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Editorial on the Research Topic

Is insulin resistance the Eminence Grise of aging and non-communicable
chronic diseases?
Insulin resistance (IR) is recognized as a central mechanism in metabolic dysfunction,

with its influence extending far beyond glucose regulation. Increasingly, IR is recognized as

the Eminence Grise— the unseen but powerful driver— behind many non-communicable

chronic diseases (NCDs) and the biological processes of aging. The Research Topic “Is

insulin resistance the Eminence Grise of aging and NCDs?” brings together 12 original

investigations and reviews that collectively expand our understanding of IR as a systemic,

multi-organ phenomenon. These studies explore IR not only as a metabolic hallmark but as

a unifying pathophysiological thread linking cardiovascular, renal, hepatic, respiratory,

neurological, and psychological disorders across the lifespan. The reviewed studies explored

various accessible, non–insulin-based surrogate indices [Triglyceride-Glucose (TyG),

Estimated Glucose Disposal Rate (eGDR)] across aging-related diseases. Although the

hyperinsulinemic–euglycemic clamp remains the most accurate method for assessing IR, its

application is often limited by the complexity and constraints of clinical settings.
Current knowledge and gaps

Decades of research have established that IR contributes to a wide range of metabolic

and degenerative diseases. It plays a fundamental role in the development of type 2 diabetes,

dyslipidemia, non-alcoholic fatty liver disease (NAFLD), and atherosclerosis (1, 2).

Mechanistically, IR arises from the interplay between genetic susceptibility, ectopic lipid

accumulation, mitochondrial dysfunction, chronic inflammation, and altered adipokine

signaling (3). Beyond classical metabolic organs, impaired insulin signaling affects

endothelial cells, neurons, and immune responses, contributing to vascular stiffness,

neurodegeneration, and systemic low-grade inflammation — hallmarks of aging (1–5).
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However, despite this well-established framework, several

aspects remain underexplored. While the molecular basis of IR

has been elucidated in skeletal muscle, liver, and adipose tissue,

much less is known about its role in non-traditional target organs

such as the lungs, kidneys, or brain. Moreover, there remains a gap

in understanding the predictive and diagnostic value of emerging

non–insulin-based IR indices, their relevance in acute settings, and

their relationship with mental health and cognitive decline. Gaps

also persist regarding pharmacological modulation, adipose–

immune crosstalk, and longitudinal mechanistic studies

integrating omics and imaging biomarkers.

The papers in this Topic address several of these gaps, validate

surrogate markers, and deepen our understanding of IR.
IR and cardiovascular diseases

The interplay between IR and cardiovascular disease (CVD)

remains a subject of persistent inquiry. Zhang et al. studied patients

with T2DM suffering acute myocardial infarction and identified a

strong correlation between the TyG index — a surrogate of IR —

and major CVD. Their findings underscore TyG’s potential as a

valuable prognostic tool in this vulnerable population, highlighting

how metabolic derangements aggravate cardiovascular risk even

when left ventricular systolic function is preserved.

Complementing these findings, Wang et al. assessed

hyperuricemia risk through eGDR, another non–insulin-based IR

measure. Their results reinforce the notion that systemic metabolic

inefficiency, reflected by lower eGDR, predisposes to urate

accumulation — further linking IR to vascular and renal

injury pathways.
IR role in acute and chronic renal
disorders

Using the MIMIC-IV database, Wang et al. demonstrated that

elevated TyG–body mass index is associated with both acute kidney

injury and the need for renal replacement therapy in critically ill

septic patients. These results extend the clinical significance of IR

markers into acute care settings, showing their utility in identifying

patients at higher risk of renal deterioration.

Zhang et al. analyzed associations between non–insulin-based

IR indices and chronic diabetic nephropathy in U.S. adults

(NHANES data). They confirmed that higher IR indices

correspond to a greater prevalence of nephropathy, supporting

their use for early detection of renal complications in diabetes care.
IR and liver diseases

Cao et al. revealed a U-shaped association between the TyG

index and incident diabetes among adults with metabolic

dysfunction–associated steatotic liver disease. This relationship

suggests that both excessively low and high TyG values may be
Frontiers in Endocrinology 026
deleterious, reflecting the delicate balance between metabolic

flexibility and dysfunction in the liver and underscoring the need for

risk stratification in this population. In parallel, Zhao et al. explored the

relationship between the single-point insulin sensitivity estimator

(SPISE) and NAFLD in individuals with T2DM, demonstrating an

inverse correlation and supporting SPISE as a non-invasive marker for

hepatic insulin sensitivity in clinical practice.
IR, metabolic syndrome and
population health

The manifestation of IR in clinical populations is strongly

mediated by environmental and lifestyle interactions, emphasizing

its multifactorial etiology. In a nested case–control study Rong et al.

identified demographic, lifestyle, biochemical factors associated

with metabolic syndrome among adult, reaffirming the

multifactorial roots of IR that intertwine genetic susceptibility,

environmental exposure, and behavioral risk.

Expanding to the adolescent population, Villasis-Keever et al.

investigated the relationship between anxiety and cardiometabolic

risk factors in obese youth using propensity score methods. Their

findings highlight that psychological distress and metabolic

dysregulation may reinforce each other early in life — positioning

IR as a critical link between mental and metabolic health.
IR and pulmonary structural changes

Emerging evidence suggests that IR manifests in diverse organ

systems through complex cellular mechanisms. Lin et al. examined

the association between eGDR and preserved ratio impaired

spirometry (PRISm), a condition reflecting early restrictive lung

dysfunction. Their study revealed that reduced eGDR — a marker

of heightened IR— correlates with PRISm, suggesting that systemic

metabolic impairment may contribute to pulmonary structural or

microvascular changes.
IR and cognition, brain structure,
aging

The influence of IR on the brain is gaining prominence in aging

research. Two articles here provide evidence of IR’s role in cognitive

decline. Wang et al. evaluated the link between IR and cognitive

impairment using the eGDR in a non-diabetic aging population

(CHARLS data), demonstrating that IR is an independent risk

factor for reduced cognitive function of adults. This finding

underscores the systemic impact of IR on neural function, even in

the absence of overt diabetes.

Adding a genetic and neuroimaging dimension, Huang et al. used

a Mendelian randomization approach to reveal that genetically

predicted brain cortical structure mediates the causality between

IR and cognitive impairment, providing compelling genetic

evidence for a structural link between IR and neurological health.
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Collectively, these studies reinforce the hypothesis that IR serves as

a shared etiological substrate for both metabolic and

neurodegenerative diseases — a defining feature of aging biology.
Reversing the tide: exercise and
insulin sensitivity

Lifestyle interventions remain the cornerstone of IR

management (5). In their systematic review and network meta-

analysis, Pan et al. compared nine distinct exercise modalities and

found heterogeneous effects on insulin sensitivity among

individuals with diabetes. Aerobic, resistance, and combined

training showed the most consistent benefits, but emerging

modalities such as high-intensity interval training and mind–body

exercises also demonstrated promise. This comprehensive synthesis

not only supports personalized exercise prescriptions but also

reaffirms the modifiability of IR — even in advanced disease stages.

In conclusion, this Research Topic decisively confirms that IR is the

fundamental, hidden mechanism underlying the widespread

convergence of aging and NCDs. The utility of validated, accessible

indices allows for early and precise risk stratification across varies

systems. The collective evidence strongly supports a paradigm shift

where future therapeutic research focuses not just on downstream

disease management, but on personalized strategies to restore insulin

sensitivity and interrupt the devastating cascade initiated by the

Eminence Grise. Bringing the hidden influence of IR into the light is

the first critical step toward mitigating the global burden of NCDs.
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Objective: This study investigated the associations between non-insulin-based

insulin resistance indices (METS-IR, TyG, TG/HDL, and TyG-BMI) and the risk of

diabetic nephropathy (DN) in US adults with diabetes mellitus (DM).

Methods: This study was based on the 1999-2018 National Health and Nutrition

Examination Survey (NHANES) database and included 6,891 patients with DM for

cross-sectional analysis. Multivariate adjusted models and restricted cubic spline

(RCS) models were employed to assess the association between the insulin

resistance index and the risk of DN. Subgroup analyses were conducted to

explore the impact of different population characteristics.

Results: The results indicated that higher quartiles of METS-IR, TyG, TG/HDL, and

TyG-BMI were associated with a significantly increased risk of DN. After adjusting

formultiple covariates, including gender, age, and race, the associations between

these indices and the risk of DN remained significant, with corresponding odds

ratios (ORs) of 1.51 (95% confidence interval [CI]: 1.29-1.76), 2.06 (95% CI: 1.77-

2.40), 1.61 (95% CI: 1.38-1.88), and 1.57 (95% CI: 1.35-1.84), with all P-values less

than 0.001. RCS analysis indicated a nonlinear relationship between these indices

and the risk of DN. The TyG index exhibited a highly consistent association with

the risk of DN in all models.

Conclusion: Non-insulin-based insulin resistance indices are significantly

associated with the risk of DN. The TyG index is a superior tool for assessing

the risk of DN. These indices can assist in identifying patients at risk of DN,

thereby enabling the implementation of more effective preventive and

therapeutic strategies.
KEYWORDS

insulin resistance, non-insulin-based, diabetic nephropathy, diabetes mellitus, NHANES
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1 Introduction

Diabetes mellitus (DM), a prevalent metabolic disease with a

worrisome global epidemic, is a significant public health concern (1).

It is projected that the total number of individuals with diabetes

worldwide will reach 780 million by 2045, a figure that represents a

substantial threat to human health and well-being. Concurrently, the

global prevalence of kidney disease is considerable, affecting

approximately 850 million individuals. Chronic kidney disease

(CKD) represents the predominant form of kidney disease, with a

global prevalence of 9.1% (2). Although the onset and progression of

CKD are influenced by various factors, including impaired fasting

glucose, hypertension, high body mass index (BMI), a high-sodium

diet, and a high-lead diet, DM is undoubtedly one of the most

significant contributing factors (2). It is noteworthy that

approximately 40% of patients with DM develop diabetic

nephropathy (DN), which represents the most common and severe

complication of DM (3–6). The principal clinical manifestations of

DN include a significant reduction in glomerular filtration rate

(GFR), abnormally elevated urinary albumin levels, and symptoms

of hypertension. These pathophysiologic changes may eventually lead

to end-stage renal disease (ESRD) (3, 7–9). Statistical analysis

indicates that patients with DN exhibit a markedly elevated risk of

all-cause mortality, reaching up to approximately 30 times that of

diabetic patients without DN (10). This underscores the significant

role of DN as a contributor to diabetes-related mortality (11).

Consequently, it is paramount to identify and clarify the risk

factors associated with DN to prevent its occurrence, delay its

progression, and improve the quality of life of those affected.

Insulin resistance (IR) is defined as a reduction in cellular

sensitivity to insulin, which results in a decline in the effectiveness

of insulin in facilitating glucose uptake and utilization. Further

research has demonstrated that insulin resistance plays a central

role in the pathogenesis of diabetes and that its association with DN is

also receiving increasing attention (12–14). Specifically, insulin

resistance contributes to DN’s progression through various

biological mechanisms, including exacerbating renal hemodynamic

disturbances, impairing podocyte function, inhibiting normal tubular

function, and promoting glomerular hypertrophy and

tubulointerstitial fibrosis (15, 16). Furthermore, several clinical

studies have demonstrated that the severity of insulin resistance is

strongly associated with increased microalbuminuria and

significantly reduced glomerular filtration rate (eGFR) in diabetic

patients (17–19). These findings collectively indicate that insulin

resistance plays a pivotal role in the pathogenesis of DN and

represents a critical link in the complex chain of this disease.

The hyperinsulin-normoglycemic clamp method (HEC) is the

gold standard for assessing IR. However, despite its status as the gold

standard, the HEC has not gained widespread acceptance in practical

applications due to its high cost and complex procedure (20, 21).

Furthermore, the homeostasis model assessment of insulin resistance

(HOMA-IR) index, another frequently utilized method for assessing

IR, presents similar challenges (20, 22). The high cost of plasma

insulin or C-peptide measurements, coupled with the need for more

standardization in clinical practice, has constrained the adoption of
Frontiers in Endocrinology 029
the HOMA-IR index. This is particularly the case for diabetic

patients, as most of them are treated with insulin, making accurate

measurement of insulin difficult, thus compromising the accuracy of

the HOMA-IR index (22). Moreover, the HOMA-IR cannot reflect

the intricate dynamic relationship between glucose and insulin

metabolism. This is because it is based on a single point in time

and is therefore unable to capture the dynamic changes in the

glucose-insulin feedback system fully (23). Consequently,

developing more efficient, economical, and accurate IR assessment

methods is significant for clinical practice and scientific research.

To more accurately assess and manage IR in diabetic patients,

researchers have developed a series of non-insulin-based IR indices,

such as the metabolic insulin resistance score (METS-IR), the

triglyceride-glucose (TyG), triglyceride-to-high-density lipoprotein

cholesterol ratio (TG/HDL-C), and the triglyceride-glucose body

mass index (TyG-BMI), etc. METS-IR is an emerging method for

assessing IR with the added benefit of evaluating an individual’s

cardiometabolic risk (24, 25). It is calculated based on a series of

standardized measurements, including fasting plasma glucose (FPG),

triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and

BMI. Studies have demonstrated that METS-IR is as effective as the

classic HOMA-IR index in assessing IR levels, and in some cases, it

outperforms it (26). The TyG index, another innovative index for IR

assessment, combines triglyceride and FBG levels and has the

potential to serve as a reliable biomarker for IR (27). Notably, the

TyG index not only possesses higher sensitivity than traditional

homeostasis models but has also been confirmed by several studies

to be independently and significantly associated with the risk of DN

in individuals with decreased renal function (28), especially in

individuals with type 2 diabetes mellitus (T2DM) (29, 30).

Furthermore, the ability of the TyG index to predict DN is even

better than that of the HOMA-IR index (29, 31). Moreover, a high

TyG index has been demonstrated to be positively correlated with the

risk of ESRD, further underscoring its pivotal role in predicting renal

complications in diabetes (14). TG/HDL-C has garnered considerable

attention as a straightforward predictor of IR. Previous studies have

demonstrated that this ratio is not only strongly associated with IR

status but also positively correlated with diabetes risk (32, 33). The

ability of the TG/HDL-C ratio to predict the onset of diabetes is

particularly significant when the ratio exceeds 0.35 (34). Finally, TyG-

BMI, as a complement and extension of TyG, also demonstrated a

high degree of correlation with IR, providing an additional reliable

option for IR assessment (35).

In the current field of research on non-insulin-based IR indices

and the risk of DN in patients with DM, although there is a wealth

of research on the association between the TyG index and DN, there

is a lack of in-depth exploration of the relationship between the

METS-IR, TG/HDL, and TyG-BMI and DN. Furthermore, the

majority of these studies have focused on Asian populations. In

light of the limitations above, the primary objective of this study was

to investigate the potential association between non-insulin-based

insulin resistance indices and the development of DN among

diabetic patients in the context of the U.S. population. This study

aims to employ a big data-driven analytic strategy to clearly define

and validate the efficacy and value of different IR indices in
frontiersin.org

https://doi.org/10.3389/fendo.2024.1458521
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2024.1458521
predicting and assessing the risk of DN. Furthermore, to construct a

more comprehensive understanding framework, this study will

examine the intricate interactions between these IR indices and

potential influencing factors, including age, gender, demographic

characteristics, lifestyle habits, and coexisting chronic diseases. This

will facilitate the elucidation of the multidimensional mechanisms

of IR in developing DN.
2 Materials and methods

2.1 Research participants

All data for this study were obtained from the 1999-2018

National Health and Nutrition Examination Survey (NHANES)

database. This database contains the results of cross-sectional

surveys conducted every two years by the Centers for Disease

Control and Prevention (CDC). The research protocol of the

NHANES project strictly followed the guidelines of the Ethics

Review Committee of the National Center for Health Statistics

(NCHS). It ensured that all participants signed an informed consent

form. Furthermore, during the data analysis phase, NIH policy

regulations were followed. Given the anonymity and non-direct

contact nature of the data, it was used directly in the study without

needing additional ethical review. The study adhered rigorously to

the standards set forth by the Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) initiative,

ensuring the highest quality in study design and reporting.

At the study’s outset, a sample population was drawn from ten

consecutive survey cycles, resulting in 101,316 participants. To

ensure the accuracy and relevance of the study results, we

implemented a rigorous data cleaning and exclusion process to

exclude ineligible participants. These exclusions included

individuals under the age of 20, non-diabetic patients, pregnant

females, and those with missing data, particularly on demographic

characteristics, chronic disease status, biomarkers related to IR, and

diagnostic indicators of DN. Following the implementation of a

rigorous screening process, 6,891 eligible participants were

identified for analysis in this study (Figure 1).
2.2 Definition of disease

The following criteria were employed to define DM in this

study: (1) a precise diagnosis by a healthcare professional, (2) FPG

at or above the threshold of 126 mg/dl, (3) glycosylated hemoglobin

(HbA1c) level of not less than 6.5%, and (4) the individual was

receiving diabetic medication or insulin therapy. We employed two

core indicators to assess renal function: the urine albumin-to-

creatinine ratio (UACR) and the eGFR. The eGFR was calculated

according to the recommended formula by the Collaborative Group

on Epidemiology of Chronic Kidney Disease (CKD-EPI). To

diagnose DN, we employed the internationally recognized criteria,

which stipulate that a UACR value of not less than 30 mg/g or an

eGFR value of less than 60 mL/min/1.73 m2 must be met.
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2.3 Assessment of the non-insulin-based
IR indices

To ensure the accuracy and reliability of the results, we employ

the following scientifically validated formulas in the assessment of IR:

METS-IR is calculated by the formula Ln[2 × FPG(mg/dl) + TG

(mg/dl)] × BMI(kg/m²)/Ln[HDL-C(mg/dl)] (24). TyG is calculated

by the formula Ln[TG(mg/dl) × FPG(mg/dl)/2] (27). TG/HDL-C is

calculated by dividing the TG (mg/dL) by the HDL-C (mg/dL) (36).

TyG-BMI is calculated by the formula TyG ×BMI(kg/m²) (35).

All biochemical measurements were conducted after a

minimum of 8.5 hours of fasting, utilizing an automated

biochemical analyzer to guarantee the precision of the data. FPG,

TG, and HDL-C concentrations were measured in strict accordance

with standard operating procedures. Meanwhile, BMI was

calculated as a standardized body mass indicator by dividing

weight (kg) by the square of height (m).
2.4 Covariate assessment

To ascertain the association between the IR Index and DN, we

constructed multivariate adjustment models to resolve the potential

impact of confounding variables on this relationship. The covariates

included in this study were gender, age, race, education, marital status,

household economic status, alcohol intake, smoking behavior,

physical activity level, and a history of a range of important chronic

diseases, including hypertension, coronary heart disease (CHD),

stroke, and cancer. Race was classified as Mexican American, Non-

Hispanic White, Non-Hispanic Black, and Other Race. The sample

was divided into three educational attainment categories based on the

years of education completed: less than 9th grade, 9th through 12th

grade, and more than 12th grade. Marital status was simplified into

two categories: cohabitation and solitude. This was done to explore the

role of family structure factors. To categorize household economic

status, income was carefully divided into three intervals based on the

Poverty-to-Income Ratio (PIR) criterion, as officially defined by the

U.S. government. These intervals were designated as low (PIR ≤1.3),

medium (PIR > 1.3 to ≤3.5), and high (PIR > 3.5). This study assessed

smoking and drinking habits using standardized assessment methods.

Smoking status was defined based on whether the participant had

smoked more than 100 cigarettes in their lifetime and whether they

were a current smoker. Alcohol consumption was assessed by asking

whether the participant had consumed at least 12 alcoholic beverages

of any type in the past year. Physical activity was classified into three

categories: vigorous, moderate, and inactive. A comprehensive

medical history was obtained for each participant, encompassing

hypertension, CHD, stroke, and cancer. For hypertension,

participants were queried as to whether they had ever been

informed by a medical professional that they had hypertension or

were currently taking medication for it. For CHD, participants were

asked whether they had ever been diagnosed with the condition,

whether they had experienced angina or a heart attack, or whether

they were currently undergoing treatment for it. Similarly, participants

were asked whether they had ever been informed by a medical
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professional that they had experienced a stroke. Finally, participants

were queried as to whether they had ever been diagnosed with cancer.
2.5 Statistical analysis

For continuous variables, the Shapiro-Wilk test was employed

to verify the normality of the data. Based on the test results, the

mean ± standard deviation or median (25th and 75th percentile)

was selected to characterize the variables according to their normal

distribution. One-way analysis of variance (ANOVA) or Kruskal-

Wallis nonparametric tests were employed to assess the existence of

statistically significant differences between groups concerning the

distribution characteristics of the variables in question. Categorical

variables were presented as frequencies and percentages, and the

chi-square test was employed to analyze differences between groups.

Togain insight into the intricate relationshipbetween IR indices and

DN, we constructed logistic regression models to assess the impact of

each index and its quartiles on the risk ofDN. This was accomplished by
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estimating the ratio of ratios (ORs) and their 95% confidence intervals

(CIs). Three levels of multivariate-adjusted models were gradually built

to eliminate the potential interference of confounding variables.Model 1

served as the baseline without any adjustment. Model 2 incorporated

essential demographic characteristics such as age, gender, and race.

Model 3 further introduced educational attainment, marital status,

family PIR, smoking and drinking habits, level of physical activity, and

history of chronic diseases such as hypertension, CHD, stroke, and

cancer as adjustment variables to enhance the explanatory power and

predictive accuracy of the model.

To ascertain the existence of a potential nonlinear dose-

response relationship between the IR indices and DN, a restricted

cubic spline (RCS) model was employed. In this model, the IR

indices were considered a continuous variable. Based on their

distributional properties, the 5th, 35th, 65th, and 95th percentiles

were selected as critical points for analysis. Should a nonlinear

association be observed, a likelihood ratio test was employed to

ascertain the critical point or threshold effect between the indices

and the risk of DN with greater precision.
FIGURE 1

Participant screening flowchart. BMI, Body mass index; HDL-c, High density lipoprotein cholesterol; FPG, Fasting plasma-glucose; TG, Triglyceride;
UACR, Urinary albumin/creatinine ratio; PIR, Poverty-to-income ratio; CHD, Coronary heart disease.
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Furthermore, subgroup analyses were conducted to stratify the

participants based on variables such as gender, education, marital

status, family PIR, smoking and drinking habits, and the presence of

hypertension, CHD, stroke, and cancer. This was done to explore the

heterogeneity of the pattern of the association between IR index and

DN among subgroups with different characteristics. Through

interaction analysis, we evaluated the stability and consistency of

the association between IR index and DN risk within each subgroup.

Throughout the statistical analysis, the principle of a two-sided

test was followed, and a p-value of less than 0.05 was considered

statistically significant. All data analysis was conducted using the R

4.4.0 software (provided by the R Foundation at http://www.R-

project.org) in conjunction with the SPSS version 23.0 (IBM

Corporation, Armonk, New York, USA) statistical package.

Graphical presentations were generated using GraphPad Prism

version 9.0 (GraphPad Software, USA).
3 Results

3.1 Baseline characteristics

In this study, the baseline characteristics of 6,891 patients with DM

were analyzed. Of these, 2,660 were diagnosed with DN, and 4,231 were

not. The results of the statistical analysis indicated that, although there

was no significant difference in the distribution of gender between the

two groups (p = 0.183), there were statistically significant differences in

the age structure, ethnic composition, education level, marital status,

and family economic status (all p < 0.05). In particular, the DN patient

population exhibited a higher mean age, reaching 67 years, compared

to a mean age of 60 for non-DN patients. Non-Hispanic white and

black individuals comprised a significantly higher percentage of DN

patients compared to other racial groups. Regarding educational
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attainment, a more significant proportion of patients with DN had

lower levels of education. The analysis of marital status revealed a

significantly higher proportion of patients with DN living alone. In

contrast, analysis of family economic status, as measured by the PIR,

showed that low income was more concentrated among individuals

with DN. Further analysis of lifestyle and health status revealed

significant differences between DN and non-DN patients in terms of

smoking, drinking habits, physical activity participation, and the

prevalence of multiple chronic diseases. The proportion of smokers

was higher in the group of DN patients, whereas the proportion of

alcohol consumers and those with a high level of physical activity were

relatively lower. Moreover, the prevalence of hypertension, CHD,

stroke, and cancer was significantly higher in patients with DN,

underscoring the complexity of the association between these

diseases. At the biochemical level, significant differences were

observed in FPG, HbA1c, total cholesterol (TC), TG, UACR, and

eGFR between patients with and without DN. These differences

directly reflected the impaired renal function and metabolic

abnormalities observed in patients with DN. Notably, BMI, HDL-C,

and specific IR indices such as METS-IR and TyG-BMI did not show

significant differences between the two groups (Table 1).
3.2 Relationships between IR indices
and DN

To investigate the relationships between METS-IR, TyG, TG/

HDL, TyG-BMI, and DN among diabetic patients, three analytic

models were constructed to assess potential confounding effects

comprehensively. The specific model setup was as follows: Model 1

did not include any adjustments. Model 2 incorporated gender, age,

and race as adjustment variables based on Model 1. Model 3 further

extended the adjustment to include educational attainment, marital
TABLE 1 Baseline characteristics of participants with diabetes mellitus.

