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Editorial on the Research Topic
Use of big data and artificial intelligence in multiple sclerosis

Introduction

As health data volume and the sophistication of artificial intelligence (AI) tools grow,
their potential to transform the management of complex neuroimmunological conditions
like multiple sclerosis (MS) has become increasingly evident (1). MS, a chronic immune-
mediated inflammatory disorder of the central nervous system, presents a unique challenge
in the health sector due to its multifactorial nature and variable progression patterns. Each
patient’s journey is marked by distinct symptom trajectories and responses to treatment,
demanding personalised approaches in diagnosis, prognosis, and therapeutic interventions.
(2, 3).

This Special Topic aims to address the clinical complexity of MS by leveraging data
driven insights and innovative health initiatives. The overarching goal is to present the
current challenges in MS research and explore recent advances and future trends that can
significantly impact patient care. Through a Research Topic of reviews, perspectives, and
original research articles, we explore how advanced data techniques and innovative health
initiatives are shaping the future of MS research and care.

Inspiring examples to showcase the potential

We kick-start with spotlighting a recently approved European Project, ‘Clinical Impact
through Al-assisted MS Care’ (CLAIMS). Praet et al. explains how this project will develop,
validate and seek regulatory approval for an Al-driven clinical decision-support platform,
which offers the MS care team a holistic view of the patient through the visualisation of all
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relevant patient data and the prognosis on the expected disease
trajectories under different treatment regimens. Next to this, two
original research contributions further illustrate AD’s capacity to
enhance MS treatment personalization and early diagnosis. Ilan
et al. examine how advanced Al systems can help personalise and
diversify treatment regimens, reducing the risk of drug tolerance.
Meanwhile, Albuz et al. examine how Al-assessed volumetric
measurements of specific brain regions correlate with
neuropsychological test outcomes in patients with clinically
isolated syndrome, illuminating potential early indicators of MS.

Magnetic resonance imaging and Al in
MS

MRI remains central to diagnosing, monitoring, and optimising
MS treatment due to its ability to non-invasively visualise both
lesional and nonlesional brain pathology. However, the potential of
MRI is often constrained in clinical practice by lengthy protocols,
challenges in lesion identification, and limited predictive power
regarding disability progression. Falet et al. highlight recent AI
advances that could enhance MRI’s accuracy and broaden its
predictive capabilities, improving critical patient outcomes.

Digital tools and Al in MS

The integration of digital monitoring tools, big data, and Al
presents new possibilities for real-time tracking of MS symptoms
and progression. Dini et al. explore the latest advancements in
digital remote monitoring, with devices like wearables and
smartphones playing an increasing role in the field. These
technologies, coupled with AI analytics, are demonstrating
reliability in assessing motor symptoms such as fall risk and gait
irregularities, both in clinical settings and through passive, real-life
monitoring. While cognitive monitoring is still evolving, AI-driven
tools are now beginning to automate neuropsychological test
scoring and passive keystroke analysis, setting the stage for
continuous, long-term data collection on both motor and
cognitive symptoms.

Biomarkers and Al in MS

Expanding the scope to biological markers, Arrambide et al.
delve into AI methodologies applied to serum, blood, and
cerebrospinal fluid (CSF) biomarkers, outlining key studies,
limitations, and future directions. Notably, this systematic review
reveals that most research papers on Al applications to biomarker
data in MS have been published within the past four years,
underscoring that this field is still in its early stages and remains
some distance from widespread clinical application.

Frontiers in Immunology

10.3389/fimmu.2025.1679482

Future trends

Recognizing the necessity of reliable and interpretable machine
learning (ML) in MS, Werthen-Brabants et al. emphasise the need
for Trustworthy ML. Given the complex and individualised nature
of MS, these authors advocate collaborative efforts among
researchers, clinicians, and policymakers to develop ML solutions
that are technically robust, clinically relevant, and patient-centred.

Patient-reported outcome measures (PROMs) are vital for
capturing the lived experiences of people with MS, providing
insights that enrich clinical understanding. However, PROMs are
underutilised in both clinical research and routine care. Helme et al.
discuss the challenges in scaling PROMs and highlight efforts to
integrate health outcomes data across Europe and beyond, noting
initiatives like the European Health Data Space (EDHS) that may
expand their application.

While the MS community has made substantial progress in
leveraging data for research and patient care, several large-scale
collaborative efforts across Europe—though not exclusively focused
on MS—have the potential to transform the management and
application of health data across various diseases, including MS.
Peeters highlights key initiatives such as the EHDS, DARWIN-EU,
the Observational Health Data Sciences and Informatics (OHDSI),
EBRAINS, and ELIXIR. She outlines the challenges that remain in
aligning with these initiatives and offers concrete, actionable
recommendations to guide the MS research community toward
more effective integration and collaboration.

Conclusion

We believe this special topic has opened new perspectives, and
gives us some indications of where the field of Big Data and Al in MS is
heading. First of all, it testifies that the domain is expanding rapidly. At
the same time, however, researchers will have to solve some open
issues, such as the need to develop trustworthy, reliable AT models,
consistently capture multidimensional longitudinal data, incorporate
the patient perspectives and the alignment with evolving regulatory
frameworks such as the EHDS. We hope you find this Research Topic
as inspiring and impactful to read as it was for us to prepare.
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Multiple sclerosis (MS) is a devastating immune-mediated disorder of the central
nervous system resulting in progressive disability accumulation. As there is no
cure available yet for MS, the primary therapeutic objective is to reduce relapses
and to slow down disability progression as early as possible during the disease to
maintain and/or improve health-related quality of life. However, optimizing
treatment for people with MS (pwMS) is complex and challenging due to the
many factors involved and in particular, the high degree of clinical and sub-
clinical heterogeneity in disease progression among pwMS. In this paper, we
discuss these many different challenges complicating treatment optimization for
pwMS as well as how a shift towards a more pro-active, data-driven and
personalized medicine approach could potentially improve patient outcomes
for pwMS. We describe how the ‘Clinical Impact through Al-assisted MS Care’
(CLAIMS) project serves as a recent example of how to realize such a shift
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towards personalized treatment optimization for pwMS through the
development of a platform that offers a holistic view of all relevant patient data
and biomarkers, and then using this data to enable Al-supported
prognostic modelling.

KEYWORDS

multiple sclerosis, personalized medicine, disease progression, prognosis, diagnosis,

Al, data

1 The heterogeneous disease course
of multiple sclerosis

Multiple sclerosis (MS) is a devastating immune-mediated
disorder of the central nervous system (CNS) resulting in
progressive disability accumulation in most individuals affected
(1, 2). MS imposes a significant burden on patients, affecting all
aspects of their life, and additionally, it poses a significant challenge
to society as with growing disability, indirect expenses (productivity
losses associated with sick absence, inability to work, and early
retirement) and care costs rise substantially (3).

The classical view on MS describes different clinical subtypes,
with relapsing-remitting MS (RRMS) being the most common
form, occurring in 85% of patients (National MS Society).
Patients with RRMS experience neurological exacerbation
(relapses) as well as intermittent periods of remission in which
they remain clinically stable. Relapses can either recover completely
or leave persistent clinical disability, referred to as Relapse
Associated Worsening (RAW). Among these patients,
approximately two-thirds progress to secondary-progressive MS
(SPMS) (4). In contrast to RRMS, the disease course of patients with
SPMS or primary-progressive MS (PPMS, 15% of MS patients) is
mainly driven by a gradual worsening of disability in the absence of
relapse activity (5).

Recent research has challenged this classical view of distinct MS
subtypes, as they may not sufficiently account for the large spectrum
of multifaceted clinical phenotypes and disease courses as well as
sub-clinical disease variability (6). This disease heterogeneity is
further complicated by a high prevalence of comorbidities and
multi-pharmacy in MS. Data from the NARCOMS registry
suggested that, at the time of MS diagnosis, 35% of MS patients
suffer physical comorbidities while 18% reported a psychiatric
comorbidity (7, 8). Additionally, accumulation of clinical
disability independent of acute inflammatory relapses -
commonly referred to as Progression Independent of Relapse
Activity (PIRA) (9) - was found to occur in any of the classical
MS subtypes, including RRMS, and at any stage of the disease (10,
11). Most importantly, in a substantial proportion of people with
MS (pwMS), PIRA occurs already very early on, and this is
associated with worse long-term outcomes (2). Recent studies
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have also shown that PIRA gradually becomes the dominant
driver of disability worsening as the disease progresses (9).

While new insights into PIRA continue to be unraveled, exact
criteria of how to define, assess, and monitor PIRA are still lacking.
Several definitions have been put forward, but these focus mainly
only on measuring disability worsening by means of the Expanded
Disability Status Scale (EDSS) and Confirmed Disability Worsening
(CDW) (2). Relying solely on EDSS or CDW to describe PIRA,
however, seems to be insufficient as (i) there are heterogeneous
symptoms and disease aspects contributing to disability worsening
and MS severity, and (ii) this omits sub-clinical processes such as
compartmentalized inflammation, chronically active (smouldering)
lesions, diffuse normal-appearing matter damage (12, 13), as well as
brain (14) and spinal cord atrophy (15, 16). Such processes seem to
represent relevant substrates of (silent/smouldering) disease
progression even during early stages and to contribute to
enhanced long-term disability worsening in pwMS (17). In this
regard, the topographical disease model proposed by Krieger et al.
may facilitate the interpretation of the clinical course revision,
providing a unified visualization across phenotypes, while
providing insights in the interplay between the distinct processes
of relapse activity and progression, and accounting for latent
variables such as relapse localization, frequency, severity, recovery
and progression rate (18). Additionally, this model was recently
validated in terms of brain MRI markers (19). Aligning with this
model, individuals deemed neurologically normal in early MS (e.g.,
with an EDSS score of 0) demonstrated subtle deficits in high-
challenging motor tasks (20) and often have fatigue (21) and
cognitive impairments (22). The former was also shown to
correlate with imaging markers of disease burden and brain
reserve, challenging traditional severity definitions and
underscoring the importance of looking beyond standard clinical
measures such as the EDSS (20).

2 A changing landscape in
treatment strategies

The heterogeneity in disease progression among individuals
with MS (both clinically and sub-clinically) contributes to a high
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diversity in treatment responses across pwMS (23). As there is no
cure available yet for MS, the primary therapeutic objective is to
slow down disability progression and to reduce relapses as early as
possible during the disease to maintain and/or improve the health-
related quality of life (24).

To this end, all regulatory-approved disease-modifying
treatments (DMT) have shown their worth in preventing relapses
during the few years of the clinical trial in which their efficacy was
evaluated. However, the impact on the long-term accumulation of
disability and chronic subtle disease processes was often limited as
even the most effective DMTs available were only able to mitigate
the short-term risk of disability progression by 30-42% (25). A
recent review from Gasperini et al. emphasizes how dire the
situation really is, indicating that only 30- 40% of patients
receiving a DMT remain stable over a period of 5 to 7 years, and
only up to 10% over a period of 7 to 10 years after initiating
DMT (26).

Despite the approval of +20 different DMTSs by the European
Medicines Agency (EMA) and the US Food and Drug
Administration (FDA) (27, 28), concerns about side effects and
efficacy might discourage many pwMS from initiating a high-
efficacy DMT therapy (29, 30), an issue further aggravated by
therapeutic inertia (31). Additionally, those who do receive a
DMT usually start with one of the less effective but well-
established therapies due to their minimal side effects (32).
Traditionally, it's only when these well-established DMTs fail to
prevent relapses and disability progression, that the treatment is
escalated to a higher-efficacy treatment, which usually is more
expensive, might have more pronounced side effects, and is
potentially more challenging to administer (oral and injectables
versus infusions) (33). However, multiple studies support the
observation that reducing the accrual of neurological damage in
the initial stages of the disease potentially improves overall clinical
outcomes throughout the patient’s lifespan when employing early
intervention with higher efficacy DMT (34-38). Additionally,
DMTs were shown to be more efficacious, and side effects less
likely to occur in younger patients (39). Taken together, these
studies question the traditional treatment escalation paradigm
which is therefore nowadays considered outdated by most
physicians. Instead, current thinking emphasizes the potential
advantages of early initiation of high-efficacy DMTs, indicating
the need for and the significance of an early MS diagnosis, proactive
monitoring to detect disease activity early, and shared decision-
making as crucial elements in patient care (32, 40).

Additionally, given the shortcomings of current DMTs to halt
long-term disability accumulation, a next generation of DMTs
might focus more on the silent progression of the disease. A first
novel category of DMTs in this regard are potentially the Bruton
tyrosine kinase inhibitors. This new class of drugs might become the
first to target both acute inflammatory relapses as well chronic
inflammatory processes in the CNS thought to drive disability
accumulation (41). In this context, especially the early recognition
of individuals prone to developing PIRA will be essential. A better
understanding of PIRA and RAW as well as their interplay,
combined with data-driven prognosis, will enhance the selection
of current and future DMTs and allow to treat patients beyond just
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relapse activity. Nevertheless, certain variables pose challenges to
the trajectory of precision medicine and treatment optimization on
an individual level. While there are guidelines on the use of DMTs
in MS (24), these are all based on expert judgment and differ across
countries, even within the EU (28, 37). This variance extends to
therapy selection post-diagnosis or during follow-ups, driven by
perceived levels of clinical and subclinical disease activity
and progression.

3 Precision medicine enables
treatment optimization

Accumulating evidence suggests that the reactive treatment of
lesion activity is insufficient, negatively impacting long-term patient
outcomes (42). In the complex landscape of MS treatment, an
increasing acknowledgment of disease heterogeneity and
underlying disease mechanisms underscores the imperative for a
paradigm shift toward proactive, data-driven precision medicine
(43). However, despite its promise, such data-driven approaches
come hand in hand with substantial challenges.

The understanding of the complex and heterogeneous
underlying neuropathology of MS is still limited. The adoption of
precision medicine in MS is further complicated by the chronic
nature of the disease, exhibiting variable courses over time.
Consequently, given the longitudinal disease aspect, one must
account for the fact that data might be incomplete at times,
particularly in routine practice. In addition, the influence of
comorbidities adds another layer of complexity (44). Various
biomarkers are deemed relevant for their role in identifying
diverse MS aspects and patterns of progression in MS, aiding
diagnosis, prognosis, and treatment selection (45). However, they
might not capture the full complexity of MS and their interpretation
requires a nuanced understanding of the disease context. Moreover,
the heterogeneous nature of MS challenges the development of
universally applicable biomarkers and complicates the tracking of
different treatment effects on an individual basis (46).

Notably, with a variety of treatment options being available (27,
28), emerging biomarkers, including liquid and imaging markers,
have shown potential in monitoring treatment efficacy (45, 47).
However, the validation, availability, and implementation of
biomarker assessments in real-world clinical practice is often still
missing as this differs significantly from their application in clinical
trials. Moreover, biomarkers that demonstrate both sensitivity and
specificity in the context of progressive MS are still lacking (47).
While early diagnosis and prognosis modelling are pivotal for
timely and effective treatment initiation, the ability to clearly
define and disentangle disability accumulation attributed to RAW
or PIRA will be key to optimizing individual treatment over the
course of the disease.

Advancements in artificial intelligence (AI) can offer enhanced
and data-driven support by considering longitudinal data on
multiple biomarkers simultaneously and subtyping patients more
accurately. In particular, this can include biomarkers more related
to PIRA such as motor dysfunction beyond EDSS (2, 48), optical
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coherence tomography (49-51), magnetic resonance imaging
markers predictive of disability worsening such as brain atrophy
(14), slowly expanding lesions and paramagnetic rim lesions (52—
54) and cognitive impairment (55-57), as well as subjective markers
[ie. patient-reported outcomes (PROs) such as quality of live (58,
59)]. We believe that a holistic overview of the patient will be crucial
to avoid overlooking relevant information, including both existing

10.3389/fimmu.2024.1446748

and new biomarkers as our disease understanding evolves
further (Figure 1).

Such transformative approaches hold the potential to
significantly enhance treatment strategies and extend the adjusted
quality of life years for individuals with MS. Nevertheless, the
current landscape is still fragmented, often focusing on singular
aspects or biomarkers rather than adopting a more holistic and
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FIGURE 1

A clinical decision support tool should be capable of visualizing the very heterogenous MS patient data, the Al-supported analysis of this data and
the outcome of prognostic models using this data, enabling a data-driven discussion between the neurologist and patient to identify the best DMT

for the patient.
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comprehensive approach. Data strategies to reduce the level of
heterogeneity, particularly improving data harmonization by means
of a common data model, are wishful to guarantee standardization
in clinical decision making (60). However, the implementation of
such initiatives is still in the early stages. Care pathways for pwMS
are also not commonly standardized and while some diagnostic and
treatment guidelines and recommendations are available (1, 61, 62),
the assessment of relevant outcomes may not always be sufficiently
covered and integrated into the routine clinical workflow (63). A
modular-integrative framework of digital patient pathways for MS
management and treatment is needed, which should incorporate
Al, data harmonization and review relevant research concerning the
use of pathways in healthcare (64, 65). Although initial evidence of
acting upon Al-driven MRI biomarkers has indicated to improve
patient outcome (66), the evaluation of impact in real-world
practice and evidence on whether acting upon data-driven models
and biomarkers truly improves the quality of life for patients with
MS are crucial components that demand more attention in the
pursuit of effective precision medicine strategies for MS.

4 Clinical impact through Al-assisted
MS care

A data-driven and personalized clinical decision support tool is
urgently needed for MS, to prevent and slow down disease
progression more efficiently via optimizing treatment. The EU-
funded ‘Clinical Impact through Al-assisted MS Care’ (CLAIMS,
www.claims.ms) project aims to address this need. The project will
develop, validate and seek regulatory approval for an Al-driven
clinical decision-support platform, which offers the MS care team a
holistic view of the patient through the visualization of all relevant
patient data and the prognosis on the expected disease trajectories
under different treatment regimens.

Initially, the project focusses on the development and
optimization of these prognostic models via the use of
retrospectively collected clinical routine data in combination with
clinical trial data. A detailed description of this retrospective multi-
center observational study (called RECLAIM) is accessible via
ClincialTrials.gov. This study aims to collect and harmonize both
clinical and subclinical data and store it in a central database on a
secure cloud environment. Data harmonization will be following
the common data model proposed in Parciak et al. (67), but kept to
the minimum necessary as we aim to stay as close as possible to the
real-world clinical setting and to ensure the clinical relevance.

The combination of real-world with clinical trial data is an
important aspect of the study. Clinical trial data is very
homogeneous and highly curated, making it an ideal dataset to
develop Al-driven prognostic models. For instance, MRI scans
obtained in clinical trials adhere to a standardized protocol,
include all necessary sequences, and ensure follow-up scans
within a specific timeframe. In contrast, MRI scans acquired in a
real-world setting frequently don’t meet these requirements (68,
69). As the CLAIMS project aims to create Al-based prediction
models applicable in real-world clinical settings, it is crucial to also
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incorporate routine care data in the development and validation
phases. By combining both types of data, we aim to achieve an
extensive dataset that leverages the strengths of both types of data
ensuring applicability in a routine clinical care setting where
confounding factors (e.g., comorbidities), low quality data and
missing data are common (70, 71).

The focus will be on modelling disease progression. Disease
progression models often have strong assumptions about the
monotonicity of disease progression processes, the missingness
model and associated completeness of the data, the longitudinal
regularity of the observations, and homoscedastic noise
characteristics of the measurements. Due to the different MS
subtypes, and relapse and recurrence events, many of these
assumptions do not hold in a MS setting. Furthermore, when
using clinical observational data, data points are missing-not-at-
random, both because patients often miss their appointments, but
also because certain examinations (clinical assessments, MRI, etc)
are performed as a function of patient presentation. Tackling this
requires us to explore applicability of advanced and appropriate
models of data imputation, and from generative models that
explicitly model the causal relationships of the observations.

Contrary to clinical research trials where patients are assigned
to a treatment or placebo arm at random, in an observational
setting, DMTs are given to patients according to guideline
recommendations and patient presentation. Observational data is
thus biased by these guidelines, and appropriate measures are
needed to control for this bias. Causal inference mechanisms via
counterfactuals allows one to model such observational data and
predict what the potential outcome would have been under a
counterfactual treatment. By disentangling causes and effects, one
gains a clearer understanding of the underlying biological or
pathological markers that are predictive of the observed effect and
outcome. This enables a more grounded clustering of patients (e.g.,
what are the patient characteristics that predict drug efficacy),
providing an explanation of the optimal therapeutic inference
(e.g., what is the biological reason why a certain drug is optimal
for a specific patient). While some of these challenges have been
addressed in highly controlled randomized clinical research
environments, solving them using an observational experimental
setup would allow one to exploit large amounts of data while
ensuring the models remain accurate when deployed in a real-
world environment where the aforementioned problems exist.
Observational studies using real-world data allow for more
heterogeneous and comprehensive cohorts, thereby elevating
external validity and supplying valuable insights to guide
treatment approaches (69).

At the time of writing this paper, the first version of the
CLAIMS platform was already available, building upon a
regulatory cleared AI solution for brain MRI quantification, a
patient app for pwMS and a regulatory cleared AI solution for
optical coherence tomography (OCT) quantification (72-75), but
without the prognostic models (Figure 2). The complete clinical
decision support platform, including the prognostic models, will be
included in prospective clinical trial (called PROCLAIM), designed
to obtain regulatory approval, and bringing it to the market as soon
as possible. Meanwhile, the platform will be iteratively improved as
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The first iteration of the clinical decision support platform being developed in the CLAIMS project. It offers a concise overview of the most important

data for making a clinical decision

new biomarker data becomes available and models are further
refined. This iterative approach ensures that the CLAIMS project
achieves true clinical impact for patients sooner rather than later.

5 Digital health and how this
support prognosis

The CLAIMS project is exploring an additional avenue for the
identification of promising markers of disease progression by
capturing digital biomarkers using digital health tools. A first set
of digital health tools includes AI solutions tailored for the
quantification of brain MRI scans (74, 75). Notable advancement
of these tools’ accuracy, in combination with rigorous technological,
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workflow, clinical and even initial health economic validation
makes that this solution steadily gains recognition as standard of
care. In the United States, this trend towards embracing Al-based
brain MRI quantification is further exemplified by the recent
provision of two new Current Procedural Terminology (CPT)
codes. Evidence has shown that by using such a solution, disease
activity can be detected up to 3 years earlier with a potentially
significant impact on treatment decisions (66).

Patient apps, another major trend in the digital health tools,
could enhance the early detection of disease progression in pwMS
and allow monitoring disease progression in between visits with
their treating physician. This can be achieved by monitoring
symptoms and disability progression through capturing patient-
reported outcomes (PROs), through passive monitoring of various
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markers (activity, sleep, vital signs, ...) or through the digital
administration of tests assessing for example cognition, vision,
mobility, etc. (76, 77). In addition, these tools can play an
important role in increasing and monitoring medication
adherence, improving a patient’s lifestyle through creating
awareness, and to educate and empower patients in managing
their disease better. As such, disease monitoring via digital health
tools provides a dynamic, more continuous, and more nuanced
understanding of disease progression.

Development of such tools poses a socio-technical challenge.
Any tool which aims to obtain regulatory clearance for use in a
clinical setting will need to obtain sufficient technical and clinical
evidence, which is often a long and laborious process. A bigger
challenge, however, is patient adoption and thereafter adherence in
using the tools. Concerns on data security and privacy need to be
adequately addressed and simultaneously, it needs to be very clear
to patients that they will benefit from enhanced care and
personalized interventions driven by a more holistic
understanding and monitoring of their health status and disease
progression. CLAIMS aims to address this by empowering and
educating patients on the need to better monitor their disease. In
this light, the patient app used in CLAIMS is positioned as a
companion app, available to support the patient as needed,
focusing on topics of interest to the patient, rather than
mandating the app usage. Actively involving patients and
capturing their feedback on the app utilization, whether via real-
world usage or within a clinical study setting, will contribute
valuable insights, allowing to further refine the tools and
ultimately, the clinical decision support platform.

Besides patient adherence, integration into routine clinical
workflows poses another challenge. To address this, the clinical
decision support platform in CLAIMS aims to keep the steps of
platform adoption to a bare minimum. It aggregates all of a patient’s
data, including data from the patient app, from the AI-driven MRI
analysis and from the Al-driven OCT-analysis. While the full
datasets and analyses will be available via this platform, the main
dashboard focusses on providing a holistic overview of all clinically
actionable measures and markers. While this is rather
straightforward for subjective and episodic data such as with
questionnaires or simple tests captured via the patient app, this
will be harder to achieve for data from passive monitoring. The
latter is known to generate large longitudinal datasets where Al
algorithms are needed to identify subtle patterns and disease
subtypes, and to predict trajectories.

Patient-reported outcomes (PROs) represent a unique occasion
to involve patients using digital health tools and measure the impact
of health care on outcomes that hold utmost significance to pwMS.
However, the variety of PRO measures available and the absence of
standards across different healthcare centers and countries present a
considerable challenge (58). The recently established initiative
‘Patient-Reported Outcomes for Multiple Sclerosis’ (PROMS),
consisting of an interdisciplinary, international network of
different stakeholders, addresses the challenge of creating PRO
measures that meet the diverse needs of all parties involved to
enhance the influence of both scientific research and patient
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perspectives on the lives of pwMS (59). In this context, digital
health tools enable meaningful assessments, but patient satisfaction
can influence assessment compliance and indirectly affect outcome
measures. To assess patient satisfaction with digital tools, patient-
reported and expert-reported experience measures (PREM) should
be collected in parallel (78).

6 The road ahead

As our understanding of MS increases, it becomes evident that we
should go beyond making treatment decisions solely based on
relapses, EDSS progression and lesion activity and move towards
proactively treating pwMS for the best possible prognostic outcome.
A focus on maintaining/improving health-related quality of life and
slowing down disease progression and disability worsening - also
independent of relapse activity - has sprouted a clear need for data-
driven and personalized clinical decision support tools in MS. Such
tools are crucial to administer the right drug to the right patient at the
right time to preserve long-term neurological function while
minimizing side effects. However, such solutions require well
validated biomarkers and models that clearly link to the specificity
of the disease course and outcome at individual patient level and can
be easily implemented along the clinical care path of the patient.

The CLAIMS project aims to develop such a data-driven and
personalized clinical decision support tool while addressing the
posed challenges. Biomarker validation and model building will be
performed in the retrospective RECLAIM study using both real
world data and data from clinical trials. Subsequently, the
prospective PROCLAIM study will evaluate the envisioned
platform in daily clinical routine, evaluating feasibility and impact
on patient care pathways and patient outcome. As such the project
will generate a platform for daily clinical routine that provides a
holistic view of each patient including existing and novel biomarker
assessments to better monitor relapse related disability worsening
and progression independent of relapse activity. Driven by deep-
learning-based disease subtyping and progression models, the
platform will allow the estimation of individual disease
trajectories and as such contribute to the urgent need of a more
pro-active and data-driven precision medicine in MS care.
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Artificial intelligence (Al) has meant a turning point in data analysis, allowing
predictions of unseen outcomes with precedented levels of accuracy. In multiple
sclerosis (MS), a chronic inflammatory-demyelinating condition of the central
nervous system with a complex pathogenesis and potentially devastating
consequences, Al-based models have shown promising preliminary results,
especially when using neuroimaging data as model input or predictor variables.
The application of Al-based methodologies to serum/blood and CSF biomarkers
has been less explored, according to the literature, despite its great potential. In
this review, we aimed to investigate and summarise the recent advances in Al
methods applied to body fluid biomarkers in MS, highlighting the key features of
the most representative studies, while illustrating their limitations and
future directions.
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Introduction

Artificial intelligence (AI) techniques have proved very useful for the diagnosis and
prognostication of several conditions around the world (1), including multiple sclerosis
(MS) (2). AT methods used in medical research, including MS research, may include
machine learning (ML) and deep learning (DL) analyses. Typically, while ML analyses are
based on tabulated data as input to the model, DL models use raw data - typically images -
as input to the model. Model outputs depend on the type of task that is needed, e.g., a given
diagnosis (instead of another one), a certain disability milestone, or the presence of MRI
activity in people who are receiving a given drug.

Multiple sclerosis (MS) is a chronic inflammatory-demyelinating condition of the
central nervous system (CNS) with heterogeneous genetic and environmental risk factors
(3). Disease diagnosis and monitoring strongly rely on routine clinical assessments and the
use of conventional brain and spinal cord magnetic resonance imaging (MRI) as a
biomarker. A biological marker, or biomarker, is a characteristic that is objectively
measured and evaluated as an indicator of normal biological processes, pathogenic
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processes or pharmacologic responses to a therapeutic intervention
(4). Besides MRI, body fluid biomarkers can also provide additional,
independent data on MS. AI applications in MS can potentially help
us better support the diagnosis, find markers for prognosis, facilitate
accurate monitoring, and eventually understand the mechanisms of
the disease. Focusing on these main challenges, this review aims to
summarise the recent advances in Al applied to blood, serum and
CSF biomarkers in MS, highlighting the key features of the most
representative studies (Figure 1) (5). This review also aims to
illustrate its limitations and future directions.

Search strategy

We performed a search in PubMed based on the following
criteria: (i) search terms: ((multiple sclerosis) or demyelination or
(demyelinating disease)) AND ((artificial intelligence) or (deep
learning) or (machine learning)) AND (biomarkers OR markers
OR (biological markers) OR (fluid biomarkers) OR (body fluid
biomarkers)); (ii) language of publication: English; (iv) type of
paper: original research. For the purpose of this narrative review,
we have focused on three aspects: (i) diagnosis & differential
diagnosis; (ii) prediction of clinical outcome; (iii) understanding
of pathogenic mechanisms. Thus, after the first literature search, we
manually selected the papers if they were included in one of these
three categories. Papers not clearly included in any of these
categories were not considered in the review. Thus, we did not
include papers whose main focus was methodological or animal
research, and papers related to fluid biomarkers other than blood,
serum and CSF. We also excluded review papers, editorials, and case
reports. The PubMed search yielded 206 articles, published between
1996 (and especially between 2009) and 2024, both included
(Figure 2). After excluding those not meeting our inclusion

10.3389/fimmu.2024.1459502

criteria, we revised 29 papers for their inclusion in this narrative
review (Figure 2). Most of these papers have been published
between 2019 and 2024 (Figure 3).

Once all papers were selected, they were divided into MS
diagnosis and differential diagnosis (N=6), prediction of disease
evolution (N=14), and understanding mechanisms of damage in
MS (N=9). Of note, for some papers we found a degree of overlap
and the decision to include them into one or another category
depended on the main objectives described by the authors.

MS diagnosis and differential diagnosis

The diagnosis of MS relies on integrating clinical, MRI, and
laboratory findings and excluding alternative diagnoses, especially
in the presence of red flags. Indeed, the diagnosis of MS is not
devoid of challenges: other conditions may mimic MS, clinically or
radiologically (6). In these circumstances, the use of AI algorithms
may be useful (Table 1), especially in body fluid biomarker
discovery studies such as those done with “omics” technology.

A has been implemented to identify genetic susceptibility
biomarkers. Pasella et al. (7) used decision trees (DT) to create a
predictive tool assessing the likelihood of MS including alleles
responsible for human leukocyte antigen (HLA) class I molecules
and killer immunoglobulin-like receptor (KIR) genes, responsible
for natural killer (NK) lymphocyte receptors. They studied 299
persons with MS (PwMS) and 619 healthy controls (HC). The
algorithm accurately identified 80.94% of PwMS and 71.08% HC in
the training set and 73.24% and 66.07%, respectively, in the
validation set. Guo et al. (8) used Support Vector Machine (SVM)
to identify gene expression profiles on the transcriptome of
peripheral blood mononuclear cells (PBMC) from 26 PwMS and
18 subjects with other neurological diseases (OND). This approach

Main types of input data in Al-based studies focused on fluid biomarkers
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FIGURE 1

Main aims of Al-based studies focused on fluid biomarkers. This figure illustrates the main types of input data and the main aims of Al-based studies

focused on fluid biomarker data in MS.
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(*) Search terms: ((multiple sclerosis) or demyelination or (demyelinating disease)) AND ((artificial intelligence) or (deep learning)
or (machine learning)) AND (biomarkers OR markers OR (biological markers) OR (fluid biomarkers) OR (body fluid biomarkers))

FIGURE 2

PRISMA chart describing article selection. We have followed a systematic approach for selecting the papers to be considered in our manuscript.
After performing a PubMed search with the following terms: (multiple sclerosis or demyelination or demyelinating disease) AND (artificial intelligence
or deep learning or machine learning) AND (biomarkers or markers or biological markers or fluid biomarkers or body fluid biomarkers), 206 records
were obtained. Of those, only 29 were considered for this review after excluding those not meeting our inclusion criteria.

identified 8 genes differentially expressed between groups with 86%
accuracy in the validation study. These genes involved the protein
kinase cascade, inactivation of mitogen-activated protein kinases
(MAPK), and regulation of signal transduction and apoptosis.
The metabolomes of cells and tissues include lipids, amino
acids, sugars and other molecules (9). Andersen et al. (10) used
random forests (RF) to identify blood-based metabolite profiles that
could discriminate between 12 male PwMS and 13 male controls.
The top 6 candidate metabolites informative for MS, defined as
having an area under the receiver operating characteristic (ROC)
curve (ROC-AUC) >80%, participate in glutathione metabolism,

fatty acid metabolism and oxidation, cellular membrane
composition, and transient receptor potential channel signalling.
Whilst metabolomics focuses on hydrophilic molecules, lipidomics
has emerged as an independent “omics” due to its complexity (9).
Lotsch et al. (11) used unsupervised ML to compare 43 lipid
mediators in serum from 102 PwMS and 301 HC. The analyses
showed 98% accuracy to differentiate PwMS from HC. Then, the
authors used supervised ML implemented as RF and computed
ABC analysis-based feature selection, to create a classifier. This
approach identified 8 lipid biomarkers differentially expressed in
PwMS with 295% accuracy in training and test datasets.

Number of Al-based publications focused on fluid
biomarkers in multiple sclerosis over time

2014 2015 2016 2017

FIGURE 3

2018

2019 2020 2021 2022 2023

Distribution of the research papers on Al applied to biomarker data in MS over time. This histogram shows the number of research articles (of those
29 selected) published per year. It is to be noted that most of the papers have been published in the last 4 years.

Frontiers in Immunology

19

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1459502
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

ABojounwiwi| Ul s1913U044

[SSIRVFETMIIT]

TABLE 1 Summary of selected studies focused on diagnosis and differential diagnosis.

Reference

Pasella et al.,
Front

Neuroinform.
2023 [ref (7)]

Guo et al.,
PLoS One.
2014 [ref (8)]

Andersen

et al., Mult
Scler Relat
Disord. 2019
[ref (10)]

Lotsch et al.,
Sci Rep. 2018
(ref [11)]

Training and

testing cohort, N

MS: n=299 (RRMS 0
n=218,

PPMS n=81)

Healthy controls: n=619

MS: n=26 0
OND: n=18

Male subjects with MS: 0
n=12
Male controls: n=13

MS: n=102 0
Healthy controls: n=301

Independent
validation
cohort, N

Biomarker
profiles

Alleles responsible for
HLA class I molecules
and KIR genes, obtained
from PBMC

27336 probe sets
obtained from gene
expression profiles from
the Array Express
Database. Samples
obtained from PBMC

Serum metabolites (lipid
and amino acid profiles)

43 lipid mediators from
serum samples:
ceramides (@)

Al
method:
algorithms

DT

SVM, ROC
algorithm,
Boruta algorithm

RF

Self-organising maps
of neural networks,
swarm intelligence
and Minimum
Curvilinear
Embedding.

In a second step, RF
and computed ABC
analysis-based
feature selection

Model input

Genotyping for alleles at HLA-
A, -B, -C, and -DRBI loci.
Primers specific to 11KIR
genes: IR2DLI, KIR2DL2,
KIR2DL3, KIR2DL5, KIR3DL1,
KIR2DS2, KIR2DS3, KIR2DS4,
KIR2DS5, KIR3DS1

8 genes differentially expressed
between MS and OND

12 metabolites

Classifier with 8 lipid
biomarkers (GluCerC16,
LPA20:4, HETE15S,
LacCerC24:1, C16Sphinganine,
biopterin, and
endocannabinoids PEA

and OEA)

MS vs
non-MS$S

MS
vs OND

MS
Vs
controls

MS vs
healthy
controls

Model
performance

identified 80.94% of MS
patients in the training set
and 73.24% in the
validation set. Identified
71.08% of healthy controls
in the training set and
66.07% in the validation set

AUC 0.711-0.852.
Accuracy of 86% in
validation study

6 metabolites with AUCs
>80%: pyroglutamate,
laurate, acylcarnitine C14:1,
N-methylmaleimide, and 2
phosphatidylcholines (PC
ae 40:5, PC ae 42:5)

98% accuracy for the 43
lipid mediators; classifier
with >95% accuracy in
training and test data sets

Comments

Immunogenetic risk factors,
specifically alleles responsible for HLA
class I molecules and KIR genes,
responsible for natural killer
lymphocyte receptors

The 8 differentially expressed genes in
MS vs OND were related to the
protein kinase cascade, inactivation of
MAPK, and regulation of signal
transduction and apoptosis

Identified metabolites participate in
glutathione metabolism, fatty acid
metabolism and oxidation, cellular
membrane composition, and transient
receptor potential channel signalling.
Their gene expression association
suggested enrichment for pathways
associated with apoptosis and
mitochondrial dysfunction.

Most lipid mediator concentrations
were reduced in MS. Exceptions were
the ceramide LacCerC24:1 and the
sphingolipid C16Sphinganin, found at
higher concentrations in MS

Cerl6 and Cer24 might amplify
cytokine-induced cell death of myelin-
producing oligodendrocytes.
HETEI15S was shown to be regulated
in CSF of MS patients. Enhanced
activity of autotaxin was observed in
serum samples of MS patients. PEA
and OEA have been found in RRMS
and SPMS. Neopterin is an activation
marker of the innate immune system
with increased levels in autoimmune
diseases including the CSF of

MS patients
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TABLE 1 Continued

Reference Training and Independent = Biomarker Al Model input Model Comments
testing cohort, N  validation profiles method: performance
cohort, N algorithms
Probert., et al. | MS with +OCB: n=41 0 Metabolites and proteins =~ Multivariate 8 metabolites significantly MS vs The combination of CCN5, = Integrative metabolomics and
Front Non-MS controls with in CSF OPLS-DA decreased in MS: 4 (myo- non-MS vWF, GFAP, and OCB proteomic enrichment analysis
Immunol. +OCB: n=64 (*) inositol, isoleucine, leucine, status provided the best revealed upregulated JAK-STAT and
2021 [ref (12)] glutamine) had higher overall diagnostic properties  glycolysis pathways in MS, consistent
specificity than OCB for MS (sensitivity 89%, specificity with an increased inflammatory
diagnosis. 929%, accuracy 91%) response and altered
9 biomarkers outperformed compared to OCB status energy metabolism.
OCB as predictor of MS
(CCNS5, CDCC80, NTN1, vWF,
DKK4, SOST, ERBB3, I1GL4,
and IGKV1-5).
All significantly decreased in
MS vs non-MS except for IGL4
and IGKV1-5, which
were increased.
Gaetani et al., +OCB RRMS: n=58; 0 Quantification of 92 Hierarchical 92 tested proteins minus 45 MS vs All: CD5 (AUC 0.87) and CD5 may act as a receptor in
Int J Mol Sci. -OCB RRMS: n=24; immune activation clustering to profile with a call rate <85%, age, OND; IL-12B (AUC 0.81). regulating T cell proliferation. IL-12B
2023 (ref [13)] | OND: n=36 (&) CSF proteins CSF proteins. sex, NfL +OCB +OCB RRMS vs OND: IL- promotes differentiation of T cells
Binomial and RRMS vs 12B, CX3CL1, FGF-19, into T helper 1 (Th1) cells. CX3CL1
multinomial LASSO OND; CST5, and MCP-1 (91% increases IFN-y and TNF-o. gene
regressions to -OCB sensitivity, 94% specificity expression and IFN-y secretion by
differentiate RRMS in the training set; 81% and =~ CD4+ T cells. FGF signalling may
patient groups vs OND 95%, respectively, in the regulate inflammation and
validation set) myelination in MS since an
-OCB RRMS vs OND: abundance. CST5 has shown potential
CX3CL1, CD5, CCL4, and as a relapse marker. MCP-1 may be
OPG as well as NfL (87% involved in the recruitment of
sensitivity, 80% specificity monocytes/macrophages and activated
in the training set; 56% and  lymphocytes. CCL4 is involved in the
48% in the validation set) disruption of the blood-brain barrier.
OPG suppresses mRNA expression of
CCL20, a chemokine involved in
Th17 cell recruitment with anti-
inflammatory effects
Martynova MS: n=101 (RRMS 45 leucocyte-activation k-Nearest 22 cytokines altered in CSF and = MS vs Diagnostic accuracy: 292% CCL27 could trigger T memory cells
etal, n=49, SPMS n=31, regulatory cytokines Neighbour, DT, 20 in serum, 10 commonly non-MS when any randomly to produce IL-4 and IFN-y.
Mediators PPMS n=21) and Non- measured in serum XGB, Gaussian affected in both (IL-1c; IL-4, selected 5 of any cytokines Interleukins and chemokines affected
Inflamm. 2020 = MS subjects: serum and CSF Naive Bayes and RF  IL-18, CCL7, CCL27, CSF, were used. in serum and CSF could direct
[ref (14)] n=101 and CSF IFN-y, LIF, M-CSF, and TNF- The highest accuracy, 99%, leukocyte migration targeting

n=25 ($)

).
Three

obtained when including
CCL27, IFN-v, and IL-4

Thl cells.
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Comments

performance

output

independent datasets: cytokines

affected both in CSF and
serum, only in CSF and only

o
>
a

£

[}

o
(o}

=

algorithms

Biomarker
profiles

Independent
testing cohort, N = validation

Reference Training and

TABLE 1 Continued
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in serum

5),

4), dysmetabolic

1), polyneuropathy (n:

=3), normal pressure hydrocephalus (n
16; psychiatric disorders: n:

1), neuroinfection (n

2); (&): headache: n

2), neuralgic amytrophy (n

2), MG (n:
1), white matter lesions/leukoencephalopathy (n:

3), movement disorder (n:

8), SLE (n=1), visual disturbance (n:
3); ($): tension type headache, residual encephalopathy, unspecified demyelinating disease of the CNS, cerebrovascular diseases, PML, migraine with aura; (@): Cer16:0, Cer18:0, Cer18:1, Cer20:0, Cer24:0, Cer24:1, GluCerC16:0, GluCerC24:1,

12), gait disorder (n=1), meningitis (n=2), motor paresis (n=

5), functional neurological disorder (n=

(*) Epilepsy (n

13; mononeuropathy: n=

2), primary headache disorder (n=13), sensory disturbance (n:

polyradiculitis (n

polyneuropathy (n

LacCerC16:0, LacCerC24:0, LacCerC24:0); lyosophosphatidic acids (LPA16:0, LPA18:0, LPA18:1, LPA18:2, LPA18:3, LPA20:4); sphingolipids (sphinganine, sphingosine, S1P, SA1P C16Sphinganine, C18Sphinganine, C24Sphinganine, C24:1Sphinganine); prostaglandins

(PGD2, PGFla, PGE2, TXB2); dihydroxyeicosatrienoic acids (DHET5.6, DHET11.12, DHET14.15); hydroxyeicosatetraenoic acids (HETE 5 S,

, HETE_20S); endocannabinoids (AEA, OEA, PEA, 2-AG) and pterins (biopterin, neopterin);

HETE_15S

3

HETE_12S

Abbreviations (in alphabetical order): AUC, area under the curve; CCL, chemokin (C-C motif) ligand; CCN5, connective tissue growth factor/cysteine-rich protein/nephroblastoma overexpressed-5; CD, cluster of differentiation; CDCC80, coiled-coil domain-containing
protein 80; CSF, cerebrospinal fluid; CST5, cystatin D; CX3CL, chemokine (C-X3-C motif) ligand 1; DKK4, dickkopf-related protein 4; DT, decision trees; ERBB3, receptor tyrosine-protein kinase erbB-3; FGF, fibroblast growth factor; GFAP, glial fibrillary acidic protein;

HLA, human leukocyte antigen; IFN, interferon; IGKV1-5, immunoglobulin kappa variable 1-5; IGL4, insulin growth factor-like family member 4; IL, interleukin; JAK-STAT, Janus kinase/signal transduction and transcription activation; KIR, killer immunoglobulin-like

receptor; LASSO, least absolute shrinkage and selection operator regression; LIF, leukemia inhibitory factor; MAPK, mitogen-activated protein kinases; MCP, monocyte chemoattractant protein; M-CSF, macrophage colony-stimulating factor; MG, myasthenia gravis; MS,
multiple sclerosis; NfL, neurofilament light chain; NTN1, netrin-1; OCB, oligoclonal bands; OND, other neurological diseases; OPG, osteoprotegerin; OPLS-DA, orthogonal partial least squares discriminant analysis; PBMC, peripheral blood mononuclear cells; PPMS,
primary progressive multiple sclerosis; RRMS, relapsing remitting multiple sclerosis; ROC, receiver operating characteristic curve; RF, random forests; SLE, systemic lupus erythematosus; SOST, sclerostin; SPMS, secondary progressive multiple sclerosis; SVM, support

vector machine; Th, T helper cells; TNF, tumor necrosis factor; vVWF, von Willebrand factor; XGB, Extreme Gradient Boosting.

