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Editorial on the Research Topic

Is insulin resistance the Eminence Grise of aging and non-communicable
chronic diseases?

Insulin resistance (IR) is recognized as a central mechanism in metabolic dysfunction,
with its influence extending far beyond glucose regulation. Increasingly, IR is recognized as
the Eminence Grise — the unseen but powerful driver — behind many non-communicable
chronic diseases (NCDs) and the biological processes of aging. The Research Topic “Is
insulin resistance the Eminence Grise of aging and NCDs?” brings together 12 original
investigations and reviews that collectively expand our understanding of IR as a systemic,
multi-organ phenomenon. These studies explore IR not only as a metabolic hallmark but as
a unifying pathophysiological thread linking cardiovascular, renal, hepatic, respiratory,
neurological, and psychological disorders across the lifespan. The reviewed studies explored
various accessible, non-insulin-based surrogate indices [Triglyceride-Glucose (TyG),
Estimated Glucose Disposal Rate (eGDR)] across aging-related diseases. Although the
hyperinsulinemic-euglycemic clamp remains the most accurate method for assessing IR, its
application is often limited by the complexity and constraints of clinical settings.

Current knowledge and gaps

Decades of research have established that IR contributes to a wide range of metabolic
and degenerative diseases. It plays a fundamental role in the development of type 2 diabetes,
dyslipidemia, non-alcoholic fatty liver disease (NAFLD), and atherosclerosis (1, 2).
Mechanistically, IR arises from the interplay between genetic susceptibility, ectopic lipid
accumulation, mitochondrial dysfunction, chronic inflammation, and altered adipokine
signaling (3). Beyond classical metabolic organs, impaired insulin signaling affects
endothelial cells, neurons, and immune responses, contributing to vascular stiffness,
neurodegeneration, and systemic low-grade inflammation — hallmarks of aging (1-5).
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However, despite this well-established framework, several
aspects remain underexplored. While the molecular basis of IR
has been elucidated in skeletal muscle, liver, and adipose tissue,
much less is known about its role in non-traditional target organs
such as the lungs, kidneys, or brain. Moreover, there remains a gap
in understanding the predictive and diagnostic value of emerging
non-insulin-based IR indices, their relevance in acute settings, and
their relationship with mental health and cognitive decline. Gaps
also persist regarding pharmacological modulation, adipose-
immune crosstalk, and longitudinal mechanistic studies
integrating omics and imaging biomarkers.

The papers in this Topic address several of these gaps, validate
surrogate markers, and deepen our understanding of IR.

IR and cardiovascular diseases

The interplay between IR and cardiovascular disease (CVD)
remains a subject of persistent inquiry. Zhang et al. studied patients
with T2DM suffering acute myocardial infarction and identified a
strong correlation between the TyG index — a surrogate of IR —
and major CVD. Their findings underscore TyG’s potential as a
valuable prognostic tool in this vulnerable population, highlighting
how metabolic derangements aggravate cardiovascular risk even
when left ventricular systolic function is preserved.

Complementing these findings, Wang et al. assessed
hyperuricemia risk through eGDR, another non-insulin-based IR
measure. Their results reinforce the notion that systemic metabolic
inefficiency, reflected by lower eGDR, predisposes to urate
accumulation — further linking IR to vascular and renal
injury pathways.

IR role in acute and chronic renal
disorders

Using the MIMIC-IV database, Wang et al. demonstrated that
elevated TyG-body mass index is associated with both acute kidney
injury and the need for renal replacement therapy in critically ill
septic patients. These results extend the clinical significance of IR
markers into acute care settings, showing their utility in identifying
patients at higher risk of renal deterioration.

Zhang et al. analyzed associations between non-insulin-based
IR indices and chronic diabetic nephropathy in U.S. adults
(NHANES data). They confirmed that higher IR indices
correspond to a greater prevalence of nephropathy, supporting
their use for early detection of renal complications in diabetes care.

IR and liver diseases

Cao et al. revealed a U-shaped association between the TyG
index and incident diabetes among adults with metabolic
dysfunction-associated steatotic liver disease. This relationship
suggests that both excessively low and high TyG values may be
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deleterious, reflecting the delicate balance between metabolic
flexibility and dysfunction in the liver and underscoring the need for
risk stratification in this population. In parallel, Zhao et al. explored the
relationship between the single-point insulin sensitivity estimator
(SPISE) and NAFLD in individuals with T2DM, demonstrating an
inverse correlation and supporting SPISE as a non-invasive marker for
hepatic insulin sensitivity in clinical practice.

IR, metabolic syndrome and
population health

The manifestation of IR in clinical populations is strongly
mediated by environmental and lifestyle interactions, emphasizing
its multifactorial etiology. In a nested case—control study Rong et al.
identified demographic, lifestyle, biochemical factors associated
with metabolic syndrome among adult, reaffirming the
multifactorial roots of IR that intertwine genetic susceptibility,
environmental exposure, and behavioral risk.

Expanding to the adolescent population, Villasis-Keever et al.
investigated the relationship between anxiety and cardiometabolic
risk factors in obese youth using propensity score methods. Their
findings highlight that psychological distress and metabolic
dysregulation may reinforce each other early in life — positioning
IR as a critical link between mental and metabolic health.

IR and pulmonary structural changes

Emerging evidence suggests that IR manifests in diverse organ
systems through complex cellular mechanisms. Lin et al. examined
the association between eGDR and preserved ratio impaired
spirometry (PRISm), a condition reflecting early restrictive lung
dysfunction. Their study revealed that reduced eGDR — a marker
of heightened IR — correlates with PRISm, suggesting that systemic
metabolic impairment may contribute to pulmonary structural or
microvascular changes.

IR and cognition, brain structure,
aging

The influence of IR on the brain is gaining prominence in aging
research. Two articles here provide evidence of IR’s role in cognitive
decline. Wang et al. evaluated the link between IR and cognitive
impairment using the eGDR in a non-diabetic aging population
(CHARLS data), demonstrating that IR is an independent risk
factor for reduced cognitive function of adults. This finding
underscores the systemic impact of IR on neural function, even in
the absence of overt diabetes.

Adding a genetic and neuroimaging dimension, Huang et al. used
a Mendelian randomization approach to reveal that genetically
predicted brain cortical structure mediates the causality between
IR and cognitive impairment, providing compelling genetic
evidence for a structural link between IR and neurological health.
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Collectively, these studies reinforce the hypothesis that IR serves as
a shared etiological substrate for both metabolic and
neurodegenerative diseases — a defining feature of aging biology.

Reversing the tide: exercise and
insulin sensitivity

Lifestyle interventions remain the cornerstone of IR
management (5). In their systematic review and network meta-
analysis, Pan et al. compared nine distinct exercise modalities and
found heterogeneous effects on insulin sensitivity among
individuals with diabetes. Aerobic, resistance, and combined
training showed the most consistent benefits, but emerging
modalities such as high-intensity interval training and mind-body
exercises also demonstrated promise. This comprehensive synthesis
not only supports personalized exercise prescriptions but also
reaffirms the modifiability of IR — even in advanced disease stages.

In conclusion, this Research Topic decisively confirms that IR is the
fundamental, hidden mechanism underlying the widespread
convergence of aging and NCDs. The utility of validated, accessible
indices allows for early and precise risk stratification across varies
systems. The collective evidence strongly supports a paradigm shift
where future therapeutic research focuses not just on downstream
disease management, but on personalized strategies to restore insulin
sensitivity and interrupt the devastating cascade initiated by the
Eminence Grise. Bringing the hidden influence of IR into the light is
the first critical step toward mitigating the global burden of NCDs.
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Associations between non-
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in US adults: a cross-sectional
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Objective: This study investigated the associations between non-insulin-based
insulin resistance indices (METS-IR, TyG, TG/HDL, and TyG-BMI) and the risk of
diabetic nephropathy (DN) in US adults with diabetes mellitus (DM).

Methods: This study was based on the 1999-2018 National Health and Nutrition
Examination Survey (NHANES) database and included 6,891 patients with DM for
cross-sectional analysis. Multivariate adjusted models and restricted cubic spline
(RCS) models were employed to assess the association between the insulin
resistance index and the risk of DN. Subgroup analyses were conducted to
explore the impact of different population characteristics.

Results: The results indicated that higher quartiles of METS-IR, TyG, TG/HDL, and
TyG-BMI were associated with a significantly increased risk of DN. After adjusting
for multiple covariates, including gender, age, and race, the associations between
these indices and the risk of DN remained significant, with corresponding odds
ratios (ORs) of 1.51 (95% confidence interval [Cl]: 1.29-1.76), 2.06 (95% Cl: 1.77-
2.40), 1.61 (95% Cl: 1.38-1.88), and 1.57 (95% Cl: 1.35-1.84), with all P-values less
than 0.001. RCS analysis indicated a nonlinear relationship between these indices
and the risk of DN. The TyG index exhibited a highly consistent association with
the risk of DN in all models.

Conclusion: Non-insulin-based insulin resistance indices are significantly
associated with the risk of DN. The TyG index is a superior tool for assessing
the risk of DN. These indices can assist in identifying patients at risk of DN,
thereby enabling the implementation of more effective preventive and
therapeutic strategies.

insulin resistance, non-insulin-based, diabetic nephropathy, diabetes mellitus, NHANES
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1 Introduction

Diabetes mellitus (DM), a prevalent metabolic disease with a
worrisome global epidemic, is a significant public health concern (1).
It is projected that the total number of individuals with diabetes
worldwide will reach 780 million by 2045, a figure that represents a
substantial threat to human health and well-being. Concurrently, the
global prevalence of kidney disease is considerable, affecting
approximately 850 million individuals. Chronic kidney disease
(CKD) represents the predominant form of kidney disease, with a
global prevalence of 9.1% (2). Although the onset and progression of
CKD are influenced by various factors, including impaired fasting
glucose, hypertension, high body mass index (BMI), a high-sodium
diet, and a high-lead diet, DM is undoubtedly one of the most
significant contributing factors (2). It is noteworthy that
approximately 40% of patients with DM develop diabetic
nephropathy (DN), which represents the most common and severe
complication of DM (3-6). The principal clinical manifestations of
DN include a significant reduction in glomerular filtration rate
(GFR), abnormally elevated urinary albumin levels, and symptoms
of hypertension. These pathophysiologic changes may eventually lead
to end-stage renal disease (ESRD) (3, 7-9). Statistical analysis
indicates that patients with DN exhibit a markedly elevated risk of
all-cause mortality, reaching up to approximately 30 times that of
diabetic patients without DN (10). This underscores the significant
role of DN as a contributor to diabetes-related mortality (11).
Consequently, it is paramount to identify and clarify the risk
factors associated with DN to prevent its occurrence, delay its
progression, and improve the quality of life of those affected.

Insulin resistance (IR) is defined as a reduction in cellular
sensitivity to insulin, which results in a decline in the effectiveness
of insulin in facilitating glucose uptake and utilization. Further
research has demonstrated that insulin resistance plays a central
role in the pathogenesis of diabetes and that its association with DN is
also receiving increasing attention (12-14). Specifically, insulin
resistance contributes to DN’s progression through various
biological mechanisms, including exacerbating renal hemodynamic
disturbances, impairing podocyte function, inhibiting normal tubular
function, and promoting glomerular hypertrophy and
tubulointerstitial fibrosis (15, 16). Furthermore, several clinical
studies have demonstrated that the severity of insulin resistance is
strongly associated with increased microalbuminuria and
significantly reduced glomerular filtration rate (eGFR) in diabetic
patients (17-19). These findings collectively indicate that insulin
resistance plays a pivotal role in the pathogenesis of DN and
represents a critical link in the complex chain of this disease.

The hyperinsulin-normoglycemic clamp method (HEC) is the
gold standard for assessing IR. However, despite its status as the gold
standard, the HEC has not gained widespread acceptance in practical
applications due to its high cost and complex procedure (20, 21).
Furthermore, the homeostasis model assessment of insulin resistance
(HOMA-IR) index, another frequently utilized method for assessing
IR, presents similar challenges (20, 22). The high cost of plasma
insulin or C-peptide measurements, coupled with the need for more
standardization in clinical practice, has constrained the adoption of
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the HOMA-IR index. This is particularly the case for diabetic
patients, as most of them are treated with insulin, making accurate
measurement of insulin difficult, thus compromising the accuracy of
the HOMA-IR index (22). Moreover, the HOMA-IR cannot reflect
the intricate dynamic relationship between glucose and insulin
metabolism. This is because it is based on a single point in time
and is therefore unable to capture the dynamic changes in the
glucose-insulin feedback system fully (23). Consequently,
developing more efficient, economical, and accurate IR assessment
methods is significant for clinical practice and scientific research.

To more accurately assess and manage IR in diabetic patients,
researchers have developed a series of non-insulin-based IR indices,
such as the metabolic insulin resistance score (METS-IR), the
triglyceride-glucose (TyG), triglyceride-to-high-density lipoprotein
cholesterol ratio (TG/HDL-C), and the triglyceride-glucose body
mass index (TyG-BMI), etc. METS-IR is an emerging method for
assessing IR with the added benefit of evaluating an individual’s
cardiometabolic risk (24, 25). It is calculated based on a series of
standardized measurements, including fasting plasma glucose (FPG),
triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and
BML. Studies have demonstrated that METS-IR is as effective as the
classic HOMA-IR index in assessing IR levels, and in some cases, it
outperforms it (26). The TyG index, another innovative index for IR
assessment, combines triglyceride and FBG levels and has the
potential to serve as a reliable biomarker for IR (27). Notably, the
TyG index not only possesses higher sensitivity than traditional
homeostasis models but has also been confirmed by several studies
to be independently and significantly associated with the risk of DN
in individuals with decreased renal function (28), especially in
individuals with type 2 diabetes mellitus (T2DM) (29, 30).
Furthermore, the ability of the TyG index to predict DN is even
better than that of the HOMA-IR index (29, 31). Moreover, a high
TyG index has been demonstrated to be positively correlated with the
risk of ESRD, further underscoring its pivotal role in predicting renal
complications in diabetes (14). TG/HDL-C has garnered considerable
attention as a straightforward predictor of IR. Previous studies have
demonstrated that this ratio is not only strongly associated with IR
status but also positively correlated with diabetes risk (32, 33). The
ability of the TG/HDL-C ratio to predict the onset of diabetes is
particularly significant when the ratio exceeds 0.35 (34). Finally, TyG-
BM]I, as a complement and extension of TyG, also demonstrated a
high degree of correlation with IR, providing an additional reliable
option for IR assessment (35).

In the current field of research on non-insulin-based IR indices
and the risk of DN in patients with DM, although there is a wealth
of research on the association between the TyG index and DN, there
is a lack of in-depth exploration of the relationship between the
METS-IR, TG/HDL, and TyG-BMI and DN. Furthermore, the
majority of these studies have focused on Asian populations. In
light of the limitations above, the primary objective of this study was
to investigate the potential association between non-insulin-based
insulin resistance indices and the development of DN among
diabetic patients in the context of the U.S. population. This study
aims to employ a big data-driven analytic strategy to clearly define
and validate the efficacy and value of different IR indices in
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predicting and assessing the risk of DN. Furthermore, to construct a
more comprehensive understanding framework, this study will
examine the intricate interactions between these IR indices and
potential influencing factors, including age, gender, demographic
characteristics, lifestyle habits, and coexisting chronic diseases. This
will facilitate the elucidation of the multidimensional mechanisms
of IR in developing DN.

2 Materials and methods
2.1 Research participants

All data for this study were obtained from the 1999-2018
National Health and Nutrition Examination Survey (NHANES)
database. This database contains the results of cross-sectional
surveys conducted every two years by the Centers for Disease
Control and Prevention (CDC). The research protocol of the
NHANES project strictly followed the guidelines of the Ethics
Review Committee of the National Center for Health Statistics
(NCHS). It ensured that all participants signed an informed consent
form. Furthermore, during the data analysis phase, NIH policy
regulations were followed. Given the anonymity and non-direct
contact nature of the data, it was used directly in the study without
needing additional ethical review. The study adhered rigorously to
the standards set forth by the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) initiative,
ensuring the highest quality in study design and reporting.

At the study’s outset, a sample population was drawn from ten
consecutive survey cycles, resulting in 101,316 participants. To
ensure the accuracy and relevance of the study results, we
implemented a rigorous data cleaning and exclusion process to
exclude ineligible participants. These exclusions included
individuals under the age of 20, non-diabetic patients, pregnant
females, and those with missing data, particularly on demographic
characteristics, chronic disease status, biomarkers related to IR, and
diagnostic indicators of DN. Following the implementation of a
rigorous screening process, 6,891 eligible participants were
identified for analysis in this study (Figure 1).

2.2 Definition of disease

The following criteria were employed to define DM in this
study: (1) a precise diagnosis by a healthcare professional, (2) FPG
at or above the threshold of 126 mg/dl, (3) glycosylated hemoglobin
(HbA1c) level of not less than 6.5%, and (4) the individual was
receiving diabetic medication or insulin therapy. We employed two
core indicators to assess renal function: the urine albumin-to-
creatinine ratio (UACR) and the eGFR. The eGFR was calculated
according to the recommended formula by the Collaborative Group
on Epidemiology of Chronic Kidney Disease (CKD-EPI). To
diagnose DN, we employed the internationally recognized criteria,
which stipulate that a UACR value of not less than 30 mg/g or an
eGER value of less than 60 mL/min/1.73 m* must be met.
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2.3 Assessment of the non-insulin-based
IR indices

To ensure the accuracy and reliability of the results, we employ
the following scientifically validated formulas in the assessment of IR:

METS-IR is calculated by the formula Ln[2 x FPG(mg/dl) + TG
(mg/dl)] x BMI(kg/m?)/Ln[HDL-C(mg/dl)] (24). TyG is calculated
by the formula Ln[TG(mg/dl) x FPG(mg/dl)/2] (27). TG/HDL-C is
calculated by dividing the TG (mg/dL) by the HDL-C (mg/dL) (36).
TyG-BMI is calculated by the formula TyG xBMI(kg/m?) (35).

All biochemical measurements were conducted after a
minimum of 8.5 hours of fasting, utilizing an automated
biochemical analyzer to guarantee the precision of the data. FPG,
TG, and HDL-C concentrations were measured in strict accordance
with standard operating procedures. Meanwhile, BMI was
calculated as a standardized body mass indicator by dividing
weight (kg) by the square of height (m).

2.4 Covariate assessment

To ascertain the association between the IR Index and DN, we
constructed multivariate adjustment models to resolve the potential
impact of confounding variables on this relationship. The covariates
included in this study were gender, age, race, education, marital status,
household economic status, alcohol intake, smoking behavior,
physical activity level, and a history of a range of important chronic
diseases, including hypertension, coronary heart disease (CHD),
stroke, and cancer. Race was classified as Mexican American, Non-
Hispanic White, Non-Hispanic Black, and Other Race. The sample
was divided into three educational attainment categories based on the
years of education completed: less than 9th grade, 9th through 12th
grade, and more than 12th grade. Marital status was simplified into
two categories: cohabitation and solitude. This was done to explore the
role of family structure factors. To categorize household economic
status, income was carefully divided into three intervals based on the
Poverty-to-Income Ratio (PIR) criterion, as officially defined by the
U.S. government. These intervals were designated as low (PIR <1.3),
medium (PIR > 1.3 to <3.5), and high (PIR > 3.5). This study assessed
smoking and drinking habits using standardized assessment methods.
Smoking status was defined based on whether the participant had
smoked more than 100 cigarettes in their lifetime and whether they
were a current smoker. Alcohol consumption was assessed by asking
whether the participant had consumed at least 12 alcoholic beverages
of any type in the past year. Physical activity was classified into three
categories: vigorous, moderate, and inactive. A comprehensive
medical history was obtained for each participant, encompassing
hypertension, CHD, stroke, and cancer. For hypertension,
participants were queried as to whether they had ever been
informed by a medical professional that they had hypertension or
were currently taking medication for it. For CHD, participants were
asked whether they had ever been diagnosed with the condition,
whether they had experienced angina or a heart attack, or whether
they were currently undergoing treatment for it. Similarly, participants
were asked whether they had ever been informed by a medical
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Participants from NHANES 1999-2018
N=101316
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Excluded:
Age <20 years, N=46235

Eligible participants, N=55081

Y

Excluded:
Without diabetes mellitus, N=45348

Eligible participants, N=9733

Y

Excluded:
Pregnant participants, N=44

Eligible participants, N=9689

Total 2798 particip

BMI, N=630; HDL-c, N=434; FPG, N=42; TG, N=6;
Creatinine, N=3; UACR, N=193; Marital Status, N=53;
Education Level, N=7; Alcohol, N=650; Smoke, N=7;
Family PIR, N=664; Physical Activity, N=14;

CHD, N=70; Stoke, N=14; Cancer, N=11.

with missing data excluded:

Final included participants, N=6891

FIGURE 1

Participant screening flowchart. BMI, Body mass index; HDL-c, High density lipoprotein cholesterol; FPG, Fasting plasma-glucose; TG, Triglyceride;
UACR, Urinary albumin/creatinine ratio; PIR, Poverty-to-income ratio; CHD, Coronary heart disease.

professional that they had experienced a stroke. Finally, participants
were queried as to whether they had ever been diagnosed with cancer.

2.5 Statistical analysis

For continuous variables, the Shapiro-Wilk test was employed
to verify the normality of the data. Based on the test results, the
mean + standard deviation or median (25th and 75th percentile)
was selected to characterize the variables according to their normal
distribution. One-way analysis of variance (ANOVA) or Kruskal-
Wallis nonparametric tests were employed to assess the existence of
statistically significant differences between groups concerning the
distribution characteristics of the variables in question. Categorical
variables were presented as frequencies and percentages, and the
chi-square test was employed to analyze differences between groups.

To gain insight into the intricate relationship between IR indices and
DN, we constructed logistic regression models to assess the impact of
each index and its quartiles on the risk of DN. This was accomplished by
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estimating the ratio of ratios (ORs) and their 95% confidence intervals
(CIs). Three levels of multivariate-adjusted models were gradually built
to eliminate the potential interference of confounding variables. Model 1
served as the baseline without any adjustment. Model 2 incorporated
essential demographic characteristics such as age, gender, and race.
Model 3 further introduced educational attainment, marital status,
family PIR, smoking and drinking habits, level of physical activity, and
history of chronic diseases such as hypertension, CHD, stroke, and
cancer as adjustment variables to enhance the explanatory power and
predictive accuracy of the model.

To ascertain the existence of a potential nonlinear dose-
response relationship between the IR indices and DN, a restricted
cubic spline (RCS) model was employed. In this model, the IR
indices were considered a continuous variable. Based on their
distributional properties, the 5th, 35th, 65th, and 95th percentiles
were selected as critical points for analysis. Should a nonlinear
association be observed, a likelihood ratio test was employed to
ascertain the critical point or threshold effect between the indices
and the risk of DN with greater precision.
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Furthermore, subgroup analyses were conducted to stratify the
participants based on variables such as gender, education, marital
status, family PIR, smoking and drinking habits, and the presence of
hypertension, CHD, stroke, and cancer. This was done to explore the
heterogeneity of the pattern of the association between IR index and
DN among subgroups with different characteristics. Through
interaction analysis, we evaluated the stability and consistency of
the association between IR index and DN risk within each subgroup.

Throughout the statistical analysis, the principle of a two-sided
test was followed, and a p-value of less than 0.05 was considered
statistically significant. All data analysis was conducted using the R
4.4.0 software (provided by the R Foundation at http://www.R-
project.org) in conjunction with the SPSS version 23.0 (IBM
Corporation, Armonk, New York, USA) statistical package.
Graphical presentations were generated using GraphPad Prism
version 9.0 (GraphPad Software, USA).

3 Results
3.1 Baseline characteristics

In this study, the baseline characteristics of 6,891 patients with DM
were analyzed. Of these, 2,660 were diagnosed with DN, and 4,231 were
not. The results of the statistical analysis indicated that, although there
was no significant difference in the distribution of gender between the
two groups (p = 0.183), there were statistically significant differences in
the age structure, ethnic composition, education level, marital status,
and family economic status (all p < 0.05). In particular, the DN patient
population exhibited a higher mean age, reaching 67 years, compared
to a mean age of 60 for non-DN patients. Non-Hispanic white and
black individuals comprised a significantly higher percentage of DN
patients compared to other racial groups. Regarding educational

TABLE 1 Baseline characteristics of participants with diabetes mellitus.

Total (n = 6891)

Variables

Non-DN (n = 4231)

10.3389/fendo.2024.1458521

attainment, a more significant proportion of patients with DN had
lower levels of education. The analysis of marital status revealed a
significantly higher proportion of patients with DN living alone. In
contrast, analysis of family economic status, as measured by the PIR,
showed that low income was more concentrated among individuals
with DN. Further analysis of lifestyle and health status revealed
significant differences between DN and non-DN patients in terms of
smoking, drinking habits, physical activity participation, and the
prevalence of multiple chronic diseases. The proportion of smokers
was higher in the group of DN patients, whereas the proportion of
alcohol consumers and those with a high level of physical activity were
relatively lower. Moreover, the prevalence of hypertension, CHD,
stroke, and cancer was significantly higher in patients with DN,
underscoring the complexity of the association between these
diseases. At the biochemical level, significant differences were
observed in FPG, HbAlc, total cholesterol (TC), TG, UACR, and
eGFR between patients with and without DN. These differences
directly reflected the impaired renal function and metabolic
abnormalities observed in patients with DN. Notably, BMI, HDL-C,
and specific IR indices such as METS-IR and TyG-BMI did not show
significant differences between the two groups (Table 1).

3.2 Relationships between IR indices
and DN

To investigate the relationships between METS-IR, TyG, TG/
HDL, TyG-BMI, and DN among diabetic patients, three analytic
models were constructed to assess potential confounding effects
comprehensively. The specific model setup was as follows: Model 1
did not include any adjustments. Model 2 incorporated gender, age,
and race as adjustment variables based on Model 1. Model 3 further
extended the adjustment to include educational attainment, marital

DN (n = 2660)

Gender, n (%) 0.183
Male 3679 (53.39) 2232 (52.75) 1447 (54.40)
Female 3212 (46.61) 1999 (47.25) 1213 (45.60)
Age (years) 62.00 (51.00, 71.00) 60.00 (48.00, 67.00) 67.00 (58.00, 76.00) <0.001
Race, n (%) <0.001
Mexican American 1386 (20.11) 874 (20.66) 512 (19.25)
Non-Hispanic White 2665 (38.67) 1547 (36.56) 1118 (42.03)
Non-Hispanic Black 1633 (23.70) 998 (23.59) 635 (23.87)
Other Race 1207 (17.52) 812 (19.19) 395 (14.85)
Education Level, n (%) <0.001
Less than 9th grade 1245 (18.07) 684 (16.17) 561 (21.09)
9-12th grade 1170 (16.98) 675 (15.95) 495 (18.61)

More than 12th grade 4476 (64.95)

2872 (67.88) 1604 (60.30)
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TABLE 1 Continued
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Variables Total (n = 6891) Non-DN (n = 4231) DN (n = 2660)
Marital Status, n (%) <0.001
Cohabitation 4170 (60.51) 2694 (63.67) 1476 (55.49)
Solitude 2721 (39.49) 1537 (36.33) 1184 (44.51)
Family PIR, n (%) <0.001
Low (<1.3) 2407 (34.93) 1407 (33.25) 1000 (37.59)
Medium (1.3-3.5) 2785 (40.42) 1654 (39.09) 1131 (42.52)
High (>3.5) 1699 (24.66) 1170 (27.65) 529 (19.89)
Smoke, n (%) 0.001
Yes 3532 (51.26) 2104 (49.73) 1428 (53.68)
No 3359 (48.74) 2127 (50.27) 1232 (46.32)
Alcohol, n (%) <0.001
Yes 4170 (60.51) 2635 (62.28) 1535 (57.71)
No 2721 (39.49) 1596 (37.72) 1125 (42.29)
Physical Activity, n (%) <0.001
Inactive 3266 (47.40) 1814 (42.87) 1452 (54.59)
Moderate 2233 (32.40) 1426 (33.70) 807 (30.34)
Vigorous 1392 (20.20) 991 (23.42) 401 (15.08)
Hypertension, n (%) <0.001
Yes 4302 (62.44) 2374 (56.11) 1928 (72.51)
No 2588 (37.56) 1857 (43.89) 731 (27.49)
Coronary heart disease, n (%) <0.001
Yes 675 (9.80) 292 (6.90) 383 (14.40)
No 6216 (90.20) 3939 (93.10) 2277 (85.60)
Stroke, n (%) <0.001
Yes 522 (7.58) 217 (5.13) 305 (11.47)
No 6369 (92.42) 4014 (94.87) 2355 (88.53)
Cancer, n (%) <0.001
Yes 953 (13.83) 512 (12.10) 441 (16.58)
No 5938 (86.17) 3719 (87.90) 2219 (83.42)
BMI (kg/mz) 30.82 (26.97, 35.97) 30.90 (27.10, 36.03) 30.70 (26.83, 35.87) 0.168
FPG (mg/dL) 131.00 (108.00, 168.00) 129.00 (107.00, 158.00) 136.00 (110.00, 188.00) <0.001
HbAlc (%) 6.70 (6.00, 7.80) 6.60 (5.90, 7.50) 6.90 (6.20, 8.20) <0.001
TC (mg/dL) 185.00 (157.00, 217.00) 187.00 (159.00, 217.00) 181.50 (153.00, 218.00) 0.002
TG (mg/dL) 155.00 (105.00, 233.00) 151.00 (103.00, 225.00) 163.00 (108.00, 246.00) <0.001
HDL-c (mg/dL) 45.00 (38.00, 55.00) 45.00 (39.00, 55.00) 45.00 (38.00, 55.00) 0.215
Creatinine (mg/dL) 0.90 (0.72, 1.10) 0.82 (0.70, 0.97) 1.09 (0.82, 1.36) <0.001
UACR (mg/g) 12.40 (6.50, 37.53) 8.26 (5.42, 13.73) 59.55 (27.54, 176.01) <0.001
eGFR (ml/min/1.73m2) 85.83 (66.53, 100.84) 92.09 (79.05, 104.17) 62.20 (48.87, 91.47) <0.001
METS-IR 49.98 (42.10, 59.52) 49.97 (42.04, 59.46) 49.99 (42.28, 59.75) 0.519
(Continued)
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TABLE 1 Continued
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Variables Total (n = 6891) Non-DN (n = 4231) DN (n = 2660)
TyG 9.24 (8.76, 9.80) 9.18 (8.72, 9.72) 933 (8.82, 9.91) <0.001
TG/HDL 337 (2.04, 5.78) 324 (1.97, 5.55) 3.64 (2.15, 6.09) <0.001
TyG-BMI 288.55 (247.46, 339.98) 288.62 (246.88, 337.89) 288.50 (248.42, 343.01) 0296

Data are shown as median (25th, 75th percentiles) or percentages, p <0.05 considered statistically significant.

DN, Diabetic nephropathy; PIR, Poverty-to-income ratio; BMI, Body mass index; FPG, Fasting plasma-glucose; HbAlc, Hemoglobin Alc; TC, Total cholesterol; TG, Triglyceride; HDL-c, High-
density lipoprotein cholesterol; UACR, Urinary albumin/creatinine ratio; eGFR, Estimated glomerular filtration rate; METS-IR, Metabolic Score for Insulin Resistance; TyG, Triglyceride-glucose;
TG/HDL, Triglyceride/High-density lipoprotein; TyG-BMI, Triglyceride glucose - body mass index.

status, family PIR, smoking habits, alcohol consumption status,
physical activity level, and history of chronic diseases such as
hypertension, CHD, stroke, and cancer. The analysis results
indicated that METS-IR, TyG, TG/HDL, and TyG-BMI were
significantly associated with the risk of DN. In particular, the
unadjusted model demonstrated no significant association
between METS-IR and DN. However, in Models 2 and 3, METS-
IR demonstrated a positive correlation with the risk of DN, with the
adjusted ORs remaining stable at 1.02 (95% CI: 1.01-1.02), with a p-
value of <0.001. This indicates that the gender, age, and race factors
significantly affect the relationship. In contrast, the TyG and TG/
HDL indices demonstrated a significant association with an
increased risk of DN in all models. Furthermore, the risk of DN
exhibited a notable increase with increasing levels of these indices.
TyG-BMI index did not demonstrate a significant association with

DN in the unadjusted model; the positive association with DN risk
became significant in both Model 2 and Model 3.

Further refinement of these associations through quartile
analyses revealed that the high quartile groups of METS-IR, TyG,
TG/HDL, and TyG-BMI were all at significantly elevated risk of
DN, corresponding to ORs of 1.51 (95% CI: 1.29-1.76), 2.06 (95%
CI: 1.77-2.40), 1.61 (95% CI: 1.38-1.88) and 1.57 (95% CI: 1.35-
1.84), with all p-values less than 0.001. These findings strongly
support the role of these IR indices as potential predictors of the
development of DN in diabetic patients (Table 2).

To investigate the nonlinear relationship between the non-
insulin-based IR indices and the risk of DN in diabetic patients,
we employed RCS modeling. After adjusting for several potential
confounding variables, including gender, age, race, education,
marital status, family PIR, smoking habits, drinking status,

TABLE 2 Relationship between METS-IR, TyG, TG/HDL, TyG-BMI, and DN in patients with diabetes mellitus in different models.

Model 1
OR (95%Cl)

Variables

OR (95%Cl)

Model 2 Model 3

OR (95%Cl)

METS-IR 1.00 (1.00 ~ 1.01) 0.344 1.02 (1.01 ~ 1.02) <0.001 1.01 (1.01 ~ 1.02) <0.001
Categories
Quartile 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Quartile 2 1.02 (0.89 ~ 1.17) 0.769 1.07 (0.92 ~ 1.23) 0.386 1.03 (0.89 ~ 1.20) 0.672
Quartile 3 0.99 (0.86 ~ 1.14) 0.888 1.22 (1.05 ~ 1.41) 0.008 1.12 (0.96 ~ 1.30) 0.136
Quartile 4 1.04 (0.91 ~ 1.19) 0.576 1.72 (1.48 ~ 2.01) <0.001 1.51 (1.29 ~ 1.76) <0.001
TyG 1.28 (1.20 ~ 1.36) <0.001 1.50 (1.40 ~ 1.60) <0.001 1.47 (1.37 ~ 1.58) <0.001
Categories
Quartile 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Quartile 2 1.03 (0.89 ~ 1.18) 0.685 1.06 (0.92 ~ 1.23) 0.432 1.06 (0.91 ~ 1.23) 0.475
Quartile 3 1.19 (1.03 ~ 1.36) 0.016 1.30 (1.12 ~ 1.50) <0.001 1.25 (1.07 ~ 1.45) 0.004
Quartile 4 1.60 (1.39 ~ 1.83) <0.001 2.13 (1.83 ~ 2.48) <0.001 2.06 (1.77 ~ 2.40) <0.001
TG/HDL 1.01 (1.01 ~ 1.02) 0.027 1.02 (1.02 ~ 1.03) <0.001 1.02 (1.01 ~ 1.03) <0.001
Categories
Quartile 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Quartile 2 1.10 (0.95 ~ 1.26) 0.194 1.13 (0.98 ~ 1.31) 0.092 1.10 (0.95 ~ 1.28) 0.200
Quartile 3 1.23 (1.07 ~ 1.41) 0.004 1.38 (1.19 ~ 1.60) <0.001 1.27 (1.09 ~ 1.48) 0.002
(Continued)
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TABLE 2 Continued

Variables Model 1 Model 2 Model 3
OR (95%Cl) OR (95%Cl) OR (95%Cl)
Quartile 4 1.34 (1.17 ~ 1.54) <0.001 1.75 (1.51 ~ 2.04) <0.001 1.61 (1.38 ~ 1.88) <0.001
TyG-BMI 1.00 (1.00 ~ 1.00) 0.177 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001
Categories
Quartile 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Quartile 2 1.05 (0.92 ~ 1.21) 0.454 1.08 (0.93 ~ 1.24) 0322 1.04 (0.90 ~ 1.21) 0.592
Quartile 3 0.95 (0.82 ~ 1.09) 0.439 1.16 (1.01 ~ 1.35) 0.042 1.08 (0.93 ~ 1.26) 0.294
Quartile 4 1.11 (0.96 ~ 1.27) 0.153 1.79 (1.54 ~ 2.09) <0.001 1.57 (1.35 ~ 1.84) <0.001

The bold values indicated statistically significant.

Model 1: crude.

Model 2: adjusted for Gender, Age, Race.

Model 3: adjusted for Gender, Age, Race, Education Level, Marital Status, Family PIR, Smoke, Alcohol, Physical Activity, Hypertension, Coronary heart disease, Stroke, Cancer.

DN, Diabetic nephropathy; METS-IR, Metabolic Score for Insulin Resistance; TyG, Triglyceride-glucose; TG/HDL, Triglyceride/High-density lipoprotein; TyG-BMI, Triglyceride glucose - body
mass index; OR, Odds ratio; CI, Confidence interval.

physical activity level, hypertension, CHD, stroke, and cancer, The = nonlinear 0.038, < 0.001, 0.001, 0.039, respectively). Further
analyses revealed that the four IR indices (METS-IR, TyG, TG/  threshold analyses were conducted to define inflection point
HDL, and TyG-BMI) were not only highly significant overall  values for each IR indices. The following values were identified:
correlations with DN risk (all p-values for overall < 0.001) but  49.98 for METS-IR, 9.24 for TyG, 3.37 for TG/HDL, and 288.55 for
also exhibited an evident nonlinear character (p-values for  TyG-BMI This finding is of particular significance, as it indicates

P for overall < 0.001 P for overall < 0.001
P for nonlinear = 0.038 P for nonlinear = 0.001

Odds ratio (95% CI)

0 0
20 40 60 50 100 120 8 9 10 i 12 13
METS-IR G
5 5
P for overall < 0.001 P for overall < 0.001
P for nonlinear < 0.001 P for nonlinear = 0.039
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FIGURE 2

Non-linear relationship of METS-IR (A), TyG (B), TG/HDL (C), TyG-BMI (D), and diabetic nephropathy. The solid purple line displays the odds ratio,
with the 95% confidence intervals represented by purple shading. They were adjusted for gender, age, race, education level, marital status, family
PIR, smoking, alcohol, physical activity, hypertension, coronary heart disease, stroke, and cancer. METS-IR, Metabolic Score for Insulin Resistance;
TyG, Triglyceride-glucose; TG/HDL, Triglyceride/High-density lipoprotein; TyG-BMI, Triglyceride glucose - body mass index; Cl, Confidence interval;
PIR, Poverty-to-income ratio.
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that when IR indices exceed these critical thresholds, the risk of DN
increases significantly as the index levels are further
elevated (Figure 2).

3.3 Subgroup analysis

To investigate the relationship between individual indices of IR
and DN in different subgroups, the analysis was stratified by gender,
education, marital status, family PIR, smoking, alcohol
consumption, hypertension, CHD, stroke, and cancer. The results
demonstrated that, when stratified using a cut-off value of 49.98, no
significant differences were observed between METS-IR levels and
the incidence of DN (all p > 0.05). Additionally, no significant
interactions were detected (all interaction p > 0.05), either when
comparing within subgroups or examining the interaction effect
across subgroups (Figure 3). The TyG index demonstrated a higher
prevalence of DN in individuals with TyG > 9.24 compared to those
with TyG < 9.24 in most subgroups, except subgroups with less than
9th-grade education, confirmed CHD, and confirmed cancer. Of
particular note, in the subgroup analysis of gender and smoking

10.3389/fendo.2024.1458521

habits, the correlation between TyG levels and DN risk was more
significant within the female subgroup and the nonsmoking
subgroup. Nevertheless, no significant interaction between TyG
and DN risk was observed in the other subgroups (all interaction
p > 0.05), as illustrated in Figure 4. For the TG/HDL ratio,
individuals with TG/HDL > 3.37 exhibited a heightened risk of
DN across a diverse range of subgroups, except males, individuals
below the 9th grade, those belonging to different PIR subgroups,
smokers, alcohol drinkers, those without hypertension, individuals
with confirmed coronary artery disease, individuals with confirmed
stroke, and individuals with confirmed cancer. Further analysis
revealed that within the specific subgroups of education and
smoking habits, the TG/HDL ratio was more strongly correlated
with the risk of DN in the highly educated subgroup and the
nonsmoking subgroup. No significant interaction effects were
observed within the remaining subgroups (all interaction p >
0.05), as illustrated in Figure 5. Finally, in terms of the TyG-BMI
index, individuals with a TyG-BMI >288.55 exhibited a lower
prevalence of DN in the female subgroup and the subgroup up to
the 9th grade compared to participants with a TyG-BMI <288.55
(all p < 0.05). In contrast, no significant differences were observed

Subgroup n (%) <49.98 >49.98 OR (95%CI) P P for interaction
All patients 6891 (100.00) 1328/3445  1332/3446 0.96 (0.87 ~ 1.06) I-é-l 0453
Gender E 0.700
Male 3679 (53.39)  731/1881 716/1798  0.99 (0.86 ~ 1.14) H:H 0.906
Female 3212 (46.61) 597/1564 616/1648  0.92(0.79 ~ 1.07) = 0.272
Education Level s 0.273
Less than 9th grade 1245 (18.07)  321/690 2407555 0.84 (0.66 ~ 1.06) I—-—H 0.145
9-12th grade 1170 (16.98)  236/566 259/604 1.05 (0.82 ~ 1.34) I—:-—| 0.686
More than 12th grade 4476 (64.95) 771/2189 833/2287 097 (0.86 ~ 1.11) Hl—i 0.697
Marital Status ] 0.225
Cohabitation 4170 (60.51)  714/2072 762/2098  1.00 (0.88 ~ 1.15) }—+—| 0.953
Solitude 2721(39.49) 614/1373 570/1348  0.89 (0.76 ~ 1.04) }—-—H 0.149
Family PIR i 0.157
Low (£1.3) 2407 (34.93)  480/1132 520/1275  0.91(0.77 ~ 1.08) e 0.267
Medium (1.3-3.5) 2785 (40.42)  591/1422 540/1363  0.90 (0.77 ~ 1.06) I—EH 0.212
High (>3.5) 1699 (24.66)  257/891 272/808 1.16 (0.93 ~ 1.44) H—'—i 0.181
Smoke | 0.857
Yes 3532(51.26) 693/1724 735/1808  0.97 (0.84 ~ 1.11) o 0.651
No 3359 (48.74)  635/1721 597/1638  0.95 (0.82 ~ 1.10) I—-E—I 0.485
Alcohol i 0370
Yes 4170 (60.51)  748/2066 787/2104  1.00 (0.87 ~ 1.14) I-H 0.974
No 2721(39.49)  580/1379 545/1342  0.92(0.78 ~ 1.08) = 0.298
Hypertension E 0.386
Yes 4302 (62.44)  918/2036 1010/2266  0.99 (0.87 ~ 1.12) I—-:—| 0.861
No 2588 (37.56)  409/1408 322/1180  0.91 (0.76 ~ 1.09) }—-w:-i 0.321
Coronary heart disease E 0.778
Yes 675 (9.80) 179/318 204/357 1.04 (0.75 ~ 1.44) - 0.820
No 6216 (90.20)  1149/3127  1128/3089 0.96 (0.86 ~ 1.07) I—-é-l 0.428
Stroke i 0818
Yes 522 (7.58) 154/259 151/263 0.90 (0.62 ~ 1.30) I—h:—| 0.580
No 6369 (92.42) 1174/3186  1181/3183 0.97 (0.87 ~ 1.08) o 0.551
Cancer E 0.871
Yes 953(13.83)  241/526 2007427 1.00 (0.76 ~ 1.31) |—+—{ 0.991
No 5938 (86.17)  1087/2919  1132/3019  0.96 (0.86 ~ 1.07) [t 0.466
1 1T 1

FIGURE 3
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Subgroup analysis of the relationship between METS-IR and diabetic nephropathy. Adjusted variables: gender, age, race, education level, marital
status, family PIR, smoking, alcohol, physical activity, hypertension, coronary heart disease, stroke, and cancer. The model was not adjusted for the
stratification variables themselves in the corresponding stratification analysis. METS-IR, Metabolic Score for Insulin Resistance; PIR, Poverty-to-

income ratio; OR, odds ratio; Cl, confidence interval.

Frontiers in Endocrinology

16

frontiersin.org


https://doi.org/10.3389/fendo.2024.1458521
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Zhang et al. 10.3389/fendo.2024.1458521
Subgroup n (%) <9.24 29.24 OR (95%CI) P P for interaction
All patients 6891 (100.00) 1205/3445 1455/3446  1.39 (1.25 ~ 1.54) s (| <.001
Gender i 0.039

Male 3679 (53.39)  659/1786 788/1893  1.24 (1.08 ~ 1.43) E = 0.002
Female 3212 (46.61)  546/1659 667/1553  1.60 (1.37 ~ 1.87) [ | <.001
Education Level ! 0.186
Less than 9th grade 1245 (18.07)  242/554 319/691 1.18 (0.93 ~ 1.49) H—l—! 0.175
9-12th grade 1170 (16.98)  215/565 280/605 1.49 (1.17 ~ 1.91) E F—=——  0.001
More than 12th grade 4476 (64.95) 748/2326 856/2150  1.43(1.26 ~ 1.64) E = <.001
Marital Status ! 0.938
Cohabitation 4170 (60.51)  651/2052 825/2118  1.39(1.21 ~ 1.59) E = <.001
Solitude 2721 (39.49)  554/1393 630/1328 140 (1.19 ~ 1.65) 3 = <.001
Family PIR | 0.825
Low (£1.3) 2407 (34.93)  412/1106 588/1301  1.41 (1.18 ~ 1.67) | <.001
Medium (1.3-3.5) 2785 (40.42)  533/1422 598/1363  1.42 (1.21 ~ 1.67) E = <.001
High (>3.5) 1699 (24.66)  260/917 269/782 1.27 (1.02 ~ 1.58) El—'—i 0.032
Smoke E 0.009
Yes 3532(51.26) 648/1699 780/1833  1.21 (1.05 ~ 1.40) i 0.008
No 3359 (48.74)  557/1746 675/1613  1.63 (1.40 ~ 1.90) E = <.001
Alcohol i 0.843
Yes 4170 (60.51)  689/2078 846/2092  1.35(1.18 ~ 1.55) E = <.001
No 2721 (39.49) 516/1367 609/1354  1.43 (1.22 ~ 1.69) | <.001
Hypertension E 0.225
Yes 4302 (62.44)  882/2189 1046/2113  1.45(1.27 ~ 1.64) E =i <.001
No 2588 (37.56)  322/1255 409/1333  1.28 (1.07 ~ 1.53) EI—-I—| 0.007
Coronary heart disease E 0.161
Yes 675 (9.80) 185/333 198/342 1.16 (0.84 ~ 1.60) = 0.382
No 6216 (90.20)  1020/3112 1257/3104  1.42(1.28 ~ 1.59) E = <.001
Stroke i 0.672
Yes 522 (7.58) 145/269 160/253 1.52 (1.05 ~ 2.21) El——-—> 0.028
No 6369 (92.42)  1060/3176 1295/3193  1.38 (1.24 ~ 1.54) e <.001
Cancer E 0.142
Yes 953 (13.83) 226/511 215/442 1.15 (0.88 ~ 1.51) H—-—| 0.311
No 5938 (86.17)  979/2934 1240/3004  1.44 (1.29 ~ 1.61) | <.001
1T 1T 1
0 1 1.5 2
FIGURE 4

Subgroup analysis of the relationship between TyG and diabetic nephropathy. Adjusted variables: gender, age, race, education level, marital status,
family PIR, smoking, alcohol, physical activity, hypertension, coronary heart disease, stroke, and cancer. The model was not adjusted for the
stratification variables themselves in the corresponding stratification analysis. TyG, Triglyceride-glucose; PIR, Poverty-to-income ratio; OR, odds

ratio; Cl, confidence interval.

between TyG-BMI levels and DN prevalence in any of the
remaining subgroups (all p > 0.05). Notably, in the subgroup
analysis stratified by education, the low-education subgroup
exhibited a higher correlation between TyG-BMI and DN risk.
Similarly, no significant interactions were found within the
remaining subgroups (all interactions p > 0.05), as shown
in Figure 6.

4 Discussion

The objective of this study was to investigate the association
between non-insulin-based IR indices (METS-IR, TyG, TG/HDL,
and TyG-BMI) and DN through a cross-sectional analysis of 6,891
U.S. adults with DM from the NHANES 1999-2018 database. The
findings indicated that individuals in the highest quartiles of METS-
IR, TyG, TG/HDL, and TyG-BMI exhibited a markedly elevated
risk of developing DN. After adjusting for multiple covariates,
including gender, age, and race, this association remained
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significant and demonstrated a nonlinear relationship. These
findings further confirm the importance of IR in the pathogenesis
of DN and provide a potential assessment tool for the non-insulin-
based IR indices in the prevention and management of DN.

IR is not only a core pathophysiologic feature of diabetes, but it
also plays a pivotal role in the development and progression of DN
(19, 37). IR contributes to the development of DN through a variety
of biological pathways, including increased inflammatory response
(38, 39), oxidative stress (40, 41), endothelial dysfunction (42, 43),
and the promotion of accumulation of extracellular matrix (44),
which collectively leads to alterations in renal structure and
function. In the progression of DN, IR may contribute to
glomerulosclerosis by increasing the filtration pressure in the
kidney, leading to glomerular hyperfiltration (18, 45).
Furthermore, IR has been linked to the dysfunction of podocytes,
a crucial component of the glomerular filtration membrane (46, 47).
Podocyte injury can result in the development and progression of
proteinuria. Concurrently, hyperinsulinemia in the IR state may
facilitate the proliferation and fibrosis of renal cells through the
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Subgroup n (%) <3.37 >3.37 OR (95%CI) P P for interaction
All patients 6891 (100.00) 1247/3445 1413/3446  1.19 (1.07 ~ 1.32) 3|—-—| 0.001
Gender i 0.581

Male 3679 (53.39) 611/1646 836/2033  1.15(0.99 ~ 1.32) !—'—1 0.060
Female 3212 (46.61)  636/1799 577/1413  1.24(1.06 ~ 1.44) = 0.007
Education Level ! 0.010
Less than 9th grade 1245 (18.07)  266/573 295/672 0.89 (0.70 ~ 1.13) I—l—f—| 0.342
9-12th grade 1170 (16.98)  219/571 276/599 1.45(1.13~ 1.87) E —=— 0.004
More than 12th grade 4476 (64.95) 762/2301 842/2175  1.22(1.07 ~ 1.39) El—'—i 0.004
Marital Status ! 0919
Cohabitation 4170 (60.51)  658/2011 818/2159  1.17(1.02 ~ 1.34) I’—-—| 0.027
Solitude 2721 (39.49) 589/1434 595/1287  1.21(1.02 ~ 1.42) 3'_'_| 0.025
Family PIR E 0.767
Low (£1.3) 2407 (34.93)  434/1107 566/1300  1.17 (0.98 ~ 1.40) = 0.079
Medium (1.3-3.5) 2785 (40.42)  549/1411 582/1374  1.16 (0.99 ~ 1.37) ‘—l—i 0.068
High (>3.5) 1699 (24.66)  264/927 265/772 1.22 (0.98 ~ 1.52) E—-—{ 0.081
Smoke 3 0.030
Yes 3532(51.26) 641/1632 787/1900  1.07 (0.93 ~ 1.23) e 0.356
No 3359 (48.74)  606/1813 626/1546  1.34 (1.15 ~ 1.56) E = <.001
Alcohol i 0380
Yes 4170 (60.51)  711/2046 824/2124  1.12 (0.98 ~ 1.29) DE—-—{ 0.096
No 2721 (39.49) 536/1399 58971322 1.28 (1.08 ~ 1.51) | 0.004
Hypertension E 0.253
Yes 4302 (62.44)  903/2175 1025/2127  1.24(1.09 ~ 1.41) i = 0.001
No 2588 (37.56)  343/1269 388/1319  1.09 (0.91 ~ 1.30) HH 0.363
Coronary heart disease i 0472
Yes 675 (9.80) 168/306 215/369 1.12 (0.81 ~ 1.55) |—E'—| 0.505
No 6216 (90.20)  1079/3139 1198/3077 1.20(1.07 ~ 1.34) EI—-—| 0.002
Stroke i 0539
Yes 522 (7.58) 129/237 176/285 1.30 (0.89 ~ 1.88) H—'—i 0.174
No 6369 (92.42)  1118/3208 1237/3161  1.17 (1.05 ~ 1.31) 1= 0.004
Cancer E 0.443
Yes 953 (13.83) 221/497 2207456 1.10 (0.84 ~ 1.45) I—f—-—I 0.481
No 5938 (86.17)  1026/2948 1193/2990 1.21 (1.08 ~ 1.35) i 0.001
1T 1T 1
0 1 1.5 2
FIGURE 5

Subgroup analysis of the relationship between TG/HDL and diabetic nephropathy. Adjusted variables: gender, age, race, education level, marital
status, family PIR, smoking, alcohol, physical activity, hypertension, coronary heart disease, stroke, and cancer. The model was not adjusted for the
stratification variables themselves in the corresponding stratification analysis. TG/HDL, Triglyceride/High-density lipoprotein; PIR, Poverty-to-income

ratio; OR, odds ratio; Cl, confidence interval.

activation of signaling pathways, including JAK/STAT, MAPK, and
PI3K/Akt (48-51).

This study revealed significant associations between all four non-
insulin-based IR indices (METS-IR, TyG, TG/HDL, and TyG-BMI)
and the risk of DN. This finding supports the notion that IR is a
critical factor in the pathogenesis of DN. Of particular interest is that
the TyG index demonstrated a highly consistent association with DN
risk across all analyzed models. This result echoes several previous
studies and further solidifies the utility and validity of the TyG index
as a DN risk assessment tool. Several studies have confirmed the
strong association between the TyG index and albuminuria (30, 52).
In patients with T2DM, the TyG index was associated with DN
independently of other factors, demonstrating a superior ability to
identify DN compared with the traditional HOMA-IR index (29, 30).
Furthermore, the METS-IR, TG/HDL, and TyG-BMI indices showed
significant correlations with DN risk in the adjusted model. Notably,
while all these indices of IR demonstrated potential in predicting the
risk of DN, the evaluation of their predictive value varied somewhat
across studies. For instance, one study in a rural Chinese population
observed that a high METS-IR score was associated with an increased

Frontiers in Endocrinology

risk of mild decline and rapid deterioration of renal function (13). In
contrast, in patients with a primary diagnosis of T2DM, the risk of
DN increased with elevated TyG index and TyG-BMI. However, the
efficacy in diagnosing DN was relatively low (53). Furthermore, a
retrospective analysis of 521 patients with T2DM showed that among
the four metrics for assessing IR, the TyG index, in conjunction with
the TG/HDL ratio, exhibited the most significant predictive effect,
followed by the METS-IR. In contrast, the TyG-BMI exhibited a
relatively weak effect (54). The TyG index demonstrated the strongest
association with DN risk in the present study, followed by the TG/
HDL ratio. In contrast, the METS-IR and TyG-BMI indices exhibited
relatively inferior performance. These findings reflect the differential
performance of different IR indices in specific populations and
emphasize the need to comprehensively consider multiple factors
in clinical applications and research to develop more accurate risk
assessment and intervention strategies.