Variables Total (n = 6891) Non-DN (n = 4231) DN (n = 2660) P

Gender, n (%) 0.183

Male 3679 (53.39) 2232 (52.75) 1447 (54.40)

Female 3212 (46.61) 1999 (47.25) 1213 (45.60)

Age (years) 62.00 (51.00, 71.00) 60.00 (48.00, 67.00) 67.00 (58.00, 76.00) <0.001

Race, n (%) <0.001

Mexican American 1386 (20.11) 874 (20.66) 512 (19.25)

Non-Hispanic White 2665 (38.67) 1547 (36.56) 1118 (42.03)

Non-Hispanic Black 1633 (23.70) 998 (23.59) 635 (23.87)

Other Race 1207 (17.52) 812 (19.19) 395 (14.85)

Education Level, n (%) <0.001

Less than 9th grade 1245 (18.07) 684 (16.17) 561 (21.09)

9–12th grade 1170 (16.98) 675 (15.95) 495 (18.61)

More than 12th grade 4476 (64.95) 2872 (67.88) 1604 (60.30)

(Continued)
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TABLE 1 Continued

Variables Total (n = 6891) Non-DN (n = 4231) DN (n = 2660) P

Marital Status, n (%) <0.001

Cohabitation 4170 (60.51) 2694 (63.67) 1476 (55.49)

Solitude 2721 (39.49) 1537 (36.33) 1184 (44.51)

Family PIR, n (%) <0.001

Low (≤1.3) 2407 (34.93) 1407 (33.25) 1000 (37.59)

Medium (1.3–3.5) 2785 (40.42) 1654 (39.09) 1131 (42.52)

High (>3.5) 1699 (24.66) 1170 (27.65) 529 (19.89)

Smoke, n (%) 0.001

Yes 3532 (51.26) 2104 (49.73) 1428 (53.68)

No 3359 (48.74) 2127 (50.27) 1232 (46.32)

Alcohol, n (%) <0.001

Yes 4170 (60.51) 2635 (62.28) 1535 (57.71)

No 2721 (39.49) 1596 (37.72) 1125 (42.29)

Physical Activity, n (%) <0.001

Inactive 3266 (47.40) 1814 (42.87) 1452 (54.59)

Moderate 2233 (32.40) 1426 (33.70) 807 (30.34)

Vigorous 1392 (20.20) 991 (23.42) 401 (15.08)

Hypertension, n (%) <0.001

Yes 4302 (62.44) 2374 (56.11) 1928 (72.51)

No 2588 (37.56) 1857 (43.89) 731 (27.49)

Coronary heart disease, n (%) <0.001

Yes 675 (9.80) 292 (6.90) 383 (14.40)

No 6216 (90.20) 3939 (93.10) 2277 (85.60)

Stroke, n (%) <0.001

Yes 522 (7.58) 217 (5.13) 305 (11.47)

No 6369 (92.42) 4014 (94.87) 2355 (88.53)

Cancer, n (%) <0.001

Yes 953 (13.83) 512 (12.10) 441 (16.58)

No 5938 (86.17) 3719 (87.90) 2219 (83.42)

BMI (kg/m2) 30.82 (26.97, 35.97) 30.90 (27.10, 36.03) 30.70 (26.83, 35.87) 0.168

FPG (mg/dL) 131.00 (108.00, 168.00) 129.00 (107.00, 158.00) 136.00 (110.00, 188.00) <0.001

HbA1c (%) 6.70 (6.00, 7.80) 6.60 (5.90, 7.50) 6.90 (6.20, 8.20) <0.001

TC (mg/dL) 185.00 (157.00, 217.00) 187.00 (159.00, 217.00) 181.50 (153.00, 218.00) 0.002

TG (mg/dL) 155.00 (105.00, 233.00) 151.00 (103.00, 225.00) 163.00 (108.00, 246.00) <0.001

HDL-c (mg/dL) 45.00 (38.00, 55.00) 45.00 (39.00, 55.00) 45.00 (38.00, 55.00) 0.215

Creatinine (mg/dL) 0.90 (0.72, 1.10) 0.82 (0.70, 0.97) 1.09 (0.82, 1.36) <0.001

UACR (mg/g) 12.40 (6.50, 37.53) 8.26 (5.42, 13.73) 59.55 (27.54, 176.01) <0.001

eGFR (ml/min/1.73m2) 85.83 (66.53, 100.84) 92.09 (79.05, 104.17) 62.20 (48.87, 91.47) <0.001

METS-IR 49.98 (42.10, 59.52) 49.97 (42.04, 59.46) 49.99 (42.28, 59.75) 0.519

(Continued)
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status, family PIR, smoking habits, alcohol consumption status,

physical activity level, and history of chronic diseases such as

hypertension, CHD, stroke, and cancer. The analysis results

indicated that METS-IR, TyG, TG/HDL, and TyG-BMI were

significantly associated with the risk of DN. In particular, the

unadjusted model demonstrated no significant association

between METS-IR and DN. However, in Models 2 and 3, METS-

IR demonstrated a positive correlation with the risk of DN, with the

adjusted ORs remaining stable at 1.02 (95% CI: 1.01-1.02), with a p-

value of <0.001. This indicates that the gender, age, and race factors

significantly affect the relationship. In contrast, the TyG and TG/

HDL indices demonstrated a significant association with an

increased risk of DN in all models. Furthermore, the risk of DN

exhibited a notable increase with increasing levels of these indices.

TyG-BMI index did not demonstrate a significant association with
Frontiers in Endocrinology 0714
DN in the unadjusted model; the positive association with DN risk

became significant in both Model 2 and Model 3.

Further refinement of these associations through quartile

analyses revealed that the high quartile groups of METS-IR, TyG,

TG/HDL, and TyG-BMI were all at significantly elevated risk of

DN, corresponding to ORs of 1.51 (95% CI: 1.29-1.76), 2.06 (95%

CI: 1.77-2.40), 1.61 (95% CI: 1.38-1.88) and 1.57 (95% CI: 1.35-

1.84), with all p-values less than 0.001. These findings strongly

support the role of these IR indices as potential predictors of the

development of DN in diabetic patients (Table 2).

To investigate the nonlinear relationship between the non-

insulin-based IR indices and the risk of DN in diabetic patients,

we employed RCS modeling. After adjusting for several potential

confounding variables, including gender, age, race, education,

marital status, family PIR, smoking habits, drinking status,
TABLE 1 Continued

Variables Total (n = 6891) Non-DN (n = 4231) DN (n = 2660) P

TyG 9.24 (8.76, 9.80) 9.18 (8.72, 9.72) 9.33 (8.82, 9.91) <0.001

TG/HDL 3.37 (2.04, 5.78) 3.24 (1.97, 5.55) 3.64 (2.15, 6.09) <0.001

TyG-BMI 288.55 (247.46, 339.98) 288.62 (246.88, 337.89) 288.50 (248.42, 343.01) 0.296
Data are shown as median (25th, 75th percentiles) or percentages, p <0.05 considered statistically significant.
DN, Diabetic nephropathy; PIR, Poverty-to-income ratio; BMI, Body mass index; FPG, Fasting plasma-glucose; HbA1c, Hemoglobin A1c; TC, Total cholesterol; TG, Triglyceride; HDL-c, High-
density lipoprotein cholesterol; UACR, Urinary albumin/creatinine ratio; eGFR, Estimated glomerular filtration rate; METS-IR, Metabolic Score for Insulin Resistance; TyG, Triglyceride-glucose;
TG/HDL, Triglyceride/High-density lipoprotein; TyG-BMI, Triglyceride glucose - body mass index.
TABLE 2 Relationship between METS-IR, TyG, TG/HDL, TyG-BMI, and DN in patients with diabetes mellitus in different models.

Variables Model 1 Model 2 Model 3

OR (95%CI) P OR (95%CI) P OR (95%CI) P

METS-IR 1.00 (1.00 ~ 1.01) 0.344 1.02 (1.01 ~ 1.02) <0.001 1.01 (1.01 ~ 1.02) <0.001

Categories

Quartile 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Quartile 2 1.02 (0.89 ~ 1.17) 0.769 1.07 (0.92 ~ 1.23) 0.386 1.03 (0.89 ~ 1.20) 0.672

Quartile 3 0.99 (0.86 ~ 1.14) 0.888 1.22 (1.05 ~ 1.41) 0.008 1.12 (0.96 ~ 1.30) 0.136

Quartile 4 1.04 (0.91 ~ 1.19) 0.576 1.72 (1.48 ~ 2.01) <0.001 1.51 (1.29 ~ 1.76) <0.001

TyG 1.28 (1.20 ~ 1.36) <0.001 1.50 (1.40 ~ 1.60) <0.001 1.47 (1.37 ~ 1.58) <0.001

Categories

Quartile 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Quartile 2 1.03 (0.89 ~ 1.18) 0.685 1.06 (0.92 ~ 1.23) 0.432 1.06 (0.91 ~ 1.23) 0.475

Quartile 3 1.19 (1.03 ~ 1.36) 0.016 1.30 (1.12 ~ 1.50) <0.001 1.25 (1.07 ~ 1.45) 0.004

Quartile 4 1.60 (1.39 ~ 1.83) <0.001 2.13 (1.83 ~ 2.48) <0.001 2.06 (1.77 ~ 2.40) <0.001

TG/HDL 1.01 (1.01 ~ 1.02) 0.027 1.02 (1.02 ~ 1.03) <0.001 1.02 (1.01 ~ 1.03) <0.001

Categories

Quartile 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Quartile 2 1.10 (0.95 ~ 1.26) 0.194 1.13 (0.98 ~ 1.31) 0.092 1.10 (0.95 ~ 1.28) 0.200

Quartile 3 1.23 (1.07 ~ 1.41) 0.004 1.38 (1.19 ~ 1.60) <0.001 1.27 (1.09 ~ 1.48) 0.002

(Continued)
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physical activity level, hypertension, CHD, stroke, and cancer, The

analyses revealed that the four IR indices (METS-IR, TyG, TG/

HDL, and TyG-BMI) were not only highly significant overall

correlations with DN risk (all p-values for overall < 0.001) but

also exhibited an evident nonlinear character (p-values for
Frontiers in Endocrinology 0815
nonlinear 0.038, < 0.001, 0.001, 0.039, respectively). Further

threshold analyses were conducted to define inflection point

values for each IR indices. The following values were identified:

49.98 for METS-IR, 9.24 for TyG, 3.37 for TG/HDL, and 288.55 for

TyG-BMI. This finding is of particular significance, as it indicates
TABLE 2 Continued

Variables Model 1 Model 2 Model 3

OR (95%CI) P OR (95%CI) P OR (95%CI) P

Quartile 4 1.34 (1.17 ~ 1.54) <0.001 1.75 (1.51 ~ 2.04) <0.001 1.61 (1.38 ~ 1.88) <0.001

TyG-BMI 1.00 (1.00 ~ 1.00) 0.177 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001

Categories

Quartile 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Quartile 2 1.05 (0.92 ~ 1.21) 0.454 1.08 (0.93 ~ 1.24) 0.322 1.04 (0.90 ~ 1.21) 0.592

Quartile 3 0.95 (0.82 ~ 1.09) 0.439 1.16 (1.01 ~ 1.35) 0.042 1.08 (0.93 ~ 1.26) 0.294

Quartile 4 1.11 (0.96 ~ 1.27) 0.153 1.79 (1.54 ~ 2.09) <0.001 1.57 (1.35 ~ 1.84) <0.001
fr
The bold values indicated statistically significant.
Model 1: crude.
Model 2: adjusted for Gender, Age, Race.
Model 3: adjusted for Gender, Age, Race, Education Level, Marital Status, Family PIR, Smoke, Alcohol, Physical Activity, Hypertension, Coronary heart disease, Stroke, Cancer.
DN, Diabetic nephropathy; METS-IR, Metabolic Score for Insulin Resistance; TyG, Triglyceride-glucose; TG/HDL, Triglyceride/High-density lipoprotein; TyG-BMI, Triglyceride glucose - body
mass index; OR, Odds ratio; CI, Confidence interval.
FIGURE 2

Non-linear relationship of METS-IR (A), TyG (B), TG/HDL (C), TyG-BMI (D), and diabetic nephropathy. The solid purple line displays the odds ratio,
with the 95% confidence intervals represented by purple shading. They were adjusted for gender, age, race, education level, marital status, family
PIR, smoking, alcohol, physical activity, hypertension, coronary heart disease, stroke, and cancer. METS-IR, Metabolic Score for Insulin Resistance;
TyG, Triglyceride-glucose; TG/HDL, Triglyceride/High-density lipoprotein; TyG-BMI, Triglyceride glucose - body mass index; CI, Confidence interval;
PIR, Poverty-to-income ratio.
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that when IR indices exceed these critical thresholds, the risk of DN

increases significantly as the index levels are further

elevated (Figure 2).
3.3 Subgroup analysis

To investigate the relationship between individual indices of IR

and DN in different subgroups, the analysis was stratified by gender,

education, marital status, family PIR, smoking, alcohol

consumption, hypertension, CHD, stroke, and cancer. The results

demonstrated that, when stratified using a cut-off value of 49.98, no

significant differences were observed between METS-IR levels and

the incidence of DN (all p > 0.05). Additionally, no significant

interactions were detected (all interaction p > 0.05), either when

comparing within subgroups or examining the interaction effect

across subgroups (Figure 3). The TyG index demonstrated a higher

prevalence of DN in individuals with TyG ≥ 9.24 compared to those

with TyG < 9.24 in most subgroups, except subgroups with less than

9th-grade education, confirmed CHD, and confirmed cancer. Of

particular note, in the subgroup analysis of gender and smoking
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habits, the correlation between TyG levels and DN risk was more

significant within the female subgroup and the nonsmoking

subgroup. Nevertheless, no significant interaction between TyG

and DN risk was observed in the other subgroups (all interaction

p > 0.05), as illustrated in Figure 4. For the TG/HDL ratio,

individuals with TG/HDL ≥ 3.37 exhibited a heightened risk of

DN across a diverse range of subgroups, except males, individuals

below the 9th grade, those belonging to different PIR subgroups,

smokers, alcohol drinkers, those without hypertension, individuals

with confirmed coronary artery disease, individuals with confirmed

stroke, and individuals with confirmed cancer. Further analysis

revealed that within the specific subgroups of education and

smoking habits, the TG/HDL ratio was more strongly correlated

with the risk of DN in the highly educated subgroup and the

nonsmoking subgroup. No significant interaction effects were

observed within the remaining subgroups (all interaction p >

0.05), as illustrated in Figure 5. Finally, in terms of the TyG-BMI

index, individuals with a TyG-BMI ≥288.55 exhibited a lower

prevalence of DN in the female subgroup and the subgroup up to

the 9th grade compared to participants with a TyG-BMI <288.55

(all p < 0.05). In contrast, no significant differences were observed
FIGURE 3

Subgroup analysis of the relationship between METS-IR and diabetic nephropathy. Adjusted variables: gender, age, race, education level, marital
status, family PIR, smoking, alcohol, physical activity, hypertension, coronary heart disease, stroke, and cancer. The model was not adjusted for the
stratification variables themselves in the corresponding stratification analysis. METS-IR, Metabolic Score for Insulin Resistance; PIR, Poverty-to-
income ratio; OR, odds ratio; CI, confidence interval.
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between TyG-BMI levels and DN prevalence in any of the

remaining subgroups (all p > 0.05). Notably, in the subgroup

analysis stratified by education, the low-education subgroup

exhibited a higher correlation between TyG-BMI and DN risk.

Similarly, no significant interactions were found within the

remaining subgroups (all interactions p > 0.05), as shown

in Figure 6.
4 Discussion

The objective of this study was to investigate the association

between non-insulin-based IR indices (METS-IR, TyG, TG/HDL,

and TyG-BMI) and DN through a cross-sectional analysis of 6,891

U.S. adults with DM from the NHANES 1999-2018 database. The

findings indicated that individuals in the highest quartiles of METS-

IR, TyG, TG/HDL, and TyG-BMI exhibited a markedly elevated

risk of developing DN. After adjusting for multiple covariates,

including gender, age, and race, this association remained
Frontiers in Endocrinology 1017
significant and demonstrated a nonlinear relationship. These

findings further confirm the importance of IR in the pathogenesis

of DN and provide a potential assessment tool for the non-insulin-

based IR indices in the prevention and management of DN.

IR is not only a core pathophysiologic feature of diabetes, but it

also plays a pivotal role in the development and progression of DN

(19, 37). IR contributes to the development of DN through a variety

of biological pathways, including increased inflammatory response

(38, 39), oxidative stress (40, 41), endothelial dysfunction (42, 43),

and the promotion of accumulation of extracellular matrix (44),

which collectively leads to alterations in renal structure and

function. In the progression of DN, IR may contribute to

glomerulosclerosis by increasing the filtration pressure in the

kidney, leading to glomerular hyperfiltration (18, 45).

Furthermore, IR has been linked to the dysfunction of podocytes,

a crucial component of the glomerular filtration membrane (46, 47).

Podocyte injury can result in the development and progression of

proteinuria. Concurrently, hyperinsulinemia in the IR state may

facilitate the proliferation and fibrosis of renal cells through the
FIGURE 4

Subgroup analysis of the relationship between TyG and diabetic nephropathy. Adjusted variables: gender, age, race, education level, marital status,
family PIR, smoking, alcohol, physical activity, hypertension, coronary heart disease, stroke, and cancer. The model was not adjusted for the
stratification variables themselves in the corresponding stratification analysis. TyG, Triglyceride-glucose; PIR, Poverty-to-income ratio; OR, odds
ratio; CI, confidence interval.
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activation of signaling pathways, including JAK/STAT, MAPK, and

PI3K/Akt (48–51).

This study revealed significant associations between all four non-

insulin-based IR indices (METS-IR, TyG, TG/HDL, and TyG-BMI)

and the risk of DN. This finding supports the notion that IR is a

critical factor in the pathogenesis of DN. Of particular interest is that

the TyG index demonstrated a highly consistent association with DN

risk across all analyzed models. This result echoes several previous

studies and further solidifies the utility and validity of the TyG index

as a DN risk assessment tool. Several studies have confirmed the

strong association between the TyG index and albuminuria (30, 52).

In patients with T2DM, the TyG index was associated with DN

independently of other factors, demonstrating a superior ability to

identify DN compared with the traditional HOMA-IR index (29, 30).

Furthermore, the METS-IR, TG/HDL, and TyG-BMI indices showed

significant correlations with DN risk in the adjusted model. Notably,

while all these indices of IR demonstrated potential in predicting the

risk of DN, the evaluation of their predictive value varied somewhat

across studies. For instance, one study in a rural Chinese population

observed that a high METS-IR score was associated with an increased
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risk of mild decline and rapid deterioration of renal function (13). In

contrast, in patients with a primary diagnosis of T2DM, the risk of

DN increased with elevated TyG index and TyG-BMI. However, the

efficacy in diagnosing DN was relatively low (53). Furthermore, a

retrospective analysis of 521 patients with T2DM showed that among

the four metrics for assessing IR, the TyG index, in conjunction with

the TG/HDL ratio, exhibited the most significant predictive effect,

followed by the METS-IR. In contrast, the TyG-BMI exhibited a

relatively weak effect (54). The TyG index demonstrated the strongest

association with DN risk in the present study, followed by the TG/

HDL ratio. In contrast, the METS-IR and TyG-BMI indices exhibited

relatively inferior performance. These findings reflect the differential

performance of different IR indices in specific populations and

emphasize the need to comprehensively consider multiple factors

in clinical applications and research to develop more accurate risk

assessment and intervention strategies.

Furthermore, it is essential to acknowledge that many factors,

including genetic predisposition (55, 56), environmental exposures

(57), lifestyle, and comorbidities (58), influence the relationship

between IR and DN. The subgroup analyses conducted in this study
FIGURE 5

Subgroup analysis of the relationship between TG/HDL and diabetic nephropathy. Adjusted variables: gender, age, race, education level, marital
status, family PIR, smoking, alcohol, physical activity, hypertension, coronary heart disease, stroke, and cancer. The model was not adjusted for the
stratification variables themselves in the corresponding stratification analysis. TG/HDL, Triglyceride/High-density lipoprotein; PIR, Poverty-to-income
ratio; OR, odds ratio; CI, confidence interval.
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demonstrated the impact of various demographic characteristics,

lifestyle habits, and chronic disease histories on the relationship

between IR and DN. For instance, the correlation between the TyG

index and the risk of DN was more pronounced in the female and

nonsmoking subgroups. This may be attributed to disparate

patterns of insulin sensitivity or insulin secretion in women and

nonsmokers (59, 60). Furthermore, the association between TyG-

BMI and DN risk was more pronounced in the less educated

subgroup. This may be attributed to lower socioeconomic status

and health literacy, influencing patients’ lifestyle and healthcare

access (61). These findings indicate that socioeconomic status,

lifestyle, and personal behavior may affect the relationship

between IR and DN. It is crucial to consider the specificity of

different population subgroups when developing prevention and

management strategies for DN.

Non-insulin-based IR indices (METS-IR, TyG, TG/HDL, and

TyG-BMI) offer significant advantages over traditional methods of

assessing IR (HEC and HOMA-IR) (26, 31, 33, 53). Firstly, these

novel indices do not necessitate the direct measurement of insulin

levels, which confers them an advantage in cost and operational
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complexity. The high cost of insulin or C-peptide measurements, the

necessity for specific laboratory equipment and specialized personnel,

and the availability of these resources in resource-limited settings

limit the widespread use of these measurements in such settings.

Second, non-insulin-based indices are straightforward to calculate

and rely solely on routine biochemical markers, such as FPG, TG,

HDL-C, and BMI, which can typically be measured in a standard

clinical laboratory (62). This simplicity renders these indices more

suitable for large-scale epidemiological studies and routine clinical

practice. Moreover, as these indices are not dependent on insulin

measurements, they are instrumental in patients with diabetes,

especially those on insulin therapy. In patients receiving exogenous

insulin, elevated insulin levels may not accurately reflect IR status, as

the use of insulin may confound insulin sensitivity (22). Furthermore,

the non-insulin-based indices’ capacity to reflect many dimensions of

IR, including the severity of IR and its correlation with cardiovascular

disease risk, contributes to a more comprehensive evaluation of the

overall health status of diabetic patients (63–68). Finally, the practical

value of these indices in predicting and assessing the risk of DN has

been confirmed by previous studies and the present study. They may
FIGURE 6

Subgroup analysis of the relationship between TyG-BMI and diabetic nephropathy. Adjusted variables: gender, age, race, education level, marital
status, family PIR, smoking, alcohol, physical activity, hypertension, coronary heart disease, stroke, and cancer. The model was not adjusted for the
stratification variables themselves in the corresponding stratification analysis. TyG-BMI, Triglyceride glucose - body mass index; PIR, Poverty-to-
income ratio; OR, odds ratio; CI, confidence interval.
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be advantageous in the early identification of high-risk patients,

facilitating timely preventive and interventional measures.

The principal strength of this study lies in the utilization of a

comprehensive, nationally representative database, NHANES,

which encompasses a diverse array of population characteristics,

thereby ensuring the generalizability and reliability of the findings.

Second, we adjusted for confounding variables to obtain more

plausible results. Furthermore, multiple indices of non-insulin-

based IR were employed in this study, and detailed subgroup

analyses were conducted to assess these indices’ association with

DN comprehensively. Nevertheless, it should be noted that this

study has limitations. First, as this was a cross-sectional study, it was

impossible to determine whether the observed associations were

causal. Second, although we considered several potential

confounding variables, there may still be unconsidered variables,

such as genetic factors and polymorphisms, which may impact the

results. Future studies could further explore the impact of these

factors on the association between IR and DN. Furthermore, the

study was conducted primarily on a U.S. population, and the results

may not be generalizable to other racial or regional groups.
5 Conclusion

In conclusion, the present study investigated the complex

associations between non-insulin-based IR indices (METS-IR,

TyG, TG/HDL, and TyG-BMI) and the risk of DN. The results

demonstrated that all of these indices were significantly correlated

with the risk of DN, with the most significant correlation being that

of the TyG index. This finding highlights the potential application

of these IR indices in the prevention and management of DN. It

provides clinicians with a more accurate risk identification and

management tool, which is expected to optimize the individualized

treatment plan for DN patients. Future studies should further

explore the application of these indices in different populations

and evaluate their role in the early diagnosis and treatment of DN.

In the meantime, further longitudinal studies are required to

ascertain the causal relationship between these indices and DN.
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Genetically predicted brain
cortical structure mediates
the causality between
insulin resistance and
cognitive impairment
Chaojuan Huang1†, Yuyang Zhang2†, Mingxu Li1, Qiuju Gong1,
Siqi Yu1, Zhiwei Li1, Mengmeng Ren1, Xia Zhou1,
Xiaoqun Zhu 1*‡ and Zhongwu Sun 1*‡

1Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei,
Anhui, China, 2Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei,
Anhui, China
Background: Insulin resistance is tightly related to cognition; however, the causal

association between them remains a matter of debate. Our investigation aims to

establish the causal relationship and direction between insulin resistance and

cognition, while also quantifying the mediating role of brain cortical structure in

this association.

Methods: The publicly available data sources for insulin resistance (fasting insulin,

homeostasis model assessment beta-cell function and homeostasis model

assessment insulin resistance, proinsulin), brain cortical structure, and cognitive

phenotypes (visual memory, reaction time) were obtained from the MAGIC,

ENIGMA, and UK Biobank datasets, respectively. We first conducted a

bidirectional two-sample Mendelian randomization (MR) analysis to examine

the susceptibility of insulin resistance on cognitive phenotypes. Additionally, we

applied a two-step MR to assess the mediating role of cortical surficial area and

thickness in the pathway from insulin resistance to cognitive impairment. The

primary Inverse-variance weighted, accompanied by robust sensitivity analysis,

was implemented to explore and verify our findings. The reverse MR analysis was

also performed to evaluate the causal effect of cognition on insulin resistance

and brain cortical structure.

Results: This study identified genetically determined elevated level of proinsulin

increased reaction time (beta=0.03, 95% confidence interval [95%CI]=0.01 to

0.05, p=0.005), while decreasing the surface area of rostral middle frontal

(beta=-49.28, 95%CI=-86.30 to -12.27, p=0.009). The surface area of the

rostral middle frontal mediated 20.97% (95%CI=1.44% to 40.49%) of the total

effect of proinsulin on reaction time. No evidence of heterogeneity, pleiotropy, or

reverse causality was observed.
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Conclusions: Briefly, our study noticed that elevated level of insulin resistance

adversely affected cognition, with a partial mediation effect through alterations in

brain cortical structure.
KEYWORDS

brain cortical structure, cognition, insulin resistance, mediation, Mendelian randomization
1 Introduction

Epidemiological studies indicate that over 55 million people

were affected by dementia in 2019. The World Health Organization

projects this number to increase to 139 million by 2050. The

economic impact of dementia is expected to escalate from US$1.3

trillion in 2019 to US$2.8 trillion by 2030, presenting significant

social and economic challenges (1). The causes of dementia are

multifactorial, with Alzheimer’s disease (AD) identified as the

primary contributor, accounting for nearly 70% of cases. The

cognitive dysfunction associated with dementia is often

overlooked in its early stages but progressively worsens,

eventually leading to irreversible and incurable conditions in

advanced stages. Therefore, this underscores the critical

impor tance o f ea r l y de tec t ion and in te rven t ion in

managing dementia.

Insulin resistance (IR) is a pathological state characterized by

impaired insulin responsiveness, requiring elevated level of insulin

to maintain glucose homeostasis in both peripheral tissues and the

brain (2), a key feature of Type 2 diabetes mellitus (T2DM) and

metabolic syndrome. Additionally, it has been primarily associated

with coronary heart disease (3), stroke (4), and AD (5). The

hyperinsulinemic-euglycemic clamp, considered the gold standard

for measuring insulin resistance, is limited in clinical application

owing to its invasiveness, high cost, time-consuming nature, and

laborious procedure (6). By comparison, fasting insulin,

homeostasis model assessment beta-cell function (HOMA-B),

homeostasis model assessment insulin resistance (HOMA-IR),

and proinsulin serve as more accessible markers for reflecting

insulin resistance (7).

The literature has suggested an association between insulin

resistance and cognition. In a previous observational study

involving older patients with hypertension, elevated HOMA-IR

was related to cognitive impairment (8). Smith et al. ’s

investigation (9) supported the close relationship between

increased HOMA-IR and decreased executive function in patients

with vascular cognitive impairment. However, conflicting results

from other studies reported no relationship between insulin

resistance and AD (10). In a longitudinal study involving older

participants without dementia, a higher baseline HOMA-IR was

found to predict cognitive degeneration seven years later (11).

Despite robust epidemiological evidence, the potential
0224
pathogenesis and causal direction between insulin resistance and

cognition remain poorly established. Challenges such as selection

bias, confounding factors, reverse causality, and relatively small

sample size in the observation studies obscure a conclusive

resolution to the bidirectional chicken-and-egg question.

Furthermore, limited studies have delved into the underlying

mechanisms or mediating pathways connecting insulin resistance

and cognition. Previous research has demonstrated alterations in

brain cortical structure associated with both insulin resistance (12)

and cognitive dysfunction (13). Insulin receptors are extensively

expressed in the brain, with predominant distribution in the

cerebellum, frontal cortex, and hippocampus, as proved by studies

in animal models and post-mortem human brains (14, 15). Thus,

insulin may play a crucial role in multiple brain regions. A previous

study utilized 18F-fludeoxyglucose - positron emission tomography

to measure cerebral glucose metabolism and revealed that blood

fasting insulin was linked to glucose metabolism of the inferior

parietal, hippocampus, and parahippocampus region (16). Insulin

in the peripheral blood might traverse the blood-brain barrier and

participate in specific regions’ synaptic and neuronal activity.

Various cortical structures serve distinct physiological functions,

and cortical atrophy is a recognized pathophysiological process

contributing to cognitive impairment. Accordingly, brain cortical

structure might be a latent mediator between insulin resistance

and cognition.

Mediation analysis (MR) applies single nucleotide

polymorphisms (SNPs) closely relevant to the exposure factors as

instrumental variables (IVs) to deduce the causality between

exposure and outcome (17). Owing to the random assignment of

SNPs during meiosis, MR can yield robust causal evidence that is

less influenced by confounders and reverse causality. Therefore, MR

stands as a well-established statistical method, overcoming

limitations inherent in traditional observational studies.