10.3389/fimmu.2024.1459502

Other studies have focused on CSF biomarkers. Probert et al. (12)
used ML to profile metabolites and proteins in CSF samples from 41
PwMS and positive IgG oligoclonal bands (+OCB) and 64 patients
with OND and +OCB. Multivariate orthogonal partial least squares
discriminant analyses (OPLS-DA) showed that combining
connective tissue growth factor/Cysteine-rich protein/
Nephroblastoma overexpressed-5 (CCN5), von Willebrand Factor
(VWE), glial fibrillary acidic protein (GFAP), and OCB provided the
best diagnostic properties to discriminate MS from OND (89%
sensitivity, 92% specificity, 91% accuracy). Gaetani et al. (13) used
hierarchical clustering to profile 92 immune activation CSF proteins
in +OCB relapsing-remitting MS (RRMS) (n=58), -OCB RRMS
(n=24), and OND (n=36). Next, they used binomial and
multinomial least absolute shrinkage and selection operator
(LASSO) regressions to differentiate among these groups. Cluster
of differentiation 5 (CD5) (ROC-AUC 0.87) and interleukin 12B
(IL-12B) (ROC-AUC 0.81) were the best MS vs OND predictors.
The model that best differentiated +OCB RRMS from OND
included IL-12B and 4 other proteins (sensitivity 91% and 81%,
specificity 94% and 95% in the training and validation sets,
respectively). The model that best differentiated -OCB RRMS
from OND included CD5, 3 other immune activation proteins as
well as NfL, assessed additionally (sensitivity 87% and 56%,
specificity 80% and 48% in the training and validation
sets, respectively).

One study assessed proteins in both CSF and serum. Martynova
et al. (14) used five ML models to study differences in 45 leucocyte-
activation regulatory cytokines, measured in serum and CSF of 101
PwMS and in 101 serum and 25 CSF samples from non-MS
subjects. Twenty-two cytokines were altered in CSF and 20 in
serum, of which 10 were commonly affected. Next, three
independent datasets including cytokines affected in CSF and
serum, only in CSF, and only in serum were used as input to ML
models to predict MS. Diagnostic accuracy was >92% when any
randomly selected five of any cytokines were used.

Prediction of MS evolution

The high heterogeneity of MS in terms of disease evolution
means that the prognostication in clinical practice is extremely
difficult. Although the presence of a high number of inflammatory-
demyelinating lesions in the brain (15), and the presence of
infratentorial (16), cortical (17), spinal cord (18), lesions at the
time of the first attack are well-known predictors of a worse clinical
evolution, these associations are only meaningful at a group level.
That is, the prediction of the disease at the individual level based on
these known predictors is still far from optimal. For that reason,
over the years, a number of authors have aimed at predicting MS
evolution based on these factors but through the development of AI
models, with a much greater potential - at least theoretically - than
classical statistical models. In spite of this, though, the ability to
currently build (and publish) AI models to predict disease evolution
based on MRI and clinical data is still limited. This limited ability
becomes evident especially when a model built in a given cohort is
applied in a completely unseen, independent, validation cohort,
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showing a much lower accuracy than expected (much lower than
that of the original cohort). This possibly suggests that the
variability across people with MS is probably larger than what we
thought and that mismatches between accuracies in original
(training and testing) cohorts and external validation cohorts may
be due to an overfitting of the data by the model in the original
cohorts. Additionally, this may also suggest that other aspects apart
from MRI and clinical data may be playing a role in the evolution of
the disease. Over the last 10 but especially over the last 5 years, some
studies using AI models applied to biomarker data to explain
concurrent and future disease evolution have started to
emerge (Table 2).

Regarding the studies that have focused on the concurrent
prediction of clinical outcomes, in 2019, Flauzino et al. (19),
published a study where 122 people with MS were tested on
several serum biomarkers to predict concurrent disability status.
These biomarkers, which were related to the immune-inflammatory
response, lipid and protein metabolic pathways, and oxidative
stress, were able to predict which patients had an Expanded
Disability Status Scale (EDSS) (20) score above or below 3.0 with
high accuracy (Area under the ROC curve = 0.842). These results
suggest that Immune inflammatory, metabolic and oxidative stress
pathways may play a key role in disability accumulation in MS and
deserve further research. In another interesting study focused on
concurrent prediction, Brummer and colleagues (21) showed how
serum neurofilament light (NfL) levels could improve our ability to
detect cognitive dysfunction, especially when added to MRI
predictors such as grey matter volume. The authors of this study
not only built a ML model with high predictive accuracy, but also
validated the ML model in an external cohort, supporting the
generalisability of the model (21). Finally, we highlight the paper
from Jackson and colleagues (22), where ML models based on
random forest regression were built to predict a multi-dimensional
score of disease severity using genetic variants previously identified
as related to MS severity. Interestingly, the results, which could be
validated in an external cohort, showed that the 19 most predictive
genetic variants were located in 12 genes associated with immune
cell regulation, complement activation and functions of neurons
(22). This supports the robustness of the results while providing
important insights on the mechanisms of progression in MS.

Regarding the studies with a longitudinal design, there is a high
variability in terms of the length of the prediction period, ranging
from 6 months to 11 years, and in terms of the nature of the
predictor data, i.e., the input of the ML model. For instance, there
are studies which have used genetic data, focusing on the presence
of certain genetic variants or single nucleotide polymorphisms
(SNPs) (23, 24). Other studies have focused instead on the
presence of certain epigenetic mechanisms, such as DNA
methylation (25), and on certain gene expression profiles (26, 27).
Also, a few studies have demonstrated the ability of (immune)
cellular profiles to predict clinical outcome (23). Finally, there are
studies which have based their predictions on the presence of
specific serum and CSF proteins and metabolites (28, 29). In
relation to the output data, ie., the outcome of the ML model,
most studies focus on disability progression measures (19, 21-23,
25, 28, 30, 31), although some of them have chosen acute activity
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(generally MRI activity) outcomes (24, 26, 27, 32) and one focused
on the development of anti-drug neutralising antibodies (33),
known to reduce the effectiveness of the disease-modifying
drug (33).

In relation to the studies which have used SNP data to predict
future outcome, the article by Andorra et al. (23) is of special
interest. In this study, not only SNPs located in Human Leukocyte
Antigen (HLA) and non-HLA genes were considered as predictors,
but also data on immune cell populations, proteomics, brain MRI,
and optic coherence tomography (OCT) data. In this study, whose
results were validated in an external cohort, the authors predicted
the development of confirmed disability accumulation on different
disability outcomes after 2 years of follow-up, with high
sensitivity (23).

Among the studies with longest predictive periods, there is the
paper by Uphaus et al. (28), which used NfL data to predict 6-year
development of relapse-free progression and transition from RRMS
to SPMS with high accuracies, especially for the former outcome
and especially when combined with age and T2 lesion volume (28).
More recently, Everest et al. (31) published a paper where CSF
proteomics data was used to predict unfavourable evolutions over
an 8-year follow-up period (on average) with very high accuracies.
In this paper, which included an external validation analysis, the
authors propose several novel candidate CSF protein biomarkers
with a promising future in disease prediction modelling (31).
Finally, Campagna et al. (25) exploited the DNA methylation
profiles of 235 women with MS to predict disease severity over an
11-year period, again with high accuracy. Although this model was
not externally validated in an independent cohort, the length of its
prediction and the nature of the biomarker used make it especially
relevant. Interestingly, those genes with greater levels of
methylation seemed to be related to neuronal structure and
function (25).

Investigation of disease mechanisms

The pathophysiological processes in MS are not completely
understood and are believed to be highly heterogeneous across
people and disease stages. Fluid biomarker studies using AI to
understand pathogenetic mechanisms could contribute to a greater
characterisation of MS by expanding the concept of classical
phenotypes (Table 3).

PBMCs can bear specific dysregulation in genes at different
stages of MS. Acquaviva et al. (34) analysed transcriptomic profiles
of PBMCs from individuals with CIS (n=57), RRMS (n=108), SPMS
(n=26), PPMS (n=35), OND (n=27), and HC (n=60), divided into
training (n=224) and validation (n=89) datasets. They defined
classifiers (MS vs non-MS, relapsing vs progressive MS) using
nested cross-validation in the training dataset. Then they used
ward DT-based algorithms [RF, functional trees (FTs) and
adaptive boosting applied to FT (ADAboost-FT) to evaluate their
performance in the validation dataset. ADAboost-FT generated the
best model to differentiate MS from non-MS (94.3% sensitivity,
87.5% precision). Identified transcripts in MS were related to
interferon signalling, chromatin remodelling, and apoptosis. The
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TABLE 2 Summary of selected studies focused on prediction of disease course: relapses and disability accumulation.

Reference Training Independent = Follow- Biomarker profiles Al Model input Model output Model Comments
and validation up time method: performance

testing cohort, N (study algorithms
cohort, N design)

Cross-sectional prediction*

Flauzino et al., = 122 patients 0 NA Serum biomarkers Multilayer Immune inflammatory (Th17/Treg Disability status ROC AUC Immune inflammatory,
Metab Brain with MS, i.e., including immune- perceptron ratio), metabolic (LDL/HDL ratio, uric | based on EDSS =0.842 metabolic and oxidative
Dis. 2019 RRMS, inflammation, metabolic, neural network  acid, homocysteine) and oxidative score: stress pathways play a
[ref (19)] N=103; PPMS, and nitro-oxidative stress (lipid hydro-peroxides, carbonyl | i) 23.0 vs <3.0 key role in disability
N=3; stress features protein, AOPP, (binary outcome) accumulation in MS
SPMS, N=16 NO metabolites) i) as a
biomarkers, together with age, sex, continuous outcome
disease duration, body mass index,
and presence of metabolic
syndrome
Jackson et al., 205 94 NA 113 genetic variants Random 19 genetic variants (GeM-MSS model) MS-DSS, a score GeM-MSS RMSE The 19 genetic variants
Ann Hum previously identified as forest defined through a (error) = 0.464 included in the GeM-
Genet. 2020 related to MS severity regression statistical model MSS are related to 12
[ref (22)] which takes into genes associated with
account CNS immune cell regulation,
damage and complement activation
demographic and functions
features [ref (46)] of neurons
Brummer 152 patients 101 early MS NA Serum NfL Support Serum NfL, lesion volume, grey Cognitive status Accuracy = 90.8%, = The combination of
et al,, Brain with early MS vector matter volume based on SDMT greater than the blood and imaging
Commun. regression score accuracy of the measures improves the
2022 [ref (21)] (continuous models with accuracy
outcome) individual of predicting
predictors cognitive impairment
Zhu et al., 431 0 NA 19 serum protein LASSO, 7 clinical factors (age at sample Disability status ROC AUC = up Combined (clinical +
Brain biomarkers: Random forest,  collection, sex, race/ethnicity, disease based on PDDS to 0.91 (for biomarkers) models: the
Commun. APLP1, CCL20, Extreme subtype, disease duration, DMT, and score: >4 vs <4 LASSO prediction = best
2023 [ref (30)] CD6, CDCP1, CNTN2, Gradient time interval between sample (binary outcome) of PDDS using LASSO better than
CXCL9, Boosting, collection and closest PRO assessment) = PDDS score: as combined clinical other ML approaches
CXCL13, FLRT2, Support Vector = and 19 serum protein biomarkers categorical variable and biomarker Serum multi-protein
GFAP, Machines, profiles as input) biomarker profiles:
MOG, stacking better than single-
NfL, OPG, ensemble protein (e.g., NfL or
OPN, PRTG, learning GFAP) models
SERPINAY, TNFSF10A,
TNESF13B,
VCAN
(Continued)
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TABLE 2 Continued

Reference Training

Longitudinal prediction (**)

and

testing
cohort, N

Independent
validation
cohort, N

Follow-
up time
(study

design)

Biomarker profiles

Al
method:
algorithms

Model input

Model output

Model
performance

Comments

Ebrahimkhani 29 RRMS 0 0.5 years (6 Exosome miRNAs Random forest Out of all micro-RNAs, 15 were Disease activity vs Prediction microRNA signatures
et al., Mol patients who months); selected for being dysregulated no activity, based accuracy (of are noninvasive
Neurobiol. were about to however, the between active and non-active on MRJ, i.e., combined biomarkers which may
2020 [ref (32)] | start study does patients, 6 months after fingolimod presence of microRNAs) help predict treatment
on fingolimod not focus on onset. Of those, 11 were selected for gadolinium- =0.92 response in the future
future but having ROC AUC 95%CI above 0.50. enhancing lesions
concurrent Then, out of a total of 2037 (binary outcome)
prediction combinations of these 11 microRNAs,
(i.e., disease 3 combinations ($) were chosen for
activity and their highest accuracy
microRNA
dysregulation
occur over
the same
period
of time)
Baranzini 155 RRMSon | 0 0,77 years Gene expression profiles at Random forest  Triplet (3-gene) expression profiles Disease activity free | Predictive Future (IFND) treatment
et al., Mult beta- (40 weeks) treatment onset or over the (several triplet combinations on treatment accuracy = 0.59- response may be
Scler. 2015 interferon follow-up (i.e., induction were assessed) (presence of clinical | 0.68 predicted with gene
[ref (27)] treatment ratios of gene expressions and/or MRI ROC AUC = up expression profiles at
after treatment onset) activity) vs to 0.63 treatment onset or over
suboptimal response the first weeks after that,
(binary outcome) using models of
machine learning
Waddington 89 patients 0 1 year 156 serum metabolites (see Random forest, = 60 and 59 serum metabolites (out of ADA positive, ie., i) | Classification ADA status may be
et al., Front with RRMS/ paper for full details) support vector 156) at baseline (before IFNb onset) bAbs+ & nAbs+ or accuracy (baseline) = predicted through
Immunol. first machine, and and after 3 months, respectively; the ii) bAbs- but nAbs+ | = 0.695-0.854 serum metabolites
2020 [ref (33)] = demyelinating LASSO logistic ~ remaining 96 and 97 metabolites, and titer > 320 U/ Classification
attack who regression respectively, were excluded because of | mL, within 12 accuracy (3
were about to (K-nearest a strong correlation between them and | months of starting months after IFNb
start on beta- neighbour and  the finally chosen 60 and 59 ones treatment, vs ADA onset) =
interferon decision trees negative 0.712-0.863
treatment also tested (binary outcome)
for
comparison)
Herman et al, = 123 56 1 year 498 CSF metabolites Elastic-net CSF metabolites: out of 498, 15 MS phenotype: ROC AUC =0.93, | This study provides
iScience. 2023 regularized metabolites are selected PMS vs RRMS better than any of  confidence in individual

[ref (29)]

classifier model
In addition,

(binary outcome)

the single

patient prediction
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TABLE 2 Continued

Reference Training

Longitudinal prediction (**)

and

testing
cohort, N

Independent
validation
cohort, N

Follow-
up time
(study

design)

Biomarker profiles

Al
method:
algorithms

Model input

Model output

Model
performance

Comments

conformal
prediction
analyses
provides
confidence in
individual
patient
predictions

metabolic features
in isolation

(=0.88), which can help
with patient monitoring

Andorra et al.,
J Neurol. 2023
[ref (23)]

Ferré et al,, |
Pers Med.
2023 [ref (24)]

Fagone et al.,
Mol Med Rep.
2019 [ref (26)]

322

304 patients
on
fingolimod
treatment

12 patients
with RRMS
who were
about to start
on
natalizumab

271

77 patients on
fingolimod
treatment

2 years

2 years

3 years

Genomics: MS-associated
(HLA and non-HLA) SNPs;
Cytomics: levels of effector
and regulatory T cells, B
cells, and NK cells;
Phospho-proteomics: 25
kinases participating in
pathways associated

with MS

Genetic data

‘Whole—genome expression
data from CD 4+ T cells
(assessed before
natalizumab onset)

Random forest

Random forest

UnCorrelated
Shrunken
Centroid
Algorithm (¢)

Brain MRI,

OCT, and multiomics (genotyping,
cytomics and phospho-proteomics)
from PBMC

123 SNPs (genetic model), clinical data
(clinical model), or both
(combined model)

Genetic expression of 17 genes related
to CD4+ T cells

CDA on different
scales (EDSS,
T25WT, 9HPT,
SDMT, SL25,
HCVA) vs no-CDA
(binary outcomes);
NEDA vs no-NEDA
(binary outcome);
MSSS, ARMSS,
onset of DMT,
escalation from
low- to high-
efficacy DMT
(continuous
outcomes)

NEDA vs no-NEDA
(binary outcome)

Disease activity or
not, based on
presence (vs
absence) of relapses
over the whole
follow-up of 3 years
(binary outcome)

ROC AUC = from
0.50 (T25WT-
CDA) to 0.81
(SL25-CDA);
Balanced
accuracies = from
0.5 (9HPT or
T25WT) to 0.69
(starting therapy)
Sensitivities =
almost all between
0.82 and 0.94
PPVs = almost all
between 0.8

and 0.9

ROC AUC genetic
model = 0.65
ROC AUC
combined (genetic
and clinical)
model = 0.71

Accuracy = 0.892

Models provided better
sensitivities and PPVs
than accuracies or AUGC;
Models including
imaging & genetics or
omics slightly improved
model performance
(with respect to models
with clinical predictors
only) and only in 50%
of the times

ML models integrating
clinical and genetic data
can help predict disease
evolution in pwMS

on fingolimod

Gene expression profiles
may help design
personalised

therapeutic strategies for
patients with MS
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TABLE 2 Continued

Reference Training
and

testing
cohort, N

Longitudinal prediction (**)

Independent
validation
cohort, N

Follow-
up time
(study

design)

Biomarker profiles

Al
method:
algorithms

Model input

Model output

Model
performance

Comments

Uphaus et al., 196 patients 204 RRMS/ Median: 6 Serum NfL Support Serum NfL levels at baseline and ratio | Relapse-free For relapse-free Serum NfL levels may
EBioMedicine  with RRMS/ first (IQR 4.3- vector machine ~ NfL follow-up/baseline +/- age & T2 progression (binary | progression: ROC  help predict future
2021 [ref (28)] = first demyelinating 7.5) years lesion number at baseline outcome); AUC = 0.811 (NfL  relapse-free progression
demyelinating | attack Transition to SPMS | + age & T2 lesion | in clinical practice,
attack (binary outcome) number) together with age and
For SPMS T2 lesions at baseline
transition: ROC
AUC = 0.651
Everest et al., 94 40 Mean: 8.2 + CSF proteomics data: 151 Genetic CSF proteomics data Disease severity Rule 1 (to select Novel candidate CSF
PLoS One. 2.2 years differentially expressed CSF  algorithm status (binary ARMSS25): protein biomarkers are
2023 [ref (31)] proteins, including C3bCfb, (Holland J. outcome) based on ROC AUC = proposed, to be
A2M, ATF7, PRBP, Adaptation in ARMSS score on 86.34% validated in
Haptoglobin, PDS5B, natural and last follow-up: =5 Rule 2 (to select larger samples
Myosin, CD36, and ApoAl  artificial (unfavourable ARMSS<5): ROC
(ref (47)] systems. group) vs AUC = 73.26%
University of <5 (favourable)
Michigan
Press, 1975)
Campagna 235 female 0 Median: 11.13 = DNA methylation data Elastic-net Clinical data (age and symptoms), Disease severity Methylation Whole-blood
et al.,, Clin patients (IQR 9.49; assessed through Illumina regression and DNA methylation data of genes status (binary model ROC AUC methylation can predict
Epigenetics. with RMS 12.59) years methylation EPIC array logistic related to neuronal structure outcome) based on =0.91 (vs clinical disease severity in RMS
2022 [ref (25)] regression and function ARMSS score: mild | model ROC AUC and seems to affect
vs severe (i.e., =0.74) genes related to
median ARMSS neuronal structure
score below or and function
above 20" or 80™
percentile,
respectively, of
the cohort)

(*) Articles shown in chronological order; (**) Articles shown based on length of follow-up; (¢) UC SGC; http://home.cc.umanitoba.ca/~psgendb/birchhomedir/BIRC HDE V/doc/MeV/manual/usc.html; ($) Combination 1: miR-432-5p and miR-485-5p; combination 2:
miR-432-5p, -485-5p, -375; combination 3: miR-432-5p, —485-5p, —134-5p; Abbreviations (in alphabetical order): 9HPT, 9-hole peg test; A2M, alpha-2-macroglobulin; ADA, anti-drug antibodies; AOPP, Advanced oxidation protein products; APLP1, amyloid beta
precursor like protein 1; ApoAl, apolipoprotein Al; ARMSS, age-related MS severity scale; ATF7, cyclic AMP-dependent transcription factor ATF-7; AUC, area under the ROC curve; bAbs, IFNb-binding antibodies; C3bCfb, chain F, crystal structure of complement C3b
in complex with factor B; CCL20, chemokine (C-C motif) ligand 20; CD6, cluster of differentiation 6; CDA, confirmed disability accumulation; CDCP1, CUB-domain-containing protein 1; CNTN2, contactin-2; CXCL13, chemokine (C-X-C motif) ligand 13; CXCL9,
chemokine (C-X-C motif) ligand 9; DMT, disease modifying treatment; EDSS, Expanded Disability Status Scale; FLRT2, fibronectin leucine-rich transmembrane protein 2; GFAP, glial fibrillary acidic protein; HCVA, high contrast vision; IFND, interferon beta; IL12B,
interleukin-12 subunit beta; IQR, interquartile range; LASSO, Least Absolute Shrinkage and Selection Operator; miRNA, microRNA, which are small, non-coding RNA molecules; MOG, myelin oligodendrocyte glycoprotein; MS, multiple sclerosis; MS-DSS, MS disease
severity scale, defined thanks to a statistical model [ref (46)] which takes into account, the amount of CNS-tissue destruction measured by Combinatorial MRI scale of CNS tissue destruction (COMRIS-CTD) [ref (43)], and demographic data; MSSS, multiple sclerosis
severity scale; Myosin, human skeletal mRNA for myosin heavy chain light meromyosin region; N0, sample size of the training and testing cohort; N1, sample size of the validation cohort; NA, not applicable; nAbs, IFNb-neutralising antibodies; NEDA, no evidence of
disease activity; NfL, neurofilament light chain; OPG, osteoprotegerin; OPN, osteopontin; PBMC, peripheral blood mononuclear cells; PDDS, patient-determined disease steps; PDS5B, human androgen-induced prostate proliferative shutoff associated protein (AS3); PMS,
progressive MS; PPV, positive predictive value; PRBP, plasma retinol binding protein; PRO, patient-reported outcome; PRTG, protogenin; RRMS, relapsing-remitting MS; SDMT, Symbol Digit Modality Test; SERPINA9, serpin family A member 9; SL25, 2.5% low contrast
visual acuity; SNPs, single nucleotide polymorphisms; T25WT, timed 25 feet walking test; TNFSF10A, tumor necrosis factor ligand superfamily member 10; TNFSF13B, tumor necrosis factor ligand superfamily member 13B; VCAN, versican.
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TABLE 3 Summary of selected studies focused on disease mechanisms.

Reference

Training and

testing cohort, N

Biomarker
profiles

Independent
validation
cohort, N

Al
method:
algorithms

Model input

Model output

Model
performance

Comments

Acquaviva 313 subjects: CIS (n=57), 0 Transcriptomic Training set: Raw and MS classifiers: MS vs non-MS: on Identified transcripts in MS vs non-MS:
et al, Cell Rep | RRMS (n=108), SPMS profiles of PBMCs nested cross- processed MS vs non-MS 139 probes, 94.3% related to interferon signalling, chromatin
Med. 2020 (n=26), PPMS (n=35), validation microarray data Relapsing vs sensitivity and 87.5% remodelling and apoptosis.
[ref (34)] OND (n=27) Validation set: from the GEO progressive MS precision. Identified transcripts in relapsing vs
Healthy subjects (n=60) ward DT-based = database, age, sex Relapsing vs progressive MS: related to cell cycle and T
algorithms (RF, progressive MS: 222 cell activation for both progressive forms;
FTs and probes, 83.3% protein ubiquitination, cell migration, and
ADAboost-FT) sensitivity and 93.8% fatty acid metabolism for PPMS; and
precision. regulation of GTPase activity, locomotor
PPMS vs RRMS: 266 behaviour, and blood coagulation in the
probes, 90% sensitivity | SPMS signature.
and 90% precision.
SPMS vs RRMS: 201
probes, 87.5%
sensitivity and
100% precision
Sun et al., miRNA-MS associations 0 MS- CNN vs DT, miRNAs Top 10 predicted miRNAs: ~ ROC-AUC 0.87 Some of the miRNAs were differentially
Front Genet. from the disease-related related miRNAs SVM, logistic hsa-miR-605-5p, hsa-miR-  with CNN expressed in RRMS or related to Th17 cell
2022 [ref (36)] | miRNA from the HMDD. regression, 15b-5p, hsa-miR-16-5p, differentiation; one of them (miR-16-5p)
MS-related miRNAs as and hsa-miR-17-5p, hsa-miR- decreased in PBMCs after initiation of
positive samples, and GaussianNB 181a-5p, hsa-miR-181b-5p, therapy with interferon
randomly selected hsa-miR-181c-5p, hsa-
associations with n times miR-18a-3p, hsa-miR-195-
the number of positive 5p, and hsa-miR-196a-5p.
samples from unlabelled
miRNAs associations as
negative samples,
where n€(2,10,20,30,40,50)
Lotsch et al., MS: n=102 0 3 types of lipid ESOM Eicosanoids, Data structures in Ecosanoid Lipid metabolism has been suggested to play
Int J Mol Sci. Healthy subjects: n=301 biomarkers in combined with ~ ceramides and eicosanoid and ceramide concentrations: a critical role in the pathophysiology of MS,
2017 [ref (38)] serum: eicosanoids: | the U*-matrix lysophosphatidic serum concentrations sensitivity 54%, influencing inflammation,
n=11; ceramides: visualisation acids specificity 100%, neurodegeneration, myelin damage, and
n=10; and technique accuracy 77%. repair processes
lysophosphatidic Ceramid
acids: n=6 concentrations:
sensitivity 89.2%,
specificity 100%,
accuracy 94.6%.
Mezzaroba MS: n=174 (CIS n=5; 0 Plasma levels of NNA and TNF-0, sTNFR1, MS vs controls Low concentrations of = Lower concentrations of all four antioxidants
et al., Mol RRMS n=144, SPMS n=20, TNF-o, sTNFRI, RBF/SVM sTNFR2, four antioxidants (zinc, adiponectin, TRAP and SH groups)
Neurobiol. PPMS n=5) sTNFR2, adiponectin, (zinc, adiponectin, were predictive of MS when compared to
2020 [ref (39)] = Controls: n=182 adiponectin, hydroperoxides, TRAP and SH groups) | controls. TRAP and adiponectin were the
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TABLE 3 Continued

Reference Training and

testing cohort, N

Independent

Biomarker
profiles

hydroperoxides,
AOPP, nitric oxide
metabolites, TRAP,
SH groups, and
serum levels of zinc

Al
method:
algorithms

Model input = Model output

AOPP, nitric
oxide metabolites,
TRAP, SH groups,
and zinc

Model
performance

combined with
increased sTNFR2:
98.7% sensitivity,
91.7% specificity,
AUC-ROC 0.990.
SVM analysis
(validation): 93.51%
training accuracy,
92.03% validation
accuracy. NNA
training: sensitivity
98.2%,
specificity83.3%,
AUC-ROC 0.997

Comments

most important predictors, followed by zinc
and sTNFR2

Goyal et al,, MS: n=910 Serum cytokines: SVM, DT, RF IL-1B, IL-2, IL-4, MS vs non-MS MS vs non-MS: RF Cytokines play an important role in the
Front Neurol. Healthy volunteers/ IL-1B, IL-2, IL-4, and IL-8, IL-10, IL-13,  Relapsing vs non- model: sensitivity differentiation of Th cells and recruitment of
2019 [ref (40)] | controls: n=199 IL-8, IL-10, IL-13, neural IFN-y, and TNEF- relapsing MS 75.6%, 85.7% auto-reactive T and B cells in MS
IFN-y, and TNF-o. | networks o, specificity, 90.91%
age, sex, disease accuracy, ROC-AUC
duration, EDSS 0.957
and MSSS Relapsing vs non-
(cytokines for MS relapsing MS: the RF
vs non-MS, and model had the highest
cytokines and accuracy (70%). In the
other variables for validation set, the RF
relapsing vs non- model was the
relapsing MS) best discriminator
Seitz et al., Early MS: n=156: sNfL levels SVM sNfL OCT: OPL volume SVM: sNfL levels NfL was predominantly expressed in the
Ther Adv n=110 with no history of age, sex, disease and atrophy 75.7% accurate at RNFL, GCIPL and OPL in comparison to
Neurol ON n=46 with prior duration, EDSS predicting OPL other layers (murine retina).
Disord. 2021 history of ON volume (training The findings suggest NfL and OPL
[ref (42)] 75.9%, testing 76.2%).  associations may be due mostly to
Longitudinal analysis inflammation leading to axonal damage
of sNfL and OPL in
ON eyes: sNfL levels
72.1% accurate at
predicting OPL
atrophy (training
72.5%, testing 71.8%)
Kosa et al., MS: n=227 1305 proteins RF Proteins in CSF, MS severity: CombiWISE- Training: baseline MS- | Identification of 7 patient clusters differing

Nat Commun. = Healthy subjects: n=24
2022 [ref (43)]

in CSF

age, sex based MS-DSS at baseline

DSS: 75 unique
biomarkers explaining

in CSF concentration of proteins from four
protein modules (1. Myeloid lineage/TNF; 2.
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TABLE 3 Continued

Reference Training and

testing cohort, N

Independent
validation
cohort, N

Biomarker
profiles

Al
method:
algorithms

Model input

Model output

and follow-up, and BVD
severity outcome

Model
performance

62% variance. MS-
DSS on follow-up, 34
unique biomarkers
and 35 for BVD
explaining 60%
variance.

Validation: CSF-based
MS-DSS at baseline
predicted 17%
variance, 26% of MS-
DSS at follow-up, 22%
of BVD

severity model

Comments

CNS repair; 3. Complement/coagulation; and
4. Adaptive immunity and CNS stress).
Cluster 2: predominance of males with
progressive MS, relatively low expression in
the CNS repair module and high expression
in the myeloid lineage/TNF and
complement/coagulation modules. These
patients had a higher MS severity.

Clusters 3 and 4 relatively enriched for
female subjects.

Cluster 3: high expression of adaptive
immunity and CNS module proteins and
enriched with relapsing MS subjects.

Cluster 4: relatively high expression of all
protein modules except for complement/
coagulation, with a relatively low MS severity

Gross et al.,
Brain. 2021
[ref (44)]

Autoimmune
neuroinflammatory
diseases: n=282 (relapsing
MS n=196, NMOSD n=15,
Susac syndrome n=14, AE
n=57)

Degenerative diseases:
n=93 (amyotrophic lateral
sclerosis n=52, mild
Alzheimer’s Disease n=41)
Vascular conditions: n=97
Non-inflammatory
controls: n=74 (with
somatoform disorders or
who donated CSF during
the course of spinal
anesthesia).

Total n=546

Additional subjects:
n=231
(neuroinflammatory
diseases: n=32;
neurodegenerative
diseases: n=156;
neurovascular
diseases: n=8; non-
inflammatory
controls: n=35)

CSF analysis with
multiparameter
flow cytometry to
identify 34 CSF
and blood
biomarkers after
assessing

for collinearity

Feature
selection with
dimensionality
reduction and
unsupervised
cluster analyses

34 CSF and
blood features

Neuroinflammatory
processes vs other
conditions: cells/ml,
monocytes, NK cells, and B
cells in CSF and CD56dim
NK cells in peripheral
blood.

MS vs other
neuroinflammatory
disorders: CSF plasma cells
and intrathecal

IgG synthesis

Neuroinflammatory
diseases vs others:
70% sensitivity, 81%
specificity, 76%
accuracy,ROC-AUC
85%

MS vs other
neuroinflammatory
disorders:

Accuracy vs:
NMOSD: 87.3%;
Susac Syndrome:
95.3%; A

E: 89.4%.
ROC-AUC vs:
NMOSD: 91.5;
Susac Syndrome: 90.7;
AE: 82.7

MS vs other autoimmune diseases: besides
parameters such as intrathecal plasma cells
concomitant with IgG synthesis, the analyses
identified intrathecal IgA and IgM synthesis.
There were other disease-specific parameters,
such as alterations in circulating peripheral
blood CD56bright NKcells and intrathecal
lactate concentrations in NMOSD;
circulating CD4+ and CD8+ T cells in Susac
Syndrome; and circulating and intrathecal
lymphocytes, intrathecal NK T cells,
monocytes, and CD14+CD16+ monocytes
in AE.

‘le 1o spiquiedly

[SSIRVFETMIIT]

ADAboost-FT, adaptive boosting applied to functional trees; AE, autoimmune encephalitis; AOPP, advanced oxidation protein products; BVD, brain volume deficit; CD, cluster of differentiation; CIS, clinically isolated syndrome; CNN, convolutional neural network;
CombiWISE, combinatorial weight-adjusted disability score; CSF, cerebrospinal fluid; DT, decision tree; EDSS, Expandid Disability Status Scale; ESOM, emergent self-organising feature maps; FT, functional trees; GaussianNB, Gaussian Naive Bayes; GCIPL, macular
ganglion cell-inner plexiform layer; GEO, gene expression omnibus data repository; CNS, central nervous system; GTPase, guanosine triphosphate enzyme; HMDD, Human microRNA Disease Database; IFN, interferon; IL, interleukin; miRNA, microRNA; MS, multiple
sclerosis; MS-DSS, Multiple Sclerosis Disease Severity Score; MSSS, Multiple Sclerosis Severity Score; NK, natural killer; NMOSD, neuromyelitis optica spectrum disorders; NNA, neural network analysis; OCT, optical coherence tomography; ON, optic neuritis; OND, other
neurological diseases; OPL, outer plexiform layer; PBMCs, peripheral blood mononuclear cells; PPMS, primary progressive multiple sclerosis; RBF/SVM, support vector machine with radial basis function; RF, random forests; RNFL, retinal nerve fiber layer; ROC-AUC,
receiver-operating characteristic curve-area under the curve; RRMS, relapsing remitting multiple sclerosis; SH, sulphydryl; sNfL, neurofilament light chain in serum; SPMS, secondary progressive multiple sclerosis; sSTNFR, soluble tumour necrosis factor receptor; SVM,
support vector machine; Th, T helper cells; TNF, tumour necrosis factor; TRAP, total radical-trapping antioxidant parameter.
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relapsing vs progressive MS classifier showed 83.3% sensitivity and
93.8% precision. Associated biological themes included cell cycle
and T cell activation for both progressive forms; protein
ubiquitination, cell migration, and fatty acid metabolism for
PPMS; and GTPase activity regulation, locomotor behaviour, and
blood coagulation in SPMS.

MicroRNAs (miRNAs) play critical roles in post-transcriptomal
gene expression regulation. In MS, miRNAs have been implicated in
various aspects of the disease’s pathophysiology (35). Sun et al. (36)
proposed a convolutional neural network (CNN)-based model to
identify MS-related miRNAs and compared it to other existing
methods: DT, SVM, logistic regression, and Gaussian Naive Bayes.
Using the miRNA-MS associations from the Human microRNA
Disease Database (HMDD), the CNN model showed the highest
ROC-AUC (0.87). Some of the top 10 predicted miRNAs were
differentially expressed in RRMS or related to Thl7 cell
differentiation, whereas another one decreased after initiation of
therapy with interferon f.

Lipid metabolism may influence inflammation,
neurodegeneration, myelin damage, and repair processes in MS
(37). Lotsch et al. (38) used unsupervised ML implemented as
emergent self-organising feature maps (ESOM) combined with the
U*-matrix visualisation technique to analyse eicosanoids,
ceramides, and lysophosphatidic acids in serum of 102 PwMS and
301 HC, to find distance and density-based structures. Clear data
structures were observed in eicosanoid and ceramide
concentrations. Whereas the classification of MS vs HC yielded a
moderate performance with eicosanoids (54% sensitivity, 100%
specificity, 77% accuracy) the structures emerging with ceramides
resulted in a high performance (89.2% sensitivity, 100% specificity,
94.6% accuracy).

An imbalance of oxidant and antioxidant molecules has been
implicated in demyelination and axonal damage in MS. Mezzaroba
et al. (39) used supervised ML (neural network analysis [NNA] and
SVM with radial basis function [RBF/SVM]) to evaluate
discriminatory patterns in plasma of 9 oxidants and antioxidants
and zinc serum levels, in 174 PwMS and 182 controls. The
combination of low levels of four antioxidants and increased
levels of one oxidant yielded the best prediction for MS
(sensitivity 98.7%, specificity 91.7%, AUC-ROC 0.990). The SVM
analyses obtained 93.51% training and 92.03% validation
accuracies (39).

Cytokines play an important role in Th cell differentiation and
recruitment of auto-reactive T and B cells in MS. Goyal et al. (40)
used four ML models (SVM, DT, RF, and neural networks) to
identify serum cytokines predictive of MS. They also assessed the
cytokines with age, sex, disease duration, EDSS, and MSSS to
classify MS into remitting and non-remitting MS. They used 910
serum samples from PwMS and 199 from HC (total n=1109). Of
these, 900 were included in the training set and 209 in the testing
set. RF was the model that best predicted MS (sensitivity 75.6%,
specificity 85.7%, accuracy 90.91%, ROC-AUC 0.957) and also had
the highest accuracy (70%) to differentiate relapsing from non-
relapsing MS. In the validation set, the RF model was again the best
discriminator (40).
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Neurofilament light chain (NfL) is a biomarker of axonal
damage in MS (41). Seitz et al. (42) used SVM analysis to test for
associations between baseline serum NfL (sNfL) and different
retinal thickness measures in 156 early MS patients: 110 with no
history of optic neuritis (ON) and 46 with ON. After adjusting for
age, sex, disease duration, and EDSS, a significant correlation was
found only between high sNfL levels and low outer plexiform layer
(OPL) volume in patients with a history of ON. Follow-up OCTs
available for 38 subjects with a mean (SD) follow-up of 2.1 (1.4)
years showed baseline sNfL correlated with absolute OPL atrophy in
ON. sNfL levels predicted OPL volume with 75.9% training and
76.2% testing accuracies. In the longitudinal analysis, sNfL
predicted OPL atrophy with 72.5% training and 71.8%
testing accuracies.

