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Editorial on the Research Topic

Use of big data and artificial intelligence in multiple sclerosis
Introduction

As health data volume and the sophistication of artificial intelligence (AI) tools grow,

their potential to transform the management of complex neuroimmunological conditions

like multiple sclerosis (MS) has become increasingly evident (1). MS, a chronic immune-

mediated inflammatory disorder of the central nervous system, presents a unique challenge

in the health sector due to its multifactorial nature and variable progression patterns. Each

patient’s journey is marked by distinct symptom trajectories and responses to treatment,

demanding personalised approaches in diagnosis, prognosis, and therapeutic interventions.

(2, 3).

This Special Topic aims to address the clinical complexity of MS by leveraging data

driven insights and innovative health initiatives. The overarching goal is to present the

current challenges in MS research and explore recent advances and future trends that can

significantly impact patient care. Through a Research Topic of reviews, perspectives, and

original research articles, we explore how advanced data techniques and innovative health

initiatives are shaping the future of MS research and care.
Inspiring examples to showcase the potential

We kick-start with spotlighting a recently approved European Project, ‘Clinical Impact

through AI-assisted MS Care’ (CLAIMS). Praet et al. explains how this project will develop,

validate and seek regulatory approval for an AI-driven clinical decision-support platform,

which offers the MS care team a holistic view of the patient through the visualisation of all
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relevant patient data and the prognosis on the expected disease

trajectories under different treatment regimens. Next to this, two

original research contributions further illustrate AI’s capacity to

enhance MS treatment personalization and early diagnosis. Ilan

et al. examine how advanced AI systems can help personalise and

diversify treatment regimens, reducing the risk of drug tolerance.

Meanwhile, Albuz et al. examine how AI-assessed volumetric

measurements of specific brain regions correlate with

neuropsychological test outcomes in patients with clinically

isolated syndrome, illuminating potential early indicators of MS.
Magnetic resonance imaging and AI in
MS

MRI remains central to diagnosing, monitoring, and optimising

MS treatment due to its ability to non-invasively visualise both

lesional and nonlesional brain pathology. However, the potential of

MRI is often constrained in clinical practice by lengthy protocols,

challenges in lesion identification, and limited predictive power

regarding disability progression. Falet et al. highlight recent AI

advances that could enhance MRI’s accuracy and broaden its

predictive capabilities, improving critical patient outcomes.
Digital tools and AI in MS

The integration of digital monitoring tools, big data, and AI

presents new possibilities for real-time tracking of MS symptoms

and progression. Dini et al. explore the latest advancements in

digital remote monitoring, with devices like wearables and

smartphones playing an increasing role in the field. These

technologies, coupled with AI analytics, are demonstrating

reliability in assessing motor symptoms such as fall risk and gait

irregularities, both in clinical settings and through passive, real-life

monitoring. While cognitive monitoring is still evolving, AI-driven

tools are now beginning to automate neuropsychological test

scoring and passive keystroke analysis, setting the stage for

continuous, long-term data collection on both motor and

cognitive symptoms.
Biomarkers and AI in MS

Expanding the scope to biological markers, Arrambide et al.

delve into AI methodologies applied to serum, blood, and

cerebrospinal fluid (CSF) biomarkers, outlining key studies,

limitations, and future directions. Notably, this systematic review

reveals that most research papers on AI applications to biomarker

data in MS have been published within the past four years,

underscoring that this field is still in its early stages and remains

some distance from widespread clinical application.
Frontiers in Immunology 025
Future trends

Recognizing the necessity of reliable and interpretable machine

learning (ML) in MS, Werthen-Brabants et al. emphasise the need

for Trustworthy ML. Given the complex and individualised nature

of MS, these authors advocate collaborative efforts among

researchers, clinicians, and policymakers to develop ML solutions

that are technically robust, clinically relevant, and patient-centred.

Patient-reported outcome measures (PROMs) are vital for

capturing the lived experiences of people with MS, providing

insights that enrich clinical understanding. However, PROMs are

underutilised in both clinical research and routine care. Helme et al.

discuss the challenges in scaling PROMs and highlight efforts to

integrate health outcomes data across Europe and beyond, noting

initiatives like the European Health Data Space (EDHS) that may

expand their application.

While the MS community has made substantial progress in

leveraging data for research and patient care, several large-scale

collaborative efforts across Europe—though not exclusively focused

on MS—have the potential to transform the management and

application of health data across various diseases, including MS.

Peeters highlights key initiatives such as the EHDS, DARWIN-EU,

the Observational Health Data Sciences and Informatics (OHDSI),

EBRAINS, and ELIXIR. She outlines the challenges that remain in

aligning with these initiatives and offers concrete, actionable

recommendations to guide the MS research community toward

more effective integration and collaboration.
Conclusion

We believe this special topic has opened new perspectives, and

gives us some indications of where the field of Big Data and AI inMS is

heading. First of all, it testifies that the domain is expanding rapidly. At

the same time, however, researchers will have to solve some open

issues, such as the need to develop trustworthy, reliable AI models,

consistently capture multidimensional longitudinal data, incorporate

the patient perspectives and the alignment with evolving regulatory

frameworks such as the EHDS. We hope you find this Research Topic

as inspiring and impactful to read as it was for us to prepare.
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Universitätsmedizin Berlin, Berlin, Germany, 3Department of Neurorehabilitative Sciences, Casa di
Cura Igea, Italy, 4Department of Neurology, Vita-Salute San Raffaele University-Ospedale San Raffaele,
Milan, Italy, 5Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine,
Charles University and General University Hospital, Prague, Czechia, 6Center of Clinical Neuroscience,
Department of Neurology, University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany, 7Univ.
Lille, InsermU1172 LilNCog, CHU Lille, FHU Precise, Lille, France, 8Institute of Neuroradiology, St.
Josef Hospital, Ruhr-University Bochum, Bochum, Germany, 9Athinoula A. Martinos Center,
Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States,
10Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland,
11Department of Computer Science, Aalto University, Espoo, Finland, 12European Charcot Foundation,
Brussels, Belgium, 13SYNAPSE Research Management Partners, Madrid, Spain, 14Nocturne GmbH,
Berlin, Germany, 15AB Science, Clinical Development, Paris, France, 16Imcyse SA, Liège, Belgium,
17Bristol-Myers Squibb Company Corp, Princeton, NJ, United States, 18F. Hoffmann-La Roche Ltd.,
Product Development Medical Affairs, Neuroscience, Basel, Switzerland, 19Experimental and Clinical
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Multiple sclerosis (MS) is a devastating immune-mediated disorder of the central

nervous system resulting in progressive disability accumulation. As there is no

cure available yet for MS, the primary therapeutic objective is to reduce relapses

and to slow down disability progression as early as possible during the disease to

maintain and/or improve health-related quality of life. However, optimizing

treatment for people with MS (pwMS) is complex and challenging due to the

many factors involved and in particular, the high degree of clinical and sub-

clinical heterogeneity in disease progression among pwMS. In this paper, we

discuss these many different challenges complicating treatment optimization for

pwMS as well as how a shift towards a more pro-active, data-driven and

personalized medicine approach could potentially improve patient outcomes

for pwMS. We describe how the ‘Clinical Impact through AI-assisted MS Care’

(CLAIMS) project serves as a recent example of how to realize such a shift
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towards personalized treatment optimization for pwMS through the

development of a platform that offers a holistic view of all relevant patient data

and biomarkers, and then using this data to enable AI-supported

prognostic modelling.
KEYWORDS

multiple sclerosis, personalized medicine, disease progression, prognosis, diagnosis,
AI, data
1 The heterogeneous disease course
of multiple sclerosis

Multiple sclerosis (MS) is a devastating immune-mediated

disorder of the central nervous system (CNS) resulting in

progressive disability accumulation in most individuals affected

(1, 2). MS imposes a significant burden on patients, affecting all

aspects of their life, and additionally, it poses a significant challenge

to society as with growing disability, indirect expenses (productivity

losses associated with sick absence, inability to work, and early

retirement) and care costs rise substantially (3).

The classical view on MS describes different clinical subtypes,

with relapsing-remitting MS (RRMS) being the most common

form, occurring in 85% of patients (National MS Society).

Patients with RRMS experience neurological exacerbation

(relapses) as well as intermittent periods of remission in which

they remain clinically stable. Relapses can either recover completely

or leave persistent clinical disability, referred to as Relapse

Associated Worsening (RAW). Among these patients ,

approximately two-thirds progress to secondary-progressive MS

(SPMS) (4). In contrast to RRMS, the disease course of patients with

SPMS or primary-progressive MS (PPMS, 15% of MS patients) is

mainly driven by a gradual worsening of disability in the absence of

relapse activity (5).

Recent research has challenged this classical view of distinct MS

subtypes, as they may not sufficiently account for the large spectrum

of multifaceted clinical phenotypes and disease courses as well as

sub-clinical disease variability (6). This disease heterogeneity is

further complicated by a high prevalence of comorbidities and

multi-pharmacy in MS. Data from the NARCOMS registry

suggested that, at the time of MS diagnosis, 35% of MS patients

suffer physical comorbidities while 18% reported a psychiatric

comorbidity (7, 8). Additionally, accumulation of clinical

disability independent of acute inflammatory relapses -

commonly referred to as Progression Independent of Relapse

Activity (PIRA) (9) - was found to occur in any of the classical

MS subtypes, including RRMS, and at any stage of the disease (10,

11). Most importantly, in a substantial proportion of people with

MS (pwMS), PIRA occurs already very early on, and this is

associated with worse long-term outcomes (2). Recent studies
028
have also shown that PIRA gradually becomes the dominant

driver of disability worsening as the disease progresses (9).

While new insights into PIRA continue to be unraveled, exact

criteria of how to define, assess, and monitor PIRA are still lacking.

Several definitions have been put forward, but these focus mainly

only on measuring disability worsening by means of the Expanded

Disability Status Scale (EDSS) and Confirmed Disability Worsening

(CDW) (2). Relying solely on EDSS or CDW to describe PIRA,

however, seems to be insufficient as (i) there are heterogeneous

symptoms and disease aspects contributing to disability worsening

and MS severity, and (ii) this omits sub-clinical processes such as

compartmentalized inflammation, chronically active (smouldering)

lesions, diffuse normal-appearing matter damage (12, 13), as well as

brain (14) and spinal cord atrophy (15, 16). Such processes seem to

represent relevant substrates of (silent/smouldering) disease

progression even during early stages and to contribute to

enhanced long-term disability worsening in pwMS (17). In this

regard, the topographical disease model proposed by Krieger et al.

may facilitate the interpretation of the clinical course revision,

providing a unified visualization across phenotypes, while

providing insights in the interplay between the distinct processes

of relapse activity and progression, and accounting for latent

variables such as relapse localization, frequency, severity, recovery

and progression rate (18). Additionally, this model was recently

validated in terms of brain MRI markers (19). Aligning with this

model, individuals deemed neurologically normal in early MS (e.g.,

with an EDSS score of 0) demonstrated subtle deficits in high-

challenging motor tasks (20) and often have fatigue (21) and

cognitive impairments (22). The former was also shown to

correlate with imaging markers of disease burden and brain

reserve, challenging traditional severity definitions and

underscoring the importance of looking beyond standard clinical

measures such as the EDSS (20).
2 A changing landscape in
treatment strategies

The heterogeneity in disease progression among individuals

with MS (both clinically and sub-clinically) contributes to a high
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diversity in treatment responses across pwMS (23). As there is no

cure available yet for MS, the primary therapeutic objective is to

slow down disability progression and to reduce relapses as early as

possible during the disease to maintain and/or improve the health-

related quality of life (24).

To this end, all regulatory-approved disease-modifying

treatments (DMT) have shown their worth in preventing relapses

during the few years of the clinical trial in which their efficacy was

evaluated. However, the impact on the long-term accumulation of

disability and chronic subtle disease processes was often limited as

even the most effective DMTs available were only able to mitigate

the short-term risk of disability progression by 30-42% (25). A

recent review from Gasperini et al. emphasizes how dire the

situation really is, indicating that only 30- 40% of patients

receiving a DMT remain stable over a period of 5 to 7 years, and

only up to 10% over a period of 7 to 10 years after initiating

DMT (26).

Despite the approval of ±20 different DMTs by the European

Medicines Agency (EMA) and the US Food and Drug

Administration (FDA) (27, 28), concerns about side effects and

efficacy might discourage many pwMS from initiating a high-

efficacy DMT therapy (29, 30), an issue further aggravated by

therapeutic inertia (31). Additionally, those who do receive a

DMT usually start with one of the less effective but well-

established therapies due to their minimal side effects (32).

Traditionally, it’s only when these well-established DMTs fail to

prevent relapses and disability progression, that the treatment is

escalated to a higher-efficacy treatment, which usually is more

expensive, might have more pronounced side effects, and is

potentially more challenging to administer (oral and injectables

versus infusions) (33). However, multiple studies support the

observation that reducing the accrual of neurological damage in

the initial stages of the disease potentially improves overall clinical

outcomes throughout the patient’s lifespan when employing early

intervention with higher efficacy DMT (34–38). Additionally,

DMTs were shown to be more efficacious, and side effects less

likely to occur in younger patients (39). Taken together, these

studies question the traditional treatment escalation paradigm

which is therefore nowadays considered outdated by most

physicians. Instead, current thinking emphasizes the potential

advantages of early initiation of high-efficacy DMTs, indicating

the need for and the significance of an early MS diagnosis, proactive

monitoring to detect disease activity early, and shared decision-

making as crucial elements in patient care (32, 40).

Additionally, given the shortcomings of current DMTs to halt

long-term disability accumulation, a next generation of DMTs

might focus more on the silent progression of the disease. A first

novel category of DMTs in this regard are potentially the Bruton

tyrosine kinase inhibitors. This new class of drugs might become the

first to target both acute inflammatory relapses as well chronic

inflammatory processes in the CNS thought to drive disability

accumulation (41). In this context, especially the early recognition

of individuals prone to developing PIRA will be essential. A better

understanding of PIRA and RAW as well as their interplay,

combined with data-driven prognosis, will enhance the selection

of current and future DMTs and allow to treat patients beyond just
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relapse activity. Nevertheless, certain variables pose challenges to

the trajectory of precision medicine and treatment optimization on

an individual level. While there are guidelines on the use of DMTs

in MS (24), these are all based on expert judgment and differ across

countries, even within the EU (28, 37). This variance extends to

therapy selection post-diagnosis or during follow-ups, driven by

perceived levels of clinical and subclinical disease activity

and progression.
3 Precision medicine enables
treatment optimization

Accumulating evidence suggests that the reactive treatment of

lesion activity is insufficient, negatively impacting long-term patient

outcomes (42). In the complex landscape of MS treatment, an

increasing acknowledgment of disease heterogeneity and

underlying disease mechanisms underscores the imperative for a

paradigm shift toward proactive, data-driven precision medicine

(43). However, despite its promise, such data-driven approaches

come hand in hand with substantial challenges.

The understanding of the complex and heterogeneous

underlying neuropathology of MS is still limited. The adoption of

precision medicine in MS is further complicated by the chronic

nature of the disease, exhibiting variable courses over time.

Consequently, given the longitudinal disease aspect, one must

account for the fact that data might be incomplete at times,

particularly in routine practice. In addition, the influence of

comorbidities adds another layer of complexity (44). Various

biomarkers are deemed relevant for their role in identifying

diverse MS aspects and patterns of progression in MS, aiding

diagnosis, prognosis, and treatment selection (45). However, they

might not capture the full complexity of MS and their interpretation

requires a nuanced understanding of the disease context. Moreover,

the heterogeneous nature of MS challenges the development of

universally applicable biomarkers and complicates the tracking of

different treatment effects on an individual basis (46).

Notably, with a variety of treatment options being available (27,

28), emerging biomarkers, including liquid and imaging markers,

have shown potential in monitoring treatment efficacy (45, 47).

However, the validation, availability, and implementation of

biomarker assessments in real-world clinical practice is often still

missing as this differs significantly from their application in clinical

trials. Moreover, biomarkers that demonstrate both sensitivity and

specificity in the context of progressive MS are still lacking (47).

While early diagnosis and prognosis modelling are pivotal for

timely and effective treatment initiation, the ability to clearly

define and disentangle disability accumulation attributed to RAW

or PIRA will be key to optimizing individual treatment over the

course of the disease.

Advancements in artificial intelligence (AI) can offer enhanced

and data-driven support by considering longitudinal data on

multiple biomarkers simultaneously and subtyping patients more

accurately. In particular, this can include biomarkers more related

to PIRA such as motor dysfunction beyond EDSS (2, 48), optical
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coherence tomography (49–51), magnetic resonance imaging

markers predictive of disability worsening such as brain atrophy

(14), slowly expanding lesions and paramagnetic rim lesions (52–

54) and cognitive impairment (55–57), as well as subjective markers

[i.e. patient-reported outcomes (PROs) such as quality of live (58,

59)]. We believe that a holistic overview of the patient will be crucial

to avoid overlooking relevant information, including both existing
Frontiers in Immunology 0410
and new biomarkers as our disease understanding evolves

further (Figure 1).

Such transformative approaches hold the potential to

significantly enhance treatment strategies and extend the adjusted

quality of life years for individuals with MS. Nevertheless, the

current landscape is still fragmented, often focusing on singular

aspects or biomarkers rather than adopting a more holistic and
FIGURE 1

A clinical decision support tool should be capable of visualizing the very heterogenous MS patient data, the AI-supported analysis of this data and
the outcome of prognostic models using this data, enabling a data-driven discussion between the neurologist and patient to identify the best DMT
for the patient.
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comprehensive approach. Data strategies to reduce the level of

heterogeneity, particularly improving data harmonization by means

of a common data model, are wishful to guarantee standardization

in clinical decision making (60). However, the implementation of

such initiatives is still in the early stages. Care pathways for pwMS

are also not commonly standardized and while some diagnostic and

treatment guidelines and recommendations are available (1, 61, 62),

the assessment of relevant outcomes may not always be sufficiently

covered and integrated into the routine clinical workflow (63). A

modular-integrative framework of digital patient pathways for MS

management and treatment is needed, which should incorporate

AI, data harmonization and review relevant research concerning the

use of pathways in healthcare (64, 65). Although initial evidence of

acting upon AI-driven MRI biomarkers has indicated to improve

patient outcome (66), the evaluation of impact in real-world

practice and evidence on whether acting upon data-driven models

and biomarkers truly improves the quality of life for patients with

MS are crucial components that demand more attention in the

pursuit of effective precision medicine strategies for MS.
4 Clinical impact through AI-assisted
MS care

A data-driven and personalized clinical decision support tool is

urgently needed for MS, to prevent and slow down disease

progression more efficiently via optimizing treatment. The EU-

funded ‘Clinical Impact through AI-assisted MS Care’ (CLAIMS,

www.claims.ms) project aims to address this need. The project will

develop, validate and seek regulatory approval for an AI-driven

clinical decision-support platform, which offers the MS care team a

holistic view of the patient through the visualization of all relevant

patient data and the prognosis on the expected disease trajectories

under different treatment regimens.

Initially, the project focusses on the development and

optimization of these prognostic models via the use of

retrospectively collected clinical routine data in combination with

clinical trial data. A detailed description of this retrospective multi-

center observational study (called RECLAIM) is accessible via

ClincialTrials.gov. This study aims to collect and harmonize both

clinical and subclinical data and store it in a central database on a

secure cloud environment. Data harmonization will be following

the common data model proposed in Parciak et al. (67), but kept to

the minimum necessary as we aim to stay as close as possible to the

real-world clinical setting and to ensure the clinical relevance.

The combination of real-world with clinical trial data is an

important aspect of the study. Clinical trial data is very

homogeneous and highly curated, making it an ideal dataset to

develop AI-driven prognostic models. For instance, MRI scans

obtained in clinical trials adhere to a standardized protocol,

include all necessary sequences, and ensure follow-up scans

within a specific timeframe. In contrast, MRI scans acquired in a

real-world setting frequently don’t meet these requirements (68,

69). As the CLAIMS project aims to create AI-based prediction

models applicable in real-world clinical settings, it is crucial to also
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incorporate routine care data in the development and validation

phases. By combining both types of data, we aim to achieve an

extensive dataset that leverages the strengths of both types of data

ensuring applicability in a routine clinical care setting where

confounding factors (e.g., comorbidities), low quality data and

missing data are common (70, 71).

The focus will be on modelling disease progression. Disease

progression models often have strong assumptions about the

monotonicity of disease progression processes, the missingness

model and associated completeness of the data, the longitudinal

regularity of the observations, and homoscedastic noise

characteristics of the measurements. Due to the different MS

subtypes, and relapse and recurrence events, many of these

assumptions do not hold in a MS setting. Furthermore, when

using clinical observational data, data points are missing-not-at-

random, both because patients often miss their appointments, but

also because certain examinations (clinical assessments, MRI, etc)

are performed as a function of patient presentation. Tackling this

requires us to explore applicability of advanced and appropriate

models of data imputation, and from generative models that

explicitly model the causal relationships of the observations.

Contrary to clinical research trials where patients are assigned

to a treatment or placebo arm at random, in an observational

setting, DMTs are given to patients according to guideline

recommendations and patient presentation. Observational data is

thus biased by these guidelines, and appropriate measures are

needed to control for this bias. Causal inference mechanisms via

counterfactuals allows one to model such observational data and

predict what the potential outcome would have been under a

counterfactual treatment. By disentangling causes and effects, one

gains a clearer understanding of the underlying biological or

pathological markers that are predictive of the observed effect and

outcome. This enables a more grounded clustering of patients (e.g.,

what are the patient characteristics that predict drug efficacy),

providing an explanation of the optimal therapeutic inference

(e.g., what is the biological reason why a certain drug is optimal

for a specific patient). While some of these challenges have been

addressed in highly controlled randomized clinical research

environments, solving them using an observational experimental

setup would allow one to exploit large amounts of data while

ensuring the models remain accurate when deployed in a real-

world environment where the aforementioned problems exist.

Observational studies using real-world data allow for more

heterogeneous and comprehensive cohorts, thereby elevating

external validity and supplying valuable insights to guide

treatment approaches (69).

At the time of writing this paper, the first version of the

CLAIMS platform was already available, building upon a

regulatory cleared AI solution for brain MRI quantification, a

patient app for pwMS and a regulatory cleared AI solution for

optical coherence tomography (OCT) quantification (72–75), but

without the prognostic models (Figure 2). The complete clinical

decision support platform, including the prognostic models, will be

included in prospective clinical trial (called PROCLAIM), designed

to obtain regulatory approval, and bringing it to the market as soon

as possible. Meanwhile, the platform will be iteratively improved as
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new biomarker data becomes available and models are further

refined. This iterative approach ensures that the CLAIMS project

achieves true clinical impact for patients sooner rather than later.
5 Digital health and how this
support prognosis

The CLAIMS project is exploring an additional avenue for the

identification of promising markers of disease progression by

capturing digital biomarkers using digital health tools. A first set

of digital health tools includes AI solutions tailored for the

quantification of brain MRI scans (74, 75). Notable advancement

of these tools’ accuracy, in combination with rigorous technological,
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workflow, clinical and even initial health economic validation

makes that this solution steadily gains recognition as standard of

care. In the United States, this trend towards embracing AI-based

brain MRI quantification is further exemplified by the recent

provision of two new Current Procedural Terminology (CPT)

codes. Evidence has shown that by using such a solution, disease

activity can be detected up to 3 years earlier with a potentially

significant impact on treatment decisions (66).

Patient apps, another major trend in the digital health tools,

could enhance the early detection of disease progression in pwMS

and allow monitoring disease progression in between visits with

their treating physician. This can be achieved by monitoring

symptoms and disability progression through capturing patient-

reported outcomes (PROs), through passive monitoring of various
FIGURE 2

The first iteration of the clinical decision support platform being developed in the CLAIMS project. It offers a concise overview of the most important
data for making a clinical decision.
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markers (activity, sleep, vital signs, …) or through the digital

administration of tests assessing for example cognition, vision,

mobility, etc. (76, 77). In addition, these tools can play an

important role in increasing and monitoring medication

adherence, improving a patient’s lifestyle through creating

awareness, and to educate and empower patients in managing

their disease better. As such, disease monitoring via digital health

tools provides a dynamic, more continuous, and more nuanced

understanding of disease progression.

Development of such tools poses a socio-technical challenge.

Any tool which aims to obtain regulatory clearance for use in a

clinical setting will need to obtain sufficient technical and clinical

evidence, which is often a long and laborious process. A bigger

challenge, however, is patient adoption and thereafter adherence in

using the tools. Concerns on data security and privacy need to be

adequately addressed and simultaneously, it needs to be very clear

to patients that they will benefit from enhanced care and

personalized interventions driven by a more holist ic

understanding and monitoring of their health status and disease

progression. CLAIMS aims to address this by empowering and

educating patients on the need to better monitor their disease. In

this light, the patient app used in CLAIMS is positioned as a

companion app, available to support the patient as needed,

focusing on topics of interest to the patient, rather than

mandating the app usage. Actively involving patients and

capturing their feedback on the app utilization, whether via real-

world usage or within a clinical study setting, will contribute

valuable insights, allowing to further refine the tools and

ultimately, the clinical decision support platform.

Besides patient adherence, integration into routine clinical

workflows poses another challenge. To address this, the clinical

decision support platform in CLAIMS aims to keep the steps of

platform adoption to a bare minimum. It aggregates all of a patient’s

data, including data from the patient app, from the AI-driven MRI

analysis and from the AI-driven OCT-analysis. While the full

datasets and analyses will be available via this platform, the main

dashboard focusses on providing a holistic overview of all clinically

actionable measures and markers. While this is rather

straightforward for subjective and episodic data such as with

questionnaires or simple tests captured via the patient app, this

will be harder to achieve for data from passive monitoring. The

latter is known to generate large longitudinal datasets where AI

algorithms are needed to identify subtle patterns and disease

subtypes, and to predict trajectories.

Patient-reported outcomes (PROs) represent a unique occasion

to involve patients using digital health tools and measure the impact

of health care on outcomes that hold utmost significance to pwMS.

However, the variety of PRO measures available and the absence of

standards across different healthcare centers and countries present a

considerable challenge (58). The recently established initiative

‘Patient-Reported Outcomes for Multiple Sclerosis’ (PROMS),

consisting of an interdisciplinary, international network of

different stakeholders, addresses the challenge of creating PRO

measures that meet the diverse needs of all parties involved to

enhance the influence of both scientific research and patient
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perspectives on the lives of pwMS (59). In this context, digital

health tools enable meaningful assessments, but patient satisfaction

can influence assessment compliance and indirectly affect outcome

measures. To assess patient satisfaction with digital tools, patient-

reported and expert-reported experience measures (PREM) should

be collected in parallel (78).
6 The road ahead

As our understanding of MS increases, it becomes evident that we

should go beyond making treatment decisions solely based on

relapses, EDSS progression and lesion activity and move towards

proactively treating pwMS for the best possible prognostic outcome.

A focus on maintaining/improving health-related quality of life and

slowing down disease progression and disability worsening - also

independent of relapse activity - has sprouted a clear need for data-

driven and personalized clinical decision support tools in MS. Such

tools are crucial to administer the right drug to the right patient at the

right time to preserve long-term neurological function while

minimizing side effects. However, such solutions require well

validated biomarkers and models that clearly link to the specificity

of the disease course and outcome at individual patient level and can

be easily implemented along the clinical care path of the patient.

The CLAIMS project aims to develop such a data-driven and

personalized clinical decision support tool while addressing the

posed challenges. Biomarker validation and model building will be

performed in the retrospective RECLAIM study using both real

world data and data from clinical trials. Subsequently, the

prospective PROCLAIM study will evaluate the envisioned

platform in daily clinical routine, evaluating feasibility and impact

on patient care pathways and patient outcome. As such the project

will generate a platform for daily clinical routine that provides a

holistic view of each patient including existing and novel biomarker

assessments to better monitor relapse related disability worsening

and progression independent of relapse activity. Driven by deep-

learning-based disease subtyping and progression models, the

platform will allow the estimation of individual disease

trajectories and as such contribute to the urgent need of a more

pro-active and data-driven precision medicine in MS care.
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Artificial intelligence (AI) has meant a turning point in data analysis, allowing

predictions of unseen outcomes with precedented levels of accuracy. In multiple

sclerosis (MS), a chronic inflammatory-demyelinating condition of the central

nervous system with a complex pathogenesis and potentially devastating

consequences, AI-based models have shown promising preliminary results,

especially when using neuroimaging data as model input or predictor variables.

The application of AI-based methodologies to serum/blood and CSF biomarkers

has been less explored, according to the literature, despite its great potential. In

this review, we aimed to investigate and summarise the recent advances in AI

methods applied to body fluid biomarkers in MS, highlighting the key features of

the most representative studies, while illustrating their limitations and

future directions.
KEYWORDS

multiple scleorsis (MS), fluid biomarkers, demyelinating, machine learning and AI,
deep learning
Introduction

Artificial intelligence (AI) techniques have proved very useful for the diagnosis and

prognostication of several conditions around the world (1), including multiple sclerosis

(MS) (2). AI methods used in medical research, including MS research, may include

machine learning (ML) and deep learning (DL) analyses. Typically, while ML analyses are

based on tabulated data as input to the model, DL models use raw data – typically images –

as input to the model. Model outputs depend on the type of task that is needed, e.g., a given

diagnosis (instead of another one), a certain disability milestone, or the presence of MRI

activity in people who are receiving a given drug.

Multiple sclerosis (MS) is a chronic inflammatory-demyelinating condition of the

central nervous system (CNS) with heterogeneous genetic and environmental risk factors

(3). Disease diagnosis and monitoring strongly rely on routine clinical assessments and the

use of conventional brain and spinal cord magnetic resonance imaging (MRI) as a

biomarker. A biological marker, or biomarker, is a characteristic that is objectively

measured and evaluated as an indicator of normal biological processes, pathogenic
frontiersin.org0117
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processes or pharmacologic responses to a therapeutic intervention

(4). Besides MRI, body fluid biomarkers can also provide additional,

independent data on MS. AI applications in MS can potentially help

us better support the diagnosis, find markers for prognosis, facilitate

accurate monitoring, and eventually understand the mechanisms of

the disease. Focusing on these main challenges, this review aims to

summarise the recent advances in AI applied to blood, serum and

CSF biomarkers in MS, highlighting the key features of the most

representative studies (Figure 1) (5). This review also aims to

illustrate its limitations and future directions.
Search strategy

We performed a search in PubMed based on the following

criteria: (i) search terms: ((multiple sclerosis) or demyelination or

(demyelinating disease)) AND ((artificial intelligence) or (deep

learning) or (machine learning)) AND (biomarkers OR markers

OR (biological markers) OR (fluid biomarkers) OR (body fluid

biomarkers)); (ii) language of publication: English; (iv) type of

paper: original research. For the purpose of this narrative review,

we have focused on three aspects: (i) diagnosis & differential

diagnosis; (ii) prediction of clinical outcome; (iii) understanding

of pathogenic mechanisms. Thus, after the first literature search, we

manually selected the papers if they were included in one of these

three categories. Papers not clearly included in any of these

categories were not considered in the review. Thus, we did not

include papers whose main focus was methodological or animal

research, and papers related to fluid biomarkers other than blood,

serum and CSF. We also excluded review papers, editorials, and case

reports. The PubMed search yielded 206 articles, published between

1996 (and especially between 2009) and 2024, both included

(Figure 2). After excluding those not meeting our inclusion
Frontiers in Immunology 0218
criteria, we revised 29 papers for their inclusion in this narrative

review (Figure 2). Most of these papers have been published

between 2019 and 2024 (Figure 3).

Once all papers were selected, they were divided into MS

diagnosis and differential diagnosis (N=6), prediction of disease

evolution (N=14), and understanding mechanisms of damage in

MS (N=9). Of note, for some papers we found a degree of overlap

and the decision to include them into one or another category

depended on the main objectives described by the authors.
MS diagnosis and differential diagnosis

The diagnosis of MS relies on integrating clinical, MRI, and

laboratory findings and excluding alternative diagnoses, especially

in the presence of red flags. Indeed, the diagnosis of MS is not

devoid of challenges: other conditions may mimic MS, clinically or

radiologically (6). In these circumstances, the use of AI algorithms

may be useful (Table 1), especially in body fluid biomarker

discovery studies such as those done with “omics” technology.

AI has been implemented to identify genetic susceptibility

biomarkers. Pasella et al. (7) used decision trees (DT) to create a

predictive tool assessing the likelihood of MS including alleles

responsible for human leukocyte antigen (HLA) class I molecules

and killer immunoglobulin-like receptor (KIR) genes, responsible

for natural killer (NK) lymphocyte receptors. They studied 299

persons with MS (PwMS) and 619 healthy controls (HC). The

algorithm accurately identified 80.94% of PwMS and 71.08% HC in

the training set and 73.24% and 66.07%, respectively, in the

validation set. Guo et al. (8) used Support Vector Machine (SVM)

to identify gene expression profiles on the transcriptome of

peripheral blood mononuclear cells (PBMC) from 26 PwMS and

18 subjects with other neurological diseases (OND). This approach
FIGURE 1

Main aims of AI-based studies focused on fluid biomarkers. This figure illustrates the main types of input data and the main aims of AI-based studies
focused on fluid biomarker data in MS.
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identified 8 genes differentially expressed between groups with 86%

accuracy in the validation study. These genes involved the protein

kinase cascade, inactivation of mitogen-activated protein kinases

(MAPK), and regulation of signal transduction and apoptosis.

The metabolomes of cells and tissues include lipids, amino

acids, sugars and other molecules (9). Andersen et al. (10) used

random forests (RF) to identify blood-based metabolite profiles that

could discriminate between 12 male PwMS and 13 male controls.

The top 6 candidate metabolites informative for MS, defined as

having an area under the receiver operating characteristic (ROC)

curve (ROC-AUC) >80%, participate in glutathione metabolism,
Frontiers in Immunology 0319
fatty acid metabolism and oxidation, cellular membrane

composition, and transient receptor potential channel signalling.

Whilst metabolomics focuses on hydrophilic molecules, lipidomics

has emerged as an independent “omics” due to its complexity (9).

Lötsch et al. (11) used unsupervised ML to compare 43 lipid

mediators in serum from 102 PwMS and 301 HC. The analyses

showed 98% accuracy to differentiate PwMS from HC. Then, the

authors used supervised ML implemented as RF and computed

ABC analysis-based feature selection, to create a classifier. This

approach identified 8 lipid biomarkers differentially expressed in

PwMS with ≥95% accuracy in training and test datasets.
FIGURE 3

Distribution of the research papers on AI applied to biomarker data in MS over time. This histogram shows the number of research articles (of those
29 selected) published per year. It is to be noted that most of the papers have been published in the last 4 years.
FIGURE 2

PRISMA chart describing article selection. We have followed a systematic approach for selecting the papers to be considered in our manuscript.
After performing a PubMed search with the following terms: (multiple sclerosis or demyelination or demyelinating disease) AND (artificial intelligence
or deep learning or machine learning) AND (biomarkers or markers or biological markers or fluid biomarkers or body fluid biomarkers), 206 records
were obtained. Of those, only 29 were considered for this review after excluding those not meeting our inclusion criteria.
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TABLE 1 Summary of selected studies focused on diagnosis and differential diagnosis.

odel
utput

Model
performance

Comments

S vs
on-MS

identified 80.94% of MS
patients in the training set
and 73.24% in the
validation set. Identified
71.08% of healthy controls
in the training set and
66.07% in the validation set

Immunogenetic risk factors,
specifically alleles responsible for HLA
class I molecules and KIR genes,
responsible for natural killer
lymphocyte receptors

S
s OND

AUC 0.711-0.852.
Accuracy of 86% in
validation study

The 8 differentially expressed genes in
MS vs OND were related to the
protein kinase cascade, inactivation of
MAPK, and regulation of signal
transduction and apoptosis

S
s
ntrols

6 metabolites with AUCs
>80%: pyroglutamate,
laurate, acylcarnitine C14:1,
N-methylmaleimide, and 2
phosphatidylcholines (PC
ae 40:5, PC ae 42:5)

Identified metabolites participate in
glutathione metabolism, fatty acid
metabolism and oxidation, cellular
membrane composition, and transient
receptor potential channel signalling.
Their gene expression association
suggested enrichment for pathways
associated with apoptosis and
mitochondrial dysfunction.

S vs
ealthy
ntrols

98% accuracy for the 43
lipid mediators; classifier
with ≥95% accuracy in
training and test data sets

Most lipid mediator concentrations
were reduced in MS. Exceptions were
the ceramide LacCerC24:1 and the
sphingolipid C16Sphinganin, found at
higher concentrations in MS
Cer16 and Cer24 might amplify
cytokine-induced cell death of myelin-
producing oligodendrocytes.
HETE15S was shown to be regulated
in CSF of MS patients. Enhanced
activity of autotaxin was observed in
serum samples of MS patients. PEA
and OEA have been found in RRMS
and SPMS. Neopterin is an activation
marker of the innate immune system
with increased levels in autoimmune
diseases including the CSF of
MS patients
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Pasella et al.,
Front
Neuroinform.
2023 [ref (7)]

MS: n=299 (RRMS
n=218,
PPMS n=81)
Healthy controls: n=619

0 Alleles responsible for
HLA class I molecules
and KIR genes, obtained
from PBMC

DT Genotyping for alleles at HLA-
A, -B, -C, and -DRB1 loci.
Primers specific to 11KIR
genes: IR2DL1, KIR2DL2,
KIR2DL3, KIR2DL5, KIR3DL1,
KIR2DS2, KIR2DS3, KIR2DS4,
KIR2DS5, KIR3DS1

M
n

Guo et al.,
PLoS One.
2014 [ref (8)]

MS: n=26
OND: n=18

0 27336 probe sets
obtained from gene
expression profiles from
the Array Express
Database. Samples
obtained from PBMC

SVM, ROC
algorithm,
Boruta algorithm

8 genes differentially expressed
between MS and OND
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v

Andersen
et al., Mult
Scler Relat
Disord. 2019
[ref (10)]

Male subjects with MS:
n=12
Male controls: n=13

0 Serum metabolites (lipid
and amino acid profiles)

RF 12 metabolites M
v
c

Lötsch et al.,
Sci Rep. 2018
(ref [11)]

MS: n=102
Healthy controls: n=301

0 43 lipid mediators from
serum samples:
ceramides (@)

Self-organising maps
of neural networks,
swarm intelligence
and Minimum
Curvilinear
Embedding.
In a second step, RF
and computed ABC
analysis-based
feature selection

Classifier with 8 lipid
biomarkers (GluCerC16,
LPA20:4, HETE15S,
LacCerC24:1, C16Sphinganine,
biopterin, and
endocannabinoids PEA
and OEA)
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TABLE 1 Continued

Model
performance

Comments

The combination of CCN5,
vWF, GFAP, and OCB
status provided the best
overall diagnostic properties
(sensitivity 89%, specificity
92%, accuracy 91%)
compared to OCB status

Integrative metabolomics and
proteomic enrichment analysis
revealed upregulated JAK-STAT and
glycolysis pathways in MS, consistent
with an increased inflammatory
response and altered
energy metabolism.

All: CD5 (AUC 0.87) and
IL-12B (AUC 0.81).
+OCB RRMS vs OND: IL-
12B, CX3CL1, FGF-19,
CST5, and MCP-1 (91%
sensitivity, 94% specificity
in the training set; 81% and
95%, respectively, in the
validation set)
-OCB RRMS vs OND:
CX3CL1, CD5, CCL4, and
OPG as well as NfL (87%
sensitivity, 80% specificity
in the training set; 56% and
48% in the validation set)

CD5 may act as a receptor in
regulating T cell proliferation. IL-12B
promotes differentiation of T cells
into T helper 1 (Th1) cells. CX3CL1
increases IFN-g and TNF-a gene
expression and IFN-g secretion by
CD4+ T cells. FGF signalling may
regulate inflammation and
myelination in MS since an
abundance. CST5 has shown potential
as a relapse marker. MCP-1 may be
involved in the recruitment of
monocytes/macrophages and activated
lymphocytes. CCL4 is involved in the
disruption of the blood-brain barrier.
OPG suppresses mRNA expression of
CCL20, a chemokine involved in
Th17 cell recruitment with anti-
inflammatory effects

Diagnostic accuracy: ≥92%
when any randomly
selected 5 of any cytokines
were used.
The highest accuracy, 99%,
obtained when including
CCL27, IFN-g, and IL-4

CCL27 could trigger T memory cells
to produce IL-4 and IFN-g.
Interleukins and chemokines affected
in serum and CSF could direct
leukocyte migration targeting
Th1 cells.
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profiles

AI
method:
algorithms
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Probert., et al.
Front
Immunol.
2021 [ref (12)]

MS with +OCB: n=41
Non-MS controls with
+OCB: n=64 (*)

0 Metabolites and proteins
in CSF

Multivariate
OPLS-DA

8 metabolites significantly
decreased in MS: 4 (myo-
inositol, isoleucine, leucine,
glutamine) had higher
specificity than OCB for MS
diagnosis.
9 biomarkers outperformed
OCB as predictor of MS
(CCN5, CDCC80, NTN1, vWF,
DKK4, SOST, ERBB3, IGL4,
and IGKV1-5).
All significantly decreased in
MS vs non-MS except for IGL4
and IGKV1-5, which
were increased.

