumor microenvironment, we categorized plasma cells into high- and low-ubiquitination groups based on ubiquitination scores (Figure 4A). Plasma cells in the tumor group exhibited higher ubiquitination levels compared to normal samples (Figure 4B). Figure 4C shows the results of GSVA enrichment analysis, revealing that ubiquitination affected physiological processes related to metabolism, inflammation, and the cell cycle. GO enrichment and KEGG analysis showed that plasma cells with high ubiquitination scores were active in ribosome biogenesis, protein processing, and metabolic pathways (Figures 4D,F). Figure 4E presents the results of KEGG enrichment analysis, indicating that ubiquitination also significantly impacted the cell cycle. In Figures 4G,H, we compared metabolic differences in plasma cells under different ubiquitination states, finding that metabolic pathways and cellular processes in plasma cells were affected by ubiquitination in liver cancer. To examine the prognostic effect of ubiquitination on HCC, we further analyzed the expression levels of ubiquitination-related genes. Genes like MKI67, UBE2C, and UBE2I were upregulated in samples with higher ubiquitination levels, and ubiquitination-related genes were also widely upregulated in tumor samples (Figures 4I,J). Survival curves revealed that patients with high ubiquitination levels had shorter OS and PFS compared to those with low ubiquitination (Figure 4K, L).
[image: Grouped scientific diagrams illustrating bioinformatics data analysis. Panel A shows a plasma UMAP plot. Panel B depicts sample distribution bar charts. Panel C features ranked bar charts for pathway analysis. Panels D and E display dot plots for gene set enrichment. Panel F shows an enrichment graph of gene sets. Panels G and H contain heatmaps for pathway activities across samples. Panel I includes a quantile plot. Panel J presents violin plots for gene expressions. Panels K and L display Kaplan-Meier survival curves with corresponding risk tables.]FIGURE 4 | Plasma cell characterization based on ubiquitination level. (A), umap plot of plasma cell distribution under the difference of ubiquitination level. (B), plot of high and low ubiquitination scores into the percentage of fibroblasts in normal and tumor tissues. (C), comparison of plasma cell pathways with high ubiquitination scores and low ubiquitination scores in tumor tissues. (D), results of GO enrichment analysis. (E), results of KEGG enrichment analysis. (F), results of high and low ubiquitination score plasma cells differential gene enrichment analysis. (G, H): metabolic heatmap of plasma cells with high and low ubiquitination levels. (I): diagonal plot of differential genes of plasma cells with high versus low ubiquitination scores in tumor tissues. (J): ubiquitination-associated differential genes of plasma cells in normal versus tumor tissues. (K, L): km curves of overall and progression-free survival for plasma cells with high and low ubiquitination scores.
3.5 Fibroblast ubiquitination in tumor microenvironment
To investigate the ubiquitination characteristics of fibroblasts in the liver cancer tumor microenvironment, we classified fibroblasts into high-expression (UbqhighFib) and low-expression (UbqlowFib) groups based on ubiquitination scores (Figure 5A). Fibroblasts in the tumor group exhibited significantly higher ubiquitination levels compared to the normal group (Figure 5B). Gene Set Variation Analysis (GSVA) enrichment analysis (Figure 5C) highlighted the role of ubiquitination in key biological processes, including oxidative phosphorylation and apoptosis. Metabolic analysis revealed that high-ubiquitination fibroblasts exhibited active metabolic pathways (Figures 5D,E). GO and KEGG pathway analyses showed that high-ubiquitination fibroblasts were involved in biological processes such as small GTPase signaling, immune response, protein autophagy, and chromatin regulation (Figure 5F). KEGG enrichment analysis (Figure 5G) identified significantly affected pathways in high-ubiquitination fibroblasts, including the cell cycle, ubiquitin-mediated protein degradation, and apoptosis.The volcano plot (Figure 5H) displayed the differential expression of ubiquitination-related genes between the high- and low-ubiquitination groups, with genes such as UBE2E2, UBE2C, and UBE2E1 showing significant upregulation in the high-ubiquitination group. Survival analysis revealed that patients with high-ubiquitination fibroblasts had shorter overall survival (OS) and progression-free survival (PFS), suggesting that high ubiquitination may be associated with poor prognosis in liver cancer patients (Figures 5I,J). Figure 5K shows that the expression levels of key ubiquitination-related genes (e.g., UBE2E2, UBE2C, UBE2E1, UBE2A) were significantly upregulated in the high-ubiquitination group.
[image: Composite image of various data visualizations, including:  A) Map of fibroblast data clusters.  B) Bar chart comparing counts of SCAF and CAF.  C) Horizontal bar chart of gene set enrichment.  D and E) Heatmaps showing gene expression patterns.  F) Bubble charts depicting biological processes.  G) Dot plot with a legend of colors indicating value ranges.  H) Line scatter plot of residuals.  I and J) Kaplan-Meier survival curves.  K) Violin plots comparing URBEC values across groups.   Each panel represents specific statistical or biological data insights.]FIGURE 5 | Fibroblast characterization based on ubiquitination level (A) umap plot of the distribution of fibroblasts with high and low ubiquitination levels. (B) plot of the percentage of fibroblasts with high and low ubiquitination levels in normal and tumor tissues. (C) comparison of fibroblast pathways in tumor tissues with high and low ubiquitination levels. (D, E) metabolic heatmap of fibroblasts with high and low ubiquitination levels. (F) GO functional enrichment analysis dot plot. (G) KEGG enrichment analysis dot plot. (H) Diagonal dot plot of fibroblast differential genes at high and low ubiquitination levels. (I, J) Survival KM curves of fibroblasts with overall survival and progression-free survival under ubiquitination differences. (K) Differential genes related to ubiquitination in fibroblasts in normal and tumor tissues.
3.6 Endothelial cell ubiquitination in tumor microenvironment
To explore ubiquitination in endothelial cells within the HCC tumor microenvironment, we categorized endothelial cells into high-expression (UbqhighEndo) and low-expression (UbqlowEndo) groups based on ubiquitination scores (Figure 6A). Analysis showed that endothelial cells in tumors had higher ubiquitination levels compared to those in normal tissue (Figure 6B). Metabolic heatmaps (Figures 6C,D) displayed the enriched metabolic pathways in high and low ubiquitination endothelial cells, linking ubiquitination to metabolic activity in pathways like nitrogen metabolism, ketone synthesis, and amino acid metabolism. GSVA enrichment analysis (Figure 6E) demonstrated that ubiquitination influenced multiple biological processes and signaling pathways, including oxidative phosphorylation, cell cycle, inflammatory response, PI3K-Akt signaling, and TGF-beta signaling. The volcano plot (Figure 6F) indicated that genes like METTL7A were significantly upregulated in the high-ubiquitination group. KEGG pathway analysis (Figure 6G) showed significant enrichment in protein degradation, TNF signaling, and NF-kappa B signaling pathways. GO enrichment analysis (Figure 6H) further highlighted ubiquitination’s potential role in immune regulation and cell differentiation, affecting functions such as monocyte differentiation, histone modification, and T cell differentiation. Survival analysis (Figures 6I,J) revealed that patients with high-ubiquitination endothelial cells had shorter OS and PFS, suggesting that endothelial cell ubiquitination might be linked to poor prognosis in HCC. Figure 6K presents key ubiquitination-related genes (e.g., UBE2E2, UBE2J2, ATXN3, UBE2I) that were significantly upregulated in high-ubiquitination endothelial cells, emphasizing their potential role in regulating metabolism, signaling, and immune functions, potentially affecting tumor progression and patient prognosis.
[image: Composite image featuring multiple charts and graphs related to metabolomics data analysis. Panel A shows a scatter plot of endothelial data. Panel B displays a bar graph comparing two groups. Panels C and D offer heatmaps illustrating various metabolite interactions. Panel E presents a horizontal bar chart ranking features by significance. Panel F is a dot plot, while G and H show scatter plots with dimensionality reduction, highlighting cluster separation. Panels I and J provide Kaplan-Meier survival curves comparing two groups. Panel K includes box plots for various metabolites, indicating distribution and variance.]FIGURE 6 | Endothelial cell characterization based on ubiquitination level. (A): Distribution of endothelial cells based on differences in ubiquitination level. (B): Percentage of endothelial cells in normal vs. tumor tissues under differences in ubiquitination level. (C, D): Metabolic heatmap of endothelial cells with high and low ubiquitination scores. (E): Comparison of endothelial cell pathways with high vs. low ubiquitination levels in tumor tissues. (F): Comparison of endothelial cell pathways with high vs. low ubiquitination levels in tumor tissues. Level versus low ubiquitination level endothelial cell differential gene diagonal dot plot. (G): KEGG enrichment analysis result plot. (H): GO enrichment analysis result plot. (I, J): Survival KM curves of endothelial cell overall survival and progression-free survival under the difference of ubiquitination level. (K): Difference in expression of ubiquitinylation-related differential genes in endothelial cells in normal and tumor tissues plot.
3.7 EMT cell ubiquitination in tumor microenvironment
To investigate the ubiquitination characteristics of epithelial-mesenchymal transition (EMT) cells in the HCC tumor microenvironment, we categorized EMT cells into high-expression (Ubqhigh EMT) and low-expression (Ubqlow EMT) groups based on their ubiquitination scores (Figure 7A). The results demonstrated that EMT cells within tumors exhibited significantly higher levels of ubiquitination compared to those in normal tissues (Figure 7B). GSVA enrichment analysis (Figure 7C) linked ubiquitination to a range of biological processes, including metabolism, cell cycle regulation, and inflammation. Metabolic pathway analysis (Figures 7D,E) revealed distinct enrichments in metabolic pathways: the low-ubiquitination group showed activity in glycosaminoglycan and fatty acid metabolism, while the high-ubiquitination group was enriched in amino acid, carbohydrate, and nucleotide metabolism. KEGG pathway analysis (Figure 7F) indicated that high-ubiquitination EMT cells were particularly enriched in cell cycle regulation, ubiquitin-mediated protein degradation, DNA replication, and repair pathways, highlighting the critical role of ubiquitination in EMT cell proliferation and genomic stability.GO enrichment analysis (Figure 7G) further highlighted ubiquitination’s importance in cell division and genome regulation, with processes like chromosome segregation, microtubule binding, spindle assembly, and DNA repair prominently featured. The volcano plot (Figure 7H) showed differential gene expression, with UBE2C and UBE2S significantly upregulated in high-ubiquitination EMT cells. Survival analysis (Figures 7I,J) indicated that patients with high-ubiquitination EMT cells had significantly lower OS and PFS, suggesting that EMT cell ubiquitination status might correlate with poor prognosis in HCC. Figure 7J shows key ubiquitination-related genes upregulated in high-ubiquitination EMT cells, further emphasizing the specific role of ubiquitination in EMT cells.
[image: Diagram featuring multiple panels related to EMT (epithelial-mesenchymal transition) and metabolism studies. Panel A shows a scatter plot map. Panel B features a bar chart comparing two groups. Panel C displays a ranked bar graph of gene expressions. Panels D and E contain heatmaps of gene metabolic pathways. Panels F and G include dot plots showing gene significance and enrichment scores. Panel H presents a scatter plot of expression correlations. Panels I and J show survival curves comparing different patient groups. Each panel supports research on the link between EMT and metabolism in disease progression.]FIGURE 7 | Characterization of effector memory T cells based on ubiquitination level. (A): EMT distribution map based on the difference of ubiquitination level. (B): Percentage of EMT cells with high and low ubiquitination levels in normal and tumor groups. (C): Comparison of EMT cell pathways with high and low ubiquitination levels in tumor tissues. (D, E): Metabolic heatmap of high and low ubiquitination levels of EMT cells. (F): KEGG enrichment. (G): Results of the analysis of KEGG enrichment. (G): GO enrichment analysis result graph. (H): Diagonal dot plot of differential genes of EMT cells with high and low ubiquitination levels in tumor tissues. (I, J): Survival KM curves of overall survival and progression-free survival of EMT cells under the difference of ubiquitination levels.
3.8 Spatial transcriptomics and ubiquitination in HCC
To further explore the ubiquitination characteristics in HCC, we conducted deconvolution analysis on spatial transcriptomics data. We downloaded spatial transcriptome sequencing data (GSM6177612) from HCC tumor tissue sections derived from primary HCC tumor areas. After performing dimensionality reduction and clustering of the spatial transcriptomic data, we used UMAP for visualization, which generated seven distinct cell clusters (Figures 8A,B). Figure 8C shows the spatial distribution of all the identified cell clusters.We evaluated ubiquitination-related gene scores for each cluster (Figure 8D) and analyzed metabolic differences, finding that clusters 0, 1, 2, and 7 exhibited high metabolic activity (Figure 8E). The deconvolution analysis provided single-cell annotation results at the spatial level (Figures 8F,G). We further analyzed the intensities of glycolytic and oxidative phosphorylation pathways in different regions (Figures 8H,I) and examined spatial cell proximity relationships, revealing cell interaction signals at the spatial transcriptomic level (Figures 8J,K).
[image: A collage of scientific visualizations displays various analyses of data. Panel A shows a violin plot and spatial representation. Panel B presents a scatter plot of cluster data. Panel C includes a colored spatial tissue section. Panel D depicts a dot plot of gene expression. Panel E features a heatmap with dot-sized differences. Panels F and G show spatial tissue maps with cell type identification. Panels H and I highlight variances in spatial patterns. Panel J illustrates a network diagram. Panel K displays a correlation matrix. Each visualization conveys distinct data insights in biomedical research.]FIGURE 8 | Differential expression and prognostic analysis of UBE2C. (A): Forest plot of hazard ratios and 95% confidence intervals for multiple genes, the vertical dashed line at hazard ratio = 1 serves as a reference line and indicates no effect. Hazard ratios to the right indicate increased risk, and those to the left indicate decreased risk. (B): Intersection of gene sets taken for each survival stage. (C): Differences in UBE2C expression between tumor and normal tissues in the TCGA cohort. (D): Analysis of the paired differences in UBE2C expression between tumor and normal tissues in the TCGA cohort. (E): Differences in UBE2C expression in TCGA cohort at high/low tumor grades. (F): Differences in UBE2C expression at various stages and prognostic analysis in the TCGA cohort. (G): Differences in UBE2C expression at high/low tumor grades.UBE2C expression differences in each stage. (G): UBE2C expression differences in tumor vs. normal group in GEO dataset. (H): Number of surviving vs. dead samples with different UBE2C expression levels performing chi-square test. (I): Kaplan-Meier survival analysis of three survival stages (OS, DSS, PFI). (J): Kaplan-Meier survival of the four patient groups analysis, where Q1 represents the 25% of samples with the highest expression and Q4 represents the 25% of samples with the lowest expression. (K): meta-analysis of single-factor cox survival analysis for multiple datasets.
3.9 Prognostic value of ubiquitination-related genes in HCC
To evaluate the prognostic significance of ubiquitination-related genes in HCC, we analyzed key ubiquitination-related gene expression in tumor versus normal samples, using TCGA and GEO data to assess expression levels and their relation to patient survival. Figure 9A shows the hazard ratios (HR) and p-values for various ubiquitination-related genes (e.g., UBE2C, USP48, BRCA1, CDCA3), indicating that high expression of these genes correlates with an increased risk of tumor progression, suggesting their potential role as prognostic markers in HCC. Figure 9B shows a Venn diagram comparing DSS (disease-specific survival), OS, and PFS, highlighting the significant role of UBE2C across survival metrics. Violin and paired-difference plots (Figures 9C–F) display UBE2C expression differences between normal and tumor tissues and its expression trends across stages, with UBE2C significantly upregulated in tumor and advanced-stage tissues, suggesting its association with malignancy in HCC. Figure 9G shows the density distribution of UBE2C in high- and low-expression groups, further indicating its expression patterns in HCC. Survival differences based on CHMP4B expression showed a significant association between UBE2C expression levels and survival status (Figure 9H). Survival curves (Figures 9I,J) indicated shorter OS, DSS, and PFS in high UBE2C-expressing groups, supporting a link between high UBE2C expression and poor prognosis. A meta-analysis of UBE2C in various datasets (Figure 9K) using a random effects model confirmed that high UBE2C expression significantly increased HCC mortality risk (HR = 1.25), reinforcing its adverse impact on prognosis.
[image: A collage of various statistical analyses and visualizations related to medical data. It includes multiple forest plots of meta-analyses indicating hazard ratios and confidence intervals, a Venn diagram showing data overlap, violin plots displaying distribution comparisons, bar charts comparing categories, and Kaplan-Meier survival curves. Each chart is labeled with statistical details and significance values.]FIGURE 9 | Expression differences and prognostic analysis of UBE2C (A) Forest plot with hazard ratios and 95% confidence intervals for multiple genes, with the vertical dashed line at hazard ratio=1 as a reference line, indicating no effect. A hazard ratio to the right indicates an increased risk, while a left hazard ratio indicates a reduced risk. (B): Intersection of genes in each survival period. (C): Differences in the expression of UBE2C in tumors and normal tissues in TCGA cohorts. (D): Paired analysis of the expression of UBE2C in tumors and normal tissues in the TCGA cohort. (E): Differences in the expression of UBE2C in high/low tumor grades in TCGA cohorts. (F): Differences in the expression of UBE2C in each stage in the TCGA cohort. (G): Differential expression of UBE2C in the GEO dataset between tumor and normal groups. (H): Chi-square test was performed on the number of surviving and dying samples at different UBE2C expression levels. (I): Kaplan-Meier survival analysis for 3 lifetimes (OS, DSS, PFI). (J): Kaplan-Meier survival analysis of four groups of patients, where Q1 represents the 25% of the samples with the highest expression and Q4 represents the 25% of the samples with the lowest expression. (K): Meta-analysis of multi-dataset univariate COX survival analysis.
Finally, we examined the impact of UBE2C expression levels in conjunction with the activity of different cellular components—specifically immune and stromal cells—on patient survival outcomes. As illustrated in Figure 10A, the overall survival (OS) curves reveal a distinct pattern: Patients with high UBE2C expression and low immune activity exhibited the lowest survival rates, whereas those with low UBE2C expression and high immune activity demonstrated significantly higher survival. This suggests that a combination of high UBE2C expression and low immune activity may serve as a robust indicator of poor prognosis.Similarly, Figure 10B presents the OS curves based on UBE2C expression and stromal cell activity. Here, patients with high UBE2C expression and high stromal activity had the lowest survival, while those with low UBE2C expression and low stromal activity had higher survival rates. This highlights the potential prognostic significance of UBE2C in conjunction with stromal activity, further underscoring the complex interplay between UBE2C, immune cells, and stromal cells in influencing patient outcomes (Figure 10C).
[image: Kaplan-Meier survival curves and associated tables of gene expressions in patients with different conditions. Panel A shows survival data with a P-value of 0.041. Panel B shows similar data with a P-value of 0.039. Panel C lists genes with expression levels and associated pathways, organized by functional categories.]FIGURE 10 | (A, B): Survival curves of different subgroups of UBE2C expression (C) Bar graph of KEGG enrichment analysis results.
3.10 Downregulation of UBE2C expression level significantly inhibited the proliferation, invasion and migration of hepatocellular carcinoma cells
Considering the importance of UBE2C, we verified its role in hepatocellular carcinoma through a series of in vitro experiments. First, we reduced the expression of UBE2C and showed that knockdown of UBE2C significantly inhibited the activity of hepatocellular carcinoma cells by CCK8 assay (Figure 11A). To investigate the relationship between UBE2C and hepatocellular carcinoma migration, we performed a wound healing assay and showed that knockdown of UBE2C significantly inhibited the invasive migration of these cells (Figure 11B). To investigate the correlation between UBE2C and hepatocellular carcinoma proliferation, we performed a plate cloning assay, and the results showed that knockdown of UBE2C significantly inhibited the proliferative ability of hepatocellular carcinoma cells (Figure 11C).Transwell assay also showed that UBE2C enhanced the invasive migration of tumor cells (Figure 11D). Finally, CPATC database and immunohistochemical analysis confirmed elevated protein expression of UBE2C in these tissues (Figures 11E,F). In conclusion, UBE2C enhances the invasive migration of hepatocellular carcinoma cells and correlates with the malignant features of hepatocellular carcinoma.
[image: (A) Bar graph showing cell proliferation rates of Huh7 and Hep3B cells, comparing NC to ShUBEC2C. (B) Images displaying wound healing assays at 0 and 48 hours for Huh7 and Hep3B cells with NC and ShUBEC2C. (C) Images of colony formation assays for Huh7 and Hep3B cells comparing NC to ShUBEC2C. (D) Images of cell invasion assays for Huh7 and Hep3B cells with NC and ShUBEC2C. (E) Box plot illustrating UBEC2C expression levels in liver cancer versus normal samples. (F) Immunohistochemistry images showing medium and high expression of UBEC2C in liver and liver cancer tissues.]FIGURE 11 | In vitro experiments to validate the role of UEB2C in hepatocellular carcinoma. (A) CCK8 assay for cell viability of UEB2C. (B) Wound healing assay. (C) Plate cloning assay. (D) Transwell assay (F) Transwell assay. (E) CTPAC database to verify the protein expression of UEB2C. (F) Protein expression of UEB2C verified by IHC. * denotes p-value less than 0.05, *** denotes p-value less than 0.001.
4 DISCUSSION
In recent years, ubiquitination, a crucial post-translational modification, has garnered increasing attention for its role in liver cancer (HCC) (Lu et al., 2023; Hu et al., 2021; Liu F. et al., 2024). Ubiquitination regulates protein stability, activity, and subcellular localization by tagging target proteins with ubiquitin chains, playing a pivotal role in various biological processes, including cell cycle regulation, apoptosis, metabolic reprogramming, and DNA repair (Sun et al., 2020; Cai et al., 2018). The ubiquitin-proteasome system (UPS) is a key pathway in many cancer cells, responsible for degrading tumor suppressor proteins and promoting oncogene expression, making abnormalities in ubiquitination a potential driver of HCC cells’ resistance to conventional treatments (Liao et al., 2020). Dysfunctions in deubiquitinating enzymes (DUBs) and E3 ligases in HCC cells can lead to resistance to chemotherapy and targeted therapies (Fang et al., 2023).
Our study systematically analyzed the role of ubiquitination in the HCC tumor microenvironment, focusing on its expression characteristics across different cell types (e.g., plasma cells, fibroblasts, endothelial cells, EMT cells) and its association with patient survival. Ubiquitination exhibited distinct functions in various cell types. For example, plasma cells with high ubiquitination showed significant activity in ribosome biogenesis, protein processing, and metabolic pathways, suggesting that ubiquitination may support HCC cell growth and survival through these biological processes (Tang et al., 2022; Yang et al., 2023). Similarly, active ubiquitination in fibroblasts may facilitate tumor dissemination and invasion by promoting cell proliferation and matrix remodeling. Moreover, the ubiquitination status of endothelial and EMT cells was closely linked to cell cycle regulation and DNA repair pathways, indicating that ubiquitination may promote HCC progression in these cells by enhancing cell proliferation and genome stability. Ubiquitination participates in the process of angiogenesis by affecting the proliferation, migration, and lumen formation of endothelial cells. E3 ubiquitin ligases, such as ID1 (inhibitor of differentiation 1), may regulate angiogenesis by modulating the cell cycle of endothelial cells and signaling pathways related to VEGF (vascular endothelial growth factor). Additionally, ubiquitination plays an important role in the matrix remodeling of endothelial cells, contributing to the stabilization and maturation of newly formed blood vessels.These findings highlight the multi-level regulatory role of ubiquitination within the HCC tumor microenvironment, mediating various signaling pathways and biological processes across different cell types (Villalba et al., 2013). Among ubiquitination-related genes, UBE2C emerged as a significant prognostic predictor. UBE2C, a key E2 ubiquitin-conjugating enzyme, was notably upregulated in HCC tissues and strongly associated with poor patient prognosis. Our subgroup analysis revealed that high UBE2C expression, in combination with low immune activity or high stromal activity, significantly decreased survival rates. This suggests that UBE2C may promote tumor progression by inhibiting anti-tumor immune responses and enhancing stromal cell activity (Zhang et al., 2018; Yuan et al., 2022).
Additionally, pathway enrichment analysis revealed that UBE2C is involved in several critical pathways related to tumor growth and progression, including cell cycle regulation, p53 signaling, DNA damage repair, and metabolic control. These pathways are crucial for tumor cell proliferation, genomic stability, and metabolic reprogramming, further underscoring the central role of UBE2C in the development of HCC (He et al., 2023). Immune analysis also suggested that UBE2C may promote HCC progression through multiple mechanisms. Overexpression of UBE2C could suppress the anti-tumor immune response, impairing immune cells’ ability to recognize and eliminate tumor cells, thus allowing tumor cells to evade immune surveillance (Li et al., 2020). Moreover, high UBE2C expression in stromal cells was linked to the remodeling of the tumor microenvironment, suggesting that UBE2C may promote angiogenesis and matrix remodeling by modulating the activity of fibroblasts and endothelial cells, ultimately driving tumor invasion and metastasis (Jin et al., 2020). These findings indicate that UBE2C may serve as a promising therapeutic target in the treatment of hepatocellular carcinoma (HCC). Given its high specificity in the ubiquitination process as an E2 ubiquitin-conjugating enzyme, it is feasible to develop inhibitors that specifically target the active site of UBE2C. This targeted approach can minimize non-specific effects on other cellular functions, thereby enhancing the efficacy of the treatment. Furthermore, considering UBE2C’s significant role in modulating the activity of immune and stromal cells within the HCC microenvironment, combination therapies that incorporate immune checkpoint inhibitors or stromal-targeting agents may synergistically augment the effectiveness of UBE2C inhibitors.
Despite highlighting the critical role of ubiquitination in HCC, our study has several limitations. Although this research utilizes data from public databases, providing a relatively large sample size, the substantial heterogeneity among HCC patients may affect the generalizability of our findings. Variations in tumor characteristics and microenvironmental conditions across patients could lead to differences in how ubiquitination impacts HCC progression (Raevskiy et al., 2023). Additionally, public database data often lack key clinical information, such as detailed disease progression and treatment history, which may limit the accuracy and clinical relevance of our analysis (Fan Y. et al., 2024; Pan et al., 2024). Moreover, given that ubiquitination is a dynamic and highly complex regulatory mechanism, future studies should consider employing proteomic approaches, such as mass spectrometry, to directly assess ubiquitination levels, offering a more precise evaluation of its role in HCC.
5 CONCLUSION
In this study, we systematically investigated the role of ubiquitination in the tumor microenvironment of hepatocellular carcinoma (HCC), revealing its expression characteristics in different cell types and its relationship with patient prognosis. The findings suggest that the role of ubiquitination in hepatocellular carcinoma progression is not only limited to the regulation of cell cycle, apoptosis and metabolic pathways, but also promotes tumor growth and metastasis by influencing tumor cell proliferation, invasion and immune escape. For example, highly ubiquitinated fibroblasts may promote tumor spread by promoting cell proliferation and stromal remodeling, while highly ubiquitinated endothelial and epithelial-mesenchymal transition (EMT) cells promote HCC progression by regulating cell cycle and DNA repair pathways.
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Revealing key regulatory factors in lung adenocarcinoma: the role of epigenetic regulation of autophagy-related genes from transcriptomics, scRNA-seq, and machine learning
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Background
The molecular pathogenesis of lung adenocarcinoma (LUAD) involves genomic mutations, autophagy dysregulation, and signaling pathway disruptions. Autophagy, a key cellular process, is tightly linked to cancer development; genes like ATG5 and ATG10 influence lung cancer progression, and epigenetic regulators modulate autophagy-related carcinogenesis. However, the role of epigenetic-autophagy genes in LUAD’s tumor microenvironment is under-researched.
Methods
We used the “limma”” package to identify differential epigenetic-related genes associated with altered autophagy regulation (A-ERGs) in LUAD. Single-cell RNA sequencing was further employed to evaluate the heterogeneity of immune cells. Machine learning algorithms were utilized to construct and identify diagnostic markers for LUAD, which were then validated by receiver operating characteristic (ROC) curve analysis. Cell experiments, real-time PCR, and Western blot were conducted to verify the expression of KDM6B and KANSL1 and their effects on T-cell differentiation.
Results
Based on single-cell and transcriptome analyses, we screened 19 A-ERGs that were significantly differentially expressed in lung cancer tissues. These genes were primarily enriched in exhausted T cells. Subsequently, through machine learning, KDM6B and KANSL1 were identified to have excellent diagnostic performance. Single-cell level and transcriptome correlation analyses revealed that the expression of these two genes was associated with exhausted T cells. Results from in vitro cell experiments showed that high expression of these two genes promoted the occurrence of T cell exhaustion.
Conclusion
In this study, we utilized bulk and single-cell transcriptomic data to uncover the potential molecular mechanisms of A-ERGs in lung cancer. We explored the characteristic distribution of these genes in the tumor immune microenvironment and identified two A-ERGs, KDM6B and KANSL1, as potential diagnostic biomarkers for lung adenocarcinoma (LUAD). Our findings offer novel strategies for targeted therapeutic interventions in LUAD.