Other studies have focused on CSF biomarkers. Kosa et al. (43)
used RF to search for biomarkers among 1305 proteins in CSF of
227 PwMS to build models predictive of disease severity. To
differentiate natural aging and sex effects from MS-related
mechanisms they used data from 24 HC. MS severity was
assessed using the combinatorial weight-adjusted disability score
(CombiWISE)-based MS Disease Severity Score (MS-DSS)
measured at baseline and follow-up, and the brain volume deficit
(BVD) severity outcome, based on linear regression models of brain
parenchymal fraction and age, calculated from MRIs performed
within 3 months of CSF collection. Initial analyses demonstrated
positive associations of coagulation and complement cascades and
negative associations for NOTCH signalling and neuron
recognition categories with MS severity. After adjusting for age
and sex, the model selected 75 biomarkers explaining 62% of
variance for baseline MS-DSS. For follow-up MS-DSS, 34
biomarkers were selected and 35 for BVD explaining 60% of
variance. The effect sizes decreased to 17%, 26%, and 22% of
variance in the validation cohort (n=98). Using unsupervised
cluster analyses, the authors identified seven patient clusters
differing in CSF protein concentrations from four protein
modules. Of note, one cluster had a predominance of men with
progressive MS, a relatively low expression in the CNS repair
module and high expression in the myeloid lineage/TNF and
complement/coagulation modules. These patients had a higher
MS severity.

Cellular characterisation in blood and CSF can help differentiate
between CNS disorders and clarify their pathophysiological
processes. Gross et al. (44) combined feature selection with
dimensionality reduction and unsupervised cluster analyses to
investigate parameters altered across autoimmune
neuroinflammatory diseases [RRMS n=196, neuromyelitis optica
spectrum disorders (NMOSD) n=15, Susac syndrome n=14,
autoimmune encephalitis (AE) n=57], other CNS conditions
(neurodegenerative n=93, vascular n=97), and non-inflammatory
controls (n=74) (total n=546). The validation cohort included 231
additional subjects (neuroinflammatory n=32, neurodegenerative
n=156, neurovascular n=8, non-inflammatory controls n=35).
Exploratory analyses identified four CSF parameters and one
peripheral blood parameter that together discriminated
neuroinflammatory diseases from other groups (70% sensitivity,
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81% specificity, 76% accuracy, ROC-AUC of 85%). When aiming to
differentiate MS from other neuroinflammatory diseases, CSF
plasma cells and intrathecal IgG synthesis alone were sufficient to
distinguish RRMS from other neuroinflammatory diseases with
high accuracy and ROC-AUC (NMOSD: 87.3% and 91.5%; Susac
syndrome: 95.3% and 90.7%; AE: 89.4% and 82.7%). Finally, the
authors compared cell profiles in RIS, CIS and early RRMS (<36
months from disease onset) vs late RRMS (>36 months). Alterations
in the proportions of CD56dim NK cells and biomarkers of
intrathecal inflammation gradually increased during disease
evolution. When splitting RRMS based on inflammatory activity,
minor effects were shown in most intrathecal parameters, whereas
changes in peripheral and intrathecal CD4+CD8+ T cells and
intrathecal plasma cells were more pronounced.

Limitations of Al-based research in MS
fluid biomarkers

Al-based studies using fluid biomarkers in MS offer promising
results. However, these studies have limitations which are worth
being mentioned. In general, all these studies still have relatively
small sample sizes, which, together with the lack of external
validation analyses in many of them, limit the generalisability of
the results. Also, despite the low number of studies published so far,
there is a large methodological variability, which, at times, is not
explained in detail, making it very difficult to replicate the analyses
done (Tables 1-3). These limitations are common to all Al-based
studies that harness biomarker data to improve the diagnosis,
predict or understand the disease, thus hampering the application
of all these models to clinical practice.

In relation to the specific limitations of those studies focused on
diagnosis, the number and types of diseases which have been
compared with are limited. Furthermore, many of the tests
(biomarkers) used by the authors are not available in routine clinical
practice. These aspects reduce the utility of these models in practice, at
least in the short term, suggesting the need for more research.

Regarding the studies focused on prediction of disease evolution,
apart from the general limitations abovementioned, many of them
have cross-sectional designs or, if they have a longitudinal design,
there is a relatively short follow-up time in most of the cases. Also,
very often, the effect of treatment is not taken into account.
Furthermore, most studies were not adjusted for important
demographic, clinical and technical aspects, such as race, ethnicity,
disease duration, brain volume, and the interval between sampling
and relapses or their treatment. Finally, despite the developments in
Al-based models in MS which use raw neuroimaging and deep
learning techniques to predict clinical outcome, the integration of
these into Al-based models which use fluid biomarkers (or the other
way around) is still lacking. Little is known about the complementary
roles of both types of predictors and the potential synergies between
them. However, it is highly likely that only when both are used
together in comprehensive models, a real impact on the clinical
management of MS can be achieved. Such integration requires,
though, intensive methodological research which will hopefully
bear fruit in the near future.

Frontiers in Immunology

10.3389/fimmu.2024.1459502

Lastly, regarding the limitations of the studies focused on
understanding disease mechanisms, many of them are far too
focused on certain paths or predictors, therefore not allowing us
to explain or understand the whole picture. Also, very importantly,
the fact that many of these biomarkers, paths, or predictors, may
explain the same variance of a given outcome measure but we are
not aware of that — because typically one study tends to focus on a
given path - implies that many of the associations found may be
reflecting mere epiphenomena rather than causally related events.
Whereas this might be less relevant for building predictive models,
for those studies which aim at understanding the disease through
Al, this may be deleterious.

Conclusions and future directions

The application of Al-based methodologies to tackle key
challenges in MS is exponentially increasing. However, in this
context, the number of studies published in the literature focusing
on the use of fluid biomarker data is still small. Most of these
publications are focused on serum biomarkers, genetic variants, and
gene expression profiles as predictors. Of note, only half of them
have included an external validation analysis of the developed Al
model, thus hampering a full interpretation of the results and their
potential generalisability.

Importantly, after the assessment of the papers published so far,
it may be said that the research on Al applied to biomarker data is
still quite in its early days and that we are still far from clinical
applications. So far, AT methodologies have been very useful for
biomarker discovery in MS, but the large heterogeneity of methods
and results suggests that we may need many years of research before
prototypes can be launched to help healthcare professionals and
patients in the clinic.

Along the same lines, even though many studies reported much
higher accuracy levels when fluid biomarker, MRI, and clinical data
were combined as predictors of diagnosis or disease evolution, large
studies combining the most important types of predictor acquired in
the clinic are lacking. Only when these take place and are replicated in
large independent cohorts will we be able to comprehend their full
potential and start considering that a change in patient management
thanks to the introduction of those Al-based models is possible. Of
note, for these models to be useful in the clinic, they need to use, as
input data (predictors), routinely-acquired biomarkers, including
laboratory, imaging, and clinical data. On the other hand, it is
possible that a branch of Al-based research in MS, i.e., that focused
on understanding the pathogenic mechanisms and those processes
underlying disability accumulation, continues to exist with the use of
less common (non-routinely acquired) biomarkers. This research is
also important and will surely bring to light crucial knowledge on the
disease, essential for its ultimate eradication. A final conclusion is that
all studies carried out so far confirm the leading role of inflammatory
pathways in MS.

Future directions include the development of larger studies with
validation in independent datasets. Also, future directions should
aim at the design of longitudinal studies with longer follow-ups (for
those mainly focused on future prediction), hopefully accounting
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for the complex effects of disease-modifying treatments and other
dynamic data, as well as the integration of fluid biomarkers,
neuroimaging, optical coherence tomography (OCT) imaging,
and clinical predictor data to build robust and powerful models.

Furthermore, forthcoming research endeavours must transition
from the current exploratory phase of Al-based methodologies
applied to biomarker data in MS to a more translational stage.
This shift necessitates thorough evaluation of the clinical utility of
the constructed AI models. For that, the future lies in creating
guidelines for Al-based analyses to improve the comparability
across studies, to shed light on the steps needed to go from
discovery to clinical practice implementation, and to evaluate
utility of Al-based algorithms in practice. Additionally, we should
be able to learn from Al-based investigations on other
neurodegenerative diseases (45) to overcome the challenges
surrounding these types of studies.

As a final consideration, it is imperative to recognise that
addressing ethical and inequality concerns surrounding Al-based
analyses is just as crucial as resolving technical challenges. With the
exponential growth of AI studies, maintaining research integrity in
Al research demands not only initial attention but also ongoing
evolution, keeping pace with the rapid advancement of science to
meet the needs and expectations of us all.
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This paper explores the significant role of real-world data (RWD) in advancing our
understanding and management of Multiple Sclerosis (MS). RWD has proven
invaluable in MS research and care, offering insights from larger and diverse
patient populations. A key focus of the paper is the European Health Data Space
(EHDS), a significant development that promises to change how healthcare data
is managed across Europe. This initiative is particularly relevant to the MS
community. The paper highlights various data initiatives, discussing their
importance for those affected by MS. Despite the potential benefits, there are
challenges and concerns, especially about ensuring that the growth of various
data platforms remains beneficial for MS patients. The paper suggests practical
actions for the global MS community to consider, aimed at optimizing the use of
RWD. The emphasis of this discussion is on the secondary use of health data,
particularly in the European context. The content is based on the author's own
experiences and interpretations, offering a personal yet informed view on using
RWD to improve MS research and patient care.

KEYWORDS

real-world data, European Health Data Space, secondary use of health data,
collaborative research, data interoperability

Introduction

The multiple sclerosis (MS) community is fortunate to have a longstanding and
successful legacy of using real-world data (RWD, Table 1) to address complex clinical
problems. RWD often reflects larger and more representative populations and therefore is
specifically fit-for-purpose to investigate for example disease behavior in a real-world
setting, validation of outcome measures, comparative effectiveness and long-term safety of
therapies. Additionally, RWD plays a crucial role in enhancing patient advocacy by
informing policies on employment, reimbursement of treatments and access to
healthcare services, as well as supporting routine healthcare practices. A growing
number of real-world MS databases and registries produce long-term outcome data from
large cohorts of people with MS (1-3).

The heterogeneity in MS management across Europe, combined with the variability in
data collection methods (different formats and data acquisition software systems used

35 frontiersin.org
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TABLE 1 Glossary - for the purpose of this paper, the following
definitions of concepts and terminologies are introduced as follows:.

« Data space: Comprehensive term that captures various dimensions of data
handling, from its storage and organization to its processing, access and
analytical use.

+ Real-World Data (RWD): Pragmatically defined as any data that is gathered
in the context of standard care as opposed to data gathered in an experimental
setting such as a randomized clinical trial. Examples include registry data and
data collected and stored using electronic health records (EHR). Real-world-
evidence (RWE) is defined as any evidence generated using RWD.

« Core dataset: Set of variables that represent the common denominator across
different initiatives and their accompanying (minimal) datasets.

«  Common Data Model (CDM): Standardized representation of content,
independent from a purpose or research question, combined with a defined
common infrastructure. Its purpose is to enable collaborative analyses by
providing a defined framework and structure.

o Primary use of health data: When health data is used to deliver health care
to the individual from whom it is collected. For example: an MRI measurement
taken for the purpose of diagnosing MS.

« Secondary (re-)use of health data: When (existing) health data, originally
collected for a specific primary purpose, is used for alternative objectives or
research that differs from the initiative reason for data collection. For example:
data originally collected for patient care and treatment optimization is re-used to
inform regulatory policies and decisions, potentially leading to improved
treatment guidelines and enhanced patient safety in the MS patient community.
« Patient registries: Organized systems that use observational methods to
collect uniform data on a population defined by a particular disease, condition or
exposure, and that is followed over time.

« Big data: large datasets which may be complex, multi-dimensional,
unstructured and heterogeneous, which are accumulating rapidly and which may
be analyzed computationally to reveal patterns, trends, and associations (e.g.
RWD (such as electronic health records, insurance claims data and data from
patient registries), genomics, clinical trials, spontaneous adverse drug reaction
reports, social media and wearable devices).

across various data sources and MS registries), presents significant
challenges. These differences can impact the interpretation of RWD
at scale. Despite these challenges, the research community has
realized that combining data from diverse sources across the
globe presents significant opportunities for advancing our
understanding of MS. To manage the challenges associated with
heterogeneity, strategies such as incorporating detailed information
about the origin and specification of the source data, ensuring use of
high-quality data, involving domain experts in interpreting results,
and investing in data harmonization strategies are essential. These
approaches have enabled the research community to turn these
challenges into opportunities, as seen in initiatives like the Big
Multiple Sclerosis Data Network (BMSD - bigmsdata.org) and the
COVID-19 in MS Global Data Sharing initiative (GDSI).

BMSD is the largest real-world MS data network and brings
together leading MS registries and databases to allow joint
analyses of very large merged or federated sets of structured
clinical data. It was initiated in 2014 and currently consists of
the national MS registries of the Czech Republic (4), Denmark (5),
France (6), Italy (7) and Sweden (8) as well as the international
MSBase (9). The total number of MS patients in BMSD amounts
to over 250,000. In recent years, the BMSD has led on several
studies, yielding critical data-driven insights into MS treatment
and progression. For example, they uncovered significant patterns
in treatment management strategies (10) and disability
progression in secondary progressive MS (11). GDSI was project
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led by the MS Data Alliance and MS International Federation in
collaboration with a multitude of global partners (12). In March
2020, as COVID-19 spread, the demand for data on its impact on
people with MS surged. Within months, 19 global partners shared
data on over 10,000 people with MS, which helped update global
advice for MS patients regarding COVID-19 (13-15).

While the MS community has made significant strides in
utilizing RWD for research and patient care, several existing and
emerging large-scale collaborative efforts across Europe - though
not specific for MS - are set to profoundly impact how RWD is
managed and utilized across various disease, including MS. In the
following paragraphs, several of these key initiatives will be
highlighted and explained in detail, focusing on their objectives,
relevance to the MS community, and the potential benefits of
engaging with them. These ‘highlighted initiatives’ represent
transformative efforts that are shaping the future of healthcare
data. However, while they offer exciting possibilities, they also
present unique challenges. The subsequent discussion will
explore these challenges and offer actionable recommendations
to help the MS community effectively navigate this evolving
landscape, mitigate risks, and maximize the opportunities these
initiatives provide.

Highlighted initiative 1: The European
Health Data Space (EHDS) - a
revolutionary legislative framework

The EHDS is set to revolutionize healthcare management across
a wide spectrum of stakeholders. Europe has been making
continuous efforts aiming at enhancing the harmonization and
integration of health data, which is needed in order to be able to
create a digitized and connected healthcare system, as foreseen in
the EHDS regulation. The EHDS proposal aspires to (i) support
individuals to take control of their own health data, (ii) support the
use of health data for better healthcare delivery, better research,
innovation and policy making and (iii) enables the EU to make full
use of the potential offered by a safe and secure exchange, use and
reuse of health data (16). Two projects, while differing in focus,
collectively aspire to enhance the concrete implementation of the
EHDS: TEHDAS and HealthData@EU. TEHDAS (Towards The
European Health Data Space - tehdas.eu), running from February
2021 to July 2023, focused on developing principles for the
secondary use of health data, emphasizing dialogue and
engagement across stakeholders, and establishing governance
models for cross-border cooperation. This project involved 25
European countries and numerous stakeholders in discussions
about health data usage for research and policymaking. In
contrast, the HealthData@EU Pilot (ehds2pilot.eu), launched in
October 2022, is building a pilot infrastructure for the EHDS,
focusing on infrastructure development, testing, and evaluation.
Involving 17 partners, this project aims to connect data platforms,
develop services for research project support, and provide
guidelines for data standards and security.
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Highlighted initiative 2: DARWIN-EU —
an initiative by the European Medicine
Agency (EMA)

The EMA has gained significant interest in the use of RWD to
assess the benefit-risk of medicines across their lifecycle and to
monitor the safety of medicine, specifically post-authorisation. A
post-authorisation safety study (PASS) is a study that is carried out
after a medicine has been authorized to obtain further information
on a medicine’s safety, or to measure the effectiveness of risk-
management measures. Figure 1 highlights some of the key
activities of EMA and/or the Heads of Medicine Agencies (HMA)
with respective timelines.

The initiative for patient registries, launched in September 2015,
aspired to explore ways of expanding the use of patient registries by
introducing and supporting a systematic and standardized approach to
their contribution to the benefit-risk evaluation of medicines (17).
Within the scope of this initiative, two workshops of specific interest
were hosted and summarized in extensive reports: (i) A more general
disease-agnostic workshop on patient registries (2016) to better
understand the barriers and facilitators to collaboration between
stakeholders. The workshop report provides recommendations on
actions to improve stakeholder collaboration and optimize the use of
registries to support regulatory decision-making (18): (ii) An MS
specific workshop aiming to reach consensus on implementable MS
specific recommendations for advancing the systematic use of MS
registries to support regulatory evaluations. Similar workshops were
hosted for other disease registries such as for example haemophilia
(19), cystic fibrosis (20) and cancer (21).

After a short period of public consultation, the guideline on
registry-based studies was published in 2021. This guideline

10.3389/fimmu.2024.1461361

addresses the methodological, regulatory and operational aspects
involved in using registry-based studies to support regulatory
decision-making. It aims to help with defining study populations
and designing study protocols. It provides guidance on data
collection, data quality management and data analyses to achieve
high quality evidence (22). Meta-data catalogues offering
descriptive statistics will further support data quality assessment,
and evolving guidelines on data quality criteria will continue to
improve and standardize this process.

The HMA-EMA Joint Big Data Taskforce Phase II report (23)
suggests how the European regulatory network can use Big Data to
improve public health and innovation. The first and top priority
activity formulated is to deliver a sustainable platform to access and
analyze healthcare data from across the EU (Data Analysis and Real
World Interrogation Network - DARWIN - darwin-eu.org). Other
priority recommendations include to establish a framework for data
quality and to enhance data discoverability by strengthening the
current European Network of Centres for Pharmacoepidemiology
and Pharmacovigilance (EnCePP) resources databases (24) in line
with the ‘Good Practice Guide for the use of the Metadata Catalogue
of RWD sources’ (25).

Highlighted initiative 3: the
Observational Medical Outcomes
Partnership (OMOP) — driving
data harmonization

The freely available OMOP (Observational Medical Outcomes
Partnership) common data model (CDM) refers to the open
community standardized data model, which is designed to

DARWIN-EU project initiation

Erasmus UMC Rotterdam is selected
as the coordinating center to deliver
DARWIN-EU

HMA/EMA Joint Big Data Taskforce Phase Il report: Evolving data-driven regulation

atient registries R
P g MS registries workshop

Patient Registries Stakeholder Workshop
to better understand the barriers and facilitators to
collaboration between stakeholders.

FIGURE 1

EIEDED
<>
draft Guideline on
Launch of Initiative for registry-based studies

Workplan 2023-2025
HMA/EMA Joint Big Data Steering Group

Open consultation on

Guideline on registry-based studies

Highlighted activities of the European Medicine Agency (EMA) and/or the Heads of Medicine Agencies (HMA) with respective timelines focusing on
‘patient registries’ (bottom) and ‘big data’ (top). Reference documents to learn more include: Initiative for patient registries - Strategy and Mandate of
the Cross-Committee Task Force (17); Guideline on registry-based studies (22); HMA/EMA Joint Big Data Taskforce Phase Il report (23); Report -
Patient Registry Workshop (18); Report on Multiple Sclerosis (MS) Registries (42): Work Plan 2023-2025 HMA/EMA Joint Big Data Steering Group (51).
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integrate and harmonize healthcare data from various sources, such
as electronic health records (EHRs), claims databases, and other
observational databases (26, 27). The OMOP CDM is a patient-
centric relational database with several standardized tables,
distinguished in domains like condition, procedures, drug usage,
measurements or observations. Some of the key standard
terminologies used in the OMOP common data model include
SNOMED CT ( (28) - snomed.org) and LOINC ( (29) - loinc.org).
The large community behind the OMOP CDM is consolidated in
the Observational Health Data Sciences and Informatics
community (OHDSI - ohdsi.org). Some OHDSI tools of specific
interest include HADES, a set of open source R-packages for large-
scale analytics (30) and ATLAS, which facilitates the design and
execution of analyses (31). The 2023 annual report on ohdsi.org
highlighted impressive numbers: over 3,700 collaborators from 83
countries, a data network of 543 databases from 49 countries, and
more than 956 million patient records, covering about 12% of the
global population.

Several large-scale collaborative RWD initiatives have adopted
the OMOP CDM. Some examples include PIONEER focusing on
prostate cancer [prostate-pioneer.eu; (32)], the European Reference
Network for Rare Adult Solid Cancers [EURACAN; euracan.eu;
(33)], and HONEUR with a specific focus on hematology [portal.
honeur.org; (34)]. The European Health Data and Evidence
Network [EHDEN; ehden.eu; (35)] deserves special attention,
since it managed to establish the largest European federated
RWD network. The EHDEN network currently consists of 187
Data Partners in 29 countries across the European region, with
greater than 850 million anonymous health records.

Highlighted initiatives 4: European
Research Data infrastructures:
EBRAINS focusing on brain-related
research data and ELIXIR for life
sciences (-omics) data

Complementing these efforts are European research data
infrastructures like EBRAINS (ebrains.eu) and ELIXIR (elixir-
europe.org), which enhance research data handling and analysis for
brain-related and life sciences (-omics) data, respectively. ELIXIR
unifies bioinformatics resources and life science data for easier
mining and reuse. This distributed digital infrastructure connects
scientists from 23 countries (>250 research institutes), offering
services like data deposition databases, data analysis, management,
and compute services. ELIXIR also operates a vibrant training
network through the TeSS Training Portal (36), registering over
1,200 training materials and training more than 19,000 people
between September 2015 and March 2019 (37). ELIXIR played a
leading role in the beyond one million genome project (bl mg-project.
eu) that recently ended. During the COVID-19 pandemic, ELIXIR
provided a range of services to study COVID-19 (38).

EBRAINS offers a digital infrastructure to boost collaborative
brain research in neuroscience, brain health, and brain-related
technology. Emerging from the Human Brain Project (HBP)
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(2013-2023), a European Flagship project with a €607 million
investment, it involved over 500 researchers from 19 countries and
155 institutions. The HBP developed 160+ digital tools for multi-scale
brain research and facilitated extensive collaboration among research
teams (39). Some highlighted examples of potentially interesting tools
and services include the Knowledge Graph - multi-modal metadata
platform, the Medical Informatics Platform (MIP) - enabling access
and analyses of anonymized medical data (40) and The Virtual Brain
- a reference tool for full-brain simulation (41).

Discussion

There is great promise for the MS
community in aligning closely and
promptly with the EHDS legislation and
engaging with emerging large-scale data
initiatives that are not specific to MS

The EHDS is about to be implemented and is expected to have
as significant and far-reaching impact. A proactive approach, which
includes early investigation of alignment and synergy, would enable
the MS community to understand the potential risks and challenges
associated with this new legislation from the start. This foresight
would allow for more effective long-term planning, the ability to
anticipate future trends, and the development of risk management
strategies to navigate anticipated changes in the regulatory
environment. Moreover, collaborations with data initiatives not
specific to MS not only pave the way for valuable partnerships and
networking opportunities, but they also offer significant
opportunities to explore new research questions and enhance
existing studies with complementary insights.

Nevertheless, the path forward is marked
by numerous, significant challenges that
need to be addressed

Although I am a firm advocate for the EHDS and the
collaboration with the previously mentioned data initiatives, I
must highlight a series of challenges and lingering questions.
These will be summarized in the following section, underlining
the complexities we still need to navigate:

*  How will the implementation of the EHDS impact the current
utilization of MS registries and other RWD sources? As
previously emphasized, MS registries and other RWD
sources are vital for addressing pressing clinical questions
related to MS. Currently, there is significant variation in the
governance principles applied within the existing and
emerging registries and RWD sources, which complicates
collaborative efforts (2, 42). Given the uncertainty regarding
how the EHDS will influence the conduct of large-scale,
multi-centric studies using data from different member
states, it is yet to be determined whether the EHDS will
simplify or further complicate these collaborations.
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The EHDS primarily focuses on Europe, while other continents
are advancing parallel initiatives within their regions, such as
the Sentinel Initiative (43)) and the Framework for the FDA’s
Real-World Evidence Program (44). This raises the question:
Can we expect alignment between these initiatives to address
clinical challenges on a global scale? Investigating phenomena
like silent progression, pediatric MS, early detection of MS
onset in at-risk individuals (referred to as prodrome), and
conducting large-scale epidemiological studies, such as the
Atlas of MS (45), requires a wealth of high-quality data.
Global collaboration is crucial to tackle these complex
questions, especially considering the global prevalence and
incidence rates of MS. An estimated 2.8 million people
worldwide live with MS, equating to 35.9 per 100,000
population, with a pooled incidence rate of 2.1 per 100,000
persons/year (45). For instance, the COVID-19 in MS global
data sharing initiative brought together data from 19 partners
but compiled ‘only’ 10,000 patient records (13-15). Similarly,
the BMSD network, with the potential of over 250,000 patient
records, experiences a significant reduction in numbers when
specific inclusion criteria are applied (11).

How can we ensure that the disease-agnostic recommendations,
services, and tools are not only fit-for-purpose but also
implementable for addressing MS-related questions, given that
their straightforward application to the MS community is
evidently not as feasible as assumed? A prime example is the
OMOP CDM, which, despite its broad application, is currently
not entirely suitable for MS registry data. This statement is
based on the experiences of my research group and in line with
the documented experience from pulmonary hypertension
databases (46). The underlying problem and probably the
main reason for the different mapping designs is the
observational character of MS RWD sources that are not
connected to an electronic health record and filled with
clinical data from there. Furthermore, a significant gap
exists between guidelines formulated by EMA and their
practical application, as highlighted by two key reports — the
EMA Report on MS Registries (18) and the EMA Guideline on
Registry-Based Studies (22). These documents, while
authoritative, lack the necessary detail, have little or no focus
on patient’s input or patient relevant outcome measures and
have not been checked sufficiently for real-world and
sustainable implementation. For example, the discussion
about financial sustainability is insufficiently incorporated
into these reference documents. Despite the aforementioned
challenges, there are notable examples of successful
collaborations. The German MS registry and the MS
DataConnect Cohort of the University MS Center in
Belgium are part of the federated data network of
EHDEN (35). In the MultipleMS consortium (multiplems.
eu), linked to the International Multiple Sclerosis Genetics
Consortium (47), and the COVID-19 in MS global data
sharing initiative (12), the ELIXIR community has played a
key role in supporting the technical architectures for data
storage, management, and sharing in these large-scale
collaborative efforts.
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In a continuously changing and complex
environment, it is essential to prioritize
pragmatic actions.

To this end, a set of concrete, actionable suggestions for the MS

community are formulated (see also Figure 2).

Suggested action 1: Building upon the strong foundation of
collaboration established within the MS community to further
enhance our collaborative efforts. As we move toward
formulating detailed and implementable global
recommendations for data collection, it is clear that the
responsibility for this initiative will continue to rest with the
MS community. Recently, a global multi-stakeholder task force
defined a core dataset for MS to guide emerging registries in
their dataset definitions and speed-up and support
harmonization across registries and RWD MS initiatives. A
regular revision of the current Core DataSet is anticipated,
especially in regards to the currently excluded variables or
pragmatic choices of values (48). Dataset variables needing a
dedicated set of data elements (e.g. in the area of patient-
reported outcomes or pharmacovigilance) are also not
included. The latter is anticipated to be driven by leading
networks like BMSD or PROMS initiative focusing on these
specific topics. Another interesting activity to enhance multi-
stakeholder collaboration is to regularly organize large-scale
multi-stakeholder engagement meetings (18, 49).

Suggested action 2: Investigate the potential of existing and
emerging data spaces to address some urgent and critical
questions formulated by the MS community, adhering to the
principle of ‘learning by doing.’ Specific pilot projects could be
established and carried out to assess the suitability of current
recommendations for data standardization, interoperability,
infrastructure, and governance in the MS context. Following
these pilot projects, identifying areas for potential synergy and
proposing necessary adjustments will be crucial. An innovative
approach could involve organizing a study-a-thon in
collaboration with OHDSI and/or EHDEN. A study-a-thon
is a focused, multi-day research event that generates reliable
evidence on a specific medical topic across different countries
and health systems. It gathers multidisciplinary teams to
expedite scientific contributions without sacrificing the
quality of research, facilitated through a reproducible process
(50). This method could effectively showcase the advantages of
collaborating with these networks within a limited timeframe.
Concurrently, the MS Data Alliance is investigating how the
OMOP CDM can be tailored to address the challenges
previously identified. This research is specifically focused on
the feasibility of automatically converting the MS Data
Alliance Core Dataset (48) to the OMOP CDM, with the
results expected to be publicly and freely available to the MS
community soon.

Suggested action 3: Team-up with other disease areas to
co-2create recommendations to ensure that the EHDS
encapsulates disease-specific requirements. The challenges
highlighted earlier in this paper, while focusing on MS, are
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How to safeguard that the arisal of parallel data spaces remains in
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not unique to it. Similar issues are encountered by
communities studying chronic diseases that require long-
term, high-dimensional follow-up. Particularly relevant are
those groups already actively engaged in EHDS discussions,
such as those focused on cystic fibrosis, cancer and diabetes
(20, 21, 49)). A practical first step would be to co-create a joint
statement, consolidating a unified response to the EHDS
proposal and addressing the identified challenges.

» Suggested action 4: Invest in education, engagement and
awareness raising of all stakeholders involved to ensure
proper understanding related to the EHDS as well as general
data science principles. Stakeholders include regulators,
clinicians, researchers, industry, and people with MS, all of
whom are equally important. The level of being informed
about how to contribute to the RWD ecosystem as well as
experience in actively participating in large-scale RWD
collaborative initiatives differs between stakeholders and
individuals. Being limited informed and/or having limited
experience leads to reduced active participation in initiatives
that aim to address the urgent needs within the ecosystem.
People with MS (or broader citizens) can actively contribute by
co-creating legislation — deciding what is acceptable, how, and
for what health data can be used - as well as helping to define
priorities in the global research agenda.

Conclusion

Rapid advances in artificial intelligence (AI) and the growing
health data volume are expected to significantly impact the health
sector. Al has already shown promise in helping to improve diagnostic
performances, workflow and cost-effectiveness. Al has the potential to
speed-up the complex process of data management and -analysis,
specifically with the recent developments in the field of generative Al
(e.g. ChatGPT). As we stand at the intersection of immense potential
and complex challenges, there is both a reason for excitement and a
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cause for concern. By coming together — researchers, clinicians,
patients, policymakers, and other stakeholders — we can harness the
full potential of RWD while navigating its complexities. This is a
journey that we must embark on together, informed by diverse
perspectives and united by a common goal: to revolutionize MS care
and research for the betterment of people affected by MS worldwide.
Let this paper be the catalyst for that collaborative journey.
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Cranial volume measurement
with artificial intelligence and
cognitive scales in patients with
clinically isolated syndrome

Ozlem Albuz?, Ibrahim Acir'*, Ozan Hasimoglu?, Melis Suskun?,
Elif Hocaoglu® and Vildan Yayla?

!Bakirkdy Dr. Sadi Konuk Egitim ve Arastirma Hastanesi, Istanbul, Turkiye, 2Basaksehir Cam and Sakura
City Hospital, Istanbul, Turkiye

Objective: We aimed to investigate the relationship between volumetric
measurements of specific brain regions which were measured with artificial
intelligence (Al) and various neuropsychological tests in patients with clinically
isolated syndrome.

Materials and methods: A total of 28 patients diagnosed with CIS were
included in the study. The patients were administered Oktem Verbal Memory
Processes Test, Symbol Digit Modalities Test (SDMT), Backward-Forward Digit
Span Test, Stroop Test, Trail Making Test, Controlled Oral Word Association Test
(COWAT), Brief Visuospatial Memory Test, Judgement of Line Orientation Test,
Beck Depression Scale, Beck Anxiety Scale and Fatigue Severity Scale. Artificial
intelligence assisted BrainLab Elements™ Atlas-Based Automatic Segmentation
program was used for calculating volumes. The measured volumes were
compared with the reference database. In addition, neuropsychological test
performances and volumetric measurements of the patients were compared.

Results: Of the patients included in the study, 78.6% were female and 21.4%
were male, with an average age of 33 years. Verbal Memory Processes Test,
SDMT, Backward-Forward Digit Span, JLOT, and Stroop Test showed significant
correlations with multiple anatomical regions, particularly the anterior thalamic
nucleus, which was associated with the highest number of cognitive tests.
The JLOT exhibited the strongest correlation with six different brain regions
(b <0.001).

Conclusion: The Judgement of Line Orientation and Stroop Tests, correlated with

multiple brain regions, especially the anterior thalamic nucleus, underscoring
the importance of these tests in assessing cognitive function in CIS.

KEYWORDS

multiple sclerosis, clinically isolated syndrome, artificial intelligence, BrainLab, brain
volume analysis

Introduction

Clinically isolated syndrome (CIS) is defined as one of the subtypes of multiple sclerosis
(MS) according to the 2017 McDonald MS criteria. It is a monophasic clinical episode
suggestive of a focal or multifocal, inflammatory demyelinating event in the central nervous
system, lasting at least 24 h, with or without subsequent improvement, not accompanied by
infection or fever, and including symptoms resembling a typical MS relapse (1). Although
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almost any neurological finding may be the first clinical episode in
patients with CIS, somatosensory findings, optic neuritis, transverse
myelitis, brainstem syndrome, and cognitive involvement are most
commonly observed (2, 3). Cognitive impairment was first mentioned
by Charcot in 1877 as “slowness in the perception of MS patients.”
Cognitive impairment has been reported to be approximately
34-65% (4).

Brain tissue loss (atrophy) is thought to reflect neuroaxonal
damage. Volumetric measurements are performed with fully
automatic segmentation software over 3D T1-weighted sequences to
evaluate atrophy. Atrophy starts in the early period of the disease, and
it is known to be strongly associated with cognitive impairment (5).

Cognitive impairments observed in MS include impairments in
information processing efficiency and speed, attention maintenance
and complex attention, working memory, learning, problem-solving,
language and visuospatial memory, long-term memory, abstract
thinking, verbal fluency, and executive functions (6). The
characteristics of cognitive impairment in the CIS group are similar
to those of MS, and information processing speed and verbal memory
are most commonly affected. It has been suggested that cognitive
dysfunction observed in patients with CIS may predict the
transformation of the disease into MS and the disability that occurs
over time (7, 8).

The possibility of establishing a correlation between radiological
images and cognitive impairment in MS is very important, and many
studies have been conducted on this subject. In studies, cognitive
impairment was found to be associated with T2 lesion load,
neocortical gray matter, volume loss in the thalamus, hippocampus,
and corpus callosum on MR imaging (6, 9-11).

Our primary aim encompassed a comprehensive inquiry into the
intricate interplay between the volumetric measurements derived
from distinct cerebral regions in CIS patients and a diverse array of
neuropsychological tests, delving into the nuanced associations and
potential implications within this multifaceted relationship.

Materials and method

In this study, a total of 28 patients comprising 6 males and 22
females diagnosed with CIS, and who were under observation at the
demyelinating diseases outpatient clinic between February-June 2023,
were assessed. Inclusion criteria stipulated that patients must have
been diagnosed with clinically isolated syndrome, be 18 years of age
or older, be proficient in Turkish, and exhibit normal laboratory test
results concerning cognitive function. Exclusion criteria encompassed
substance abuse, recent acute exacerbations or corticosteroid use
within 4 weeks before clinical and MR imaging tests, presence of
central nervous system diseases, significant affective disorders or
severe psychiatric illnesses, utilization of psychostimulant or
psychotropic drugs affecting cognitive functions, alcohol or substance
dependence, as well as a history of attention deficit-hyperactivity
disorder and learning disabilities.

Patients underwent cranial MR imaging with a slice interval of
1 mm. The imaging was conducted in the supine position utilizing a
1.5 Tesla magnetic field strength (Siemens Magnetom Amira) device
equipped with an 8-channel head coil, adhering to the MS acquisition
protocol. All images were acquired using the same device and included
Turbo spin echo T1 (TR 1,060 ms, TE Shortest ms, slice thickness
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1 mm with no gaps, matrix 252 x 240 pixels) and T2w (TR 2,500 ms,
TE: shortest 260 ms, slice thickness 1 mm with no gaps, matrix
252 x 252 pixels) sequences. The radiological images were converted
to the appropriate format and transferred to the BrainLab Elements™
Atlas-Based Automatic Segmentation program, where the volumes of
the patients were evaluated by a certified neurosurgeon trained in
volume measurement. In this system, the most accurate boundaries of
the grey matter and basal ganglia were automatically identified by
comparing the voxel parameters of the patient with the parameters in
the atlas averages through artificial intelligence. Subsequently, after the
fusion of the T2w and T1 MR images of the patients in the BrainLab
Elements program, all grey matter and basal nuclei were automatically
segmented separately in the object segmentation module, and their
boundaries and volumes were calculated. The boundaries were cross-
checked on the T2w image, and any inaccuracies in segmentations
were rectified. The volume values obtained were then juxtaposed with
the average volume values in the MNI PD25 and ICBM152 standard
human brain database (12), and the variance for each anatomical
region was recorded. The measured volumes included the amygdala,
capsule externa, capsule interna, nucleus caudatus, cerebellum,
nucleus dentatus, fornix, globus pallidus, hypothalamus, nucleus
accumbens, basal nucleus of Meynert, nucleus ruber, optic nerve,
pedunculopontine nucleus, putamen, substantia nigra, anterior
thalamic nucleus, zona incerta, and ventricle volumes, which were
subsequently compared to the reference database using the BrainLab
Elements™ Atlas-Based Automatic Segmentation program. The
measured volumes of the patients were compared with the reference
database (topographic volume-standardization atlas of the human
brain) (Figures 1, 2) (13).

Oktem Verbal Memory Processes Test, Paced Auditory Serial
Addition Test (PASAT), Symbol Digit Modalities Test (SDMT),
Backward-Forward Digit Span Test, Stroop Test, Trail Making Test,
Controlled Oral Word Association Test (COWAT), Brief Visuospatial
Memory Test (BVMT-R), Judgment of Line Orientation Test (JLOT),
Beck Depression Scale, Beck Anxiety Scale, and Fatigue Severity Scale
(FSS) neuropsychological tests were administered, which lasted
approximately 90 min within 2 weeks following MRI. The PASAT test
was only administered to one person due to communication and
cooperation difficulties between the patients and the administrator, as
well as the challenges in administering the test. Therefore, this test was
excluded from the study.

All statistical analyses were performed using IBM SPSS Statistics
version 29.0. Descriptive statistics were expressed as mean + standard
deviation (mean + SD) or median (25th-75th percentile) values for
continuous variables and as numbers (1) and percentage (%) for
categorical variables. The comparison between categorical variables
was conducted using the chi-square test or Fisher’s exact test. The
determination of normal distribution was based on the number of
observations in the groups, histograms, and the Shapiro-Wilk test.
The Mann-Whitney U test was employed to compare continuous
variables that were not normally distributed between two groups. If
normal distribution was confirmed, Student’s t-test was utilized. The
linear relationship between two continuous variables was assessed
using Pearson or Spearman correlation coefficients, and their
significance was analyzed based on the presence or absence of normal
distribution. Correlation coefficients falling between 0 and + 0.3 were
interpreted as indicating no correlation, while coefficients between 0.3
and 0.5 suggested a weak correlation in a positive (or negative)

frontiersin.org


https://doi.org/10.3389/fneur.2024.1500140
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Albuz et al. 10.3389/fneur.2024.1500140

FIGURE 1
Thalamic volume measuring (an example).

FIGURE 2
Putamen volume measuring (an example).

direction. Coeflicients ranging from 0.5 to 0.7 indicated a moderate ~ negative). In cases where the influence of a third variable was
correlation in a positive (or negative) direction, while coefficients  considered, partial correlation coefficients were calculated. Two-way
exceeding 0.7 were indicative of a strong correlation (positive or  p-values less than 0.05 were considered statistically significant.
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Results

Demographic and clinical characteristics of the patients who
participated in our study are summarised in Table 1. A total of 22
(78.6%) of the patients were female, while 6 (21.4%) were male. The
ages of all patients ranged between 17 and 51 years, with a mean age
of 33.0 years. Half of the patients (50%) had less than 8 years of
education, while the other half had more than 8 years of education.
Clinical attacks manifested as optic neuritis in 15 (53.6%) patients,
brainstem symptoms in 4 (14.3%) patients, sensory symptoms in 8
(28.6%) patients, and cerebellar symptoms in 1 (3.57%) patient.
Diabetes mellitus (DM) was present in 2 patients, hypertension (HT)
was present in 2 patients, and hypothyroidism was present in 1 patient.
However, thyroid function tests were within normal limits in all
patients according to laboratory tests (Table 1).

When the volumetric examinations of the patients were compared
according to gender, a statistically significant difference was found
between the two groups in cerebellum, hypothalamus, nucleus
accumbens, periquaductal grey matter and subthalamic nucleus
volumes (p < 0.05) (Table 2).

The measured volumes of the patients were compared with the
volumes of amygdala, basal ganglia (caudate + putamen + globus
pallidus), capsule interna, nucleus caudatus, cerebellum, thalamus,
globus pallidus, putamen and ventricle in the reference database.
Mean + SD values and statistical comparisons are shown in Table 3.
Amygdala, basal ganglia caudate + putamen + globus pallidus, capsule
interna, nucleus caudatus, thalamus, globus pallidus putamen and
cerebellum were found to be significantly different from the
population mean in the sample group with clinically isolated
syndrome (p < 0.001).