M
no

Gaetani et al.,
Int J Mol Sci.
2023 (ref [13)]

+OCB RRMS: n=58;
-OCB RRMS: n=24;
OND: n=36 (&)

0 Quantification of 92
immune activation
CSF proteins

Hierarchical
clustering to profile
CSF proteins.
Binomial and
multinomial LASSO
regressions to
differentiate
patient groups

92 tested proteins minus 45
with a call rate <85%, age,
sex, NfL

M
O
+O
R
O
-O
R
vs

Martynova
et al.,
Mediators
Inflamm. 2020
[ref (14)]

MS: n=101 (RRMS
n=49, SPMS n=31,
PPMS n=21) and Non-
MS subjects: serum
n=101 and CSF
n=25 ($)

45 leucocyte-activation
regulatory cytokines
measured in serum
and CSF

k-Nearest
Neighbour, DT,
XGB, Gaussian
Naïve Bayes and RF

22 cytokines altered in CSF and
20 in serum, 10 commonly
affected in both (IL-1a IL-4,
IL-18, CCL7, CCL27, CSF,
IFN-g, LIF, M-CSF, and TNF-
a).
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his
lim

ited
ability

becom
es

evident
especially

w
hen

a
m
odelbuilt

in
a
given

cohort
is

applied
in

a
com

pletely
unseen,

independent,
validation

cohort,

Reference Training and
testing cohort, N

Independen
validation
cohort, N

(*) Epilepsy (n=5), functional neurological disorder (n=12), gait disord
polyradiculitis (n=2), primary headache disorder (n=13), sensory di
polyneuropathy (n=3); ($): tension type headache, residual encephal
LacCerC16:0, LacCerC24:0, LacCerC24:0); lyosophosphatidic acids (LP
(PGD2, PGF1a, PGE2, TXB2); dihydroxyeicosatrienoic acids (DHET
Abbreviations (in alphabetical order): AUC, area under the curve; CCL
protein 80; CSF, cerebrospinal fluid; CST5, cystatin D; CX3CL, chemok
HLA, human leukocyte antigen; IFN, interferon; IGKV1-5, immunoglo
receptor; LASSO, least absolute shrinkage and selection operator regres
multiple sclerosis; NfL, neurofilament light chain; NTN1, netrin-1; OC
primary progressive multiple sclerosis; RRMS, relapsing remitting mu
vector machine; Th, T helper cells; TNF, tumor necrosis factor; vWF,
e
s
o

s

lt

https://doi.org/10.3389/fimmu.2024.1459502
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Arrambide et al. 10.3389/fimmu.2024.1459502
showing a much lower accuracy than expected (much lower than

that of the original cohort). This possibly suggests that the

variability across people with MS is probably larger than what we

thought and that mismatches between accuracies in original

(training and testing) cohorts and external validation cohorts may

be due to an overfitting of the data by the model in the original

cohorts. Additionally, this may also suggest that other aspects apart

fromMRI and clinical data may be playing a role in the evolution of

the disease. Over the last 10 but especially over the last 5 years, some

studies using AI models applied to biomarker data to explain

concurrent and future disease evolution have started to

emerge (Table 2).

Regarding the studies that have focused on the concurrent

prediction of clinical outcomes, in 2019, Flauzino et al. (19),

published a study where 122 people with MS were tested on

several serum biomarkers to predict concurrent disability status.

These biomarkers, which were related to the immune-inflammatory

response, lipid and protein metabolic pathways, and oxidative

stress, were able to predict which patients had an Expanded

Disability Status Scale (EDSS) (20) score above or below 3.0 with

high accuracy (Area under the ROC curve = 0.842). These results

suggest that Immune inflammatory, metabolic and oxidative stress

pathways may play a key role in disability accumulation in MS and

deserve further research. In another interesting study focused on

concurrent prediction, Brummer and colleagues (21) showed how

serum neurofilament light (NfL) levels could improve our ability to

detect cognitive dysfunction, especially when added to MRI

predictors such as grey matter volume. The authors of this study

not only built a ML model with high predictive accuracy, but also

validated the ML model in an external cohort, supporting the

generalisability of the model (21). Finally, we highlight the paper

from Jackson and colleagues (22), where ML models based on

random forest regression were built to predict a multi-dimensional

score of disease severity using genetic variants previously identified

as related to MS severity. Interestingly, the results, which could be

validated in an external cohort, showed that the 19 most predictive

genetic variants were located in 12 genes associated with immune

cell regulation, complement activation and functions of neurons

(22). This supports the robustness of the results while providing

important insights on the mechanisms of progression in MS.

Regarding the studies with a longitudinal design, there is a high

variability in terms of the length of the prediction period, ranging

from 6 months to 11 years, and in terms of the nature of the

predictor data, i.e., the input of the ML model. For instance, there

are studies which have used genetic data, focusing on the presence

of certain genetic variants or single nucleotide polymorphisms

(SNPs) (23, 24). Other studies have focused instead on the

presence of certain epigenetic mechanisms, such as DNA

methylation (25), and on certain gene expression profiles (26, 27).

Also, a few studies have demonstrated the ability of (immune)

cellular profiles to predict clinical outcome (23). Finally, there are

studies which have based their predictions on the presence of

specific serum and CSF proteins and metabolites (28, 29). In

relation to the output data, i.e., the outcome of the ML model,

most studies focus on disability progression measures (19, 21–23,

25, 28, 30, 31), although some of them have chosen acute activity
Frontiers in Immunology 0723
(generally MRI activity) outcomes (24, 26, 27, 32) and one focused

on the development of anti-drug neutralising antibodies (33),

known to reduce the effectiveness of the disease-modifying

drug (33).

In relation to the studies which have used SNP data to predict

future outcome, the article by Andorra et al. (23) is of special

interest. In this study, not only SNPs located in Human Leukocyte

Antigen (HLA) and non-HLA genes were considered as predictors,

but also data on immune cell populations, proteomics, brain MRI,

and optic coherence tomography (OCT) data. In this study, whose

results were validated in an external cohort, the authors predicted

the development of confirmed disability accumulation on different

disability outcomes after 2 years of follow-up, with high

sensitivity (23).

Among the studies with longest predictive periods, there is the

paper by Uphaus et al. (28), which used NfL data to predict 6-year

development of relapse-free progression and transition from RRMS

to SPMS with high accuracies, especially for the former outcome

and especially when combined with age and T2 lesion volume (28).

More recently, Everest et al. (31) published a paper where CSF

proteomics data was used to predict unfavourable evolutions over

an 8-year follow-up period (on average) with very high accuracies.

In this paper, which included an external validation analysis, the

authors propose several novel candidate CSF protein biomarkers

with a promising future in disease prediction modelling (31).

Finally, Campagna et al. (25) exploited the DNA methylation

profiles of 235 women with MS to predict disease severity over an

11-year period, again with high accuracy. Although this model was

not externally validated in an independent cohort, the length of its

prediction and the nature of the biomarker used make it especially

relevant. Interestingly, those genes with greater levels of

methylation seemed to be related to neuronal structure and

function (25).
Investigation of disease mechanisms

The pathophysiological processes in MS are not completely

understood and are believed to be highly heterogeneous across

people and disease stages. Fluid biomarker studies using AI to

understand pathogenetic mechanisms could contribute to a greater

characterisation of MS by expanding the concept of classical

phenotypes (Table 3).

PBMCs can bear specific dysregulation in genes at different

stages of MS. Acquaviva et al. (34) analysed transcriptomic profiles

of PBMCs from individuals with CIS (n=57), RRMS (n=108), SPMS

(n=26), PPMS (n=35), OND (n=27), and HC (n=60), divided into

training (n=224) and validation (n=89) datasets. They defined

classifiers (MS vs non-MS, relapsing vs progressive MS) using

nested cross-validation in the training dataset. Then they used

ward DT-based algorithms [RF, functional trees (FTs) and

adaptive boosting applied to FT (ADAboost-FT) to evaluate their

performance in the validation dataset. ADAboost-FT generated the

best model to differentiate MS from non-MS (94.3% sensitivity,

87.5% precision). Identified transcripts in MS were related to

interferon signalling, chromatin remodelling, and apoptosis. The
frontiersin.org
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TABLE 2 Summary of selected studies focused on prediction of disease course: relapses and disability accumulation.

Model output Model
performance

Comments

t
i
a

s
d

Disability status
based on EDSS
score:
i) ≥3.0 vs <3.0
(binary outcome)
ii) as a
continuous outcome

ROC AUC
= 0.842

Immune inflammatory,
metabolic and oxidative
stress pathways play a
key role in disability
accumulation in MS

MS-DSS, a score
defined through a
statistical model
which takes into
account CNS
damage and
demographic
features [ref (46)]

GeM-MSS RMSE
(error) = 0.464

The 19 genetic variants
included in the GeM-
MSS are related to 12
genes associated with
immune cell regulation,
complement activation
and functions
of neurons

Cognitive status
based on SDMT
score
(continuous
outcome)

Accuracy = 90.8%,
greater than the
accuracy of the
models with
individual
predictors

The combination of
blood and imaging
measures improves the
accuracy
of predicting
cognitive impairment

e

Disability status
based on PDDS
score: ≥4 vs <4
(binary outcome)
PDDS score: as
categorical variable

ROC AUC = up
to 0.91 (for
LASSO prediction
of PDDS using
combined clinical
and biomarker
profiles as input)

Combined (clinical +
biomarkers) models: the
best
LASSO better than
other ML approaches
Serum multi-protein
biomarker profiles:
better than single-
protein (e.g., NfL or
GFAP) models

(Continued)
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Reference Training
and
testing
cohort, N

Independent
validation
cohort, N

Follow-
up time
(study
design)

Biomarker profiles AI
method:
algorithms

Model input

Cross-sectional prediction*

Flauzino et al.,
Metab Brain
Dis. 2019
[ref (19)]

122 patients
with MS, i.e.,
RRMS,
N=103; PPMS,
N=3;
SPMS, N=16

0 NA Serum biomarkers
including immune-
inflammation, metabolic,
and nitro-oxidative
stress features

Multilayer
perceptron
neural network

Immune inflammatory (Th17/
ratio), metabolic (LDL/HDL r
acid, homocysteine) and oxida
stress (lipid hydro-peroxides, c
protein, AOPP,
NO metabolites)
biomarkers, together with age,
disease duration, body mass in
and presence of metabolic
syndrome

Jackson et al.,
Ann Hum
Genet. 2020
[ref (22)]

205 94 NA 113 genetic variants
previously identified as
related to MS severity

Random
forest
regression

19 genetic variants (GeM-MSS

Brummer
et al., Brain
Commun.
2022 [ref (21)]

152 patients
with early MS

101 early MS NA Serum NfL Support
vector
regression

Serum NfL, lesion volume, gre
matter volume

Zhu et al.,
Brain
Commun.
2023 [ref (30)]

431 0 NA 19 serum protein
biomarkers:
APLP1, CCL20,
CD6, CDCP1, CNTN2,
CXCL9,
CXCL13, FLRT2,
GFAP,
MOG,
NfL, OPG,
OPN, PRTG,
SERPINA9, TNFSF10A,
TNFSF13B,
VCAN

LASSO,
Random forest,
Extreme
Gradient
Boosting,
Support Vector
Machines,
stacking
ensemble
learning

7 clinical factors (age at sampl
collection, sex, race/ethnicity,
subtype, disease duration, DM
time interval between sample
collection and closest PRO ass
and 19 serum protein biomark
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TABLE 2 Continued

Model output Model
performance

Comments

,

Disease activity vs
no activity, based
on MRI, i.e.,
presence of
gadolinium-
enhancing lesions
(binary outcome)

Prediction
accuracy (of
combined
microRNAs)
= 0.92

microRNA signatures
are noninvasive
biomarkers which may
help predict treatment
response in the future

Disease activity free
on treatment
(presence of clinical
and/or MRI
activity) vs
suboptimal response
(binary outcome)

Predictive
accuracy = 0.59-
0.68
ROC AUC = up
to 0.63

Future (IFNb) treatment
response may be
predicted with gene
expression profiles at
treatment onset or over
the first weeks after that,
using models of
machine learning

d

ADA positive, i.e., i)
bAbs+ & nAbs+ or
ii) bAbs- but nAbs+
and titer ≥ 320 U/
mL, within 12
months of starting
treatment, vs ADA
negative
(binary outcome)

Classification
accuracy (baseline)
= 0.695-0.854
Classification
accuracy (3
months after IFNb
onset) =
0.712-0.863

ADA status may be
predicted through
serum metabolites

MS phenotype:
PMS vs RRMS
(binary outcome)

ROC AUC = 0.93,
better than any of
the single

This study provides
confidence in individual
patient prediction
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and
testing
cohort, N

Independent
validation
cohort, N

Follow-
up time
(study
design)

Biomarker profiles AI
method:
algorithms

Model input

Longitudinal prediction (**)

Ebrahimkhani
et al., Mol
Neurobiol.
2020 [ref (32)]

29 RRMS
patients who
were about to
start
on fingolimod

0 0.5 years (6
months);
however, the
study does
not focus on
future but
concurrent
prediction
(i.e., disease
activity and
microRNA
dysregulation
occur over
the same
period
of time)

Exosome miRNAs Random forest Out of all micro-RNAs, 15 were
selected for being dysregulated
between active and non-active
patients, 6 months after fingolimod
onset. Of those, 11 were selected for
having ROC AUC 95%CI above 0.50
Then, out of a total of 2037
combinations of these 11 microRNA
3 combinations ($) were chosen for
their highest accuracy

Baranzini
et al., Mult
Scler. 2015
[ref (27)]

155 RRMS on
beta-
interferon
treatment

0 0,77 years
(40 weeks)

Gene expression profiles at
treatment onset or over the
follow-up (i.e., induction
ratios of gene expressions
after treatment onset)

Random forest Triplet (3-gene) expression profiles
(several triplet combinations
were assessed)

Waddington
et al., Front
Immunol.
2020 [ref (33)]

89 patients
with RRMS/
first
demyelinating
attack who
were about to
start on beta-
interferon
treatment

0 1 year 156 serum metabolites (see
paper for full details)

Random forest,
support vector
machine, and
LASSO logistic
regression
(K-nearest
neighbour and
decision trees
also tested
for
comparison)

60 and 59 serum metabolites (out of
156) at baseline (before IFNb onset)
and after 3 months, respectively; the
remaining 96 and 97 metabolites,
respectively, were excluded because o
a strong correlation between them an
the finally chosen 60 and 59 ones

Herman et al.,
iScience. 2023
[ref (29)]

123 56 1 year 498 CSF metabolites Elastic-net
regularized
classifier model
In addition,

CSF metabolites: out of 498, 15
metabolites are selected
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TABLE 2 Continued

Model output Model
performance

Comments

metabolic features
in isolation

(=0.88), which can help
with patient monitoring

typing,
eomics)

CDA on different
scales (EDSS,
T25WT, 9HPT,
SDMT, SL25,
HCVA) vs no-CDA
(binary outcomes);
NEDA vs no-NEDA
(binary outcome);
MSSS, ARMSS,
onset of DMT,
escalation from
low- to high-
efficacy DMT
(continuous
outcomes)

ROC AUC = from
0.50 (T25WT-
CDA) to 0.81
(SL25-CDA);
Balanced
accuracies = from
0.5 (9HPT or
T25WT) to 0.69
(starting therapy)
Sensitivities =
almost all between
0.82 and 0.94
PPVs = almost all
between 0.8
and 0.9

Models provided better
sensitivities and PPVs
than accuracies or AUC;
Models including
imaging & genetics or
omics slightly improved
model performance
(with respect to models
with clinical predictors
only) and only in 50%
of the times

linical data NEDA vs no-NEDA
(binary outcome)

ROC AUC genetic
model = 0.65
ROC AUC
combined (genetic
and clinical)
model = 0.71

ML models integrating
clinical and genetic data
can help predict disease
evolution in pwMS
on fingolimod

nes related Disease activity or
not, based on
presence (vs
absence) of relapses
over the whole
follow-up of 3 years
(binary outcome)

Accuracy = 0.892 Gene expression profiles
may help design
personalised
therapeutic strategies for
patients with MS

(Continued)
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and
testing
cohort, N

Independent
validation
cohort, N

Follow-
up time
(study
design)

Biomarker profiles AI
method:
algorithms

Model input

Longitudinal prediction (**)

conformal
prediction
analyses
provides
confidence in
individual
patient
predictions

Andorra et al.,
J Neurol. 2023
[ref (23)]

322 271 2 years Genomics: MS-associated
(HLA and non-HLA) SNPs;
Cytomics: levels of effector
and regulatory T cells, B
cells, and NK cells;
Phospho-proteomics: 25
kinases participating in
pathways associated
with MS

Random forest Brain MRI,
OCT, and multiomics (gen
cytomics and phospho-pro
from PBMC

Ferrè et al., J
Pers Med.
2023 [ref (24)]

304 patients
on
fingolimod
treatment

77 patients on
fingolimod
treatment

2 years Genetic data Random forest 123 SNPs (genetic model), c
(clinical model), or both
(combined model)

Fagone et al.,
Mol Med Rep.
2019 [ref (26)]

12 patients
with RRMS
who were
about to start
on
natalizumab

0 3 years Whole−genome expression
data from CD 4+ T cells
(assessed before
natalizumab onset)

UnCorrelated
Shrunken
Centroid
Algorithm (¢)

Genetic expression of 17 ge
to CD4+ T cells

26
o
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TABLE 2 Continued

Model output Model
performance

Comments

d ratio
& T2

Relapse-free
progression (binary
outcome);
Transition to SPMS
(binary outcome)

For relapse-free
progression: ROC
AUC = 0.811 (NfL
+ age & T2 lesion
number)
For SPMS
transition: ROC
AUC = 0.651

Serum NfL levels may
help predict future
relapse-free progression
in clinical practice,
together with age and
T2 lesions at baseline

Disease severity
status (binary
outcome) based on
ARMSS score on
last follow-up: ≥5
(unfavourable
group) vs
<5 (favourable)

Rule 1 (to select
ARMSS≥5):
ROC AUC =
86.34%
Rule 2 (to select
ARMSS<5): ROC
AUC = 73.26%

Novel candidate CSF
protein biomarkers are
proposed, to be
validated in
larger samples

s),
s

Disease severity
status (binary
outcome) based on
ARMSS score: mild
vs severe (i.e.,
median ARMSS
score below or
above 20th or 80th

percentile,
respectively, of
the cohort)

Methylation
model ROC AUC
= 0.91 (vs clinical
model ROC AUC
= 0.74)

Whole-blood
methylation can predict
disease severity in RMS
and seems to affect
genes related to
neuronal structure
and function

oc/MeV/manual/usc.html; ($) Combination 1: miR-432-5p and miR-485-5p; combination 2:
, anti-drug antibodies; AOPP, Advanced oxidation protein products; APLP1, amyloid beta
curve; bAbs, IFNb-binding antibodies; C3bCfb, chain F, crystal structure of complement C3b
ing protein 1; CNTN2, contactin-2; CXCL13, chemokine (C-X-C motif) ligand 13; CXCL9,
AP, glial fibrillary acidic protein; HCVA, high contrast vision; IFNb, interferon beta; IL12B,
les; MOG, myelin oligodendrocyte glycoprotein; MS, multiple sclerosis; MS-DSS, MS disease
ssue destruction (COMRIS-CTD) [ref (43)], and demographic data; MSSS, multiple sclerosis
ation cohort; NA, not applicable; nAbs, IFNb-neutralising antibodies; NEDA, no evidence of
DS5B, human androgen-induced prostate proliferative shutoff associated protein (AS3); PMS,
, Symbol Digit Modality Test; SERPINA9, serpin family A member 9; SL25, 2.5% low contrast
or necrosis factor ligand superfamily member 13B; VCAN, versican.
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and
testing
cohort, N

Independent
validation
cohort, N

Follow-
up time
(study
design)

Biomarker profiles AI
method:
algorithms

Model input

Longitudinal prediction (**)

Uphaus et al.,
EBioMedicine
2021 [ref (28)]

196 patients
with RRMS/
first
demyelinating
attack

204 RRMS/
first
demyelinating
attack

Median: 6
(IQR 4.3-
7.5) years

Serum NfL Support
vector machine

Serum NfL levels at baseline a
NfL follow-up/baseline +/- age
lesion number at baseline

Everest et al.,
PLoS One.
2023 [ref (31)]

94 40 Mean: 8.2 ±
2.2 years

CSF proteomics data: 151
differentially expressed CSF
proteins, including C3bCfb,
A2M, ATF7, PRBP,
Haptoglobin, PDS5B,
Myosin, CD36, and ApoA1
(ref (47)]

Genetic
algorithm
(Holland J.
Adaptation in
natural and
artificial
systems.
University of
Michigan
Press, 1975)

CSF proteomics data

Campagna
et al., Clin
Epigenetics.
2022 [ref (25)]

235 female
patients
with RMS

0 Median: 11.13
(IQR 9.49;
12.59) years

DNA methylation data
assessed through Illumina
methylation EPIC array

Elastic-net
regression and
logistic
regression

Clinical data (age and sympto
DNA methylation data of gen
related to neuronal structure
and function

(*) Articles shown in chronological order; (**) Articles shown based on length of follow-up; (¢) UC SC; http://home.cc.umanitoba.ca/~psgendb/birchhomedir/BIRC HDE V/d
miR-432-5p, -485-5p, -375; combination 3: miR-432-5p, −485-5p, −134-5p; Abbreviations (in alphabetical order): 9HPT, 9-hole peg test; A2M, alpha-2-macroglobulin; AD
precursor like protein 1; ApoA1, apolipoprotein A1; ARMSS, age-related MS severity scale; ATF7, cyclic AMP-dependent transcription factor ATF-7; AUC, area under the ROC
in complex with factor B; CCL20, chemokine (C-C motif) ligand 20; CD6, cluster of differentiation 6; CDA, confirmed disability accumulation; CDCP1, CUB-domain-contai
chemokine (C-X-C motif) ligand 9; DMT, disease modifying treatment; EDSS, Expanded Disability Status Scale; FLRT2, fibronectin leucine-rich transmembrane protein 2; G
interleukin-12 subunit beta; IQR, interquartile range; LASSO, Least Absolute Shrinkage and Selection Operator; miRNA, microRNA, which are small, non-coding RNA molecu
severity scale, defined thanks to a statistical model [ref (46)] which takes into account, the amount of CNS-tissue destruction measured by Combinatorial MRI scale of CNS ti
severity scale; Myosin, human skeletal mRNA for myosin heavy chain light meromyosin region; N0, sample size of the training and testing cohort; N1, sample size of the valid
disease activity; NfL, neurofilament light chain; OPG, osteoprotegerin; OPN, osteopontin; PBMC, peripheral blood mononuclear cells; PDDS, patient-determined disease steps; P
progressive MS; PPV, positive predictive value; PRBP, plasma retinol binding protein; PRO, patient-reported outcome; PRTG, protogenin; RRMS, relapsing-remitting MS; SDMT
visual acuity; SNPs, single nucleotide polymorphisms; T25WT, timed 25 feet walking test; TNFSF10A, tumor necrosis factor ligand superfamily member 10; TNFSF13B, tum
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TABLE 3 Summary of selected studies focused on disease mechanisms.

Model
performance

Comments

MS vs non-MS: on
139 probes, 94.3%
sensitivity and 87.5%
precision.
Relapsing vs
progressive MS: 222
probes, 83.3%
sensitivity and 93.8%
precision.
PPMS vs RRMS: 266
probes, 90% sensitivity
and 90% precision.
SPMS vs RRMS: 201
probes, 87.5%
sensitivity and
100% precision

Identified transcripts in MS vs non-MS:
related to interferon signalling, chromatin
remodelling and apoptosis.
Identified transcripts in relapsing vs
progressive MS: related to cell cycle and T
cell activation for both progressive forms;
protein ubiquitination, cell migration, and
fatty acid metabolism for PPMS; and
regulation of GTPase activity, locomotor
behaviour, and blood coagulation in the
SPMS signature.

:

,

ROC-AUC 0.87
with CNN

Some of the miRNAs were differentially
expressed in RRMS or related to Th17 cell
differentiation; one of them (miR-16-5p)
decreased in PBMCs after initiation of
therapy with interferon b

Ecosanoid
concentrations:
sensitivity 54%,
specificity 100%,
accuracy 77%.
Ceramid
concentrations:
sensitivity 89.2%,
specificity 100%,
accuracy 94.6%.

Lipid metabolism has been suggested to play
a critical role in the pathophysiology of MS,
influencing inflammation,
neurodegeneration, myelin damage, and
repair processes

Low concentrations of
four antioxidants
(zinc, adiponectin,
TRAP and SH groups)

Lower concentrations of all four antioxidants
(zinc, adiponectin, TRAP and SH groups)
were predictive of MS when compared to
controls. TRAP and adiponectin were the

(Continued)
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Reference Training and
testing cohort, N

Independent
validation
cohort, N

Biomarker
profiles

AI
method:
algorithms

Model input Model output

Acquaviva
et al., Cell Rep
Med. 2020
[ref (34)]

313 subjects: CIS (n=57),
RRMS (n=108), SPMS
(n=26), PPMS (n=35),
OND (n=27)
Healthy subjects (n=60)

0 Transcriptomic
profiles of PBMCs

Training set:
nested cross-
validation
Validation set:
ward DT-based
algorithms (RF,
FTs and
ADAboost-FT)

Raw and
processed
microarray data
from the GEO
database, age, sex

MS classifiers:
MS vs non-MS
Relapsing vs
progressive MS

Sun et al.,
Front Genet.
2022 [ref (36)]

miRNA-MS associations
from the disease-related
miRNA from the HMDD.
MS-related miRNAs as
positive samples, and
randomly selected
associations with n times
the number of positive
samples from unlabelled
miRNAs associations as
negative samples,
where n∈(2,10,20,30,40,50)

0 MS-
related miRNAs

CNN vs DT,
SVM, logistic
regression,
and
GaussianNB

miRNAs Top 10 predicted miRNAs
hsa-miR-605-5p, hsa-miR-
15b-5p, hsa-miR-16-5p,
hsa-miR-17-5p, hsa-miR-
181a-5p, hsa-miR-181b-5p
hsa-miR-181c-5p, hsa-
miR-18a-3p, hsa-miR-195-
5p, and hsa-miR-196a-5p.

Lötsch et al.,
Int J Mol Sci.
2017 [ref (38)]

MS: n=102
Healthy subjects: n=301

0 3 types of lipid
biomarkers in
serum: eicosanoids:
n=11; ceramides:
n=10; and
lysophosphatidic
acids: n=6

ESOM
combined with
the U*-matrix
visualisation
technique

Eicosanoids,
ceramides and
lysophosphatidic
acids

Data structures in
eicosanoid and ceramide
serum concentrations

Mezzaroba
et al., Mol
Neurobiol.
2020 [ref (39)]

MS: n=174 (CIS n=5;
RRMS n=144, SPMS n=20,
PPMS n=5)
Controls: n=182

0 Plasma levels of
TNF-a, sTNFR1,
sTNFR2,
adiponectin,

NNA and
RBF/SVM

TNF-a, sTNFR1,
sTNFR2,
adiponectin,
hydroperoxides,

MS vs controls
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Model
performance

Comments

combined with
increased sTNFR2:
98.7% sensitivity,
91.7% specificity,
AUC-ROC 0.990.
SVM analysis
(validation): 93.51%
training accuracy,
92.03% validation
accuracy. NNA
training: sensitivity
98.2%,
specificity83.3%,
AUC-ROC 0.997

most important predictors, followed by zinc
and sTNFR2

MS vs non-MS: RF
model: sensitivity
75.6%, 85.7%
specificity, 90.91%
accuracy, ROC-AUC
0.957
Relapsing vs non-
relapsing MS: the RF
model had the highest
accuracy (70%). In the
validation set, the RF
model was the
best discriminator

Cytokines play an important role in the
differentiation of Th cells and recruitment of
auto-reactive T and B cells in MS

SVM: sNfL levels
75.7% accurate at
predicting OPL
volume (training
75.9%, testing 76.2%).
Longitudinal analysis
of sNfL and OPL in
ON eyes: sNfL levels
72.1% accurate at
predicting OPL
atrophy (training
72.5%, testing 71.8%)

NfL was predominantly expressed in the
RNFL, GCIPL and OPL in comparison to
other layers (murine retina).
The findings suggest NfL and OPL
associations may be due mostly to
inflammation leading to axonal damage

Training: baseline MS-
DSS: 75 unique
biomarkers explaining

Identification of 7 patient clusters differing
in CSF concentration of proteins from four
protein modules (1. Myeloid lineage/TNF; 2.

(Continued)
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hydroperoxides,
AOPP, nitric oxide
metabolites, TRAP,
SH groups, and
serum levels of zinc

AOPP, nitric
oxide metabolites,
TRAP, SH groups,
and zinc

Goyal et al.,
Front Neurol.
2019 [ref (40)]

MS: n=910
Healthy volunteers/
controls: n=199

Serum cytokines:
IL-1b, IL-2, IL-4,
IL-8, IL-10, IL-13,
IFN-g, and TNF-a

SVM, DT, RF
and
neural
networks

IL-1b, IL-2, IL-4,
IL-8, IL-10, IL-13,
IFN-g, and TNF-
a,
age, sex, disease
duration, EDSS
and MSSS
(cytokines for MS
vs non-MS, and
cytokines and
other variables for
relapsing vs non-
relapsing MS)

MS vs non-MS
Relapsing vs non-
relapsing MS

Seitz et al.,
Ther Adv
Neurol
Disord. 2021
[ref (42)]

Early MS: n=156:
n=110 with no history of
ON n=46 with prior
history of ON

0 sNfL levels SVM sNfL
age, sex, disease
duration, EDSS

OCT: OPL volume
and atrophy

Kosa et al.,
Nat Commun.
2022 [ref (43)]

MS: n=227
Healthy subjects: n=24

1305 proteins
in CSF

RF Proteins in CSF,
age, sex

MS severity: CombiWISE-
based MS-DSS at baseline
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utput Model
performance

Comments

p, and BVD
ome

62% variance. MS-
DSS on follow-up, 34
unique biomarkers
and 35 for BVD
explaining 60%
variance.
Validation: CSF-based
MS-DSS at baseline
predicted 17%
variance, 26% of MS-
DSS at follow-up, 22%
of BVD
severity model

CNS repair; 3. Complement/coagulation; and
4. Adaptive immunity and CNS stress).
Cluster 2: predominance of males with
progressive MS, relatively low expression in
the CNS repair module and high expression
in the myeloid lineage/TNF and
complement/coagulation modules. These
patients had a higher MS severity.
Clusters 3 and 4 relatively enriched for
female subjects.
Cluster 3: high expression of adaptive
immunity and CNS module proteins and
enriched with relapsing MS subjects.
Cluster 4: relatively high expression of all
protein modules except for complement/
coagulation, with a relatively low MS severity

matory
other
ells/ml,
K cells, and B

and CD56dim
eripheral

matory
SF plasma cells
cal
s

Neuroinflammatory
diseases vs others:
70% sensitivity, 81%
specificity, 76%
accuracy,ROC-AUC
85%
MS vs other
neuroinflammatory
disorders:
Accuracy vs:
NMOSD: 87.3%;
Susac Syndrome:
95.3%; A
E: 89.4%.
ROC-AUC vs:
NMOSD: 91.5;
Susac Syndrome: 90.7;
AE: 82.7

MS vs other autoimmune diseases: besides
parameters such as intrathecal plasma cells
concomitant with IgG synthesis, the analyses
identified intrathecal IgA and IgM synthesis.
There were other disease-specific parameters,
such as alterations in circulating peripheral
blood CD56bright NKcells and intrathecal
lactate concentrations in NMOSD;
circulating CD4+ and CD8+ T cells in Susac
Syndrome; and circulating and intrathecal
lymphocytes, intrathecal NK T cells,
monocytes, and CD14+CD16+ monocytes
in AE.

D, cluster of differentiation; CIS, clinically isolated syndrome; CNN, convolutional neural network;
-organising feature maps; FT, functional trees; GaussianNB, Gaussian Naïve Bayes; GCIPL, macular
man microRNA Disease Database; IFN, interferon; IL, interleukin; miRNA, microRNA; MS, multiple
; NNA, neural network analysis; OCT, optical coherence tomography; ON, optic neuritis; OND, other
machine with radial basis function; RF, random forests; RNFL, retinal nerve fiber layer; ROC-AUC,
MS, secondary progressive multiple sclerosis; sTNFR, soluble tumour necrosis factor receptor; SVM,
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and follow-
severity out

Gross et al.,
Brain. 2021
[ref (44)]

Autoimmune
neuroinflammatory
diseases: n=282 (relapsing
MS n=196, NMOSD n=15,
Susac syndrome n=14, AE
n=57)
Degenerative diseases:
n=93 (amyotrophic lateral
sclerosis n=52, mild
Alzheimer´s Disease n=41)
Vascular conditions: n=97
Non-inflammatory
controls: n=74 (with
somatoform disorders or
who donated CSF during
the course of spinal
anesthesia).
Total n=546

Additional subjects:
n=231
(neuroinflammatory
diseases: n=32;
neurodegenerative
diseases: n=156;
neurovascular
diseases: n=8; non-
inflammatory
controls: n=35)

CSF analysis with
multiparameter
flow cytometry to
identify 34 CSF
and blood
biomarkers after
assessing
for collinearity

Feature
selection with
dimensionality
reduction and
unsupervised
cluster analyses

34 CSF and
blood features

Neuroinflam
processes vs
conditions:
monocytes,
cells in CSF
NK cells in
blood.
MS vs other
neuroinflam
disorders: C
and intrathe
IgG synthes

ADAboost-FT, adaptive boosting applied to functional trees; AE, autoimmune encephalitis; AOPP, advanced oxidation protein products; BVD, brain volume deficit;
CombiWISE, combinatorial weight-adjusted disability score; CSF, cerebrospinal fluid; DT, decision tree; EDSS, Expandid Disability Status Scale; ESOM, emergent sel
ganglion cell-inner plexiform layer; GEO, gene expression omnibus data repository; CNS, central nervous system; GTPase, guanosine triphosphate enzyme; HMDD, Hu
sclerosis; MS-DSS, Multiple Sclerosis Disease Severity Score; MSSS, Multiple Sclerosis Severity Score; NK, natural killer; NMOSD, neuromyelitis optica spectrum disorder
neurological diseases; OPL, outer plexiform layer; PBMCs, peripheral blood mononuclear cells; PPMS, primary progressive multiple sclerosis; RBF/SVM, support vecto
receiver-operating characteristic curve-area under the curve; RRMS, relapsing remitting multiple sclerosis; SH, sulphydryl; sNfL, neurofilament light chain in serum; SP
support vector machine; Th, T helper cells; TNF, tumour necrosis factor; TRAP, total radical-trapping antioxidant parameter.
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relapsing vs progressive MS classifier showed 83.3% sensitivity and

93.8% precision. Associated biological themes included cell cycle

and T cell activation for both progressive forms; protein

ubiquitination, cell migration, and fatty acid metabolism for

PPMS; and GTPase activity regulation, locomotor behaviour, and

blood coagulation in SPMS.

MicroRNAs (miRNAs) play critical roles in post-transcriptomal

gene expression regulation. In MS, miRNAs have been implicated in

various aspects of the disease’s pathophysiology (35). Sun et al. (36)

proposed a convolutional neural network (CNN)-based model to

identify MS-related miRNAs and compared it to other existing

methods: DT, SVM, logistic regression, and Gaussian Naïve Bayes.

Using the miRNA-MS associations from the Human microRNA

Disease Database (HMDD), the CNN model showed the highest

ROC-AUC (0.87). Some of the top 10 predicted miRNAs were

differentially expressed in RRMS or related to Th17 cell

differentiation, whereas another one decreased after initiation of

therapy with interferon b.
L i p i d me t abo l i sm may influenc e infl ammat i on ,

neurodegeneration, myelin damage, and repair processes in MS

(37). Lötsch et al. (38) used unsupervised ML implemented as

emergent self-organising feature maps (ESOM) combined with the

U*-matrix visualisation technique to analyse eicosanoids,

ceramides, and lysophosphatidic acids in serum of 102 PwMS and

301 HC, to find distance and density-based structures. Clear data

structures were observed in eicosanoid and ceramide

concentrations. Whereas the classification of MS vs HC yielded a

moderate performance with eicosanoids (54% sensitivity, 100%

specificity, 77% accuracy) the structures emerging with ceramides

resulted in a high performance (89.2% sensitivity, 100% specificity,

94.6% accuracy).

An imbalance of oxidant and antioxidant molecules has been

implicated in demyelination and axonal damage in MS. Mezzaroba

et al. (39) used supervised ML (neural network analysis [NNA] and

SVM with radial basis function [RBF/SVM]) to evaluate

discriminatory patterns in plasma of 9 oxidants and antioxidants

and zinc serum levels, in 174 PwMS and 182 controls. The

combination of low levels of four antioxidants and increased

levels of one oxidant yielded the best prediction for MS

(sensitivity 98.7%, specificity 91.7%, AUC-ROC 0.990). The SVM

analyses obtained 93.51% training and 92.03% validation

accuracies (39).

Cytokines play an important role in Th cell differentiation and

recruitment of auto-reactive T and B cells in MS. Goyal et al. (40)

used four ML models (SVM, DT, RF, and neural networks) to

identify serum cytokines predictive of MS. They also assessed the

cytokines with age, sex, disease duration, EDSS, and MSSS to

classify MS into remitting and non-remitting MS. They used 910

serum samples from PwMS and 199 from HC (total n=1109). Of

these, 900 were included in the training set and 209 in the testing

set. RF was the model that best predicted MS (sensitivity 75.6%,

specificity 85.7%, accuracy 90.91%, ROC-AUC 0.957) and also had

the highest accuracy (70%) to differentiate relapsing from non-

relapsing MS. In the validation set, the RF model was again the best

discriminator (40).
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Neurofilament light chain (NfL) is a biomarker of axonal

damage in MS (41). Seitz et al. (42) used SVM analysis to test for

associations between baseline serum NfL (sNfL) and different

retinal thickness measures in 156 early MS patients: 110 with no

history of optic neuritis (ON) and 46 with ON. After adjusting for

age, sex, disease duration, and EDSS, a significant correlation was

found only between high sNfL levels and low outer plexiform layer

(OPL) volume in patients with a history of ON. Follow-up OCTs

available for 38 subjects with a mean (SD) follow-up of 2.1 (1.4)

years showed baseline sNfL correlated with absolute OPL atrophy in

ON. sNfL levels predicted OPL volume with 75.9% training and

76.2% testing accuracies. In the longitudinal analysis, sNfL

predicted OPL atrophy with 72.5% training and 71.8%

testing accuracies.

Other studies have focused on CSF biomarkers. Kosa et al. (43)

used RF to search for biomarkers among 1305 proteins in CSF of

227 PwMS to build models predictive of disease severity. To

differentiate natural aging and sex effects from MS-related

mechanisms they used data from 24 HC. MS severity was

assessed using the combinatorial weight-adjusted disability score

(CombiWISE)-based MS Disease Severity Score (MS-DSS)

measured at baseline and follow-up, and the brain volume deficit

(BVD) severity outcome, based on linear regression models of brain

parenchymal fraction and age, calculated from MRIs performed

within 3 months of CSF collection. Initial analyses demonstrated

positive associations of coagulation and complement cascades and

negative associations for NOTCH signalling and neuron

recognition categories with MS severity. After adjusting for age

and sex, the model selected 75 biomarkers explaining 62% of

variance for baseline MS-DSS. For follow-up MS-DSS, 34

biomarkers were selected and 35 for BVD explaining 60% of

variance. The effect sizes decreased to 17%, 26%, and 22% of

variance in the validation cohort (n=98). Using unsupervised

cluster analyses, the authors identified seven patient clusters

differing in CSF protein concentrations from four protein

modules. Of note, one cluster had a predominance of men with

progressive MS, a relatively low expression in the CNS repair

module and high expression in the myeloid lineage/TNF and

complement/coagulation modules. These patients had a higher

MS severity.