Leveraging and extending MR, mediation MR analysis offers an

opportunity to assess the complex interlocking causality among

insulin resistance, brain cortical structure, and cognition. Moreover,

the identified intermediate factors contribute to the exploration of

the potential etiology and pathogenesis of cognitive impairment. As

far as we know, the causal exploration of mediating pathways from

insulin resistance to cognition is lacking. To fill the knowledge gap,

our investigation attempted to (i) ascertain whether insulin

resistance is causally associated with cognition and (ii) quantify
frontiersin.org
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the extent to which brain cortical structure mediates the effects of

insulin resistance on cognition.
2 Materials and methods

2.1 Study design

The flowchart in Figure 1 demonstrates the comprehensive

procedure of our exploration. In stage 1, we performed a two-

sample bidirectional univariable MR analysis to establish the

causality between insulin resistance and cognition. In stage 2, we

used a two-step bidirectional univariable MR to select candidate

mediators in the causality between insulin resistance and cognition.

In stage 3, we constructed a mediation model and quantified the

proportion of insulin resistance’s effect on cognition mediated by

brain cortical structure. Our study adheres to the STROBE-MR

guidelines (Supplementary Table S1).
2.2 Data sources

2.2.1 Insulin resistance
We used fasting insulin, HOMA-B, HOMA-IR, and proinsulin as

established proxies for insulin resistance (1). Towards fasting insulin,

HOMA-B, andHOMA-IR (18), we chose genetic IVs from the publicly

available meta-analyses of glucose and insulin-related traits consortium

(MAGIC), with 51750 participants without diabetes from 26 European

cohorts. The three surrogate markers of insulin resistance were log-

transformed. The regression analyses were adjusted for age and sex,

together with BMI (2). Regarding proinsulin, genome-wide association
Frontiers in Endocrinology 0325
studies (GWAS) summary statistics were attained from MAGIC either

(19). The meta-analysis consisted of 10701 European individuals

without diabetes from four cohorts. The regression analyses were

adjusted for fasting insulin in addition to age and sex. More detailed

characteristics of cohorts have been provided in Supplementary

Table S2.

2.2.2 Brain cortical structure
Summary statistics for brain cortical structure were derived

from the enhancing neuro imaging genetics through meta analysis

(ENIGMA) database (20), encompassing 51665 participants across

60 cohorts worldwide. Specifically, 33709 individuals were of

European ancestry. Among them, 10803 participants were from

the UK Biobank consortium. The imaging phenotype was measured

using the T1 structural Magnetic Resonance Imaging sequence

combined with the Desikan-Killiany atlas, which contained

surficial area (SA) and thickness (TH) for both global and 34

functionally specialized cortical regions. The mean value of global

SA was 169647.43 mm2, and the mean value of global TH was 2.45

mm. The SA and TH of 34 cortical regions were adjusted based on

global measurements to mitigate the impact of individual

differences on results. To avoid sample overlap between traits, we

employed meta-results involving exclusively European and non-

UKB individuals. Consequently, the ultimate sample size used in

our study for brain cortical structure was 23626. The detailed cohort

information is available in Supplementary Table S3.

2.2.3 Cognition
Following existing literature, summary-level statistics for

cognition were achieved from the UK Biobank (21), gathering up

to 502649 population-based individuals. After excluding patients
FIGURE 1

Flowchart of the two-step mediation MR study. MR, Mendelian randomization; HOMA-B, homeostasis model assessment beta-cell function; HOMA-
IR, homeostasis model assessment insulin resistance; IVW, inverse-variance weighted; MR-PRESSO, Mendelian randomization pleiotropy residual
sum and outlier.
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with neurological disorders, 480416 participants completed the five

cognitive assessments through the computerized touchscreen. To

magnify statistical power, we chose visual memory and reaction

time as proxies for cognition (22). The visual memory was evaluated

via a “6 pairs matching” test, requiring individuals to recall and

match the position of 6 pairs of cards based on their memory. The

number of errors was counted, with higher counts represented

poorer cognitive performance. The reaction time was measured

through a symbol matching test, akin to a “snap” card game. The

completion time (in milliseconds) was recorded, with a longer time

symbolized poorer cognitive performance. The scores of visual

memory and reaction time were transformed with [ln(x + 1)] and

[ln(x)], respectively, to achieve normal distribution.

The GWAS data utilized in our research originated from

distinct cohorts or consortia, ensuring the absence of

sample overlap.
2.3 Instrumental variable selection

Strictly quality control procedures were implemented to guarantee

the robustness and precision of the causality among insulin resistance,

brain cortical structure, and cognition. (1) SNPs strongly linked to

insulin resistance phenotype (p < 5×10−8) were selected as IVs.

Nevertheless, for SA and TH, the locus-wide significance level

threshold was set to a relatively relaxed 1×10−6 to retain more IVs;

(2) clumping procedure: removing IVs in linkage disequilibrium with

r2<0.001, and clumping window=10000kb; (3) the minor allele

frequency (MAF) > 0.01; (4) the F-statistic > 10, with the detailed

calculation formula provided elsewhere (17); (5) harmonizing

procedure: excluding palindromic and inconsistent IVs; (6) steiger

filtering: the IVs were determined to be more predictive of exposure

than outcome; (7) PhenoScanner V2 scanning: discarding the IVs

correlated (p < 1×10−5) with confounding factors (23).
2.4 Statistical analysis

All analyses were conducted in the R version 4.1.2 environment using

“TwoSampleMR” and “MRPRESSO” packages. The figures were drawn

through FreeSurfer (version 7.2.0, https://surfer.nmr.mgh.harvard.edu)

and Figdraw (https://www.figdraw.com).

2.4.1 Primary analysis
Five complementary MR approaches with accommodated

assumptions were conducted, including inverse variance weighted

(IVW) (primary), MR Egger, weighted median, weighted mode, and

simple mode. (1) The IVW is the optimal statistical approach

assuming the validity of all IVs (24). However, the precision of

IVW is susceptible to directional pleiotropy. (2) The MR Egger is a

less efficient analytical method capable of providing unbiased

estimations even if all IVs are pleiotropic, but it is substantially

influenced by outliers (25). (3) The weighted median method is

applicable when there are <50% invalid IVs and is robust to outliers

(24). (4) The weighted mode persists steady even though IVs are

disqualified or violate the pleiotropy hypothesis (26). (5) The simple
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mode is an unweighted empirical density function mode with

relatively low statistical efficiency (27). As for multiple

comparison correction, the statistically significant threshold was

set at 0.025 (0.05/2) for the MR analysis between insulin resistance

and cognition, and 0.0015 (0.05/34) for the MR analysis between

insulin resistance and brain cortical structure. P-values between

0 . 05 and the spe c ifi ed th r e sho ld we r e con s i d e r ed

nominally significant.

2.4.2 Mediation analysis
The two-step univariable mediation MR analysis was

implemented to investigate whether brain cortical structure

mediates the causal pathway from insulin resistance to cognition

outcome. The total effect of insulin resistance on cognition (c) can

be decomposed into two components: (1) the direct effects of

insulin resistance on cognition (without mediators, c’) and (2) the

indirect effects mediated by brain cortical structure (a×b, where a

represents the influence of insulin resistance on brain cortical

structure and b represents the influence of brain cortical structure

on cognition) (28). The mediation percentage was calculated using

the equation (a×b)/c. Subsequently, we applied the delta method to

calculate 95% confidence intervals (CI).

2.4.3 Sensitivity analysis
Several sensitivity analyses were carried out to validate the

reliability of the identified causal relationship. The Cochran’s Q

statistics of MR Egger and IVW approaches were conducted to

determine latent heterogeneity. A p-value larger than 0.05 indicated

the absence of heterogeneity. The MR Egger intercept and Mendelian

Randomised Multi-Effects Residuals and Heteroscedasticity (MR-

PRESSO) approaches were concurrently employed to determine the

latent horizontal pleiotropy. The intercept of MR Egger was nearly

zero, and the p-value was greater than 0.05, demonstrating no

pleiotropy. The leave-one-out analysis investigated whether the

removal of a single SNP substantially influenced the total effect.

2.4.4 Reverse MR analysis
For causality found to be significant or nominally significant in

the forward MR analysis, we carried out the reverse MR analysis to

verify the bidirectional relationship in the pathway. The threshold

for IVs strongly correlated to cognition traits was set at 5×10−8, and

the other procedures were similar to the forward MR analysis.
3 Results

3.1 Causality of insulin resistance
on cognition

Following the rigorous screening steps mentioned above, 9

SNPs with fasting insulin, 12 SNPs with HOMA-B, 8 SNPs with

HOMA-IR, and 8 SNPs with proinsulin were selected as IVs,

respectively. The comprehensive information for IVs of insulin

resistance is listed in Supplementary Table S4. The IVs strongly

linked to fasting insulin substantially overlapped with those in
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HOMA-IR. The relationships between insulin resistance

phenotypes and cognition phenotypes are illustrated in Figure 2.

The IVW method demonstrated that fasting insulin (beta=0.18,

95%CI=0.04 to 0.32, p=0.009) and HOMA-IR (beta=0.22, 95%

CI=0.07 to 0.37, p=0.005) were causally correlated with visual

memory. Additionally, a significant detrimental effect of

proinsulin on reaction time was discovered using the IVW

method (beta=0.03, 95%CI=0.01 to 0.05, p=0.005). However, no

association was observed for HOMA-B.
3.2 Causality of insulin resistance on brain
cortical structure

As illustrated in Figures 3, 4, the influence of insulin resistance on

brain cortical structure, both protective and adverse, were

determined. No significant causality was discovered for altering

global SA and TH with insulin resistance. Concerning SA of

specific regions, a higher level of proinsulin was nominally

associated with a decreased SA of the rostral middle frontal (IVW:

beta=-49.28, 95%CI=-86.30 to -12.27, p=0.009). The causal effects of
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HOMA-IR on SA of both precentral (IVW: beta=-161.91, 95%CI=-

272.50 to -51.32, p=0.004) and insula (IVW: beta=84.15, 95%

CI=26.30 to 142.00, p=0.004) turned borderline significant after

Bonferroni adjustment. The fasting insulin and HOMA-IR

determined both adverse impacts on the SA of the precentral and

protective effects on the SA of the insula simultaneously. Respecting

TH of specific regions, genetically predicted HOMA-IR was inversely

related to TH of rostral anterior cingulate (IVW: beta=-0.09, 95%

CI=-0.15 to -0.03, p=0.003). The proinsulin susceptibility was

negatively linked to TH of the caudal anterior cingulate (IVW:

beta=-0.03, 95%CI=-0.04 to -0.01, p=0.003). Nevertheless, limited

evidence was noticed for the causality of HOMA-B on SA and TH.

The detailed causality between each insulin resistance phenotype and

brain cortical structure is presented in Supplementary Tables S5, S6.
3.3 Causality of brain cortical structure
on cognition

Building upon the established causality between insulin

resistance and brain cortical structure of specific regions. The SA
FIGURE 2

The causality of genetically predicted insulin resistance on cognition using IVW methods. IVW, inverse variance weighted; SNP, single nucleotide
polymorphism; CI, confidence interval; HOMA-B, homeostasis model assessment beta-cell function; HOMA-IR, homeostasis model assessment
insulin resistance.
FIGURE 3

The results of MR analysis showed that insulin resistance potentially influenced the brain cortical structure of specific regions. (A) MR analysis results
of insulin resistance on cortical surface area. (B) MR analysis results of insulin resistance on cortical thickness. Brain regions with positive and
negative IVW-derived b values are shown in red and blue, respectively, brain region with negative IVW-derived b value and mediates the association
between insulin resistance and cognition is shown in yellow. MR, Mendelian randomization; IVW, inverse variance weighting.
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and TH of specific regions were chosen as candidate mediators.

Subsequently, we performed MR analysis on SA and TH of specific

regions concerning cognition phenotypes. We observed that

genetically determined SA of cuneus had a positive causal

direction with reaction time (IVW: beta=2.79×10-4, 95%

CI=5.99×10-5 to 4.98×10-4, p=0.013). The SA of the rostral middle

frontal exhibited protective effects against longer reaction time

(beta=-1.32×10-4, 95%CI=-2.04×10-4 to -5.91×10-5, p=0.0004), as

indicated by robust IVW estimation. Consistent directional results

were observed across all MR estimations.
3.4 Cortical structure mediates the
causality of insulin resistance on cognition

We analyzed the rostral middle frontal and cuneus’s SA as

candidate mediators of the pathway from proinsulin to reaction

time. Our study indicated that a higher level of proinsulin might

result in lower SA of the rostral middle frontal, which in turn was

related to a longer reaction time. However, the mediation model

was invalid using the SA of cuneus as a mediator. As shown in

Figure 5, the SA of the rostral middle frontal partially mediated the

pathway from proinsulin to reaction time, accounting for 20.97%

(95%CI=1.44% to 40.49%, p<0.05).
3.5 Sensitivity analysis

Estimation for Cochran’s Q statistic MR Egger and IVW tests

indicated no significant heterogeneity in the causality. The MR-

PRESSO global test showed a considerable p value and the MR-

Egger intercept was nearly zero, emphasizing no significant

horizontal pleiotropy (Supplementary Table S7). None underlying

outliers were confirmed in the MR-PRESSO analysis. Furthermore,

the observed causal estimate was not substantially affected by any

strong driven SNP, as indicated by the leave-one-out test. The MR

steiger filtering was determined to be more predictive of exposure

than the outcome. Consequently, there was sufficient evidence

supporting the robustness of our uncovering.
3.6 Reverse MR analysis

We further employed reverse MR analysis to evaluate the

existence of bidirectional causality in the identified results from

the forward analysis. We included up to 23 SNPs for visual memory

and 58 for reaction time. Comprehensive information on the IVs is

displayed in Supplementary Table S8. Results in Supplementary

Table S9 indicated no significant causality for genetically predicted

reaction time on proinsulin, reaction time on SA of rostral middle

frontal, and SA of rostral middle frontal on proinsulin. No evidence

of heterogeneity and pleiotropy was found in the reverse MR

analysis (Supplementary Tables S10).
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4 Discussion

Through MR analysis, we investigated the causal influence of

insulin resistance-related traits on cognition and evaluated the

mediating effects of brain cortical structure in the pathway.

Specifically, we identified that an elevated level of proinsulin, a

marker of insulin resistance, led to increased reaction time, with the

SA of rostral middle frontal mediated 20.97% of this effect. This

study added suggestive evidence that brain cortical structure was

crucial in the pathogenesis linking insulin resistance to the

advancement of cognitive impairment.

Insulin resistance, a complicated phenotype, is typically

assessed through various proxy indexes, with the euglycemic

hyperinsulinemic glucose clamp technique considered the gold

standard. Owing to the deficiency of updated large-scale GWAS

on this gold standard measurement, we utilized four commonly

employed surrogate markers in our MR analysis (29). Our study

demonstrated a significant detrimental effect of insulin resistance

traits on cognitive performance, specifically fasting insulin, HOMA-

IR, and proinsulin, with no such effect observed for HOMA-B. It

has been reported that compared to HOMA-B, higher HOMA-IR

presented a closer connection with incident T2DM in Chinese

adults (30). Given that diabetes is a well-established risk factor for

cognitive impairment, this discrepancy could explain the lack of

effect observed for HOMA-B. Furthermore, HOMA-IR, rather than
FIGURE 4

The results of MR analysis showed that insulin resistance potentially
influenced the brain cortical structure of specific regions. The color of
each block described the IVW-derived P-values of each MR analysis. P-
values of <0.05 were shown in red, and P-values of >0.05 were shown
in blue. MR, Mendelian randomization; IVW, inverse variance weighted;
SA, surficial area; TH, thickness; HOMA-B, homeostasis model
assessment beta-cell function; HOMA-IR, homeostasis model
assessment insulin resistance.
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HOMA-B, revealed a significant elevation in AD and a strong

correlation with T-tau and P-tau in Cerebrospinal fluid (31).

Collectively, these studies suggest that HOMA-IR is a more

valuable indicator than HOMA-B. Considering the substantial

overlap in IVs between fasting insulin and HOMA-IR, it is

plausible that both are causally correlated with visual memory.

The adverse effect of higher insulin resistance on cognition

aligned with several cross-sectional (32) and longitudinal studies

(33). Contrary to the results mentioned above, one previous study

conducted by Thankappan S et al. reported a null relationship

between insulin resistance and AD with a relatively lower sample

size (10). Surprisingly, Hooshmand B (11) followed 269 adults

without dementia for 7 years, discovering the linkage between

HOMA-IR and cognition in longitudinal analysis instead of at

baseline. These discrepancies may reflect limitations inherent in

observational research, such as confounding factors, reverse

causality, and selection bias. Evidence from MR studies also

showed a potential causal link between insulin resistance (34) and

related traits (obesity) (35) with cognition. However, controversial

MR analyses simultaneously existed, indicating no causality

be tween HOMA-IR and cogni t ion af te r contro l l ing

socioeconomic position and educational attainment (36).

Additionally, prior MR analyses, using two large-scale population

samples to explore causal associations (37), revealed genetic

evidence of an association of HOMA-IR with verbal intelligence

in the Generation Scotland: Scottish Family Health sample, whereas

this correlation was not validated in the UK Biobank sample.

Consequently, the inconsistent results across MR studies may

attributed mainly to heterogeneity in the selection of participants,

cohorts, sample size, and different phenotypes of insulin resistance
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and cognition. Further replication through randomized controlled

trials is warranted.

Our study uncovered the latent causal influence of insulin

resistance on brain cortical SA and TH. Post-mortem human

brain studies have established the presence of insulin receptors in

the brain, especially in the cortical regions (14). Consistent with our

findings, the Rhineland Study, encompassing 973 participants,

reported a similar inverse association between insulin resistance

and the structure of the precentral cortex, temporal cortex, and

cuneus (12). Our findings suggested that the specific brain cortical

regions susceptible to insulin resistance are mainly distributed in

the frontal, temporal, and limbic lobes. The underlying mechanisms

for insulin resistance affecting brain cortical structure may be as

follows. First, studies have shown that the increased cerebrospinal

fluid Ab42 (38), t-tau, and p-tau levels (31) were related to insulin

resistance, which are pathological hallmarks of cognitive

impairment disorder. Second, brain cortical glucose metabolism

might be impacted by insulin resistance, which reflects the activity

of neuronal and synaptic (16). Finally, insulin resistance may induce

atherosclerosis, vascular endothelial dysfunction, oxidative stress,

and chronic inflammation (39), contributing to cortical thinning

and subsequent clinical events, including cognitive impairment.

However, specific mechanisms remain unclear, necessitating further

research in the future. Notably, the protective effects of genetically

determined insulin resistance on the structure of orbitofrontal,

insula, and bankssts are varied from logical expectation. Increased

cortical SA or TH was generally considered a protective indicator

against cognitive impairment. One plausible explanation is that

compensatory hypertrophy or neural adaptation mitigates the

adverse influence of higher insulin resistance on brain functional
FIGURE 5

Schematic diagram of the mediation model. (A) Schematic diagram of the brain cortical structure’s effect on the pathway from insulin resistance to
cognition. (B) Schematic diagram of the rostral middle frontal surficial area’s effect on the pathway from proinsulin to reaction time.
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regions. Altogether, our study emphasizes the intricate and

heterogeneous essence of insulin pathways within the brain.

Our research provided suggestive evidence that the SA of the

rostral middle frontal mediates the effect of proinsulin on reaction

time. It has been indicated that the structure of the rostral middle

frontal was vulnerable in patients with T2DM, and the altered

structure of this brain region held high diagnostic value for T2DM

patients with mild cognitive impairment (40). The rostral middle

frontal is a crucial component of the dorsolateral prefrontal cortex,

playing a vital role in executive function. Additionally, the rostral

middle frontal, along with the parietal lobe, constitutes a segment

the dorsal attentional network (41). We employed the symbol

matching test to evaluate reaction time, serving as an indicator of

attention and executive function. However, another MR estimation

did not support the causality among glycemia, brain structure and

cognition (42). This study utilized T2DM and glycosylated

hemoglobin as exposure, with hippocampal and white matter

hyperintensity volumes as brain structural outcomes, which is

largely different from ours. Consequently, we deduce that insulin

resistance, rather than T2DM, exerts a direct influence on the brain

structure. The SA of the rostral middle frontal may represent a

latent pathophysiological process in the correlation between insulin

resistance and cognition.

In the current survey, we primarily target the possible mediating

role of phenotypes related to brain cortical structure, with

approximately 80% of the mediation influence on cognition yet to

be elucidated. The multi-model neuroimaging methods offer

opportunities to unravel insulin resistance-related cognitive

impairment (43). Unexplored mediating pathways may involve

the macrostructures and microstructures, metabolism, perfusion,

neural function, and brain network. Given that previous studies

have established the causal effect of obesity (44) and blood lipids

(45) on brain cortical structure, it is possible that these are essential

candidate mediators as well. Future research is warranted to identify

additional mediation factors along the pathway from insulin

resistance to cognition.

This MR analysis exhibits multiple strengths. Firstly, the

advantages of the MR statistic framework enable causality

inference comparable to randomized controlled trials. Secondly,

we incorporated comprehensive phenotypes related to insulin

resistance, enhancing the integrity and rigor of the estimation.

Thirdly, UK Biobank samples were excluded from the MR

analysis of brain cortical structure. Thus, there was no sample

overlap with the GWAS data used in our research, significantly

reducing potential bias (46). Fourthly, sensitivity analyses and

Bonferroni corrections were conducted sequentially to check the

credibility of the discovered causality. Lastly, we implemented

rigorous screening steps for mediators to guarantee the reliability

and rationality of the mediation model. Nevertheless, certain

limitations need to be considered. Firstly, the temporary

measurement of insulin resistance is disposed to change over time

without lifelong representation. Secondly, despite the absence of

heterogeneity and pleiotropy in our findings, we cannot eliminate

all potential biases and confounders. Thirdly, our research was

restricted to individuals of European and American ancestry,

minimizing population admixture confounding while limiting
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generalizability to other ethnic groups. Finally, the driven

causality of insulin resistance on brain cortical structure did not

withstand the Bonferroni correction, which just indicated

suggestive causality. Caution explanations with additional

validation in distinct cohorts are warranted.

Our research provided conceivable genetic evidence that

elevated level of insulin resistance increased the susceptibility to

cognitive impairment, with a partial mediation effect observed

through the SA of the rostral middle frontal. Broader efforts are

necessary to probe additional mediators. Our findings promote a

better recognizing of the biological mechanisms underlying

cognitive impairment induced by insulin resistance. Interventions

to improve insulin sensitivity may serve as precautions against brain

cortical atrophy and subsequent cognitive impairment.

Nevertheless, further confirmation through randomized

controlled trials is necessary.
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Aims: Non-alcoholic fatty liver disease (NAFLD) is closely related to type 2

diabetes (T2D), with reduced insulin sensitivity being a key factor in their

disrupted metabolic processes. The single point insulin sensitivity estimator

(SPISE) is a novel index. This study aims to explore the association between SPISE

and NAFLD in T2D population.

Methods: This study included a total of 2,459 patients with T2D. SPISE was

calculated based on high density lipoprotein-cholesterol (HDL-c), triglycerides

(TG), and body mass index (BMI). Participants were categorized into NAFLD

and non-NAFLD groups based on the results of ultrasonographic diagnosis. The

relationship between SPISE and NAFLD was analyzed separately for each gender.

Results: The overall prevalence of NAFLD is 38.5%. In females and males, the

SPISE was significantly reduced in the NAFLD group compared to the non-

NAFLD group (both P < 0.05). The prevalence of NAFLD showed a significant

reduction across quartiles of the SPISE in both genders (both P < 0.05).

Additionally, univariate correlation analysis showed a negative correlation

between SPISE and NAFLD (both P < 0.05). In multivariate regression analysis,

a reduced SPISE was identified as an independent risk factor for NAFLD (odds

ratios of 0.572 and 0.737, 95% CI of 0.477–0.687 and 0.587–0.926, respectively).

Moreover, the area under the receiver operating characteristic (ROC) curve for

SPISE was 0.209 in females and 0.268 in males (95% CI of 0.175–0.244 and

0.216–0.320, respectively). These results are more meaningful than those of

other variables.

Conclusion: SPISE is significantly reduced in NAFLD patients with T2D.

Compared to other indicators, SPISE demonstrates superior predictive value in

diagnosing NAFLD, and it is independent of gender.
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type 2 diabetes, SPISE, NAFLD, insulin sensitivity, insulin resistance

Frontiers in Medicine 01 frontiersin.org33

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1454938
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1454938&domain=pdf&date_stamp=2025-01-22
https://doi.org/10.3389/fmed.2025.1454938
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1454938/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1454938 January 18, 2025 Time: 17:1 # 2

Zhao et al. 10.3389/fmed.2025.1454938

1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is a widespread
health issue, with a worldwide prevalence of 25% (1). It has become
the primary cause of chronic liver disease under the influence
of type 2 diabetes (T2D) and obesity (2). Reports indicate that
NAFLD has become the fastest-growing cause of liver-related
deaths globally (3). Moreover, it is closely associated with the
progression of chronic kidney disease (CKD) and cardiovascular
disease (CVD) (4, 5). Many metabolic disorders not only affect the
incidence of NAFLD but also increase the risk of its progression
to non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular
carcinoma, and even death (6). And the link between T2D and
NAFLD is thoroughly documented (7). Research indicates that
T2D is associated with more than double the risk of advanced
hepatopathy (8). Furthermore, a meta-analysis reported that the
prevalence of NASH with T2D patients was approximately 37.3%,
significantly higher than the prevalence of progressive NAFLD in
the general population (9). Therefore, in clinical practice, it would
be valuable to have a simple and inexpensive index that could screen
for NAFLD among T2D patients.

Numerous studies indicate that reduced insulin sensitivity (Si)
or insulin resistance (IR) is one of the key pathophysiological
factors in NAFLD (10–12). The gold standard for measuring
insulin sensitivity is the hyperinsulinemic-euglycemic clamp (13);
however, due to its cost, time consumption, and invasiveness, it
is not widely used in clinical practice. The single point insulin
sensitivity estimator (SPISE) is an alternative index of IR calculated
from high density lipoprotein-cholesterol (HDL-c), triglycerides
(TG), and body mass index (BMI) (14). Research indicates a
strong correlation between SPISE and the hyperinsulinemic-
euglycemic clamp (15). Additionally, the SPISE index is closely
related to metabolic syndrome (MetS), cardiovascular metabolic
risk in adolescents, and the cardiovascular prognosis of patients
with T2D (16–18). It is also worth mentioning that SPISE is
not only considered an effective indicator for predicting diabetes
development in obese children (19), but SPISE-5.4 has also been
proven to be a good predictor of diabetes development (20).
Recent studies have reported a significant reduction in the SPISE
among adolescents with obesity-related NAFLD (21). Additionally,
research from Japan indicates that a reduction in SPISE is associated
with an increased risk of NAFLD (22). Research also suggested
an association between SPISE and pediatric NAFLD; however,
after adjusting for confounding factors, this association is no
longer significant (23). Currently, there is scarce research on the
relationship between SPISE and NAFLD among T2D patients.
This study aims to clarify the link between SPISE and NAFLD in
T2D patients and assess SPISE’s predictive potential for NAFLD in
this population.

2 Materials and methods

2.1 Study participants

During the period from February 2020 to March 2023, we
collected clinical data from patients with T2D who were treated
at the Department of Endocrinology of the Linyi People’s Hospital,

Shandong Province, China. Exclusion criteria included: (1) patients
under the age of 18; (2) patients with liver or kidney dysfunction;
(3) evidence of autoimmune hepatitis, viral hepatitis, drug-induced
fatty liver, or other chronic liver diseases; (4) habitual drinkers
who consume alcohol more than 5 days per week, equivalent to an
average daily intake of 38 grams for males and 26 grams for females
(24); (5) patients with incomplete clinical data. Ultimately, 2,459
eligible patients were included in the study.