When examining the correlation between cognitive tests and
anatomical regions, no significant correlation was found with the
COWAT, BVMT-R, Beck Depression Scale, Beck Anxiety Scale and
FSS tests. However, significant correlations were observed with the
Oktem Verbal Memory Processes Test, SDMT, Backward-Forward
Digit Span Test, JLOT and Stroop Tests. The JLOT was the test that
showed correlations with the most anatomical locations (6
anatomical regions). The anterior thalamic nucleus was identified
as the anatomical region that correlated with the highest number
of cognitive tests. The statistically significant results of the
correlation analyses between the cognitive tests and anatomical
region volumetric measurements of the patients are shown in
Table 4.

The regression analysis revealed distinct patterns in the
relationship between age, sex, tracking test performance, and
volumetric measurements. For the tracking test, the model
demonstrated strong explanatory power, accounting for 54% of the
variance in performance. Age emerged as a significant predictor, with
increasing age associated with longer tracking times (B =6.361,
p <0.001). The standardized coeflicient (ff = 0.738) confirmed age as
the most influential factor. In contrast, sex had no statistically
significant effect on tracking test performance (p = 0.795). The model
was statistically significant overall (F = 14.678, p < 0.001), emphasizing
the role of age in predicting tracking performance.

The analysis of brain region volumes, including the amygdala,
thalamus, capsula interna, putamen, globus pallidus, and nucleus
caudatus, showed limited explanatory power. For the amygdala, the
model accounted for only 8.3% of the variance, with neither age
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TABLE 1 Clinical and demographic characteristics of patients with
clinically isolated syndrome included in the study.

[AUl N = 28

Gender

‘Woman 22 (78.6%)

Male 6(21.4%)
Age 33.0 [17-51]
Education status

<8 years 14 (50%)

>8 years 14 (50%)
Marital status

Married 17 (60.7%)

Single/divorced 11 (39.3%)
Profession

Not working 16 (57.1%)

Labourer, civil servant, other 12 (42.9%)

BMI 26.5 [19.6; 38.1]
Smoking 10 (35.7%)
Alcohol use 2 (7.14%)
Presence of comorbidities
DM 2 (7.14%)
HT 3 (10.7%)
Hypothyroidism 1(3.57%)
Other 3(10.71%)

First attack pattern

Optic neuritis 15 (53.6%)

Brain stem 4 (14.3%)
Sensory 8 (28.6%)
Cerebellar 1(3.57%)

TABLE 2 Comparison of volumetric measurements according to gender.

Female Male fo) N

N =22 N=6 overall
Cerebellum 121 (13.6) 136 (4.32) 0.010 28
Hypothalamus 1.25(0.14) 1.45 (0.09) 0.003 28
Nucleus accumbens 0.94 (0.12) 1.09 (0.14) 0.022 28
Periacuaductal grey matter 0.24 (0.05) 0.31 (0.04) 0.008 28
Subthalamic nucleus 0.18 (0.02) 0.20 (0.01) 0.039 28

(p =0.688) nor sex (p = 0.176) significantly influencing its volume.
Similarly, the capsula interna volume model explained 11.2% of the
variance, with age showing no significant effect (p = 0.843) and sex
being marginally non-significant (p = 0.095), suggesting a potential
relationship that may require further investigation.

For the thalamus, the model explained 7.6% of the variance, with
neither age (p = 0.397) nor sex (p = 0.309) demonstrating statistical
significance. The putamen model performed poorly, explaining only
1.5% of the variance, with both age (p = 0.545) and sex (p = 0.980)
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TABLE 3 Comparison of patient volumes with population averages according to topographic volume-standardisation atlas of the human brain

database.
Mean + SD Mean + SD
(patient) (atlas) (ATLAS)
Amigdala 2.87 £0.29 3.12+£0.47 —4.6187 <0.001
Basal ganglia (caudate + putamen + globus pallidus) 19.41+£1.20 22.12+2.98 —7.1675 <0.001
Capsula interna 9.11 +1.04 10.62 + 1.55 —7.6597 <0.001
Caudate nucleus 7.22 +10.90 7.78 +1.32 —3.3053 0.003
Cerebellum 116.73 + 12.62 124 +13.8 —2.901 0.007
Ventricle 23.3+£5.52 21.18 £ 16.71 1.999 0.06
Thalamus 11.1+1.33 14.61 + 1.46 —13.89 <0.001
Globus pallidus 3.07 £0.59 3.69 +0.38 —8.5068 <0.001
Putamen 8.51+0.93 11.26 + 1.66 —15.64 <0.001
Bold values: highly significant.
TABLE 4 Correlation analysis between cognitive tests and anatomical region volumetric measurements.
Cognitive test Anatomic region Correlations fo)
Oktem Verbal Memory Processes Test Subtalamic nucleus —0.421 0.026
SDMT Acumbal nucleus 0.376 0.048
SDMT Anterior thalamic nucleus 0.482 0.009
Trail Making Test Internal capsule —0.463 0.013
Trail Making Test Acumbens nucleus —0.501 0.007
Trail Making Test Meynert’s basal nucleus —0.389 0.040
Trail Making Test Putamen —0.435 0.021
Trail Making Test Talamus —0.486 0.009
Backward-Forward Digit Span Test Anterior thalamic nucleus 0.374 0.050
Judgement of Line Orientation Test Capsule interna 0.515 0.005
Judgement of Line Orientation Test Dentate nucleus 0.477 0.010
Judgement of Line Orientation Test Globus pallidus 0.436 0.020
Judgement of Line Orientation Test Acumbens nucleus 0.541 0.003
Judgement of Line Orientation Test Anterior talamic nucleus 0.453 0.016
Judgement of Line Orientation Test Talamus 0.409 0.031
Stroop Test Capsule interna —0.413 0.040
Stroop Test Anterior talamic nucleus —0.545 0.005
Stroop Test Nucleus caudatus —0.400 0.047

failing to show significant effects. Similarly, the globus pallidus and
nucleus caudatus models explained 6.9 and 6.3% of the variance,
respectively, with no significant contributions from age or sex for
either region.

Discussion

Clinical isolated syndrome is a single episode of inflammatory
demyelination of the central nervous system suggestive of MS. The
main mechanism in the pathophysiology of the disease is thought to
involve multifocal inflammation, demyelination, oligodendrocyte loss,
reactive gliosis, and axonal degeneration (14). In our study, our
primary objective was to assess whether atrophy was present by
comparing the measured volumes in specific brain regions of patients
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with clinically isolated syndrome with those in the reference database
(topographic volume-standardization atlas of the human brain). Our
secondary objective was to evaluate the correlation between the
volumes measured in specific brain regions and the results of various
cognition tests assessing different cognitive functions, aiming to
determine which cognitive performance is most accurately predicted
by volume parameters. Previous research has primarily emphasized
the role of subcortical structures like the thalamus and basal ganglia
in tasks related to executive functions and memory. However, this
study expands the scope by examining a more comprehensive set of
cognitive tasks, including visuospatial memory, information
processing, and working memory, and their associations with specific
brain regions in patients with CIS.

Cognitive impairment, often overlooked in daily practice but
with a detrimental impact on the daily life activities of patients, is

frontiersin.org


https://doi.org/10.3389/fneur.2024.1500140
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Albuz et al.

frequently observed in MS. Studies have shown that the prevalence
of cognitive impairment ranges from 40 to 65% and may manifest as
early as the initial stages of the disease, including during the CIS
period (9, 15). It is understood that demyelinating plaques in the
periventricular white matter, axonal loss, and neocortical atrophy
play crucial roles in the pathophysiology of cognitive impairment.
Zipoli et al. (7) identified cognitive impairment in a significant
proportion of patients with CIS and concluded that this had
prognostic value in predicting conversion to MS. The pattern of
cognitive impairment observed in patients with CIS closely resembles
that observed in patients with MS, characterized by reduced
information processing speed, impaired working memory, executive
functions, and attention deficits (15, 16).

In a study that divided MS patients into 3 clusters according to
disability status and compared regional volumes with a healthy
control group, the volumes of the thalamus, hypothalamus, putamen,
and nucleus caudatus were found to be significantly different. It was
thought that the ventral diencephalon underwent early degeneration
during the course of MS (17). Similarly, in another study aimed at
evaluating the relationship between subcortical grey matter and
cognition in RRMS patients, atrophy was most prominent in the
nucleus caudatus, globus pallidus, and thalamus (18). Furthermore,
a study conducted in patients with CIS revealed atrophy in the
thalamus, hypothalamus, putamen, nucleus caudatus, and cerebellum
compared to the control group (19). In a longitudinal study with a
1-year follow-up MR imaging of RRMS and CIS patients, it was
observed that atrophy developed in the grey matter, including the
thalamus, nucleus caudatus, putamen, and brainstem. Deep grey
matter volume, especially the thalamus volume, was predictive of
cognitive performance and disability progression (20). When
we compared the volumes measured in our study with the reference
database, we found that the volumes of the amygdala, basal ganglia
(nucleus caudatus + putamen + globus pallidus), capsule interna,
nucleus caudatus, thalamus, globus pallidus, and putamen were
significantly different in our patients. This result aligns with findings
from other studies and suggests the development of degeneration and
secondary atrophy during the clinically isolated syndrome period.
Additionally, one of the unique and robust aspects of our study is the
utilization of the artificial intelligence-supported BrainLab
measurement method, which enables more precise and accurate
measurements compared to the measurement methods commonly
used in the literature.

The thalamus plays an important role in cognitive functions
including attention, information processing speed and memory (21).
Neurodegeneration of thalamic nuclei and connections which
develops due to inflammation and cytotoxic damage leads to
cognitive impairment. Many studies have concluded that thalamic
atrophy develops in the early period of the disease and is a strong
indicator of cognitive deficits (20, 22). In a study conducted in RRMS
patients, thalamus was found to be associated with visuospatial
memory (23). In another study conducted in MS patients, SDMT
performance was found to be mostly associated with the thalamus
and putamen and it was argued that the thalamus plays an important
role in information processing efficiency (24). In a different study,
thalamus volume was found to be associated with trail making test,
Judgement of Line Orientation Test and SDMT performance and it
was concluded that it played an important role in memory, working
memory and information processing speed (25). In a study conducted
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by Houtchens et al. (26) in MS patients, it was suggested that
thalamus volume was a significant biomarker for information
processing speed and visuospatial memory. In a study conducted in
patients with CIS, atrophy of the thalamus, putamen and nucleus
caudatus was found and it was concluded that thalamic atrophy was
an indicator in cognitive evaluation (19). In our study, a significant
atrophy was found in the thalamus volume in patients with CIS
compared to the reference database. Our study supports that thalamic
atrophy develops even in the early period of MS and even in patients
with CIS, as in other studies. The fact that a different method was
used in our study instead of the commonly used measurement
methods in the literature and the results were found to be similar
with other studies indicates that there is a correlation between the
results of the measurement methods. In addition, there was a
correlation between thalamus volume and the tracking test and
Judgement of Line Orientation Test.

It has been shown in many studies that the anterior thalamic
nucleus plays an important role in learning and memory (27). In a
study evaluating the anterior thalamic nuclei in mice, it was shown
that they have roles in different stages of memory (28). In another
study, a decrease in episodic memory processes, information
processing speed, directed attention, working memory and executive
functions performance was observed in correlation with age-related
decrease in anterior thalamic volume and secondary atrophy (29). In
a 3-year follow-up study in MS patients, the anterior thalamic nucleus
was found to be more atrophic in patients with cognitive deterioration
than in cognitively preserved patients (30). In a cross-sectional study
conducted in MS patients, a relationship was found between cognitive
deterioration and focal atrophy of the anterior thalamic nucleus (31).
In a study examining all nuclei of the thalamus in detail, SDMT
performance was found to be correlated with the volume of the left
ventral anterior nucleus (32). In our study, there was a correlation
between anterior thalamic nucleus volume and SDMT, Backward-
Forward Digit Span Test, Stroop and Judgement of Line Orientation
Test performance. The positive correlations observed with the SDMT
and Backward-Forward Digit Span Test suggest that this region is
actively involved in tasks requiring working memory and information
processing speed. In contrast, the negative correlation with the Stroop
Test indicates that while the anterior thalamic nucleus is engaged in
cognitive control and attention tasks, its activity may decrease as
performance on inhibitory control tasks improves. This dual role
highlights the complexity of the anterior thalamic nucleus in
modulating different aspects of cognition, particularly in tasks that
require both rapid information processing and cognitive inhibition.
These results provide a nuanced understanding of the anterior
thalamic nucleus’ contributions to cognitive functions, especially in
patients with cognitive impairments.

The nucleus accumbens is known as the centre of reward and
pleasure. It plays a modulatory role in the flow of information between
the amygdala, basal ganglia, mesolimbic and dopaminergic regions
and the prefrontal cortex. The nucleus accumbens is believed to
be associated with the cognitive impairment seen in Alzheimer’s
disease. It is thought that dopaminergic system changes frequently
observed in Alzheimer’s patients are associated with impaired memory
performance and reward processing dysfunctions (33). In a study
conducted on mice, it was observed that the nucleus accumbens has
an important role in mesocorticolimbic dopamine function and
cognition (34). In our study, a statistically significant correlation was
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found between nucleus accumbens volume and SDMT, trail making
and Judgement of Line Orientation Test. Based on this, we can say that
nucleus accumbens volume predicts working memory, information
processing speed, executive functions and visuospatial memory
performance. In our research, we did not find any studies on the
relationship between nucleus accumbens volume and cognition tests
in patients with CIS. We think that comprehensive studies should
be conducted on this subject and these findings are one of the unique
aspects of our study.

The capsulae interna coordinates cognitive, motor and sensory
pathways. Fibre tracts in the anterior crus are associated with emotion,
cognition, decision making and motivation (35). In a study evaluating
motor and cognitive disorders with diffusion tensor imaging (DTI) in
MS patients, a significant correlation was found between capsular
interna DTT metrics and 9-hole peg test and PASAT performance (36).
In our study, capsular interna volume was found to be atrophic
according to the reference database and a significant correlation was
found between capsular interna volume and stroop, trail making and
Judgement of Line Orientation Test. This finding suggests that, similar
to MS, capsular interna volume plays a role in working memory,
information processing speed, executive functions and visuospatial
functions. It was thought that cognitive functions were affected in
patients with CIS before conversion to MS and that the change in
capsular volume could explain this.

The cholinergic neuron population in the basal nucleus of
Meynerts nucleus is involved in learning, long-term memory, control
and maintenance of attention. Its degeneration causes various
neuropsychiatric disorders. The association between the accumulation
of Lewy bodies in the nucleus of Meynert and dementia and the
favourable results obtained in dementia with DBS treatment applied
to the nucleus of Meynert are proof of this. In the correlation study of
BICAMS and volumetric measurement in MS patients, a significant
relationship was found between them and predicted cognitive change
in follow-up. In addition, the volume of Meynerts nucleus was found
to be associated with lower SDMT score (37). In our study, a significant
correlation was found between the performance of the tracking test
and the volume of Meynert’s basal nucleus and it was thought to
be predictive of working memory, information processing speed and
executive functions. In our research, we could not find any study in
this direction in patients with CIS. Therefore, we think that
comprehensive studies should be conducted on this subject and these
findings are one of the unique aspects of our study. In addition,
we believe that large-scale double-blind controlled studies are needed
to evaluate the effect of early initiation of cholinesterase inhibitor
treatment on the protection of patients from cognitive impairment.

Our findings, particularly the significant correlation between the
Judgement of Line Orientation Test and six distinct anatomical
regions, as well as the association of the anterior thalamic nucleus
with working memory and information processing speed, can
provide valuable insights for managing CIS patients. These
correlations suggest that the anterior thalamic nucleus plays a critical
role in multiple cognitive domains, especially those related to
visuospatial processing, working memory, and rapid cognitive
functioning. For CIS patients, who often experience early
neurological symptoms that may precede multiple sclerosis, assessing
cognitive functions through specific tests like the Judgement of Line
Orientation Test and evaluating the integrity of the anterior thalamic
nucleus may offer a more targeted approach for early intervention.
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For instance, using the Judgement of Line Orientation Test can help
assess visuospatial abilities, a domain that may be disrupted in CIS
due to early thalamic or parietal lobe involvement. Furthermore, the
strong correlation of the anterior thalamic nucleus with working
memory and processing speed highlights the importance of
monitoring these cognitive functions in CIS patients, as deficits in
these areas may signal more extensive brain involvement or the
transition to MS. By incorporating these specific tests into routine
clinical assessments for CIS patients, healthcare providers can better
identify early cognitive changes, tailor cognitive rehabilitation
strategies, and potentially intervene earlier in the disease course.

Our study highlights the differential predictive power of age and
gender on various brain region volumes and cognitive functions.
While age emerged as a significant predictor for tracking test
performance, it showed no substantial impact on the volumes of key
subcortical structures such as the thalamus, amygdala, and putamen.
Similarly, gender demonstrated borderline significance for some
regions, such as the capsula interna, but was not a robust predictor
overall. These results suggest that volumetric changes in certain brain
regions may occur independently of these demographic factors,
aligning with the growing understanding that intrinsic disease
processes in CIS play a dominant role in neurodegeneration.

There is no comprehensive study of this type in the literature that
examines various cognitive functions, cranial volumetric
measurements and their correlation in patients with CIS. The
strengths of this study are that a homogeneous group was formed, a
larger number of anatomical regions that had not been evaluated
before were evaluated compared to other studies, more precise and
accurate volume measurements were provided by using artificial
intelligence with the BrainLab Elements™ Atlas-Based Automatic
Segmentation programme, and a large number of neuropsychological
tests covering the main cognitive functions were used. The limitations
of our study are that, it is a single-centre study, cross-sectional
evaluation and we did not estimate pre-disease intelligence. The
number of CIS patients included in the study is relatively lower
compared to MS patients. Additionally, for volumetric analysis to
be performed, MR imaging needs to be acquired using consistent
techniques and sequences, which further limited the number of
eligible patients. This is one of the reasons for the small sample size,
which presents a limitation in terms of the generalizability of the
results. However, despite this limitation, careful and reliable analyses
were conducted using the BrainLab Elements™ Atlas-Based
Automatic Segmentation program. In addition, the fact that we did
not include the anatomical locations of demyelinating lesions in our
analyses can be counted as another factor. Future longitudinal studies
are needed to determine the usefulness and predictive value of
volumetric measurements and cognitive functions in determining the
risk of conversion to MS in patients with CIS.

Conclusion

In conclusion, our study highlights the significant role of the
anterior thalamic nucleus in various cognitive functions, particularly
in working memory, information processing speed, and visuospatial
tasks in patients with CIS. The Judgement of Line Orientation Test
emerged as a key tool for assessing visuospatial abilities, demonstrating
strong correlations with multiple brain regions in patients with CIS.
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Objective: Establishing biomarkers to predict multiple sclerosis (MS) disability
accrual has been challenging using a single biomarker approach, likely due to the
complex interplay of neuroinflammation and neurodegeneration. Here, we
aimed to investigate the prognostic value of single and multimodal biomarker
combinations to predict four-year disability progression in patients with MS.

Methods: In total, 111 MS patients were followed up for four years to track
disability accumulation based on the Expanded Disability Status Scale (EDSS).
Three clinically relevant modalities (MRI, OCT and blood serum) served as
sources of potential predictors for disease worsening. Two key measures from
each modality were determined and related to subsequent disability progression:
lesion volume (LV), gray matter volume (GMV), retinal nerve fiber layer, ganglion
cell-inner plexiform layer, serum neurofilament light chain (sNfL) and serum glial
fibrillary acidic protein. First, receiver operator characteristic (ROC) analyses were
performed to identify the discriminative power of individual biomarkers and their
combinations. Second, we applied structural equation modeling (SEM) to the
single biomarkers in order to determine their causal inter-relationships.

Results: Baseline GMV on its own allowed identification of subsequent EDSS
progression based on ROC analysis. All other individual baseline biomarkers were
unable to discriminate between progressive and non-progressive patients on
their own. When comparing all possible biomarker combinations, the tripartite
combination of MRI, OCT and blood biomarkers achieved the highest
discriminative accuracy. Finally, predictive causal modeling identified that LV
mediates significant parts of the effect of GMV and sNfL on disability progression.
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Conclusion: Multimodal biomarkers, i.e. different major surrogates for pathology
derived from MRI, OCT and blood, inform about different parts of the disease
pathology leading to clinical progression.

multiple sclerosis, biomarker, magnetic resonance imaging, neurofilament, optical
coherence tomography, disease progression, prediction, structural equation modeling

Introduction

In multiple sclerosis (MS), disability progression is
closely related to neuroaxonal degeneration (1, 2). Therefore,
identifying and quantifying axonal damage is an essential step
towards improved clinical decision-making and prognostication.
Currently, magnetic resonance imaging (MRI) is the most
established non-invasive modality for diagnosing, evaluating
treatment effectiveness, and monitoring disease progression in
patients with MS. In particular, conventional structural MRI
metrics, like T2-hyperintense lesion volume (LV) and gray
matter volume (GMYV), have been proven to be reproducible
and well-validated in reflecting disease activity and progression,
respectively (3, 4). However, recent technical advances, such as
single molecule array (SiMoA) and easily accessible optical
coherence tomography (OCT), have enabled additional non-
invasive measurements of neurodegeneration-related biomarkers
with increasing clinical application (5, 6). Therefore, blood-based
biomarkers such as serum neurofilament light chain (sNfL) and
serum glial fibrillary acidic protein (sGFAP), as well as measures
of retinal thickness (retinal nerve fiber layer (RNFL), ganglion cell
inner plexiform layer (GCIPL)) have gained significant interest for
diagnostic purposes and are expected to be applied in clinical
routine soon.

Nevertheless, all biomarkers have certain limitations due to the
nature of their respective modalities: MRI is most effective at
detecting focal white matter lesions in the brain and spinal cord,
but lesions in gray matter structures can only be reliably visualized
with rather high field strengths (7). Additionally, conventional MRI
is functionally “blind” to what is known as “normal-appearing
white matter” (NAWM). Blood biomarkers of neuronal (sNfL) or
glial (sSGFAP) damage can be influenced by different factors such as
age, blood volume, genetics, and other medical conditions such as
impaired renal function (8-10). Additionally, measures of retinal
thickness may not always accurately reflect the presence and extent
of inflammation or damage in the brain and spinal cord, as they
may be affected by factors such as pupil dilation, eye movements,
and the presence of cataracts or other eye conditions, which can
impact the accuracy of the results (6, 11). Furthermore, the spatial
resolution is limited, as OCT captures only a small part of the
central nervous system (CNS). Thus, the concept of “one
biomarker” indicating the existence of an underlying disease-

Frontiers in Immunology

53

specific process remains a utopia in predicting disease
progression. However, individual challenges may be overcome by
combining biomarkers from different modalities that ideally also
represent multiple aspects of MS pathology.

Utilizing multiple biomarkers from different modalities has already
been demonstrated in other neurological disorders such as Alzheimer’s
disease, where a combination of positron emission tomography
(PET)-imaging and cerebrospinal fluid (CSF) biomarkers has
enabled a more precise diagnostic evaluation (12, 13). In people with
MS, initial efforts have shown that multimodal biomarkers can predict
neuropsychological parameters such as cognitive impairment (14).
However, it is unclear which biomarker combinations offer the best
discriminative accuracy for disease progression of MS. The
combination of several biomarkers altogether, by means of predictive
modeling, may be able to compile large amounts of multimodal data,
in order to attain solid conclusions and decision making in
MS monitoring.

Thus, the aim of this study was to investigate the prognostic
value of individual biomarkers (MRI, OCT and blood), as well as
their combinations in predicting four-year disease activity and
progression in MS. To test this, we determined LV and GMV
from MRI, RNFL and GCIPL from OCT and sGFAP and sNfL from
blood within a cohort of 111 MS patients who were clinically
followed up for four years.

Methods
Participants

In total, out of 141 MS patients that were retrospectively
screened for this project, 111 MS patients that underwent a
comprehensive and detailed clinical assessment were finally
included in the analysis (Figure 1). The selected cohort included
MS patients with MRI (T2-hyperintense LV and GMV), blood
(sNfL and sGFAP), and OCT (RNFL and GCIPL) measurements
at the outpatient clinic of the Department of Neurology, at the
University Medical Center Mainz (Germany) (Table 1). All
included patients had relapsing-remitting multiple sclerosis
(RRMS) as diagnosed according to the 2017 revised McDonald
diagnostic criteria (15). The mean (+ standard deviation) disease
duration of all patients at study inclusion was 3.15 + 4.26 years.
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FIGURE 1

Study analysis design. Study protocol and design including the three
modalities each with two biomarkers as potential predictors.
Statistically, ROC analysis was performed to evaluate the
discriminative power of single and combined biomarkers.
Subsequently, SEM was applied to test the causal inter-relationships
between the variables. EDSS, expanded disability status scale; GCIPL,
ganglion cell-inner plexiform layer; GMV, gray matter volume; OCT,
optical coherence tomography; RNFL, retinal nerve fiber layer; ROC,
receiver operator characteristics; SEM, structural equation modeling;
sGFAP, serum glial fibrillary acidic protein; sNfL, serum
neurofilament light; LV, lesion volume.

All diagnostic baseline measurements were performed within 6
months of study inclusion. An experienced neurologist clinically
assessed patients and their Expanded Disability Status Scale
(EDSS) score at study entry and follow up visit (3.74 + 1.25
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TABLE 1 Basic characteristics. Demographic and clinical data of the
included MS patients as well as MRI, OCT and blood biomarkers
at baseline.

Demographics MS patients (n = 111)

Age [years] mean + SD 348 +9.67
Sex [female] (percent) 79 (71)
Disease duration [years] mean + SD 3.15 +4.26
Disease-modifying treatment

None (percent) 18 (16)
Mild to moderate efficacy (percent) 69 (62)
High efficacy (percent) 24 (22)
Clinical measures

Baseline EDSS median (25%; 75" percentile) 1.0 (0.0; 2.0)
Follow up EDSS median (25%; 75t percentile) 1.5 (0.0; 2.5)
Patients with EDSS progression (percent) 46 (41.4)
Relapses over 4 years mean + SD 0.76 £ 1.17
Annualized relapse rate mean + SD 0.21 +0.33
Time to follow up [years] mean + SD 374 +1.25
Patients with history of optic neuritis (percent) = 33 (30)
MRI measures

LV [ml] mean + SD 597 +9.57
GMV |[fraction] mean + SD 0.43 £ 0.03
OCT measures

RNEL [mm’] mean + SD 0.21 + 0.02
GCIPL [mm®] mean + SD 0.76 £ 0.1
Blood measures

SNfL [z-score] mean + SD 0.115 +2.21
sGFAP [pg/ml] mean + SD 121.2 + 43.8

Mild to moderate efficacy = interferons, glatiramer acetate, teriflunomide, dimethyl fumarate.
High efficacy = natalizumab, anti-CD20 monoclonal antibodies, sphingosine-1-phosphate
receptor modulators, alemtuzumab.

EDSS, extended disability status scale; GCIPL, ganglion cell-inner plexiform layer; GMV, gray
matter volume; LV, lesion volume; MRI, magnetic resonance imaging; OCT, optical coherence
tomography; RNFL, retinal nerve fiber layer; SD, standard deviation; sGFAP, serum glial
fibrillary acidic protein; sNfL, serum neurofilament light.

years), along with clinical relapse history over the study period.
EDSS progression was defined as an increase of > 1 point in the
EDSS score for a baseline score of > 1.5 or a 1.5 point increase for a
baseline score of 0 (16). A clinical relapse was defined as a
monophasic clinical episode with new neurological symptoms,
lasting more than 24 h and in the absence of fever or infection
(15). The annualized relapse rates (ARR) were calculated by
dividing the total number of all observed relapses by the total
number of patient-years. All measurements were performed at
least 30 days after a clinical relapse and/or a high-dose
corticosteroid treatment.
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sNfL and sGFAP measurements

Serum samples were collected by attending physicians at the
University Medical Center Mainz. Samples were processed at room
temperature within 2 hours. Serum samples were spun at 2000xg at
room temperature for 10 minutes, aliquoted in polypropylene tubes
and stored at —80°C. sNfL and sGFAP concentrations were
measured as previously described (10, 14). In brief, sNfL and
sGFAP levels were determined using the highly sensitive single
molecule array (SiMoA) technology (17). Samples were measured in
duplicates by SiMoA HD-1 (Quanterix, USA) using NF-Light
Advantage kits according to the manufacturer’s instructions. The
mean inter-assay and intra-assay coefficient of variation was less
than 10%. Measurements were performed in a blinded fashion
without information about clinical data.

MRI data acquisition

MRI data acquisition was performed as previously described
(14). In brief, structural MRI was performed on a 3-Tesla MRI
scanner (Magnetom Tim Trio, Siemens, Germany) with a 32-
channel receive-only head coil. In all patients, imaging was
performed using a sagittal 3D T1-weighted magnetization-
prepared rapid gradient echo (MP-RAGE) sequence (TE/TI/TR =
2.52/900/1900 ms, flip angle = 9°, field of view = 256 x 256 mm?2,
matrix size = 256 x 256, slab thickness = 192 mm, voxel size = 1 x 1
x 1 mm?®) and a sagittal 3D T2-weighted fluid-attenuated inversion
recovery (FLAIR) sequence (TE/TI/TR = 388/1800/5000 ms, echo-
train length = 848, field of view = 256 x 256 mm?, matrix size = 256
X 256, slab thickness = 192 mm, voxel size =1 x 1 x 1 mm3). A
clinician scientist blinded to the patient data excluded major
anatomical abnormalities based on the subject’s T1-weighted and
FLAIR images of the whole brain.

Quantification of white matter LV and GMV

The quantification of WM (white matter) volume, lesion
volume and GMV was performed as previously described (14).
Using voxel-based morphometry (VBM) analysis in the Statistical
Parametric Mapping (SPM8) software, the GM and WM volumes
were calculated. The volumes of WM lesions were assessed using
the cross-sectional lesion growth algorithm of the lesion
segmentation toolbox (18) included in the SPMS8 software. 3D
FLAIR images were co-registered to 3D T1-weighted images and
bias corrected. After partial volume estimation, lesion segmentation
was performed with 20 different initial threshold values for the
lesion growth algorithm (18). By comparing manually and
automatically estimated lesion maps, the optimal threshold
(x value, dependent on image contrast) was determined, and
average values were calculated for each patient. A uniform x
value of 0.1 was applied in all patients in order to automatically
estimate lesion volume and filling of 3D TI1-weighted images.
Subsequently, the filled 3D T1-weighted images and the native 3D
T1-weighted images were segmented into GM, WM, and CSF and
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then normalized to the Montreal Neurological Institute (MNI)
space. The quality of the segmentations was visually inspected to
increase reliability.

OCT: image acquisition and
scanning protocol

The analysis was performed as previously described (19, 20). In
brief, the Advised Protocol for OCT Study Terminology and
Elements (APOSTEL) recommendations were followed (21)
including a quality control for the raw OCT scans complying
with the OSCAR-IB criteria (22). MS patients with accompanying
diseases potentially affecting the optic nerve or other ocular disease
were excluded in advance. Hence, none of the patients had a history
of glaucoma, retinopathy or other neurological disorders (besides
RRMS). An experienced operator performed OCT image
acquisition following a unified standard acquisition protocol
using a spectral domain OCT (Heidelberg Spectralis, Heidelberg
Engineering, Germany) with Heidelberg Eye Explorer software
(HEYEX, version 1.10.2.0). The measurements were acquired in a
shaded room at ambient light without pupillary dilation. Intra-
retinal layers of the macula were gauged by a standardized scan
comprising 61 vertical or horizontal B-scans while focusing on the
fovea at a scanning angle of 30° x 25° and a resolution of 768 x 496
pixels. Automatic real time was set to nine at high-speed scanning
mode. Confocal scanning laser ophthalmoscopy was performed in
parallel and revealed no evidence of pathology. No further
fundoscopic imaging was carried out. To account for inter-eye
within-patient dependencies, we calculated the mean of both eyes in
patients with no history of optic neuritis; in patients with a history
of unilateral optic neuritis, we only used the OCT scan of the non-
affected eye. Hence, the main statistical analysis was performed at a
per-patient level. All B-scans were automatically segmented
(followed by manual correction by a trained rater) using
segmentation beta-software (Spectralis Viewing Module version
6.9.5.0) of the Heidelberg Eye Explorer (version 1.10.2.0)
provided by the manufacturer. The segmentation lines were the
following retinal layers: RNFL, GCIPL, inner nuclear layer, outer
plexiform layer and outer nuclear layer. The mean volume of the
individual retinal layers was computed in an area of a radius of
3.45mm around the fovea including the fovea using the Early
Treatment of Diabetic Retinopathy Study (ETDRS) grid. Lastly,
RNFL and GCIPL were finally selected as primary estimate for
neuroaxonal damage of the retina, as both have been associated
with brain atrophy and disability worsening (23, 24).

Statistics

Statistical analysis was performed using SPSS 23 (SPSS,
Chicago, IL, USA), MedCalc (Version 20.115) and GraphPad
Prism 9 software. Summary statistics are presented as mean *
standard deviation (SD), or median (25" and 75" percentile), or
number (percentage), where applicable. To create a combined
variable for each biomarker combination, a binary logistic
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regression model for each combination (corrected for sex, age,
disease duration and disease-modifying treatment) was estimated in
order to get the predicted probability from each model. Then, we
used this probability as the test variable in the subsequent receiver
operating characteristic (ROC) procedure (14).

A ROC analysis was performed to calculate the predictive
discriminating values for each biomarker and the combinations.
This statistical method is preferentially used to make a series of
discriminations into two different states based on a specific
diagnostic variable. Here, the presence or absence of relapses or
EDSS worsening, served as binary classifiers. Every value of that
discriminating variable is used as a cut-off with calculation of the
corresponding sensitivity and specificity.

Structural equation modeling

The analysis was performed as previously described (25) using
the SEM toolbox for MATLAB (version 13a; Mathworks, Natick,
MA, USA). SEM represents a statistical technique that is used to test
and estimate structural relationships between variables in a model.
By structural, we mean that we incorporate causal assumptions as
part of the model. Hence, SEM represents a multivariate technique
that is able test complex relationships among multiple variables
simultaneously, and estimate the strength and direction of these
relationships. In our model, we explored the association between
multimodal biomarkers and the clinical outcomes (clinical relapses
and EDSS progression). We used the Maximum likelihood method
of estimation to fit the models. In order to adjust the models for a
large sample size, we used the Root Mean Square Error of
Approximation (RMSEA) index, which improves precision
without increasing bias (26). The RMSEA index estimates lack of
fit in a model compared to a perfect model and therefore should be
low. In all models, the Invariant under a Constant Scaling (ICS) and
ICS factor (ICSF) criteria should be close to zero, indicating that
models were appropriate for analysis. Finally, based on the Akaike
Information Criterion (AIC) the quality of each model relative to
other models was estimated, with smaller values signifying a better
fit of the model. The strength of associations between the variables
in the models was quantified by standardized coefficients (s),
ranging from 0 (no association) to 1 (very strong association). To
correct for potential confounders the models were adjusted for sex,
age, disease duration and disease-modifying treatment (DMT). P-
values less than 0.05 were considered statistically significant.

Results
Patient characteristics

All demographics and clinical characteristics of the investigated
cohort are summarized in Table 1. In total, 141 early MS patients
with baseline MRI and OCT were selected. Thirty patients were
excluded from the final analysis because either there was no serum
sample available or they were lost to clinical follow-up (Figure 1).
The mean follow-up time in our longitudinal cohort of 111 patients
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was 3.74 + 1.25 years. The mean age + SD was 34.8 + 9.67 years; 79
patients (71.0%) were female and 32 (29.0%) were male. The mean
disease duration at study inclusion was 3.15 + 4.26 years. All
patients had a relapsing-remitting disease course (RRMS)
according to the 2017 revised McDonald criteria (15). At the time
of inclusion, 18 patients (16%) were not receiving any DMT, 69
(62%) were receiving a mild to moderate efficacy DMT, and 24
(22%) were receiving a high efficacy DMT. The median baseline
disability, quantified with EDSS, was 1.0 (25th and 75th percentile:
0.0-2.0). Overall, 46 patients (41.4%) experienced EDSS
progression during the observation period. The mean ARR was
0.21 £ 0.33; 33 (30%) patients had a history of optic neuritis. The
results from blood biomarker, MRI, and OCT measurements are
also summarized in Table 1.

Predictive discrimination model

An overall ROC analysis was performed to determine the
predictive discriminating value of the individual and combined
measures to distinguish MS patients with and without disease
activity (determined through the presence or absence of relapses
during this time) and with and without disability progression
(determined through the presence or absence of EDSS worsening
over four years). Resulting values with AUC, standard error, 95%
confidence interval and p-values are presented in detail in
Figures 2A and 3A.

In general, none of the individual biomarkers were able to
predict the occurrence of clinical relapses within the 4-year
observation period (AUC-range: 0.523 - 0.602). All p-values for
testing AUC = 0.5 vs. AUC # 0.5 were greater than 0.05 and were
hence not significantly different from a random classifier
(Figure 2B). Only LV showed a trend towards significance (AUC
= 0.602; p = 0.060). In the ROC analysis based on the presence or
absence of EDSS progression, GMV was the only single biomarker
to show significant predictive capability for EDSS progression on its
own (AUC = 0.614, SE = 0.054; p = 0.035), whereas all other single
biomarkers did not (AUC-range = 0.502 - 0.596) (Figure 3B).

When we combined biomarkers within their respective
modality, MRI markers (LV + GMV) were able to predict both
relapses (AUC = 0.631, SE = 0.054; p = 0.015) and EDSS
progression over the four-year period (AUC = 0.621, SE = 0.055;
p = 0.026). Combined blood biomarkers (sNfL + sGFAP) were only
able to predict EDSS progression (AUC = 0.632, SE = 0.059; p =
0.025), while combined OCT measures (RNFL + GCIPL) were
unable to predict either clinical relapses (AUC = 0.599, SE = 0.054; p
=0.069) or EDSS progression (AUC = 0.507, SE = 0.058, p = 0.906)
(Figures 2C, 3C).

However, all combinations of two biomarker modalities
significantly predicted clinical relapses (AUC range = 0.636 -
0.643) and EDSS progression (AUC range = 0.631 - 0.699)
(Figures 2D, 3D). The best prediction for EDSS progression using
two modalities was achieved with a combination of MRI and blood
biomarkers (AUC = 0.699, SE = 0.055; p < 0.001).

Most notably, the combination of all six biomarkers achieved
the highest AUC for discriminating MS patients with clinical
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Biomarkers AUC SE 95% CI p-value

Single biomarkers GMV 0.523 0.056 0.426 - 0.619 0.675

v 0.602 0.054 0.505 — 0.694 0.060

RNFL 0.537 0.055 0.440 - 0.632 0.503

0.590 0.055 0.492 - 0.682 0.100

SNFL 0.559 0.055 0.462 — 0.653 0.220

SGFAP 0.570 0.062 0.462 - 0.673 0.259
Combined biomarkers 0.631 0.054 0.534 —0.721 0.015
(one modality)

OCT (RNFL & GCIPL) 0.599 0.055 0.502 - 0.691 0.069

BLOOD (sNFL & SGFAP) 0.604 0.060 0.496 — 0.705 0.086
Combined biomarkers MRI & OCT 0.643 0.054 0.547 —0.732 0.008
(two modalities)

MRI & BLOOD 0.636 0.059 0.528 - 0.734 0.021

BLOOD & OCT 0.637 0.059 0.530 - 0.735 0.020
Combined biomarkers
(three modalities) 0.678 0.057 0.572-0.772 0.002

E Combined biomarkers
(three modalities)

D Combined biomarkers
(two modalities)
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ROC analysis for the discrimination between the presence or absence of relapse activity (A) Color-coded table depicting the ROC analysis for
individual and combinations of biomarkers. AUC, p-value and 95%-Cl for the prediction of clinical relapses (yes/no). (B) ROC curves for single
biomarkers. (C) ROC curves for combined biomarkers within one modality. (D) ROC curves for combined biomarkers within two modalities. (E) ROC
curve for combined biomarkers of all three modalities (GMV + LV, RNFL + GCIPL and sNfL + sGFAP). AUC, area under the curve; Cl, confidence
interval; GCIPL, ganglion cell-inner plexiform layer; GMV, gray matter volume; LV, lesion volume; OCT, optical coherence tomography; RNFL, retinal
nerve fiber layer; ROC, receiver operator characteristics; SE, standard error; sSGFAP, serum glial fibrillary acidic protein; sNfL, serum

neurofilament light.

relapse activity from those without (AUC = 0.678, SE = 0.057; p =
0.002) and for discriminating progressive from non-progressive MS
patients (AUC = 0.706, SE = 0.055; p < 0.001) (Figures 2E, 3E).
Overall, these results demonstrate that the predictive capability of
single biomarkers remains limited except for GMV, whereas
combining multimodal biomarkers stepwise improves their
accuracy in prediction of both relapse activity and disease
progression within early multiple sclerosis.

MRI and blood biomarkers influence
disease activity and progression

In order to create a prediction model analyzing complex
relationships among multiple variables, we next applied SEM to
assess the causal relationship of the most promising biomarker
combinations determined in the ROC approach, namely MRI (LV +
GMYV) and blood (sNfL + sGFAP) biomarkers. In addition to the
ROC analysis, SEM allows us to test a model for its compatibility
with the data in its entirety simultaneously. In the predictive
modeling approach, the RMSEA index for the models was below
0.03 and the AIC comparing the models varied between 0.006 and
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0.019. The obtained fit indices in the SEM analysis implied a good fit
of the constructed models to the observed data, providing robust
relations between the variables. Within the SEM model quantifying
the pathways, the input variables (GMV, sNfL, sGFAP and LV)
predicted both ARR and EDSS progression. Our model with
resultant standardized coefficients (s) identified that GMV (s =
0.58; p < 0.01) and sNfL (s = 0.63; p < 0.01) significantly predict
ARR and EDSS progression through lesion volume as mediator
(ARR [s = 0.59; p < 0.01] and EDSS [s = 0.73; p < 0.001]) (Figure 4).
Taken together, LV mediates the path between GMV and sNfL on
the one side, and ARR and EDSS progression on the other side.