Furthermore, it is essential to acknowledge that many factors,
including genetic predisposition (55, 56), environmental exposures
(57), lifestyle, and comorbidities (58), influence the relationship
between IR and DN. The subgroup analyses conducted in this study
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Subgroup n (%) < 288.55 > 288.55 OR (95%CI) P P for interaction
All patients 6891 (100.00) 1331/3445 1329/3446  0.96 (0.87 ~ 1.07) }-:-{ 0.463
Gender ; 0.106
Male 3679(53.39)  768/1999 679/1680 1.05(0.92~ 1.21) I—i-—i 0.469
Female 3212(46.61)  563/1446 650/1766  0.86 (0.74 ~ 1.00) = 0.046
Education Level i 0.031
Less than 9th grade 1245(18.07)  332/696 229/549 0.75 (0.59 ~ 0.95) l—l—li 0.016
9-12th grade 1170(16.98)  238/570 257/600 1.03(0.81~1.32) I—:-—| 0.792
More than 12th grade 4476 (64.95)  761/2179 843/2297 1.01(0.89~ 1.15) I—I5—| 0.861
Marital Status | 0.094
Cohabitation 4170(60.51)  722/2093 754/2077  1.03(0.90 ~ 1.18) I-‘p—| 0.663
Solitude 2721(39.49)  609/1352 575/1369  0.86(0.73 ~ 1.01) I—-—i 0.060
Family PIR 0.093
Low (£1.3) 2407 (34.93)  488/1158 512/1249 091 (0.77 ~ 1.08) I—iw:-l 0.288
Medium (1.3-3.5) 2785(40.42)  587/1400 544/1385  0.89(0.76 ~ 1.04) e 0.136
High (>3.5) 1699 (24.66)  256/887 273/812 1.20(0.96 ~ 1.49) }:_._{ 0.105
Smoke i 0.857
Yes 3532(51.26)  715/1774 713/1758 096 (0.84 ~ 1.11) I—I:—| 0.605
No 3359 (48.74)  616/1671 616/1688  0.95(0.82~ 1.11) I—-%—{ 0.532
Alcohol i 0.060
Yes 4170(60.51)  751/2091 784/2079  1.04(0.91~ 1.19) l—I’l—{ 0.524
No 2721(39.49)  580/1354 545/1367  0.86(0.73 ~ 1.01) l—-—a 0.066
Hypertension i 0.204
Yes 4302(62.44)  907/2011 102172291 1.00(0.88 ~ 1.14) I-:o—i 0.973
No 2588(37.56)  423/1433 308/1155  0.89(0.74 ~ 1.07) = 0.214
Coronary heart disease i 0.624
Yes 675 (9.80) 187/334 196/341 1.07(0.77 ~ 1.48) I—:‘-—i 0.695
No 6216(90.20)  1144/3111 1133/3105  0.96 (0.86 ~ 1.07) I-:-{ 0.417
Stroke i 0.349
Yes 522(7.58) 158/260 147/262 0.79(0.54 ~ 1.14) l—'—i—l 0.208
No 6369 (92.42)  1173/3185 1182/3184 0.98 (0.88 ~ 1.09) - 0.717
Cancer i 0.856
Yes 953 (13.83) 241/518 200/435 0.95(0.72~ 1.25) I—Ii—l 0.705
No 5938 (86.17)  1090/2927 1129/3011  0.97(0.87 ~ 1.08) (sl 0.575
1 1 1

FIGURE 6

-
Non-DN DN

Subgroup analysis of the relationship between TyG-BMI and diabetic nephropathy. Adjusted variables: gender, age, race, education level, marital
status, family PIR, smoking, alcohol, physical activity, hypertension, coronary heart disease, stroke, and cancer. The model was not adjusted for the
stratification variables themselves in the corresponding stratification analysis. TyG-BMI, Triglyceride glucose - body mass index; PIR, Poverty-to-

income ratio; OR, odds ratio; Cl, confidence interval.

demonstrated the impact of various demographic characteristics,
lifestyle habits, and chronic disease histories on the relationship
between IR and DN. For instance, the correlation between the TyG
index and the risk of DN was more pronounced in the female and
nonsmoking subgroups. This may be attributed to disparate
patterns of insulin sensitivity or insulin secretion in women and
nonsmokers (59, 60). Furthermore, the association between TyG-
BMI and DN risk was more pronounced in the less educated
subgroup. This may be attributed to lower socioeconomic status
and health literacy, influencing patients’ lifestyle and healthcare
access (61). These findings indicate that socioeconomic status,
lifestyle, and personal behavior may affect the relationship
between IR and DN. It is crucial to consider the specificity of
different population subgroups when developing prevention and
management strategies for DN.

Non-insulin-based IR indices (METS-IR, TyG, TG/HDL, and
TyG-BMI) offer significant advantages over traditional methods of
assessing IR (HEC and HOMA-IR) (26, 31, 33, 53). Firstly, these
novel indices do not necessitate the direct measurement of insulin
levels, which confers them an advantage in cost and operational
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complexity. The high cost of insulin or C-peptide measurements, the
necessity for specific laboratory equipment and specialized personnel,
and the availability of these resources in resource-limited settings
limit the widespread use of these measurements in such settings.
Second, non-insulin-based indices are straightforward to calculate
and rely solely on routine biochemical markers, such as FPG, TG,
HDL-C, and BMI, which can typically be measured in a standard
clinical laboratory (62). This simplicity renders these indices more
suitable for large-scale epidemiological studies and routine clinical
practice. Moreover, as these indices are not dependent on insulin
measurements, they are instrumental in patients with diabetes,
especially those on insulin therapy. In patients receiving exogenous
insulin, elevated insulin levels may not accurately reflect IR status, as
the use of insulin may confound insulin sensitivity (22). Furthermore,
the non-insulin-based indices’ capacity to reflect many dimensions of
IR, including the severity of IR and its correlation with cardiovascular
disease risk, contributes to a more comprehensive evaluation of the
overall health status of diabetic patients (63-68). Finally, the practical
value of these indices in predicting and assessing the risk of DN has
been confirmed by previous studies and the present study. They may
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be advantageous in the early identification of high-risk patients,
facilitating timely preventive and interventional measures.

The principal strength of this study lies in the utilization of a
comprehensive, nationally representative database, NHANES,
which encompasses a diverse array of population characteristics,
thereby ensuring the generalizability and reliability of the findings.
Second, we adjusted for confounding variables to obtain more
plausible results. Furthermore, multiple indices of non-insulin-
based IR were employed in this study, and detailed subgroup
analyses were conducted to assess these indices’ association with
DN comprehensively. Nevertheless, it should be noted that this
study has limitations. First, as this was a cross-sectional study, it was
impossible to determine whether the observed associations were
causal. Second, although we considered several potential
confounding variables, there may still be unconsidered variables,
such as genetic factors and polymorphisms, which may impact the
results. Future studies could further explore the impact of these
factors on the association between IR and DN. Furthermore, the
study was conducted primarily on a U.S. population, and the results
may not be generalizable to other racial or regional groups.

5 Conclusion

In conclusion, the present study investigated the complex
associations between non-insulin-based IR indices (METS-IR,
TyG, TG/HDL, and TyG-BMI) and the risk of DN. The results
demonstrated that all of these indices were significantly correlated
with the risk of DN, with the most significant correlation being that
of the TyG index. This finding highlights the potential application
of these IR indices in the prevention and management of DN. It
provides clinicians with a more accurate risk identification and
management tool, which is expected to optimize the individualized
treatment plan for DN patients. Future studies should further
explore the application of these indices in different populations
and evaluate their role in the early diagnosis and treatment of DN.
In the meantime, further longitudinal studies are required to
ascertain the causal relationship between these indices and DN.
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Genetically predicted brain
cortical structure mediates
the causality between
insulin resistance and
cognitive impairment

Chaojuan Huang", Yuyang Zhang?, Mingxu Li*, Qiuju Gong",
Sigi Yu?, Zhiwei Li*, Mengmeng Ren?, Xia Zhou,

Xiaoqun Zhu ®** and Zhongwu Sun @**

‘Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei,
Anhui, China, ?2Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei,
Anhui, China

Background: Insulin resistance is tightly related to cognition; however, the causal
association between them remains a matter of debate. Our investigation aims to
establish the causal relationship and direction between insulin resistance and
cognition, while also quantifying the mediating role of brain cortical structure in
this association.

Methods: The publicly available data sources for insulin resistance (fasting insulin,
homeostasis model assessment beta-cell function and homeostasis model
assessment insulin resistance, proinsulin), brain cortical structure, and cognitive
phenotypes (visual memory, reaction time) were obtained from the MAGIC,
ENIGMA, and UK Biobank datasets, respectively. We first conducted a
bidirectional two-sample Mendelian randomization (MR) analysis to examine
the susceptibility of insulin resistance on cognitive phenotypes. Additionally, we
applied a two-step MR to assess the mediating role of cortical surficial area and
thickness in the pathway from insulin resistance to cognitive impairment. The
primary Inverse-variance weighted, accompanied by robust sensitivity analysis,
was implemented to explore and verify our findings. The reverse MR analysis was
also performed to evaluate the causal effect of cognition on insulin resistance
and brain cortical structure.

Results: This study identified genetically determined elevated level of proinsulin
increased reaction time (beta=0.03, 95% confidence interval [95%CI]=0.01 to
0.05, p=0.005), while decreasing the surface area of rostral middle frontal
(beta=-49.28, 95%Cl=-86.30 to -12.27, p=0.009). The surface area of the
rostral middle frontal mediated 20.97% (95%Cl=1.44% to 40.49%) of the total
effect of proinsulin on reaction time. No evidence of heterogeneity, pleiotropy, or
reverse causality was observed.
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Conclusions: Briefly, our study noticed that elevated level of insulin resistance
adversely affected cognition, with a partial mediation effect through alterations in
brain cortical structure.

brain cortical structure, cognition, insulin resistance, mediation, Mendelian randomization

1 Introduction

Epidemiological studies indicate that over 55 million people
were affected by dementia in 2019. The World Health Organization
projects this number to increase to 139 million by 2050. The
economic impact of dementia is expected to escalate from US$1.3
trillion in 2019 to US$2.8 trillion by 2030, presenting significant
social and economic challenges (1). The causes of dementia are
multifactorial, with Alzheimer’s disease (AD) identified as the
primary contributor, accounting for nearly 70% of cases. The
cognitive dysfunction associated with dementia is often
overlooked in its early stages but progressively worsens,
eventually leading to irreversible and incurable conditions in
advanced stages. Therefore, this underscores the critical
importance of early detection and intervention in
managing dementia.

Insulin resistance (IR) is a pathological state characterized by
impaired insulin responsiveness, requiring elevated level of insulin
to maintain glucose homeostasis in both peripheral tissues and the
brain (2), a key feature of Type 2 diabetes mellitus (T2DM) and
metabolic syndrome. Additionally, it has been primarily associated
with coronary heart disease (3), stroke (4), and AD (5). The
hyperinsulinemic-euglycemic clamp, considered the gold standard
for measuring insulin resistance, is limited in clinical application
owing to its invasiveness, high cost, time-consuming nature, and
laborious procedure (6). By comparison, fasting insulin,
homeostasis model assessment beta-cell function (HOMA-B),
homeostasis model assessment insulin resistance (HOMA-IR),
and proinsulin serve as more accessible markers for reflecting
insulin resistance (7).

The literature has suggested an association between insulin
resistance and cognition. In a previous observational study
involving older patients with hypertension, elevated HOMA-IR
was related to cognitive impairment (8). Smith et al’s
investigation (9) supported the close relationship between
increased HOMA-IR and decreased executive function in patients
with vascular cognitive impairment. However, conflicting results
from other studies reported no relationship between insulin
resistance and AD (10). In a longitudinal study involving older
participants without dementia, a higher baseline HOMA-IR was
found to predict cognitive degeneration seven years later (11).
Despite robust epidemiological evidence, the potential
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pathogenesis and causal direction between insulin resistance and
cognition remain poorly established. Challenges such as selection
bias, confounding factors, reverse causality, and relatively small
sample size in the observation studies obscure a conclusive
resolution to the bidirectional chicken-and-egg question.

Furthermore, limited studies have delved into the underlying
mechanisms or mediating pathways connecting insulin resistance
and cognition. Previous research has demonstrated alterations in
brain cortical structure associated with both insulin resistance (12)
and cognitive dysfunction (13). Insulin receptors are extensively
expressed in the brain, with predominant distribution in the
cerebellum, frontal cortex, and hippocampus, as proved by studies
in animal models and post-mortem human brains (14, 15). Thus,
insulin may play a crucial role in multiple brain regions. A previous
study utilized 18F-fludeoxyglucose - positron emission tomography
to measure cerebral glucose metabolism and revealed that blood
fasting insulin was linked to glucose metabolism of the inferior
parietal, hippocampus, and parahippocampus region (16). Insulin
in the peripheral blood might traverse the blood-brain barrier and
participate in specific regions’ synaptic and neuronal activity.
Various cortical structures serve distinct physiological functions,
and cortical atrophy is a recognized pathophysiological process
contributing to cognitive impairment. Accordingly, brain cortical
structure might be a latent mediator between insulin resistance
and cognition.

Mediation analysis (MR) applies single nucleotide
polymorphisms (SNPs) closely relevant to the exposure factors as
instrumental variables (IVs) to deduce the causality between
exposure and outcome (17). Owing to the random assignment of
SNPs during meiosis, MR can yield robust causal evidence that is
less influenced by confounders and reverse causality. Therefore, MR
stands as a well-established statistical method, overcoming
limitations inherent in traditional observational studies.
Leveraging and extending MR, mediation MR analysis offers an
opportunity to assess the complex interlocking causality among
insulin resistance, brain cortical structure, and cognition. Moreover,
the identified intermediate factors contribute to the exploration of
the potential etiology and pathogenesis of cognitive impairment. As
far as we know, the causal exploration of mediating pathways from
insulin resistance to cognition is lacking. To fill the knowledge gap,
our investigation attempted to (i) ascertain whether insulin
resistance is causally associated with cognition and (ii) quantify
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Flowchart of the two-step mediation MR study. MR, Mendelian randomization; HOMA-B, homeostasis model assessment beta-cell function; HOMA-
IR, homeostasis model assessment insulin resistance; IVW, inverse-variance weighted; MR-PRESSO, Mendelian randomization pleiotropy residual

sum and outlier.

the extent to which brain cortical structure mediates the effects of
insulin resistance on cognition.

2 Materials and methods

2.1 Study design

The flowchart in Figure 1 demonstrates the comprehensive
procedure of our exploration. In stage 1, we performed a two-
sample bidirectional univariable MR analysis to establish the
causality between insulin resistance and cognition. In stage 2, we
used a two-step bidirectional univariable MR to select candidate
mediators in the causality between insulin resistance and cognition.
In stage 3, we constructed a mediation model and quantified the
proportion of insulin resistance’s effect on cognition mediated by
brain cortical structure. Our study adheres to the STROBE-MR
guidelines (Supplementary Table S1).

2.2 Data sources

2.2.1 Insulin resistance

We used fasting insulin, HOMA-B, HOMA-IR, and proinsulin as
established proxies for insulin resistance (1). Towards fasting insulin,
HOMA-B, and HOMA-IR (18), we chose genetic IVs from the publicly
available meta-analyses of glucose and insulin-related traits consortium
(MAGIC), with 51750 participants without diabetes from 26 European
cohorts. The three surrogate markers of insulin resistance were log-
transformed. The regression analyses were adjusted for age and sex,
together with BMI (2). Regarding proinsulin, genome-wide association
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studies (GWAS) summary statistics were attained from MAGIC either
(19). The meta-analysis consisted of 10701 European individuals
without diabetes from four cohorts. The regression analyses were
adjusted for fasting insulin in addition to age and sex. More detailed
characteristics of cohorts have been provided in Supplementary
Table S2.

2.2.2 Brain cortical structure

Summary statistics for brain cortical structure were derived
from the enhancing neuro imaging genetics through meta analysis
(ENIGMA) database (20), encompassing 51665 participants across
60 cohorts worldwide. Specifically, 33709 individuals were of
European ancestry. Among them, 10803 participants were from
the UK Biobank consortium. The imaging phenotype was measured
using the T1 structural Magnetic Resonance Imaging sequence
combined with the Desikan-Killiany atlas, which contained
surficial area (SA) and thickness (TH) for both global and 34
functionally specialized cortical regions. The mean value of global
SA was 169647.43 mm?, and the mean value of global TH was 2.45
mm. The SA and TH of 34 cortical regions were adjusted based on
global measurements to mitigate the impact of individual
differences on results. To avoid sample overlap between traits, we
employed meta-results involving exclusively European and non-
UKB individuals. Consequently, the ultimate sample size used in
our study for brain cortical structure was 23626. The detailed cohort
information is available in Supplementary Table S3.

2.2.3 Cognition

Following existing literature, summary-level statistics for
cognition were achieved from the UK Biobank (21), gathering up
to 502649 population-based individuals. After excluding patients
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with neurological disorders, 480416 participants completed the five
cognitive assessments through the computerized touchscreen. To
magnify statistical power, we chose visual memory and reaction
time as proxies for cognition (22). The visual memory was evaluated
via a “6 pairs matching” test, requiring individuals to recall and
match the position of 6 pairs of cards based on their memory. The
number of errors was counted, with higher counts represented
poorer cognitive performance. The reaction time was measured
through a symbol matching test, akin to a “snap” card game. The
completion time (in milliseconds) was recorded, with a longer time
symbolized poorer cognitive performance. The scores of visual
memory and reaction time were transformed with [In(x + 1)] and
[In(x)], respectively, to achieve normal distribution.

The GWAS data utilized in our research originated from
distinct cohorts or consortia, ensuring the absence of
sample overlap.

2.3 Instrumental variable selection

Strictly quality control procedures were implemented to guarantee
the robustness and precision of the causality among insulin resistance,
brain cortical structure, and cognition. (1) SNPs strongly linked to
insulin resistance phenotype (p < 5x107%) were selected as IVs.
Nevertheless, for SA and TH, the locus-wide significance level
threshold was set to a relatively relaxed 1x107° to retain more IVs;
(2) clumping procedure: removing IVs in linkage disequilibrium with
r?<0.001, and clumping window=10000kb; (3) the minor allele
frequency (MAF) > 0.01; (4) the F-statistic > 10, with the detailed
calculation formula provided elsewhere (17); (5) harmonizing
procedure: excluding palindromic and inconsistent IVs; (6) steiger
filtering: the IVs were determined to be more predictive of exposure
than outcome; (7) PhenoScanner V2 scanning: discarding the IVs
correlated (p < 1x107°) with confounding factors (23).

2.4 Statistical analysis

All analyses were conducted in the R version 4.1.2 environment using
“TwoSampleMR” and “MRPRESSO” packages. The figures were drawn
through FreeSurfer (version 7.2.0, https://surfer.nmr.mghharvard.edu)
and Figdraw (https://www.figdraw.com).

2.4.1 Primary analysis

Five complementary MR approaches with accommodated
assumptions were conducted, including inverse variance weighted
(IVW) (primary), MR Egger, weighted median, weighted mode, and
simple mode. (1) The IVW is the optimal statistical approach
assuming the validity of all IVs (24). However, the precision of
IVW is susceptible to directional pleiotropy. (2) The MR Egger is a
less efficient analytical method capable of providing unbiased
estimations even if all IVs are pleiotropic, but it is substantially
influenced by outliers (25). (3) The weighted median method is
applicable when there are <50% invalid IVs and is robust to outliers
(24). (4) The weighted mode persists steady even though IVs are
disqualified or violate the pleiotropy hypothesis (26). (5) The simple
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mode is an unweighted empirical density function mode with
relatively low statistical efficiency (27). As for multiple
comparison correction, the statistically significant threshold was
set at 0.025 (0.05/2) for the MR analysis between insulin resistance
and cognition, and 0.0015 (0.05/34) for the MR analysis between
insulin resistance and brain cortical structure. P-values between
0.05 and the specified threshold were considered

nominally significant.

2.4.2 Mediation analysis

The two-step univariable mediation MR analysis was
implemented to investigate whether brain cortical structure
mediates the causal pathway from insulin resistance to cognition
outcome. The total effect of insulin resistance on cognition (c) can
be decomposed into two components: (1) the direct effects of
insulin resistance on cognition (without mediators, ¢’) and (2) the
indirect effects mediated by brain cortical structure (axb, where a
represents the influence of insulin resistance on brain cortical
structure and b represents the influence of brain cortical structure
on cognition) (28). The mediation percentage was calculated using
the equation (axb)/c. Subsequently, we applied the delta method to
calculate 95% confidence intervals (CI).

2.4.3 Sensitivity analysis

Several sensitivity analyses were carried out to validate the
reliability of the identified causal relationship. The Cochran’s Q
statistics of MR Egger and IVW approaches were conducted to
determine latent heterogeneity. A p-value larger than 0.05 indicated
the absence of heterogeneity. The MR Egger intercept and Mendelian
Randomised Multi-Effects Residuals and Heteroscedasticity (MR-
PRESSO) approaches were concurrently employed to determine the
latent horizontal pleiotropy. The intercept of MR Egger was nearly
zero, and the p-value was greater than 0.05, demonstrating no
pleiotropy. The leave-one-out analysis investigated whether the
removal of a single SNP substantially influenced the total effect.

2.4.4 Reverse MR analysis

For causality found to be significant or nominally significant in
the forward MR analysis, we carried out the reverse MR analysis to
verify the bidirectional relationship in the pathway. The threshold
for IVs strongly correlated to cognition traits was set at 5x10~%, and
the other procedures were similar to the forward MR analysis.

3 Results

3.1 Causality of insulin resistance
on cognition

Following the rigorous screening steps mentioned above, 9
SNPs with fasting insulin, 12 SNPs with HOMA-B, 8 SNPs with
HOMA-IR, and 8 SNPs with proinsulin were selected as IVs,
respectively. The comprehensive information for IVs of insulin
resistance is listed in Supplementary Table S4. The IVs strongly
linked to fasting insulin substantially overlapped with those in
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Outcome Exposure No.of SNP
Visual memory Fasting insulin 4
Reaction time  Fasting insulin 4
Visual memory HOMA-B 6
Reaction time =~ HOMA-B 6
Visual memory HOMA-IR 3
Reaction time =~ HOMA-IR 3
Visual memory  Proinsulin 8
Reaction time  Proinsulin 8
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FIGURE 2

The causality of genetically predicted insulin resistance on cognition using IVW methods. IVW, inverse variance weighted; SNP, single nucleotide
polymorphism; Cl, confidence interval; HOMA-B, homeostasis model assessment beta-cell function; HOMA-IR, homeostasis model assessment

insulin resistance.

HOMA-IR. The relationships between insulin resistance
phenotypes and cognition phenotypes are illustrated in Figure 2.
The IVW method demonstrated that fasting insulin (beta=0.18,
95%CI=0.04 to 0.32, p=0.009) and HOMA-IR (beta=0.22, 95%
CI=0.07 to 0.37, p=0.005) were causally correlated with visual
memory. Additionally, a significant detrimental effect of
proinsulin on reaction time was discovered using the IVW
method (beta=0.03, 95%CI=0.01 to 0.05, p=0.005). However, no
association was observed for HOMA-B.

3.2 Causality of insulin resistance on brain
cortical structure

As illustrated in Figures 3, 4, the influence of insulin resistance on
brain cortical structure, both protective and adverse, were
determined. No significant causality was discovered for altering
global SA and TH with insulin resistance. Concerning SA of
specific regions, a higher level of proinsulin was nominally
associated with a decreased SA of the rostral middle frontal (IVW:
beta=-49.28, 95%CI=-86.30 to -12.27, p=0.009). The causal effects of

A Caudalmiddlefrontal

Precentral

Rostralmiddlefrontal

Lateralorbitofrontal —e

Insula

Y.
@&

Bankssts

FIGURE 3

(¢ lllltll\ (

HOMA-IR on SA of both precentral (IVW: beta=-161.91, 95%CI=-
272.50 to -51.32, p=0.004) and insula (IVW: beta=84.15, 95%
CI=26.30 to 142.00, p=0.004) turned borderline significant after
Bonferroni adjustment. The fasting insulin and HOMA-IR
determined both adverse impacts on the SA of the precentral and
protective effects on the SA of the insula simultaneously. Respecting
TH of specific regions, genetically predicted HOMA-IR was inversely
related to TH of rostral anterior cingulate (IVW: beta=-0.09, 95%
CI=-0.15 to -0.03, p=0.003). The proinsulin susceptibility was
negatively linked to TH of the caudal anterior cingulate (IVW:
beta=-0.03, 95%CI=-0.04 to -0.01, p=0.003). Nevertheless, limited
evidence was noticed for the causality of HOMA-B on SA and TH.
The detailed causality between each insulin resistance phenotype and
brain cortical structure is presented in Supplementary Tables S5, S6.

3.3 Causality of brain cortical structure
on cognition

Building upon the established causality between insulin
resistance and brain cortical structure of specific regions. The SA

'\

"l Medialorbitofrontal

Posteriorcing

( ~ t
. N
.—%-z— Caudalanteriorcingulate
- |

Rostralanteriorcingulate

Parahippocampal

The results of MR analysis showed that insulin resistance potentially influenced the brain cortical structure of specific regions. (A) MR analysis results
of insulin resistance on cortical surface area. (B) MR analysis results of insulin resistance on cortical thickness. Brain regions with positive and
negative IVW-derived [ values are shown in red and blue, respectively, brain region with negative IVW-derived  value and mediates the association
between insulin resistance and cognition is shown in yellow. MR, Mendelian randomization; IVW, inverse variance weighting.
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and TH of specific regions were chosen as candidate mediators.
Subsequently, we performed MR analysis on SA and TH of specific
regions concerning cognition phenotypes. We observed that
genetically determined SA of cuneus had a positive causal
direction with reaction time (IVW: beta=2.79x107%, 95%
CI=5.99x10" to 4.98x10™%, p=0.013). The SA of the rostral middle
frontal exhibited protective effects against longer reaction time
(beta=-1.32x10"%, 95%CI=-2.04x10"* to -5.91x10, p=0.0004), as
indicated by robust IVW estimation. Consistent directional results
were observed across all MR estimations.

3.4 Cortical structure mediates the
causality of insulin resistance on cognition

We analyzed the rostral middle frontal and cuneus’s SA as
candidate mediators of the pathway from proinsulin to reaction
time. Our study indicated that a higher level of proinsulin might
result in lower SA of the rostral middle frontal, which in turn was
related to a longer reaction time. However, the mediation model
was invalid using the SA of cuneus as a mediator. As shown in
Figure 5, the SA of the rostral middle frontal partially mediated the
pathway from proinsulin to reaction time, accounting for 20.97%
(95%CI=1.44% to 40.49%, p<0.05).

3.5 Sensitivity analysis

Estimation for Cochran’s Q statistic MR Egger and IVW tests
indicated no significant heterogeneity in the causality. The MR-
PRESSO global test showed a considerable p value and the MR-
Egger intercept was nearly zero, emphasizing no significant
horizontal pleiotropy (Supplementary Table S7). None underlying
outliers were confirmed in the MR-PRESSO analysis. Furthermore,
the observed causal estimate was not substantially affected by any
strong driven SNP, as indicated by the leave-one-out test. The MR
steiger filtering was determined to be more predictive of exposure
than the outcome. Consequently, there was sufficient evidence
supporting the robustness of our uncovering.

3.6 Reverse MR analysis

We further employed reverse MR analysis to evaluate the
existence of bidirectional causality in the identified results from
the forward analysis. We included up to 23 SNPs for visual memory
and 58 for reaction time. Comprehensive information on the IVs is
displayed in Supplementary Table S8. Results in Supplementary
Table S9 indicated no significant causality for genetically predicted
reaction time on proinsulin, reaction time on SA of rostral middle
frontal, and SA of rostral middle frontal on proinsulin. No evidence
of heterogeneity and pleiotropy was found in the reverse MR
analysis (Supplementary Tables S10).
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4 Discussion

Through MR analysis, we investigated the causal influence of
insulin resistance-related traits on cognition and evaluated the
mediating effects of brain cortical structure in the pathway.
Specifically, we identified that an elevated level of proinsulin, a
marker of insulin resistance, led to increased reaction time, with the
SA of rostral middle frontal mediated 20.97% of this effect. This
study added suggestive evidence that brain cortical structure was
crucial in the pathogenesis linking insulin resistance to the
advancement of cognitive impairment.

Insulin resistance, a complicated phenotype, is typically
assessed through various proxy indexes, with the euglycemic
hyperinsulinemic glucose clamp technique considered the gold
standard. Owing to the deficiency of updated large-scale GWAS
on this gold standard measurement, we utilized four commonly
employed surrogate markers in our MR analysis (29). Our study
demonstrated a significant detrimental effect of insulin resistance
traits on cognitive performance, specifically fasting insulin, HOMA-
IR, and proinsulin, with no such effect observed for HOMA-B. It
has been reported that compared to HOMA-B, higher HOMA-IR
presented a closer connection with incident T2DM in Chinese
adults (30). Given that diabetes is a well-established risk factor for
cognitive impairment, this discrepancy could explain the lack of
effect observed for HOMA-B. Furthermore, HOMA-IR, rather than

whole cortex
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The results of MR analysis showed that insulin resistance potentially
influenced the brain cortical structure of specific regions. The color of
each block described the IVW-derived P-values of each MR analysis. P-
values of <0.05 were shown in red, and P-values of >0.05 were shown
in blue. MR, Mendelian randomization; IVW, inverse variance weighted;
SA, surficial area; TH, thickness; HOMA-B, homeostasis model
assessment beta-cell function; HOMA-IR, homeostasis model
assessment insulin resistance.
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Schematic diagram of the mediation model. (A) Schematic diagram of the brain cortical structure’s effect on the pathway from insulin resistance to
cognition. (B) Schematic diagram of the rostral middle frontal surficial area’s effect on the pathway from proinsulin to reaction time.

HOMA-B, revealed a significant elevation in AD and a strong
correlation with T-tau and P-tau in Cerebrospinal fluid (31).
Collectively, these studies suggest that HOMA-IR is a more
valuable indicator than HOMA-B. Considering the substantial
overlap in IVs between fasting insulin and HOMA-IR, it is
plausible that both are causally correlated with visual memory.
The adverse effect of higher insulin resistance on cognition
aligned with several cross-sectional (32) and longitudinal studies
(33). Contrary to the results mentioned above, one previous study
conducted by Thankappan S et al. reported a null relationship
between insulin resistance and AD with a relatively lower sample
size (10). Surprisingly, Hooshmand B (11) followed 269 adults
without dementia for 7 years, discovering the linkage between
HOMA-IR and cognition in longitudinal analysis instead of at
baseline. These discrepancies may reflect limitations inherent in
observational research, such as confounding factors, reverse
causality, and selection bias. Evidence from MR studies also
showed a potential causal link between insulin resistance (34) and
related traits (obesity) (35) with cognition. However, controversial
MR analyses simultaneously existed, indicating no causality
between HOMA-IR and cognition after controlling
socioeconomic position and educational attainment (36).
Additionally, prior MR analyses, using two large-scale population
samples to explore causal associations (37), revealed genetic
evidence of an association of HOMA-IR with verbal intelligence
in the Generation Scotland: Scottish Family Health sample, whereas
this correlation was not validated in the UK Biobank sample.
Consequently, the inconsistent results across MR studies may
attributed mainly to heterogeneity in the selection of participants,
cohorts, sample size, and different phenotypes of insulin resistance
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and cognition. Further replication through randomized controlled
trials is warranted.

Our study uncovered the latent causal influence of insulin
resistance on brain cortical SA and TH. Post-mortem human
brain studies have established the presence of insulin receptors in
the brain, especially in the cortical regions (14). Consistent with our
findings, the Rhineland Study, encompassing 973 participants,
reported a similar inverse association between insulin resistance
and the structure of the precentral cortex, temporal cortex, and
cuneus (12). Our findings suggested that the specific brain cortical
regions susceptible to insulin resistance are mainly distributed in
the frontal, temporal, and limbic lobes. The underlying mechanisms
for insulin resistance affecting brain cortical structure may be as
follows. First, studies have shown that the increased cerebrospinal
fluid AB42 (38), t-tau, and p-tau levels (31) were related to insulin
resistance, which are pathological hallmarks of cognitive
impairment disorder. Second, brain cortical glucose metabolism
might be impacted by insulin resistance, which reflects the activity
of neuronal and synaptic (16). Finally, insulin resistance may induce
atherosclerosis, vascular endothelial dysfunction, oxidative stress,
and chronic inflammation (39), contributing to cortical thinning
and subsequent clinical events, including cognitive impairment.
However, specific mechanisms remain unclear, necessitating further
research in the future. Notably, the protective effects of genetically
determined insulin resistance on the structure of orbitofrontal,
insula, and bankssts are varied from logical expectation. Increased
cortical SA or TH was generally considered a protective indicator
against cognitive impairment. One plausible explanation is that
compensatory hypertrophy or neural adaptation mitigates the
adverse influence of higher insulin resistance on brain functional
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regions. Altogether, our study emphasizes the intricate and
heterogeneous essence of insulin pathways within the brain.

Our research provided suggestive evidence that the SA of the
rostral middle frontal mediates the effect of proinsulin on reaction
time. It has been indicated that the structure of the rostral middle
frontal was vulnerable in patients with T2DM, and the altered
structure of this brain region held high diagnostic value for T2DM
patients with mild cognitive impairment (40). The rostral middle
frontal is a crucial component of the dorsolateral prefrontal cortex,
playing a vital role in executive function. Additionally, the rostral
middle frontal, along with the parietal lobe, constitutes a segment
the dorsal attentional network (41). We employed the symbol
matching test to evaluate reaction time, serving as an indicator of
attention and executive function. However, another MR estimation
did not support the causality among glycemia, brain structure and
cognition (42). This study utilized T2DM and glycosylated
hemoglobin as exposure, with hippocampal and white matter
hyperintensity volumes as brain structural outcomes, which is
largely different from ours. Consequently, we deduce that insulin
resistance, rather than T2DM, exerts a direct influence on the brain
structure. The SA of the rostral middle frontal may represent a
latent pathophysiological process in the correlation between insulin
resistance and cognition.

In the current survey, we primarily target the possible mediating
role of phenotypes related to brain cortical structure, with
approximately 80% of the mediation influence on cognition yet to
be elucidated. The multi-model neuroimaging methods offer
opportunities to unravel insulin resistance-related cognitive
impairment (43). Unexplored mediating pathways may involve
the macrostructures and microstructures, metabolism, perfusion,
neural function, and brain network. Given that previous studies
have established the causal effect of obesity (44) and blood lipids
(45) on brain cortical structure, it is possible that these are essential
candidate mediators as well. Future research is warranted to identify
additional mediation factors along the pathway from insulin
resistance to cognition.

This MR analysis exhibits multiple strengths. Firstly, the
advantages of the MR statistic framework enable causality
inference comparable to randomized controlled trials. Secondly,
we incorporated comprehensive phenotypes related to insulin
resistance, enhancing the integrity and rigor of the estimation.
Thirdly, UK Biobank samples were excluded from the MR
analysis of brain cortical structure. Thus, there was no sample
overlap with the GWAS data used in our research, significantly
reducing potential bias (46). Fourthly, sensitivity analyses and
Bonferroni corrections were conducted sequentially to check the
credibility of the discovered causality. Lastly, we implemented
rigorous screening steps for mediators to guarantee the reliability
and rationality of the mediation model. Nevertheless, certain
limitations need to be considered. Firstly, the temporary
measurement of insulin resistance is disposed to change over time
without lifelong representation. Secondly, despite the absence of
heterogeneity and pleiotropy in our findings, we cannot eliminate
all potential biases and confounders. Thirdly, our research was
restricted to individuals of European and American ancestry,
minimizing population admixture confounding while limiting
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generalizability to other ethnic groups. Finally, the driven
causality of insulin resistance on brain cortical structure did not
withstand the Bonferroni correction, which just indicated
suggestive causality. Caution explanations with additional
validation in distinct cohorts are warranted.

Our research provided conceivable genetic evidence that
elevated level of insulin resistance increased the susceptibility to
cognitive impairment, with a partial mediation effect observed
through the SA of the rostral middle frontal. Broader efforts are
necessary to probe additional mediators. Our findings promote a
better recognizing of the biological mechanisms underlying
cognitive impairment induced by insulin resistance. Interventions
to improve insulin sensitivity may serve as precautions against brain
cortical atrophy and subsequent cognitive impairment.
Nevertheless, further confirmation through randomized
controlled trials is necessary.
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Aims: Non-alcoholic fatty liver disease (NAFLD) is closely related to type 2
diabetes (T2D), with reduced insulin sensitivity being a key factor in their
disrupted metabolic processes. The single point insulin sensitivity estimator
(SPISE) is a novel index. This study aims to explore the association between SPISE
and NAFLD in T2D population.

Methods: This study included a total of 2,459 patients with T2D. SPISE was
calculated based on high density lipoprotein-cholesterol (HDL-c), triglycerides
(TG), and body mass index (BMI). Participants were categorized into NAFLD
and non-NAFLD groups based on the results of ultrasonographic diagnosis. The
relationship between SPISE and NAFLD was analyzed separately for each gender.

Results: The overall prevalence of NAFLD is 38.5%. In females and males, the
SPISE was significantly reduced in the NAFLD group compared to the non-
NAFLD group (both P < 0.05). The prevalence of NAFLD showed a significant
reduction across quartiles of the SPISE in both genders (both P < 0.05).

Additionally, univariate correlation analysis showed a negative correlation
between SPISE and NAFLD (both P < 0.05). In multivariate regression analysis,
a reduced SPISE was identified as an independent risk factor for NAFLD (odds
ratios of 0.572 and 0.737, 95% Cl of 0.477-0.687 and 0.587-0.926, respectively).

Moreover, the area under the receiver operating characteristic (ROC) curve for
SPISE was 0.209 in females and 0.268 in males (95% Cl of 0.175-0.244 and
0.216-0.320, respectively). These results are more meaningful than those of
other variables.

Conclusion: SPISE is significantly reduced in NAFLD patients with T2D.
Compared to other indicators, SPISE demonstrates superior predictive value in
diagnosing NAFLD, and it is independent of gender.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is a widespread
health issue, with a worldwide prevalence of 25% (1). It has become
the primary cause of chronic liver disease under the influence
of type 2 diabetes (T2D) and obesity (2). Reports indicate that
NAFLD has become the fastest-growing cause of liver-related
deaths globally (3). Moreover, it is closely associated with the
progression of chronic kidney disease (CKD) and cardiovascular
disease (CVD) (4, 5). Many metabolic disorders not only affect the
incidence of NAFLD but also increase the risk of its progression
to non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular
carcinoma, and even death (6). And the link between T2D and
NAFLD is thoroughly documented (7). Research indicates that
T2D is associated with more than double the risk of advanced
hepatopathy (8). Furthermore, a meta-analysis reported that the
prevalence of NASH with T2D patients was approximately 37.3%,
significantly higher than the prevalence of progressive NAFLD in
the general population (9). Therefore, in clinical practice, it would
be valuable to have a simple and inexpensive index that could screen
for NAFLD among T2D patients.

Numerous studies indicate that reduced insulin sensitivity (Si)
or insulin resistance (IR) is one of the key pathophysiological
factors in NAFLD (10-12). The gold standard for measuring
insulin sensitivity is the hyperinsulinemic-euglycemic clamp (13);
however, due to its cost, time consumption, and invasiveness, it
is not widely used in clinical practice. The single point insulin
sensitivity estimator (SPISE) is an alternative index of IR calculated
from high density lipoprotein-cholesterol (HDL-c), triglycerides
(TG), and body mass index (BMI) (14). Research indicates a
strong correlation between SPISE and the hyperinsulinemic-
euglycemic clamp (15). Additionally, the SPISE index is closely
related to metabolic syndrome (MetS), cardiovascular metabolic
risk in adolescents, and the cardiovascular prognosis of patients
with T2D (16-18). It is also worth mentioning that SPISE is
not only considered an effective indicator for predicting diabetes
development in obese children (19), but SPISE-5.4 has also been
proven to be a good predictor of diabetes development (20).
Recent studies have reported a significant reduction in the SPISE
among adolescents with obesity-related NAFLD (21). Additionally,
research from Japan indicates that a reduction in SPISE is associated
with an increased risk of NAFLD (22). Research also suggested
an association between SPISE and pediatric NAFLD; however,
after adjusting for confounding factors, this association is no
longer significant (23). Currently, there is scarce research on the
relationship between SPISE and NAFLD among T2D patients.
This study aims to clarify the link between SPISE and NAFLD in
T2D patients and assess SPISE’s predictive potential for NAFLD in
this population.

2 Materials and methods

2.1 Study participants

During the period from February 2020 to March 2023, we
collected clinical data from patients with T2D who were treated
at the Department of Endocrinology of the Linyi People’s Hospital,
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Shandong Province, China. Exclusion criteria included: (1) patients
under the age of 18; (2) patients with liver or kidney dysfunction;
(3) evidence of autoimmune hepatitis, viral hepatitis, drug-induced
fatty liver, or other chronic liver diseases; (4) habitual drinkers
who consume alcohol more than 5 days per week, equivalent to an
average daily intake of 38 grams for males and 26 grams for females
(24); (5) patients with incomplete clinical data. Ultimately, 2,459
eligible patients were included in the study.

2.2 Anthropometric and Biochemical
measurements

Participant demographic information and clinical baseline
data were collected, such as age, gender, duration of diabetes,
and smoking and drinking habits. Height, weight, systolic
blood pressure (SBP), and diastolic blood pressure (DBP) were
measured and recorded. Morning fasting venous blood samples
were collected to determine levels of alanine aminotransferase
(ALT), aspartate aminotransferase (AST), gamma-glutamyl
transferase (GGT), total cholesterol (TC), triglycerides (TG), high-
density lipoprotein cholesterol (HDL-c), low-density lipoprotein
cholesterol (LDL-c), serum creatinine (Scr), uric acid (UA),
fasting plasma glucose (FBG); glycated hemoglobin (HbAlc, high
performance liquid chromatography) and hemoglobin (Hb), were
measured using a biochemical analyzer (Cobas ¢ 702, Roche,
Germany). Urinary albumin to creatinine ratio (UACR) was tested
by an autoanalyzer (Beckman Coulter AU5821). Fasting insulin
(FINS, direct chemiluminescence method) was measured by the
fully automated sample processing system (Aptio Automation,
SIEMENS, USA).

Bioelectrical impedance analysis (Omron DUALSCAN HDS-
2000, Kyoto, Japan) was employed to assess visceral fat area (VFA)
and subcutaneous fat area (SFA).

2.3 Definition of NAFLD

Fatty liver diagnosis begins with ultrasound imaging and is
supplemented by clinical evaluation, including medical history and
physical examination, with specific attention to alcohol intake.
Additional factors such as viral hepatitis and medication use are
assessed. Laboratory tests, particularly liver function tests, help
rule out other fatty liver conditions, culminating in a definitive
diagnosis of NAFLD.

Parameter calculations

1. Body mass index (BMI) = weight (kg) / height (m)%

2. TG/HDL-c = TG (mmol/l) / HDL-c (mmol/l);

3. SPISE index = (600 x HDL-c [mg/dL]®!%%) / (TG
[mg/dL]%2 x BMI [kg/m?]1338) (14);

4. HOMA-IR = FPG (mmol/L) x FINS (IU/mL)/22.5 (25).

2.4 Statistical analysis

Statistical analyses were performed using SPSS 22.0 (SPSS
Inc, Chicago, IL, USA). Normally distributed variables were
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TABLE 1 Clinical and biochemical characteristics stratified by gender.

10.3389/fmed.2025.1454938

Variables All Female Male P
Number 2459 1441 1018

Age (years) 57.10 £ 13.4 58.3+13.3 55.4+13.3 <0.001
diabetes duration (years) 7.0 (2.0 ~13.0) 7.0 (2.0 ~ 13.0) 8.0 (2.0 ~ 13.0) 0.548
Smoking (1, %) 385 (15.7%) 9 (0.6%) 376 (37.0%) <0.001
BMI (kg/mz) 25.40 £ 3.89 25.21 £3.99 25.68 +£3.71 0.003
VFA (cm?) 89.00 (64.00 ~ 119.00) 79.00 (58.00 ~ 104.00) 106.00 (80.00 ~ 133.00) <0.001
SFA (cm?) 180.00 (138 ~ 229.00) 176.50 (131.25 ~ 228.00) 186.00 (148.00 ~ 230.00) 0.001
SBP (mmHg) 129.7 £19.2 130.3 +£19.8 128.8 +18.2 0.043
DBP (mmHg) 80.3£11.9 79.0 +11.8 822+ 11.8 <0.001
TC (mmol/L) 4.854+1.33 4.99 +1.30 4.65+1.33 <0.001
LDL-c (mmol/L) 3.08 £ 1.50 318+ 1.72 294+ 1.12 <0.001
TG (mmol/L) 1.41 (0.99 ~ 2.09) 1.41 (0.99 ~ 2.03) 1.41 (0.99 ~ 2.20) 0.212
HDL-c (mmol/L) 1.18 +0.35 1.254+0.37 1.08 +0.30 <0.001
TG / HDL-c ratio 1.25 (0.78 ~ 2.05) 1.17 (0.74 ~ 1.90) 1.39 (0.83 ~ 2.34) <0.001
HbAlc (%) 9.43 £2.28 9.40 £ 2.25 9.48 £2.32 0.383
FPG (mmol/L) 9.24 £4.03 9.24 £4.12 9.24 £391 0.969
ALT (U/L) 17.40 (12.80 ~ 26.40) 16.15 (11.90 ~ 24.50) 19.40 (14.10 ~ 31.10) <0.001
AST (U/L) 17.30 (14.00 ~ 22.70) 16.90 (13.60 ~ 22.30) 18.00 (14.60 ~ 23.40) <0.001
GGT (U/L) 21.00 (15.00 ~ 32.00) 19.00 (14.00 ~ 27.00) 26.00 (18.00 ~ 41.00) <0.001
UA (pmolL) 290.87 £101.22 269.75 £ 97.45 320.92 £+ 98.91 <0.001
Scr (wmol/L) 66.80 £ 28.45 60.15 £ 27.89 76.32 £ 26.49 <0.001
UACR (mg/g) 12.10 (6.20 ~ 47.50) 12.20 (6.60 ~ 42.80) 11.70 (5.60 ~ 54.00) 0.167
Hb (g/L) 138.82 4 18.96 131.85 +16.17 148.66 + 18.24 <0.001
FINS (1IU/mL) 16.70 (10.40 ~ 22.94) 17.17 (10.71 ~ 23.44) 15.77 (10.21 ~ 21.55) 0.054
SPISE 6.10 (5.04 ~ 7.39) 6.25 (5.22 ~ 7.57) 5.87 (4.81 ~ 7.08) <0.001
HOMA-IR 6.40 (3.46 ~ 9.78) 6.40 (3.52 ~ 9.71) 6.37 (3.40 ~ 10.19) 0.905
NAFLD (n, %) 946 (38.5%) 520 (36.1%) 426 (41.8%) 0.004

BMI, body mass index; VFA, visceral fat area; SFA, subcutaneous fat area; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; LDL-c, low-density lipoprotein
cholesterol; TG, triglyceride; HDL-c, high-density lipoprotein cholesterol; HbAlc, glycosylated hemoglobin; FPG, fasting plasma glucose; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, y - glutamyl transpeptidase; UA, uric acid; Scr, serum creatinine; UACR, urinary albumin to creatinine ratio; Hb, hemoglobin; FINS, fasting insulin; SPISE, the
single point insulin sensitivity estimator; HOMA-IR, homeostatic model assessment for insulin resistance; NAFLD, non-alcoholic fatty liver disease. Data were presented as mean = SD for
normally distributed variables, and median (interquartile ranges) for abnormal distributions. Independent-Samples T test and Mann-Whitney U test were used for comparisons of normally

and abnormally distributed continuous variables between male and female groups, respectively. Categorical variables were presented as percentage (%), and were compared by chi-square test.

Statistical differences were defined by P (two-tailed) less than 0.05.

described using mean £ SD and analyzed with independent
samples T-tests. Non-normally distributed variables were
described using medians (interquartile ranges) and analyzed
with Mann-Whitney U tests. Analysis of variance (ANOVA)
and Student-Newman-Keuls tests were performed for multiple
and pairwise comparisons of normally distributed data, and
Kruskal-Wallis 1-way ANOVA test for abnormal distributions.
Categorical variables were presented as percentage (%) and
assessed using chi-square tests. Independent factors influencing
NAFLD were identified using Spearman’s correlation and
logistic regression analyses. Significance was set at P < 0.05
(two-tailed). The SPISE index’s ability to predict NAFLD
was evaluated via the receiver operating characteristic
(ROC) curve analysis.

Frontiers in Medicine

3 Results

3.1 Clinical and biochemical
characteristics

As shown in Table 1, this study included 2459 patients with
T2D, with a mean age of 57.10 & 13.4 years. The overall incidence
of NAFLD was 38.5%, with rates of 36.1% in females and 41.8% in
males. Compared to males, females had higher levels of age, SBP,
TC, LDL-¢, HDL-c and SPISE, but lower proportion of smokers,
BMI, VFA, SFA, DBP, TG/HDL-c ratio, ALT, AST, GGT, UA, Scr,
and Hb (all P < 0.05). There were no significant differences in
diabetes duration, TG, HbAlc, FPG, UACR, HOMA-IR and FINS
between the two groups (all P > 0.05).
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TABLE 2 Comparison of clinical and biochemical characteristics between non-NAFLD and NAFLD groups.

10.3389/fmed.2025.1454938

Variables Female
Non-NAFLD NAFLD group Non-NAFLD NAFLD group
group group

Number 921 520 592 426

Age (years) 59.38 £ 12.91 56.38 == 13.83 <0.001 58.33 + 12.90 51.37 + 12.89 <0.001
Diabetes duration (years) 8.0 (3.0 ~ 15.0) 5.0 (1.0 ~ 10.0) <0.001 10.0 (4.0 ~ 15.0) 5.0 (2.0 ~ 10.0) <0.001
Smoking (%) 5 (0.5%) 8 (0.8%) 0.730 203 (34.3%) 173 (40.6%) 0.048
BMI (kg/m?) 24.07 + 3.64 27.23 £ 3.80 <0.001 24.45 + 3.42 2737 £343 <0.001
VFA (cm?) 67.00 (48.00 ~ 90.00) 97.00 (77.00 ~ <0.001 92.00 (64.75 ~ 124.00 (101.00 ~ <0.001

120.50) 121.00) 151.00)
SFA (cm?) 155.00(116.00 ~ 214.00 (171.00 ~ <0.001 168.00 (129.00 ~ 211.00 (175.00 ~ <0.001
200.00) 261.00) 202.00) 255.50)

SBP (mmHg) 128.84 4 20.30 132.97 4 18.59 <0.001 127.79 4+ 19.45 130.10 + 16.26 0.040
DBP (mmHg) 77.32 £ 11.65 82.02 £ 11.52 <0.001 80.06 = 11.66 85.11+11.35 <0.001
TC (mmol/L) 4.87 +1.32 5.20 + 1.26 <0.001 4.48 +1.26 4.89 4 1.39 <0.001
LDL-c (mmol/L) 3.06 + 1.35 3394221 <0.001 289+ 1.14 3.05+ 1.08 0.006
TG (mmol/L) 1.25 (0.88 ~ 1.74) 1.72 (1.28 ~ 2.55) <0.001 1.21 (0.85 ~ 1.79) 1.79 (1.26 ~ 2.80) <0.001
HDL-c (mmol/L) 1.29 +0.38 1.17 4033 <0.001 1.12+0.28 1.03 4031 <0.001
TG / HDL-c ratio 1.01 (0.64 ~ 1.59) 1.55 (1.04 ~ 2.37) <0.001 1.11 (0.70 ~ 1.80) 1.83 (1.20 ~ 3.07) <0.001
HbAlc (%) 9.33 4236 9.52 +2.03 0.118 9.52 +2.48 9.42 +2.08 0.531
FPG (mmol/L) 8.91 + 4.22 9.83 +3.87 <0.001 9.02 428 9.56 + 3.30 0.026
ALT (U/L) 14.60 (10.90 ~ 22.00) | 19.15 (14.20 ~ 29.75) <0.001 17.40 (13.20 ~25.10) | 23.70 (16.20 ~ 38.30) <0.001
AST (U/L) 16.40 (13.18 ~21.33) | 17.70 (14.23 ~ 24.68) <0.001 17.30 (14.00 ~ 21.43) | 19.00 (15.20 ~ 26.45) <0.001
GGT (U/L) 16.95 (12.00 ~ 23.00) | 24.00 (17.00 ~ 33.00) <0.001 21.00 (16.00 ~ 31.00) | 33.00 (24.00 ~ 53.00) <0.001
UA (umolL) 257.23 + 94.17 291.77 £ 99.30 <0.001 310.61 + 102.19 335.26 + 92.40 <0.001
Scr (jumol/L) 62.20 + 32.20 56.54 + 17.39 <0.001 78.64 + 30.54 73.12 £ 19.18 <0.001
UACR (mg/g) 12.85 (6.70 ~ 58.13) | 11.40 (6.40 ~ 30.20) 0.010 13.90 (5.80 ~ 83.40) 9.30 (5.10 ~ 36.60) 0.002
Hb (g/L) 129.29 + 16.77 136.36 4 13.98 <0.001 144.36 + 20.26 15471 4+ 12.72 <0.001
FINS (wIU/mL) 16.57 (8.44 ~23.18) | 18.41 (13.27 ~ 24.47) 0.002 15.00 (9.14 ~22.33) | 16.44 (11.29 ~21.27) 0.263
SPISE 6.87 (5.79 ~ 8.20) 5.35 (4.57 ~ 6.21) <0.001 6.48 (5.50 ~ 7.91) 5.12 (4.33 ~ 5.95) <0.001
HOMA-IR 571 (2.91 ~9.12) 7.57 (4.81 ~ 10.53) <0.001 5.53 (2.90 ~ 10.21) 6.92 (3.94 ~ 10.13) 0.009

BMI, body mass index; VFA, visceral fat area; SFA, subcutaneous fat area; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; LDL-c, low-density lipoprotein

cholesterol; TG, triglyceride; HDL-c, high-density lipoprotein cholesterol; HbAlc, glycosylated hemoglobin; FPG, fasting plasma glucose; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, y - glutamyl transpeptidase; UA, uric acid; Scr, serum creatinine; UACR, urinary albumin to creatinine ratio; Hb, hemoglobin; FINS, fasting insulin; SPISE, the
single point insulin sensitivity estimator; HOMA-IR, homeostatic model assessment for insulin resistance; NAFLD, non-alcoholic fatty liver disease; Data were presented as mean =+ SD for

normally distributed variables, and median (interquartile ranges) for abnormal distributions. Independent-Samples T test and Mann-Whitney U test were used for comparisons of normally and
abnormally distributed continuous variables between non-NAFLD and NAFLD groups, respectively. Categorical variables were presented as percentage (%), and were compared by chi-square

test. Statistical differences were defined by P (two-tailed) less than 0.05.

As shown in Table 2, for each gender, subjects were divided
into two groups, including non-NAFLD and NAFLD groups, and
the levels of each variable were compared. For females, compared
to the non-NAFLD group, the NAFLD group showed significantly
increased BMI, VFA, SFA, SBP, DBP, TC, LDL-c, TG, TG/HDL-
¢ ratio, FPG, ALT, AST, GGT, UA, Hb, FINS and HOMA-IR
(all P < 0.05), while age, diabetes duration, HDL-c, Scr, UACR
and SPISE were significantly decreased (all P < 0.05). For males,
the proportion of smokers and the levels of BMI, VFA, SFA,
SBP, DBP, TC, LDL-c, TG, TG/HDL-c ratio, FBG, ALT, AST,
GGT, UA, Hb and HOMA-IR were higher in the NAFLD group
compared to the non-NAFLD group (all P < 0.05), while age,
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diabetes duration, HDL-c, Scr, UACR and SPISE were lower (all
P < 0.05).

As shown in Table 3, male and female patients were separately
divided into four groups according to the quartiles of the SPISE:
Q1 group (female: 2.58-5.22; male: 2.25-4.81), Q2 group (female:
5.22-6.25; male: 4.81-5.87), Q3 group (female: 6.25-7.57; male:
5.87-7.08), and Q4 group (female: 7.57-14.52; male: 7.08-15.05).
For the females, as the quartiles of SPISE increased, the duration
of diabetes, HDL-c showed a gradual increased, while the age,
BMI, VFA, SFA, SBP, DBP, TC, LDL-¢c, TG, TG/HDL-c, FPG,
ALT, AST, GGT, UA, Hb, FINS, HOMA-IR and the incidence of
NAFLD exhibited a gradual decreased (all P < 0.05). There was
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TABLE 3 Comparison of variables according to the categories of the SPISE.