2.2 Anthropometric and Biochemical
measurements

Participant demographic information and clinical baseline
data were collected, such as age, gender, duration of diabetes,
and smoking and drinking habits. Height, weight, systolic
blood pressure (SBP), and diastolic blood pressure (DBP) were
measured and recorded. Morning fasting venous blood samples
were collected to determine levels of alanine aminotransferase
(ALT), aspartate aminotransferase (AST), gamma-glutamyl
transferase (GGT), total cholesterol (TC), triglycerides (TG), high-
density lipoprotein cholesterol (HDL-c), low-density lipoprotein
cholesterol (LDL-c), serum creatinine (Scr), uric acid (UA),
fasting plasma glucose (FBG); glycated hemoglobin (HbA1c, high
performance liquid chromatography) and hemoglobin (Hb), were
measured using a biochemical analyzer (Cobas c 702, Roche,
Germany). Urinary albumin to creatinine ratio (UACR) was tested
by an autoanalyzer (Beckman Coulter AU5821). Fasting insulin
(FINS, direct chemiluminescence method) was measured by the
fully automated sample processing system (Aptio Automation,
SIEMENS, USA).

Bioelectrical impedance analysis (Omron DUALSCAN HDS-
2000, Kyoto, Japan) was employed to assess visceral fat area (VFA)
and subcutaneous fat area (SFA).

2.3 Definition of NAFLD

Fatty liver diagnosis begins with ultrasound imaging and is
supplemented by clinical evaluation, including medical history and
physical examination, with specific attention to alcohol intake.
Additional factors such as viral hepatitis and medication use are
assessed. Laboratory tests, particularly liver function tests, help
rule out other fatty liver conditions, culminating in a definitive
diagnosis of NAFLD.

Parameter calculations

1. Body mass index (BMI) = weight (kg) / height (m)2;
2. TG/HDL-c = TG (mmol/l) / HDL-c (mmol/l);
3. SPISE index = (600 × HDL-c [mg/dL]0.185) / (TG

[mg/dL]0.2
× BMI [kg/m2]1.338) (14);

4. HOMA-IR = FPG (mmol/L) × FINS (IU/mL)/22.5 (25).

2.4 Statistical analysis

Statistical analyses were performed using SPSS 22.0 (SPSS
Inc, Chicago, IL, USA). Normally distributed variables were
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TABLE 1 Clinical and biochemical characteristics stratified by gender.

Variables All Female Male P

Number 2459 1441 1018

Age (years) 57.10 ± 13.4 58.3 ± 13.3 55.4 ± 13.3 <0.001

diabetes duration (years) 7.0 (2.0 ∼ 13.0) 7.0 (2.0 ∼ 13.0) 8.0 (2.0 ∼ 13.0) 0.548

Smoking (n, %) 385 (15.7%) 9 (0.6%) 376 (37.0%) <0.001

BMI (kg/m2) 25.40 ± 3.89 25.21 ± 3.99 25.68 ± 3.71 0.003

VFA (cm2) 89.00 (64.00 ∼ 119.00) 79.00 (58.00 ∼ 104.00) 106.00 (80.00 ∼ 133.00) <0.001

SFA (cm2) 180.00 (138 ∼ 229.00) 176.50 (131.25 ∼ 228.00) 186.00 (148.00 ∼ 230.00) 0.001

SBP (mmHg) 129.7 ± 19.2 130.3 ± 19.8 128.8 ± 18.2 0.043

DBP (mmHg) 80.3 ± 11.9 79.0 ± 11.8 82.2 ± 11.8 <0.001

TC (mmol/L) 4.85 ± 1.33 4.99 ± 1.30 4.65 ± 1.33 <0.001

LDL-c (mmol/L) 3.08 ± 1.50 3.18 ± 1.72 2.94 ± 1.12 <0.001

TG (mmol/L) 1.41 (0.99 ∼ 2.09) 1.41 (0.99 ∼ 2.03) 1.41 (0.99 ∼ 2.20) 0.212

HDL-c (mmol/L) 1.18 ± 0.35 1.25 ± 0.37 1.08 ± 0.30 <0.001

TG / HDL-c ratio 1.25 (0.78 ∼ 2.05) 1.17 (0.74 ∼ 1.90) 1.39 (0.83 ∼ 2.34) <0.001

HbA1c (%) 9.43 ± 2.28 9.40 ± 2.25 9.48 ± 2.32 0.383

FPG (mmol/L) 9.24 ± 4.03 9.24 ± 4.12 9.24 ± 3.91 0.969

ALT (U/L) 17.40 (12.80 ∼ 26.40) 16.15 (11.90 ∼ 24.50) 19.40 (14.10 ∼ 31.10) <0.001

AST (U/L) 17.30 (14.00 ∼ 22.70) 16.90 (13.60 ∼ 22.30) 18.00 (14.60 ∼ 23.40) <0.001

GGT (U/L) 21.00 (15.00 ∼ 32.00) 19.00 (14.00 ∼ 27.00) 26.00 (18.00 ∼ 41.00) <0.001

UA (µmolL) 290.87 ± 101.22 269.75 ± 97.45 320.92 ± 98.91 <0.001

Scr (µmol/L) 66.80 ± 28.45 60.15 ± 27.89 76.32 ± 26.49 <0.001

UACR (mg/g) 12.10 (6.20 ∼ 47.50) 12.20 (6.60 ∼ 42.80) 11.70 (5.60 ∼ 54.00) 0.167

Hb (g/L) 138.82 ± 18.96 131.85 ± 16.17 148.66 ± 18.24 <0.001

FINS (µIU/mL) 16.70 (10.40 ∼ 22.94) 17.17 (10.71 ∼ 23.44) 15.77 (10.21 ∼ 21.55) 0.054

SPISE 6.10 (5.04 ∼ 7.39) 6.25 (5.22 ∼ 7.57) 5.87 (4.81 ∼ 7.08) <0.001

HOMA-IR 6.40 (3.46 ∼ 9.78) 6.40 (3.52 ∼ 9.71) 6.37 (3.40 ∼ 10.19) 0.905

NAFLD (n, %) 946 (38.5%) 520 (36.1%) 426 (41.8%) 0.004

BMI, body mass index; VFA, visceral fat area; SFA, subcutaneous fat area; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; LDL-c, low-density lipoprotein
cholesterol; TG, triglyceride; HDL-c, high-density lipoprotein cholesterol; HbA1c, glycosylated hemoglobin; FPG, fasting plasma glucose; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, γ - glutamyl transpeptidase; UA, uric acid; Scr, serum creatinine; UACR, urinary albumin to creatinine ratio; Hb, hemoglobin; FINS, fasting insulin; SPISE, the
single point insulin sensitivity estimator; HOMA-IR, homeostatic model assessment for insulin resistance; NAFLD, non-alcoholic fatty liver disease. Data were presented as mean ± SD for
normally distributed variables, and median (interquartile ranges) for abnormal distributions. Independent-Samples T test and Mann-Whitney U test were used for comparisons of normally
and abnormally distributed continuous variables between male and female groups, respectively. Categorical variables were presented as percentage (%), and were compared by chi-square test.
Statistical differences were defined by P (two-tailed) less than 0.05.

described using mean ± SD and analyzed with independent
samples T-tests. Non-normally distributed variables were
described using medians (interquartile ranges) and analyzed
with Mann-Whitney U tests. Analysis of variance (ANOVA)
and Student–Newman–Keuls tests were performed for multiple
and pairwise comparisons of normally distributed data, and
Kruskal-Wallis 1-way ANOVA test for abnormal distributions.
Categorical variables were presented as percentage (%) and
assessed using chi-square tests. Independent factors influencing
NAFLD were identified using Spearman’s correlation and
logistic regression analyses. Significance was set at P < 0.05
(two-tailed). The SPISE index’s ability to predict NAFLD
was evaluated via the receiver operating characteristic
(ROC) curve analysis.

3 Results

3.1 Clinical and biochemical
characteristics

As shown in Table 1, this study included 2459 patients with
T2D, with a mean age of 57.10 ± 13.4 years. The overall incidence
of NAFLD was 38.5%, with rates of 36.1% in females and 41.8% in
males. Compared to males, females had higher levels of age, SBP,
TC, LDL-c, HDL-c and SPISE, but lower proportion of smokers,
BMI, VFA, SFA, DBP, TG/HDL-c ratio, ALT, AST, GGT, UA, Scr,
and Hb (all P < 0.05). There were no significant differences in
diabetes duration, TG, HbA1c, FPG, UACR, HOMA-IR and FINS
between the two groups (all P > 0.05).
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TABLE 2 Comparison of clinical and biochemical characteristics between non-NAFLD and NAFLD groups.

Variables Female Male

Non-NAFLD
group

NAFLD group P Non-NAFLD
group

NAFLD group P

Number 921 520 592 426

Age (years) 59.38 ± 12.91 56.38 ± 13.83 <0.001 58.33 ± 12.90 51.37 ± 12.89 <0.001

Diabetes duration (years) 8.0 (3.0 ∼ 15.0) 5.0 (1.0 ∼ 10.0) <0.001 10.0 (4.0 ∼ 15.0) 5.0 (2.0 ∼ 10.0) <0.001

Smoking (%) 5 (0.5%) 8 (0.8%) 0.730 203 (34.3%) 173 (40.6%) 0.048

BMI (kg/m2) 24.07 ± 3.64 27.23 ± 3.80 <0.001 24.45 ± 3.42 27.37 ± 3.43 <0.001

VFA (cm2) 67.00 (48.00 ∼ 90.00) 97.00 (77.00 ∼

120.50)
<0.001 92.00 (64.75 ∼

121.00)
124.00 (101.00 ∼

151.00)
<0.001

SFA (cm2) 155.00(116.00 ∼

200.00)
214.00 (171.00 ∼

261.00)
<0.001 168.00 (129.00 ∼

202.00)
211.00 (175.00 ∼

255.50)
<0.001

SBP (mmHg) 128.84 ± 20.30 132.97 ± 18.59 <0.001 127.79 ± 19.45 130.10 ± 16.26 0.040

DBP (mmHg) 77.32 ± 11.65 82.02 ± 11.52 <0.001 80.06 ± 11.66 85.11 ± 11.35 <0.001

TC (mmol/L) 4.87 ± 1.32 5.20 ± 1.26 <0.001 4.48 ± 1.26 4.89 ± 1.39 <0.001

LDL-c (mmol/L) 3.06 ± 1.35 3.39 ± 2.21 <0.001 2.89 ± 1.14 3.05 ± 1.08 0.006

TG (mmol/L) 1.25 (0.88 ∼ 1.74) 1.72 (1.28 ∼ 2.55) <0.001 1.21 (0.85 ∼ 1.79) 1.79 (1.26 ∼ 2.80) <0.001

HDL-c (mmol/L) 1.29 ± 0.38 1.17 ± 0.33 <0.001 1.12 ± 0.28 1.03 ± 0.31 <0.001

TG / HDL-c ratio 1.01 (0.64 ∼ 1.59) 1.55 (1.04 ∼ 2.37) <0.001 1.11 (0.70 ∼ 1.80) 1.83 (1.20 ∼ 3.07) <0.001

HbA1c (%) 9.33 ± 2.36 9.52 ± 2.03 0.118 9.52 ± 2.48 9.42 ± 2.08 0.531

FPG (mmol/L) 8.91 ± 4.22 9.83 ± 3.87 <0.001 9.02 ± 4.28 9.56 ± 3.30 0.026

ALT (U/L) 14.60 (10.90 ∼ 22.00) 19.15 (14.20 ∼ 29.75) <0.001 17.40 (13.20 ∼ 25.10) 23.70 (16.20 ∼ 38.30) <0.001

AST (U/L) 16.40 (13.18 ∼ 21.33) 17.70 (14.23 ∼ 24.68) <0.001 17.30 (14.00 ∼ 21.43) 19.00 (15.20 ∼ 26.45) <0.001

GGT (U/L) 16.95 (12.00 ∼ 23.00) 24.00 (17.00 ∼ 33.00) <0.001 21.00 (16.00 ∼ 31.00) 33.00 (24.00 ∼ 53.00) <0.001

UA (µmolL) 257.23 ± 94.17 291.77 ± 99.30 <0.001 310.61 ± 102.19 335.26 ± 92.40 <0.001

Scr (µmol/L) 62.20 ± 32.20 56.54 ± 17.39 <0.001 78.64 ± 30.54 73.12 ± 19.18 <0.001

UACR (mg/g) 12.85 (6.70 ∼ 58.13) 11.40 (6.40 ∼ 30.20) 0.010 13.90 (5.80 ∼ 83.40) 9.30 (5.10 ∼ 36.60) 0.002

Hb (g/L) 129.29 ± 16.77 136.36 ± 13.98 <0.001 144.36 ± 20.26 154.71 ± 12.72 <0.001

FINS (µIU/mL) 16.57 (8.44 ∼ 23.18) 18.41 (13.27 ∼ 24.47) 0.002 15.00 (9.14 ∼ 22.33) 16.44 (11.29 ∼ 21.27) 0.263

SPISE 6.87 (5.79 ∼ 8.20) 5.35 (4.57 ∼ 6.21) <0.001 6.48 (5.50 ∼ 7.91) 5.12 (4.33 ∼ 5.95) <0.001

HOMA-IR 5.71 (2.91 ∼ 9.12) 7.57 (4.81 ∼ 10.53) <0.001 5.53 (2.90 ∼ 10.21) 6.92 (3.94 ∼ 10.13) 0.009

BMI, body mass index; VFA, visceral fat area; SFA, subcutaneous fat area; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; LDL-c, low-density lipoprotein
cholesterol; TG, triglyceride; HDL-c, high-density lipoprotein cholesterol; HbA1c, glycosylated hemoglobin; FPG, fasting plasma glucose; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, γ - glutamyl transpeptidase; UA, uric acid; Scr, serum creatinine; UACR, urinary albumin to creatinine ratio; Hb, hemoglobin; FINS, fasting insulin; SPISE, the
single point insulin sensitivity estimator; HOMA-IR, homeostatic model assessment for insulin resistance; NAFLD, non-alcoholic fatty liver disease; Data were presented as mean ± SD for
normally distributed variables, and median (interquartile ranges) for abnormal distributions. Independent-Samples T test and Mann-Whitney U test were used for comparisons of normally and
abnormally distributed continuous variables between non-NAFLD and NAFLD groups, respectively. Categorical variables were presented as percentage (%), and were compared by chi-square
test. Statistical differences were defined by P (two-tailed) less than 0.05.

As shown in Table 2, for each gender, subjects were divided
into two groups, including non-NAFLD and NAFLD groups, and
the levels of each variable were compared. For females, compared
to the non-NAFLD group, the NAFLD group showed significantly
increased BMI, VFA, SFA, SBP, DBP, TC, LDL-c, TG, TG/HDL-
c ratio, FPG, ALT, AST, GGT, UA, Hb, FINS and HOMA-IR
(all P < 0.05), while age, diabetes duration, HDL-c, Scr, UACR
and SPISE were significantly decreased (all P < 0.05). For males,
the proportion of smokers and the levels of BMI, VFA, SFA,
SBP, DBP, TC, LDL-c, TG, TG/HDL-c ratio, FBG, ALT, AST,
GGT, UA, Hb and HOMA-IR were higher in the NAFLD group
compared to the non-NAFLD group (all P < 0.05), while age,

diabetes duration, HDL-c, Scr, UACR and SPISE were lower (all
P < 0.05).

As shown in Table 3, male and female patients were separately
divided into four groups according to the quartiles of the SPISE:
Q1 group (female: 2.58–5.22; male: 2.25–4.81), Q2 group (female:
5.22–6.25; male: 4.81–5.87), Q3 group (female: 6.25–7.57; male:
5.87–7.08), and Q4 group (female: 7.57–14.52; male: 7.08–15.05).
For the females, as the quartiles of SPISE increased, the duration
of diabetes, HDL-c showed a gradual increased, while the age,
BMI, VFA, SFA, SBP, DBP, TC, LDL-c, TG, TG/HDL-c, FPG,
ALT, AST, GGT, UA, Hb, FINS, HOMA-IR and the incidence of
NAFLD exhibited a gradual decreased (all P < 0.05). There was
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TABLE 3 Comparison of variables according to the categories of the SPISE.

Variables Female Male

Q1 Q2 Q3 Q4 P Q1 Q2 Q3 Q4 P

Age (years) 56.32 ± 15.30 59.80 ± 12.30a 59.37 ± 11.92a 57.72 ± 13.25b 0.001 48.30 ± 13.22 55.44 ± 12.82a 59.14 ± 11.24ab 58.81 ± 13.14ab <0.001

Diabetes duration (years) 6.0 (2.0∼10.0) 8.0(3.0∼13.0)a 8.0(3.0∼15.0)a 8.0(2.0∼13.0) 0.020 5.0(2.0∼10.0) 8.0(3.0∼13.0)a 10.0(3.0∼15.0)a 8.0(3.0∼15.0)ab <0.001

Smoking (n, %) 1(0.3%) 4(1.1%) 0(0%) 4(1.1%) 0.123 110(43.5%) 100(38.9%) 91(35.8%) 75(29.6%) 0.012

BMI (kg/m2) 29.81 ± 3.63 25.94 ± 1.85a 23.95 ± 1.79ab 21.09 ± 1.90abc <0.001 29.66 ± 3.19 26.65 ± 1.71a 24.74 ± 1.69ab 21.62 ± 2.28abc <0.001

VFA (cm2) 114.50
(91.00∼138.00)

88.00a

(74.00∼104.00)
71.00ab

(59.00∼90.00)
46.50abc

(30.00∼64.00)
<0.001 140.00

(118.75∼166.25)
119.00a

(97.00∼139.00)
97.50ab

(79.00∼117.25)
63.50abc

(38.00∼83.00)
<0.001

SFA (cm2) 246.50
(206.75∼294.25)

195.00a

(160.50∼228.50)
162.00ab

(134.00∼188.00)
113.50abc

(80.00∼144.00)
<0.001 242.00

(206.00∼287.75)
196.00a

(170.00∼232.00)
179.00ab

(148.00∼200.00)
124.50abc

(99.75∼162.00)
<0.001

SBP (mmHg) 133.96 ± 19.42 132.17 ± 18.62 129.97 ± 19.70a 125.22 ± 20.38abc <0.001 133.31 ± 18.03 128.48 ± 17.30a 129.05 ± 18.49a 124.18 ± 17.95abc <0.001

DBP (mmHg) 82.36 ± 12.00 79.82 ± 11.27a 78.18 ± 11.89a 75.68 ± 11.10abc <0.001 86.85 ± 12.01 81.80 ± 10.51a 81.90 ± 11.72 a 78.15 ± 11.30 abc <0.001

TC (mmol/L) 5.20 ± 1.36 4.98 ± 1.28 a 4.85 ± 1.30 a 4.91 ± 1.25 a 0.002 5.02 ± 1.53 4.69 ± 1.29 a 4.47 ± 1.16 ab 4.42 ± 1.25 ab <0.001

LDL-c (mmol/L) 3.26 ± 1.67 3.35 ± 2.58 3.05 ± 1.05 b 3.04 ± 1.10 b 0.035 2.93 ± 1.10 3.11 ± 1.32 a 2.95 ± 0.99 b 2.77 ± 1.02 b 0.009

TG (mmol/L) 2.23
(1.58∼3.14)

1.62 a

(1.25∼2.09)
1.26 ab

(0.98∼1.60)
0.87 abc

(0.68∼1.14)
<0.001 2.90

(2.02∼4.56)
1.65 a

(1.28∼2.14)
1.22 ab

(0.99∼1.54)
0.83 abc

(0.66∼1.07)
<0.001

HDL-c (mmol/L) 1.05 ± 0.25 1.16 ± 0.25 a 1.30 ± 0.36 ab 1.49 ± 0.43 abc <0.001 0.89 ± 0.23 1.01 ± 0.18 a 1.11 ± 0.22 ab 1.32 ± 0.35 abc <0.001

TG / HDL-c ratio 2.19
(1.46∼3.22)

1.42 a

(1.06∼1.92)
1.01 ab

(0.74∼1.42)
0.62 abc

(0.43∼0.87)
<0.001 3.24

(2.18∼5.59)
1.68 a

(1.25∼2.23)
1.15 ab

(0.85∼1.48)
0.66 abc

(0.50∼0.90)
<0.001

HbA1c,
n (%)

9.43 ± 1.98 9.24 ± 2.06 a 9.42 ± 2.46 a 9.48 ± 2.45 bc 0.532 9.70 ± 2.24 9.20 ± 2.10 9.16 ± 2.13 9.86 ± 2.71 0.001

FPG (mmol/L) 10.00 ± 3.78 9.11 ± 4.09 a 9.00 ± 4.24 a 8.83 ± 4.27 a 0.001 10.12 ± 3.36 9.31 ± 3.59 8.61 ± 3.46 ab 8.94 ± 4.88 a <0.001

ALT (U/L) 19.10
(13.33∼30.90)

15.80 a

(12.15∼24.35)
15.20 a

(11.20∼21.93)
15.20 a

(11.00∼23.00)
<0.001 24.10

(16.70∼40.05)
20.00 a

(14.90∼31.00)
18.35 a

(13.70∼26.55)
17.00 a

(12.60∼24.50)
<0.001

AST (U/L) 17.40
(14.30∼25.65)

16.60 a

(13.53∼21.20)
16.20 a

(13.10∼21.10)
17.10 a

(13.70∼22.33)
0.003 19.30

(15.50∼28.70)
17.50 a

(14.10∼22.95)
17.40 a

(14.13∼21.78)
17.80 a

(14.10∼22.58)
<0.001

GGT (U/L) 25.00
(17.00∼36.05)

19.00 a

(14.00∼27.00)
17.80 a

(13.00∼24.00)
15.00 abc

(12.00∼21.00)
<0.001 35.80

(26.00∼56.75)
27.00 a

(20.55∼41.00)
24.00 a

(18.00∼35.00)
19.00 abc

(14.00∼28.00)
<0.001

UA (µmol/L) 309.19 ± 99.23 270.56 ± 92.10 a 252.96 ± 86.42
ab

245.67 ± 99.05 ab <0.001 364.28 ± 100.97 325.67 ± 90.46 a 304.37 ± 87.60
ab

289.40 ± 100.36 ab <0.001

Scr (µmol/L) 60.23 ± 21.89 60.26 ± 31.84 61.38 ± 32.56 58.75 ± 23.83 0.659 76.27 ± 27.85 76.84 ± 28.34 77.83 ± 26.61 74.29 ± 22.79 0.500

(Continued)
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no statistically significant difference in the proportion of smokers,
HbA1c, Scr and UACR among the four groups (all P > 0.05). For
the males, as the quartiles of SPISE increased, the age, duration of
diabetes, HDL-c showed a gradual increased, while the proportion
of smokers, BMI, VFA, SFA, SBP, DBP, TC, LDL-c, TG, TG/HDL-c,
HbA1c, FPG, ALT, AST, GGT, UA, UACR, Hb, HOMA-IR and the
incidence of NAFLD exhibited a gradual decreased (all P < 0.05).
There was no statistically significant difference in Scr and FINS
among the four groups (all P > 0.05).

3.2 Univariate analysis

As shown in Table 4, the relationship between NAFLD and
each variable was analyzed using Spearman’s correlation analysis. In
females, the results indicated that NAFLD was positively correlated
with BMI, VFA, SFA, SBP, DBP, TC, LDL-c, TG, TG/HDL-c,
HbA1c, FBG, ALT, AST, GGT, UA, Hb, FINS and HOMA-IR
(all P < 0.05), and negatively correlated with age, duration of
diabetes, HDL-c, Scr, UACR, and SPISE (all P < 0.05). In males,
the proportion of smokers, BMI, VFA, SFA, SBP, DBP, TC, LDL-c,
TG, TG/HDL-c, FBG, ALT, AST, GGT, UA, Hb and HOMA-IR were
positively correlated with NAFLD, while age, duration of diabetes,
HDL-c, UACR and SPISE were negatively correlated (all P < 0.05).
In females, there was no significant relationship between NAFLD
and the proportion of smokers (all P > 0.05), and in males, there
was no apparent relationship between NAFLD and HbA1c, Scr and
FINS (all P > 0.05).

3.3 Logistic regression analysis

Using NAFLD as the dependent variable, based on the results of
Spearman’s correlation analysis, the independent variables included
age, diabetes duration, HDL-c, Scr, UACR, SPISE, BMI, VFA, SFA,
SBP, DBP, TC, LDL-c, TG, TG/HDL-c, HbA1c, FBG, ALT, AST,
GGT, UA, Hb, FINS and HOMA-IR for females, and the proportion
of smokers, age, diabetes duration, HDL-c, UACR, SPISE, BMI,
VFA, SFA, SBP, DBP, TC, LDL-c, TG, TG/HDL-c, FBG, ALT, AST,
GGT, UA, Hb and HOMA-IR for males. A binary logistic regression
analysis was conducted to identify the independent correlates of
NAFLD (Table 5). The results indicated that in females, SPISE (OR:
0.572, 95% CI 0.477–0.687), VFA (OR: 1.009, 95% CI 1.001–1.017),
FPG (OR: 1.059, 95% CI 1.002–1.120), DBP (OR: 1.026, 95% CI
1.006–1.046), UA (OR: 1.005, 95% CI 1.002–1.008), TC (OR: 1.236,
95% CI 1.036–1.475), and Scr (OR: 0.973, 95% CI 0.958–0.988) were
independently associated with NAFLD, while in males, SPISE (OR:
0.737, 95% CI 0.587–0.926), VFA (OR: 1.013, 95% CI 1.005–1.021),
diabetes duration (OR: 0.940, 95% CI 0.903–0.978), Hb (OR: 1.030,
95% CI 1.013–1.047), and GGT (OR: 1.009, 95% CI 1.002–1.016)
were independently related to NAFLD.

3.4 Areas under the ROC curve analysis

Finally, based on the variables that entered the model last, the
formula used to calculate SPISE and the insulin resistance-related
indicators, the predictive capabilities of SPISE, HDL-c, diabetes T
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TABLE 4 The correlation between NAFLD and different variables by univariate analysis.

Variables Female Male

For NAFLD For NAFLD

Correlation coefficient p Correlation coefficient p

Age −0.096 <0.001 −0.267 <0.001

Diabetes duration −0.177 <0.001 −0.244 <0.001

Smoking 0.014 0.602 0.064 0.041

BMI 0.396 <0.001 0.405 <0.001

VFA 0.414 <0.001 0.414 <0.001

SFA 0.403 <0.001 0.395 <0.001

SBP 0.110 <0.001 0.085 0.007

DBP 0.205 <0.001 0.223 <0.001

TC 0.137 <0.001 0.155 <0.001

LDL-c 0.135 <0.001 0.110 <0.001

TG 0.323 <0.001 0.336 <0.001

HDL-c −0.191 <0.001 −0.198 <0.001

TG / HDL-c ratio 0.314 <0.001 0.331 <0.001

HbA1c 0.070 0.010 −0.004 0.891

FPG 0.148 <0.001 0.131 <0.001

ALT 0.248 <0.001 0.270 <0.001

AST 0.123 <0.001 0.150 <0.001

GGT 0.329 <0.001 0.379 <0.001

UA 0.194 <0.001 0.154 <0.001

Scr −0.058 0.028 −0.059 0.061

UACR −0.069 0.010 −0.099 0.002

Hb 0.214 <0.001 0.269 <0.001

FINS 0.108 0.002 0.048 0.263

SPISE −0.450 <0.001 −0.441 <0.001

HOMA-IR 0.176 <0.001 0.113 0.009

BMI, body mass index; VFA, visceral fat area; SFA, subcutaneous fat area; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; LDL-c, low-density lipoprotein
cholesterol; TG, triglyceride; HDL-c, high-density lipoprotein cholesterol; HbA1c, glycosylated hemoglobin; FPG, fasting plasma glucose; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, γ - glutamyl transpeptidase; UA, uric acid; Scr, serum creatinine; UACR, urinary albumin to creatinine ratio; Hb, hemoglobin; FINS, fasting insulin; SPISE, the
single point insulin sensitivity estimator; HOMA-IR, homeostatic model assessment for insulin resistance; NAFLD, non-alcoholic fatty liver disease; Correlation coefficients between NAFLD
and different variables were determined by Spearman’s correlation analysis.

duration, Scr, VFA, BMI, GGT, ALT, TG, TG/HDL-c ratio, HOMA-
IR, Hb, UA, and TC for NAFLD were evaluated separately for
different genders (Table 6). The results showed that in females, the
area under the ROC curve for SPISE was 0.209 (95% CI 0.175–
0.244, P < 0.001), and in males, it was 0.268 (95% CI 0.216–0.320,
P < 0.001), both of which were superior to the other variables.