Discussion

Here, we present a longitudinal study utilizing a classification
model and a multivariate analysis technique to predict both disease
activity and progression in patients with early MS based on
multimodal biomarker combinations. In our discrimination
model, the triple combination of MRI (LV and GMV), OCT
(RNFL and GCIPL) and blood biomarkers (sNfL and sGFAP)
achieved the best performance in predicting disability progression
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Biomarkers AUC SE 95% ClI p-value
Single biomarkers 0.614 0.054 0.517 —0.705 0.035
0.572 0.057 0.475 - 0.666 0.201
0.502 0.057 0.406 — 0.599 0.970
0.512 0.058 0.416 — 0.608 0.815
0.596 0.054 0.499 — 0.688 0.075
0.540 0.064 0.432 - 0.645 0.529
Combined biomarkers 0.621 0.055 0.534 - 0.712 0.026
(one modality)
OCT (RNFL & GCIPL) 0.507 0.058 0.410 - 0.603 0.906
BLOOD (sNFL & SGFAP) 0.632 0.059 0.525 — 0.731 0.025
Combined biomarkers [ MRI & OC 0.631 0.054 0.535-0.721 0.014
(two modalities)
MRI & BLOOD 0.699 0.055 0.594 — 0.790 <0.001
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FIGURE 3

ROC analysis for the discrimination between the presence or absence of EDSS progression. (A) Color-coded table depicting the ROC analysis for
individual and combinations of biomarkers. AUC, p-value and 95%-Cl for the prediction of EDSS progression (yes/no). (B) ROC curves for single
biomarkers. (C) ROC curves for combined biomarkers within one modality. (D) ROC curves for combined biomarkers within two modalities. (E) ROC
curve for combined biomarkers of all three modalities (GMV + LV, RNFL + GCIPL and sNfL + sGFAP). AUC, area under the curve; Cl, confidence interval;
GCIPL, ganglion cell-inner plexiform layer; GMV, gray matter volume; OCT, optical coherence tomography; RNFL, retinal nerve fiber layer; ROC, receiver
operator characteristics; SE, standard error; sGFAP, serum glial fibrillary acidic protein; sNfL, serum neurofilament light; LV, lesion volume.

Structural equation modeling (SEM)
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-
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FIGURE 4

MRI and blood biomarkers and their capability to predict clinical outcomes through structural equation modeling (SEM). Predictive modeling of MRI
(GMV and LV) and blood (sNfL and sGFAP) biomarkers. Arrows denote the relationship between the variables expressed as standardized coefficients,
which are shown for each path (* significant at p < 0.01; ** significant at p <0.001). ARR, annualized relapse rate; EDSS, expanded disability status
scale; GMV, gray matter volume; sGFAP, serum glial fibrillary acidic protein; sNfL, serum neurofilament light; LV, lesion volume.
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as well as disease activity within the upcoming four years. Our
subsequently constructed SEM model established sNfL, GMV and
LV as viable predictors of both disease activity and progression.
Beyond that, the model further indicated that LV significantly
mediates the effect of sSNfL and GMV on future disease activity
and progression over the study period. Thereby, our multi-
biomarker approach highlights the importance of accounting for
LV (neuroinflammation) when implementing cross-modal
biomarkers in predicting clinical outcomes in MS.

Our findings align well with the current understanding of the
pathophysiology in early, inflammation-driven MS, where disease
activity (T2-hyperintense LV) drives ongoing neuroaxonal
degeneration (sNfL and GMV) and clinical disability progression
(27). Although each biomarker has been found to predict certain
aspects of MS pathology individually (6, 17, 28-30), they all have
their own individual strengths and weaknesses. In line with this, the
predictive ability of each biomarker in our ROC analyses was
limited when used on its own, but gained an incremental value
when applied in combination with other biomarkers. Importantly,
combining biomarkers from different modalities, such as MRI and
blood biomarkers, resulted in a significant improvement in
predicting both relapse activity and disease progression. This
implies that certain biomarkers might be able to compensate for
the limitations of others. For example, blood biomarkers have been
found to be poor predictors of fatigue in MS (14, 31), while imaging
of deep gray matter and brainstem structures have shown strong
associations with measures of fatigue (25). Additionally, blood
biomarkers provide a holistic view of cellular damage across the
entire neuroaxis with high temporal resolution but lack of spatial
resolution (5, 8), while conventional MRI markers provide great
spatial resolution but are naturally “blind” for slightly injured tissue
such as NAWM. Therefore, using both imaging and blood
biomarkers can provide a more comprehensive understanding
of disease progression in MS, as they can offer complementary
information of different aspects of the disease process. Furthermore,
the integration of potentially latent variables via observed variables
in the characterization of cross-modal biomarkers may help to
identify patients at risk of disease progression, and therefore aid
therapeutic decision-making. Appropriate biomarkers may even
been chosen according to a patient’s individual symptoms and
signs, which could allow for the creation of more personalized
treatment plans. Accordingly, a recent study found predictors with
mid- to high-accuracy for several disability outcomes in MS by
combining clinical and imaging with omics information (32). This
machine learning study particularly identified algorithms for
predicting the escalation of therapy from first-line to high-
efficacy treatment.

A plethora of different blood biomarker candidates has been
evaluated in clinical and pre-clinical studies on neuroinflammation
(33). However, sNfL and more recently sGFAP have shown the
greatest prognostic potential in MS (14, 33), therefore, we
preselected those biomarkers for our study. There are several
surrogate markers of neurodegeneration in MR imaging, such as
brain parenchyma fraction, total brain volume, and GMV (34). We
decided to primarily include GMV in our analyses since it is widely
used and has a strong association with neurodegeneration and
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cognitive impairment (29, 34). However, as models and algorithms
become more complex and advanced, it makes sense to include
more biomarkers in order to further improve predictive accuracies.
In MS, OCT has been used to detect thinning of retinal layers; this
loss of retinal nerve fibers may be indicative of underlying
neurodegeneration (6). However, in our early MS cohort,
inclusion of OCT did not show a remarkable additive effect in
predicting disease progression or relapse rates. This may have
several reasons: first, changes in the eyes of our early MS cohort
may be subtle and not always be detectable with OCT. Furthermore,
although OCT has a good resolution for damage to the visual
system, namely the retina and the layers immediately beneath it, as
well as the optical radiation, it may not provide sufficient
information on neurodegeneration in other regions of the CNS,
such as infratentorial structures (6, 11). Additionally, previous
studies have shown RNFL to be a significantly variable measure,
especially when considering non-optic neuritis eyes (35-37). In line
with this, in our cohort, only 33 patients had a history of prior optic
neuritis and in order to look at neurodegeneration in MS in general,
we only included OCT results from eyes without prior optic neuritis
in our analyses. This may have limited the predictive capability of
our OCT results; however, both GCIPL and RNFL are well-
established markers and have been associated with disease
progression even when applied for non-optic neuritis eyes (38).

Our study also has some limitations: First, we investigated a
real-world cohort. Hence, the time point for measuring all
biomarkers showed some ranges. However, a real-world cohort
has the advantage of resembling a more realistic clinical situation
and may therefore suffer less from a selection bias (39). Second,
longer follow-up observations are warranted. Third, total GM
atrophy is related to disability in MS (29, 40), but also regional
GM atrophy e.g. thalamic volume plays a key role for clinical
progression (41). Finally, also changes within the NAWM are
relevant for disease worsening in MS (42, 43). Hence, further
studies are needed to incorporate more specific and advanced
MRI-derived markers into such multimodal approaches.

Altogether, the combination of multimodal biomarkers (LV,
GMYV, RNFL, GCIPL, sNfL, sGFAP) that represent different parts of
the disease pathology offer advantages in predicting upcoming
disability accumulation in MS. In addition, predictive modeling
specifically revealed that total lesion volume is a substantial
mediator of the prognostic properties of gray matter and
neurofilament on future progression indicating the significance of
overall cerebral lesion load in fostering neuronal loss and
subsequent disability. Validation and replication of multimodal
biomarkers identified so far will be required for generating the
evidence to be applied in personalized health care for people
with MS.
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Artificial intelligence (Al) can play a vital role in achieving a shift towards
predictive, preventive, and personalized medicine, provided we are guided by
the science with and of patient input. Patient-reported outcome measures
(PROMs) represent a unique opportunity to capture experiential knowledge
from people living with health conditions and make it scientifically relevant for
all other stakeholders. Despite this, there is limited uptake of the use of
standardized outcomes including PROMs within the research and healthcare
system. This perspective article discusses the challenges of using PROMs at scale,
with a focus on multiple sclerosis. Al approaches can enable learning health
systems that improve the quality of care by examining the care health systems
presently give, as well as accelerating research and innovation. However, we
argue that it is crucial that advances in Al — whether relating to research, clinical
practice or health systems policy — are not developed in isolation and
implemented to’ people, but in collaboration ‘with” them. This implementation
of science with patient input, which is at the heart of the Global PROs for Multiple
Sclerosis (PROMS) Initiative, will ensure that we maximize the potential benefits
of Al for people with MS, whilst avoiding unintended consequences.

KEYWORDS

artificial intelligence, patient reported outcomes, health outcomes, multiple
sclerosis, ethics

1 Introduction

There is an increasing demand for a shift towards predictive, preventive, and
personalized medicine (1, 2) and artificial intelligence (AI) can play a vital role in
achieving this. Multiple sclerosis (MS), an autoimmune condition affecting nearly 3
million people across the world (3), is very heterogeneous, affecting people’s lives in
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different ways. A single treatment or care approach will not be
suitable for every individual. The presentation and course of MS
reflect myriad factors that can be difficult to capture in a
comprehensive manner. So, whilst MS is not itself particularly
rare, once people with MS (pwMS) are sub-divided into groups
requiring different treatment and care services, and who have
different priorities when it comes to health outcomes, everyone
becomes part of a rare group. Determining the right approach to
treatment and care needs to take into account all of the variability
that exists within that person’s life: their sex, age, environment,
access to care, economic resources, comorbidities and many other
factors. Al-based solutions may be necessary to support the capture
and use of these complex data, so that health outcomes can be
optimized for everyone.

2 Health outcomes that matter to
people with MS

Health outcomes reflect information about the impact on people
from health and care interventions. Leveraging patient experiential
knowledge and make it scientifically measurable via Patient Generated
Health Data (PGHD) is a critical part of the humanisation of health in
line with Value-Based Health Care EU pillars (4-6). PGHD include
patient reported outcome measures (PROMs), patient-reported
experience measures (PREMs - people’s perspectives of their
experience while receiving care) or Patient Preferences and
Acceptability for Innovative health interventions (PPI). Among
these, PROMs provide a patient perspective on the impact that a
disease (and its treatment) has on their physical, functional, and
psychological status without interpretation from anyone else. There is
no unique definition of PROs: “any report of the status of a patient’s
health condition that comes directly from the patient, without
interpretation of the patient’s response by a clinician or anyone
else” in accordance to the Food and Drug Administration (FDA)
(7) or “any outcome evaluated directly by the patient him/herself and
based on patient’s perception of a disease and its treatment(s)” in
accordance to the European Medicines Agency (EMA) (8). The FDA
definition of PROs designates both active and passive information as
PROs, while the EMA definition seems to restrict PROs to active
reports only. AT could help to incorporate PROMs reflecting different
functional domains alongside other research and clinical data if
relevant PROMs for the target population and adequate
infrastructure for collecting PROs are available.

The Global Patient Reported Outcomes for MS (PROMS)
Initiative launched on 12 September 2019 at the 35th Congress of
the European Committee for Treatment and Research in Multiple
Sclerosis (ECTRIMS). It is jointly led by the European Charcot
Foundation (ECF) and the Multiple Sclerosis International
Federation (MSIF) with the Italian MS Society acting as lead
agency for and on behalf of the global MSIF movement (9, 10).
The strategic intent of the PROMS Initiative is to engage people
with MS in developing and prioritizing PROMs that give us a
picture of their status today and changes over time. At present,
clinical and care measurements are snapshots of individual
functional domains and pwMS are frustrated that functional
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domains and corresponding interrelationships that matter most
to them are not addressed by currently available PROMs (11).
Within this framework, applying AI to PROMs can be a catalyst for
a renewed humanism from research to care, but this vision will only
be achieved by furthering the optimal engagement of pwMS (12).

3 The route to a unified view on
PROMs for MS

Challenges with capturing, measuring and using PROs have
been recently described by the PROMS Initiative (5) and are
summarized below:

i. reaching consensus on relevant PROMs for specific and
targeted populations (i.e. acknowledging there cannot be a
‘one-size-fits-all” approach for PROMs), which have been
validated and can be used within and across countries for
accurate comparisons;

ii. developing practical and usable tools (e.g. apps, wearables,
other devices) to enable the routine capture of multiple
changing outcomes over time, which requires acceptability
and therefore a user-friendly and useful solution for
collecting the information (13, 14);

ili. translating subjective impressions from PRO questionnaires
(such as Likert scales) into valid numerical data, and
determining what threshold constitutes a meaningful
change for different individuals (15);

iv. calibrating changes in outcomes over time against the types
and costs of health and care interventions that have created
those outcomes. This can help target health spending most
effectively (i.e. assessing value), without leading to
unintended consequences such as restriction of access to
care, support, disability status or benefits.

Commonly used PROMs in the MS field include the MS Impact
Scale-29 (16), Multiple Sclerosis Quality of Life-54 (17), Patient
Determined Disease Steps (18), SymptoMScreen (19) among others.
At the current time, PROMs are mainly used as a correlate with
classical metrics (in the case of MS, such as the Expanded Disability
Status Scale (EDSS), Timed 25-foot Walk (T25W) and others).
PROMs are used as confirmation of these classical metrics, rather
than adding their own specific and unique value.

As mentioned earlier, pwMS are frustrated that currently
available measures do not capture the experiences that have the
greatest impact on their daily lives. In addition, PROM:s also need to
be measured formally so they can be collected consistently and
compared over time for the same person and between people (20).
There are many initiatives and resources focused on the creation
and standardization of health outcome measures, including
PROM:s, for example the International Consortium for Health
Outcomes Measurement (ICHOM) (21), the Patient-Reported
Outcomes Measurement and Information System (PROMIS) (22),
and the Core Outcome Measures in Effectiveness Trials (COMET)
initiative (23). PROMOPROMS is an initiative focused on PROMs
that matter most to people with MS and the implementation of
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these in clinical practice (24), and a recent global survey of pwMS
identified the functional domains that have the greatest impact on
their lives (25). Identifying distinct clusters of PWMS who share
symptom patterns across functional domains and experiential
knowledge, along with their interdependencies, will pave the way
for a personalized application of PROMs from clinical trials to
clinical practice and vice versa.

Despite this, there is limited uptake of the use of PROMs within
the research and healthcare system. Without a significant body of
evidence, health systems are poorly placed to learn, potentially
ineffective interventions are sustained and health system budgets are
wasted (26). The opportunity is also lost for PROMs to be used directly
by people and their clinicians (27). The application of AI to PROMs
data can support learning health systems, but a renewed humanism
from research to care will only be achieved if researchers and the
clinical community works effectively alongside people with MS.

The ALAMEDA project (28) made progress towards Al-enabled
prediction, prevention and intervention. ALAMEDA is a Horizon
2020 EU-funded project aiming to make use of A to reduce the costs
of treating disorders such as MS, Parkinson’s, and stroke, hence
easing the burden on healthcare systems. In a pilot study carried out
by the Italian MS Foundation (FISM), wearable technology and
smartphone apps enabled the longitudinal collection of continuous
digital-health data and electronic PRO data from pwMS across
domains including mobility, sleep, mental and cognitive ability,
emotional status and quality of life. This data supported the
development and testing of Al algorithms with the aim of detecting
and predicting relevant changes in disease progression.

In particular, the MS pilot focuses on key aspects such as the use
of predictive systems to improve decision support systems for
multiple sclerosis and the use of wearable technology (from
sensors to electronic patient reported outcomes) in MS. The end
goal of the MS pilot study was to test Al/machine-learning based
algorithms that are able to predict the risk of developing a relapse in
MS. Therefore, a characteristic research interest of the MS study is
to explore the use of combined PRO and wearable-provided data as
input for relapse prediction algorithms (29).

Crucial to the success of the ALAMEDA project is the use of
MULTI-ACT guidelines (30) to engage relevant and representative
stakeholders, including pwMS. Through co-design with pwMS,
preferences and opinions about devices, frequency of measurement
and potential barriers and facilitators for adhering to long-term
patient-reported data collection were identified. In addition, pwMS
were also involved in identifying and prioritizing suitable endpoints
that might act as signs of a forthcoming relapse. All these factors helped
shape the final protocol for the ALAMEDA MS pilot study (29).

4 The potential for Al to improve
health outcomes for people with MS

The use of AI within healthcare systems is not yet standardized
or routine, and more research is needed into its cost-effectiveness. It
includes interventions used by healthcare professionals such as AI-
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assisted clinical decision support systems, as well as those used by
individuals, such as chatbots that provide health information and
smartphones with Al-related applications. Applying Al technology
to the analysis and use of health data — particularly when it has been
patient generated or patient-reported - has the potential to improve
prognosis, prevent and treat disease progression and improve lives,
through taking a personalized approach to diagnosis, treatment and
care (31, 32).

The role of Al in healthcare spans all clinical conditions and is
widely studied, for example in the oncology field recent studies have
examined whether machine learning models include PRO data, and
how AI could impact the doctor-patient relationship (33, 34). In the
field of MS, an example of a decision support system in
development is ‘Clinical impact through Al-assisted MS care’
(CLAIMS), an Al-driven clinical decision-support platform that
aims to model expected disease trajectories depending on treatment
regimen (35). A review by Inojosa et al. (36) explores the
opportunities for using large language models as a form of AI in
MS management.

Crucially, the involvement of AI in research and healthcare
must be guided by the science with and of patient input. The power
of science with patient input relies on an innovative framework used
to engage patients (10, 30), while the science of patient input relies
on patient-generated health data (PGHD). Among PGHD, PROMs
represent a unique opportunity to capture experiential knowledge
from people living with health conditions and make it scientifically
relevant for all other stakeholders - the mission of the Global
PROMS Initiative (10).

With the advent of the European Health Data Space (EHDS), all
EU member states will be required to focus on the quality and
interoperability of priority health data items (37). The EHDS will
enable large, enriched datasets encompassing information from the
whole of the EU. Where standardized PROMs are in use for certain
health conditions, collected in a clinical setting and stored in
people’s medical records, these too will be available. The scale
and complexity of data within the EHDS will necessitate the use of
Al to interrogate these large datasets, combining clinical and PRO
data to develop meaningful insights. Al will be instrumental in
enabling greater use of PROM:s in value-based healthcare decisions,
such as those made by national health technology agencies, leading
to improved delivery of healthcare across the region and better
outcomes for individuals.

As set out in the framework by Rivera et al. (31), patient
reported outcomes could be used as an input to an AI model,
they could be an output predicted by the model, or an outcome in
terms of the evaluation of the AI intervention. Within a healthcare
setting, PRO measures may be used to monitor symptoms, monitor
adherence to treatment, measure response to treatment, or
determine when someone needs a clinical review. Using PROs in
an Al or learning system could enable clinical decision making to
incorporate the consideration of a person’s wellbeing, beyond
overall survival or delayed progression of disease.

An example of how combining PROMs and Al could provide
benefits for pwMS is through using AI approaches to interrogate
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individual-level data captured from multiple sources. PROs might
be captured passively (e.g. via a smartphone enabled with
technology such as a step-counter, accelerometer, altimeter etc) or
input actively from a person recording their symptoms, feelings, use
of medications and lifestyle factors such as diet and exercise. Added
to this might be daily temperature or atmospheric pressure
readings. PWMS report that fatigue is a huge challenge to daily
living. Patterns uncovered by Al interrogation of complex patient-
reported data over time could provide insights into which factors
increase or decrease levels of fatigue. These factors could be
environmental or aspects that can be influenced by the person
through lifestyle changes or self-management. Importantly, if the
Al model identifies consistent changes in data patterns over time,
this might signal an underlying change in the condition, such as
progression of MS, prompting referral to a healthcare professional.

5 Challenges with using Al in MS
healthcare: perspective from people
with MS

The increasing use of digital technology that deploys AI poses
several challenges, including representativeness, data privacy, health
equity and consent (38). When developing models or interventions
involving Al and PRO data, an essential consideration is that the
data used to develop and train Al systems needs to be representative
of the population in which the AI approach will be implemented. If
models are developed on a specific, limited population of people
with a particular condition, there may be issues when applying them
to people with different demographic backgrounds (39), which
could lead to misdiagnosis or incorrect management. This is
especially true for complex conditions such as MS, which can
present very differently across individuals, especially when
considered in the context of multimorbidity and on a global basis.
In addition, a common symptom of MS is cognitive dysfunction. If
a person is not able to provide PRO data that accurately reflects
their condition, because the questionnaire is too complex for
example, then the resulting dataset on which an AI model is
trained may not reflect the real needs of the population.

Health interventions that involve AI will only make it
successfully into the clinic if they are fully acceptable by people
with health conditions and their clinicians and care providers. Trust
and honest communication are crucial components of the
interaction between a healthcare professional and a person with
MS. Whilst there may be improvements to health outcomes from AI
in terms of clinical decision making — and the latest AI technology
developed by Google has even been shown to conduct sophisticated
diagnostic conversations (40) - there could be a risk that
overreliance on Al algorithms reduces a clinician’s ability to relate
to people they are caring for as individuals. People want to see that
their healthcare professional is also drawing on their experience and
intuition as part of the decision-making process. Artificial
intelligence might complement the role of healthcare
professionals, but should not replace them.
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A study comparing responses to frequently asked questions
showed that people with MS rated those written by ChatGPT as
higher in empathy compared by those written by a neurologist (41).
Yet some people will find it hard to trust decisions that are purely an
output of an AI system and any errors caused by use of such
technology will have a profound impact on the relationship between
a person and their clinician. McCradden et al. (42) argue that where
health settings use Al-based predictions, these should not be
prioritized above patient experiential knowledge. To enhance
trust, people should be made aware when AI or algorithms are
being used in decision-making relating to their healthcare. There
needs to be transparency in terms of the data and instruments upon
which AI and its underlying algorithms are based as well as any
unconscious biases that may be inherent in both programming and
interpretation. To help overcome barriers to uptake of Al health
technologies, clinical trials of the technology should be co-designed
with people with lived experience, and use relevant PROMs as a trial
endpoint (43).

MS is a condition present across the globe. AI should not just
improve outcomes for people with MS in well-resourced settings, and
it is clear that AI has the potential to both improve and decrease
health equity (44-46). In terms of MS healthcare, remote monitoring
and digital technology that deploys Al algorithms could help fulfil a
need caused by a lack of specialist healthcare professionals in some
settings. If AI can improve the accuracy and speed of diagnosis,
allowing for earlier intervention and personalized care plans, this
should reduce the variation in care experienced by pwMS, both
within and between countries. Yet the benefits of Al-assisted
technology may not be available to everyone. The accessibility and
costs of the technology - including any supporting infrastructure,
personnel or regulatory requirements needed to integrate AI systems
into the current system - may provide a barrier for lower
socioeconomic populations (47) or countries where MS is relatively
rare. A lack of use of the technology in these settings can contribute to
a negative feedback loop, whereby the continual refinement and
updating of the AI algorithms are based on a limited population,
becoming increasingly less representative of the diversity of people
with MS across the world.

A critically important consideration relates to privacy and
security of personal health data. Whether in a clinical or research
setting, the use of Al is likely to involve the collection and analysing
of sensitive information. Also, personal health data may have social,
cultural, and religious implications in communities that are less
familiar with or accepting of health conditions such as MS. It is
essential that safeguards are in place for handling, storing and using
this type of data securely. People must have a clear understanding of
the purpose for which their data might be used and give consent for
their data to be used in this way. A focus on consent is even more
important for people who may be experiencing cognitive
dysfunction. It is important to remember, too, that data generated
by and collected with AI and/or algorithms may produce
consequences outside of health systems, including decisions
regarding pensions, disability payments, and other services. For
people with MS who rely on access to treatment, therapy, and other
forms of support, there is a constant concern about the potential
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that this support could be restricted based on incorrect
interpretation of personal data, whether by human or Al
decision-making.

6 Discussion

How can we maximize the potential benefits of AI for people
with MS, whilst avoiding unintended consequences? As mentioned
earlier, this requires science with patient input, which is at the heart
of the Global PROMS Initiative. Advances in Al — whether relating
to research, clinical practice or health systems policy - should not be
developed in isolation and implemented ‘to’ people, but in
collaboration ‘with’ them. Underlying this, communication and
transparency is key. Encouragingly, these considerations are
reflected in the recent WHO guidance on the “Ethics and
governance of artificial intelligence for health: guidance on large
multi-modal models.” (48)

Quality of life is defined differently for everyone with MS and
cannot be viewed purely clinically. AT algorithms cannot replace the
emotional and psychological understanding of an individual and
their expectations in relation to their wellbeing. The clinical
interaction should always be ‘personal’, and it is important to
guard against anything that reduces people to data points. There
is a need for future research to determine whether AI in
complement with standard of care has a beneficial impact on
outcomes such as disability and quality of life.

As a community of people with MS, we urge that the use of AI
in patient care proceeds with caution as well as anticipation. For
care to maximize quality of life, it must be holistic, encompassing
emotional, psychological and social as well as physical aspects. Any
benefits from AI must not come at the expense of damage to the
relationship between clinicians and the people they care for,
widening health inequity, or worsening health and social
outcomes for people with MS.

Crucially, the Global PROMS Initiative will help ensure that
people with MS are involved in the development of PROMs for MS
from research through to global implementation. They will have
space to raise ethical questions in relation to the growing use of Al
as it applies to large, patient-reported datasets. They can prompt
other members of this multi-stakeholder initiative to move away
from thinking of people with MS as data points, and consider the
impact of any recommendations on all aspects of the life of a person
with MS. Only by working collaboratively in this way will we ensure
that future advances in Al safeguard individuals and be acceptable
to the whole community.
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Introduction: Multiple sclerosis (MS) is a chronic neurodegenerative disease that
affects over 2.8 million people globally, leading to significant motor and non-
motor symptoms. Effective disease monitoring is critical for improving patient
outcomes but is often hindered by the limitations of infrequent clinical
assessments. Digital remote monitoring tools leveraging big data and Al offer
new opportunities to track symptoms in real time and detect disease progression.

Methods: This narrative review explores recent advancements in digital remote
monitoring of motor and non-motor symptoms in MS. We conducted a PubMed
search to collect original studies aimed at evaluating the use of Al and/or big data
for digital remote monitoring of pwMS. We focus on tools and techniques applied
to data from wearable sensors, smartphones, and other connected devices, as
well as Al-based methods for the analysis of big data.

Results: Wearable sensors and machine learning algorithms show significant
promise in monitoring motor symptoms, such as fall risk and gait disturbances.
Many studies have demonstrated their reliability not only in clinical settings and
for independent execution of motor assessments by patients, but also for passive
monitoring during everyday life. Cognitive monitoring, although less developed,
has seen progress with Al-driven tools that automate the scoring of
neuropsychological tests and analyse passive keystroke dynamics. However,
passive cognitive monitoring is still underdeveloped, compared to monitoring
of motor symptoms. Some preliminary evidence suggests that application of Al
and big data to other understudied aspects of MS (namely sleep and circadian
autonomic patterns) may provide novel insights.

Conclusion: Advances in Al and big data offer exciting possibilities for improving
disease management and patient outcomes in MS. Digital remote monitoring has
the potential to revolutionize MS care by providing continuous, long-term
granular data on both motor and non-motor symptoms. While promising
results have been demonstrated, larger-scale studies and more robust
validation are needed to fully integrate these tools into clinical practice and
generalise their results to the wider MS population.
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Introduction

Multiple Sclerosis (MS) is a chronic, inflammatory, and
neurodegenerative disease that affects the central nervous system
(CNS). It is estimated that MS impacts ~2.8 million people globally,
with a higher prevalence among women (1). MS can cause a wide
range of symptoms, depending on the location of lesions across the
CNS. Primarily, MS affects sensorimotor functioning, causing
vision loss, sensory alterations, walking difficulties, muscle
weakness, spasticity, and problems with coordination and balance
(2). Additionally, cognitive impairment can be observed in 30-70%
of pwMS (3).

The unpredictable nature of the disease, typically characterised
by a relapsing-remitting course and by progressive accrual of
disability, profoundly affects the quality of life (QoL) of people
with MS (pwMS). Furthermore, recent evidence has shown that
many pwMS can experience an insidious disease progression even
in the absence of relapses (4). Thus, MS poses significant physical,
emotional, and socio-economic burdens on individuals and their
families (5). Accurate disease monitoring is crucial to put in place
the best possible treatment plans and reduce the negative impact of
the disease on patients’ QoL. Due to organisational and economical
limitations of healthcare systems, however, conventional clinical
follow-up assessments are generally performed every 6-12 months,
or at the time of a relapse. Thus, clinicians are often unable to detect
subtle disease progression and/or to capture all relapses, since they
need to rely on patients’ recall and infrequent assessments.

The rising adoption of digital health technology in the last
decade has sparked an interest in the development, study, and
validation of new digital tools for the purpose of monitoring disease
progression. Indeed, digital remote monitoring may have the
potential to enable longitudinal monitoring of the disease course
with a granularity that would otherwise be unobtainable with more
costly and less accessible clinical follow-ups (6). A recent European
survey found that the vast majority (78%) of patients use
commercially-available digital tools (smartphone apps, wearables)
to increase awareness of their health, and that 62% of healthcare
providers believe that the data obtained from these tools impacts
their communication with patients, their understanding of patients’
health state, and their decision-making progress (7). Increasing the
adoption of validated digital remote monitoring tools into everyday
clinical practice would enable clinicians to access a much larger
dataset of quantitative measures which could help them to better
understand intra-individual disease trajectories and therefore
improve the standard of care for pwMS. Digital remote
monitoring can cover a wide range of domains (i.e., motor,
cognitive and autonomic functions, psychological wellbeing,
disease activity, sleep, diet, etc.), and can be carried out using
both active and/or passive monitoring techniques. Active
monitoring requires patients to consciously provide information,
either via patient-reported questionnaires (e.g., asking patients to
rate self-perceived fatigue on a scale 1-10), or by performing
objective assessments (e.g., by performing a digitalised cognitive
test on their smartphone). Passive monitoring leverages data from
smart devices and sensors to enable remote monitoring while
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patients go about their daily life (e.g., daily steps data from
accelerometers in a wearable device, or data from a blood glucose
monitor placed on the arm). Active and passive methods can be
paired to enhance the quality of digital remote monitoring data
(e.g., collecting daily steps data from a participant’s smartphone,
which is also used to administered weekly standardized walking
tests designed to be performed while carrying the smartphone in the
pocket, to measure the distance walked and other data obtained
from the smartphone accelerometer and gyroscope).

The definition of ‘big data’ keeps evolving, as continuing
technological advancement and increasing adoption of devices
able to capture more and more data push the boundaries of “big
data”. However, core properties like high volume (i.e., large
quantities of data), velocity (i.e., data which are acquired in real-
time) and variety (i.e, data which can be either structured or
unstructured) are shared across most definitions (8). Other
properties like exhaustivity (i.e., the ability to capture an entire
system), high resolution (i.e., the ability to collect many datapoints
at short intervals), relationality (i.e., the ability to merge different
datasets), scalability (i.e., the ability to expand rapidly in size) have
also been proposed (8). In general, data which cannot be easily
viewed, processed and analysed using traditional statistical methods
and which requires ad-hoc processing pipelines to produce
meaningful insights could be labelled as big data. A consensus
definition for big data in health research was proposed by the
Health Directorate-General for Research and Innovation of the EU
Commission, stating: “Big Data in health encompasses high volume,
high diversity biological, clinical, environmental, and lifestyle
information collected from single individuals to large cohorts, in
relation to their health and wellness status, at one or several time
points” (9).

In the context of digital remote monitoring of patients, big data
can include structured and/or unstructured data from smart
devices, wearables, self-monitoring devices, or electronic health
records (EHRs) (10). Data from wearables or data recorded
passively from smart devices can easily satisfy the “high volume”
and “high velocity” criteria of big data. Indeed, using a single tri-
axial accelerometer to monitor motor activity of a single individual
over 10 hours, with a sampling frequency of 1 Hz, would yield over
~130,000 raw data points, which would need to be processed and
aggregated using custom algorithms to derive basic interpretable
metrics (e.g., steps/minute), and then further processed to derive
more advanced metrics (e.g., time spent performing moderate vs.
intense activity). Data from smart devices used to administer active
tests is characterized by significantly lower volume and velocity but
can become big data in the context of long-term monitoring,
especially as digital remote monitoring allows to administer
repeated assessments with higher frequency, longer follow-up
times, and to larger cohorts, addressing the “scalability” property
of big data. In the context of a simple digital cognitive test for which
participants need to respond to 50 stimuli, a typical dataset would
contain information on response times, actual responses,
correctness of each response, metadata (e.g., date, time, type of
device, location, device orientation, stimulus order), resulting in
>200 datapoints for each testing session. These raw data would also
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need to be processed and aggregated to derive informative metrics
(e.g., mean reaction times). Monitoring 20 patients for 12 months
through weekly testing with this simple test would result in the
collection of ~50,000 datapoints, with longer and more complex
assessments increasing the volume of data acquired exponentially.
Data from EHRs typically reaches big data status only when large
quantities of clinical data are collected for a large number of
patients, either longitudinally in a single centre or cross-
sectionally through multicentre collaborations. EHRs data also fits
the “exhaustivity” property of big data, as they include a wide range
of information for each patient (e.g., sociodemographic, clinical,
imaging, pharmacological). Another way that EHRs data can fit the
criteria for big data is linked to recent developments in Artificial
Intelligence (AI) applied to processing and aggregating of
unstructured text data, which could enable to start analysing large
quantities of unstructured data present in EHRs (e.g., medical
notes) in an automated (or semi-automated) quantitative way,
thus greatly expanding the dimensionality of EHR datasets.

Al is a term dating back to the 1950s, when it was coined to
represent machines exhibiting features akin to human intelligence
(e.g., reasoning, learning, vision) (11). In recent years, this term has
transitioned more and more from theory to practice, and many
subdivisions of AI have been defined, according to their respective
properties and use cases (12). Machine Learning (ML) refers
broadly to the use of computational algorithms to learn data
patterns to make predictions, and then compare the predictions
with the actual outcomes, in order to learn iteratively, thus
improving the quality of the predictions based on available data
at each iteration. Deep Learning (DL) is an evolution of
conventional ML, since it follows the same iterative learning
approach to improve predictions. However, it differs from ML in
that DL models are built from different consecutive hidden layers of
‘neurons’ (i.e., interconnected processing nodes) which are used to
process raw inputs and can be adapted to perform optimally across
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different specific tasks (i.e., speech recognition, image processing,
genomics) (13). One such example are Convolutional Neural
Networks (CNN), i.e., DL algorithms built using specific types of
connected layers to improve the neural network’s ability to perform
image recognition tasks, and have thus found large use in radiology,
by allowing automated or semi-automated scoring of CT or MRI
scans (14). The ever-increasing worldwide dissemination of
computing technology means that more and more data is being
collected every day, and the increased computational power
available today has made it possible to deploy Al in an increasing
number of applications (Figure 1).

The aim of this narrative review is to present and discuss recent
advancements in the field of digital remote monitoring in MS, with
a focus on Al tools and algorithms applied to the analysis of big data
from sensors, wearables, smartphones, and other smart devices, as
well as data from active digital assessments designed to be
performed independently and remotely by patients. Specifically,
we aim to discuss how leveraging big data and AI could allow to
improve the standard of routine disease monitoring of pwMS across
different settings and in different fields, how it could allow
researchers to obtain novel insights into specific factors driving
disease progression, and what future developments are needed to
further advance the state of digital remote monitoring in the future.

Methods

For this narrative review, we focused our literature search on
studies of digital remote monitoring of pwMS using AI and/or big
data. This includes studies aimed at validating digital monitoring
tools designed to enable active or passive digital remote monitoring
of MS symptoms and disease progression. To this aim, we
conducted a PubMed search for papers containing the following
terms in the title and/or abstract: “multiple sclerosis| Title/Abstract]

Machine Learning

—

Big Data

/

Wearables

[Regresswn and classification algorithms

Deep Learning

» Neural Networks for regression and classification

Convolutional Neural Networks for image recognition

Natural Language Processing

Large Language Models

=

ONIRIOLINOW 3AISSY.

Smart Devices

O s

Jo— s Active Digital
S Assessments

|

Electronic

. [Analysis of unstructured text data

L

Health Records

\SNNOIINOW INILOV

FIGURE 1

Al and Big Data for digital remote monitoring of MSFigure representing the two sets of Artificial Intelligence (Al) and big data, with specific subfields
relevant for the field of digital remote monitoring of people with Multiple Sclerosis. The arrows indicate what type of Al-based analysis is best
applicable to different types of big data obtainable from different methods of digital remote monitoring.
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AND ((‘digital monitor*’[Title/Abstract] OR ‘remote
monitor*’[Title/Abstract] OR wearable*[Title/Abstract]) OR
(‘artificial intelligence’[Title/Abstract] OR ‘machine
learning’[Title/ Abstract] OR ‘deep learning’[Title/Abstract]))”. We
filtered the search results to only select those published in the last 10
years, i.e., from 1* January 2014 to 1°* August 2024.

We then excluded all reviews, meta-analyses, study protocols,
opinion papers, editorials. We also excluded all studies where AT or
big data where not specifically applied to data from digital remote
monitoring or designed to enable it. Therefore, we excluded studies
on Al-based processing and analysis of big data from structural
(e.g., magnetic resonance) or functional (e.g., positron emission
tomography) imaging, robotics-assisted physical rehabilitation, AI-
assisted cognitive rehabilitation, Al-based psychological
counselling, Al-based analysis of genomics, and those using Al
and/or big data to estimate the risk of developing MS or to increase
diagnostic accuracy. We also excluded studies of digital remote
monitoring in which neither AI nor big data were applicable
definitions (i.e., studies aimed at validating the administration of
an established clinical test through videoconferencing or other
telemedicine approaches, without collection of big data from
sensors and/or other electronic devices).

The resulting candidate publications were screened manually by
reading the abstracts, to select those who focused on developing and
validating data processing and analysis pipelines (including AI)
applied or applicable to digital remote data from sensors and/or
active remote assessments, as well as those focusing on Al
algorithms applied or applicable to the analysis of big data from
other sources (e.g., EHRs) to improve the monitoring of disease
progression in pwMS.

Results

Our literature search revealed that the majority of studies on
digital remote monitoring of pwMS using AI and big data has
focused on the use of wearable sensors to assess and monitor motor
symptoms. This is not surprising, as motor deficits are one of the
most prevalent and invalidating symptoms of MS (2). Therefore,
our review begins by providing a report on studies focused on the
motor domain, to evaluate the feasibility and validity of digital
remote monitoring of motor functions in real-world clinical
applications and highlight issues which still require further
development. More recently, other studies have also focused on
the need to monitor cognitive symptoms, since they are frequently
reported as of the main factors which negatively impact the
autonomy and QoL of pwMS (15). We present these studies and
discuss the potential added benefits of digital remote monitoring of
cognition using Al, compared to the current standard of care, as
well as the potential to deploy “big data” to enable passive cognitive
monitoring. The use of big data and AI for the digital remote
monitoring of other symptoms or domains (e.g., sleep, autonomic
functions) or to leverage unstructured big data from EHRs to
monitor disease progression are still underrepresented in the MS
literature. However, the few studies available to date suggest that
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their further exploration may yield novel insights which would
otherwise be unobtainable by using conventional data acquisition,
processing and analysis methods. Therefore, we conclude by
presenting the studies available to date, to highlight the potential
benefits of these different applications of big data and AT to enhance
the remote monitoring of pwMS.

Motor domain

Many studies in the last 5-10 years have applied big data
analysis and AI to the study of motor symptoms, aiming either to
enable continuous passive monitoring, validate remote active motor
tests to be used for frequent remote active monitoring, or leverage
sensor data to detect digital biomarkers associated with higher odds
of disease worsening or relapsing. The three main areas of interest
appear to be falls (including both automatic fall detection using
sensor data and identification of risk factors), gait (including both
passive monitoring and active instrumented tests which can be
performed remotely and independently by pwMS), and activity
monitoring during everyday life as a digital biomarker of disability
progression. The characteristics of all reviewed studies are
summarised in Table 1.

Risk of falls

Falls are a major health concern for pwMS, as over 50% of them
are estimated to experience at least one fall in a 6-month period, of
which half result in injury (16). Continuous remote monitoring of
pwMS in real-life environments and automatic falls detection has
the potential to increase the detection rate of falls in everyday life,
allowing a more precise monitoring of clinical progression.
Moreover, it could help identify specific risk factors and
consequently develop prevention strategies.