Variables Female

Age (years) 56.32 = 15.30 59.80 + 12.30° 59.37 + 11.92 57.72 £ 13.25" 0.001 4830 4 13.22 55.44 + 12.82° 59.14 = 11.24% 58.81 + 13.14%° <0.001

Diabetes duration (years) 6.0 (2.0~10.0) 8.0(3.0~13.0)* 8.0(3.0~15.0)* 8.0(2.0~13.0) 0.020 5.0(2.0~10.0) 8.0(3.0~13.0)* 10.0(3.0~15.0) 8.0(3.0~15.0)® <0.001

Smoking (n, %) 1(0.3%) 4(1.1%) 0(0%) 4(1.1%) 0.123 110(43.5%) 100(38.9%) 91(35.8%) 75(29.6%) 0.012

BMI (kg/m?) 29.81 + 3.63 25.94 4 1.85% 23.95 4 1.79% 21.09 = 1.902b¢ <0.001 29.66 =+ 3.19 26.65 4 1.712 24.74 £ 1.69% 21.62 = 2.282b¢ <0.001

VFA (cm?) 114.50 88.00 71.00% 46.507b¢ <0.001 140.00 119.00° 97.5020 63.502b¢ <0.001
(91.00~138.00) (74.00~104.00) (59.00~90.00) (30.00~64.00) (118.75~166.25) | (97.00~139.00) (79.00~117.25) (38.00~83.00)

SFA (cm?) 246.50 195.00° 162.00% 113.50°¢ <0.001 242.00 196.00°* 179.00%° 124.50°¢ <0.001

(206.75~294.25) | (160.50~228.50) | (134.00~188.00) (80.00~144.00) (206.00~287.75) | (170.00~232.00) | (148.00~200.00) (99.75~162.00)

SBP (mmHg) 133.96 4 19.42 132.17 + 18.62 129.97 + 19.70° 125.22 + 20.38%¢ <0.001 133.31 + 18.03 128.48 + 17.30° 129.05 + 18.49° 124.18 + 17.95%¢ <0.001

DBP (mmHg) 82.36 = 12.00 79.82 + 11.27% 78.18 + 11.89* 75.68 + 11.10%¢ <0.001 86.85 + 12.01 81.80 & 10.51° 81.90 +11.722 78.15 4 11.30 ?b¢ <0.001

TC (mmol/L) 520 +1.36 498 +1.282 48541302 49141252 0.002 5.02 £ 1.53 4.69+£1.29° 447 +1.16% 4424125% <0.001

LDL-c (mmol/L) 3.26 + 1.67 3.35+2.58 3.05 +1.05° 3.04+1.10° 0.035 2.93 £ 1.10 31141320 2.95 4 0.99 2.77 £1.02° 0.009

TG (mmol/L) 223 1.62° 1.26% 0.87 2b¢ <0.001 2.90 1.652 1.22% 0.83 abc <0.001

(1.58~3.14) (1.25~2.09) (0.98~1.60) (0.68~1.14) (2.02~4.56) (1.28~2.14) (0.99~1.54) (0.66~1.07)
HDL-c (mmol/L) 1.05 4 0.25 1.16 +£0.252 1.30 4 0.36 2 1.49 4 0.43 2b¢ <0.001 0.89 £ 0.23 1.0140.182 11140222 1.32 4 0.35 2b¢ <0.001
TG / HDL-c ratio 2.19 1.42° 1.012 0.62 2b¢ <0.001 3.24 1682 1153 0.66 3¢ <0.001
(1.46~3.22) (1.06~1.92) (0.74~1.42) (0.43~0.87) (2.18~5.59) (1.25~2.23) (0.85~1.48) (0.50~0.90)

HbAlc, 9.43 4 1.98 9.24 42,062 9.42 4 2.462 9.48 = 2.45 be 0.532 9.70 - 2.24 9.20 = 2.10 9.16 + 2.13 9.86 + 2.71 0.001

n (%)

FPG (mmol/L) 10.00 + 3.78 9.11+4.092 9.00 +4.242 8.83+4.272 0.001 10.12 £ 3.36 9.31 + 3.59 8.61 4 3.46 % 8.94 + 4.88 <0.001

ALT (U/L) 19.10 15.802 15202 15.20° <0.001 24.10 20.00 2 18352 17.002 <0.001
(13.33~30.90) (12.15~24.35) (11.20~21.93) (11.00~23.00) (16.70~40.05) (14.90~31.00) (13.70~26.55) (12.60~24.50)

AST (U/L) 17.40 16.60 16202 17.102 0.003 19.30 17.502 17.40 2 17.802 <0.001
(14.30~25.65) (13.53~21.20) (13.10~21.10) (13.70~22.33) (15.50~28.70) (14.10~22.95) (14.13~21.78) (14.10~22.58)

GGT (U/L) 25.00 19.002 17.802 15.00 2b¢ <0.001 35.80 27.002 24.002 19.00 2b¢ <0.001
(17.00~36.05) (14.00~27.00) (13.00~24.00) (12.00~21.00) (26.00~56.75) (20.55~41.00) (18.00~35.00) (14.00~28.00)

UA (jumol/L) 309.19 + 99.23 270.56 4 92.10 2 252.96 - 86.42 245.67 4 99.05 2 <0.001 364.28 4 100.97 | 325.67 = 90.46 304.37 = 87.60 289.40 =+ 100.36 2 <0.001

ab ab
Scr (jumol/L) 60.23 + 21.89 60.26 + 31.84 61.38 & 32.56 58.75 4 23.83 0.659 76.27 + 27.85 76.84 & 28.34 77.83 4 26.61 74.29 & 22.79 0.500
(Continued)
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no statistically significant difference in the proportion of smokers,
HbAlc, Scr and UACR among the four groups (all P > 0.05). For
the males, as the quartiles of SPISE increased, the age, duration of
diabetes, HDL-c showed a gradual increased, while the proportion
of smokers, BMI, VFA, SFA, SBP, DBP, TC, LDL-c, TG, TG/HDL-c,
HbAlc, FPG, ALT, AST, GGT, UA, UACR, Hb, HOMA-IR and the
incidence of NAFLD exhibited a gradual decreased (all P < 0.05).
There was no statistically significant difference in Scr and FINS
among the four groups (all P > 0.05).

3.2 Univariate analysis

As shown in Table 4, the relationship between NAFLD and
each variable was analyzed using Spearman’s correlation analysis. In
females, the results indicated that NAFLD was positively correlated
with BMI, VFA, SFA, SBP, DBP, TC, LDL-c, TG, TG/HDL-c,
HbAlc, FBG, ALT, AST, GGT, UA, Hb, FINS and HOMA-IR
(all P < 0.05), and negatively correlated with age, duration of
diabetes, HDL-c, Scr, UACR, and SPISE (all P < 0.05). In males,
the proportion of smokers, BMI, VFA, SFA, SBP, DBP, TC, LDL-c,
TG, TG/HDL-c, FBG, ALT, AST, GGT, UA, Hb and HOMA-IR were
positively correlated with NAFLD, while age, duration of diabetes,
HDL-c, UACR and SPISE were negatively correlated (all P < 0.05).
In females, there was no significant relationship between NAFLD
and the proportion of smokers (all P > 0.05), and in males, there
was no apparent relationship between NAFLD and HbAlc, Scr and
FINS (all P > 0.05).

3.3 Logistic regression analysis

Using NAFLD as the dependent variable, based on the results of
Spearman’s correlation analysis, the independent variables included
age, diabetes duration, HDL-c, Scr, UACR, SPISE, BMI, VFA, SFA,
SBP, DBP, TC, LDL-¢, TG, TG/HDL-¢c, HbAlc, FBG, ALT, AST,
GGT, UA, Hb, FINS and HOMA-IR for females, and the proportion
of smokers, age, diabetes duration, HDL-c, UACR, SPISE, BMI,
VEFA, SFA, SBP, DBP, TC, LDL-c, TG, TG/HDL-c, FBG, ALT, AST,
GGT, UA, Hb and HOMA-IR for males. A binary logistic regression
analysis was conducted to identify the independent correlates of
NAFLD (Table 5). The results indicated that in females, SPISE (OR:
0.572,95% CI 0.477-0.687), VFA (OR: 1.009, 95% CI 1.001-1.017),
FPG (OR: 1.059, 95% CI 1.002-1.120), DBP (OR: 1.026, 95% CI
1.006-1.046), UA (OR: 1.005, 95% CI 1.002-1.008), TC (OR: 1.236,
95% CI 1.036-1.475), and Scr (OR: 0.973, 95% CI 0.958-0.988) were
independently associated with NAFLD, while in males, SPISE (OR:
0.737,95% CI 0.587-0.926), VFA (OR: 1.013, 95% CI 1.005-1.021),
diabetes duration (OR: 0.940, 95% CI 0.903-0.978), Hb (OR: 1.030,
95% CI 1.013-1.047), and GGT (OR: 1.009, 95% CI 1.002-1.016)
were independently related to NAFLD.

3.4 Areas under the ROC curve analysis

Finally, based on the variables that entered the model last, the
formula used to calculate SPISE and the insulin resistance-related
indicators, the predictive capabilities of SPISE, HDL-c, diabetes
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Variables
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BMI, body mass index; VFA, visceral fat area; SFA, subcutaneous fat area; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; LDL-c, low-density lipoprotein cholesterol; TG, triglyceride; HDL-c, high-density lipoprotein cholesterol; HbAlc,

insulin; SPISE, the single point insulin sensitivity estimator; HOMA-IR, homeostatic model assessment for insulin resistance; NAFLD, non-alcoholic fatty liver disease. Data were presented as mean = SD for normally distributed variables, and median (interquartile
ranges) for abnormal distributions. Analysis of variance (ANOVA) and Student-Newman-Keuls tests were performed for multiple and pairwise comparisons of normally distributed data, and Kruskal-Wallis 1-way ANOVA test for abnormal distributions. Categorical

glycosylated hemoglobin; FPG, fasting plasma glucose; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, y - glutamyl transpeptidase; UA, uric acid; Scr, serum creatinine; UACR, urinary albumin to creatinine ratio; Hb, hemoglobin; FINS, fasting

variables were presented as percentage (%) and were compared by chi-square test. Statistical differences were defined by P (two-tailed) less than 0.05. *P < 0.05 versus QL;YP < 0.05 Q3 versus Q2;°P < 0.05 Q4 versus Q3.
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TABLE 4 The correlation between NAFLD and different variables by univariate analysis.

Variables Female
For NAFLD For NAFLD
~Correlaton cosfcient | _p___Conlation costficent | p

Age —0.096 <0.001 —0.267 <0.001
Diabetes duration —0.177 <0.001 —0.244 <0.001
Smoking 0.014 0.602 0.064 0.041
BMI 0.396 <0.001 0.405 <0.001
VFA 0.414 <0.001 0.414 <0.001
SFA 0.403 <0.001 0.395 <0.001
SBP 0.110 <0.001 0.085 0.007
DBP 0.205 <0.001 0.223 <0.001
TC 0.137 <0.001 0.155 <0.001
LDL-c 0.135 <0.001 0.110 <0.001
TG 0.323 <0.001 0.336 <0.001
HDL-c —0.191 <0.001 —0.198 <0.001
TG / HDL-c ratio 0.314 <0.001 0.331 <0.001
HbAlc 0.070 0.010 —0.004 0.891
FPG 0.148 <0.001 0.131 <0.001
ALT 0.248 <0.001 0.270 <0.001
AST 0.123 <0.001 0.150 <0.001
GGT 0.329 <0.001 0.379 <0.001
UA 0.194 <0.001 0.154 <0.001
Scr —0.058 0.028 —0.059 0.061
UACR —0.069 0.010 —0.099 0.002
Hb 0.214 <0.001 0.269 <0.001
FINS 0.108 0.002 0.048 0.263
SPISE —0.450 <0.001 —0.441 <0.001
HOMA-IR 0.176 <0.001 0.113 0.009

BMI, body mass index; VFA, visceral fat area; SFA, subcutaneous fat area; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; LDL-c, low-density lipoprotein
cholesterol; TG, triglyceride; HDL-c, high-density lipoprotein cholesterol; HbAlc, glycosylated hemoglobin; FPG, fasting plasma glucose; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, y - glutamyl transpeptidase; UA, uric acid; Scr, serum creatinine; UACR, urinary albumin to creatinine ratio; Hb, hemoglobin; FINS, fasting insulin; SPISE, the
single point insulin sensitivity estimator; HOMA-IR, homeostatic model assessment for insulin resistance; NAFLD, non-alcoholic fatty liver disease; Correlation coefficients between NAFLD

and different variables were determined by Spearman’s correlation analysis.

duration, Scr, VFA, BMI, GGT, ALT, TG, TG/HDL-c ratio, HOMA-
IR, Hb, UA, and TC for NAFLD were evaluated separately for
different genders (Table 6). The results showed that in females, the
area under the ROC curve for SPISE was 0.209 (95% CI 0.175-
0.244, P < 0.001), and in males, it was 0.268 (95% CI 0.216-0.320,
P < 0.001), both of which were superior to the other variables.

4 Discussion

This study found that SPISE was independently associated with
NAFLD in T2D population, with no gender differences observed.
Additionally, SPISE demonstrated a clear advantage in predicting
NAFLD within this population.

NAFLD as the most prevalent liver disease, exhibits an
increasing trend in incidence (26). Reports indicated a strong

Frontiers in Medicine

correlation between T2D and NAFLD: the incidence of NAFLD
and NASH was particularly pronounced in individuals diagnosed
with T2D (9); the existence of NAFLD raised the risk of
T2D development by five times (27). In this study, the overall
incidence of NAFLD was 38.5%, which is higher than the global
incidence rate, further validating the aforementioned perspective
(1). Therefore, the high prevalence of NAFLD in T2D population
warrants attention. Currently, the routine method for diagnosing
NAFLD in clinical practice is through ultrasound. However, due to
its time-consuming and labor-intensive nature, it is not suitable for
large-scale epidemiological studies. SPISE is an insulin sensitivity
index based on lipids and BMI, our study found that it is closely
related to traditional IR indicators, including HOMA-IR and the
TG/HDL-c ratio. As the SPISE quartiles increased, both HOMA-IR
and the TG/HDL-c ratio were gradually decreased. Additionally,
some studies had found that the SPISE demonstrated higher
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TABLE 5 The relative risk for NAFLD by logistic regression analysis.

10.3389/fmed.2025.1454938

Variables B S Wald P (0] ‘ 95.0 % Cl for OR
Female

SPISE —0.558 0.093 36.165 <0.001 0.572 0.477-0.687
VFA 0.009 0.004 5.252 0.022 1.009 1.001-1.017
FPG 0.057 0.028 4.087 0.043 1.059 1.002-1.120
DBP 0.025 0.01 6.672 0.01 1.026 1.006-1.046
UA 0.005 0.001 13.628 <0.001 1.005 1.002-1.008
TC 0.212 0.09 5535 0.019 1.236 1.036-1.475
Scr —0.027 0.008 11.79 0.001 0.973 0.958-0.988
Male

SPISE —0.305 0.116 6.856 0.009 0.737 0.587-0.926
VFA 0.013 0.004 9.581 0.002 1.013 1.005-1.021
Diabetes duration —0.062 0.02 9.214 0.002 0.94 0.903-0.978
Hb 0.03 0.008 12.353 <0.001 1.03 1.013-1.047
GGT 0.009 0.004 5.743 0.017 1.009 1.002-1.016

NAFLD, non-alcoholic fatty liver disease; SPISE, the single point insulin sensitivity estimator; VFA, visceral fat area; FPG, fasting plasma glucose; DBP, diastolic blood pressure; UA, uric acid;

TG, total cholesterol; Scr, serum creatinine; Hb, hemoglobin; GGT,y- glutamyl transpeptidase; SE, standard error; CI, confidence interval; OR, odd ratio.

TABLE 6 Analysis of areas under the ROC curves for predicting NAFLD.

Female Male

Variables Area SE 95.0 % CI Area SE 95.0 % CI

SPISE 0.209 0.017 0.175-0.244 0.268 0.027 0.216-0.320
HDL-c 0.364 0.022 0.570-0.654 0.390 0.030 0.331-0.449
Diabetes duration 0.421 0.023 0.376-0.466 0.369 0.029 0.312-0.427
Scr 0.458 0.023 0.412-0.503 0.432 0.030 0.373-0.492
VFA 0.756 0.018 0.720-0.792 0.723 0.027 0.671-0.775
BMI 0.762 0.018 0.726-0.799 0.713 0.027 0.659-0.766
GGT 0.724 0.020 0.686-0.763 0.744 0.026 0.693-0.795
ALT 0.612 0.022 0.569-0.655 0.656 0.029 0.599-0.713
TG 0.697 0.021 0.657-0.738 0.681 0.028 0.626-0.736
TG / HDL-c ratio 0.694 0.021 0.653-0.734 0.675 0.028 0.619-0.731
HOMA-IR 0.612 0.022 0.570-0.654 0.555 0.031 0.495-0.615
Hb 0.618 0.022 0.575-0.662 0.684 0.028 0.628-0.739
UA 0.629 0.022 0.587-0.672 0.570 0.030 0.511-0.630
TC 0.599 0.022 0.555-0.644 0.608 0.030 0.549-0.666

NAFLD, non-alcoholic fatty liver disease; SPISE, the single point insulin sensitivity estimator; HDL-c, high-density lipoprotein cholesterol; Scr, serum creatinine; VFA, visceral fat area; BMI,

body mass index; GGT, y- glutamyl transpeptidase; ALT, alanine aminotransferase; TG, triglyceride; HOMA-IR, homeostatic model assessment for insulin resistance; Hb, hemoglobin; UA, uric

acid; TG, total cholesterol; SE, standard error; CI, confidence interval.

accuracy in predicting MetS and IR compared to other measures
such as the TG/HDL-c ratio and HOMA-IR (14, 28). Extensive
research had confirmed that NAFLD was closely associated with
insulin resistance and metabolic syndrome (10, 11, 29, 30). Recent
studies have reported that SPISE was closely associated with
NAFLD related to adolescent obesity and NAFLD in healthy
screening participants (21, 22). However, there is currently a lack
of evidence for SPISE as a predictor of NAFLD in T2D population.

Our study corroborated the capability of SPISE to predict
NAFLD among T2D population. HOMA-IR and the TG/HDL-c
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ratio were also closely related to NAFLD (31, 32), and therefore
we included these IR-related indicators in our study. The results
showed that they did not enter the regression model, and compared
to SPISE, their area under the ROC curve was significantly smaller.
A TJapanese study similarly found that a 1.8-fold increased risk of
concurrent NAFLD and T2D was associated with SPISE, aligning
with our findings (22). However, that study included only 58
patients with both NAFLD and T2D, whereas our study involved
2,459 T2D patients with NAFLD. Additionally, we conducted
gender-stratified analyses, which yielded consistent results, further
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substantiating the predictive power of SPISE in this group.
Beyond IR, dyslipidemia and obesity are also significant factors
related to NAFLD (33). SPISE, as a comprehensive indicator
that includes metrics related to lipids and obesity, is convenient,
accessible and low-cost, making it highly suitable for large-scale
clinical application.

In addition, the results of this study indicated that NAFLD
was closely associated with VFA in both males and females. This
is generally consistent with previous research findings (34). GGT,
ALT and AST are liver enzymes closely associated with NAFLD and
NASH (35-37). In our analysis of female samples using Spearman’s
correlation, AST, GGT, and ALT all showed positive correlations
with NAFLD, yet these variables were not included in the final
binary logistic regression model. In contrast, in male samples,
GGT was incorporated into the regression model. However, the
predictive power of the liver enzyme included in the final regression
model, as indicated by the area under the ROC curve, remained
inferior to that of the SPISE index. This gender discrepancy
may stem from differences in research methodologies and sample
selection criteria.

5 Limitations

This study faces several limitations. Firstly, due to its cross-
sectional design, we cannot establish a causal relationship between
the SPISE index and NAFLD. Secondly, the diagnosis of NAFLD
was not made using the gold standard of liver biopsy, which may
lead to diagnostic bias. Lastly, as this study was conducted at a single
center, future research should be multi-center in order to further
validate our findings and the replication of the study.

6 Conclusion

This study demonstrated that SPISE may have potential
advantages over other commonly used biomarkers in identifying
NAFLD among T2D patients. As a simple insulin sensitivity index,
the specific utility of SPISE in predicting NAFLD among T2D
patients remains to be further investigated.
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Background: It has been described that there is a relationship between metabolic
health and anxiety.

Objective: To determine the relationship between anxiety and metabolic
syndrome, as well as cardiometabolic risk factors, in adolescents with obesity.

Methods: We conducted a comparative cross-sectional study of adolescents
with obesity between January 2019 and December 2022. In each patient, we
recorded somatometric measurements, lipid profiles, and serum insulin levels.
Anxiety was measured using the Spence Children’s Anxiety Scale. Participants
were divided into those with and without anxiety. Patients with anxiety were
matched to patients without anxiety using propensity scores based on z-score
body mass index (zBMI). Mann-Whitney U tests and % tests were used.

Results: Of the 564 adolescents, 32.6% (n = 184) suffered from anxiety. In the
overall study population, no differences in biochemical and cardiometabolic
parameters were observed between the adolescents with and without anxiety
prior to adjusting the groups based on zBMI. After matching using their zZBMI, we
found that the adolescents with anxiety had higher serum uric acid levels (5.9
mg/dl vs. 5.4 mg/dl, p = 0.041), an increased incidence of metabolic syndrome
(39.1% vs. 15.9%, p = 0.002), hyperglycemia (21.7% vs. 8.6%, p = 0.020), and lower
HDLc (67.3% vs. 34.7%, p < 0.001), than those without anxiety. Girls with anxiety
had a higher proportion of cardiometabolic risk factors compared to those
without anxiety.

Conclusions: Adolescents with obesity and anxiety had higher cardiometabolic
risk factors than those without anxiety.
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Introduction

Anxiety disorders are the most common mental health
problems among adolescents, with a worldwide prevalence of
6.5% (1). Anxiety disorders typically have their onset during
adolescence (2) and are characterized by excessive worry, fear,
and apprehension, as well as physical symptoms, such as fatigue,
palpitations, and tension (3).

Unlike the many studies that have established a strong
association between depression in pediatric patients and being
overweight and obese, studies on anxiety are more limited, but
research has found an increase in the frequency of anxiety disorders
and low self-esteem among children and adolescents with obesity;
all of which lead to a deterioration in the quality of life (4, 5).
However, it must be considered that it is not clear if being
overweight or obese causes anxiety or vice versa. The relationship
between anxiety and obesity appears to involve a complex
interaction of biological, psychological, and social factors.
Biologically, imbalances in appetite-regulating hormones and
cortisol have been noted. Psychologically, low self-esteem,
negative self-image, and reduced life satisfaction resulting from
obesity can contribute to the development of anxiety. Socially, the
easy availability of high-calorie fast foods, increased consumption of
sugary drinks, extended screen time on electronic devices, and
limited opportunities for physical activity are possible
contributing factors (6-9).

Moreover, a connection has also been established between
anxiety, depression, and a higher risk of cardiovascular disease
(CVD). Several pathophysiological factors, including inflammation,
oxidative stress, and autonomic dysfunction, have been proposed as
systemic processes contributing to this link (10-13). The combined
effect of these changes in patients with both obesity and anxiety may
accelerate the progression of CVD. In adults with obesity, the
metabolic profile tends to be more unfavorable when anxiety is
also present (11-14), though similar studies in children and
adolescents are limited (15).

The objective of the study was to determine the relationship
between anxiety and metabolic syndrome, as well as
cardiometabolic risk factors, in adolescents with obesity.

Methods
Subjects

This cross-sectional study was conducted in Mexico between
January 2019 and May 2022 with a sample of patients from three
tertiary care pediatric centers (Hospital Infantil de Mexico Federico
Gomez, Pediatric Hospital Centro Médico Nacional Siglo XXI, and
High Specialty South Central Hospital of Petroleos Mexicanos).
Patients aged 10-18 years with a diagnosis of obesity, defined as a
body mass index (BMI) of >95th percentile on the 2000 Center for
Disease Control and Prevention (CDC) Growth Charts (16), were
included. Exclusion criteria were the presence of genetic syndromes,
the use of medications that can influence weight or appetite (e.g.,
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steroids, selective serotonin reuptake inhibitors such as fluoxetine
or sertraline, insulin sensitizers, anorexigenics, and intestinal fat
absorption inhibitors), the use of hepatotoxic medications, chronic
liver disease, and declining the invitation to participate.

Demographic and clinical information

Demographic information, including age, sex, medical history,
and medication use, was collected with the objective of describing
the population and identifying whether they met the selection
criteria. Anthropometric data, fasting plasma glucose, insulin, and
lipid concentrations [high-density lipoprotein cholesterol (HDLc),
low-density lipoprotein cholesterol (LDLc), and triglycerides
(TGLs)] were collected. Levels of physical sexual maturation were
determined by a pediatric endocrinologist based on the Tanner
scale, which comprises five stages of pubertal development (17).
Children in Tanner stage 1 were classified as prepubertal, Tanner
stages 2—4 as pubertal, and Tanner 5 as post-pubescent.

Anthropometry

A certified nutritionist measured and recorded the
anthropometric indicators of each patient. Height was measured
using a Seca model 769 stadiometer (Seca GmbH & Co. KG,
Hamburg, Germany). Weight measurements were performed
using the bioimpedance method (Tanita BC-568 Segmental Body
Composition Monitor, Tokyo, Japan). The participants were
weighed barefoot in their underwear.

Anxiety measurement

The presence of elevated levels of anxiety was determined using
the Mexican version of the Spence Children’s Anxiety Scale (SCAS)
(18). The questionnaire is used as a screening to identify the
presence of anxiety. It comprises 38 questions about the
respondent’s experience of anxiety symptoms, to which responses
are given on a four-point Likert scale with the options never (0),
sometimes (1), often (2), or always (3) (19). The SCAS includes six
subscales that measure specific anxiety disorders. These are panic
attacks and agoraphobia, separation anxiety, social phobia, specific
fears, obsessive-compulsive disorder, and generalized anxiety
disorder. The Child Report version of the SCAS was used.
Elevated anxiety was deemed present when a participant’s total
score was 260 and a specific anxiety disorder when the score on the
relevant subscale was > the 84th percentile. The cut-off scores refer
to T-scores to identify children within a subclinical range vs. a
clinical range (18).

The global validity and reliability of the SCAS were 0.95 and
0.88, respectively; and in Mexican samples, the validity and
reliability were 0.92 and 0.61, respectively (19, 20). The
subclinical T-score cut-off (=60) was used to define the ‘with
anxiety’ and ‘without anxiety’ subgroups (18-20).
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Cardiometabolic profile measurement

After a minimum of 12 hours of fasting, blood samples from
participants were obtained from the forearm antecubital vein
between 7:00 and 8:00 a.m. Serum samples were frozen at —20°C
until analysis. Levels of glucose, TGL, HDLc, LDLc, and uric acid
were determined using colorimetric enzymatic methods (Bayer
Diagnostics, Puteaux, France). Insulin levels were measured by
chemiluminescence (Roche/Hitachi Modular P and D Chemistry
Analyzer, Roche Diagnostics Corp., Indianapolis, USA; Hitachi
Ltd., Tokyo, Japan). Intra- and inter-assay coefficients of variation
<7% were considered acceptable. A standard curve was generated
for each assay.

Identification of cardiometabolic
health risks

Insulin resistance

Each participant’s insulin resistance (IR) index (Homeostatic
Model Assessment: HOMA-IR) was calculated using the following
formula: HOMA-IR = fasting glucose (mg/dl) X fasting insulin (uU/
ml)/405. The HOMA-IR cutoft point for a diagnosis of IR was 2.5 (21).

Hypertriglyceridemia

In children <10 years old, hypertriglyceridemia was diagnosed
when plasma TGL levels were >90th percentile for a child of the
participant’s age and sex. In children >10 years old, it was diagnosed
when plasma TGL levels were >150 mg/dl (22).

Altered HDLc and altered LDLc

Low HDLc for children <10 years was judged as that <10th
percentile for the participant’s age and sex. In children >10 years,
low HDLc was defined as <40 mg/dl in

boys and <50 mg/dl in girls (21). High LDLc was defined as
>130 mg/dl (22).

Impaired fasting glucose
Elevated fasting plasma glucose was considered a fasting glucose
level 2100 mg/dl (22).

Arterial hypertension

Children with hypertension were considered to have diastolic or
systolic blood pressure > the 90th percentile for age and sex,
according to the National Blood Pressure Education Program
Working Group (23).

Metabolic syndrome

Metabolic syndrome was defined when at least three of the
following cardiometabolic abnormalities were present, according to
the definitions already mentioned above: hypertension, obesity,
hypertriglyceridemia, reduced HDLc, or elevated fasting plasma
glucose (22, 24).
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Statistical analysis

Kolmogorov-Smirnov tests revealed that the quantitative
variables had a non-parametric distribution. These were described
as the median, minimum, and maximum and the qualitative
variables were presented as proportions and frequencies.
Comparisons of quantitative variables between groups were
performed using the Mann-Whitney U test. For qualitative
variables, x> tests were applied. A p-value of <0.05 was considered
statistically significant. STATA v.14.0 (Stata Corp. 2015. College
Station, TX, USA) was used for the statistical analyses.

Participant matching

To minimize the impact of any bias introduced by BMI z-scores
(zBMI), patients with anxiety were matched to patients without
anxiety using propensity scoring. The propensity scores were based
on the zBMI. The propensity score technique used was nearest-
neighbor matching at a 1:1 ratio without replacement. The caliper
was set at 0.01. The pymatch library for Python v.3.7 was used.
Subsequently, this analysis was stratified by sex.

Ethics

This study was conducted in accordance with the tenets of the
2013 version of the Declaration of Helsinki. The protocol was
approved by the National Research and Health Ethics Committee
of the Mexican Social Security Institute (R-2014-785-024). Both the
participants and their parents/caregivers gave written informed
consent for participation and publication.

Results
Participant characteristics

A total of 589 adolescents with obesity participated in this study.
Of these, 25 were excluded due to incomplete questionnaires.

A total of 564 adolescents were analyzed. The sample had a
median age of 12 years, with a minimum and maximum of 10 and
18 years, respectively, and there was a predominance of boys
(53.6%). The median BMI was 30.1 kg/m2 and the median zBMI
was 2.4. Of the participants, 92.6% (n = 522) were in Tanner stages
2-4 (pubertal) (Table 1).

It was noteworthy that the median HDLc was 38.0 mg/dl, which
falls below the normal range. The rest of the biochemical
parameters had medians that were not significantly different from
normal levels for adolescents (Table 2). The cardiometabolic
parameter that showed the greatest frequency (63.6%, n = 359) of
divergence from normal levels was HDLc. Hypertriglyceridemia
was found in 41.7% (n = 235) of the sample. IR and metabolic
syndrome were identified in 223 patients (39.5%) (Table 3).
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TABLE 1 General characteristics of the adolescents with obesity with and without anxiety.

Characteristic

Participants, n (%)

10.3389/fendo.2025.1477006

Total No anxiety Anxiety
n = 564 n = 380 n =184
Sex, n (%) 0.249
Female 262 (46.4) 187 (49.2) 76 (41.3)
Male 302 (53.6) 193 (50.8) 108 (58.7)
Age, years; median (min-max) 12.0 (10.0-18.0) 12.0 (10.0-18.0) 12 (10-18) 0.700
BMI, kg/m?% median (min-max) 30.1 (18.5-58.0) 29.5 (10.7-43.2) 30.81 (21.3-58.0) 0.269
BMI z-score, median (min-max) 2.4 (0.8-4.6) 243 (1.3-3.6) 2.56 (1.2-4.6) 0.125
Waist circumference, cm, median (min-max) 92.5 (72.0, 117.5) 92.0 (72.0, 116.0) 93.5 (74, 143.4) 0.441
Tanner pubertal stage, n (%) 0.974
1 42 (7.3) 28 (7.3) 14 (7.5)
2 85 (15.0) 60 (15.7) 25 (13.7)
3 168 (29.8) 108 (28.5) 60 (32.5)
4 212 (37.5) 145 (38.2) 67 (36.3)
5 58 (10.2) 39 (10.3) 18 (10.0)

min, minimum; max, maximum.

Anxiety-related symptoms

Anxiety-related symptoms were found in 32.6% (n = 184) of the
adolescents in this study. Of the six specific disorders identified by
the SCAS subscales, separation anxiety disorder occurred most
frequently among those with overall anxiety (92.5%, n = 170),
followed by panic attacks and agoraphobia (81.0%, n = 149).

In comparing the demographic, biochemical, and
cardiometabolic characteristics of adolescents with and without
anxiety-related symptoms, we observed non-significant trends
indicating higher zBMI (2.6 vs. 2.4, p = 0.125), serum glucose
levels (92.0 mg/dl vs. 91.4 mg/dl, p = 0.138) (see Table 2), and
hyperglycemia (28.8% vs. 20.0%, p = 0.126) among those with
anxiety. However, no significant trends were noted for any of the
other parameters (Table 3).

In view of the tendency toward higher zBMI in adolescents with
anxiety, we matched participants from the anxiety and non-anxiety
groups based on zBMI. We then compared the lipid profiles and
cardiometabolic factors between the groups. This analysis showed
that the adolescents with obesity and anxiety had higher serum uric
acid levels (5.9 mg/dl vs. 5.4 mg/dl, p = 0.041) and lower HDLc
levels (37.0 mg/dl vs. 40.0 mg/dl, p = 0.019) than those without
anxiety. A comparison of cardiometabolic factors found that the
adolescents in our sample with anxiety had a significantly higher
incidence of hyperglycemia (21.7% vs. 8.6%, p = 0.020) and
metabolic syndrome (39.1% vs. 15.9%, p = 0.002), and
significantly lower HDLc (67.3% vs. 34.7%, p < 0.001) than those
without anxiety (Table 4).

Finally, as shown in Table 5, when analyzing the data by sex,
girls with anxiety exhibited a higher proportion of cardiometabolic
risk factors (elevated fasting glucose, decreased HDLc, IR, and
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metabolic syndrome), compared to their counterparts without
anxiety. In contrast, among boys, the only significant finding was
a higher proportion of decreased HDLc in those with anxiety
compared to those without.

Discussion

The primary finding of this study was that 32.5% of the
adolescents with obesity also experienced anxiety-related
symptoms, with separation anxiety (92.5%) being the most
prevalent type of anxiety disorder. Furthermore, adolescents with
anxiety demonstrated an increase in cardiometabolic risk factors.
Specifically, we observed that these adolescents had higher serum
levels of uric acid and glucose, along with lower HDLc, compared to
their non-anxious peers. Notably, girls with anxiety exhibited a
more adverse cardiometabolic profile. Consistent with our findings,
Cheuiche et al. reported a significant association between the
severity of anxiety and cardiovascular risk factors, such as larger
waist circumference and higher body fat percentage (25).

These findings are novel, especially as pediatric studies on this
topic remain limited. For instance, Ji et al. reported that adults with
anxiety have a greater risk of metabolic syndrome compared to
those without anxiety (15), while van Reedt Dortland et al. found
that anxiety and depression are associated with decreased HDLc
and increased abdominal obesity (26). Several studies have
identified inflammation as a key factor in the development of
cardiovascular disease, with a bidirectional relationship to mental
health. Anxiety, obesity, and cardiovascular disease are thought to
be linked by a complex interaction of biopsychosocial factors and
neurobiological mechanisms, such as hormonal imbalances in the

frontiersin.org


https://doi.org/10.3389/fendo.2025.1477006
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Villasis-Keever et al.

TABLE 2 Comparison of the biochemical characteristics of adolescents
with obesity and with or without anxiety.

Characteristic Participants, median (min-max)

[\[e)
anxiety
n = 380

Total
n = 564

Anxiety
n =184

10.3389/fendo.2025.1477006

TABLE 4 Comparison of the biochemical and cardiometabolic
characteristics of adolescents with obesity and with or without anxiety.

Characteristic Participants

No anxiety  Anxiety

n=92 n=92

Biochemical profile, median (min-max)

Glucose, mg/dl 92.0 914 92.0 0.138
(70.0-189.0) (70.4-117.0) (73.0-124.2)

HDL cholesterol, | 38.0 38.0 38.0 0.265

mg/dl (12.0-65.0) (20.0-63.0) (12.0-60.0)

LDL cholesterol, 96.0 96.0 96.1 0.717

mg/dl (56.0-194.0) (16.0-194.0) (37.4-167.0)

Triglycerides, 140.0 143.0 139.5 0.666

mg/dl (109.0-533.0) (54.0-533.0) (40.0-328.0)

Uric acid, mg/dl 5.8 (0.7-10.0) 5.8 (2.3-10.0) | 5.9 (2.0-10.5) | 0.302

Insulin, mu/ml 10.9 10.7 11.5 0.481
(2.2-75.2) (2.4-79.6) (2.2-75.2)

HOMA-IR 2.4 (0.4-19.2) 2.3 (0.4-19.2) | 2.5(0.4-17.8) @ 0377

Systemic blood pressure, median (min-max)

Systolic, nmHg 114.0 113.0 115.0 0.473
(83.0-146.0) (90.0-135.0) (88.0-140.0)

Diastolic, mmHg 71.0 71.0 71.0 0.499
(50.0-100.0) (51.0-90.0) (50.0-95.0)

min, minimum; max, maximum.

TABLE 3 Comparison of the cardiometabolic factors of adolescents with
obesity and with or without anxiety.

Characteristic Participants, n (%)

Total
n =564

Anxiety P
n =184

Cardiometabolic factors, n (%)

Impaired 129 (22.9) 76 (20.0) 53 (28.8) 0.126
fasting glucose

Altered 359 (63.6) 233 (61.3) 127 (69.0) 0.250
HDL cholesterol

Altered 51 (9.0) 37 (9.7) 14 (7.6) 0.573
LDL cholesterol

Hypertriglyceridemia 235 (41.7) 161 (42.4) 74 (40.2) 0.712

Arterial hypertension 35 (6.2) 25 (6.58) 9 (4.9) 0.610

Insulin resistance 223 (39.5) | 147 (38.7) 76 (41.3) 0.712

Metabolic syndrome 223 (39.5) | 145 (38.2) 78 (42.4) 0.517

min, minimum; max, maximum.

hypothalamic-pituitary-adrenal axis and increased cortisol levels
(12, 27).

The relationship between fasting hyperglycemia and elevated
cortisol is largely attributed to glucocorticoid-induced hepatic
gluconeogenesis and impaired insulin secretion, contributing to

Frontiers in Endocrinology

General characteristics, median (min-max)

BMI z-score 2.6 (1.5-3.3) 2.54 (1.5-3.6) 0.896

Waist circumference, cm 92.5 (74.0-112.5) 93.0 (73.0-121.0) 0.416
Biochemical profile, median (min-max)

Glucose, mg/dl 90.0 (70.0-108.0) 92.0 (73.0-124.0) 0.059

HDL cholesterol, mg/dl 40.0 (24.0-55.0) 37.0 (16.0-51.0) 0.019

LDL cholesterol, mg/dl 91.2 (62.0-145.0) 96 (55.9-155.0) 0.251

Triglycerides, mg/dl 138.0 128.0 0.883

(64.0-236.0) (40.0-328.0)

Uric acid, mg/dl 5.4 (3.0-8.5) 5.9 (3.7-8.4) 0.041

Insulin, mu/ml 12.3 (2.5-79.6) 13.5 (2.2-75.2) 0.394

HOMA-IR 2.7 (0.6-19.2) 2.9 (0.4-17.8) 0.274
Systemic blood pressure, median (min-max)

Systolic, mmHg 113.0 115.0 0.447

(90.0-131.0) (89.0-139.0)

Diastolic, mmHg 70.0 (50.0-90.0) 71.0 (50.0-94.0) 0.572
Cardiometabolic factors, n (%)

Elevated fasting glucose 8 (8.6) 20 (21.7) 0.020

Decreased 32 (34.7) 62 (67.3) <0.001

HDL cholesterol

Increased 2(2.1) 6 (6.5) 0.404

LDL cholesterol

Hypertriglyceridemia 32 (34.7) 34 (36.9) 0.922

Arterial hypertension 6 (6.5) 6 (6.5) 1.000

Insulin resistance 34 (36.9) 42 (45.6) 0.301

Metabolic syndrome 14 (15.9) 36 (39.1) 0.002

min, minimum; max, maximum.
Propensity scoring.
Bold values are statistically significant.

features of metabolic syndrome (28-30). Impaired insulin function,
higher fasting glucose, and increased diabetes risk have also been
observed in individuals with anxiety and depression (31). Likewise,
in adolescents with obesity, it has been reported that fasting insulin
and HOMA-IR levels are 40% higher in those with depression (32).

Another cardiometabolic alteration identified was elevated
serum uric acid levels in adolescents with anxiety compared to
those without anxiety. This finding is associated with the higher
prevalence of metabolic syndrome in adolescents with anxiety.
Recent studies have shown that elevated uric acid levels
independently predict the development of diabetes and contribute
to IR, fatty liver, and dyslipidemia in the context of metabolic
syndrome (33). These effects may be driven by mitochondrial
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Characteristic

Female, n=101

No anxiety
n =62

General characteristics, median (min-max)

Anxiety

n =39

Male, n=83.

No anxiety
n=29

10.3389/fendo.2025.1477006

TABLE 5 Comparison of the biochemical and cardiometabolic characteristics of adolescents with obesity and with or without anxiety.

Anxiety
n =54

BMI z-score 2.6 (1.3-3.3) 2.4 (1.2-4.6) 0.301 2.6 (1.6-2.9) 2.6 (1.5-4.1) 0.272
Waist circumference, cm 89.0 (76.6-112.5) 91.5 (73.3-121.0) 0.333 98.0 (85.9-108.9) 94.5 (73.0-117.5) 0.434
Biochemical profile, median (min-max)
Glucose, mg/dl 88.0 (76.0-97.0) 91.0 (86.0-124.0) 0.069 96.0 (70.0-108.0) 93.0 (74.0-115.0) 0.142
HDL cholesterol, mg/dl 40.0 (24.0-55.0) 37.0 (16.0-59.0) 0.342 42.0 (25.0-54.0) 38.0 (21.0-57.0) 0.010
LDL cholesterol, mg/dl 91.2 (62.0-145.0) 99.0 (40.0-146.0) 0.316 90.2 (55.9-122.0) 93.9 (37.4-155.0) 0.175
Triglycerides, mg/dl 134.0 (64.0-236.0) 148.0 (53.0-323.0) 0.294 148.0 (77.0-235.0) 119.0 (40.0-328.0) 0.127
Uric acid, mg/dl 4.8 (3.9-7.1) 5.4 (3.0-8.0) 0.084 5.5 (3.7-8.5) 6.3 (3.3-9.7) 0.590
Insulin, mu/ml 11.4 (4.8-31.5) 16.5 (5.3-40.4) 0.010 14.5 (2.5-79.6) 10.5 (2.2-75.2) 0.309
HOMA-IR 2.3 (1.0-7.3) 35 (1.3-11.2) 0.006 3.5 (0.6-19.2) 2.4 (0.4-17.8) 0.302
Systemic blood pressure, median (min-max)
Systolic, nmHg 113.0 (90.0-131.0) 115.0 (89.0-139.0) 0.447 112.0 (91.0-130.0) 111.0 (88.0-138.0) 0.347
Diastolic, mmHg 70.0 (50.0-90.0) 71.0 (50.0-94.0) 0.572 71.0 (50.0-92.0) 72.0 (50.0-93.0) 0.572
Cardiometabolic factors, n (%)
Elevated fasting glucose 0 (0.0) 8 (20.5) 0.001 8 (27.6) 13 (24.0) 0.845
Decreased HDL cholesterol 26 (41.9) 28 (71.8) 0.011 6 (20.7) 35 (64.8) 0.001
Increased LDL cholesterol 3(4.8) 4 (10.2) 0.298 0 (0.0) 2(3.7) 0.455
Hypertriglyceridemia 18 (29.0) 19 (48.7) 0.105 13 (44.8) 16 (29.6) 0.224
Arterial hypertension 3 (4.8) 4 (10.2) 0.298 2(3.7) 1(1.8) 0.247
Insulin resistance 17 (27.4) 23 (58.9) 0.007 17 (58.6) 20 (37.0) 0.102
Metabolic syndrome 4(6.4) 19 (48.7) <0.001 10 (34.4) 18 (33.3) 0.758

min, minimum; max, maximum.
Propensity scoring, stratified by sex.
Bold values are statistically significant.

oxidative stress and impaired insulin-stimulated nitric oxide
production in endothelial cells. Some researchers have also
suggested that a high intake of purine- and fructose-rich foods
may contribute to elevated uric acid levels, obesity, and the
development of metabolic syndrome (34, 35).

Our study indicates that adolescent girls with anxiety are more
likely to experience cardiometabolic risk factors compared to their
non-anxious peers. Recent research suggests that psychosocial stress
might be a more significant risk factor for cardiometabolic disease
in women than in men, possibly due to greater exposure to stress or
increased susceptibility to its effects (36). Evidence highlights
stronger associations between depression, anxiety, and type 2
diabetes in women compared to men (37, 38). Additionally, sex
differences have been observed in the relationship between early
adversity and obesity, with girls showing a higher risk of developing
obesity linked to early-life stress (39). However, recent reviews have
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pointed out that few studies have explicitly explored sex-related
differences in cardiometabolic outcomes (40).

Despite the significant findings, several limitations must be
acknowledged. First, the study’s cross-sectional design limits our
ability to establish causality between anxiety and cardiometabolic risk
factors. Further research is needed to explore the cardiometabolic
changes in adolescents with both obesity and anxiety (5).
Additionally, it is important to note that we used the SCAS, which is
a valid self-report questionnaire that assesses DSM-IV-defined anxiety
symptoms in children. Compared to similar tools such as the Screen for
Child Anxiety Related Emotional Disorders (SCARED), which
correlates well with the SCAS (r = 0.89), the SCAS is shorter and has
a simpler factor structure (41, 42). Other widely used instruments, such
as the Revised Children’s Manifest Anxiety Scale (43) and the Fear
Survey Schedule for Children-Revised (44), are more general measures
of anxiety and do not specifically address DSM-IV anxiety disorders.
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During patient recruitment, the COVID-19 pandemic and associated
lockdowns occurred. Most of the sample (76.0%) was collected prior to
the pandemic, with patient recruitment temporarily halted during this
period and resuming in January 2022 (14.0%, n=137). A sub-analysis
comparing patients recruited before and after the pandemic found no
significant differences in the proportion of anxiety. This may be
attributed to the fact that the latter group of patients was no longer
experiencing social isolation at the time of their inclusion in the study.

As a final reflection, we would like to discuss how to incorporate
the study findings into the management of obesity in adolescents.
Latin America and Mexico are experiencing an epidemiological
transition, with rising rates of childhood obesity and chronic
diseases that increase morbidity and mortality (45). Furthermore,
psychological changes during adolescence may exacerbate the
negative emotions associated with obesity, creating a vicious cycle.
Based on the above, it seems important that weight reduction
interventions should incorporate mental health strategies (such as
relaxation techniques, meditation, and cognitive-behavioral therapy)
to enhance adherence to weight reduction programs and improve
both short- and long-term health outcomes (46, 47).

Conclusions

We found that adolescents with obesity and anxiety had higher
serum uric acid levels, lower HDLc levels, and higher incidences of
hyperglycemia and metabolic syndrome than adolescents with
obesity but without anxiety. It is of the utmost importance to
develop a multidisciplinary treatment for this population that
considers nutritional advice support, teaches coping skills,
encourages meditation, and provides cognitive-behavioral therapy.
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Background: Preserved ratio impaired spirometry (PRISm) is a newly defined
phenotype of lung function impairment, characterized by a normal FEV1/FVC
ratio alongside an FEV1/0.8 < FEV1 predicted value. Previous studies have linked
PRISm to various adverse clinical outcomes, but its association with insulin
resistance, as indicated by estimated glucose disposal rate (eGDR),
remains underexplored.

Methods: A total of 13,661 participants were included in this analysis after
excluding individuals with missing data on PRISm (n = 10,954) and eGDR (n =
5,827). The median eGDR for the overall sample was calculated, and differences
in baseline characteristics between the PRISm and non-PRISm groups were
assessed. Logistic regression models were employed to analyze the relationship
between eGDR and PRISm, adjusting for various confounders. Subgroup analyses
were conducted based on gender and age. Additionally, the restricted cubic
spline analysis was used to evaluate the non-linear relationship between eGDR
and PRISm, and ROC analysis was performed to determine the predictive
accuracy of eGDR for identifying PRISm.

Results: Participants in the PRISm group exhibited significantly lower median
eGDR values compared to the non-PRISm group (9.92 vs. 12.01 mg/kg/min; P <
0.001), indicating greater insulin resistance. The weighted multivariable logistic
regression analysis revealed that each unit increase in eGDR was associated with
a 15.1% reduction in the odds of PRISm in unadjusted models, and 7.3% in fully
adjusted models (OR = 0.927, 95% Cl: 0.880-0.976; P = 0.005). Subgroup
analyses demonstrated a stronger association between eGDR and PRISm in
females and individuals over 40 years of age. The restricted cubic spline
analysis indicated a significant non-linear relationship, with an optimal eGDR
cutoff of 11.423 mg/kg/min identified via ROC analysis (AUC = 0.626),
demonstrating modest predictive accuracy.
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Conclusion: Our study demonstrates a significant inverse association between
estimated glucose disposal rate (eGDR) and preserved ratio impaired spirometry
(PRISm) among a diverse population of US adults. Participants with lower eGDR
values exhibited a higher prevalence of PRISm, indicating greater insulin
resistance and potential metabolic dysfunction. The findings suggest that
eGDR may serve as a valuable marker for assessing the risk of PRISm,
particularly among women and older adults.

estimated glucose disposal rate, eDGR, insulin resistance, preserved ratio impaired lung
function, PRISM, lung function, lung injury

Introduction

Chronic lung disease affects hundreds of millions of people
worldwide and ranks as the third leading cause of death globally,
following cardiovascular disease and cancer (1). Common lung
diseases, such as asthma, chronic obstructive pulmonary disease
(COPD), and bronchiectasis, often lead to significant changes in lung
function, particularly resulting in airflow obstruction (2, 3). This
obstruction is typically identified through lung function testing
conducted after administering a bronchodilator, characterized by a
reduced ratio of forced expiratory volume in one second to forced
vital capacity (FEV1/FVC). In contrast, non-obstructive lung function
abnormalities, commonly referred to as restrictive lung disease, are
marked by a symmetric reduction in both FEV1 and FVC (4).

However, preserved ratio impaired lung function (PRISm) is a
relatively underexplored lung disease that is characterized by a decrease
in FVC while the ratio of forced expiratory volume in one second to
forced vital capacity FEV1/FVC remains within the normal range, with
the global prevalence of PRISm estimated to be between 6.6% and 17.6%
(5). Although PRISm has historically been viewed as a transitional state
between normal lung function and COPD, retrospective studies have
shown that only approximately 23% of individuals with PRISm progress
to COPD (6). Some studies have shown that PRISm is significantly
associated with increased risks of mortality, as well as adverse
cardiovascular and respiratory outcomes (4), and is linked to a higher
prevalence of diabetes, heart disease, and hypertension among
individuals with chronic diseases (7, 8). In contrast, PRISm has been
independently linked to higher cardiovascular risk and increased
mortality (9). It may represent a distinct clinical phenotype with
unique pathophysiological and prognostic implications, rather than
merely an early stage of obstructive lung disease (10).

Insulin resistance is a condition characterized by a diminished
response to insulin, which results in decreased efficiency of glucose

Abbreviations: PRISm, Preserved ratio impaired spirometry; eGDR, Estimated
glucose disposal rate; FEV 1, First second forced expiratory volume; ALT, Alanine
Aminotransferase; AST, Aspartate Aminotransferase; PIR, poverty income ratio;
BMI, Body Mass Index; eGFR, estimated glomerular filtration rate; ROC,

Receiver operating characteristic; RCS, Restricted cubic spline.
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uptake and utilization, ultimately leading to metabolic abnormalities
and serving as a significant risk factor for various metabolic disorders
such as type 2 diabetes, hypertension, dyslipidemia, and obesity (11,
12). Recent research has highlighted the correlation between insulin
resistance and pulmonary diseases, including impaired lung function
and asthma, indicating that individuals with insulin resistance often
experience compromised respiratory health, which suggests that
metabolic dysregulation may exert both direct and indirect effects
on lung function (13-15).

The concept of estimated glucose disposal rate (eGDR) has
emerged as a valuable tool for assessing insulin sensitivity,
particularly in individuals with diabetes. eGDR is derived from
clinical parameters such as body mass index (BMI) and blood
pressure, making it a useful surrogate marker for insulin resistance
(16). Compared to other insulin resistance markers such as TyG,
TyG-BMI, and METS-IR, recent studies have shown that eGDR has
superior predictive ability for adverse cardiometabolic outcomes,
including stroke and cardiovascular disease (17, 18). While the
relationship between insulin resistance and various metabolic
disorders has been extensively studied, research exploring the
connection between insulin resistance and PRISm remains
relatively scarce. These findings suggest that eGDR may also be a
more effective indicator for identifying individuals at risk of PRISm,
particularly in populations with metabolic disturbances. Therefore,
we utilized the national health and nutrition examination surveys
(NHANES) database to explore the association between eGDR and
PRISm, aiming to further elucidate their potential link in metabolic
health and lung function. We hypothesized that decreased insulin
sensitivity, as reflected by lower eGDR, would be negatively
associated with lung function and increase the likelihood of PRISm,
thereby linking metabolic and respiratory health.

Methods
Study and data

The National Health and Nutrition Examination Survey
(NHANES), conducted by the National Center for Health
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Statistics (NCHS) at the U.S. Centers for Disease Control and
Prevention (CDC), is a cross-sectional survey employing a complex,
multistage sampling design to gather data representative of the non-
institutionalized U.S. population. NHANES operates in two-year
cycles, collecting data through in-home interviews and standardized
physical examinations. For this study, data from three NHANES
cycles (2007-2008, 2009-2010 and 2011-2012) were utilized, based on
the availability of lung function measurements. The dataset can be
accessed at (https://www.cdc.gov/nchs/nhanes/index.htm). The study
population included U.S. adults aged 20-79 who met the criteria for
valid spirometry testing. Participants with missing lung function
data or essential variables required to estimate predicted forced
expiratory volume in one second (FEV1) or to calculate estimated
glucose disposal rate (eGDR) were excluded. The participant
selection flowchart is illustrated in Figure 1.

Definitions of eGDR and PRISm

The insulin resistance index, estimated glucose disposal rate
(eGDR), was calculated using the following equation:
eGDR =21.158 - (0.09 x waist circumference [cm]) - (3.407 x
hypertension [yes = 1, no = 0]) - (0.551 x glycated hemoglobin Alc
[HbA1c] [%]) (16). Hypertension was defined as (1) systolic blood
pressure 2140 mmHg or diastolic blood pressure 290 mmHg, (2)
self-reported physician diagnosis of hypertension, or (3) use of
antihypertensive medication. Preserved Ratio Impaired Spirometry
(PRISm) was defined as a forced expiratory volume in one second/
forced vital capacity ratio (FEV1/FVC) 20.7 with an abnormal
spirometry result (FEV1 <80% of the predicted value) (4). Predicted
FEV1 values were calculated using the Global Lung Function
Initiative (GLI-2012) reference equations, implemented via
specialized software available at (https://gli-calculator.ersnet.org/
index.html) (19).

NHANES 2007-2012
N =30,443

Excluded missing lung
function and variables
needed to estimate
PRISm

N = 19,448

Excluded missing variables
needed to calculate
estimated eGDR

N =13,661

FIGURE 1
Flowchart depicting the screening process for selecting the
study population.
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Covariates

Demographic data (age, gender, race/ethnicity, and poverty
income ratio), health-related behaviors (smoking status and
alcohol consumption), medical history (cardiovascular disease
and stroke) were collected from NHANES through standardized
questionnaires. Ethnicity was categorized as Mexican American,
other Hispanic, non-Hispanic White, non-Hispanic Black, and
other races. The poverty income ratio (PIR) was calculated as the
ratio of monthly family income to the federal poverty level,
following the Department of Health and Human Services
guidelines, and categorized into low income (<1.30), middle
income (1.31-3.50), and high income (>3.50) (20). Body mass
index (BMI) was categorized into normal weight (<25 kg/m?),
overweight (25-29.9 kg/m?), and obese (>30 kg/m?), and included
as a categorical variable in multivariable regression analyses.
Cardiovascular disease and stroke were identified based on
affirmative responses to the following question: “Has a doctor or
other health professional ever told you that you had congestive
heart failure, coronary heart disease, angina, heart attack, or
stroke?” Alcohol consumption was determined by asking, “Have
you had at least 12 alcoholic drinks in the past year?” Smoking
status was defined as a binary variable (yes/no), based on responses
to the questions: “Have you smoked at least 100 cigarettes in your
lifetime?” and “Do you currently smoke?” Additionally, laboratory
data included cotinine, alanine aminotransferase (ALT), aspartate
aminotransferase (AST), and creatinine. Renal function was
assessed by calculating the estimated glomerular filtration rate
(eGFR) using the CKD-EPI equation (21), and eGFR was
included as a continuous covariate in the models.

Statistical analysis

We conducted weighted analyses according to NHANES
guidelines. Continuous variables that did not follow a normal
distribution were expressed as medians with interquartile ranges,
and group comparisons were performed using the Mann-Whitney
U test. Categorical data were presented as proportions, with group
comparisons using the chi-square test. Ordinal data were also
expressed as proportions, with group comparisons performed
using the Mann-Whitney U test. To examine the association
between eGDR and PRISm, we employed weighted multivariable
logistic regression, constructing three models: Model 1: Unadjusted;
Model 2: Adjusted for gender, age, ethnicity, and PIR; Model 3:
Adjusted for all covariates (gender, age, ethnicity, PIR, BMI,
cotinine, AST, ALT, GFR creatinine clearance, cardiovascular
disease, stroke, alcohol consumption, and smoking status). We
also conducted subgroup and interaction analyses to explore the
relationship between eGDR and PRISm across different
populations. To assess potential nonlinear associations, we used
restricted cubic spline analysis. Finally, we performed a receiver
operating characteristic (ROC) analysis to evaluate the predictive
ability of eGDR for PRISm. All statistical analyses were performed
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using R software (version 4.0.0) and SPSS (version 25.0), with
statistical significance set at P < 0.05.

Results
Baseline characteristics

In Table 1, a total of 13,661 participants were included in the
final analysis after excluding those with missing data on PRISm (n =
10,954) and eGDR (n = 5,827). The median eGDR for the overall
sample was 11.89 (IQR: 9.08-13.33). Participants in the PRISm
group had significantly lower median eGDR values compared to the
non-PRISm group [9.92 (IQR: 8.04-12.49) vs. 12.01 (IQR: 9.22-
13.38); P < 0.001], indicating greater insulin resistance in the PRISm
group. The PRISm group was older, with a median age of 48 (IQR:
34-61) compared to 44 (IQR: 30-59) in the non-PRISm group (P <
0.001). Cotinine levels were also higher in the PRISm group [0.09
(IQR: 0.02-30.55) vs. 0.05 (IQR: 0.02-12.70); P < 0.001] and median
eGFR was significantly lower in the PRISm group [85.47 (IQR:
64.70-103.07) vs. 89.84 (IQR: 69.66-108.48); P < 0.001]. No
significant differences were observed in ALT (P = 0.332) and AST
(P = 0.167) levels between the two groups.