4 Discussion

This study found that SPISE was independently associated with
NAFLD in T2D population, with no gender differences observed.
Additionally, SPISE demonstrated a clear advantage in predicting
NAFLD within this population.

NAFLD as the most prevalent liver disease, exhibits an
increasing trend in incidence (26). Reports indicated a strong

correlation between T2D and NAFLD: the incidence of NAFLD
and NASH was particularly pronounced in individuals diagnosed
with T2D (9); the existence of NAFLD raised the risk of
T2D development by five times (27). In this study, the overall
incidence of NAFLD was 38.5%, which is higher than the global
incidence rate, further validating the aforementioned perspective
(1). Therefore, the high prevalence of NAFLD in T2D population
warrants attention. Currently, the routine method for diagnosing
NAFLD in clinical practice is through ultrasound. However, due to
its time-consuming and labor-intensive nature, it is not suitable for
large-scale epidemiological studies. SPISE is an insulin sensitivity
index based on lipids and BMI, our study found that it is closely
related to traditional IR indicators, including HOMA-IR and the
TG/HDL-c ratio. As the SPISE quartiles increased, both HOMA-IR
and the TG/HDL-c ratio were gradually decreased. Additionally,
some studies had found that the SPISE demonstrated higher
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TABLE 5 The relative risk for NAFLD by logistic regression analysis.

Variables B SE Wald P OR 95.0 % CI for OR

Female

SPISE −0.558 0.093 36.165 <0.001 0.572 0.477–0.687

VFA 0.009 0.004 5.252 0.022 1.009 1.001–1.017

FPG 0.057 0.028 4.087 0.043 1.059 1.002–1.120

DBP 0.025 0.01 6.672 0.01 1.026 1.006–1.046

UA 0.005 0.001 13.628 <0.001 1.005 1.002–1.008

TC 0.212 0.09 5.535 0.019 1.236 1.036–1.475

Scr −0.027 0.008 11.79 0.001 0.973 0.958–0.988

Male

SPISE −0.305 0.116 6.856 0.009 0.737 0.587–0.926

VFA 0.013 0.004 9.581 0.002 1.013 1.005–1.021

Diabetes duration −0.062 0.02 9.214 0.002 0.94 0.903–0.978

Hb 0.03 0.008 12.353 <0.001 1.03 1.013–1.047

GGT 0.009 0.004 5.743 0.017 1.009 1.002–1.016

NAFLD, non-alcoholic fatty liver disease; SPISE, the single point insulin sensitivity estimator; VFA, visceral fat area; FPG, fasting plasma glucose; DBP, diastolic blood pressure; UA, uric acid;
TC, total cholesterol; Scr, serum creatinine; Hb, hemoglobin; GGT,γ- glutamyl transpeptidase; SE, standard error; CI, confidence interval; OR, odd ratio.

TABLE 6 Analysis of areas under the ROC curves for predicting NAFLD.

Female Male

Variables Area SE 95.0 % CI Area SE 95.0 % CI

SPISE 0.209 0.017 0.175–0.244 0.268 0.027 0.216–0.320

HDL-c 0.364 0.022 0.570–0.654 0.390 0.030 0.331–0.449

Diabetes duration 0.421 0.023 0.376–0.466 0.369 0.029 0.312–0.427

Scr 0.458 0.023 0.412–0.503 0.432 0.030 0.373–0.492

VFA 0.756 0.018 0.720–0.792 0.723 0.027 0.671–0.775

BMI 0.762 0.018 0.726–0.799 0.713 0.027 0.659–0.766

GGT 0.724 0.020 0.686–0.763 0.744 0.026 0.693–0.795

ALT 0.612 0.022 0.569–0.655 0.656 0.029 0.599–0.713

TG 0.697 0.021 0.657–0.738 0.681 0.028 0.626–0.736

TG / HDL-c ratio 0.694 0.021 0.653–0.734 0.675 0.028 0.619–0.731

HOMA-IR 0.612 0.022 0.570–0.654 0.555 0.031 0.495–0.615

Hb 0.618 0.022 0.575–0.662 0.684 0.028 0.628–0.739

UA 0.629 0.022 0.587–0.672 0.570 0.030 0.511–0.630

TC 0.599 0.022 0.555–0.644 0.608 0.030 0.549–0.666

NAFLD, non-alcoholic fatty liver disease; SPISE, the single point insulin sensitivity estimator; HDL-c, high-density lipoprotein cholesterol; Scr, serum creatinine; VFA, visceral fat area; BMI,
body mass index; GGT, γ- glutamyl transpeptidase; ALT, alanine aminotransferase; TG, triglyceride; HOMA-IR, homeostatic model assessment for insulin resistance; Hb, hemoglobin; UA, uric
acid; TC, total cholesterol; SE, standard error; CI, confidence interval.

accuracy in predicting MetS and IR compared to other measures
such as the TG/HDL-c ratio and HOMA-IR (14, 28). Extensive
research had confirmed that NAFLD was closely associated with
insulin resistance and metabolic syndrome (10, 11, 29, 30). Recent
studies have reported that SPISE was closely associated with
NAFLD related to adolescent obesity and NAFLD in healthy
screening participants (21, 22). However, there is currently a lack
of evidence for SPISE as a predictor of NAFLD in T2D population.

Our study corroborated the capability of SPISE to predict
NAFLD among T2D population. HOMA-IR and the TG/HDL-c

ratio were also closely related to NAFLD (31, 32), and therefore
we included these IR-related indicators in our study. The results
showed that they did not enter the regression model, and compared
to SPISE, their area under the ROC curve was significantly smaller.
A Japanese study similarly found that a 1.8-fold increased risk of
concurrent NAFLD and T2D was associated with SPISE, aligning
with our findings (22). However, that study included only 58
patients with both NAFLD and T2D, whereas our study involved
2,459 T2D patients with NAFLD. Additionally, we conducted
gender-stratified analyses, which yielded consistent results, further
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substantiating the predictive power of SPISE in this group.
Beyond IR, dyslipidemia and obesity are also significant factors
related to NAFLD (33). SPISE, as a comprehensive indicator
that includes metrics related to lipids and obesity, is convenient,
accessible and low-cost, making it highly suitable for large-scale
clinical application.

In addition, the results of this study indicated that NAFLD
was closely associated with VFA in both males and females. This
is generally consistent with previous research findings (34). GGT,
ALT and AST are liver enzymes closely associated with NAFLD and
NASH (35–37). In our analysis of female samples using Spearman’s
correlation, AST, GGT, and ALT all showed positive correlations
with NAFLD, yet these variables were not included in the final
binary logistic regression model. In contrast, in male samples,
GGT was incorporated into the regression model. However, the
predictive power of the liver enzyme included in the final regression
model, as indicated by the area under the ROC curve, remained
inferior to that of the SPISE index. This gender discrepancy
may stem from differences in research methodologies and sample
selection criteria.

5 Limitations

This study faces several limitations. Firstly, due to its cross-
sectional design, we cannot establish a causal relationship between
the SPISE index and NAFLD. Secondly, the diagnosis of NAFLD
was not made using the gold standard of liver biopsy, which may
lead to diagnostic bias. Lastly, as this study was conducted at a single
center, future research should be multi-center in order to further
validate our findings and the replication of the study.

6 Conclusion

This study demonstrated that SPISE may have potential
advantages over other commonly used biomarkers in identifying
NAFLD among T2D patients. As a simple insulin sensitivity index,
the specific utility of SPISE in predicting NAFLD among T2D
patients remains to be further investigated.
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The relationship between anxiety
and cardiometabolic risk factors
in adolescents with obesity:
propensity scores
Miguel Angel Villasis-Keever1, Jessie Nallely Zurita-Cruz2*,
Areli Zulema Pichardo-Estrada1

and Wendy Alejandra Mazón-Aguirre1

1Research Unit in Analysis and Synthesis of the Evidence, Hospital de Pediatrı́a, National Medical Center XXI
Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico, 2Facultad de Medicina Universidad
Nacional Autónoma de Mexico, Hospital Infantil de Mexico Federico Gómez, Mexico City, Mexico
Background: It has been described that there is a relationship betweenmetabolic

health and anxiety.

Objective: To determine the relationship between anxiety and metabolic

syndrome, as well as cardiometabolic risk factors, in adolescents with obesity.

Methods: We conducted a comparative cross-sectional study of adolescents

with obesity between January 2019 and December 2022. In each patient, we

recorded somatometric measurements, lipid profiles, and serum insulin levels.

Anxiety was measured using the Spence Children’s Anxiety Scale. Participants

were divided into those with and without anxiety. Patients with anxiety were

matched to patients without anxiety using propensity scores based on z-score

body mass index (zBMI). Mann–Whitney U tests and c2 tests were used.

Results: Of the 564 adolescents, 32.6% (n = 184) suffered from anxiety. In the

overall study population, no differences in biochemical and cardiometabolic

parameters were observed between the adolescents with and without anxiety

prior to adjusting the groups based on zBMI. After matching using their zBMI, we

found that the adolescents with anxiety had higher serum uric acid levels (5.9

mg/dl vs. 5.4 mg/dl, p = 0.041), an increased incidence of metabolic syndrome

(39.1% vs. 15.9%, p = 0.002), hyperglycemia (21.7% vs. 8.6%, p = 0.020), and lower

HDLc (67.3% vs. 34.7%, p < 0.001), than those without anxiety. Girls with anxiety

had a higher proportion of cardiometabolic risk factors compared to those

without anxiety.

Conclusions: Adolescents with obesity and anxiety had higher cardiometabolic

risk factors than those without anxiety.
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Introduction

Anxiety disorders are the most common mental health

problems among adolescents, with a worldwide prevalence of

6.5% (1). Anxiety disorders typically have their onset during

adolescence (2) and are characterized by excessive worry, fear,

and apprehension, as well as physical symptoms, such as fatigue,

palpitations, and tension (3).

Unlike the many studies that have established a strong

association between depression in pediatric patients and being

overweight and obese, studies on anxiety are more limited, but

research has found an increase in the frequency of anxiety disorders

and low self-esteem among children and adolescents with obesity;

all of which lead to a deterioration in the quality of life (4, 5).

However, it must be considered that it is not clear if being

overweight or obese causes anxiety or vice versa. The relationship

between anxiety and obesity appears to involve a complex

interaction of biological, psychological, and social factors.

Biologically, imbalances in appetite-regulating hormones and

cortisol have been noted. Psychologically, low self-esteem,

negative self-image, and reduced life satisfaction resulting from

obesity can contribute to the development of anxiety. Socially, the

easy availability of high-calorie fast foods, increased consumption of

sugary drinks, extended screen time on electronic devices, and

limited opportunities for physical activity are possible

contributing factors (6–9).

Moreover, a connection has also been established between

anxiety, depression, and a higher risk of cardiovascular disease

(CVD). Several pathophysiological factors, including inflammation,

oxidative stress, and autonomic dysfunction, have been proposed as

systemic processes contributing to this link (10–13). The combined

effect of these changes in patients with both obesity and anxiety may

accelerate the progression of CVD. In adults with obesity, the

metabolic profile tends to be more unfavorable when anxiety is

also present (11–14), though similar studies in children and

adolescents are limited (15).

The objective of the study was to determine the relationship

between anxiety and metabolic syndrome, as well as

cardiometabolic risk factors, in adolescents with obesity.
Methods

Subjects

This cross-sectional study was conducted in Mexico between

January 2019 and May 2022 with a sample of patients from three

tertiary care pediatric centers (Hospital Infantil de Mexico Federico

Gómez, Pediatric Hospital Centro Médico Nacional Siglo XXI, and

High Specialty South Central Hospital of Petroleos Mexicanos).

Patients aged 10–18 years with a diagnosis of obesity, defined as a

body mass index (BMI) of >95th percentile on the 2000 Center for

Disease Control and Prevention (CDC) Growth Charts (16), were

included. Exclusion criteria were the presence of genetic syndromes,

the use of medications that can influence weight or appetite (e.g.,
Frontiers in Endocrinology 0244
steroids, selective serotonin reuptake inhibitors such as fluoxetine

or sertraline, insulin sensitizers, anorexigenics, and intestinal fat

absorption inhibitors), the use of hepatotoxic medications, chronic

liver disease, and declining the invitation to participate.
Demographic and clinical information

Demographic information, including age, sex, medical history,

and medication use, was collected with the objective of describing

the population and identifying whether they met the selection

criteria. Anthropometric data, fasting plasma glucose, insulin, and

lipid concentrations [high-density lipoprotein cholesterol (HDLc),

low-density lipoprotein cholesterol (LDLc), and triglycerides

(TGLs)] were collected. Levels of physical sexual maturation were

determined by a pediatric endocrinologist based on the Tanner

scale, which comprises five stages of pubertal development (17).

Children in Tanner stage 1 were classified as prepubertal, Tanner

stages 2–4 as pubertal, and Tanner 5 as post-pubescent.
Anthropometry

A certified nutritionist measured and recorded the

anthropometric indicators of each patient. Height was measured

using a Seca model 769 stadiometer (Seca GmbH & Co. KG,

Hamburg, Germany). Weight measurements were performed

using the bioimpedance method (Tanita BC-568 Segmental Body

Composition Monitor, Tokyo, Japan). The participants were

weighed barefoot in their underwear.
Anxiety measurement

The presence of elevated levels of anxiety was determined using

the Mexican version of the Spence Children’s Anxiety Scale (SCAS)

(18). The questionnaire is used as a screening to identify the

presence of anxiety. It comprises 38 questions about the

respondent’s experience of anxiety symptoms, to which responses

are given on a four-point Likert scale with the options never (0),

sometimes (1), often (2), or always (3) (19). The SCAS includes six

subscales that measure specific anxiety disorders. These are panic

attacks and agoraphobia, separation anxiety, social phobia, specific

fears, obsessive-compulsive disorder, and generalized anxiety

disorder. The Child Report version of the SCAS was used.

Elevated anxiety was deemed present when a participant’s total

score was ≥60 and a specific anxiety disorder when the score on the

relevant subscale was ≥ the 84th percentile. The cut-off scores refer

to T-scores to identify children within a subclinical range vs. a

clinical range (18).

The global validity and reliability of the SCAS were 0.95 and

0.88, respectively; and in Mexican samples, the validity and

reliability were 0.92 and 0.61, respectively (19, 20). The

subclinical T-score cut-off (≥60) was used to define the ‘with

anxiety’ and ‘without anxiety’ subgroups (18–20).
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Cardiometabolic profile measurement

After a minimum of 12 hours of fasting, blood samples from

participants were obtained from the forearm antecubital vein

between 7:00 and 8:00 a.m. Serum samples were frozen at −20°C

until analysis. Levels of glucose, TGL, HDLc, LDLc, and uric acid

were determined using colorimetric enzymatic methods (Bayer

Diagnostics, Puteaux, France). Insulin levels were measured by

chemiluminescence (Roche/Hitachi Modular P and D Chemistry

Analyzer, Roche Diagnostics Corp., Indianapolis, USA; Hitachi

Ltd., Tokyo, Japan). Intra- and inter-assay coefficients of variation

<7% were considered acceptable. A standard curve was generated

for each assay.
Identification of cardiometabolic
health risks

Insulin resistance
Each participant’s insulin resistance (IR) index (Homeostatic

Model Assessment: HOMA-IR) was calculated using the following

formula: HOMA-IR = fasting glucose (mg/dl) X fasting insulin (µU/

ml)/405. The HOMA-IR cutoff point for a diagnosis of IR was 2.5 (21).

Hypertriglyceridemia
In children <10 years old, hypertriglyceridemia was diagnosed

when plasma TGL levels were ≥90th percentile for a child of the

participant’s age and sex. In children >10 years old, it was diagnosed

when plasma TGL levels were ≥150 mg/dl (22).

Altered HDLc and altered LDLc
Low HDLc for children <10 years was judged as that <10th

percentile for the participant’s age and sex. In children >10 years,

low HDLc was defined as <40 mg/dl in

boys and <50 mg/dl in girls (21). High LDLc was defined as

>130 mg/dl (22).

Impaired fasting glucose
Elevated fasting plasma glucose was considered a fasting glucose

level ≥100 mg/dl (22).

Arterial hypertension
Children with hypertension were considered to have diastolic or

systolic blood pressure ≥ the 90th percentile for age and sex,

according to the National Blood Pressure Education Program

Working Group (23).
Metabolic syndrome
Metabolic syndrome was defined when at least three of the

following cardiometabolic abnormalities were present, according to

the definitions already mentioned above: hypertension, obesity,

hypertriglyceridemia, reduced HDLc, or elevated fasting plasma

glucose (22, 24).
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Statistical analysis

Kolmogorov–Smirnov tests revealed that the quantitative

variables had a non-parametric distribution. These were described

as the median, minimum, and maximum and the qualitative

variables were presented as proportions and frequencies.

Comparisons of quantitative variables between groups were

performed using the Mann–Whitney U test. For qualitative

variables, c2 tests were applied. A p-value of <0.05 was considered

statistically significant. STATA v.14.0 (Stata Corp. 2015. College

Station, TX, USA) was used for the statistical analyses.
Participant matching

To minimize the impact of any bias introduced by BMI z-scores

(zBMI), patients with anxiety were matched to patients without

anxiety using propensity scoring. The propensity scores were based

on the zBMI. The propensity score technique used was nearest-

neighbor matching at a 1:1 ratio without replacement. The caliper

was set at 0.01. The pymatch library for Python v.3.7 was used.

Subsequently, this analysis was stratified by sex.
Ethics

This study was conducted in accordance with the tenets of the

2013 version of the Declaration of Helsinki. The protocol was

approved by the National Research and Health Ethics Committee

of the Mexican Social Security Institute (R-2014-785-024). Both the

participants and their parents/caregivers gave written informed

consent for participation and publication.
Results

Participant characteristics

A total of 589 adolescents with obesity participated in this study.

Of these, 25 were excluded due to incomplete questionnaires.

A total of 564 adolescents were analyzed. The sample had a

median age of 12 years, with a minimum and maximum of 10 and

18 years, respectively, and there was a predominance of boys

(53.6%). The median BMI was 30.1 kg/m2 and the median zBMI

was 2.4. Of the participants, 92.6% (n = 522) were in Tanner stages

2–4 (pubertal) (Table 1).

It was noteworthy that the median HDLc was 38.0 mg/dl, which

falls below the normal range. The rest of the biochemical

parameters had medians that were not significantly different from

normal levels for adolescents (Table 2). The cardiometabolic

parameter that showed the greatest frequency (63.6%, n = 359) of

divergence from normal levels was HDLc. Hypertriglyceridemia

was found in 41.7% (n = 235) of the sample. IR and metabolic

syndrome were identified in 223 patients (39.5%) (Table 3).
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Anxiety-related symptoms

Anxiety-related symptoms were found in 32.6% (n = 184) of the

adolescents in this study. Of the six specific disorders identified by

the SCAS subscales, separation anxiety disorder occurred most

frequently among those with overall anxiety (92.5%, n = 170),

followed by panic attacks and agoraphobia (81.0%, n = 149).

In comparing the demographic , biochemical , and

cardiometabolic characteristics of adolescents with and without

anxiety-related symptoms, we observed non-significant trends

indicating higher zBMI (2.6 vs. 2.4, p = 0.125), serum glucose

levels (92.0 mg/dl vs. 91.4 mg/dl, p = 0.138) (see Table 2), and

hyperglycemia (28.8% vs. 20.0%, p = 0.126) among those with

anxiety. However, no significant trends were noted for any of the

other parameters (Table 3).

In view of the tendency toward higher zBMI in adolescents with

anxiety, we matched participants from the anxiety and non-anxiety

groups based on zBMI. We then compared the lipid profiles and

cardiometabolic factors between the groups. This analysis showed

that the adolescents with obesity and anxiety had higher serum uric

acid levels (5.9 mg/dl vs. 5.4 mg/dl, p = 0.041) and lower HDLc

levels (37.0 mg/dl vs. 40.0 mg/dl, p = 0.019) than those without

anxiety. A comparison of cardiometabolic factors found that the

adolescents in our sample with anxiety had a significantly higher

incidence of hyperglycemia (21.7% vs. 8.6%, p = 0.020) and

metabolic syndrome (39.1% vs. 15.9%, p = 0.002), and

significantly lower HDLc (67.3% vs. 34.7%, p < 0.001) than those

without anxiety (Table 4).

Finally, as shown in Table 5, when analyzing the data by sex,

girls with anxiety exhibited a higher proportion of cardiometabolic

risk factors (elevated fasting glucose, decreased HDLc, IR, and
Frontiers in Endocrinology 0446
metabolic syndrome), compared to their counterparts without

anxiety. In contrast, among boys, the only significant finding was

a higher proportion of decreased HDLc in those with anxiety

compared to those without.
Discussion

The primary finding of this study was that 32.5% of the

adolescents with obesity also experienced anxiety-related

symptoms, with separation anxiety (92.5%) being the most

prevalent type of anxiety disorder. Furthermore, adolescents with

anxiety demonstrated an increase in cardiometabolic risk factors.

Specifically, we observed that these adolescents had higher serum

levels of uric acid and glucose, along with lower HDLc, compared to

their non-anxious peers. Notably, girls with anxiety exhibited a

more adverse cardiometabolic profile. Consistent with our findings,

Cheuiche et al. reported a significant association between the

severity of anxiety and cardiovascular risk factors, such as larger

waist circumference and higher body fat percentage (25).

These findings are novel, especially as pediatric studies on this

topic remain limited. For instance, Ji et al. reported that adults with

anxiety have a greater risk of metabolic syndrome compared to

those without anxiety (15), while van Reedt Dortland et al. found

that anxiety and depression are associated with decreased HDLc

and increased abdominal obesity (26). Several studies have

identified inflammation as a key factor in the development of

cardiovascular disease, with a bidirectional relationship to mental

health. Anxiety, obesity, and cardiovascular disease are thought to

be linked by a complex interaction of biopsychosocial factors and

neurobiological mechanisms, such as hormonal imbalances in the
TABLE 1 General characteristics of the adolescents with obesity with and without anxiety.

Characteristic Participants, n (%)

pTotal
n = 564

No anxiety
n = 380

Anxiety
n = 184

Sex, n (%) 0.249

Female 262 (46.4) 187 (49.2) 76 (41.3)

Male 302 (53.6) 193 (50.8) 108 (58.7)

Age, years; median (min-max) 12.0 (10.0–18.0) 12.0 (10.0–18.0) 12 (10–18) 0.700

BMI, kg/m2; median (min-max) 30.1 (18.5–58.0) 29.5 (10.7–43.2) 30.81 (21.3–58.0) 0.269

BMI z-score, median (min-max) 2.4 (0.8–4.6) 2.43 (1.3–3.6) 2.56 (1.2–4.6) 0.125

Waist circumference, cm, median (min-max) 92.5 (72.0, 117.5) 92.0 (72.0, 116.0) 93.5 (74, 143.4) 0.441

Tanner pubertal stage, n (%) 0.974

1 42 (7.3) 28 (7.3) 14 (7.5)

2 85 (15.0) 60 (15.7) 25 (13.7)

3 168 (29.8) 108 (28.5) 60 (32.5)

4 212 (37.5) 145 (38.2) 67 (36.3)

5 58 (10.2) 39 (10.3) 18 (10.0)
min, minimum; max, maximum.
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hypothalamic-pituitary-adrenal axis and increased cortisol levels

(12, 27).

The relationship between fasting hyperglycemia and elevated

cortisol is largely attributed to glucocorticoid-induced hepatic

gluconeogenesis and impaired insulin secretion, contributing to
Frontiers in Endocrinology 0547
features of metabolic syndrome (28–30). Impaired insulin function,

higher fasting glucose, and increased diabetes risk have also been

observed in individuals with anxiety and depression (31). Likewise,

in adolescents with obesity, it has been reported that fasting insulin

and HOMA-IR levels are 40% higher in those with depression (32).

Another cardiometabolic alteration identified was elevated

serum uric acid levels in adolescents with anxiety compared to

those without anxiety. This finding is associated with the higher

prevalence of metabolic syndrome in adolescents with anxiety.

Recent studies have shown that elevated uric acid levels

independently predict the development of diabetes and contribute

to IR, fatty liver, and dyslipidemia in the context of metabolic

syndrome (33). These effects may be driven by mitochondrial
TABLE 3 Comparison of the cardiometabolic factors of adolescents with
obesity and with or without anxiety.

Characteristic Participants, n (%)

pTotal
n =564

No
anxiety
n = 380

Anxiety
n = 184

Cardiometabolic factors, n (%)

Impaired
fasting glucose

129 (22.9) 76 (20.0) 53 (28.8) 0.126

Altered
HDL cholesterol

359 (63.6) 233 (61.3) 127 (69.0) 0.250

Altered
LDL cholesterol

51 (9.0) 37 (9.7) 14 (7.6) 0.573

Hypertriglyceridemia 235 (41.7) 161 (42.4) 74 (40.2) 0.712

Arterial hypertension 35 (6.2) 25 (6.58) 9 (4.9) 0.610

Insulin resistance 223 (39.5) 147 (38.7) 76 (41.3) 0.712

Metabolic syndrome 223 (39.5) 145 (38.2) 78 (42.4) 0.517
min, minimum; max, maximum.
TABLE 4 Comparison of the biochemical and cardiometabolic
characteristics of adolescents with obesity and with or without anxiety.

Characteristic Participants

No anxiety Anxiety

n = 92 n = 92 p

General characteristics, median (min-max)

BMI z-score 2.6 (1.5–3.3) 2.54 (1.5–3.6) 0.896

Waist circumference, cm 92.5 (74.0-112.5) 93.0 (73.0-121.0) 0.416

Biochemical profile, median (min-max)

Glucose, mg/dl 90.0 (70.0–108.0) 92.0 (73.0–124.0) 0.059

HDL cholesterol, mg/dl 40.0 (24.0–55.0) 37.0 (16.0–51.0) 0.019

LDL cholesterol, mg/dl 91.2 (62.0–145.0) 96 (55.9–155.0) 0.251

Triglycerides, mg/dl 138.0
(64.0–236.0)

128.0
(40.0–328.0)

0.883

Uric acid, mg/dl 5.4 (3.0–8.5) 5.9 (3.7–8.4) 0.041

Insulin, mu/ml 12.3 (2.5–79.6) 13.5 (2.2–75.2) 0.394

HOMA-IR 2.7 (0.6–19.2) 2.9 (0.4–17.8) 0.274

Systemic blood pressure, median (min-max)

Systolic, mmHg 113.0
(90.0–131.0)

115.0
(89.0–139.0)

0.447

Diastolic, mmHg 70.0 (50.0–90.0) 71.0 (50.0–94.0) 0.572

Cardiometabolic factors, n (%)

Elevated fasting glucose 8 (8.6) 20 (21.7) 0.020

Decreased
HDL cholesterol

32 (34.7) 62 (67.3) <0.001

Increased
LDL cholesterol

2 (2.1) 6 (6.5) 0.404

Hypertriglyceridemia 32 (34.7) 34 (36.9) 0.922

Arterial hypertension 6 (6.5) 6 (6.5) 1.000

Insulin resistance 34 (36.9) 42 (45.6) 0.301

Metabolic syndrome 14 (15.9) 36 (39.1) 0.002
frontie
min, minimum; max, maximum.
Propensity scoring.
Bold values are statistically significant.
TABLE 2 Comparison of the biochemical characteristics of adolescents
with obesity and with or without anxiety.