Tulipani et al. (17) investigated the ability to predict fall risk in
37 pwMS wearing a chest and a thigh sensor during sit-stand
transitions of daily life and during a standardised sit-stand task in
the clinic. Using reported falls in the previous 6 months to
dychotomize participants in “fallers” or “non fallers”, they
evaluated the ability of sensor data to correctly classify patients in
either class. Sit-to-stand transitions in daily life were detected using
a DL (long Short-Term Memory) algorithm tuned to detect activity
states, which allowed them to select only sensor data from periods
of transition from the “sitting” to the “standing” state. Using
Receiver Operating Characteristics (ROC) analysis, the best
predictor of high fall risk in their study was a chest acceleration
metric recorded during execution of the sit-stand task in the clinic
(Area Under the Curve [AUC]= 0.89). The best performing sensor
metric during the real-life task execution, i.e., average sit-stand time,
had slightly lower predictive power (AUC= 0.81). Their results
suggest that conventional sensor metrics (e.g., acceleration, total
time of execution) may provide useful insights into the fall risk of
pwMS, although with reduced accuracy, compared to instrumented
functional assessments performed in the clinic. The same research
group recently published a longitudinal study (18), with the aim of
extending the analysis of sit-stand performance to longitudinal
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TABLE 1 Summary of studies on motor domain.

St Year Sample Study type Sensor array Algorithms used Aim Monitored activities
6 accelerometers
-1 on head
. 22 c}:st 5 ML algorithms to distinguish
Oudemir et al. (23) 2014 14 HCs Cross-sectional 1 on waist between normal activity and falls = Automated Simulated falls in a
: . X (KNN, LSM, SVM, BDM, DTW) falls detection controlled setting
- 1 on right wrist
. . + 1 DL (ANN)
- 1 on right thigh
- 1 on right ankle
1 rtphe ith embedded inertial
smartphone with embedded mnertl Mix of custom and published . .
oo . sensors (accelerometer + gyroscope) i Automated Simulated falls in a
Casilari et al. (22) 2015 4 HCs Cross-sectional K R K threshold-based algorithms for K i
1 smartwatch with embedded inertial X falls detection controlled setting
automated fall detection
sensors (accelerometer + gyroscope)
3 multi-sensing devices (acceleration, Instrumented structured
o motion, heart rate, skin impedance, body DL for automated detection of o assessments in a controlled
Longitudinal temperature, light exposure, air pressure) activity type and quantification of Validation of setting (baseline, week 16
Chitnis et al. (27) 2019 23 pwMS (three visits over 24 weeks, 8 P > 18 P > aurp . Y op . q remote s ? ?
L - 1 on chest (day only) time spent during each i i week 24)
weeks of remote monitoring) i K . . gait analysis i .
- 1 on right wrist (day and night) activity phase Passive real-life remote
- 1 on right ankle (day and night) monitoring (8 weeks)
Inst ted structured
Longitudinal . . Custom algorithms for Validation of nstrumented structure
76 pwMS 1 smartphone with embedded inertial . assessments performed
Bourke et al. (30) 2020 (24 weeks of remote automated extraction of remote
25 HCs X K sensors (accelerometer + gyroscope) X i . remotely and autonomously
instrumented testing) gait parameters gait analysis
(1/week for 24 weeks)
Instrumented structured
assessments in a controlled
Custom threshold-based Validation of setting
3 inertial sensors (accelerometer + algorithm based on gait speed remote Instrumented structured
gyroscope) from multi-sensor data gait analysis assessments performed
Atrsaei et al. (28) 2021 35 pwMS Cross-sectional - 1 on lower back remotely and autonomously
- 2 on feet (right and left, used only as (50% of participants)
validation reference)
Automated Passive real-life remote
ML (naive Bayes classifier) walking monitoring for at least 6
bouts detection hours (50% of participants)
Custom processing and
ti ipeline for GPS and | Validati f
. 1 wearable GPS receiver, placed on the aggrega ton pipefine for an idation 0 Instrumented structured tests
Delahaye et al. (33) 2021 18 pwMS Cross-sectional i altitude data; remote i R
right shoulder i i . in a controlled setting
threshold-based algorithm for gait analysis
walking bout detection
2 accelerometers Fully automated algorithm for
- 1 below clavicle data processing;
Fall One-minute walking trial
Meyer et al. (19) 2021 37 pwMS Retrospective - 1 on right thigh DL for automatic activity : ne-minute wating trh

5 inertial sensors (accelerometer +
gyroscope)

detection (Bidirectional Long
ShortTerm Memory)

risk estimation

at home
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TABLE 1 Continued

Year

Sample

Study type

Sensor array

- 1 on lower sternum

- 1 on lower back

- 1 on belt line

- 2 on shanks (right and left)

Wireless time-of-flight home beacons,

Algorithms used

Fully automated algorithm for

Monitored activities

Longitudinal . : data processing; . .
Mosquera-Lopez paired with a wearable smart tag (worn . . Automated Passive real-life
2021 25 pwMS (8 weeks of X X K DL for automatic falls detection i o
et al. (20) X L either on the trunk or in the pocket) with falls detection remote monitoring
continuous monitoring) (neural network auto-encoder +
embedded accelerometer
hyper-ensemble of RFs)
Automated
Longitudinal Commercial smart band (Fitbit Flex), detection of Passive real-life
Block et al. (35) 2022 94 pwMS (12 months of including inertial sensors and sleep ML (3-compartment GMM) activity states and L
. - . i ) remote monitoring
continuous monitoring) tracking capabilities behaviour
patterns
o 1 smartphone with embedded inertial . Instrumented structured
Longitudinal . Disease
52 pwMS sensors (accelerometer + gyroscope) CNN applied to raw . assessments performed
Creagh et al. (37) 2022 (24 weeks of remote K L severity
24 HCs X K 1 smartwatch with embedded inertial accelerometer data o remotely and autonomously
instrumented testing) estimation
sensors (accelerometer + gyroscope) (1/week for 24 weeks)
Automated
Longitudinal Custom algorithms for d:[ection of
132 pwMS & 1 wearable accelerometer, placed on the automated detection of activity .. Passive real-life
Salomon et al. (36) 2022 (1 week of : X X activity states and o
90 HCs X L lower back fragmentation, circadian and K remote monitoring
continuous monitoring) behaviour
fractal patterns
patterns
Longitudinal 1 co'mr'nercial smart‘band FFitl?it C.harge 2 | Fully automz.ited algorithm for Validation of . .
or Fitbit Charge 3), including inertial data processing; Passive real-life
Sun et al. (31) 2022 337 pwMS (10 months of i remote o
. L sensors, heart rate and sleep ML regression (RF, GBT, EN) to K . remote monitoring
continuous monitoring) . e . gait analysis
tracking capabilities predict 6MWT performance
Fully automated algorithm for . . .
. Sit-to-stand transitions in
2 accelerometers data processing; )
L . . . Fall everyday life
Tulipani et al. (17) 2022 37pwMS Cross-sectional - 1 on chest DL for automatic activity X o X .
K i risk estimation Standardised sit-to-stand
- 1 on thigh detection (Long Short- K
task in the lab
Term Memory)
, 2 insoles with inertial sensors Validation of
Granja Dominguez . Custom algorithm for automated Instrumented structured tests
2023 205 pwMS Cross-sectional (accelerometer + gyroscope) and . R remote K R
et al. (32) calculation of gait parameters i i in a controlled setting
pressure sensors gait analysis
Wireless time-of-flight home beacons,
Longitudinal a;::de with a wear;i}lle sr(:laret taa ((x)vorn DL for automatic fall detection Automated Passive real-life
Kushner et al. (21) 2023 25 pwMS (8 weeks of P 8 (Long Short-Term Memory); v

continuous monitoring)

either on the trunk or in the pocket) with
embedded accelerometer

ML for room detection (kKNN)

falls detection

remote monitoring
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TABLE 1 Continued

128 participants, both
HCs and people with

Study type

Sensor array

3 inertial sensors (accelerometer +

gyroscope)
- 2 on feet (right and left)

Algorithms used

Custom threshold-based
algorithms for automated
walking bout detection

Automated
walking
bouts detection

Monitored activities

Passive real-life remote
monitoring (2.5 hours)

Salis et al. (26) 2023 bility i Cross-sectional - 1 on lower back Structured tests in a
mobility issues 2 time-of-flight infrared sensors placed on Custom algorithm for automated | Validation of controlled settin
ntr i
(20 pwMS) ankles (right and left) gait analysis based on integration | remote . . g .
i of multi-sensor data ait analysis Simulated activities of daily
2 pressure insoles & 4 living in a controlled setting
Automated
Commercial smart band (Fitbit Charge 3), detection of Passive real-life
Stavropoulos et al. (34) 2023 2 pwMS Proof-of-concept including inertial sensors, heart rate and Knowledge graphs activity states and .
. . . remote monitoring
sleep tracking capabilities behaviour
patterns
. . Fully automated algorithm for Passive real-life remote
o 3 accelerometers and surface biopotential . .
Longitudinal data processing; monitoring
readers i - Fall K . .
Vandyk et al. (18) 2023 23 pwMS (6 weeks of DL for automatic activity X L Sit-to-stand transitions in
. L - 1 on left upper chest X risk estimation )
continuous monitoring) ) . detection (Long Short- everyday life
- 2 on thighs (right and left) .
Term Memory) (detected automatically)
1 experimental inertial sensor
(accelerometer + gyroscope) placed on the
lower back Instrumented structured tests
97 participants, both 3 reference inertial sensors (accelerometer Mix of custom and ML-based Validation of in a controlled setting
idation o
HCs and le with + Igorithms for automatic gait Simulated activities of dail
Kirk et al. (29) 2004 s and people wi Cross-sectional gyroscope) algorithms for automatic gai remote imulated activities of daily

Articles are listed based on year of publication (in ascending order). 6SMWT, 6-Minutes Walking Test; ANN, Artificial Neural Network; BDM, Bayesian Decision making; CNN, Convolutional Neural Network; DL, Deep Learning; DTW, Dynamic Time Warping; EN,

mobility issues
(13 pwMS)

- 2 on feet (right and left)

- 1 on lower back

2 time-of-flight infrared sensors placed on
ankles (right and left)

2 pressure insoles

detection and calculation of
gait speed

gait analysis

living in a controlled setting
Passive real-life remote
monitoring (2.5 hours)

Elastic Net; GBT, Gradient Boosted Trees; HCs, Healthy Controls; kNN, k-Nearest Neighbours; LSM, Least Squares Method; ML, Machine Learning; pwMS, people with Multiple Sclerosis; RF, Random Forest; SVM, Support Vector Machine.
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remote monitoring. They recruited 23 pwMS and monitored them
for six weeks, using three wearable sensors worn for all hours of the
day (one on the left upper chest, two on the thighs) to record
acceleration and surface biopotentials. Furthermore, they applied
DL analysis to detect periods of sit-standing transitions. The
algorithm identified different fatigue and instability phenotypes
which were predictive of fall risk. They also observed that stability
tended to decline over the course of the day, providing interesting
quantitative insights into daily fluctuations of motor performance.
Taken together, these results suggest that DL algorithms may enable
to reliably identify activity states remotely and during everyday life,
thus allowing to contextualise motor features obtained by the
analysis of big data collected continuously from sensors. This is
particularly interesting, since novel insights could be obtained by
investigating some motor features (e.g., stability) during specific
activity states of interest (e.g., sit-to-stand transitions), rather than
across the entire range of daily activity states, which would be
unfeasible if activity states had to be observed by an examiner or
reported by the patient.

DL algorithms were also implemented retrospectively, to detect
patients who had a positive recent history of falls (in the previous six
months), by leveraging accelerometer data from sensors placed on
the sternum, lower back, thigh, and shanks during a one-minute
walking task in the clinic (19). This study found that a bidirectional
long short-term memory neural network could be used to
automatically identify and analyse sensor data from 1-minute
walking tests performed remotely and autonomously by pwMS,
and identified pwMS who had previously fallen with high accuracy
(ROC AUC= 0.88). Notably, this DL algorithm trained on raw
sensor data significantly outperformed the classification accuracy of
neurologist-administered measures and patient-reported outcome
measures, as well as conventional statistical analyses and other
traditional ML models (logistic regression, k-nearest neighbours,
support vector machine, decision tree) based on conventional
aggregate spatiotemporal gait parameters (e.g., average speed).
This suggests that Al can leverage big data to capture nonlinear
relationships and motor phenotypes associated with an increased
risk of falls which are not detected through conventional clinical
exams or basic aggregate statistics.

Another key application of big data is the automatic detection of
real-world falls in freely moving patients through sensors from
wearables and/or smartphones. Mosquera-Lopez et al. (20)
developed an algorithm which detects possible falls by combining
acceleration and movement features recorded by wearable sensors
connected to wireless beacons placed throughout the home. As fall
detection was performed in a fully unsupervised way, accuracy of the
detection pipeline was tested using 10-fold cross-validation (CV).
This system proved highly accurate in detecting falls (sensitivity=
92%, specificity= 98%), producing 0.65 false alarms per day, which
translates to roughly 2-3 false alarms per week. However, due to the
small sample size and relatively short monitoring time, their dataset
was highly imbalanced, with only 270 seconds of fall data compared
to over 2,000,000 seconds of total data. In a more recent study (21),
the same researchers conducted a secondary analysis of the same
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dataset, to investigate the relationship between mobility measures
(including both movement metrics and location data) and risk of falls
in pwMS. They found that half of falls occurred while walking, and
that participants were sedentary for most of the time spent at home
(>95%). Interestingly, they were able to observe that almost one third
(28%) of falls occurred within one second of gait initiation, thus
providing quantitative data to highlight the critical role of gait
initiation in determining fall risk during everyday life. These results
are promising, although the feasibility of this tracking method is
obviously lower than that of monitoring devices which do not require
altering/adapting the home environment of patients, which could
hinder its applicability for real-life long-term monitoring of pwMS.
Moreover, such systems cannot be used to assess motor performance
in everyday life settings other than patients’ homes (e.g., the
workplace), limiting the generalizability of their findings. Further
studies with much larger samples and longer monitoring durations
are required to assess the true feasibility of this monitoring approach,
as well as its validity and reliability for real-life clinical applications.

Increasing the range of possible applications of digital remote
monitoring is key, to enable monitoring of motor functioning in a
more ecological way, which would also allow extend this possibility
to a wider range of pwMS. Therefore, more and more studies have
tried to leverage commercially available smart devices for remote
data collection, as their widespread availability could greatly extend
the reach of digital remote monitoring, compared to more
experimental and multi-device approaches. A pilot study (22)
investigated the ability of a commercially available smartphone
and smartwatch to automatically detect falls in an experimental
environment, in which healthy controls (HCs) performed a set of
simulated falls. Using an experimental setting in which participants
performed simulated falls, they were able to directly observe the
number of false positives and false negatives produced by the fall
detection algorithm, from which they calculated sensitivity and
specificity. They found that the joint use of smartphone and
smartwatch improved the specificity of all analysed algorithms by
a range of 5-15%, compared to smartphone- or smartwatch-only
detection, although the issue of false positives alarms remained, as
denoted by several false alarms raised during 24h of continuous
monitoring. Moreover, the extremely small sample size (N = 4)
significantly limits the generalisability of their results. Another
study (23) investigated automatic fall detection through a system
of tri-axial sensors fitted to six different body parts (head, chest,
waist, right wrist, right thigh, right ankle) of HCs performing a
standardised set of voluntary falls in an experimental setting.
Through ML analyses they were able to reach values >99% for
accuracy, sensitivity, and specificity. However, it must be stressed
that this result was again observed in a small sample of HCs,
performing standardised falls in a controlled setting. Perhaps even
more importantly, such a complex sensor array would likely be
unfeasible for everyday real-life monitoring of pwMS. It should be
noted that studies wishing to evaluate automatic falls detection
accuracy through direct observation (i.e., through simulated falls
experimental paradigms) are inherently limited, since having pwMS
or people with other chronic health conditions performing
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simulated falls would pose evident ethical and safety issues.
Crucially, this questions the ecological validity of fall detection
algorithms validated on young healthy participants. Further
research is needed to determine the feasibility and validity of
automated fall detection through smartphone and/or wearable
data in pwMS and in real-life scenarios.

Gait analysis

Gait disturbances are common in MS, they can present in the
early disease stages, and significantly affect QoL by reducing
autonomy and impacting negatively on socio-economic status
(24). Instrumented assessments of gait are well documented (25)
but, until recently, have largely relied on sophisticated lab-based
assessments which are costly, cumbersome, and can fail to capture
the true walking performance of pwMS in real-life environments.
Consequently, most research to date has focused on validating
wearable data recorded during laboratory experiments in which
participants perform a mix of structured tests and simulated real-
life activities. Only recently, researchers have begun leveraging big
data gathered from wearables during everyday life to estimate gait
parameters of pwMS, or to validate such monitoring devices with a
mixed study procedure including both lab-based and remote-based
data collection.

Salis et al. (26) validated a multi-sensor system designed to
allow real-world monitoring (three inertial sensors, two plantar
pressure insoles, and two distance sensors) in 128 participants with
different pathologies (including 20 pwMS) who performed a mix of
structured tests (e.g., Timed-Up and Go) and simulated activities
(e.g., setting the table for dinner). They compared data from the
wearable sensors with data from a stereophotogrammetry system,
which served as reference. They used intraclass correlation
coefficients (ICC) to assess reliability, which can be considered
excellent when ICC > 0.90, good when 0.75 < ICC < 0.90, moderate
when 0-5 < ICC < 0.75, and poor when ICC < 0.50. The reliability of
the wearable system was excellent for structured tests, with ICC
values >0.95, while it decreased slightly for simulated activities of
everyday life (ICCs between 0.69-0.98). They also evaluated the
feasibility of this wearable system for real-life use by recording 2.5
hours of unsupervised activity and reported that the system was well
accepted, without major technical or usability issues. However, it
must be noted that the real-world part of this study included only 20
healthy young adults and lasted a short time. Further real-life
feasibility and acceptability studies with much longer monitoring
periods are therefore definitely needed to derive any meaningful
conclusions on real world long-term feasibility.

Chitnis et al. (27) collected data remotely from 23 pwMS
wearing three sensors (placed on wrist, ankle, and sternum) for
eight weeks during real-world daily activities. They designed a
workflow for the classification of unstructured raw sensor data,
using a DL classifier to distinguish activity periods (i.e., idle,
walking, running). Then, they selected only the activity segments
classified as “walking” to derive mobility features. Several features
extracted from real-world walking bouts (i.e., stance time, swing
time, mobility activity time, turning velocity) correlated with gold-
standard clinical scales like the Expanded Disability Status Scale
(EDSS) and the Multiple Sclerosis Functional Composite (MSFC)
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and standardised walking tests performed in the clinic (Timed 25-
Foot Walk [T25FW]).

While multiple wearable sensors undoubtedly afford a higher
degree of precision and provide more data to extract spatiotemporal
gait parameters, compared to a single wearable sensor, one must
also consider the feasibility of such approaches for longitudinal
remote monitoring. Indeed, using multiple sensors imposes higher
costs and is more burdensome for patients and researchers alike.
This issue grows exponentially with longer follow-up times, limiting
the ability to study long-term trends and patterns of motor function
in pwMS. More specifically, compared to wearing sensors on
multiple body parts, using a single sensor facilitates monitoring in
a wider variety of daily life situations (e.g., in public), enhancing the
ecological validity of data thus collected. Therefore, some
researchers have begun to evaluate the validity of data obtained
from a single wearable sensor, which could prove more economical
and easier to use, therefore allowing larger studies with longer
follow-ups.

Atrsaei et al. (28) developed and validated a ML-based gait
estimation approach to predict gait speed and detect waling bouts
using a single sensor on the lower back. They recruited 35 pwMS,
who performed walking tests in the clinic and at home. and found
that reference values obtained from sensors on both feet correlated
strongly with gait speed estimated from the sensor on the lower
back during a walking test in the clinic (r = 0.96) and at home (r =
0.95); gait speed during daily activities at home were also strongly
correlated with reference values recorded in the clinic (r = 0.89).
These results show that not only using a single sensor on the back
approximates reference values extremely well for walking tests
performed in the clinic, but is also able to provide accurate
estimation based on real everyday activities. They also tested a
ML-based algorithm (naive Bayes classifier) for automated walking
bouts detection and used leave-one-out CV to evaluate its accuracy,
using only digital remote data collected during unsupervised daily
life activities. The ML-based walking bout detection had high
accuracy (96.4%) in detecting walking bouts remotely, during
everyday life. Although the authors reported analysing >300
hours of daily activity measurements, the small sample size
significantly limits the generalizability of these promising results
obtained using a single sensor.

A similar approach (single sensor worn on the lower back; in
the clinic and during 2.5 hours of real-world activities) was adopted
by a European multicentric study (MOBILISE-D) on N=97
participants with different medical conditions (including 13
pwMS) (29). Reliability was considered good-to-excellent in the
clinic (ICC range= 0.79-0.91) and moderate-to-good (ICC range=
0.57-0.88) in real-world activities, compared to a multisensory
reference system which included pressure insoles. Although the
reliability of the system was lower in the real-world scenario, it was
still deemed to remain within a usable range. Predictably, this study
found that walking bout duration affected the accuracy of gait speed
estimation, with shorter bouts yielding less accurate estimates. It is
therefore possible that further studies with more data at the intra-
individual level may yield higher accuracy.

Aiming to further explore the use of devices which could be
accessible to larger proportions of the population, Bourke et al. (30)
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analysed gait parameters recorded by a waist-worn smartphone
with built-in accelerometer during a two-minute walking test
performed remotely and independently by 76 pwMS and 25 HCs
over 24 weeks. The test-retest reliability across consecutive pairs of
testing sessions was either excellent or good-to-excellent for 58/92
gait parameters in pwMS, and 29/92 in HCs, indicating higher
variability in healthy persons across consecutive test sessions. These
results suggest that remote sensor data recorded during active
walking tests, using only a waist-worn smartphone, has
comparable reliability to sensor data from clinical assessments.
This encourages further research, as it could enable a much wider
diffusion of instrumented remote walking assessments tanks to the
ever-increasing availability of smartphones and wearables, thus
expanding the reach of gait monitoring to those with reduced
access to clinical services. However, this study involved mainly
people with relapsing-remitting MS (RRMS), and only data from 62
participants (51 pwMS, 11 HCs) was used for the analyses (the
authors did not explicitly state the reason for excluding almost 40%
of the initial sample size). Therefore, further studies with larger
sample sizes and more rigorous reporting are needed to establish
the feasibility and validity of using smartphone-based sensor data as
an endpoint in clinical trials and for real-life clinical monitoring.
All the studies examined so far have been conducted on small
samples, and their results cannot therefore be generalised to the
wider population of pwMS. The large volume of data obtained
through wearable sensors and the high costs associated with
specialised sensors has greatly limited the ability of researchers to
conduct studies on large samples and with adequately long follow-
ups, as evidenced by the studies discussed so far. Multicentric
studies on larger samples of pwMS, however, are needed to derive
more reliable insights on the validity, reliability, and feasibility of
digital remote monitoring tools. As part of the RADAR-CNS
initiative, Sun et al. (31), monitored an European cohort (from
Italy, Spain, and Denmark) of 337 pwMS over an average duration
of 10 months using a commercial wearable (Fitbit). They analysed
real-world steps data and applied correlation-based feature
selection to select the most relevant features and tested the ability
of different ML regression algorithms (random forest, gradient
boosted trees, and elastic net) to estimate 6 Minutes Walking Test
(6MWT) performance in the clinic by using digital remote
monitoring data collected during everyday life. Results show that
minute-level features were more predictive than day-level features.
Interestingly, they also noted that upper bound statistics (e.g., 90"
percentile of minute-level step count) were more strongly related to
clinical test scores, indicating that the average performance in
clinical gait tests may reflect the upper portions of the
distribution of real-life gait abilities. This insight is particularly
valuable, as it could mean that the impression of motor functioning
that a clinician gets from a patient performing a walking test in the
clinic may be an overestimation of their actual day-to-day average
motor performance. The accuracy of 6MWT score estimation was
quite low, reinforcing the idea that walking performance of pwMS
could differ significantly between real life and clinical testing. These
findings demonstrate that, in addition to allowing digital remote
monitoring, leveraging data from wearables collected during
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everyday life can provide insights that would not be obtainable
through conventional study paradigms, thus improving our
understanding of the true validity of gold-standard and widely
used clinical tests.

Another study with a large sample size (32) (N = 205 pwMS)
focused on validating gait parameters (velocity, ambulation time,
cadence, stride length) estimated trough sensor data from
connected insoles with pressure and motion sensors, compared to
a classic lab-based reference system based on pressure plates. They
showed strong concordance between the two systems for gait
velocity (ICCs > 0.83), ambulation time (ICC = 0.93), and
cadence (ICCs > 0.90), whereas stride length showed poor
concordance (ICC = 0.30). Sensorised foot insoles allow
continuous data collection in everyday life without requiring
visible devices, which could cause stigma or discomfort to some
patients. Therefore, this large study provides valuable data on the
validity of this gait monitoring device, which may prove particularly
useful for patients which are unwilling and/or unable to wear visible
devices such as smartwatches or body-mounted sensors. However,
one key limitation is the compatibility of insoles with different shoe
types, and the need to switch the insoles when changing shoes and
when recharging, which could prove burdensome for patients in the
long term, and could lead to missing data for extended periods of
time or in some specific settings (e.g., while wearing slippers
at home).

Whereas most of the literature to date has focused on obtaining
gait parameters from accelerometers, Delahaye et al. (33)
investigated gait parameters derived from a wearable sensor with
integrated Global Positioning System (GPS). Validating GPS-
derived walking speed and distance metrics may potentially
enable to implement remote monitoring via commercially
available and non-wearable devices (e.g., smartphones), thus
removing the need for specially designed wearable sensors which
may be perceived as cumbersome or that patients may be
embarrassed to wear in public. The authors recruited a small
convenience sample (N = 18) of pwMS who performed the
6MWT and an outdoor walking session at usual pace (up to 60
minutes). By integrating GPS and altitude data, they were able to
measure gait parameters and associate them with variations in the
terrain conformation, which could not only allow to better
understand variability in motor activity observed through digital
remote monitoring, but may also be used to standardize future
studies on outdoor walking performance across different centres
and countries, They found that walking speed during an outdoor
walking session was significantly correlated with 6MWT
performance measured in the clinic, whereas maximum walked
distance was not. They also noted that 40% of participants did not
reach their maximum walking distance during the first walking
bout, but on subsequent ones. This suggests that the first stint of a
walking task (as is the case for clinical walking tests) may not
necessarily yield the best performance. Once again, one can
appreciate how real-world motor data collected remotely and
digitally was able to provide novel insights which enhance our
understanding of the validity of testing procedures performed
routinely in clinical or research settings. However, only 12
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participants had valid GPS data, which means that GPS data could
not be analysed for one third of participants. Therefore, more
studies are needed to validate GPS-derived measures, and several
technical limitations must be addressed, such as the accuracy of
GPS-calculated walked distance for shorter walking bouts, or its
accuracy in different environments and settings.

Activity monitoring

Data from wearable sensors may be used to characterise patients
not only in terms of their raw quantitative performance metrics (e.g.
daily step count), but to infer activity states and behavioural patterns
which may be associated with clinical features and/or impact disease
progression. This may be done either using knowledge-based
frameworks or with a data-driven approach, providing both
researchers and clinicians with more readily interpretable outcome
measures. Moreover, characterising activity states may enhance the
informative value of raw quantitative measures (e.g., by differentiating
between steps counted during a light walk or during an intense run).

An example of the knowledge-based approach has been
proposed by Stavropoulos et al. (34), who showcased a framework
using a priori semantic rules to model “problem labels” which could
be quickly and easily understood by clinicians and provide added
value to raw quantitative data. As an example, “Steps < 500 & Heart
Rate < 100 for duration > 800” was a rule used to determine an
instance of “Lack of Movement”. They then reported the example of
a patient for which “Lack of Movement” instances appeared
sporadically in the first months of remote monitoring and
intensified in time, ultimately occurring almost every day in the
last months. This provides a simple and effective way for clinicians
to monitor potential risk factors and/or indices of disease worsening
without necessarily having to analyse raw data, which may be
cumbersome or outright unfeasible depending on the resources of
different healthcare centres. However, frameworks based on a priori
rules strongly rely on the goodness of their assumptions, and the
validity of their output must be carefully assessed with ad-hoc
studies implementing baseline and follow-up clinical assessments to
provide quantitative measures of disease progression.

Block et al. (35) adopted a data-driven approach to characterize
walking activity, based on minute-to-minute steps data from 94
pwMS who wore a Fitbit continuously for 1 year. They applied an
unsupervised ML clustering algorithm (3-compartment Gaussian
Mixture Model) to detect the proportion of three levels of activity
(low, moderate, high) based on individual participants’ steps data,
and then evaluated associations with clinical parameters (walking
tests, EDSS scores) and patient-reported outcomes. The detected
activity levels correlated more strongly with clinical and patient-
reported outcomes, compared to raw step count, and the
combination of raw steps data and activity levels outperformed
both individual metrics. This suggests that the qualitative aspect of
steps data plays a pivotal role in predicting key clinical outcomes
such as EDSS score. While we can expect patients with lower
disability to be more active overall, leveraging AI algorithms to
continuously and automatically evaluate the proportion of time
spent in low- or high-intensity walking may enable to differentiate
two patients which would appear identical if one were to look only
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at basic aggregate statistics like step count. Indeed, 1000 steps could
be performed while doing house chores over 1 hour, or during a
short but intense 5-minute walk, two different activities which
cannot be accurately distinguished by examining step count alone.

Salomon et al. (36) collected data from 132 pwMS and 90 HCs
wearing an accelerometer placed on the lower back for seven days,
aiming to uncover daily-living rest-activity fragmentation patterns,
circadian rhythms, and fractal regulation parameters. Results showed
that pwMS had a more fragmented activity behaviour (likely
indicating a greater need for pauses when carrying out prolonged
physical activity) and lower amplitude in circadian changes of daily
activity (i.e., the difference in activity levels between the five most and
least active hours of the day) than HCs. Moreover, both circadian and
fragmentation measures were associated with disability severity, as
measured by EDSS score. Although a simple general metric like total
physical activity remained the strongest discriminator between pwMS
and HGCs, this study found that incorporating more sophisticated
metrics like fragmentation patterns and circadian rhythms detection
improved the ability to differentiate between patients and HCs, and
between patients with low vs. high disability. This was a cross-
sectional study, and therefore could not provide any info on the
predictive value of these features on disability progression or relapse
risk. However, it is possible that circadian rhythms and fragmentation
patterns could also provide novel insights on disease progression (e.g.,
a patient maintaining the same overall level of activity, but with
increased fragmentation due to requiring more frequent rest). Further
studies are needed to establish the utility of more advanced activity
measured for real life monitoring of pwMS, with specific emphasis on
their ability to predict relapse and/or disease progression.

Creagh et al. (37) also adopted a data-driven approach,
analysing raw sensor data (smartphone + smartwatch) of 97
participants (24 HCs, 52 pwMS with mild disease severity, 21
pwMS with moderate disease severity) who performed a daily
two-minutes walking test remotely for 24 weeks. Raw sensor data
were analysed with a deep CNN pre-trained on an open-source
human activity recognition dataset, to calculate a continuous
quantitative measure of disease severity at each timepoint.
Average disease severity across all timepoints correlated strongly
with EDSS score. More interestingly, longitudinal disease severity
trends were found to be associated with self-reported relapses.
These preliminary results suggest that a continuous quantitative
measure of disease severity may be more sensitive to change than
the EDSS, and that it could also allow to detect trend changes in
quasi-real time, which could potentially enable researchers and
clinicians to detect relapses and shifts to progressive MS more
efficiently. However, significant limitations such as adherence to
frequent active testing and reliability of remote tests must be
addressed, before such measures can be effectively implemented
in everyday clinical practice. Indeed, the authors report that
adherence was highly variable across participants, as participants
with mild MS showed higher adherence than those with moderate
MS and HCs. Moreover, adherence decreased linearly for all
subgroups at later timepoints and, in some cases, in
concomitance with the onset of reported relapses, as patients
stopped performing the walking tests once they began
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experiencing a significant worsening of motor function happening.
These preliminary findings suggest the need to evaluate adherence
to digital remote monitoring via active testing not only as a function
of time, but also by uncovering potential associations with
sociodemographic data (e.g., economic status, age), clinical
features (e.g., cognitive impairment, depressive symptoms), or
disease progression (e.g., patients becoming wheelchair-bound).

Cognitive domain

The use of Al and big data for monitoring cognitive function in
pwMS has seen significantly less development, compared to the
monitoring of motor function. This is likely because evaluating
cognitive processes relies much more explicitly on active testing,
and it is therefore more laborious to obtain large amounts of data.
Indeed, a wearable sensor can detect thousands of datapoints for
many motor features passively, just by being worn during everyday
activities. The same approach cannot be easily applied to cognitive
processes like memory or information processing speed, which are
latent variables which need to be evaluated through specifically
designed tasks. This significantly limits the ability of researchers to
deploy big data to study cognition in MS. Nevertheless, some recent
efforts have been made to integrate Al and big data in this field, and
their results point to some interesting avenues for future research.
The characteristics of all reviewed studies are summarised
in Table 2.

TABLE 2 Summary of studies on cognitive domain.

10.3389/fimmu.2025.1514813

Active monitoring

Most efforts have been focused on developing digital versions of
established neuropsychological tests, with the aim of enabling
automated administration and scoring, thus enabling remote
administration and freeing up time for clinicians. In such cases,
Al can provide novel ways to automate test administration and
scoring, whereas big data has been mainly viewed in the context of
granular digital test metrics which would be unfeasible to record
manually, but which could enhance the information obtained from
the execution of a test, compared to conventional scores.

Birchmeier et al. (38) aimed to digitize the Brief Visuospatial
Memory Test - Revised (BVMT-R), a visuospatial learning test
which is considered one of the gold-standard cognitive tests in MS
(39). Scoring this test is a time-consuming semi-quantitative
procedure which requires trained healthcare professionals to
evaluate the shape and position of 18 drawings, assigning a score
ranging 0-2 to each drawing, and then calculating the final total test
score. The authors tested the ability of a CNN to automatically score
patients’” drawings, and compared its accuracy to clinician ratings,
using a validation sample of 135 patients (for a total of 624
drawings). The CNN achieved a good accuracy for perfect or
completely wrong drawings (i.e., those scored either 0 or 2 by
human raters), while the accuracy for partially wrong drawings (i.e.,
those scored as 1 by human raters) was unsatisfactory (57%). This
suggests that CNNs may not yet substitute clinicians and enable
fully automated scoring, especially for drawings which present only
slight inaccuracies and are therefore trickier to score, as they require

Algorithms used

Type of
monitoring

Cognitive
Year Sample Study type ‘
P ytyp domain
Birchmeier . Visuospatial
2019 135 pwMS | Cross-sectional .
et al. (38) learning
Birchmei Vi ial
fremeler 2020 294 pwMS | Cross-sectional lsu(?spatla
et al. (40) learning
Visuo-
- constructional
Petilli . .
2021 35 HCs Cross-sectional ability and
et al. (41) . .
visuospatial
memory
Khaligh-
1 pwM Inf i
Razavi 2020 :3 EIVZ: S Cross-sectional " ormz?tlon d
s rocessing spee:
et al. (42) P &P
Lam 102 pwMS
2021 C -sectional -
et al. (45) 24 HCs ross-sectional
Longitudinal
Lam (12 months of continuous
2022 102 pwMS | monitoring and clinical -
et al. (46)
follow-ups every
3 months)

Articles are listed based on year of publication (in ascending order). CNN, Convolutional neural Network; HCs, Healthy Controls; LMM, Linear Mixed Models; ML, Machine Learning; PCA,

Principal Component Analysis; pwMS, people with Multiple Sclerosis.

Frontiers in Immunology 79

Validation of

CNN for image classification task automated Active testing

test scoring

Validation of

CNN for image classification task automated Active testing

test scoring

Custom algorithm for image .
; ) Enhancing the
preprocessing, segmentation and . . . .
. . informative value of | Active testing
scoring of spatial, procedural and .
. . conventional tests
kinematic features

Validation of digital

ML multinomial logistic regression test for autonomous | Active testing

and remote use

Validation of
Custom algorithm for processing and andation ©

. . keystroke dynamic Passive

feature extraction from single- L L
. for monitoring monitoring
keystroke level datapoints .
of cognition

Clustering and PCA of features Validation of
extracted from keystroke data; keystroke dynamic Passive
LMM to evaluate associations with for monitoring monitoring

cognitive outcomes

of cognition
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higher-level decision making than what AI can provide as of today.
However, Al-based predictions may be implemented to provide
preliminary recommendations, thus enabling faster scoring by
human raters and reducing organisational burdens. In a
subsequent study (40) with a larger validation sample size (1525
drawings), the authors observed that automated ratings matched
with 72% of ratings from one neuropsychologist, and with 79% of
ratings from another neuropsychologist. Interestingly, when
comparing the ratings given by the two neuropsychologists, they
observed an agreement in 82% of cases, highlighting the inherent
unreliability of such semi-quantitative scoring protocols. This
highlights the need to carefully consider the outcome metrics of
Al validation studies, especially for semi-quantitative ratings, not
only for cognitive tests, but also for other applications (e.g., MRI
lesions counting). Indeed, aiming for 100% accuracy, especially
while using a small number of human raters as reference may not be
the ideal method. In such cases, reaching 100% accuracy could
either be impossible, or lead to overfitting (i.e., training the AI
algorithm to become an essential copy of that particular group of
raters, which lead to poor generalizability and reliability).
Conversely, an Al-based support-decision system may allow to
increase inter-rater reliability, as Al-based criteria should
hypothetically be more consistent that human raters, although
ad-hoc studies are needed to support this hypothesis.

Another study focused on automated scoring of visuospatial
tests (41), with the aim of providing more varied and detailed
performance metrics, compared to the conventional scoring
procedure, which only yields a single score indicating overall
accuracy. They developed a tablet-based version of the Rey
Complex Figure copy task, a visuo-constructive and visuospatial
memory task which relies on semi-quantitative scoring, similarly to
what has been described above. They administered it to 35 HCs and
extracted performance indices capturing three different aspects of
drawing abilities (spatial, procedural, and kinematic), for which a
composite score was also calculated. They showed that automated
scoring via CNNs could provide a much richer performance profile,
by aggregating large quantities of data which could not be feasibly
recorded manually by clinicians administering a test in a clinical
setting (e.g., pressure strength, velocity, procedural drawing
timeline). This may be very useful for research purposes and may
ultimately lead to better classifications of cognitive profiles in MS
(i.e., by disentangling the effect of motor, procedural, and
visuospatial deficits). Therefore, the potential benefit of
automated scoring may not be limited only to reducing test
administration and scoring times. Indeed, automated Al-based
scoring based on constructional and/or procedural drawing
features recorded digitally may ultimately yield higher consistency
than current scoring methods based on semi-quantitative ratings
made by humans. However, such procedures require a high degree
of standardisation; in this study, all participants used the same
hardware, and drawings had to be manually screened before Al-
based scoring.

Khaligh-Razavi et al. (42) developed a custom computerized
image classification task to assess processing speed, and validated it
in a sample of 91 pwMS and 83 HCs. The novelty of their approach
consists in the embedding of Al (in the form of a ML multinomial
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logistic regressor) in the testing pipeline, so that their test does not
yield a quantitative score, but rather a multi-level prediction on the
cognitive status of the examinee, along with its associated predicted
probability. This approach aims to predict cognitive status by
automatically integrating a multi-dimensional feature set comprised
of basic test scores (e.g., classification accuracy),more sophisticated
metrics (e.g., intra-trial accuracy over time), and demographic data
(e.g., age and education) to produce predictions on cognitive status
on a test-by-test basis. By comparing the predictions made by the ML
algorithm with cognitive impairment labels based on published cutoff
values for gold-standard neuropsychological tests administered in the
clinic, they demonstrated excellent discriminant validity for cognitive
impairment in MS (AUC = 0.95, sensitivity = 82.9%, speciﬁcity =
96.1%). This approach to cognitive testing merits further research, as
it may present many significant advantages. For clinical practice, it
could reduce time allotted to test administration and scoring, as the
test procedure is automated and seamlessly provides a prediction on
cognitive status, thus enabling clinicians to dedicate more time to
interact with patients and caregivers. For research purposes, an
integrated AI data analysis pipeline allows to automatically leverage
a larger amount of test performance metrics to derive more detailed
insights into the cognitive profile of pwMS. Finally, automated ML-
based scoring can leverage consecutively acquired data to
continuously upgrade its predictions, likely making it ever more
accurate as time progresses and more data is acquired, without the
need for repeated validation studies which can be costly and
time consuming.

Passive monitoring

Passive monitoring of cognitive functions represents an exciting
frontier, as it could potentially enable granular long-term
monitoring through big data analysis, without the need for
patients to allocate time and energy to actively performing
cognitive tests. This could increase the feasibility of continuous
monitoring over the years, something which is very hard to achieve
through active monitoring, where attrition naturally increases as
time progresses (43, 44). However, there is still little evidence on
what methods could enable valid and reliable passive monitoring of
cognitive functioning.

Lam et al. (45) developed a keyboard app for smartphones,
which allows to passively track timing-related keystroke features
(e.g., latency between successive key presses, hold time, flight time)
and correction-based features (e.g., correction duration, pre-
correction slowing). They recruited 102 pwMS and 24 HCs, who
were monitored passively as they used the keyboard app for 14 days.
Results showed weak-to-moderate correlations with clinical
disability, cognitive functioning, and upper limbs dexterity, as
measured by the gold-standard clinical tests. Moreover, they
observed that most timing-related features were significantly
different between HCs and pwMS. In a follow-up longitudinal
study (46), they monitored 102 pwMS for 12 months, using the
keyboard app for passive monitoring and via clinical follow-ups
every three months with clinical tests for upper limb dexterity and
cognition. To evaluate associations between passive monitoring
features and clinical features, they aggregated keystroke data into
a cognition score cluster and a fine motor score cluster. They found
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that the cognition score cluster was significantly associated with
cognitive functioning at the group level, but not at the individual
level, whereas the fine motor score cluster was significantly
associated with upper limb dexterity at both the group and
individual level.