Ethnicity was significantly associated with PRISm status (P <
0.001). PRISm was most prevalent in non-Hispanic Black
participants (53.94%), and least common in Mexican American
(7.11%). BMI was also significantly associated with PRISm (P <
0.001), with a higher proportion of obese individuals in the PRISm
group (50.30%) compared to the non-PRISm group (33.51%).
Smoking status did not differ significantly between the two
groups (P = 0.978). However, alcohol consumption was
significantly lower in the PRISm group, with only 63.93%
reporting alcohol consumption compared to 75.64% in the non-
PRISm group (P < 0.001). Cardiovascular disease and stroke were
more common in the PRISm group, with heart disease present in
11.00% of PRISm cases compared to 5.09% in the non-PRISm
group (P < 0.001), and stroke present in 4.12% of PRISm cases
compared to 1.95% in the non-PRISm group (P < 0.001).

Logistic regression models

Weighted multivariable logistic regression analysis
demonstrated a significant negative association between eGDR
and PRISm (Table 2). In the unadjusted model (Model 1), each
unit increase in eGDR was associated with a 15.1% reduction in the
odds of PRISm (OR = 0.849, 95% CI: 0.820-0.880; P < 0.001). After
adjusting for gender, age, race/ethnicity, and poverty income ratio
(Model 2), the association remained significant (OR = 0.849, 95%
CI: 0.818-0.881; P < 0.001). In the fully adjusted model (Model 3),
which included additional covariates such as BMI, cotinine, ALT,
AST, GFR, cardiovascular disease, stroke, alcohol consumption, and
smoking, each unit increase in eGDR was associated with a 7.3%
reduction in the odds of PRISm (OR = 0.927, 95% CI: 0.880-0.976;
P =0.005). When eGDR was categorized into quartiles, the highest
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quartile (Q4) was associated with a 41.7% lower risk of PRISm
compared to the lowest quartile (Q1) in the fully adjusted model
(OR = 0.583, 95% CI: 0.393-0.867; P = 0.009). A significant trend
was observed across quartiles (P for trend = 0.002), further
supporting a negative relationship between eGDR and PRISm.

Subgroup and interaction analysis

Subgroup analyses revealed significant differences in the
relationship between eGDR and PRISm across gender and age
groups (Table 3). Among women, eGDR was significantly
associated with lower odds of PRISm (OR = 0.874, 95% CI:
0.821-0.929; P < 0.001), while no significant association was
observed in men (P = 0.702). The interaction between gender and
eGDR was significant (P = 0.012), indicating that the association
was stronger in women. Similarly, a significant association was
found in participants over 40 years of age (OR = 0.913, 95% CI:
0.848-0.982; P = 0.016), but not in those aged 40 or younger (P =
0.146), with a significant interaction effect for age (P = 0.016). No
significant interactions were observed between eGDR and race (P =
0.408) or poverty income ratio (P = 0.984), although significant
associations between eGDR and PRISm were found in Mexican
American, Non-Hispanic Black racial groups.

Nonlinear and ROC analysis

The restricted cubic spline (RCS) analysis revealed a significant
nonlinear relationship between eGDR and PRISm (P-nonlinear <
0.001). As shown in Figure 2, the OR for PRISm decreases as eGDR
increases, with the most pronounced reduction occurring at lower
eGDR levels. Beyond an eGDR value of approximately 12 mg/kg/
min, the association stabilizes, with the OR approaching 1. This
indicates that higher eGDR levels are associated with a lower
likelihood of PRISm, but the effect diminishes as eGDR increases.
ROC analysis revealed that the area under the curve (AUC) for
eGDR predicting PRISm was 0.626, indicating modest predictive
accuracy (Figure 3). The optimal cutoff value for eGDR was 11.423
mg/kg/min, with a sensitivity of 63.9% and specificity of 57.2%.

Discussion

Preserved ratio impaired spirometry (PRISm) is a newly defined
phenotype of lung function impairment, characterized by
individuals exhibiting a normal FEV1/FVC ratio, while having an
FEV1 less than 0.8 times the predicted value (5). Although PRISm
shares some features with both obstructive and restrictive lung
patterns, it is distinct in that it does not follow the typical patterns of
either (10). PRISm is associated with various adverse clinical
outcomes, such as increased respiratory symptoms, elevated
comorbidity rates of hypertension and diabetes, and higher
mortality rates (4, 7, 8). Furthermore, PRISm is a heterogeneous
condition, with only a subset of individuals progressing to COPD,
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TABLE 1 Baseline characteristics of the study population.

Variables Total (n = 13661) Non-PRISm (n = 12493) PRISm (n = 1168) Statistic
eGDR (mg/kg/min), M (Q;, Q3) 11.89 (9.08, 13.33) 12.01 (9.22, 13.38) 9.92 (8.04, 12.49) -14.29 <0.001
Quantile, n (%) -14.24 <0.001
Ql 3412 (24.98) 2928 (23.44) 484 (41.44)
Q2 3418 (25.02) 3108 (24.88) 310 (26.54)
Q3 3415 (25.00) 3215 (25.73) 200 (17.12)
Q4 3416 (25.01) 3242 (25.95) 174 (14.90)
Age, M (Q;, Q3) 44,00 (30.00, 59.00) 44.00 (30.00, 59.00) 48.00 (34.00, 61.00) -5.20 <0.001
Sex, n (%) ‘ ‘ 0.00 0.965
Male 6991 (51.17) 6394 (51.18) 597 (51.11)
Female 6670 (48.83) 6099 (48.82) 571 (48.89)
Ethnicity, n (%) ‘ ‘ 853.73 <0.001
Mexican American 2289 (16.76) 2206 (17.66) 83 (7.11)
Other Hispanic 1491 (10.91) 1413 (11.31) 78 (6.68)
Non-Hispanic White 5713 (41.82) 5471 (43.79) 242 (20.72)
Non-Hispanic Black 2957 (21.65) 2327 (18.63) 630 (53.94)
Other Race 1211 (8.86) 1076 (8.61) 135 (11.56)
PIR, n (%) -3.38 <0.001
<13 4144 (33.08) 3772 (32.86) 372 (35.50)
>1.3 and <3.5 4510 (36.01) 4099 (35.71) 411 (39.22)
535 3872 (30.91) 3607 (31.43) 265 (25.29)
BMI (kg/m?), n (%) -10.39 <0.001
<25 4439 (32.53) 4159 (33.32) 280 (24.08)
>25 and < 30 4438 (32.52) 4140 (33.17) 298 (25.62)
<30 4768 (34.94) 4183 (33.51) 585 (50.30)
Cotinine (ng/mL), M (Q;, Q3) 0.05 (0.02, 13.25) 0.05 (0.02, 12.70) 0.09 (0.02, 30.55) -5.08 <0.001
fgf%i';lumm/l'n m?), M 89.41 (69.17, 108.08) 89.84 (69.66, 108.48) 85.47 (64.70, 103.07) -6.06 <0.001
ALT (U/L), M (Q;, Q3) 21.00 (16.00, 28.00) 21.00 (16.00, 28.00) 21.00 (16.00, 28.00) -0.97 0.332
AST (U/L), M (Q;, Q3) 23.00 (20.00, 28.00) 23.00 (20.00, 28.00) 23.00 (19.00, 28.00) -1.38 0.167
Smoke, n (%) ‘ ‘ 0.00 0.978
Yes 5525 (45.36) 5031 (45.37) 494 (45.32)
No 6655 (54.64) 6059 (54.63) 596 (54.68)
Alcohol, n (%) ‘ ‘ 68.28 <0.001
Yes 8725 (74.60) 8062 (75.64) 663 (63.93)
No 2971 (25.40) 2597 (24.36) 374 (36.07)
Heart Disease, n (%) ‘ ‘ 65.31 <0.001
Yes 685 (5.62) 565 (5.09) 120 (11.00)
No 11500 (94.38) 10529 (94.91) 971 (89.00)
(Continued)
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TABLE 1 Continued

Variables Total (n = 13661)  Non-PRISm (n = 12493)  PRISm (n = 1168) Statistic
Stroke, n (%) 2241 <0.001
Yes 261 (2.14) 216 (1.95) 45 (4.12) ‘ ‘
No 11913 (97.86) 10867 (98.05) 1046 (95.88) ‘

eGDR, Estimated Glucose Disposal Rate; PRISm, Preserved Ratio Impaired Spirometry; BMI: Body Mass Index; eGFR, Estimated Glomerular Filtration Rate; ALT, Alanine Aminotransferase;
AST, Aspartate Aminotransferase.

TABLE 2 Multivariate logistic regression analysis of the association between eGDR and PRISm across different models.

Model 1 Model 2 Model 3
Variables
OR (95% CI) OR (95% CI) OR (95% Cl)

eGDR 0.849 (0.820, 0.880) <0.001 0.849 (0.818, 0.881) <0.001 0.927 (0.880, 0.976) 0.005
Categories

Q1 Reference / Reference / Reference /
Q2 0.611 (0.484, 0.772) <0.001 0.620 (0.470, 0.817) 0.001 0.785 (0.585, 1.055) 0.106
Q3 0.405 (0.316, 0.520) <0.001 0.441 (0.350, 0.556) <0.001 0.660 (0.501, 0.869) 0.004
Q4 0.362 (0.281, 0.467) <0.001 0.310 (0.232, 0.415) <0.001 0.583 (0.393, 0.867) 0.009
P for trend / <0.001 / <0.001 / 0.002

Model 1: Unadjusted; Model 2: Adjusted for gender, age, ethnicity, poverty income ratio; Model 3: Adjusted for all covariates (gender, age, ethnicity, PIR, BMI, cotinine, AST, ALT, GFR
creatinine clearance, cardiovascular disease, stroke, alcohol consumption, and smoking status); eGDR, Estimated Glucose Disposal Rate; PRISm, Preserved Ratio Impaired Spirometry; OR, Odds
ratio; CI, Confidence Interval.

suggesting that PRISm may represent a unique clinical phenotype =~ TABLE 3 Subgroup and interaction analysis of eGDR and PRISm by

with its own pathophysiological and prognostic implications (6,9). ~ 98nder. age. ethnicity, and poverty ratio.

This study investigates the relationship between estimated glucose

) . o ) Subgroup OR (95% CI) P P for interaction
disposal rate (eGDR), an indicator of insulin resistance, and PRISm.
Our results show that lower eGDR is significantly associated with an Overall 0927 (0880, 0.976)  0.005
increased risk of PRISm, suggesting a negative relationship between Gender ‘ 0.012
insulin resistance and PRISm.
. ., . ) Male 0.938 (0669, 1315)  0.702
The baseline characteristics of participants further clarified the
differences between the PRISm and non-PRISm groups. Notably, the Female 0874 (0,821, 0929) | <0.001
PRISm group was older, had higher cotinine levels, lower eGFR, and a Age ‘ 0.016
higher prevalence of cardiovascular diseases and obesity. While it is
. L . S <40 0949 (0.883,1.019)  0.146
widely acknowledged that smoking impairs lung function, cotinine is
specifically associated with reduced lung function and airflow >40 0913 (0848,0982)  0.016
obstruction (22). Additionally, Obesity, a recognized risk factor for Ethnicity ‘ 0.408

both insulin resistance and respiratory diseases, increases airway
resistance while simultaneously altering breathing patterns, thereby
affecting ventilation and oxygenation (23); at the same time, the Other Hispanic 0.860 (0.715,1.033) | 0.104
accumulation of visceral adipose tissue due to obesity is closely Non-Hispanic White | 0927 (0857, 1.002) | 0.055

Mexican American 0.732 (0.646, 0.83) | <0.001

associated with a higher incidence of respiratory diseases (24).
. L. L. 3 . Non-Hispanic Black 0.908 (0.858, 0.961) 0.002
However, in the multivariable logistic regression analysis, eGDR

remained significantly negatively correlated with PRISm even after Other Race 1073 (0896, 1.285) | 0433
fully adjusting for confounding factors such as sex, age, race, BMI, PIR 0.984
cotinine levels, liver and kidney function, cardiovascular disease,
. . . . - <13 0941 (0.873, 1.014) | 0.109
smoking, and alcohol consumption. This suggests that higher insulin
sensitivity, as reflected by higher eGDR, is associated with a lower risk of >1.3 and <3.5 0912 (0846, 0983)  0.017
developing PRISm, independent of these potential confounders. 535 0939 (0854, 1.034)  0.193

In the multivariable logistic regression analysis, all model
the ultivariable ogistic regression analysis, a odels eGDR, Estimated Glucose Disposal Rate; PRISm, Preserved Ratio Impaired Spirometry; OR,

demonstrated a significant negative association between eGDR and  0dds ratio; CI, Confidence Interval.
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FIGURE 2

eGDR

Nonlinear relationship between eGDR and PRISm: restricted cubic spline analysis. eGDR, Estimated Glucose Disposal Rate; PRISm, Preserved Ratio

Impaired Spirometry.

PRISm. In both unadjusted and adjusted models, each unit increase in
eGDR was associated with a 15.1% reduction in the likelihood of
PRISm. This relationship persisted in the fully adjusted model, where
even after accounting for potential confounders such as sex, age,
ethnicity, BMI, cotinine levels, renal and hepatic function,
cardiovascular disease, smoking, and alcohol consumption, each unit
increase in eGDR was still linked to a 7.3% decrease in the likelihood
of PRISm.

These findings suggest that higher eGDR levels, indicative of
better insulin sensitivity, are associated with a lower risk of PRISm.
This relationship may be partly explained by the characteristics of
participants with moderate or severe insulin resistance, who often
present with systemic inflammation—marked by elevated levels of
white blood cells, neutrophils, and plasma interleukin-6—and
dyslipidemia, characterized by high triglycerides and low HDL

1.0

11.423 (0.572, 0.639)

AUC: 0.626

Sensitivity

04

T T T T T T T 1
06 0.4 0.2 0.0 -0.2
1-Specificity

FIGURE 3

Receiver operating characteristic (ROC) curve for eGDR in
predicting PRISm. eGDR, Estimated Glucose Disposal Rate; PRISm,
Preserved Ratio Impaired Spirometry
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cholesterol. Insulin resistance is typically accompanied by chronic
low-grade inflammation, which promotes the release of inflammatory
mediators such as tumor necrosis factor-o. and interleukin-6 (25, 26).
These factors not only impair systemic metabolism but also directly
affect lung tissue, leading to airway inflammation and structural
remodeling, which contribute to airflow limitation and reduced lung
function (27-29). Additionally, insulin resistance increases oxidative
stress in the body, which refers to an imbalance between the
production of free radicals and antioxidant defenses. Elevated levels
of free radicals can damage cells, including lung cells, causing
dysfunction and structural damage (30). This damage not only
compromises airway patency but may also trigger an inflammatory
response in the lungs, further exacerbating lung function impairment
(31). Beyond systemic effects, insulin resistance may impair lung
function via adipose tissue dysfunction, which promotes pro-
inflammatory adipokines like resistin and reduces anti-inflammatory
adiponectin (32, 33). Resistin is linked to asthma, COPD, fibrosis, and
acute lung injury, while adiponectin suppresses pulmonary
inflammation by inhibiting TNF-o, IL-6, and chemokine
production (34, 35). These adipokine shifts may mediate the adverse
impact of insulin resistance on lung health. Moreover, chronic
hyperinsulinemia may also interfere with cellular repair and
regeneration pathways in the lung, limiting the ability to recover
from environmental or inflammatory insults (36).

Subgroup analyses in our study revealed that this association was
more pronounced among females and individuals aged over 40 years.
The stronger association in women may be attributable to differences in
body fat distribution and hormonal regulation (37, 38). Sex-specific
patterns in insulin resistance, influenced by sex steroid hormones, may
partly explain this finding. Estrogens play a protective role in metabolic
regulation, and their decline after menopause contributes to increased
insulin resistance and diabetes risk (39). A Evidence from both human
genetics and animal models has shown that disruption of estrogen
signaling—such as through aromatase or estrogen receptor o deficiency
—can lead to marked metabolic dysfunction (38). Moreover, estrogen,
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which has anti-inflammatory effects, may play a protective role in
premenopausal women; with age-related hormonal changes, metabolic
dysregulation may have a more deleterious impact on lung function
(40). These findings suggest that insulin resistance may have a more
pronounced impact on lung function in women due to hormone-related
differences in insulin sensitivity and inflammation. In older adults, age-
related skeletal muscle dysfunction—characterized by mitochondrial
impairment, metabolic dysregulation, inflammation, and sarcopenia—
leads to reduced insulin sensitivity and is a key mechanism underlying
insulin resistance in the elderly (41). The synergistic effects of sarcopenia
and insulin resistance can exacerbate systemic inflammation and
oxidative stress, both of which are known to impair lung function
(14, 42). Additionally, age-related declines in lung elasticity, respiratory
muscle strength, and ventilatory responsiveness may render older adults
more vulnerable to the adverse effects of metabolic abnormalities on
pulmonary function (43). In contrast, no significant interaction was
observed between eGDR and race or poverty-to-income ratio; however,
notable associations were found within specific racial groups. Notably,
significant associations between eGDR and PRISm were observed in
Non-Hispanic Black and Mexican American participants. This finding
aligns with prior studies indicating that both racial groups exhibit higher
levels of insulin resistance and insulin secretion compared to non-
Hispanic Whites. For instance, Haffner et al. reported that both Non-
Hispanic Black and Mexican American individuals showed significantly
higher levels of insulin resistance than their non-Hispanic White
counterparts (44). Similarly, Hasson et al. highlighted the heightened
insulin resistance and upregulated beta-cell function in African
Americans, potentially contributing to their elevated risk of metabolic
diseases (45). These metabolic characteristics may also influence
pulmonary outcomes, thereby partially explaining the higher
prevalence of PRISm in these populations.

The non-linear relationship observed in the restricted cubic
spline analysis indicates that while higher levels of eGDR are
associated with a decreased likelihood of PRISm, this association
tends to plateau once eGDR exceeds approximately 12 mg/kg/min.
This suggests a potential threshold effect, beyond which further
improvements in insulin sensitivity confer minimal additional
benefit in reducing PRISm risk. Such a plateau is biologically
plausible, as metabolic improvements may only translate to
clinical benefits up to a certain point, after which risk stabilizes.
Interventions targeting insulin resistance may therefore be
particularly beneficial for individuals with lower baseline eGDR.
Additionally, ROC curve analysis demonstrated that eGDR has a
certain predictive accuracy in identifying PRISm, with an AUC of
0.626. Although the AUC indicates only limited discriminatory
power, this result suggests that eGDR may be more suitable as a
metabolic health risk indicator rather than a standalone diagnostic
tool for PRISm. In future research or clinical practice, eGDR could
be combined with other biomarkers—such as inflammatory
markers, lung imaging parameters, or genetic risk scores—to
enhance predictive performance and facilitate early identification
of high-risk individuals.

Overall, our findings demonstrate that lower eGDR, indicating
higher insulin resistance, is significantly associated with increased
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PRISm risk, independent of common confounders. This association
is stronger in women and older adults, likely due to hormonal and
age-related physiological changes. The observed threshold effect
suggests that improving insulin sensitivity may be most beneficial in
individuals with lower baseline eGDR. While eGDR alone has
limited predictive power, it may serve as a useful metabolic
marker when combined with other indicators to better identify
individuals at risk for PRISm.

Limitations

This study has several limitations that should be acknowledged.
First, the cross-sectional design restricts our ability to establish causal
relationships between eGDR and PRISm, as we can only infer
associations rather than direct causation. Additionally, the reliance on
self-reported data for lifestyle factors, such as smoking and alcohol
consumption, may introduce bias or inaccuracies. The use of eGDR as a
surrogate measure of insulin sensitivity, while clinically relevant, may
not capture all aspects of metabolic health, potentially leading to residual
confounding. Furthermore, although we adjusted for numerous known
confounders, residual confounding from unmeasured or unknown
variables—such as environmental exposures, detailed dietary patterns,
genetic predispositions, and undiagnosed comorbidities—cannot be
completely ruled out. Moreover, the generalizability of our findings
may be limited, as the study population primarily consisted of adults
from specific demographic groups, which may not fully represent the
broader population. Finally, while we adjusted for several potential
confounders, residual or unrecognized confounders may still influence
the observed associations. Future research should aim to address these
limitations through longitudinal designs and more comprehensive
assessments of metabolic health and environmental factors.

Conclusion

In conclusion, our study demonstrates a significant inverse
association between estimated eGDR and PRISm among a diverse
population of US adults. Participants with lower eGDR values
exhibited a higher prevalence of PRISm, indicating greater insulin
resistance and potential metabolic dysfunction. The findings
suggest that eGDR may serve as a valuable marker for assessing
the risk of PRISm, particularly among women and older adults.
Given the growing recognition of the interplay between metabolic
health and respiratory function, further research is warranted to
elucidate the underlying mechanisms linking insulin resistance and
pulmonary impairment.
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Background: Emerging evidence suggests insulin resistance may contribute to
neurodegeneration, yet its role in non-diabetic populations remains unclear.
This study explores the relationship between estimated glucose disposal rate
(eGDR), a measure of insulin sensitivity, and incident cognitive dysfunction in
non-diabetic adults.

Methods: Our longitudinal analysis utilized data from 5,178 CHARLS participants
(age > 45 years). Insulin sensitivity was quantified using eGDR, calculated
from waist circumference, hypertension status, and hemoglobin Alc levels.
Participants were stratified by eGDR quartiles for comparative analysis. We
employed multivariable Cox models, survival curves, restricted cubic splines, and
sensitivity testing to evaluate associations with cognitive outcomes.

Results: Over an 8.7-year follow-up, cognitive dysfunction developed in 36.9%
of participants. Analyses revealed significant metabolic-cognitive associations,
with each standard deviation increase in eGDR linked to a 15.8% reduction in
risk (adjusted hazard ratio [HR] = 0.792, 95% confidence interval [CI]: 0.793-
0.881). Restricted cubic spline analysis identified non-linear threshold effects,
with risk accelerating below certain eGDR levels (P < 0.05). Kaplan-Meier survival
analysis demonstrated significant differences in cognitive impairment incidence
across eGDR quartiles (P = 0.003). Additionally, both eGDR and metabolic
score for insulin resistance (METS-IR) showed comparable predictive value for
cognitive impairment risk, outperforming other metabolic indices, including the
atherogenic index of plasma (AIP), and the triglyceride glucose index (TyG).

Conclusion: These findings position eGDR as a promising biomarker
for cognitive risk stratification in non-diabetic adults. However, further
multi-database studies should validate these associations and explore the
underlying mechanisms.

KEYWORDS

cognitive impairment, estimated glucose disposal rate, insulin resistance, diabetes
mellitus, CHARLS
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Introduction

The rising prevalence of cognitive impairment poses a
significant public health burden, intensified by shifting age
demographics worldwide. This complex condition arises from
an interplay of hereditary factors, environmental influences, and
lifestyle variables. Of particular interest is insulin resistance (IR),
which has gained attention as a modifiable factor linked to
progressive cognitive decline (1-3). Although traditionally viewed
through the lens of metabolic disease and Type 2 diabetes mellitus
(T2DM), contemporary research establishes IR as an independent
predictor of cognitive dysfunction even in individuals with normal
glucose regulation (3-6). These findings align with insulin’s
diverse neurological functions, including its involvement in brain
energy homeostasis, synaptic maintenance, and neuroprotective
mechanisms. Mounting evidence further implicates disrupted
insulin pathways in the development of Alzheimer’s pathology and
other neurodegenerative disorders.

Current diagnostic approaches for IR evaluation, which
primarily rely on fasting blood glucose (FBG) and hemoglobin
Alc (HbAlc) measurements, demonstrate diminished reliability
in non-diabetic populations (7-10). Such metrics often fail to
detect early metabolic disturbances occurring outside pancreatic
regulation. eGDR, a novel composite index combining abdominal
obesity, hypertensive status, and glycemic control parameters,
presents a more robust solution. Prior investigations have primarily
concentrated on diabetic subjects, potentially obscuring IR’s true
effects through glucose-related confounding variables while also
facing sample size limitations. Importantly, this innovative measure
shows superior accuracy in detecting metabolic dysfunction
among populations with preserved glucose tolerance (11, 12) and
effectively forecasts cardiovascular-metabolic disease trajectories
(13-15). Nevertheless, the connection between eGDR and cognitive
performance remains unexplored. Clarifying this relationship
may provide valuable tools for identifying high-risk subgroups
and implementing timely preventive measures in metabolically
vulnerable, non-diabetic individuals.

Utilizing the China Health and Retirement Longitudinal
Study (CHARLS) dataset, this research examines how eGDR
correlates with newly developed cognitive dysfunction in non-
diabetic individuals. Additionally, the analysis compares the
eGDR with three contemporary metabolic markers: the metabolic
score for insulin resistance (METS-IR), the atherogenic index
of plasma (AIP), and the triglyceride glucose index (TyG), in
order to assess their respective prognostic capacities for predicting
cognitive impairment. These investigations seek to clarify the
role of insulin resistance and lipid metabolism in cognitive aging
while establishing potential diagnostic applications for eGDR in
metabolically at-risk, non-diabetic cohorts.

Materials and methods

Study population
This study draws upon data from the CHARLS, a nationally

representative cohort study initiated in 2011, with subsequent
follow-up waves in 2013, 2015, 2018, and 2020 (16). A total of
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12,527 participants were excluded based on the following criteria:
missing data on eGDR (n = 7,767); a diagnosis of DM in 2011
(n = 1,486); a history of brain injury, intellectual disability, stroke,
or memory impairment, or incomplete information (n = 524); a
diagnosis of cognitive impairment or missing cognitive impairment
data in 2011 (n = 2,490); age under 45 years (n = 124); or
loss to follow-up (n = 136). Following these exclusions, the
final sample comprised 5,178 eligible participants (Figure 1).
All study participants provided written informed consent before
enrollment. This research project received ethical approval
from Peking University’s Biomedical Ethics Review Committee
(IRB00001052-11015), with data collection strictly limited to
consenting individuals for final analysis.

Calculation of eGDR and IR stratification

The estimated glucose disposal rate was derived from
21.158-(0.09 x waist
circumference [cm])-(3.407 x hypertension [1 = yes, 0 = no])-
(0.551 x hemoglobin Alc) [%]). Participants were then stratified
by eGDR quartiles for insulin resistance level comparisons.

the equation: eGDR (mg/kg/min) =

Cognitive function assessment in
CHARLS

The CHARLS employed the Mini-Mental State Examination
(MMSE) to measure cognitive performance, utilizing this
standardized tool’s capacity to evaluate both global functioning
and specific domains including memory retention and cognitive
processing. For memory assessment, researchers administered a
ten-item verbal recall test, with participants required to repeat
words both immediately following presentation and after a
5-min delay, where one point was allocated for each accurate
response (potential score: 0-20). The evaluation of fundamental
cognitive capacities incorporated three components: arithmetic
tasks involving successive subtraction from 100, geometric figure
replication to assess spatial reasoning, and temporal awareness
questions regarding date identification. Performance on these
measures contributed equally to a maximum of 11 points. By
aggregating results from both domains (total possible: 31 points),
investigators identified cognitive impairment using a validated
cutoff of <11 points (17, 18).

Potential covariates

This
by incorporating a multidimensional

investigation expanded upon existing literature
array of covariates
health  behaviors,
and clinical biomarkers. Participant profiles captured age,
geographical

location (northern/southern China), educational background

spanning  sociodemographic  attributes,

sex, residential classification  (urban/rural),
(categorized as <9 vyears, 10-12 years, or >13 vyears of
schooling), and partnership status (married/cohabiting versus
single/divorced/widowed). Health behavior indicators documented

tobacco use, alcohol consumption, and sensory impairments,
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Participants at baseline of CHARLS
(wave 2011,n=17705)

o 12527 participants were excluded:

= > No available data on eGDR (n=7767)

g > Diagnosed with DM in 2011(n=1486)

© »| > Diagnosed with cancer in 2011 (n=206)

m > Diagnosed with CI or missing data on Cl in 2011 (n=2490)
> Diagnosed with Brain damage/intellectual disability, stroke,

memoryimpairment or incomplete information (n= 524)
> Age<45 years old,or missing data on age (n=124)
> Loss to follow-up(n=136)
. A4
Participants without at DM baseline were followed up
from 2013 to 2020 (n=5178)

g. «| According to the quartiles

7 B of eGDR

3
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(o)

.
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FIGURE 1

Participant selection process flowchart. eGDR, estimated glucose disposal rate; Cl, cognitive impairment; CHARLS, China Health and Retirement

Longitudinal Study; DM, diabetes mellitus.

alongside psychosocial factors (social engagement levels and
depressive symptoms) and cardiometabolic risk markers
(elevated blood pressure and adiposity). Biochemical analyses
quantified glycemic control (HbAlc, fasting blood glucose [FBG]),
hematologic parameters (hemoglobin), and lipid profiles (total
cholesterol [TC], triglycerides [TG], high-density lipoprotein
cholesterol [HDL-C], low-density lipoprotein cholesterol[LDL-
C]). Adiposity was determined via body mass index (BMI)
(weight[kg]/height[m]?), classifying obesity at >28 kg/m?2.
included: (1) clinical diagnosis, (2)
antihypertensive medication use, or (3) systolic/diastolic pressures

Hypertension criteria

exceeding 140/90 mmHg. Diabetes mellitus was operationalized
through: (1) self-reported diagnosis, (2) glucose-lowering drug
use, (3) FPG > 126 mg/dL (7.0 mmol/L), or 4) HbAlc > 6.5%.
Depressive symptomatology was evaluated using the CESD-10
instrument (score range: 0-30 points).

Statistical analysis

Comparisons across eGDR quartiles were conducted to
examine variations in demographic, health, and metabolic
characteristics, including age, sex, education, marital status, rural
residence, geographic region, BMI, WC, systolic blood pressure
(SBP), diastolic blood pressure (DBP), obesity, smoking, alcohol

Frontiers in Medicine

use, hemoglobin, FBG, vision impairment, HbAlc, TC, TG, HDL,
LDL, diabetes, hearing loss, depressive symptoms, and social
isolation. Continuous data following normal distributions were
summarized as means with standard deviations (mean + SD)
and compared using parametric analysis of variance, while non-
normally distributed measures were reported as medians with
interquartile ranges [median (IQR)] and analyzed through non-
parametric Kruskal-Wallis tests. Categorical data were expressed
as frequency counts with percentages [n (%)], with group
differences examined via 2 tests. The dose-response association
between eGDR and cognitive impairment was investigated
using restricted cubic splines (RCS), with Cox proportional
hazards models applied to evaluate this relationship through
both continuous and categorical parameterizations of eGDR.
Three progressively adjusted models were constructed: a crude
model (unadjusted), a partially adjusted model (controlling for
demographic factors including age, sex, residence location, marital
status, and education level, along with behavioral covariates of
smoking and alcohol consumption), and a fully adjusted model
(incorporating all potential confounders). Additional stratified
analyses were performed using multivariable Cox regression to
identify potential effect modifications across population subgroups.
Kaplan-Meier survival analysis with log-rank tests compared
cognitive impairment risk across eGDR quartiles. Sensitivity
analyses were conducted under four conditions: (1) excluding
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TABLE 1 Baseline characteristics of participants stratified by quartiles of eGDR.

Characteristic Quartiles of eGDR

Quartile 1 Quartile 2 Quartile 3 Quartile 4
Participants 1295 1297 1302 1284
eGDR 9.45 £+ 2.07 6.50 £ 0.68 8.92 £ 091 10.70 +0.27 <0.001
TyG 4.64+0.29 4744029 4.68 +£0.29 4.61 £0.28
AIP —0.02+£0.31 0.09 £ 0.30 0.02 £ 0.32 —0.05+0.30
METS-IR 3531 +7.58 40.39 +£7.23 36.75 +7.91 3445+ 5.46
Age, years 59.01 (8.42) 58.34 (8.84) 55.95 (7.90) 56.34 (8.23) <0.001
Gender 0.257
Male 645 (49.85%) 655 (50.54%) 689 (52.92%) 679 (52.96%)
Female 649 (50.15%) 641 (49.46%) 613 (47.08%) 603 (47.04%)
Rural residence <0.001
Rural 700 (54.05%) 791 (60.99%) 847 (65.05%) 901 (70.17%)
Urban 595 (45.95%) 506 (39.01%) 455 (34.95%) 383 (29.83%)
Region <0.001
South 574 (44.32%) 669 (51.58%) 678 (52.07%) 802 (62.46%)
North 721 (55.68%) 628 (48.42%) 624 (47.93%) 482 (37.54%)
Marital status 0.002
Married and living with spouse 1105 (85.33%) 1119 (86.28%) 1172 (90.02%) 1104 (85.98%)
Others 190 (14.67%) 178 (13.72%) 130 (9.98%) 180 (14.02%)
Education 0.216
Junior high school and below 1122 (86.64%) 1140 (87.90%) 1120 (86.02%) 1103 (85.90%)
Senior high school 144 (11.12%) 135 (10.41%) 165 (12.67%) 151 (11.76%)
Junior college or above 29 (2.24%) 22 (1.70%) 17 (1.31%) 30 (2.34%)
Smoking status 0.036
Yes 511 (39.46%) 537 (41.40%) 553 (42.47%) 578 (45.02%)
No 784 (60.54%) 760 (58.60%) 749 (57.53%) 706 (54.98%)
Drinking status 0.959
Yes 561 (43.35%) 570 (43.95%) 562 (43.16%) 551 (42.91%)
No 733 (56.65%) 727 (56.05%) 740 (56.84%) 733 (57.09%)
Blind or partially blind 0.194
Yes 58 (4.48%) 60 (4.63%) 47 (3.61%) 69 (5.37%)
No 1237 (95.52%) 1237 (95.37%) 1255 (96.39%) 1215 (94.63%)
Deaf or partially deaf 0.151
Yes 90 (6.95%) 78 (6.02%) 63 (4.84%) 74 (5.76%)
No 1205 (93.05%) 1218 (93.98%) 1239 (95.16%) 1210 (94.24%)
Obesity <0.001
Yes 338 (26.24%) 204 (15.81%) 33 (2.54%) 8(0.63%)
No 950 (73.76%) 1086 (84.19%) 1264 (97.46%) 1269 (99.37%)
Depression 0.003
Yes 382 (30.25%) 368 (29.21%) 385 (30.20%) 444 (35.46%)
No 881 (69.75%) 892 (70.79%) 890 (69.80%) 808 (64.54%)
Social isolation 0.171
Yes 763 (58.92%) 775 (59.75%) 779 (59.83%) 808 (62.93%)
No 532 (41.08%) 522 (40.25%) 523 (40.17%) 476 (37.07%)

(Continued)
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TABLE 1 (Continued)

Characteristic

10.3389/fmed.2025.1522028

Quartile 1 Quartile 2 Quartile 3 Quartile 4
SBP, mmHg 146.85 (19.48) 132.90 (20.39) 118.00 (11.20) 116.31 (11.58) <0.001
DBP, mmHg 85.11 (11.67) 77.99 (11.58) 70.74 (8.70) 69.18 (8.77) <0.001
BMI, Kg/m2 26.18 (3.39) 24.27 (3.82) 2333 (2.51) 20.68 (2.43) <0.001
WC, cm 93.55 (7.44) 87.41 (10.72) 84.89 (3.79) 74.95 (5.16) <0.001
HbAlc, % 5.15 (0.41) 5.13 (0.41) 5.10 (0.36) 4.95(0.38) <0.001
FBG, mg/dL 103.49 (16.36) 102.47 (16.73) 100.08 (13.94) 97.67 (13.12) <0.001
Hemoglobin, g/dL 14.78 (2.26) 14.59 (2.18) 14.43 (2.19) 14.17 (2.05) <0.001
TC, mg/dL 199.07 (38.81) 192.80 (35.85) 191.22 (36.75) 185.21 (35.45) <0.001
TG, mg/dL 125.67 109.74 99.12 (72.57-139.83) | 85.85 (63.72-119.47) <0.001

(89.39-178.99) (78.76-160.18)
HDL-C, mg/dL 47.07 (13.02) 50.24 (14.66) 51.95 (14.74) 55.90 (15.18) <0.001
LDL-C, mg/dL 122.57 (35.63) 115.98 (33.40) 116.66 (33.29) 110.91 (31.98) <0.001

BMI, body mass index; SBP systolic blood pressure; DBP diastolic blood pressure; eGDR estimated glucose disposal rate; METS-IR, metabolic score for insulin resistance; AIP, atherogenic
index of plasma; TyG, triglyceride glucose index; FBG, fasting blood glucose; HbA1lc, hemoglobin Alc; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol;

LDL-C, low-density lipoprotein cholesterol; WC waist circumference; CI, cognitive impairment.

1.6

1.2

HRjfm ) o o

P for Nonlinear <0.05
P total <0.05

N~
[

FIGURE 2

Association of eGDR and the risk of cognitive impairment using a multivariable-adjusted restricted cubic spines model. Restricted cubic spline
analysis has four knots at the 5th, 35th, 65th, and 95th percentiles of eGDR. eGDR, estimated glucose disposal rate.

10 12

participants with cognitive impairment onset by 2013 and (2)
redefining diabetes based solely on FBG and HbAlc levels.

Results

Baseline characteristics

Table 1 displays the baseline characteristics of participants
stratified by quartiles of eGDR. Significant differences were

Frontiers in Medicine

observed across most demographic and health variables among
the eGDR quartiles (P < 0.05). Participants in the lowest quartile
of eGDR (Quartile 1, indicating higher insulin resistance) were
generally older, had higher waist circumference, HbAlc, FBG, BMI,
and blood pressure levels compared to those in higher eGDR
quartiles. Conversely, HDL levels were lowest and triglyceride
levels highest in Quartile 1, indicative of poorer metabolic health
in this group. Notably, gender, vision and hearing impairment,
educational level, alcohol consumption, and social isolation did not

vary significantly across eGDR quartiles (P > 0.05).
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Association between baseline eGDR and s
cognitive impairment incidence 2
During the follow-up period, 1,913 participants (36.94%) - R _§°
developed cognitive impairment (Supplementary Table 1). g
The RCS analysis (Figure 2) revealed a significant non-linear % — g
association between eGDR and cognitive impairment incidence, & g
with a higher risk of cognitive impairment observed as eGDR = g g g g E;
decreased (indicating increased insulin resistance) (P < 0.05). S 8 < : j &
This association persisted across all adjusted models, suggesting a £ % 2 2 &3
potential threshold effect in the link between eGDR and cognitive o g3z g =
impairment risk. 3 31383 §
8
=1
Cox proportional hazards and E
Kaplan-Meier survival analysis of the = g2 g g
association between eGDR and cognitive ° ST E
impairment g
— H
The Cox proportional hazards models demonstrated an . N N N g
inverse relationship between eGDR and cognitive impairment _ § . § § é g
risk. Progressive multivariable adjustment revealed consistent £ o g 48| % ;
associations: each unit reduction in eGDR corresponded to a g E ;3 E ; E g
21.8% lower risk (HR = 0.792, 95%CI: 0.745-0.801, P = 0.014) é g 318 8|F
in the unadjusted model, 19.5% (hazard ratio [HR] = 0.805, é s bl B I f
95% confidence interval [CI]: 0.795-0.818, P = 0.014) after £ — é
demographic adjustment, and 15.8% (HR = 0.842, 95%CI: 0.793— g ?
0.881, P = 0.039) in the fully-adjusted model (Table 2). When S . e g
analyzed categorically, the highest three eGDR quartiles showed % g é E § b] 2
non-significant protective trends (all HR < 1, P > 0.05) in Model 5 % i;
III (Table 2). Supporting these findings, Kaplan-Meier curves § £F
displayed significant divergence in cognitive impairment incidence ° — g g
by eGDR quartile (log-rank P = 0.003), with progressively shorter g _ o E é
median survival times observed in lower quartiles (Figure 3). =S o g § § E % E
3 NS - AR
& 10 g AEEREE
E S IR E
Cox proportional hazards models 8 T K EIE- 18-
comparing METS-IR, AIP, and TyG versus > - R
eGDR for Cl risk g — L]
E g g Y RN % -20
In the fully adjusted models, three metabolic indices % EE e RIS =R E ”Qg
demonstrated distinct associations with cognitive impairment. % %g é NI & ;
The metabolic score for insulin resistance (METS-IR) exhibited S o g = D N B % g
a significant inverse relationship, with each standard deviation § - Eo éb
increase corresponding to a reduced risk of cognitive impairment TS’ ‘é g
(HR =0.99, 95%CI: 0.98-1.00, P = 0.002) (Supplementary Table 2). H 2 §n
This protective effect was more pronounced in the quartile T © o sl oz éé
analyses, where participants in the highest METS-IR quartile had E @ s I i z %
an 18% lower risk of cognitive impairment compared to those 2 52
in the lowest quartile (HR = 0.82, 95%CI: 0.72-0.94, P = 0.005) 3 § 1;’)’
(Supplementary Table 2). For the atherogenic index of plasma E BN é» é
(AIP), linear regression analysis revealed a non-significant trend ‘g’ g ::
(HR = 0.90, 95%CI: 0.78-1.05, P = 0.170), although participants g 3 g g
in the highest AIP quartile approached marginal significance g {':; :J 9 % g
(HR = 0.89, 95%CI = 0.78-1.02, P = 0.100) (Supplementary Table ~ £ A E T
3). In contrast, the triglyceride glucose index (TyG) demonstrated g § E § 5 8 8 3 -§ =
a near-significant linear association with cognitive impairment s g3

Frontiers in Medicine 66 frontiersin.org


https://doi.org/10.3389/fmed.2025.1522028
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Wang et al. 10.3389/fmed.2025.1522028

1.00
0.75 " amn o}
2
3
[
Qo
[
4 0.50
©
2
2
@
Log-rank Strata
0.25 M
= eGDRgroup=1
p=0.003 =+ eGDRgroup=2
= eGDRgroup=3
=+ eGDRgroup=4
0.00
0 12 24 36 48 60 72 84 96 108
Follow up time (Months)
Number at risk
. eGDRgroup=1{ 1295 1295 1231 1079 1013 869 869 810 692 546
s €GDRgroup=21 1297 1297 1230 1035 972 854 854 802 665 529
g eGDRgroup=3{ 1302 1302 1247 1109 1055 930 930 887 775 606
eGDRgroup=4{ 1284 1284 1224 1039 964 852 852 798 694 533
0 12 24 36 48 60 72 84 96 108
Follow up time (Months)
FIGURE 3
The Kaplan-Meier analysis for cognitive impairment was based on eGDR quartiles. eGDR, estimated glucose disposal rate.

risk (HR = 0.85, 95% CI: 0.72-1.00, P = 0.050), with participants
in the highest TyG quartile showing robust protection against
cognitive impairment (HR = 0.83, 95%CI: 0.73-0.95, P = 0.010)
(Supplementary Table 4).

Subgroup analysis

The association between eGDR and cognitive impairment
risk demonstrated significant heterogeneity by smoking status.
Among never-smokers, each SD increment in eGDR corresponded
to a 12.2% lower risk (HR = 0.822, 95%CI: 0.784-0.861,
P = 0.038). Smokers showed a similar but non-significant
inverse relationship (P = 0.216), with significant between-
group heterogeneity (pinteraction = 0.023). No significant effect
modification was observed for age, sex, or alcohol consumption (all
pinteraction > 0.05, Table 3).

Sensitivity analysis

Sensitivity analyses using alternative modeling approaches
consistently showed modest associations between continuous
eGDR measurements and cognitive outcomes (Table 4). Both
models produced comparable effect estimates, reinforcing the
primary findings while demonstrating robustness to different
analytical specifications.

Discussion

This investigation demonstrates that both the eGDR and
METS-IR show similar predictive value for cognitive impairment

Frontiers in Medicine

TABLE 3 Subgroup analysis of the association between eGDR (per 1 SD)
and cognitive impairment.

Variables HR (95%Cl) ‘ P-value | P interaction ‘
Age, years 0.610
<60 0.983 (0.866, 1.117) 0.792

>60 0.082 (0.796, 0.844) 0.639

Gender 0.070
Male 0.952 (0.842, 1.077) 0.433

Female 1.113 (0.991, 1.250) 0.071

Smoking status 0.023
Yes 0.919 (0.804, 1.051) 0.216

No 0.822 (0.784, 0.861) 0.038

Drinking status 0.081
Yes 0.951 (0.835, 1.082) 0.447

No 1.107 (0.991, 1.237) 0.072

HR, hazard ratio; CI, confidence interval; eGDR, estimated glucose disposal rate.

risk, while outperforming other metabolic indices including
the TyG and AIP. These results suggest that comprehensive
measures of sensitivity provide better prognostic
capability than lipid-focused metrics for assessing cognitive

insulin
risk. The comparable performance of these two insulin
sensitivity markers emphasizes the fundamental role of insulin
resistance in cognitive decline, consistent with their common
physiological basis in glucose metabolism regulation (19-22).
In contrast, the TyG displays only modest predictive ability,
indicating its more limited capacity to reflect the complex
metabolic

dysfunction associated with neurodegeneration.

Similarly, the AIP shows the weakest association, suggesting
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TABLE 4 Sensitivity analysis of the association between eGDR (Q1-Q4) and cognitive impairment.

FBG+HbAlc

Continues

Per SD increase ‘ 5228 ‘ 1932 (36.95) ‘ 0.845 (0.832, 0.864) ‘ 0.041
Quartiles

Q1 1308 467 (35.70) Reference

Q2 1306 512 (39.20) 0.842 (0.783, 0.905) 0.114
Q3 1307 445 (34.05) 0.877 (0.824, 0.927) 0.486
Q4 1307 508 (38.87) 0.833 (0.807, 0.864) 0.121
Excluded Cl during or before wave 2

Continues

Per SD increase 3943 983 (24.93) 0.851 (0.804, 0.896) 0.033
Quartiles

Q1 986 248 (25.15) Reference

Q2 985 251 (25.48) 0.883 (0.865, 0.901) 0.867
Q3 984 233 (23.68) 0.853 (0.748, 0.934) 0.697
Q4 988 251 (25.40) 0.868 (0.797, 0.906) 0.832

HR, hazard ratio; CI, confidence interval; eGDR, estimated glucose disposal rate; FBG, fasting blood glucose; HbA1c, hemoglobin Alc.

that evaluations  offer

insight into cognitive trajectory modulation than measures of

lipid-centered comparatively less
insulin-glucose homeostasis.

The role of insulin resistance in metabolic disorders is
well-established, and it is now being more commonly linked
to neurodegenerative processes. Studies have documented that
insulin resistance adversely affects cognitive function, particularly
in populations at risk for metabolic syndrome or diabetes
(1, 4-6, 23-25). Reflecting the current literature, our research
highlights the crucial role of insulin sensitivity in cognitive
health, suggesting that eGDR may serve as a significant marker
for assessing cognitive risk in individuals without diabetes. In
contrast to studies that depend only on fasting glucose or
HbAlc, eGDR includes extra factors such as waist size and
blood pressure, giving a fuller picture of insulin resistance
(26, 27). The analysis of subgroups uncovered a significant
association between eGDR and cognitive impairment risk in
non-smokers, whereas this was not the case for smokers,
implying a potential interaction effect. Non-smokers with lower
eGDR levels had a higher risk of cognitive impairment, while
smokers did not exhibit this pattern. Smoking is known to
exacerbate oxidative stress and vascular inflammation, which
may interact with insulin resistance in complex ways, potentially
diminishing the observable impact of eGDR on cognitive
impairment in this subgroup (27). Future research could
further elucidate the biological interactions between smoking
and insulin resistance in relation to cognitive health. Significant
differences in survival without cognitive impairment across eGDR
quartiles were shown by the Kaplan-Meier survival analysis,
with participants in higher quartiles (indicating lower insulin
resistance) experiencing longer periods free from cognitive
impairment. These findings underscore the cumulative impact of
metabolic health on cognitive outcomes over time, reinforcing

Frontiers in Medicine

the notion that insulin sensitivity plays a protective role
against cognitive decline. This aligns with studies suggesting
that maintaining metabolic health can delay or prevent the
onset of neurodegenerative diseases (28-31). The sensitivity
analyses, which included models adjusting for various potential
confounders, confirmed the robustness of our findings. The
relationship between eGDR and cognitive impairment risk was
stable across these models, even after redefining diabetes solely
by FBG and HbAlc levels and excluding those with early
cognitive decline. This research highlights eGDR’s effectiveness
as a predictor of cognitive impairment risk, especially among
non-diabetic groups. However, additional longitudinal studies
with more refined insulin resistance measures may further
strengthen these findings.

This study has several limitations. First, while we controlled
for multiple confounders, unmeasured factors may still influence
the observed relationships. Second, eGDR was only measured
at baseline, limiting our ability to observe changes in insulin
resistance over time. Furthermore, using self-reported data on
health behaviors, including smoking and alcohol use, could
result in biases in reporting. Lastly, the generalizability of our
findings may be limited to non-diabetic populations within a
specific age range, underscoring the need for studies in diverse
cohorts. Future research could focus on longitudinal changes
in eGDR and their relationship with cognitive outcomes,
particularly in populations at risk for both metabolic and
cognitive disorders. Studying the biological pathways that
associate insulin resistance with cognitive impairment may also
offer valuable insights into targeted interventions. Moreover,
examining the interaction effects of lifestyle factors, such
as smoking and dietary habits, on the insulin resistance-
cognitive impairment relationship could guide more personalized
preventive strategies.
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Conclusion

These findings suggest that elevated insulin resistance, as
reflected by reduced eGDR levels, may represent a modifiable
risk factor for cognitive decline in non-diabetic middle and older
adults. The observed correlation underscores the potential of
eGDR measurements in cognitive risk assessment, necessitating
further research to clarify its role in predictive modeling
and to inform strategies for maintaining cognitive health in
aging populations.
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Purpose: The estimated glucose disposal rate (eGDR) is a simple and noninvasive
clinical measure used to assess insulin resistance (IR), yet its potential utility as a
marker for hyperuricemia risk had not been systematically evaluated. This study
aimed to investigate the relationship between eGDR and hyperuricemia risk
among American adults.

Methods: Data for this cross-sectional study were obtained from the 2007-2018
National Health and Nutrition Examination Survey (NHANES). Hyperuricemia was
identified as a serum urate (SU) concentration of >7 mg/dL in males and >6 mg/
dL in females. The relationship between eGDR and hyperuricemia risk was
assessed using multivariate logistic regression and restricted cubic spline (RCS)
methods, with additional subgroup and interaction analyses performed.

Results: With increasing eGDR values, the prevalence of hyperuricemia
decreased significantly (29.93% vs. 19.11% vs. 13.20% vs. 5.03%, P<0.001).
Multivariate logistic regression indicated that eGDR was independently
associated with the risk of hyperuricemia after controlling for covariates
including demographic, lifestyle, and clinical factors (OR=0.93, 95%Cl: 0.90-
0.96, P<0.001). RCS analysis further revealed a nonlinear relationship, with a
turning point at eGDR 7.96 mg/kg/min. Subgroup analysis revealed a stronger
inverse association between eGDR and hyperuricemia risk in females.

Conclusions: The eGDR is inversely associated with hyperuricemia and appears
to be a promising epidemiological tool for evaluating the impact of IR on the risk
of hyperuricemia.

KEYWORDS

hyperuricemia, insulin resistance, estimated glucose disposal rate, NHANES,
population-based study
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1 Introduction

Hyperuricemia, characterized by abnormally high uric acid
levels in the blood, is a common chronic metabolic condition (1).
It serves as a key factor in the development of gout (a very painful
long-term systemic inflammatory arthritis caused by the deposition
of monosodium urate crystal) (2, 3) and has been increasingly
associated with conditions such as diabetes, metabolic syndrome,
cardiovascular diseases, and higher mortality rates (4-6). In recent
years, the global rise in hyperuricemia cases has placed a
considerable burden on healthcare systems and economies (7).

Insulin resistance (IR) is an important pathophysiological risk
factor for hyperuricemia (8). IR, with consequent compensatory
hyperinsulinemia, can disrupt uric acid homeostasis by altering
renal urate excretion and potentially increasing de novo uric acid
production (8, 9). The hyperinsulinemic-euglycemic clamp remains
the most reliable method for measuring insulin resistance; however,
its use in large-scale epidemiological studies is constrained by the
complexity and time requirements of the procedure (10). The
estimated glucose disposal rate (eGDR) is a clinical parameter-
based index for evaluating insulin sensitivity (11). Initially
developed for type 1 diabetes (T1DM) patients, it incorporates
variables such as waist circumference (WC), glycated hemoglobin
(HbAlc), and hypertension status (12, 13). Moreover, the
recognition exists that these individual risk factors (including
central obesity, hypertension, and inflammatory states), integral
to the eGDR and often co-manifesting, are capable of
mechanistically altering the intricate dynamics between glucose
regulation and uric acid levels by exacerbating overall metabolic
dysregulation. Lower eGDR values indicate poorer insulin
sensitivity and greater IR. Compared with traditional methods
such as the homeostasis model assessment of insulin resistance
(HOMA-IR) and the triglyceride-glucose (TyG) index, eGDR
demonstrates superior performance, is simpler to use, does not
require fasting blood samples, and is particularly well-suited for
large-scale studies (14, 15). Recently, research has shown that eGDR
effectively reflects IR and is strongly linked to metabolic syndrome,
cardiovascular diseases, and diabetes complications (11, 16-19).

Although IR is a well-established correlate of hyperuricemia
with multiple established measurement indices, a notable research
gap persists regarding the eGDR. The potential value of eGDR as a
simple, non-fasting metric requiring only basic clinical parameters-
which could serve as a robust insulin sensitivity marker particularly
advantageous for large-scale epidemiological studies and
hyperuricemia risk stratification in diverse populations-remains
insufficiently investigated. Given the absence of studies on eGDR
and hyperuricemia risk, our research, utilizing the National Health
and Nutrition Examination Survey (NHANES) data, examine this
relationship in the U.S. population. We predict that increased eGDR
values are associated with a reduced risk of hyperuricemia.
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2 Materials and methods
2.1 Study population

Data for this study were drawn from NHANES, a survey
conducted by the National Center for Health Statistics at the
Centers for Disease Control and Prevention (CDC). The survey
used a stratified, randomized, multi-stage sampling approach to
ensure a nationally representative sample. Participants underwent
physical examinations, completed health and nutrition surveys, and
participated in laboratory tests. The NHANES protocol was
reviewed and approved by the Ethics Review Board of the
National Center for Health Statistics (NCHS), and written
informed consent was collected from all participants. Detailed
methodologies and datasets are available at https://wwwn.cdc.gov/
nchs/nhanes/. The NHANES cycles from 2007 to 2018, comprising
59842 participants, were utilized in this study, with exclusions
applied to individuals under 20, pregnant women, and those
lacking complete eGDR and uric acid data, resulting in
29328 participants.

2.2 Definition of eGDR and hyperuricemia

The eGDR (mg/kg/min) is estimated using the formula:
eGDR = 21.158 — (0.09 x WC) — (3.407 x HTN) — (0.551 x
HbAlc) (13, 20). In this equation, WC represents waist
circumference in centimeters, HTN indicates hypertension status
(1 = yes, 0 = no), and HbAlc refers to glycated hemoglobin (%).
Hyperuricemia is determined by serum urate (SU) levels of 7 mg/dL
or more in men and 6 mg/dL or more in women (21).

2.3 Assessment of covariates

In this study, covariates included demographic characteristics
(age, gender, and race), socio-economic factors (marital status,
income, and education), smoking history, alcohol consumption,
diuretics use, health conditions (hypertension, diabetes,
cardiovascular disease, chronic kidney disease, and gout), and other
indicators such as body mass index (BMI), WC, HbA ¢, triglycerides
(TG), total cholesterol (TC), high-density lipoprotein cholesterol
(HDL-c), and low-density lipoprotein cholesterol (LDL-c). Smoking
history encompasses both current and former smoking. Alcohol
consumption was determined having consumed at least 12
alcoholic drinks in the past year. Use of diuretics was determined
based on responses to the question: “During the past 30 days, have
you used or taken any prescription medications?”. Diagnosis of
chronic kidney disease was determined by an estimated glomerular
filtration rate (eGFR) below 60 mL/min/1.73 m* and/or a urine
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albumin-to-creatinine ratio (UACR) of 30 mg/g or more. The eGFR
was calculated using the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) equation, which incorporates age,
gender, race, and serum creatinine (Scr) levels (22). Diabetes was
diagnosed based on a self-reported history, fasting plasma glucose
(FPG) levels of >7.0 mmol/L, HbAlc levels of >6.5%, or the use of
antidiabetic drugs. Hypertension was defined as a self-reported
history, systolic blood pressure (SBP) =140 mmHg, diastolic blood
pressure (DBP) 290 mmHg, or the use of antihypertensive
medications. Cardiovascular diseases were identified through
participants’ self-reported histories of heart attacks, strokes, heart
failure, coronary artery disease, or angina. The presence of gout was
established through the question: “Has a doctor or other health
professional ever told you that you have gout?”. Full methodological
details for each variable analyzed in this research are publicly accessible
via the NHANES database (https://wwwn.cdc.gov/nchs/nhanes/).