Keywords: A-ERGs, LUAD, exhausted CD8+T cells., DEGs, machine learning
INTRODUCTION
Lung adenocarcinoma (LUAD) is still the most common human malignancy, with high incidence and mortality, which also is the most frequently sub-type of Lung cancer (Sung et al., 2021).LUAD patients are usually diagnosed at an advanced stage and the 5-year survival rate is less than 4%, accounting for 38% of total cases (Dela Cruz et al., 2011). At present, like surgical resection, chemotherapy, and even targeted therapies were mainly treatment for LUAD patients, the prognosis remains poor with low survival rates for the severity of pulmonary fibrosis, high incidence of multi-drug resistances, and diversity of histologic properties (Bade and Dela Cruz, 2020; Tang et al., 2019). The development of LUAD has been shown to be closely related to several factors, such as patients with Chronic obstructive pulmonary disease (COPD)and pulmonary tuberculosis, smoke, immunologic dysfunction, tuberculosis infection; and asthma (Tang et al., 2019; Sekine et al., 2012; Chen et al., 2004). However, there is still poorly information regarding the pathogenic mechanisms driving LUAD initiation and progression. Therefore, it is important to screen novel potential markers of LUAD for predicting the prognosis of individuals with LUAD and serving as therapeutic targets.
The molecular pathogenesis of LUAD is conceptualized as a multi-step process characterized by the progressive accumulation of cellular and molecular alterations, including encompass genomic mutations, Macroautophagy/autophagy, and perturbations in cellular signaling pathways and metabolic processes (Qian et al., 2023; Chen et al., 2024; Guilbaud et al., 2023; Li et al., 2023; Cheng et al., 2025). Macroautophagy/autophagy is a degradative process in which serve as crucial regulators of cellular processes and signaling pathways that drive cancer initiation and progression, playing an indispensable role in the carcinogenic process (Lewerissa et al., 2024). It has been found that the development of lung cancer has been associated with a range of autophagy-related genes (Sharma et al., 2021). For example, low ATG5 expression reduces cell growth in RAS mutant lung cancer cell lines (Guo et al., 2011).ATG10 overexpression was associated with poor prognosis in lung cancer (Honscheid et al., 2014). While a large proportion of cancer carcinogenesis caused by autophagy-related genes was associated with mutations in genes encoding epigenetic regulatory proteins that autophagy-regulate gene expression. Recently, helicobacter pylori-induced silencing of MAP1LC3Av1 methylation has been reported to lead to impaired autophagy and promote gastric carcinogenesis (Muhammad et al., 2017). EHMT2 inhibition leads to cancer cell death via autophagy induction in lung cancer (Kim et al., 2020).
There, the above studies suggest that epigenetic-related genes associated with altered autophagy regulation play important roles in tumors and the prognosis of patients with various types of cancer. Although people are developing a growing awareness of the important of the epigenetic regulate autophagy for cancer, little research has focused on the role of these genes in the lung cancer tumour microenvironment. In recent years, the combined analysis of single-cell RNA sequencing (scRNA-seq) and RNA-seq has demonstrated higher sensitivity and accuracy in the study of disease mechanisms. Meanwhile, it has also shown greater efficiency in exploring disease mechanisms (Xie et al., 2024; Zhao et al., 2022; Deng et al., 2024). Therefore, we performed an investigation of epigenetic-related genes associated with altered autophagy regulation (A-ERGs) in LUAD based on transcriptome and single-cell sequencing data. We evaluated the expression of A-ERGs in individuals afflicted with LUAD and their potential correlations to diagnostic, prognostic, and immune infiltration outcomes. Subsequently, through an in - depth exploration of the characteristic distribution patterns of these genes within the tumor immune microenvironment, it was revealed that A- ERG is likely to modulate the oncogenesis of LUAD by mediating exhausted T cells. Two A-ERGs, KDM6B and KANSL1, were identified as potential diagnostic biomarkers for LUAD through machine learning. Our findings contribute to a better understanding of the functional role of A-ERGs in LUAD development and offer insights for the identification of new prognostic markers and therapeutic targets in LUAD.
MATERIALS AND METHODS
Acquisition and processing of RNA sequencing (RNA-seq) data
Raw RNA-seq data from 585 LUAD samples (including 58 para-cancerous tissue samples and 527 LUAD samples) and the corresponding clinical data were obtained from the Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). Additionally, other two raw RNA-seq data and clinicopathological information for patients with LUAD (GSE26939 and GSE68465) were downloaded from the GEO database. The GSE26939 expression profile consisting of 116 LUAD tumour samples were processed using the GPL9053Agilent-UNC-custom-4X44K, while the GSE68465 dataset containing 444 LUAD tumour samples were analyzed using the GPL9269 Illumina Genome Analyzer II. The scRNA-seq data of LUAD were download from the GSE131907 data, including 11 distal normal lung tissues and 11 primary LUAD tissues. The gene expression matrix files for the data from all three databases were derived from raw RNA-seq data using R software. Figure 1 provides a flowchart of the overall workflow and study design.
[image: Analysis diagram depicting a workflow from RNA and scRNA datasets to experimental verification. RNA datasets include GSE26939, TCGA, and GSE68465, focusing on shared DEGs (differentially expressed genes). Machine learning methods such as Lasso-SVM are applied to identify significant features. scRNA datasets (GSE131907) are used for cell characteristic analysis and A-ERGs signature distribution, visualized with UMAP plots. Experimental verification involves mRNA expression analysis, including KNSL1 and KDM6B expression, and correlation analysis with CD274 and PD-1. The process is illustrated through data visualizations, charts, and plots.]FIGURE 1 | The schematic diagram of this work.Differential expression gene analysis
In this study, we utilized the “limma” package (Yin et al., 2022) to identify differentially expressed genes (DEGs) within the LUAD cohort, setting thresholds of |log2FC| > 0.585 and p-value <0.05 (Mayakonda et al., 2018). To visualize the relationship between DEGs and A-ERGs, a Venn diagram was generated using Jvenn (Newman et al., 2015). For the GSE26939 and GSE68465 datasets, the R merge function was utilized to extract and combine these datasets. First, the “limma” package might implicitly assume a certain level of variance among samples during processing. Therefore, data standardization is performed when conducting differential gene analysis on different samples. Following this, we carried out data normalization and DEG screening using the “limma” package, maintaining the same thresholds of |log2FC| > 0.585 and p-value <0.05.
Functional, disease enrichment analysis and regulatory network construction
To explore the hidden biological characteristics of the shared DEGs and their complex relationships with diseases, analyses including Gene Ontology (GO) annotation and Disease Ontology (DO) assessment were executed via the “cluster profiler” package. Moreover, enrichment analyses for pathways such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways, and WikiPathways were conducted using Enrichr (https://maayanlab.cloud/Enrichr/).
Analysis of single-cell RNA sequence data
The expression matrix was normalized using the Seurat software package (version 4.3.2, accessible at https://satijalab.org/seurat/), which also allowed for the generation of scaled data by factoring in the UMI counts from each sample and the proportion of mitochondrial gene expression. Cells of insufficient quality were filtered out according to specific thresholds: <200 genes per cell, <10 cells associated with each gene, and a mitochondrial gene expression rate >15%. After this filtering process, the top 2,000 highly variable genes (HVGs) were selected for integration of the samples using the “FindVariableGenes” function, followed by principal component analysis of these HVGs carried out through the “RunPCA” function (Zou et al., 2023). To correct for batch effects, present across the various samples, the “Harmony package” was employed (Cao et al., 2023). Subsequently, we established a resolution of 1.0 to facilitate the identification of cell types across all populations, projecting the cells into a two-dimensional representation using the “RunUMAP” function. To illustrate the cell clusters, the “Dimplot” function was used (Huang et al., 2021). The “UCell” package was then utilized to compute enrichment scores for A-ERGs throughout the cell population (Andreatta and Carmona, 2021). For the identification of DEGs across various groups in same cell types, a differential expression analysis was conducted using the FindMarkers function available in Seurat. The criteria for DEG identification were defined as follows: |average fold change| ≥ 0.25 and P-value ≤0.05.
Construction of diagnostic model
We utilized a total of ten varied machine learning algorithms for integration, encompassing methods such as Least Absolute Shrinkage and Selection Operator (LASSO), Gradient Boosting Machine (GBM), Random Survival Forest (RSF), Partial Least Squares Regression for Cox (plsRcox), Stepwise Cox (StepCox), Supervised Principal Components (SuperPC), Ridge Regression, Survival Support Vector Machine (Survival-SVM), CoxBoost, and Elastic Network (Enet). An evaluation of 101 different combinations of these algorithms was conducted (Liu et al., 2022; Reel et al., 2021). Our approach followed a sequenced strategy, which included identifying prognostic factors through univariate Cox regression, creating predictive models based on the TCGA-LUAD dataset, and validating these models against additional independent datasets (GSE26939 and GSE68465). The Harrell Consistency Index (C-index) was then calculated to facilitate model selection. The optimal model was determined to be the one that achieved the highest average C-index across all datasets.
ROC curve
To thoroughly examine the diagnostic model for LUAD, we performed receiver operating characteristic (ROC) curve analyses on the gene expression datasets TCGA-LUAD cohort, using the pROC package (Robin et al., 2011). At the same time, we executed ROC curve analyses on the GSE26939 and GSE68465 datasets to evaluate the diagnostic potential of key genes related to LUAD. The area under the curve (AUC) was utilized to compare the ability of the LASSO models to diagnose LUAD with the diagnostic effectiveness of individual LUAD-associated genes.
Cell culture
Human LUAD cell lines H1975, and mouse Lewis lung carcinoma (LLC) were purchased from the American Type Culture Collection. All cell lines were cultured in DMEM (Thermo Fisher Scientific), supplemented with 10% (v/v) foetal bovine serum (FBS) and 100 μg/mL penicillin–streptomycin. All cells were maintained at 37°C and 5% CO2 in a humidified incubator.
RNA isolation and quantative PCR (qPCR)
Total RNA was extracted using the TRIzol reagent (China, shanghai; Thermo Fisher Scientific) as per the manufacturer’s protocol. A reverse Transcription kit (Takara) was used to synthesise cDNA and a SYBR Green Master Mix kit (Vazyme, Q221-01) was used to perform qPCR on the Roche LightCycler® 480II platform (Roche Diagnostics, United States). The PCR procedure was as following: 1 cycle at 95°C for 30 s, followed by 40 amplification cycles of denaturation at 95°C for 5 s and annealing extension at 60°C for 34 s. The primers used for the qPCR were listed in Table 1. The fold changes of gene expression levels were calculated using the Formula 2−ΔΔCt.
TABLE 1 | qPCR Primer of KDM6B and KANSL1.	KDM6B-F	AGA​CCT​CAC​CAT​CAG​CCA​CTG​T
	KDM6B-R	TCT​TGG​GTT​TCA​CAG​ACT​GGG​C
	KANSL1-F	TGC​CAT​GCA​GTC​TGT​CAG​ATC​C
	KANSL1-R	CAA​GTA​GCT​CGG​ACT​GCT​CAT​G