In conclusion, the evidence available so far indicates that
keystroke dynamics may be used to passively monitor
longitudinal upper limb dexterity changes at the intra-individual
level, whereas the same cannot be yet said for cognitive changes,
suggesting that practice effects of repeated testing may have been a
confounding factor. Moreover, the concurrent validity of keystroke
dynamics is significantly lower than that of digitalized active
cognitive tests (47). This is to be expected, as everyday activities
such as typing leverage various sensory, motor, and cognitive
processes and are not typically performed as rigorously and
precisely as cognitive tasks, therefore introducing more noise.
Thus, further research is needed, before keystroke dynamics can
be considered an effective and reliable passive monitoring tool for
cognition in MS. However, the potential to obtain data on cognitive
functioning without requiring conscious effort by patients remains
an enticing prospect, since it would allow to eliminate the
aforementioned issue of loss to follow-up common to active
longitudinal testing, and could provide novel, undiscovered
insights on the cognitive functioning of pwMS by truly leveraging
big data. One key aspect that should be addressed in the future
regards the ethics of collecting keystroke data, as it could
theoretically allow to uncover patients’ sensitive information
(passwords, bank details) and warrants a stronger enforcing of
data privacy policies.

Other applications

AT and big data can play a significant role in enhancing
monitoring capabilities in aspects of MS care/research other than
motor and cognitive functioning. These range from passive
monitoring of sleep and heart rate variability to the analysis of
big data from real-world clinical records. We have grouped these
different topics in a single encompassing section, given the small
number of publications available thus far, to discuss their potential
contribution towards further advancing the standard of care for
pwMS, as well as their limitations.

Woelfle et al. (48) recruited 31 pwMS and 31 HCs, with the aim
of studying whether remote monitoring of heart rate and sleep
parameters could complement step count data in explaining MS
severity. Participants wore a commercially available smartwatch
(Fitbit Versa 2) for six weeks, during which parameters were
extracted for sleep (e.g., sleep efficiency, light/deep/REM sleep
duration), heart rate, and activity(e.g., proportion of sedentary/
lightly active/fairly active/very active). While activity measures were
predictably those most strongly correlated with clinical scales of
disability and gait tests, median heart rate and deep sleep
proportion also showed moderate correlations. Moreover,
incorporating sleep and heart rate measures increased the ability
to predict disability (measured by EDSS score), compared to using
either baseline sociodemographic data and/or smartwatch-derived
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motor parameters. This pilot study with a small sample size suggests
that sleep and heart rate data may indeed complement activity
measures in explaining disease severity. These results are
encouraging, especially for the promised ability to track objective
sleep parameters remotely and through minimally invasive and
economical devices, as compared to portable EEGs or
polysomnography performed in the lab, greatly enhancing the
feasibility of longitudinal studies of sleep. However, the small
sample size warrants further larger studies, to increase the
generalizability of results, especially since smartwatch data was
lost for 7/62 participants due to synchronization issues,
highlighting the need for more reliable data storage and
synchronization technologies before such tools can be deemed
reliable for larger clinical trials.

Hilty et al. (49) used a previously validated and CE-certified
wearable for heart rate detection, with the aim of studying the
autonomic nervous system in 56 pwMS and 26 HCs, by analysing
circadian trends recorded continuously over a period of two weeks.
They applied signal processing algorithms and polynomial
regression algorithms to reconstruct circadian trends from big
data acquired continuously at 1Hz by the sensor. They observed
that circadian trends could distinguish not only pwMS from HCs,
but also between pwMS with/without evidence of inflammatory
activity (defined either by radiological activity or by a clinical
relapse in the prior 12 months), between those with/without
evidence of disease progression (defined by neurological
deterioration without a relapse event), and between those with
low/moderate-to-high disability (defined using an EDSS score
cutoff = 3). Their results suggest that continuous heart rate
monitoring could enable to uncover specific circadian patterns
which distinguish pwMS across inflammatory states (associated
with overactive sympathetic activity at night and overall reduced
circadian variability) and disease progression (associated with
overall reduced heart rate variability and reduced circadian
adaptation of the autonomic nervous system). Therefore,
autonomic nervous system monitoring with wearable sensors
could provide new digital biomarkers and serve as an endpoint in
clinical trials for both immunoregulation and symptomatic
treatment. Notably, at least seven days of continuous wearing
were required to establish robust circadian trends due to high
variability of wearable-based heart rate at both the intra-
individual and inter-individual level. More studies on larger and
more heterogeneous cohorts are needed to confirm these results and
increase the generalizability of these results, as >80% of this sample
was made up of people with RRMS.

Seccia et al. (50) focused on the application of Al to analyse real-
world clinical records of 1624 pwMS (totalling over 18,000 records
between 1978 and 2018). They tried to predict the probability of
shifting from the relapsing-remitting to the progressive phase at
different timepoints (180, 360, 720 days from last visit). They tested
predictions based on data from the last available visit using different
ML models (visit-oriented approach), or based on the entire clinical
history (history-oriented approach) using a specifically designed
recurrent neural network (RNN). They found that the visit-
oriented approach was better at predicting shifts to progressive MS
at 180 days, largely thanks to the inclusion of imaging and liquor
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history, suggesting that these two methods are informative on the risk
of conversion to progressive MS in the short term. Conversely, the
history-oriented approach performed better for predictions of
shifting to progressive MS at longer intervals (360 and 720 days),
owing largely to its better precision (reflecting less false positives).
Crucially, the history-oriented approach was more reliant on clinical
features, as both MRI and liquor data was unavailable for the majority
of participants at all time points. Taken together, these results indicate
that AI can effectively leverage real-world clinical big data to predict
the risk of conversion to progressive MS. One key limitation is the
intrinsic nature of real-world clinical data, which often contains
missing data, as seen for liquor and MRI data in this study. It is
crucial that clinical expertise is applied during the planning of
analysis and data preprocessing, to determine if missing data are
meaningful or not, and how they should be dealt with (e.g., missing
liquor data can be expected, as lumbar punctures are not performed
at each clinical visit, whereas EDSS score should ideally be available at
all timepoints). This once again underlines the importance of data
collection and maintenance. A well-structured and well-described
feature set allows for much easier collaborations and sharing of data,
thus promoting the fusion of different expertise (namely clinical and
data science), which could further increase our understanding of MS.
Accurate data maintenance could also allow to perform future
analyses on data with longer follow-up durations, increasing our
understanding of longitudinal disease patterns in MS.

Conclusion

The growing adoption of digital remote monitoring tools has
great potential to improve both research and clinical aspects of MS,
thanks to remote tracking of motor and non-motor symptoms. This
review highlights that connected devices like smartphones and,
especially, wearables can effectively monitor motor impairments,
such as fall risk and gait disturbances, through continuous, granular
data collection during real-world activities. Remote monitoring of
physical activity is gaining significant traction in clinical research
application. This is demonstrated by the inclusion of remote activity
monitoring data as an exploratory endpoint in a recent drug trial
(51), albeit through a basic daily step count metric. Further
improvements may derive from AI algorithms which can
recognize activity states, enriching the quantitative sensor data.

The evidence available on cognitive monitoring still favours the
adaptation of active cognitive tests in digital form, to allow remote
longitudinal monitoring, which may increase the standard of care
for those with reduced mobility and/or access to specialized MS
care. Recent advances in Al-driven cognitive tests and keystroke big
data provide potential pathways to enable passive cognitive
monitoring, but further research is needed to confirm their
reliability and clinical utility.

Some studies have explored less-studied domains like sleep and
circadian autonomic patterns, with interesting results which suggest
that remote monitoring of these domains is feasible and could
provide novel insights, compared to traditional research methods.
Finally, preliminary exploratory studies have leveraged big data
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from clinical health records, with promising results, highlighting
the need for careful recording, structuring, and maintenance of real-
world clinical datasets. Increased awareness of the importance of big
data in MS has led to the rising prominence of collaborative
databases, both on a national (52-54) and international scale (55,
56), as well as multicentric studies on digital outcomes (57).

However, despite these advancements, challenges remain,
including the small sample sizes observed in many studies, which
limit the generalizability of their results to different MS populations,
namely those with progressive MS, higher disease severity, and
reduced access to specialized MS centres. Inclusiveness is a key area
which should be addressed more carefully by future studies. Indeed,
when assessing the real-world feasibility of digital monitoring for the
entire MS population, researchers should be mindful of potential
sampling bias, as patients willing/able to undergo such protocols may
present distinct features (e.g., younger patients, with lower disability,
higher educational attainment, and without cognitive impairment).
For the use of AT and ML algorithms, researchers should never forget
that an algorithm with many input variables may be very accurate but
unusable by non-specialized MS centres which cannot obtain all the
clinical/instrumental/sensor data on which the algorithm was trained
on. Another significant limitation is the heterogeneity of monitoring
methods and study protocols, which negates the possibility to
compare feasibility, reliability, and validity data across different
studies and devices. Future studies should strive to address these
outstanding issues, since feasible, reliable and valid digital monitoring
tools represent an invaluable resource for both research and
clinical practice.

Finally, the recent rise and diffusion of conversational AT agents
(e.g., ChatGPT) has led to some researchers exploring their
usefulness in the setting of MS care (58, 59). When applied to
disease monitoring, conversational AI could be integrated in
eHealth apps as a chatbot, similar to examples from other fields
(see for example (60)). This could allow patients to report their
symptoms in a conversational manner, instead of having to answer
omni-comprehensive and pre-defined structured lists of questions
or questionnaires, which could feel alienating and repetitive, leading
to low adherence. This may not only be perceived as a more natural
and interpersonal approach by patients, but may also reduce their
burden, by eliminating the need to answer questions which are not
relevant for them at that moment in time. Moreover, an Al-driven
closed loop system may also guide the administration of validated
patient-reported questionnaires through eHealth apps, by selecting
only the questionnaires that are most relevant for each individual
patient, based on their reported symptoms at that specific
timepoint. We hypothesize that this approach would reduce the
time and energy demand on patients, while also providing a more
interpersonal, responsive and adaptive monitoring framework,
which could then lead to higher adoption and adherence to
digital long-term monitoring. However, systematic studies are
required to substantiate these hypotheses. Firstly, studies should
evaluate the technical feasibility of applying conversational Al to
longitudinal symptoms monitoring in MS, focusing particularly on
the safety, validity and reliability of the information provided by AI.
Secondly, they should investigate the expectations and needs of
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patients, caregivers and clinicians toward digital monitoring, to
determine if and how AI can be applied to address them.
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This paper investigates the importance of Trustworthy Machine Learning (ML) in
the context of Multiple Sclerosis (MS) research and care. Due to the complex and
individual nature of MS, the need for reliable and trustworthy ML models is
essential. In this paper, key aspects of trustworthy ML, such as out-of-
distribution generalization, explainability, uncertainty quantification and
calibration are explored, highlighting their significance for healthcare
applications. Challenges in integrating these ML tools into clinical workflows
are addressed, discussing the difficulties in interpreting Al outputs, data
diversity, and the need for comprehensive, quality data. It calls for
collaborative efforts among researchers, clinicians, and policymakers to
develop ML solutions that are technically sound, clinically relevant, and
patient-centric.

KEYWORDS

artificial intelligence, multiple sclerosis, trustworthy Al, deep learning, uncertainty
quantification

1 Introduction

Machine Learning (ML) is increasingly applied to healthcare applications (1). While
traditional statistical methods can help with biomarker discovery and recognizing trends
and correlations, modern ML techniques such as Deep Learning (DL), are able to
uncover complex correlations and provide better results than traditional, simpler
techniques (2) due to their universal nature (3). Conversely, as these techniques become
more complex, the need for reliable and trustworthy models increases (4, 5), especially
within healthcare. However, building trust does not have a one-size-fits-all solution,
resulting in many techniques to be developed to aid decision making.

For an end-user, be it a clinician or a patient, a model that is trustworthy is one that
can provide certain guarantees on its predictions, explain its predictions, and provide a
notion of uncertainty. For a complex disease such as Multiple Sclerosis (MS), the need
for trustworthy models is especially pertinent, as its progression is non-trivially defined,
and the decisions made to hinder its progression are important ones. A machine
learning system that does not provide adequate reliability metrics, or trustworthy
insights, will be less appealing to the end-user when there are high-stakes consequences.
In recent years, the need for Trustworthy ML (TML) has also reached mainstream
attention with the use of generative AI becoming more prevalent. For example, though
Large Language Models have shown impressive results, they may still provide incorrect
results, without any notion of uncertainty or trustworthiness (6). This is also known as
the “hallucination” effect (7). Complex data and relationships warrant the use of
trustworthiness techniques.

In the following Sections, we provide a summary of techniques present in Trustworthy
ML (TML) (Section 2), why TML is necessary for MS (Section 3.1), and the associated
challenges (Section 3.2).
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2 Trustworthy machine learning
2.1 Out-of-distribution generalization

The many ways in which MS progression can occur (different
limbs, locations of lesion growth, etc.), makes the disease variable
and patient specific. Therefore, training data will rarely contain
enough data to cover the full extent of the ways progression can
be observed. Furthermore, due to protocols changing regularly
and equipment variability, concept or model drift (8) may pose a
real issue when ML models are deployed in the real world.
Model drift occurs when new data do not correspond to the data
on which a model was trained. As a result, models must be
continually adapted so changes in data distributions are captured.

These issues can be tackled by making use of techniques such
as domain adaptation (9, 10), a specific case of transfer learning
(11), and synthetic data sampling such as SMOTE (12, 13).

The concept of Out-of-Distribution Generalization can be
elucidated by considering a concrete example within the MS
context. Imagine an ML model trained on data from North
American patients. When this model is applied to patients from

different geographical regions with distinct genetic and
environmental factors, its predictions may falter due to
differences in disease manifestation. Domain adaptation

techniques can help here by adjusting the model to account for
these regional variations. Similarly, synthetic data sampling, like
the aforementioned SMOTE technique, can artificially—not
necessarily in a representative way—augment the dataset to
include underrepresented samples in a given dataset, improving
the model’s robustness against a wide range of clinical scenarios.
However, it must be stressed that data quality is key, and an
underrepresented dataset can not fully capture the underlying
factors to guarantee good out-of-distribution generalization.

2.2 Explainability and interpretability

A perfectly interpretable AI provides insights into the inner
workings and decision process of an Al system. When it comes
to the types of ML systems, they can broadly be divided into two
categories: white-box models and black-box models.

2.2.1 White-box models

Models that are inherently explainable and interpretable. These
are often simpler methods such as linear or logistic regression, the
latter of which can be represented as a nomogram (14), a graphical
representation of such models that visually convey the weight of
different input variables. These models can be fully dissected, so
there may be many ways of representing or explaining them.

2.2.2 Black-box models

Models that can not be interpreted easily, and are regarded as a
“black box” out of which little or no knowledge can be derived.
However, there are techniques that can provide explainability
when working with black-box models, such as making use of
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Shapley values (15, 16) or making use of Deep Learning specific
techniques (17) such as Layer-wise Relevance Propagation
(18, 19). These are often post-hoc. In practice, these techniques
will show a number of features and their importances expressed
as a number. This could also be in the form of a heatmap. These
feature importances may not always be as readily interpretable
and may need training and education to comprehend adequately.
Additionally, they do not necessarily explain why those features
are important.

A classifier that may perform well in its evaluation metrics
(sensitivity, specificity, ROC AUC, etc.) may still benefit from
explainability methods. In particular, if models were to take into
account many multimodal variables, the primary drivers of a
given prediction may offer important insight for the user of the
machine learning system.

Related to interpretable Al is explainable Al Rather than being
able to fully comprehend the inner workings of a model, an
explainable AI model is able to be queried so that a reasonable
explanation to the prediction is provided. Explainable AI can be
viewed on different levels as well: Global, cohort, and local
explainability. Global explainability provides information about
the entire population or dataset. Due to the complex nature of
the MS disease, valuable insights on a population level are scarce.
Cohort explainability gives insight on subsets of the data, which
can be more interesting when taking into account certain
covariates. In this way, different groups of patients can be
identified and correlations within these groups may offer more
helpful insights than looking only at a global level. Lastly, local
explainability provides insight on the model’s output for a single
input example. Every patient has a different profile, and therefore
local explainability may help acquire insight into the prediction
of the model for that specific patient or observation.

2.3 Uncertainty quantification and
calibration

2.3.1 Uncertainty quantification

In machine learning models, uncertainty plays a critical, yet
understated role in understanding and interpreting predictions.
Healthcare specifically can greatly benefit from uncertainty
quantification, as it can add a layer of trust between the user and
the model (20-22). Two major sources of uncertainty are
aleatoric and epistemic uncertainty (23).

2.3.1.1 Aleatoric uncertainty
This type of irreducible uncertainty is inherent in the data itself. It
cannot be reduced by adding more data and manifests as the noise
within the data. An example of this uncertainty arises when using
very few features. For example, a patient’s blood pressure is a
crucial health metric, but it exhibits natural variability within an
individual due to various factors like stress, activity level, time of
day, and even the way it is measured.

This uncertainty can be either homoscedastic, when it remains
constant for all values (e.g, base noise of a sensor), or
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heteroscedastic, when it varies depending on the value of
the sample.

2.3.1.2 Epistemic uncertainty.
Epistemic uncertainty arises from the model’s limited knowledge.
This reducible uncertainty is high when the model has
insufficient data to characterize or capture the target variable.
Increasing the size of the data set can help reduce epistemic
uncertainty. An intuitive example can be demonstrated as
follows: Say there are multiple experts for a single disease such as
MS. These experts may disagree on a given prognosis, despite all
of them being equally trained for such a task. Analogously, in a
machine learning model predicting patient outcomes for MS, the
model might exhibit high epistemic uncertainty if it has been
trained on a limited or non-representative dataset. Just as the
disagreement among experts might stem from variations in their
individual ~experiences and interpretations, the model’s
uncertainty arises from its limited exposure to the diverse
manifestations of the disease. By providing the model with more
comprehensive data that captures a wider range of patient
histories, symptoms, and outcomes, the epistemic uncertainty can
be reduced, leading to more consistent and reliable predictions.

Applying uncertainty —quantification in MS involves
recognizing and managing the inherent unpredictability in
patient responses and disease progression. For instance, a model
expressing aleatoric uncertainty might show the variability in a
patient’s symptoms over time, acknowledging that certain aspects
of MS progression cannot be predicted with complete precision.
Epistemic uncertainty can be illustrated by a model’s varying
predictions based on different patient subgroups, reflecting
limited knowledge about specific MS manifestations. To quantify
and capture these uncertainties, techniques like Monte Carlo
Dropout (MCD) (24) can be employed, providing a probabilistic
understanding of a model’s predictions and helping clinicians
make informed decisions under uncertainty.

Uncertainty quantification has been applied to lesion detection
in MRI images (25-27), often making use of MCD or other

methods of obtaining a model that can express uncertainty (28).

2.3.2 Calibration

A well-calibrated machine learning model is one in which the
model’s predicted probabilities closely match the probabilities
observed in the actual data (29). Mathematically, this is
represented as P(y|p(y) = @) = a. This equation signifies that
the probability of an event y occurring, given that the model
predicts it with probability «, should ideally be « itself. As a
practical example: a model that predicts the probability of 40%
disease progression for a patient will ideally be correct 40% of
the time of all patients who receive a similar prognosis. For
methods such as neural networks, this is not often the case by
default, and calibration needs to be improved. Additionally,
calibration can also be applied to regressors that output a
distribution, rather than a single value. In this case, the
confidence interval (such as a 95% confidence interval, for
can be calibrated to that it matches

example) ensure

the observations.
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The need for calibration is evident in the lack of information an
uncalibrated classifier or regressor provides. Often, as is the case
with neural networks, a neural network classifier will collapse to
output probabilities close to 100% or 0% consistently, rather than
providing accurate probability estimates (29). As a result, a user
of such a system needs to blindly trust the classifier rather than
being able to take the confidence of the classifier into account.

3 Discussion

3.1 Why trustworthy ML is necessary for MS
research

With the current knowledge of MS and performance of state-
of-the-art machine learning models in the field, it stands to
reason that there may not be a one-size-fits-all solution to
detecting disease progression. Although other types of model
(such as image classifiers) may perform very well and can
reliably be used in most, if not all, cases, this may not be the
case for MS. ML models for this purpose will likely be a tool to
aid decision making, rather than a decision maker by itself. To
that end, an ML model that just states “yes” or “no” is not
sufficient. Rather, more information should be supplied to the
user. A trustworthy version of this model will highlight parts of
the input that contribute greatly to the prediction, show which
global and cohort features are important, and also provide a
notion of (un)certainty with the prediction. In this way, the user
can:

o Select which predictions to trust and keep, both by using
aleatoric and epistemic uncertainty as guides

o Analyze the subgroup in which the prediction fits

o Analyze the specific prediction and the features leading to
the prediction

For MS research, the use and adoption of ML will be guided by
advances in trustworthy ML. MS is a disease marked by its
heterogeneity in symptoms, progression, and response to
treatment, making reliable analysis of significant importance.

The ability of ML models to process and analyze different types
of data—from clinical observations to MRI images—can lead to
earlier detection and more precise monitoring of the disease’s
progression. However, the value of these insights depends on
their explainability. Clinicians and patients must be able to
understand and trust the model’s predictions, necessitating a
focus on explainable AI. For example, an ML model might
identify subtle changes in brain lesions over time, but this
information becomes clinically actionable only when it is
presented in an understandable manner. Explainable models can
elucidate the factors driving a prediction, thereby enhancing the
clinician’s ability to make informed treatment decisions.

Moreover, the integration of uncertainty quantification in ML
models is particularly relevant for MS. Given the variability in
how the disease presents and progresses, models that can express
their confidence in predictions are invaluable. They provide
clinicians with a more nuanced understanding of each prediction,
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facilitating more informed risk-benefit analyses when deciding on
treatment plans. A model that indicates a high level of
uncertainty in its prediction might prompt further testing or
closer monitoring, whereas a prediction made with high
confidence could lead to more decisive action.

The importance of trustworthy ML in MS research also extends
to patient empowerment. Access to understandable and reliable
ML-driven insights can foster better patient-clinician dialogues.
When patients understand the basis for predictions about their
condition, they are better positioned to make informed decisions
about their treatment and lifestyle choices.

3.2 Challenges of trustworthy ML for MS

3.2.1 Integration of ML tools to aid clinical
decisions

Integrating ML tools into existing clinical workflows presents
another layer of complexity. For these tools to be adopted, they
must fit into the highly regulated environment of healthcare.
This integration involves designing user interfaces and metrics
that are intuitive for clinicians, ensuring that ML predictions are
presented in a way that complements decision-making processes
rather than complicating them (30). Furthermore, imperfect data
pose a problem during the training and prediction stages of an
ML model. Data collection can be a laborious task, and in some
cases the data cannot be accurately represented due to individual
differences in disease expression. This rings especially true in the
case of MS.

3.2.2 Usability of uncertainty quantification and
explainability techniques

As highlighted previously, UQ and explainability techniques
have their merit, as they can highlight potential issues when
making use of ML assisted decision systems. However, the
end-user may not find much use in the way UQ results
are represented in literature. Even explainabilty results have
varying degrees of success concerning their usability (31). These
techniques could benefit from user studies, as their usability
hinges on the representation and, in turn, interpretation by the
end-user. For example, rather than providing the clinician and/or
patient with a numerical value signifying a “trustworthiness”
score or certainty otherwise, larger trust could be gained by
comparing the patient with other patients that have similar
disease trajectories. This opacity can hinder trust and acceptance,
high-stakes field like healthcare
understanding the “why” behind a diagnosis or prognosis is as

especially in a where

crucial as the outcome itself (31).

3.2.3 Out-of-distribution data, diverse data,
available data

Data diversity and availability are critical factors that
significantly influence the development and performance of ML
models in MS research. MS is a disease with a highly variable
clinical course and a wide range of symptoms that differ from
patient to patient. This heterogeneity necessitates a rich and
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diverse dataset that captures the broad spectrum of the disease.
After all, deep learning techniques are prone to overfitting, and
may have performance below acceptable levels as a result
(21, 32). Initiatives such as MSBase (33, 34) attempt to address
the issue of out-of-distribution performance by providing multi-
center data. The amount of data by itself may give the end-
user a reason to trust a model, given enough diversity. Data
quality is another concern, with issues such as missing values,
inconsistent data entry, and the need for standardization across
different data sources complicating the development of reliable
ML models. Introducing diversity by including measurements
that stray away from purely medical imaging or clinical data
may also provide a new avenue of research, potentially
discovering novel biomarkers. Future work should focus on
that
variations and incorporating emerging data types such as Motor
Evoked Potentials (35, 36) into ML models.

developing models can adapt to individual patient

4 Conclusion

This paper underscores the importance of trustworthiness in
Machine Learning (ML) applications for Multiple Sclerosis (MS).
Key aspects such as explainability, uncertainty quantification and
calibration, and out-of-distribution generalization have been
explored. Additionally, the challenges in integrating ML into
clinical workflows and the hurdles posed by data diversity and
availability have been discussed.

The authors urge the research community and healthcare
providers to prioritize the development and implementation of
trustworthy ML solutions for MS (and healthcare in general).
There is an urgent need to foster partnerships between computer
scientists, neurologists, and patients. This collaboration will
ensure the development of ML solutions that are not only
technically sound but also clinically relevant and patient-centric.
Making comprehensive, high-quality data sets accessible while
respecting privacy concerns is crucial. Initiatives should focus on
standardizing data collection and sharing practices to aid in the
development of more effective ML models. ML tools must be
integrated into clinical workflows in a way that is intuitive and
enhances decision-making processes. This involves designing
that
adequately trained to use these tools effectively.

user-friendly interfaces and ensuring clinicians ~ are
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Magnetic resonance imaging (MRI) has played a crucial role in the diagnosis,
monitoring and treatment optimization of multiple sclerosis (MS). Itis an essential
component of current diagnostic criteria for its ability to non-invasively visualize
both lesional and non-lesional pathology. Nevertheless, modern day usage of
MRI in the clinic is limited by lengthy protocols, error-prone procedures for
identifying disease markers (e.g., lesions), and the limited predictive value of
existing imaging biomarkers for key disability outcomes. Recent advances in
artificial intelligence (Al) have underscored the potential for Al to not only
improve, but also transform how MRI is being used in MS. In this short review,
we explore the role of Al in MS applications that span the entire life-cycle of
an MRI image, from data collection, to lesion segmentation, detection, and
volumetry, and finally to downstream clinical and scientific tasks. We conclude
with a discussion on promising future directions.

KEYWORDS

artificial intelligence, machine learning, magnetic resonance imaging, multiple sclerosis,
precision medicine

1 Introduction

Multiple Sclerosis (MS) is a neuro-inflammatory disease of the central nervous
system characterized by a wide spectrum of inflammatory and neurodegenerative changes
(Compston and Coles, 2008), with clinical manifestations that vary greatly between
individuals. Since the 1980s, magnetic resonance imaging (MRI) has been a cornerstone
of MS diagnosis and management due to the ability to visualize demyelinating changes
and axonal loss resulting from focal inflammation, using a combination of T2 and T1-
weighted sequences (Hemond and Bakshi, 2018). The temporal evolution of lesions, which
may initially enhance (Filippi et al., 2019), and subsequently expand, remain static, or
decrease in size (Koopmans et al., 1989), can also be captured by MRI. A number of
MRI biomarkers of MS diagnosis, prognosis, and treatment response, have also been
described. These include T2-hyperintense white matter lesions, gadolinium-enhancing
lesions, slowly enlarging lesions, paramagnetic rim lesions, cortical/deep gray matter
lesions, and leptomeningeal enhancement (Filippi and Agosta, 2010; Filippi et al., 2020).
Some of these biomarkers have been found to correlate strongly with key clinical outcomes.
One example is the association between new/enlarging T2 lesions and clinical relapses
(Rudick et al., 2006; Sormani et al., 2009; Sormani and Bruzzi, 2013).

Despite these advances, MRI-analysis continues to face problems that limit its potential
(Maggi and Absinta, 2024). The longer acquisition times and higher field strengths required
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to obtain measurements of many recently studied imaging
biomarkers introduces new headaches for resource-limited settings.
At many clinical sites, the evaluation of MRI continues to be done
manually, which is a lengthy, error-prone, and highly variable
procedure (Bozsik et al., 2022; Altay et al, 2013). A strongly
predictive imaging biomarker of disability progression, especially
progression which is independent of relapse activity (Miiller et al.,
2023), has yet to be found (Filippi et al., 2020). At the therapeutic
level, the influx of disease modifying therapies has significantly
improved the ability to suppress lesion formation and relapse
risk (Amin and Hersh, 2023), but targeting disability progression
remains a major challenge. The use of MRI in predicting disease
course and facilitating treatment selection is still a work in progress.

The rapid pace of progress in artificial intelligence (AI) has
led to new opportunities for MRI-analysis in MS. In contrast to
classical statistical methods which focus on acquiring knowledge
about a population given data sampled from the same distribution,
the field of AI has developed machine learning (ML) methods
that focus on learning predictive patterns from a dataset with the
aim of making predictions (generalizing) on new data (Bzdok,
2017; Bzdok et al., 2018). Some of this work provides a different
perspective on—and a new set of solutions to—the current
limitations of MRI-analysis.

When using the MRI modality as part of an AI system,
practitioners often prefer to use a set of hand-crafted, image-
derived features, which are based on well established image markers
(e.g., T2 lesion counts, brain volume). These are typically scalars
derived from the voxel-level data, either manually, or through a
semi-/fully-automated process. The values for these hand-crafted
features, which are easy to interpret, can be stored in tabular
form, and used to train a model for a specific task using a
variety of ML methods. Alternatively, the raw voxel-level data can
be provided directly as an input to ML models. Some types of
ML, in particular deep learning (DL), which uses deep artificial
neural networks (LeCun et al., 2015), can make use of the high
information content in voxel-level data to learn (automatically,
without explicit guidance from a human expert) abstract, lower-
dimensional features of the image that might not be captured by
traditional hand-crafted, image-derived features (e.g., the texture of
the white matter in a certain brain region). A specific type of deep
neural network called the convolutional neural network (CNN)
(LeCun etal,, 1989; Li et al., 2022) has significantly advanced digital
image processing by automatically learning features from images,
sometimes leading to superior performance in tasks like image
classification and object detection. The theoretical benefits resulting
from ML on raw images come at the cost of greater computational
and dataset requirements (Berisha et al., 2021), and generally
require more expertise in model training. Traditional, hand-crafted
features therefore remain valuable, especially in scenarios with
limited data or specific constraints (Lin et al., 2020; Zare et al., 2018;
O’Mahony et al., 2019).

This review aims to introduce the reader to key areas in
which AT is transforming MRI-analysis in MS (see Figure 1 for an
overview). Given the vastness of the literature on this topic, this
review is meant to provide a high-level overview of selected areas
that are of interest to the MS community, showcasing published
work on MS-specific applications. As such, this does not represent
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a comprehensive review of the literature. Where possible, we
refer the reader to more in depth, dedicated reviews, in specific
sections. First, we will explore how AI can be used for data
collection (Section 2), before discussing the traditional tasks of
lesion segmentation, detection, and volumetry (Section 3). Finally,
we will discuss downstream scientific and clinical tasks (Sections 4,
5,and 6). We end with a discussion on promising future directions
(Section 7).

2 Acquisition, pre-processing, and
harmonization

MRI has become essential for diagnosing MS and for
monitoring it’s evolution, primarily because of its higher sensitivity
compared to clinical outcome measures of disease activity
(McDonald et al., 1994). To reap the benefits of routine monitoring
with MRI while minimizing the inconvenience for patients,
caregivers, and resource utilization, many have turned to Al to
improve the efficiency of MRI data collection. In this section,
we will discuss three tasks pertaining to MRI collection: (1)
acquiring the MRI images (acquisition), (2) processing the acquired
images to improve their signal-to-noise ratio (pre-processing),
and (3) transforming the pre-processed images from different
scanners/sites to enable direct comparisons (harmonization).

Shortening the MRI acquisition time can be achieved by
decreasing the number of sequences in the acquisition protocol,
using generative models to synthesize the missing sequences. For
example, Wei et al. (2019) showed that it is indeed possible to
use a CNN to predict the FLAIR sequence from T1-weighted,
T2-weighted, proton density, T1 spin-echo, and double inversion
recovery (DIR) sequences. Others provided evidence to suggest
that Generative Adversarial Networks [GANs, Goodfellow et al.
(2014)] can synthesize DIR from the combination of T1 and
T2/FLAIR (Finck et al., 2020, 2022), and T1 from T2-weighted
FLAIR (Valencia et al., 2022). Although synthesis of gadolinium-
enhanced T1-weighted sequences from low or non-contrast images
is under-explored in MS, related work by Narayana et al. (2020)
found that the presence of gadolinium-enhancing lesions can be
predicted with moderate accuracy from non-contrast MRI.

Another strategy to speed data collection is to acquire lower
resolution images, or images with a higher signal-to-noise ratio, and
then use ML models in the post-processing phase to reconstruct
higher-quality images. Various DL frameworks based on GANs and
CNNs have been shown to produce higher-quality reconstructions
that can improve lesion visualization and segmentation (Shaul et al.,
2020; Zhao et al., 2019; Iwamura et al., 2023; Mani et al., 2021; Falvo
et al,, 2019). DL has also been used to optimize the more complex
processing pipelines used for diffusion weighted imaging sequences
(Golkov et al., 2016).

Finally, ML-based harmonization strategies can be used to
address a frequently encountered problem in biomedical imaging
research: small dataset sizes. Aggregating data from different data
collection sites is complicated by the fact that each site may use
different scanners and acquisition protocols, resulting in images
that do not look alike. This is known to cause variability in
tasks such as volume estimation (Clark et al., 2023; Bakshi et al.,
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An overview of key areas in which Al is being used for MRI-analysis in MS.

2017). “Harmonization” is a solution to this problem that involves
transforming the images so they all appear to come from the
same distribution. Dewey et al. (2019) found benefits in the
downstream task of brain volume estimation when images were
first harmonized using DL. If direct visualization or comparisons
between images from different datasets is not strictly necessary,
one can also bypass the problem of harmonization by training
models that are agnostic to the specific combination of sequences
that is available for a particular patient (Havaei et al., 2016), or
by searching for a set of hyperparameters that lead to comparable
performance across a range of datasets (Gentile et al., 2023). It is
worth noting that fake images can also be synthesized using DL to
augment existing datasets. This is an open research problem and the
magnitude of benefit probably depends on the context (Van Tulder
and de Bruijne, 2015). Relatively little published research explores
MRI generation specifically for MS datasets, but some authors
have observed performance gains from augmentation with lesion-
containing MRI images that are synthetically generated from the
MRI images of healthy subjects (Salem et al., 2019; Basaran et al.,
2022).

In summary, AI has shown promise in reducing the time
taken to acquire and preprocess the MRI of MS patients, without
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significantly compromising the quality and utility of the MRI
images. Al can also increase the ease with which data from different
sources can be pooled together for further analysis, or for increasing
the size of datasets which ML models use for training. Many of the
methods that were reviewed in this section are at an early stage of
development, and these tasks remain an active area of research.

3 Segmentation, lesion detection, and
volumetry

Once a patient’s MRI has been acquired and pre-processed, it
is then ready to be used for clinical management and scientific
research. Although the raw, voxel-level data can be fed directly
as input to a ML model that is specifically trained for one of
the downstream tasks described in Sections 4, 5, 6, there is
often added value to taking an intermediate step consisting of
identifying and quantifying established radiologic features in the
images. These tasks include segmenting radiologic markers of MS,
lesion detection, and the volumetric assessment of a variety of
brain structures.
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Current cross-sectional disease burden assessment typically
consists of some variant on lesion volume, lesion count, and
brain volume estimation. Monitoring of disease activity over time
additionally calls for comparing volume estimates between time-
points, and the detection of new or enlarging lesions. In most
settings where radiologists and neurologists are responsible for
performing these tasks, volume estimation is done qualitatively
with high-level descriptors, while lesion detection is done using
manual review of 2D slices. The process is lengthy, error-prone, and
subject to significant inter- and intra-rater variability (Bozsik et al.,
2022; Altay et al., 2013). For these reasons, there has been a growing
appetite for at least partially automating these tasks using Al

The segmentation of T2 lesions is one of the most well studied
applications of ML in MS. The literature on automated MS lesion
segmentation methods is vast, and methods range from classical
ML to DL. We therefore refer the interested reader to several
dedicated reviews for more details (Garcia-Lorenzo et al., 2013;
Danelakis et al., 2018; Spagnolo et al., 2023; Zeng et al., 2020; Doyle
et al., 2018). There has been relatively less work on new (and/or
enlarging) T2 lesion segmentation, but more emphasis has been
placed on this task during recent challenges (Commowick et al.,
2021). Beyond T2 hyper-intense lesions, DL has also been used
to segment and detect imaging markers which are not currently
integrated in most clinical settings. These include paramagnetic
rim lesions (Barquero et al., 2020; Lou et al., 2021; Zhang et al,,
2022), central vein sign on susceptibility-weighted images (Maggi
et al, 2020), cortical lesions on 7T images (Rosa et al, 2022;
La Rosa et al., 2020), gadolinium-enhancing lesions (Gaj et al.,
2021; Karimaghaloo et al., 2010; Durso-Finley et al., 2020), and
spinal cord lesions (Gros et al., 2019). The task of detecting lesions
(including the detection of new lesions on follow-up images) has
for the most part been studied in tandem with segmentation
(Kamraoui et al., 2022; Salem et al., 2020; McKinley et al., 2020).

Although brain (parenchymal) volumetry has received less
attention, DL has been used to segment the thalami of MS patients
for the purpose of estimating its volume (Dwyer et al., 2021). DL
methods have also been shown to perform well when compared
to traditional methods for brain atrophy estimation (Zhan et al,,
2023). Moreover, DL-based lesion-filling (or inpainting) has been
shown to improve the performance of volumetric estimation
methods that are usually sensitive to the presence of lesional tissue
(Zhang et al., 2020; Clerigues et al., 2023). Unfortunately, the large
minimal detectable change in volume between clinically relevant
intervals and the high inter-scanner variability still limit the utility
of brain volume estimation in the clinic (Van Nederpelt et al.,
2023). It is worth noting that a number of software packages for
automated volumetric analysis and segmentation are available, and
some already include DL methods (Billot et al., 2023).

Several challenges have been organized, in which groups
compete for best performance on the same lesion segmentation
task (either T2 lesion or new T2 lesion segmentation). These
were hosted at the IEEE ISBI conference (Carass et al., 2017) and
at MICCAI conferences (Styner et al.,, 2008; Commowick et al.,
2018, 2021). In all cases, no model was found to be perfect, when
evaluated on the basis of voxel-level segmentation metrics (under
or over-segmentation) and lesion detection metrics (e.g., false
positive rate), in comparison to the ground-truth segmentation
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obtained by human expert raters. Rather than indicative of a
failure of ML for automatic segmentation, we argue that this
finding should lead the community to rethink the way models are
evaluated. In all challenges, performance was measured against the
segmentation masks obtained from very few human experts, and
on relatively small datasets of at most one hundred participants.
Despite these challenge’s best attempts to address the intra and
inter-rater variability associated with the ground-truth lesion masks
obtained from human experts (Bozsik et al., 2022; Altay et al., 2013),
there remains no accepted consensus on what should constitute
“ground truth”. Where should one draw the lesion border, given
that lesional tissue manifests as a continuous spectrum of intensity
on MRI? How do we differentiate an enlarging lesion from
confluent new lesions? How do we know if hyperintensities
smaller than 3 mm [which are typically disregarded by expert
raters (Filippi et al., 2019) to avoid false positive detections], are
pathologically significant or not? Without answers to all these
questions, finding that DL methods disagree with human experts
is arguably insufficient to determine if they are truly inferior.
To address this issue, some have proposed explicitly modeling
the “label-style” that might be associated with a certain dataset
or group of expert-raters (Nichyporuk et al., 2022). Others have
avoided the use of ground-truth lesion masks altogether by framing
lesion segmentation as an unsupervised anomaly detection task
(Behrendt et al., 2023; Castellano et al., 2022; Luo et al., 2023;
Pinaya et al., 2022). Training on soft-labels (as opposed to binary
labels) (Gros et al., 2021; Lemay et al., 2022) and probabilistic lesion
counting (Schroeter et al., 2022) are yet other possible solutions. In
recognition of the importance of the problem of model evaluation
in the case of image analysis, a large international consortium
has recently published recommendations for model evaluation
(Maier-Hein et al., 2024; Reinke et al., 2024). Still, more work
has to be done to obtain answers to the problems specific to MS
lesion segmentation.

To conclude, segmentation, lesion detection, and volumetry,
are some of the oldest and most studied ML application in MS. In
many cases, they reach performances that are acceptable for many
clinical and research settings. More work is needed to determine
how best to evaluate automated segmentation frameworks.

4 Improving our understanding of MS

With an increasing number of datasets containing MRI images
of MS patients, and the plethora of open questions in MS
research, one may ask: could AI help us uncover novel markers
of MS diagnosis, evolution, and treatment response? For years,
patients with MS have been categorized into a binary classification
system consisting of relapsing-remitting and progressive clinical
phenotypes (Lublin and Reingold, 1996). It was later found that
significant overlap exists in disease evolution across these subtypes,
prompting the introduction of subtype-agnostic evolution-focused
terminology such as “relapse-associated worsening (RAW)” and
“progression independent of relapse-activity (PIRA)” (Lublin
et al, 2022). The current most accepted perspective is that
individual differences in disease course can be traced back to
different combinations of inflammatory, neurodegenerative, and
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compensatory processes that lie along a continuous spectrum
(Lassmann, 2019; Pitt et al., 2022; Vollmer et al., 2021).