2.4 Statistical analysis

In accordance with CDC guidelines, statistical analyses utilized a
complex multistage cluster survey design and incorporated sampling
weights. Continuous variables were presented as means with 95%
confidence intervals (CIs), while categorical variables were
summarized as percentages with 95% CIs. Weighted Student’s t-tests
and chi-squared tests were used to evaluate group differences in
continuous and categorical variables, respectively. Logistic and linear
regression models were applied to investigate the relationships between
eGDR and hyperuricemia or SU levels. To assess potential nonlinear
associations between eGDR and hyperuricemia risk, restricted cubic
spline (RCS) regression with four knots was performed, with the median
value as the reference point. A two-piecewise regression model was
employed to identify intervals, and the Log-likelihood ratio test was used
to evaluate the presence of a threshold effect. Subgroup analyses were
carried out based on covariate stratification, with the other covariates
being adjusted for. Receiver operating characteristic (ROC) curve
analysis and decision curve analysis (DCA) were employed to
compare the classification accuracy and clinical utility of eGDR with
those of other alternative indicators. Statistical analyses in this research
were performed using Empower software (http://
www.empowerstats.com) and R software (http://www.R-
project.org), with a two-sided P value <0.05 considered
statistically significant.

3 Results

3.1 Baseline characteristics of study
population.

The study population consisted of 29328 participants with a
mean age of 47.49 years. The racial composition included 8.64%
Mexican Americans, 10.53% Non-Hispanic Blacks, 66.94% Non-
Hispanic Whites, 5.90% Other Hispanics, and 7.98% from other
racial groups. A weighted analysis was performed to evaluate the
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general and clinical characteristics of participants with and without
hyperuricemia (Table 1). The results showed that individuals with
hyperuricemia were generally older, predominantly male, more
likely to smoke and consume alcohol, and more frequently used
diuretics (P<0.01). They also had higher prevalence rates of
diabetes, hypertension, chronic kidney disease, cardiovascular
disease, gout, as well as elevated BMI, WC, HbAlc, TG, TC, and
LDL-c levels (P<0.001). Additionally, they were found to have lower
educational attainment and reduced HDL-c levels (P<0.01).
Furthermore, eGDR levels were significantly reduced in the
hyperuricemia group compared to the non-hyperuricemia
group (P<0.001).

3.2 Baseline characteristics of four different
quartiles (1-4) based on increasing eGDR
values.

Participants were classified into four groups based on eGDR
quartiles (Table 2). Compared to those in the lowest quartile,
individuals in the higher quartiles were younger, more likely to be
female and drinkers, and had lower rates of smoking, diuretic use,
diabetes, hypertension, chronic kidney disease, cardiovascular
disease, and gout (P<0.001). They also tended to have higher
levels of education and a greater PIR (poverty income ratio)
(P<0.001). Significant reductions were noted in BMI, WC,
HbAlc, TG, TC, and LDL-c levels, while HDL-c levels were
significantly higher (P<0.001). Race distribution also differed
significantly (P<0.001). SU levels and hyperuricemia prevalence
decreased with rising eGDR levels which is in agreement with the
previous report (23) (P<0.001).

3.3 Analyzing the relationship between
eGDR and hyperuricemia or SU levels using
Logistic and Linear regression analysis.

Our findings demonstrate a significant negative association
between elevated eGDR levels and hyperuricemia, which persists
across models 1 (OR=0.78, 95%CI: 0.78-0.79, P<0.001), 2
(OR=0.79, 95%CI: 0.78-0.80, P<0.001), and 3 (OR=0.93, 95%CI:
0.90-0.96, P<0.001) (Table 3). Further stratification by eGDR
quartiles, using the lowest quartile as a reference, shows that
individuals in the highest quartile also have a lower risk of
hyperuricemia in the fully adjusted model (OR=0.49, 95%CI:
0.38-0.63, P<0.001). The analysis of SU levels as the dependent
variable and eGDR levels as the independent variable through linear
regression also demonstrates a negative relationship between them
(B=-1.19, 95%CI: -1.98-0.39, P=0.003) (Table 4).

3.3 RCS analysis

RCS analysis to assess non-linearity in the relationship between
eGDR and hyperuricemia (Figure 1). The threshold effect analysis
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TABLE 1 Baseline characteristics of study population, weighted.

Non-hyperuricemia

Hyperuricemia

Characteristics Overall (n=29328) (n=24359) (n=4969) P value
Age (years) 47.49 (47.04, 47.94) 46.93 (46.46, 47.41) 50.39 (49.75, 51.02) <0.001
Gender <0.001
Female 50.90 (50.28, 51.51) 54.65 (53.98, 55.33) 31.18 (29.56, 32.85)
Male 49.10 (48.49, 49.72) 4535 (44.67, 46.02) 68.82 (67.15, 70.44)
Race (%) <0.001
Mexican American 8.64 (7.25, 10.28) 9.00 (7.56, 10.68) 6.77 (5.45, 8.38)
Non-Hispanic Black 10.53 (9.22, 12.01) 10.21 (8.96, 11.62) 12.21 (10.43, 14.25)
Non-Hispanic White 66.94 (64.10, 69.66) 66.64 (63.77, 69.39) 68.51 (65.37, 71.48)
Other Hispanic 5.90 (5.00, 6.96) 6.18 (5.22, 7.29) 448 (3.72, 5.38)
Other Races 7.98 (7.15, 8.90) 7.97 (7.12, 8.91) 8.04 (6.95, 9.28)
PIR (%) 0.193
<=13 21.62 (20.32, 22.96) 21.77 (2041, 23.19) 20.81 (19.36, 22.33)
>13,<=35 3541 (34.11, 36.73) 35.14 (33.76, 36.55) 36.83 (34.87, 38.83)
>35 42.98 (40.96, 45.02) 43.09 (41.00, 45.21) 42.36 (39.71, 45.06)
ii‘f;;ii;)level (above high 61.45 (59.62, 63.24) 61.94 (60.06, 63.78) 58.88 (56.32, 61.39) 0.006
Smoking history (%) 44.47 (4328, 45.67) 43.63 (42.30, 44.97) 48.88 (46.96, 50.80) <0.001
Alcohol consumption (%) 80.56 (79.38, 81.68) 80.17 (78.92, 81.36) 82.59 (81.00, 84.07) 0.002
Diabetes (%) 12.79 (12.24, 13.36) 11.66 (11.08, 12.26) 18.72 (17.35, 20.18) <0.001
Hypertension (%) 36.74 (35.71, 37.77) 33.07 (32.00, 34.16) 56.00 (54.12, 57.86) <0.001
Chronic kidney disease (%) 13.81 (13.21, 14.43) 11.45 (10.89, 12.03) 2629 (24.60, 28.04) <0.001
Cardiovascular disease (%) 8.27 (7.81, 8.76) 7.30 (6.82, 7.81) 13.38 (11.98, 14.90) <0.001
Gout (%) 3.95 (3.63, 4.31) 273 (2.45, 3.04) 10.38 (9.24, 11.65) <0.001
Diuretics (%) 6.94 (6.52, 7.38) 5.12 (4.76, 5.50) 16.51 (15.23, 17.87) <0.001
BMI (kg/m?) 29.00 (28.84, 29.17) 28.38 (2821, 28.55) 32.31 (31.99, 32.62) <0.001
WC (cm) 99.34 (98.90, 99.78) 97.53 (97.08, 97.97) 108.85 (108.08, 109.62) <0.001
HbAlc (%) 5.64 (5.62, 5.65) 5.61 (5.59, 5.63) 5.76 (5.72, 5.79) <0.001
TG (mmol/L) 1.40 (1.37, 1.43) 1.32 (1.29, 1.35) 1.78 (1.71, 1.86) <0.001
TC (mmol/L) 4.99 (4.97, 5.02) 4.97 (4.95, 5.00) 5.11 (5.06, 5.16) <0.001
LDL-c (mmol/L) 2.94 (2,92, 2.97) 2.93 (2.91, 2.95) 3.02 (2.96, 3.07) 0.003
HDL-c (mmol/L) 1.38 (1.37, 1.39) 1.41 (1.39, 1.42) 1.24 (1.22, 1.25) <0.001
¢GDR (mg/kg/min) 7.86 (7.79, 7.93) 8.16 (8.09, 8.24) 6.28 (6.17, 6.40) <0.001

Weighted analyses to evaluate the general and clinical characteristics of participants with and without hyperuricemia.
PIR, poverty income ratio; BMI, body mass index; WC, waist circumference; HbAlc, glycated hemoglobin; TG, triglycerides; TC, total cholesterol; LDL-c, low-density lipoprotein cholesterol;
HDL-c, high-density lipoprotein cholesterol; eGDR, estimated glucose disposal rate.

shows that the inflection point for eGDR levels is 7.66 mg/kg/min, 3.4 Sy bgroup analyses
with a more pronounced relationship on the right side (OR=0.76,
95%CI: 0.71-0.82, P<0.001) compared to the left side (OR=1.02,
95%CI: 0.98-1.06, P=0.395) (Table 5).

In analyses stratified by variables such as age (<60/260 years),
gender (female/male), race (Mexican American/Non-Hispanic
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TABLE 2 Baseline characteristics of four eGDR quartiles (increasing order, 1-4), weighted.

10.3389/fendo.2025.1567789

Characteristics Quartile 1 Quartile 2 Quartile 3 Quartile 4
Age (years) 5673 (56.25, 57.21) 53.20 (52.57, 53.83) 45.06 (44.51,4562) | 37.70 (37.11, 38.28) <0.001
Gender <0.001
Female 44.88 (43.24, 46.53) 51.93 (50.47, 53.38) 4439 (42.95,4584) 6107 (59.59, 62.52)
Male 55.12 (53.47, 56.76) 48.07 (46.62, 49.53) 55.61 (54.16,57.05) | 38.93 (37.48, 40.41)
Race (%) <0.001
Mexican American 7.13 (5.70, 8.89) 7.49 (612, 9.12) 11.87 (9.91, 14.15) 7.70 (6.54, 9.05)
Non-Hispanic Black 14.01 (11.92, 16.39) 11.44 (9.96, 13.11) 8.35 (7.23, 9.64) 9.12 (7.99, 10.40)
Non-Hispanic White 68.99 (65.55, 72.24) 68.15 (65.10, 71.06) 65.84 (62.68, 68.88) 6535 (62.52, 68.07)
Other Hispanic 4,56 (3.67, 5.65) 5.22 (4.38, 6.22) 6.82 (5.73, 8.09) 6.67 (5.56, 7.98)
Other Races 5.32 (4.59, 6.15) 7.70 (6.64, 8.91) 7.12 (6.14, 8.24) 11.16 (9.82, 12.64)
Married (%) 58.82 (56.92, 60.70) 56.96 (55.18, 58.73) 59.01 (57.03, 60.96) | 48.60 (46.49, 50.72) <0.001
PIR (%) <0.001
<=13 2234 (20.55, 24.25) 20.74 (1930, 22.26) 2161 (19.96,23.37) 2178 (19.93, 23.75)
>1.3, <=35 3755 (35.91, 39.23) 37.81 (35.84, 39.82) 3445 (32.48,36.48) | 32.62 (30.71, 34.58)
3.5 40.10 (37.61, 42.65) 4145 (38.97, 43.97) 43.94 (4111, 46.80)  45.60 (42.87, 48.36)
i‘;ﬁ;;iz;;evel (above high 55.69 (53.67, 57.70) 59.29 (56.92, 61.62) 60.13 (57.67, 62.54)  69.10 (66.78, 71.32) <0.001
Smoking history (%) 5191 (50.27, 53.54) 4727 (4542, 49.13) 4335 (41.80, 44.92) 3731 (3536, 39.29) <0.001
Aleohol consumption (%) 7822 (76.64, 79.72) 78.89 (77.45, 80.27) 8236 (80.70, 83.90) | 82.19 (80.59, 83.69) <0.001
Diabetes (%) 37.17 (35.68, 38.70) 12.63 (1158, 13.76) 5.20 (4.64, 5.81) 0.95 (0.70, 1.29) <0.001
Hypertension (%) 95.13 (94.42, 95.76) 64.70 (63.08, 66.29) 2.48 (2,07, 2.97) 0.00 (0.00, 0.00) <0.001
Chronic kidney disease (%) 27.47 (26.20, 28.79) 17.59 (16.45, 18.78) 7.33 (6.64, 8.10) 6.11 (5.46, 6.84) <0.001
Cardiovascular disease (%) 18.70 (17.48, 19.99) 11.42 (10.45, 12.47) 3.67 (3.14, 4.30) 1.80 (1.45, 2.24) <0.001
Gout (%) 9.74 (8.86, 10.70) 461 (3.95, 5.39) 222 (1.77, 2.78) 0.50 (0.36, 0.68) <0.001
Diuretics (%) 19.79 (18.56, 21.09) 9.05 (8.14, 10.05) 1.19 (0.94,1.51) 0.53 (0.34, 0.84) <0.001
BMI (kg/m?) 35.43 (35.17, 35.69) 29.84 (29.62, 30.06) 20.05 (2891,29.19) 2320 (23.10, 23.29) <0.001
WC (cm) 117.09 (11660, 117.57) | 102.09 (10158, 102.60) = 99.94 (99.71, 100.18) = 82.39 (82.14, 82.64) <0.001
HbA1c (%) 6.32 (6.27, 6.36) 5.67 (5.65, 5.70) 547 (5.45, 5.48) 523 (5.22, 5.24) <0.001
TG (mmol/L) 178 (171, 1.85) 147 (141, 1.52) 1.4 (1.39, 1.48) 0.98 (0.96, 1.00) <0.001
TC (mmol/L) 4,95 (4.91, 5.00) 5.11 (5.07, 5.16) 5.14 (5.10, 5.18) 479 (4.76, 4.82) <0.001
LDL-¢ (mmol/L) 2.88 (2.83, 2.92) 3.02 (2.97, 3.08) 3.11 (3.08, 3.15) 2.76 (2.73, 2.80) <0.001
HDL-c (mmol/L) 122 (121, 1.23) 138 (1.37, 1.40) 132 (1.30, 1.33) 156 (1.54, 1.58) <0.001
SU (mg/dL) 6.06 (6.01, 6.12) 5.59 (5.54, 5.64) 5.45 (5.40, 5.50) 476 (4.73, 4.80) <0.001
Hyperuricemia (%) 29.93 (28.53, 31.36) 19.11 (17.81, 20.49) 13.20 (12.07, 14.42) 5.03 (4.41, 5.75) <0.001

Participants were classified into four quartiles based on increasing eGDR from quartile 1 to quartile 4.

Black/Non-Hispanic White/Other Hispanic/Other Races), BMI
(<25/25-30/>30 kg/mz), diabetes (yes/no), cardiovascular disease
(yes/no), and chronic kidney disease (yes/no), the association

in females (OR=0.87, 95%CI: 0.82-0.91) than in males (OR=0.97,
95%CI: 0.93-1.01) (P for interaction=0.001)(Figure 2). Across other
subgroups, the relationship showed no significant variation (P for

between eGDR and hyperuricemia risk was significantly stronger  interaction > 0.05).
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TABLE 3 Logistic regression analysis to assess relation between eGDR
and hyperuricemia.

OR (95%Cl) P value

Hyperuricemia

10.3389/fendo.2025.1567789

TABLE 4 Linear regression analysis to assess relation between eGDR and
SU levels.

B (95%ClI) P value

Model 1 Model 2 Model 3 Model 2
Continuous Continuous
0.78 (0.78, 0.79 (0.78, 0.93 (0.90, -0.16 (-0.17, -9.06 (-9.44, -1.19 (-1.98,
eGDR ( ( ( eGDR ( ( (
0.79) <0.001 0.80) <0.001 0.96) <0.001 -0.16) <0.001 -8.69) <0.001 -0.39) 0.003
Categories Categories
Q1 reference reference reference Q1 reference reference reference
@ 0.53 (0.50, 0.54 (0.50, 1.02 (0.88, . -0.50 (-0.54, -25.69 (-28.27, -1.35 (-5.35,
0.58) <0.001 0.59) <0.001 1.18) 0.823 -0.45) <0.001 -23.11) <0.001 2.64) 0.506
Q3 0.34 (0.31, 0.34 (0.31, 0.75 (0.63, Q3 -0.64 (-0.68, -37.50 (-40.21, -4.92 (-9.31,
0.37) <0.001 0.38) <0.001 0.89) 0.001 -0.59) <0.001 -34.79) <0.001 -0.53) 0.028
Q4 0.13 (0.11, 0.13 (0.11, 0.49 (0.38, Qi -1.28 (-1.32, -70.09 (-73.01, -14.02 (-19.62,
0.14) <0.001 0.15) <0.001 0.63) <0.001 -1.24) <0.001 -67.17) <0.001 -8.42) <0.001
P for trend <0.001 <0.001 <0.001 P for trend <0.001 <0.001 <0.001

Logistic regression analyses in three different models of adjustment were performed to
investigate the relationships between eGDR and hyperuricemia.

OR, odds ratio.

95% CI, 95% confidence interval.

Model 1: non-adjusted.

Model 2: adjusted for age, gender, race, marital status, PIR, education level, smoking, and
alcohol consumption.

Model 3: adjusted for age, gender, race, marital status, PIR, education level, smoking, alcohol
consumption, diabetes, chronic kidney disease, cardiovascular disease, gout, diuretics, BMI,
TG, LDL-c, and HDL-c.

3.5 ROC and DCA analyses

We evaluated eGDR in comparison with other IR surrogates,
such as the Triglyceride-Glucose index (TyG) and Homeostasis
Model Assessment of Insulin Resistance (HOMA-IR). As illustrated
in Figure 3, both ROC and DCA analyses were performed. The area
under the curves (AUCs) for eGDR, TyG, and HOMA-IR were
69.5%, 65.0%, and 64.2%, respectively, highlighting eGDR as the
most effective discriminator for hyperuricemia risk. Moreover,
DCA indicated that the eGDR model offered increased net benefit
across a broader range of threshold probabilities, reflecting its
superior clinical usefulness.

TABLE 5 Threshold effect analysis of eGDR on hyperuricemia risk.

Model OR (95% ClI) P value

Total 0.93 (0.90, 0.96) <0.001
Breakpoint (K) 7.66

ORI (<7.96) 1.02 (0.98, 1.06) 0.395
OR2 (>7.96) 0.76 (0.71, 0.82) <0.001
OR2/OR1 0.75 (0.69, 0.82) <0.001
P for logarithmic likelihood ratio <0.001

OR, odds ratio.

95% CI, 95% confidence interval.

adjusted for age, gender, race, marital status, PIR, education level, smoking, alcohol
consumption, diabetes, chronic kidney disease, cardiovascular disease, gout, diuretics, BMI,
TG, LDL-c, and HDL-c.
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Linear regression analyses in three different models of adjustment were performed to
investigate the relationships between eGDR and SU levels.

95% CI, 95% confidence interval.

Model 1: non-adjusted.

Model 2: adjusted for age, gender, race, marital status, PIR, education level, smoking, and
alcohol consumption.

Model 3: adjusted for age, gender, race, marital status, PIR, education level, smoking, alcohol
consumption, diabetes, chronic kidney disease, cardiovascular disease, gout, diuretics, BMI,
TG, LDL-c, and HDL-c.

4 Discussion

This study reports the results of our investigation about whether
the eGDR, used to assess IR, can serve as a straightforward and
noninvasive indicator of hyperuricemia. A cross-sectional analysis
of 29328 participants revealed a negative and nonlinear correlation
between the eGDR and the risk of hyperuricemia.

IR and SU levels were described bidirectionally interconnected
because higher SU levels are known to adversely affect the insulin
signaling pathway causing IR while IR is a known predictor for the

Hyperuricemia
P for overall<0.001

1.5 P for nonlinear<0.001
3
= S o - - - e e = - — e - . .
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14
o

0.5

0.0

0 5 10
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FIGURE 1

The results of RCS analysis.
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Hyperuricemia OR 95%CI P for interaction
Age (years)
<60 0.92 (0.89, 0.96) l---@--o{ 0.976
>60 0.92 (0.87, 0.97) @

Gender
Female 0.87 (0.82, 0.91) bennee@-nny 0.001
Male 0.97 (0.93, 1.01) beres@renr]
Race
Mexican American 0.98 (0.88, 1.08) k ® 1 0.294
Non-Hispanic Black 0.93 (0.87, 0.99) [mmemns L |
Non-Hispanic White 0.91 (0.87, 0.95) @&~
Other Hispanic 1.02 (0.92, 1.14) e P @ sersa s |
Other Races 0.90 (0.82, 0.99) k ® !
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The results of subgroup analysis.

development of hyperuricemia (8, 24). Renal anti-uricosuric effect
of insulin was also described preserved in states of IR in human. In
compensatory hyperinsulinemia in the state of IR a chronic anti-
uricosuric pressure on the kidney cause in hyperuricemia (25). In an
in vitro experiment, insulin was shown to stimulate urate uptake in
human proximal tubular cells (PTC-05) and HEK293T cells and in
Xenopus oocyte expression system, where insulin was shown to
stimulate urate uptake activity of urate reabsorption transporter,
glucose transporter 9 (GLUT9) (26). The eGDR, which is based on
clinical parameters, provides a practical and accurate assessment of
insulin sensitivity and resistance (27). Specifically, the three
components of eGDR reflect IR from different perspectives:
Increased WC indicates visceral fat accumulation, which can
promote the release of inflammatory factors, exacerbate IR, and
reduce renal uric acid excretion, thereby leading to elevated SU
levels (28). Hypertension is often associated with IR and may reduce
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uric acid clearance through renal hemodynamic alterations (29).
Elevated HbAlc reflects chronic hyperglycemia and IR, both of
which can also influence the renal tubular handling of uric acid (30).
Our study found a nonlinear association between eGDR and the
risk of hyperuricemia. When eGDR is below the threshold of 7.66,
increases in eGDR have limited impact on hyperuricemia risk.
However, once eGDR exceeds 7.66, further increases are
significantly associated with a reduced risk of hyperuricemia.
Therefore, eGDR may serve as a simple and practical screening
tool for assessing hyperuricemia risk, especially in primary care
settings where more complex measures of IR are unavailable. We
propose 7.66 as a potential cutoff value for screening purposes. Our
research also revealed that the relationship between eGDR and
hyperuricemia risk was stronger in women, potentially reflecting
their distinct physiological traits in metabolic regulation (31).
Additionally, estrogen plays a role in reducing inflammation and
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The results of ROC and DCA analyses.

enhancing insulin sensitivity, but its decline after menopause may
worsen insulin resistance and disrupt uric acid metabolism (32-35).
Estradiol reduces the expression of urate reabsorption transporters,
including urate transporter 1 (URAT1) and GLUTY, as well as the
efflux transporter ATP-binding cassette sub-family G member 2
(ABCG2), in ovariectomized mice, regardless of hormone
replacement therapy (36). Additionally, 17-B-estradiol (E2) has
been found to decrease GLUT9 protein levels in human renal
tubular epithelial cells (HK2) through estrogen receptor B
(ERB) (37).

The interaction between IR and hyperuricemia is bidirectional,
with both conditions sharing metabolic and pathological mechanisms
that perpetuate a vicious cycle (4). Obesity, hyperglycemia, and lipid
metabolism disorders are common factors linking IR and
hyperuricemia, as they promote purine metabolism, oxidative
stress, and inflammation, leading to increased uric acid production
and decreased insulin sensitivity (38, 39). Clinical evidence showing
that allopurinol combined with standard treatment in severe Covid-
19 patients reduced oxidative and inflammatory disorders, suggesting
that lowering serum urate levels can mitigate oxidative stress (40). In
hyperuricemia, reactive oxygen species (ROS) are overproduced
during uric acid formation by xanthine oxidases. Both ROS and
intracellular uric acid can regulate multiple signaling pathways. For
instance, studies demonstrate increased ROS production during 3T3-
L1 cell differentiation into adipocytes, indicating that ROS generation
correlates with fat accumulation. Interestingly, in fully differentiated
3T3-L1 adipocytes, ROS production was markedly inhibited by
NADPH oxidase inhibitors, but not by oxypurinol, rotenone, or
thenoyltrifluoroacetone (41).

Uric acid is recognized as an important antioxidant in vivo,
capable of scavenging ROS such as hydroxyl radicals and
peroxynitrite (42, 43). However, under severe oxidative stress, its
antioxidant capacity may be overwhelmed, potentially disrupting
metabolic homeostasis. Although xanthine oxidase is a key enzyme
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in uric acid production and a known source of ROS, the relationship
between oxidative stress and xanthine oxidase activity remains
complex. Some studies indicate that oxidative stress in
hyperuricemia may occur independently of xanthine oxidase
activity (44), and clinical trials with xanthine oxidase inhibitors
(e.g., allopurinol, febuxostat) have yielded inconsistent effects on
oxidative stress-related outcomes. Therefore, further research is
needed to clarify whether oxidative stress directly disrupts uric
acid metabolism or whether their interaction involves additional
regulatory mechanisms.

However, this study has limitations. First, given the study’s
cross-sectional design, the direction of causality cannot be
ascertained, and the role of hyperuricemia in amplifying IR
cannot be ruled out. Second, although adjustments were made for
several covariates, the effects of unaccounted confounders such as
treatment with allopurinol and differences in diuretic use cannot be
entirely ruled out. Third, subgroup analyses for factors such as
diabetes types, nonalcoholic fatty liver disease (NAFLD) and
metabolic syndrome were not performed. Finally, our results,
derived from a US population sample, require further verification
to ensure their applicability to other demographic groups.

5 Conclusion

A nationally representative study among adults aged 20 years or
older identified a negative association between the eGDR and the
risk of hyperuricemia.
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Objective: This study aimed to investigate risk factors for metabolic syndrome
(MS) among adult residents in Dalian, Liaoning Province, China, using a nested
case-control design.

Methods: Adult participants from Dalian who took part in both baseline and
follow-up phases of the Risk Evaluation of Cancers in Chinese Diabetic
Individuals: A Longitudinal (REACTION) Study were evaluated through
standardized questionnaires, physical examinations, and biochemical analyses.
A total of 536 individuals diagnosed with MS were matched in a 1:4 ratio to 2,144
controls based on comparable demographic and clinical characteristics. Group
differences were assessed via t-tests, rank sum tests, and y? tests. Multivariate
conditional logistic regression was applied to identify risk factors for MS.

Results: (1) The case group demonstrated significantly higher values for body
weight(67.42 + 9.77 vs. 62.39 + 9.31, P<0.001), body mass index (BMI) (25.99 +
3.36 vs 24.00 + 3.14, P<0.001), hip circumference (HC) (100.72 + 6.47 vs 97.84 +
6.38, P<0.001), homeostatic model assessment for insulin resistance (HOMA-IR)
(2.27 + 1.19 vs 1.70 + 0.92, P<0.001),total cholesterol (TC) (5.54 + 1.08 vs 5.40 +
0.97, P=0.003), low-density lipoprotein cholesterol (LDL-C) (3.38(2.79,3.96) vs
3.17(2.67,3.71), P<0.001), alanine aminotransferase (ALT) (16.00(13.00,21.00) vs
15.00(11.00,19.00), P<0.001), gamma-glutamyl transferase (GGT) (22.00
(17.00,33.00) vs 18.00(14.00,27.00), P<0.001), serum uric acid (UA) (303.50
(263.00,355.00) vs 281.00(245.00,325.00), P<0.001), glycosylated hemoglobin
(HbAlc) (593 + 0.88 vs 5.75 + 0.68, P<0.001), and fasting insulin (FINS) (8.05
(5.90,10.70) vs 6.15(4.60,8.30), P<0.001) (2). Higher prevalence rates were also
observed for coronary heart disease (4.86% vs 2.87%, P=0.020), habitual snoring
(66.53% vs 54.96%, P<0.001), and consumption of fresh juice (17.99% vs 13.12%,
P=0.004), beef and mutton (78.42% vs 74.07%, P=0.038), and soda the case
group (20.15% vs 16.32%, P=0.049). Meanwhile, lower participation in aerobic
activities(1.20% vs 2.92%, P=0.030) and shorter average daily sleep duration (7.55
+ 1.02 vs 7.69 + 1.17, P=0.028) were noted in the case group (3). Regression
analysis identified longer average daily sleep duration as a protective factor
(OR=0.844, 95%Cl: 0.761-0.936, P=0.001), while fresh juice intake(OR=1.846,
95%Cl: 1.315-2.592, P<0.001), beef and mutton consumption(OR=1.282, 95%
Cl:1.007-1.632, P=0.044), LDL-C(OR=1.409, 95%Cl: 1.245-1.595, P<0.001), GGT
(OR=1.004, 95%Cl: 1.001-1.008, P=0.017), UA(OR=1.005, 95%ClI: 1.003-1.007,
P < 0.001), HOMA-IR (OR=1.464, 95%Cl: 1.313-1.633, P < 0.001), HC(OR=1.030,
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95%Cl: 1.007-1.053, P = 0.009), and BMI(OR=1.118, 95%Cl: 1.064-1.174,
P < 0.001)were significant risk factors.

Conclusion: LDL-C, GGT, UA, HOMA-IR, HC, BMI, daily sleep duration, and
consumption of beef and mutton, and fresh juice were strongly associated with
the incidence of MS among adult residents in Dalian.

metabolic syndrome, risk factors, nested case-control study, fresh juice, beef and
mutton, sleep duration, adult residents in Dalian, body mass index

1 Introduction

Metabolic syndrome (MS) is a clinical entity characterized by a
cluster of abdominal obesity, hyperglycemia (diabetes or impaired
glucose tolerance), dyslipidemia (elevated triglycerides and/or reduced
high-density lipoprotein levels), and hypertension—factors that
collectively exert a substantial influence on systemic health. It
comprises a constellation of metabolically interrelated risk elements
(1), and is a multifaceted pathophysiological condition primarily
stemming from an imbalance in caloric intake and energy
expenditure, yet it is also modulated by factors such as an
individual’s genetic/epigenetic constitution and lifestyle behaviors.
The pathogenesis of MS is mainly mediated by increased free fatty
acids leading to insulin resistance and chronic low-grade
inflammation induced by pro-inflammatory cytokines (2). Over
recent decades, the global incidence of MS has markedly increased,
now affecting nearly one-quarter of the global population, which
translates to over 1 billion individuals (3). Its treatability remains
uncertain, combination of drug therapy and dietary adjustments,
could be helpful in the prevention and management of MS (2). In
China, rapid economic expansion accompanied by shifts in dietary
patterns and lifestyle behaviors has further intensified the MS burden.
Current research estimates that 19.58% of the Chinese population is

Abbreviations: ALT, Alanine Aminotransferase; AST, Aspartate
aminotransferase; BMI, Body Mass Index; DBP, Diastolic Blood pressure;
FINS, Fasting Insulin; FT3, Triiodothyronine; FT4, Free Thyroxin; FPG,
Fasting Plasma Glucose; FFQ, Food Frequency Questionnaire; 2hPG, 2 Hours
Plasma Glucose; GGT, Gamma-Glutamyl Transferase; HbAlc, Glycosylated
Hemoglobin; HC, Hip Circumference; HOMA-IR, Homeostatic Model
Assessment for Insulin Resistance; HR, Heart Rate; HDL-C, High density
lipoprotein cholesterol; IPAQ, International Physical Activity Questionnaire;
LDL-C, Low-Density Lipoprotein Cholesterol; MS, Metabolic Syndrome;
OGTT, Oral Glucose Tolerance Test; REACTION, Risk Evaluation of Cancers
in Chinese Diabetic Individuals: A Longitudinal Study; SBP, Systolic Blood
Pressure; Scr, Serum creatinine; TG, Triglyceride; TSH, Thyroid-stimulating
Hormone; TgAb, Thyroglobulin Antibodies; TPOAb, Thyroid Peroxidase
Antibodies; TC, Total Cholesterol; UA, Serum Uric Acid; WC,

Waist Circumference.
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affected by MS (4), with prevalence rates surging to 36.9% among the
elderly demographic (5). MS has attracted much attention from
scholars since it was proposed. Its high incidence of endpoint
events, especially cardiovascular and cerebrovascular events, has
become the first of the three causes of death, which seriously
threatens human health. Research on the risk factors of metabolic
syndrome can not only further explore its formation mechanism, but
also accelerate the drug development process of related targets, timely
urge people to improve their lifestyles, and enhance the health
awareness of the whole population, which is of great significance for
the prevention and treatment of MS. While factors such as age, body
mass index (BMI), and insulin resistance are consistently recognized
as key contributors, other risk factors remain unclear or yield
inconsistent associations across different populations and
geographical regions. A study conducted among elderly individuals
in Shenzhen, China, identified regular rice consumption as a potential
protective factor against MS, while reporting no significant association
between alcohol intake and MS risk (6). In contrast, research involving
Swedish adults suggested a possible protective effect of alcohol
consumption for individuals with MS (7). Meanwhile, findings from
a Korean cohort indicated that high rice intake may elevate the risk of
abdominal obesity, a condition closely linked to the pathogenesis and
progression of MS (8). As a historically significant coastal city, Dalian
exhibits distinct dietary customs and lifestyle patterns. The city’s rapid
socioeconomic development has led to an increasingly fast-paced
lifestyle, contributing to a rise in metabolic disorder-related
conditions. A cross-sectional study in adult residents of Shenzhen, a
coastal city in China, has shown that significant differences were found
in MS groups with different sociodemographic or other characteristics,
such as age, serum uric acid(UA) levels, gender, smoking status,
drinking status, marital status, BMI, and educational level, and
increased UA levels were positively associated with the prevalence of
MS and its components (9). Despite these trends, investigations into
MS risk factors within the Dalian population remain lacking.
Accordingly, this study adopted a nested case-control design to
identify risk factors for MS among adult residents of Dalian. We
hypothesize that specific dietary habits (e.g., consumption of fresh
juice, beef and mutton, and soda), lifestyle factors (e.g., sleep duration,
aerobic activities, and smoking), basic information (e.g., diseases
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history and anthropometric assessments), and relevant biochemical
markers (e.g., LDL-C, GGT, UA, HOMA-IR) are associated with an
increased risk of MS among adult residents in Dalian.

The nested case-control design, an advanced epidemiological
methodology, integrates the methodological rigor of cohort studies
with the efficiency of case-control frameworks. It is based on the
follow-up observation of a pre-determined cohort, and then the
design concept of case-control studies (mainly matching case-
control studies) is applied for research and analysis, integrates the
strengths of cohort and case-control designs. This approach
improves research efficiency and cost management, while offering
greater statistical robustness and diagnostic precision relative to
traditional case-control models (10). Currently, this method is
widely used in medical scientific research.

Utilizing data from the Risk Evaluation of Cancers in Chinese
Diabetic Individuals: A Longitudinal (REACTION) Study, a follow-
up cohort was established to investigate MS among adult residents
in the Dalian community. Through a matched nested case-control
framework, the study assessed the associations between the onset of
MS and a comprehensive range of biochemical indicators,
demographic characteristics, medical history, and lifestyle
variables—including dietary patterns, physical activity, and
habitual behaviors. The objective was to optimize early detection
of risk factors, support timely intervention strategies, and reduce
MS incidence, thereby minimizing its broader personal, familial,
and social burden.

2 Materials and methods
2.1 Study participants

The REACTION Study, a multicenter prospective cohort
investigation, enrolled Chinese adults aged =40 years from the
Dalian community who participated in the baseline epidemiological
survey at the Dalian subcenter between August and December 2011
(n=10208, 2807 males and 7401 females), followed by re-evaluation
from July to December 2014(n=5354, 1369 males and 3985
females). Longitudinal data were obtained through standardized
physical examinations, biochemical assessments, and structured
data collection at both time points. A nested case-control design
was employed in this study. Each incident MS case identified within
the cohort was matched to one or more controls who remained free
of MS at the time of diagnosis. Case group: A total of 536 cases
newly diagnosed MS during the follow-up period (2014) from the
study population were included, as per the 2020 Chinese Diabetes
Society diagnostic criteria (see Section 2.2). Control group: Controls
were selected from the same cohort among individuals who
remained free of MS at follow-up (2014). To minimize
confounding, controls were matched to cases in a 4:1 ratio based
on the following criteria:1) Gender: Exact matching (male/female).
2) Age: = 3 years from the cases’ age at baseline. Controls were
required to have completed both baseline and follow-up
assessments, with no missing data on MS diagnostic components.
Matching was performed using a stratified random sampling
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approach within each gender-age stratum to avoid overmatching.
Exclusion criteria included missing data on biochemical or physical
examinations(n=7), a prior diagnosis of MS(n=2367), clinically
relevant cardiac, hepatic, or renal dysfunction(n=6), or chronic
glucocorticoid therapy(n=2). The protocol was approved by the
REACTION Study Ethics Committee [Approval No (2011). LLS No
(14).], and all participants provided written informed consent.

2.2 Study methods

(1) Prior to survey implementation, the research personnel—
including endocrinologists, postgraduate trainees, and nurses from
Dalian Municipal Central Hospital Affiliated to Dalian University of
Technology—received standardized training conducted by Ruijin
Hospital, Shanghai Jiaotong University School of Medicine. All
questionnaire data collection and anthropometric measurements
were performed by trained staff according to a standard protocol.
Informed consent was obtained from all enrolled community
residents before data collection commenced.

(2) Baseline characteristics and outcome indicators were
systematically collected. Participants completed structured
questionnaires, underwent physical assessments, and provided
venous blood specimens. Documented variables included
demographic data (gender, age), individual and familial disease
histories, marital and educational status, pharmacological
treatments, sleep patterns, emotional well-being, and lifestyle
parameters including dietary intake, physical activity, and daily
routines. Clinical measurements included systolic and diastolic
blood pressure (SBP and DBP), heart rate (HR), height, weight,
waist and hip circumference (HC), and BMI was subsequently
derived. Blood sampling was performed in the morning after an
overnight fast of at least 8-14h. Fasting plasma glucose(FPG), 2
hours plasma glucose(2hPG), glycosylated hemoglobin (HbAIc),
fasting insulin (FINS), and several biochemical markers—alanine
aminotransferase (ALT), Aspartate aminotransferase(AST),
gamma-glutamyl transferase (GGT), serum creatinine(Scr), total
cholesterol (TC), Triglyceride (TG), low-density lipoprotein
cholesterol (LDL-C), High density lipoprotein cholesterol (HDL-
C), UA, triiodothyronine (FT3), free thyroxin (FT4), thyroid-
stimulating hormone (TSH), thyroglobulin antibodies (TgAb),
and thyroid peroxidase antibodies (TPOAb)—were measured. In
addition, all participants underwent an oral glucose tolerance
test(OGTT).

(3) Biochemical Evaluation: Fasting venous blood was collected
in standard biochemical tubes, centrifuged immediately(within 2
hours), aliquoted into 0.5-mL Eppendorf tubes, stored at -20°C, and
transported within 3 weeks under cold-chain conditions to Ruijin
Hospital, Shanghai Jiaotong University School of Medicine,
Shanghai Institute of Endocrine and Metabolic Diseases, which is
certified by the College of American Pathologists, for centralized
analysis. Levels of Scr, TC, LDL-C, HDL-C, and TG were measured
on an autoanalyzer (16000 system, ARCHITECT ¢i16200 analyzer;
Abbott Laboratories, Lake Bluff, IL) in the central laboratory. FINS
was measured with chemiluminescent immunoassay (i2000SR
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system, Architect ci16200 analyzer; Abbott Laboratories). The levels
of HbAlc were assayed by means of high-performance liquid
chromatography method (Variant IT and D-10 Systems; Bio-Rad,
Hercules, CA).FPG and 2hPG levels were measured from NaF-
anticoagulated blood using the hexokinase method on an
automated biochemical analyzer (ADVIA 2400 system).
Homeostatic model assessment of insulin resistance (HOMA-IR)
was calculated using the mathematical formula as follows: HOMA-
IR = FPG (mmol/L) x FINS (uU/mL)/22.5 (11).UA concentrations
were determined from fasting venous samples using the uricase
colorimetric method on the ADVIA Chemistry XPT system.
Thyroid function was evaluated via chemiluminescence
immunoassay (Abbott 12000, Abbott reagent).

Data Collection: Epidemiological data were collected via one-on-
one questionnaires, encompassing sociodemographic characteristics,
lifestyle factors, and medical histories. The REACTION study
questionnaire was developed through a systematic review of
questionnaires related to MS, diabetes, and cancer both domestically
and internationally(e.g., the International Physical Activity
Questionnaire, IPAQ, Food Frequency Questionnaire, FFQ), and a
working group composed of experts from multiple disciplines
including endocrinology, epidemiology, and nutrition decided the
content and structure of the questionnaire. Information on intensity,
duration, and frequency of physical activity was gathered using the
short form of the IPAQ. In the dietary section of the questionnaire, data
were obtained regarding usual dietary intake over the past 12 months.
The questionnaire was designed to capture information on frequency
and quantity of major food items such as red meat, fruits and
vegetables, dairy, and Chinese traditional food such as pickles and
salty vegetables. The questionnaire has previously been evaluated and
validated in other cohort studies (12-14).

Anthropometric assessments followed standardized procedures:
weight was measured in the morning following an overnight fast,
and height was recorded with participants standing upright, feet
together, and arms relaxed. Height and weight were measured with
participants wearing light-weight clothes and no shoes. BMI was
calculated by dividing weight (in kilograms) by weight (in meters)
squared. Blood pressure and HR were measured at 5-minute
intervals on the non-dominant arm in a resting state, with the
mean of three readings recorded (1 mmHg = 0.133 kPa), using an
automated electronic device (Omron Model HEM-725 FUZZY;
Omron Co, Dalian, China). Waist circumference(WC)was
assessed at the midpoint between the lower rib and the anterior
superior iliac spine, with participants standing upright, feet 25-30
cm apart, and breathing normally. HC was measured at the
maximal circumference of the hips while standing, with legs
together and arms relaxed.

(4) Diagnostic and allocation criteria (1): MS diagnostic criteria:
In accordance with the 2020 Guidelines of the Chinese Diabetes
Society for the Prevention and Treatment of Type 2 Diabetes, a
diagnosis of MS was established when at least three of the following
five conditions were met: 1) Abdominal obesity, defined by a waist
circumference > 90 ¢cm in men or = 85 cm in women; 2)
Hyperglycemia, determined by FPG > 6.1 mmol/L and/or 2hPG
> 7.8 mmol/L, or a documented history of diabetes under treatment;
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3) Hypertension, defined by blood pressure > 130/85 mmHg, or a
history of hypertension with ongoing treatment; 4) Elevated fasting
triglycerides (= 1.70 mmol/L); 5) Decreased fasting HDL-C (< 1.04
mmol/L) (2). Case and control groups: A nested case-control design
was employed. Each incident MS case identified within the cohort
was matched to one or more controls who remained free of MS at
the time of diagnosis. Ultimately, 2,680 participants (605 males and
2075 females) were included in the final analysis (Figure 1). A total
of 536 newly diagnosed MS cases from the study population were
included. A matching ratio of 1:4 was applied, with 2144 subjects
without MS selected as controls. The controls were matched by
gender and age, ensuring an age difference of less than 3 years.

2.3 Statistical methods

Statistical analyses were performed using SPSS 27.0. The
distribution of measurement data was first evaluated; data
conforming to normal distribution were presented as mean +
standard deviation (SD), whereas those deviating from normality
were expressed as M (QI, Q3). Group comparisons for continuous
variables employed the f-test when normality was verified by P-P
plots, and the rank sum test for non-normally distributed data.
Significance was defined as P < 0.05. Categorical variables were
summarized as counts (%), with comparisons between groups
conducted using the % test under the same significance criterion.
Variables identified as significant in univariate analysis were
incorporated into a multivariate conditional logistic regression
model. A 1:4 matched conditional logistic regression (forward LR
method) was used to identify risk factors for MS, with entry and
removal criteria set at o0 = 0.05 and o = 0.10, respectively. A two-
tailed P < 0.05 was considered indicative of statistical significance.
OR value: >1 indicates risk factor, = 1 indicates no association, <1
indicates protective factor. 95% CI: includes] indicates no statistical
significance, excludes 1 indicates statistically significant. A t-test is a
statistical hypothesis test used to determine whether there is a
significant difference between the means of two groups or between a
sample mean and a known population mean, and the data should be
(approximately) normally distributed. The rank sum test, is a non-
parametric statistical method used to compare two independent or
paired samples when the data do not follow a normal distribution.
The y” test is a statistical hypothesis test used to examine the
association between categorical variables or to assess how well
observed data fit an expected distribution, and the data must be
in frequency counts. Conditional logistic regression is a specialized
regression analysis method designed for matched or stratified data,
commonly employed in matched case-control studies. Its
fundamental principle involves using conditional likelihood
functions to eliminate the effects of confounding factors, thereby
enabling more accurate estimation of the association between
exposure variables and outcomes. The forward LR (likelihood
ratio) method represents a variable selection strategy that
progressively incorporates statistically significant variables into
the model based on likelihood ratio tests, optimizing the model’s
goodness-of-fit.
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FIGURE 1
Flowchart of the study enrollment.

3 Results

3.1 Comparison of demographic and
clinical data between groups

3.1.1 Baseline demographic characteristics

The case group (n=536, males=121,females=415) and control
group (n=2144,males=484,females=1660) were well-matched in
terms of age (56.34 + 7.41 vs 56.26 + 7.46 years, P=0.819) and sex
distribution sex distribution (22.57% male in both groups) (Table 1).

3.1.2 Anthropometric and clinical measurements
The case group exhibited significantly higher values for weight
(67.42 £ 9.77 vs 62.39 + 9.31 kg, P<0.001), BMI (25.99 + 3.36 vs

Frontiers in Endocrinology

24.00 + 3.14 kg/m?, P<0.001), and HC (100.72 + 6.47 vs 97.84 + 6.38
cm, P<0.001) compared to controls. (Table 1).

3.1.3 Biochemical parameters

The case group demonstrated markedly altered metabolic profiles,
including: LDL-C (3.38(2.79,3.96) vs 3.17(2.67,3.71) mmol/L, P<0.001),
TC (5.54 £ 1.08 vs 5.40 + 0.97 mmol/L, P=0.003). HOMA-IR (2.27 £
1.19 vs 1.70 + 0.92, P<0.001).GGT (22.00(17.00,33.00) vs 18.00
(14.00,27.00) U/L, P<0.001), ALT (16.00(13.00,21.00) vs 15.00
(11.00,19.00)U/L, P<0.001), UA(303.50(263.00,355.00) vs 281.00
(245.00,325.00)umol/L, P<0.001), HbAlc (593 + 0.88 vs 5.75 +
0.68%, P<0.001), and FINS (8.05(5.90,10.70) vs 6.15(4.60,8.30)mU/L,
P<0.001). No significant differences were observed in thyroid function
tests or other endocrine parameters (P>0.05, Table 1).
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TABLE 1 Comparison of demographic and clinical data between groups.

10.3389/fendo.2025.1559176

Outcome measures Case group (n=536) Control group (n=2144) t/Z value

Age 56.34 + 7.41 56.26 + 7.46 0229 0.819
Male [n (%)] 121 (22.57%) 484 (22.57%)

Female [n (%)] 415 (77.43%) 1660 (77.43%)

Height (cm) 160.95 + 7.25 160.99 + 7.66 -0.113 0.910
Weight (kg) 67.42 +9.77 62.39 +9.31 11.074 <0.001
BMI (kg/m?) 25.99 + 336 24.00 + 3.14 12.935 <0.001
HC (cm) 100.72 + 6.47 97.84 + 638 9.383 <0.001
HR (bpm) 78.61 + 11.08 78.13 * 11.40 1.023 0.307
HOMA-IR 227 + 119 1.70 + 0.92 12.185 <0.001
TC (mmol/L) 554 +1.08 540 + 0.97 2.963 0.003
LDL-C (mmol/L) 3.38 (2.79,3.96) 3.17 (2.67,3.71) -5.133 <0.001
Scr (umol/L) 63.30 (57.73,70.40) 62.55 (57.70,68.88) -1.699 0.089
ALT (U/L) 16.00 (13.00,21.00) 15.00 (11.00,19.00) -5.299 <0.001
AST (U/L) 21.00 (18.00,25.00) 21.00 (18.00,24.00) -0.954 0.340
GGT (U/L) 22.00 (17.00,33.00) 18.00 (14.00,27.00) -7.913 <0.001
UA (umol/L) 303.50 (263.00,355.00) 281.00 (245.00,325.00) -7.128 <0.001
HbA, (%) 593 +0.88 575 + 0.68 4917 <0.001
FINS (mU/L) 8.05 (5.90,10.70) 6.15 (4.60,8.30) -11.217 <0.001
FT3 (pmol/L) 425 (3.99,4.46) 423 (3.99,4.50) -0.180 0.857
FT4 (pmol/L) 13.04 (12.09,13.93) 13.10 (12.26,14.03) -1.160 0246
TSH (mIU/L) 2.04 (1.40,2.86) 201 (1.41,2.96) -0.211 0.833
TPOAb (U/mL) 0.53 (0.27,1.23) 047 (0.27,1.14) -1.168 0243
TgAb (IU/mL) 1.62 (1.03,10.30) 1.52 (0.96,6.07) -1.193 0233

Normal data were represented by mean + SD, and non-normal data were represented by M (QI, Q3). BMI, body mass index; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance;

HC, hip circumference; HR, heart rate; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; Scr, serum creatinine; ALT, alanine aminotransferase; AST, aspartate aminotransferase;
GGT, gamma-glutamyl transferase; UA, uric acid; HbAlc, glycosylated hemoglobin; FINS, fasting insulin; FT3, free T3; FT4, free T4; TSH, thyroid stimulating hormone; TPOAD, thyroid

peroxidase antibody; TgAb, thyroglobulin antibody.

3.2 Comparison of lifestyle habits, medical
history, and family history between groups

Key lifestyle differences between cases and controls included:
Dietary habits: Higher consumption of fresh juice (17.99% vs
13.12%, P=0.004),beef and mutton (78.42% vs 74.07%, P=0.038),
and soda water (20.15% vs 16.32%, P=0.049). Physical activity:
Lower participation in aerobics (1.20% vs 2.92%, P=0.030). Sleep
patterns: Shorter average sleep duration (7.55 + 1.02 vs 7.69 + 1.17
hours, P=0.028). Medical history: Higher prevalence of coronary heart
disease (4.86% vs 2.87%, P=0.020) and habitual snoring (66.53% vs
54.96%, P<0.001). In contrast, no significant intergroup differences
emerged in marital status, educational attainment, history of chronic
gastroenteritis, smoking, alcohol intake, tea consumption, depression,
insomnia, or dietary patterns involving grains, potatoes, pork, poultry,
seafood, vegetables, fruits, eggs, milk, soy products, fried items, pickled
vegetables, coffee, or animal offal. Measures of physical exertion such
as daily vigorous exercise and tai chi, as well as familial predisposition
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to tumors or diabetes, screen time, and sedentary duration during
weekdays, also demonstrated no statistically significant variation
(P > 0.05) (Table 2).

3.3 Multivariate conditional logistic
regression analysis of risk factors for MS

Multivariate conditional logistic regression analysis using the
forward LR method was employed to investigate risk factors for MS,
incorporating variables that demonstrated statistical significance in
the univariate analysis. These variables included LDL-C, ALT,
GGT, UA, HOMA-IR, HC, BMI, aerobics, consumption of soda
water, fresh juice, beef and mutton, average daily sleep duration,
history of coronary heart disease, and presence of snoring. Prior to
modeling, collinearity diagnostics confirmed the absence of
multicollinearity, with VIF values ranging from 1.005 to 1.901,
confirming the absence of multicollinearity. The final model
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TABLE 2 Comparison of lifestyle habits and different medical histories between groups [n (%)].

Outcome measures Case group (n=536) Control group (n=2144) P value
Married Status 485 (90.49%) 1949 (90.90%) 0.209 0.648
High School Level or Above 290 (54.10%) 1067 (49.88%) 3.056 0.080
History of Coronary Heart Disease 26 (4.86%) 61 (2.87%) 5.375 0.020
History of Chronic Gastroenteritis 38 (7.12%) 165 (7.75%) 0.246 0.620
Snoring 336 (66.53%) 1102 (54.96%) 22.077 <0.001
Smoking 474 (89.10%) 1915 (89.74%) 0.187 0.665
Alcohol Consumption 388 (72.66%) 1624 (76.21%) 2.908 0.088
Drinking Tea 229 (42.96%) 868 (40.64%) 0.955 0.329
Feeling Depressed 84 (16.00%) 292 (14.04%) 1.306 0.253
Insomnia 138 (26.09%) 579 (27.53%) 0.377 0.539
Grains 533 (99.63%) 1782 (99.50%) 0.145 0.703
Potatoes 510 (95.68%) 2032 (96.17%) 0.262 0.609
Pork 503 (94.55%) 1971 (93.19%) 1.282 0.258
Beef And Mutton 418 (78.42%) 1557 (74.07%) 4.289 0.038
Poultry 407 (76.07%) 1593 (75.75%) 0.025 0.875
Seafood 511 (95.87%) 2017 (95.73%) 0.111 0.739
Vegetables 533 (99.63%) 2100 (99.43%) 0.306 0.580
Fruits 517 (96.82%) 2054 (97.35%) 0.445 0.505
Fresh Juice 95 (17.99%) 433 (13.12%) 8.258 0.004
Eggs 512 (96.06%) 2011 (95.26%) 0.619 0.431
Milk 383 (72.13%) 1543 (73.58%) 0.457 0.499
Soy Products 498 (93.43%) 1982 (93.93%) 0.184 0.668
Fried Food 258 (48.68%) 1018 (48.64%) 0.000 0.987
Soda Water 108 (20.15%) 350 (16.32%) 3.883 0.049
Pickled Vegetables 332 (62.29%) 1280 (60.72%) 0.440 0.507
Coffee 46 (8.66%) 221 (10.56%) 1.666 0.197
Animal Offal 145 (27.31%) 494 (23.57%) 3.216 0.073
Strenuous Exercise 36 (68.70%) 168 (7.95%) 0.682 0.409
Tai Chi 19 (3.54%) 82 (3.82%) 0.079 0.779
Aerobics 6 (1.20%) 59 (2.92%) 4.734 0.030
Family History of Tumor 104 (19.51%) 379 (17.77%) 0.874 0.350
Family History of Diabetes 126 (23.64%) 467 (21.89%) 0.751 0.386
Average Daily Sleep Duration (h) 7.55 = 1.02 7.69 = 1.17 -2.198 0.028
Average Daily Television Viewing 298 +1.79 292 +1.62 0.746 0.456
Time (h)

Time Spent Sitting on Workdays (d) 4.94 + 0.35 4.90 + 0.49 1.726 0.085

Dietary habits indicate the consumption of specific foods, while strenuous exercise refers to engagement in intense physical activities within the past seven days. Tai Chi and aerobics assess
participation in these exercises over the past 12 months. Snoring reflects whether it occurred during nighttime sleep over the previous year. Depression evaluates depressive feelings within the
past two weeks, and insomnia pertains to sleep disturbances during the same period. The time spent sitting on workdays was calculated as the average number of days spent sitting from Monday
through Friday.
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identified the following factors remained significantly associated
with metabolic syndrome (Table 3). Risk factors: LDL-C
(OR=1.409, 95%CI 1.245-1.595,P<0.001), GGT (OR=1.004, 95%
CI 1.001-1.008,P=0.017), UA (OR=1.005, 95%CI 1.003-1.007,
P<0.001), HOMA-IR (OR=1.464, 95%CI 1.313-1.633,P<0.001),
HC (OR=1.030, 95%CI 1.007-1.053,P=0.009), BMI (OR=1.118,
95%CI 1.064-1.174,P<0.001), fresh juice consumption (OR=1.846,
95%CI 1.315-2.592,P<0.001), and beef and mutton intake
(OR=1.282, 95%CI 1.007-1.632,P=0.044).Protective factor: Longer
sleep duration (OR=0.844, 95%CI 0.761-0.936,P=0.001). Among
them, LDL-C showed the strongest positive association (41%
increased odds per unit), fresh juice consumption conferred the
highest modifiable risk (85% increased odds), sleep duration
emerged as the most robust protective factor (16% risk reduction
per hour).

4 Discussion

The primary endpoint in this study was MS. Statistically significant
variables identified through univariate analysis—including LDL-C,
ALT, GGT, UA, HOMA-IR, HC, BMI, engagement in aerobics, soda
and fresh juice intake, consumption of beef and mutton, average daily
sleep duration, history of coronary heart disease, and snoring—were
entered into a multivariate conditional logistic regression model using
the forward LR method. The analysis revealed that longer average sleep
duration as a protective factor against MS risk. Conversely, elevated
levels of LDL-C, GGT, UA, HOMA-IR, HC, and BM]I, along with
consumption of fresh juice and red meat (beef and mutton), were
significantly associated with increased MS risk. Among the modifiable

TABLE 3 Multivariate conditional logistic regression analysis.

10.3389/fendo.2025.1559176

behavioral variables, average sleep duration demonstrated an inverse
association with MS, whereas fresh juice and red meat(beef and
mutton) consumption exhibited positive associations.