Cellular characterisation in blood and CSF can help differentiate

between CNS disorders and clarify their pathophysiological

processes. Gross et al. (44) combined feature selection with

dimensionality reduction and unsupervised cluster analyses to

inve s t i g a t e pa rame t e r s a l t e r ed ac ro s s au to immune

neuroinflammatory diseases [RRMS n=196, neuromyelitis optica

spectrum disorders (NMOSD) n=15, Susac syndrome n=14,

autoimmune encephalitis (AE) n=57], other CNS conditions

(neurodegenerative n=93, vascular n=97), and non-inflammatory

controls (n=74) (total n=546). The validation cohort included 231

additional subjects (neuroinflammatory n=32, neurodegenerative

n=156, neurovascular n=8, non-inflammatory controls n=35).

Exploratory analyses identified four CSF parameters and one

peripheral blood parameter that together discriminated

neuroinflammatory diseases from other groups (70% sensitivity,
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81% specificity, 76% accuracy, ROC-AUC of 85%). When aiming to

differentiate MS from other neuroinflammatory diseases, CSF

plasma cells and intrathecal IgG synthesis alone were sufficient to

distinguish RRMS from other neuroinflammatory diseases with

high accuracy and ROC-AUC (NMOSD: 87.3% and 91.5%; Susac

syndrome: 95.3% and 90.7%; AE: 89.4% and 82.7%). Finally, the

authors compared cell profiles in RIS, CIS and early RRMS (≤36

months from disease onset) vs late RRMS (>36 months). Alterations

in the proportions of CD56dim NK cells and biomarkers of

intrathecal inflammation gradually increased during disease

evolution. When splitting RRMS based on inflammatory activity,

minor effects were shown in most intrathecal parameters, whereas

changes in peripheral and intrathecal CD4+CD8+ T cells and

intrathecal plasma cells were more pronounced.
Limitations of AI-based research in MS
fluid biomarkers

AI-based studies using fluid biomarkers in MS offer promising

results. However, these studies have limitations which are worth

being mentioned. In general, all these studies still have relatively

small sample sizes, which, together with the lack of external

validation analyses in many of them, limit the generalisability of

the results. Also, despite the low number of studies published so far,

there is a large methodological variability, which, at times, is not

explained in detail, making it very difficult to replicate the analyses

done (Tables 1–3). These limitations are common to all AI-based

studies that harness biomarker data to improve the diagnosis,

predict or understand the disease, thus hampering the application

of all these models to clinical practice.

In relation to the specific limitations of those studies focused on

diagnosis, the number and types of diseases which have been

compared with are limited. Furthermore, many of the tests

(biomarkers) used by the authors are not available in routine clinical

practice. These aspects reduce the utility of these models in practice, at

least in the short term, suggesting the need for more research.

Regarding the studies focused on prediction of disease evolution,

apart from the general limitations abovementioned, many of them

have cross-sectional designs or, if they have a longitudinal design,

there is a relatively short follow-up time in most of the cases. Also,

very often, the effect of treatment is not taken into account.

Furthermore, most studies were not adjusted for important

demographic, clinical and technical aspects, such as race, ethnicity,

disease duration, brain volume, and the interval between sampling

and relapses or their treatment. Finally, despite the developments in

AI-based models in MS which use raw neuroimaging and deep

learning techniques to predict clinical outcome, the integration of

these into AI-based models which use fluid biomarkers (or the other

way around) is still lacking. Little is known about the complementary

roles of both types of predictors and the potential synergies between

them. However, it is highly likely that only when both are used

together in comprehensive models, a real impact on the clinical

management of MS can be achieved. Such integration requires,

though, intensive methodological research which will hopefully

bear fruit in the near future.
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Lastly, regarding the limitations of the studies focused on

understanding disease mechanisms, many of them are far too

focused on certain paths or predictors, therefore not allowing us

to explain or understand the whole picture. Also, very importantly,

the fact that many of these biomarkers, paths, or predictors, may

explain the same variance of a given outcome measure but we are

not aware of that – because typically one study tends to focus on a

given path – implies that many of the associations found may be

reflecting mere epiphenomena rather than causally related events.

Whereas this might be less relevant for building predictive models,

for those studies which aim at understanding the disease through

AI, this may be deleterious.
Conclusions and future directions

The application of AI-based methodologies to tackle key

challenges in MS is exponentially increasing. However, in this

context, the number of studies published in the literature focusing

on the use of fluid biomarker data is still small. Most of these

publications are focused on serum biomarkers, genetic variants, and

gene expression profiles as predictors. Of note, only half of them

have included an external validation analysis of the developed AI

model, thus hampering a full interpretation of the results and their

potential generalisability.

Importantly, after the assessment of the papers published so far,

it may be said that the research on AI applied to biomarker data is

still quite in its early days and that we are still far from clinical

applications. So far, AI methodologies have been very useful for

biomarker discovery in MS, but the large heterogeneity of methods

and results suggests that we may need many years of research before

prototypes can be launched to help healthcare professionals and

patients in the clinic.

Along the same lines, even though many studies reported much

higher accuracy levels when fluid biomarker, MRI, and clinical data

were combined as predictors of diagnosis or disease evolution, large

studies combining the most important types of predictor acquired in

the clinic are lacking. Only when these take place and are replicated in

large independent cohorts will we be able to comprehend their full

potential and start considering that a change in patient management

thanks to the introduction of those AI-based models is possible. Of

note, for these models to be useful in the clinic, they need to use, as

input data (predictors), routinely-acquired biomarkers, including

laboratory, imaging, and clinical data. On the other hand, it is

possible that a branch of AI-based research in MS, i.e., that focused

on understanding the pathogenic mechanisms and those processes

underlying disability accumulation, continues to exist with the use of

less common (non-routinely acquired) biomarkers. This research is

also important and will surely bring to light crucial knowledge on the

disease, essential for its ultimate eradication. A final conclusion is that

all studies carried out so far confirm the leading role of inflammatory

pathways in MS.

Future directions include the development of larger studies with

validation in independent datasets. Also, future directions should

aim at the design of longitudinal studies with longer follow-ups (for

those mainly focused on future prediction), hopefully accounting
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for the complex effects of disease-modifying treatments and other

dynamic data, as well as the integration of fluid biomarkers,

neuroimaging, optical coherence tomography (OCT) imaging,

and clinical predictor data to build robust and powerful models.

Furthermore, forthcoming research endeavours must transition

from the current exploratory phase of AI-based methodologies

applied to biomarker data in MS to a more translational stage.

This shift necessitates thorough evaluation of the clinical utility of

the constructed AI models. For that, the future lies in creating

guidelines for AI-based analyses to improve the comparability

across studies, to shed light on the steps needed to go from

discovery to clinical practice implementation, and to evaluate

utility of AI-based algorithms in practice. Additionally, we should

be able to learn from AI-based investigations on other

neurodegenerative diseases (45) to overcome the challenges

surrounding these types of studies.

As a final consideration, it is imperative to recognise that

addressing ethical and inequality concerns surrounding AI-based

analyses is just as crucial as resolving technical challenges. With the

exponential growth of AI studies, maintaining research integrity in

AI research demands not only initial attention but also ongoing

evolution, keeping pace with the rapid advancement of science to

meet the needs and expectations of us all.
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This paper explores the significant role of real-world data (RWD) in advancing our

understanding and management of Multiple Sclerosis (MS). RWD has proven

invaluable in MS research and care, offering insights from larger and diverse

patient populations. A key focus of the paper is the European Health Data Space

(EHDS), a significant development that promises to change how healthcare data

is managed across Europe. This initiative is particularly relevant to the MS

community. The paper highlights various data initiatives, discussing their

importance for those affected by MS. Despite the potential benefits, there are

challenges and concerns, especially about ensuring that the growth of various

data platforms remains beneficial for MS patients. The paper suggests practical

actions for the global MS community to consider, aimed at optimizing the use of

RWD. The emphasis of this discussion is on the secondary use of health data,

particularly in the European context. The content is based on the author’s own

experiences and interpretations, offering a personal yet informed view on using

RWD to improve MS research and patient care.
KEYWORDS

real-world data, European Health Data Space, secondary use of health data,
collaborative research, data interoperability
Introduction

The multiple sclerosis (MS) community is fortunate to have a longstanding and

successful legacy of using real-world data (RWD, Table 1) to address complex clinical

problems. RWD often reflects larger and more representative populations and therefore is

specifically fit-for-purpose to investigate for example disease behavior in a real-world

setting, validation of outcome measures, comparative effectiveness and long-term safety of

therapies. Additionally, RWD plays a crucial role in enhancing patient advocacy by

informing policies on employment, reimbursement of treatments and access to

healthcare services, as well as supporting routine healthcare practices. A growing

number of real-world MS databases and registries produce long-term outcome data from

large cohorts of people with MS (1–3).

The heterogeneity in MS management across Europe, combined with the variability in

data collection methods (different formats and data acquisition software systems used
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across various data sources and MS registries), presents significant

challenges. These differences can impact the interpretation of RWD

at scale. Despite these challenges, the research community has

realized that combining data from diverse sources across the

globe presents significant opportunities for advancing our

understanding of MS. To manage the challenges associated with

heterogeneity, strategies such as incorporating detailed information

about the origin and specification of the source data, ensuring use of

high-quality data, involving domain experts in interpreting results,

and investing in data harmonization strategies are essential. These

approaches have enabled the research community to turn these

challenges into opportunities, as seen in initiatives like the Big

Multiple Sclerosis Data Network (BMSD - bigmsdata.org) and the

COVID-19 in MS Global Data Sharing initiative (GDSI).

BMSD is the largest real-world MS data network and brings

together leading MS registries and databases to allow joint

analyses of very large merged or federated sets of structured

clinical data. It was initiated in 2014 and currently consists of

the national MS registries of the Czech Republic (4), Denmark (5),

France (6), Italy (7) and Sweden (8) as well as the international

MSBase (9). The total number of MS patients in BMSD amounts

to over 250,000. In recent years, the BMSD has led on several

studies, yielding critical data-driven insights into MS treatment

and progression. For example, they uncovered significant patterns

in treatment management strategies (10) and disability

progression in secondary progressive MS (11). GDSI was project
Frontiers in Immunology 0236
led by the MS Data Alliance and MS International Federation in

collaboration with a multitude of global partners (12). In March

2020, as COVID-19 spread, the demand for data on its impact on

people with MS surged. Within months, 19 global partners shared

data on over 10,000 people with MS, which helped update global

advice for MS patients regarding COVID-19 (13–15).

While the MS community has made significant strides in

utilizing RWD for research and patient care, several existing and

emerging large-scale collaborative efforts across Europe – though

not specific for MS – are set to profoundly impact how RWD is

managed and utilized across various disease, including MS. In the

following paragraphs, several of these key initiatives will be

highlighted and explained in detail, focusing on their objectives,

relevance to the MS community, and the potential benefits of

engaging with them. These ‘highlighted initiatives’ represent

transformative efforts that are shaping the future of healthcare

data. However, while they offer exciting possibilities, they also

present unique challenges. The subsequent discussion will

explore these challenges and offer actionable recommendations

to help the MS community effectively navigate this evolving

landscape, mitigate risks, and maximize the opportunities these

initiatives provide.
Highlighted initiative 1: The European
Health Data Space (EHDS) – a
revolutionary legislative framework

The EHDS is set to revolutionize healthcare management across

a wide spectrum of stakeholders. Europe has been making

continuous efforts aiming at enhancing the harmonization and

integration of health data, which is needed in order to be able to

create a digitized and connected healthcare system, as foreseen in

the EHDS regulation. The EHDS proposal aspires to (i) support

individuals to take control of their own health data, (ii) support the

use of health data for better healthcare delivery, better research,

innovation and policy making and (iii) enables the EU to make full

use of the potential offered by a safe and secure exchange, use and

reuse of health data (16). Two projects, while differing in focus,

collectively aspire to enhance the concrete implementation of the

EHDS: TEHDAS and HealthData@EU. TEHDAS (Towards The

European Health Data Space - tehdas.eu), running from February

2021 to July 2023, focused on developing principles for the

secondary use of health data, emphasizing dialogue and

engagement across stakeholders, and establishing governance

models for cross-border cooperation. This project involved 25

European countries and numerous stakeholders in discussions

about health data usage for research and policymaking. In

contrast, the HealthData@EU Pilot (ehds2pilot.eu), launched in

October 2022, is building a pilot infrastructure for the EHDS,

focusing on infrastructure development, testing, and evaluation.

Involving 17 partners, this project aims to connect data platforms,

develop services for research project support, and provide

guidelines for data standards and security.
TABLE 1 Glossary - for the purpose of this paper, the following
definitions of concepts and terminologies are introduced as follows:.

• Data space: Comprehensive term that captures various dimensions of data
handling, from its storage and organization to its processing, access and
analytical use.
• Real-World Data (RWD): Pragmatically defined as any data that is gathered
in the context of standard care as opposed to data gathered in an experimental
setting such as a randomized clinical trial. Examples include registry data and
data collected and stored using electronic health records (EHR). Real-world-
evidence (RWE) is defined as any evidence generated using RWD.
• Core dataset: Set of variables that represent the common denominator across
different initiatives and their accompanying (minimal) datasets.
• Common Data Model (CDM): Standardized representation of content,
independent from a purpose or research question, combined with a defined
common infrastructure. Its purpose is to enable collaborative analyses by
providing a defined framework and structure.
• Primary use of health data: When health data is used to deliver health care
to the individual from whom it is collected. For example: an MRI measurement
taken for the purpose of diagnosing MS.
• Secondary (re-)use of health data: When (existing) health data, originally
collected for a specific primary purpose, is used for alternative objectives or
research that differs from the initiative reason for data collection. For example:
data originally collected for patient care and treatment optimization is re-used to
inform regulatory policies and decisions, potentially leading to improved
treatment guidelines and enhanced patient safety in the MS patient community.
• Patient registries: Organized systems that use observational methods to
collect uniform data on a population defined by a particular disease, condition or
exposure, and that is followed over time.
• Big data: large datasets which may be complex, multi-dimensional,
unstructured and heterogeneous, which are accumulating rapidly and which may
be analyzed computationally to reveal patterns, trends, and associations (e.g.
RWD (such as electronic health records, insurance claims data and data from
patient registries), genomics, clinical trials, spontaneous adverse drug reaction
reports, social media and wearable devices).
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Highlighted initiative 2: DARWIN-EU –
an initiative by the European Medicine
Agency (EMA)

The EMA has gained significant interest in the use of RWD to

assess the benefit-risk of medicines across their lifecycle and to

monitor the safety of medicine, specifically post-authorisation. A

post-authorisation safety study (PASS) is a study that is carried out

after a medicine has been authorized to obtain further information

on a medicine’s safety, or to measure the effectiveness of risk-

management measures. Figure 1 highlights some of the key

activities of EMA and/or the Heads of Medicine Agencies (HMA)

with respective timelines.

The initiative for patient registries, launched in September 2015,

aspired to explore ways of expanding the use of patient registries by

introducing and supportinga systematic and standardizedapproach to

their contribution to the benefit-risk evaluation of medicines (17).

Within the scope of this initiative, two workshops of specific interest

were hosted and summarized in extensive reports: (i) A more general

disease-agnostic workshop on patient registries (2016) to better

understand the barriers and facilitators to collaboration between

stakeholders. The workshop report provides recommendations on

actions to improve stakeholder collaboration and optimize the use of

registries to support regulatory decision-making (18): (ii) An MS

specific workshop aiming to reach consensus on implementable MS

specific recommendations for advancing the systematic use of MS

registries to support regulatory evaluations. Similar workshops were

hosted for other disease registries such as for example haemophilia

(19), cystic fibrosis (20) and cancer (21).

After a short period of public consultation, the guideline on

registry-based studies was published in 2021. This guideline
Frontiers in Immunology 0337
addresses the methodological, regulatory and operational aspects

involved in using registry-based studies to support regulatory

decision-making. It aims to help with defining study populations

and designing study protocols. It provides guidance on data

collection, data quality management and data analyses to achieve

high quality evidence (22). Meta-data catalogues offering

descriptive statistics will further support data quality assessment,

and evolving guidelines on data quality criteria will continue to

improve and standardize this process.

The HMA-EMA Joint Big Data Taskforce Phase II report (23)

suggests how the European regulatory network can use Big Data to

improve public health and innovation. The first and top priority

activity formulated is to deliver a sustainable platform to access and

analyze healthcare data from across the EU (Data Analysis and Real

World Interrogation Network - DARWIN - darwin-eu.org). Other

priority recommendations include to establish a framework for data

quality and to enhance data discoverability by strengthening the

current European Network of Centres for Pharmacoepidemiology

and Pharmacovigilance (EnCePP) resources databases (24) in line

with the ‘Good Practice Guide for the use of the Metadata Catalogue

of RWD sources’ (25).
Highlighted initiative 3: the
Observational Medical Outcomes
Partnership (OMOP) – driving
data harmonization

The freely available OMOP (Observational Medical Outcomes

Partnership) common data model (CDM) refers to the open

community standardized data model, which is designed to
FIGURE 1

Highlighted activities of the European Medicine Agency (EMA) and/or the Heads of Medicine Agencies (HMA) with respective timelines focusing on
‘patient registries’ (bottom) and ‘big data’ (top). Reference documents to learn more include: Initiative for patient registries - Strategy and Mandate of
the Cross-Committee Task Force (17); Guideline on registry-based studies (22); HMA/EMA Joint Big Data Taskforce Phase II report (23); Report -
Patient Registry Workshop (18); Report on Multiple Sclerosis (MS) Registries (42): Work Plan 2023-2025 HMA/EMA Joint Big Data Steering Group (51).
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integrate and harmonize healthcare data from various sources, such

as electronic health records (EHRs), claims databases, and other

observational databases (26, 27). The OMOP CDM is a patient-

centric relational database with several standardized tables,

distinguished in domains like condition, procedures, drug usage,

measurements or observations. Some of the key standard

terminologies used in the OMOP common data model include

SNOMED CT ( (28) - snomed.org) and LOINC ( (29) - loinc.org).

The large community behind the OMOP CDM is consolidated in

the Observational Health Data Sciences and Informatics

community (OHDSI - ohdsi.org). Some OHDSI tools of specific

interest include HADES, a set of open source R-packages for large-

scale analytics (30) and ATLAS, which facilitates the design and

execution of analyses (31). The 2023 annual report on ohdsi.org

highlighted impressive numbers: over 3,700 collaborators from 83

countries, a data network of 543 databases from 49 countries, and

more than 956 million patient records, covering about 12% of the

global population.

Several large-scale collaborative RWD initiatives have adopted

the OMOP CDM. Some examples include PIONEER focusing on

prostate cancer [prostate-pioneer.eu; (32)], the European Reference

Network for Rare Adult Solid Cancers [EURACAN; euracan.eu;

(33)], and HONEUR with a specific focus on hematology [portal.

honeur.org; (34)]. The European Health Data and Evidence

Network [EHDEN; ehden.eu; (35)] deserves special attention,

since it managed to establish the largest European federated

RWD network. The EHDEN network currently consists of 187

Data Partners in 29 countries across the European region, with

greater than 850 million anonymous health records.
Highlighted initiatives 4: European
Research Data infrastructures:
EBRAINS focusing on brain-related
research data and ELIXIR for life
sciences (-omics) data

Complementing these efforts are European research data

infrastructures like EBRAINS (ebrains.eu) and ELIXIR (elixir-

europe.org), which enhance research data handling and analysis for

brain-related and life sciences (-omics) data, respectively. ELIXIR

unifies bioinformatics resources and life science data for easier

mining and reuse. This distributed digital infrastructure connects

scientists from 23 countries (>250 research institutes), offering

services like data deposition databases, data analysis, management,

and compute services. ELIXIR also operates a vibrant training

network through the TeSS Training Portal (36), registering over

1,200 training materials and training more than 19,000 people

between September 2015 and March 2019 (37). ELIXIR played a

leading role in the beyond onemillion genome project (b1mg-project.

eu) that recently ended. During the COVID-19 pandemic, ELIXIR

provided a range of services to study COVID-19 (38).

EBRAINS offers a digital infrastructure to boost collaborative

brain research in neuroscience, brain health, and brain-related

technology. Emerging from the Human Brain Project (HBP)
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(2013–2023), a European Flagship project with a €607 million

investment, it involved over 500 researchers from 19 countries and

155 institutions. The HBP developed 160+ digital tools for multi-scale

brain research and facilitated extensive collaboration among research

teams (39). Some highlighted examples of potentially interesting tools

and services include the Knowledge Graph - multi-modal metadata

platform, the Medical Informatics Platform (MIP) - enabling access

and analyses of anonymized medical data (40) and The Virtual Brain

- a reference tool for full-brain simulation (41).
Discussion

There is great promise for the MS
community in aligning closely and
promptly with the EHDS legislation and
engaging with emerging large-scale data
initiatives that are not specific to MS

The EHDS is about to be implemented and is expected to have

as significant and far-reaching impact. A proactive approach, which

includes early investigation of alignment and synergy, would enable

the MS community to understand the potential risks and challenges

associated with this new legislation from the start. This foresight

would allow for more effective long-term planning, the ability to

anticipate future trends, and the development of risk management

strategies to navigate anticipated changes in the regulatory

environment. Moreover, collaborations with data initiatives not

specific to MS not only pave the way for valuable partnerships and

networking opportunities, but they also offer significant

opportunities to explore new research questions and enhance

existing studies with complementary insights.
Nevertheless, the path forward is marked
by numerous, significant challenges that
need to be addressed

Although I am a firm advocate for the EHDS and the

collaboration with the previously mentioned data initiatives, I

must highlight a series of challenges and lingering questions.

These will be summarized in the following section, underlining

the complexities we still need to navigate:
• How will the implementation of the EHDS impact the current

utilization of MS registries and other RWD sources? As

previously emphasized, MS registries and other RWD

sources are vital for addressing pressing clinical questions

related to MS. Currently, there is significant variation in the

governance principles applied within the existing and

emerging registries and RWD sources, which complicates

collaborative efforts (2, 42). Given the uncertainty regarding

how the EHDS will influence the conduct of large-scale,

multi-centric studies using data from different member

states, it is yet to be determined whether the EHDS will

simplify or further complicate these collaborations.
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• The EHDS primarily focuses on Europe, while other continents

are advancing parallel initiatives within their regions, such as

the Sentinel Initiative (43)) and the Framework for the FDA’s

Real-World Evidence Program (44). This raises the question:

Can we expect alignment between these initiatives to address

clinical challenges on a global scale? Investigating phenomena

like silent progression, pediatric MS, early detection of MS

onset in at-risk individuals (referred to as prodrome), and

conducting large-scale epidemiological studies, such as the

Atlas of MS (45), requires a wealth of high-quality data.

Global collaboration is crucial to tackle these complex

questions, especially considering the global prevalence and

incidence rates of MS. An estimated 2.8 million people

worldwide live with MS, equating to 35.9 per 100,000

population, with a pooled incidence rate of 2.1 per 100,000

persons/year (45). For instance, the COVID-19 in MS global

data sharing initiative brought together data from 19 partners

but compiled ‘only’ 10,000 patient records (13–15). Similarly,

the BMSD network, with the potential of over 250,000 patient

records, experiences a significant reduction in numbers when

specific inclusion criteria are applied (11).

• How can we ensure that the disease-agnostic recommendations,

services, and tools are not only fit-for-purpose but also

implementable for addressing MS-related questions, given that

their straightforward application to the MS community is

evidently not as feasible as assumed? A prime example is the

OMOPCDM, which, despite its broad application, is currently

not entirely suitable for MS registry data. This statement is

based on the experiences of my research group and in line with

the documented experience from pulmonary hypertension

databases (46). The underlying problem and probably the

main reason for the different mapping designs is the

observational character of MS RWD sources that are not

connected to an electronic health record and filled with

clinical data from there. Furthermore, a significant gap

exists between guidelines formulated by EMA and their

practical application, as highlighted by two key reports – the

EMAReport onMS Registries (18) and the EMAGuideline on

Registry-Based Studies (22). These documents, while

authoritative, lack the necessary detail, have little or no focus

on patient’s input or patient relevant outcome measures and

have not been checked sufficiently for real-world and

sustainable implementation. For example, the discussion

about financial sustainability is insufficiently incorporated

into these reference documents. Despite the aforementioned

challenges, there are notable examples of successful

collaborations. The German MS registry and the MS

DataConnect Cohort of the University MS Center in

Belgium are part of the federated data network of

EHDEN (35). In the MultipleMS consortium (multiplems.

eu), linked to the International Multiple Sclerosis Genetics

Consortium (47), and the COVID-19 in MS global data

sharing initiative (12), the ELIXIR community has played a

key role in supporting the technical architectures for data

storage, management, and sharing in these large-scale

collaborative efforts.
tiers in Immunology 0539
In a continuously changing and complex
environment, it is essential to prioritize
pragmatic actions.

To this end, a set of concrete, actionable suggestions for the MS

community are formulated (see also Figure 2).
• Suggested action 1: Building upon the strong foundation of

collaboration established within the MS community to further

enhance our collaborative efforts. As we move toward

formulating detailed and implementable global

recommendations for data collection, it is clear that the

responsibility for this initiative will continue to rest with the

MS community. Recently, a global multi-stakeholder task force

defined a core dataset for MS to guide emerging registries in

their dataset definitions and speed-up and support

harmonization across registries and RWD MS initiatives. A

regular revision of the current Core DataSet is anticipated,

especially in regards to the currently excluded variables or

pragmatic choices of values (48). Dataset variables needing a

dedicated set of data elements (e.g. in the area of patient-

reported outcomes or pharmacovigilance) are also not

included. The latter is anticipated to be driven by leading

networks like BMSD or PROMS initiative focusing on these

specific topics. Another interesting activity to enhance multi-

stakeholder collaboration is to regularly organize large-scale

multi-stakeholder engagement meetings (18, 49).

• Suggested action 2: Investigate the potential of existing and

emerging data spaces to address some urgent and critical

questions formulated by the MS community, adhering to the

principle of ‘learning by doing.’ Specific pilot projects could be

established and carried out to assess the suitability of current

recommendations for data standardization, interoperability,

infrastructure, and governance in the MS context. Following

these pilot projects, identifying areas for potential synergy and

proposing necessary adjustments will be crucial. An innovative

approach could involve organizing a study-a-thon in

collaboration with OHDSI and/or EHDEN. A study-a-thon

is a focused, multi-day research event that generates reliable

evidence on a specific medical topic across different countries

and health systems. It gathers multidisciplinary teams to

expedite scientific contributions without sacrificing the

quality of research, facilitated through a reproducible process

(50). This method could effectively showcase the advantages of

collaborating with these networks within a limited timeframe.

Concurrently, the MS Data Alliance is investigating how the

OMOP CDM can be tailored to address the challenges

previously identified. This research is specifically focused on

the feasibility of automatically converting the MS Data

Alliance Core Dataset (48) to the OMOP CDM, with the

results expected to be publicly and freely available to the MS

community soon.

• Suggested action 3: Team-up with other disease areas to

co-2create recommendations to ensure that the EHDS

encapsulates disease-specific requirements. The challenges

highlighted earlier in this paper, while focusing on MS, are
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not unique to it. Similar issues are encountered by

communities studying chronic diseases that require long-

term, high-dimensional follow-up. Particularly relevant are

those groups already actively engaged in EHDS discussions,

such as those focused on cystic fibrosis, cancer and diabetes

(20, 21, 49)). A practical first step would be to co-create a joint

statement, consolidating a unified response to the EHDS

proposal and addressing the identified challenges.

• Suggested action 4: Invest in education, engagement and

awareness raising of all stakeholders involved to ensure

proper understanding related to the EHDS as well as general

data science principles. Stakeholders include regulators,

clinicians, researchers, industry, and people with MS, all of

whom are equally important. The level of being informed

about how to contribute to the RWD ecosystem as well as

experience in actively participating in large-scale RWD

collaborative initiatives differs between stakeholders and

individuals. Being limited informed and/or having limited

experience leads to reduced active participation in initiatives

that aim to address the urgent needs within the ecosystem.

People withMS (or broader citizens) can actively contribute by

co-creating legislation— deciding what is acceptable, how, and

for what health data can be used - as well as helping to define

priorities in the global research agenda.
Conclusion

Rapid advances in artificial intelligence (AI) and the growing

health data volume are expected to significantly impact the health

sector. AI has already shownpromise in helping to improve diagnostic

performances, workflow and cost-effectiveness. AI has the potential to

speed-up the complex process of data management and –analysis,

specifically with the recent developments in the field of generative AI

(e.g. ChatGPT). As we stand at the intersection of immense potential

and complex challenges, there is both a reason for excitement and a
tiers in Immunology 0640
cause for concern. By coming together – researchers, clinicians,

patients, policymakers, and other stakeholders – we can harness the

full potential of RWD while navigating its complexities. This is a

journey that we must embark on together, informed by diverse

perspectives and united by a common goal: to revolutionize MS care

and research for the betterment of people affected by MS worldwide.

Let this paper be the catalyst for that collaborative journey.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.

Author contributions

LP: Writing – original draft, Writing – review & editing,

Conceptualization, Visualization.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Acknowledgments

The authors acknowledge the assistance of ChatGPT4, an AI

language model developed by OpenAI, for its support in structuring

and refining the content of this paper.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
FIGURE 2

Summary overview of suggested action points towards the MS community to safeguard that the arisal of parallel data spaces remains in the best
interest of people with multiple sclerosis.
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Cranial volume measurement 
with artificial intelligence and 
cognitive scales in patients with 
clinically isolated syndrome
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1 Bakırköy Dr. Sadi Konuk Eğitim ve Araştırma Hastanesi, Istanbul, Türkiye, 2 Basaksehir Cam and Sakura 
City Hospital, Istanbul, Türkiye

Objective: We aimed to investigate the relationship between volumetric 
measurements of specific brain regions which were measured with artificial 
intelligence (AI) and various neuropsychological tests in patients with clinically 
isolated syndrome.

Materials and methods: A total of 28 patients diagnosed with CIS were 
included in the study. The patients were administered Öktem Verbal Memory 
Processes Test, Symbol Digit Modalities Test (SDMT), Backward-Forward Digit 
Span Test, Stroop Test, Trail Making Test, Controlled Oral Word Association Test 
(COWAT), Brief Visuospatial Memory Test, Judgement of Line Orientation Test, 
Beck Depression Scale, Beck Anxiety Scale and Fatigue Severity Scale. Artificial 
intelligence assisted BrainLab Elements™ Atlas-Based Automatic Segmentation 
program was used for calculating volumes. The measured volumes were 
compared with the reference database. In addition, neuropsychological test 
performances and volumetric measurements of the patients were compared.

Results: Of the patients included in the study, 78.6% were female and 21.4% 
were male, with an average age of 33 years. Verbal Memory Processes Test, 
SDMT, Backward-Forward Digit Span, JLOT, and Stroop Test showed significant 
correlations with multiple anatomical regions, particularly the anterior thalamic 
nucleus, which was associated with the highest number of cognitive tests. 
The JLOT exhibited the strongest correlation with six different brain regions 
(p < 0.001).

Conclusion: The Judgement of Line Orientation and Stroop Tests, correlated with 
multiple brain regions, especially the anterior thalamic nucleus, underscoring 
the importance of these tests in assessing cognitive function in CIS.

KEYWORDS

multiple sclerosis, clinically isolated syndrome, artificial intelligence, BrainLab, brain 
volume analysis

Introduction

Clinically isolated syndrome (CIS) is defined as one of the subtypes of multiple sclerosis 
(MS) according to the 2017 McDonald MS criteria. It is a monophasic clinical episode 
suggestive of a focal or multifocal, inflammatory demyelinating event in the central nervous 
system, lasting at least 24 h, with or without subsequent improvement, not accompanied by 
infection or fever, and including symptoms resembling a typical MS relapse (1). Although 
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almost any neurological finding may be the first clinical episode in 
patients with CIS, somatosensory findings, optic neuritis, transverse 
myelitis, brainstem syndrome, and cognitive involvement are most 
commonly observed (2, 3). Cognitive impairment was first mentioned 
by Charcot in 1877 as “slowness in the perception of MS patients.” 
Cognitive impairment has been reported to be  approximately 
34–65% (4).

Brain tissue loss (atrophy) is thought to reflect neuroaxonal 
damage. Volumetric measurements are performed with fully 
automatic segmentation software over 3D T1-weighted sequences to 
evaluate atrophy. Atrophy starts in the early period of the disease, and 
it is known to be strongly associated with cognitive impairment (5).

Cognitive impairments observed in MS include impairments in 
information processing efficiency and speed, attention maintenance 
and complex attention, working memory, learning, problem-solving, 
language and visuospatial memory, long-term memory, abstract 
thinking, verbal fluency, and executive functions (6). The 
characteristics of cognitive impairment in the CIS group are similar 
to those of MS, and information processing speed and verbal memory 
are most commonly affected. It has been suggested that cognitive 
dysfunction observed in patients with CIS may predict the 
transformation of the disease into MS and the disability that occurs 
over time (7, 8).

The possibility of establishing a correlation between radiological 
images and cognitive impairment in MS is very important, and many 
studies have been conducted on this subject. In studies, cognitive 
impairment was found to be  associated with T2 lesion load, 
neocortical gray matter, volume loss in the thalamus, hippocampus, 
and corpus callosum on MR imaging (6, 9–11).

Our primary aim encompassed a comprehensive inquiry into the 
intricate interplay between the volumetric measurements derived 
from distinct cerebral regions in CIS patients and a diverse array of 
neuropsychological tests, delving into the nuanced associations and 
potential implications within this multifaceted relationship.

Materials and method

In this study, a total of 28 patients comprising 6 males and 22 
females diagnosed with CIS, and who were under observation at the 
demyelinating diseases outpatient clinic between February–June 2023, 
were assessed. Inclusion criteria stipulated that patients must have 
been diagnosed with clinically isolated syndrome, be 18 years of age 
or older, be proficient in Turkish, and exhibit normal laboratory test 
results concerning cognitive function. Exclusion criteria encompassed 
substance abuse, recent acute exacerbations or corticosteroid use 
within 4 weeks before clinical and MR imaging tests, presence of 
central nervous system diseases, significant affective disorders or 
severe psychiatric illnesses, utilization of psychostimulant or 
psychotropic drugs affecting cognitive functions, alcohol or substance 
dependence, as well as a history of attention deficit-hyperactivity 
disorder and learning disabilities.

Patients underwent cranial MR imaging with a slice interval of 
1 mm. The imaging was conducted in the supine position utilizing a 
1.5 Tesla magnetic field strength (Siemens Magnetom Amira) device 
equipped with an 8-channel head coil, adhering to the MS acquisition 
protocol. All images were acquired using the same device and included 
Turbo spin echo T1 (TR 1,060 ms, TE Shortest ms, slice thickness 

1 mm with no gaps, matrix 252 × 240 pixels) and T2w (TR 2,500 ms, 
TE: shortest 260 ms, slice thickness 1 mm with no gaps, matrix 
252 × 252 pixels) sequences. The radiological images were converted 
to the appropriate format and transferred to the BrainLab Elements™ 
Atlas-Based Automatic Segmentation program, where the volumes of 
the patients were evaluated by a certified neurosurgeon trained in 
volume measurement. In this system, the most accurate boundaries of 
the grey matter and basal ganglia were automatically identified by 
comparing the voxel parameters of the patient with the parameters in 
the atlas averages through artificial intelligence. Subsequently, after the 
fusion of the T2w and T1 MR images of the patients in the BrainLab 
Elements program, all grey matter and basal nuclei were automatically 
segmented separately in the object segmentation module, and their 
boundaries and volumes were calculated. The boundaries were cross-
checked on the T2w image, and any inaccuracies in segmentations 
were rectified. The volume values obtained were then juxtaposed with 
the average volume values in the MNI PD25 and ICBM152 standard 
human brain database (12), and the variance for each anatomical 
region was recorded. The measured volumes included the amygdala, 
capsule externa, capsule interna, nucleus caudatus, cerebellum, 
nucleus dentatus, fornix, globus pallidus, hypothalamus, nucleus 
accumbens, basal nucleus of Meynert, nucleus ruber, optic nerve, 
pedunculopontine nucleus, putamen, substantia nigra, anterior 
thalamic nucleus, zona incerta, and ventricle volumes, which were 
subsequently compared to the reference database using the BrainLab 
Elements™ Atlas-Based Automatic Segmentation program. The 
measured volumes of the patients were compared with the reference 
database (topographic volume-standardization atlas of the human 
brain) (Figures 1, 2) (13).

Öktem Verbal Memory Processes Test, Paced Auditory Serial 
Addition Test (PASAT), Symbol Digit Modalities Test (SDMT), 
Backward-Forward Digit Span Test, Stroop Test, Trail Making Test, 
Controlled Oral Word Association Test (COWAT), Brief Visuospatial 
Memory Test (BVMT-R), Judgment of Line Orientation Test (JLOT), 
Beck Depression Scale, Beck Anxiety Scale, and Fatigue Severity Scale 
(FSS) neuropsychological tests were administered, which lasted 
approximately 90 min within 2 weeks following MRI. The PASAT test 
was only administered to one person due to communication and 
cooperation difficulties between the patients and the administrator, as 
well as the challenges in administering the test. Therefore, this test was 
excluded from the study.

All statistical analyses were performed using IBM SPSS Statistics 
version 29.0. Descriptive statistics were expressed as mean ± standard 
deviation (mean ± SD) or median (25th–75th percentile) values for 
continuous variables and as numbers (n) and percentage (%) for 
categorical variables. The comparison between categorical variables 
was conducted using the chi-square test or Fisher’s exact test. The 
determination of normal distribution was based on the number of 
observations in the groups, histograms, and the Shapiro–Wilk test. 
The Mann–Whitney U test was employed to compare continuous 
variables that were not normally distributed between two groups. If 
normal distribution was confirmed, Student’s t-test was utilized. The 
linear relationship between two continuous variables was assessed 
using Pearson or Spearman correlation coefficients, and their 
significance was analyzed based on the presence or absence of normal 
distribution. Correlation coefficients falling between 0 and ± 0.3 were 
interpreted as indicating no correlation, while coefficients between 0.3 
and 0.5 suggested a weak correlation in a positive (or negative) 
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direction. Coefficients ranging from 0.5 to 0.7 indicated a moderate 
correlation in a positive (or negative) direction, while coefficients 
exceeding 0.7 were indicative of a strong correlation (positive or 

negative). In cases where the influence of a third variable was 
considered, partial correlation coefficients were calculated. Two-way 
p-values less than 0.05 were considered statistically significant.

FIGURE 1

Thalamic volume measuring (an example).

FIGURE 2

Putamen volume measuring (an example).
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Results

Demographic and clinical characteristics of the patients who 
participated in our study are summarised in Table 1. A total of 22 
(78.6%) of the patients were female, while 6 (21.4%) were male. The 
ages of all patients ranged between 17 and 51 years, with a mean age 
of 33.0 years. Half of the patients (50%) had less than 8 years of 
education, while the other half had more than 8 years of education. 
Clinical attacks manifested as optic neuritis in 15 (53.6%) patients, 
brainstem symptoms in 4 (14.3%) patients, sensory symptoms in 8 
(28.6%) patients, and cerebellar symptoms in 1 (3.57%) patient. 
Diabetes mellitus (DM) was present in 2 patients, hypertension (HT) 
was present in 2 patients, and hypothyroidism was present in 1 patient. 
However, thyroid function tests were within normal limits in all 
patients according to laboratory tests (Table 1).

When the volumetric examinations of the patients were compared 
according to gender, a statistically significant difference was found 
between the two groups in cerebellum, hypothalamus, nucleus 
accumbens, periquaductal grey matter and subthalamic nucleus 
volumes (p < 0.05) (Table 2).