This paradigm-shift, coupled with the fact that none of the
existing MRI biomarkers have been particularly predictive of
the key clinical outcome of disability progression (Filippi et al.,
2020), has led researchers to search for alternative MRI-markers
that could better explain the observed heterogeneity in disease
evolution and treatment response. Notably, Eshaghi et al. (2021)
and Pontillo et al. (2022) used an unsupervised ML algorithm called
SuStaln (Young, 2018) to identify disease subtypes characterized
by distinct temporal progression patterns on MRI. Both groups
found subtypes characterized by early cortical or deep gray matter
atrophy, early signal changes in normal appearing white matter,
and early T2 lesion accumulation. More work is needed to
externally validate these subtypes and better understand their
clinical correlates.

ML has also been used more directly to assist scientists in
uncovering novel MRI markers. One strategy involves taking
a pre-trained classifier (e.g., a model trained to predict MS
diagnosis, or future disease activity) and producing “saliency-
maps”. These allow researchers to visualize the features that are
thought to be “important” according to the classifier; for example,
features associated with a diagnosis of MS, poorer prognosis, or
specific phenotypes. By using heatmaps generated using layer-
wise relevance propagation, Eitel et al. (2019) found that a CNN
classifier pre-trained to predict MS diagnosis focused on T2-
lesions and their location, along with non-lesional or gray matter
areas that included the thalamus. Storelli et al. (2022) produced
heatmaps from a CNN that was trained to predict EDSS-worsening,
and identified differences in periventricular regions, white matter
lesions and the corpus callosum, for EDSS-worsened patients.
Zhang et al. (2021) interrogated different heatmap-generating
techniques to better understand crucial brain regions that could
help distinguish MS phenotypes, finding that the abnormalities
associated with SPMS were more extensive compared to RRMS,
the latter involving primarily the occipital region and, to a lesser
extent, the frontal region. Finally, Kumar et al. (2022) proposed to
identify candidate biomarkers of future new/enlarging T2 lesions in
an RRMS population through a process called counterfactual image
synthesis; specifically, by predicting how a patient’s MRI would look
like if they had a different future outcome (a counterfactual), and by
taking the difference between the real (factual) and counterfactual
images, markers that are predictive of future outcomes (in this case,
lesion activity) can be revealed.

Al can therefore be useful to better understand disease
evolution and heterogeneity. While exciting, this work remains
largely at the level of methodological development, and more
translational research will be needed.

5 Diagnosis

It is imperative that an MS diagnosis be confirmed rapidly,
and accurately, to ensure that patients receive the best possible
care. MS is currently diagnosed according to the 2017 McDonald
criteria, which combines historical, MRI, and laboratory data
(Thompson et al., 2018). While significant efforts have been made
to accelerate MS diagnosis, the heterogeneity of the disease and
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broad differential diagnosis still continues to put the clinician at
risk of misdiagnoses, which can delay the initiation of an adequate
treatment (Solomon et al., 2019; Brownlee and Solomon, 2021).
Recent diagnostic criteria might provide increased sensitivity for
the diagnosis, but at the cost of reduced specificity (Mescheriakova
et al., 2018; Habek et al., 2018). In this section, we will discuss
the use of AI for improving the accuracy and reliability of MS
diagnosis. Note that there is some overlap with Section 3, since the
detection of MS lesions on MRI is an important component of the
diagnostic criteria (but not the only one). In the current section,
the focus will be on the classification task of MS diagnosis, with the
understanding that automated lesion segmentation and detection
methods could be used upstream to provide image-derived features
to an MS classifier.

Both classical ML and DL methods have been applied to the task
of MS diagnosis, with MRI being the most common input modality
for the classifier [we refer the reader to dedicated reviews on this
topic for more details (Nabizadeh et al., 2022; Aslam et al., 2022;
Shoeibi et al., 2021)]. Reported diagnostic sensitivity, and especially
specificity, can be quite high [pooled sensitivity 92% (95%CI:
90%, 95%) and specificity 93% (95%CI: 90%, 96%), respectively,
according to a recent meta-analysis (Nabizadeh et al., 2023)]. Even
simple image-derived scalars such as the average of T1, T2*, and
the total/myelin bound water content, have been found to be highly
predictive (when used as input to train a supervised ML classifier)
of an MS diagnosis (Neeb et al., 2019).

Differentiating MS from other diseases that can mimic its
presentation is also an important task in the clinic. Rocca et al.
(2021) used a basic 3D-CNN with MRI as input to differentiate MS
from neuromyelitis optica spectrum disorder (NMOSD), central
nervous system vasculitis, and migraine, and found that the
diagnostic accuracy exceeded that of human experts. Similarly,
Kim et al. (2020) showed that MS could be differentiated from
NMOSD using a 3D-CNN based on the ResNet architecture
(He et al, 2016), as accurately as two neurologists. Huang
et al. (2022) found that a transformer-based image classifier (Xu
et al., 2021) could differentiate MS from NMOSD and myelin
oligodendrocyte glycoprotein antibody disease as accurately as two
neuroradiologists. MS could also be differentiated from hereditary
diffuse leukodystrophy with spheroids using linear discriminant
analysis (Mangeat et al., 2020), and from low grade tumors using
MR-spectroscopy-derived features as input to a variety of ML
models (Eksi et al., 2021; Preul et al., 1996).

Opverall, there is a growing amount of evidence supporting the
use of Al in MS diagnosis.

6 Prognostication and treatment
optimization

One of the main challenges for the clinician evaluating a patient
with a new diagnosis of MS is to predict long-term prognosis (the
evolution of the disease over time). The related task of treatment
optimization (predicting which treatment will have the most
beneficial effect) often depends on having an accurate prognosis.
This begs the question: can Al do any better? Many early research
efforts were focused on predicting the occurrence or timing of
clinically-defined MS subtype transitions, using these as surrogate
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markers of poor prognosis. However, as discussed in Section 4,
there has been a tendency to de-emphasize these subtypes in the
diagnosis and management of MS. Prognostication tasks that we
will focus on in this section therefore involve the prediction of the
evolution of specific manifestations of the disease, which include
radiologic activity (new/enlarging T2 lesions), relapses, disability
accumulation, and patient-reported outcomes.

Prognostication with respect to disability outcomes turns
out to be a very challenging task, even for AI (Seccia et al,
2021). When predicting disability progression from hand-crafted,
image-derived tabular features, Pellegrini et al. (2020) found that
a variety of classical ML models could achieve only modest
predictive performance (C-index < 0.65). Nonetheless, predictive
performance can vary greatly depending on what features are used
as input, on the model, and on the optimization procedure. With
regards to the input, Zhao et al. (2017) found that classical ML
methods performed better when adding image-derived features
from a 1-year follow-up MRI visit to the set of inputs, which
otherwise consisted of data recorded at a baseline visit. The benefit
of longitudinal follow-up was also highlighted in work that used
SuStaln (Young, 2018) for unsupervised temporal modeling of
imaging trajectories. Specifically, Pontillo et al. (2022) were able
to identify a “deep-gray-matter-first” subtype that was associated
with long-term cognitive impairment, and Eshaghi et al. (2021)
could identify a “lesion-led” subtype that was associated with both
confirmed disability progression and relapse rate. Using long term
clinical (non-imaging) follow-up data has also been shown to lead
to a considerable performance boost when predicting progression
(De Brouwer et al., 2021). All this evidence suggests that ML on
longer-term MRI data represents a promising, though challenging,
research direction.

With regards to the model type, Zhao et al. (2020) found
that ensembles of gradient-boosted trees such as XGBoost and
LightGBM performed better than alternative ML methods when
predicting 5-year EDSS worsening from logitudinal data collected
over 2 years, with an area under the curve (AUC) ranging from 0.79
to 0.83. Interestingly, their feature importance analysis [and that
of others (Law et al., 2019)] suggests that clinical disability metrics
(which includes the EDSS) might be more predictive than tabular
image-derived features for this particular task.

It is possible that voxel-level MRI data, which has been
understudied for the task of predicting clinical prognosis, could
harbor more predictive features of prognosis than traditional
image-derived features. In support of this hypothesis, Storelli et al.
(2022) were able to train a CNN to predict 2-year EDSS and
SDMT worsening with 75.0% sensitivity, and 87.5% specificity. It
is also possible that non-trivial implementation details, such as the
inclusion of a T2-lesion mask along with the raw MRI as input,
could further boost performance (Tousignant et al., 2019). These
studies hint at DIs potential to improve upon tabular, hand-crafted,
image-derived features (e.g., T2 lesion volume). In an attempt to
elucidate the relative contribution of voxel-level data to predicting
disability progression Zhang et al. (2023) studied a dataset of 300
MS patients, with a very large feature set spanning numerous MRI
sequences, laboratory data, demographic information, disability
scores, and unstructured clinical notes. Imaging, tabular data,
and notes were encoded and fused using various neural network
architectures, and used for predicting EDSS milestones 3-years
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later. While their best performing model made use of all three
modalities (AUC 0.8380), a model trained without the MRI
modality was only marginally worse (AUC 0.8078). Their study is
limited by a small dataset size, with a comparatively large feature
set, which could result in poor model optimization. More research
is therefore needed to explore this important question, but this will
require larger datasets, and additional methodological advances.

DL has also been used on radiologic markers of disease
activity, which in certain cases are more sensitive to disease
evolution than clinical measurements. A few studies have shown
promising preliminary results in predicting the future appearance
of new/enlarging T2 lesions from baseline MRI (Prabhakar et al.,
2023; Durso-Finley et al, 2023, 2022). Tabular, hand-crafted
image-derived features have also been used to classify a lesion
as active or inactive (Peng et al., 2021). Similar to the task of
predicting clinical prognosis (which focuses on predicting future
disability-related outcomes), there remains the possibility that
non-trivial methodological contributions may yield significant
performance gains.

Al tools that aid in prognostication can be used for treatment
optimization (for example, by favoring a more potent drug for
a patient predicted to have highly active disease); however, it
is also useful to consider the related task of estimating the
“treatment effect” of a medication on the disease course. The
most common treatment effect estimand that clinicians consider
as part of treatment-related decisions is the average treatment
effect, which typically is estimated using randomized clinical trials,
and represents the average effect of a treatment on a population
(compared to placebo or to a baseline drug). Some of the ML
research cited in previous sections have presented results pertaining
to treatment effect estimation. For example, the “lesion-led”
subtype discovered by Eshaghi et al. (2021) appears to be specify a
sub-group of individuals that experience a larger average treatment
effect. Another line of work in causal ML aims to personalize
treatment recommendations by predicting the treatment effect for a
particular individual given their unique characteristics (Curth et al,,
2024). For example, Durso-Finley et al. (2022) proposed a multi-
headed CNN to predict the individual treatment effect of several
treatments on new/enlarging T2-lesions, which used a person’s
MRI as input. Beyond treatment optimization, individual treatment
effect estimation could also play a role in improving the statistical
power of clinical trials by preferentially randomizing individuals
who are predicted to benefit from an experimental therapy (Falet
et al., 2022; Kanber et al., 2019).

In conclusion, although prognostication and treatment
optimization remain challenging tasks, MRI-based ML research
continues to improve upon previous baselines through diverse
methodological innovations. Some models appear to identify
subgroups of individuals that are more responsive to certain
disease modifying therapies. These results are therefore paving the
path toward precision medicine.

7 Discussion

In this review, we have presented several tasks where AI
systems might already reliably outperform human experts in
MS-specific applications. Indeed, a recent validation study by
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Barnett et al. (2023) provided evidence supporting the use
of AI tools for lesion detection and volumetric analyses, in
both clinical settings and research studies. We also discussed
tasks which are hardly feasible without recent advances in
DL, such as MRI sequence synthesis and automated biomarker
discovery.

As the performance of AI tools continues to improve, we
will arguably see increasing interest in trustworthiness, because
these AI systems are expected to take part in high-risk human
decision-making. Trust in AI systems is built in numerous ways,
one of which is by giving them the ability to explain the rationale
behind a model’s predictions, resulting in “explainable” AT systems
(Dosilovi¢ et al., 2018). Additionally, users should be aware of the
level of confidence that a model has in a particular prediction, and
how much this reflects the actual errors that a model might make.
This line of work, often referred to as “uncertainty” estimation
(and the related problem of calibration), allows users to know
when to trust a model’s predictions (Gawlikowski et al., 2023).
In addition, to trust that a model will behave well in practice,
there should be a good understanding of how it will generalize
to new data, and whether or not it will be robust to distribution
shifts (for example, if there is a change in acquisition protocol).
The field of causal machine learning (Sanchez et al., 2022), which
models the data generative process using causal models, promises
improved out-of-distribution generalization, and represents an
active field of research. MS researchers have begun to address all
three of these topics, specifically explainable methods (see examples
in Section 4), probabilistic modeling for uncertainty estimation
(Nair et al., 2020; Durso-Finley et al., 2023), and structural causal
models of MRI image generation (Reinhold et al, 2021), but
more work is needed to truly enable trustworthy Al-assisted MRI
analysis in MS.

Looking forward, it seems clear that highly capable AI systems
based on large foundation models (Brown et al., 2020; Devlin
et al.,, 2018; Touvron et al., 2023; Ramesh et al., 2021) will have
a major impact on biomedical imaging research, including in
MS. Certain chat-bots based on large language models (LLMs)
can now arguably pass the Turing test (Jannai et al., 2023), and
score higher than the average human on medical exams (Achiam,
2023). LLMs are increasingly being used in medical applications
(Agbavor and Liang, 2022; Patel and Lam, 2023; Singhal et al.,
2023; Jiang et al., 2023), and multi-modal inputs (which includes
biomedical imaging) are becoming more common (Moor et al,
2023). Although foundation models remain understudied in MS
applications, interesting future directions include using foundation
models to improve generalization from small MS-specific datasets,
through in-context learning (Dong et al., 2024), or fine-tuning.
That said, in order to reap all the benefits of foundation models
for MS-specific applications, several open problems need to be
solved. These include sub-par reasoning capabilities (Rae et al.,
2021; McKenzie et al., 2023; Arkoudas, 2023) which could be
dangerous in high-stakes environments such as healthcare (Richens
et al.,, 2020; Fraser et al.,, 2018), broader concerns regarding Al
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safety (Bommasani et al.,, 2021; Anderljung et al., 2023; Urbina
et al., 2022), and predictions that may be unacceptably skewed to
the detriment of a particular group of people (Mehrabi et al., 2021).
As more solutions to these problems are found, we can expect
an increasing focus on large foundation models in the coming
years, to help solve some of the most challenging tasks in MS
MRI-analysis.
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Multiple sclerosis (MS) is a chronic neuroinflammatory disease driven by immune-
mediated central nervous system damage, often leading to progressive disability.
Accurate segmentation of MS lesions on MRl is crucial for monitoring disease and
treatment efficacy; however, manual segmentation remains time-consuming and
prone to variability. While deep learning has advanced automated segmentation,
robust performance benefits from large-scale, diverse datasets, yet data pooling
is restricted by privacy regulations and clinical performance remains challenged
by inter-site heterogeneity. In this proof-of-concept work, we aim to apply and
adopt Federated Learning (FL) in a real-world hospital setting. We assessed FL for
MS lesion segmentation using the self-configuring nnU-Net model, leveraging
512 MRI cases from three sites without sharing raw patient data. The federated
model achieved Dice scores ranging from 0.66 to 0.80 across held-out test sets.
While performance varied across sites, reflecting data heterogeneity, the study
demonstrates the potential of FL as a scalable and secure paradigm for advancing
automated MS analysis in distributed clinical environments. This work supports
adopting secure, collaborative Al in neuroimaging, offering utility for privacy-
sensitive clinical research and a starting point for medical Al development, bridging
the gap between model generalizability and regulatory compliance.

KEYWORDS

federated learning, MRI lesion segmentation, privacy-preserving Al, distributed deep
learning, multi-site training

1 Introduction

Multiple sclerosis is a chronic autoimmune disorder of the central nervous system (CNS)
and is a leading cause of non-traumatic neurological disability among young adults (1). MS
affects more than 2.8 million individuals worldwide (2). The disease is characterized by
inflammatory demyelinating CNS lesions (3), which appear as hyperintense areas in white
matter on T2-weighted/FLAIR MRI and are crucial for diagnosis and monitoring disease
progression. Lesion burden correlates with disability (4), making accurate lesion segmentation
vital for evaluating treatment efficacy.

Manual MS lesion segmentation is the clinical gold standard but is labor-intensive and
prone to observer variability. Recent convolutional neural network approaches, including 3D
U-Net variants, have achieved Dice scores of 0.6-0.8 for automated MS lesion segmentation
on benchmark datasets (5). We employed nnU-Net, a self-configuring framework with strong
performance across diverse medical segmentation tasks (6). Clinical adoption of automated
segmentation methods remains limited due to the heterogeneity of MRI data, including

102 frontiersin.org


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1620469&domain=pdf&date_stamp=2025-09-10
https://www.frontiersin.org/articles/10.3389/fneur.2025.1620469/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1620469/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1620469/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1620469/full
mailto:sarah.hindawi@roche.com
https://doi.org/10.3389/fneur.2025.1620469
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1620469

Hindawi et al.

variations in acquisition protocols, scanner types, and lesion
characteristics across patient populations. Models trained on single-
center data may generalize poorly to external data due to distribution
shifts (7). Privacy regulations limit data sharing across centers,
limiting the ability to curate sufficiently large and diverse training
datasets. This fragmentation of data impedes the development of
generalizable AT models and continues to hinder machine learning
(ML) translation into clinical settings (8).

Federated learning (FL) has emerged as a promising solution by
enabling collaborative model training without exchanging raw data.
In a federated learning paradigm, each institution (client) trains a
local copy of the global model on-site. Instead of transferring patient
data, only the model’s learned parameters (e.g., weight updates) are
shared with a central server. The server aggregates the updates from
the participating clients to construct a consensus global model,
enabling collaborative learning while addressing privacy concerns and
utilizing otherwise inaccessible datasets. Despite its promise, FL is still
in the early stages of medical deployment (9) Two studies from the
same research group have investigated FL for MS lesion segmentation.
These studies used simulated FL environments with clinical and public
datasets (fewer than 200 subjects across scenarios) and reported
moderate Dice scores ranging from 54 to 77% (10, 11). A recent study
(12) also investigated FL for MS lesion segmentation as part of a
broader benchmark of five neuroimaging tasks, conducted in a
simulated FL environment, reporting Dice scores ranging from 63.2
to 70.2% on MSSEG dataset (13).

In contrast, our study deploys a federated learning framework for
MS lesion segmentation in a real-world, multi-institutional setting,
addressing legal and regulatory constraints that often hinder clinical
translation. These challenges, typically underexplored in simulated
environments, are addressed through a secure, end-to-end deployment
in which each site retains full ownership and control of its data,
demonstrating the practical feasibility of integrating FL into clinical
practice under strict data governance. We trained and evaluated the
model across three clinical institutions on a total of 512 MRI cases,
integrating both academic research and routine clinical data.
Specifically, we aim to establish a federated architecture for distributed
image analysis and assess the feasibility of training a model for
segmenting T2-weighted hyperintense MS lesions across sites. By
demonstrating FLs application to MS lesion segmentation, we aim to
strengthen the groundwork for privacy-preserving, collaborative Al
in neuroimaging.

2 Methods
2.1 Federated framework architecture

To enable privacy-preserving, multi-center training for MS lesion
segmentation, we extended our federated learning platform with
imaging capabilities by integrating it with an established open-source
framework for radiology image processing. Specifically, we utilized
Kaapana, an open-source platform described in (14, 15), to coordinate
local imaging processing and computational workflows. Kaapana is a
modular toolkit for medical image analysis that enables decentralized
data access, data management, and remote execution of containerized
algorithms. It supports private cloud development and integrates
seamlessly with local clinical IT infrastructure. The platform employed
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a client-server FL architecture to train the model across three
participating sites. Each client maintained a local copy of the model
and trained it on its own dataset of MR images. A central server acted
as the coordinating node, aggregating received model parameters
using the Federated Averaging (FedAvg) algorithm, which computes
a weighted average of the clients’ model weights (16). To address
operational, security and collaboration network scalability needs in
real-world clinical environments, we extended our setup with
additional enterprise-grade computational governance capabilities
developed by Apheris, enabling institutions to collaborate securely on
distributed data within a governed and privacy-preserving framework.
This integration allowed all collaborating institutions to retain
end-to-end control over algorithm execution. Although open-source
solutions offer transparency and adaptability, their integration into
clinical workflows can introduce operational overhead, including the
need for manual code reviews. To mitigate this challenge and reduce
risk, we implemented a centralized algorithm review process with a
controlled algorithm pull mechanism from a central container
registry, ensuring reproducibility, data and model governance, and
streamlined collaboration without exposing sensitive data.

By design, the federated model should be exposed to a wider
variety of imaging patterns (patient demographics, scanner types,
artifact profiles) than any single-site model, ideally resulting in a more
generalizable model. MRI data were preprocessed using a standardized
pipeline applied consistently across all sites to ensure uniform
orientation and registration. We employed nnU-Net, which
automatically configures its architecture, preprocessing, and training
pipelines to the given dataset, enabling site-specific adaptation and
efficient deployment with minimal computational and implementation
overhead (6). The model was trained across sites using a uniform
configuration and shared hyperparameters. Each site used locally
managed infrastructure, typically comprising GPUs with at least
24 GB of VRAM (NVIDIA Turing or newer) and at least 64 GB of
RAM. The training was done in a synchronous federated manner such
that all sites participated in each round. By the end of training, the
final federated model was evaluated on held-out test sets at each
participating site.

Throughout the federated training, no MR images or patient
identifiers were ever exchanged. Only data fingerprints, containing
image sizes, voxel spacings, and intensity characteristics for model
initialization, along with model parameters were shared during FL
iterations. Dataset fingerprints were required for the adaptive, rule-
based configuration of the segmentation pipeline, including the
selection of the patch size, network topology, and batch size, all of
which depend on image properties (6). This approach together with a
decentralized architecture inherently preserves data privacy, as an
adversary cannot directly access the underlying images through the
central server. To further secure communications, all network traffic
between the server and client nodes was encrypted using state-of-
the-art protocols. Each participating site deployed and operated a
local platform within its own firewall, allowing the central
orchestration server to invoke nnU-Net federated training workflows
on local data. We implemented local basic authentication for the
nodes and an external identity and access mechanism for the central
node. This design enables more autonomous, isolated and efficient
deployment at each site. Node authentication within the federated
network is based on a centrally generated token that each site receives
via independent media during registration. This token includes: 1. an
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SSL certificate, 2. an authentication token, 3. connection details of the
central instance and 4. a symmetrical encryption key as an additional
protection mechanism for data in transit. To simplify deployment and
avoid dependencies on potential vulnerabilities in the open-source
network stack, we opted not to implement a dedicated virtual network
infrastructure for federated nodes. Instead, we introduced a
symmetric encryption layer implemented explicitly at the federated
client and server applications. Due to its inherent speed, this
mechanism was well-suited for encrypting client-generated weights
at each round. Additionally, it served as a safeguard to ensure secure
communication between clients and the central node, effectively
replicating the protection typically provided by a virtual
private network.

This setup guarantees the authenticity of the contributing clients
and prevents spoofing or tampering within the federated network.
Each client application maintained a list of approved datasets and
workflows for federated processing, allowing site personnel to
contribute to model training without relinquishing control over their

10.3389/fneur.2025.1620469

data. This approach is compliant with data protection regulations and
addresses the ethical concerns of data sharing.

The federated learning architecture (illustrated in Figure 1)
supports the following key user workflows:

1. Model publication by ML Engineer - A locally tested model is
converted into its federated version and uploaded to a central
model repository. Once approved by the site Data Custodian,
it becomes available for execution at the corresponding sites.
Upload of data assets and data access policies by the Data
Custodian - At each site, the Data Custodian defines which
models are authorized to access the uploaded data. This enables
Gateway agents to accept requests to execute approved
ML models.

Federated Workflow Execution by Data Scientist - Using the
Python SDK, the Data Scientist interacts with the Federated
Learning Orchestrator to initiate computation pods at the
federated nodes (workers) and the central platform

federated node.

C2 - Federated Learning Central Platform £
’ ) C2.4 Approval
W publish Model to _ C2.?'.’> o \'cllorkﬂow
repository Container [€4—— anager
Repository pull compute
ML Engineer E /
L 4 uses CLI/SDK > c2.1 c2.2
»| Orchestrator Computation
API Pod
Data Scientist A
; Central
pull compute container
‘ Get computation Local
A A
—“ requests requests jobs |
5 - posts results
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Data Custodian
C1 - Federated Node
C1.1 Gateway z] C1 - Federated Node ;]]
Upload data Agent C1 - Federated Node g]]
manage pod C1 - Federated Node ]
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Visualisation _]
L. _ C1.2
"| Computation Pod
C1.6 Image -
> Processing get data
Orchestrator —
wiite Uy C1.3 Data Access
Layer
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Persistent storage
FIGURE 1

High-level solution architecture showing the integration of Kaapana and Apheris into a single solution. This extended architecture allows site personnel
to control processing pipelines executed on their data. It supports three primary user workflows and illustrates basic component interactions at a single
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(aggregator), in accordance with the approved data access
policies. This setup facilitates the full execution of nnU-Net
training across the participating sites.

2.2 Description of datasets

This is a multi-center, multi-country study utilizing anonymized
MRI data from patients with MS. The study involved in-house data
from a previous Roche-sponsored trial at our site (Site A, 149 cases,
each consisting of paired Tlw and FLAIR images), as well as
anonymized observational data from two academic medical centers:
one in Switzerland (Site B, 325 cases) and one in Germany (Site C, 38
cases). A total of 512 expert-annotated MRI cases were used, of which
380 were allocated to training and validation. Patients were uniquely
assigned to either the training/validation or test sets to avoid data
leakage and ensure unbiased model evaluation. In accordance with
data protection principles, all data remained local at each site and were
never shared centrally.

The datasets included 1 mm isotropic 3D T2-weighted/FLAIR
and T1-weighted sequences (with a tolerance of 0.1 mm, ranging
from 0.9 to 1.1 mm). Scans were acquired on Siemens, Philips, and GE
Medical Systems scanners at a field strength of 3 Tesla, and each site
followed its own routine clinical MRI protocol, resulting in some
heterogeneity in image resolution and contrast. Site A contributed
data from a range of scanner models across the three vendors: Siemens
(Skyra, Verio, Prisma, Prisma_fit, TrioTim), Philips (Achieva, Achieva
dStream, Intera, Ingenia), and GE Medical Systems (Signa HDxt,
Discovery MR750, SIGNA Premier). Site B provided data acquired on
Siemens Skyra and Skyra Fit scanners, while Site C used the Siemens
Skyra Fit. Table 1 summarizes dataset characteristics across sites. The
diversity of imaging sources and clinical presentations should reduce
site-specific biases and enhance generalizability.

To ensure data consistency, T1-weighted images were registered
to their corresponding FLAIR sequences, and automated quality
control was applied to identify potential image quality issues. This
diverse dataset, representing multiple sites with varying imaging
protocols, was used to assess the federated approach under realistic
conditions of inter-site heterogeneity.

2.3 Preprocessing for image
standardization

A standardized automated preprocessing pipeline was applied to
ensure data consistency across all sites. This process included
automated quality control procedures assessing key image properties.
Signal-to-noise ratios (SNR) were computed in modality-specific
anatomical regions to estimate overall image quality. T1w SNR was

10.3389/fneur.2025.1620469

calculated in the brain parenchyma, while FLAIR SNR was calculated
in the cerebrospinal fluid. Artifact presence was estimated using the
MAI-Lab sorting and artifacts detection tool (17), and cropping was
detected by evaluating brain coverage across anatomical boundaries.
Voxel dimensions were validated against the expected isotropic
resolution (1.0 £ 0.1 mm), and inter-modality brain mask volume
similarity was assessed to detect major discrepancies or modality-
specific artifacts. All MRI data were reoriented to a standardized axial
orientation to ensure uniform spatial alignment. T1-weighted images
were registered to their corresponding FLAIR images, correcting for
positional misalignment. These preprocessing steps were performed
locally at each site using Kaapana and integrated into the federated
learning workflow, ensuring uniformity in the input data across sites
for subsequent model training.

2.4 Model selection and training

We selected nnU-Net for its robust performance across diverse
medical segmentation tasks, offering automatic adaptation and
competitive results without manual customization (6). nnU-Net
handles preprocessing, architecture selection, and postprocessing,
reducing the need for extensive manual intervention. It is also well-
suited for 3D multi-modal input, automatically configuring an
appropriate 3D U-Net architecture based on input image dimensions
and hardware constraints.

Local training at each site adhered to the standard nnU-Net
training configuration and hyperparameters, with configurable
values set to a learning rate of 0.01, weight decay of 3 x 107%, 250
training batches per epoch, and 33% foreground oversampling. The
model used the standard Dice loss combined with cross-entropy, as
provided by the default configuration of nnU-Net. We conducted
50 rounds of federated training, with each round corresponding to
one local epoch at each site. Limiting local training to a single
epoch helped prevent models from overfitting to local data and
drifting from the global objective. Training progress was monitored
by tracking site-level training and validation losses after each
federated round to ensure stability and detect potential divergence.
After each round, the server aggregated client weight updates using
the FedAvg algorithm to generate a new global model, which was
then redistributed to all sites.

The final global model obtained after 50 rounds of federated
training was evaluated independently at each site using its respective
held-out test set. Model evaluation at the three participating sites
included both quantitative metrics such as Dice score, sensitivity, and
precision, as well as a qualitative review by a neuroradiologist to assess
overall performance, including true positive detection and tendencies
to miss lesions across anatomical regions. To benchmark against a
non-federated scenario, we trained and tested a baseline nnU-Net

TABLE 1 Summary of site-specific data including number of cases, scanner vendors, and lesion characteristics.

Site Train/Validation cases Test cases Scanner vendors Median Lesion Median Lesion
volume (cc) count

Site A 105 44 Siemens, Philips, GE 4.54[2.35-9.36] 44 [25-67]

Site B 247 78 Siemens 4.90 [1.53-13.81] 33 [19-55]

Site C 28 10 Siemens 2.48 [0.58-3.91] 27 [8-65]
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model locally using our site’s data. This enabled a comparison between
the performance of the federated model and the locally trained model,
both evaluated on the same test set from our institution.

2.5 Privacy and security considerations

Patient privacy was a core requirement of our FL framework,
which inherently avoids sharing raw imaging data. All images were
anonymized at their source by removing identifying metadata (e.g.,
DICOM headers), ensuring that no personally identifiable information
was accessible. Federated training was conducted within protected
compute environments, with each site’s data remaining on secure local
infrastructure. Our configuration follows enterprise-grade governance
principles, ensuring that each client site retains full control over which
algorithms are executed on its data. This level of control allows
individual node administrators to prevent the execution of
unauthorized or potentially malicious code, thereby strengthening
overall system security.

As described in the Architecture section, only sites that received
a secret, unique token were allowed to contribute to the central model
thus
communications between sites and the central server were

updates, limiting potential poisoning attacks. Since
TLS-encrypted, and additionally encrypted at the sites with a
symmetric key shared within the token, the risk of an adversarial
attack was minimal. The central cloud-based environment employed
AWS Well-Architected Framework mechanisms, with access to the
Federated Orchestrator restricted to a predefined IP range. This setup
limited the marginal risk of reconstruction or inference attacks and
allowed the use of original parameters and weights from

individual nodes.

10.3389/fneur.2025.1620469

While FL reduces data privacy risks by design, it is not entirely
immune to threats such as model inversion or membership inference
attacks. To mitigate these risks, we adopted strict security principles
integrated directly into the framework. Execution of any machine
learning code or federated learning configuration requires explicit
approval from each participating site. Comprehensive encryption and
tightly controlled access to both site and central nodes further
minimize the risk of sensitive data leakage or attacks by unauthorized,
potentially malicious actors.

From a regulatory standpoint, this study adhered to data
protection laws. Since only model parameters and not raw data were
exchanged, each institution maintained full control over its data. Our
framework serves as a starting point for multi-center collaborations,
promoting secure Al development in medical imaging.

3 Results
3.1 Quantitative analysis

We conducted 50 rounds of federated training, with each round
corresponding to one local epoch per site. In our setting, preliminary
experiments with additional local epochs per round resulted in abrupt
performance degradation, which may reflect FedAvg’s sensitivity to
data heterogeneity (18). This aligns with observations in the literature
where non-IID data or class imbalances can cause gradient
misalignment, driving local models away from the global objective
(19). Model performance over 50 federated rounds is shown in
Figure 2. Most reductions in training and validation losses occurred
within the first 10-15 rounds, after which learning progressed more
gradually. As the system retains only model weights from the final
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training round, we adopted a fixed training schedule rather than an
adaptive early stopping strategy based on convergence. Extended
training revealed that additional rounds improved performance at
certain sites, while others experienced a decline, potentially due to
model drift or overfitting to dominant patterns. Although 50 rounds
may not represent the global optimum, this configuration provided a
balanced trade-off across all participating sites.

To assess model performance, we compared a locally trained
model to its federated counterpart using a held-out test set of 44 MRI
cases from our site. Both models were trained using the same
hyperparameters and configuration to ensure a fair comparison. A
local nnU-Net model trained for 50 epochs using only our site’s
training set achieved a mean Dice score of 0.88 + 0.04, sensitivity of
0.85+ 0.05, and precision of 0.90 £ 0.05 on our site’s test set. In
comparison, the federated model, trained for 50 rounds with one local
epoch per round across the three sites, achieved a mean Dice score of
0.80 + 0.07 on the same test set. While the federated model showed a
lower Dice score, it demonstrated higher sensitivity (0.89 + 0.07 vs.
0.85), indicating improved lesion detection, albeit with reduced
precision. One-sided Wilcoxon tests indicated that the local model
had significantly higher Dice and precision (p = 5.7 x 107" for both).
In contrast, the federated model showed significantly higher sensitivity
based on a one-sided paired t-test (p = 2.4 x 1077). In a clinical context,
higher sensitivity is valuable for minimizing the risk of missed lesions;
however, the corresponding decrease in precision reflects a higher rate
of false positives, which may result in unwarranted diagnostic
procedures, increased clinician workload, and patient distress.

To evaluate the cross-site generalizability of the federated model,
we evaluated it on held-out test sets from the other two participating
sites, comprising 78 and 10 cases, where it achieved mean Dice scores
of 0.71+0.15 and 0.66 +0.16, respectively. These results are
summarized in Table 2. A Kruskal-Wallis test across all sites showed
significant site-dependent variability in Dice scores (p = 3.05 x 107°).
Given the limited test sample size at Site C, we further conducted a
two-sided Mann-Whitney U test between Site A and Site B, which
also indicated a statistically significant difference in Dice scores
between the two sites (p =3 x 107°).

Figure 3 presents the distribution of performance metrics for each
site, with Sites A and B showing relatively more consistent distributions
and Site C exhibiting broader variability, reflecting inter-site
differences in model generalization. Although performance varied,
likely due to differences in imaging protocols, scanner types, or
annotation standards, the model maintained moderate segmentation
performance across diverse clinical environments without access to
raw patient data. Importantly, federated training does not preclude
subsequent site-level adaptation. Fine-tuning the global model on
local data can help capture site-specific patterns, offering a balanced

TABLE 2 Federated model performance on the test set from each
participating site.

Site Dice Sensitivity Precision
Score

Site A 0.80 + 0.07 0.89 + 0.07 0.74 +0.11

Site B 0.71+0.15 0.74+0.11 0.70 +0.17

Site C 0.66 + 0.16 0.64 +0.19 0.74+0.23

Metrics are reported as mean + standard deviation for Dice score, sensitivity, and precision,
highlighting inter-site variability in segmentation accuracy.
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approach that preserves the robustness gained from diverse data while
recovering the precision of locally optimized models.

3.2 Qualitative assessment

To complement the quantitative evaluation, a qualitative
radiological assessment was conducted to examine the alignment
between visual observations and metric-based performance. A board-
certified neuroradiologist and MS expert assessed aspects not fully
captured by global quantitative metrics, such as pathological
plausibility (e.g., false negatives and false positives), anatomical
consistency (e.g., periventricular, subcortical, and other region-
specific biases), and morphological correctness (e.g., small versus large
lesions). The expert reviewed lesion masks generated by (1) the
federated model trained across all sites and (2) a model trained solely
on local data from our site. As in the quantitative evaluation, the
comparison was performed on outputs generated from the held-out
test set at our site, with the models’ outputs reviewed side by side to
identify clinically meaningful differences in segmentation behavior.

Figure 4 presents a visual comparison on a FLAIR slice from our
site’s test set, with model predicted segmentation masks overlaid on
the image. The results highlight key differences between the models,
with the federated model detecting more lesions, reflecting higher
sensitivity, but also introducing more false positives. While further
validation is warranted, these findings demonstrate the feasibility of
federated learning for automated MS lesion segmentation,
underscoring its potential for broader clinical application.

4 Discussion

This Proof of Concept study demonstrates the end-to-end
technical feasibility of deploying federated learning as a scalable,
privacy-preserving framework across clinical institutions, each with
distinct privacy constraints, data governance policies, and technical
environments. Our work addresses a gap often overlooked in
simulated FL research by preserving full data governance at each site
while supporting scalable algorithm integration and institutional
participation. By integrating Kaapana and Apheris, our framework
enables autonomous data curation and enforces consensus-based
algorithm approval prior to execution at each site, enhancing both
privacy and operational security. This design allows each institution
to manage its own imaging workflows while safeguarding against
unauthorized computation, making the approach particularly well-
suited for sensitive clinical environments. This federated setup is
inherently portable and supports scalable, efficient deployment. It can
be extended to additional institutions by deploying a platform instance
at each site with secure client-to-server communication. This modular
architecture emphasizes flexibility, reproducibility, and compatibility
with diverse governance policies, enabling broader future adoption.

Building on this infrastructure, we evaluated the federated model
on the held-out test set from each participating site. For comparative
analysis, we also compared its performance on our site’s held-out test
set relative to a model trained and tested locally. Although the
federated model showed a lower Dice score compared to the locally
trained model at our site, it achieved higher recall, which may indicate
improved lesion detection. This trade-off reflects a core challenge in
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Density plots of segmentation metrics across sites. The plots show the distribution of (a) Dice score, (b) sensitivity, and (c) precision for Site A, Site B,

and Site C, reflecting inter-site variability in segmentation performance.

(b)

FIGURE 4

(d

Comparative visualization of lesion segmentation between training paradigms: (a) FLAIR MRI slice without annotations; (b) Ground truth manual
segmentation; (c) Prediction from the local model (trained solely on our data); (d) Prediction from the federated model (trained across three sites). The
federated model detects more lesions but also introduces additional false positives, reflecting the trade-off between sensitivity and precision.

FL as it requires balancing global generalization with site-specific
optimization. The observed performance gap in Dice score likely
stems from the federated model’s exposure to heterogeneous, non-I1ID
data across institutions, which encourages learning generalized
representations rather than overfitting to any specific site’s patterns.
Federated models are optimized to perform robustly across diverse
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data distributions, enhancing sensitivity to subtle or atypical lesions
that may be underrepresented in any single site’s dataset. However,
this improvement in sensitivity was accompanied by reduced
precision, as the federated model might not fully adapt to site-specific
imaging features and annotation styles. This misalignment may cause
the model to over-segment or misclassify challenging regions,
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resulting in an increased number of false positives. Additionally, while
local training on homogeneous data can converge rapidly, federated
learning may require more rounds to achieve comparable performance
due to the challenges of learning from fragmented and non-IID
data distributions.

Beyond performance trade-offs, our study highlights several
practical challenges that are often overlooked in simulated FL settings.
First, in synchronous FL workflows, training requires all sites to
remain active; resource outages or downtime at any site can halt the
entire federated round. Second, training local models for comparison
with the federated model requires technical expertise at all
participating sites, which may not always be readily available. In
contrast, participation in federated training and quantitative
evaluation of the federated model in our setup did not require
machine learning expertise. Third, centralized baseline models trained
on pooled multi-site data, which are commonly used as performance
upper bounds for federated models, are often infeasible in real-world
clinical settings due to data privacy regulations, as was the case in our
study. These constraints underscore the gap between FL in theory and
its real-world implementation.

It is also worth noting that the federated model in this Proof of
Concept study was not intended to optimize performance, and thus
was only trained on a relatively small dataset (380 cases), whereas many
deep learning studies rely on datasets exceeding 1,000 cases (20) or
even tens of thousands in population-scale initiatives like UK Biobank
(e.g.» 39,694 subjects (21)). While expanding to larger, more diverse
cohorts is expected to improve generalizability, site-specific accuracy
gains may require complementary strategies. For instance, fine-tuning
the federated model on local data can improve local performance, but
risks catastrophic forgetting, where local adaptation distorts
generalizable representations learned during federated training,
leading to degraded performance on external datasets. To address this,
personalized FL strategies such as FedBN (22), which retains local
batch normalization statistics to account for domain shifts, and Ditto
(23), which optimizes a personalized objective while maintaining
alignment with the global model, have shown promise in non-IID
settings. Additionally, adaptive aggregation adjusts client contributions
to better manage data skew, with methods like FedProx (24)
introducing a proximal term to reduce client drift and improve
convergence stability.

While this study demonstrates the technical feasibility of FL in
real-world settings, future research should explore integrating adaptive
aggregation, personalized FL strategies, and expanding datasets to
further improve model performance in heterogeneous environments.
Overall, these findings establish a starting point for adopting federated
learning in clinical practice, with potential for future scaling to multi-
modal and longitudinal MS studies.

Software and resources

The federated learning infrastructure was implemented using the
open-source Kaapana platform (https://github.com/kaapana/kaapana),
with the nnU-Net training pipeline available at https://github.com/
kaapana/kaapana/tree/develop/data-processing/processing-pipelines/
nnunet. Additional computational governance capabilities were
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supported by Apheris (https://www.apheris.com), enabling secure
collaboration across participating institutions.
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