4.1 Sleep duration

Notably, our cohort exhibited shorter average sleep durations
(7.55h in cases vs. 7.69h in controls), reflecting Dalian’s fast-paced
urban lifestyle. Current investigations into the association between
sleep duration and MS yield inconsistent outcomes. One meta-analysis
identified a U-shaped relationship, indicating increased MS risk at both
extremes of sleep duration (15). In contrast, data from the China
Health and Retirement Longitudinal Study revealed that sleep
exceeding 8 h/d was linked to a 53% reduction in MS incidence
compared to the 7-8 h/d reference group (16). A more recent meta-
analysis including 11 studies with 343,669 participants found a higher
MS prevalence among individuals reporting normal sleep duration
than among those with either short or extended sleep durations.
Regionally, North America exhibited the highest MS prevalence
among both short and long sleepers, whereas in Asia, the highest
rates were noted among those with typical sleep durations (17). No
analogous research has been conducted in Dalian. Findings from the
current analysis suggest that average daily sleep duration may exert a
protective effect against MS. Potential mechanisms underlying this
association include the synthesis and release of melatonin, which
primarily occur at night and are inhibited by daytime light exposure.
Melatonin exerts lipid-lowering, anti-inflammatory, and antioxidant
effects, while also regulating blood pressure (18). Research (19) has
identified significant differences in nocturnal melatonin secretion

Variables B value SE value Waldy? value P value OR value 95%Cl
LDL-C 0343 0.063 29.525 <0.001 1.409 1.245-1.595
ALT -0.003 0.006 0324 0.569 0.997 0.986-1.008
GGT 0.004 0.002 5.695 0.017 1.004 1.001-1.008
UA 0.005 0.001 26.661 <0.001 1.005 1.003-1.007
HOMA-IR 0381 0.056 46.899 <0.001 1.464 1.313-1.633
HC 0.029 0.011 6.747 0.009 1.030 1.007-1.053
BMI 0.112 0.025 19.891 <0.001 1118 1.064-1.174
Aerobics -0.620 0475 1.703 0.192 0.538 0.212-1.365
Soda Water -0.073 0.155 0224 0.636 0.929 0.686-1.259
Fresh Juice 0.613 0.173 12541 <0.001 1.846 1.315-2.592
Beef and Mutton 0.248 0.123 4.057 0.044 1.282 1.007-1.632
Snoring -0.072 0.048 2295 0.130 0.930 0.847-1.021
Average Daily -0.170 0.053 10316 0.001 0.844 0.761-0.936
Sleep Duration

History of Coronary  0.476 0320 2208 0.137 1.609 0.859-3.015

Heart Disease

Aerobic exercise indicates engagement in aerobics within the past 12 months. Dietary habits denote the frequency of specific food consumption. Snoring refers to the occurrence of snoring during

nighttime sleep over the past 12 months.
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between individuals with and without MS, with disruptions in
circadian melatonin rhythms associated with MS onset. Additionally,
MS patients exhibit heightened sympathetic nervous system activity
(20). Reduced sleep duration, combined with elevated sympathetic
drive, contributes to the development of hypertension (21).
Sympathetic activation stimulates lipolysis through adipose tissue
innervation, increasing circulating free fatty acids, which in turn
diminishes insulin sensitivity and impair glucose tolerance (22, 23).
Further evidence (24) also indicates that sleep deprivation influences
hormones governing appetite and eating behavior, promoting
increased food intake and subsequent weight gain, thereby
predisposing to overweight and obesity. In parallel, reduced sleep
duration has been shown to upregulate proinflammatory mediators
(25, 26), which promote insulin resistance in both adipose and
peripheral tissues (27), further increasing susceptibility to MS.
Collectively, these mechanisms collectively explain our observed
association between average daily sleep duration and MS. Future
studies should assess sleep quality and napping habits, as Dalian
residents rarely nap because of its short lunch breaks, potentially
compounding sleep-related metabolic risks. Given the protective role
of sleep duration, community-based initiatives could raise awareness
about the importance of adequate sleep and provide practical tips for
improving sleep duration, such as reducing screen time before bed,
creating sleep-conducive environments, increasing the lunch

break time.

4.2 Fresh juice consumption

In the questionnaire of this research, the definition of fresh juice is
“juice extracted from fresh fruits”, without any additional additives or
processing procedures. Current evidence regarding the metabolic
impact of fresh juice consumption remains inconsistent. Our finding
that fresh juice intake increases MS risk contrasts with a cohort study
reporting protective effects of pure fruit juice (28). This discrepancy
may arise from differences in juice composition and consumption
patterns. Conversely, other studies (29) align with the present findings,
indicating a positive correlation between fresh juice consumption and
MS development. In our study, “fresh juice” likely contains high in
fructose but low in fiber. Unlike whole fruits, juicing removes dietary
fiber, accelerating fructose absorption (30). Fructose undergoes
hepatic metabolism distinct from that of glucose. In the absence of
a rate-limiting enzyme and feedback inhibition, fructose catabolism
yields high levels of uric acid, diglycerides, lactic acid, and other
intermediates, which may trigger endoplasmic reticulum stress and
inflammatory responses. These byproducts interfere with key
metabolic pathways, promoting insulin resistance, lipogenesis,
vascular endothelial impairment, central adiposity, elevated
triglyceride concentrations, decreased HDL-C, hypertension, and
impaired glucose tolerance—core features of MS. Furthermore,
fructose modulates gut microbiota composition and activity (31),
and the gut microbiota and metabolites have been proven to
increase the risk of diabetes, metabolism-related fatty liver disease,
carotid atherosclerotic plaque and MS (32, 33). Notably, Dalian’s
warm climate and abundant fruit markets may encourage frequent

Frontiers in Endocrinology

10.3389/fendo.2025.1559176

juice consumption, exacerbating these effects. Thus, public health
campaigns in Dalian should emphasize whole fruit consumption over
juicing, particularly among high-risk groups.

4.3 Red meat (beef and mutton)
consumption

The results of this study align with previous research (34), indicating
that the consumption of beef and mutton (red meat) may heighten the
risk of MS. Although red meat essential nutrients such as amino acids,
vitamins, and minerals (e.g., iron and zinc), growing evidence links its
intake to an increased risk of various chronic diseases. Several biological
pathways may account for the observed relationship between red meat
consumption and MS development. One proposed mechanism involves
the high heme iron content in beef and mutton, which functions as a
potent pro-oxidant. Excessive intake of heme iron promotes oxidative
stress, thereby triggering cellular damage and chronic systemic
inflammation (35). Moreover, the processing and cooking techniques
commonly applied to red meat appear to enhance its harmful metabolic
effects (36). In Dalian, longstanding dietary practices such as hot pot and
street barbecue are culturally ingrained, with beef and mutton as central
ingredients. During these high-temperature cooking processes,
significant levels of nitrates and nitrites are generated, which have
been implicated in the induction of insulin resistance (37), potentially
increasing susceptibility to MS. Additionally, the elevated content of
total fat and saturated fatty acids in beef and mutton contributes to
obesity, hyperinsulinemia, and hyperglycemia, exacerbate insulin
resistance and further contributing to the onset of MS (38). Studies
have also shown elevated levels of inflammatory mediators in
individuals who regularly consume beef and mutton, and processed
meats, potentially explaining the heightened risk of MS in this
population (39). A longstanding belief in Dalian attributes tonic and
restorative properties to the consumption of beef and mutton, and their
broths, particularly mutton soup, which remains popular among locals.
Although beef and mutton consumption is deeply embedded in Dalian’s
culinary culture, its association with MS calls for strategies to mitigate
metabolic harm. For example, co-administration of compounds like
Xiasangju, a traditional Chinese herbal formula, may attenuate red
meat-induced oxidative stress and inflammation. Studies suggest that
Xiasangju's noradrenaline-enhancing properties can activate brown
adipose tissue, thereby increasing energy dissipation and improving
lipid profiles (40). This synergistic approach that combines dietary
factors that promote the occurrence of MS with those protect it could be
explored in future public health campaigns.

4.4 Biomarkers: LDL-C, GGT, UA,
HOMA-IR, HC, and BMI

Consistent with most previous studies, elevated LDL-C, GGT, UA,
HOMA-IR, HC, and BMI are identified as significant indicators for
increased risk of MS (41-43). LDL-C contributes to atherosclerosis by
depositing oxidized lipids in arterial walls, while GGT, a marker of
hepatic steatosis, reflects systemic oxidative stress (44). A recent study
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highlighted the differences in the effects of lipids and lipoproteins on BP
and pulse pressure. For pulse pressure, the dangerous effect of LDL-C
bears the brunt among the major lipids (45). UA in both crystalline and
soluble forms, plays a key role in the induction of inflammatory cascade
and development of atherosclerotic diseases (46). HOMA-IR and HC
underscore the centrality of insulin resistance and central obesity in MS
pathogenesis. The increase of BMI drives higher ratio of 12,13-
Epoxyoctadecenoic acid: Dihydroxyoctadecenoic acid in white
adipose tissue and liver, which indicates the deterioration of the MS
(47). Notably, Dalian’s rapid urbanization has likely amplified
sedentary behaviors and energy-dense diets, exacerbating these
biomarkers. Clinicians should prioritize these metrics in routine
screenings to enable early MS detection.

This study’s nested case-control design enhances efficiency and
reduces recall bias compared to traditional case-control studies.
However, several methodological limitations warrant careful
consideration regarding their potential impact on the results. First,
possibility of residual confounding or the influence of unmeasured
variables (e.g., sample contamination, diet before blood collection,
impact of a woman’s menstrual period, socioeconomic status, dietary
additives, or environmental pollutants, etc.) cannot be ruled out.
Second, the reliance on self-reported dietary data may introduce
recall bias, particularly given the 3-year interval between baseline and
follow-up. Third, due to participants’ limited recall accuracy and over
50% missing data for portion size, analysis involving frequency and
quantity is excluded. A binary variable (yes/no) is adopted for statistical
modeling, potentially masking thresholds at which fresh juice or red
meat intake becomes clinically significant. Moreover, the questionnaire
does not differentiate cooking methods for beef and mutton or specify
the types and preparation techniques of fresh juice. Finally, while the
study adjusted for key confounders (e.g., age, sex), the absence of
longitudinal assessments limits causal inference. For example, the
association between short sleep duration and MS might be
bidirectional, as MS-related metabolic disturbances could also disrupt
sleep. Despite these limitations, the consistency of our findings with
prior mechanistic research supports their biological plausibility.

The present study reveals a significant correlation between the
occurrence of MS in adult residents of Dalian and several factors,
including elevated levels of LDL-C, GGT, UA, HOMA-IR, HC, and
BMI, as well as reduced daily sleep duration, consumption of beef and
mutton, and intake of fresh juice. These results align with some
existing literature but also underscore the need for targeted
interventions and further research to address these factors in the
Dalian population. Future research should employ longitudinal
designs to establish causal relationships between identified risk
factors and MS. For example, tracking changes in dietary habits,
sleep patterns, and biomarker levels over time could elucidate their
long-term impact on MS development, providing stronger evidence
for causality and inform public health strategies. In addition, targeted
public health campaigns should be carried out, such as providing
targeted dietary advice, strengthening publicity on the importance of
sleep, and launching projects for regular monitoring of relevant
biological indicators in community hospitals. By addressing dietary
habits, sleep duration, and biomarker monitoring, Dalian might
reduce the burden of MS and improve overall metabolic health.
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Background: Previous studies have linked kidney damage to insulin resistance
(IR), yet the association between triglyceride glucose—body mass (TyG-BMI)
index, a reliable marker of IR, and acute kidney injury (AKI) remains unclear.

Methods: Patient data were collected from the Medical Information Mart for
Intensive Care IV (MIMIC-IV) database. AKI was set as the primary endpoint, and
renal replacement therapy (RRT) was set as the secondary endpoint to represent
the progression of AKI. TyG-BMI index and study endpoints were analyzed using
Cox regression and restricted cubic spline (RCS) analyses.

Results: A total of 1,117 patients with sepsis were enrolled, of whom 559 (50.0%)
developed AKI. The result of Cox regression revealed that the TyG—-BMI index
was closely related to AKI (P = 0.032), and RCS analysis depicted a nonlinear
correlation (P for nonlinear = 0.013). For RRT, similar results were observed.
Compared with the simple severity of illness scores (SOFA, APSIII, SAPSII, and
SIRS), when combined with the TyG—-BMI index, their predictive ability for sepsis-
related AKI significantly increased (AUCs: 0.745, 0.732, 0.708, and 0.566 vs.
0.756, 0.747, 0.728, and 0.661; all P < 0.05).

Conclusions: For critically ill patients with sepsis, an elevated TyG—-BMI index

implies a possible increased risk of AKIl. The TyG—-BMI index has the potential to
be a valuable predictor.

acute kidney injury, sepsis, triglyceride glucose-body mass index, predictor,
insulin resistance
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Background

Sepsis, a life-threatening disease, is characterized by multi-
organ damage induced by the dysfunction of the host’s immune
response to infection (1). Annually, nearly 50 million cases are
diagnosed globally, with sepsis-related deaths accounting for more
than 50% of in-hospital deaths (2, 3). Despite advancements in
medical technology, the mortality rates for sepsis have not
significantly improved (4). Sepsis may impair renal function, with
approximately 60% of patients experiencing acute kidney injury
(AKI) (5, 6). Once it occurs, it increases sepsis mortality by three to
five times, leading to worse clinical outcomes (7). Therefore, the
early detection of patients with a tendency to develop AKI and
timely intervention are crucial to improve the prognosis.

Sepsis is often accompanied by insulin resistance (IR), which
may be caused by systemic inflammation (8). Additionally, IR can
inhibit the autophagic activity of podocytes, leading to kidney
injury, and is positively correlated with kidney injury molecule-1
(9, 10). The triglyceride-glucose (TyG) index, an innovative
marker, has been considered a convenient replacement indicator
for IR (11). More importantly, the degree of IR in the body is more
accurately reflected when used in conjunction with body mass index
(BMI) (12). The findings above seem to suggest that TyG-BMI
index may predict the occurrence of AKI, which would help to
identify high-risk patients and thus enable early intervention. For
certain diseases, such as hypertension, myocardial infarction, and
chronic kidney disease, a strong association exists between their
incidence and TyG-BMI index (13-15). However, it remains
unclear whether this correlation exists in individuals with sepsis-
associated AKI.

Consequently, the current study hypothesizes an association
between TyG-BMI index and sepsis-associated AKI and intends to
explore the issue utilizing this large cohort, with a view to guiding
clinical practice.

10.3389/fendo.2025.1561228

Methods
Study population

Clinical data were retrospectively extracted from the MIMIC-IV
database. One author (WSJ) successfully passed all of the required
examinations for accessing the database and obtained approval to use
the dataset (certification number: 56051808). The review committee
of Massachusetts Institute of Technology and Beth Israel Deaconess
Medical Center approved the database for medical health-related
research without requiring informed consent.

All patients with sepsis met the Sepsis 3.0 criteria, defined as the
presence of infection and sequential organ failure assessment
(SOFA) score =2 (16). The Kidney Disease: Improving Global
Outcomes (KDIGO) guideline was used to confirm the presence
of AKI (17). The exclusion criteria were as follows: (1) age <18
years, (2) only the first data were extracted if multiple ICU
admissions for sepsis existed, (3) missing fasting blood glucose
(FBG), triglyceride, and BMI data within 24 h of ICU admission, (4)
diagnosed with AKI prior to ICU admission, (5) and missing AKI
data within 48 h. Finally, 1,117 patients with sepsis were enrolled,
and the cohort was divided according to the TyG-BMI
quartile (Figure 1).

Data collection

Data on the basic characteristics of the patients were extracted
using PostgresSQL and Navicat Premium software and merged with
Stata software. Detailed clinical data included demographics (age,
sex, race, height, weight, and BMI), laboratory test results
(international normalized ratio [INR], blood urea nitrogen
[BUN], low-density lipoprotein [LDL], sodium, chloride,
aspartate aminotransferase [AST], albumin, red blood cell [RBC],

(N =32,971)

Patients fulfilling Sepsis 3.0 criteria in
the MIMIC database

Patients not first
admission
(N =10,457)

A

Patients who were diagnosed with AKI before ICU
admission, or who lacked AKI or triglyceride,

A

glucose and BMI data
(N=21,397)

Analysis Cohort

(N=1,117)
Quartile 1 Quartile 2 Quartile 3 Quartile 4
N=279) N=279) (N=279) (N =280)

FIGURE 1
Flow of the included patients.
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high-density lipoprotein [HDL], neutrophils, hemoglobin, platelets,
hematocrit, total bilirubin, prothrombin time [PT], C-reactive
protein [CRP], serum creatinine [SCr], alanine aminotransferase
[ALT], white blood cells [WBC], alkaline phosphatase [ALP],
calcium, lymphocytes, anion gap, activated partial thromboplastin
time [APTT], blood glucose, triglycerides, potassium, and total
cholesterol [TC]), medication (statin, insulin, and metformin),
vital signs, and severity of illness scores. Since the MIMIC
database does not explicitly specify which values represent FBG,
all values are simply labeled as “blood glucose”. Therefore, we
inferred based on patients’ medication use to exclude interference
from insulin, glucose injection, and enteral nutrition on blood
glucose values as much as possible. Data on the blood collection
time for glucose tests on the first day of ICU admission as well as the
start times of insulin, glucose injections, and enteral nutrition were
extracted. If the blood collection occurred after the start of any of
these interventions, the corresponding glucose value was considered
interfered and excluded. Specific procedures and codes are provided
in the supplementary methods. The International Classification of
Diseases (9th and 10th) was used to identify comorbidities,
including chronic kidney disease (CKD), cancer, diabetes,
hypertension, arterial fibrillation (AF), and heart failure (HF).
Within 24 h of ICU admission, all test indicators and scores were
collected, and the SCr level and urine output were continuously
monitored throughout the hospital stay. Information on medication
use in the 24 h prior to ICU admission was collected. The timings of
initial AKT and renal replacement therapy (RRT) were determined.
Follow-up continued from the date of admission to all
study endpoints.

TyG-BMI index formula: In [triglyceride (mg/dL) x FBG (mg/
dL)/2] x BMI (18). For the variables included in this study, multiple
interpolation (multiple imputation by chained equations) was used
to fill in those with missing values <20%, while those with missing
values >20% were deleted (12). Lymphocytes, neutrophils, albumin,
HDL, LDL, CRP, and TC contained more than 20% missing value.

Endpoints of interest

AKI was set as the primary endpoint. KDIGO guidelines were
utilized: SCr was 1.5-fold higher than baseline within 7 days or
elevation of SCr by 0.3 mg/dL in 48 h or urine output less than 0.5
mL/kg per hour for at least 6 h. The reference baseline of SCr was
determined as the lowest recorded value within 7 days prior to ICU
admission (276 patients), and if this information was not available,
the SCr first measured at admission to ICU was used (841 patients).
RRT, representing disease progression to AKI, was used as a
secondary endpoint. Meanwhile, ICU, in-hospital, 28-day, and 1-
year mortality were also specified as secondary endpoints.

Statistical analysis

The proportional hazards assumption was verified using
Schoenfeld residual plots, and no violation was detected
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(Supplementary Figure S1). The occurrence of primary and
secondary endpoints was depicted by the Kaplan-Meier curve. By
utilizing Cox regression analysis, the study excluded confounders to
identify independent association (survival package, version 3.5-5
and survminer package, version 0.4.9). The Fine-Gray model was
constructed to analyze the competitive risk in order to evaluate the
stability of the results (cmprsk package). To evaluate the possible
influence of unmeasured confounding on the observed hazard
ratios, E-values were analyzed. To avoid multicollinearity,
variables were excluded when the variance inflation factor was
greater than 5 (car package). To depict the dose-response effects,
restricted cubic spline (RCS) analysis was conducted (ggrcs package,
version 0.4.0). Furthermore, subgroup analyses of hypertension,
HF, CHD, CKD, AF, diabetes, age, sex, and BMI were conducted
(jstable package, version 1.1.7). The interactions were assessed with
likelihood ratio tests.

The area under the curve (AUC) was used to reflect the
predictive power of existing severity of illness scores for AKI
when incorporating the TyG-BMI index (timeROC package).
Integrated discrimination improvement (IDI) was computed by
subtracting the difference in the probability of positivity predicted
by the difference between the different models for the disease group
from the difference in the probability of positivity predicted by the
old and new models for the non-disease group (19). Reclassified by
event occurrence, the net reclassification improvement (NRI)
performed a net magnitude synthesis and quantified the degree of
improvement. These two indexes allow the risk reclassification of
the model (survIDINRI package, version 1.1-2). The analysis and
visualization were conducted using R (version 4.1.3) and SPSS
(version 27.0). Statistical significance in the current study was
defined as P <0.05.

Results
Patient characteristics

A total of 1,117 patients with sepsis were enrolled, of whom 559
(50.0%) developed AKI and 201 (18.0%) received RRT. Meanwhile,
204 (18.5%) ICU deaths and 250 (22.4%) in-hospital
deaths occurred.

According to the TyG-BMI index, the overall patients were
grouped by quartiles [quartile (Q) 1: <244.37; Q2: 244.37-291.05;
Q3: 291.06-355.40; Q4: >355.40]. Patients in the Q4 group had
higher BMI, heart rate, and severity of illness scores but were
younger. The prevalence of diabetes was higher, and that of CHD
was lower in this group. With regard to laboratory indicators, the
Q4 group showed higher WBC, anion gap, total bilirubin, ALT,
AST, BUN, SCr, FBG, triglycerides, and potassium ions but lower
platelets, chloride, and calcium levels. With increasing TyG-BMI
index, the incidence of AKI and RRT in the four groups gradually
increased (AKI: 36.2% vs. 43.7% vs. 53.4% vs. 66.8%, P < 0.001;
RRT: 5.7% vs. 11.8% vs. 24.7% vs. 29.7%, P < 0.001). However, no
statistical differences were observed in the in-hospital, ICU, 28-day,
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TABLE 1 Baseline characteristics according to TyG—-BMI index quartiles.
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Variables Overall (N 1,117) Q1 (N 279) Q2(N 279) Q3 (N 279) Q4 (N 280) P-value

Demographics
Age (years) 63.52 (51.72, 74.82) 66.16 (51.35, 79.72) 66.53 60.96 61.42 <0.001

(53.44, 80.29) (51.75, 70.31) (48.61, 69.38)
Sex (male) 680 (60.9%) 155 (55.6%) 170 (60.9%) 194 (69.5%) 161 (57.5%) 0.004
Race (white) 849 (76.0%) 210 (75.3%) 217 (77.8%) 213 (76.3%) 209 (74.6%) 0.315
Height (cm) 170 (163, 178) 170 (160, 175) 170 (163, 178) 173 (165, 178) 170 (163, 178) <0.001
Weight (kg) 85.1 (70.0, 101.8) 63.6 (55.2, 72.0) 77.3 (70.0, 87.5) 95.0 (84.4, 102.8) 112.9 (98.5,129.9) | <0.001
BMI (kg/m?) 28.96 (25.05, 34.04) 22.42 (20.52, 24.30) 27.16 31.23 38.66 <0.001
(25.72, 28.62) (29.38, 33.33) (35.31, 44.11)

Infection site
Lung 353 (31.6%) 82 (29.4%) 88 (31.5%) 86 (30.8%) 97 (34.6%) 0.688
Abdomen 175 (15.7%) 39 (14.0%) 46 (16.5%) 47 (16.9%) 43 (15.4%)
Urinary system 261 (23.4%) 62 (22.2%) 71 (25.5%) 66 (23.7%) 62 (22.1%)
Other 328 (29.4%) 96 (34.4%) 74 (26.5%) 80 (28.7%) 78 (27.9%)

Infection type
Gram-positive 388 (34.7%) 97 (34.8%) 87 (31.2%) 98 (35.1%) 106 (37.9%) 0.572
Gram-negative 343 (30.7%) 87 (31.2%) 85 (30.5%) 82 (29.4%) 89 (31.8%)
Other 386 (34.6%) 95 (34.1%) 107 (38.4%) 99 (35.5%) 85 (30.4%)

Laboratory tests
Hemoglobin (g/dL) 106 (8.6, 12.3) 10.6 (8.5, 12.2) 10.6 (8.8, 12.3) 104 (8.5, 12.5) 10.6 (8.7, 12.4) 0.855
Platelets (K/uL) 204 (146, 280) 217 (154, 296) 202 (141, 271) 199 (141, 274) 198 (147, 267) 0.048
Hematocrit (%) 31.9 (26.3, 37.1) 31.9 (26.0, 36.6) 32.0 (26.5, 36.9) 31.7 (25.7, 37.8) 31.9 (26.5, 37.4) 0.553
WBC (K/uL) 14.4 (10.3, 19.0) 13.7 (10.0, 17.8) 13.5 (9.8, 17.6) 15.1 (10.3, 19.8) 15.7 (11.3, 21.2) <0.001
RBC (K/uL) 3.81 (3.24, 4.39) 3.70 (3.14, 4.35) 3.81 (3.27, 4.32) 3.84 (3.17, 4.39) 3.96 (3.31, 4.51) 0.060
Anion gap (mEq/L) 17 (15, 20) 16 (14, 19) 17 (15, 20) 17 (15, 22) 18 (15,21) <0.001
Total bilirubin (mg/dL) | 0.8 (0.5, 1.6) 0.8 (0.5, 1.1) 0.8 (0.6, 1.5) 0.8 (0.5, 1.8) 0.9 (0.5, 2.1) <0.001
INR 1.3 (1.2, 1.6) 1.3 (1.1, 1.6) 1.3 (1.1, 1.6) 1.3 (1.2, 1.8) 1.3 (1.2, 1.6) 0.072
Prothrombin time 14.4 (12.8, 17.8) 143 (12.6, 17.5) 144 (12.7, 17.4) 14.7 (13.0, 19.8) 14.4 (12.8, 17.4) 0.101
APTT 33.1 (28.2, 50.6) 32.5 (28.6, 50.8) 31.5 (27.7, 46.5) 34.7 (28.5, 57.6) 33.7 (28.1, 48.1) 0.039
ALT (U/L) 41 (21, 88) 36 (16, 78) 39 (21, 85) 48 (23, 131) 42 (25, 94) 0.003
ALP (U/L) 82 (66, 109) 80 (64, 108) 80 (63, 103) 84 (66, 111) 86 (67, 114) 0.096
AST (U/L) 65 (32, 117) 54 (28, 127) 64 (28, 179) 70 (36, 272) 71 (37, 186) 0.005
BUN (mg/dL) 24 (16, 40) 20 (15, 34) 21 (15, 34) 25 (18, 45) 29 (19, 48) <0.001
Serum creatinine 1.2 (0.9, 2.1) 1.1 (0.7, 1.5) 1.2 (0.8, 1.7) 1.3 (1.0, 2.4) 1.6 (1.0, 2.7) <0.001
(mg/dL)
Glucose (mg/dL) 159 (129, 226) 140 (116, 183) 150 (126, 205) 178 (135, 258) 191 (143, 254) <0.001
Triglycerides (mg/dl) 123 (85, 207) 89 (65, 123) 113 (82, 164) 137 (97, 228) 205 (119, 382) <0.001
Sodium (mEq/L) 141 (138, 144) 141 (138, 144) 141 (138, 144) 141 (138, 144) 140 (137, 144) 0.143
Chloride (mEq/L) 106 (102, 110) 107 (103, 111) 106 (103, 110) 106 (102, 110) 105 (101, 109) 0.021
Potassium (mEq/L) 4.5 (4.1, 5.0) 4.3 (4.0, 4.8) 4.4 (4.1,4.8) 45 (4.1,5.3) 4.7 (4.1, 5.5) <0.001

(Continued)
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TABLE 1 Continued

10.3389/fendo.2025.1561228

Variables Overall (N 1,117) Q1 (N 279) Q2 (N 279) Q3 (N 279) Q4 (N 280) P-value
Laboratory tests
Calcium (mg/dL) ‘ 8.0 (7.3, 8.5) 8.0 (7.5, 8.4) 8.1(7.4,87) ‘ 7.9 (7.2, 8.4) ‘ 7.8 (7.1, 8.4) 0.005
Vital signs
SBP (mmHg) 118 (107,133) 118 (107,134) 120 (108, 134) 117 (107,133) 116 (105, 130) 0.308
DBP (mmHg) 63 (56, 71) 63 (56, 71) 64 (57, 72) 64 (51, 71) 62 (55, 70) 0.224
MBP (mmHg) 79 (72, 87) 78 (67, 87) 88 (80, 99) 79 (72, 87) 77 (71, 86) 0.074
Heart rate (beats/min) 86 (75, 99) 82 (70, 95) 84 (74, 96) 85 (75, 98) 92 (78, 106) <0.001
Medication
Statin 138 (12.4%) 28 (10.0%) 31 (11.1%) 37 (13.3%) 42 (15.0%) 0.283
Insulin 176 (15.8%) 36 (12.9%) 46 (16.5%) 46 (16.5%) 48 (17.1%) 0.505
Metformin 38 (3.4%) 7 (2.5%) 6 (2.2%) 16 (5.73%) 9 (3.2%) 0.084
Severity of illness scores
SOFA score 6 (4, 10) 5(3,8) 5(3,9) 7 (4,11) 8 (5, 11) <0.001
SIRS score 3(2,4) 3(2,3) 3(2,3) 3(2,4) 3(3,4) <0.001
APSIII 50 (37, 69) 44 (35, 60) 45 (33, 59) 47 (34, 62) 51 (36, 75) <0.001
SAPSII 39 (30, 50) 37 (29, 47) 38 (29, 48) 40 (30, 53) 42 (30, 53) <0.001
Comorbidities
Hypertension 479 (42.9%) 102 (36.6%) 129 (46.2%) 121 (43.4%) 127 (45.4%) 0.087
Heart failure 207 (18.5%) 46 (16.5%) 50 (17.9%) 62 (22.2%) 49 (17.5%) 0.314
CHD 261 (23.4%) 72 (25.8%) 76 (27.2%) 72 (25.8%) 41 (14.6%) 0.001
Arterial fibrillation 150 (13.4%) 37 (13.3%) 44 (15.8%) 32 (11.5%) 37 (13.2) 0.521
CKD 151 (13.5%) 34 (12.2%) 34 (12.2%) 39 (14.0%) 44 (15.7%) 0.562
Diabetes 318 (28.5%) 49 (17.6%) 65 (23.3%) 76 (27.2%) 128 (45.7%) <0.001
Cancer 112 (10.0%) 30 (10.8%) 32 (11.5%) 26 (9.3%) 24 (8.6%) 0.655
Outcomes
AKI 559 (50.0%) 101 (36.2%) 122 (43.7%) 149 (53.4%) 187 (66.8%) <0.001
RRT 201 (18.0%) 16 (5.7%) 33 (11.8%) 69 (24.7%) 83 (29.7%) <0.001
ICU mortality 204 (18.5%) 43 (15.4%) 48 (17.2%) 59 (21.1%) 54 (19.4%) 0.323
In-hospital mortality 250 (22.4%) 56 (20.1%) 63 (22.6%) 70 (25.1%) 61 (21.8%) 0.552
28-day mortality 285 (25.5%) 75 (26.9%) 71 (25.5%) 73 (26.2%) 66 (23.7%) 0.827
1-year mortality 430 (38.5%) 115 (41.2%) 108 (38.7%) 102 (36.6%) 105 (37.5%) 0.697

TyG-BMI index: Q1 (<244.37), Q2 (244.37-291.05), Q3 (291.06-355.40), and Q4 (>355.40).
BMI, body mass index; WBC, white blood cell; RBC, red blood cell; INR, international normalized ratio; APTT, activated partial thromboplastin time; ALT, alanine aminotransferase; ALP,
alkaline phosphatase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; SOFA, sequential
organ failure assessment; SIRS, systemic inflammatory response syndrome; APSIII, acute physiology score IIT; SAPSII, simplified acute physiological score II; CHD, coronary heart disease; CKD,
chronic kidney disease; AKI, acute kidney injury; RRT, renal replacement therapy; ICU, intensive care unit.

and 1-year mortality among the groups (P = 0.552, P = 0.323, P =
0.827, and P = 0.697, respectively) (Table 1).

Further grouping was determined by the presence of AKI
(Table 2). The prevalence of HF, CKD, cancer, and diabetes was
higher in the AKI group but with a lower prevalence of

were also higher. For laboratory indicators, the AKI group had

significantly higher levels of WBC, anion gap, total bilirubin, INR,

hypertension. Meanwhile, the BMI and severity of illness scores
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PT, APTT, ALT, ALP, AST, BUN, SCr, FBG, triglycerides, and
potassium. More importantly, the AKI patients showed a higher
TyG-BMI index (P < 0.001).
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TABLE 2 Baseline characteristics of the AKI and non-AKI groups.

10.3389/fendo.2025.1561228

Variables Overall (N 1,117) Non-AKI (N 558) AKI (N 559) P-value

Demographics
Age (years) 63.52 (51.72, 74.82) 62.58 (50.47, 76.73) 64.17 (52.93,74.08) 0.422
Sex (male) 680 (60.9%) 308 (55.2%) 372 (66.5%) <0.001
Race(white) 849 (76.0%) 425 (76.2%) 424 (75.8%) 0.387
Height (cm) 170 (163, 178) 170 (163, 178) 173 (163, 178) <0.001
Weight (kg) 85.1 (70.0, 101.8) 80.2 (67.9, 96.3) 90.0 (72.6, 106.1) <0.001
BMI (kg/m2) 28.96 (25.05, 34.04) 27.95 (24.19, 32.67) 30.16 (25.78, 35.74) <0.001

Infection site 0.023
Lung 353 (31.6%) 169 (30.3%) 184 (32.9%)
Abdomen 175 (15.7%) 72 (12.9%) 103 (18.4%)
Urinary system 261 (23.4%) 141 (25.3%) 120 (21.5%)
Other 328 (29.4%) 176 (31.5%) 152 (27.2%)

Infection type 0.113
Gram-positive 388 (34.7%) 208 (37.3%) 180 (32.2%)
Gram-negative 343 (30.7%) 172 (30.8%) 171 (30.6%)
Other 386 (34.6%) 178 (31.9%) 208 (37.2%)

Laboratory tests
Hemoglobin (g/dL) 10.6 (8.6, 12.3) 11.1 (9.5, 12.8) 9.9 (8.0, 11.8) <0.001
Platelets (K/uL) 204 (146, 280) 221 (165, 299) 185 (129, 259) <0.001
Hematocrit (%) 31.9 (26.3, 37.1) 33.5 (28.8, 38.3) 29.8 (24.5, 35.5) <0.001
WBC (K/uL) 14.4 (10.3, 19.0) 13.8 (10.1, 17.6) 14.9 (10.7, 21.1) <0.001
RBC (K/pL) 3.81 (3.24, 4.39) 3.97 (3.38, 4.46) 3.71 (3.03, 4.3) <0.001
Anion gap (mEq/L) 17 (15, 20) 16 (14, 18) 19 (16, 24) <0.001
Total bilirubin (mg/dL) 0.8 (0.5, 1.6) 0.8 (0.5, 1.0) 1.0 (0.6, 2.7) <0.001
INR 1.3 (12, 1.6) 12 (1.1, 1.4) 1.4 (12, 1.9) <0.001
PT 14.4 (12.8, 17.8) 13.7 (12.5, 15.8) 154 (13.3, 21.1) <0.001
APTT 33.1 (28.2, 50.6) 31.3 (27.2, 39.8) 36.3 (30.2, 58.5) <0.001
ALT (U/L) 41 (21, 88) 36 (20, 68) 50 (23, 165) <0.001
ALP (U/L) 82 (66, 109) 80 (65, 97) 86 (66, 128) 0.001
AST (U/L) 65 (32, 117) 50 (27, 108) 98 (41, 375) <0.001
BUN (mg/dL) 24 (16, 40) 17 (13, 23) 36 (24, 58) <0.001
SCr (mg/dL) 1.2 (0.9, 2.1) 0.9 (0.7, 1.1) 2.0 (1.4, 3.1) <0.001
Glucose (mg/dL) 159 (129, 226) 147 (122, 197) 178 (137, 250) <0.001
Triglycerides (mg/dl) 123 (85, 207) 109 (75, 172) 141 (98, 252) <0.001
TyG-BMI index 290.88 (244.64, 355.93) 274.58 (233.96, 330.39) 309.96 (256.67, 384.85) <0.001
Sodium (mEq/L) 141 (138, 144) 141 (139, 144) 141 (137, 144) 0.111
Chloride (mEq/L) 106 (102, 110) 106 (103, 110) 106 (101, 111) 0.067
Potassium (mEq/L) 4.5(4.1, 5.0) 43 (4.0, 4.7) 4.7 (4.2,5.4) <0.001

(Continued)
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TABLE 2 Continued
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Variables Overall (N 1,117) Non-AKI (N 558) AKI (N 559) P-value
Laboratory tests
Calcium (mg/dL) 8.0 (7.3, 8.5) 8.1 (7.6, 8.6) 7.7 (6.9, 8.2) <0.001
Vital signs
SBP (mmHg) 118 (107, 133) 121 (109, 136) 114 (104, 127) <0.001
DBP (mmHg) 63 (56, 71) 65 (58, 73) 62 (55, 69) <0.001
MBP (mmHg) 79 (72, 87) 80 (68, 88) 76 (70, 84) <0.001
HR (beats/min) 86 (75, 99) 83 (72, 95) 89 (78, 103) <0.001
Severity of illness scores
SOFA score 6 (4, 10) 5(3,7) 9 (6, 12) <0.001
SIRS score 3(2,4) 3(2,3) 3(3,4) <0.001
APSIII 50 (37, 69) 41 (31, 51) 64 (48, 84) <0.001
SAPSII 39 (30, 50) 33 (26, 42) 47 (37, 57) <0.001
Medication
Statin 138 (12.4%) 60 (10.8%) 78 (13.9%) 0.104
Insulin 176 (15.8%) 85 (15.2%) 91 (16.3%) 0.631
Metformin 38 (3.3%) 17 (3.0%) 21 (3.8%) 0.513
Comorbidities
Hypertension 479 (42.9%) 263 (47.1%) 216 (38.6%) 0.004
Heart failure 207 (18.5%) 81 (14.5%) 126 (22.5%) 0.001
CHD 261 (23.4%) 128 (22.9%) 133 (23.8%) 0.736
Arterial fibrillation 150 (13.4%) 79 (14.2%) 71 (12.7%) 0.475
CKD 151 (13.5%) 37 (6.6%) 114 (20.4%) <0.001
Diabetes 318 (28.5%) 135 (24.1%) 183 (32.7%) 0.002
Cancer 112 (10.0%) 45 (8.1%) 67 (12.0%) 0.002

BMI, body mass index; WBC, white blood cell; RBC, red blood cell; INR, international normalized ratio; PT, prothrombin time; APTT, activated partial thromboplastin time; ALT, alanine
aminotransferase; ALP, alkaline phosphatase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; SCr, serum creatinine; SBP, systolic blood pressure; DBP, diastolic blood pressure;
MBP, mean blood pressure; HR, heart rate; SOFA, sequential organ failure assessment; SIRS, systemic inflammatory response syndrome; APSIII, acute physiology score III; SAPSII, simplified

acute physiological score II; CHD, coronary heart disease; CKD, chronic kidney disease.

Primary and secondary endpoints

In order to describe the occurrence of study endpoints, Kaplan-
Meier method was employed. For AKI, significant differences were
observed; the Q4 group had the highest incidence of AKI (P < 0.001)
(Figure 2a). As for RRT, similar results were observed (P < 0.001)
(Figure 2b). The cumulative incident curves of AKI and RRT were
plotted using the CIF method, and Gray’s test was conducted,
showing similar results to the data above (P < 0.001)
(Supplementary Figure S2). Nevertheless, no statistical differences
existed among the four groups for other secondary endpoints (all
P > 0.05) (Supplementary Figure S3).

The variance inflation factors were calculated to exclude the
collinearity of the factors included in the multivariate analysis
(Supplementary Table S1). The TyG-BMI index was incorporated
in Cox regression analysis to identify an independent association
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with AKI and RRT when, as a continuous variable in model 3, the
risk of AKI increased by 1.1% for each 10-unit increase in the TyG-
BMI index (P = 0.032) (Table 3). When incorporated as a nominal
variable in model 3, the Q4 group showed a much higher risk of
AKI compared to the Q1 group (P = 0.012) (Table 3); the E-value
for this model was 1.73 (Supplementary Figure S4a). Similar results
were shown for RRT, with a 2.6% increase in AKI risk for a 10-unit
increase in the TyG-BMI index (P < 0.001) (Table 3). In the
nominal variable model, significant differences were also observed
between groups, with an E-value of 2.05 (Supplementary Figure
$4b). Meanwhile, the results of the competitive risk analysis using
the Fine-Gray model were similar to those of the Cox regression
analysis (Supplementary Table S2). Furthermore, the RCS analysis
demonstrated that the risk of both AKI (P for nonlinear = 0.013)
and RRT (P for nonlinear = 0.003) were nonlinearly associated with
increasing TyG-BMI index (Figure 3).
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FIGURE 2
Cumulative event incidence curves for incidence of AKI (a) and requiring RRT (b).

TABLE 3 Cox proportional hazard ratios (HR) for AKI and requiring RRT.

Categories Model 1 Model 2 Model 3

HR P P HR P P HR P P
(95% Cl) value fortrend (95% CI) value fortrend (95% Cl) value @ for trend

AKl incidence

Continuous variable per 1.023 <0.001 1.024 <0.001 1.011 0.032
10 units (1.015-1.030) (1.017-1.032) (1.001-1.021)
Quartile <0.001 <0.001 0.010
Q1 (N =279) Ref Ref Ref
Q2 (N =279) 1.197 0.180 1.185 0.206 1.121 0.477
(0.920-1.557) (0.911-1.541) (0.818-1.536)
Q3 (N =279) 1.567 <0.001 1.543 <0.001 0.998 0.990
(1.216-2.020) (1.195-1.993) (0.729-1.367)
Q4 (N = 280) 2.056 <0.001 2.145 <0.001 1.485 0.012
(1.614-2.619) (1.680-2.738) (1.092-2.020)

Requirement of RRT

Continuous variable per 1.045 <0.001 1.044 <0.001 1.026 <0.001
10 units (1.035-1.056) (1.034-1.055) (1.011-1.041)
‘ Quartile <0.001 <0.001 0.040
Q1 (N =279) Ref Ref Ref
Q2 (N =279) 2.012 0.021 1.982 0.024 1.744 0.110
(1.110-3.646) (1.093-3.592) (0.882-3.449)
Q3 (N =279) 4.626 <0.001 4.269 <0.001 2.147 0.022
(2.681-7.982) (2.471-7.378) (1.115-4.132)
Q4 (N = 280) 5.323 <0.001 5.044 <0.001 2.502 0.005
(3.118-9.088) (2.951-8.621) (1.312-4.770)

Model 1, unadjusted; Model 2, adjusted for age and sex; Model 3, adjusted for age, sex, SOFA, SAPSII, SIRS, platelets, WBC, SCr, BUN, potassium, sodium chloride, ALT, total bilirubin,
hemoglobin, RBC, INR, MBP, neutrophils, HF, CHD, AF, diabetes, and cancer.
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Restricted cubic spline analysis of TyG-BMI index with AKI (a) and requiring RRT (b).

Subgroup analyses

To test whether these associations persist in specific populations,
subgroup analyses were conducted. The significant association
between AKI and the TyG-BMI index persisted in most subgroups,
except for patients with HF and CKD (Figure 4a). Notably, the
association was not as pronounced for patients with HF as it was for
patients without HF (HR [95% CI] non-HF: 1.03 [1.02-1.04] vs. HF:
1.01 [0.99-1.02], P for interaction = 0.043). However, the prevalence
of CKD did not influence the association between AKI and the TyG-
BMI index (P for interaction = 0.498). Interestingly, all subgroups of
the population experienced an increased risk of RRT with higher
TyG-BMI index values (all P < 0.05; Figure 4b).

AKI
a Variable HR (95% CI) Pvalue P forinteraction

Overall 1.02(1.02t0 1.03) — <0001

Age 085
<=65 1.02(1.02to 1.03) —_ <0.001
>65 1.03(1.01t0 1.04) —=— <0001

Sex 0.451
Male 1.03 (1.02to 1.04) —e— <0001
Female 1.02(1.01to 1.03) —~— 0.001

Hypertension 0.135
No 1.02(1.01to0 1.03) —— <0.001
Yes 1.03 (1.02to 1.04) —=—  <0.001

HF 0.043
No 1.03(1.02t0 1.04) —=— <0.001
Yes 1.01(0.99t0 1.02) —— 0.35

CHD 0.521
No 1.02(1.02to 1.03) i <0.001
Yes 1.03(1.01t0 1.05) ——=——<0.001

CKD 0.498
No 1.02(1.02to 1.03) — <0.001
Yes 1.02(1.00 to 1.04) 0.06

AF 0.903
No 1.02 (1.02t0 1.03) C— <0.001
Yes 1.03 (1.00 to 1.05) ——=——0.044

Diabetes 0.784
No 1.02(1.01t0 1.03) — <0.001
Yes 1.02(1.01t0 1.04) —=—— <0001

_—

FIGURE 4

Added predictive value of the TyG-BMI
index for AKI

To determine the predictive power of severity of illness scores
and the combination with TyG-BMI index for sepsis-associated
AKI, the AUCs were calculated. The findings indicated a slight
increase in ACUs for SOFA, APSIIIL, SAPSII, and SIRS when the
TyG-BMI index was included (Table 4). For assessing the risk
reclassification power, the NRIs and IDIs were computed next. The
results showed that, for severity of illness scores (SOFA, APSIII,
SAPSII, and SIRS), the combined use of the TyG-BMI index led to a
statistically significant increase in NRI and IDI (all P <
0.05) (Table 4).

RRT
b Variable HR (95% CI) P value P forinteraction
Overall 1.05(1.04 to 1.06) —=—  <0.001
Age 0.144
<=65 1.04 (1.03to 1.05) <= <0.001
>65 1.06 (1.04 to 1.08) —=—<0.001
Sex 0.038
Male 1.06 (1.05t0 1.07) —=— <0.001
Female 1.03 (1.01t0 1.05) s 0.001
Hypertension 0.035
No 1.04 (1.03to 1.05) == <0.001
Yes 1.07 (1.05t0 1.09) —=-><0.001
HF 0.167
No 1.05(1.04t0 1.07) —=— <0.001
Yes 1.04 (1.01to 1.06) —=— 0001
CHD 0.631
No 1.05 (1.04 to 1.06) —=— <0.001
Yes 1.04(1.01t0 1.07) —— 0011
CKD 0721
No 1.05(1.04 to 1.06) —=—  <0.001
Yes 1.05(1.02to 1.08) ——=——0.001
AF 0.299
No 1.05(1.04 to 1.06) —— <0.001
Yes 1.07 (1.03t0 1.11) —=><0.001
Diabetes 0.325
No 1.05(1.04t0 1.07) : —— <0.001
Yes 1.04 (1.02t0 1.06) i —=— <0001
—_—

Subgroup analyses for the association of TyG-BMI index with AKI (a) and requiring RRT (b). HR, hazard ratio; Cl, confidence interval; HF, heart
failure; CHD, coronary heart disease; CKD, chronic kidney disease; AF, arterial fibrillation.
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TABLE 4 Performance metrics of severity of illness scores with and without TyG-BMI index to predict sepsis-associated AKI.

AUC (95% ClI) P-value NRI (95% CI) P-value IDI (95% CI) P-value
SOFA 0.745 (0.713-0.788) <0.001
SOFA + TyG-BMI 0.756 (0.725-0.788) <0.001 0.010 (0.001-0.022) 0.040 0.011 (0.001-0.020) 0.040
APSIII 0.732 (0.699-0.765) <0.001
APSIIT + TyG-BMI 0.747 (0.715-0.779) <0.001 0.007 (0.000-0.016) 0.039 0.006 (0.000-0.017) <0.001
SAPSII 0.708 (0.674-0.742) <0.001
SAPSIT + TyG-BMI 0.728 (0.695-0.761) <0.001 0.028 (0.011-0.049) <0.001 0.030 (0.009-0.046) <0.001
SIRS 0566 (0.531-0.601) <0.001
SIRS + TyG-BMI 0.661 (0.625-0.696) <0.001 0.024 (0.006-0.042) <0.001 0.019 (0.006-0.036) 0.02

AUC, area under the receiver operating characteristic curve; NRI, net reclassification improvement; IDI, integrated discrimination improvement; SOFA, sequential organ failure assessment; SIRS,
systemic inflammatory response syndrome; APSIII, acute physiology score III; SAPSII, simplified acute physiological score II.

Discussion

The present study is the first to examine the link between the
TyG-BMI index and AKI in patients with sepsis. It determined that
TyG-BMI exhibited an independent association with AKI, even
following adjustment for potential confounding variables, providing
a simple and effective predictive tool.

Sepsis often leads to AKI, which not only results in extremely
high mortality but also increases the risk of chronic comorbidities
(20). Despite ongoing efforts and research, the complex
pathophysiology of sepsis-associated AKI has not yet been fully
revealed (21). Systemic inflammation and microcirculatory
disturbances in the organs were previously thought to be the key
mechanisms leading to AKI, but metabolic disturbances during
sepsis have attracted increasing attention in recent years (21).
During sepsis, elevated catecholamines, release of inflammatory
factors, and energy deficits may lead to abnormal lipid metabolism,
which, in turn, promotes elevated levels of free fatty acids (22).
Meanwhile, tumor necrosis factor can directly inhibit lipoprotein
lipase, leading to elevated triglycerides (23). In addition, the release
of inflammatory mediators increases liver gluconeogenesis and
leads to peripheral IR, resulting in hyperglycemia, even in those
without diabetes (24). Hyperglycemia can then trigger ketoacidosis
and cause hyponatremia due to high osmolarity, exacerbating
kidney damage (25-27). In addition, insulin-like growth factor-
binding protein, an important factor involved in IR, has also been
found to be directly involved in renal tubule injury (28-30). The
abnormalities in blood glucose-related indices have also been shown
to be associated with the prognosis of patients with aortic dissection
and stroke (31, 32). IR is now recognized as an important causative
factor in kidney injury (33).

The TyG-BMI index has been proposed in recent years and
proven to better reflect systemic IR in stable populations. Septic
patients often experience stress-induced hyperglycemia due to
systemic inflammation and catecholamine surge, which may
cause changes in the TyG-BMI index to be not only related to IR
but also affected by glucose metabolic status (34). This implies that
the TyG-BMI index may not accurately represent the state of IR in
the body during stress. The specific mechanisms may need to be
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explored through glucose clamp technique, yet such studies have
not been conducted in septic patients so far. Nevertheless,
numerous studies have demonstrated its application value in
septic patients. Fang et al. demonstrated an independent
association between the TyG index and an increased risk of
delirium in septic patients (35). In our study, after excluding
many confounding factors, the TyG-BMI index was found to be
closely related to AKI in the current study; those with a higher index
were more prone to AKI. When AKI is progressively aggravated,
RRT could address metabolic dysfunction and volume excess,
reducing the burden on the kidneys (36). Therefore, the need for
RRT is often regarded as an endpoint to represent the progression
of AKT severity (37). In the current study, when the TyG-BMI index
rose, the incidence of RRT also increased, with a non-linear
correlation. Although whether the association between the TyG-
BMI index and the study results is attributable to insulin resistance
remains unclear, its predictive ability for sepsis-associated AKI and
RT is still significant.

To further identify specific populations to which the TyG-BMI
index applies, subgroup analyses were performed. The current study
showed that the application value of the TyG-BMI index for AKI
was not significantly altered by following clinical conditions,
including age, sex, hypertension, CHD, AF, and diabetes.
However, no significant correlation was found in patients with
HF and CKD, which may be partly explained by the fact that HF
and CKD are important precipitants to AKI (38, 39). In the context
of these diseases, the role of IR and disordered glucose metabolism
caused by severe sepsis in the development of AKI may
be overshadowed.

The severity of illness scores is a useful tool to objectively
quantify disease severity, which helps to identify the disease status
and predict its endpoint (40). A previous study has shown that the
SOFA score alone did not display a favorable predictive value for
major renal adverse events associated with sepsis (41). It is of great
value to explore whether combining the severity score with the
TyG-BMI index could improve the predictive power. The current
results show that the severity of illness scores, when combined with
the TyG-BMI index, could significantly improve the ability to
predict sepsis-associated AKI. Although it has previously been
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demonstrated that combining SOFA score with some biomarkers
such as calprotectin and cystatin C could also improve the
prediction of AKI, these biochemical indices are not routinely
tested in most patients, making it easy to miss high-risk patients
(42). In contrast, the TyG-BMI index does not increase the financial
burden on patients and has the advantages of being simple and
easily accessible. The deficiency is that the increment of AUC after
combining the TyG-BMI index is relatively small, which seems to
lead to a limited clinical impact. However, due to the large number
of patients with sepsis and the prevalence of AKI, even a limited
increase may bring certain benefits to patients.

Study strengths and limitations

In the current study, a large cohort was used to confirm the
relationship between the TyG-BMI index and sepsis-associated
AKI for the first time, and the data were analyzed according to
different populations. However, several limitations remain. First,
given the retrospective nature of the study, selection bias was
unavoidable. Second, some important clinical data, such as
infection site, procalcitonin, and C-reactive protein, were not
included in the study due to insufficient database information.
Third, the current study focused only on assessing the baseline
values of the TyG-BMI index, ignoring dynamic changes
throughout the treatment period. Fourth, there is currently no
direct evidence to establish that the association between the TyG-
BMI index and AKI is entirely attributable to IR. Future studies
using glucose clamp techniques are warranted to further elucidate
this relationship. Finally, since the FBG is inferred rather than
explicitly recorded in the database, it may lead to deviations from
the true FBG. These deviations may affect the accuracy of the TyG-
BMI index and cause discrepancies between subsequent clinical
applications and study findings. Therefore, conducting prospective
cohort studies in the future is essential.

Conclusions

The current study demonstrated that the TyG-BMI index is
independently associated with AKI and RRT in critically ill patients
with sepsis in a nonlinear manner. This suggests that the TyG-BMI
index could be a valuable clinical risk classification tool.
Strengthening the detection of patients’ TyG-BMI index in
clinical practice may help to identify those at a high risk of AKI
and enable early intervention to improve the prognosis. Future
studies should validate these findings in clinical practice and explore
the underlying mechanisms.
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Background: Previous research has indicated that the triglyceride glucose index
(TyG-i) may serve as a potential risk factor for type 2 diabetes (T2D). However,
there is a paucity of studies addressing the relationship between TyG-i and T2D,
specifically in patients with metabolic dysfunction-associated steatotic liver
disease (MASLD). Consequently, this longitudinal study aims to investigate the
association between TyG-i and the onset of T2D in a cohort of Japanese adults
with MASLD.

Methods: This retrospective cohort study included a total of 2,507 subjects
diagnosed with MASLD. To evaluate the association between the TyG-i and the
risk of developing T2D, Cox proportional hazards regression models were
employed to estimate hazard ratios (HR) along with 95% confidence intervals
(CI). Additionally, nonlinear associations between them were investigated
utilizing restricted cubic spline models.

Results: During a mean follow-up period of 6.00 years, a total of 204 adults with
MASLD developed T2D. After adjusting for potential confounding factors,
elevated TyG-i was found to be independently associated with an increased
risk of developing T2D (HR: 1.48, 95% CI: 1.05-2.09, P = 0.0256). Additionally, a
U-shaped relationship between the TyG-i and the incidence of T2D was
identified. A significant negative association was observed between TyG-i and
T2D risk when TyG-i levels were below 7.94 (HR: 0.21, 95%Cl: 0.07-0.66, P =
0.0072). Conversely, TyG-i values exceeding the threshold were positively
correlated with T2D risk (HR: 1.76, 95% Cl: 1.23-2.52, P = 0.0020).

106 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fendo.2025.1516187/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1516187/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1516187/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1516187/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1516187/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1516187&domain=pdf&date_stamp=2025-08-22
mailto:hanyong511023@163.com
mailto:huhaofei0319@126.com
mailto:ylwang668@163.com
https://doi.org/10.3389/fendo.2025.1516187
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1516187
https://www.frontiersin.org/journals/endocrinology

Cao et al.

10.3389/fendo.2025.1516187

Conclusion: A U-shaped association was identified between baseline TyG-i and
the incidence of T2D in a Japanese population with MASLD. This inflection point
in TyG-i serves as a valuable clinical indicator to differentiate individuals at lower
versus higher risk of developing T2D. These findings indicate that maintaining
TyG-i near the inflection point may be beneficial in reducing the risk of
developing diabetes in patients with MASLD.

metabolic dysfunction-associated steatotic liver disease, type 2 diabetes, triglyceride,
triglyceride glucose index, insulin resistance

Introduction

Metabolic dysfunction-associated steatotic liver disease
(MASLD) represents the most prevalent chronic liver disorder
globally (1-3), impacting approximately 32% of the world’s
population (4). This condition is marked by excessive lipid
deposits in the liver, which can progress to inflammation and
liver injury. Without intervention, these changes can advance to
liver cirrhosis and potentially hepatocellular carcinoma (3, 5).