The measured volumes of the patients were compared with the 
volumes of amygdala, basal ganglia (caudate + putamen + globus 
pallidus), capsule interna, nucleus caudatus, cerebellum, thalamus, 
globus pallidus, putamen and ventricle in the reference database. 
Mean ± SD values and statistical comparisons are shown in Table 3. 
Amygdala, basal ganglia caudate + putamen + globus pallidus, capsule 
interna, nucleus caudatus, thalamus, globus pallidus putamen and 
cerebellum were found to be  significantly different from the 
population mean in the sample group with clinically isolated 
syndrome (p < 0.001).

When examining the correlation between cognitive tests and 
anatomical regions, no significant correlation was found with the 
COWAT, BVMT-R, Beck Depression Scale, Beck Anxiety Scale and 
FSS tests. However, significant correlations were observed with the 
Öktem Verbal Memory Processes Test, SDMT, Backward-Forward 
Digit Span Test, JLOT and Stroop Tests. The JLOT was the test that 
showed correlations with the most anatomical locations (6 
anatomical regions). The anterior thalamic nucleus was identified 
as the anatomical region that correlated with the highest number 
of cognitive tests. The statistically significant results of the 
correlation analyses between the cognitive tests and anatomical 
region volumetric measurements of the patients are shown in 
Table 4.

The regression analysis revealed distinct patterns in the 
relationship between age, sex, tracking test performance, and 
volumetric measurements. For the tracking test, the model 
demonstrated strong explanatory power, accounting for 54% of the 
variance in performance. Age emerged as a significant predictor, with 
increasing age associated with longer tracking times (B = 6.361, 
p < 0.001). The standardized coefficient (β = 0.738) confirmed age as 
the most influential factor. In contrast, sex had no statistically 
significant effect on tracking test performance (p = 0.795). The model 
was statistically significant overall (F = 14.678, p < 0.001), emphasizing 
the role of age in predicting tracking performance.

The analysis of brain region volumes, including the amygdala, 
thalamus, capsula interna, putamen, globus pallidus, and nucleus 
caudatus, showed limited explanatory power. For the amygdala, the 
model accounted for only 8.3% of the variance, with neither age 

(p = 0.688) nor sex (p = 0.176) significantly influencing its volume. 
Similarly, the capsula interna volume model explained 11.2% of the 
variance, with age showing no significant effect (p = 0.843) and sex 
being marginally non-significant (p = 0.095), suggesting a potential 
relationship that may require further investigation.

For the thalamus, the model explained 7.6% of the variance, with 
neither age (p = 0.397) nor sex (p = 0.309) demonstrating statistical 
significance. The putamen model performed poorly, explaining only 
1.5% of the variance, with both age (p = 0.545) and sex (p = 0.980) 

TABLE 1  Clinical and demographic characteristics of patients with 
clinically isolated syndrome included in the study.

[All] N = 28

Gender

 � Woman 22 (78.6%)

 � Male 6 (21.4%)

Age 33.0 [17–51]

Education status

 � <8 years 14 (50%)

 � >8 years 14 (50%)

Marital status

 � Married 17 (60.7%)

 � Single/divorced 11 (39.3%)

Profession

 � Not working 16 (57.1%)

 � Labourer, civil servant, other 12 (42.9%)

BMI 26.5 [19.6; 38.1]

Smoking 10 (35.7%)

Alcohol use 2 (7.14%)

Presence of comorbidities

 � DM 2 (7.14%)

 � HT 3 (10.7%)

 � Hypothyroidism 1 (3.57%)

 � Other 3 (10.71%)

First attack pattern

 � Optic neuritis 15 (53.6%)

 � Brain stem 4 (14.3%)

 � Sensory 8 (28.6%)

 � Cerebellar 1 (3.57%)

TABLE 2  Comparison of volumetric measurements according to gender.

Female Male p 
overall

N

N = 22 N = 6

Cerebellum 121 (13.6) 136 (4.32) 0.010 28

Hypothalamus 1.25 (0.14) 1.45 (0.09) 0.003 28

Nucleus accumbens 0.94 (0.12) 1.09 (0.14) 0.022 28

Periacuaductal grey matter 0.24 (0.05) 0.31 (0.04) 0.008 28

Subthalamic nucleus 0.18 (0.02) 0.20 (0.01) 0.039 28
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failing to show significant effects. Similarly, the globus pallidus and 
nucleus caudatus models explained 6.9 and 6.3% of the variance, 
respectively, with no significant contributions from age or sex for 
either region.

Discussion

Clinical isolated syndrome is a single episode of inflammatory 
demyelination of the central nervous system suggestive of MS. The 
main mechanism in the pathophysiology of the disease is thought to 
involve multifocal inflammation, demyelination, oligodendrocyte loss, 
reactive gliosis, and axonal degeneration (14). In our study, our 
primary objective was to assess whether atrophy was present by 
comparing the measured volumes in specific brain regions of patients 

with clinically isolated syndrome with those in the reference database 
(topographic volume-standardization atlas of the human brain). Our 
secondary objective was to evaluate the correlation between the 
volumes measured in specific brain regions and the results of various 
cognition tests assessing different cognitive functions, aiming to 
determine which cognitive performance is most accurately predicted 
by volume parameters. Previous research has primarily emphasized 
the role of subcortical structures like the thalamus and basal ganglia 
in tasks related to executive functions and memory. However, this 
study expands the scope by examining a more comprehensive set of 
cognitive tasks, including visuospatial memory, information 
processing, and working memory, and their associations with specific 
brain regions in patients with CIS.

Cognitive impairment, often overlooked in daily practice but 
with a detrimental impact on the daily life activities of patients, is 

TABLE 3  Comparison of patient volumes with population averages according to topographic volume-standardisation atlas of the human brain 
database.

Mean ± SD 
(patient)

Mean ± SD 
(atlas) (ATLAS)

t value p

Amigdala 2.87 ± 0.29 3.12 ± 0.47 −4.6187 <0.001

Basal ganglia (caudate + putamen + globus pallidus) 19.41 ± 1.20 22.12 ± 2.98 −7.1675 <0.001

Capsula interna 9.11 ± 1.04 10.62 ± 1.55 −7.6597 <0.001

Caudate nucleus 7.22 ± 10.90 7.78 ± 1.32 −3.3053 0.003

Cerebellum 116.73 ± 12.62 124 ± 13.8 −2.901 0.007

Ventricle 23.3 ± 5.52 21.18 ± 16.71 1.999 0.06

Thalamus 11.1 ± 1.33 14.61 ± 1.46 −13.89 <0.001

Globus pallidus 3.07 ± 0.59 3.69 ± 0.38 −8.5068 <0.001

Putamen 8.51 ± 0.93 11.26 ± 1.66 −15.64 <0.001

Bold values: highly significant.

TABLE 4  Correlation analysis between cognitive tests and anatomical region volumetric measurements.

Cognitive test Anatomic region Correlations p

Öktem Verbal Memory Processes Test Subtalamic nucleus −0.421 0.026

SDMT Acumbal nucleus 0.376 0.048

SDMT Anterior thalamic nucleus 0.482 0.009

Trail Making Test Internal capsule −0.463 0.013

Trail Making Test Acumbens nucleus −0.501 0.007

Trail Making Test Meynert’s basal nucleus −0.389 0.040

Trail Making Test Putamen −0.435 0.021

Trail Making Test Talamus −0.486 0.009

Backward-Forward Digit Span Test Anterior thalamic nucleus 0.374 0.050

Judgement of Line Orientation Test Capsule interna 0.515 0.005

Judgement of Line Orientation Test Dentate nucleus 0.477 0.010

Judgement of Line Orientation Test Globus pallidus 0.436 0.020

Judgement of Line Orientation Test Acumbens nucleus 0.541 0.003

Judgement of Line Orientation Test Anterior talamic nucleus 0.453 0.016

Judgement of Line Orientation Test Talamus 0.409 0.031

Stroop Test Capsule interna −0.413 0.040

Stroop Test Anterior talamic nucleus −0.545 0.005

Stroop Test Nucleus caudatus −0.400 0.047
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frequently observed in MS. Studies have shown that the prevalence 
of cognitive impairment ranges from 40 to 65% and may manifest as 
early as the initial stages of the disease, including during the CIS 
period (9, 15). It is understood that demyelinating plaques in the 
periventricular white matter, axonal loss, and neocortical atrophy 
play crucial roles in the pathophysiology of cognitive impairment. 
Zipoli et  al. (7) identified cognitive impairment in a significant 
proportion of patients with CIS and concluded that this had 
prognostic value in predicting conversion to MS. The pattern of 
cognitive impairment observed in patients with CIS closely resembles 
that observed in patients with MS, characterized by reduced 
information processing speed, impaired working memory, executive 
functions, and attention deficits (15, 16).

In a study that divided MS patients into 3 clusters according to 
disability status and compared regional volumes with a healthy 
control group, the volumes of the thalamus, hypothalamus, putamen, 
and nucleus caudatus were found to be significantly different. It was 
thought that the ventral diencephalon underwent early degeneration 
during the course of MS (17). Similarly, in another study aimed at 
evaluating the relationship between subcortical grey matter and 
cognition in RRMS patients, atrophy was most prominent in the 
nucleus caudatus, globus pallidus, and thalamus (18). Furthermore, 
a study conducted in patients with CIS revealed atrophy in the 
thalamus, hypothalamus, putamen, nucleus caudatus, and cerebellum 
compared to the control group (19). In a longitudinal study with a 
1-year follow-up MR imaging of RRMS and CIS patients, it was 
observed that atrophy developed in the grey matter, including the 
thalamus, nucleus caudatus, putamen, and brainstem. Deep grey 
matter volume, especially the thalamus volume, was predictive of 
cognitive performance and disability progression (20). When 
we compared the volumes measured in our study with the reference 
database, we found that the volumes of the amygdala, basal ganglia 
(nucleus caudatus + putamen + globus pallidus), capsule interna, 
nucleus caudatus, thalamus, globus pallidus, and putamen were 
significantly different in our patients. This result aligns with findings 
from other studies and suggests the development of degeneration and 
secondary atrophy during the clinically isolated syndrome period. 
Additionally, one of the unique and robust aspects of our study is the 
utilization of the artificial intelligence-supported BrainLab 
measurement method, which enables more precise and accurate 
measurements compared to the measurement methods commonly 
used in the literature.

The thalamus plays an important role in cognitive functions 
including attention, information processing speed and memory (21). 
Neurodegeneration of thalamic nuclei and connections which 
develops due to inflammation and cytotoxic damage leads to 
cognitive impairment. Many studies have concluded that thalamic 
atrophy develops in the early period of the disease and is a strong 
indicator of cognitive deficits (20, 22). In a study conducted in RRMS 
patients, thalamus was found to be  associated with visuospatial 
memory (23). In another study conducted in MS patients, SDMT 
performance was found to be mostly associated with the thalamus 
and putamen and it was argued that the thalamus plays an important 
role in information processing efficiency (24). In a different study, 
thalamus volume was found to be associated with trail making test, 
Judgement of Line Orientation Test and SDMT performance and it 
was concluded that it played an important role in memory, working 
memory and information processing speed (25). In a study conducted 

by Houtchens et  al. (26) in MS patients, it was suggested that 
thalamus volume was a significant biomarker for information 
processing speed and visuospatial memory. In a study conducted in 
patients with CIS, atrophy of the thalamus, putamen and nucleus 
caudatus was found and it was concluded that thalamic atrophy was 
an indicator in cognitive evaluation (19). In our study, a significant 
atrophy was found in the thalamus volume in patients with CIS 
compared to the reference database. Our study supports that thalamic 
atrophy develops even in the early period of MS and even in patients 
with CIS, as in other studies. The fact that a different method was 
used in our study instead of the commonly used measurement 
methods in the literature and the results were found to be similar 
with other studies indicates that there is a correlation between the 
results of the measurement methods. In addition, there was a 
correlation between thalamus volume and the tracking test and 
Judgement of Line Orientation Test.

It has been shown in many studies that the anterior thalamic 
nucleus plays an important role in learning and memory (27). In a 
study evaluating the anterior thalamic nuclei in mice, it was shown 
that they have roles in different stages of memory (28). In another 
study, a decrease in episodic memory processes, information 
processing speed, directed attention, working memory and executive 
functions performance was observed in correlation with age-related 
decrease in anterior thalamic volume and secondary atrophy (29). In 
a 3-year follow-up study in MS patients, the anterior thalamic nucleus 
was found to be more atrophic in patients with cognitive deterioration 
than in cognitively preserved patients (30). In a cross-sectional study 
conducted in MS patients, a relationship was found between cognitive 
deterioration and focal atrophy of the anterior thalamic nucleus (31). 
In a study examining all nuclei of the thalamus in detail, SDMT 
performance was found to be correlated with the volume of the left 
ventral anterior nucleus (32). In our study, there was a correlation 
between anterior thalamic nucleus volume and SDMT, Backward-
Forward Digit Span Test, Stroop and Judgement of Line Orientation 
Test performance. The positive correlations observed with the SDMT 
and Backward-Forward Digit Span Test suggest that this region is 
actively involved in tasks requiring working memory and information 
processing speed. In contrast, the negative correlation with the Stroop 
Test indicates that while the anterior thalamic nucleus is engaged in 
cognitive control and attention tasks, its activity may decrease as 
performance on inhibitory control tasks improves. This dual role 
highlights the complexity of the anterior thalamic nucleus in 
modulating different aspects of cognition, particularly in tasks that 
require both rapid information processing and cognitive inhibition. 
These results provide a nuanced understanding of the anterior 
thalamic nucleus’ contributions to cognitive functions, especially in 
patients with cognitive impairments.

The nucleus accumbens is known as the centre of reward and 
pleasure. It plays a modulatory role in the flow of information between 
the amygdala, basal ganglia, mesolimbic and dopaminergic regions 
and the prefrontal cortex. The nucleus accumbens is believed to 
be  associated with the cognitive impairment seen in Alzheimer’s 
disease. It is thought that dopaminergic system changes frequently 
observed in Alzheimer’s patients are associated with impaired memory 
performance and reward processing dysfunctions (33). In a study 
conducted on mice, it was observed that the nucleus accumbens has 
an important role in mesocorticolimbic dopamine function and 
cognition (34). In our study, a statistically significant correlation was 
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found between nucleus accumbens volume and SDMT, trail making 
and Judgement of Line Orientation Test. Based on this, we can say that 
nucleus accumbens volume predicts working memory, information 
processing speed, executive functions and visuospatial memory 
performance. In our research, we did not find any studies on the 
relationship between nucleus accumbens volume and cognition tests 
in patients with CIS. We think that comprehensive studies should 
be conducted on this subject and these findings are one of the unique 
aspects of our study.

The capsulae interna coordinates cognitive, motor and sensory 
pathways. Fibre tracts in the anterior crus are associated with emotion, 
cognition, decision making and motivation (35). In a study evaluating 
motor and cognitive disorders with diffusion tensor imaging (DTI) in 
MS patients, a significant correlation was found between capsular 
interna DTI metrics and 9-hole peg test and PASAT performance (36). 
In our study, capsular interna volume was found to be  atrophic 
according to the reference database and a significant correlation was 
found between capsular interna volume and stroop, trail making and 
Judgement of Line Orientation Test. This finding suggests that, similar 
to MS, capsular interna volume plays a role in working memory, 
information processing speed, executive functions and visuospatial 
functions. It was thought that cognitive functions were affected in 
patients with CIS before conversion to MS and that the change in 
capsular volume could explain this.

The cholinergic neuron population in the basal nucleus of 
Meynert’s nucleus is involved in learning, long-term memory, control 
and maintenance of attention. Its degeneration causes various 
neuropsychiatric disorders. The association between the accumulation 
of Lewy bodies in the nucleus of Meynert and dementia and the 
favourable results obtained in dementia with DBS treatment applied 
to the nucleus of Meynert are proof of this. In the correlation study of 
BICAMS and volumetric measurement in MS patients, a significant 
relationship was found between them and predicted cognitive change 
in follow-up. In addition, the volume of Meynert’s nucleus was found 
to be associated with lower SDMT score (37). In our study, a significant 
correlation was found between the performance of the tracking test 
and the volume of Meynert’s basal nucleus and it was thought to 
be predictive of working memory, information processing speed and 
executive functions. In our research, we could not find any study in 
this direction in patients with CIS. Therefore, we  think that 
comprehensive studies should be conducted on this subject and these 
findings are one of the unique aspects of our study. In addition, 
we believe that large-scale double-blind controlled studies are needed 
to evaluate the effect of early initiation of cholinesterase inhibitor 
treatment on the protection of patients from cognitive impairment.

Our findings, particularly the significant correlation between the 
Judgement of Line Orientation Test and six distinct anatomical 
regions, as well as the association of the anterior thalamic nucleus 
with working memory and information processing speed, can 
provide valuable insights for managing CIS patients. These 
correlations suggest that the anterior thalamic nucleus plays a critical 
role in multiple cognitive domains, especially those related to 
visuospatial processing, working memory, and rapid cognitive 
functioning. For CIS patients, who often experience early 
neurological symptoms that may precede multiple sclerosis, assessing 
cognitive functions through specific tests like the Judgement of Line 
Orientation Test and evaluating the integrity of the anterior thalamic 
nucleus may offer a more targeted approach for early intervention. 

For instance, using the Judgement of Line Orientation Test can help 
assess visuospatial abilities, a domain that may be disrupted in CIS 
due to early thalamic or parietal lobe involvement. Furthermore, the 
strong correlation of the anterior thalamic nucleus with working 
memory and processing speed highlights the importance of 
monitoring these cognitive functions in CIS patients, as deficits in 
these areas may signal more extensive brain involvement or the 
transition to MS. By incorporating these specific tests into routine 
clinical assessments for CIS patients, healthcare providers can better 
identify early cognitive changes, tailor cognitive rehabilitation 
strategies, and potentially intervene earlier in the disease course.

Our study highlights the differential predictive power of age and 
gender on various brain region volumes and cognitive functions. 
While age emerged as a significant predictor for tracking test 
performance, it showed no substantial impact on the volumes of key 
subcortical structures such as the thalamus, amygdala, and putamen. 
Similarly, gender demonstrated borderline significance for some 
regions, such as the capsula interna, but was not a robust predictor 
overall. These results suggest that volumetric changes in certain brain 
regions may occur independently of these demographic factors, 
aligning with the growing understanding that intrinsic disease 
processes in CIS play a dominant role in neurodegeneration.

There is no comprehensive study of this type in the literature that 
examines various cognitive functions, cranial volumetric 
measurements and their correlation in patients with CIS. The 
strengths of this study are that a homogeneous group was formed, a 
larger number of anatomical regions that had not been evaluated 
before were evaluated compared to other studies, more precise and 
accurate volume measurements were provided by using artificial 
intelligence with the BrainLab Elements™ Atlas-Based Automatic 
Segmentation programme, and a large number of neuropsychological 
tests covering the main cognitive functions were used. The limitations 
of our study are that, it is a single-centre study, cross-sectional 
evaluation and we  did not estimate pre-disease intelligence. The 
number of CIS patients included in the study is relatively lower 
compared to MS patients. Additionally, for volumetric analysis to 
be performed, MR imaging needs to be acquired using consistent 
techniques and sequences, which further limited the number of 
eligible patients. This is one of the reasons for the small sample size, 
which presents a limitation in terms of the generalizability of the 
results. However, despite this limitation, careful and reliable analyses 
were conducted using the BrainLab Elements™ Atlas-Based 
Automatic Segmentation program. In addition, the fact that we did 
not include the anatomical locations of demyelinating lesions in our 
analyses can be counted as another factor. Future longitudinal studies 
are needed to determine the usefulness and predictive value of 
volumetric measurements and cognitive functions in determining the 
risk of conversion to MS in patients with CIS.

Conclusion

In conclusion, our study highlights the significant role of the 
anterior thalamic nucleus in various cognitive functions, particularly 
in working memory, information processing speed, and visuospatial 
tasks in patients with CIS. The Judgement of Line Orientation Test 
emerged as a key tool for assessing visuospatial abilities, demonstrating 
strong correlations with multiple brain regions in patients with CIS.
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Biomarker combinations from
different modalities predict early
disability accumulation in
multiple sclerosis
Vinzenz Fleischer1*†, Tobias Brummer1†,
Muthuraman Muthuraman1,2, Falk Steffen1, Milena Heldt1,
Maria Protopapa1, Muriel Schraad1,
Gabriel Gonzalez-Escamilla1, Sergiu Groppa1,
Stefan Bittner1† and Frauke Zipp1†

1Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main
Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University
Mainz, Mainz, Germany, 2Department of Neurology, Section of Neural Engineering with Signal
Analytics and Artificial Intelligence, University Hospital Würzburg, Würzburg, Germany
Objective: Establishing biomarkers to predict multiple sclerosis (MS) disability

accrual has been challenging using a single biomarker approach, likely due to the

complex interplay of neuroinflammation and neurodegeneration. Here, we

aimed to investigate the prognostic value of single and multimodal biomarker

combinations to predict four-year disability progression in patients with MS.

Methods: In total, 111 MS patients were followed up for four years to track

disability accumulation based on the Expanded Disability Status Scale (EDSS).

Three clinically relevant modalities (MRI, OCT and blood serum) served as

sources of potential predictors for disease worsening. Two key measures from

eachmodality were determined and related to subsequent disability progression:

lesion volume (LV), gray matter volume (GMV), retinal nerve fiber layer, ganglion

cell-inner plexiform layer, serum neurofilament light chain (sNfL) and serum glial

fibrillary acidic protein. First, receiver operator characteristic (ROC) analyses were

performed to identify the discriminative power of individual biomarkers and their

combinations. Second, we applied structural equation modeling (SEM) to the

single biomarkers in order to determine their causal inter-relationships.

Results: Baseline GMV on its own allowed identification of subsequent EDSS

progression based on ROC analysis. All other individual baseline biomarkers were

unable to discriminate between progressive and non-progressive patients on

their own. When comparing all possible biomarker combinations, the tripartite

combination of MRI, OCT and blood biomarkers achieved the highest

discriminative accuracy. Finally, predictive causal modeling identified that LV

mediates significant parts of the effect of GMV and sNfL on disability progression.
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Conclusion:Multimodal biomarkers, i.e. different major surrogates for pathology

derived from MRI, OCT and blood, inform about different parts of the disease

pathology leading to clinical progression.
KEYWORDS

multiple sclerosis, biomarker, magnetic resonance imaging, neurofilament, optical
coherence tomography, disease progression, prediction, structural equation modeling
Introduction

In multiple sclerosis (MS), disability progression is

closely related to neuroaxonal degeneration (1, 2). Therefore,

identifying and quantifying axonal damage is an essential step

towards improved clinical decision-making and prognostication.

Currently, magnetic resonance imaging (MRI) is the most

established non-invasive modality for diagnosing, evaluating

treatment effectiveness, and monitoring disease progression in

patients with MS. In particular, conventional structural MRI

metrics, like T2-hyperintense lesion volume (LV) and gray

matter volume (GMV), have been proven to be reproducible

and well-validated in reflecting disease activity and progression,

respectively (3, 4). However, recent technical advances, such as

single molecule array (SiMoA) and easily accessible optical

coherence tomography (OCT), have enabled additional non-

invasive measurements of neurodegeneration-related biomarkers

with increasing clinical application (5, 6). Therefore, blood-based

biomarkers such as serum neurofilament light chain (sNfL) and

serum glial fibrillary acidic protein (sGFAP), as well as measures

of retinal thickness (retinal nerve fiber layer (RNFL), ganglion cell

inner plexiform layer (GCIPL)) have gained significant interest for

diagnostic purposes and are expected to be applied in clinical

routine soon.

Nevertheless, all biomarkers have certain limitations due to the

nature of their respective modalities: MRI is most effective at

detecting focal white matter lesions in the brain and spinal cord,

but lesions in gray matter structures can only be reliably visualized

with rather high field strengths (7). Additionally, conventional MRI

is functionally “blind” to what is known as “normal-appearing

white matter” (NAWM). Blood biomarkers of neuronal (sNfL) or

glial (sGFAP) damage can be influenced by different factors such as

age, blood volume, genetics, and other medical conditions such as

impaired renal function (8–10). Additionally, measures of retinal

thickness may not always accurately reflect the presence and extent

of inflammation or damage in the brain and spinal cord, as they

may be affected by factors such as pupil dilation, eye movements,

and the presence of cataracts or other eye conditions, which can

impact the accuracy of the results (6, 11). Furthermore, the spatial

resolution is limited, as OCT captures only a small part of the

central nervous system (CNS). Thus, the concept of “one

biomarker” indicating the existence of an underlying disease-
0253
specific process remains a utopia in predicting disease

progression. However, individual challenges may be overcome by

combining biomarkers from different modalities that ideally also

represent multiple aspects of MS pathology.

Utilizingmultiple biomarkers from different modalities has already

been demonstrated in other neurological disorders such as Alzheimer’s

disease, where a combination of positron emission tomography

(PET)-imaging and cerebrospinal fluid (CSF) biomarkers has

enabled a more precise diagnostic evaluation (12, 13). In people with

MS, initial efforts have shown that multimodal biomarkers can predict

neuropsychological parameters such as cognitive impairment (14).

However, it is unclear which biomarker combinations offer the best

discriminative accuracy for disease progression of MS. The

combination of several biomarkers altogether, by means of predictive

modeling, may be able to compile large amounts of multimodal data,

in order to attain solid conclusions and decision making in

MS monitoring.

Thus, the aim of this study was to investigate the prognostic

value of individual biomarkers (MRI, OCT and blood), as well as

their combinations in predicting four-year disease activity and

progression in MS. To test this, we determined LV and GMV

fromMRI, RNFL and GCIPL from OCT and sGFAP and sNfL from

blood within a cohort of 111 MS patients who were clinically

followed up for four years.
Methods

Participants

In total, out of 141 MS patients that were retrospectively

screened for this project, 111 MS patients that underwent a

comprehensive and detailed clinical assessment were finally

included in the analysis (Figure 1). The selected cohort included

MS patients with MRI (T2-hyperintense LV and GMV), blood

(sNfL and sGFAP), and OCT (RNFL and GCIPL) measurements

at the outpatient clinic of the Department of Neurology, at the

University Medical Center Mainz (Germany) (Table 1). All

included patients had relapsing-remitting multiple sclerosis

(RRMS) as diagnosed according to the 2017 revised McDonald

diagnostic criteria (15). The mean (± standard deviation) disease

duration of all patients at study inclusion was 3.15 ± 4.26 years.
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All diagnostic baseline measurements were performed within 6

months of study inclusion. An experienced neurologist clinically

assessed patients and their Expanded Disability Status Scale

(EDSS) score at study entry and follow up visit (3.74 ± 1.25
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years), along with clinical relapse history over the study period.

EDSS progression was defined as an increase of ≥ 1 point in the

EDSS score for a baseline score of ≥ 1.5 or a 1.5 point increase for a

baseline score of 0 (16). A clinical relapse was defined as a

monophasic clinical episode with new neurological symptoms,

lasting more than 24 h and in the absence of fever or infection

(15). The annualized relapse rates (ARR) were calculated by

dividing the total number of all observed relapses by the total

number of patient-years. All measurements were performed at

least 30 days after a clinical relapse and/or a high-dose

corticosteroid treatment.
TABLE 1 Basic characteristics. Demographic and clinical data of the
included MS patients as well as MRI, OCT and blood biomarkers
at baseline.

Demographics MS patients (n = 111)

Age [years] mean ± SD 34.8 ± 9.67

Sex [female] (percent) 79 (71)

Disease duration [years] mean ± SD 3.15 ± 4.26

Disease-modifying treatment

None (percent) 18 (16)

Mild to moderate efficacy (percent) 69 (62)

High efficacy (percent) 24 (22)

Clinical measures

Baseline EDSS median (25th; 75th percentile) 1.0 (0.0; 2.0)

Follow up EDSS median (25th; 75th percentile) 1.5 (0.0; 2.5)

Patients with EDSS progression (percent) 46 (41.4)

Relapses over 4 years mean ± SD 0.76 ± 1.17

Annualized relapse rate mean ± SD 0.21 ± 0.33

Time to follow up [years] mean ± SD 3.74 ± 1.25

Patients with history of optic neuritis (percent) 33 (30)

MRI measures

LV [ml] mean ± SD 5.97 ± 9.57

GMV [fraction] mean ± SD 0.43 ± 0.03

OCT measures

RNFL [mm3] mean ± SD 0.21 ± 0.02

GCIPL [mm3] mean ± SD 0.76 ± 0.1

Blood measures

sNfL [z-score] mean ± SD 0.115 ± 2.21

sGFAP [pg/ml] mean ± SD 121.2 ± 43.8
Mild to moderate efficacy = interferons, glatiramer acetate, teriflunomide, dimethyl fumarate.
High efficacy = natalizumab, anti-CD20 monoclonal antibodies, sphingosine-1-phosphate
receptor modulators, alemtuzumab.
EDSS, extended disability status scale; GCIPL, ganglion cell-inner plexiform layer; GMV, gray
matter volume; LV, lesion volume; MRI, magnetic resonance imaging; OCT, optical coherence
tomography; RNFL, retinal nerve fiber layer; SD, standard deviation; sGFAP, serum glial
fibrillary acidic protein; sNfL, serum neurofilament light.
FIGURE 1

Study analysis design. Study protocol and design including the three
modalities each with two biomarkers as potential predictors.
Statistically, ROC analysis was performed to evaluate the
discriminative power of single and combined biomarkers.
Subsequently, SEM was applied to test the causal inter-relationships
between the variables. EDSS, expanded disability status scale; GCIPL,
ganglion cell-inner plexiform layer; GMV, gray matter volume; OCT,
optical coherence tomography; RNFL, retinal nerve fiber layer; ROC,
receiver operator characteristics; SEM, structural equation modeling;
sGFAP, serum glial fibrillary acidic protein; sNfL, serum
neurofilament light; LV, lesion volume.
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sNfL and sGFAP measurements

Serum samples were collected by attending physicians at the

University Medical Center Mainz. Samples were processed at room

temperature within 2 hours. Serum samples were spun at 2000xg at

room temperature for 10 minutes, aliquoted in polypropylene tubes

and stored at −80°C. sNfL and sGFAP concentrations were

measured as previously described (10, 14). In brief, sNfL and

sGFAP levels were determined using the highly sensitive single

molecule array (SiMoA) technology (17). Samples were measured in

duplicates by SiMoA HD-1 (Quanterix, USA) using NF-Light

Advantage kits according to the manufacturer’s instructions. The

mean inter-assay and intra-assay coefficient of variation was less

than 10%. Measurements were performed in a blinded fashion

without information about clinical data.
MRI data acquisition

MRI data acquisition was performed as previously described

(14). In brief, structural MRI was performed on a 3-Tesla MRI

scanner (Magnetom Tim Trio, Siemens, Germany) with a 32-

channel receive-only head coil. In all patients, imaging was

performed using a sagittal 3D T1-weighted magnetization-

prepared rapid gradient echo (MP-RAGE) sequence (TE/TI/TR =

2.52/900/1900 ms, flip angle = 9°, field of view = 256 × 256 mm2,

matrix size = 256 × 256, slab thickness = 192 mm, voxel size = 1 × 1

× 1 mm3) and a sagittal 3D T2-weighted fluid-attenuated inversion

recovery (FLAIR) sequence (TE/TI/TR = 388/1800/5000 ms, echo-

train length = 848, field of view = 256 × 256 mm2, matrix size = 256

× 256, slab thickness = 192 mm, voxel size = 1 × 1 × 1 mm3). A

clinician scientist blinded to the patient data excluded major

anatomical abnormalities based on the subject’s T1-weighted and

FLAIR images of the whole brain.
Quantification of white matter LV and GMV

The quantification of WM (white matter) volume, lesion

volume and GMV was performed as previously described (14).

Using voxel-based morphometry (VBM) analysis in the Statistical

Parametric Mapping (SPM8) software, the GM and WM volumes

were calculated. The volumes of WM lesions were assessed using

the cross-sectional lesion growth algorithm of the lesion

segmentation toolbox (18) included in the SPM8 software. 3D

FLAIR images were co-registered to 3D T1-weighted images and

bias corrected. After partial volume estimation, lesion segmentation

was performed with 20 different initial threshold values for the

lesion growth algorithm (18). By comparing manually and

automatically estimated lesion maps, the optimal threshold

(ĸ value, dependent on image contrast) was determined, and

average values were calculated for each patient. A uniform ĸ

value of 0.1 was applied in all patients in order to automatically

estimate lesion volume and filling of 3D T1-weighted images.

Subsequently, the filled 3D T1-weighted images and the native 3D

T1-weighted images were segmented into GM, WM, and CSF and
Frontiers in Immunology 0455
then normalized to the Montreal Neurological Institute (MNI)

space. The quality of the segmentations was visually inspected to

increase reliability.
OCT: image acquisition and
scanning protocol

The analysis was performed as previously described (19, 20). In

brief, the Advised Protocol for OCT Study Terminology and

Elements (APOSTEL) recommendations were followed (21)

including a quality control for the raw OCT scans complying

with the OSCAR-IB criteria (22). MS patients with accompanying

diseases potentially affecting the optic nerve or other ocular disease

were excluded in advance. Hence, none of the patients had a history

of glaucoma, retinopathy or other neurological disorders (besides

RRMS). An experienced operator performed OCT image

acquisition following a unified standard acquisition protocol

using a spectral domain OCT (Heidelberg Spectralis, Heidelberg

Engineering, Germany) with Heidelberg Eye Explorer software

(HEYEX, version 1.10.2.0). The measurements were acquired in a

shaded room at ambient light without pupillary dilation. Intra-

retinal layers of the macula were gauged by a standardized scan

comprising 61 vertical or horizontal B-scans while focusing on the

fovea at a scanning angle of 30° × 25° and a resolution of 768 × 496

pixels. Automatic real time was set to nine at high-speed scanning

mode. Confocal scanning laser ophthalmoscopy was performed in

parallel and revealed no evidence of pathology. No further

fundoscopic imaging was carried out. To account for inter-eye

within-patient dependencies, we calculated the mean of both eyes in

patients with no history of optic neuritis; in patients with a history

of unilateral optic neuritis, we only used the OCT scan of the non-

affected eye. Hence, the main statistical analysis was performed at a

per-patient level. All B-scans were automatically segmented

(followed by manual correction by a trained rater) using

segmentation beta-software (Spectralis Viewing Module version

6.9.5.0) of the Heidelberg Eye Explorer (version 1.10.2.0)

provided by the manufacturer. The segmentation lines were the

following retinal layers: RNFL, GCIPL, inner nuclear layer, outer

plexiform layer and outer nuclear layer. The mean volume of the

individual retinal layers was computed in an area of a radius of

3.45 mm around the fovea including the fovea using the Early

Treatment of Diabetic Retinopathy Study (ETDRS) grid. Lastly,

RNFL and GCIPL were finally selected as primary estimate for

neuroaxonal damage of the retina, as both have been associated

with brain atrophy and disability worsening (23, 24).
Statistics

Statistical analysis was performed using SPSS 23 (SPSS,

Chicago, IL, USA), MedCalc (Version 20.115) and GraphPad

Prism 9 software. Summary statistics are presented as mean ±

standard deviation (SD), or median (25th and 75th percentile), or

number (percentage), where applicable. To create a combined

variable for each biomarker combination, a binary logistic
frontiersin.org
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regression model for each combination (corrected for sex, age,

disease duration and disease-modifying treatment) was estimated in

order to get the predicted probability from each model. Then, we

used this probability as the test variable in the subsequent receiver

operating characteristic (ROC) procedure (14).

A ROC analysis was performed to calculate the predictive

discriminating values for each biomarker and the combinations.

This statistical method is preferentially used to make a series of

discriminations into two different states based on a specific

diagnostic variable. Here, the presence or absence of relapses or

EDSS worsening, served as binary classifiers. Every value of that

discriminating variable is used as a cut-off with calculation of the

corresponding sensitivity and specificity.
Structural equation modeling

The analysis was performed as previously described (25) using

the SEM toolbox for MATLAB (version 13a; Mathworks, Natick,

MA, USA). SEM represents a statistical technique that is used to test

and estimate structural relationships between variables in a model.

By structural, we mean that we incorporate causal assumptions as

part of the model. Hence, SEM represents a multivariate technique

that is able test complex relationships among multiple variables

simultaneously, and estimate the strength and direction of these

relationships. In our model, we explored the association between

multimodal biomarkers and the clinical outcomes (clinical relapses

and EDSS progression). We used the Maximum likelihood method

of estimation to fit the models. In order to adjust the models for a

large sample size, we used the Root Mean Square Error of

Approximation (RMSEA) index, which improves precision

without increasing bias (26). The RMSEA index estimates lack of

fit in a model compared to a perfect model and therefore should be

low. In all models, the Invariant under a Constant Scaling (ICS) and

ICS factor (ICSF) criteria should be close to zero, indicating that

models were appropriate for analysis. Finally, based on the Akaike

Information Criterion (AIC) the quality of each model relative to

other models was estimated, with smaller values signifying a better

fit of the model. The strength of associations between the variables

in the models was quantified by standardized coefficients (s),

ranging from 0 (no association) to 1 (very strong association). To

correct for potential confounders the models were adjusted for sex,

age, disease duration and disease-modifying treatment (DMT). P-

values less than 0.05 were considered statistically significant.
Results

Patient characteristics

All demographics and clinical characteristics of the investigated

cohort are summarized in Table 1. In total, 141 early MS patients

with baseline MRI and OCT were selected. Thirty patients were

excluded from the final analysis because either there was no serum

sample available or they were lost to clinical follow-up (Figure 1).

The mean follow-up time in our longitudinal cohort of 111 patients
Frontiers in Immunology 0556
was 3.74 ± 1.25 years. The mean age ± SD was 34.8 ± 9.67 years; 79

patients (71.0%) were female and 32 (29.0%) were male. The mean

disease duration at study inclusion was 3.15 ± 4.26 years. All

patients had a relapsing-remitting disease course (RRMS)

according to the 2017 revised McDonald criteria (15). At the time

of inclusion, 18 patients (16%) were not receiving any DMT, 69

(62%) were receiving a mild to moderate efficacy DMT, and 24

(22%) were receiving a high efficacy DMT. The median baseline

disability, quantified with EDSS, was 1.0 (25th and 75th percentile:

0.0−2.0). Overall, 46 patients (41.4%) experienced EDSS

progression during the observation period. The mean ARR was

0.21 ± 0.33; 33 (30%) patients had a history of optic neuritis. The

results from blood biomarker, MRI, and OCT measurements are

also summarized in Table 1.
Predictive discrimination model

An overall ROC analysis was performed to determine the

predictive discriminating value of the individual and combined

measures to distinguish MS patients with and without disease

activity (determined through the presence or absence of relapses

during this time) and with and without disability progression

(determined through the presence or absence of EDSS worsening

over four years). Resulting values with AUC, standard error, 95%

confidence interval and p-values are presented in detail in

Figures 2A and 3A.

In general, none of the individual biomarkers were able to

predict the occurrence of clinical relapses within the 4-year

observation period (AUC-range: 0.523 – 0.602). All p-values for

testing AUC = 0.5 vs. AUC ≠ 0.5 were greater than 0.05 and were

hence not significantly different from a random classifier

(Figure 2B). Only LV showed a trend towards significance (AUC

= 0.602; p = 0.060). In the ROC analysis based on the presence or

absence of EDSS progression, GMV was the only single biomarker

to show significant predictive capability for EDSS progression on its

own (AUC = 0.614, SE = 0.054; p = 0.035), whereas all other single

biomarkers did not (AUC-range = 0.502 - 0.596) (Figure 3B).

When we combined biomarkers within their respective

modality, MRI markers (LV + GMV) were able to predict both

relapses (AUC = 0.631, SE = 0.054; p = 0.015) and EDSS

progression over the four-year period (AUC = 0.621, SE = 0.055;

p = 0.026). Combined blood biomarkers (sNfL + sGFAP) were only

able to predict EDSS progression (AUC = 0.632, SE = 0.059; p =

0.025), while combined OCT measures (RNFL + GCIPL) were

unable to predict either clinical relapses (AUC = 0.599, SE = 0.054; p

= 0.069) or EDSS progression (AUC = 0.507, SE = 0.058, p = 0.906)

(Figures 2C, 3C).

However, all combinations of two biomarker modalities

significantly predicted clinical relapses (AUC range = 0.636 –

0.643) and EDSS progression (AUC range = 0.631 – 0.699)

(Figures 2D, 3D). The best prediction for EDSS progression using

two modalities was achieved with a combination of MRI and blood

biomarkers (AUC = 0.699, SE = 0.055; p < 0.001).