Western blotting
A total of 10 μg cell lysates were resuspended with 5 × SDS loading buffer and subsequently incubated at 100°C for 5 min. After centrifugation, the supernatants were separated by a SDS-PAGE and transferred onto a PVDF membrane (Millipore). The proteins-imprinted membranes were blocked with 5% bovine serum albumin for 1 h and incubated with the corresponding primary antibodies at 4°C overnight. After washed thrice, the membranes were incubated with horseradish peroxidase-coupled secondary antibodies for 1 h at room temperature, each membrane was scanned using a Tanon 4500 imaging system (Shanghai, China).
RNA interference
mRNA mimics and negative control (NC) were designed and purchased from GenePharmach Company (shanghai, China). Transient transfections of these mimics into LLC, A549, and H1975 cells were performed with the INTERFERin® Transfection Reagent (Polyplus Transfection) at a final concentration of 20 nM, according to the manufacturer’s instructions. Cells were harvested 48 h after transfection for qPCR and Western blotting analyses.
Statistical analysis
Statistical analyses were performed with GraphPad Prism 8.0 software. The differences between two groups were analyzed by unpaired Student’s t-test, and differences among multiple groups were analyzed by one-way or two-way ANOVA followed by the Tukey test. The log-rank test was used for survival analysis, and the Spearman rank-order correlation test was used for Pearson correlation analysis. A difference was considered significant if the p value was <0.05.
RESULTS
Identification of differentially expressedA-ERGs in LUAD samples
The literature search (Lewerissa et al., 2024) identified a total of 20 epigenetic genes that regulate autophagy (A-ERGs), including Histone modifiers (EZH2, SETD2, KAT8, KANSL1, KDM6A, KDM6B, PHF8, SETD1A, KMT2A, KDM3B, EHMT1 and KDM1A), DNA methyltransferases (DNMT3 and MECP2), Chromatin remodelers (ADNP, YY1 and YY1AP1) and Cytoplasmic protein modifiers (EP300, EHMT1 and SETD2). Using the R package limma, we analyzed the DEGs in TCGA-LUAD cohort, and found that most of these genes showed significant differences in lung cancer tissues (Figures 2A,B). Next, we visualized the differential expression of these A-ERGs in normal and lung cancer samples using boxplots. The results showed that there are genes with different expression trends among these A-ERGs. For example, the EZH2, KDM1A, KANSL1, KDM6B, and KAT8 genes are upregulated in lung cancer patients, while EP300, MECP2, and SETD2 are downregulated in lung cancer (Figure 2C). Considering the important biological functions of these genes in tumorigenesis and development, we systematically studied the relationships between these regulatory factors and the pathological characteristics of lung cancer. The results showed that most genes, including SETD2, KAT8, KANSL1, KDM6B, PHF8, SETD1A, KDMT2A, KDM3B, DNMT3A, CHD6, CHD2, YY1, YY1AP1 and KDM1A were significantly correlated with the grading of lung cancer patients (Figure 2D). Subsequently, we further analyzed the expression levels of these genes in lung cancer tissues using other external validation datasets (GSE68465 and GSE26939). Consistent with the previous results, most genes showed significant differences in lung cancer (Figures 2E,F). Therefore, these data indicate that these A-EGRs may play an important role in the process of lung cancer development.
[image: A series of biological data visualizations showing gene expression analysis. Panel A displays a volcano plot ranking differentially expressed genes (DEG) with markers for significance. Panel B is a Venn diagram indicating overlap between TCGA-DEGs and A-ERGs, highlighting KANSL1 and KDM6B. Panels C and D present box plots comparing gene expression in different sample types and stages, respectively, using statistical annotations. Panel E shows another volcano plot with highlighted significant DEGs. Panel F includes box plots comparing gene expressions between normal (N) and tumor (T) types across various genes.]FIGURE 2 | Identification of differentially expressedA-ERGs between normal and LUAD samples. (A) Waterfall plot of DEGs between normal and LUAD in TCGA dataset. Red and yellow represent the magnitude of the p-value. (B) The Venn diagrams illustrate the common genes between DEGs and A-ERGs. (C) The expression of these 19 A-ERGs between normal tissues and LUAD tissues in TCGA dataset. Red, tumor sample; blue, normal sample.(D) The expression analysis of 19 A-ERGs in different stages of LUAD. (E) Waterfall plot illustrate the DEGs between normal and LUAD in GSE26939 and GSE68465 datasets. (F) The expression of these 19 A-ERGs between normal tissues and LUAD tissues in GSE26939 and GSE68465 datasets.GO, DO, and pathway enrichment of the differentially expressedA-ERGs
To reveal the potential biological processes, molecular functions, and related diseases of these differentially expressed A-ERGs, we explored the enriched pathways of these differentially expressedA-ERGs in two databases (KEGG and Wikipathway). Pathway enrichment analysis showed that these genes were significantly involved in the PI3K-AKT signaling pathway, JAK-STAT signaling pathway, TNF signaling pathway, p53 signaling pathway, TGF-beta signaling pathway, PPAR signaling pathway, ECM-receptor interaction and Notch signaling pathway (Supplementary Figures S1A, S1B). These data indicate that these genes are mainly involved in immune-related signaling pathways. Meanwhile, the DO analysis revealed that these A-ERGs were markedly enriched in lung disease, immune disease, lung cancer, obesity, endocrine system disease and stomach cancer (Supplementary Figure S1C).
High expression of the A-ERGs in T cells of LUAD patients
To deeply explore these A-ERGs’expression profiles across different cell types in LUAD, we performed scRNA-seq analysis. A total of 63,314 cells were analyzed from the 22 samples (including 11 patients with LUAD, and 11 healthy controls), 24 clusters were found among the cells using a graph-based clustering technique coupled with the uniform manifold approximation and projection (UMAP) dimensionality reduction method (Figure 3A). We then identified 8 cell types based on the classical markers (Figures 3B,C; Supplementary Figures S2A, S2B), including B cells, T cells, Endothelial cells, Epithelial cells, Fibroblasts, Mast cells, Tumour-associated macrophages (TAM), and natural killer (NK) cells. We observed a significant increase in the proportion of B cells among LUAD patients when compared to healthy controls (Figure 3D; Supplementary Figure S2C). Conversely, the proportions of TAM cells and NK cells were reduced in the LUAD cohort (Figure 3D; Supplementary Figure S2C). To deeply investigate these A-ERGs expression in these cells, we utilized the “UCell” package to assess module scores based on 19 A-ERGs. In LUAD patients, T cells demonstrated the highest module scores, aligning with heatmap data that emphasized their elevated expression of these A-ERGs (Figures 3E,F). In addition, we also assessed the expression levels of these A-ERGs in T cells across all samples and found that, compared to the control group, the expression of most A-ERGs was consistently higher in the lung cancer group, except for KDM3B, EP300, MECP2, and KDM6A (Figure 3G). These findings suggest that the activity of these A-ERGs in T cells may be associated with the development of LUAD and the dysfunction of T cells in the tumor micro-environment.
[image: Multifaceted scientific visualization consisting of seven panels: A and C show UMAP plots of cell clusters in various colors, labeled with cell identities. B features a dot plot displaying average expression and percent expressed across different cell types. D contains bar graphs comparing the proportions of various cell types between normal and tumor samples, with statistical significance indicated. E highlights a heatmap of gene expression profiles across cell types. F presents a UMAP with a signature score gradient from negative to positive. G includes a heatmap comparing gene expression between normal and tumor samples.]FIGURE 3 | Immunological characterization of differentially expressed A-ERGs in the single cell atlas of LUAD patients. (A) UMAP display of the clusters of immune cells in LAUD patients. (B) The dot plot presents the annotation markers pertaining to the cell clusters. (C) UMAP plots showing the main cell types of LUAD samples. (D) Comparison of cell type proportions between normal and tumor groups. (E) Heatmap visualization of the expression patterns of these differentially expressed A-ERGs in each cell type. (F) Module score distribution in UMAP space for these differentially expressed A-ERGs modules was evaluated using “UCell” in different cell types. (G) Heatmap visualization of the expression patterns of these differentially expressed A-ERGs in different cell subgroups. *p < 0.05; **p < 0.01; ***p < 0.01; ns, not significant.Increased proportion and A-ERGs expression in exhausted CD8+T in LUAD patients
To further elucidate the influence of these A-ERGs on T cells in patients with LUAD, we conducted a subpopulation analysis of T cells, examining the distribution of upregulated A-ERGs across T cell subgroups. Using UMAP analysis, T cell profiles were categorized into 19 distinct cellular clusters (Figure 4A). This clustering revealed four primary cell types, including CD4+T cells, Effected Memory CD8+T monocytes, GZMA+CD8+T cells and Exhausted CD8+ T cells, identified through classical markers (Figures 4B,C). Concurrently, we measured the variations in proportions of these cell types, finding a decrease in the number of CD8+ T cells among LUAD patients and a notable rise in the proportion of exhausted CD8+T cells (Figures 4D,E). Conversely, the proportions of GZMA+CD8+T cells were reduced in the LUAD cohort (Figures 4D,E). Following this, we utilized the “UCell” software package to assess the module scores of the 16 upregulated A-ERGs across different cell types. The analysis revealed that exhausted CD8+T cells in the LUAD cohort exhibited the highest module scores, as visualized through UMAP, significantly surpassing those in the control group (Figure 4F). Moreover, heatmap analysis further confirmed that these A-ERGs were predominantly enriched in exhausted CD8+T cells, displaying elevated expression levels in LUAD patients (Figures 4G,H). Collectively, these findings indicate that A-ERGs are highly expressed in depleted T cells of LUAD patients and may play a role in exacerbating the state of these patients by driving T cell dysfunction.
[image: A multi-panel scientific figure analyzing T cell populations. Panel A shows a UMAP plot with various T cell clusters differentiated by color. Panel B presents a dot plot depicting gene expression levels across different T cell types. Panel C displays another UMAP plot focused on specific T cell subtypes. Panel D is a stacked bar chart showing cell ratios of different T cell populations in normal versus tumor samples. Panel E contains bar graphs comparing T cell proportions in normal and tumor conditions, with significance markers. Panel F features a UMAP plot with a signature score gradient. Panels G and H are heatmaps showing gene expression correlations with T cell subtypes.]FIGURE 4 | ScRNA-seq reveals the immunological properties of differentially expressed A-ERGs in T cell subgroups. (A) UMAP plot showing each cluster of T cell subgroups, coloured by different clusters. (B) A dot plot visualization the expression of marker genes in different clusters. (C) The UMAP plot shows each cell type of T cell subgroups, colored by different cell types. (D) The Bar chart shows the relative frequency of each subgroup of T cells in different groups. (E) Comparison of each subgroup of T cells in different groups. (F) The distribution of module scores of differentially expressed A-ERGs modules in the UMAP space was evaluated in different cell types. (G) The heatmap illustrates the expression distribution of these differentially expressed A-ERGs within each subpopulation of T cells. (H) Heatmap visualization of the expression patterns of these differentially expressed A-ERGs in different cell subgroups. **p < 0.01; ***p < 0.01; ns, not significant.Identification of biomarkers for LUAD by machine learning
To develop a robust predictive model, we utilized selected genes as input features and assessed ten machine learning methodologies: Random Survival Forest (RSF), Elastic Net (Enet), stepwise Cox regression, CoxBoost, Partial Least Squares Regression for Cox (plsRcox), Lasso regression, Ridge regression, SuperPC, Gradient Boosting Machine (GBM), and survival-support vector machine (survival-SVM). Utilizing the TCGA-LUAD dataset as our test dataset, along with other external validation datasets (GSE26939 and GSE68465), we compared the concordance index (C-index) of these models. Among them, RSF emerged as the leading model, demonstrating superior C-index performance (Figure 5A). An optimal diagnostic signature was constructed using a combination of Lasso and SVM-RFE algorithms (Figures 5B–E). We subsequently validated the model through Receiver Operating Characteristic (ROC) analysis. For the training TCGA cohort, the Area under the curve (AUC) was 0.993 (Supplementary Figures S3A, S3C); the test datasets GSE68465 exhibited AUCs of 0.838 (Supplementary Figures S3B, S3D), respectively. Meanwhile, for the training cohort of LUAD patients, the area under the curve (AUC) exceeded 0.96, 0.93 and 0.95 for the 1-year, 2-year, and 3-year separately (Figure 5F). The test GSE6846 dataset, exhibited AUC values of 0.97, 0.96, and 0.98 at the 1-year, 2-year, and 3-year time points (Figure 5G). Subsequently, KDM6B, and KANSL1 as the top two important features among these A-ERGs via these two algorithms (Figure 5H). These observations indicate that KDM6B and KANSL1 possess significant diagnostic value in the pathological process of aggravated lung cancer.
[image: Table and graphs analyzing gene selection methods for cancer datasets. Table A shows methods and their AUC values. Graph B plots binomial deviance against Log(λ). Graph C shows Lasso paths. Graphs D and E depict 10x CV accuracy/error by feature number. Graphs F and G present ROC curves for TCGA and GEO datasets. Chart H compares list sizes, and the Venn diagram highlights shared genes (KDM6B, KANSL1) between methods.]FIGURE 5 | Candidate diagnostic biomarkers for LUAD are being screened by machine learning. (A) The C-index of multiple models derived from combinations of different machine learning algorithms in three cohorts (TCGA dataset, GSE68465 and GSE26939). (B) When performing LASSO regression on the predictive genes, the plot clearly illustrates the Lasso coefficients for each gene in association with the logarithmically scaled λ (lambda) value. (C) Mean Square Error (MSE) penalty plot obtained through cross - validation for the Lasso model. (D,E) Feature genes screening using the Support Vector Machine - Recursive Feature Elimination (SVM - RFE) algorithm. (F,G) ROC curve analysis of the C index of the Lasso joint SVM over time at 1-year, 2-years and 3-years survival in the training cohorts. (H) A Venn diagram shows that two candidate diagnostic genes are recognized through the two algorithms.Validation of KANSL1, KDM6B expression in different lung cancer cell lines
To explore the mRNA expression levels of KDM6B and KANSL1, we consulted datasets from healthy individuals as well as patients with LUAD. The expression level of these two genes were significantly upregulated in patients compared with controls (Figure 6A). Additionally, the ROC analysis confirmed that the expression of KDM6B, and KANSL1 were of great diagnostic value in LUAD patients (Figure 6B). Meanwhile, additional datasets (GSE26939 and GSE68465 and GSE118370) further confirmed the high expression of these two genes in LUAD patients (Figures 6C,D; Supplementary Figures S4A, S4B). Subsequently, the prognostic value of these two genes was further evaluated, and it was found that the high expression of these two genes was significantly associated with the poor prognosis of lung cancer (Figure 6E). Besides,the results of single-cell transcriptome analysis also showed that these two genes are highly expressed in CD8+T cells of LUAD patients (Figures 6F,G). In addition, human A549 LUAD cells, and mouse LLC LUAD cells had notably higher mRNA and protein levels of KDM6B, and KANSL1 than normal pulmonary epithelial cells (Figures 6H,I). We therefore infer that these two genes play an essential role in the occurrence and development of LUAD. To further explore the potential biological functions of these two genes in LUAD, we conducted GSEA enrichment analysis at the transcriptomic level. In the LUAD cohort, the GSEA enrichment analysis of KDM6B highlighted seven activated KEGG gene sets and three repressed KEGG gene sets, with the JAK-STAT. TGF-beta signaling pathway, B cell receptor signaling pathway, p53 signaling pathway and Toll like receptor signaling pathways significantly upregulated, while the T cell receptor signaling pathway and Steroid hormone biosynthesis was downregulated (Figure 6J). Remarkably, the GSEA enrichment analysis results for KANSL1 demonstrated that seven pathways—the Vegf signaling pathway, B cell receptor signaling pathway, Toll like receptor signaling pathway and JAK-STAT signaling pathwa, were enriched and significantly upregulated in LUAD cohorts (Figure 6K). These overlapping pathways indicate that KDM6B and KANSL1 might facilitate the development of LUAD via comparable pathological mechanisms.
[image: The image features several panels depicting various analyses related to KDM6B and KANSL1 gene expression. Panels A and C show violin plots indicating higher mRNA expression in tumors compared to normal tissues. Panels B and D display ROC curves with AUC values indicating diagnostic performance. Panel E presents survival analysis curves for KANSL1 and KDM6B. Panels F and G show UMAP plots illustrating clustering differences between normal and tumor samples. Panels H and I contain bar graphs alongside immunoblot images showing protein expression in different cell lines. Panels J and K display bubble plots for GSEA analyses related to specific pathways in a LUAD cohort.]FIGURE 6 | Real-Time qPCR Confirms Elevated KDM6B and KSNSL1 mRNA Levels in LUAD cells. (A,C) The difference in mRNA expression levels of KSNSL1 and KDM6B in LUAD patients, based on datasets TCGA and GSE68465. (B,D) ROC curve analysis of KSNSL1 and KDM6B in LUAD patients in TCGA and GSE68465. (E) Survival analysis of these two A-ERGs in the TCGA dataset. (F,G) UMAP plot showing the expression levels of KSNSL1 and KDM6B in different cell types. (H,I) The results of the qPCR and Western blot confirmed the mRNA and protein levels of BCL2A1 and CEBPB in LUAD cells. (J,K) GSEA function enrichment analysis of KSNSL1 and KDM6B in LUAD patients. ***p < 0.001.Systematic immune characteristics of KANSL1and KDM6B in LUAD patients
The above single-cell study showed that exhausted CD8+T cells in LUAD patients increased significantly. To further investigate whether these two prognostic markers are associated with T-cell infiltration in the pathogenesis of LUAD, we conducted a Pearson correlation analysis between these two genes (KDM6B and KANSL1) and immune cells. Consistent with the single-cell results, in the LUAD group, the infiltration level of CD8+T cells decreased significantly, while that of M2 macrophages increased significantly (Supplementary Figures S5A, S5B). Meanwhile, functional analysis further demonstrated that the functions of CD8+T cell infiltration and the cytolytic activity significantly decreased in the LUAD group as well (Supplementary Figure S5C). Besides, the survival analysis showed that the decrease in the number and function of T cells was significantly associated with the poor prognosis of LUAD (Supplementary Figure S5D). Notably, in line with the single-cell results, the expressions of KDM6B and KANSL1 are significantly negatively correlated with CD8+T cells and Gamma delta+ T cells in LUAD (Supplementary Figure S5E) and are significantly positively correlated with the expression of PD-L1 (Figures 7A,B). To further clarify the impact of these two genes on the function of T cells, we conducted in vitro cell experiments. The results showed that the increased expression levels of KDM6B and KANSL1 significantly increased the proportion of exhausted CD8+T cells (Figures 7C–E). Thus, the above results suggested that these two genes may promote the progression of LUAD through riving T cell dysfunction.
[image: Scatter plots (A, B) show correlations between CD274 and KDM6B/KANSL1 in TCGA and GSE68465 cohorts. A Western blot (C) compares Ctrl and Mimic groups for KANSL1, KDM6B, and GAPDH. Bar graph illustrates significant increase in Kansl1 mRNA in Mimics. Flow cytometry plots (D, E) and bar graphs show increased PD-1+Tim3+ CD8+ cells in Mimics compared to Ctrl.]FIGURE 7 | KDM6B and KANSL1 induce the exhaustion of CD8+ T cells. (A,B) Correlation analysis between PD-L1(CD274) and KDM6B and KANSL1 in LUAD, based on TCGA cohort and GEO cohort. (C) Detect the expression levels of KDM6B and KANSL1 genes and proteins after treatment with mimics by qPCR and Western blot. (D) After the overexpression of KDM6B and KANSL1, perform flow cytometric analysis in vitro to determine the proportion of exhausted CD8+T cells.DICUSSION
LUAD is a highly heterogeneous and invasive disease with a low overall survival rate, and it is prone to tumour recurrence and metastasis after treatment. The occurrence of lung cancer is closely related to a series of genetic alterations (Denisenko et al., 2018; Shi et al., 2016). In recent years, with the continuous development of sequencing technologies and bioinformatics, molecular diagnosis and molecular therapy have gradually attracted increasing attention in the field of oncology. Autophagy is a highly conserved catabolic pathway, which plays a crucial role in maintaining the stability of the intracellular environment. Alterations in autophagy-related genes are associated with the prevalence and progression of lung cancer (Mizushima and Komatsu, 2011; Kroemer et al., 2010). Clinical studies have shown that the overexpression of p62 is related to the overall survival of lung cancer patients (Wang et al., 2019). In addition, in the mouse model bearing lung cancer, inhibiting caspase-3 and upregulating autophagy via mTOR can enhance the efficacy of radiotherapy (Li et al., 2019). The precise transcription of genes involved in autophagy is regulated by a network of epigenetic factors. Epigenetics is generally regarded as the heritable variation in gene expression or phenotype, rather than changes in the DNA sequence. The transcription factor Forkhead box O3 (FOXO3) and the surface marker CD47 can both regulate the occurrence of autophagy (Wang et al., 2016; Li et al., 2018). It has been reported that aberrantly expressed HDAC8 promotes the occurrence of oral squamous cell carcinoma by activating caspase - induced apoptotic cell death and promoting autophagy (Ahn and Yoon, 2017a). Silencing of HDAC7 inhibits salivary mucinous epidermoid carcinoma cytogenesis by inducing apoptosis and autophagy (Ahn and Yoon, 2017b). Lysine specific demethylase 1 (LSD1) plays an important role in the treatment of neuroblastoma and acute myeloid leukemia (AML) by mediating p62 expression (He et al., 2020). Although there is a growing awareness of the importance of epigenetic regulation of autophagy in cancer, the role of these autophagy - related epigenetic genes in lung cancer, especially in the tumor microenvironment, remains unclear.
In this study, we developed a multi-omics approach integrating transcriptomics, scRNA-seq, and machine learning to investigate the expression profiles of DEGs related to the epigenetic regulation of autophagy-related genes (A-ERGs) in LUAD. We also determined the roles of potential molecular targets in the immune microenvironment of lung cancer and their potential associations with the occurrence of the disease. Here, we identified the DEGs in the A-ERGs that are significantly expressed in LUAD and discovered the biological functions of these DEGs in the pathogenesis of LUAD. Interestingly, these A-ERGs are significantly enriched in PI3K-AKT signaling pathway, JAK-STAT signaling pathway, TNF signalling pathway, p53 signalling pathway, TGF-beta signalling pathway, PPAR signalling pathway, ECM-receptor interaction and Notch signaling pathway.
To determine the expression landscape of these A-REGs in different immune cells, we further investigated the characterization of the single-cell profiles of LUAD samples. We found that, compared with the control group, the numbers of B cells, epithelial cells, and tumor-associated macrophages in tumor cells increased significantly, while the number of natural killer (NK) cells decreased significantly. There was no obvious difference in the number of T cells between two groups. Surprisingly, most of the A-ERGs are enriched in T cells, and their expression levels are higher than those in the control group. The changes in the activity of T cells play an important role in tumor progression. Therefore, we can infer that these hub genes may be involved in the occurrence of tumors by regulating the function of T cells. To further analyze the potential mechanisms of these A-ERGs in the function of T cells, we further studied the cellular profile characteristics of T cell subsets in LUAD. We emphasize that in LUAD, the number of exhausted CD8+T cells has significantly increased, while the number of effectors CD8+T cells has significantly decreased. The spatiotemporal exhaustion of cytotoxic CD8+ T cells within the tumor microenvironment (TME) promotes tumor escape (Song et al., 2022). Inhibitory molecules such as cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) exist in cytotoxic CD8+T cells within the tumor microenvironment (TME), leading to poor clinical prognosis in LUAD patients (Zhang et al., 2021). Interestingly, we found that these A-ERGs were mainly enriched in exhausted CD8+T cells of LUAD patients. In patients with LUAD, the response of CD8+T exhausted cells may be the main cause of the progression of LUAD. Therefore, we infer that these A-ERGs may promote the transformation of T cells into exhausted T cells, thereby triggering tumor immune escape.
We then used LASSO regression and SVM-RFE machine learning to screen out two A-ERGs as candidate biomarkers for LUAD. KDM6B and KANSL1 were identified as potential biomarkers with diagnostic value for LUAD. Two genes are significantly upregulated in human LUAD disease. Lysine-specific demethylase 6B (KDM6B), is a key histone demethylase in various normal and pathological processes such as inflammation, development, aging, and cancer (Salminen et al., 2014).High levels of KDM6B have been confirmed to regulate tumor progression by mediating cell proliferation, migration, and senescence (Cheng et al., 2025; Xun et al., 2021). TGF-β (transforming growth factor β1) is an inducer of EMT (epithelial-mesenchymal transition) and tumor metastasis. Knocking down KDM6B can inhibit the invasion of breast cancer cells by suppressing TGF-β-induced EMT (Ramad et al., 2020). Another study has also confirmed that in glioblastoma cell lines, KDM6B is involved in cell proliferation, migration, and invasion by inducing the expression of SNAI1 (Salminen et al., 2014).In addition, the deletion of Kdm6b enhances antigen presentation, interferon response, and the efficacy of ICI (immune checkpoint inhibitor) immunotherapy in myeloid cells by suppressing immunosuppressive mediators, including Mafb, Socs3, and Sirpa (Goswami et al., 2023). KAT8 regulatory NSL complex subunit 1(KANSL1), encodes a widely expressed nuclear protein, which is a member of the non-specific lethal (NSL) complex and is in the q21.31 region of chromosome 17 (Dingemans et al., 2021). KANSL1 has been confirmed to be essential for the acetylation of p53 at lysine 120 (K120), thereby regulating the transcriptional activation of p53 target genes, which is an important activator in tumorigenesis and metastasis (Li et al., 2009). The KANSL1 gene encodes a nuclear protein involved in chromatin modification and has been reported and confirmed to be a cancer driver gene participating in epigenetic modification (Chang et al., 2019). Besides, KANSL1 is amplified and rearranged in ovarian cancer, and the overexpression of its mRNA is a highly predictive indicator of poor prognosis (Fejzo et al., 2021). Interestingly, high expression of KANSL1 can lead to a shift in the mRNA expression of immune response gene sets from high to low levels, promoting tumor immune escape and thus facilitating tumor progression (Fejzo et al., 2021). Here, our research findings reveal the significant overexpression of SOCS3 and FPR2 in the test set and validation set of patients with LUAD, as well as in mouse tumor cell lines, and these two genes are significantly enriched in exhausted T cells. To further elucidate the potential biological functions of KDM6B and KANSL1, we conducted a comprehensive Gene Set Enrichment Analysis (GSEA) at the transcriptome level. Surprisingly, the pathways in which these two genes are enriched exhibit a considerable overlap in patients with LUAD, such as Toll like receptor signaling pathway and JAK-STAT signalling pathway. Subsequently, in vitro experiments of CD8+T cells, it was found that, compared with the control group, these two genes significantly promoted the exhaustion of CD8+T cells. This suggests that these two genes may play an important role in the process of immune escape in LUAD. Although our study contributes to a deeper understanding of the roles and potential mechanisms of A-ERGs in LUAD, it also has some limitations. Firstly, our reliance on publicly available datasets may not fully capture the heterogeneity of different samples. Our findings are mainly based on bioinformatics analysis, which requires further experiments and validation with more clinical samples. Finally, while our study highlights the potential biological functions and related associations, the specific molecular mechanisms remain to be elucidated and verified.
CONCLUSION
Our study, for the first time, adopted an analytical approach combining transcriptomics, single-cell transcriptomics, and cell experiments to explore the roles of A-ERGs in the occurrence and development of LUAD and their underlying molecular mechanisms. This research demonstrated that A-ERGs may regulate the occurrence of LUAD by mediating exhausted T cells, and analyzed two hub genes, namely KANSL1 and KDM6B, as diagnostic biomarkers for LUAD, thus providing new strategies and targets for potential therapies that could block the occurrence and metastasis of LUAD in the future.
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System organ class Enasidenib (N = 2,776) Ivosidenib (N = 1,296)
Blood and lymphatic system disorders 152 (5.5%) 106 (8:2%)
Cardiac disorders 51 (1.8%) 53 (4.1%)
Congenital familial and genetic disorders 2(0.1%) 6 (0.5%)
Ear and labyrinth disorders 11 (0.4%) 13 (1.0%)
Endocrine disorders 2 (0.1%) 3(0.2%)
Eye disorders 21 (0.8%) 23 (1.8%)
Gastrointestinal disorders 394 (142%) 291 (22.5%)
General disorders and administration site conditions 1,135 (40.9%) 502 (38.7%)
Hepatobiliary disorders 53 (1.9%) 21 (1.6%)
Immune system disorders 26 (0.9%) 13 (1.0%)
Infections and infestations 303 (10.9%) 129 (10.0%)
Injury poisoning and procedural complications 261 (9.4%) 663 (51.2%)
Investigations 493 (17.8%) 310 (23.9%)
Metabolism and nutrition disorders 147 (5.3%) 81 (6.3%)
Musculoskeletal and connective tissue disorders 125 (4.5%) 120 (9.3%)
Neoplasms benign malignant and unspecified incl cysts and polyps 321 (11.6%) 131 (10.1%)
Nervous system disorders 232 (8.4%) 176 (13.6%)
Pregnancy puerperium and perinatal conditions 2 (0.1%) 1(0.1%)
Product issues 13 (1.0%)
Psychiatric disorders 70 (25%) 56 (4.3%)
Renal and urinary disorders 64 (2.3%) 31 (2.4%)
Reproductive system and breast disorders 2(0.1%) 5 (0.4%)
Respiratory thoracic and mediastinal disorders 155 (5.6%) 98 (7.6%)
Skin and subcutancous tissue disorders 129 (4.6%) 104 (3.4%)
Social circumstances 4 (0.1%) 9 (0.3%)
Surgical and medical procedures 91 (33%) 45 (15%)
Vascular disorders 54 (1.9%) 24 (0.8%)
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2017 1 (0.1%)
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2021 479 (17.3%) 496 (38.3%)
» 2022 sz 76 (5.9%)
2023 | 323 (11.6%) | 15004%)
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System organ classes