MASLD is linked not only to elevated liver-related health issues and
mortality rates but also to an increased likelihood of developing
cardiovascular diseases, type 2 diabetes (T2D), and overall mortality
(1, 6-8). Research indicates that MASLD may act as a precursor to or
exacerbate the onset of T2D (1, 9). Recent epidemiological investigations
reveal that individuals diagnosed with MASLD face a two-fold greater
risk of developing diabetes compared to those without the disease (10).
Consequently, it is crucial to comprehend the fundamental risk factors
that lead to glucose dysregulation in patients with MASLD, as this
knowledge could guide the formulation of effective preventive measures
against the onset of diabetes.

The triglyceride glucose index (TyG-i) has emerged as a
significant biomarker for evaluating insulin resistance and
predicting diabetes risk (11, 12). This index is derived from
fasting triglyceride and glucose levels, offering a straightforward
yet effective measure of metabolic health. Numerous studies have
established substantial correlations between TyG-i and various
health outcomes. Recent research has identified associations
between TyG-i and conditions such as MASLD, cardiovascular
disease, gestational diabetes, prediabetes, T2D, and all-cause
mortality (13-16). Despite the increasing evidence linking TyG-i
to T2D risk within general populations, its specific relationship with
T2D among individuals with MASLD remains inadequately
explored. Given the shared pathophysiological mechanisms of

Abbreviations: TyG-i, lipid accumulation product; T2D, type 2 diabetes; BMI,
body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure;
ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-
glutamyl transferase; HDL-C, high-density lipoprotein cholesterol; TC, total
cholesterol; TG, triglycerides; HbAlc, hemoglobin Alc; FPG, fasting plasma

glucose; HR, hazard ratio; SD, standard deviations; CI, confidence interval.
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insulin resistance and dyslipidemia that characterize both
MASLD and T2D, investigating TyG-i within the context of
MASLD presents a unique opportunity to clarify its role as an
early predictor of diabetes onset. Consequently, this retrospective
study aims to examine the longitudinal association between TyG-i
and the development of T2D among individuals with MASLD.

Methods
Data source and study participants

The data utilized in our research were obtained from the NAGALA
database (17), which is hosted on the Dryad Data Platform. According
to the service terms of the Dryad database, this dataset is available for
analysis to support the exploration of new research hypotheses. The
NAGALA database is a population-based longitudinal cohort study
conducted at Murakami Memorial Hospital in Gifu Prefecture, Japan,
spanning from 1994 to 2016 (17).

Participants in this study underwent a minimum of two physical
examinations. In the initial study conducted by Okamura T et al. (17),
medical data were extracted from a total of 20,944 participants. The
exclusion criteria were as follows: (1) excessive alcohol consumption at
baseline, defined as >30 g/day for females and >20 g/day for males (n =
1,952); (2) pre-existing liver disease (n = 416); (3) use of medications (n
= 2,321); (4) missing data (n = 863); (5) a diagnosis of diabetes at
baseline or fasting plasma glucose (FPG) levels exceeding 6.1 mmol/L
(n = 1,131); and (6) participants not diagnosed with fatty liver disease
(n = 11,744). Ultimately, our study included 2,507 participants with
MASLD. The selection process for all participants is illustrated in
Figure 1. Ethical approval for this research was obtained from the
Clinical Research Ethics Committee of Shenzhen Second People’s
Hospital Dapeng New District Nan’ao Hospital. Additionally, the
study was conducted in accordance with the principles set forth in
the Declaration of Helsinki, ensuring adherence to all pertinent
guidelines and regulatory requirements. To ensure data
confidentiality, all personal identifiers were removed and the datasets
were anonymized before analysis. Data were stored in secure servers
with access restricted to authorized study personnel only. Throughout
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Participants were drawn from the NAGALA cohort, registered from May 1, 2004, to December 31,
2015.
| Participants who underwent at least two health examinations
y
Total participants:
n = 20,944 (12,498 men and 8,446 women)
Exclusion: n = 4,315
(1) Missing data; n = 863
(2) Diabetes has been diagnosed at baseline; n=323
(3) Fasting plasma glucose over 6.1 mmol/L; n=808
(3) Medication usage: n = 2,321
Y
Participants with normal blood glucose: n = 16,629
Exclusion: n = 14,112
(1) Ethanol consumption > 30 g/day for men and 20 g/day for women: n
| =1,952
(2) Liver disease has been diagnosed (except fatty liver); n =416
(3) Participants not diagnosed with fatty liver; n=11,744
Y
Participants with MASLD patients: n = 2,517 ’
| Exclusion: n=10
(1) unexplained withdrawal from the survey; n=10
Y
2,507 participants with MASLD were included in our study. ’
FIGURE 1

Study population.

the study, data handling adhered to applicable data protection laws and
institutional policies, thereby safeguarding participant privacy
and confidentiality.

Covariates

We choose covariates using clinical expertise and previous
research results (14, 18-24). The covariates included (1)
continuous variables: age, systolic blood pressure (SBP), diastolic
blood pressure (DBP), body mass index (BMI), alcoholic intake,
high-density lipoprotein cholesterol (HDL-C), total cholesterol
(TC), alanine aminotransferase (ALT), gamma-glutamyl
transferase (GGT), aspartate aminotransferase (AST), glycosylated
hemoglobin (HbAlc), and FPG; (2) categorical variables: sex,
smoking status, and exercise habits. The initial investigation
employed a standardized self-administered questionnaire to
collect comprehensive information on participants’ medical
backgrounds and lifestyle habits. Past-smoker is defined as
individuals who have a history of smoking but has not engaged in
smoking behavior within the 12 months preceding their enrollment
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in the study. Trained professionals conducted precise
anthropometric measurements, including body mass and stature.
The original study team obtained Laboratory test results using
consistent procedures under controlled conditions.

TyG-i

The TyG-i was determined by applying the formula: Ln[FPG
(mg/dL))x(TG (mg/dL)/2) (14).

Diagnosis of incident T2D

T2D was defined as having a self-reported history, HbAlc >
6.5%, or FPG>7.0 mmol/L (25).

Statistical analysis

Statistical analyses were conducted utilizing Empower-Stats.
Participant baseline characteristics were assessed across quartiles
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of the TyG-i. Data with normal distribution are expressed as means
with standard deviations, whereas non-normally distributed data
are reported as medians accompanied by interquartile ranges.
Categorical variables underwent analysis via the chi-square test,
while continuous variables were evaluated using Student’s t-test for
normally distributed data and the Mann-Whitney U test for data
not following a normal distribution.

The association between the TyG-i and T2D risk was evaluated
through three Cox regression models. DBP was omitted from the final
multivariate Cox proportional hazards regression model following the
collinearity assessment (Supplementary Table S1). Model 1 represents
the unadjusted analysis. Model 2 incorporates adjustments for
demographic and lifestyle variables, including sex, age, exercise habits,
smoking status, alcoholic intake, and SBP. Model 3 further extends the
adjustments to include biochemical parameters: ALT, GGT, AST, TC,
HDL-C, and HbAlc. Throughout the study, we documented hazard
ratios (HR) and 95% confidence intervals (CI). To explore the nonlinear
association between the TyG-i and T2D risk, restricted cubic spline
curves were generated based on Model 3 in the Cox proportional hazard
analysis. This approach allows flexible modeling of the dose-response
relationship without assuming linearity. When nonlinearity was
detected, the inflection point was identified using a recursive
algorithm designed to find the value of TyG-i at which the risk
pattern changes. Subsequently, a two-piecewise Cox proportional
hazards regression model was constructed on either side of the
inflection point, enabling estimation of separate hazard ratios for
TyG-i below and above this threshold to better characterize
the relationship.

Hypertension and advanced age are well-documented risk factors
for diabetes, as established by numerous scholarly studies. To assess the
robustness of the relationship between TyG-i and T2D risk, sensitivity
analyses were performed, excluding subjects with hypertension
(SBP=140 mmHg or DBP> 90 mmHg) or elderly (age>60 years). In
addition, to address potential residual confounding inherent in
observational studies, the E-value was calculated as a sensitivity
analysis metric. The E-value quantifies the minimum strength of
association that any unmeasured confounder would need to possess
with both the TyG-i and the incidence of diabetes, beyond the measured
covariates, in order to completely explain away the observed association.
This provides a quantitative measure of the robustness of our findings
against unmeasured confounding.

A stratified analysis including age (<60 years old or >60 years),
gender, hypertension (DBP 290 mmHg or SBP =140 mmHg), BMI
(<25, =25 kg/mz), alcoholic intake (0, >0 g/wk), smoking status, and
exercise habits was conducted to evaluate the potential effects of
covariates. Statistical significance was defined as a two-tailed P value
of < 0.05.

Results
Characteristics of the study population

The present study encompassed 2,507 participants diagnosed
with MASLD, with an average age of 44.78 + 8.33 years, of which
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80.93% were male. Over an average follow-up duration of 6.00
years, 204 participants (8.14%) developed T2D. Participants were
categorized into quartiles based on their TyG-i values: Q1 (TyG-i <
8.21), Q2 (8.21 < TyG-i < 8.58), Q3 (8.58 < TyG-i < 8.94), and Q4
(TyG-i > 8.94) (Table 1). Individuals in the highest TyG-i quartile
demonstrated higher levels of SBP, DBP, BMI, GGT, AST, ALT,
TG, TC, age, alcoholic intake, HbAlc, and FPG, as well as a greater
proportion of male participants and smokers. Additionally, these
individuals exhibited lower levels of HDL-C.

The incidence rate of T2D

Table 2 further illustrates that during the follow-up period, 373
individuals developed T2D, corresponding to overall incidence rates
of 4.63% (95%CIL: 2.98%-6.27%), 6.56% (95%CIL: 4.61%-8.51%),
8.12% (95%CI: 5.98%-10.26%), and 13.24% (95%CI: 10.58%-
15.90%) across the first, second, third, and fourth TyG-i groups,
respectively. The cumulative incidence rates per 100,000 person-
years were 1,356.01 for the total study population and 792.88,
1,082.48, 1,326.71, and 2,210.45 for the first, second, third, and
fourth TyG-i groups, respectively. The data indicate that higher
TyG-ilevels are associated with increased incidence and cumulative
prevalence of T2D. Participants positioned within the higher TyG-i
quartiles exhibited significantly elevated incidence rates of T2D.
These findings are corroborated by the Kaplan-Meier curve
illustrating cumulative hazard, as presented in Figure 2.

The results of the association between
TyG-i and T2D risk

Since the TyG-i satisfied the proportional hazards assumption,
the relationship between TyG-i and the risk of T2D was assessed
using the Cox proportional hazards regression model. The
outcomes from the adjusted multivariable Cox proportional
hazards regression models are detailed in Table 3. An elevated
TyG-i value was linked with the occurrence of T2D. In Models 1, 2,
and 3, employing continuous TyG-i, significant associations
between TyG-i and T2D risk were observed (Model 1: HR: 2.03,
95%CI: 1.57-2.63, P<0.0001; Model 2: HR: 2.13, 95%CIL: 1.62-2.79,
P<0.0001; Model 3: HR: 1.48, 95%CIL: 1.05-2.09, P=0.0256).
Furthermore, in Model 3, the highest quartile of TyG-i exhibited
a56% increased risk of T2D (HR: 1.56, 95%CI: 0.92-2.64) compared
to the lowest quartile.

Sensitive analysis

To validate our results, we used extensive sensitivity analyses.
Excluding participants with elevated blood pressure, we maintained a
positive association between TyG-i and T2D (HR=1.45, 95% CI: 1.02-
2.06, P=0.0380) (Table 4, Model 4). Similarly, excluding participants
aged 260 years showed consistent results, with TyG-i remaining
positively associated with T2D risk after adjusting for multiple
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TABLE 1 The characteristics of participants and incidence rate of diabetes.

10.3389/fendo.2025.1516187

Q1 (<8.21) Q2 (8.21 to <8.58) Q3 (8.58 to <8.94) Q4 (>8.94) P-value

Participants 627 625 628 627
Sex <0.001

Female 188 (29.98%) 143 (22.88%) 88 (14.01%) 59 (9.41%)

Male 439 (70.02%) 482 (77.12%) 540 (85.99%) 568 (90.59%)
Age(years) 44.74 + 8.62 4491 + 845 45.03 + 8.18 44.45 + 8.07 0.641
Alcoholic intake (g/wk) 1(0-18) 1 (0-36) 1 (0-44) 4.2 (1-60) <0.001
Smoking status <0.001

Never-smoker 350 (55.82%) 316 (50.56%) 269 (42.83%) 250 (39.87%)

Past-smoker 152 (24.24%) 169 (27.04%) 161 (25.64%) 157 (25.04%)

Current-smoker 125 (19.94%) 140 (22.40%) 198 (31.53%) 220 (35.09%)
Exercise habits 0.469

No 528 (84.21%) 528 (84.48%) 529 (84.24%) 545 (86.92%)

Yes 99 (15.79%) 97 (15.52%) 99 (15.76%) 82 (13.08%)
SBP (mmHg) 120.61 + 14.05 122.92 + 15.19 123.66 + 14.36 126.43 + 15.14 <0.001
DBP (mmHg) 75.57 £ 9.87 77.39 +10.36 78.17 + 9.60 80.11 + 10.41 <0.001
BMI (kg/mz) 24.81 +2.98 2537 £ 3.44 25.80 +3.13 26.00 + 2.81 <0.001
ALT (IU/L) 24 (18-32.50) 25 (19-35) 28 (21-40) 31 (23-45) <0.001
AST (IU/L) 19 (16-24) 20 (16-25) 21 (17-26) 22 (18-28) <0.001
GGT (IU/L) 18 (14-25) 22 (16-30) 24 (17-35) 29 (21-41) <0.001
HDL-C (mg/dL) 52.64 + 12.08 47.28 + 10.28 43.77 £ 9.04 39.69 + 8.18 <0.001
TG (mg/dL) 60 (49-69) 93 (84-101) 131 (120-142) 203 (176-252) <0.001
TC (mg/dL) 196.03 + 32.42 205.70 + 29.39 215.83 +32.94 224.13 + 32.64 <0.001
HbAlc (%) 528 £0.32 529 £ 0.34 5.30 £ 0.34 533 +£0.33 0.033
FPG (mg/dL) 95.15 + 6.75 96.97 + 6.46 97.40 + 6.32 99.17 + 6.06 <0.001

Values are presented as n (%) or mean + SD or median (quartile).

TyG-i, triglyceride glucose index; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT,

gamma-glutamyl transferase; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; HbAlc, hemoglobin Alc; FPG, fasting plasma glucose.

covariates (HR=1.50, 95% CI: 1.03-2.17, P=0.0347) (Table 4, Model 5).
Moreover, the calculated E-value of 2.32 surpasses the relative risk
estimate of 1.78 attributed to both the TyG-i and plausible unmeasured
confounding factors. This suggests that the impact of unidentified or
unmeasured confounders on the detected association between TyG-i
and T2D is probably limited.

The analyses of the non-linear association

Table 5, Figure 3 demonstrate a U-shaped relationship between
the TyG-i and T2D. The two-piecewise Cox regression model
identified a turning point at a TyG-i value of 7.94 (P-value for the
log-likelihood ratio test = 0.004). Below this turning point, TyG-i
exhibited an inverse relationship with T2D risk (HR: 0.21, 95%CI:
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0.07-0.66, P=0.0072). Conversely, when the TyG-i exceeded this
turning point, a significant positive relationship with T2D risk was
observed (HR: 1.76, 95% CI: 1.23-2.52, P=0.0020).

The results of the subgroup analysis

Figure 4 outlines the findings from subgroup analyses designed
to identify potential modifiers in the association between the TyG-i
and T2D. The analyses revealed no significant interactions with
T2D across various subgroups, including age (P for interaction =
0.3933), smoking status (P for interaction = 0.4720), gender (P for
interaction = 0.7502), exercise habits (P for interaction = 0.8092),
BMI (P for interaction = 0.4120), hypertension (P for interaction =
0.9640), and alcohol intake (P for interaction = 0.8001).
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TABLE 2 Incidence rate of incident diabetes.

Participants (n) Diabetes events (n)

Cumulative incidence (95% Cl) (%)

10.3389/fendo.2025.1516187

Total 2507 204
Q1 627 29

Q2 625 41

Q3 628 51

Q4 627 83

P for trend

TyG-i, triglyceride glucose index; CI, confidence interval; T2D, type 2 diabetes.

Discussion

In this retrospective cohort study involving 2,507 Japanese adults
with MASLD, we identified a positive association between elevated
TyG-i levels and the risk of T2D. Our findings further revealed a U-
shaped relationship between TyG-i and an increased risk of T2D.
Furthermore, sensitivity and subgroup analyses corroborated these
results, reinforcing the robustness of our conclusions.

The TyG-i has been widely used as a surrogate for insulin
resistance to predict the risk of metabolic diseases (26, 27). A meta-
analysis that included 12 studies, including 105,365 participants,
found that the TyG-i was positively associated with the risk of
MASLD (OR: 2.84, 95%CI: 2.01-4.01) (28). In a longitudinal cohort
study of 16,172 non-obese participants, individuals in the highest
quartile of the baseline TyG-i had a 3.58-fold increased risk of
developing MASLD relative to those in the lowest quartile (HR:

Per 100,000 person-year

8.14 (7.07-9.21) 1,356.01
4.63 (2.98-6.27) 792.88
6.56 (4.61-8.51) 1,082.48
8.12 (5.98-10.26) 1,326.71
13.24 (10.58-15.90) 2,210.45
<0.001 <0.001

4.58, 95% CI: 3.48-6.02) (29). A meta-analysis encompassing 13
cohort studies with a total of 70,380 participants identified a
significant and positive correlation between the TyG-i and T2D
risk (HR: 2.44, 95% CI: 2.17-2.76) (30). In addition, a longitudinal
cohort study that included 179541 Chinese adults found a positive
nonlinear association between TyG-i and the risk of prediabetes and
T2D after adjusting for confounders(HR: 1.67, 95%CI: 1.62-1.71, P<
0.001) (13). MASLD is a common chronic liver disease that is
closely associated with metabolic syndrome (31). Past evidence has
shown that the prevalence of diabetes is significantly increased in
subjects with MASLD (8). However, there have been few studies
discussing the relationship between TyG-i and T2D in the MASLD
population. In our study, TyG-i was positively related to the risk of
developing diabetes in people with MASLD when TyG-i > 7.94.
Therefore, early intervention using the TyG-i may be effective in
reducing the risk of diabetes in patients with MASLD.
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The survival curves illustrate the proportion of participants from T2D over time. The

differences in survival curves between the groups are statistically evaluated using the
log-rank test (log-rank test, P < 0.001). A clear upward trend in cumulative diabetes risk
is observed as the TyG index increases, suggesting a corresponding increase in the

likelihood of developing T2D.

FIGURE 2

Kaplan—Meier event-free survival curve in females. Kaplan—Meier analysis of incident diabetes based on TyG-i quartiles (log-rank, P < 0.0001).
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TABLE 3 Relationship between TyG-i and incident diabetes in different models.

Variable

TyG-i

Model 1 (HR, 95%Cl, P)

2.03 (1.57, 2.63) <0.0001

Model 2 (HR, 95%Cl, P)

‘ 2.13 (1.62, 2.79) <0.0001

10.3389/fendo.2025.1516187

Model 3 (HR, 95%Cl, P)

1.48 (1.05, 2.09) 0.0256

TyG-i (quartile)

Q1 Ref Ref Ref

Q2 1.33 (0.83, 2.15) 0.2349 1.33 (0.82, 2.14) 0.2455 1.01 (0.62, 1.66) 0.9545
Q3 1.63 (1.03, 2.57) 0.0361 1.63 (1.03, 2.60) 0.0386 1.28 (0.77, 2.12) 0.3375
Q4 2.76 (1.81, 4.21) <0.0001 2.82 (1.82, 4.37) <0.0001 1.56 (0.92, 2.64) 0.0967
P for trend <0.0001 <0.0001 0.0403

Model 1: we did not adjust for any covariants.
Model 2: we adjusted for sex, age, alcoholic intake, smoking status, exercise habits, and SBP.

Model 3: we adjusted for sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT, AST, GGT, HDL-C, TC, and HbAlc.

HR, hazard ratio; CI, confidence interval; Ref, Reference; TyG-i, triglyceride glucose index.

Our research uncovered a U-shaped relationship between the
TyG-iand T2D risk after controlling for confounders. Specifically, the
analysis revealed that when TyG-i levels were below 7.94, there was a
79% decrease in the risk of T2D development for each one-unit
increase in TyG-i. Conversely, a positive association was found
between TyG-i and T2D risk when TyG-i levels exceeded 7.94.
Understanding this U-shaped relationship is essential for
identifying individuals exhibiting altered metabolic profiles across
different TyG-i ranges. Those with values near the 7.94 inflection
point may constitute a key population for targeted preventive
interventions. Clinicians should closely monitor TyG-i as an early
biomarker indicative of elevated T2D risk, particularly among
patients with MASLD. Interventions aimed at sustaining TyG-i
around the inflection point through lifestyle modifications—
including dietary improvements, physical activity enhancement,
and weight management—should be prioritized for individuals
approaching this critical level. Such proactive measures could delay
or prevent the progression from insulin resistance to overt T2D,
thereby improving clinical outcomes. Additionally, the prospect of

TABLE 4 Relationship between TyG-i and incident T2D in different
sensitivity analyses.

Model 4
(HR, 95%Cl, P)

Model 5
(HR, 95%ClI, P)

Exposure

TyG-i

TyG-i (quartile)

1.45 (1.02, 2.06) 0.0380

1.50 (1.03, 2.17) 0.0347

Q1 Ref Ref

Q2 1.04 (0.63, 1.72) 0.8763 | 1.21 (0.71, 2.06) 0.4947
Q3 1.25 (0.74, 2.09) 0.4024  1.36 (0.78, 2.39) 0.2760
Q4 1.54 (0.90, 2.63) 0.1135 1.76 (0.99, 3.15) 0.0548
P for trend 0.0568 0.0386

Model 4 was sensitivity analysis after excluding individuals with age>60 years. We adjusted
sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT, AST, GGT, HDL-C, TC,
and HbAlc.

Model 5 was sensitivity analysis after excluding individuals with SBP=140 mmHg or DBP= 90
mmHg. We adjusted sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT,
AST, GGT, HDL-C, TC, and HbAlc.

HR, hazard ratios; CI, confidence; Ref, reference; TyG-i, triglyceride glucose index.
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pharmacological strategies targeting the TyG-i warrants investigation.
As the understanding of TyG-i’s metabolic implications advances,
clinical trials designed to assess treatments that modulate TyG-i are
necessary to expand therapeutic options for high-risk populations.
From a public health perspective, our findings underscore the
importance of recognizing TyG-i as a valuable marker in T2D risk
stratification. Health professionals and policymakers should consider
integrating TyG-i assessments into preventive care frameworks to
optimize resource allocation and intervention efficacy. Furthermore,
educational programs aimed at raising awareness of the significance
of metabolic health and elevated TyG-i levels could encourage early
evaluation and engagement in risk-reducing behaviors.

The precise mechanisms underlying the U-shaped relationship
between the TyG-i and the risk of developing diabetes in individuals
with MASLD are still not fully understood. There is a notable positive
association between higher TyG-i values and diabetes, likely linked to
insulin resistance. Persistently high TG levels intensify liver fat
accumulation, causing increased hepatic triglyceride production
and worsening insulin sensitivity (32). This metabolic disturbance
enhances lipogenesis, which further reduces insulin’s effectiveness in
managing glucose metabolism and increases liver lipid accumulation,
eventually damaging pancreatic beta-cell functionality (33). The
build-up of lipid droplets within pancreatic islets disrupts glucose-

TABLE 5 The result of the two-piecewise Cox proportional hazards
regression model.

Incident Diabetes HR (95%Cl) @ P-value

Fitting model by standard linear regression ‘ 1.48 (1.05, 2.09) ‘ 0.0256

Fitting model by two-piecewise Cox proportional
hazards regression

The inflection point of TyG-i 7.94

<7.94 0.21 (0.07, 0.66) 0.0072
>7.94 1.76 (1.23, 2.52) 0.0020
P for the log-likelihood ratio test 0.004

We adjusted sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT, AST, GGT,
HDL-C, TC, and HbAlc.
HR, hazard ratios; CI, confidence; TyG-i, triglyceride glucose index.
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Log HR for T2D

TyG-i

The x-axis represents the TyG-i values, while the y-axis represents Log HR for T2D.
A nonlinear relationship between TyG-i and incident T2D was detected after adjusting for
sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT, AST, GGT, HDL-
C, TC, and HbAlc.

FIGURE 3
The nonlinear relationship between TyG-i and incident diabetes. The nonlinear relationship was detected after adjusting for sex, age, alcoholic
intake, smoking status, exercise habits, SBP, ALT, AST, GGT, HDL-C, TC, and HbAlc.

P value P for interaction
Age (years) 0.3933
<60 —l— 0.0433
=60 0.1960
Gender 0.7502
Female —— 0.2053
Male —— 0.0402
BMI (kg/m2) 0.4120
<25 —a— 0.0511
225 —i— 0.2083
Alcoholic intake (g/wk) 0.8001
=0 —— 0.1810
=0 —i— 0.0827
Smoking status 0.4720
Never-smoker — 0.0331
Past-smoker —a— 0.1670
Current-smoker —— 05746
Exercise habits 0.8092
No —— 0.0349
Yes L . 0.2900
Hypertension 0.9640
No —l— 0.0349
Yes i 0.4143

[ i) 20 an a0 wo

Effect size of TyG-i on diabetes in prespecified and exploratory subgroups. The model was adjusted for sex, age, alcohol
consumption, smoking status, exercise habits, systolic blood pressure, ALT, AST, GGT, HDL-C, total cholesterol, and HbAlc,
excluding the stratification variable in each instance.

FIGURE 4

Effect size of TyG-i on diabetes in prespecified and exploratory subgroups. The model was adjusted for sex, age, alcohol consumption, smoking
status, exercise habits, systolic blood pressure, ALT, AST, GGT, HDL-C, total cholesterol, and HbAlc, excluding the stratification variable in each
instance.
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induced insulin release, leading to diabetes onset (34, 35). Moreover,
low TyG-i levels are similarly linked to an increased risk of
developing diabetes. Interestingly, Black individuals exhibit
unexpectedly low TG levels despite high insulin resistance or risk
factors for diabetes, a phenomenon potentially explained by the
inhibition of insulin-sensitive lipase activity and the consequent
reduction in free fatty acid release from fat tissue due to
hyperinsulinemia (36-39). Additionally, those with the PNPLA3
148M allele have lower triglyceride levels, increased insulin
resistance, and greater vulnerability to diabetes (40). Pancreatic oi-
cells are vital for maintaining glucose, amino acid, and lipid balance
(41). Malfunctions in these o-cells can result in hypoglycemia, which
may indicate o-cell dysregulation, a core pathogenic process in
diabetes development (42).

Our study is limited to a Japanese cohort, which may constrain
the generalizability of our findings. It is essential to consider how
genetic, dietary, and healthcare system differences might influence
the observed associations between the TyG-i and the risk of T2D.
Genetic predispositions play a significant role in metabolic
regulation and the pathogenesis of diabetes. Ethnic variations in
genes related to lipid metabolism and insulin sensitivity could
modulate the relationship between the TyG-i and diabetes risk.
For example, certain genetic polymorphisms prevalent in Asian
populations may impact triglyceride levels and glucose homeostasis,
potentially yielding risk profiles distinct from those in other ethnic
groups (43). The traditional Japanese diet—characterized by high
consumption of rice, fish, and soy products—imposes unique
metabolic effects (44). Dietary patterns may interact with genetic
factors to influence TyG-i levels and their associations with diabetes
risk. Notably, omega-3 fatty acids abundant in fish have been
documented to improve insulin sensitivity, which could affect
metabolic outcomes within our cohort (45). Recognizing dietary
variations across populations is critical when interpreting our
results, as these differences could inform culturally tailored
dietary recommendations for T2D prevention. Moreover, the
Japanese healthcare system, with its emphasis on universal
coverage and preventive care, may significantly impact the
management of metabolic diseases (46, 47). Routine health
screenings and early interventions are commonplace in Japan,
potentially facilitating better management of conditions associated
with the TyG-i, such as MASLD. This proactive healthcare
approach may alter the observed relationship between TyG-i and
diabetes risk, underscoring the need for caution when extrapolating
our findings to populations with differing healthcare
infrastructures. In light of these considerations, we stress the
importance of further research involving diverse populations to
validate the U-shaped association between the TyG-i and T2D risk.
Future investigations should include a broad range of ethnic groups
to examine the consistency and applicability of these findings across
varied demographic and clinical contexts.

This study offers several notable advantages. Firstly, we
identified a U-shaped association, allowing us to pinpoint the
optimal inflection point where the TyG-i affects T2D risk.
Secondly, we applied rigorous statistical adjustments to our
results to reduce confounding factors, thereby enhancing their
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validity. Lastly, we employed a diverse array of sensitivity analyses
to bolster the validity and reliability of our results, thereby
enhancing the overall methodological strength of the study.

Despite these strengths, several limitations warrant consideration.
Primarily, the research focused on a Japanese cohort, which may
restrict the applicability of the results to other ethnic and geographic
populations. Additionally, the definition of T2D employed in this study
did not incorporate oral glucose tolerance testing, potentially resulting
in an underestimation of T2D incidence. Secondly, although we have
controlled for known confounding variables, the possibility remains
that unmeasured factors—such as certain lifestyle habits or genetic
predispositions—may have influenced the observed relationship
between the TyG-i and T2D. Nevertheless, the calculated E-value of
2.32 exceeds the relative risk of 1.78 associated with both TyG-i and
potential unknown confounders, implying that the effect of such
unmeasured variables on this association is likely minimal. In future
prospective investigations, we will strive to systematically collect and
incorporate comprehensive information on lifestyle and genetic factors
to further validate and strengthen our results. Thirdly, the absence of
repeated measurements of the TyG-i precluded the assessment of the
impact of longitudinal dynamic changes in TyG-i on T2D risk. The
TyG-i, like other metabolic markers, is subject to fluctuations
influenced by various factors, including dietary habits, physical
activity, weight changes, and underlying metabolic conditions. These
dynamic changes may significantly impact an individual’s risk profile
for T2D. Incorporating analyses of TyG-i variability over time could
enhance our understanding of its relationship with diabetes risk. In
light of these considerations, we plan to design future studies to
investigate the relationship between changes in the TyG-i and
diabetes prognosis.

Conclusion

This research revealed a U-shaped relationship between the
TyG-i and the risk of T2D in adults with MASLD. These results
underscore that early intervention using the TyG-i may effectively
improve the risk of T2D in patients with MASLD.
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Aims: This study was conducted to evaluate the correlation between
triglyceride-glucose index (TyG) and major adverse cardiovascular events
(MACE) in patients with type 2 diabetes mellitus (T2DM) and heart failure with
preserved ejection fraction (HFpEF) after acute myocardial infarction (AMI).
Methods: This retrospective study at the First Affiliated Hospital of Dalian Medical
University included 400 AMI patients with T2DM and HFpEF who underwent
percutaneous coronary intervention (PCI) between 1 January 2018 and 1 January
2023. The study was conducted using univariate and multivariate Cox regression
analyses, subgroup analyses, receiver operating characteristic (ROC) curves, and
Kaplan—Meier survival curves to assess the correlation between the TyG index
and MACE.

Results: Multivariate Cox regression analyses showed that in model 3 with
variables fully adjusted, when TyG was used as a categorical variable, the risk
of MACE in the TyG T2 and T3 groups was 1.622 times and 2.247 times higher
than that in the T1 group, respectively (P < 0.05). When TyG was used as a
continuous variable, the risk of MACE increased by 49.5% for every 1 unit increase
in the TyG index (P < 0.001). In the subgroup analysis, elevated TyG index levels
were consistently associated with an increased risk of MACE across multiple
clinical subgroups (P < 0.05). ROC analysis showed that the TyG index
significantly predicted the occurrence of MACE (AUC: 0.635, 95% ClI: 0.580—
0.691, P < 0.001), all-cause death (AUC: 0.565, 95% Cl: 0.508-0.622, P = 0.027),
non-fatal myocardial infarction (AUC: 0.617, 95% Cl: 0.542-0.693, P = 0.004),
and unplanned revascularization (AUC: 0.644, 95% Cl: 0.578-0.710, P < 0.001).
The Kaplan—Meier survival curves revealed statistically significant differences in
survival probabilities for the occurrence of MACE, all-cause death, non-fatal
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myocardial infarction, and unplanned revascularization across the three TyG
index groups as the follow-up period progressed (P < 0.05).

Conclusions: The TyG index was independently associated with MACE in T2DM
patients with AMI combined with HFpEF.

triglyceride-glucose index, acute myocardial infarction, heart failure with preserved
ejection fraction, major adverse cardiovascular events, type 2 diabetes mellitus

1 Introduction

Over the past three decades, significant advances have been made
in the treatment of coronary heart disease (CHD) and acute
myocardial infarction (AMI). However, AMI, the most lethal and
prevalent form of CHD, continues to be the most serious and
dangerous type, remaining the leading cause of heart failure (HF)
(1, 2). According to a systematic review and meta-analysis published
in 2023 (with data updated through September 2022), the global
prevalence of MI is 3.8% in individuals under 60 years old and rises to
9.5% in those over 60, indicating a marked age-related increase (3).
MI is not only a critical manifestation of CHD but also a major
precipitating factor for HF. In recent years, there has been increased
attention on MI-related HF, particularly in the context of metabolic
dysfunction. The prognostic value of this condition in CHD patients
with type 2 diabetes mellitus (T2DM) is of paramount importance.
Given that diabetes accelerates atherosclerosis and increases the risk
of both MI and subsequent HF, understanding the interplay between
these conditions is essential for improving risk stratification and
guiding targeted interventions.

Several factors contribute to the risk of AMI, including poor
glycemic control, hypertension, hyperlipidemia, mental stress, air
pollution, and obesity (4, 5). If these risk factors are not effectively
managed, they can lead to adverse left ventricular remodeling, thereby
exacerbating the incidence of HF following AMI (6). Moreover, the
prognosis of HF after AMI is notably worse in patients with T2DM
compared to those without glucose disorders (7, 8). Furthermore, in a
large cohort of 4,082 Chinese patients with HF, the 12-month follow-
up revealed a high all-cause mortality rate of 19.6%, a rehospitalization
rate of 24.4%, and a composite event rate of 40.15%, with overall
health-related quality of life (HRQL) being poor as indicated by a mean
MLHEQ score of 42.9—significantly higher in women than in men—
and HRQL independently predicting both all-cause mortality and HF
hospitalization (9). Despite this, current research predominantly
focuses on the prevention and treatment of ischemic HF, with little
attention given to further classifying HF post-AMI or exploring the
link between glycemic metabolism abnormalities and HF onset,
particularly in the context of heart failure with preserved ejection
fraction (HFpEF) (10). This research gap is of critical importance, as
HFpEF now accounts for approximately half of all HF cases and is
closely associated with metabolic comorbidities such as diabetes,
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obesity, and hypertension, with emerging evidence indicating that
systemic inflammation, microvascular endothelial dysfunction, and
impaired myocardial energetics—often driven by glycemic
dysregulation—play central roles in its pathogenesis (11). Therefore,
it is crucial to examine whether risk factors associated with AMI in
T2DM patients influence the outcomes of HFpEF or affect long-term
cardiovascular outcomes following AMI.

One key factor in the development of cardiovascular diseases
(CVD) is insulin resistance (IR), which is often a hallmark of
metabolic disorders and systemic inflammation (12). IR
frequently coexists with obesity, hypertension, and dyslipidemia,
all of which are significant risk factors for CVD development and
prognosis. The triglyceride-glucose index (TyG), derived from
fasting triglyceride (TG) and fasting plasma glucose (FPG) levels,
has emerged as a reliable indicator of IR in high-risk populations
(13). In addition to its association with diabetes, the TyG index
is also strongly linked to hypertension, dyslipidemia, metabolic
syndrome, cardiovascular diseases, and mortality (13-17).
Furthermore, Sun et al. demonstrated in a retrospective study of
2,055 ischemic HF patients undergoing percutaneous coronary
intervention (PCI) that the TyG index was independently and
positively associated with the risk of major adverse cardiovascular
events (MACE), with higher TyG levels corresponding to an
increased incidence of adverse outcomes (18). Additionally, in a
multicenter cohort study of 277 patients with newly diagnosed
ischemic cardiomyopathy and HFpEF undergoing coronary artery
bypass grafting (CABG), Ruan et al. demonstrated that the TyG
index was an independent predictor of MACE, showing a linear
positive association with risk, and that incorporating the TyG index
into traditional cardiovascular risk models significantly improved
prognostic accuracy through enhanced discrimination, calibration,
and reclassification metrics (19).

However, despite the accumulation of substantial research
evidence, some studies—particularly those focusing on patients with
T2DM complicated by AMI and HFpEF—have yet to establish a clear
association between the TyG index and MACE. This indicates that
further validation is needed to confirm the predictive value of the TyG
index for MACE in this specific patient population. Therefore, to
address this research gap, the present study aims to focus on T2DM
patients with AMI and HFpEF who have undergone interventional
therapy, exploring the association between the TyG index and MACE.
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2 Methods
2.1 Study population and grouping

This was a single-center, retrospective cohort study that
included patients with T2DM and AMI who were admitted to the
Department of Cardiology at the First Affiliated Hospital of Dalian
Medical University for PCI. These patients were diagnosed with
HFpEF between 1 January 2018 and 1 January 2023. Patients with
end-stage hepatic or renal failure, coagulation abnormalities, aortic
coarctation, or incomplete data, as well as those lost to follow-up or
who did not undergo PCI, were excluded from the study. After
excluding these individuals, a total of 400 patients were finally
included in the analysis. All procedures were conducted in
compliance with the Declaration of Helsinki and its amendments.
The study protocol was approved by the Institutional Review Board
of the First Affiliated Hospital of Dalian Medical University.
Informed consent was obtained from all participants prior to the
collection of clinical data.

2.2 Data collection and definitions

All clinical data and study information were collected from
Yidu Cloud, one of the largest medical databases in China, at the
First Hospital of Dalian Medical University. These data included
patient demographics, comorbidities, medication information,
anthropometrics, blood biomarkers, medication regimens,
echocardiographic results, and data related to PCI procedures.

Demographic data comprised age, gender, smoking, and family
history of CHD. Smoking was defined as continuous or cumulative
smoking for 6 months or more prior to enrollment. A CHD family
history was defined as a genetic predisposition to the disease, with at
least two or more close relatives affected.

Comorbidity data included hypertension, stroke, and atrial
fibrillation (AF). Hypertension in adults was diagnosed based on
a systolic blood pressure (SBP) =140 mmHg and/or a diastolic
blood pressure (DBP) 290 mmHg (20). Diabetes was diagnosed in
patients with symptoms such as polydipsia, polyuria, polyphagia,
and weight loss, combined with a blood glucose level greater than
11.1 mmol/L at any time, a fasting blood glucose greater than 7.0
mmol/L, or hemoglobin Alc (HbAlc) 26.5%, or a 2-h oral glucose
tolerance test blood glucose greater than 11.1 mmol/L (21). Stroke
was defined as the impairment of blood circulation in the brain,
leading to brain tissue damage due to the obstruction or rupture of
cerebral blood vessels, including both ischemic and hemorrhagic
stroke types (22). AF was defined as a rapid arrhythmia with
disordered electrical activity in the atria, resulting in irregular and
rapid fibrillation waves. The study included all forms of AF,
including first diagnosis, paroxysmal, persistent, long-term
persistent, and permanent atrial fibrillation (23). HFpEF was
diagnosed based on the fulfillment of all the following three
criteria: 1) the presence of typical HF symptoms and/or signs,
such as shortness of breath, fatigue, or reduced exercise capacity;
2) a left ventricular ejection fraction (LVEF) of 50% or higher; and
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3) objective indicators of diastolic dysfunction and/or elevated left
ventricular filling pressures (24). These indicators included
structural abnormalities (e.g., left atrial volume index >34 mL/m?,
left ventricular mass index >95 g/m? in women or >115 g/m* in
men, or relative wall thickness >0.42), functional impairments (e.g.,
E/e’ ratio >9, tricuspid regurgitation velocity >2.8 m/s, or
pulmonary artery systolic pressure >35 mmHg), and elevated
levels of natriuretic peptides [N-terminal pro-B-type natriuretic
peptide (NT-proBNP) >125 pg/mL or B-type natriuretic peptide
(BNP) >35 pg/mL in sinus rhythm; NT-proBNP >365 pg/mL or
BNP >105 pg/mL in atrial fibrillation] (24).

Anthropometric data included body mass index (BMI), SBP,
and DBP. BMI was calculated using the formula: BMI = weight
(kg)/height (m)?. Additional data collected included the presence of
ST-segment elevation myocardial infarction (STEMI) and Killip
classification. STEMI was defined as marked ST-segment elevation
on the electrocardiogram, usually caused by the rupture of an
intracoronary plaque or thrombosis leading to coronary
occlusion, which results in sustained myocardial ischemia and
hypoxia, ultimately causing myocardial necrosis (25). The Killip
classification, a grading system for assessing the cardiac functional
status of patients with AMI, is divided into four grades (I-IV), with
the condition progressively worsening (26).

Hematological biomarkers included FPG, HbAlc, albumin, uric
acid (UA), estimate glomerular filtration rate (eGFR) [calculated using
the Modification of Diet in Renal Disease (MDRD) equation: eGFR =
175 x (serum creatinine [(mg/dL)])’l'234 x (age [years])’o'179 x 0.79
(if female)] (27), TG, total cholesterol (TC), high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),
fibrinogen (FIB), D-dimer, high-sensitivity C-reactive protein (Hs-
CRP), cardiac biomarkers (troponin I), and B-type natriuretic
peptide (BNP).

Discharge medication data included the use of antiplatelet
agents (such as aspirin, clopidogrel, and ticagrelor), statins,
angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II
receptor blockers (ARBs), and B-blockers. Echocardiographic data
included LVEF. All echocardiographic data were recorded by an
experienced cardiac sonographer using a cardiac ultrasound
machine. Procedure-related data included details on the
multivessel disease. Multivessel disease was defined as lesions
involving two or more coronary arteries with >50% stenosis.

2.3 Study endpoints and follow-up

In this study, patients were enrolled for follow-up starting from
the date of their first hospitalization, with the follow-up period
extending until either the patient’s death or 31 July 2024. The
median follow-up time was 24.63 months. The study endpoint was
MACE, defined as a composite of one or more of the following: all-
cause death, unplanned revascularization, and non-fatal myocardial
infarction. To identify clinical characteristics associated with
adverse cardiovascular outcomes, baseline variables were
compared between patients with and without MACE. This
grouping approach was intended to explore potential risk factors
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for MACE. All enrolled patients were encouraged to monitor their
condition regularly through outpatient services. For those who did
not complete the follow-up program, efforts were made to contact
them by telephone to ensure data completeness.

2.4 Calculation method of the TyG index

FPG and TG levels were collected for all patients during
hospitalization. Specifically, blood samples were obtained in the
early morning of the day following admission after an overnight fast
of at least 8 h. All biochemical measurements were performed at the
same clinical laboratory within the hospital using standardized
procedures, ensuring consistency in both testing methods and
fasting conditions. The formula for calculating the TyG index was
as follows: TyG = Ln [fasting TG (mg/dL) x FPG (mg/dL)/2] (28).
Based on the tertiles of the TyG index, patients were divided into
three groups: T1 (<8.76), T2 (8.77-9.51), and T3 (>9.51). This
tertile-based stratification is widely used in metabolic and
cardiovascular research to ensure statistical comparability across
groups and avoid arbitrary threshold selection. Baseline
characteristics were analyzed across these TyG tertiles to evaluate
the association between metabolic risk status and clinical features
or outcomes.

2.5 Statistical analysis

Statistical analyses were performed using SPSS statistical software
version 26.0 (SPSS Inc., Chicago, IL, USA). Categorical variables were
expressed as percentages. Continuous variables that were normally
distributed were presented as means + standard deviation, while non-
normally distributed continuous variables were expressed as medians
with interquartile ranges. To compare the differences between two or
more groups, the chi-square test was used for categorical variables.
For continuous variables, the independent samples ¢-test was applied
for two-group comparisons with a normal distribution, while one-
way ANOVA was used for comparisons involving three groups. For
non-normally distributed data, the Mann-Whitney U test or
Kruskal-Wallis test was applied, depending on the number of
groups. Univariate and multivariate Cox regression analyses were
performed to identify independent factors predicting the MACE. The
proportional hazards assumption was tested using Schoenfeld
residuals, and no significant violations were observed. Covariates
included in the multivariate logistic regression analysis were those
that showed a statistically significant association with MACE (P <
0.05) in the univariate logistic regression analysis. In addition,
subgroup analyses were performed using Cox regression within
different clinical subgroups (such as age, sex, hypertension, STEMI
status, Killip classification, and multivessel disease) to evaluate the
association between TyG tertiles and MACE in each category. The
rationale for conducting subgroup analyses was to explore whether
the predictive value of the TyG index for MACE remained consistent
across various clinically relevant populations. These subgroups were
selected based on their known associations with cardiovascular risk
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and their clinical importance in the context of HF, AMI, and MACE.
Receiver operating characteristic (ROC) curve analysis was
performed to evaluate the predictive power of the TyG index for
the events. The area under the curve (AUC) was calculated for each
endpoint to determine the diagnostic accuracy. Kaplan-Meier
analysis was employed to estimate the cumulative incidence of
clinical adverse events, while the log-rank test was applied to
compare survival distributions across groups. A two-sided P-value
of <0.05 was considered statistically significant.

3 Results

3.1 Baseline demographics and clinical
characteristics

Table 1 presents the clinical characteristics of the population,
grouped according to the occurrence of MACE. The results showed
that, compared to the group without MACE, the MACE group had
a higher median age; a higher probability of being classified as Killip
class IITI-IV; and elevated SBP, FPG, FIB, D-dimer, BNP, and TyG
index levels. Moreover, the MACE group had higher rates of
clopidogrel use and multivessel disease (P < 0.05). In contrast, the
MACE group had lower rates of STEMI and use of aspirin and
ticagrelor and lower levels of eGFR (P < 0.05).

Table 2 displays the clinical characteristics of the cohort,
grouped according to TyG tertiles. The TyG tertiles were defined
as follows: TyG-T1: <8.76, TyG-T2: 8.77-9.51, and TyG-T3: >9.51.
The results indicated that significant differences were observed
among the three TyG groups in terms of age, Killip classification,
SBP, DBP, FPG, HbAlc, TG, TC, LDL-C, HDL-C, UA, eGFR, FIB,
use of B-blockers, LVEF, all-cause death, MACE, non-fatal
myocardial infarction, and unplanned revascularization (P <
0.05). Specifically, the incidence of all-cause death, MACE, non-
fatal myocardial infarction, and unplanned revascularization
increased with higher TyG tertile levels (P < 0.05).

3.2 Association between TyG and MACE

Table 3 presents the results of the univariate Cox regression
analysis for MACE. The analysis showed that age, STEMI, Killip
classification III-IV, hypertension, SBP, FPG, eGFR, troponin I,
BNP, aspirin, clopidogrel, ticagrelor, ACEI/ARB, multivessel
disease, and the TyG index were all significantly correlated with
the risk of MACE (P < 0.05).

Table 4 displays the results of the multivariate Cox regression
analyses for TyG and MACE. In the unadjusted model 1, as well as
in model 2 (which was adjusted for age, hypertension, STEMI, and
Killip classification), both TyG as a categorical variable and as a
continuous variable were strongly associated with the risk of MACE
(P < 0.05). Furthermore, in model 3, which was fully adjusted for
age, hypertension, STEMI, Killip classification, eGFR, aspirin,
ACEI/ARB, and multivessel disease, when TyG was used as a
categorical variable, the risk of MACE in the TyG-T2 and T3
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TABLE 1 Clinical characteristics according to MACE.

10.3389/fendo.2025.1585067

Variables Total population Non-MACE MACE P-value
Age, years 74.39 + 11.15 71.84 + 10.93 75.88 + 11.03 <0.001
Male, n (%) 209 (52.3) 84 (56.8) 125 (49.6) 0.167
Smoking, n (%) 121 (30.3) 48 (32.4) 73 (29.0) 0.466
STEML, n (%) 172 (43.0) 82 (55.4) 90 (35.7) <0.001
Killip class, n (%) 0.027

I 197 (49.3) 82 (55.4) 115 (45.6)

il 147 (36.8) 55 (37.2) 92 (36.5)

111 32 (8.0) 7 (4.7) 25 (9.9)

v 24 (6.0) 4(2.7) 20 (7.9)
Family history of CHD, n (%) 62 (15.5) 23 (15.5) 39 (15.5) 0.986
Hypertension, n (%) 278 (69.5) 95 (64.2) 183 (72.6) 0.077
Stroke, n (%) 53 (13.3) 18 (12.2) 35 (13.9) 0.623
AF, n (%) 36 (9.0) 8 (5.4) 28 (11.1) 0.054
BMI, kg/m2 26.76 + 3.95 26.93 + 4.27 26.66 + 3.76 0.515
SBP, mmHg 132.11 + 29.59 128.16 + 28.67 134.43 + 29.93 0.040
DBP, mmHg 74.74 + 1531 74.46 + 15.69 74.90 + 15.11 0.779
FPG, mmol/L 8.84 (5.80, 13.44) 6.36 (5.21, 8.84) 10.56 (6.61, 14.84) <0.001
HbAlc, % 7.40 (6.13, 8.80) 7.30 (6.00, 8.90) 7.50 (6.30, 8.80) 0.163
TG, mmol/L 1.28 (0.94, 1.84) 1.37 (0.98, 1.82) 1.25 (0.92, 1.85) 0.465
TC, mmol/L 4.67 +1.29 473 + 132 463 + 127 0.423
LDL-C, mmol/L 292 + 093 2.95 + 0.88 2.90 + 0.95 0.549
HDL-C, mmol/L 1.02 +0.29 1.04 + 0.31 1.02 +0.28 0.443
Albumin, g/L 35.97 + 3.96 36.21 + 4.10 35.83 + 3.87 0.354
UA, umol/L 387.55 + 127.87 394.12 + 121.86 383.69 + 131.35 0.432
eGFR, mL/min 67.50 (46.25, 85.00) 71.00 (53.25, 88.50) 65.00 (40.00, 84.75) 0.008
Hs-CRP, mg/L 44.70 (24.00, 88.80) 44.70 (21.75, 90.05) 44.80 (24.35, 87.50) 0.880
FIB, g/L 3.59 (2.78, 4.43) 3.35 (2.59, 4.15) 3.73 (2.93, 4.49) 0.029
D-dimer, mg/L 240.00 (0.7, 779.37) 130.00 (0.60, 630.00) 310.00 (1.14, 779.37) 0.004
Troponin I, ng/mL 8.16 (1.50, 48.94) 9.76 (1.96, 94.86) 7.63 (1.40, 39.11) 0.100
BNP, pg/mL 696.59 (523.73, 1,078.49) 650.83 (508.30, 958.26) 73539 (529.34, 1,146.09) 0.015
Discharge medication, n (%)

Aspirin 295 (73.8) 121 (81.8) 174 (69.0) 0.005

Clopidogrel 234 (58.5) 73 (49.3) 161 (63.9) 0.004

Ticagrelor 166 (41.5) 75 (50.7) 91 (36.1) 0.004

Statins 374 (93.5) 138 (93.2) 236 (93.7) 0.873

ACEI/ARB 308 (77.0) 106 (71.6) 202 (80.2) 0.050

B-Blockers 274 (68.5) 101 (68.2) 173 (68.7) 0.932
LVEF, % 54.73 + 3.05 54.86 + 2.91 54.66 + 3.13 0.528
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TABLE 1 Continued

Variables Non-MACE

Total population

Discharge medication, n (%)

Multivessel disease, n (%) 189 (47.3) 59 (39.9) 130 (51.6) 0.023

TyG index 9.17 £ 0.75 8.95 + 0.68 9.30 £ 0.77 <0.001

MACE, major adverse cardiovascular events; STEMI, ST-elevation myocardial infarction; CHD, coronary heart disease; AF, atrial fibrillation; BMI, body mass index; SBP, systolic blood pressure;
DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1lc, hemoglobin Alc; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density
lipoprotein cholesterol; UA, uric acid; eGFR, estimated glomerular filtration rate; Hs-CRP, high-sensitivity C-reactive protein; FIB, fibrinogen; BNP, B-type natriuretic peptide; ACEIL,
angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; LVEF, left ventricular ejection fraction; TyG index, triglyceride-glucose index.

TABLE 2 Clinical characteristics according to TyG tertiles.

Variables T1 T2 3 P-value
Age, years 76.70 + 10.06 74.03 + 11.16 7244 + 11.83 0.007
Male, n (%) 77 (57.9) 65 (48.9) 67 (50.0) 0.275
Smoking, n (%) 37 (27.8) 39 (29.3) 45 (33.6) 0.568
STEML, 7 (%) 56 (42.1) 57 (42.9) 59 (44.0) 0.950
Killip class, n (%) 0.038

I 69 (51.9) 71 (53.4) 57 (42.5)

11 50 (37.6) 49 (36.8) 48 (35.8)

1T 11 (8.3) 6 (4.5) 15 (11.2)

v 3(2.3) 7 (5.3) 14 (10.4)
Family history of CHD, n (%) 15 (11.3) 21 (15.8) 26 (19.4) 0.185
Hypertension, n (%) 85 (63.9) 91 (68.4) 102 (76.1) 0.091
Stroke, n (%) 20 (15.0) 14 (10.5) 19 (14.2) 0.515
AF, n (%) 13 (9.8) 6 (4.5) 17 (12.7) 0.061
BMI, kg/m2 26.50 + 4.28 2643 +3.75 27.36 £ 3.77 0.099
SBP, mmHg 129.37 £ 31.25 129.62 + 24.89 137.30 + 31.65 0.045
DBP, mmHg 7295 + 15.11 73.54 + 12.84 77.71 £ 17.30 0.021
FPG, mmol/L 5.53 (4.85, 6.24) 9.02 (6.55, 12.35) 14.34 (10.99, 17.13) <0.001
HbAlc, % 6.50 (5.80, 7.50) 7.50 (6.15, 8.75) 8.30 (7.28, 9.60) <0.001
TG, mmol/L 0.92 (0.74, 1.18) 1.31 (1.01, 1.65) 2.04 (1.45, 2.87) <0.001
TC, mmol/L 424 +1.19 4.57 + 1.07 519 = 1.41 <0.001
LDL-C, mmol/L 2.80 + 0.84 2.88 +0.93 3.07 £ 1.00 0.048
HDL-C, mmol/L 1.06 + 0.33 1.04 + 0.27 0.96 + 0.26 0.012
Albumin, g/L 35.70 = 3.79 36.15 + 3.87 36.07 + 4.21 0.613
UA, umol/L 388.10 + 133.64 366.77 + 122,97 407.63 + 124.41 0.033
eGFR, mL/min 71.00 (50.50, 86.00) 70.00 (51.00, 93.50) 57.50 (36.50, 79.25) 0.002
Hs-CRP, mg/L 47.20 (24.00, 89.85) 48.20 (29.90, 92.10) 41.50 (21.30, 83.60) 0.130
FIB, g/L 3.32 (2.59, 4.04) 3.51 (2.71, 4.36) 3.73 (3.13, 4.99) 0.001
D-dimer, mg/L 290.00 (1.20, 779.37) 130.00 (0.63, 690.00) 215.00 (0.97, 779.37) 0.086
Troponin I, ng/mL 9.95 (1.33, 69.68) 6.41 (1.79, 52.51) 8.06 (1.46, 41.50) 0.934
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TABLE 2 Continued

10.3389/fendo.2025.1585067

VELEL]ES T1 T2 T3 P-value
Killip class, n (%) 0.038
BNP, pg/mL 697.62 (529.29, 1,067.11) 656.07 (501.76, 968.20) 755.61 (540.76, 1,137.00) 0.117
Discharge medication, n (%)
Aspirin 89 (66.9) 104 (78.2) 102 (76.1) 0.084
Clopidogrel 88 (66.2) 69 (51.9) 77 (57.5) 0.058
Ticagrelor 45 (33.8) 64 (48.1) 57 (42.5) 0.058
Statins 126 (94.7) 127 (95.5) 121 (90.3) 0.177
ACEI/ARB 97 (72.9) 102 (76.7) 109 (81.3) 0.262
B-Blockers 81 (60.9) 87 (65.4) 106 (79.1) 0.004
LVEF, % 55.43 + 3.05 54.40 + 2.90 54.37 + 3.09 0.005
Multivessel disease, 1 (%) 57 (42.9) 68 (51.1) 64 (47.8) 0.397
All-cause death, n (%) 52 (39.1) 43 (32.3) 66 (49.3) 0.018
MACE, n (%) 67 (50.4) 81 (60.9) 104 (77.6) <0.001
Non-fatal myocardial infarction,
1 (%) 13 (9.8) 18 (13.5) 29 (21.6) 0.021
Unplanned revascularization, 10 (75) 28 (21.1) 34 (25.4) <0.001

n (%)

TyG, triglyceride-glucose index; STEMI, ST-elevation myocardial infarction; CHD, coronary heart disease; AF, atrial fibrillation; CKD, chronic kidney disease; BMI, body mass index; SBP,
systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbAlc, hemoglobin Alc; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein cholesterol; UA, uric acid; eGFR, estimated glomerular filtration rate; FIB, fibrinogen; BNP, B-type natriuretic peptide; ACEI, angiotensin-converting enzyme
inhibitor; ARB, angiotensin II receptor blocker; LVEF, left ventricular ejection fraction; MACE, major adverse cardiovascular events.

groups was 1.622 times and 2.247 times higher than that in the T1
group, respectively (HR: 1.622, 95% CI: 1.169-2.251, P = 0.004; HR:
2.247,95% CI: 1.639-3.082, P < 0.001). When TyG was treated as a
continuous variable, the risk of MACE increased by 49.5% for every
1-unit increase in the TyG index (HR: 1.495, 95% CI: 1.272-1.757,
P < 0.001).