Most notably, the combination of all six biomarkers achieved

the highest AUC for discriminating MS patients with clinical
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relapse activity from those without (AUC = 0.678, SE = 0.057; p =

0.002) and for discriminating progressive from non-progressive MS

patients (AUC = 0.706, SE = 0.055; p < 0.001) (Figures 2E, 3E).

Overall, these results demonstrate that the predictive capability of

single biomarkers remains limited except for GMV, whereas

combining multimodal biomarkers stepwise improves their

accuracy in prediction of both relapse activity and disease

progression within early multiple sclerosis.
MRI and blood biomarkers influence
disease activity and progression

In order to create a prediction model analyzing complex

relationships among multiple variables, we next applied SEM to

assess the causal relationship of the most promising biomarker

combinations determined in the ROC approach, namely MRI (LV +

GMV) and blood (sNfL + sGFAP) biomarkers. In addition to the

ROC analysis, SEM allows us to test a model for its compatibility

with the data in its entirety simultaneously. In the predictive

modeling approach, the RMSEA index for the models was below

0.03 and the AIC comparing the models varied between 0.006 and
Frontiers in Immunology 0657
0.019. The obtained fit indices in the SEM analysis implied a good fit

of the constructed models to the observed data, providing robust

relations between the variables. Within the SEM model quantifying

the pathways, the input variables (GMV, sNfL, sGFAP and LV)

predicted both ARR and EDSS progression. Our model with

resultant standardized coefficients (s) identified that GMV (s =

0.58; p < 0.01) and sNfL (s = 0.63; p < 0.01) significantly predict

ARR and EDSS progression through lesion volume as mediator

(ARR [s = 0.59; p < 0.01] and EDSS [s = 0.73; p < 0.001]) (Figure 4).

Taken together, LV mediates the path between GMV and sNfL on

the one side, and ARR and EDSS progression on the other side.
Discussion

Here, we present a longitudinal study utilizing a classification

model and a multivariate analysis technique to predict both disease

activity and progression in patients with early MS based on

multimodal biomarker combinations. In our discrimination

model, the triple combination of MRI (LV and GMV), OCT

(RNFL and GCIPL) and blood biomarkers (sNfL and sGFAP)

achieved the best performance in predicting disability progression
FIGURE 2

ROC analysis for the discrimination between the presence or absence of relapse activity (A) Color-coded table depicting the ROC analysis for
individual and combinations of biomarkers. AUC, p-value and 95%-CI for the prediction of clinical relapses (yes/no). (B) ROC curves for single
biomarkers. (C) ROC curves for combined biomarkers within one modality. (D) ROC curves for combined biomarkers within two modalities. (E) ROC
curve for combined biomarkers of all three modalities (GMV + LV, RNFL + GCIPL and sNfL + sGFAP). AUC, area under the curve; CI, confidence
interval; GCIPL, ganglion cell-inner plexiform layer; GMV, gray matter volume; LV, lesion volume; OCT, optical coherence tomography; RNFL, retinal
nerve fiber layer; ROC, receiver operator characteristics; SE, standard error; sGFAP, serum glial fibrillary acidic protein; sNfL, serum
neurofilament light.
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FIGURE 4

MRI and blood biomarkers and their capability to predict clinical outcomes through structural equation modeling (SEM). Predictive modeling of MRI
(GMV and LV) and blood (sNfL and sGFAP) biomarkers. Arrows denote the relationship between the variables expressed as standardized coefficients,
which are shown for each path (* significant at p < 0.01; ** significant at p < 0.001). ARR, annualized relapse rate; EDSS, expanded disability status
scale; GMV, gray matter volume; sGFAP, serum glial fibrillary acidic protein; sNfL, serum neurofilament light; LV, lesion volume.
FIGURE 3

ROC analysis for the discrimination between the presence or absence of EDSS progression. (A) Color-coded table depicting the ROC analysis for
individual and combinations of biomarkers. AUC, p-value and 95%-CI for the prediction of EDSS progression (yes/no). (B) ROC curves for single
biomarkers. (C) ROC curves for combined biomarkers within one modality. (D) ROC curves for combined biomarkers within two modalities. (E) ROC
curve for combined biomarkers of all three modalities (GMV + LV, RNFL + GCIPL and sNfL + sGFAP). AUC, area under the curve; CI, confidence interval;
GCIPL, ganglion cell-inner plexiform layer; GMV, gray matter volume; OCT, optical coherence tomography; RNFL, retinal nerve fiber layer; ROC, receiver
operator characteristics; SE, standard error; sGFAP, serum glial fibrillary acidic protein; sNfL, serum neurofilament light; LV, lesion volume.
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as well as disease activity within the upcoming four years. Our

subsequently constructed SEM model established sNfL, GMV and

LV as viable predictors of both disease activity and progression.

Beyond that, the model further indicated that LV significantly

mediates the effect of sNfL and GMV on future disease activity

and progression over the study period. Thereby, our multi-

biomarker approach highlights the importance of accounting for

LV (neuroinflammation) when implementing cross-modal

biomarkers in predicting clinical outcomes in MS.

Our findings align well with the current understanding of the

pathophysiology in early, inflammation-driven MS, where disease

activity (T2-hyperintense LV) drives ongoing neuroaxonal

degeneration (sNfL and GMV) and clinical disability progression

(27). Although each biomarker has been found to predict certain

aspects of MS pathology individually (6, 17, 28–30), they all have

their own individual strengths and weaknesses. In line with this, the

predictive ability of each biomarker in our ROC analyses was

limited when used on its own, but gained an incremental value

when applied in combination with other biomarkers. Importantly,

combining biomarkers from different modalities, such as MRI and

blood biomarkers, resulted in a significant improvement in

predicting both relapse activity and disease progression. This

implies that certain biomarkers might be able to compensate for

the limitations of others. For example, blood biomarkers have been

found to be poor predictors of fatigue in MS (14, 31), while imaging

of deep gray matter and brainstem structures have shown strong

associations with measures of fatigue (25). Additionally, blood

biomarkers provide a holistic view of cellular damage across the

entire neuroaxis with high temporal resolution but lack of spatial

resolution (5, 8), while conventional MRI markers provide great

spatial resolution but are naturally “blind” for slightly injured tissue

such as NAWM. Therefore, using both imaging and blood

biomarkers can provide a more comprehensive understanding

of disease progression in MS, as they can offer complementary

information of different aspects of the disease process. Furthermore,

the integration of potentially latent variables via observed variables

in the characterization of cross-modal biomarkers may help to

identify patients at risk of disease progression, and therefore aid

therapeutic decision-making. Appropriate biomarkers may even

been chosen according to a patient’s individual symptoms and

signs, which could allow for the creation of more personalized

treatment plans. Accordingly, a recent study found predictors with

mid- to high-accuracy for several disability outcomes in MS by

combining clinical and imaging with omics information (32). This

machine learning study particularly identified algorithms for

predicting the escalation of therapy from first-line to high-

efficacy treatment.

A plethora of different blood biomarker candidates has been

evaluated in clinical and pre-clinical studies on neuroinflammation

(33). However, sNfL and more recently sGFAP have shown the

greatest prognostic potential in MS (14, 33), therefore, we

preselected those biomarkers for our study. There are several

surrogate markers of neurodegeneration in MR imaging, such as

brain parenchyma fraction, total brain volume, and GMV (34). We

decided to primarily include GMV in our analyses since it is widely

used and has a strong association with neurodegeneration and
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cognitive impairment (29, 34). However, as models and algorithms

become more complex and advanced, it makes sense to include

more biomarkers in order to further improve predictive accuracies.

In MS, OCT has been used to detect thinning of retinal layers; this

loss of retinal nerve fibers may be indicative of underlying

neurodegeneration (6). However, in our early MS cohort,

inclusion of OCT did not show a remarkable additive effect in

predicting disease progression or relapse rates. This may have

several reasons: first, changes in the eyes of our early MS cohort

may be subtle and not always be detectable with OCT. Furthermore,

although OCT has a good resolution for damage to the visual

system, namely the retina and the layers immediately beneath it, as

well as the optical radiation, it may not provide sufficient

information on neurodegeneration in other regions of the CNS,

such as infratentorial structures (6, 11). Additionally, previous

studies have shown RNFL to be a significantly variable measure,

especially when considering non-optic neuritis eyes (35–37). In line

with this, in our cohort, only 33 patients had a history of prior optic

neuritis and in order to look at neurodegeneration in MS in general,

we only included OCT results from eyes without prior optic neuritis

in our analyses. This may have limited the predictive capability of

our OCT results; however, both GCIPL and RNFL are well-

established markers and have been associated with disease

progression even when applied for non-optic neuritis eyes (38).

Our study also has some limitations: First, we investigated a

real-world cohort. Hence, the time point for measuring all

biomarkers showed some ranges. However, a real-world cohort

has the advantage of resembling a more realistic clinical situation

and may therefore suffer less from a selection bias (39). Second,

longer follow-up observations are warranted. Third, total GM

atrophy is related to disability in MS (29, 40), but also regional

GM atrophy e.g. thalamic volume plays a key role for clinical

progression (41). Finally, also changes within the NAWM are

relevant for disease worsening in MS (42, 43). Hence, further

studies are needed to incorporate more specific and advanced

MRI-derived markers into such multimodal approaches.

Altogether, the combination of multimodal biomarkers (LV,

GMV, RNFL, GCIPL, sNfL, sGFAP) that represent different parts of

the disease pathology offer advantages in predicting upcoming

disability accumulation in MS. In addition, predictive modeling

specifically revealed that total lesion volume is a substantial

mediator of the prognostic properties of gray matter and

neurofilament on future progression indicating the significance of

overall cerebral lesion load in fostering neuronal loss and

subsequent disability. Validation and replication of multimodal

biomarkers identified so far will be required for generating the

evidence to be applied in personalized health care for people

with MS.
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Artificial intelligence (AI) can play a vital role in achieving a shift towards

predictive, preventive, and personalized medicine, provided we are guided by

the science with and of patient input. Patient-reported outcome measures

(PROMs) represent a unique opportunity to capture experiential knowledge

from people living with health conditions and make it scientifically relevant for

all other stakeholders. Despite this, there is limited uptake of the use of

standardized outcomes including PROMs within the research and healthcare

system. This perspective article discusses the challenges of using PROMs at scale,

with a focus on multiple sclerosis. AI approaches can enable learning health

systems that improve the quality of care by examining the care health systems

presently give, as well as accelerating research and innovation. However, we

argue that it is crucial that advances in AI – whether relating to research, clinical

practice or health systems policy – are not developed in isolation and

implemented ‘to’ people, but in collaboration ‘with’ them. This implementation

of science with patient input, which is at the heart of the Global PROs for Multiple

Sclerosis (PROMS) Initiative, will ensure that we maximize the potential benefits

of AI for people with MS, whilst avoiding unintended consequences.
KEYWORDS

artificial intelligence, patient reported outcomes, health outcomes, multiple
sclerosis, ethics
1 Introduction

There is an increasing demand for a shift towards predictive, preventive, and

personalized medicine (1, 2) and artificial intelligence (AI) can play a vital role in

achieving this. Multiple sclerosis (MS), an autoimmune condition affecting nearly 3

million people across the world (3), is very heterogeneous, affecting people’s lives in
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different ways. A single treatment or care approach will not be

suitable for every individual. The presentation and course of MS

reflect myriad factors that can be difficult to capture in a

comprehensive manner. So, whilst MS is not itself particularly

rare, once people with MS (pwMS) are sub-divided into groups

requiring different treatment and care services, and who have

different priorities when it comes to health outcomes, everyone

becomes part of a rare group. Determining the right approach to

treatment and care needs to take into account all of the variability

that exists within that person’s life: their sex, age, environment,

access to care, economic resources, comorbidities and many other

factors. AI-based solutions may be necessary to support the capture

and use of these complex data, so that health outcomes can be

optimized for everyone.
2 Health outcomes that matter to
people with MS

Health outcomes reflect information about the impact on people

from health and care interventions. Leveraging patient experiential

knowledge and make it scientifically measurable via Patient Generated

Health Data (PGHD) is a critical part of the humanisation of health in

line with Value-Based Health Care EU pillars (4–6). PGHD include

patient reported outcome measures (PROMs), patient-reported

experience measures (PREMs - people’s perspectives of their

experience while receiving care) or Patient Preferences and

Acceptability for Innovative health interventions (PPI). Among

these, PROMs provide a patient perspective on the impact that a

disease (and its treatment) has on their physical, functional, and

psychological status without interpretation from anyone else. There is

no unique definition of PROs: “any report of the status of a patient’s

health condition that comes directly from the patient, without

interpretation of the patient’s response by a clinician or anyone

else” in accordance to the Food and Drug Administration (FDA)

(7) or “any outcome evaluated directly by the patient him/herself and

based on patient’s perception of a disease and its treatment(s)” in

accordance to the European Medicines Agency (EMA) (8). The FDA

definition of PROs designates both active and passive information as

PROs, while the EMA definition seems to restrict PROs to active

reports only. AI could help to incorporate PROMs reflecting different

functional domains alongside other research and clinical data if

relevant PROMs for the target population and adequate

infrastructure for collecting PROs are available.

The Global Patient Reported Outcomes for MS (PROMS)

Initiative launched on 12 September 2019 at the 35th Congress of

the European Committee for Treatment and Research in Multiple

Sclerosis (ECTRIMS). It is jointly led by the European Charcot

Foundation (ECF) and the Multiple Sclerosis International

Federation (MSIF) with the Italian MS Society acting as lead

agency for and on behalf of the global MSIF movement (9, 10).

The strategic intent of the PROMS Initiative is to engage people

with MS in developing and prioritizing PROMs that give us a

picture of their status today and changes over time. At present,

clinical and care measurements are snapshots of individual

functional domains and pwMS are frustrated that functional
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domains and corresponding interrelationships that matter most

to them are not addressed by currently available PROMs (11).

Within this framework, applying AI to PROMs can be a catalyst for

a renewed humanism from research to care, but this vision will only

be achieved by furthering the optimal engagement of pwMS (12).
3 The route to a unified view on
PROMs for MS

Challenges with capturing, measuring and using PROs have

been recently described by the PROMS Initiative (5) and are

summarized below:
i. reaching consensus on relevant PROMs for specific and

targeted populations (i.e. acknowledging there cannot be a

‘one-size-fits-all’ approach for PROMs), which have been

validated and can be used within and across countries for

accurate comparisons;

ii. developing practical and usable tools (e.g. apps, wearables,

other devices) to enable the routine capture of multiple

changing outcomes over time, which requires acceptability

and therefore a user-friendly and useful solution for

collecting the information (13, 14);

iii. translating subjective impressions from PRO questionnaires

(such as Likert scales) into valid numerical data, and

determining what threshold constitutes a meaningful

change for different individuals (15);

iv. calibrating changes in outcomes over time against the types

and costs of health and care interventions that have created

those outcomes. This can help target health spending most

effectively (i.e. assessing value), without leading to

unintended consequences such as restriction of access to

care, support, disability status or benefits.
Commonly used PROMs in the MS field include the MS Impact

Scale-29 (16), Multiple Sclerosis Quality of Life-54 (17), Patient

Determined Disease Steps (18), SymptoMScreen (19) among others.

At the current time, PROMs are mainly used as a correlate with

classical metrics (in the case of MS, such as the Expanded Disability

Status Scale (EDSS), Timed 25-foot Walk (T25W) and others).

PROMs are used as confirmation of these classical metrics, rather

than adding their own specific and unique value.

As mentioned earlier, pwMS are frustrated that currently

available measures do not capture the experiences that have the

greatest impact on their daily lives. In addition, PROMs also need to

be measured formally so they can be collected consistently and

compared over time for the same person and between people (20).

There are many initiatives and resources focused on the creation

and standardization of health outcome measures, including

PROMs, for example the International Consortium for Health

Outcomes Measurement (ICHOM) (21), the Patient-Reported

Outcomes Measurement and Information System (PROMIS) (22),

and the Core Outcome Measures in Effectiveness Trials (COMET)

initiative (23). PROMOPROMS is an initiative focused on PROMs

that matter most to people with MS and the implementation of
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these in clinical practice (24), and a recent global survey of pwMS

identified the functional domains that have the greatest impact on

their lives (25). Identifying distinct clusters of PwMS who share

symptom patterns across functional domains and experiential

knowledge, along with their interdependencies, will pave the way

for a personalized application of PROMs from clinical trials to

clinical practice and vice versa.

Despite this, there is limited uptake of the use of PROMs within

the research and healthcare system. Without a significant body of

evidence, health systems are poorly placed to learn, potentially

ineffective interventions are sustained and health system budgets are

wasted (26). The opportunity is also lost for PROMs to be used directly

by people and their clinicians (27). The application of AI to PROMs

data can support learning health systems, but a renewed humanism

from research to care will only be achieved if researchers and the

clinical community works effectively alongside people with MS.

The ALAMEDA project (28) made progress towards AI-enabled

prediction, prevention and intervention. ALAMEDA is a Horizon

2020 EU-funded project aiming to make use of AI to reduce the costs

of treating disorders such as MS, Parkinson’s, and stroke, hence

easing the burden on healthcare systems. In a pilot study carried out

by the Italian MS Foundation (FISM), wearable technology and

smartphone apps enabled the longitudinal collection of continuous

digital-health data and electronic PRO data from pwMS across

domains including mobility, sleep, mental and cognitive ability,

emotional status and quality of life. This data supported the

development and testing of AI algorithms with the aim of detecting

and predicting relevant changes in disease progression.

In particular, the MS pilot focuses on key aspects such as the use

of predictive systems to improve decision support systems for

multiple sclerosis and the use of wearable technology (from

sensors to electronic patient reported outcomes) in MS. The end

goal of the MS pilot study was to test AI/machine-learning based

algorithms that are able to predict the risk of developing a relapse in

MS. Therefore, a characteristic research interest of the MS study is

to explore the use of combined PRO and wearable-provided data as

input for relapse prediction algorithms (29).

Crucial to the success of the ALAMEDA project is the use of

MULTI-ACT guidelines (30) to engage relevant and representative

stakeholders, including pwMS. Through co-design with pwMS,

preferences and opinions about devices, frequency of measurement

and potential barriers and facilitators for adhering to long-term

patient-reported data collection were identified. In addition, pwMS

were also involved in identifying and prioritizing suitable endpoints

that might act as signs of a forthcoming relapse. All these factors helped

shape the final protocol for the ALAMEDA MS pilot study (29).
4 The potential for AI to improve
health outcomes for people with MS

The use of AI within healthcare systems is not yet standardized

or routine, and more research is needed into its cost-effectiveness. It

includes interventions used by healthcare professionals such as AI-
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assisted clinical decision support systems, as well as those used by

individuals, such as chatbots that provide health information and

smartphones with AI-related applications. Applying AI technology

to the analysis and use of health data – particularly when it has been

patient generated or patient-reported - has the potential to improve

prognosis, prevent and treat disease progression and improve lives,

through taking a personalized approach to diagnosis, treatment and

care (31, 32).

The role of AI in healthcare spans all clinical conditions and is

widely studied, for example in the oncology field recent studies have

examined whether machine learning models include PRO data, and

how AI could impact the doctor-patient relationship (33, 34). In the

field of MS, an example of a decision support system in

development is ‘Clinical impact through AI-assisted MS care’

(CLAIMS), an AI-driven clinical decision-support platform that

aims to model expected disease trajectories depending on treatment

regimen (35). A review by Inojosa et al. (36) explores the

opportunities for using large language models as a form of AI in

MS management.

Crucially, the involvement of AI in research and healthcare

must be guided by the science with and of patient input. The power

of science with patient input relies on an innovative framework used

to engage patients (10, 30), while the science of patient input relies

on patient-generated health data (PGHD). Among PGHD, PROMs

represent a unique opportunity to capture experiential knowledge

from people living with health conditions and make it scientifically

relevant for all other stakeholders – the mission of the Global

PROMS Initiative (10).

With the advent of the European Health Data Space (EHDS), all

EU member states will be required to focus on the quality and

interoperability of priority health data items (37). The EHDS will

enable large, enriched datasets encompassing information from the

whole of the EU. Where standardized PROMs are in use for certain

health conditions, collected in a clinical setting and stored in

people’s medical records, these too will be available. The scale

and complexity of data within the EHDS will necessitate the use of

AI to interrogate these large datasets, combining clinical and PRO

data to develop meaningful insights. AI will be instrumental in

enabling greater use of PROMs in value-based healthcare decisions,

such as those made by national health technology agencies, leading

to improved delivery of healthcare across the region and better

outcomes for individuals.

As set out in the framework by Rivera et al. (31), patient

reported outcomes could be used as an input to an AI model,

they could be an output predicted by the model, or an outcome in

terms of the evaluation of the AI intervention. Within a healthcare

setting, PRO measures may be used to monitor symptoms, monitor

adherence to treatment, measure response to treatment, or

determine when someone needs a clinical review. Using PROs in

an AI or learning system could enable clinical decision making to

incorporate the consideration of a person’s wellbeing, beyond

overall survival or delayed progression of disease.

An example of how combining PROMs and AI could provide

benefits for pwMS is through using AI approaches to interrogate
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individual-level data captured from multiple sources. PROs might

be captured passively (e.g. via a smartphone enabled with

technology such as a step-counter, accelerometer, altimeter etc) or

input actively from a person recording their symptoms, feelings, use

of medications and lifestyle factors such as diet and exercise. Added

to this might be daily temperature or atmospheric pressure

readings. PwMS report that fatigue is a huge challenge to daily

living. Patterns uncovered by AI interrogation of complex patient-

reported data over time could provide insights into which factors

increase or decrease levels of fatigue. These factors could be

environmental or aspects that can be influenced by the person

through lifestyle changes or self-management. Importantly, if the

AI model identifies consistent changes in data patterns over time,

this might signal an underlying change in the condition, such as

progression of MS, prompting referral to a healthcare professional.
5 Challenges with using AI in MS
healthcare: perspective from people
with MS

The increasing use of digital technology that deploys AI poses

several challenges, including representativeness, data privacy, health

equity and consent (38). When developing models or interventions

involving AI and PRO data, an essential consideration is that the

data used to develop and train AI systems needs to be representative

of the population in which the AI approach will be implemented. If

models are developed on a specific, limited population of people

with a particular condition, there may be issues when applying them

to people with different demographic backgrounds (39), which

could lead to misdiagnosis or incorrect management. This is

especially true for complex conditions such as MS, which can

present very differently across individuals, especially when

considered in the context of multimorbidity and on a global basis.

In addition, a common symptom of MS is cognitive dysfunction. If

a person is not able to provide PRO data that accurately reflects

their condition, because the questionnaire is too complex for

example, then the resulting dataset on which an AI model is

trained may not reflect the real needs of the population.

Health interventions that involve AI will only make it

successfully into the clinic if they are fully acceptable by people

with health conditions and their clinicians and care providers. Trust

and honest communication are crucial components of the

interaction between a healthcare professional and a person with

MS. Whilst there may be improvements to health outcomes from AI

in terms of clinical decision making – and the latest AI technology

developed by Google has even been shown to conduct sophisticated

diagnostic conversations (40) - there could be a risk that

overreliance on AI algorithms reduces a clinician’s ability to relate

to people they are caring for as individuals. People want to see that

their healthcare professional is also drawing on their experience and

intuition as part of the decision-making process. Artificial

intell igence might complement the role of healthcare

professionals, but should not replace them.
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A study comparing responses to frequently asked questions

showed that people with MS rated those written by ChatGPT as

higher in empathy compared by those written by a neurologist (41).

Yet some people will find it hard to trust decisions that are purely an

output of an AI system and any errors caused by use of such

technology will have a profound impact on the relationship between

a person and their clinician. McCradden et al. (42) argue that where

health settings use AI-based predictions, these should not be

prioritized above patient experiential knowledge. To enhance

trust, people should be made aware when AI or algorithms are

being used in decision-making relating to their healthcare. There

needs to be transparency in terms of the data and instruments upon

which AI and its underlying algorithms are based as well as any

unconscious biases that may be inherent in both programming and

interpretation. To help overcome barriers to uptake of AI health

technologies, clinical trials of the technology should be co-designed

with people with lived experience, and use relevant PROMs as a trial

endpoint (43).

MS is a condition present across the globe. AI should not just

improve outcomes for people with MS in well-resourced settings, and

it is clear that AI has the potential to both improve and decrease

health equity (44–46). In terms of MS healthcare, remote monitoring

and digital technology that deploys AI algorithms could help fulfil a

need caused by a lack of specialist healthcare professionals in some

settings. If AI can improve the accuracy and speed of diagnosis,

allowing for earlier intervention and personalized care plans, this

should reduce the variation in care experienced by pwMS, both

within and between countries. Yet the benefits of AI-assisted

technology may not be available to everyone. The accessibility and

costs of the technology – including any supporting infrastructure,

personnel or regulatory requirements needed to integrate AI systems

into the current system - may provide a barrier for lower

socioeconomic populations (47) or countries where MS is relatively

rare. A lack of use of the technology in these settings can contribute to

a negative feedback loop, whereby the continual refinement and

updating of the AI algorithms are based on a limited population,

becoming increasingly less representative of the diversity of people

with MS across the world.

A critically important consideration relates to privacy and

security of personal health data. Whether in a clinical or research

setting, the use of AI is likely to involve the collection and analysing

of sensitive information. Also, personal health data may have social,

cultural, and religious implications in communities that are less

familiar with or accepting of health conditions such as MS. It is

essential that safeguards are in place for handling, storing and using

this type of data securely. People must have a clear understanding of

the purpose for which their data might be used and give consent for

their data to be used in this way. A focus on consent is even more

important for people who may be experiencing cognitive

dysfunction. It is important to remember, too, that data generated

by and collected with AI and/or algorithms may produce

consequences outside of health systems, including decisions

regarding pensions, disability payments, and other services. For

people with MS who rely on access to treatment, therapy, and other

forms of support, there is a constant concern about the potential
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that this support could be restricted based on incorrect

interpretation of personal data, whether by human or AI

decision-making.
6 Discussion

How can we maximize the potential benefits of AI for people

with MS, whilst avoiding unintended consequences? As mentioned

earlier, this requires science with patient input, which is at the heart

of the Global PROMS Initiative. Advances in AI – whether relating

to research, clinical practice or health systems policy - should not be

developed in isolation and implemented ‘to’ people, but in

collaboration ‘with’ them. Underlying this, communication and

transparency is key. Encouragingly, these considerations are

reflected in the recent WHO guidance on the “Ethics and

governance of artificial intelligence for health: guidance on large

multi-modal models.” (48)

Quality of life is defined differently for everyone with MS and

cannot be viewed purely clinically. AI algorithms cannot replace the

emotional and psychological understanding of an individual and

their expectations in relation to their wellbeing. The clinical

interaction should always be ‘personal’, and it is important to

guard against anything that reduces people to data points. There

is a need for future research to determine whether AI in

complement with standard of care has a beneficial impact on

outcomes such as disability and quality of life.

As a community of people with MS, we urge that the use of AI

in patient care proceeds with caution as well as anticipation. For

care to maximize quality of life, it must be holistic, encompassing

emotional, psychological and social as well as physical aspects. Any

benefits from AI must not come at the expense of damage to the

relationship between clinicians and the people they care for,

widening health inequity, or worsening health and social

outcomes for people with MS.

Crucially, the Global PROMS Initiative will help ensure that

people with MS are involved in the development of PROMs for MS

from research through to global implementation. They will have

space to raise ethical questions in relation to the growing use of AI

as it applies to large, patient-reported datasets. They can prompt

other members of this multi-stakeholder initiative to move away

from thinking of people with MS as data points, and consider the

impact of any recommendations on all aspects of the life of a person

with MS. Only by working collaboratively in this way will we ensure

that future advances in AI safeguard individuals and be acceptable

to the whole community.
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Introduction:Multiple sclerosis (MS) is a chronic neurodegenerative disease that

affects over 2.8 million people globally, leading to significant motor and non-

motor symptoms. Effective disease monitoring is critical for improving patient

outcomes but is often hindered by the limitations of infrequent clinical

assessments. Digital remote monitoring tools leveraging big data and AI offer

new opportunities to track symptoms in real time and detect disease progression.

Methods: This narrative review explores recent advancements in digital remote

monitoring of motor and non-motor symptoms in MS. We conducted a PubMed

search to collect original studies aimed at evaluating the use of AI and/or big data

for digital remotemonitoring of pwMS. We focus on tools and techniques applied

to data from wearable sensors, smartphones, and other connected devices, as

well as AI-based methods for the analysis of big data.

Results: Wearable sensors and machine learning algorithms show significant

promise in monitoring motor symptoms, such as fall risk and gait disturbances.

Many studies have demonstrated their reliability not only in clinical settings and

for independent execution of motor assessments by patients, but also for passive

monitoring during everyday life. Cognitive monitoring, although less developed,

has seen progress with AI-driven tools that automate the scoring of

neuropsychological tests and analyse passive keystroke dynamics. However,

passive cognitive monitoring is still underdeveloped, compared to monitoring

of motor symptoms. Some preliminary evidence suggests that application of AI

and big data to other understudied aspects of MS (namely sleep and circadian

autonomic patterns) may provide novel insights.

Conclusion: Advances in AI and big data offer exciting possibilities for improving

disease management and patient outcomes in MS. Digital remote monitoring has

the potential to revolutionize MS care by providing continuous, long-term

granular data on both motor and non-motor symptoms. While promising

results have been demonstrated, larger-scale studies and more robust

validation are needed to fully integrate these tools into clinical practice and

generalise their results to the wider MS population.
KEYWORDS

multiple sclerosis, big data, artificial intelligence, monitoring, review
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Introduction

Multiple Sclerosis (MS) is a chronic, inflammatory, and

neurodegenerative disease that affects the central nervous system

(CNS). It is estimated that MS impacts ~2.8 million people globally,

with a higher prevalence among women (1). MS can cause a wide

range of symptoms, depending on the location of lesions across the

CNS. Primarily, MS affects sensorimotor functioning, causing

vision loss, sensory alterations, walking difficulties, muscle

weakness, spasticity, and problems with coordination and balance

(2). Additionally, cognitive impairment can be observed in 30-70%

of pwMS (3).

The unpredictable nature of the disease, typically characterised

by a relapsing-remitting course and by progressive accrual of

disability, profoundly affects the quality of life (QoL) of people

with MS (pwMS). Furthermore, recent evidence has shown that

many pwMS can experience an insidious disease progression even

in the absence of relapses (4). Thus, MS poses significant physical,

emotional, and socio-economic burdens on individuals and their

families (5). Accurate disease monitoring is crucial to put in place

the best possible treatment plans and reduce the negative impact of

the disease on patients’ QoL. Due to organisational and economical

limitations of healthcare systems, however, conventional clinical

follow-up assessments are generally performed every 6-12 months,

or at the time of a relapse. Thus, clinicians are often unable to detect

subtle disease progression and/or to capture all relapses, since they

need to rely on patients’ recall and infrequent assessments.

The rising adoption of digital health technology in the last

decade has sparked an interest in the development, study, and

validation of new digital tools for the purpose of monitoring disease

progression. Indeed, digital remote monitoring may have the

potential to enable longitudinal monitoring of the disease course

with a granularity that would otherwise be unobtainable with more

costly and less accessible clinical follow-ups (6). A recent European

survey found that the vast majority (78%) of patients use

commercially-available digital tools (smartphone apps, wearables)

to increase awareness of their health, and that 62% of healthcare

providers believe that the data obtained from these tools impacts

their communication with patients, their understanding of patients’

health state, and their decision-making progress (7). Increasing the

adoption of validated digital remote monitoring tools into everyday

clinical practice would enable clinicians to access a much larger

dataset of quantitative measures which could help them to better

understand intra-individual disease trajectories and therefore

improve the standard of care for pwMS. Digital remote

monitoring can cover a wide range of domains (i.e., motor,

cognitive and autonomic functions, psychological wellbeing,

disease activity, sleep, diet, etc.), and can be carried out using

both active and/or passive monitoring techniques. Active

monitoring requires patients to consciously provide information,

either via patient-reported questionnaires (e.g., asking patients to

rate self-perceived fatigue on a scale 1-10), or by performing

objective assessments (e.g., by performing a digitalised cognitive

test on their smartphone). Passive monitoring leverages data from

smart devices and sensors to enable remote monitoring while
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patients go about their daily life (e.g., daily steps data from

accelerometers in a wearable device, or data from a blood glucose

monitor placed on the arm). Active and passive methods can be

paired to enhance the quality of digital remote monitoring data

(e.g., collecting daily steps data from a participant’s smartphone,

which is also used to administered weekly standardized walking

tests designed to be performed while carrying the smartphone in the

pocket, to measure the distance walked and other data obtained

from the smartphone accelerometer and gyroscope).

The definition of ‘big data’ keeps evolving, as continuing

technological advancement and increasing adoption of devices

able to capture more and more data push the boundaries of “big

data”. However, core properties like high volume (i.e., large

quantities of data), velocity (i.e., data which are acquired in real-

time) and variety (i.e., data which can be either structured or

unstructured) are shared across most definitions (8). Other

properties like exhaustivity (i.e., the ability to capture an entire

system), high resolution (i.e., the ability to collect many datapoints

at short intervals), relationality (i.e., the ability to merge different

datasets), scalability (i.e., the ability to expand rapidly in size) have

also been proposed (8). In general, data which cannot be easily

viewed, processed and analysed using traditional statistical methods

and which requires ad-hoc processing pipelines to produce

meaningful insights could be labelled as big data. A consensus

definition for big data in health research was proposed by the

Health Directorate-General for Research and Innovation of the EU

Commission, stating: “Big Data in health encompasses high volume,

high diversity biological, clinical, environmental, and lifestyle

information collected from single individuals to large cohorts, in

relation to their health and wellness status, at one or several time

points” (9).

In the context of digital remote monitoring of patients, big data

can include structured and/or unstructured data from smart

devices, wearables, self-monitoring devices, or electronic health

records (EHRs) (10). Data from wearables or data recorded

passively from smart devices can easily satisfy the “high volume”

and “high velocity” criteria of big data. Indeed, using a single tri-

axial accelerometer to monitor motor activity of a single individual

over 10 hours, with a sampling frequency of 1 Hz, would yield over

~130,000 raw data points, which would need to be processed and

aggregated using custom algorithms to derive basic interpretable

metrics (e.g., steps/minute), and then further processed to derive

more advanced metrics (e.g., time spent performing moderate vs.

intense activity). Data from smart devices used to administer active

tests is characterized by significantly lower volume and velocity but

can become big data in the context of long-term monitoring,

especially as digital remote monitoring allows to administer

repeated assessments with higher frequency, longer follow-up

times, and to larger cohorts, addressing the “scalability” property

of big data. In the context of a simple digital cognitive test for which

participants need to respond to 50 stimuli, a typical dataset would

contain information on response times, actual responses,

correctness of each response, metadata (e.g., date, time, type of

device, location, device orientation, stimulus order), resulting in

>200 datapoints for each testing session. These raw data would also
frontiersin.org
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need to be processed and aggregated to derive informative metrics

(e.g., mean reaction times). Monitoring 20 patients for 12 months

through weekly testing with this simple test would result in the

collection of ~50,000 datapoints, with longer and more complex

assessments increasing the volume of data acquired exponentially.

Data from EHRs typically reaches big data status only when large

quantities of clinical data are collected for a large number of

patients, either longitudinally in a single centre or cross-

sectionally through multicentre collaborations. EHRs data also fits

the “exhaustivity” property of big data, as they include a wide range

of information for each patient (e.g., sociodemographic, clinical,

imaging, pharmacological). Another way that EHRs data can fit the

criteria for big data is linked to recent developments in Artificial

Intelligence (AI) applied to processing and aggregating of

unstructured text data, which could enable to start analysing large

quantities of unstructured data present in EHRs (e.g., medical

notes) in an automated (or semi-automated) quantitative way,

thus greatly expanding the dimensionality of EHR datasets.

AI is a term dating back to the 1950s, when it was coined to

represent machines exhibiting features akin to human intelligence

(e.g., reasoning, learning, vision) (11). In recent years, this term has

transitioned more and more from theory to practice, and many

subdivisions of AI have been defined, according to their respective

properties and use cases (12). Machine Learning (ML) refers

broadly to the use of computational algorithms to learn data

patterns to make predictions, and then compare the predictions

with the actual outcomes, in order to learn iteratively, thus

improving the quality of the predictions based on available data

at each iteration. Deep Learning (DL) is an evolution of

conventional ML, since it follows the same iterative learning

approach to improve predictions. However, it differs from ML in

that DL models are built from different consecutive hidden layers of

‘neurons’ (i.e., interconnected processing nodes) which are used to

process raw inputs and can be adapted to perform optimally across
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different specific tasks (i.e., speech recognition, image processing,

genomics) (13). One such example are Convolutional Neural

Networks (CNN), i.e., DL algorithms built using specific types of

connected layers to improve the neural network’s ability to perform

image recognition tasks, and have thus found large use in radiology,

by allowing automated or semi-automated scoring of CT or MRI

scans (14). The ever-increasing worldwide dissemination of

computing technology means that more and more data is being

collected every day, and the increased computational power

available today has made it possible to deploy AI in an increasing

number of applications (Figure 1).

The aim of this narrative review is to present and discuss recent

advancements in the field of digital remote monitoring in MS, with

a focus on AI tools and algorithms applied to the analysis of big data

from sensors, wearables, smartphones, and other smart devices, as

well as data from active digital assessments designed to be

performed independently and remotely by patients. Specifically,

we aim to discuss how leveraging big data and AI could allow to

improve the standard of routine disease monitoring of pwMS across

different settings and in different fields, how it could allow

researchers to obtain novel insights into specific factors driving

disease progression, and what future developments are needed to

further advance the state of digital remote monitoring in the future.
Methods

For this narrative review, we focused our literature search on

studies of digital remote monitoring of pwMS using AI and/or big

data. This includes studies aimed at validating digital monitoring

tools designed to enable active or passive digital remote monitoring

of MS symptoms and disease progression. To this aim, we

conducted a PubMed search for papers containing the following

terms in the title and/or abstract: “multiple sclerosis[Title/Abstract]
AI Big Data
Machine Learning

• Regression and classification algorithms

Large Language Models

Deep Learning

• Convolutional Neural Networks for image recognition

• Neural Networks for regression and classification

• Natural Language Processing

• Analysis of unstructured text data

Smart Devices

Wearables

Electronic 
Health Records

Active Digital 
Assessments

ACTIVE M
O

NITO
RING

PASSIVE M
O

NITO
RING

FIGURE 1

AI and Big Data for digital remote monitoring of MSFigure representing the two sets of Artificial Intelligence (AI) and big data, with specific subfields
relevant for the field of digital remote monitoring of people with Multiple Sclerosis. The arrows indicate what type of AI-based analysis is best
applicable to different types of big data obtainable from different methods of digital remote monitoring.
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AND (( ‘digi tal monitor* ’[Tit le/Abstract] OR ‘remote

monitor*’[Title/Abstract] OR wearable*[Title/Abstract]) OR

( ‘art ific ia l inte l l igence ’ [Ti t le /Abstract ] OR ‘machine

learning’[Title/Abstract] OR ‘deep learning’[Title/Abstract]))”. We

filtered the search results to only select those published in the last 10

years, i.e., from 1st January 2014 to 1st August 2024.

We then excluded all reviews, meta-analyses, study protocols,

opinion papers, editorials. We also excluded all studies where AI or

big data where not specifically applied to data from digital remote

monitoring or designed to enable it. Therefore, we excluded studies

on AI-based processing and analysis of big data from structural

(e.g., magnetic resonance) or functional (e.g., positron emission

tomography) imaging, robotics-assisted physical rehabilitation, AI-

assisted cognitive rehabilitation, AI-based psychological

counselling, AI-based analysis of genomics, and those using AI

and/or big data to estimate the risk of developing MS or to increase

diagnostic accuracy. We also excluded studies of digital remote

monitoring in which neither AI nor big data were applicable

definitions (i.e., studies aimed at validating the administration of

an established clinical test through videoconferencing or other

telemedicine approaches, without collection of big data from

sensors and/or other electronic devices).