Lymphadenopathy, Leukocytosis, Pancytopenia, Thrombocytopenia, Blood disorder

Blood and lymphatic system disorders Cytopenia, Febrile neutropenia, Neutropenia, Anaemia, Haematotoxicity, Hyperleukocytosis, 1
Lymphadenopathy, Leukocytosis, Pancytopenia, Thrombocytopenia, Blood disorder
Cardiac disorders Cardiac failure congestive, Cardiac failure, Cardiac disorder, Atrial fibrillation, Palpitations, 6
Myocardial infarction
Congenital, familial and genetic disorders
Ear and labyrinth disorders Tinnitus, Hypoacusis 2
Endocrine disorders
Eye disorders Visual impairment, Vision blurred, Eye disorder 3
Gastrointestinal disorders Abdominal distension, Abdominal pain, Gastrooesophageal reflux disease, Vomiting, Dyspepsia, 14
Dysphagia, Gastrointestinal disorder, Nausea, Constipation, Abdominal discomfort, Diarrhoea,
Abdominal pain upper, Flatulence, Dry mouth, Stomatitis
General disorders and administration site conditions  Peripheral swelling, Disease progression, Drug ineffective, Feeling abnormal, General physical health 13
deterioration, Therapy non-responder, Drug intolerance, Asthenia, Death, Pyrexia, Malaise, Fatigue,
Pain
Hepatobiliary disorders Gallbladder disorder, Jaundice, Hyperbilirubinaemia 3
Immune system disorders Graft versus host disease, Hypersensitivity 2
Infections and infestations Nasopharyngitis, Upper respiratory tract infection, Pneumonia, Sinusitis, Sepsis, Urinary tract 1
infection, Localised infection, Infection, Influenza, Bacteraemia, COVID-19
Injury, poisoning and procedural complications Product dose omission issue, Fall, Contusion, Off label use 4
Investigations Blast cell count increased, Platelet count decreased, Haemoglobin abnormal, White blood cell count 14
increased, Full blood count abnormal, Haemoglobin decreased, Red blood cell count decreased,
Weight decreased, Laboratory test abnormal, Weight increased, White blood cell count decreased,
Platelet count abnormal, White blood cell count abnormal, Blood potassium decreased
Metabolism and nutrition disorders Gout, Fluid retention, Dehydration, Decreased appetite, Tumour lysis syndrome 5
Musculoskeletal and connective tissue disorders Pain in extremity, Musculoskeletal stiffess, Arthropathy, Muscle spasms, Myalgia, Arthralgia, 13
Musculoskeletal pain, Bone pain, Back pain, Muscular weakness, Arthritis, Joint swelling, Back
disorder
Neoplasms benign, malignant and unspecified (incl cysts ~ Acute myeloid leukaemia recurrent, Differentiation syndrome, Acute myeloid leukaemia, 7
and polyps) Cholangiocarcinoma, Neoplasm malignant, Leukaemia recurrent, Malignant neoplasm progression
Nervous system disorders Memory impairment, Hypoaesthesia, Paracsthesia, Neuropathy peripheral, Headache, Lethargy, Loss 2
of consciousness, Seizure, Hypersomnia, Somnolence, Balance disorder, Dizziness
Pregnancy, puerperium and perinatal conditions
Psychiatric disorders Insomnia, Confusional state, Anxiety, Depression, Sleep disorder, Depressed mood 6
Renal and urinary disorders Nephrolithiasis, Renal failure, Acute kidney injury, Chromaturia, Renal impairment, Renal disorder 6
Reproductive system and breast disorders
Respiratory, thoracic and mediastinal disorders Sinus disorder, Haemoptysis, Nasal congestion, Pulmonary oedema, Pleural effusion, Hypoxia, n
Epistaxis, Oropharyngeal pain, Respiratory failure, Cough, Dyspnoea
Skin and subcutaneous tissue disorders Rash erythematous, Skin exfoliation, Pruritus, Dry skin, Urticaria, Rash, Erythema, Rash pruritic, 10
Alopecia, Night sweats
Social circumstances Loss of personal independence in daily activities 1
Surgical and medical procedures Hospitalisation 1
Vascular disorders “Thrombosis, Hypotension, Haemorrhage 3
Blood and lymphatic system disorders Cytopenia, Febrile neutropenia, Neutropenia, Anaemia, Haematotoxicity, Hyperleukocytosis, n
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System an classes

Blood and lymphatic system disorders

Cardiac disorders

Congenital, familial and genetic
disorders

Ear and labyrinth disorders
Endocrine disorders

Eye disorders

Gastrointestinal disorders

General disorders and administration
site conditions

Hepatobiliary disorders

Immune system disorders

Infections and infestations

Injury, poisoning and procedural
complications,

Investigations

Metabolism and nutrition disorders

Musculoskeletal and connective tissue
disorders

Neoplasms benign, malignant and
unspecified (incl cysts and polyps)

Nervous system disorders

Enasidenib

Leukopenia, Disseminated intravascular coagulation,
‘Thrombocytosis, Platelet disorder, Bone marrow failure, Bone
marrow disorder, White blood cell disorder

Cardiac arrest

Frequent bowel movements, Oral pain, Gastrointestinal
haemorrhage, Gastrointestinal pain

Multiple organ dysfunction syndrome, § welling, lliness, Adverse
drug reaction, Ocdema peripheral, Unevaluable event, Adverse
event.

Liver disorder, Hepatotoxicity, Cholestasis, Hepatic cytolysis

Immunodeficiency, Drug hypersensitivity, Seasonal allergy, Graft
versus host disease in skin

Clostridium difficile infection, Herpes zoster, Septic shock, Viral
infection, Bronchitis, Staphylococeal infection, Coronavirus
infection, COVID-19 pneumonia, Pneumonia fungal

Hip fracture, Subdural haematoma, Head injury, Intentional
product use issue, Product use in unapproved indication,
“Transfusion reaction

Neutrophil count decreased, Neutrophil count abnormal, Eastern
cooperative oncology group performance status worsened, Blood
bilirubin increased, Liver function test increased, Full blood
count decreased

Myositis

Leukaemia, Acute myeloid leukaemia refractory, Myelodysplastic
syndrome

Cognitive disorder, Taste disorder, Dysgeusia, Ageusia, Amnesia,
Cerebral haemorrhage, Cerebrovascular accident, Dementia

Pregnancy, puerperium and perinatal conditions

Product issues

Psychiatric disorders

Renal and urinary disorders
Reproductive system and breast

disorders

Respiratory, thoracic and mediastinal
disorders

Eating disorder

Pollakiuria

Lung disorder, Rhinorrhoea, Upper-airway cough syndrome,
Pulmonary mass, Chronic obstructive pulmonary disease

Acute febrile neutrophilic dermatosis, Skin lesion, Skin disorder

Skin and subcutaneous tissue disorders

Neutrophilia

Pericarditis, Acute myocardial infarction, Tachycardia,
Bradycardia, Myopericarditis, Archythmia

Janus kinase 2 mutation, Isocitrate dehydrogenase gene mutation

Middle ear effusion, Vertigo

Cataract, Dry eye, Diplopia, Photophobia

Faeces discoloured, Chapped lips, Bowel movement irregularity,
Ascites, Retching

Treatment noncompliance, Therapeutic response unexpected,
Chills, Decreased activity, Chest pain, Drug interaction, Drug
ineffective for unapproved indication

Hepatic pain, Hepatic failure, Pseudocirrhosis

Fungal infection, Fungaemia, Pneumonia parainfluenzae viral,
Bronchopulmonary aspergillosis, Pharyngitis, Bacterial infection,
Oral herpes, Cystitis, Diverticulitis

Contraindicated product administered, Product use issue,
Product administration error, Product dose omission in error,
Product administration interrupted, Arthropod bite, Wrong
technique in product usage process, Muscle strain, Toxicity to
various agents, Extra dose administered, Prescribed underdose,
Incorrect dose administered, Inappropriate schedule of product
administration, Underdose, Intentional underdose, Product use
complaint

Electrocardiogram abnormal, Electrocardiogram qt prolonged,
Heart rate increased, Blood test abnormal, Blood pressure
increased, Red blood cell count abnormal

Hypokalaemia, Hyponatraemia, Malnutrition, Hyperkalaemia,
Lactose intolerance, Hypophosphataemia, Increased appetite,
Hypomagnesaemia

Mobility decreased, Musculoskeletal discomfort, Muscle
twitching, Muscle tightness, Flank pain

Neoplasm, Glioblastoma multiforme, Neoplasm progression,
Bone neoplasm, Marrow hyperplasia, Polycythaemia vera,
Metastasis, Recurrent cancer

Syncope, Migraine, Guillain-barre syndrome, Speech disorder,
‘Tremor, Neuralgia, Burning sensation, Haemorrhage intracranial

Emotional disorder, Listless, Stress, Hallucination, Emotional
distress.