Characteristic Participants, median (min-max)

pTotal
n = 564

No
anxiety
n = 380

Anxiety
n = 184

Biochemical profile, median (min-max)

Glucose, mg/dl 92.0
(70.0–189.0)

91.4
(70.4–117.0)

92.0
(73.0–124.2)

0.138

HDL cholesterol,
mg/dl

38.0
(12.0–65.0)

38.0
(20.0–63.0)

38.0
(12.0–60.0)

0.265

LDL cholesterol,
mg/dl

96.0
(56.0–194.0)

96.0
(16.0–194.0)

96.1
(37.4–167.0)

0.717

Triglycerides,
mg/dl

140.0
(109.0–533.0)

143.0
(54.0–533.0)

139.5
(40.0–328.0)

0.666

Uric acid, mg/dl 5.8 (0.7–10.0) 5.8 (2.3–10.0) 5.9 (2.0–10.5) 0.302

Insulin, mu/ml 10.9
(2.2–75.2)

10.7
(2.4–79.6)

11.5
(2.2–75.2)

0.481

HOMA-IR 2.4 (0.4–19.2) 2.3 (0.4–19.2) 2.5 (0.4–17.8) 0.377

Systemic blood pressure, median (min-max)

Systolic, mmHg 114.0
(83.0–146.0)

113.0
(90.0–135.0)

115.0
(88.0–140.0)

0.473

Diastolic, mmHg 71.0
(50.0–100.0)

71.0
(51.0–90.0)

71.0
(50.0–95.0)

0.499
min, minimum; max, maximum.
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oxidative stress and impaired insulin-stimulated nitric oxide

production in endothelial cells. Some researchers have also

suggested that a high intake of purine- and fructose-rich foods

may contribute to elevated uric acid levels, obesity, and the

development of metabolic syndrome (34, 35).

Our study indicates that adolescent girls with anxiety are more

likely to experience cardiometabolic risk factors compared to their

non-anxious peers. Recent research suggests that psychosocial stress

might be a more significant risk factor for cardiometabolic disease

in women than in men, possibly due to greater exposure to stress or

increased susceptibility to its effects (36). Evidence highlights

stronger associations between depression, anxiety, and type 2

diabetes in women compared to men (37, 38). Additionally, sex

differences have been observed in the relationship between early

adversity and obesity, with girls showing a higher risk of developing

obesity linked to early-life stress (39). However, recent reviews have
Frontiers in Endocrinology 0648
pointed out that few studies have explicitly explored sex-related

differences in cardiometabolic outcomes (40).

Despite the significant findings, several limitations must be

acknowledged. First, the study’s cross-sectional design limits our

ability to establish causality between anxiety and cardiometabolic risk

factors. Further research is needed to explore the cardiometabolic

changes in adolescents with both obesity and anxiety (5).

Additionally, it is important to note that we used the SCAS, which is

a valid self-report questionnaire that assesses DSM-IV-defined anxiety

symptoms in children. Compared to similar tools such as the Screen for

Child Anxiety Related Emotional Disorders (SCARED), which

correlates well with the SCAS (r = 0.89), the SCAS is shorter and has

a simpler factor structure (41, 42). Other widely used instruments, such

as the Revised Children’s Manifest Anxiety Scale (43) and the Fear

Survey Schedule for Children-Revised (44), are more general measures

of anxiety and do not specifically address DSM-IV anxiety disorders.
TABLE 5 Comparison of the biochemical and cardiometabolic characteristics of adolescents with obesity and with or without anxiety.

Characteristic Female, n=101 Male, n=83.

No anxiety Anxiety No anxiety Anxiety
p

n = 62 n = 39 p n = 29 n = 54

General characteristics, median (min-max)

BMI z-score 2.6 (1.3–3.3) 2.4 (1.2–4.6) 0.301 2.6 (1.6–2.9) 2.6 (1.5–4.1) 0.272

Waist circumference, cm 89.0 (76.6-112.5) 91.5 (73.3-121.0) 0.333 98.0 (85.9-108.9) 94.5 (73.0-117.5) 0.434

Biochemical profile, median (min-max)

Glucose, mg/dl 88.0 (76.0–97.0) 91.0 (86.0–124.0) 0.069 96.0 (70.0–108.0) 93.0 (74.0–115.0) 0.142

HDL cholesterol, mg/dl 40.0 (24.0–55.0) 37.0 (16.0–59.0) 0.342 42.0 (25.0–54.0) 38.0 (21.0–57.0) 0.010

LDL cholesterol, mg/dl 91.2 (62.0–145.0) 99.0 (40.0–146.0) 0.316 90.2 (55.9–122.0) 93.9 (37.4–155.0) 0.175

Triglycerides, mg/dl 134.0 (64.0–236.0) 148.0 (53.0–323.0) 0.294 148.0 (77.0–235.0) 119.0 (40.0–328.0) 0.127

Uric acid, mg/dl 4.8 (3.9–7.1) 5.4 (3.0–8.0) 0.084 5.5 (3.7–8.5) 6.3 (3.3–9.7) 0.590

Insulin, mu/ml 11.4 (4.8–31.5) 16.5 (5.3–40.4) 0.010 14.5 (2.5–79.6) 10.5 (2.2–75.2) 0.309

HOMA-IR 2.3 (1.0–7.3) 3.5 (1.3–11.2) 0.006 3.5 (0.6–19.2) 2.4 (0.4–17.8) 0.302

Systemic blood pressure, median (min-max)

Systolic, mmHg 113.0 (90.0–131.0) 115.0 (89.0–139.0) 0.447 112.0 (91.0–130.0) 111.0 (88.0–138.0) 0.347

Diastolic, mmHg 70.0 (50.0–90.0) 71.0 (50.0–94.0) 0.572 71.0 (50.0–92.0) 72.0 (50.0–93.0) 0.572

Cardiometabolic factors, n (%)

Elevated fasting glucose 0 (0.0) 8 (20.5) 0.001 8 (27.6) 13 (24.0) 0.845

Decreased HDL cholesterol 26 (41.9) 28 (71.8) 0.011 6 (20.7) 35 (64.8) 0.001

Increased LDL cholesterol 3 (4.8) 4 (10.2) 0.298 0 (0.0) 2 (3.7) 0.455

Hypertriglyceridemia 18 (29.0) 19 (48.7) 0.105 13 (44.8) 16 (29.6) 0.224

Arterial hypertension 3 (4.8) 4 (10.2) 0.298 2 (3.7) 1 (1.8) 0.247

Insulin resistance 17 (27.4) 23 (58.9) 0.007 17 (58.6) 20 (37.0) 0.102

Metabolic syndrome 4 (6.4) 19 (48.7) <0.001 10 (34.4) 18 (33.3) 0.758
min, minimum; max, maximum.
Propensity scoring, stratified by sex.
Bold values are statistically significant.
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During patient recruitment, the COVID-19 pandemic and associated

lockdowns occurred. Most of the sample (76.0%) was collected prior to

the pandemic, with patient recruitment temporarily halted during this

period and resuming in January 2022 (14.0%, n=137). A sub-analysis

comparing patients recruited before and after the pandemic found no

significant differences in the proportion of anxiety. This may be

attributed to the fact that the latter group of patients was no longer

experiencing social isolation at the time of their inclusion in the study.

As a final reflection, we would like to discuss how to incorporate

the study findings into the management of obesity in adolescents.

Latin America and Mexico are experiencing an epidemiological

transition, with rising rates of childhood obesity and chronic

diseases that increase morbidity and mortality (45). Furthermore,

psychological changes during adolescence may exacerbate the

negative emotions associated with obesity, creating a vicious cycle.

Based on the above, it seems important that weight reduction

interventions should incorporate mental health strategies (such as

relaxation techniques, meditation, and cognitive-behavioral therapy)

to enhance adherence to weight reduction programs and improve

both short- and long-term health outcomes (46, 47).
Conclusions

We found that adolescents with obesity and anxiety had higher

serum uric acid levels, lower HDLc levels, and higher incidences of

hyperglycemia and metabolic syndrome than adolescents with

obesity but without anxiety. It is of the utmost importance to

develop a multidisciplinary treatment for this population that

considers nutritional advice support, teaches coping skills,

encourages meditation, and provides cognitive-behavioral therapy.
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Association between estimated
glucose disposal rate and
preserved ratio impaired
spirometry in adults
Tong Lin1, Shaofeng Jin1, Xingkai Shen1, Shanshan Huang1

and Haiyan Mao2*

1Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China,
2Department of Geriatrics, Ningbo Medical Center Lihuili Hospital, Ningbo, China
Background: Preserved ratio impaired spirometry (PRISm) is a newly defined

phenotype of lung function impairment, characterized by a normal FEV1/FVC

ratio alongside an FEV1/0.8 < FEV1 predicted value. Previous studies have linked

PRISm to various adverse clinical outcomes, but its association with insulin

resistance, as indicated by estimated glucose disposal rate (eGDR),

remains underexplored.

Methods: A total of 13,661 participants were included in this analysis after

excluding individuals with missing data on PRISm (n = 10,954) and eGDR (n =

5,827). The median eGDR for the overall sample was calculated, and differences

in baseline characteristics between the PRISm and non-PRISm groups were

assessed. Logistic regression models were employed to analyze the relationship

between eGDR and PRISm, adjusting for various confounders. Subgroup analyses

were conducted based on gender and age. Additionally, the restricted cubic

spline analysis was used to evaluate the non-linear relationship between eGDR

and PRISm, and ROC analysis was performed to determine the predictive

accuracy of eGDR for identifying PRISm.

Results: Participants in the PRISm group exhibited significantly lower median

eGDR values compared to the non-PRISm group (9.92 vs. 12.01 mg/kg/min; P <

0.001), indicating greater insulin resistance. The weighted multivariable logistic

regression analysis revealed that each unit increase in eGDR was associated with

a 15.1% reduction in the odds of PRISm in unadjusted models, and 7.3% in fully

adjusted models (OR = 0.927, 95% CI: 0.880–0.976; P = 0.005). Subgroup

analyses demonstrated a stronger association between eGDR and PRISm in

females and individuals over 40 years of age. The restricted cubic spline

analysis indicated a significant non-linear relationship, with an optimal eGDR

cutoff of 11.423 mg/kg/min identified via ROC analysis (AUC = 0.626),

demonstrating modest predictive accuracy.
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Conclusion: Our study demonstrates a significant inverse association between

estimated glucose disposal rate (eGDR) and preserved ratio impaired spirometry

(PRISm) among a diverse population of US adults. Participants with lower eGDR

values exhibited a higher prevalence of PRISm, indicating greater insulin

resistance and potential metabolic dysfunction. The findings suggest that

eGDR may serve as a valuable marker for assessing the risk of PRISm,

particularly among women and older adults.
KEYWORDS

estimated glucose disposal rate, eDGR, insulin resistance, preserved ratio impaired lung
function, PRISM, lung function, lung injury
Introduction

Chronic lung disease affects hundreds of millions of people

worldwide and ranks as the third leading cause of death globally,

following cardiovascular disease and cancer (1). Common lung

diseases, such as asthma, chronic obstructive pulmonary disease

(COPD), and bronchiectasis, often lead to significant changes in lung

function, particularly resulting in airflow obstruction (2, 3). This

obstruction is typically identified through lung function testing

conducted after administering a bronchodilator, characterized by a

reduced ratio of forced expiratory volume in one second to forced

vital capacity (FEV1/FVC). In contrast, non-obstructive lung function

abnormalities, commonly referred to as restrictive lung disease, are

marked by a symmetric reduction in both FEV1 and FVC (4).

However, preserved ratio impaired lung function (PRISm) is a

relatively underexplored lung disease that is characterized by a decrease

in FVC while the ratio of forced expiratory volume in one second to

forced vital capacity FEV1/FVC remains within the normal range, with

the global prevalence of PRISm estimated to be between 6.6% and 17.6%

(5). Although PRISm has historically been viewed as a transitional state

between normal lung function and COPD, retrospective studies have

shown that only approximately 23% of individuals with PRISm progress

to COPD (6). Some studies have shown that PRISm is significantly

associated with increased risks of mortality, as well as adverse

cardiovascular and respiratory outcomes (4), and is linked to a higher

prevalence of diabetes, heart disease, and hypertension among

individuals with chronic diseases (7, 8). In contrast, PRISm has been

independently linked to higher cardiovascular risk and increased

mortality (9). It may represent a distinct clinical phenotype with

unique pathophysiological and prognostic implications, rather than

merely an early stage of obstructive lung disease (10).

Insulin resistance is a condition characterized by a diminished

response to insulin, which results in decreased efficiency of glucose
etry; eGDR, Estimated

y volume; ALT, Alanine

, poverty income ratio;

filtration rate; ROC,

pline.
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uptake and utilization, ultimately leading to metabolic abnormalities

and serving as a significant risk factor for various metabolic disorders

such as type 2 diabetes, hypertension, dyslipidemia, and obesity (11,

12). Recent research has highlighted the correlation between insulin

resistance and pulmonary diseases, including impaired lung function

and asthma, indicating that individuals with insulin resistance often

experience compromised respiratory health, which suggests that

metabolic dysregulation may exert both direct and indirect effects

on lung function (13–15).

The concept of estimated glucose disposal rate (eGDR) has

emerged as a valuable tool for assessing insulin sensitivity,

particularly in individuals with diabetes. eGDR is derived from

clinical parameters such as body mass index (BMI) and blood

pressure, making it a useful surrogate marker for insulin resistance

(16). Compared to other insulin resistance markers such as TyG,

TyG-BMI, and METS-IR, recent studies have shown that eGDR has

superior predictive ability for adverse cardiometabolic outcomes,

including stroke and cardiovascular disease (17, 18). While the

relationship between insulin resistance and various metabolic

disorders has been extensively studied, research exploring the

connection between insulin resistance and PRISm remains

relatively scarce. These findings suggest that eGDR may also be a

more effective indicator for identifying individuals at risk of PRISm,

particularly in populations with metabolic disturbances. Therefore,

we utilized the national health and nutrition examination surveys

(NHANES) database to explore the association between eGDR and

PRISm, aiming to further elucidate their potential link in metabolic

health and lung function. We hypothesized that decreased insulin

sensitivity, as reflected by lower eGDR, would be negatively

associated with lung function and increase the likelihood of PRISm,

thereby linking metabolic and respiratory health.

Methods

Study and data

The National Health and Nutrition Examination Survey

(NHANES), conducted by the National Center for Health
frontiersin.org
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Statistics (NCHS) at the U.S. Centers for Disease Control and

Prevention (CDC), is a cross-sectional survey employing a complex,

multistage sampling design to gather data representative of the non-

institutionalized U.S. population. NHANES operates in two-year

cycles, collecting data through in-home interviews and standardized

physical examinations. For this study, data from three NHANES

cycles (2007–2008, 2009–2010 and 2011–2012) were utilized, based on

the availability of lung function measurements. The dataset can be

accessed at (https://www.cdc.gov/nchs/nhanes/index.htm). The study

population included U.S. adults aged 20–79 who met the criteria for

valid spirometry testing. Participants with missing lung function

data or essential variables required to estimate predicted forced

expiratory volume in one second (FEV1) or to calculate estimated

glucose disposal rate (eGDR) were excluded. The participant

selection flowchart is illustrated in Figure 1.
Definitions of eGDR and PRISm

The insulin resistance index, estimated glucose disposal rate

(eGDR), was calculated using the following equation:

eGDR = 21.158 - (0.09 × waist circumference [cm]) - (3.407 ×

hypertension [yes = 1, no = 0]) - (0.551 × glycated hemoglobin A1c

[HbA1c] [%]) (16). Hypertension was defined as (1) systolic blood

pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg, (2)

self-reported physician diagnosis of hypertension, or (3) use of

antihypertensive medication. Preserved Ratio Impaired Spirometry

(PRISm) was defined as a forced expiratory volume in one second/

forced vital capacity ratio (FEV1/FVC) ≥0.7 with an abnormal

spirometry result (FEV1 <80% of the predicted value) (4). Predicted

FEV1 values were calculated using the Global Lung Function

Initiative (GLI-2012) reference equations, implemented via

specialized software available at (https://gli-calculator.ersnet.org/

index.html) (19).
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Covariates

Demographic data (age, gender, race/ethnicity, and poverty

income ratio), health-related behaviors (smoking status and

alcohol consumption), medical history (cardiovascular disease

and stroke) were collected from NHANES through standardized

questionnaires. Ethnicity was categorized as Mexican American,

other Hispanic, non-Hispanic White, non-Hispanic Black, and

other races. The poverty income ratio (PIR) was calculated as the

ratio of monthly family income to the federal poverty level,

following the Department of Health and Human Services

guidelines, and categorized into low income (≤1.30), middle

income (1.31–3.50), and high income (>3.50) (20). Body mass

index (BMI) was categorized into normal weight (<25 kg/m²),

overweight (25–29.9 kg/m²), and obese (≥30 kg/m²), and included

as a categorical variable in multivariable regression analyses.

Cardiovascular disease and stroke were identified based on

affirmative responses to the following question: “Has a doctor or

other health professional ever told you that you had congestive

heart failure, coronary heart disease, angina, heart attack, or

stroke?” Alcohol consumption was determined by asking, “Have

you had at least 12 alcoholic drinks in the past year?” Smoking

status was defined as a binary variable (yes/no), based on responses

to the questions: “Have you smoked at least 100 cigarettes in your

lifetime?” and “Do you currently smoke?” Additionally, laboratory

data included cotinine, alanine aminotransferase (ALT), aspartate

aminotransferase (AST), and creatinine. Renal function was

assessed by calculating the estimated glomerular filtration rate

(eGFR) using the CKD-EPI equation (21), and eGFR was

included as a continuous covariate in the models.
Statistical analysis

We conducted weighted analyses according to NHANES

guidelines. Continuous variables that did not follow a normal

distribution were expressed as medians with interquartile ranges,

and group comparisons were performed using the Mann-Whitney

U test. Categorical data were presented as proportions, with group

comparisons using the chi-square test. Ordinal data were also

expressed as proportions, with group comparisons performed

using the Mann-Whitney U test. To examine the association

between eGDR and PRISm, we employed weighted multivariable

logistic regression, constructing three models: Model 1: Unadjusted;

Model 2: Adjusted for gender, age, ethnicity, and PIR; Model 3:

Adjusted for all covariates (gender, age, ethnicity, PIR, BMI,

cotinine, AST, ALT, GFR creatinine clearance, cardiovascular

disease, stroke, alcohol consumption, and smoking status). We

also conducted subgroup and interaction analyses to explore the

relationship between eGDR and PRISm across different

populations. To assess potential nonlinear associations, we used

restricted cubic spline analysis. Finally, we performed a receiver

operating characteristic (ROC) analysis to evaluate the predictive

ability of eGDR for PRISm. All statistical analyses were performed
FIGURE 1

Flowchart depicting the screening process for selecting the
study population.
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using R software (version 4.0.0) and SPSS (version 25.0), with

statistical significance set at P < 0.05.
Results

Baseline characteristics

In Table 1, a total of 13,661 participants were included in the

final analysis after excluding those with missing data on PRISm (n =

10,954) and eGDR (n = 5,827). The median eGDR for the overall

sample was 11.89 (IQR: 9.08–13.33). Participants in the PRISm

group had significantly lower median eGDR values compared to the

non-PRISm group [9.92 (IQR: 8.04–12.49) vs. 12.01 (IQR: 9.22–

13.38); P < 0.001], indicating greater insulin resistance in the PRISm

group. The PRISm group was older, with a median age of 48 (IQR:

34–61) compared to 44 (IQR: 30–59) in the non-PRISm group (P <

0.001). Cotinine levels were also higher in the PRISm group [0.09

(IQR: 0.02–30.55) vs. 0.05 (IQR: 0.02–12.70); P < 0.001] and median

eGFR was significantly lower in the PRISm group [85.47 (IQR:

64.70–103.07) vs. 89.84 (IQR: 69.66–108.48); P < 0.001]. No

significant differences were observed in ALT (P = 0.332) and AST

(P = 0.167) levels between the two groups.

Ethnicity was significantly associated with PRISm status (P <

0.001). PRISm was most prevalent in non-Hispanic Black

participants (53.94%), and least common in Mexican American

(7.11%). BMI was also significantly associated with PRISm (P <

0.001), with a higher proportion of obese individuals in the PRISm

group (50.30%) compared to the non-PRISm group (33.51%).

Smoking status did not differ significantly between the two

groups (P = 0.978). However, alcohol consumption was

significantly lower in the PRISm group, with only 63.93%

reporting alcohol consumption compared to 75.64% in the non-

PRISm group (P < 0.001). Cardiovascular disease and stroke were

more common in the PRISm group, with heart disease present in

11.00% of PRISm cases compared to 5.09% in the non-PRISm

group (P < 0.001), and stroke present in 4.12% of PRISm cases

compared to 1.95% in the non-PRISm group (P < 0.001).
Logistic regression models

Weighted multivariable logistic regression analysis

demonstrated a significant negative association between eGDR

and PRISm (Table 2). In the unadjusted model (Model 1), each

unit increase in eGDR was associated with a 15.1% reduction in the

odds of PRISm (OR = 0.849, 95% CI: 0.820–0.880; P < 0.001). After

adjusting for gender, age, race/ethnicity, and poverty income ratio

(Model 2), the association remained significant (OR = 0.849, 95%

CI: 0.818–0.881; P < 0.001). In the fully adjusted model (Model 3),

which included additional covariates such as BMI, cotinine, ALT,

AST, GFR, cardiovascular disease, stroke, alcohol consumption, and

smoking, each unit increase in eGDR was associated with a 7.3%

reduction in the odds of PRISm (OR = 0.927, 95% CI: 0.880–0.976;

P = 0.005). When eGDR was categorized into quartiles, the highest
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quartile (Q4) was associated with a 41.7% lower risk of PRISm

compared to the lowest quartile (Q1) in the fully adjusted model

(OR = 0.583, 95% CI: 0.393–0.867; P = 0.009). A significant trend

was observed across quartiles (P for trend = 0.002), further

supporting a negative relationship between eGDR and PRISm.
Subgroup and interaction analysis

Subgroup analyses revealed significant differences in the

relationship between eGDR and PRISm across gender and age

groups (Table 3). Among women, eGDR was significantly

associated with lower odds of PRISm (OR = 0.874, 95% CI:

0.821–0.929; P < 0.001), while no significant association was

observed in men (P = 0.702). The interaction between gender and

eGDR was significant (P = 0.012), indicating that the association

was stronger in women. Similarly, a significant association was

found in participants over 40 years of age (OR = 0.913, 95% CI:

0.848–0.982; P = 0.016), but not in those aged 40 or younger (P =

0.146), with a significant interaction effect for age (P = 0.016). No

significant interactions were observed between eGDR and race (P =

0.408) or poverty income ratio (P = 0.984), although significant

associations between eGDR and PRISm were found in Mexican

American, Non-Hispanic Black racial groups.
Nonlinear and ROC analysis

The restricted cubic spline (RCS) analysis revealed a significant

nonlinear relationship between eGDR and PRISm (P-nonlinear <

0.001). As shown in Figure 2, the OR for PRISm decreases as eGDR

increases, with the most pronounced reduction occurring at lower

eGDR levels. Beyond an eGDR value of approximately 12 mg/kg/

min, the association stabilizes, with the OR approaching 1. This

indicates that higher eGDR levels are associated with a lower

likelihood of PRISm, but the effect diminishes as eGDR increases.

ROC analysis revealed that the area under the curve (AUC) for

eGDR predicting PRISm was 0.626, indicating modest predictive

accuracy (Figure 3). The optimal cutoff value for eGDR was 11.423

mg/kg/min, with a sensitivity of 63.9% and specificity of 57.2%.
Discussion

Preserved ratio impaired spirometry (PRISm) is a newly defined

phenotype of lung function impairment, characterized by

individuals exhibiting a normal FEV1/FVC ratio, while having an

FEV1 less than 0.8 times the predicted value (5). Although PRISm

shares some features with both obstructive and restrictive lung

patterns, it is distinct in that it does not follow the typical patterns of

either (10). PRISm is associated with various adverse clinical

outcomes, such as increased respiratory symptoms, elevated

comorbidity rates of hypertension and diabetes, and higher

mortality rates (4, 7, 8). Furthermore, PRISm is a heterogeneous

condition, with only a subset of individuals progressing to COPD,
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TABLE 1 Baseline characteristics of the study population.

Variables Total (n = 13661) Non-PRISm (n = 12493) PRISm (n = 1168) Statistic P

eGDR (mg/kg/min), M (Q1, Q3) 11.89 (9.08, 13.33) 12.01 (9.22, 13.38) 9.92 (8.04, 12.49) -14.29 <0.001

Quantile, n (%) -14.24 <0.001

Q1 3412 (24.98) 2928 (23.44) 484 (41.44)

Q2 3418 (25.02) 3108 (24.88) 310 (26.54)

Q3 3415 (25.00) 3215 (25.73) 200 (17.12)

Q4 3416 (25.01) 3242 (25.95) 174 (14.90)

Age, M (Q1, Q3) 44.00 (30.00, 59.00) 44.00 (30.00, 59.00) 48.00 (34.00, 61.00) -5.20 <0.001

Sex, n (%) 0.00 0.965

Male 6991 (51.17) 6394 (51.18) 597 (51.11)

Female 6670 (48.83) 6099 (48.82) 571 (48.89)

Ethnicity, n (%) 853.73 <0.001

Mexican American 2289 (16.76) 2206 (17.66) 83 (7.11)

Other Hispanic 1491 (10.91) 1413 (11.31) 78 (6.68)

Non-Hispanic White 5713 (41.82) 5471 (43.79) 242 (20.72)

Non-Hispanic Black 2957 (21.65) 2327 (18.63) 630 (53.94)

Other Race 1211 (8.86) 1076 (8.61) 135 (11.56)

PIR, n (%) -3.38 <0.001

≤1.3 4144 (33.08) 3772 (32.86) 372 (35.50)

>1.3 and ≤3.5 4510 (36.01) 4099 (35.71) 411 (39.22)

>3.5 3872 (30.91) 3607 (31.43) 265 (25.29)

BMI (kg/m2), n (%) -10.39 <0.001

<25 4439 (32.53) 4159 (33.32) 280 (24.08)

≥25 and < 30 4438 (32.52) 4140 (33.17) 298 (25.62)

<30 4768 (34.94) 4183 (33.51) 585 (50.30)

Cotinine (ng/mL), M (Q1, Q3) 0.05 (0.02, 13.25) 0.05 (0.02, 12.70) 0.09 (0.02, 30.55) -5.08 <0.001

eGFR (mL/min/1.73 m²), M
(Q1, Q3)

89.41 (69.17, 108.08) 89.84 (69.66, 108.48) 85.47 (64.70, 103.07) -6.06 <0.001

ALT (U/L), M (Q1, Q3) 21.00 (16.00, 28.00) 21.00 (16.00, 28.00) 21.00 (16.00, 28.00) -0.97 0.332

AST (U/L), M (Q1, Q3) 23.00 (20.00, 28.00) 23.00 (20.00, 28.00) 23.00 (19.00, 28.00) -1.38 0.167

Smoke, n (%) 0.00 0.978

Yes 5525 (45.36) 5031 (45.37) 494 (45.32)

No 6655 (54.64) 6059 (54.63) 596 (54.68)

Alcohol, n (%) 68.28 <0.001

Yes 8725 (74.60) 8062 (75.64) 663 (63.93)

No 2971 (25.40) 2597 (24.36) 374 (36.07)

Heart Disease, n (%) 65.31 <0.001

Yes 685 (5.62) 565 (5.09) 120 (11.00)

No 11500 (94.38) 10529 (94.91) 971 (89.00)

(Continued)
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suggesting that PRISm may represent a unique clinical phenotype

with its own pathophysiological and prognostic implications (6, 9).