The resulting candidate publications were screened manually by

reading the abstracts, to select those who focused on developing and

validating data processing and analysis pipelines (including AI)

applied or applicable to digital remote data from sensors and/or

active remote assessments, as well as those focusing on AI

algorithms applied or applicable to the analysis of big data from

other sources (e.g., EHRs) to improve the monitoring of disease

progression in pwMS.
Results

Our literature search revealed that the majority of studies on

digital remote monitoring of pwMS using AI and big data has

focused on the use of wearable sensors to assess and monitor motor

symptoms. This is not surprising, as motor deficits are one of the

most prevalent and invalidating symptoms of MS (2). Therefore,

our review begins by providing a report on studies focused on the

motor domain, to evaluate the feasibility and validity of digital

remote monitoring of motor functions in real-world clinical

applications and highlight issues which still require further

development. More recently, other studies have also focused on

the need to monitor cognitive symptoms, since they are frequently

reported as of the main factors which negatively impact the

autonomy and QoL of pwMS (15). We present these studies and

discuss the potential added benefits of digital remote monitoring of

cognition using AI, compared to the current standard of care, as

well as the potential to deploy “big data” to enable passive cognitive

monitoring. The use of big data and AI for the digital remote

monitoring of other symptoms or domains (e.g., sleep, autonomic

functions) or to leverage unstructured big data from EHRs to

monitor disease progression are still underrepresented in the MS

literature. However, the few studies available to date suggest that
Frontiers in Immunology 0471
their further exploration may yield novel insights which would

otherwise be unobtainable by using conventional data acquisition,

processing and analysis methods. Therefore, we conclude by

presenting the studies available to date, to highlight the potential

benefits of these different applications of big data and AI to enhance

the remote monitoring of pwMS.
Motor domain

Many studies in the last 5-10 years have applied big data

analysis and AI to the study of motor symptoms, aiming either to

enable continuous passive monitoring, validate remote active motor

tests to be used for frequent remote active monitoring, or leverage

sensor data to detect digital biomarkers associated with higher odds

of disease worsening or relapsing. The three main areas of interest

appear to be falls (including both automatic fall detection using

sensor data and identification of risk factors), gait (including both

passive monitoring and active instrumented tests which can be

performed remotely and independently by pwMS), and activity

monitoring during everyday life as a digital biomarker of disability

progression. The characteristics of all reviewed studies are

summarised in Table 1.

Risk of falls
Falls are a major health concern for pwMS, as over 50% of them

are estimated to experience at least one fall in a 6-month period, of

which half result in injury (16). Continuous remote monitoring of

pwMS in real-life environments and automatic falls detection has

the potential to increase the detection rate of falls in everyday life,

allowing a more precise monitoring of clinical progression.

Moreover, it could help identify specific risk factors and

consequently develop prevention strategies.

Tulipani et al. (17) investigated the ability to predict fall risk in

37 pwMS wearing a chest and a thigh sensor during sit-stand

transitions of daily life and during a standardised sit-stand task in

the clinic. Using reported falls in the previous 6 months to

dychotomize participants in “fallers” or “non fallers”, they

evaluated the ability of sensor data to correctly classify patients in

either class. Sit-to-stand transitions in daily life were detected using

a DL (long Short-Term Memory) algorithm tuned to detect activity

states, which allowed them to select only sensor data from periods

of transition from the “sitting” to the “standing” state. Using

Receiver Operating Characteristics (ROC) analysis, the best

predictor of high fall risk in their study was a chest acceleration

metric recorded during execution of the sit-stand task in the clinic

(Area Under the Curve [AUC]= 0.89). The best performing sensor

metric during the real-life task execution, i.e., average sit-stand time,

had slightly lower predictive power (AUC= 0.81). Their results

suggest that conventional sensor metrics (e.g., acceleration, total

time of execution) may provide useful insights into the fall risk of

pwMS, although with reduced accuracy, compared to instrumented

functional assessments performed in the clinic. The same research

group recently published a longitudinal study (18), with the aim of

extending the analysis of sit-stand performance to longitudinal
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remote monitoring. They recruited 23 pwMS and monitored them

for six weeks, using three wearable sensors worn for all hours of the

day (one on the left upper chest, two on the thighs) to record

acceleration and surface biopotentials. Furthermore, they applied

DL analysis to detect periods of sit-standing transitions. The

algorithm identified different fatigue and instability phenotypes

which were predictive of fall risk. They also observed that stability

tended to decline over the course of the day, providing interesting

quantitative insights into daily fluctuations of motor performance.

Taken together, these results suggest that DL algorithms may enable

to reliably identify activity states remotely and during everyday life,

thus allowing to contextualise motor features obtained by the

analysis of big data collected continuously from sensors. This is

particularly interesting, since novel insights could be obtained by

investigating some motor features (e.g., stability) during specific

activity states of interest (e.g., sit-to-stand transitions), rather than

across the entire range of daily activity states, which would be

unfeasible if activity states had to be observed by an examiner or

reported by the patient.

DL algorithms were also implemented retrospectively, to detect

patients who had a positive recent history of falls (in the previous six

months), by leveraging accelerometer data from sensors placed on

the sternum, lower back, thigh, and shanks during a one-minute

walking task in the clinic (19). This study found that a bidirectional

long short-term memory neural network could be used to

automatically identify and analyse sensor data from 1-minute

walking tests performed remotely and autonomously by pwMS,

and identified pwMS who had previously fallen with high accuracy

(ROC AUC= 0.88). Notably, this DL algorithm trained on raw

sensor data significantly outperformed the classification accuracy of

neurologist-administered measures and patient-reported outcome

measures, as well as conventional statistical analyses and other

traditional ML models (logistic regression, k-nearest neighbours,

support vector machine, decision tree) based on conventional

aggregate spatiotemporal gait parameters (e.g., average speed).

This suggests that AI can leverage big data to capture nonlinear

relationships and motor phenotypes associated with an increased

risk of falls which are not detected through conventional clinical

exams or basic aggregate statistics.

Another key application of big data is the automatic detection of

real-world falls in freely moving patients through sensors from

wearables and/or smartphones. Mosquera-Lopez et al. (20)

developed an algorithm which detects possible falls by combining

acceleration and movement features recorded by wearable sensors

connected to wireless beacons placed throughout the home. As fall

detection was performed in a fully unsupervised way, accuracy of the

detection pipeline was tested using 10-fold cross-validation (CV).

This system proved highly accurate in detecting falls (sensitivity=

92%, specificity= 98%), producing 0.65 false alarms per day, which

translates to roughly 2-3 false alarms per week. However, due to the

small sample size and relatively short monitoring time, their dataset

was highly imbalanced, with only 270 seconds of fall data compared

to over 2,000,000 seconds of total data. In a more recent study (21),

the same researchers conducted a secondary analysis of the same
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dataset, to investigate the relationship between mobility measures

(including both movement metrics and location data) and risk of falls

in pwMS. They found that half of falls occurred while walking, and

that participants were sedentary for most of the time spent at home

(>95%). Interestingly, they were able to observe that almost one third

(28%) of falls occurred within one second of gait initiation, thus

providing quantitative data to highlight the critical role of gait

initiation in determining fall risk during everyday life. These results

are promising, although the feasibility of this tracking method is

obviously lower than that of monitoring devices which do not require

altering/adapting the home environment of patients, which could

hinder its applicability for real-life long-term monitoring of pwMS.

Moreover, such systems cannot be used to assess motor performance

in everyday life settings other than patients’ homes (e.g., the

workplace), limiting the generalizability of their findings. Further

studies with much larger samples and longer monitoring durations

are required to assess the true feasibility of this monitoring approach,

as well as its validity and reliability for real-life clinical applications.

Increasing the range of possible applications of digital remote

monitoring is key, to enable monitoring of motor functioning in a

more ecological way, which would also allow extend this possibility

to a wider range of pwMS. Therefore, more and more studies have

tried to leverage commercially available smart devices for remote

data collection, as their widespread availability could greatly extend

the reach of digital remote monitoring, compared to more

experimental and multi-device approaches. A pilot study (22)

investigated the ability of a commercially available smartphone

and smartwatch to automatically detect falls in an experimental

environment, in which healthy controls (HCs) performed a set of

simulated falls. Using an experimental setting in which participants

performed simulated falls, they were able to directly observe the

number of false positives and false negatives produced by the fall

detection algorithm, from which they calculated sensitivity and

specificity. They found that the joint use of smartphone and

smartwatch improved the specificity of all analysed algorithms by

a range of 5-15%, compared to smartphone- or smartwatch-only

detection, although the issue of false positives alarms remained, as

denoted by several false alarms raised during 24h of continuous

monitoring. Moreover, the extremely small sample size (N = 4)

significantly limits the generalisability of their results. Another

study (23) investigated automatic fall detection through a system

of tri-axial sensors fitted to six different body parts (head, chest,

waist, right wrist, right thigh, right ankle) of HCs performing a

standardised set of voluntary falls in an experimental setting.

Through ML analyses they were able to reach values >99% for

accuracy, sensitivity, and specificity. However, it must be stressed

that this result was again observed in a small sample of HCs,

performing standardised falls in a controlled setting. Perhaps even

more importantly, such a complex sensor array would likely be

unfeasible for everyday real-life monitoring of pwMS. It should be

noted that studies wishing to evaluate automatic falls detection

accuracy through direct observation (i.e., through simulated falls

experimental paradigms) are inherently limited, since having pwMS

or people with other chronic health conditions performing
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simulated falls would pose evident ethical and safety issues.

Crucially, this questions the ecological validity of fall detection

algorithms validated on young healthy participants. Further

research is needed to determine the feasibility and validity of

automated fall detection through smartphone and/or wearable

data in pwMS and in real-life scenarios.

Gait analysis
Gait disturbances are common in MS, they can present in the

early disease stages, and significantly affect QoL by reducing

autonomy and impacting negatively on socio-economic status

(24). Instrumented assessments of gait are well documented (25)

but, until recently, have largely relied on sophisticated lab-based

assessments which are costly, cumbersome, and can fail to capture

the true walking performance of pwMS in real-life environments.

Consequently, most research to date has focused on validating

wearable data recorded during laboratory experiments in which

participants perform a mix of structured tests and simulated real-

life activities. Only recently, researchers have begun leveraging big

data gathered from wearables during everyday life to estimate gait

parameters of pwMS, or to validate such monitoring devices with a

mixed study procedure including both lab-based and remote-based

data collection.

Salis et al. (26) validated a multi-sensor system designed to

allow real-world monitoring (three inertial sensors, two plantar

pressure insoles, and two distance sensors) in 128 participants with

different pathologies (including 20 pwMS) who performed a mix of

structured tests (e.g., Timed-Up and Go) and simulated activities

(e.g., setting the table for dinner). They compared data from the

wearable sensors with data from a stereophotogrammetry system,

which served as reference. They used intraclass correlation

coefficients (ICC) to assess reliability, which can be considered

excellent when ICC > 0.90, good when 0.75 < ICC < 0.90, moderate

when 0-5 < ICC < 0.75, and poor when ICC < 0.50. The reliability of

the wearable system was excellent for structured tests, with ICC

values >0.95, while it decreased slightly for simulated activities of

everyday life (ICCs between 0.69-0.98). They also evaluated the

feasibility of this wearable system for real-life use by recording 2.5

hours of unsupervised activity and reported that the system was well

accepted, without major technical or usability issues. However, it

must be noted that the real-world part of this study included only 20

healthy young adults and lasted a short time. Further real-life

feasibility and acceptability studies with much longer monitoring

periods are therefore definitely needed to derive any meaningful

conclusions on real world long-term feasibility.

Chitnis et al. (27) collected data remotely from 23 pwMS

wearing three sensors (placed on wrist, ankle, and sternum) for

eight weeks during real-world daily activities. They designed a

workflow for the classification of unstructured raw sensor data,

using a DL classifier to distinguish activity periods (i.e., idle,

walking, running). Then, they selected only the activity segments

classified as “walking” to derive mobility features. Several features

extracted from real-world walking bouts (i.e., stance time, swing

time, mobility activity time, turning velocity) correlated with gold-

standard clinical scales like the Expanded Disability Status Scale

(EDSS) and the Multiple Sclerosis Functional Composite (MSFC)
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and standardised walking tests performed in the clinic (Timed 25-

Foot Walk [T25FW]).

While multiple wearable sensors undoubtedly afford a higher

degree of precision and provide more data to extract spatiotemporal

gait parameters, compared to a single wearable sensor, one must

also consider the feasibility of such approaches for longitudinal

remote monitoring. Indeed, using multiple sensors imposes higher

costs and is more burdensome for patients and researchers alike.

This issue grows exponentially with longer follow-up times, limiting

the ability to study long-term trends and patterns of motor function

in pwMS. More specifically, compared to wearing sensors on

multiple body parts, using a single sensor facilitates monitoring in

a wider variety of daily life situations (e.g., in public), enhancing the

ecological validity of data thus collected. Therefore, some

researchers have begun to evaluate the validity of data obtained

from a single wearable sensor, which could prove more economical

and easier to use, therefore allowing larger studies with longer

follow-ups.

Atrsaei et al. (28) developed and validated a ML-based gait

estimation approach to predict gait speed and detect waling bouts

using a single sensor on the lower back. They recruited 35 pwMS,

who performed walking tests in the clinic and at home. and found

that reference values obtained from sensors on both feet correlated

strongly with gait speed estimated from the sensor on the lower

back during a walking test in the clinic (r = 0.96) and at home (r =

0.95); gait speed during daily activities at home were also strongly

correlated with reference values recorded in the clinic (r = 0.89).

These results show that not only using a single sensor on the back

approximates reference values extremely well for walking tests

performed in the clinic, but is also able to provide accurate

estimation based on real everyday activities. They also tested a

ML-based algorithm (naïve Bayes classifier) for automated walking

bouts detection and used leave-one-out CV to evaluate its accuracy,

using only digital remote data collected during unsupervised daily

life activities. The ML-based walking bout detection had high

accuracy (96.4%) in detecting walking bouts remotely, during

everyday life. Although the authors reported analysing >300

hours of daily activity measurements, the small sample size

significantly limits the generalizability of these promising results

obtained using a single sensor.

A similar approach (single sensor worn on the lower back; in

the clinic and during 2.5 hours of real-world activities) was adopted

by a European multicentric study (MOBILISE-D) on N=97

participants with different medical conditions (including 13

pwMS) (29). Reliability was considered good-to-excellent in the

clinic (ICC range= 0.79-0.91) and moderate-to-good (ICC range=

0.57-0.88) in real-world activities, compared to a multisensory

reference system which included pressure insoles. Although the

reliability of the system was lower in the real-world scenario, it was

still deemed to remain within a usable range. Predictably, this study

found that walking bout duration affected the accuracy of gait speed

estimation, with shorter bouts yielding less accurate estimates. It is

therefore possible that further studies with more data at the intra-

individual level may yield higher accuracy.

Aiming to further explore the use of devices which could be

accessible to larger proportions of the population, Bourke et al. (30)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1514813
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dini et al. 10.3389/fimmu.2025.1514813
analysed gait parameters recorded by a waist-worn smartphone

with built-in accelerometer during a two-minute walking test

performed remotely and independently by 76 pwMS and 25 HCs

over 24 weeks. The test-retest reliability across consecutive pairs of

testing sessions was either excellent or good-to-excellent for 58/92

gait parameters in pwMS, and 29/92 in HCs, indicating higher

variability in healthy persons across consecutive test sessions. These

results suggest that remote sensor data recorded during active

walking tests, using only a waist-worn smartphone, has

comparable reliability to sensor data from clinical assessments.

This encourages further research, as it could enable a much wider

diffusion of instrumented remote walking assessments tanks to the

ever-increasing availability of smartphones and wearables, thus

expanding the reach of gait monitoring to those with reduced

access to clinical services. However, this study involved mainly

people with relapsing-remitting MS (RRMS), and only data from 62

participants (51 pwMS, 11 HCs) was used for the analyses (the

authors did not explicitly state the reason for excluding almost 40%

of the initial sample size). Therefore, further studies with larger

sample sizes and more rigorous reporting are needed to establish

the feasibility and validity of using smartphone-based sensor data as

an endpoint in clinical trials and for real-life clinical monitoring.

All the studies examined so far have been conducted on small

samples, and their results cannot therefore be generalised to the

wider population of pwMS. The large volume of data obtained

through wearable sensors and the high costs associated with

specialised sensors has greatly limited the ability of researchers to

conduct studies on large samples and with adequately long follow-

ups, as evidenced by the studies discussed so far. Multicentric

studies on larger samples of pwMS, however, are needed to derive

more reliable insights on the validity, reliability, and feasibility of

digital remote monitoring tools. As part of the RADAR-CNS

initiative, Sun et al. (31), monitored an European cohort (from

Italy, Spain, and Denmark) of 337 pwMS over an average duration

of 10 months using a commercial wearable (Fitbit). They analysed

real-world steps data and applied correlation-based feature

selection to select the most relevant features and tested the ability

of different ML regression algorithms (random forest, gradient

boosted trees, and elastic net) to estimate 6 Minutes Walking Test

(6MWT) performance in the clinic by using digital remote

monitoring data collected during everyday life. Results show that

minute-level features were more predictive than day-level features.

Interestingly, they also noted that upper bound statistics (e.g., 90th

percentile of minute-level step count) were more strongly related to

clinical test scores, indicating that the average performance in

clinical gait tests may reflect the upper portions of the

distribution of real-life gait abilities. This insight is particularly

valuable, as it could mean that the impression of motor functioning

that a clinician gets from a patient performing a walking test in the

clinic may be an overestimation of their actual day-to-day average

motor performance. The accuracy of 6MWT score estimation was

quite low, reinforcing the idea that walking performance of pwMS

could differ significantly between real life and clinical testing. These

findings demonstrate that, in addition to allowing digital remote

monitoring, leveraging data from wearables collected during
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everyday life can provide insights that would not be obtainable

through conventional study paradigms, thus improving our

understanding of the true validity of gold-standard and widely

used clinical tests.

Another study with a large sample size (32) (N = 205 pwMS)

focused on validating gait parameters (velocity, ambulation time,

cadence, stride length) estimated trough sensor data from

connected insoles with pressure and motion sensors, compared to

a classic lab-based reference system based on pressure plates. They

showed strong concordance between the two systems for gait

velocity (ICCs > 0.83), ambulation time (ICC = 0.93), and

cadence (ICCs > 0.90), whereas stride length showed poor

concordance (ICC = 0.30). Sensorised foot insoles allow

continuous data collection in everyday life without requiring

visible devices, which could cause stigma or discomfort to some

patients. Therefore, this large study provides valuable data on the

validity of this gait monitoring device, which may prove particularly

useful for patients which are unwilling and/or unable to wear visible

devices such as smartwatches or body-mounted sensors. However,

one key limitation is the compatibility of insoles with different shoe

types, and the need to switch the insoles when changing shoes and

when recharging, which could prove burdensome for patients in the

long term, and could lead to missing data for extended periods of

time or in some specific settings (e.g., while wearing slippers

at home).

Whereas most of the literature to date has focused on obtaining

gait parameters from accelerometers, Delahaye et al. (33)

investigated gait parameters derived from a wearable sensor with

integrated Global Positioning System (GPS). Validating GPS-

derived walking speed and distance metrics may potentially

enable to implement remote monitoring via commercially

available and non-wearable devices (e.g., smartphones), thus

removing the need for specially designed wearable sensors which

may be perceived as cumbersome or that patients may be

embarrassed to wear in public. The authors recruited a small

convenience sample (N = 18) of pwMS who performed the

6MWT and an outdoor walking session at usual pace (up to 60

minutes). By integrating GPS and altitude data, they were able to

measure gait parameters and associate them with variations in the

terrain conformation, which could not only allow to better

understand variability in motor activity observed through digital

remote monitoring, but may also be used to standardize future

studies on outdoor walking performance across different centres

and countries, They found that walking speed during an outdoor

walking session was significantly correlated with 6MWT

performance measured in the clinic, whereas maximum walked

distance was not. They also noted that 40% of participants did not

reach their maximum walking distance during the first walking

bout, but on subsequent ones. This suggests that the first stint of a

walking task (as is the case for clinical walking tests) may not

necessarily yield the best performance. Once again, one can

appreciate how real-world motor data collected remotely and

digitally was able to provide novel insights which enhance our

understanding of the validity of testing procedures performed

routinely in clinical or research settings. However, only 12
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participants had valid GPS data, which means that GPS data could

not be analysed for one third of participants. Therefore, more

studies are needed to validate GPS-derived measures, and several

technical limitations must be addressed, such as the accuracy of

GPS-calculated walked distance for shorter walking bouts, or its

accuracy in different environments and settings.

Activity monitoring
Data from wearable sensors may be used to characterise patients

not only in terms of their raw quantitative performance metrics (e.g.

daily step count), but to infer activity states and behavioural patterns

which may be associated with clinical features and/or impact disease

progression. This may be done either using knowledge-based

frameworks or with a data-driven approach, providing both

researchers and clinicians with more readily interpretable outcome

measures. Moreover, characterising activity states may enhance the

informative value of raw quantitative measures (e.g., by differentiating

between steps counted during a light walk or during an intense run).

An example of the knowledge-based approach has been

proposed by Stavropoulos et al. (34), who showcased a framework

using a priori semantic rules to model “problem labels” which could

be quickly and easily understood by clinicians and provide added

value to raw quantitative data. As an example, “Steps < 500 & Heart

Rate < 100 for duration > 800” was a rule used to determine an

instance of “Lack of Movement”. They then reported the example of

a patient for which “Lack of Movement” instances appeared

sporadically in the first months of remote monitoring and

intensified in time, ultimately occurring almost every day in the

last months. This provides a simple and effective way for clinicians

to monitor potential risk factors and/or indices of disease worsening

without necessarily having to analyse raw data, which may be

cumbersome or outright unfeasible depending on the resources of

different healthcare centres. However, frameworks based on a priori

rules strongly rely on the goodness of their assumptions, and the

validity of their output must be carefully assessed with ad-hoc

studies implementing baseline and follow-up clinical assessments to

provide quantitative measures of disease progression.

Block et al. (35) adopted a data-driven approach to characterize

walking activity, based on minute-to-minute steps data from 94

pwMS who wore a Fitbit continuously for 1 year. They applied an

unsupervised ML clustering algorithm (3-compartment Gaussian

Mixture Model) to detect the proportion of three levels of activity

(low, moderate, high) based on individual participants’ steps data,

and then evaluated associations with clinical parameters (walking

tests, EDSS scores) and patient-reported outcomes. The detected

activity levels correlated more strongly with clinical and patient-

reported outcomes, compared to raw step count, and the

combination of raw steps data and activity levels outperformed

both individual metrics. This suggests that the qualitative aspect of

steps data plays a pivotal role in predicting key clinical outcomes

such as EDSS score. While we can expect patients with lower

disability to be more active overall, leveraging AI algorithms to

continuously and automatically evaluate the proportion of time

spent in low- or high-intensity walking may enable to differentiate

two patients which would appear identical if one were to look only
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at basic aggregate statistics like step count. Indeed, 1000 steps could

be performed while doing house chores over 1 hour, or during a

short but intense 5-minute walk, two different activities which

cannot be accurately distinguished by examining step count alone.

Salomon et al. (36) collected data from 132 pwMS and 90 HCs

wearing an accelerometer placed on the lower back for seven days,

aiming to uncover daily-living rest-activity fragmentation patterns,

circadian rhythms, and fractal regulation parameters. Results showed

that pwMS had a more fragmented activity behaviour (likely

indicating a greater need for pauses when carrying out prolonged

physical activity) and lower amplitude in circadian changes of daily

activity (i.e., the difference in activity levels between the five most and

least active hours of the day) than HCs. Moreover, both circadian and

fragmentation measures were associated with disability severity, as

measured by EDSS score. Although a simple general metric like total

physical activity remained the strongest discriminator between pwMS

and HCs, this study found that incorporating more sophisticated

metrics like fragmentation patterns and circadian rhythms detection

improved the ability to differentiate between patients and HCs, and

between patients with low vs. high disability. This was a cross-

sectional study, and therefore could not provide any info on the

predictive value of these features on disability progression or relapse

risk. However, it is possible that circadian rhythms and fragmentation

patterns could also provide novel insights on disease progression (e.g.,

a patient maintaining the same overall level of activity, but with

increased fragmentation due to requiringmore frequent rest). Further

studies are needed to establish the utility of more advanced activity

measured for real life monitoring of pwMS, with specific emphasis on

their ability to predict relapse and/or disease progression.

Creagh et al. (37) also adopted a data-driven approach,

analysing raw sensor data (smartphone + smartwatch) of 97

participants (24 HCs, 52 pwMS with mild disease severity, 21

pwMS with moderate disease severity) who performed a daily

two-minutes walking test remotely for 24 weeks. Raw sensor data

were analysed with a deep CNN pre-trained on an open-source

human activity recognition dataset, to calculate a continuous

quantitative measure of disease severity at each timepoint.

Average disease severity across all timepoints correlated strongly

with EDSS score. More interestingly, longitudinal disease severity

trends were found to be associated with self-reported relapses.

These preliminary results suggest that a continuous quantitative

measure of disease severity may be more sensitive to change than

the EDSS, and that it could also allow to detect trend changes in

quasi-real time, which could potentially enable researchers and

clinicians to detect relapses and shifts to progressive MS more

efficiently. However, significant limitations such as adherence to

frequent active testing and reliability of remote tests must be

addressed, before such measures can be effectively implemented

in everyday clinical practice. Indeed, the authors report that

adherence was highly variable across participants, as participants

with mild MS showed higher adherence than those with moderate

MS and HCs. Moreover, adherence decreased linearly for all

subgroups at later timepoints and, in some cases, in

concomitance with the onset of reported relapses, as patients

stopped performing the walking tests once they began
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experiencing a significant worsening of motor function happening.

These preliminary findings suggest the need to evaluate adherence

to digital remote monitoring via active testing not only as a function

of time, but also by uncovering potential associations with

sociodemographic data (e.g., economic status, age), clinical

features (e.g., cognitive impairment, depressive symptoms), or

disease progression (e.g., patients becoming wheelchair-bound).
Cognitive domain

The use of AI and big data for monitoring cognitive function in

pwMS has seen significantly less development, compared to the

monitoring of motor function. This is likely because evaluating

cognitive processes relies much more explicitly on active testing,

and it is therefore more laborious to obtain large amounts of data.

Indeed, a wearable sensor can detect thousands of datapoints for

many motor features passively, just by being worn during everyday

activities. The same approach cannot be easily applied to cognitive

processes like memory or information processing speed, which are

latent variables which need to be evaluated through specifically

designed tasks. This significantly limits the ability of researchers to

deploy big data to study cognition in MS. Nevertheless, some recent

efforts have been made to integrate AI and big data in this field, and

their results point to some interesting avenues for future research.

The characteristics of all reviewed studies are summarised

in Table 2.
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Active monitoring
Most efforts have been focused on developing digital versions of

established neuropsychological tests, with the aim of enabling

automated administration and scoring, thus enabling remote

administration and freeing up time for clinicians. In such cases,

AI can provide novel ways to automate test administration and

scoring, whereas big data has been mainly viewed in the context of

granular digital test metrics which would be unfeasible to record

manually, but which could enhance the information obtained from

the execution of a test, compared to conventional scores.

Birchmeier et al. (38) aimed to digitize the Brief Visuospatial

Memory Test – Revised (BVMT-R), a visuospatial learning test

which is considered one of the gold-standard cognitive tests in MS

(39). Scoring this test is a time-consuming semi-quantitative

procedure which requires trained healthcare professionals to

evaluate the shape and position of 18 drawings, assigning a score

ranging 0-2 to each drawing, and then calculating the final total test

score. The authors tested the ability of a CNN to automatically score

patients’ drawings, and compared its accuracy to clinician ratings,

using a validation sample of 135 patients (for a total of 624

drawings). The CNN achieved a good accuracy for perfect or

completely wrong drawings (i.e., those scored either 0 or 2 by

human raters), while the accuracy for partially wrong drawings (i.e.,

those scored as 1 by human raters) was unsatisfactory (57%). This

suggests that CNNs may not yet substitute clinicians and enable

fully automated scoring, especially for drawings which present only

slight inaccuracies and are therefore trickier to score, as they require
TABLE 2 Summary of studies on cognitive domain.

Study Year Sample Study type
Cognitive
domain

Algorithms used
Aim

Type of
monitoring

Birchmeier
et al. (38)

2019 135 pwMS Cross-sectional
Visuospatial
learning

CNN for image classification task
Validation of
automated
test scoring

Active testing

Birchmeier
et al. (40)

2020 294 pwMS Cross-sectional
Visuospatial
learning

CNN for image classification task
Validation of
automated
test scoring

Active testing

Petilli
et al. (41)

2021 35 HCs Cross-sectional

Visuo-
constructional
ability and
visuospatial
memory

Custom algorithm for image
preprocessing, segmentation and
scoring of spatial, procedural and
kinematic features

Enhancing the
informative value of
conventional tests

Active testing

Khaligh-
Razavi
et al. (42)

2020
91 pwMS
83 HCs

Cross-sectional
Information
processing speed

ML multinomial logistic regression
Validation of digital
test for autonomous
and remote use

Active testing

Lam
et al. (45)

2021
102 pwMS
24 HCs

Cross-sectional –

Custom algorithm for processing and
feature extraction from single-
keystroke level datapoints

Validation of
keystroke dynamic
for monitoring
of cognition

Passive
monitoring

Lam
et al. (46)

2022 102 pwMS

Longitudinal
(12 months of continuous
monitoring and clinical
follow-ups every
3 months)

–

Clustering and PCA of features
extracted from keystroke data;
LMM to evaluate associations with
cognitive outcomes

Validation of
keystroke dynamic
for monitoring
of cognition

Passive
monitoring
Articles are listed based on year of publication (in ascending order). CNN, Convolutional neural Network; HCs, Healthy Controls; LMM, Linear Mixed Models; ML, Machine Learning; PCA,
Principal Component Analysis; pwMS, people with Multiple Sclerosis.
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higher-level decision making than what AI can provide as of today.

However, AI-based predictions may be implemented to provide

preliminary recommendations, thus enabling faster scoring by

human raters and reducing organisational burdens. In a

subsequent study (40) with a larger validation sample size (1525

drawings), the authors observed that automated ratings matched

with 72% of ratings from one neuropsychologist, and with 79% of

ratings from another neuropsychologist. Interestingly, when

comparing the ratings given by the two neuropsychologists, they

observed an agreement in 82% of cases, highlighting the inherent

unreliability of such semi-quantitative scoring protocols. This

highlights the need to carefully consider the outcome metrics of

AI validation studies, especially for semi-quantitative ratings, not

only for cognitive tests, but also for other applications (e.g., MRI

lesions counting). Indeed, aiming for 100% accuracy, especially

while using a small number of human raters as reference may not be

the ideal method. In such cases, reaching 100% accuracy could

either be impossible, or lead to overfitting (i.e., training the AI

algorithm to become an essential copy of that particular group of

raters, which lead to poor generalizability and reliability).

Conversely, an AI-based support-decision system may allow to

increase inter-rater reliability, as AI-based criteria should

hypothetically be more consistent that human raters, although

ad-hoc studies are needed to support this hypothesis.

Another study focused on automated scoring of visuospatial

tests (41), with the aim of providing more varied and detailed

performance metrics, compared to the conventional scoring

procedure, which only yields a single score indicating overall

accuracy. They developed a tablet-based version of the Rey

Complex Figure copy task, a visuo-constructive and visuospatial

memory task which relies on semi-quantitative scoring, similarly to

what has been described above. They administered it to 35 HCs and

extracted performance indices capturing three different aspects of

drawing abilities (spatial, procedural, and kinematic), for which a

composite score was also calculated. They showed that automated

scoring via CNNs could provide a much richer performance profile,

by aggregating large quantities of data which could not be feasibly

recorded manually by clinicians administering a test in a clinical

setting (e.g., pressure strength, velocity, procedural drawing

timeline). This may be very useful for research purposes and may

ultimately lead to better classifications of cognitive profiles in MS

(i.e., by disentangling the effect of motor, procedural, and

visuospatial deficits). Therefore, the potential benefit of

automated scoring may not be limited only to reducing test

administration and scoring times. Indeed, automated AI-based

scoring based on constructional and/or procedural drawing

features recorded digitally may ultimately yield higher consistency

than current scoring methods based on semi-quantitative ratings

made by humans. However, such procedures require a high degree

of standardisation; in this study, all participants used the same

hardware, and drawings had to be manually screened before AI-

based scoring.

Khaligh-Razavi et al. (42) developed a custom computerized

image classification task to assess processing speed, and validated it

in a sample of 91 pwMS and 83 HCs. The novelty of their approach

consists in the embedding of AI (in the form of a ML multinomial
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logistic regressor) in the testing pipeline, so that their test does not

yield a quantitative score, but rather a multi-level prediction on the

cognitive status of the examinee, along with its associated predicted

probability. This approach aims to predict cognitive status by

automatically integrating a multi-dimensional feature set comprised

of basic test scores (e.g., classification accuracy),more sophisticated

metrics (e.g., intra-trial accuracy over time), and demographic data

(e.g., age and education) to produce predictions on cognitive status

on a test-by-test basis. By comparing the predictions made by the ML

algorithm with cognitive impairment labels based on published cutoff

values for gold-standard neuropsychological tests administered in the

clinic, they demonstrated excellent discriminant validity for cognitive

impairment in MS (AUC = 0.95, sensitivity = 82.9%, specificity =

96.1%). This approach to cognitive testing merits further research, as

it may present many significant advantages. For clinical practice, it

could reduce time allotted to test administration and scoring, as the

test procedure is automated and seamlessly provides a prediction on

cognitive status, thus enabling clinicians to dedicate more time to

interact with patients and caregivers. For research purposes, an

integrated AI data analysis pipeline allows to automatically leverage

a larger amount of test performance metrics to derive more detailed

insights into the cognitive profile of pwMS. Finally, automated ML-

based scoring can leverage consecutively acquired data to

continuously upgrade its predictions, likely making it ever more

accurate as time progresses and more data is acquired, without the

need for repeated validation studies which can be costly and

time consuming.

Passive monitoring
Passive monitoring of cognitive functions represents an exciting

frontier, as it could potentially enable granular long-term

monitoring through big data analysis, without the need for

patients to allocate time and energy to actively performing

cognitive tests. This could increase the feasibility of continuous

monitoring over the years, something which is very hard to achieve

through active monitoring, where attrition naturally increases as

time progresses (43, 44). However, there is still little evidence on

what methods could enable valid and reliable passive monitoring of

cognitive functioning.

Lam et al. (45) developed a keyboard app for smartphones,

which allows to passively track timing-related keystroke features

(e.g., latency between successive key presses, hold time, flight time)

and correction-based features (e.g., correction duration, pre-

correction slowing). They recruited 102 pwMS and 24 HCs, who

were monitored passively as they used the keyboard app for 14 days.

Results showed weak-to-moderate correlations with clinical

disability, cognitive functioning, and upper limbs dexterity, as

measured by the gold-standard clinical tests. Moreover, they

observed that most timing-related features were significantly

different between HCs and pwMS. In a follow-up longitudinal

study (46), they monitored 102 pwMS for 12 months, using the

keyboard app for passive monitoring and via clinical follow-ups

every three months with clinical tests for upper limb dexterity and

cognition. To evaluate associations between passive monitoring

features and clinical features, they aggregated keystroke data into

a cognition score cluster and a fine motor score cluster. They found
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that the cognition score cluster was significantly associated with

cognitive functioning at the group level, but not at the individual

level, whereas the fine motor score cluster was significantly

associated with upper limb dexterity at both the group and

individual level.

In conclusion, the evidence available so far indicates that

keystroke dynamics may be used to passively monitor

longitudinal upper limb dexterity changes at the intra-individual

level, whereas the same cannot be yet said for cognitive changes,

suggesting that practice effects of repeated testing may have been a

confounding factor. Moreover, the concurrent validity of keystroke

dynamics is significantly lower than that of digitalized active

cognitive tests (47). This is to be expected, as everyday activities

such as typing leverage various sensory, motor, and cognitive

processes and are not typically performed as rigorously and

precisely as cognitive tasks, therefore introducing more noise.

Thus, further research is needed, before keystroke dynamics can

be considered an effective and reliable passive monitoring tool for

cognition in MS. However, the potential to obtain data on cognitive

functioning without requiring conscious effort by patients remains

an enticing prospect, since it would allow to eliminate the

aforementioned issue of loss to follow-up common to active

longitudinal testing, and could provide novel, undiscovered

insights on the cognitive functioning of pwMS by truly leveraging

big data. One key aspect that should be addressed in the future

regards the ethics of collecting keystroke data, as it could

theoretically allow to uncover patients’ sensitive information

(passwords, bank details) and warrants a stronger enforcing of

data privacy policies.
Other applications

AI and big data can play a significant role in enhancing

monitoring capabilities in aspects of MS care/research other than

motor and cognitive functioning. These range from passive

monitoring of sleep and heart rate variability to the analysis of

big data from real-world clinical records. We have grouped these

different topics in a single encompassing section, given the small

number of publications available thus far, to discuss their potential

contribution towards further advancing the standard of care for

pwMS, as well as their limitations.

Woelfle et al. (48) recruited 31 pwMS and 31 HCs, with the aim

of studying whether remote monitoring of heart rate and sleep

parameters could complement step count data in explaining MS

severity. Participants wore a commercially available smartwatch

(Fitbit Versa 2) for six weeks, during which parameters were

extracted for sleep (e.g., sleep efficiency, light/deep/REM sleep

duration), heart rate, and activity(e.g., proportion of sedentary/

lightly active/fairly active/very active). While activity measures were

predictably those most strongly correlated with clinical scales of

disability and gait tests, median heart rate and deep sleep

proportion also showed moderate correlations. Moreover,

incorporating sleep and heart rate measures increased the ability

to predict disability (measured by EDSS score), compared to using

either baseline sociodemographic data and/or smartwatch-derived
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motor parameters. This pilot study with a small sample size suggests

that sleep and heart rate data may indeed complement activity

measures in explaining disease severity. These results are

encouraging, especially for the promised ability to track objective

sleep parameters remotely and through minimally invasive and

economical devices, as compared to portable EEGs or

polysomnography performed in the lab, greatly enhancing the

feasibility of longitudinal studies of sleep. However, the small

sample size warrants further larger studies, to increase the

generalizability of results, especially since smartwatch data was

lost for 7/62 participants due to synchronization issues,

highlighting the need for more reliable data storage and

synchronization technologies before such tools can be deemed

reliable for larger clinical trials.

Hilty et al. (49) used a previously validated and CE-certified

wearable for heart rate detection, with the aim of studying the

autonomic nervous system in 56 pwMS and 26 HCs, by analysing

circadian trends recorded continuously over a period of two weeks.

They applied signal processing algorithms and polynomial

regression algorithms to reconstruct circadian trends from big

data acquired continuously at 1Hz by the sensor. They observed

that circadian trends could distinguish not only pwMS from HCs,

but also between pwMS with/without evidence of inflammatory

activity (defined either by radiological activity or by a clinical

relapse in the prior 12 months), between those with/without

evidence of disease progression (defined by neurological

deterioration without a relapse event), and between those with

low/moderate-to-high disability (defined using an EDSS score

cutoff = 3). Their results suggest that continuous heart rate

monitoring could enable to uncover specific circadian patterns

which distinguish pwMS across inflammatory states (associated

with overactive sympathetic activity at night and overall reduced

circadian variability) and disease progression (associated with

overall reduced heart rate variability and reduced circadian

adaptation of the autonomic nervous system). Therefore,

autonomic nervous system monitoring with wearable sensors

could provide new digital biomarkers and serve as an endpoint in

clinical trials for both immunoregulation and symptomatic

treatment. Notably, at least seven days of continuous wearing

were required to establish robust circadian trends due to high

variability of wearable-based heart rate at both the intra-

individual and inter-individual level. More studies on larger and

more heterogeneous cohorts are needed to confirm these results and

increase the generalizability of these results, as >80% of this sample

was made up of people with RRMS.

Seccia et al. (50) focused on the application of AI to analyse real-

world clinical records of 1624 pwMS (totalling over 18,000 records

between 1978 and 2018). They tried to predict the probability of

shifting from the relapsing-remitting to the progressive phase at

different timepoints (180, 360, 720 days from last visit). They tested

predictions based on data from the last available visit using different

ML models (visit-oriented approach), or based on the entire clinical

history (history-oriented approach) using a specifically designed

recurrent neural network (RNN). They found that the visit-

oriented approach was better at predicting shifts to progressive MS

at 180 days, largely thanks to the inclusion of imaging and liquor
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history, suggesting that these two methods are informative on the risk

of conversion to progressive MS in the short term. Conversely, the

history-oriented approach performed better for predictions of

shifting to progressive MS at longer intervals (360 and 720 days),

owing largely to its better precision (reflecting less false positives).