Nocturia

Asthma, Acute respiratory failure, Choking, Dysphonia,
Pulmonary embolism, Lung infiltration, Productive cough,
Pneumonitis, Aphonia

Rash maculo-papular, Hyperhidrosis, Skin ulcer, Petechiae, Acne,
Rash macular, Rash morbilliform

Social circumstances

Surgical and medical procedures

Vascular disorders

Hypertension, Internal haemorrhage

Leukopenia, Disseminated intravascular coagulation,
‘Thrombocytosis, Platelet disorder, Bone marrow failure, Bone
marrow disorder, White blood cell disorder

Hospice care, Platelet transfusion, Hip arthroplasty, Therapy
cessation, Bone marrow transplant, Transfusion

Hot flush, Orthostatic hypotension

Neutrophilia
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Number of events 451
Gender
Female 175 (38.8%)
Male 247 (54.8%)
Others. 29 (6.4%)
Weight
<50 kg 12 (27%)
>100 kg 10 (2.2%)
50~100 kg 169 (37.5%) 7
Others. 260 (57.6%)
Age
| <18 2 (0.4%)
18~64.9 89 (19.7%)
65~85 254 (56.3%)
>85 8 (1.8%)
Others 98 (21.7%)

Serious outcome

Death 145 (32.2%)
Disability 4 (0.9%)
Hospitalization 184 (40.8%)
Life-threatening | 44 (9.8%)

Reported countries

Australia 41 (9.1%)
Germany [ 37 (8.2%)

France 87 (19.3%)

United States of America 99 (22.0%)

Others 187 (41.40%)
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Enasidenib Cases ROR enasidenib/ all other

System Organ Class Reporting SOC cases(95%Cl)
Nervous system disorders 34 0.56 (0.4-0.79)
Gastrointestinal disorders 62 0.97 (0.75-1.26)
General disorders and administration site conditions 86 0.57 (0.45-0.71)
Renal and urinary disorders | 15 7 091 (0.55-1.52)
Infections and infestations | 168 451 (3.81-5.35)
Metabolism and nutrition disorders 26 i 17 (1.15-2.51)
Neoplasms benign, malignant and unspecified (incl cysts and 109 | 4.08 (334-5)
polyps)
| Respiratory, thoracic and mediastinal disorders | 55 | 156 (1.19-2.05)
i Vascular disorders 7 046 (0.22-0.97)
Blood and lymphatic system disorders 87 7.1 (5.69-8.88)
» Cardiac disorders 6 I 0.98 (0.73-1.32)
' Injury, poisoning and procedural complications 19 | 12 (0.76-1.89)
Investigations 2 | 021 (0.14-0.32)
Musculoskeletal and connective tissue disorders 1 168 (0.93-3.05)
Skin and subcutaneous tissue disorders 16 I 0.33 (0.2-0.54)
Immune system disorders 14 0.33 (0.2-0.56)

et noaksnse iiteevak ROR: repocting adds etk
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Enasidenib (N=2,776)

Ivosidenib (N=1,296)

ADR Report rate % ADR Report rate %
Death 173% Off label use 428%
Off label use 57% Fatigue 98%
Nausea 56% Diarrhoea 66%
Fatigue 56% Nausea 6.1%
Acute myeloid leukaemia 49% Disease progression 58%
Diarrhoea 39% Product dose omission issue 58%
Decreased appetite 35% Drug ineffective 3.9%
Drug ineffective 34% Differentiation syndrome 39%
Platelet count decreased 33% Platelet count decreased 35%
Differentiation syndrome 33% Asthenia 32%
Hospitalisation 31% Electrocardiogram qt prolonged 29%
Asthenia 28% Product use issue 29%
Pyrexia 24% Arthralgia 29%
Full blood count decreased 21% Headache 27%
Pneumonia 20% Constipation 2.6%
Vomiting 18% Vomiting 26%
Dyspnoea 18% ‘Haemoglobin decreased 25%
White blood cell count decreased 17% Dizziness 25%
Constipation 15% Dyspnoea 25%
Rash 15% Pain 25%
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ROR (95%Cl) PRR chi_square IC EBGM

(95%CI) (IC025)  (EBGMO5)
Neoplasms benign, Angioimmunoblastic T-cell | 3 919.34 91928 (20575, | 1572479519 904 (022) | 52573 (117.66)
malignant and unspecified | lymphoma refractory (20575-4,107.87) | 4107.36)
(incl cysts and polyps)
Congenital, familial and FLT3 gene mutation 5 68102 68095 (22822, | 2,182.335076 878 (117) | 438.11 (146.82)
genetic disorders (22822-203220) | 203181)
Neoplasms benign, Myelodysplastic syndrome | 120 35624 355.28 (29001, | 32867.22805 811(611) | 27566 (224.92)
malignant and unspecified | transformation (290.67-43660) | 435.24)
(incl cysts and polyps)
Neoplasms benign, Juvenile chronic 9 29036 290.30 (14038, | 2097.858358 7.88 (226) | 23490 (113.58)
malignant and unspecified | myelomonocytic leukaemia (14039-60050) | 60031)
(incl cysts and polyps)
Neoplasms benign, Transformation to acute | 91 258.12 257.60 (20552, | 1922042859 7.73 (568) | 213.03 (169.90)
malignant and unspecified | myeloid leukaemia (205.87-32365) | 322.86)
(incl cysts and polyps)
Infections and infestations | Pseudomonal skin infection | 3 22984 229.82 575.5555181 7.60 (040) | 193.69 (56.43)
(66.97-788.82) (66.97,788.71)
Gastrointestinal disorders | Ulcerative duodenitis 4 20430 20428 (7088, | 693.5626747 745 (0.89) | 17524 (60.80)
(70.88-588.85) 588.74)
Neoplasms benign, Blastic plasmacytoid 9 18389 183.86 (9125, | 1423262916 7.32(227) | 160.00 (79.40)
malignant and unspecified | dendritic cell neoplasia (91.26-37057) 370.45)
(incl cysts and polyps)
Hepatobiliary disorders Portal vein cavernous 5 18027 18025 (70.50, | 777.0149229 730 (128) | 15727 (61.51)
transformation (70.50-460.95) 460.85)
Neoplasms benign, Acute myeloid leukaemia | 16 17361 17355 (10282, | 2404461653 725 (320) | 15215 (90.13)
malignant and unspecified | refractory (10284-293.08) | 292.93)
(incl cysts and polyps)
Neoplasms benign, Acute myeloid leukaemia | 201 17044 169.67 (14645, | 2960629149 722(621) | 149.16 (128.67)
malignant and unspecified | recurrent (147.02-197.59) | 19658)
(incl cysts and polyps)
Skin and subcutaneous Neutrophilic panniculitis | 8 16623 16620 (7942, | 1156.776647 719 (207) | 14647 (69.99)
tissue disorders (79.43-347.88) 347.78)
Investigations Blast cell count increased | 96 147.03 14672 (11875, | 1240848473 7.03 (550) 13114 (106.10)
(118.96-181.73) 18127)
Nervous system disorders | Lower motor neurone 5 14593 14592 (57.73, | 643.0655836 7.03 (128) 13050 (51.63)
lesion (57.73-368.87) 368.79)
Infections and infestations | Malassezia infection 4 13252 13251 (47.23, | 4711318643 690 (091) | 11968 (42.66)
(47.23-371.81) 371.75)
Neoplasms benign, Chronic myelomonocytic | 58 13109 13092 (9988, | 6756.352788 689 (491) | 11838 (90.29)
malignant and unspecified | leukaemia (99.98-171.88) 171.61)
(incl cysts and polyps)
Social circumstances Blood product transfusion | 34 11426 114.18 (8035, | 3489.25697 671 (421) | 10453 (73.55)
dependent (80.39-162.40) 16224)
Neoplasms benign, Acute erythroid leukaemia | 10 11352 11349 (5938, | 102051056 670 (242) | 10396 (54.38)
malignant and unspecified (59.38-217.00) 216.92)
(incl cysts and polyps)
Neoplasms benign, Acute myeloid leukaemia | 1117 11247 10966 (103.22, | 110418.3137 665 (644) | 10074 (94.69)
malignant and unspecified (10572-11966) | 11650)
(incl cysts and polyps)
Neoplasms benign, Leukaemic infiltration 3 10215 102.14 (3146, | 2773437763 656 (0.44) | 9436 (29.06)
malignant and unspecified | pulmonary (3146-33172) 33167)
(incl cysts and polyps)
Infections and infestations | Protothecosis 5 10048 10047 (40.37, | 455.086203 654 (128) | 92.93 (37.34)
(40.37-25007) 25002)
Infections and infestations | Gastroenteritis astroviral 4 100.07 100.06 (36.11, 362.6651429 653 (0.91) | 9258 (33.41)
(36.11-277.30) 277.25)
General disorders and Injection site vasculitis 4 96.14 9613 (3475, | 3491893898 648 (091) | 8921 (32.24)
administration site (34.75-266.02) 265.98)
conditions
Infections and infestations | Emphysematous 3 9429 94.28 (29.14, 257.1093197 645 (044) | 87.62 (27.08)
cholecystitis (29.14-305.13) 305.00)
General disorders and Administration site 5 9148 9147 (3687, | 4163377669 641(128) | 85.19 (34.33)
administration site induration (36.87-22697) 22693)
conditions
Vascular disorders Venous aneurysm 3 89.69 89.69 (27.77, 245.1527807 639 (0.44) 8364 (25.90)
(27.77-289.66) 289.61)

Infections and infestations | Sphingomonas. 3 89.69 89.69 (27.77, 245.1527807 639 (0.44) | 83.64 (25.90)

paucimobilis infection (27.77-289.66) 289.61)
Neoplasms benign, Leukaemia cutis 8 8528 85.27 (41.64, 622.8948207 6.32 (2.03) 79.79 (38.96)
malignant and unspecified (41.65-174.63) 174.58)
(incl cysts and polyps)
Surgical and medical Allogenic stem cell 7 7873 7871 (3666, | 5046840321 621 (181) | 7403 (3447)
procedures. transplantation (36.66-169.06) 169.02)
Infections and infestations | Disseminated 3 7824 78.24 (2435, | 2150230856 620 (044) | 7360 (22.91)

trichosporonosis (24.35-251.39) 251.35)
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ROR PRR square IC EBGM

(95% CI)  (95% CI) (IC025)  (EBGMOS)
General disorders and Death 1943 328 318 2932817023 167 (160) | 166 (1.59)
administration site conditions (3.13,343) (3.04, 3.32)
Blood and lymphatic system Febrile neutropenia 1622 37.36 (3553, | 3603 (3432, | 5371717939 513 (503) | 512 (503)
disorders 39.29) 37.82)
Infections and infestations Peumonia 1432 607 591 5841830724 256 (247) | 255 (247)

(5.76, 6.40) (561, 6.22)

Neoplasms benign, malignant and  Acute myeloid leukaemia | 1117 11247 109.66 110418.3137 665 (644) | 659 (649)

unspecified (incl cysts and polyps) (10572, (10322,
119.66) 116.50)

Blood and lymphatic system Neutropenia 843 9.08 893 5902737155 315(303) | 3.4 (3.03)

disorders (8.48,9.72) (8.35,9.55)

Infections and infestations Sepsis 838 1065 (995, 1047 (979, 7131501172 338(326) | 337 (3.26)
11.41) 11.20)

General disorders and Pyrexia 819 333 328 1304.50997 171 (161) | 171 (1.60)

administration site conditions (3.10,356) | (307, 351)

Blood and lymphatic system ‘Thrombocytopenia 768 991922,  975(909, 5995410102 328 (315) | 327 (3.15)

disorders 10.64) 10.46)

Blood and lymphatic system Anaemia 685 499 493 2142611524 230 (218) | 229 (217)

disorders (4.63,5.38) (4.57, 5.31)

Infections and infestations Infection 620 631 623 2716290874 263 (250) | 263 (250)
(5.83,6.83) (5.76, 6.74)

Investigations Platelet count decreased | 513 677 670 2478118124 274 (259) | 273 (258)
(620, 7.38) (6.15, 7.30)

Neoplasms benign, malignant and  Myelodysplastic 502 49.48 (4524, | 48.93 (4478, | 22670.1493 556 (530) | 549 (535)

unspecified (incl cysts and polyps) ~ syndrome 54.12) 5347)

Blood and lymphatic system Pancytopenia 456 1172 (1068, | 1161 (1059, | 4384768445 353(336) | 351(335)

disorders 12.86) 12.73)

Infections and infestations Septic shock 415 1401 (1271, | 1389 (1262, | 4912122783 378(359) | 376 (3.60)
15.44) 15.29)

Investigations White blood cell count | 395 508 504 1277985885 233(217) | 232 (216)

decreased (4.60, 5.61) (4.57, 5.57)

General disorders and Disease progression 354 428 425 8781746501 208(192) | 208 (1.90)

administration site conditions (3.85,475) | (383, 471)

Investigations Neutrophil count 324 1170 (1048, 1162 (1042, | 311691617 353(332) | 350 (332)

decreased 13.05) 1296)

General disorders and ‘Therapy non-responder | 291 7.60 755 1645695229 291 (271) | 289 (270)

administration site conditions (677,853) | (673, 847)

Respiratory, thoracic and Respiratory failure 247 468 466 707.4061117 222201) | 220 (199)

mediastinal disorders (4.13,5.30) (.11, 527)

General disorders and General physical health | 245 317 316 361968464 166 (146) | 165 (1.44)

administration site conditions deterioration (280,360) | (279, 3.58)

Blood and lymphatic system Cytopenia 239 33.03 (2904, | 3286 (2891, | 7191177544 500 (464) | 491 (4.70)

disorders 37.57) 3735)

Investigations Haemoglobin decreased | 215 285 284 257.0028506 151 (130) | 150 (1.27)
(2.50, 3.26) (249, 3.25)

Neoplasms benign, malignant and ~ Acute myeloid leukaemia | 201 17044 169.67 2960629149 7.22(621) | 677 (654)

unspecified (incl cysts and polyps)  recurrent (147.02, (14645,
197.59) 196.58)

Cardiac disorders Cardiac failure 190 329 328 3003460119 171 (148) | 170 (1.46)

(2.85,3.79) (2.84,3.78)

Respiratory, thoracic and Pneumonitis 180 981 (847, 978 (845, 1407933343 328(300) | 324 (3.00)
mediastinal disorders 11.37) 11.32)

General disorders and Multiple organ 172 536 535 6057185542 241 (216) | 240 (2.14)
administration site conditions dysfunction syndrome (4.62,623) | (460, 621)

Respiratory, thoracic and Pleural effusion 164 3.68 367 3185215644 187 (163) | 186 (1.60)
mediastinal disorders (3.16, 4.30) (3.15,4.28)

Blood and lymphatic system Myelosuppression 161 933(799, | 930 (797, 1184.109951 321291 | 317 291)
disorders 10.90) 10.86)

Infections and infestations Cellulitis 158 428 427 3945485802 209 (183) | 208 (181)

(3.66,501) | (3.65,4.99)

Nervous system disorders Cerebral haemorrhage 158 609 607 666.3500187 260 (232) | 257 (231)
(521,7.12) | (519,7.10)
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ROR PRR chi_square IC EBGM

(95% Cl) (95% ClI) (1C025) (EBGM05)

Infections and infestations* 7744 384(375,394)  3.35(328,342) | 134095 174 (170) | 334 (3.26)
General disorders and administration site conditions | 7118 091 (088,093)  0.92(0.90,094) | 57.69 0.2 (-0.15) | 0.92 (090)
Blood and lymphatic system disorders* 5816 887 (8.62,9.11)  7.83(7.65,802) | 35036.7 296 (292) | 7.79 (758)
Gastrointestinal disorders 3405 090 (086,093)  0.90 (0.87,093) | 38.26 015 (-020) | 0.90 (0.87)
Investigations 3344 125 (1.20, 1.29) | 1.23(1.19,1.27) | 150.63 0.30 (0.24) 1.23 (1.19)
Neoplasms benign, malignant and unspecified (incl | 3090 277 (267,288) | 2.65(256,2.74) | 3252.57 140 (135) | 265 (255)
cysts and polyps) *

Respiratory, thoracic and mediastinal disorders 2382 115 (1.10,120) | 114(1.10,1.19) | 4477 019 (013) | 114 (110)
Cardiac disorders 1612 139 (133, 146)  138(131,145) | 17187 046 (039) | 138 (131)
Injury, poisoning and procedural complications 1608 033 (031,034) | 0.35(033,037) | 2148.96 ~151 (-158) | 0.35 (033)
Nervous system disorders 1574 040 (0.38,042)  0.42 (040,044) | 1397.37 -126 (-133) | 0.42 (0.40)
Skin and subcutaneous tissue disorders 1110 045 (043,048) | 0.47 (044,049) | 71875 ~110 (-119) | 047 (0.44)
Metabolism and nutrition disorders 1100 115 (108,122) 114 (108,121) | 2041 019 (011) | 114 (1.08)
Vascular disorders 897 095 (089, 101)  0.95(089,101) 263 008 (-017) | 0.95 (0.89)
Renal and urinary disorders 880 104 097, 111) | 104 (098, 1.11) | 145 006 (-0.04) | 104 (0.97)
Musculoskeletal and connective tissue disorders 571 024(022,026) | 0.25(023,027) | 1365.92 201 (-213) | 025 (023)
Hepatobiliary disorders 534 132 (121, 144)  131(121,143) | 4054 039(027) | 131021
Immune system disorders 464 095 (087, 104)  0.95(087,104) 108 007 (-020) | 0.95 (087)
Psychiatric disorders 385 015 (0.13,016) ~ 0.15(0.14,0.17) | 190221 -270 (-285) | 0.15 (0.14)
Surgical and medical procedures 135 022(019,027)  0.23(0.19,027) | 36076 214 (-238) | 023 (019)
Eye disorders 128 014 (012,017)  0.15(0.12,017) | 65782 278 (-303) | 0.15 (0.12)
Ear and labyrinth disorders 76 039 (031,049)  0.39(0.32,049) | 7086 ~134 (-166) | 039 (032)
Congenital, familial and genetic disorders 67 050 (039,063)  0.50(0.39,064) | 3353 ~1.00 (-134) | 050 (039)
Social circumstances 67 032 (026,041)  0.33(026,041) 9411 -162 (-195) | 0.33 (026)
Product issues 63 009 (007,0.11) 0,09 (0.07,0.11) | 604.00 ~350 (-384) | 0.09 (0.07)
Endocrine disorders 61 054 (0.42,070)  0.54(042,070) | 23.57 088 (-124) | 054 (0.42)
Reproductive system and breast disorders 55: 0.14 (0.11, 0.18) ~ 0.14(0.11,0.18) = 295.89 -2.85 (-3.21) | 0.14 (0.11)
Pregnancy, puerperium and perinatal conditions 9 005 (0.02,009)  0.05(0.02,009) | 174.13 -441 (-517) | 005 (0.02)

Asterisks (*) indicate significant signals in four algorithms. PRR, proportional reporting ratio; ROR, reported odds ratio; IC, information component; EBGM, the empirical Bayes geometric
mean; 1C025 and EBGMOS, lower limit of the 95% two-sided confidence interval for IC and EBGM, respectively. Signals are detected when all the following criteria are met: PRR > 2 and * > 4,
lower limit of 95% CI of ROR >1. IC025 > 0. EBGMOS > 2.
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Gel ection Primer sequence (5'-3')
KRTCAP2 | Forward CICTTCGTGTTCTCGCTCACT
Reverse CAGGTGGTGACACAGACTCG
NENF Forward AGATCAGCCCATCTACTTGGC
Reverse CTTCCCCGTCAAGGCATTG
PSAP Forward | CCCGGTCCTTGGACTGAAAG
Reverse TATGTCGCAGGGAAGGGATTT
MRPLAI | Forward | GTTCGTCOTCOCGGATCTG
Reverse | GTAGCTCACGTAGGGCTTGA
SI00Al6 | Forward ATGTCAGACTGCTACACGGAG