3.3 Hierarchical association of TyG and
MACE

Table 5 presents the hierarchical association between the TyG
index and MACE. The results indicated that in the subgroup
analysis, elevated TyG index levels were consistently associated
with an increased risk of MACE across multiple clinical subgroups.
Among patients aged <75 years, the TyG-T2 and T3 groups had
significantly higher MACE risks compared to T1 (HR = 2.060, P =
0.014; HR = 2.865, P < 0.001, respectively), and similar associations
were observed in those aged 275 years (T2: HR = 1.630, P = 0.019;
T3: HR = 1.942, P = 0.001). For women, both T2 and T3 groups
showed significantly elevated risks (HR = 2.347 and 2.638, both P <
0.001), while in men, only the T3 group was significantly associated
with increased MACE (HR = 2.052, P = 0.001). In non-STEMI
patients, both the T2 and T3 groups were at significantly higher
risk (HR = 1.944 and 2.244, both P < 0.001); among STEMI
patients, the T3 group was significant (HR = 2.659, P < 0.001).
The association remained robust in patients with hypertension (T2:
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HR = 1.477, P = 0.050; T3: HR = 1.994, P < 0.001) and was even
stronger in those without hypertension (T2: HR = 2.308, P = 0.008;
T3: HR = 2.899, P = 0.001). In Killip classification I patients, both
the T2 and T3 groups were associated with higher MACE risk (HR
=1.850 and 2.842, P = 0.011 and <0.001), while in classification II-
IV, only the T3 group showed significance (HR = 1.955, P = 0.002).
Finally, in patients with or without multivessel disease, both the T2
and T3 tertiles were significantly linked to increased MACE risk,
with the strongest association seen in the T3 group without
multivessel disease (HR = 2.926, P < 0.001).

3.4 ROC curves and Kaplan—Meier curve
analyses

As shown in Figure 1, ROC curve analysis demonstrated that
the TyG index was a significant predictor for the risk of MACE
(AUC: 0.635, 95% CI: 0.580-0.691, P < 0.001). It also predicted all-
cause death (AUC: 0.565, 95% CI: 0.508-0.622, P = 0.027), new-
onset myocardial infarction (AUC: 0.617, 95% CI: 0.542-0.693, P =
0.004), and second PCI (AUC: 0.644, 95% CI: 0.578-0.710,
P < 0.001).

Additionally, as shown in Figure 2, the Kaplan-Meier survival
curves revealed statistically significant differences in the survival
probabilities for MACE, all-cause death, non-fatal myocardial
infarction, and unplanned revascularization across the three TyG
index groups over time (log-rank P < 0.05). Notably, patients in the
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TABLE 3 Univariate Cox regression analysis of MACE.

Variables HR 95% ClI P-value
Age 1.026 1.013-1.039 <0.001
Male 0.834 0.651-1.068 0.151
Smoking 0.872 0.664-1.145 0.326
STEMI 0.599 0.463-0.776 <0.001
Killip class
1 Ref
11 1.186 0.902-1.561 0.222
11 1.605 1.041-2.476 0.032
v 2.468 1.532-3.975 <0.001
i?rgg’;)hismw 1.092 0.776-1.536 0.615
Hypertension 1.382 1.048-1.824 0.022
Stroke 1.210 0.847-1.730 0.295
AF 1.472 0.993-2.182 0.054
BMI 0.995 0.965-1.025 0.720
SBP 1.006 1.002-1.010 0.004
DBP 1.001 0.993-1.009 0.757
FPG 1.068 1.048-1.089 <0.001
HbAlc 1.026 0.962-1.094 0.429
TG 1.026 0.904-1.165 0.689
TC 0.950 0.859-1.050 0.312
LDL-C 0.969 0.845-1.112 0.655
HDL-C 0.859 0.562-1.312 0.481
Albumin 0.986 0.956-1.017 0.378
UA 1.000 0.999-1.001 0.472
eGFR 0.993 0.989-0.997 0.001
Hs-CRP 1.000 0.998-1.002 0.890
FIB 1.049 0.963-1.143 0.272
D-dimer 1.000 1.000-1.000 0.321
Troponin I 0.999 0.998-1.000 0.047
BNP 1.000 1.000-1.000 0.001
Discharge medication
Aspirin 0.634 0.485-0.829 0.001
Clopidogrel 1.402 1.084-1.814 0.010
Ticagrelor 0.713 0.551-0.922 0.010
Statins 1.085 0.654-1.800 0.752
ACEI/ARB 1437 1.054-1.959 0.022
B Blockers 1.068 0.818-1.394 0.629
LVEF 0.987 0.949-1.027 0.529
(Continued)
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TABLE 3 Continued

Variables HR 95% CI P-value
Discharge medication
Multivessel disease ‘ 1318 ‘ 1.029-1.688 0.029

TyG index ‘ 1.470 ‘ 1.256-1.722 < 0.001

HR, hazard ratio; CI, confidence interval; MACE, major adverse cardiovascular events;
STEMI, ST-elevation myocardial infarction; CHD, coronary heart disease; AF, atrial
fibrillation; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood
pressure; FPG, fasting plasma glucose; HbAlc, hemoglobin Alc; TG, triglycerides; TC, total
cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein
cholesterol; UA, uric acid; eGFR, estimated glomerular filtration rate; Hs-CRP, high-
sensitivity C-reactive protein; FIB, fibrinogen; BNP, B-type natriuretic peptide; ACEI,
angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; LVEF, left
ventricular ejection fraction; TyG, triglyceride-glucose index.

TyG T3 group demonstrated the steepest decline in event-free
survival. The estimated HRs for MACE from Kaplan-Meier
analysis were 1.535 (95% CI: 1.109-2.124, P = 0.010) for the TyG
T2 group and 2.141 (95% CI: 1.573-2.915, P < 0.001) for the TyG
T3 group, both compared with the T1 group.

4 Discussion

This study comprehensively investigated the association
between the TyG index and the risk of MACE in patients with
T2DM and HFpEF following AMI. Our findings revealed a clear
and consistent relationship between elevated TyG levels and
increased incidence of MACE. Patients in the highest TyG tertile
(T3) had a more than twofold increased risk of MACE compared to
those in the lowest tertile (T1), even after adjusting for multiple
clinical confounders. Moreover, the risk of MACE increased by
nearly 50% for each 1-unit rise in the TyG index. Subgroup analyses
confirmed the robustness of this association across various clinical
strata, including age, sex, hypertension status, Killip classification,
and presence of multivessel disease. These findings were further
supported by Kaplan-Meier survival curves and ROC analysis,
where the TyG index demonstrated modest but significant
predictive power for MACE and related outcomes.

Left ventricular dilation and dysfunction caused by ischemic
heart disease—specifically, structural and functional remodeling of
the left ventricle—can result in decreased LVEF or hemodynamic
abnormalities. However, in many patients with ischemic heart
disease, including those with CAD and coronary microvascular
dysfunction, this dysfunction can be delayed, inhibited, or even
reversed due to the widespread use of PCL This phenomenon,
referred to as HFpEF caused by either coronary large vessel
obstruction or microvascular dysfunction, has become more
widely recognized (29, 30). Increasingly, researchers have focused
on the relationship between metabolic disorders and the
development of HFpEF after myocardial infarction, especially in
the context of glucose metabolism, a field that remains
underexplored (31, 32).

In our study, the clinical characteristics grouped according to
TyG tertiles revealed statistically significant differences in outcomes
such as all-cause death, MACE, non-fatal myocardial infarction,
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TABLE 4 Multivariate Cox regression analysis of TyG and MACE.

10.3389/fendo.2025.1585067

Model 1 Model 2 Model 3
Variables

HR 95% ClI P-value HR 95% ClI HR 95% ClI
T1 Ref Ref Ref
T2 1.535 1.109-2.124 | 0.010 1.661 1.198-2303 | 0.002 1.622 1.169-2.251  0.004
T3 2.141 1.573-2.915 | <0.001 2.304 1.680-3.160 | <0.001 2.247 1.639-3.082  <0.001
TyG index 1.470 1.256-1.722 | <0.001 1.505 1.282-1.767 | <0.001 1.495 1272-1.757  <0.001

Model 1: unadjusted; model 2: adjusted for age, hypertension, STEMI, and Killip classification; model 3: adjusted for age, hypertension, STEMI, Killip classification, eGFR, aspirin, ACEI/ARB,

and multivessel disease.

HR, hazard ratio; CI, confidence interval; MACE, major adverse cardiovascular events; TyG, triglyceride-glucose index; T1, tertile 1; T2, tertile 2; T3, tertile 3; STEMI, ST-elevation myocardial
infarction; eGFR, estimated glomerular filtration rate; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker.

and unplanned revascularization among the three TyG groups. The
incidence of MACE, non-fatal myocardial infarction, and
unplanned revascularization increased with higher TyG levels.
Specifically, in patients with T2DM and HFpEF following AMI,
those with a TyG index reaching or exceeding 9.51 (in the T3 group)
should be closely monitored for potential MACE, non-fatal
myocardial infarction, and unplanned revascularization events.
After adjusting for confounding factors, the TyG index remained
an independent predictor of MACE in this population.

While previous studies have not extensively investigated the
correlation between the TyG index and ischemia-induced HFpEF or

TABLE 5 Stratified association of TyG and MACE.

its adverse outcomes, multiple studies have reported correlations
between the TyG index and various CVD as well as the risk of
cardiovascular events. For instance, Lyu et al. (33) found a non-
linear relationship between the TyG-BMI index and all-cause
mortality and HF-related rehospitalizations in HF patients. They
reported an inverse “J”-shaped curve, where the risk of all-cause
mortality decreased when the TyG-BMI index was below 240.0.
Similarly, Guo et al. (34) identified TyG and TG/HDL-C as
significant predictors of in-hospital mortality in non-diabetic
AMI patients. This finding aligns with the results of our study,
where TyG remained a key predictor for poor outcomes in patients

T1 T2 T3
Subgroups
HR (95% CI) HR (95% CI) HR (95% Cl) P for trend

Age

<75 years Ref 2.060 (1.160-3.660) | 0.014 2.865 (1.691-4.854) <0.001 <0.001

>75 years Ref 1.630 (1.083-2.453)  0.019 1.942 (1.291-2.922)  0.001 0.004
Gender

Male Ref 1.132 (0.709-1.807)  0.603 2.052 (1.354-3.109)  0.001 0.002

Female Ref 2.347 (1.443-3.818)  0.001 2.638 (1.620-4.297) <0.001 <0.001
STEMI

Yes Ref 1.246 (0.713-2.176)  0.440 2.659 (1.583-4.468) <0.001 <0.001

No Ref 1.944 (1.294-2.922)  0.001 2.244 (1.512-3.332) <0.001 <0.001
Hypertension

Yes Ref 1.477 (1.000-2.184)  0.050 1.994 (1.381-2.879) <0.001 0.001

No Ref 2.308 (1.245-4.279) | 0.008 2.899 (1.520-5.532)  0.001 0.002
Killip classification

I Ref 1.850 (1.154-2.964)  0.011 2.842 (1.761-4.585) <0.001 <0.001

-1v Ref 1.446 (0.915-2.284)  0.114 1.955 (1.284-2.976) | 0.002 0.006
Multivessel disease

Yes Ref 1.646 (1.043-2.596)  0.032 1.850 (1.188-2.882)  0.007 0.016

No Ref 1.714 (1.055-2.784)  0.030 2.926 (1.884-4.546) <0.001 <0.001

HR, hazard ratio; CI, confidence interval; MACE, major adverse cardiovascular events; TyG, triglyceride-glucose index; T1, tertile 1; T2, tertile 2; T3, tertile 3; STEMI, ST-elevation

myocardial infarction.
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FIGURE 1

The ROC analysis of TyG for predicting MACE (A), all-cause death (B), non-fatal myocardial infarction (C), and unplanned revascularization (D). ROC,
receiver operating characteristic; TyG, triglyceride-glucose index; AUC, area under the curve; Cl, confidence interval; MACE, major adverse
cardiovascular events.
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FIGURE 2

The Kaplan—Meier analysis of TyG with MACE (A), all-cause death (B), non-fatal myocardial infarction (C), and unplanned revascularization (D). TyG,

triglyceride-glucose index; MACE, major adverse cardiovascular events.
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with T2DM following AMI. Furthermore, Wang et al. (35)
demonstrated that the TyG index independently predicted future
MACE in diabetic patients with acute coronary syndrome (ACS),
with Kaplan-Meier survival curves showing significant event-free
survival differences between TyG quartiles. In our study, the
stratified analysis demonstrated that elevated TyG index levels
were consistently associated with an increased risk of MACE
across multiple clinical subgroups. Among patients aged <75
years, the risk of MACE in the TyG T2 and T3 groups was 2.060
and 2.865 times higher than in the T1 group, respectively. In those
aged 275 years, the risk was 1.630 times higher in T2 and 1.942
times higher in T3 compared to T1. In terms of sex, women in the
T2 and T3 groups had 2.347-fold and 2.638-fold higher risks,
respectively. Among men, only the T3 group showed a significant
increase in risk (2.052-fold). In patients without STEMI, the T2 and
T3 groups had 1.944-fold and 2.244-fold higher risks, respectively,
while in STEMI patients, the T3 group showed a 2.659-fold
increase. For patients with hypertension, the MACE risk was
1.477 times higher in T2 and 1.994 times higher in T3. Among
those without hypertension, the risk increased to 2.308 times in T2
and 2.899 times in T3. Among patients with Killip classification I,
the T2 and T3 groups had 1.850-fold and 2.842-fold higher risks,
respectively. In those with Killip classification II-IV, only the T3
group showed a notable increase (1.955-fold). For patients with or
without multivessel disease, both T2 and T3 groups demonstrated
elevated MACE risks. Notably, in patients without multivessel
disease, the T3 group had the highest risk, with a 2.926-fold
increase. In summary, the TyG index was positively associated
with MACE across various subgroups, with particularly stronger
predictive value in women, non-STEMI patients, those without
hypertension, and those without multivessel disease—highlighting
its potential utility in risk stratification for targeted management in
high-risk populations.

Beyond its cardiovascular implications, the TyG index has been
explored as a non-invasive marker for various diseases. Liu and
colleagues found that the TyG index was an effective predictor for
non-alcoholic fatty liver disease and related hepatic conditions,
including hepatic fibrosis, when coupled with TyG-derived indices
like TyG-BMI (36, 37). Additionally, research by Jiang et al. (38)
suggested that the TyG index was causally associated with a reduced
stroke risk, a finding that aligns with our results. In our study, ROC
curve analysis revealed that the TyG index significantly predicted
the risk of MACE, all-cause death, non-fatal myocardial infarction,
and unplanned revascularization, all with statistically significant
predictive value. Moreover, the Kaplan-Meier survival curves
showed significant differences between the TyG tertiles in the
survival probabilities for MACE, all-cause death, non-fatal
myocardial infarction, and unplanned revascularization over time.
Patients in the higher TyG groups exhibited the fastest decline in
survival probability, suggesting that a higher TyG index (above
9.51) correlates with worse clinical prognosis. In conclusion, while
the TyG index has been linked to the prediction of a range of
diseases, including CVD, liver fibrosis, and stroke, its association
with ischemia-induced HFpEF remains underexplored. However,
our study demonstrated that the TyG index was significantly
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correlated with the occurrence of MACE in T2DM patients with
AMI and HFpEF. Therefore, clinicians should maintain a high level
of vigilance for MACE, non-fatal myocardial infarction, and
unplanned revascularization in patients with higher TyG indices,
particularly when the index exceeds 9.51.

The mechanisms by which the TyG index contributes to MACE
in HFpEF patients following AMI are likely multifactorial. First, TyG
is a recognized surrogate marker of IR, a metabolic state that
promotes myocardial lipid accumulation, fibrosis, and impaired
ventricular relaxation, all of which contribute to diastolic
dysfunction and the development of HFpEF (39-42). Second,
elevated TyG levels have been associated with microvascular
dysfunction, particularly in diabetic populations. This dysfunction,
characterized by reduced nitric oxide bioavailability and endothelial
inflammation, leads to coronary microcirculatory impairment,
exacerbating myocardial ischemia and remodeling (43, 44). Third,
IR-induced alterations in myocardial calcium handling and activation
of profibrotic signaling pathways promote left ventricular
hypertrophy and reduced compliance, further worsening diastolic
performance (45, 46). These pathophysiologic processes—IR,
microvascular dysfunction, and diastolic impairment—together
may explain the observed association between higher TyG index
values and increased MACE risk in HFpEF patients. Our findings
underscore the importance of early glycemic-lipid metabolic
assessment and intervention, especially in T2DM patients post-
AMI with preserved ejection fraction, to mitigate cardiovascular
risk and improve long-term outcomes.

This study had several limitations. First, being retrospective in
nature, selection bias may be unavoidable. Second, patients with HFpEF
were primarily diagnosed using transthoracic echocardiography, which
lacks the sensitivity of exercise stress echocardiography and may lead to
missed diagnoses. Third, the lack of statistical significance for some
survival analysis outcomes could be attributed to the small sample size
and single-center design of the study. Fourth, the study population was
confined to Liaoning Province, China, which may limit the
generalizability of the findings to other populations. Fifth, this study
did not employ propensity score matching (PSM) or inverse probability
of treatment weighting (IPTW) to further control for potential
confounding. The primary reasons for this were the relatively small
sample size and missing data in some covariates, which limited the
feasibility and stability of such analyses. While multivariable Cox
regression was used to adjust for known clinical covariates,
unmeasured confounding cannot be entirely excluded. Future
prospective studies with larger and more diverse populations should
consider incorporating PSM or IPTW to strengthen causal inference
and reduce residual bias. Sixth, patients lost to follow-up and those who
did not undergo interventional procedures were excluded from the
analysis. While this was done to ensure data completeness and
treatment consistency, it may have introduced survivorship bias, as
individuals with early adverse events could have been inadvertently
excluded. We acknowledge this potential bias and recommend that
future studies adopt strategies such as prospective design, improved
follow-up systems, or multiple imputation to minimize its impact.
Seventh, although the TyG index was found to be statistically associated
with MACE, its overall predictive value was limited. This suggests that,
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while the TyG index may have some prognostic relevance, it alone may
not provide strong discriminatory power in clinical practice. Moreover,
this study did not compare the TyG index with established risk scoring
systems such as the Global Registry of Acute Coronary Events
(GRACE) score and the Thrombolysis in Myocardial Infarction
(TIMI) score, due to the unavailability of complete data required
for those calculations. This lack of comparison limits the ability to
contextualize the TyG index within existing clinical risk assessment
frameworks. Future studies should include these established tools
to better evaluate the added value of the TyG index in cardiovascular
risk stratification. Eighth, while the TyG index was found to be
associated with MACE, the underlying biological mechanisms—such
as insulin resistance, chronic inflammation, or endothelial
dysfunction—were not directly investigated in this study. As this was
a retrospective analysis based on routine clinical records, mechanistic
biomarkers such as fasting insulin (for Homeostasis Model
Assessment of Insulin Resistance), inflammatory cytokines (e.g.,
interleukin-6, tumor necrosis factor-alpha), or markers of
oxidative stress were not collected. This limits the ability to explore
the potential pathophysiological pathways linking TyG to adverse
cardiovascular outcomes. Future prospective studies incorporating
metabolic and inflammatory biomarkers are warranted to better
elucidate the biological basis of the observed associations. Lastly,
although the TyG index shows promise in predicting and
assessing various diseases, there remains no standardized range or
critical value for the index across studies. Further research with larger,
multicenter, and prospective designs is necessary to clarify the
diagnostic cutoff points and prognostic value of the TyG index in
different diseases.

5 Conclusions

Our study found that in T2DM patients with HFpEF combined
with AMI, the incidence of MACE was higher, and the prognosis
worsened as the TyG index increased. The TyG index proved to be
an independent predictor of MACE and could serve as a valuable
tool for risk stratification and prognosis in this population.
Clinicians should be particularly alert to the risks associated with
left ventricular dysfunction in patients with elevated TyG indices
during the management of AML
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Objective: This study aimed to assess the impact of nine exercise interventions
(resistance training [BT, ball training [BT], resistance + walking [RT+W alk],
resistance + running [RT + Running], resistance + cycling [RT + bicycle],
running, and Tai Chi) on insulin sensitivity in patients with diabetes.

Methods: A systematic search of five databases (PubMed, EMBASE, Cochrane,
Web of Science, and CNKI) for RCTs investigating the effects of exercise
interventions on insulin sensitivity in patients with diabetes was conducted. The
quality of the included studies was assessed using the Cochrane Manual version
5.1.0 Risk of Bias Assessment Tool (ROB). Data analysis software was used for the
synthesis and analysis.

Results: This Meta-analysis comprised 21 randomized controlled trials involving
1140 participants. Cycling significantly reduced the fasting glucose index in
individuals with diabetes (SUCRA score=90.7%). Resistance exercise exhibited
superior efficacy in enhancing insulin sensitivity compared with alternative
interventions in patients with diabetes (SUCRA score=71.8%). Furthermore, the
combination of resistance exercise and running resulted in a noteworthy
decrease in HOMA-IR levels (SUCRA score=64.2%).

Conclusion: Cycling, resistance training, and combined aerobic and resistance
exercises have been shown to effectively enhance fasting blood glucose levels,
insulin secretion, and insulin sensitivity in individuals with diabetes. However,
additional studies with longer follow-up periods and more rigorous
methodologies are required to further validate these findings.

Systematic review registration: https://ww.crd.york.ac.uk/PROSPERO/,
identifier CRD42023450107.

exercise, insulin resistance, diabetes patients, network meta-analysis, systematic review
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1 Introduction

Diabetes has emerged as a critical global health challenge, with
the 2023 Global Burden of Disease Study reporting approximately
529 million affected individuals worldwide and projecting a rise to
1.31 billion by 2050 (1). Type 2 diabetes (T2DM), characterized
by insulin resistance and impaired insulin secretion, accounts
for over 90% of diabetes cases and imposes substantial economic
burdens exceeding $1 trillion USD annually in healthcare
expenditures (2, 3).

Physical exercise is a cornerstone of T2DM management, with
distinct modalities operating through specific physiological
pathways to improve glycemic control. Aerobic exercise enhances
insulin sensitivity primarily through GLUT4 translocation in the
skeletal muscle, facilitating glucose uptake independent of insulin
signaling (4). This process is amplified by mitochondrial biogenesis
via the AMPK-PGClo pathway, which improves oxidative capacity
(5), while concurrent reductions in pro-inflammatory cytokines
(TNF-o and IL-6) ameliorate adipose tissue dysfunction (6).
Resistance training exerts complementary effects through muscle
hypertrophy, which expands the glucose storage capacity (7),
enhances post-receptor insulin signaling via IRS-1/PI3K/Akt
phosphorylation cascades (8), and suppresses hepatic
gluconeogenesis (9). Combined aerobic-resistance training
synergizes these mechanisms, with recent meta-analyses
confirming superior HbAlc reductions compared to single-
modality interventions (A = -0.17%, p < 0.01) (10). Despite these
advances, the comparative efficacy of specific exercise modalities is
unclear. This network meta-analysis directly evaluated nine
interventions, including resistance training, aerobic modalities
(cycling and running), combined regimens, and mind-body
exercises, to provide evidence-based guidance for optimizing
exercise prescriptions in diabetes care.

TABLE 1 Search strategy on PubMed.

#1

10.3389/fendo.2025.1409474

2 Materials and methods

This systematic review was registered in the Prospero database
(ID: CRD42023450107) under the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses for Network Meta-Analyses
(PRISMA-NMA) and the Cochrane Intervention Review.

2.1 Search strategy

We conducted a comprehensive search across multiple
databases, including PubMed, Embase, Cochrane Library, Web of
Science, and CNKi, from January 2004 to December 2022, to
identify eligible studies. The search keywords were formulated
based on the PICOS framework, and the search strategies were
developed by PICOS principles: (P) population, diabetic patients;
(I) intervention, exercise; (C) comparator, control group receiving
only usual care and appropriate rehabilitation measures (placebo or
other forms of exercise); and (O) Outcome - Exercise tests in
diabetic patients. Finally, we focused on randomized controlled
trials as the preferred study design. Taking PubMed as an example,
detailed search strategies are provided in Table 1.

2.1.1 Definition of exercise interventions
The nine exercise interventions evaluated in this study are
abbreviated as follows:

RT: Resistance training

BT: Ball training

RT+Walk: Combined resistance training and walking
RT+Running: Combined resistance training and running

RT+Bicycle: Combined resistance training and cycling

“Exercise”[MeSH]

CCCCCCCCCCCCCC((((Exercises| Title/ Abstract] JOR Physical Activity[Title/Abstract])OR Activities, Physical[Title/ Abstract])OR Activity, Physical[Title/Abstract])OR
Physical Activities[Title/Abstract])OR Exercise, Physical[Title/ Abstract]JOR Exercises, Physical[Title/Abstract])OR Physical Exercise[Title/ Abstract])OR Physical
Exercises[Title/Abstract])OR Acute Exercise[Title/Abstract])OR Acute Exercises[Title/Abstract])OR Exercise, Acute[Title/Abstract])OR Exercises, Acute[Title/
Abstract])OR Exercise, Isometric[Title/ Abstract]JOR Exercises, Isometric[Title/Abstract])OR Isometric Exercises[Title/Abstract])OR Isometric Exercise[Title/
Abstract])OR Exercise, Aerobic[Title/Abstract])OR Aerobic Exercise[Title/Abstract])OR Aerobic Exercises|Title/Abstract])OR Exercises, Aerobic[Title/Abstract])OR
Exercise Training[Title/Abstract])OR Exercise Trainings[Title/Abstract])OR Training, Exercise[Title/ Abstract])

#2

#3

#4

#1 OR #2

“Insulin”[MeSH]

((((((((((Insulin[ Title/Abstract])OR Insulin, Regular[Title/Abstract])OR Regular Insulin[Title/Abstract])OR Soluble Insulin[Title/Abstract])OR Insulin, Soluble[Title/

#5

Abstract])OR Insulin A Chain[Title/Abstract])OR Sodium Insulin[Title/Abstract])OR Insulin, Sodium[Title/Abstract])OR Novolin[Title/Abstract])OR Iletin[Title/

Abstract])OR Insulin B Chain[Title/Abstract])OR Chain, Insulin B[Title/Abstract])

#6
#7

#8
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Bicycle: Cycling training alone

Running: Running training alone

Taichi: Tai Chi practice

CON: Control group (no exercise intervention, routine
care only)

All combined training involved sequential sessions of resistance
and aerobic exercise within the same day.

2.2 Inclusion criteria

(1) Randomized controlled clinical trials involving patients with
diabetes. (2) The experimental group utilizes various exercise
methods as interventions for diabetes. (3) The control group
receives conventional care only. (4) Active cooperation of
participants in the experimental process is required. (5) Outcome
measures include at least one of the following: Fasting blood glucose
levels (FBG), Homeostasis Model Assessment of insulin Resistance
(HOMA-IR), fasting insulin level (FI), and homeostasis model of
insulin resistance.

2.3 Exclusion criteria

(1) Papers with incomplete or insufficient data or reporting
information are excluded. (2) Non-randomized controlled trials,
animal studies, conference reports, literature reviews, abstracts, and
protocols are excluded.

2.4 Study selection

The two researchers used NoteExpress, a literature management
software, to screen and exclude duplicate articles. Initially, they
reviewed the titles and abstracts to exclude non-randomized
controlled trials, systematic reviews, conference papers, protocols,
and communications while retaining the remaining literature.
Subsequently, both researchers independently read through the
remaining literature and conducted further screening. Only when
there was agreement on inclusion criteria did an article finally get
included; otherwise, a third researcher was consulted for discussion
and resolution.

2.5 Data extraction

Two researchers independently extracted the data and assessed
study quality using the Cochrane Handbook, while a third
individual addressed any issues that arose post-data extraction.
The extracted data encompassed authorship details (author, year,
country of publication), average age, sample size, intervention
duration, and outcome indicators such as risk of bias assessment.
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2.6 Risk of bias in individual studies

We assessed the literature quality based on the Risk Bias
Assessment Tool (ROB) outlined in the Cochrane Manual 5.1.0,
considering seven key domains for evaluating randomized
controlled trials: (1) Random sequence generation, (2) Allocation
concealment, (3) Blinding of participants and personnel, (4)
Blinding of outcome assessors, (5) Handling of incomplete
outcome data, (6) Selective outcome reporting, and (7) Other
potential sources of bias.

2.7 Subgroup analysis and outcome
indicators

We conducted a subgroup analysis to categorize the
experiments based on medication status. Specifically, 13 trials
received metformin treatment, five received insulin treatment,
and the remaining three did not receive any hypoglycemic drugs.
The findings of our meta-analysis remained robust across these
subgroups, indicating that exercise intervention benefits blood
glucose levels independently of drug therapy. Our primary
outcome measure was the change in fasting plasma glucose
(AFPG) levels from baseline (mmol/L). We also compared fasting
insulin concentration (AFI; pU/ml) and HOMA-IR index
(AHOMA-IR) between the experimental and control groups.

We quantified between-study heterogeneity using I* statistics.
For fasting blood glucose (FBG), I* = 62% (95%CI: 48-75%),
indicating moderate heterogeneity. For fasting insulin, I* = 45%
(95%CI: 28-59%), suggesting low-moderate heterogeneity. For
HOMA-IR, I = 68% (95%CIL: 52-80%), reflecting moderate
heterogeneity. These values align with expected variations in
exercise interventions across diverse populations.

2.8 Data analysis

Sensitivity analyses excluding studies with high/unclear risk of bias
in >3 Cochrane domains (n=5 studies) confirmed robustness: FBG
reduction with cycling [MD = -50.21 mmol/L, 95%CI -92.15 to -8.27],
fasting insulin with RT vs. BT [MD = -25.94 uU/ml, 95%CI -49.83
to -2.05], and HOMA-IR ranking of RT+Running (SUCRA=62.1%). In
our included studies involving various exercise interventions, all
variables were continuous and expressed as the mean and standard
deviation (SD) with a 95% confidence interval (CI) (11). The mean
difference (MD) was used to represent the net change in the measured
variables between the experimental and control groups, with a negative
MD value indicating a greater reduction in the experimental group (12).
A random-effects model was employed for the meta-analysis while
calculating the SUCRA values to rank the interventions. Funnel plots
were used to assess publication bias, and frequency analysis of random-
effects models was conducted to evaluate the effectiveness of multiple
interventions in addressing potential differences among studies (13).
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The effectiveness of multiple interventions in addressing potential
differences between studies was evaluated using a frequency analysis
of random-effects models (13). Stata software (version 15.1) was
employed to model four chains using the Markov chain Monte Carlo
(MCMC) method. The fit and consistency of the model were assessed
using the Deviation Information Criterion (DIC). Network diagrams
illustrating the different motion interventions were generated using
Stata software (version 15.1). In case a closed-loop mesh appeared in
the network, node splitting analysis was conducted to examine local
consistency, with a passing consistency test defined as a P value >0.05.
The network diagram consists of nodes and lines connecting them,
where the width of each node and connecting line is proportional to
the sample size of the respective study (14). Furthermore, the
interventions were ranked based on their SUCRA values, and a
ranking table was created to compare their relative effectiveness. To
assess potential bias between the studies, heterogeneity was examined
by constructing a funnel plot (15). The degree of intervention was
summarized as an S value representing the area under the cumulative
ranking curve; larger values indicated better intervention effects
within a scoring range of 0-1. Similarly, the SUCRA values ranged
from 0% to 100%, with higher scores indicating superior intervention
effects. However, caution should be exercised when interpreting these
scores unless genuine clinical differences exist between the
interventions (16).

To address potential confounding by exercise duration, we
calculated the metabolic equivalents (MET-min) for each
intervention using standard compendium values (17). For example:

- Cycling: 8.0 METs
- Running: 10.0 METs
- Resistance training: 6.0 METs

Sensitivity analyses were performed to assess whether duration-
adjusted energy expenditure influenced primary outcomes.

3 Results
3.1 Study and identification and selection

A total of 7761 articles were retrieved from five electronic databases,
and three were retrieved. After excluding 2281 duplicate references, 5,
125 articles were eliminated based on the evaluation of their titles and
abstracts, resulting in 5480 remaining references. Subsequently, a
comprehensive review was performed on the remaining 355 papers
by reading them in their entirety. Following this assessment, an
additional 334 papers were excluded, ultimately leading to the
inclusion of only 21 studies for the meta-analysis. (Show in Figure 1).

3.2 Quality evaluation of the included
studies

Given the diverse range of movement modes of these
interventions, achieving blinding for both subjects becomes
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challenging. Consequently, informed consent was obtained from
all participants and their families before the experiment.

The risk-of-bias assessment across seven domains is
summarized in Figure 2, revealing consistent limitations in
participant blinding due to exercise intervention nature.”

3.3 Features of the included study

Table 2 presents the baseline characteristics of the included
studies. The present study included 21 randomized controlled trials
involving 1140 participants. The 21 trials, conducted between 2004
and 2022, encompassed a diverse age range of 10-69 years. The
exercise interventions comprised resistance training (RT), aerobic
training (such as cycling and running), combination training, Tai
Chi, and ball games. The control group received standard treatment
and daily care without exercise intervention. Control group
interventions consisted of combined resistance and walking
exercise training (18, 19), combined resistance and running exercise
training (15, 20, 21), combined resistance and cycling exercise
training (22), bicycle training (23-25), combined resistance and
cycling exercise training along with Tai Chi Qigong practice (24,
26, 27), ball game exercises (28, 29), running exercises (20, 30-34) as
well and standalone resistance exercises (22, 30, 31, 35, 36). FBG was
employed as an outcome indicator in 19 studies, while fasting insulin
was an outcome indicator in all included studies. HOMA-IR was used
in 15 studies for evaluation. These studies were conducted in various
countries, including China, South Korea, the United States, Brazil,
Iran, Turkey, the Netherlands, Greece, the United Kingdom, and
Germany. The detailed characteristics of the included studies are
provided in Table 2.

3.4 Network meta-analysis

The complete network diagram is shown in Figures 3a, 4a,
and 5a.

3.4.1 Fasting blood glucose index results of
diabetic patients

The meta-analysis results demonstrated that the intervention
effect in the bicycle group was superior. Specifically, when
comparing the cycling group with both anaerobic and running
groups [MD=-46.63, 95%CI (-91.96,-1.29)], and when comparing
the running group with the cycling group [MD=-52.19, 95%CI
(-101.70,-2.68)], significant differences were observed in favor of the
bicycle group’s intervention effect (Figure 3b). Furthermore,
compared to the control group [MD=-52.64, 95%CI (-95.72,-
9.55)], ball games [MD=-56.11, 95%CI (-103.29,-8.94)], and
Tai Chi group [MD=-73.02, 95%CI (-120.-17,-25-86)], fasting
insulin sensitivity exhibited a more pronounced improvement in
insulin sensitivity (Figure 3b). Regarding the SUCRA ranking score
(Figure 3b), cycling practice ranked first with a SUCRA score of
90%. Pairwise comparisons between the interventions are presented
in Table 3.
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Flow diagram of literature selection.

Notably, cycling interventions had longer session durations
(mean 90 min) compared to running (mean 45 min) and resistance
training (mean 50 min). However, after adjusting for MET-minutes,
cycling remained superior in reducing FBG [MD = -38.72, 95%CI
(-75.15, -2.29)].

3.4.2 Fasting insulin index results of diabetic
patients

In comparison to ball games, resistance exercise demonstrated a
significant impact on enhancing insulin sensitivity [MD=-26.71, 95%
CI (-51.23, -2.19)].The Qigong exercise group exhibited significant
differences compared to the aerobic exercise group [MD=33.04, 95%
CI (4.82, 61.26)], bicycle exercise group [MD=30.54, 95% CI (4.41,
56.67)], aerobic walking combined exercise group [MD=26.03, 95% CI

Frontiers in Endocrinology

(0.40, 51.66)], aerobic running combined exercise group [MD=29.74,
95% CI (4.16, 55.32)], running exercise group [MD=29.68,95%CI
(4.10,55.26)], the general control group[MD=28.54,95%CI
(5.22,51.86)], and the aerobic and bicycle combined exercise group
[MD=28. 21,95%CI(2.30,54.12)], the results suggest that the Qigong
exercise intervention had limited impact on improving insulin
sensitivity parameters. The bicycle group (SUCRA: 90.7%) exhibited
superior efficacy in enhancing insulin sensitivity parameters, as
demonstrated in Figure 4b of the SUCRA analysis. The effect size of
the key comparison indicates that, Resistance training vs. Ball
training: MD = -26.71 pU/ml, 95%CI (-51.23, -2.19);Qigong vs.
Control: MD = -28.54 uU/ml, 95%CI (-51.86, -5.22);Cycling vs.
Control: MD = -2.00 pU/ml, 95%CI (-13.79, 9.79). The MD for
Resistance Training versus Ball Training and Qigong versus control
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level, eliminating the need for additional axis units.

was statistically significant. A comparison of the various interventions
is shown in Table 4.

3.4.3 Results of the HOMA-IR index for diabetic
patients

The meta-analysis chart results (Figure 5b) revealed no statistically
significant differences in the reduction of HOMA-IR index among the
intervention groups. The SUCRA value indicated that the
combination of aerobic exercise and running exhibited the highest
ranking for reducing HOMA-IR values, thus proving to be the most
effective approach compared to other exercises (SUCRA: 64.2%). Ball
games ranked next (SUCRA: 62.7%), as shown in Figure 4b. HOMA-
IR changes versus control:RT+Running: MD = -1.20, 95%CI (-11.70,
9.30); ball training: MD = -3.83, 95%CI (-17.84, 10.19); Cycling: MD =
-0.10, 95%CI (-3.93, 3.73); Although RT+Running had the highest
SUCRA ranking, its effect versus control did not reach statistical
significance (95%CI crosses zero). The pairwise comparison of the
interventions is presented in Table 5.

3.5 Publication bias test

The included trials were assessed using the Cochrane risk
assessment tool and were determined to have a low-to-moderate
risk of bias. Additionally, no significant publication bias was
observed in the funnel plots (Figures 6a-c).

4 Discussion

In this meta-review and meta-analysis, we incorporated data
from studies conducted across multiple continents, including the
United States, Europe, Asia, and Australia, to augment the sample
size and enhance the generalizability of our findings. By comparing
the effects of nine different exercise interventions, we observed that
cycling, resistance exercise, and combined resistance with running
exercise exhibited comparatively superior enhancements.
Specifically, cycling showed the largest FBG reduction [MD =
-52.64 mmol/L vs. control], resistance training significantly
improved insulin sensitivity over ball games [MD = -26.71 puU/
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ml], and RT+Running had the highest probability (SUCRA=64.2%)
for HOMA-IR reduction despite non-significant effects versus
control [MD = -1.20].

By comparing the effects of nine different exercise interventions
on fasting blood glucose, fasting insulin, and HOMA-IR levels
among patients with diabetes, we observed that cycling, resistance
exercise, and combined resistance with running exercise
demonstrated relatively superior improvements in glycemic
control indicators, including FPG, FI, and HOMA-IR index.
Cycling is most likely to reduce fasting plasma glucose (FPG)
levels, which is consistent with previous evidence indicating that
cycling recruits a more significant number of type I muscle fibers
and improves glucose utilization (37, 38). The extensive
engagement of muscles and the absence of weight-bearing
characteristics make cycling a safer and more effective exercise
option for individuals with type 2 diabetes mellitus (T2DMM) (39).
Utilizing bicycles mobilizes large muscle groups and eliminates leg
weight-bearing and ground friction, making it remarkably safe and
effective for patients with T2DMM. Cycling elicits greater
recruitment of type I muscle fibers, which demonstrate higher
insulin sensitivity and GLUT4 density (4, 39). Li et al.
demonstrated that both high-intensity interval cycling and
moderate-intensity cycling significantly reduced fasting glucose in
T2DMM patients (40).

During exercise under normoglycemic-hyperinsulinemic
conditions, skeletal muscles account for nearly all human glucose
uptake. The increase in muscle glucose uptake during exercise is
attributed to enhanced contraction activity and increased blood
flow within the muscles, which facilitates glucose transport (41).
The higher level of glucose utilization observed during cycling
compared with running may be due to the greater contraction
activity resulting from the larger active muscle mass. Muscle fiber
recruitment and glycogen utilization patterns differ among various
forms of exercise. It has been discovered that the effect on muscle
glycogen supply by type I fibers was superior in the group
undergoing cycling interventions compared to those undergoing
running interventions. Type I fibers possess higher insulin content,
are more sensitive to insulin stimulation, and can recruit more
GLUT4 transport proteins, thereby enhancing the skeletal muscle’s
ability to take up and transport glucose, an effect associated with
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TABLE 2 Detailed characteristics of the studies included in meta-analysis.
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TABLE 2 Continued

Country Year Age (mean+SD)  Total/male/female Intervention Control Outcome
Bicycle
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TABLE 2 Continued

Country

Iran

USA

Britain

Iran

CON, control group with routine care (no exercise); T, experimental group; C, control group; RT, resistance training; AT, Aerobic training; T+C, The ages of the experimental and control groups were not reported separately in the study. Only the overall age was reported;
FBG, Fasting blood glucose; HOMA-IR, Homeostasis model assessment of insulin resistance.

Year

2015

2014

2015

2014

Age (mean+SD)

T:49.29 (5.82)
C:49 (8.16)

T:60 (1)
c61 (1)

T21 (1)
C21 (1)

RT:40.4 (5.2)
AT:39.6 (3.7)
C:38.9 (4.1)

Total/male/female

T:27/0/27
C:26/0/26

T:37/0/37
C:40/0/40

T:6/6/0
C:9/3/6

RT:12/12/0
AT:12/12/0
C:10/10/0

Intervention

Running

Length of Intervention:
Freq: 3 times a week
Duration: 50 min

Running

Length of Intervention:
Freq: 3 times a week
Duration: 45 min

RT

Length of Intervention:
Freq: 3 times a week
Duration: 2 hours

RT

Length of Intervention:
Freq: 3 times a week
Duration: 45-60 min
Running

Length of Intervention
Freq: 3 times a week
Duration: 30 min
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(a) Network meta-analysis figure for FBG; (b) SUCRA plot for FBG. The "X-axis" is labeled "Rank”, indicating the relative efficacy ranking of
interventions (1=most effective). The “y-axis" is labeled "Cumulative Probability”, representing the probability of each intervention being ranked as the

best option.

increased insulin-stimulated glucose uptake capability (37, 39).
These findings suggest that cycling elicits greater recruitment of
type I fibers and higher glucose utilization than running does.
This study suggests that resistance training is beneficial for
improving insulin utilization in patients with type 2 diabetes.
Compared to conventional exercise, resistance training can more
effectively promote skeletal muscle glucose utilization and uptake due
to its ability to increase muscle mass and cross-sectional area (42, 43),
thereby facilitating insulin signaling and peripheral tissue glucose
uptake (44, 45). Resistance training can augment glucose
phosphorylation in skeletal muscle cells, facilitating the conversion
of blood sugar into simple sugars, thereby promoting optimal insulin
secretion and maintaining blood sugar homeostasis (44, 45). Long-
term (>12 weeks) high-intensity resistance training has been shown
to significantly enhance insulin sensitivity and sustain physical
function for a duration that surpasses that of aerobic exercise (46).
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The findings of various studies have demonstrated that engagement
in resistance exercise can significantly enhance metabolic health
during weight recovery, including the reduction of fasting blood
glucose levels and enhancement of insulin sensitivity (47). In a 24-
week study, a comparison between resistance training and aerobic
exercise revealed that the former enhanced insulin sensitivity and
glucose uptake in muscles mediated by insulin (46). In general,
resistance training enhances insulin sensitivity and improves fasting
glucose levels in individuals diagnosed with type 2 diabetes (46, 48).

The combination of running and anaerobic exercise
demonstrated superior efficacy in alleviating insulin resistance, as
supported by a significant reduction in the HOMA-IR index,
indicating an enhanced improvement in insulin sensitivity. The
underlying mechanisms potentially involve augmented lipid
oxidation and glycogen utilization (38), improved mitochondrial
function (49), and enhanced muscle mass and cardiorespiratory
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ranked as the best option.

fitness (40). Type 2 diabetes is characterized by insulin resistance
(IR) and relative insulin insufficiency, leading to glucose intolerance
and subsequent elevation of blood glucose levels (40). However,
preserving islet B-cell function may be pivotal in preventing T2DM
onset (49, 50). Notably, the combined impact of running and
resistance training on [-cell function surpasses that achieved
through either aerobic or resistance training alone (51), likely
attributable to the prolonged duration and heightened intensity
associated with combined training regimens. Low-load high-
repetition resistance training has emerged as an alternative form
of aerobic-based resistance training capable of promoting muscle
hypertrophy and strength gains similar to those observed with high-
load low-repetition protocols (51, 52). In the context of combined
training approaches, increased fat loss during resistance exercise
aids in augmenting glucose uptake while concurrently enhancing
skeletal muscle mitochondrial oxidative capacity. This synergistic
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effect maximizes reductionions in body fat content while expediting
glycogen consumption during aerobic exercise sessions (53).

5 Advantages and limitations

The methodology employed in this study was highly rigorous and
systematic. We conducted a comprehensive search across five
electronic databases, strictly adhering to predefined criteria, and
identified 21 articles encompassing a substantial sample size of 1140
patients with diabetes. To ensure accuracy, the selected articles
underwent double-checking procedures, and we incorporated various
specific joint exercise measures targeting both aerobic and anaerobic
activities, thereby providing updated and more comprehensive
evidence-based recommendations on how exercise can effectively
reduce blood glucose levels and enhance insulin sensitivity.
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FIGURE 5
(a) Network meta-analysis figure for HOMA-IR; (b) SUCRA plot for HOMA-IR.
Nevertheless, certain limitations of this meta-analysis should 4. Blinding impossibility: Participant blinding was unattainable
be acknowledged. due to the nature of the exercise intervention.
1. Cycling duration confounder: The observed superiority of Future directions: (a) Match interventions by MET-minutes to

cycling (e.g., FBG MD=-52.64 vs control) must be isolate modality effects; (b) validate findings with direct insulin
interpreted in the context of its typically longer session  sensitivity measures; (c) extend follow-up beyond 6 months.
durations (35 min-3 h vs 30 min-2 h for running). While

our MET-adjusted analysis suggested that duration alone

did not fully explain efficacy (54), energy expenditure 6 Conclusion

differentials remained a potential confounder.

2. Surrogate markers: Reliance on FBG/FI/HOMA-IR rather than Our study conducted a systematic review and network meta-
gold-standard measures (for example, hyperinsulinemic-  analysis to compare the effects of different exercise interventions on
eug clamps); glycemic control in patients with diabetes. The results demonstrated

3. Language bias: The inclusion of the CNKI database may limit ~ that cycling, resistance training, and combined resistance and
generalizability, although funnel plots showed symmetry. aerobic training effectively improved fasting blood glucose levels,
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TABLE 3 League table on FBG.

Bicycle

Bicycle

-0.96 (-25.93,24.02)

RT+Bicycle

26.37 (-21.52,74.26)

RT_Running

46.63 (1.29,91.96)

Running

52.19 (2.68,101.70)

52.64 (9.55,95.72)

RT+Walk

35.71 (-15.40,86.82)

56.11 (8.94,103.29)

73.02 (25.86,120.17)

0.96 (-24.02,25.93)

RT

27.33 (-26.68,81.33)

47.58 (-4.15,99.31)

53.15 (-2.28,108.57)

53.59 (3.82,103.36)

36.67 (-20.19,93.53)

-52.39 (-105.07,0.29)

73.97 (20.64,127.30)

2637 (-74.26,21.52)

-27.33 (-81.33,26.68)

RT+Bicycle

20.26 (-36.01,76.52)

25.82 (-33.86,85.50)

26.27 (-28.20,80.74)

9.34 (-51.68,70.36)

-50.85 (-108.21,6.52)

46.65 (-11.10,104.39)

-46.63 (-91.96,-1.29)
-52.19 (-101.70,-2.68)
-52.64 (-95.72,-9.55)

-35.71 (-86.82,15.40)

-47.58 (-99.31,4.15)
-53.15 (-108.57,2.28)
-53.59 (-103.36,-3.82)

-36.67 (-93.53,20.19)

-20.26 (-76.52,36.01)
-25.82 (-85.50,33.86)
-26.27 (-80.74,28.20)

-9.34 (-70.36,51.68)

RT+Running
-5.56 (-33.75,22.62)
-6.01 (-20.13,8.11)

10.92 (-20.00,41.83)

5.56 (-22.62,33.75)
Running
-0.45 (-24.84,23.95)

16.48 (-20.28,53.24)

6.01 (-8.11,20.13)
0.45 (-23.95,24.84)
CON

16.93 (-10.57,44.43)

-10.92 (-41.83,20.00)
-16.48 (-53.24,20.28)
-16.93 (-44.43,10.57)

RT+Walk

-53.42 (-108.84,2.01)
29.75 (-28.03,87.52)
348 (-15.90,22.86)

57.07 (3.72,110.42)

26.39 (2.55,50.23)
20.83 (-10.22,51.87)
20.38 (1.18,39.57)

37.31 (3.77,70.84)

-56.11 (-103.29,-8.94) 52.39 (-0.29,105.07) 50.85 (-6.52,108.21) 53.42 (-2.01,108.84) -29.75 (-87.52,28.03) -3.48 (-22.86,15.90) -57.07 (-110.42,-3.72) = BT -9.49 (-33.45,14.47)
73.02 (-120.17,-25.86) | -73.97 (-127.30,-20.64) | -46.65 (-104.39,11.10) -26.39 (-50.23,-2.55) -20.83 (-51.87,10.22) -20.38 (-39.57,-1.18) -37.31 (-70.84,-3.77) | 9.49 (-14.47,33.45) Taichi
Bold values: indicate statistically significant differences (P < 0.05).
TABLE 4 League table on fasting insulin.
RT Bicycle RT+Walk RT+Running Running CON RT+Bicycle BT QiGong
RT -2.50 (-13.15,8.15) -7.01 (-26.12,12.11) -3.30 (-22.34,15.75) -3.36 (-22.41,15.70) -4.50 (-20.38,11.39) -4.83 (-24.32,14.66) 26.71 (2.19,51.23) -33.04 (-61.26,-4.82)

2.50 (-8.15,13.15)
7.01 (-12.11,26.12)

3.30 (-15.75,22.34)

Bicycle
4.51 (-11.37,20.38)

0.80 (-14.99,16.59)

-4.51 (-20.38,11.37)
RT+Walk

-3.71 (-18.65,11.23)

-0.80 (-16.59,14.99)
3.71 (-11.23,18.65)

RT+Running

-0.86 (-16.66,14.95)
3.65 (-11.31,18.61)

-0.06 (-10.56,10.44)

-2.00 (-13.79,9.79)
2.51 (-8.12,13.14)

-1.20 (-11.70,9.30)

-2.33 (-18.65,13.99)
2.18 (-13.32,17.68)

-1.53 (-16.95,13.89)

3.01 (-13.10,19.12)
6.01 (-13.16,25.17)

3.82 (-15.23,22.87)

-30.54 (-56.67,-4.41)
-26.03 (-51.66,-0.40)

-29.74 (-55.32,-4.16)

336 (-15.70,22.41)

0.86 (-14.95,16.66)

-3.65 (-18.61,11.31)

0.06 (-10.44,10.56)

Running

-1.14 (-11.66,9.38)

-1.47 (-16.90,13.96)

7.04 (-12.02,26.09)

-29.68 (-55.26,-4.10)

4.50 (-11.39,20.38)
4.83 (-14.66,24.32)
-26.71 (-51.23,-2.19)

33.04 (4.82,61.26)

2.00 (-9.79,13.79)
2.33 (-13.99,18.65)
-3.01 (-19.12,13.10)

30.54 (4.41,56.67)

251 (-13.14,8.12)
-2.18 (-17.68,13.32)
-6.01 (-25.17,13.16)

26.03 (0.40,51.66)

Bold values: indicate statistically significant differences (P < 0.05).

1.20 (-9.30,11.70)
1.53 (-13.89,16.95)
-3.82 (-22.87,15.23)

29.74 (4.16,55.32)

1.14 (-9.38,11.66)
1.47 (-13.96,16.90)
-7.04 (-26.09,12.02)

29.68 (4.10,55.26)
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CON
0.33 (-10.96,11.62)
3.83 (-10.19,17.84)

28.54 (5.22,51.86)

£0.33 (-11.62,10.96)
RT+Bicycle
-7.53 (-39.45,24.40)

28.21 (2.30,54.12)

-3.83 (-17.84,10.19)
7.53 (-24.40,39.45)
BT

-1.83 (-9.41,5.75)

-28.54 (-51.86,-5.22)
-28.21 (-54.12,-2.30)
1.83 (-5.75,9.41)
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TABLE 5 League table on HOMA-IR.

RT+Running BT

RT+Running

0.96 (-5.50,7.42)

Running

0.20 (-4.10,4.49)

RT+Bicycle

0.51 (-3.79,4.80)

Bicycle

0.88 (-3.58,5.33)

CON

0.98 (-1.30,3.25)

10.3389/fendo.2025.1409474

RT+Walk

0.19 (-4.13,4.50)

RT

1.58 (-4.20,7.35)

-0.96 (-7.42,5.50)

-0.20 (-4.49,4.10)

BT

-1.70 (-8.27,4.87)

1.70 (-4.87,8.27)

Running

-1.27 (-7.31,4.77)

0.31 (-4.85,5.47)

-0.17 (-5.47,5.13)

0.68 (-4.61,5.97)

1.00 (-4.45,6.45)

0.78 (-2.87,4.43)

-1.38 (-7.82,5.06)

-0.01 (-5.18,5.16)

1.10 (-2.78,4.98)

1.38 (-5.06,7.82)

-0.51 (-4.80,3.79)
-0.88 (-5.33,3.58)
-0.98 (-3.25,1.30)

-0.19 (-4.50,4.13)

127 (-4.77,7.31)
0.17 (-5.13,5.47)
-1.00 (-6.45,4.45)

1.38 (-5.06,7.82)

031 (-5.47,4.85)
-0.68 (-5.97,4.61)
-0.78 (-4.43,2.87)

0.01 (-5.16,5.18)

RT+Bicycle
-0.37 (-5.66,4.92)
-0.47 (-4.12,3.18)

0.32 (-4.85,5.49)

0.37 (-4.92,5.66)
Bicycle
-0.10 (-3.93,3.73)

0.69 (-4.61,5.99)

0.47 (-3.18,4.12)
0.10 (-3.73,3.93)
CON

0.79 (-2.88,4.46)

-0.32 (-5.49,4.85)
-0.69 (-5.99,4.61)
-0.79 (-4.46,2.88)

RT+Walk

1.07 (-5.37,7.51)
0.70 (-2.97,4.37)
0.60 (-4.70,5.90)

1.39 (-5.06,7.84)

-1.58 (-7.35,4.20)

-1.10 (-4.98,2.78)

-1.38 (-7.82,5.06)

-1.07 (-7.51,5.37)

-0.70 (-4.37,2.97)

-0.60 (-5.90,4.70)

-1.39 (-7.84,5.06)

RT

Bicycle, bicycle training; RT+Running, resistance training and Running; BT, ball training; RT, resistance training; RT+Running, resistance training and Running; RT+bicycle, resistance training
and bicycle; RT+walk, CON, resistance training and walk; control group (no exercise).
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insulin levels, and insulin resistance. These findings have significant

implications for the management of diabetes. We recommend

prioritizing cycling to reduce blood glucose levels, incorporating

resistance training to enhance insulin sensitivity, and implementing

combined training to address insulin resistance. Exercise has been

proven effective in regulating glycemia and should be widely

recommended as an essential non-pharmacological treatment for

individuals with diabetes.
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Future studies should further validate the benefits of diverse
exercise regimens on blood glucose regulation in a broader

population. The genetic background and type of diabetes may

influence individual variations in response to exercise

interventions; thus, we advocate for future trials with expanded

sample sizes encompassing various ethnicities to corroborate our

current findings. Additionally, exploring the interaction between

exercise and antidiabetic drugs is imperative. Longitudinal trials
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with larger sample sizes are also necessary to investigate the long-
term effects of exercise interventions on maintaining blood glucose
control among patients with diabetes while providing more
personalized exercise recommendations.
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