Crucially, the history-oriented approach was more reliant on clinical

features, as bothMRI and liquor data was unavailable for the majority

of participants at all time points. Taken together, these results indicate

that AI can effectively leverage real-world clinical big data to predict

the risk of conversion to progressive MS. One key limitation is the

intrinsic nature of real-world clinical data, which often contains

missing data, as seen for liquor and MRI data in this study. It is

crucial that clinical expertise is applied during the planning of

analysis and data preprocessing, to determine if missing data are

meaningful or not, and how they should be dealt with (e.g., missing

liquor data can be expected, as lumbar punctures are not performed

at each clinical visit, whereas EDSS score should ideally be available at

all timepoints). This once again underlines the importance of data

collection and maintenance. A well-structured and well-described

feature set allows for much easier collaborations and sharing of data,

thus promoting the fusion of different expertise (namely clinical and

data science), which could further increase our understanding of MS.

Accurate data maintenance could also allow to perform future

analyses on data with longer follow-up durations, increasing our

understanding of longitudinal disease patterns in MS.
Conclusion

The growing adoption of digital remote monitoring tools has

great potential to improve both research and clinical aspects of MS,

thanks to remote tracking of motor and non-motor symptoms. This

review highlights that connected devices like smartphones and,

especially, wearables can effectively monitor motor impairments,

such as fall risk and gait disturbances, through continuous, granular

data collection during real-world activities. Remote monitoring of

physical activity is gaining significant traction in clinical research

application. This is demonstrated by the inclusion of remote activity

monitoring data as an exploratory endpoint in a recent drug trial

(51), albeit through a basic daily step count metric. Further

improvements may derive from AI algorithms which can

recognize activity states, enriching the quantitative sensor data.

The evidence available on cognitive monitoring still favours the

adaptation of active cognitive tests in digital form, to allow remote

longitudinal monitoring, which may increase the standard of care

for those with reduced mobility and/or access to specialized MS

care. Recent advances in AI-driven cognitive tests and keystroke big

data provide potential pathways to enable passive cognitive

monitoring, but further research is needed to confirm their

reliability and clinical utility.

Some studies have explored less-studied domains like sleep and

circadian autonomic patterns, with interesting results which suggest

that remote monitoring of these domains is feasible and could

provide novel insights, compared to traditional research methods.

Finally, preliminary exploratory studies have leveraged big data
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from clinical health records, with promising results, highlighting

the need for careful recording, structuring, and maintenance of real-

world clinical datasets. Increased awareness of the importance of big

data in MS has led to the rising prominence of collaborative

databases, both on a national (52–54) and international scale (55,

56), as well as multicentric studies on digital outcomes (57).

However, despite these advancements, challenges remain,

including the small sample sizes observed in many studies, which

limit the generalizability of their results to different MS populations,

namely those with progressive MS, higher disease severity, and

reduced access to specialized MS centres. Inclusiveness is a key area

which should be addressed more carefully by future studies. Indeed,

when assessing the real-world feasibility of digital monitoring for the

entire MS population, researchers should be mindful of potential

sampling bias, as patients willing/able to undergo such protocols may

present distinct features (e.g., younger patients, with lower disability,

higher educational attainment, and without cognitive impairment).

For the use of AI and ML algorithms, researchers should never forget

that an algorithm with many input variables may be very accurate but

unusable by non-specialized MS centres which cannot obtain all the

clinical/instrumental/sensor data on which the algorithm was trained

on. Another significant limitation is the heterogeneity of monitoring

methods and study protocols, which negates the possibility to

compare feasibility, reliability, and validity data across different

studies and devices. Future studies should strive to address these

outstanding issues, since feasible, reliable and valid digital monitoring

tools represent an invaluable resource for both research and

clinical practice.

Finally, the recent rise and diffusion of conversational AI agents

(e.g., ChatGPT) has led to some researchers exploring their

usefulness in the setting of MS care (58, 59). When applied to

disease monitoring, conversational AI could be integrated in

eHealth apps as a chatbot, similar to examples from other fields

(see for example (60)). This could allow patients to report their

symptoms in a conversational manner, instead of having to answer

omni-comprehensive and pre-defined structured lists of questions

or questionnaires, which could feel alienating and repetitive, leading

to low adherence. This may not only be perceived as a more natural

and interpersonal approach by patients, but may also reduce their

burden, by eliminating the need to answer questions which are not

relevant for them at that moment in time. Moreover, an AI-driven

closed loop system may also guide the administration of validated

patient-reported questionnaires through eHealth apps, by selecting

only the questionnaires that are most relevant for each individual

patient, based on their reported symptoms at that specific

timepoint. We hypothesize that this approach would reduce the

time and energy demand on patients, while also providing a more

interpersonal, responsive and adaptive monitoring framework,

which could then lead to higher adoption and adherence to

digital long-term monitoring. However, systematic studies are

required to substantiate these hypotheses. Firstly, studies should

evaluate the technical feasibility of applying conversational AI to

longitudinal symptoms monitoring in MS, focusing particularly on

the safety, validity and reliability of the information provided by AI.

Secondly, they should investigate the expectations and needs of
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1514813
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dini et al. 10.3389/fimmu.2025.1514813
patients, caregivers and clinicians toward digital monitoring, to

determine if and how AI can be applied to address them.
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The role of trustworthy and
reliable AI for multiple sclerosis
Lorin Werthen-Brabants*, Tom Dhaene and Dirk Deschrijver

SUMO Lab, IDLab, INTEC, Ghent University – imec, Ghent, Belgium
This paper investigates the importance of Trustworthy Machine Learning (ML) in
the context of Multiple Sclerosis (MS) research and care. Due to the complex and
individual nature of MS, the need for reliable and trustworthy ML models is
essential. In this paper, key aspects of trustworthy ML, such as out-of-
distribution generalization, explainability, uncertainty quantification and
calibration are explored, highlighting their significance for healthcare
applications. Challenges in integrating these ML tools into clinical workflows
are addressed, discussing the difficulties in interpreting AI outputs, data
diversity, and the need for comprehensive, quality data. It calls for
collaborative efforts among researchers, clinicians, and policymakers to
develop ML solutions that are technically sound, clinically relevant, and
patient-centric.

KEYWORDS

artificial intelligence, multiple sclerosis, trustworthy AI, deep learning, uncertainty
quantification

1 Introduction

Machine Learning (ML) is increasingly applied to healthcare applications (1). While

traditional statistical methods can help with biomarker discovery and recognizing trends

and correlations, modern ML techniques such as Deep Learning (DL), are able to

uncover complex correlations and provide better results than traditional, simpler

techniques (2) due to their universal nature (3). Conversely, as these techniques become

more complex, the need for reliable and trustworthy models increases (4, 5), especially

within healthcare. However, building trust does not have a one-size-fits-all solution,

resulting in many techniques to be developed to aid decision making.

For an end-user, be it a clinician or a patient, a model that is trustworthy is one that

can provide certain guarantees on its predictions, explain its predictions, and provide a

notion of uncertainty. For a complex disease such as Multiple Sclerosis (MS), the need

for trustworthy models is especially pertinent, as its progression is non-trivially defined,

and the decisions made to hinder its progression are important ones. A machine

learning system that does not provide adequate reliability metrics, or trustworthy

insights, will be less appealing to the end-user when there are high-stakes consequences.

In recent years, the need for Trustworthy ML (TML) has also reached mainstream

attention with the use of generative AI becoming more prevalent. For example, though

Large Language Models have shown impressive results, they may still provide incorrect

results, without any notion of uncertainty or trustworthiness (6). This is also known as

the “hallucination” effect (7). Complex data and relationships warrant the use of

trustworthiness techniques.

In the following Sections, we provide a summary of techniques present in Trustworthy

ML (TML) (Section 2), why TML is necessary for MS (Section 3.1), and the associated

challenges (Section 3.2).
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2 Trustworthy machine learning

2.1 Out-of-distribution generalization

The many ways in which MS progression can occur (different

limbs, locations of lesion growth, etc.), makes the disease variable

and patient specific. Therefore, training data will rarely contain

enough data to cover the full extent of the ways progression can

be observed. Furthermore, due to protocols changing regularly

and equipment variability, concept or model drift (8) may pose a

real issue when ML models are deployed in the real world.

Model drift occurs when new data do not correspond to the data

on which a model was trained. As a result, models must be

continually adapted so changes in data distributions are captured.

These issues can be tackled by making use of techniques such

as domain adaptation (9, 10), a specific case of transfer learning

(11), and synthetic data sampling such as SMOTE (12, 13).

The concept of Out-of-Distribution Generalization can be

elucidated by considering a concrete example within the MS

context. Imagine an ML model trained on data from North

American patients. When this model is applied to patients from

different geographical regions with distinct genetic and

environmental factors, its predictions may falter due to

differences in disease manifestation. Domain adaptation

techniques can help here by adjusting the model to account for

these regional variations. Similarly, synthetic data sampling, like

the aforementioned SMOTE technique, can artificially—not

necessarily in a representative way—augment the dataset to

include underrepresented samples in a given dataset, improving

the model’s robustness against a wide range of clinical scenarios.

However, it must be stressed that data quality is key, and an

underrepresented dataset can not fully capture the underlying

factors to guarantee good out-of-distribution generalization.
2.2 Explainability and interpretability

A perfectly interpretable AI provides insights into the inner

workings and decision process of an AI system. When it comes

to the types of ML systems, they can broadly be divided into two

categories: white-box models and black-box models.
2.2.1 White-box models
Models that are inherently explainable and interpretable. These

are often simpler methods such as linear or logistic regression, the

latter of which can be represented as a nomogram (14), a graphical

representation of such models that visually convey the weight of

different input variables. These models can be fully dissected, so

there may be many ways of representing or explaining them.
2.2.2 Black-box models
Models that can not be interpreted easily, and are regarded as a

“black box” out of which little or no knowledge can be derived.

However, there are techniques that can provide explainability

when working with black-box models, such as making use of
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Shapley values (15, 16) or making use of Deep Learning specific

techniques (17) such as Layer-wise Relevance Propagation

(18, 19). These are often post-hoc. In practice, these techniques

will show a number of features and their importances expressed

as a number. This could also be in the form of a heatmap. These

feature importances may not always be as readily interpretable

and may need training and education to comprehend adequately.

Additionally, they do not necessarily explain why those features

are important.

A classifier that may perform well in its evaluation metrics

(sensitivity, specificity, ROC AUC, etc.) may still benefit from

explainability methods. In particular, if models were to take into

account many multimodal variables, the primary drivers of a

given prediction may offer important insight for the user of the

machine learning system.

Related to interpretable AI is explainable AI. Rather than being

able to fully comprehend the inner workings of a model, an

explainable AI model is able to be queried so that a reasonable

explanation to the prediction is provided. Explainable AI can be

viewed on different levels as well: Global, cohort, and local

explainability. Global explainability provides information about

the entire population or dataset. Due to the complex nature of

the MS disease, valuable insights on a population level are scarce.

Cohort explainability gives insight on subsets of the data, which

can be more interesting when taking into account certain

covariates. In this way, different groups of patients can be

identified and correlations within these groups may offer more

helpful insights than looking only at a global level. Lastly, local

explainability provides insight on the model’s output for a single

input example. Every patient has a different profile, and therefore

local explainability may help acquire insight into the prediction

of the model for that specific patient or observation.
2.3 Uncertainty quantification and
calibration

2.3.1 Uncertainty quantification
In machine learning models, uncertainty plays a critical, yet

understated role in understanding and interpreting predictions.

Healthcare specifically can greatly benefit from uncertainty

quantification, as it can add a layer of trust between the user and

the model (20–22). Two major sources of uncertainty are

aleatoric and epistemic uncertainty (23).
2.3.1.1 Aleatoric uncertainty
This type of irreducible uncertainty is inherent in the data itself. It

cannot be reduced by adding more data and manifests as the noise

within the data. An example of this uncertainty arises when using

very few features. For example, a patient’s blood pressure is a

crucial health metric, but it exhibits natural variability within an

individual due to various factors like stress, activity level, time of

day, and even the way it is measured.

This uncertainty can be either homoscedastic, when it remains

constant for all values (e.g., base noise of a sensor), or
frontiersin.org
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heteroscedastic, when it varies depending on the value of

the sample.

2.3.1.2 Epistemic uncertainty.
Epistemic uncertainty arises from the model’s limited knowledge.

This reducible uncertainty is high when the model has

insufficient data to characterize or capture the target variable.

Increasing the size of the data set can help reduce epistemic

uncertainty. An intuitive example can be demonstrated as

follows: Say there are multiple experts for a single disease such as

MS. These experts may disagree on a given prognosis, despite all

of them being equally trained for such a task. Analogously, in a

machine learning model predicting patient outcomes for MS, the

model might exhibit high epistemic uncertainty if it has been

trained on a limited or non-representative dataset. Just as the

disagreement among experts might stem from variations in their

individual experiences and interpretations, the model’s

uncertainty arises from its limited exposure to the diverse

manifestations of the disease. By providing the model with more

comprehensive data that captures a wider range of patient

histories, symptoms, and outcomes, the epistemic uncertainty can

be reduced, leading to more consistent and reliable predictions.

Applying uncertainty quantification in MS involves

recognizing and managing the inherent unpredictability in

patient responses and disease progression. For instance, a model

expressing aleatoric uncertainty might show the variability in a

patient’s symptoms over time, acknowledging that certain aspects

of MS progression cannot be predicted with complete precision.

Epistemic uncertainty can be illustrated by a model’s varying

predictions based on different patient subgroups, reflecting

limited knowledge about specific MS manifestations. To quantify

and capture these uncertainties, techniques like Monte Carlo

Dropout (MCD) (24) can be employed, providing a probabilistic

understanding of a model’s predictions and helping clinicians

make informed decisions under uncertainty.

Uncertainty quantification has been applied to lesion detection

in MRI images (25–27), often making use of MCD or other

methods of obtaining a model that can express uncertainty (28).

2.3.2 Calibration
A well-calibrated machine learning model is one in which the

model’s predicted probabilities closely match the probabilities

observed in the actual data (29). Mathematically, this is

represented as P(yj p̂(y) ¼ a) ¼ a. This equation signifies that

the probability of an event y occurring, given that the model

predicts it with probability a, should ideally be a itself. As a

practical example: a model that predicts the probability of 40%

disease progression for a patient will ideally be correct 40% of

the time of all patients who receive a similar prognosis. For

methods such as neural networks, this is not often the case by

default, and calibration needs to be improved. Additionally,

calibration can also be applied to regressors that output a

distribution, rather than a single value. In this case, the

confidence interval (such as a 95% confidence interval, for

example) can be calibrated to ensure that it matches

the observations.
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The need for calibration is evident in the lack of information an

uncalibrated classifier or regressor provides. Often, as is the case

with neural networks, a neural network classifier will collapse to

output probabilities close to 100% or 0% consistently, rather than

providing accurate probability estimates (29). As a result, a user

of such a system needs to blindly trust the classifier rather than

being able to take the confidence of the classifier into account.
3 Discussion

3.1 Why trustworthy ML is necessary for MS
research

With the current knowledge of MS and performance of state-

of-the-art machine learning models in the field, it stands to

reason that there may not be a one-size-fits-all solution to

detecting disease progression. Although other types of model

(such as image classifiers) may perform very well and can

reliably be used in most, if not all, cases, this may not be the

case for MS. ML models for this purpose will likely be a tool to

aid decision making, rather than a decision maker by itself. To

that end, an ML model that just states “yes” or “no” is not

sufficient. Rather, more information should be supplied to the

user. A trustworthy version of this model will highlight parts of

the input that contribute greatly to the prediction, show which

global and cohort features are important, and also provide a

notion of (un)certainty with the prediction. In this way, the user

can:

• Select which predictions to trust and keep, both by using

aleatoric and epistemic uncertainty as guides

• Analyze the subgroup in which the prediction fits

• Analyze the specific prediction and the features leading to

the prediction

For MS research, the use and adoption of ML will be guided by

advances in trustworthy ML. MS is a disease marked by its

heterogeneity in symptoms, progression, and response to

treatment, making reliable analysis of significant importance.

The ability of ML models to process and analyze different types

of data—from clinical observations to MRI images—can lead to

earlier detection and more precise monitoring of the disease’s

progression. However, the value of these insights depends on

their explainability. Clinicians and patients must be able to

understand and trust the model’s predictions, necessitating a

focus on explainable AI. For example, an ML model might

identify subtle changes in brain lesions over time, but this

information becomes clinically actionable only when it is

presented in an understandable manner. Explainable models can

elucidate the factors driving a prediction, thereby enhancing the

clinician’s ability to make informed treatment decisions.

Moreover, the integration of uncertainty quantification in ML

models is particularly relevant for MS. Given the variability in

how the disease presents and progresses, models that can express

their confidence in predictions are invaluable. They provide

clinicians with a more nuanced understanding of each prediction,
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facilitating more informed risk-benefit analyses when deciding on

treatment plans. A model that indicates a high level of

uncertainty in its prediction might prompt further testing or

closer monitoring, whereas a prediction made with high

confidence could lead to more decisive action.

The importance of trustworthy ML in MS research also extends

to patient empowerment. Access to understandable and reliable

ML-driven insights can foster better patient-clinician dialogues.

When patients understand the basis for predictions about their

condition, they are better positioned to make informed decisions

about their treatment and lifestyle choices.
3.2 Challenges of trustworthy ML for MS

3.2.1 Integration of ML tools to aid clinical
decisions

Integrating ML tools into existing clinical workflows presents

another layer of complexity. For these tools to be adopted, they

must fit into the highly regulated environment of healthcare.

This integration involves designing user interfaces and metrics

that are intuitive for clinicians, ensuring that ML predictions are

presented in a way that complements decision-making processes

rather than complicating them (30). Furthermore, imperfect data

pose a problem during the training and prediction stages of an

ML model. Data collection can be a laborious task, and in some

cases the data cannot be accurately represented due to individual

differences in disease expression. This rings especially true in the

case of MS.

3.2.2 Usability of uncertainty quantification and
explainability techniques

As highlighted previously, UQ and explainability techniques

have their merit, as they can highlight potential issues when

making use of ML assisted decision systems. However, the

end-user may not find much use in the way UQ results

are represented in literature. Even explainabilty results have

varying degrees of success concerning their usability (31). These

techniques could benefit from user studies, as their usability

hinges on the representation and, in turn, interpretation by the

end-user. For example, rather than providing the clinician and/or

patient with a numerical value signifying a “trustworthiness”

score or certainty otherwise, larger trust could be gained by

comparing the patient with other patients that have similar

disease trajectories. This opacity can hinder trust and acceptance,

especially in a high-stakes field like healthcare where

understanding the “why” behind a diagnosis or prognosis is as

crucial as the outcome itself (31).

3.2.3 Out-of-distribution data, diverse data,
available data

Data diversity and availability are critical factors that

significantly influence the development and performance of ML

models in MS research. MS is a disease with a highly variable

clinical course and a wide range of symptoms that differ from

patient to patient. This heterogeneity necessitates a rich and
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diverse dataset that captures the broad spectrum of the disease.

After all, deep learning techniques are prone to overfitting, and

may have performance below acceptable levels as a result

(21, 32). Initiatives such as MSBase (33, 34) attempt to address

the issue of out-of-distribution performance by providing multi-

center data. The amount of data by itself may give the end-

user a reason to trust a model, given enough diversity. Data

quality is another concern, with issues such as missing values,

inconsistent data entry, and the need for standardization across

different data sources complicating the development of reliable

ML models. Introducing diversity by including measurements

that stray away from purely medical imaging or clinical data

may also provide a new avenue of research, potentially

discovering novel biomarkers. Future work should focus on

developing models that can adapt to individual patient

variations and incorporating emerging data types such as Motor

Evoked Potentials (35, 36) into ML models.
4 Conclusion

This paper underscores the importance of trustworthiness in

Machine Learning (ML) applications for Multiple Sclerosis (MS).

Key aspects such as explainability, uncertainty quantification and

calibration, and out-of-distribution generalization have been

explored. Additionally, the challenges in integrating ML into

clinical workflows and the hurdles posed by data diversity and

availability have been discussed.

The authors urge the research community and healthcare

providers to prioritize the development and implementation of

trustworthy ML solutions for MS (and healthcare in general).

There is an urgent need to foster partnerships between computer

scientists, neurologists, and patients. This collaboration will

ensure the development of ML solutions that are not only

technically sound but also clinically relevant and patient-centric.

Making comprehensive, high-quality data sets accessible while

respecting privacy concerns is crucial. Initiatives should focus on

standardizing data collection and sharing practices to aid in the

development of more effective ML models. ML tools must be

integrated into clinical workflows in a way that is intuitive and

enhances decision-making processes. This involves designing

user-friendly interfaces and ensuring that clinicians are

adequately trained to use these tools effectively.
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Magnetic resonance imaging (MRI) has played a crucial role in the diagnosis,

monitoring and treatment optimization ofmultiple sclerosis (MS). It is an essential

component of current diagnostic criteria for its ability to non-invasively visualize

both lesional and non-lesional pathology. Nevertheless, modern day usage of

MRI in the clinic is limited by lengthy protocols, error-prone procedures for

identifying disease markers (e.g., lesions), and the limited predictive value of

existing imaging biomarkers for key disability outcomes. Recent advances in

artificial intelligence (AI) have underscored the potential for AI to not only

improve, but also transform how MRI is being used in MS. In this short review,

we explore the role of AI in MS applications that span the entire life-cycle of

an MRI image, from data collection, to lesion segmentation, detection, and

volumetry, and finally to downstream clinical and scientific tasks. We conclude

with a discussion on promising future directions.

KEYWORDS

artificial intelligence,machine learning,magnetic resonance imaging,multiple sclerosis,

precision medicine

1 Introduction

Multiple Sclerosis (MS) is a neuro-inflammatory disease of the central nervous
system characterized by a wide spectrum of inflammatory and neurodegenerative changes
(Compston and Coles, 2008), with clinical manifestations that vary greatly between
individuals. Since the 1980s, magnetic resonance imaging (MRI) has been a cornerstone
of MS diagnosis and management due to the ability to visualize demyelinating changes
and axonal loss resulting from focal inflammation, using a combination of T2 and T1-
weighted sequences (Hemond and Bakshi, 2018). The temporal evolution of lesions, which
may initially enhance (Filippi et al., 2019), and subsequently expand, remain static, or
decrease in size (Koopmans et al., 1989), can also be captured by MRI. A number of
MRI biomarkers of MS diagnosis, prognosis, and treatment response, have also been
described. These include T2-hyperintense white matter lesions, gadolinium-enhancing
lesions, slowly enlarging lesions, paramagnetic rim lesions, cortical/deep gray matter
lesions, and leptomeningeal enhancement (Filippi and Agosta, 2010; Filippi et al., 2020).
Some of these biomarkers have been found to correlate strongly with key clinical outcomes.
One example is the association between new/enlarging T2 lesions and clinical relapses
(Rudick et al., 2006; Sormani et al., 2009; Sormani and Bruzzi, 2013).

Despite these advances, MRI-analysis continues to face problems that limit its potential
(Maggi andAbsinta, 2024). The longer acquisition times and higher field strengths required
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to obtain measurements of many recently studied imaging
biomarkers introduces new headaches for resource-limited settings.
At many clinical sites, the evaluation of MRI continues to be done
manually, which is a lengthy, error-prone, and highly variable
procedure (Bozsik et al., 2022; Altay et al., 2013). A strongly
predictive imaging biomarker of disability progression, especially
progression which is independent of relapse activity (Müller et al.,
2023), has yet to be found (Filippi et al., 2020). At the therapeutic
level, the influx of disease modifying therapies has significantly
improved the ability to suppress lesion formation and relapse
risk (Amin and Hersh, 2023), but targeting disability progression
remains a major challenge. The use of MRI in predicting disease
course and facilitating treatment selection is still a work in progress.

The rapid pace of progress in artificial intelligence (AI) has
led to new opportunities for MRI-analysis in MS. In contrast to
classical statistical methods which focus on acquiring knowledge
about a population given data sampled from the same distribution,
the field of AI has developed machine learning (ML) methods
that focus on learning predictive patterns from a dataset with the
aim of making predictions (generalizing) on new data (Bzdok,
2017; Bzdok et al., 2018). Some of this work provides a different
perspective on—and a new set of solutions to—the current
limitations of MRI-analysis.

When using the MRI modality as part of an AI system,
practitioners often prefer to use a set of hand-crafted, image-
derived features, which are based on well established imagemarkers
(e.g., T2 lesion counts, brain volume). These are typically scalars
derived from the voxel-level data, either manually, or through a
semi-/fully-automated process. The values for these hand-crafted
features, which are easy to interpret, can be stored in tabular
form, and used to train a model for a specific task using a
variety of ML methods. Alternatively, the raw voxel-level data can
be provided directly as an input to ML models. Some types of
ML, in particular deep learning (DL), which uses deep artificial
neural networks (LeCun et al., 2015), can make use of the high
information content in voxel-level data to learn (automatically,
without explicit guidance from a human expert) abstract, lower-
dimensional features of the image that might not be captured by
traditional hand-crafted, image-derived features (e.g., the texture of
the white matter in a certain brain region). A specific type of deep
neural network called the convolutional neural network (CNN)
(LeCun et al., 1989; Li et al., 2022) has significantly advanced digital
image processing by automatically learning features from images,
sometimes leading to superior performance in tasks like image
classification and object detection. The theoretical benefits resulting
from ML on raw images come at the cost of greater computational
and dataset requirements (Berisha et al., 2021), and generally
require more expertise in model training. Traditional, hand-crafted
features therefore remain valuable, especially in scenarios with
limited data or specific constraints (Lin et al., 2020; Zare et al., 2018;
O’Mahony et al., 2019).

This review aims to introduce the reader to key areas in
which AI is transforming MRI-analysis in MS (see Figure 1 for an
overview). Given the vastness of the literature on this topic, this
review is meant to provide a high-level overview of selected areas
that are of interest to the MS community, showcasing published
work on MS-specific applications. As such, this does not represent

a comprehensive review of the literature. Where possible, we
refer the reader to more in depth, dedicated reviews, in specific
sections. First, we will explore how AI can be used for data
collection (Section 2), before discussing the traditional tasks of
lesion segmentation, detection, and volumetry (Section 3). Finally,
we will discuss downstream scientific and clinical tasks (Sections 4,
5, and 6). We end with a discussion on promising future directions
(Section 7).

2 Acquisition, pre-processing, and
harmonization

MRI has become essential for diagnosing MS and for
monitoring it’s evolution, primarily because of its higher sensitivity
compared to clinical outcome measures of disease activity
(McDonald et al., 1994). To reap the benefits of routine monitoring
with MRI while minimizing the inconvenience for patients,
caregivers, and resource utilization, many have turned to AI to
improve the efficiency of MRI data collection. In this section,
we will discuss three tasks pertaining to MRI collection: (1)
acquiring theMRI images (acquisition), (2) processing the acquired
images to improve their signal-to-noise ratio (pre-processing),
and (3) transforming the pre-processed images from different
scanners/sites to enable direct comparisons (harmonization).

Shortening the MRI acquisition time can be achieved by
decreasing the number of sequences in the acquisition protocol,
using generative models to synthesize the missing sequences. For
example, Wei et al. (2019) showed that it is indeed possible to
use a CNN to predict the FLAIR sequence from T1-weighted,
T2-weighted, proton density, T1 spin-echo, and double inversion
recovery (DIR) sequences. Others provided evidence to suggest
that Generative Adversarial Networks [GANs, Goodfellow et al.
(2014)] can synthesize DIR from the combination of T1 and
T2/FLAIR (Finck et al., 2020, 2022), and T1 from T2-weighted
FLAIR (Valencia et al., 2022). Although synthesis of gadolinium-
enhanced T1-weighted sequences from low or non-contrast images
is under-explored in MS, related work by Narayana et al. (2020)
found that the presence of gadolinium-enhancing lesions can be
predicted with moderate accuracy from non-contrast MRI.

Another strategy to speed data collection is to acquire lower
resolution images, or images with a higher signal-to-noise ratio, and
then use ML models in the post-processing phase to reconstruct
higher-quality images. Various DL frameworks based on GANs and
CNNs have been shown to produce higher-quality reconstructions
that can improve lesion visualization and segmentation (Shaul et al.,
2020; Zhao et al., 2019; Iwamura et al., 2023; Mani et al., 2021; Falvo
et al., 2019). DL has also been used to optimize the more complex
processing pipelines used for diffusion weighted imaging sequences
(Golkov et al., 2016).

Finally, ML-based harmonization strategies can be used to
address a frequently encountered problem in biomedical imaging
research: small dataset sizes. Aggregating data from different data
collection sites is complicated by the fact that each site may use
different scanners and acquisition protocols, resulting in images
that do not look alike. This is known to cause variability in
tasks such as volume estimation (Clark et al., 2023; Bakshi et al.,
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FIGURE 1

An overview of key areas in which AI is being used for MRI-analysis in MS.

2017). “Harmonization” is a solution to this problem that involves
transforming the images so they all appear to come from the
same distribution. Dewey et al. (2019) found benefits in the
downstream task of brain volume estimation when images were
first harmonized using DL. If direct visualization or comparisons
between images from different datasets is not strictly necessary,
one can also bypass the problem of harmonization by training
models that are agnostic to the specific combination of sequences
that is available for a particular patient (Havaei et al., 2016), or
by searching for a set of hyperparameters that lead to comparable
performance across a range of datasets (Gentile et al., 2023). It is
worth noting that fake images can also be synthesized using DL to
augment existing datasets. This is an open research problem and the
magnitude of benefit probably depends on the context (Van Tulder
and de Bruijne, 2015). Relatively little published research explores
MRI generation specifically for MS datasets, but some authors
have observed performance gains from augmentation with lesion-
containing MRI images that are synthetically generated from the
MRI images of healthy subjects (Salem et al., 2019; Basaran et al.,
2022).

In summary, AI has shown promise in reducing the time
taken to acquire and preprocess the MRI of MS patients, without

significantly compromising the quality and utility of the MRI
images. AI can also increase the ease with which data from different
sources can be pooled together for further analysis, or for increasing
the size of datasets which ML models use for training. Many of the
methods that were reviewed in this section are at an early stage of
development, and these tasks remain an active area of research.

3 Segmentation, lesion detection, and
volumetry

Once a patient’s MRI has been acquired and pre-processed, it
is then ready to be used for clinical management and scientific
research. Although the raw, voxel-level data can be fed directly
as input to a ML model that is specifically trained for one of
the downstream tasks described in Sections 4, 5, 6, there is
often added value to taking an intermediate step consisting of
identifying and quantifying established radiologic features in the
images. These tasks include segmenting radiologic markers of MS,
lesion detection, and the volumetric assessment of a variety of
brain structures.
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Current cross-sectional disease burden assessment typically
consists of some variant on lesion volume, lesion count, and
brain volume estimation. Monitoring of disease activity over time
additionally calls for comparing volume estimates between time-
points, and the detection of new or enlarging lesions. In most
settings where radiologists and neurologists are responsible for
performing these tasks, volume estimation is done qualitatively
with high-level descriptors, while lesion detection is done using
manual review of 2D slices. The process is lengthy, error-prone, and
subject to significant inter- and intra-rater variability (Bozsik et al.,
2022; Altay et al., 2013). For these reasons, there has been a growing
appetite for at least partially automating these tasks using AI.

The segmentation of T2 lesions is one of the most well studied
applications of ML in MS. The literature on automated MS lesion
segmentation methods is vast, and methods range from classical
ML to DL. We therefore refer the interested reader to several
dedicated reviews for more details (García-Lorenzo et al., 2013;
Danelakis et al., 2018; Spagnolo et al., 2023; Zeng et al., 2020; Doyle
et al., 2018). There has been relatively less work on new (and/or
enlarging) T2 lesion segmentation, but more emphasis has been
placed on this task during recent challenges (Commowick et al.,
2021). Beyond T2 hyper-intense lesions, DL has also been used
to segment and detect imaging markers which are not currently
integrated in most clinical settings. These include paramagnetic
rim lesions (Barquero et al., 2020; Lou et al., 2021; Zhang et al.,
2022), central vein sign on susceptibility-weighted images (Maggi
et al., 2020), cortical lesions on 7T images (Rosa et al., 2022;
La Rosa et al., 2020), gadolinium-enhancing lesions (Gaj et al.,
2021; Karimaghaloo et al., 2010; Durso-Finley et al., 2020), and
spinal cord lesions (Gros et al., 2019). The task of detecting lesions
(including the detection of new lesions on follow-up images) has
for the most part been studied in tandem with segmentation
(Kamraoui et al., 2022; Salem et al., 2020; McKinley et al., 2020).

Although brain (parenchymal) volumetry has received less
attention, DL has been used to segment the thalami of MS patients
for the purpose of estimating its volume (Dwyer et al., 2021). DL
methods have also been shown to perform well when compared
to traditional methods for brain atrophy estimation (Zhan et al.,
2023). Moreover, DL-based lesion-filling (or inpainting) has been
shown to improve the performance of volumetric estimation
methods that are usually sensitive to the presence of lesional tissue
(Zhang et al., 2020; Clèrigues et al., 2023). Unfortunately, the large
minimal detectable change in volume between clinically relevant
intervals and the high inter-scanner variability still limit the utility
of brain volume estimation in the clinic (Van Nederpelt et al.,
2023). It is worth noting that a number of software packages for
automated volumetric analysis and segmentation are available, and
some already include DL methods (Billot et al., 2023).

Several challenges have been organized, in which groups
compete for best performance on the same lesion segmentation
task (either T2 lesion or new T2 lesion segmentation). These
were hosted at the IEEE ISBI conference (Carass et al., 2017) and
at MICCAI conferences (Styner et al., 2008; Commowick et al.,
2018, 2021). In all cases, no model was found to be perfect, when
evaluated on the basis of voxel-level segmentation metrics (under
or over-segmentation) and lesion detection metrics (e.g., false
positive rate), in comparison to the ground-truth segmentation

obtained by human expert raters. Rather than indicative of a
failure of ML for automatic segmentation, we argue that this
finding should lead the community to rethink the way models are
evaluated. In all challenges, performance was measured against the
segmentation masks obtained from very few human experts, and
on relatively small datasets of at most one hundred participants.
Despite these challenge’s best attempts to address the intra and
inter-rater variability associated with the ground-truth lesionmasks
obtained from human experts (Bozsik et al., 2022; Altay et al., 2013),
there remains no accepted consensus on what should constitute
“ground truth”. Where should one draw the lesion border, given
that lesional tissue manifests as a continuous spectrum of intensity
on MRI? How do we differentiate an enlarging lesion from
confluent new lesions? How do we know if hyperintensities
smaller than 3 mm [which are typically disregarded by expert
raters (Filippi et al., 2019) to avoid false positive detections], are
pathologically significant or not? Without answers to all these
questions, finding that DL methods disagree with human experts
is arguably insufficient to determine if they are truly inferior.
To address this issue, some have proposed explicitly modeling
the “label-style” that might be associated with a certain dataset
or group of expert-raters (Nichyporuk et al., 2022). Others have
avoided the use of ground-truth lesion masks altogether by framing
lesion segmentation as an unsupervised anomaly detection task
(Behrendt et al., 2023; Castellano et al., 2022; Luo et al., 2023;
Pinaya et al., 2022). Training on soft-labels (as opposed to binary
labels) (Gros et al., 2021; Lemay et al., 2022) and probabilistic lesion
counting (Schroeter et al., 2022) are yet other possible solutions. In
recognition of the importance of the problem of model evaluation
in the case of image analysis, a large international consortium
has recently published recommendations for model evaluation
(Maier-Hein et al., 2024; Reinke et al., 2024). Still, more work
has to be done to obtain answers to the problems specific to MS
lesion segmentation.

To conclude, segmentation, lesion detection, and volumetry,
are some of the oldest and most studied ML application in MS. In
many cases, they reach performances that are acceptable for many
clinical and research settings. More work is needed to determine
how best to evaluate automated segmentation frameworks.

4 Improving our understanding of MS

With an increasing number of datasets containing MRI images
of MS patients, and the plethora of open questions in MS
research, one may ask: could AI help us uncover novel markers
of MS diagnosis, evolution, and treatment response? For years,
patients with MS have been categorized into a binary classification
system consisting of relapsing-remitting and progressive clinical
phenotypes (Lublin and Reingold, 1996). It was later found that
significant overlap exists in disease evolution across these subtypes,
prompting the introduction of subtype-agnostic evolution-focused
terminology such as “relapse-associated worsening (RAW)” and
“progression independent of relapse-activity (PIRA)” (Lublin
et al., 2022). The current most accepted perspective is that
individual differences in disease course can be traced back to
different combinations of inflammatory, neurodegenerative, and
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compensatory processes that lie along a continuous spectrum
(Lassmann, 2019; Pitt et al., 2022; Vollmer et al., 2021).

This paradigm-shift, coupled with the fact that none of the
existing MRI biomarkers have been particularly predictive of
the key clinical outcome of disability progression (Filippi et al.,
2020), has led researchers to search for alternative MRI-markers
that could better explain the observed heterogeneity in disease
evolution and treatment response. Notably, Eshaghi et al. (2021)
and Pontillo et al. (2022) used an unsupervisedML algorithm called
SuStaIn (Young, 2018) to identify disease subtypes characterized
by distinct temporal progression patterns on MRI. Both groups
found subtypes characterized by early cortical or deep gray matter
atrophy, early signal changes in normal appearing white matter,
and early T2 lesion accumulation. More work is needed to
externally validate these subtypes and better understand their
clinical correlates.

ML has also been used more directly to assist scientists in
uncovering novel MRI markers. One strategy involves taking
a pre-trained classifier (e.g., a model trained to predict MS
diagnosis, or future disease activity) and producing “saliency-
maps”. These allow researchers to visualize the features that are
thought to be “important” according to the classifier; for example,
features associated with a diagnosis of MS, poorer prognosis, or
specific phenotypes. By using heatmaps generated using layer-
wise relevance propagation, Eitel et al. (2019) found that a CNN
classifier pre-trained to predict MS diagnosis focused on T2-
lesions and their location, along with non-lesional or gray matter
areas that included the thalamus. Storelli et al. (2022) produced
heatmaps from a CNN that was trained to predict EDSS-worsening,
and identified differences in periventricular regions, white matter
lesions and the corpus callosum, for EDSS-worsened patients.
Zhang et al. (2021) interrogated different heatmap-generating
techniques to better understand crucial brain regions that could
help distinguish MS phenotypes, finding that the abnormalities
associated with SPMS were more extensive compared to RRMS,
the latter involving primarily the occipital region and, to a lesser
extent, the frontal region. Finally, Kumar et al. (2022) proposed to
identify candidate biomarkers of future new/enlarging T2 lesions in
an RRMS population through a process called counterfactual image
synthesis; specifically, by predicting how a patient’sMRI would look
like if they had a different future outcome (a counterfactual), and by
taking the difference between the real (factual) and counterfactual
images, markers that are predictive of future outcomes (in this case,
lesion activity) can be revealed.

AI can therefore be useful to better understand disease
evolution and heterogeneity. While exciting, this work remains
largely at the level of methodological development, and more
translational research will be needed.

5 Diagnosis

It is imperative that an MS diagnosis be confirmed rapidly,
and accurately, to ensure that patients receive the best possible
care. MS is currently diagnosed according to the 2017 McDonald
criteria, which combines historical, MRI, and laboratory data
(Thompson et al., 2018). While significant efforts have been made
to accelerate MS diagnosis, the heterogeneity of the disease and

broad differential diagnosis still continues to put the clinician at
risk of misdiagnoses, which can delay the initiation of an adequate
treatment (Solomon et al., 2019; Brownlee and Solomon, 2021).
Recent diagnostic criteria might provide increased sensitivity for
the diagnosis, but at the cost of reduced specificity (Mescheriakova
et al., 2018; Habek et al., 2018). In this section, we will discuss
the use of AI for improving the accuracy and reliability of MS
diagnosis. Note that there is some overlap with Section 3, since the
detection of MS lesions on MRI is an important component of the
diagnostic criteria (but not the only one). In the current section,
the focus will be on the classification task of MS diagnosis, with the
understanding that automated lesion segmentation and detection
methods could be used upstream to provide image-derived features
to an MS classifier.