Reverse

GTTCTTGACCAGGCTGTACTTAG
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an classes

Cardiac disorders

General disorders and
administration site conditions

Hepatobiliary disorders

AZACITIDINE

Platelet disorder, Blood disorder, Febrile bone marrow aplasia
Cardiac disorder, Angina pectoris, Cardiac failure acute

Haematemesis, Dyspepsia, Pancreatitis acute, Rectal haemorrhage,
Dysphagia, Neutropenic colitis, Tleus, Melaena

Injection site haematoma, Injection site pruritus, Injection site
erythema, Injection site reaction, Unevaluable event, Application site
pain, Injection site pain, Adverse event, Application site erythema

Venoocelusive liver disease, Jaundice

Haemophagocytic lymphohistiocytosis, Immune system disorder

DECITABINE

Bicytopenia, Granulocytopenia
Palpitations, Cardiomyopathy, Left ventricular dysfunction

Haematochezia, Mouth ulceration, Oral pain, Intestinal obstruction,
Proctalgia

Drug resistance, Swelling face, Peripheral swelling, Drug ineffective
for unapproved indication, Extravasation, Hyperpyrexia, Chest

discomfort, Therapeutic response increased, Ocdema

Liver injury

Infections and infestations

Injury, poisoning and
procedural complications

Nervous system disorders

Social circumstances

Vascular disorders

Peumocystis jirovecii pneumonia, Pseudomonas infection, Skin
infection, Staphylococcal bacteraemia, Necrotising fasciitis,
Enterococcal infection, Lower respiratory tract infection, Influenza,
Bronchitis, Bacterial infection, Staphylococcal sepsis

Subdural haematoma, Infusion related reaction

Neutrophil count abnormal, Haemoglobin abnormal, Blood lactate
dehydrogenase increased, Serum ferritin increased, White blood cell
count abnormal, Platelet count abnormal

Hyperkalaemia
Minimal residual discase, Myelodysplastic syndrome transformation,
Myelofibrosis, Transformation to acute myeloid leukaemia

Syncope, Cerebrovascular accident

Insomnia, Depression, Delirium
Urinary retention, Renal disorder

Haemoptysis, Pulmonary alveolar haemorrhage, Dyspnoea
exertional

Pyoderma gangrenosum, Skin lesion, Skin necrosis, Skin reaction,
Neutrophilic dermatosis, Urticaria

Blood product transfusion dependent

‘Thrombosis, Shock

Oral candidiasis, Mucormycosis, Soft tissue infection, Herpes
simplex, Escherichia bacteraemia, Herpes zoster, Gastrointestinal
infection, Cytomegalovirus infection, Cytomegalovirus viraemia,
Appendicitis, Clostridium difficile infection

Incorrect dose administered, Product prescribing error,
Inappropriate schedule of product administration, Product
administered to patient of inappropriate age

‘Transaminases increased, Weight increased, Blast cells present,
Blood alkaline phosphatase increased, Liver function test abnormal,
Breath sounds abnormal, Blood calcium decreased, Body
temperature increased, Blood glucose increased, Blood albumin
decreased

Cachexia, Hyperuricaemia, Hyperglycaemia, Electrolyte imbalance,
Hypoalbuminaemia, Hypophosphataemia

Chloroma, Blast crisis in myelogenous leukaemia
Hypoaesthesia, Haemorrhagic stroke, Memory impairment,
Dizziness postural, Lethargy, Tremor, Balance disorder,
Paraesthesia, Posterior reversible encephalopathy syndrome,
Peroneal nerve palsy, Polyneuropathy

Mental status changes, Depressed mood

Renal tubular necrosis, Cystitis haemorrhagic

Productive cough, Choking, Oropharyngeal pain, Pulmonary
fibrosis

Hyperhidrosis, Ecchymosis, Panniculitis

Vasculitis, Phlebitis
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System organ classes

Blood and lymphatic system disorders

Cardiac disorders

Gastrointestinal disorders

General disorders and administration site conditions

Hepatobiliary disorders

Immune system disorders

Infections and infestations

Injury, poisoning and procedural complications

Metabolism and nutrition disorders
Musculoskeletal and connective tissue disorders

Neoplasms benign, malignant and unspecified (incl cysts
and polyps)

Nervous system disorders

Psychiatric disorders
Renal and urinary disorders

Respiratory, thoracic and mediastinal disorders

Skin and subcutaneous tissue disorders

Vascular disorders

Myelosuppression, Cytopenia, Neutropenia, Febrile neutropenia, Leukopenia, Pancytopenia, Bone
marrow failure, Anemia, Splenomegaly, Disseminated intravascular coagulation, Thrombocytosis,
Leukocytosis, Haematotoxicity, Thrombocytopenia, Agranulocytosis

Tachycardia, Cardiac failure, Atrial fibrillation, Arrhythmia, Cardiac arrest, Myocardial infarction,
Pericarditis, Pericardial effusion, Cardiac failure congestive, Acute myocardial infarction

Abdominal pain, Abdominal distension, Colitis, Gastrointestinal disorder, Ascites, Gingival bleeding,
Abdominal pain upper, Nausea, Vomiting, Stomatitis, Diarrhoea, Gastrointestinal haemorrhage,
Constipation

Death, Condition aggravated, Drug intolerance, Disease progression, Mucosal inflammation, General
physical health deterioration, Pyrexia, Fatigue, Chest pain, Multiple organ dysfunction syndrome,
Therapeutic product effect incomplete, Disease recurrence, Pain, Chills, Therapeutic response
decreased, Drug ineffective, Treatment failure, Drug interaction, Oedema peripheral, Malaise,
Asthenia

Hepatic function abnormal, Liver disorder, Hyperbilirubinaemia, Hepatic failure

Hypersensitivity, Acute graft versus host disease, Immunodeficiency, Chronic graft versus host
disease, Graft versus host disease

Infection, Sinusitis, Neutropenic sepsis, Urinary tract infection, Staphylococcal infection, Clostridium
difficile colitis, Upper respiratory tract infection, Bacteraemia, Bronchopulmonary aspergillosis,
Pneumonia, Septic shock, Respiratory tract infection, Pneumonia bacterial, Sepsis, Pneumonia fungal,
Cellulitis, Diverticulitis, Aspergillus infection, Fungal infection

Fall, Product use in unapproved indication, Intentional product use issue, Product use issue, Toxicity
to various agents, Contusion, Off label use

Hypokalaemia, Tumourlysis syndrome, Decreased appetite, Dehydration, Hyponatraemia
Back pain, Arthritis, Pain in extremity, Myalgia, Arthralgia

Malignant neoplasm progression, Chronic myelomonocytic leukaemia, Leukaemia, Leukaemia
recurrent, Acute myeloid leukaemia refractory, Acute myeloid leukaemia recurrent, Differentiation
syndrome, Neoplasm progression, Acute myeloid leukacmia, Acute leukaemia, Myelodysplastic
syndrome

Loss of consciousness, Somnolence, Neuropathy peripheral, Haemorrhage intracranial, Dizziness,
Seizure, Headache, Cerebral haemorrhage

Confusional state
Renal failure, Acute kidney injury, Renal impairment, Haematuria

Dyspnoea, Cough, Acute respiratory failure, Epistaxis, Pleural effusion, Pulmonary oedema,
Respiratory failure, Organising pneumonia, Acute respiratory distress syndrome, Respiratory distress,
Pulmonary embolism, Pneumonitis, Pulmonary haemorrhage, Hypoxia, Lung disorder, Interstitial
lung disease, Lung infiltration

Pruritus, Rash pruritic, Rash, Acute febrile neutrophilic dermatosis, Erythema, Petechiae, Rash
erythematous, Skin exfoliation, Alopecia

Deep vein thrombosis, Haemorrhage, Hypotension, Hypertension, Haematoma

20

1
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AZACITIDINE DECITABINE

N ROR (95% CI) N ROR (95% CI)

Blood and lymphatic system disorders

Myelosuppression 1554 069 (061-0.77) 396 146 (1.30-1.63) 1950
Febrile neutropenia 1522 127 (1.10-1.47) 216 o (0.68-0.91) s
Neutropenia 1094 0.86 (0.74-1.00) 226 | 1.16 (1.00-1.34) 1320
‘Thrombocytopenia 820 082 (0.70-0.97) 177 121 (1.03-1.43) 997
Anemia 737 1.49 (1.20-1.86) 89 0.67 (0.54-0.84) 6
Pancytopenia 446 o (0.79-129) 79 L9 (0.78-1.26) s
Cytopenia 332 14 (1.07-2.07) 40 0.67 (0.48-0.93) |72
Leukopenia 263 023 (019-0.27) 203 44 (3.69-5.34) |66
Agranulocytosis 95 0.65 (0.42-1.01) 2 153 (0.99-2.37) 121
Hemototoxicity 91 024 (018-0.33) 67 L (3.02-5.70) 158
Bone marrow failure 85 2.5 (1.11-5.81) 6 0.39 (0.17-0.90) 91
Leukocytosis 39 078 (0.38-1.60) 9 1.29 (0.62-2.66) a8
Cardiac disorders Cardiac failure 123 105 (0.66-167) 2 0.95 (0.60-1.52) 144
Atrial fibrillation 100 138 (0.77-2.46) 13 Lom (0.41-129) 13
Pericarditis 74 4.4 (1.39-14.03) - - I
Cardiac disorder 2 7.5 (1.04-54.69) - - 2
| Cardinc armest % 097 (0.43-2.18) B | 105 ©46-231) s
Pericardial effusion 37 166 (0.59-4.65) 4 0.60 (0.22-1.69) 41
Tachycardia 32 143 (0.51-4.05) 4 | 070 025-198) B
Myocardial infarction 3 072 (033-155) 8 L0 (0.64-3.03) 40
Cardiac failure congestive 26 0.78 (0.32-1.88) 6 129 (0.53-3.14) 32
Cardiac failure acute 19 340 (046-25.42) - - 19
[ Arthythmia 18 0.64 (0.24-1.74) 5 | 155 038-4.18) »
Acute myocardial infarction 18 064 (0.24-1.74) 5 1.55 (0.58-4.18) 2
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Characteristic, n (%) AZACITIDINE (13820) DECITABINE (2274) Total (16094)

Age group
Not Specified 2498 (18.1) 565 (24.8) 3063 (19.0)
0-17 Years 256 (1.9) 83 (36) 339 (2.1)
18-64 Years 3265 (23.6) 813 (35.8) 4078 (25.3)
65-85 Years 7271 (526) 774 (340) 8045 (50.0)
More than 85 Years 530 (3.8) 39 (1.7) 569 (3.5)
Patient sex
Female 5185 (37.5) 844 (37.1) 6029 (37.5)
Male 7652 (55.4) 1262 (55.5) 8914 (55.4)
Not Specified 983 (7.1) 168 (7.4) 1151 (7.2)

Primary source qualification

Healthcare Professional 12483 (903) 2115 (93.0) 14598 (90.7)
Non Healthcare Professional 1335 (9.7) 159 (7.0) 1494 (93)
Not Specified

Primary source country for regulatory purposes

European Economic Area 4383 (31.7) 292 (12.8) 4675 (29.0)
Non European Economic Area 9437 (68.3) 1982 (87.2) 11419 (71.0)
Serious 18680 3662 2342

Type of seriousness

Other Medically Important Condition 9948 (72.0) 2403 (105.7) 12351 (76.7)
Caused/Prolonged Hospitalisation 6345 (45.9) 820 (36.1) 7165 (44.5)
Results in Death 1862 (135) 367 (16.1) 2229 (138)
Life Threatening 371 27) 48 (2.1) 419 2.6)
Disabling 154 (1.1) 24 (11) 178 (L1)
Outcome

Recovered/Resolved 6642 (48.1) 917 (40.3) 7559 (47.0)
Recovering/Resolving 3582 (25.9) 745 (32.8) 4327 (269)
Recovered/Resolved With Sequelae 236 (1.7) 8(04) 244 (15)
Not Recovered/Not Resolved 3723 (26.9) 476 (20.9) 4199 (26.1)

Fatal 3838 (27.8) 610 (26.8) 4448 (27.6)
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cs Subtype  Case, n Ra

Total 267 100
Gender Female 94 35.20
Male 173 54.80
Stage 1 42 1573
1 94 3521
1t 108 4045

v 23 8.61

Grade Gl 7 262
G2 97 3633
G3 158 59.18

Gt 5 187
Age 260 169 63.30
<60 95 35.58

NA 3 112
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acteristics Subtype  Case, n Rati
Total 300 100
Age 260 194 64.67
<60 106 3533
Gender Male 199 6333
Female 101 33.67
Stage 1 30 10
1 97 3233
1m 9% 3200
v 77 25,67
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cteristics

Resistance-free survival (years), mean + SD 089 = 0.63 3915 112 <005
Age (years), mean + SD 57.04 £ 6.73 5576 £7.34 5005
Gender 5005
Female
Male 4
BMI (kg/m2), mean + SD 2483 £ 384 2437 £ 261 5005
Tumor diameters (cm), mean + SD 208 079 1312056 <005
TNM stage <005
I 10
I 0
i 10 0
Pathology <005
Adenocarcinoma 16 7
Squamous cell carcinoma 1 3
Others 1 0

I .,
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Chemical name Structure  Main treatment First marketed

year

ine 4-amino-1-B-D-ribofuranosyl-1,3,5- C8HI2N405  Myelodysplastic syndromes (MDS), Acute Myeloid Leukemia 2004
triazine-2(1H)-one (AML), and Chronic Myeloid Leukemia

Decitabine 5-azacitidine-2'-deoxycytidine C8HI2N404  Myelodysplastic Syndromes (MDS) and Acute Myeloid 2012
Leukemia (AML)
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Number of ADR reports

17,925

5838

Female

Male

6,298 (35.1%)

9,905 (55.3%)

2022 (34.6%)

3,186 (54.6%)

Unknown 1722 (9.6%) 630 (10.8%)
<18 240 (1.3%) m (21%)
18-44 734 (4.1%) 441 (7.6%)
45-64 3,290 (18.4%) 1,333 (22.8%)
65-74 5221 (29.1%) 1728 (29.6%
75 4,745 (265%) 1,331 (22.8%)
Unknown 3,695 (20.6%) 884 (15.1%)
Africa 43 (0.2%) | 3 (0.1%)
Americas 5,860 (32.7%) 1741 (29.8%)
Asia 5,594 (31.2%) 3528 (604%)
Europe 5,805 (324%) 556 (9.5%)
Oceania | 623 (3.5%) 10 (0.2%)
Before 2010 845 (4.7%) 389 (67%)
2011 | 598 (3.3%) 137 (2.3%)
2012 606 (3.4%) 77 (1.3%)
2013 1131 (6.3%) 92 06w)
2014 1,294 (7.2%) 333 (5.7%)
2015 1374 (7.7%) 545 (9.3%)
2016 1,332 (7.4%) 55 10%)
2017 | 945 (5.3%) | 437 (7.5%)
2018 1,076 (6%) 307 (5.3%)

7 2019 | 1,212 (6.8%) 444 (7.6%)
2020 1,033 (5.9%) 712 (12.2%)
2021 1,496 (8.3%) | 444 (7.6%)
2022 1892 (10.6%) 383 (6.6%)
2023 1993 (11.1%) 560 (9.6%)

04 1078 (6%) 393 (6.7%)
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Blood and lymphatic system disorders
Cardiac disorders

Congenital familial and genetic disorders

Ear and labyrinth disorders

Endocrine disorders

Eye disorders

Gastrointestinal disorders

General disorders and administration site conditions

Hepatobiliary disorders

Azacitidine (N

6,403 (35.72%)
974 (5.43%)
59 (0.33%)

66 (0.37%)

36 (0.2%)

113 (0.63%)

2,568 (14.33%)

4,457 (24.86%)

354 (1.97%)

ecitabine
2,565 (43.94%)
234 (401%)
17 (0.29%)
28 (0.48%)
5 (0.09%)
60 (1.03%)
994 (17.03%)
1,327 (22.73%)

100 (1.71%)

Immune system disorders

Infections and infestations

273 (1.52%)

4213 (23.5%)

75 (1.28%)

1,166 (19.97%)

Injury poisoning and procedural complications

1,117 (623%)

487 (8.34%)

Investigations 2,585 (14.42%) 778 (13.33%)
Metabolism and nutrition disorders 862 (4.81%) 444 (7.61%)
Musculoskeletal and connective tissue disorders 530 (2.96%) 243 (4.16%)
Neoplasms benign malignant and unspecified incl cysts and polyps 1836 (10.24%) 373 (6:39%)
Nervous system disorders 1,037 (5.79%) 392 (671%)
Pregnancy puerperium and perinatal conditions 5 (0.03%) 2 (0.03%)
Product issues 74 (041%) 3 (0.05%)
Psychiatric disorders 287 (1.6%) 121 (207%)
Renal and urinary disorders 682 (3.8%) 207 (3.55%)
Reproductive system and breast disorders 54 (0.3%) 22 (0.38%)
Respiratory thoracic and mediastinal disorders 1,602 (8.94%) 558 (9.56%)
Skin and subcutaneous tissue disorders 1317 (7.35%) 330 (5.65%)
Social circumstances 68 (0.38%) 14 (0.24%)
Surgical and medical procedures 104 (0.58%) 38 (0.65%)
Vascular disorders 628 (3.5%) 194 (3.32%)
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Azacitidine (N = 17,925)

Decitabine (N = 5,838)

ADR Report rate (%) ADR Report rate (%)

Febrile neutropenia 10.18 | Myelosuppression 1166
Neutropenia 667 | Neutropenia 930
Myelosuppression 6.14 | Febrile neutropenia 812
Thrombocytopenia 603 Thrombocytopenia 766
Anaemia 465 | Leukopenia 524
Pancytopenia 301 Anaemia 382
Leukopenia 205 | Pancytopenia 295
Cytopenia 160 | Bone marrow failure 065
Bone marrow failure 059 | Cytopenia 058
Haematotoxicity 057 | Agranulocytosis 053
Agranulocytosis 051 | Granulocytopenia 034
Leukocytosis 036 | Haematotosicity 031
Disseminated intravascular coagulation 026 | Leukocytosis 027
Granulocytopenia 021 Thrombocytosis 017
Platelet disorder 019 | Bicytopenia 015
Febrile bone marrow aplasia 018 | Splenomegaly 014
Splenomegaly 016 | Erythropenia 0.10
White blood cell disorder 013 | Coagulopathy 009
Thrombocytosis 0.12 | Disseminated intravascular coagulation 009
Haemolysis 011 | Haemolytic anaemia 009
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Affliation Numbers of Numbers Average Co-authorship H-index G-index

publications  of citations citation per total link
publication strength
1 Baylin, Johns Hopkins 27 3,564 132 51 2 31
Stephen B University
2 Jones, University of 20 5,085 25425 38 2 26
Peter A Southern
California
3 Duenas- Universidad 19 950 50 58 12 13
gonzalez, Nacional
Alfonso Autonoma de
Mexico
4 Ahuja, Nita | Yale School of 18 1,381 7672 40 14 18
Medicine
5 Issa, Jean- | Lewis Katz School 14 3,036 21686 2 15 16
pierre j of Medicine at

‘Temple University

6 Altucci, University of 14 819 585 16 15 16
Lucia Campania “Luigi

Vanvitelli”