This study investigates the relationship between estimated glucose

disposal rate (eGDR), an indicator of insulin resistance, and PRISm.

Our results show that lower eGDR is significantly associated with an

increased risk of PRISm, suggesting a negative relationship between

insulin resistance and PRISm.

The baseline characteristics of participants further clarified the

differences between the PRISm and non-PRISm groups. Notably, the

PRISm group was older, had higher cotinine levels, lower eGFR, and a

higher prevalence of cardiovascular diseases and obesity. While it is

widely acknowledged that smoking impairs lung function, cotinine is

specifically associated with reduced lung function and airflow

obstruction (22). Additionally, Obesity, a recognized risk factor for

both insulin resistance and respiratory diseases, increases airway

resistance while simultaneously altering breathing patterns, thereby

affecting ventilation and oxygenation (23); at the same time, the

accumulation of visceral adipose tissue due to obesity is closely

associated with a higher incidence of respiratory diseases (24).

However, in the multivariable logistic regression analysis, eGDR

remained significantly negatively correlated with PRISm even after

fully adjusting for confounding factors such as sex, age, race, BMI,

cotinine levels, liver and kidney function, cardiovascular disease,

smoking, and alcohol consumption. This suggests that higher insulin

sensitivity, as reflected by higher eGDR, is associated with a lower risk of

developing PRISm, independent of these potential confounders.

In the multivariable logistic regression analysis, all models

demonstrated a significant negative association between eGDR and
Frontiers in Endocrinology 0656
TABLE 3 Subgroup and interaction analysis of eGDR and PRISm by
gender, age, ethnicity, and poverty ratio.

Subgroup OR (95% CI) P P for interaction

Overall 0.927 (0.880, 0.976) 0.005

Gender 0.012

Male 0.938 (0.669, 1.315) 0.702

Female 0.874 (0.821, 0.929) <0.001

Age 0.016

≤40 0.949 (0.883, 1.019) 0.146

>40 0.913 (0.848, 0.982) 0.016

Ethnicity 0.408

Mexican American 0.732 (0.646, 0.83) <0.001

Other Hispanic 0.860 (0.715, 1.033) 0.104

Non-Hispanic White 0.927 (0.857, 1.002) 0.055

Non-Hispanic Black 0.908 (0.858, 0.961) 0.002

Other Race 1.073 (0.896, 1.285) 0.433

PIR 0.984

≤1.3 0.941 (0.873, 1.014) 0.109

>1.3 and ≤3.5 0.912 (0.846, 0.983) 0.017

>3.5 0.939 (0.854, 1.034) 0.193
eGDR, Estimated Glucose Disposal Rate; PRISm, Preserved Ratio Impaired Spirometry; OR,
Odds ratio; CI, Confidence Interval.
TABLE 1 Continued

Variables Total (n = 13661) Non-PRISm (n = 12493) PRISm (n = 1168) Statistic P

Stroke, n (%) 22.41 <0.001

Yes 261 (2.14) 216 (1.95) 45 (4.12)

No 11913 (97.86) 10867 (98.05) 1046 (95.88)
fro
eGDR, Estimated Glucose Disposal Rate; PRISm, Preserved Ratio Impaired Spirometry; BMI: Body Mass Index; eGFR, Estimated Glomerular Filtration Rate; ALT, Alanine Aminotransferase;
AST, Aspartate Aminotransferase.
TABLE 2 Multivariate logistic regression analysis of the association between eGDR and PRISm across different models.

Variables
Model 1 Model 2 Model 3

OR (95% CI) P OR (95% CI) P OR (95% CI) P

eGDR 0.849 (0.820, 0.880) <0.001 0.849 (0.818, 0.881) <0.001 0.927 (0.880, 0.976) 0.005

Categories

Q 1 Reference / Reference / Reference /

Q 2 0.611 (0.484, 0.772) <0.001 0.620 (0.470, 0.817) 0.001 0.785 (0.585, 1.055) 0.106

Q 3 0.405 (0.316, 0.520) <0.001 0.441 (0.350, 0.556) <0.001 0.660 (0.501, 0.869) 0.004

Q 4 0.362 (0.281, 0.467) <0.001 0.310 (0.232, 0.415) <0.001 0.583 (0.393, 0.867) 0.009

P for trend / <0.001 / <0.001 / 0.002
Model 1: Unadjusted; Model 2: Adjusted for gender, age, ethnicity, poverty income ratio; Model 3: Adjusted for all covariates (gender, age, ethnicity, PIR, BMI, cotinine, AST, ALT, GFR
creatinine clearance, cardiovascular disease, stroke, alcohol consumption, and smoking status); eGDR, Estimated Glucose Disposal Rate; PRISm, Preserved Ratio Impaired Spirometry; OR, Odds
ratio; CI, Confidence Interval.
ntiersin.org

https://doi.org/10.3389/fendo.2025.1525573
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Lin et al. 10.3389/fendo.2025.1525573
PRISm. In both unadjusted and adjusted models, each unit increase in

eGDR was associated with a 15.1% reduction in the likelihood of

PRISm. This relationship persisted in the fully adjusted model, where

even after accounting for potential confounders such as sex, age,

ethnicity, BMI, cotinine levels, renal and hepatic function,

cardiovascular disease, smoking, and alcohol consumption, each unit

increase in eGDR was still linked to a 7.3% decrease in the likelihood

of PRISm.

These findings suggest that higher eGDR levels, indicative of

better insulin sensitivity, are associated with a lower risk of PRISm.

This relationship may be partly explained by the characteristics of

participants with moderate or severe insulin resistance, who often

present with systemic inflammation—marked by elevated levels of

white blood cells, neutrophils, and plasma interleukin-6—and

dyslipidemia, characterized by high triglycerides and low HDL
Frontiers in Endocrinology 0757
cholesterol. Insulin resistance is typically accompanied by chronic

low-grade inflammation, which promotes the release of inflammatory

mediators such as tumor necrosis factor-a and interleukin-6 (25, 26).

These factors not only impair systemic metabolism but also directly

affect lung tissue, leading to airway inflammation and structural

remodeling, which contribute to airflow limitation and reduced lung

function (27–29). Additionally, insulin resistance increases oxidative

stress in the body, which refers to an imbalance between the

production of free radicals and antioxidant defenses. Elevated levels

of free radicals can damage cells, including lung cells, causing

dysfunction and structural damage (30). This damage not only

compromises airway patency but may also trigger an inflammatory

response in the lungs, further exacerbating lung function impairment

(31). Beyond systemic effects, insulin resistance may impair lung

function via adipose tissue dysfunction, which promotes pro-

inflammatory adipokines like resistin and reduces anti-inflammatory

adiponectin (32, 33). Resistin is linked to asthma, COPD, fibrosis, and

acute lung injury, while adiponectin suppresses pulmonary

inflammation by inhibiting TNF-a, IL-6, and chemokine

production (34, 35). These adipokine shifts may mediate the adverse

impact of insulin resistance on lung health. Moreover, chronic

hyperinsulinemia may also interfere with cellular repair and

regeneration pathways in the lung, limiting the ability to recover

from environmental or inflammatory insults (36).

Subgroup analyses in our study revealed that this association was

more pronounced among females and individuals aged over 40 years.

The stronger association in women may be attributable to differences in

body fat distribution and hormonal regulation (37, 38). Sex-specific

patterns in insulin resistance, influenced by sex steroid hormones, may

partly explain this finding. Estrogens play a protective role in metabolic

regulation, and their decline after menopause contributes to increased

insulin resistance and diabetes risk (39). A Evidence from both human

genetics and animal models has shown that disruption of estrogen

signaling—such as through aromatase or estrogen receptor a deficiency

—can lead to marked metabolic dysfunction (38). Moreover, estrogen,
FIGURE 2

Nonlinear relationship between eGDR and PRISm: restricted cubic spline analysis. eGDR, Estimated Glucose Disposal Rate; PRISm, Preserved Ratio
Impaired Spirometry.
FIGURE 3

Receiver operating characteristic (ROC) curve for eGDR in
predicting PRISm. eGDR, Estimated Glucose Disposal Rate; PRISm,
Preserved Ratio Impaired Spirometry.
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which has anti-inflammatory effects, may play a protective role in

premenopausal women; with age-related hormonal changes, metabolic

dysregulation may have a more deleterious impact on lung function

(40). These findings suggest that insulin resistance may have a more

pronounced impact on lung function in women due to hormone-related

differences in insulin sensitivity and inflammation. In older adults, age-

related skeletal muscle dysfunction—characterized by mitochondrial

impairment, metabolic dysregulation, inflammation, and sarcopenia—

leads to reduced insulin sensitivity and is a key mechanism underlying

insulin resistance in the elderly (41). The synergistic effects of sarcopenia

and insulin resistance can exacerbate systemic inflammation and

oxidative stress, both of which are known to impair lung function

(14, 42). Additionally, age-related declines in lung elasticity, respiratory

muscle strength, and ventilatory responsiveness may render older adults

more vulnerable to the adverse effects of metabolic abnormalities on

pulmonary function (43). In contrast, no significant interaction was

observed between eGDR and race or poverty-to-income ratio; however,

notable associations were found within specific racial groups. Notably,

significant associations between eGDR and PRISm were observed in

Non-Hispanic Black and Mexican American participants. This finding

aligns with prior studies indicating that both racial groups exhibit higher

levels of insulin resistance and insulin secretion compared to non-

Hispanic Whites. For instance, Haffner et al. reported that both Non-

Hispanic Black andMexican American individuals showed significantly

higher levels of insulin resistance than their non-Hispanic White

counterparts (44). Similarly, Hasson et al. highlighted the heightened

insulin resistance and upregulated beta-cell function in African

Americans, potentially contributing to their elevated risk of metabolic

diseases (45). These metabolic characteristics may also influence

pulmonary outcomes, thereby partially explaining the higher

prevalence of PRISm in these populations.

The non-linear relationship observed in the restricted cubic

spline analysis indicates that while higher levels of eGDR are

associated with a decreased likelihood of PRISm, this association

tends to plateau once eGDR exceeds approximately 12 mg/kg/min.

This suggests a potential threshold effect, beyond which further

improvements in insulin sensitivity confer minimal additional

benefit in reducing PRISm risk. Such a plateau is biologically

plausible, as metabolic improvements may only translate to

clinical benefits up to a certain point, after which risk stabilizes.

Interventions targeting insulin resistance may therefore be

particularly beneficial for individuals with lower baseline eGDR.

Additionally, ROC curve analysis demonstrated that eGDR has a

certain predictive accuracy in identifying PRISm, with an AUC of

0.626. Although the AUC indicates only limited discriminatory

power, this result suggests that eGDR may be more suitable as a

metabolic health risk indicator rather than a standalone diagnostic

tool for PRISm. In future research or clinical practice, eGDR could

be combined with other biomarkers—such as inflammatory

markers, lung imaging parameters, or genetic risk scores—to

enhance predictive performance and facilitate early identification

of high-risk individuals.

Overall, our findings demonstrate that lower eGDR, indicating

higher insulin resistance, is significantly associated with increased
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PRISm risk, independent of common confounders. This association

is stronger in women and older adults, likely due to hormonal and

age-related physiological changes. The observed threshold effect

suggests that improving insulin sensitivity may be most beneficial in

individuals with lower baseline eGDR. While eGDR alone has

limited predictive power, it may serve as a useful metabolic

marker when combined with other indicators to better identify

individuals at risk for PRISm.
Limitations

This study has several limitations that should be acknowledged.

First, the cross-sectional design restricts our ability to establish causal

relationships between eGDR and PRISm, as we can only infer

associations rather than direct causation. Additionally, the reliance on

self-reported data for lifestyle factors, such as smoking and alcohol

consumption, may introduce bias or inaccuracies. The use of eGDR as a

surrogate measure of insulin sensitivity, while clinically relevant, may

not capture all aspects of metabolic health, potentially leading to residual

confounding. Furthermore, although we adjusted for numerous known

confounders, residual confounding from unmeasured or unknown

variables—such as environmental exposures, detailed dietary patterns,

genetic predispositions, and undiagnosed comorbidities—cannot be

completely ruled out. Moreover, the generalizability of our findings

may be limited, as the study population primarily consisted of adults

from specific demographic groups, which may not fully represent the

broader population. Finally, while we adjusted for several potential

confounders, residual or unrecognized confounders may still influence

the observed associations. Future research should aim to address these

limitations through longitudinal designs and more comprehensive

assessments of metabolic health and environmental factors.
Conclusion

In conclusion, our study demonstrates a significant inverse

association between estimated eGDR and PRISm among a diverse

population of US adults. Participants with lower eGDR values

exhibited a higher prevalence of PRISm, indicating greater insulin

resistance and potential metabolic dysfunction. The findings

suggest that eGDR may serve as a valuable marker for assessing

the risk of PRISm, particularly among women and older adults.

Given the growing recognition of the interplay between metabolic

health and respiratory function, further research is warranted to

elucidate the underlying mechanisms linking insulin resistance and

pulmonary impairment.
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Evaluating the link between
insulin resistance and cognitive
impairment using estimated
glucose disposal rate in a
non-diabetic aging population:
results from the CHARLS
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Background: Emerging evidence suggests insulin resistance may contribute to

neurodegeneration, yet its role in non-diabetic populations remains unclear.

This study explores the relationship between estimated glucose disposal rate

(eGDR), a measure of insulin sensitivity, and incident cognitive dysfunction in

non-diabetic adults.

Methods: Our longitudinal analysis utilized data from 5,178 CHARLS participants

(age ≥ 45 years). Insulin sensitivity was quantified using eGDR, calculated

from waist circumference, hypertension status, and hemoglobin A1c levels.

Participants were stratified by eGDR quartiles for comparative analysis. We

employed multivariable Cox models, survival curves, restricted cubic splines, and

sensitivity testing to evaluate associations with cognitive outcomes.

Results: Over an 8.7-year follow-up, cognitive dysfunction developed in 36.9%

of participants. Analyses revealed significant metabolic-cognitive associations,

with each standard deviation increase in eGDR linked to a 15.8% reduction in

risk (adjusted hazard ratio [HR] = 0.792, 95% confidence interval [CI]: 0.793–

0.881). Restricted cubic spline analysis identified non-linear threshold effects,

with risk accelerating below certain eGDR levels (P< 0.05). Kaplan-Meier survival

analysis demonstrated significant differences in cognitive impairment incidence

across eGDR quartiles (P = 0.003). Additionally, both eGDR and metabolic

score for insulin resistance (METS-IR) showed comparable predictive value for

cognitive impairment risk, outperforming other metabolic indices, including the

atherogenic index of plasma (AIP), and the triglyceride glucose index (TyG).

Conclusion: These findings position eGDR as a promising biomarker

for cognitive risk stratification in non-diabetic adults. However, further

multi-database studies should validate these associations and explore the

underlying mechanisms.

KEYWORDS

cognitive impairment, estimated glucose disposal rate, insulin resistance, diabetes
mellitus, CHARLS
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Introduction

The rising prevalence of cognitive impairment poses a
significant public health burden, intensified by shifting age
demographics worldwide. This complex condition arises from
an interplay of hereditary factors, environmental influences, and
lifestyle variables. Of particular interest is insulin resistance (IR),
which has gained attention as a modifiable factor linked to
progressive cognitive decline (1–3). Although traditionally viewed
through the lens of metabolic disease and Type 2 diabetes mellitus
(T2DM), contemporary research establishes IR as an independent
predictor of cognitive dysfunction even in individuals with normal
glucose regulation (3–6). These findings align with insulin’s
diverse neurological functions, including its involvement in brain
energy homeostasis, synaptic maintenance, and neuroprotective
mechanisms. Mounting evidence further implicates disrupted
insulin pathways in the development of Alzheimer’s pathology and
other neurodegenerative disorders.

Current diagnostic approaches for IR evaluation, which
primarily rely on fasting blood glucose (FBG) and hemoglobin
A1c (HbA1c) measurements, demonstrate diminished reliability
in non-diabetic populations (7–10). Such metrics often fail to
detect early metabolic disturbances occurring outside pancreatic
regulation. eGDR, a novel composite index combining abdominal
obesity, hypertensive status, and glycemic control parameters,
presents a more robust solution. Prior investigations have primarily
concentrated on diabetic subjects, potentially obscuring IR’s true
effects through glucose-related confounding variables while also
facing sample size limitations. Importantly, this innovative measure
shows superior accuracy in detecting metabolic dysfunction
among populations with preserved glucose tolerance (11, 12) and
effectively forecasts cardiovascular-metabolic disease trajectories
(13–15). Nevertheless, the connection between eGDR and cognitive
performance remains unexplored. Clarifying this relationship
may provide valuable tools for identifying high-risk subgroups
and implementing timely preventive measures in metabolically
vulnerable, non-diabetic individuals.

Utilizing the China Health and Retirement Longitudinal
Study (CHARLS) dataset, this research examines how eGDR
correlates with newly developed cognitive dysfunction in non-
diabetic individuals. Additionally, the analysis compares the
eGDR with three contemporary metabolic markers: the metabolic
score for insulin resistance (METS-IR), the atherogenic index
of plasma (AIP), and the triglyceride glucose index (TyG), in
order to assess their respective prognostic capacities for predicting
cognitive impairment. These investigations seek to clarify the
role of insulin resistance and lipid metabolism in cognitive aging
while establishing potential diagnostic applications for eGDR in
metabolically at-risk, non-diabetic cohorts.

Materials and methods

Study population

This study draws upon data from the CHARLS, a nationally
representative cohort study initiated in 2011, with subsequent
follow-up waves in 2013, 2015, 2018, and 2020 (16). A total of

12,527 participants were excluded based on the following criteria:
missing data on eGDR (n = 7,767); a diagnosis of DM in 2011
(n = 1,486); a history of brain injury, intellectual disability, stroke,
or memory impairment, or incomplete information (n = 524); a
diagnosis of cognitive impairment or missing cognitive impairment
data in 2011 (n = 2,490); age under 45 years (n = 124); or
loss to follow-up (n = 136). Following these exclusions, the
final sample comprised 5,178 eligible participants (Figure 1).
All study participants provided written informed consent before
enrollment. This research project received ethical approval
from Peking University’s Biomedical Ethics Review Committee
(IRB00001052-11015), with data collection strictly limited to
consenting individuals for final analysis.

Calculation of eGDR and IR stratification

The estimated glucose disposal rate was derived from
the equation: eGDR (mg/kg/min) = 21.158-(0.09 × waist
circumference [cm])-(3.407 × hypertension [1 = yes, 0 = no])-
(0.551 × hemoglobin A1c) [%]). Participants were then stratified
by eGDR quartiles for insulin resistance level comparisons.

Cognitive function assessment in
CHARLS

The CHARLS employed the Mini-Mental State Examination
(MMSE) to measure cognitive performance, utilizing this
standardized tool’s capacity to evaluate both global functioning
and specific domains including memory retention and cognitive
processing. For memory assessment, researchers administered a
ten-item verbal recall test, with participants required to repeat
words both immediately following presentation and after a
5-min delay, where one point was allocated for each accurate
response (potential score: 0–20). The evaluation of fundamental
cognitive capacities incorporated three components: arithmetic
tasks involving successive subtraction from 100, geometric figure
replication to assess spatial reasoning, and temporal awareness
questions regarding date identification. Performance on these
measures contributed equally to a maximum of 11 points. By
aggregating results from both domains (total possible: 31 points),
investigators identified cognitive impairment using a validated
cutoff of <11 points (17, 18).

Potential covariates

This investigation expanded upon existing literature
by incorporating a multidimensional array of covariates
spanning sociodemographic attributes, health behaviors,
and clinical biomarkers. Participant profiles captured age,
sex, residential classification (urban/rural), geographical
location (northern/southern China), educational background
(categorized as ≤9 years, 10–12 years, or ≥13 years of
schooling), and partnership status (married/cohabiting versus
single/divorced/widowed). Health behavior indicators documented
tobacco use, alcohol consumption, and sensory impairments,

Frontiers in Medicine 02 frontiersin.org62

https://doi.org/10.3389/fmed.2025.1522028
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1522028 June 2, 2025 Time: 18:30 # 3

Wang et al. 10.3389/fmed.2025.1522028

FIGURE 1

Participant selection process flowchart. eGDR, estimated glucose disposal rate; CI, cognitive impairment; CHARLS, China Health and Retirement
Longitudinal Study; DM, diabetes mellitus.

alongside psychosocial factors (social engagement levels and
depressive symptoms) and cardiometabolic risk markers
(elevated blood pressure and adiposity). Biochemical analyses
quantified glycemic control (HbA1c, fasting blood glucose [FBG]),
hematologic parameters (hemoglobin), and lipid profiles (total
cholesterol [TC], triglycerides [TG], high-density lipoprotein
cholesterol [HDL-C], low-density lipoprotein cholesterol[LDL-
C]). Adiposity was determined via body mass index (BMI)
(weight[kg]/height[m]2), classifying obesity at ≥28 kg/m2.
Hypertension criteria included: (1) clinical diagnosis, (2)
antihypertensive medication use, or (3) systolic/diastolic pressures
exceeding 140/90 mmHg. Diabetes mellitus was operationalized
through: (1) self-reported diagnosis, (2) glucose-lowering drug
use, (3) FPG ≥ 126 mg/dL (7.0 mmol/L), or 4) HbA1c ≥ 6.5%.
Depressive symptomatology was evaluated using the CESD-10
instrument (score range: 0–30 points).

Statistical analysis

Comparisons across eGDR quartiles were conducted to
examine variations in demographic, health, and metabolic
characteristics, including age, sex, education, marital status, rural
residence, geographic region, BMI, WC, systolic blood pressure
(SBP), diastolic blood pressure (DBP), obesity, smoking, alcohol

use, hemoglobin, FBG, vision impairment, HbA1c, TC, TG, HDL,
LDL, diabetes, hearing loss, depressive symptoms, and social
isolation. Continuous data following normal distributions were
summarized as means with standard deviations (mean ± SD)
and compared using parametric analysis of variance, while non-
normally distributed measures were reported as medians with
interquartile ranges [median (IQR)] and analyzed through non-
parametric Kruskal-Wallis tests. Categorical data were expressed
as frequency counts with percentages [n (%)], with group
differences examined via χ2 tests. The dose-response association
between eGDR and cognitive impairment was investigated
using restricted cubic splines (RCS), with Cox proportional
hazards models applied to evaluate this relationship through
both continuous and categorical parameterizations of eGDR.
Three progressively adjusted models were constructed: a crude
model (unadjusted), a partially adjusted model (controlling for
demographic factors including age, sex, residence location, marital
status, and education level, along with behavioral covariates of
smoking and alcohol consumption), and a fully adjusted model
(incorporating all potential confounders). Additional stratified
analyses were performed using multivariable Cox regression to
identify potential effect modifications across population subgroups.
Kaplan-Meier survival analysis with log-rank tests compared
cognitive impairment risk across eGDR quartiles. Sensitivity
analyses were conducted under four conditions: (1) excluding
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TABLE 1 Baseline characteristics of participants stratified by quartiles of eGDR.

Characteristic Quartiles of eGDR P-value

Quartile 1 Quartile 2 Quartile 3 Quartile 4

Participants 1295 1297 1302 1284

eGDR 9.45 ± 2.07 6.50 ± 0.68 8.92 ± 0.91 10.70 ± 0.27 <0.001

TyG 4.64 ± 0.29 4.74 ± 0.29 4.68 ± 0.29 4.61 ± 0.28

AIP −0.02 ± 0.31 0.09 ± 0.30 0.02 ± 0.32 −0.05 ± 0.30

METS-IR 35.31 ± 7.58 40.39 ± 7.23 36.75 ± 7.91 34.45 ± 5.46

Age, years 59.01 (8.42) 58.34 (8.84) 55.95 (7.90) 56.34 (8.23) <0.001

Gender 0.257

Male 645 (49.85%) 655 (50.54%) 689 (52.92%) 679 (52.96%)

Female 649 (50.15%) 641 (49.46%) 613 (47.08%) 603 (47.04%)

Rural residence <0.001

Rural 700 (54.05%) 791 (60.99%) 847 (65.05%) 901 (70.17%)

Urban 595 (45.95%) 506 (39.01%) 455 (34.95%) 383 (29.83%)

Region <0.001

South 574 (44.32%) 669 (51.58%) 678 (52.07%) 802 (62.46%)

North 721 (55.68%) 628 (48.42%) 624 (47.93%) 482 (37.54%)

Marital status 0.002

Married and living with spouse 1105 (85.33%) 1119 (86.28%) 1172 (90.02%) 1104 (85.98%)

Others 190 (14.67%) 178 (13.72%) 130 (9.98%) 180 (14.02%)

Education 0.216

Junior high school and below 1122 (86.64%) 1140 (87.90%) 1120 (86.02%) 1103 (85.90%)

Senior high school 144 (11.12%) 135 (10.41%) 165 (12.67%) 151 (11.76%)

Junior college or above 29 (2.24%) 22 (1.70%) 17 (1.31%) 30 (2.34%)

Smoking status 0.036

Yes 511 (39.46%) 537 (41.40%) 553 (42.47%) 578 (45.02%)

No 784 (60.54%) 760 (58.60%) 749 (57.53%) 706 (54.98%)

Drinking status 0.959

Yes 561 (43.35%) 570 (43.95%) 562 (43.16%) 551 (42.91%)

No 733 (56.65%) 727 (56.05%) 740 (56.84%) 733 (57.09%)

Blind or partially blind 0.194

Yes 58 (4.48%) 60 (4.63%) 47 (3.61%) 69 (5.37%)

No 1237 (95.52%) 1237 (95.37%) 1255 (96.39%) 1215 (94.63%)

Deaf or partially deaf 0.151

Yes 90 (6.95%) 78 (6.02%) 63 (4.84%) 74 (5.76%)

No 1205 (93.05%) 1218 (93.98%) 1239 (95.16%) 1210 (94.24%)

Obesity <0.001

Yes 338 (26.24%) 204 (15.81%) 33 (2.54%) 8 (0.63%)

No 950 (73.76%) 1086 (84.19%) 1264 (97.46%) 1269 (99.37%)

Depression 0.003

Yes 382 (30.25%) 368 (29.21%) 385 (30.20%) 444 (35.46%)

No 881 (69.75%) 892 (70.79%) 890 (69.80%) 808 (64.54%)

Social isolation 0.171

Yes 763 (58.92%) 775 (59.75%) 779 (59.83%) 808 (62.93%)

No 532 (41.08%) 522 (40.25%) 523 (40.17%) 476 (37.07%)

(Continued)
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TABLE 1 (Continued)

Characteristic Quartiles of eGDR P-value

Quartile 1 Quartile 2 Quartile 3 Quartile 4

SBP, mmHg 146.85 (19.48) 132.90 (20.39) 118.00 (11.20) 116.31 (11.58) <0.001

DBP, mmHg 85.11 (11.67) 77.99 (11.58) 70.74 (8.70) 69.18 (8.77) <0.001

BMI, Kg/m2 26.18 (3.39) 24.27 (3.82) 23.33 (2.51) 20.68 (2.43) <0.001

WC, cm 93.55 (7.44) 87.41 (10.72) 84.89 (3.79) 74.95 (5.16) <0.001

HbA1c, % 5.15 (0.41) 5.13 (0.41) 5.10 (0.36) 4.95 (0.38) <0.001

FBG, mg/dL 103.49 (16.36) 102.47 (16.73) 100.08 (13.94) 97.67 (13.12) <0.001

Hemoglobin, g/dL 14.78 (2.26) 14.59 (2.18) 14.43 (2.19) 14.17 (2.05) <0.001

TC, mg/dL 199.07 (38.81) 192.80 (35.85) 191.22 (36.75) 185.21 (35.45) <0.001

TG, mg/dL 125.67
(89.39–178.99)

109.74
(78.76–160.18)

99.12 (72.57–139.83) 85.85 (63.72–119.47) <0.001

HDL-C, mg/dL 47.07 (13.02) 50.24 (14.66) 51.95 (14.74) 55.90 (15.18) <0.001

LDL-C, mg/dL 122.57 (35.63) 115.98 (33.40) 116.66 (33.29) 110.91 (31.98) <0.001

BMI, body mass index; SBP systolic blood pressure; DBP diastolic blood pressure; eGDR estimated glucose disposal rate; METS-IR, metabolic score for insulin resistance; AIP, atherogenic
index of plasma; TyG, triglyceride glucose index; FBG, fasting blood glucose; HbA1c, hemoglobin A1c; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; WC waist circumference; CI, cognitive impairment.