Both classicalML andDLmethods have been applied to the task
of MS diagnosis, with MRI being the most common input modality
for the classifier [we refer the reader to dedicated reviews on this
topic for more details (Nabizadeh et al., 2022; Aslam et al., 2022;
Shoeibi et al., 2021)]. Reported diagnostic sensitivity, and especially
specificity, can be quite high [pooled sensitivity 92% (95%CI:
90%, 95%) and specificity 93% (95%CI: 90%, 96%), respectively,
according to a recent meta-analysis (Nabizadeh et al., 2023)]. Even
simple image-derived scalars such as the average of T1, T2*, and
the total/myelin bound water content, have been found to be highly
predictive (when used as input to train a supervised ML classifier)
of an MS diagnosis (Neeb et al., 2019).

Differentiating MS from other diseases that can mimic it’s
presentation is also an important task in the clinic. Rocca et al.
(2021) used a basic 3D-CNN with MRI as input to differentiate MS
from neuromyelitis optica spectrum disorder (NMOSD), central
nervous system vasculitis, and migraine, and found that the
diagnostic accuracy exceeded that of human experts. Similarly,
Kim et al. (2020) showed that MS could be differentiated from
NMOSD using a 3D-CNN based on the ResNet architecture
(He et al., 2016), as accurately as two neurologists. Huang
et al. (2022) found that a transformer-based image classifier (Xu
et al., 2021) could differentiate MS from NMOSD and myelin
oligodendrocyte glycoprotein antibody disease as accurately as two
neuroradiologists. MS could also be differentiated from hereditary
diffuse leukodystrophy with spheroids using linear discriminant
analysis (Mangeat et al., 2020), and from low grade tumors using
MR-spectroscopy-derived features as input to a variety of ML
models (Ekşi et al., 2021; Preul et al., 1996).

Overall, there is a growing amount of evidence supporting the
use of AI in MS diagnosis.

6 Prognostication and treatment
optimization

One of the main challenges for the clinician evaluating a patient
with a new diagnosis of MS is to predict long-term prognosis (the
evolution of the disease over time). The related task of treatment
optimization (predicting which treatment will have the most
beneficial effect) often depends on having an accurate prognosis.
This begs the question: can AI do any better? Many early research
efforts were focused on predicting the occurrence or timing of
clinically-defined MS subtype transitions, using these as surrogate
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markers of poor prognosis. However, as discussed in Section 4,
there has been a tendency to de-emphasize these subtypes in the
diagnosis and management of MS. Prognostication tasks that we
will focus on in this section therefore involve the prediction of the
evolution of specific manifestations of the disease, which include
radiologic activity (new/enlarging T2 lesions), relapses, disability
accumulation, and patient-reported outcomes.

Prognostication with respect to disability outcomes turns
out to be a very challenging task, even for AI (Seccia et al.,
2021). When predicting disability progression from hand-crafted,
image-derived tabular features, Pellegrini et al. (2020) found that
a variety of classical ML models could achieve only modest
predictive performance (C-index ≤ 0.65). Nonetheless, predictive
performance can vary greatly depending on what features are used
as input, on the model, and on the optimization procedure. With
regards to the input, Zhao et al. (2017) found that classical ML
methods performed better when adding image-derived features
from a 1-year follow-up MRI visit to the set of inputs, which
otherwise consisted of data recorded at a baseline visit. The benefit
of longitudinal follow-up was also highlighted in work that used
SuStaIn (Young, 2018) for unsupervised temporal modeling of
imaging trajectories. Specifically, Pontillo et al. (2022) were able
to identify a “deep-gray-matter-first” subtype that was associated
with long-term cognitive impairment, and Eshaghi et al. (2021)
could identify a “lesion-led” subtype that was associated with both
confirmed disability progression and relapse rate. Using long term
clinical (non-imaging) follow-up data has also been shown to lead
to a considerable performance boost when predicting progression
(De Brouwer et al., 2021). All this evidence suggests that ML on
longer-term MRI data represents a promising, though challenging,
research direction.

With regards to the model type, Zhao et al. (2020) found
that ensembles of gradient-boosted trees such as XGBoost and
LightGBM performed better than alternative ML methods when
predicting 5-year EDSS worsening from logitudinal data collected
over 2 years, with an area under the curve (AUC) ranging from 0.79
to 0.83. Interestingly, their feature importance analysis [and that
of others (Law et al., 2019)] suggests that clinical disability metrics
(which includes the EDSS) might be more predictive than tabular
image-derived features for this particular task.

It is possible that voxel-level MRI data, which has been
understudied for the task of predicting clinical prognosis, could
harbor more predictive features of prognosis than traditional
image-derived features. In support of this hypothesis, Storelli et al.
(2022) were able to train a CNN to predict 2-year EDSS and
SDMT worsening with 75.0% sensitivity, and 87.5% specificity. It
is also possible that non-trivial implementation details, such as the
inclusion of a T2-lesion mask along with the raw MRI as input,
could further boost performance (Tousignant et al., 2019). These
studies hint at DL’s potential to improve upon tabular, hand-crafted,
image-derived features (e.g., T2 lesion volume). In an attempt to
elucidate the relative contribution of voxel-level data to predicting
disability progression Zhang et al. (2023) studied a dataset of 300
MS patients, with a very large feature set spanning numerous MRI
sequences, laboratory data, demographic information, disability
scores, and unstructured clinical notes. Imaging, tabular data,
and notes were encoded and fused using various neural network
architectures, and used for predicting EDSS milestones 3-years

later. While their best performing model made use of all three
modalities (AUC 0.8380), a model trained without the MRI
modality was only marginally worse (AUC 0.8078). Their study is
limited by a small dataset size, with a comparatively large feature
set, which could result in poor model optimization. More research
is therefore needed to explore this important question, but this will
require larger datasets, and additional methodological advances.

DL has also been used on radiologic markers of disease
activity, which in certain cases are more sensitive to disease
evolution than clinical measurements. A few studies have shown
promising preliminary results in predicting the future appearance
of new/enlarging T2 lesions from baseline MRI (Prabhakar et al.,
2023; Durso-Finley et al., 2023, 2022). Tabular, hand-crafted
image-derived features have also been used to classify a lesion
as active or inactive (Peng et al., 2021). Similar to the task of
predicting clinical prognosis (which focuses on predicting future
disability-related outcomes), there remains the possibility that
non-trivial methodological contributions may yield significant
performance gains.

AI tools that aid in prognostication can be used for treatment
optimization (for example, by favoring a more potent drug for
a patient predicted to have highly active disease); however, it
is also useful to consider the related task of estimating the
“treatment effect” of a medication on the disease course. The
most common treatment effect estimand that clinicians consider
as part of treatment-related decisions is the average treatment
effect, which typically is estimated using randomized clinical trials,
and represents the average effect of a treatment on a population
(compared to placebo or to a baseline drug). Some of the ML
research cited in previous sections have presented results pertaining
to treatment effect estimation. For example, the “lesion-led”
subtype discovered by Eshaghi et al. (2021) appears to be specify a
sub-group of individuals that experience a larger average treatment
effect. Another line of work in causal ML aims to personalize
treatment recommendations by predicting the treatment effect for a
particular individual given their unique characteristics (Curth et al.,
2024). For example, Durso-Finley et al. (2022) proposed a multi-
headed CNN to predict the individual treatment effect of several
treatments on new/enlarging T2-lesions, which used a person’s
MRI as input. Beyond treatment optimization, individual treatment
effect estimation could also play a role in improving the statistical
power of clinical trials by preferentially randomizing individuals
who are predicted to benefit from an experimental therapy (Falet
et al., 2022; Kanber et al., 2019).

In conclusion, although prognostication and treatment
optimization remain challenging tasks, MRI-based ML research
continues to improve upon previous baselines through diverse
methodological innovations. Some models appear to identify
subgroups of individuals that are more responsive to certain
disease modifying therapies. These results are therefore paving the
path toward precision medicine.

7 Discussion

In this review, we have presented several tasks where AI
systems might already reliably outperform human experts in
MS-specific applications. Indeed, a recent validation study by
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Barnett et al. (2023) provided evidence supporting the use
of AI tools for lesion detection and volumetric analyses, in
both clinical settings and research studies. We also discussed
tasks which are hardly feasible without recent advances in
DL, such as MRI sequence synthesis and automated biomarker
discovery.

As the performance of AI tools continues to improve, we
will arguably see increasing interest in trustworthiness, because
these AI systems are expected to take part in high-risk human
decision-making. Trust in AI systems is built in numerous ways,
one of which is by giving them the ability to explain the rationale
behind a model’s predictions, resulting in “explainable” AI systems
(Došilović et al., 2018). Additionally, users should be aware of the
level of confidence that a model has in a particular prediction, and
how much this reflects the actual errors that a model might make.
This line of work, often referred to as “uncertainty” estimation
(and the related problem of calibration), allows users to know
when to trust a model’s predictions (Gawlikowski et al., 2023).
In addition, to trust that a model will behave well in practice,
there should be a good understanding of how it will generalize
to new data, and whether or not it will be robust to distribution
shifts (for example, if there is a change in acquisition protocol).
The field of causal machine learning (Sanchez et al., 2022), which
models the data generative process using causal models, promises
improved out-of-distribution generalization, and represents an
active field of research. MS researchers have begun to address all
three of these topics, specifically explainable methods (see examples
in Section 4), probabilistic modeling for uncertainty estimation
(Nair et al., 2020; Durso-Finley et al., 2023), and structural causal
models of MRI image generation (Reinhold et al., 2021), but
more work is needed to truly enable trustworthy AI-assisted MRI
analysis in MS.

Looking forward, it seems clear that highly capable AI systems
based on large foundation models (Brown et al., 2020; Devlin
et al., 2018; Touvron et al., 2023; Ramesh et al., 2021) will have
a major impact on biomedical imaging research, including in
MS. Certain chat-bots based on large language models (LLMs)
can now arguably pass the Turing test (Jannai et al., 2023), and
score higher than the average human on medical exams (Achiam,
2023). LLMs are increasingly being used in medical applications
(Agbavor and Liang, 2022; Patel and Lam, 2023; Singhal et al.,
2023; Jiang et al., 2023), and multi-modal inputs (which includes
biomedical imaging) are becoming more common (Moor et al.,
2023). Although foundation models remain understudied in MS
applications, interesting future directions include using foundation
models to improve generalization from small MS-specific datasets,
through in-context learning (Dong et al., 2024), or fine-tuning.
That said, in order to reap all the benefits of foundation models
for MS-specific applications, several open problems need to be
solved. These include sub-par reasoning capabilities (Rae et al.,
2021; McKenzie et al., 2023; Arkoudas, 2023) which could be
dangerous in high-stakes environments such as healthcare (Richens
et al., 2020; Fraser et al., 2018), broader concerns regarding AI

safety (Bommasani et al., 2021; Anderljung et al., 2023; Urbina
et al., 2022), and predictions that may be unacceptably skewed to
the detriment of a particular group of people (Mehrabi et al., 2021).
As more solutions to these problems are found, we can expect
an increasing focus on large foundation models in the coming
years, to help solve some of the most challenging tasks in MS
MRI-analysis.
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Multiple sclerosis (MS) is a chronic neuroinflammatory disease driven by immune-
mediated central nervous system damage, often leading to progressive disability. 
Accurate segmentation of MS lesions on MRI is crucial for monitoring disease and 
treatment efficacy; however, manual segmentation remains time-consuming and 
prone to variability. While deep learning has advanced automated segmentation, 
robust performance benefits from large-scale, diverse datasets, yet data pooling 
is restricted by privacy regulations and clinical performance remains challenged 
by inter-site heterogeneity. In this proof-of-concept work, we aim to apply and 
adopt Federated Learning (FL) in a real-world hospital setting. We assessed FL for 
MS lesion segmentation using the self-configuring nnU-Net model, leveraging 
512 MRI cases from three sites without sharing raw patient data. The federated 
model achieved Dice scores ranging from 0.66 to 0.80 across held-out test sets. 
While performance varied across sites, reflecting data heterogeneity, the study 
demonstrates the potential of FL as a scalable and secure paradigm for advancing 
automated MS analysis in distributed clinical environments. This work supports 
adopting secure, collaborative AI in neuroimaging, offering utility for privacy-
sensitive clinical research and a starting point for medical AI development, bridging 
the gap between model generalizability and regulatory compliance.

KEYWORDS

federated learning, MRI lesion segmentation, privacy-preserving AI, distributed deep 
learning, multi-site training

1 Introduction

Multiple sclerosis is a chronic autoimmune disorder of the central nervous system (CNS) 
and is a leading cause of non-traumatic neurological disability among young adults (1). MS 
affects more than 2.8 million individuals worldwide (2). The disease is characterized by 
inflammatory demyelinating CNS lesions (3), which appear as hyperintense areas in white 
matter on T2-weighted/FLAIR MRI and are crucial for diagnosis and monitoring disease 
progression. Lesion burden correlates with disability (4), making accurate lesion segmentation 
vital for evaluating treatment efficacy.

Manual MS lesion segmentation is the clinical gold standard but is labor-intensive and 
prone to observer variability. Recent convolutional neural network approaches, including 3D 
U-Net variants, have achieved Dice scores of 0.6–0.8 for automated MS lesion segmentation 
on benchmark datasets (5). We employed nnU-Net, a self-configuring framework with strong 
performance across diverse medical segmentation tasks (6). Clinical adoption of automated 
segmentation methods remains limited due to the heterogeneity of MRI data, including 

OPEN ACCESS

EDITED BY

Axel Faes,  
University of Hasselt, Belgium

REVIEWED BY

Nada Haj Messaoud,  
University of Monastir, Tunisia
Stijn Denissen,  
Vrije Universiteit Brussel, Belgium

*CORRESPONDENCE

Sarah Hindawi  
 sarah.hindawi@roche.com

RECEIVED 27 May 2025
ACCEPTED 15 August 2025
PUBLISHED 10 September 2025

CITATION

Hindawi S, Szubstarski B, Boernert E, 
Tackenberg B and Wuerfel J (2025) Federated 
learning for lesion segmentation in multiple 
sclerosis: a real-world multi-center feasibility 
study.
Front. Neurol. 16:1620469.
doi: 10.3389/fneur.2025.1620469

COPYRIGHT

© 2025 Hindawi, Szubstarski, Boernert, 
Tackenberg and Wuerfel. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Brief Research Report
PUBLISHED  10 September 2025
DOI  10.3389/fneur.2025.1620469

102

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1620469&domain=pdf&date_stamp=2025-09-10
https://www.frontiersin.org/articles/10.3389/fneur.2025.1620469/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1620469/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1620469/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1620469/full
mailto:sarah.hindawi@roche.com
https://doi.org/10.3389/fneur.2025.1620469
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1620469


Hindawi et al.� 10.3389/fneur.2025.1620469

Frontiers in Neurology 02 frontiersin.org

variations in acquisition protocols, scanner types, and lesion 
characteristics across patient populations. Models trained on single-
center data may generalize poorly to external data due to distribution 
shifts (7). Privacy regulations limit data sharing across centers, 
limiting the ability to curate sufficiently large and diverse training 
datasets. This fragmentation of data impedes the development of 
generalizable AI models and continues to hinder machine learning 
(ML) translation into clinical settings (8).

Federated learning (FL) has emerged as a promising solution by 
enabling collaborative model training without exchanging raw data. 
In a federated learning paradigm, each institution (client) trains a 
local copy of the global model on-site. Instead of transferring patient 
data, only the model’s learned parameters (e.g., weight updates) are 
shared with a central server. The server aggregates the updates from 
the participating clients to construct a consensus global model, 
enabling collaborative learning while addressing privacy concerns and 
utilizing otherwise inaccessible datasets. Despite its promise, FL is still 
in the early stages of medical deployment (9) Two studies from the 
same research group have investigated FL for MS lesion segmentation. 
These studies used simulated FL environments with clinical and public 
datasets (fewer than 200 subjects across scenarios) and reported 
moderate Dice scores ranging from 54 to 77% (10, 11). A recent study 
(12) also investigated FL for MS lesion segmentation as part of a 
broader benchmark of five neuroimaging tasks, conducted in a 
simulated FL environment, reporting Dice scores ranging from 63.2 
to 70.2% on MSSEG dataset (13).

In contrast, our study deploys a federated learning framework for 
MS lesion segmentation in a real-world, multi-institutional setting, 
addressing legal and regulatory constraints that often hinder clinical 
translation. These challenges, typically underexplored in simulated 
environments, are addressed through a secure, end-to-end deployment 
in which each site retains full ownership and control of its data, 
demonstrating the practical feasibility of integrating FL into clinical 
practice under strict data governance. We trained and evaluated the 
model across three clinical institutions on a total of 512 MRI cases, 
integrating both academic research and routine clinical data. 
Specifically, we aim to establish a federated architecture for distributed 
image analysis and assess the feasibility of training a model for 
segmenting T2-weighted hyperintense MS lesions across sites. By 
demonstrating FL’s application to MS lesion segmentation, we aim to 
strengthen the groundwork for privacy-preserving, collaborative AI 
in neuroimaging.

2 Methods

2.1 Federated framework architecture

To enable privacy-preserving, multi-center training for MS lesion 
segmentation, we  extended our federated learning platform with 
imaging capabilities by integrating it with an established open-source 
framework for radiology image processing. Specifically, we utilized 
Kaapana, an open-source platform described in (14, 15), to coordinate 
local imaging processing and computational workflows. Kaapana is a 
modular toolkit for medical image analysis that enables decentralized 
data access, data management, and remote execution of containerized 
algorithms. It supports private cloud development and integrates 
seamlessly with local clinical IT infrastructure. The platform employed 

a client–server FL architecture to train the model across three 
participating sites. Each client maintained a local copy of the model 
and trained it on its own dataset of MR images. A central server acted 
as the coordinating node, aggregating received model parameters 
using the Federated Averaging (FedAvg) algorithm, which computes 
a weighted average of the clients’ model weights (16). To address 
operational, security and collaboration network scalability needs in 
real-world clinical environments, we  extended our setup with 
additional enterprise-grade computational governance capabilities 
developed by Apheris, enabling institutions to collaborate securely on 
distributed data within a governed and privacy-preserving framework. 
This integration allowed all collaborating institutions to retain 
end-to-end control over algorithm execution. Although open-source 
solutions offer transparency and adaptability, their integration into 
clinical workflows can introduce operational overhead, including the 
need for manual code reviews. To mitigate this challenge and reduce 
risk, we implemented a centralized algorithm review process with a 
controlled algorithm pull mechanism from a central container 
registry, ensuring reproducibility, data and model governance, and 
streamlined collaboration without exposing sensitive data.

By design, the federated model should be exposed to a wider 
variety of imaging patterns (patient demographics, scanner types, 
artifact profiles) than any single-site model, ideally resulting in a more 
generalizable model. MRI data were preprocessed using a standardized 
pipeline applied consistently across all sites to ensure uniform 
orientation and registration. We  employed nnU-Net, which 
automatically configures its architecture, preprocessing, and training 
pipelines to the given dataset, enabling site-specific adaptation and 
efficient deployment with minimal computational and implementation 
overhead (6). The model was trained across sites using a uniform 
configuration and shared hyperparameters. Each site used locally 
managed infrastructure, typically comprising GPUs with at least 
24 GB of VRAM (NVIDIA Turing or newer) and at least 64 GB of 
RAM. The training was done in a synchronous federated manner such 
that all sites participated in each round. By the end of training, the 
final federated model was evaluated on held-out test sets at each 
participating site.

Throughout the federated training, no MR images or patient 
identifiers were ever exchanged. Only data fingerprints, containing 
image sizes, voxel spacings, and intensity characteristics for model 
initialization, along with model parameters were shared during FL 
iterations. Dataset fingerprints were required for the adaptive, rule-
based configuration of the segmentation pipeline, including the 
selection of the patch size, network topology, and batch size, all of 
which depend on image properties (6). This approach together with a 
decentralized architecture inherently preserves data privacy, as an 
adversary cannot directly access the underlying images through the 
central server. To further secure communications, all network traffic 
between the server and client nodes was encrypted using state-of-
the-art protocols. Each participating site deployed and operated a 
local platform within its own firewall, allowing the central 
orchestration server to invoke nnU-Net federated training workflows 
on local data. We  implemented local basic authentication for the 
nodes and an external identity and access mechanism for the central 
node. This design enables more autonomous, isolated and efficient 
deployment at each site. Node authentication within the federated 
network is based on a centrally generated token that each site receives 
via independent media during registration. This token includes: 1. an 
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SSL certificate, 2. an authentication token, 3. connection details of the 
central instance and 4. a symmetrical encryption key as an additional 
protection mechanism for data in transit. To simplify deployment and 
avoid dependencies on potential vulnerabilities in the open-source 
network stack, we opted not to implement a dedicated virtual network 
infrastructure for federated nodes. Instead, we  introduced a 
symmetric encryption layer implemented explicitly at the federated 
client and server applications. Due to its inherent speed, this 
mechanism was well-suited for encrypting client-generated weights 
at each round. Additionally, it served as a safeguard to ensure secure 
communication between clients and the central node, effectively 
replicating the protection typically provided by a virtual 
private network.

This setup guarantees the authenticity of the contributing clients 
and prevents spoofing or tampering within the federated network. 
Each client application maintained a list of approved datasets and 
workflows for federated processing, allowing site personnel to 
contribute to model training without relinquishing control over their 

data. This approach is compliant with data protection regulations and 
addresses the ethical concerns of data sharing.

The federated learning architecture (illustrated in Figure  1) 
supports the following key user workflows:

	 1.	 Model publication by ML Engineer - A locally tested model is 
converted into its federated version and uploaded to a central 
model repository. Once approved by the site Data Custodian, 
it becomes available for execution at the corresponding sites.

	 2.	 Upload of data assets and data access policies by the Data 
Custodian - At each site, the Data Custodian defines which 
models are authorized to access the uploaded data. This enables 
Gateway agents to accept requests to execute approved 
ML models.

	 3.	 Federated Workflow Execution by Data Scientist - Using the 
Python SDK, the Data Scientist interacts with the Federated 
Learning Orchestrator to initiate computation pods at the 
federated nodes (workers) and the central platform 

FIGURE 1

High-level solution architecture showing the integration of Kaapana and Apheris into a single solution. This extended architecture allows site personnel 
to control processing pipelines executed on their data. It supports three primary user workflows and illustrates basic component interactions at a single 
federated node.
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(aggregator), in accordance with the approved data access 
policies. This setup facilitates the full execution of nnU-Net 
training across the participating sites.

2.2 Description of datasets

This is a multi-center, multi-country study utilizing anonymized 
MRI data from patients with MS. The study involved in-house data 
from a previous Roche-sponsored trial at our site (Site A, 149 cases, 
each consisting of paired T1w and FLAIR images), as well as 
anonymized observational data from two academic medical centers: 
one in Switzerland (Site B, 325 cases) and one in Germany (Site C, 38 
cases). A total of 512 expert-annotated MRI cases were used, of which 
380 were allocated to training and validation. Patients were uniquely 
assigned to either the training/validation or test sets to avoid data 
leakage and ensure unbiased model evaluation. In accordance with 
data protection principles, all data remained local at each site and were 
never shared centrally.

The datasets included 1 mm isotropic 3D T2-weighted/FLAIR 
and T1-weighted sequences (with a tolerance of ±0.1 mm, ranging 
from 0.9 to 1.1 mm). Scans were acquired on Siemens, Philips, and GE 
Medical Systems scanners at a field strength of 3 Tesla, and each site 
followed its own routine clinical MRI protocol, resulting in some 
heterogeneity in image resolution and contrast. Site A contributed 
data from a range of scanner models across the three vendors: Siemens 
(Skyra, Verio, Prisma, Prisma_fit, TrioTim), Philips (Achieva, Achieva 
dStream, Intera, Ingenia), and GE Medical Systems (Signa HDxt, 
Discovery MR750, SIGNA Premier). Site B provided data acquired on 
Siemens Skyra and Skyra Fit scanners, while Site C used the Siemens 
Skyra Fit. Table 1 summarizes dataset characteristics across sites. The 
diversity of imaging sources and clinical presentations should reduce 
site-specific biases and enhance generalizability.

To ensure data consistency, T1-weighted images were registered 
to their corresponding FLAIR sequences, and automated quality 
control was applied to identify potential image quality issues. This 
diverse dataset, representing multiple sites with varying imaging 
protocols, was used to assess the federated approach under realistic 
conditions of inter-site heterogeneity.

2.3 Preprocessing for image 
standardization

A standardized automated preprocessing pipeline was applied to 
ensure data consistency across all sites. This process included 
automated quality control procedures assessing key image properties. 
Signal-to-noise ratios (SNR) were computed in modality-specific 
anatomical regions to estimate overall image quality. T1w SNR was 

calculated in the brain parenchyma, while FLAIR SNR was calculated 
in the cerebrospinal fluid. Artifact presence was estimated using the 
MAI-Lab sorting and artifacts detection tool (17), and cropping was 
detected by evaluating brain coverage across anatomical boundaries. 
Voxel dimensions were validated against the expected isotropic 
resolution (1.0 ± 0.1 mm), and inter-modality brain mask volume 
similarity was assessed to detect major discrepancies or modality-
specific artifacts. All MRI data were reoriented to a standardized axial 
orientation to ensure uniform spatial alignment. T1-weighted images 
were registered to their corresponding FLAIR images, correcting for 
positional misalignment. These preprocessing steps were performed 
locally at each site using Kaapana and integrated into the federated 
learning workflow, ensuring uniformity in the input data across sites 
for subsequent model training.

2.4 Model selection and training

We selected nnU-Net for its robust performance across diverse 
medical segmentation tasks, offering automatic adaptation and 
competitive results without manual customization (6). nnU-Net 
handles preprocessing, architecture selection, and postprocessing, 
reducing the need for extensive manual intervention. It is also well-
suited for 3D multi-modal input, automatically configuring an 
appropriate 3D U-Net architecture based on input image dimensions 
and hardware constraints.

Local training at each site adhered to the standard nnU-Net 
training configuration and hyperparameters, with configurable 
values set to a learning rate of 0.01, weight decay of 3 × 10−5, 250 
training batches per epoch, and 33% foreground oversampling. The 
model used the standard Dice loss combined with cross-entropy, as 
provided by the default configuration of nnU-Net. We conducted 
50 rounds of federated training, with each round corresponding to 
one local epoch at each site. Limiting local training to a single 
epoch helped prevent models from overfitting to local data and 
drifting from the global objective. Training progress was monitored 
by tracking site-level training and validation losses after each 
federated round to ensure stability and detect potential divergence. 
After each round, the server aggregated client weight updates using 
the FedAvg algorithm to generate a new global model, which was 
then redistributed to all sites.

The final global model obtained after 50 rounds of federated 
training was evaluated independently at each site using its respective 
held-out test set. Model evaluation at the three participating sites 
included both quantitative metrics such as Dice score, sensitivity, and 
precision, as well as a qualitative review by a neuroradiologist to assess 
overall performance, including true positive detection and tendencies 
to miss lesions across anatomical regions. To benchmark against a 
non-federated scenario, we trained and tested a baseline nnU-Net 

TABLE 1  Summary of site-specific data including number of cases, scanner vendors, and lesion characteristics.

Site Train/Validation cases Test cases Scanner vendors Median Lesion 
volume (cc)

Median Lesion 
count

Site A 105 44 Siemens, Philips, GE 4.54 [2.35–9.36] 44 [25–67]

Site B 247 78 Siemens 4.90 [1.53–13.81] 33 [19–55]

Site C 28 10 Siemens 2.48 [0.58–3.91] 27 [8–65]

105

https://doi.org/10.3389/fneur.2025.1620469
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Hindawi et al.� 10.3389/fneur.2025.1620469

Frontiers in Neurology 05 frontiersin.org

model locally using our site’s data. This enabled a comparison between 
the performance of the federated model and the locally trained model, 
both evaluated on the same test set from our institution.

2.5 Privacy and security considerations

Patient privacy was a core requirement of our FL framework, 
which inherently avoids sharing raw imaging data. All images were 
anonymized at their source by removing identifying metadata (e.g., 
DICOM headers), ensuring that no personally identifiable information 
was accessible. Federated training was conducted within protected 
compute environments, with each site’s data remaining on secure local 
infrastructure. Our configuration follows enterprise-grade governance 
principles, ensuring that each client site retains full control over which 
algorithms are executed on its data. This level of control allows 
individual node administrators to prevent the execution of 
unauthorized or potentially malicious code, thereby strengthening 
overall system security.

As described in the Architecture section, only sites that received 
a secret, unique token were allowed to contribute to the central model 
updates, thus limiting potential poisoning attacks. Since 
communications between sites and the central server were 
TLS-encrypted, and additionally encrypted at the sites with a 
symmetric key shared within the token, the risk of an adversarial 
attack was minimal. The central cloud-based environment employed 
AWS Well-Architected Framework mechanisms, with access to the 
Federated Orchestrator restricted to a predefined IP range. This setup 
limited the marginal risk of reconstruction or inference attacks and 
allowed the use of original parameters and weights from 
individual nodes.

While FL reduces data privacy risks by design, it is not entirely 
immune to threats such as model inversion or membership inference 
attacks. To mitigate these risks, we adopted strict security principles 
integrated directly into the framework. Execution of any machine 
learning code or federated learning configuration requires explicit 
approval from each participating site. Comprehensive encryption and 
tightly controlled access to both site and central nodes further 
minimize the risk of sensitive data leakage or attacks by unauthorized, 
potentially malicious actors.

From a regulatory standpoint, this study adhered to data 
protection laws. Since only model parameters and not raw data were 
exchanged, each institution maintained full control over its data. Our 
framework serves as a starting point for multi-center collaborations, 
promoting secure AI development in medical imaging.

3 Results

3.1 Quantitative analysis

We conducted 50 rounds of federated training, with each round 
corresponding to one local epoch per site. In our setting, preliminary 
experiments with additional local epochs per round resulted in abrupt 
performance degradation, which may reflect FedAvg’s sensitivity to 
data heterogeneity (18). This aligns with observations in the literature 
where non-IID data or class imbalances can cause gradient 
misalignment, driving local models away from the global objective 
(19). Model performance over 50 federated rounds is shown in 
Figure 2. Most reductions in training and validation losses occurred 
within the first 10–15 rounds, after which learning progressed more 
gradually. As the system retains only model weights from the final 

FIGURE 2

Validation Dice (top left), training loss (top right), and validation loss (bottom) across 50 federated rounds. Each curve represents one of the three 
participating sites (Site A: pink, Site B: orange, Site C: blue).
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training round, we adopted a fixed training schedule rather than an 
adaptive early stopping strategy based on convergence. Extended 
training revealed that additional rounds improved performance at 
certain sites, while others experienced a decline, potentially due to 
model drift or overfitting to dominant patterns. Although 50 rounds 
may not represent the global optimum, this configuration provided a 
balanced trade-off across all participating sites.

To assess model performance, we  compared a locally trained 
model to its federated counterpart using a held-out test set of 44 MRI 
cases from our site. Both models were trained using the same 
hyperparameters and configuration to ensure a fair comparison. A 
local nnU-Net model trained for 50 epochs using only our site’s 
training set achieved a mean Dice score of 0.88 ± 0.04, sensitivity of 
0.85 ± 0.05, and precision of 0.90 ± 0.05 on our site’s test set. In 
comparison, the federated model, trained for 50 rounds with one local 
epoch per round across the three sites, achieved a mean Dice score of 
0.80 ± 0.07 on the same test set. While the federated model showed a 
lower Dice score, it demonstrated higher sensitivity (0.89 ± 0.07 vs. 
0.85), indicating improved lesion detection, albeit with reduced 
precision. One-sided Wilcoxon tests indicated that the local model 
had significantly higher Dice and precision (p = 5.7 × 10−14 for both). 
In contrast, the federated model showed significantly higher sensitivity 
based on a one-sided paired t-test (p = 2.4 × 10−7). In a clinical context, 
higher sensitivity is valuable for minimizing the risk of missed lesions; 
however, the corresponding decrease in precision reflects a higher rate 
of false positives, which may result in unwarranted diagnostic 
procedures, increased clinician workload, and patient distress.

To evaluate the cross-site generalizability of the federated model, 
we evaluated it on held-out test sets from the other two participating 
sites, comprising 78 and 10 cases, where it achieved mean Dice scores 
of 0.71 ± 0.15 and 0.66 ± 0.16, respectively. These results are 
summarized in Table 2. A Kruskal-Wallis test across all sites showed 
significant site-dependent variability in Dice scores (p = 3.05 × 10−5). 
Given the limited test sample size at Site C, we further conducted a 
two-sided Mann–Whitney U test between Site A and Site B, which 
also indicated a statistically significant difference in Dice scores 
between the two sites (p = 3 × 10−5).

Figure 3 presents the distribution of performance metrics for each 
site, with Sites A and B showing relatively more consistent distributions 
and Site C exhibiting broader variability, reflecting inter-site 
differences in model generalization. Although performance varied, 
likely due to differences in imaging protocols, scanner types, or 
annotation standards, the model maintained moderate segmentation 
performance across diverse clinical environments without access to 
raw patient data. Importantly, federated training does not preclude 
subsequent site-level adaptation. Fine-tuning the global model on 
local data can help capture site-specific patterns, offering a balanced 

approach that preserves the robustness gained from diverse data while 
recovering the precision of locally optimized models.

3.2 Qualitative assessment

To complement the quantitative evaluation, a qualitative 
radiological assessment was conducted to examine the alignment 
between visual observations and metric-based performance. A board-
certified neuroradiologist and MS expert assessed aspects not fully 
captured by global quantitative metrics, such as pathological 
plausibility (e.g., false negatives and false positives), anatomical 
consistency (e.g., periventricular, subcortical, and other region-
specific biases), and morphological correctness (e.g., small versus large 
lesions). The expert reviewed lesion masks generated by (1) the 
federated model trained across all sites and (2) a model trained solely 
on local data from our site. As in the quantitative evaluation, the 
comparison was performed on outputs generated from the held-out 
test set at our site, with the models’ outputs reviewed side by side to 
identify clinically meaningful differences in segmentation behavior.

Figure 4 presents a visual comparison on a FLAIR slice from our 
site’s test set, with model predicted segmentation masks overlaid on 
the image. The results highlight key differences between the models, 
with the federated model detecting more lesions, reflecting higher 
sensitivity, but also introducing more false positives. While further 
validation is warranted, these findings demonstrate the feasibility of 
federated learning for automated MS lesion segmentation, 
underscoring its potential for broader clinical application.

4 Discussion

This Proof of Concept study demonstrates the end-to-end 
technical feasibility of deploying federated learning as a scalable, 
privacy-preserving framework across clinical institutions, each with 
distinct privacy constraints, data governance policies, and technical 
environments. Our work addresses a gap often overlooked in 
simulated FL research by preserving full data governance at each site 
while supporting scalable algorithm integration and institutional 
participation. By integrating Kaapana and Apheris, our framework 
enables autonomous data curation and enforces consensus-based 
algorithm approval prior to execution at each site, enhancing both 
privacy and operational security. This design allows each institution 
to manage its own imaging workflows while safeguarding against 
unauthorized computation, making the approach particularly well-
suited for sensitive clinical environments. This federated setup is 
inherently portable and supports scalable, efficient deployment. It can 
be extended to additional institutions by deploying a platform instance 
at each site with secure client-to-server communication. This modular 
architecture emphasizes flexibility, reproducibility, and compatibility 
with diverse governance policies, enabling broader future adoption.

Building on this infrastructure, we evaluated the federated model 
on the held-out test set from each participating site. For comparative 
analysis, we also compared its performance on our site’s held-out test 
set relative to a model trained and tested locally. Although the 
federated model showed a lower Dice score compared to the locally 
trained model at our site, it achieved higher recall, which may indicate 
improved lesion detection. This trade-off reflects a core challenge in 

TABLE 2  Federated model performance on the test set from each 
participating site.

Site Dice 
Score

Sensitivity Precision

Site A 0.80 ± 0.07 0.89 ± 0.07 0.74 ± 0.11

Site B 0.71 ± 0.15 0.74 ± 0.11 0.70 ± 0.17

Site C 0.66 ± 0.16 0.64 ± 0.19 0.74 ± 0.23

Metrics are reported as mean ± standard deviation for Dice score, sensitivity, and precision, 
highlighting inter-site variability in segmentation accuracy.
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FL as it requires balancing global generalization with site-specific 
optimization. The observed performance gap in Dice score likely 
stems from the federated model’s exposure to heterogeneous, non-IID 
data across institutions, which encourages learning generalized 
representations rather than overfitting to any specific site’s patterns. 
Federated models are optimized to perform robustly across diverse 

data distributions, enhancing sensitivity to subtle or atypical lesions 
that may be underrepresented in any single site’s dataset. However, 
this improvement in sensitivity was accompanied by reduced 
precision, as the federated model might not fully adapt to site-specific 
imaging features and annotation styles. This misalignment may cause 
the model to over-segment or misclassify challenging regions, 

FIGURE 3

Density plots of segmentation metrics across sites. The plots show the distribution of (a) Dice score, (b) sensitivity, and (c) precision for Site A, Site B, 
and Site C, reflecting inter-site variability in segmentation performance.

FIGURE 4

Comparative visualization of lesion segmentation between training paradigms: (a) FLAIR MRI slice without annotations; (b) Ground truth manual 
segmentation; (c) Prediction from the local model (trained solely on our data); (d) Prediction from the federated model (trained across three sites). The 
federated model detects more lesions but also introduces additional false positives, reflecting the trade-off between sensitivity and precision.

108

https://doi.org/10.3389/fneur.2025.1620469
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Hindawi et al.� 10.3389/fneur.2025.1620469

Frontiers in Neurology 08 frontiersin.org

resulting in an increased number of false positives. Additionally, while 
local training on homogeneous data can converge rapidly, federated 
learning may require more rounds to achieve comparable performance 
due to the challenges of learning from fragmented and non-IID 
data distributions.

Beyond performance trade-offs, our study highlights several 
practical challenges that are often overlooked in simulated FL settings. 
First, in synchronous FL workflows, training requires all sites to 
remain active; resource outages or downtime at any site can halt the 
entire federated round. Second, training local models for comparison 
with the federated model requires technical expertise at all 
participating sites, which may not always be  readily available. In 
contrast, participation in federated training and quantitative 
evaluation of the federated model in our setup did not require 
machine learning expertise. Third, centralized baseline models trained 
on pooled multi-site data, which are commonly used as performance 
upper bounds for federated models, are often infeasible in real-world 
clinical settings due to data privacy regulations, as was the case in our 
study. These constraints underscore the gap between FL in theory and 
its real-world implementation.

It is also worth noting that the federated model in this Proof of 
Concept study was not intended to optimize performance, and thus 
was only trained on a relatively small dataset (380 cases), whereas many 
deep learning studies rely on datasets exceeding 1,000 cases (20) or 
even tens of thousands in population-scale initiatives like UK Biobank 
(e.g., 39,694 subjects (21)). While expanding to larger, more diverse 
cohorts is expected to improve generalizability, site-specific accuracy 
gains may require complementary strategies. For instance, fine-tuning 
the federated model on local data can improve local performance, but 
risks catastrophic forgetting, where local adaptation distorts 
generalizable representations learned during federated training, 
leading to degraded performance on external datasets. To address this, 
personalized FL strategies such as FedBN (22), which retains local 
batch normalization statistics to account for domain shifts, and Ditto 
(23), which optimizes a personalized objective while maintaining 
alignment with the global model, have shown promise in non-IID 
settings. Additionally, adaptive aggregation adjusts client contributions 
to better manage data skew, with methods like FedProx (24) 
introducing a proximal term to reduce client drift and improve 
convergence stability.

While this study demonstrates the technical feasibility of FL in 
real-world settings, future research should explore integrating adaptive 
aggregation, personalized FL strategies, and expanding datasets to 
further improve model performance in heterogeneous environments. 
Overall, these findings establish a starting point for adopting federated 
learning in clinical practice, with potential for future scaling to multi-
modal and longitudinal MS studies.

Software and resources

The federated learning infrastructure was implemented using the 
open-source Kaapana platform (https://github.com/kaapana/kaapana), 
with the nnU-Net training pipeline available at https://github.com/
kaapana/kaapana/tree/develop/data-processing/processing-pipelines/
nnunet. Additional computational governance capabilities were 

supported by Apheris (https://www.apheris.com), enabling secure 
collaboration across participating institutions.
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