7 Liibbert, University of 14 565 4036 4 17 21
Michael Freiburg

8 Jung, University of 13 531 4085 10 6 1
Manfred Freiburg

9 Esteller, University of 12 2686 233.83 0 16 18
Manel Barcelona

10 Han, Chinese PLA 12 394 3283 40 10 12

Weidong | General Hospital
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Institution Country/ Numbers of Numbers of Average citation Co-authorship

region publications citations per publication total link strength
1 ‘The University of Texas MD | United States 57 4231 7423 58
Anderson Cancer Center
2 Johns Hopkins University | United States 48 3,926 81793 56
3 Universidad Nacional Mexico 37 1445 39.053 16
Autonoma de Mexico
4 National Cancer Institute |~ United States 34 2,581 75.913 55
5 University of Freiburg Switzerland 34 1,589 4674 35
6 Sun Yat-sen University China 31 1,484 47.87 32
7 University of South United States 28 8,920 31857 2
California
8 German Cancer Research German 27 1,047 3878 60
Center
9 Shanghai jiao tong China 27 558 20,67 2
University
10 Chinese Academy of China 2 747 29.88 42
Sciences
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Country/ Number of % Of total Average citation per Total link

region publications publication publication strength
1 Cancers United States 68 3.16 189 26,833
2 International Journal of Switzerland 51 237 17 17,838

Molecular Sciences

3 Oncotarget United States 48 223 45 12,792
4 Clinical Epigenetics Germany 47 218 436 22,008
5 Plos One United States 45 209 312 15,532
6 Cancer Research United States 36 167 89.8 13,353
7 Epigenetics United States 35 163 297 14,858
8 Epigenomics England 35 163 259 22,493
9 Frontiers in Oncology Switzerland 2 121 149 10,040
10 Scientific Reports England 19 0.88 216 5478
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Country/ Numbers of Publications Publications Numbers Average Co-

region publications 10 million per trillion of citations  citations per authorship
people® GDP? publication total link
strength

1 UNITED 745 2235 2928 46329 62.19 409
STATES

3 PEOPLES R 435 308 122 12,070 27.75 191
CHINA

3 GERMANY 208 2482 50.95 8,671 4169 190

4 ITALY 182 3088 88.79 6,09 3349 18

5 FRANCE 103 1515 37.06 5815 5646 145

6 SPAIN 99 2072 69.83 6,611 6678 83

7 ENGLAND 96 1433 3108 7,532 78.46 147

8 CANADA 93 2389 43.03 4373 47.02 114

9 INDIA 80 056 2341 2,169 27.11 19

10 JAPAN 78 623 18.33 2,883 3696 55

sCalculations based on 2022 population and GDP data from world bank (https://databank.worldbank.org/). GDP is calculated using GDP (current USS).
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Gene Primer sequence (5'-3',

Tead2-202 Forward CAAGGGAAATCCAGTCCAAGTT
Reverse GGCCTGGATAGGACACAAAGAA
Cenpx-202 Forward CACCTGCACTTCAAGGATGACA
Reverse AGAAACGCGAGAGGTGGGA
Neapd3-203 Forward GCCAGACTTTCCCTGACATGTT
Reverse GTCAGCAATTCCTACGGCAA
Neaph-201 Forward TCTGTCACTCGAAGAGCTGTTTCT
Reverse GAGGCTCAGCTACCAAGTTTGAC
Pagrd-201 Forward AGGTTCCGAGGCTCAAAGG
Reverse AGCTGGTTTCATCCGGCACT
Ncapd3 Forward GCAGAGACACCAGCAGAGGAG
Reverse CCAACAGGTCTTCGTCCATATTCC
Gapdh Forward GGAAGCTTGTCATCAATGGAAATC

Reverse TGATGACCCTTTTGGCTCCC





OPS/images/fphar-15-1531220/fphar-15-1531220-g008.gif





OPS/images/back-cover.jpg
Frontiers in
Pharmacology

Explores the interactions between chemicals and
living beings

The most cited journal inits field, which advances
access to pharmacological discoveries to prevent.
and treat human disease.

Discover the latest
Research Topics

Frontiers in

Frontiers

Avenue du Trbunal-Fédéral 34
1005 Lausane, Switzerland.
fontersinorg

Contactus

+41(01215101700
frontersin ro/about/contact

& frontiers | Researcn Topcs






OPS/images/fonc.2024.1471267/fonc-14-1471267-g005.jpg
1>

20
3 T
z = 20
'_ St -
‘—é;: _S’N r'_
T 1 <t .
= 8
2 g i : = 13
. 2 = 15 +
o~ 4 = - E
. 1= =
s U)N o
1
o - o £
T 5 ‘w
SKCM SKCM ] 10 @
(num(T)=461; num(N)=558) g % 1[]
=g (|
L
5
b
— — ° 5
+ +
= =
E o E <t
> >
. £ 0
5 5 ©
- % O be o
a =3 k) X -
i m & : "{2 \g% b N Al @
N | ’ & s § § @3@ &
" Gene |
Gene
o~ o

C
(num(T)=486|1<;Cn‘\3m(N)=558) (num(T)=4?1<;CnMum(N)=558) Sample Type . Normal . SKCH Sample Typ{—:- * Mormal — SKCM





OPS/images/fonc.2024.1471267/fonc-14-1471267-g006.jpg
Legend MMP9 Legend MMP12

groups [l low r§gion expression | high region expression groups [l low r(_egion expression [ high region expression
statistics p>=005 *p<005 *"p<001 " p<0.001 statistics p>=005 *p<0.05 *p<001 " p<0.001
beta value beta value
1.0 1.0
08 T\ 08 /Tl
I
06 I 08 \‘ l!‘

Hg/ SN | ’

02 \ ;t;/ 02
A I
00 ’L 'IN\.‘,\—;,
' | 11 | | | | | | | I | . NI
H H * H
= transcript
- 1r: ipt MMP9 -igene
- éannzcnp wm CpG island MMP12
- O0G island CpG dinuclectide
| | | 102862000 102869000 102876000
46008000 46012800 46017500
Legend Legend
groups [l low region expression [ high region expression M M P 14 groups [l low region expression || high region expression M M P 16
statistics p>=005 *p<005 *p<001 " p<0.001 statistics p>=0.05 *p<0.05 *p<001 " p<0.001
beta value beta value
1.0 / 1.0
+A\ " - . :
% T e L AT 1 |
08 | / 08 \
06 06 r | I
F i w
04 \ 0.4
\ J‘ I
e
02 g |
F 1N / | 02
N\ A
U
-
0.0
| I [ | | [l | I | | | | o [ | | | |1 |
i 3RS I A £ H i # H g 01 1 i i $1 { H H it {18
- transcript
- enéa_ s MMP16
m CpG islan = transcript
CpG dinucleotide — = gene ’ =
| | | = CpGisland st
22836000 22843000 22850000 CpG dinuclectide
|

| |
88028000 88181000 88333000





OPS/images/fonc.2024.1471267/fonc-14-1471267-g007.jpg
Altered in 41 (8.78%) of 467 samples.
11587

o
-
=]

5 ll___I-Il-II--l__I-_-_I_l--_.-II_----I--

- I-.
MMP16

® Missense_Mutation ® Nonsense_Mutation

4%

3%

MMP9 2%

MMP14 1%

=gy

= Splice_Site = Multi_Hit
B Variant Classification Variant Type SNV Class
>G I 6
Missense_Mutation i
|
T>A |0

Nonsense_Mutation SNP

Splice_Site

S 2 8§ 8 % 8 S 2 §& 8 ' 8 s & 8 & 8
S S S S -~
Variants per sample Variant Classification Top 10
Median: 1 summary mutated genes

1 ST

MMP12 44%

MMP16 39%

MMP9 22%

10%

5
3
1
MMP14
0 0 o

l

21

MMP9
5
/
=
2
c -
2
5
n- |
**
o
I
0
. MMP12
P i
c
(T 7
]
s i
1 ‘ X198_splice
— (6] S
0
= | PG _binding_1 | Peptidase_M10 B Hemopexin [| Hemopexin
I 1 ‘ T T T T T - T 1
0 100 200 300 400 470aa
MMP14
1=
2
<
2@
=)
©
Qo
**
0
- BEEN Peplidase_M10 i Hem
[ ‘ T I T T T I | T
0 100 200 300 400 500
. MMP16
i,
2
< ‘
2 7
© 11871
Q —
*® ‘
0.






OPS/images/fonc.2024.1471267/fonc-14-1471267-g001.jpg
PPI network and hub gene
identification
Y,

Expression analsis of hub Promoter methylation
genes analysis of hub genes
[ I

Expression vlidation on Methyiation alidation on
TCGA datasets TCGA datasets

Mutational analysis of
hub genes

\/

Prognostic model
development and gene

enrichment analysis

Functional assays and
molecular docking analysis





OPS/images/fonc.2024.1471267/fonc-14-1471267-g002.jpg





OPS/images/fonc.2024.1471267/fonc-14-1471267-g003.jpg
>

Fold gene expression

Fold gene expression

/AUC: 0.946

/

MMP9 MMP12 C
p<0.05 p<0.05
20 12
g 10
15 2 =
g =
5 8 =
) 2
o [0}
10 £ 6 n
oo
K]
S 4
5
2
Normal SKCM Normal SKCM 0.0
MMP14 MMP16
p<0.05 p<0.05 =
12 20.0
©
o
10 5 17.5
ze
—_— o
8 s 15.0 =
o ?
Q
6 € 125 & 3
oo
4 3
£ 10.0 o
o
2
7.8
0 =
Normal SKCM Normal SKCM 0.0

0.2

0.2

0.4 0.6 0.8

1 - Specificity

_AUC: 0.790

0.4 06
1 - Specificity

0.8

1.0

Sensitivity

0.4

Sensitivity

1.0

0.8

0.6

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0

/

/AUG: 0.900
/
MMP12
0.2 0.4 0.6 0.8 1.0
1 - Specificity

/ /

_/AUC: 0.900

/
MMP16
0.2 0.4 0.6 0.8 1.0
1 - Specificity






OPS/images/fonc.2024.1471267/fonc-14-1471267-g004.jpg
Beta value

Sensitivity

0.4

0.75

o
3
o

0.25

1.0

0.8

0.6

0.2

0.0

0.0

condition ‘ normal - cancer

Wilcpxon, p = 1.3e- 05

Normal SKCM

AUC: 0.793

0.2 04 0.6 0.8
1 - Specificity

1.0

Beta value

Sensitivity

0.4

1.0

0.8

0.6

0.2

0.0

condition ‘ normal ‘ cancer

Wil

xon, p = 1.9e- 05

0.75

0.50

0.25

0.004{ MMP12

Normal SKCM

AUC: 0.781

0.0 0.2 0.4 0.6 0.8
1 - Specificity

1.0

Beta value

Sensitivity

0.4

1.00

0.75

0.50

0.25

1.0

0.8

0.6

0.2

0.0

0.0

condition - normal - cancer

Wilgoxon, p = 0.0012

Normal SKCM

AUC. 0.776

0.2 0.4 0.6 08
1 - Specificity

1.0

Beta value

Sensitivity

condition - normal - cancer

Wilcpxon, p = 1.3e- 05

0.075

0.050

0.025

0.0004 MMP16
Normal SKCM

=
o]
o
©
o

/AUC: 0.804
<
o
AN
o
o
o

0.0 0.2 0.4 0.6 0.8
1 - Specificity

1.0





OPS/images/fphar-15-1470148/fphar-15-1470148-t005.jpg
System organ classes

Blood and lymphatic system disorders Neutropenia, Cytopenia, Anaemia, Bone marrow failure, Agranulocytosis, Splenomegaly, 15
‘Thrombocytosis, Myelosuppression, Thrombocytopenia, Pancytopenia, Haematotoxicity,
Granulocytopenia, Febrile neutropenia, Leukopenia, Leukocytosis

Cardiac disorders Cardiac failure congestive, Cardiac arrest, Acute myocardial infarction, Atrial fibrillation, Pericardial 9
effusion, Tachycardia, Supraventricular tachycardia, Cardiac failure, Myocardial infarction

Congenital, familial and genetic disorders

Ear and labyrinth disorders

Endocrine disorders

Eye disorders

Gastrointestinal disorders Colitis, Gingival bleeding, Diarrhoea, Abdominal discomfort, Stomatitis, Nausea, Abdominal pain, 16
Gastrointestinal haemorrhage, Abdominal distension, Abdominal pain upper, Dyspepsia,
Constipation, Dysphagia, Mouth ulceration, Melaena, Vomiting

General disorders and administration site conditions | Pain, Drug ineffective, Multiple organ dysfunction syndrome, Chest pain, Disease progression, Chils, 17
General physical health deterioration, Fatigue, Oedema peripheral, Mucosal inflammation, Pyrexia,
Death, Malaise, Therapy non-responder, Treatment failure, Asthenia, Condition aggravated

Hepatobiliary disorders Hepatic function abnormal, Hyperbilirubinaemia 2

Immune system disorders Hypersensitivity, Graft versus host disease 2

Infections and infestations Bacteraemia, Urinary tract infection, Bacterial infection, Cellulitis, Sepsis, Bronchopulmonary aspergilosis, 16
Aspergillus infection, Fungal infection, Upper respiratory tract infection, Pneumonia, Infection, Neutropenic
sepsis, Septic shock, Staphylococcal infection, Pneumonia fungal, Diverticulitis

Injury, poisoning and procedural complications Product use in unapproved indication, Subdural haematoma, Contusion, Off label use, Toxicity to 7
various agents, Product use issue, Fall

Investigations Blood bilirubin increased, Full blood count abnormal, Aspartate aminotransferase increased, White 13
blood cell count increased, Alanine aminotransferase increased, Platelet count decreased, Weight
decreased, Red blood cell count decreased, C-reactive protein increased, Neutrophil count decreased,
White blood cell count decreased, Blood creatinine increased, Haemoglobin decreased

Metabolism and nutrition disorders Hyponatraemia, Hyperkalaemia, Hyperglycaemia, Dehydration, Decreased appetite, Tumour lysis 7
syndrome, Hypokalaemia

Musculoskeletal and connective tissue disorders Muscle spasms, Arthralgia, Pain in extremity, Muscular weakness, Musculoskeletal pain, Back pain, 8
Bone pain, Myalgia

Neoplasms benign, malignant and unspecified (incl cysts | Leukaemia recurrent, Myelodysplastic syndrome, Acute myeloid leukaemia recurrent, Acute myeloid 7

and polyps) leukaemia, Leukaemia, Malignant neoplasm progression, Neoplasm progression

Nervous system disorders Cerebrovascular accident, Haemorrhage intracranial, Cerebral haemorrhage, Seizure, Somnolence, 10
Headache, Syncope, Neuropathy peripheral, Dizziness

Pregnancy, puerperium and perinatal conditions

Product issues

Psychiatric disorders Insomnia, Mental status changes, Anxiety, Confusional state 4

Renal and urinary disorders Dysuria, Haematuria, Acute kidney injury, Renal impairment, Renal failure, Urinary retention 6

Reproductive system and breast disorders

Respiratory, thoracic and mediastinal disorders Cough, Interstitial lung disease, Pneumonitis, Lung infiltration, Acute respiratory distress syndrome, 17
Respiratory distress, Pulmonary oedema, Oropharyngeal pain, Pleural effusion, Respiratory failure,
Dyspnoea, Hypoxia, Organising pneumonia, Acute respiratory failure, Pulmonary embolism,
Epistaxis, Haemoptysis

Skin and subcutaneous tissue disorders Rash maculo-papular, Alopecia, Petechiae, Ecchymosis, Erythema, Rash, Urticaria, Acute febrile 10
neutrophilic dermatosis, Pruritus, Hyperhidrosis

Social circumstances

Surgical and medical procedures Hospitalisation 1

Vaseular disorders Hypotension, Phlebitis, Haematoma, Deep vein thrombosis, Haemorthage, Hypertension 6
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Syste! an classes

Blood and lymphatic system disorders
Cardiac disorders

Congenital, familial and genetic
disorders

Ear and labyrinth disorders
Endocrine disorders

Eye disorders

Gastrointestinal disorders

General disorders and administration
site conditions

Hepatobiliary disorders

Immune system disorders

Infections and infestations

Injury, poisoning and procedural
complications

Investigations

Metabolism and nutrition disorders

Musculoskeletal and connective tissue
disorders

Neoplasms benign, malignant and
unspecified (incl cysts and polyps)
Nervous system disorders
Pregnancy, puerperium and perinatal
conditions

Product issues

Azacitidine

‘White blood cell disorder, Platelet disorder, Febrile bone
‘marrow aplasia, Disseminated intravascular coagulation

Atrial flutter, Cardiac failure acute, Angina pectoris, Cardiac
disorder, Pericarditis, Cardiovascular disorder

Ascites, Haematochezia, Upper gastrointestinal haemorrhage,
Gastrointestinal disorder

Injection site pain, Injection site reaction, Injection site
erythema

Hepatic failure, Liver disorder, Cholecystitis

Acute graft versus host disease

Bronchitis, COVID-19, Sinusitis, Clostridium difficile colitis

Intentional product use issue

Neutrophil count abnormal, Blast cell count increased,
‘Transaminases increased, Full blood count decreased, Blood
lactate dehydrogenase increased, Platelet count abnormal,
Haemoglobin abnormal

‘Transformation to acute myeloid leukaemia, Myclodysplastic
syndrome transformation, Differentiation syndrome, Chronic
myelomonocytic leukaemia, Myelofibrosis

Loss of consciousness

Decitabine

Bicytopenia

Palpitations, Left ventricular dysfunction, Cardiomyopathy

Vision blurred
Proctalgia, Haemorrhoids, Ileus, Dry mouth

Oedema, Drug ineffective for unapproved indication, Chest
discomfort

Acute graft versus host disease in intestine, Acute graft versus host
disease in skin, Chronic graft versus host disease

Device related infection, Nasopharyngitis, Enterococcal infection,
Candida infection

Product storage error

Blood culture positive, Liver function test abnormal, Blood
alkaline phosphatase increased, Lymphocyte count decreased,
Hepatic enzyme increased, Haematocrit decreased, Body
temperature increased

Hypophosphataemia, Failure to thrive, Diabetic ketoacidosis,
Hypophagia, Cachexia, Hypoalbuminaemia, Hypervolaemia,
Hypocalcaemia, Acidosis

Joint swelling.

Acute myeloid leukaemia refractory

Lethargy, Tremor, Encephalopathy, Paraesthesia, Hypoaesthesia,
Posterior reversible encephalopathy syndrome

Psychiatric disorders
Renal and urinary disorders

Reproductive system and breast
disorders

Respiratory, thoracic and mediastinal
disorders

Skin and subcutaneous tissue disorders

Social circumstances
Surgical and medical procedures

Vascular disorders

Depression

Renal disorder

Lung disorder, Respiratory disorder, Dyspnoca exertional
Skin lesion, Skin reaction, Pyoderma gangrenosum, Rash
erythematous, Rash pruriic, Rash macular

Blood product transfusion dependent

Thrombosis

Delirium

Pollakiuria

Rhinorrhoea, Pulmonary haemorrhage, Sputum increased
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Syste rgan classes ADRs

Blood and lymphatic system disorders Lymphopenia, Febrile neutropenia, Anaemia, Myelosuppression, Neutropenia, Pancytopenia, 7
‘Thrombocytopenia

Cardiac disorders Cardiac failure, Arrhythmia, Tachycardia 3

Gastrointestinal disorders Nausea, Vomiting, Diarrhoea, Abdominal pain 4

General disorders and administration site Oedema, Pyrexia, Asthenia, Oedema peripheral, Fatigue 5

conditions

Hepatobiliary disorders Hepatic function abnormal 1

Infections and infestations Preumonia 1

Investigations Blood creatinine increased, Blood bilirubin increased, Electrocardiogram qt prolonged, Haemoglobin 8
decreased, Neutrophil count decreased, Aspartate aminotransferase increased, Alanine aminotransferase
increased, White blood cell count decreased

* Metabolism and nutrition disorders | Hypokalaemia, Decreased appetite P

Musculoskeletal and connective tissue disorders | Pain in extremity 1

Respiratory, thoracic and mediastinal disorders  Cough 1

Skin and subcutaneous tissue disorders Pruritus, Rash 2

Vascular disorders Embolism, Haemorrhage 2
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Chidamide (N = 796)

ADR

Romidepsin (N = 1254)

ADR

Vorinostat (N = 1658)

ADR

Thrombocytopenia 15.98 Platelet count decreased 397 Investigations 1178
Neutrophil count decreased 14.58 ‘Thrombocytopenia | 375 General disorders and administration site 1158
conditions
Anaemia 1114 Nausea | 352 Gastrointestinal disorders 1156
Asthenia 9.64 Death 227 Infections and infestations 10.63
Fatigue 9.30 Neutropenia 227 Blood and lymphatic system disorders 8.55
Nausea 6.07 Pyrexia 227 Metabolism and nutrition disorders 7.18
Vomiting 603 Fatigue |"199 Respiratory, thoracic and mediastinal disorders | 6.50
Pyrexia [554 | Ansemia 195 Injury, poisoning and procedural complications | 5.78
Diarrhoea 337 Vomiting 179 Nervous system disorders 5.66
White blood cell count 252 Neutrophil count decreased | 176 Neoplasms benign, malignant and unspecified | 371
decreased (incl cysts and polyps)
Alanine aminotransferase 235 Disease progression 1.70 Cardiac disorders 337
increased
Aspartate aminotransferase | 1.91 Malignant neoplasm |14 Vascular disorders 291
increased progression
Myelosuppression 174 Peripheral t-cell lymphoma | 1.41 Skin and subcutaneous tissue disorders 252
unspecified
Tachycardia | L6t Asthenia |"13s Renal and urinary disorders 2
Pneumonia 0.95 Diarrhoea 138 Psychiatric disorders 1.61
Blood creatinine increased 0.68 Decreased appetite | 138 Musculoskeletal and connective tissue disorders = 1.56
Blectrocardiogram qt [ 061 White blood cell count L18 Hepatobiliary disorders L1
prolonged decreased
Proteinuria |oss Product storage error L5 Surgieal and medical procedures 051
Embolism 0.41 Atrial fibrillation 1.02 Immune system disorders 0.42
Cardiac failure 0.34 Febrile neutropenia 0.99 Eye disorders 0.28
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an classes Chidamide (N = 796) Romidepsin (N Vorinostat (N

Blood and lymphatic system disorders 880 (110.55%) 406 (32.38%) 549 (33.11%)
Cardiac disorders 71 (8.92%) 123 (9.81%) 216 (13.03%)
Ear and labyrinth disorders 2 (0.25%) 8 (0.64%) 6 (0.36%)
Gastrointestinal disorders 471 (59.17%) 322 (25.68%) 742 (44.75%)
General disorders and administration site conditions 669 (84.05%) 517 (41.23%) 743 (44.81%)
Hepatobiliary disorders 11.(1.38%) 40 (3.19%) 71 (4.28%)
Immune system disorders 35 (2.79%) 27 (1.63%)
Infections and infestations 37 (4.65%) 230 (18.34%) 682 (41.13%)
Injury, poisoning and procedural complications 1(0.13%) 128 (10.21%) 371 (22.38%)
Investigations 693 (87.06%) 459 (36.60%) 756 (45.60%)
Metabolism and nutrition disorders 17 (2.14%) 132 (10.53%) 461 (27.80%)
Musculoskeletal and connective tissue disorders 6 (0.75%) 35 (2.79%) 100 (6.03%)
Neoplasms benign, malignant and unspecified (incl cysts and polyps) 218 (17.38%) 238 (14.35%)
Nervous system disorders 3(038%) 118 (9.41%) 363 (21.89%)
Psychiatric disorders 10.13%) 23 (1.83%) 103 (6:21%)
Renal and urinary disorders 20 (251%) 37 (295%) 146 (8.81%)
Reproductive system and breast disorders 1 1(0.13%) 9 (0.72%) [ 9 (0.54%)
Respiratory, thoracic and mediastinal disorders 12 (151%) 116 (9.25%) 417 (25.15%)
Skin and subcutaneous tissue disorders 23 (2.89%) 93 (7.42%) 162 (9.77%)
Vasaalar disorders 17 (2.14%) 43 (3.43%) 187 (11.28%)
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Three HDAC Chidamide Romidepsin  Vorinostat

inhibitors

Number of ADR 79 1254 1658
reports
Female 355 (44.6%) 461 (36.8%) 616 (37.2%)
Male 429 (53.9%) 610 (48.6%) 737 (44.5%)
Unknown 12 (15%) 183 (14.6%) 305 (18.4%)
<18 11 (14%) 7 (06%) 167 (10.1%)
18-44 159 (20.0%) 96 (7.7%) 154 (9.3%)
45-64 261 (28 272 (21.7%) 442 (26.7%)
7 113 (142%) 264 (21.1%) | am2 (7.0%)
>75 251 (31.5%) 192 (153%) 149 (9.0%)
Unknown 1(0.1%) 423 (33.7%) 464 (28.0%)
Americas 1(0.1%) 605 (48.2%) 1399 (84.4%) |
Asia 795 (99.9%) 337 (26.9%) 162 (9.8%)
Europe 283 (22.6%) 2
Oceania | 29 (23%) 15 (0.9%)
Before2016 10 (1.3%) 326 (26.0%) 1245 (75.1%)
7 2017 | 171 (21.5%) 68 (5.4%) 54 (3.3%)
2018 12 53 64 (5.1%) Lot a7
2019 266 (33.4%) 162 (129%) 55 (3.3%)
2020 13975%) | 99 (79%) 49 (3.0%)
2021 R |97 z7%) 48 (29%)
o 24 (3.0%) 110 (8.8%) 70 a2
2023 25 (3.1%) 81 (6.5%) 53 (3.2%)
2024 22 (2.8%) 247 (19.7%) 23 (14%)
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Ite

Countries/Regions

Institutions

Authors.

Rank Publications Name

1 UNITED STATES 246 (3041%) UNITED STATE 039
2 PEOPLES R CHINA 205 (2534%) GERMANY 025
3 ITALY 71 (8.78%) ENGLAND 019
4 JAPAN 55 (6.80%) PEOPLES R CHINA 016
5 SPAIN 48 (593%) SPAIN 0.16
6 GERMANY 44 (5.44%) SWEDEN 0.09
7 ENGLAND 41 (5.07%) ITALY 0.07
8 INDIA 41 (5.07%) JAPAN oo
9 AUSTRALIA 30 (371%) INDIA 0.07
10 IRAN 28 (3.46%) AUSTRALIA 0.07
1 Harvard University 29 (1696%) University of Texas System Lo
2 Harvard Medical School 20 (11.70%) Brigham and Women’s Hospital 012
3 Harvard T.H. Chan School of Public Health 19 (11.11%) Albert Einstein College of Medicine 007
4 Johns Hopkins University 19 (1111%) | Ruprecht Karls University Heidelberg 0.07
5 Brigham and Women's Hospital 18 (10.53%) Helmholtz Association 006
6 CIBER—Centro de Investigacion Biomedica en Red | 15 (8.77%) German Cancer Research Center (DKEZ) | 0.06
7 Dana-Farber Cancer Institute 15 (8.77%) Royal College of Surgeons—Ireland " oss
8 Johns Hopkins Medicine 14 (8.19%) Zhejiang University 005
9 Zhejiang University 11 (6.43%) UTMD Anderson Cancer Center oo
10 Helmholtz Association 11 (643%) Johns Hopkins University 0.04
1 Ogino, Shuji 9 (27.27%) Ogino, Shuji L oot
2 Coppede, Fabio 6 (18.18%) Alwers, Elizabeth 001
3 Nishihara, Reiko 6 (18.18%) Akimoto, Naohiko 001
4 Ahuja, Nita 6 (18.18%) Amitay, Efrat L 001
5 Goel, Ajay 6 (18.18%) Coppede, Fabio 0.00
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It

Co-cited
references

Rank Title Journal
1 CpG island methylator phenotype in colorectal cancer PNAS
2 Epigenetics and colorectal cancer Nature Reviews Gastroenterology and 88
Hepatology
5 | CpG island methylator phenotype underlies sporadic MSI and is tightly associated with Nature Genetics 76
BRAF mutation in colorectal cancer
4 Epigenetics in cancer ‘The New England Journal of Medicine 73
5 The epigenomics of cancer Cell ki3
6 Hallmarks of cancer: the next-generation Cell 58
7 Epigenetics in cancer. Carcinogenesis Carcinogenesis 57
8 A genetic model for colorectal tumorigenesis. Cell 52
9 Comprehensive molecular characterization of human colon and rectal cancer Nature 51
10 Cancer epigenetics: from mechanism to therapy Cell 50
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System organ

classes

Chidamide

Romidepsin

Vorinostat

Blood and lymphatic
system disorders

Cardiac disorders

Ear and labyrinth disorders

Gastrointestinal disorders

General disorders and
administration site
conditions
Hepatobiliary disorders

Infections and infestations

Injury, poisoning and
procedural complications

Investigations

Metabolism and nutrition
disorders

Musculoskeletal and
connective tissue disorders

Nervous system disorders

Psychiatric disorders

Granulocytopenia,
Erythropenia, Bicytopenia

Hypoproteinaemia,
Appetite disorder

Cytopenia, Platelet disorder, Disseminated intravascular
coagulation, Haematotoxicity, Lymphocytosis

Bradyarrhythmia, Atrioventricular block second
degree, Bundle branch block left, Cardiotosicity,
Cardiopulmonary failure, Myocarditis, Cardiac
dysfunction, Cardiomyopathy, Cardiac tamponade

Ear pain, Deafness

Swollen tongue, Pancreatitis acute, Flatulence, Mouth
ulceration, Colitis is chaemic, Melaena, Lip swelling

Unevaluable event, Therapy partial responder,
Injection site reaction, Infusion site extravasation,
Injection site extravasation, Extravasation, Influenza
like illness, Drug intolerance

Hepatic cytolysis, Hepatic failure

Cytomegalovirus infection reactivation, Pneumonia
Klebsiella, Bronchitis, Urosepsis, Clostridium difficile
colitis, Epstein-barr virus infection, Soft tissue
infection, Nasopharyngitis, Conjunctivitis,
Cytomegalovirus viraemia, Cytomegalovirus infection,
Influenza, Pharyngitis, COVID-19, Hepatitis b,
Epstein-barr virus infection reactivation

Product preparation issue, Intentional product use
issue, Product label confusion, Product storage error,
Product preparation error

Laboratory test abnormal, C-reactive protein increased,
Neutrophil count abnormal, Electrocardiogram st segment
depression, Blood potassium increased, Blood potassium
abnormal, Haemoglobin abnormal, Gamma-
gutamyltransferase increased, Electrocardiogram
abnormal, Oxygen saturation decreased, Liver function test
abnormal, Platelet count abnormal

Hypomagnesaemia, Hypertriglyceridaemia, Metabolic
acidosis

Rhabdomyolysis, Neck pain

Peripheral sensory neuropathy, Cerebral haemorrhage,
Sinus headache, Ageusia

Restlessness

Sinus bradycardia, Left ventricular dysfunction,
Myocardial is chaemia, Supraventricular tachycardia,
Torsade de pointes, Atrial flutter, Cardiac arrest

Enterocolitis, Haematochezia, Rectal haemorrhage,
Gastric haemorrhage, Proctalgia, Gastrooesophageal
reflux disease, Intestinal perforation, Dysphagia,
Haematemesis, Haemorrhoids, Colitis, Oesophagitis

Drug interaction, Adverse drug reaction,Non-cardiac
chest pain, Feeling abnormal, Gait disturbance,
Complication associated with device,No adverse event,
Drug ineffective for unapproved indication

Cholangitis, Hyperbilirubinaemia

Clostridial infection, Herpes simplex, Diverticulitis,
Hepatitis ¢,Upper respiratory tract infection,
Appendicitis, Escherichia infection, Bacterial infection,
Escherichia bacteraemia, Clostridium difficile infection,
Enterococeal infection, Pneumonia fungal,
Staphylococcal bacteraemia, Herpes zoster, Wound
infection, Pseudomonas infection

Infusion related reaction, Product administered to
patient of inappropriate age, Wrong technique in
product usage process, Intentional product misuse,
Head injury, Fracture, Underdose

Blood sodium decreased, International normalised
ratio increased, Activated partial thromboplastin time
prolonged, Bacterial test positive, Haematocrit
decreased, Fibrin d dimer increased, Blood pressure
increased, Culture urine positive, Blood calcium
decreased, Blood urea increased

Acidosis, Diabetes mellitus, Hyperkalaemia, Failure to
thrive, Hypervolaemia, Fluid intake reduced, Malnutrition

Flank pain

Cerebral ischaemia, Nervous system disorder,
Depressed level of consciousness, Memory impairment,
Loss of consciousness, Aphasia, Hemiparesis,
Paraesthesia, Balance disorder, Ataxia, Somnolence,
Hydrocephalus, Cercbral infarction, Unresponsive to
stimuli, Haemorrhage intracranial

Hallucination, Insomnia,Delirium,
Disorientation, Agitation

Renal and urinary disorders

Reproductive system and
breast disorders

Respiratory, thoracic and
‘mediastinal disorders

Skin and subcutaneous
tissue disorders

Vascular disorders

Proteinuria

Cystitis haemorrhagic, Urinary incontinence

Amenorrhoea

Organising pneumonia, Acute pulmonary oedema

Photosensitivity reaction, Skin irritation, Pyoderma
gangrenosum, Rash macular, Urticaria, Stevens-
johnson syndrome, Erythema multiforme, Rash
erythematous, Dry skin

Hot flush, Jugular vein thrombosis, Cyanosis

Renal disorder, Haematuria, Renal impairment

Aspiration, Pulmonary haemorrhage, Haemoptysis,
Respiratory distress

Dermatitis, Acute febrile neutrophilic dermatosis, Skin
ulcer

‘Thrombosis, Flushing
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Year Global Citation

citations frequency per
year
1 Egger G Nature 2004 2344 172 Epigenetics in human disease and prospects for epigenetic
therapy
2 Dawson MA Cell 2012 2212 18433 Cancer epigenetics: from mechanism to therapy
: Sharma $ Carcinogenes. 2010 1813 1295 Epigenetics in cancer
4 Dawson MA Nature 2011 1,204 9262 Inhibition of BET recruitment to chromatin as an effective

treatment for MLL-fusion leukaemia

5 Yoo CB Nat Rev Drug 2006 1,054 5856 Epigenetic therapy of cancer: past, present and future
Discov
6 Rodriguez- Nat Med 2011 917 7054 Cancer epigenetics reaches mainstream oncology
paredes M
7 Jones PA Nat Rev Genet 2016 784 98 Targeting the cancer epigenome for therapy
8 Kantarjian H Blood 2007 552 3247 Results of a randomized study of 3 schedules of low-dose

decitabine in higher-risk myelodysplastic syndrome and
chronic myelomonocytic leukemia

L WuQ Cancer Lett 2014 546 546 Multi-drug resistance in cancer chemotherapeutics:
mechanisms and lab approaches

10 Yang H Leukemia 2014 507 537 Expression of PD-L1, PD-L2, PD-1 and CTLA4 in
myelodysplastic syndromes is enhanced by treatment with
hypomethylating agents
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Key words Records Keywords
i Dna methylation 673 5932 11 Apoptosis 162 1,439
2| Epigenetic therapy 550 4752 12 Valproic acid 128 1,234
3 Epigenetics 445 4074 13 ‘Tumor-suppressor genes 116 1,140
4 Cancer 465 4,066 14 Cells 151 1,136
5 Expression 419 3,385 15 ) Decitabine 118 1,131
6 | Methylation 278 2,410 | 16 ‘Therapy 129 L1
7 Gene-expression 277 2,264 17 Epigenetic drugs 120 1,082
5 Hisone deacetylase inhibitors 21 2,116 18 Chromatin 120 1,029
9 Histone deacetylase inhibitor 216 2,063 19 Gene 123 1,027
0| Ae ‘myeloid-leukemia 180 1,709 20 Hdac inhibitors 104 1,006
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Rank Keyword Frequency yword Centrality
1 Colorectal cancer 592 Hypermethylation 013
2 DNA methylation 351 Tumor suppressor o1
3 Expression 167 Gene expression 0.09
4 Epigenetics 158 MsI 009
5 Colon cancer 134 Gastric cancer 009
6 Gene expression 108 Cells 009
7 Breast cancer 96 Cell proliferation 009
8 MsI 93 Expression 008
9 Methylation 73 Methylation 008
10 Promoter methylation 65 Gene 008
11 Gene 64 Island methylator phenotype 008
12 Hypermethylation 61 Breast cancer 007
13 Gastric cancer 50 Risk 007
14 Risk 49 Cancer 007
15 Island methylator Phenotype 48 Tumor suppressor genes 007
16 Tumor suppressor 48 CPG island methylation 007
17 Cells 45 Histone modifications 007
18 Promoter hypermethylation 45 Activation 007
19 Lung cancer 36 Cancer epigenetics 007
20 Downregulation 36 Biomarkers 006
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Cluster Size Sihouette Mean Label (LLR) Other keywords

year

0 35 0876 2015 Colon cancer Beta catenin; tumor growth; in vivo; adenomatous polyposis coli

1 32 0898 2014 Histone modification Cells; dnmt3b; dna methylation; expression

2 30 0745 2013 Histone modifications Cancer progression; environmental exposures; therapeutic target; microrna

3 2 0861 2016 Epithelial-mesenchymal Epigenetics; breast cancer; hypermethylation; wnt/beta-catenin signaling
transition pathway

4 2 0795 2012 Nucleosomes Cpg island; clinical outcome; Tumor suppressor genes; cytoskeleton

5 2 0925 2017 Epigenetics Dna methylation; immunotherapy; esophageal cancer; gastric cancer

6 20 079 2013 Dna methylation dna methylation; epigenetics; colorectal cancer; breast cancer; promoter

‘methylation

7 19 0931 2016 Tumor microenvironment Microbiome; gut microbiota; dysbiosis; resistance

8 19 093 2014 “Tumor marker Gene regulation; screening; mismatch repair; prognosis

9 v oss | o6 Inhibitor | Angiogenesis; dna methylation; gene; emt

10 7o s 2018 Inflammation | Inflammatory bowel disease; in vitro; nutrition; bioactive components

11 16 0.901 2015 Vitamin d Cancer; ovarian cancer; bladder cancer; glycogene

2 1 0.842 2016 Gastrointestinal cancers Liquid biopsy; extracellular vesicles; interdisciplinary; molecular
epidemiology

13 0 | osw 2012 Tumor suppressor | Circulating tumor dna; pectin; n-3 polyunsaturated fatty acids; post-

menopausal
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Item

High-cited
References

Title

Journal

1 Epigenetics of colorectal cancer: biomarker and therapeutic potential Nature Reviews Gastroenterology and 36
Hepatology

2 Epigenetics and colorectal cancer Nature Reviews Gastroenterology and 34
Hepatology

3 Epigenetics in cancer ‘The New England Journal of Medicine 32

4 Genome-scale analysis of aberrant DNA methylation in colorectal cancer Genome Research 27

5 Comprehensive molecular characterization of human colon and rectal cancer Nature 27

6 Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers Gastroenterology 4

7 Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality | Ca-A Cancer Journal for Clinicians 21

Worldwide for 36 Cancers in 185 Countries

8 | Adecade of exploring the cancer epigenome - biological and translational implications Nature Reviews Cancer 21

9 Cancer epigenetics: from mechanism to therapy Cell 19

10 ‘The consensus molecular subtypes of colorectal cancer Nature Medicine 19