FIGURE 2

Association of eGDR and the risk of cognitive impairment using a multivariable-adjusted restricted cubic spines model. Restricted cubic spline
analysis has four knots at the 5th, 35th, 65th, and 95th percentiles of eGDR. eGDR, estimated glucose disposal rate.

participants with cognitive impairment onset by 2013 and (2)
redefining diabetes based solely on FBG and HbA1c levels.

Results

Baseline characteristics

Table 1 displays the baseline characteristics of participants
stratified by quartiles of eGDR. Significant differences were

observed across most demographic and health variables among
the eGDR quartiles (P < 0.05). Participants in the lowest quartile
of eGDR (Quartile 1, indicating higher insulin resistance) were
generally older, had higher waist circumference, HbA1c, FBG, BMI,
and blood pressure levels compared to those in higher eGDR
quartiles. Conversely, HDL levels were lowest and triglyceride
levels highest in Quartile 1, indicative of poorer metabolic health
in this group. Notably, gender, vision and hearing impairment,
educational level, alcohol consumption, and social isolation did not
vary significantly across eGDR quartiles (P > 0.05).
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Association between baseline eGDR and
cognitive impairment incidence

During the follow-up period, 1,913 participants (36.94%)
developed cognitive impairment (Supplementary Table 1).
The RCS analysis (Figure 2) revealed a significant non-linear
association between eGDR and cognitive impairment incidence,
with a higher risk of cognitive impairment observed as eGDR
decreased (indicating increased insulin resistance) (P < 0.05).
This association persisted across all adjusted models, suggesting a
potential threshold effect in the link between eGDR and cognitive
impairment risk.

Cox proportional hazards and
Kaplan-Meier survival analysis of the
association between eGDR and cognitive
impairment

The Cox proportional hazards models demonstrated an
inverse relationship between eGDR and cognitive impairment
risk. Progressive multivariable adjustment revealed consistent
associations: each unit reduction in eGDR corresponded to a
21.8% lower risk (HR = 0.792, 95%CI: 0.745–0.801, P = 0.014)
in the unadjusted model, 19.5% (hazard ratio [HR] = 0.805,
95% confidence interval [CI]: 0.795–0.818, P = 0.014) after
demographic adjustment, and 15.8% (HR = 0.842, 95%CI: 0.793–
0.881, P = 0.039) in the fully-adjusted model (Table 2). When
analyzed categorically, the highest three eGDR quartiles showed
non-significant protective trends (all HR < 1, P > 0.05) in Model
III (Table 2). Supporting these findings, Kaplan-Meier curves
displayed significant divergence in cognitive impairment incidence
by eGDR quartile (log-rank P = 0.003), with progressively shorter
median survival times observed in lower quartiles (Figure 3).

Cox proportional hazards models
comparing METS-IR, AIP, and TyG versus
eGDR for CI risk

In the fully adjusted models, three metabolic indices
demonstrated distinct associations with cognitive impairment.
The metabolic score for insulin resistance (METS-IR) exhibited
a significant inverse relationship, with each standard deviation
increase corresponding to a reduced risk of cognitive impairment
(HR = 0.99, 95%CI: 0.98–1.00, P = 0.002) (Supplementary Table 2).
This protective effect was more pronounced in the quartile
analyses, where participants in the highest METS-IR quartile had
an 18% lower risk of cognitive impairment compared to those
in the lowest quartile (HR = 0.82, 95%CI: 0.72–0.94, P = 0.005)
(Supplementary Table 2). For the atherogenic index of plasma
(AIP), linear regression analysis revealed a non-significant trend
(HR = 0.90, 95%CI: 0.78–1.05, P = 0.170), although participants
in the highest AIP quartile approached marginal significance
(HR = 0.89, 95%CI = 0.78–1.02, P = 0.100) (Supplementary Table
3). In contrast, the triglyceride glucose index (TyG) demonstrated
a near-significant linear association with cognitive impairment T
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FIGURE 3

The Kaplan-Meier analysis for cognitive impairment was based on eGDR quartiles. eGDR, estimated glucose disposal rate.

risk (HR = 0.85, 95% CI: 0.72–1.00, P = 0.050), with participants
in the highest TyG quartile showing robust protection against
cognitive impairment (HR = 0.83, 95%CI: 0.73–0.95, P = 0.010)
(Supplementary Table 4).

Subgroup analysis

The association between eGDR and cognitive impairment
risk demonstrated significant heterogeneity by smoking status.
Among never-smokers, each SD increment in eGDR corresponded
to a 12.2% lower risk (HR = 0.822, 95%CI: 0.784–0.861,
P = 0.038). Smokers showed a similar but non-significant
inverse relationship (P = 0.216), with significant between-
group heterogeneity (pinteraction = 0.023). No significant effect
modification was observed for age, sex, or alcohol consumption (all
pinteraction > 0.05, Table 3).

Sensitivity analysis

Sensitivity analyses using alternative modeling approaches
consistently showed modest associations between continuous
eGDR measurements and cognitive outcomes (Table 4). Both
models produced comparable effect estimates, reinforcing the
primary findings while demonstrating robustness to different
analytical specifications.

Discussion

This investigation demonstrates that both the eGDR and
METS-IR show similar predictive value for cognitive impairment

TABLE 3 Subgroup analysis of the association between eGDR (per 1 SD)
and cognitive impairment.

Variables HR (95%CI) P-value P interaction

Age, years 0.610

<60 0.983 (0.866, 1.117) 0.792

≥60 0.082 (0.796, 0.844) 0.639

Gender 0.070

Male 0.952 (0.842, 1.077) 0.433

Female 1.113 (0.991, 1.250) 0.071

Smoking status 0.023

Yes 0.919 (0.804, 1.051) 0.216

No 0.822 (0.784, 0.861) 0.038

Drinking status 0.081

Yes 0.951 (0.835, 1.082) 0.447

No 1.107 (0.991, 1.237) 0.072

HR, hazard ratio; CI, confidence interval; eGDR, estimated glucose disposal rate.

risk, while outperforming other metabolic indices including
the TyG and AIP. These results suggest that comprehensive
measures of insulin sensitivity provide better prognostic
capability than lipid-focused metrics for assessing cognitive
risk. The comparable performance of these two insulin
sensitivity markers emphasizes the fundamental role of insulin
resistance in cognitive decline, consistent with their common
physiological basis in glucose metabolism regulation (19–22).
In contrast, the TyG displays only modest predictive ability,
indicating its more limited capacity to reflect the complex
metabolic dysfunction associated with neurodegeneration.
Similarly, the AIP shows the weakest association, suggesting
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TABLE 4 Sensitivity analysis of the association between eGDR (Q1–Q4) and cognitive impairment.

eGDR Total N No. of cognitive impairment HR (95%CI) P-value

FBG+HbA1c

Continues

Per SD increase 5228 1932 (36.95) 0.845 (0.832, 0.864) 0.041

Quartiles

Q1 1308 467 (35.70) Reference

Q2 1306 512 (39.20) 0.842 (0.783, 0.905) 0.114

Q3 1307 445 (34.05) 0.877 (0.824, 0.927) 0.486

Q4 1307 508 (38.87) 0.833 (0.807, 0.864) 0.121

Excluded CI during or before wave 2

Continues

Per SD increase 3943 983 (24.93) 0.851 (0.804, 0.896) 0.033

Quartiles

Q1 986 248 (25.15) Reference

Q2 985 251 (25.48) 0.883 (0.865, 0.901) 0.867

Q3 984 233 (23.68) 0.853 (0.748, 0.934) 0.697

Q4 988 251 (25.40) 0.868 (0.797, 0.906) 0.832

HR, hazard ratio; CI, confidence interval; eGDR, estimated glucose disposal rate; FBG, fasting blood glucose; HbA1c, hemoglobin A1c.

that lipid-centered evaluations offer comparatively less
insight into cognitive trajectory modulation than measures of
insulin-glucose homeostasis.

The role of insulin resistance in metabolic disorders is
well-established, and it is now being more commonly linked
to neurodegenerative processes. Studies have documented that
insulin resistance adversely affects cognitive function, particularly
in populations at risk for metabolic syndrome or diabetes
(1, 4–6, 23–25). Reflecting the current literature, our research
highlights the crucial role of insulin sensitivity in cognitive
health, suggesting that eGDR may serve as a significant marker
for assessing cognitive risk in individuals without diabetes. In
contrast to studies that depend only on fasting glucose or
HbA1c, eGDR includes extra factors such as waist size and
blood pressure, giving a fuller picture of insulin resistance
(26, 27). The analysis of subgroups uncovered a significant
association between eGDR and cognitive impairment risk in
non-smokers, whereas this was not the case for smokers,
implying a potential interaction effect. Non-smokers with lower
eGDR levels had a higher risk of cognitive impairment, while
smokers did not exhibit this pattern. Smoking is known to
exacerbate oxidative stress and vascular inflammation, which
may interact with insulin resistance in complex ways, potentially
diminishing the observable impact of eGDR on cognitive
impairment in this subgroup (27). Future research could
further elucidate the biological interactions between smoking
and insulin resistance in relation to cognitive health. Significant
differences in survival without cognitive impairment across eGDR
quartiles were shown by the Kaplan-Meier survival analysis,
with participants in higher quartiles (indicating lower insulin
resistance) experiencing longer periods free from cognitive
impairment. These findings underscore the cumulative impact of
metabolic health on cognitive outcomes over time, reinforcing

the notion that insulin sensitivity plays a protective role
against cognitive decline. This aligns with studies suggesting
that maintaining metabolic health can delay or prevent the
onset of neurodegenerative diseases (28–31). The sensitivity
analyses, which included models adjusting for various potential
confounders, confirmed the robustness of our findings. The
relationship between eGDR and cognitive impairment risk was
stable across these models, even after redefining diabetes solely
by FBG and HbA1c levels and excluding those with early
cognitive decline. This research highlights eGDR’s effectiveness
as a predictor of cognitive impairment risk, especially among
non-diabetic groups. However, additional longitudinal studies
with more refined insulin resistance measures may further
strengthen these findings.

This study has several limitations. First, while we controlled
for multiple confounders, unmeasured factors may still influence
the observed relationships. Second, eGDR was only measured
at baseline, limiting our ability to observe changes in insulin
resistance over time. Furthermore, using self-reported data on
health behaviors, including smoking and alcohol use, could
result in biases in reporting. Lastly, the generalizability of our
findings may be limited to non-diabetic populations within a
specific age range, underscoring the need for studies in diverse
cohorts. Future research could focus on longitudinal changes
in eGDR and their relationship with cognitive outcomes,
particularly in populations at risk for both metabolic and
cognitive disorders. Studying the biological pathways that
associate insulin resistance with cognitive impairment may also
offer valuable insights into targeted interventions. Moreover,
examining the interaction effects of lifestyle factors, such
as smoking and dietary habits, on the insulin resistance-
cognitive impairment relationship could guide more personalized
preventive strategies.
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Conclusion

These findings suggest that elevated insulin resistance, as
reflected by reduced eGDR levels, may represent a modifiable
risk factor for cognitive decline in non-diabetic middle and older
adults. The observed correlation underscores the potential of
eGDR measurements in cognitive risk assessment, necessitating
further research to clarify its role in predictive modeling
and to inform strategies for maintaining cognitive health in
aging populations.
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Purpose: The estimated glucose disposal rate (eGDR) is a simple and noninvasive

clinical measure used to assess insulin resistance (IR), yet its potential utility as a

marker for hyperuricemia risk had not been systematically evaluated. This study

aimed to investigate the relationship between eGDR and hyperuricemia risk

among American adults.

Methods:Data for this cross-sectional study were obtained from the 2007–2018

National Health and Nutrition Examination Survey (NHANES). Hyperuricemia was

identified as a serum urate (SU) concentration of ≥7 mg/dL in males and ≥6 mg/

dL in females. The relationship between eGDR and hyperuricemia risk was

assessed using multivariate logistic regression and restricted cubic spline (RCS)

methods, with additional subgroup and interaction analyses performed.

Results: With increasing eGDR values, the prevalence of hyperuricemia

decreased significantly (29.93% vs. 19.11% vs. 13.20% vs. 5.03%, P<0.001).

Multivariate logistic regression indicated that eGDR was independently

associated with the risk of hyperuricemia after controlling for covariates

including demographic, lifestyle, and clinical factors (OR=0.93, 95%CI: 0.90-

0.96, P<0.001). RCS analysis further revealed a nonlinear relationship, with a

turning point at eGDR 7.96 mg/kg/min. Subgroup analysis revealed a stronger

inverse association between eGDR and hyperuricemia risk in females.

Conclusions: The eGDR is inversely associated with hyperuricemia and appears

to be a promising epidemiological tool for evaluating the impact of IR on the risk

of hyperuricemia.
KEYWORDS

hyperuricemia, insulin resistance, estimated glucose disposal rate, NHANES,
population-based study
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1 Introduction

Hyperuricemia, characterized by abnormally high uric acid

levels in the blood, is a common chronic metabolic condition (1).

It serves as a key factor in the development of gout (a very painful

long-term systemic inflammatory arthritis caused by the deposition

of monosodium urate crystal) (2, 3) and has been increasingly

associated with conditions such as diabetes, metabolic syndrome,

cardiovascular diseases, and higher mortality rates (4–6). In recent

years, the global rise in hyperuricemia cases has placed a

considerable burden on healthcare systems and economies (7).

Insulin resistance (IR) is an important pathophysiological risk

factor for hyperuricemia (8). IR, with consequent compensatory

hyperinsulinemia, can disrupt uric acid homeostasis by altering

renal urate excretion and potentially increasing de novo uric acid

production (8, 9). The hyperinsulinemic-euglycemic clamp remains

the most reliable method for measuring insulin resistance; however,

its use in large-scale epidemiological studies is constrained by the

complexity and time requirements of the procedure (10). The

estimated glucose disposal rate (eGDR) is a clinical parameter-

based index for evaluating insulin sensitivity (11). Initially

developed for type 1 diabetes (T1DM) patients, it incorporates

variables such as waist circumference (WC), glycated hemoglobin

(HbA1c), and hypertension status (12, 13). Moreover, the

recognition exists that these individual risk factors (including

central obesity, hypertension, and inflammatory states), integral

to the eGDR and often co-manifesting, are capable of

mechanistically altering the intricate dynamics between glucose

regulation and uric acid levels by exacerbating overall metabolic

dysregulation. Lower eGDR values indicate poorer insulin

sensitivity and greater IR. Compared with traditional methods

such as the homeostasis model assessment of insulin resistance

(HOMA-IR) and the triglyceride-glucose (TyG) index, eGDR

demonstrates superior performance, is simpler to use, does not

require fasting blood samples, and is particularly well-suited for

large-scale studies (14, 15). Recently, research has shown that eGDR

effectively reflects IR and is strongly linked to metabolic syndrome,

cardiovascular diseases, and diabetes complications (11, 16–19).

Although IR is a well-established correlate of hyperuricemia

with multiple established measurement indices, a notable research

gap persists regarding the eGDR. The potential value of eGDR as a

simple, non-fasting metric requiring only basic clinical parameters-

which could serve as a robust insulin sensitivity marker particularly

advantageous for large-scale epidemiological studies and

hyperuricemia risk stratification in diverse populations-remains

insufficiently investigated. Given the absence of studies on eGDR

and hyperuricemia risk, our research, utilizing the National Health

and Nutrition Examination Survey (NHANES) data, examine this

relationship in the U.S. population. We predict that increased eGDR

values are associated with a reduced risk of hyperuricemia.
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2 Materials and methods

2.1 Study population

Data for this study were drawn from NHANES, a survey

conducted by the National Center for Health Statistics at the

Centers for Disease Control and Prevention (CDC). The survey

used a stratified, randomized, multi-stage sampling approach to

ensure a nationally representative sample. Participants underwent

physical examinations, completed health and nutrition surveys, and

participated in laboratory tests. The NHANES protocol was

reviewed and approved by the Ethics Review Board of the

National Center for Health Statistics (NCHS), and written

informed consent was collected from all participants. Detailed

methodologies and datasets are available at https://wwwn.cdc.gov/

nchs/nhanes/. The NHANES cycles from 2007 to 2018, comprising

59842 participants, were utilized in this study, with exclusions

applied to individuals under 20, pregnant women, and those

lacking complete eGDR and uric acid data, resulting in

29328 participants.
2.2 Definition of eGDR and hyperuricemia

The eGDR (mg/kg/min) is estimated using the formula:

eGDR = 21.158 − (0.09 × WC) − (3.407 × HTN) − (0.551 ×

HbA1c) (13, 20). In this equation, WC represents waist

circumference in centimeters, HTN indicates hypertension status

(1 = yes, 0 = no), and HbA1c refers to glycated hemoglobin (%).

Hyperuricemia is determined by serum urate (SU) levels of 7 mg/dL

or more in men and 6 mg/dL or more in women (21).
2.3 Assessment of covariates

In this study, covariates included demographic characteristics

(age, gender, and race), socio-economic factors (marital status,

income, and education), smoking history, alcohol consumption,

diuretics use, health conditions (hypertension, diabetes,

cardiovascular disease, chronic kidney disease, and gout), and other

indicators such as body mass index (BMI), WC, HbA1c, triglycerides

(TG), total cholesterol (TC), high-density lipoprotein cholesterol

(HDL-c), and low-density lipoprotein cholesterol (LDL-c). Smoking

history encompasses both current and former smoking. Alcohol

consumption was determined having consumed at least 12

alcoholic drinks in the past year. Use of diuretics was determined

based on responses to the question: “During the past 30 days, have

you used or taken any prescription medications?”. Diagnosis of

chronic kidney disease was determined by an estimated glomerular

filtration rate (eGFR) below 60 mL/min/1.73 m² and/or a urine
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albumin-to-creatinine ratio (UACR) of 30 mg/g or more. The eGFR

was calculated using the Chronic Kidney Disease Epidemiology

Collaboration (CKD-EPI) equation, which incorporates age,

gender, race, and serum creatinine (Scr) levels (22). Diabetes was

diagnosed based on a self-reported history, fasting plasma glucose

(FPG) levels of ≥7.0 mmol/L, HbA1c levels of ≥6.5%, or the use of

antidiabetic drugs. Hypertension was defined as a self-reported

history, systolic blood pressure (SBP) ≥140 mmHg, diastolic blood

pressure (DBP) ≥90 mmHg, or the use of antihypertensive

medications. Cardiovascular diseases were identified through

participants’ self-reported histories of heart attacks, strokes, heart

failure, coronary artery disease, or angina. The presence of gout was

established through the question: “Has a doctor or other health

professional ever told you that you have gout?”. Full methodological

details for each variable analyzed in this research are publicly accessible

via the NHANES database (https://wwwn.cdc.gov/nchs/nhanes/).
2.4 Statistical analysis

In accordance with CDC guidelines, statistical analyses utilized a

complex multistage cluster survey design and incorporated sampling

weights. Continuous variables were presented as means with 95%

confidence intervals (CIs), while categorical variables were

summarized as percentages with 95% CIs. Weighted Student’s t-tests

and chi-squared tests were used to evaluate group differences in

continuous and categorical variables, respectively. Logistic and linear

regression models were applied to investigate the relationships between

eGDR and hyperuricemia or SU levels. To assess potential nonlinear

associations between eGDR and hyperuricemia risk, restricted cubic

spline (RCS) regressionwith four knots was performed, with themedian

value as the reference point. A two-piecewise regression model was

employed to identify intervals, and the Log-likelihood ratio test was used

to evaluate the presence of a threshold effect. Subgroup analyses were

carried out based on covariate stratification, with the other covariates

being adjusted for. Receiver operating characteristic (ROC) curve

analysis and decision curve analysis (DCA) were employed to

compare the classification accuracy and clinical utility of eGDR with

those of other alternative indicators. Statistical analyses in this research

we r e pe r f o rmed us ing Empower so f twa r e ( h t t p : / /

www.empowerstats.com) and R software (http://www.R-

project.org), with a two-sided P value < 0.05 considered

statistically significant.
3 Results

3.1 Baseline characteristics of study
population.

The study population consisted of 29328 participants with a

mean age of 47.49 years. The racial composition included 8.64%

Mexican Americans, 10.53% Non-Hispanic Blacks, 66.94% Non-

Hispanic Whites, 5.90% Other Hispanics, and 7.98% from other

racial groups. A weighted analysis was performed to evaluate the
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general and clinical characteristics of participants with and without

hyperuricemia (Table 1). The results showed that individuals with

hyperuricemia were generally older, predominantly male, more

likely to smoke and consume alcohol, and more frequently used

diuretics (P<0.01). They also had higher prevalence rates of

diabetes, hypertension, chronic kidney disease, cardiovascular

disease, gout, as well as elevated BMI, WC, HbA1c, TG, TC, and

LDL-c levels (P<0.001). Additionally, they were found to have lower
educational attainment and reduced HDL-c levels (P<0.01).
Furthermore, eGDR levels were significantly reduced in the

hyperuricemia group compared to the non-hyperuricemia

group (P<0.001).
3.2 Baseline characteristics of four different
quartiles (1-4) based on increasing eGDR
values.

Participants were classified into four groups based on eGDR

quartiles (Table 2). Compared to those in the lowest quartile,

individuals in the higher quartiles were younger, more likely to be

female and drinkers, and had lower rates of smoking, diuretic use,

diabetes, hypertension, chronic kidney disease, cardiovascular

disease, and gout (P<0.001). They also tended to have higher

levels of education and a greater PIR (poverty income ratio)

(P<0.001). Significant reductions were noted in BMI, WC,

HbA1c, TG, TC, and LDL-c levels, while HDL-c levels were

significantly higher (P<0.001). Race distribution also differed

significantly (P<0.001). SU levels and hyperuricemia prevalence

decreased with rising eGDR levels which is in agreement with the

previous report (23) (P<0.001).
3.3 Analyzing the relationship between
eGDR and hyperuricemia or SU levels using
Logistic and Linear regression analysis.

Our findings demonstrate a significant negative association

between elevated eGDR levels and hyperuricemia, which persists

across models 1 (OR=0.78, 95%CI: 0.78-0.79, P<0.001), 2

(OR=0.79, 95%CI: 0.78-0.80, P<0.001), and 3 (OR=0.93, 95%CI:

0.90-0.96, P<0.001) (Table 3). Further stratification by eGDR

quartiles, using the lowest quartile as a reference, shows that

individuals in the highest quartile also have a lower risk of

hyperuricemia in the fully adjusted model (OR=0.49, 95%CI:

0.38-0.63, P<0.001). The analysis of SU levels as the dependent

variable and eGDR levels as the independent variable through linear

regression also demonstrates a negative relationship between them

(b=-1.19, 95%CI: -1.98–0.39, P=0.003) (Table 4).
3.3 RCS analysis

RCS analysis to assess non-linearity in the relationship between

eGDR and hyperuricemia (Figure 1). The threshold effect analysis
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shows that the inflection point for eGDR levels is 7.66 mg/kg/min,

with a more pronounced relationship on the right side (OR=0.76,

95%CI: 0.71-0.82, P<0.001) compared to the left side (OR=1.02,

95%CI: 0.98-1.06, P=0.395) (Table 5).
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3.4 Subgroup analyses

In analyses stratified by variables such as age (<60/≥60 years),

gender (female/male), race (Mexican American/Non-Hispanic
TABLE 1 Baseline characteristics of study population, weighted.

Characteristics Overall (n=29328)
Non-hyperuricemia

(n=24359)
Hyperuricemia

(n=4969)
P value

Age (years) 47.49 (47.04, 47.94) 46.93 (46.46, 47.41) 50.39 (49.75, 51.02) <0.001

Gender <0.001

Female 50.90 (50.28, 51.51) 54.65 (53.98, 55.33) 31.18 (29.56, 32.85)

Male 49.10 (48.49, 49.72) 45.35 (44.67, 46.02) 68.82 (67.15, 70.44)

Race (%) <0.001

Mexican American 8.64 (7.25, 10.28) 9.00 (7.56, 10.68) 6.77 (5.45, 8.38)

Non-Hispanic Black 10.53 (9.22, 12.01) 10.21 (8.96, 11.62) 12.21 (10.43, 14.25)

Non-Hispanic White 66.94 (64.10, 69.66) 66.64 (63.77, 69.39) 68.51 (65.37, 71.48)

Other Hispanic 5.90 (5.00, 6.96) 6.18 (5.22, 7.29) 4.48 (3.72, 5.38)

Other Races 7.98 (7.15, 8.90) 7.97 (7.12, 8.91) 8.04 (6.95, 9.28)

PIR (%) 0.193

<=1.3 21.62 (20.32, 22.96) 21.77 (20.41, 23.19) 20.81 (19.36, 22.33)

>1.3, <=3.5 35.41 (34.11, 36.73) 35.14 (33.76, 36.55) 36.83 (34.87, 38.83)

>3.5 42.98 (40.96, 45.02) 43.09 (41.00, 45.21) 42.36 (39.71, 45.06)

Education level (above high
school) (%)

61.45 (59.62, 63.24) 61.94 (60.06, 63.78) 58.88 (56.32, 61.39) 0.006

Smoking history (%) 44.47 (43.28, 45.67) 43.63 (42.30, 44.97) 48.88 (46.96, 50.80) <0.001

Alcohol consumption (%) 80.56 (79.38, 81.68) 80.17 (78.92, 81.36) 82.59 (81.00, 84.07) 0.002

Diabetes (%) 12.79 (12.24, 13.36) 11.66 (11.08, 12.26) 18.72 (17.35, 20.18) <0.001

Hypertension (%) 36.74 (35.71, 37.77) 33.07 (32.00, 34.16) 56.00 (54.12, 57.86) <0.001

Chronic kidney disease (%) 13.81 (13.21, 14.43) 11.45 (10.89, 12.03) 26.29 (24.60, 28.04) <0.001

Cardiovascular disease (%) 8.27 (7.81, 8.76) 7.30 (6.82, 7.81) 13.38 (11.98, 14.90) <0.001

Gout (%) 3.95 (3.63, 4.31) 2.73 (2.45, 3.04) 10.38 (9.24, 11.65) <0.001

Diuretics (%) 6.94 (6.52, 7.38) 5.12 (4.76, 5.50) 16.51 (15.23, 17.87) <0.001

BMI (kg/m2) 29.00 (28.84, 29.17) 28.38 (28.21, 28.55) 32.31 (31.99, 32.62) <0.001

WC (cm) 99.34 (98.90, 99.78) 97.53 (97.08, 97.97) 108.85 (108.08, 109.62) <0.001

HbA1c (%) 5.64 (5.62, 5.65) 5.61 (5.59, 5.63) 5.76 (5.72, 5.79) <0.001

TG (mmol/L) 1.40 (1.37, 1.43) 1.32 (1.29, 1.35) 1.78 (1.71, 1.86) <0.001

TC (mmol/L) 4.99 (4.97, 5.02) 4.97 (4.95, 5.00) 5.11 (5.06, 5.16) <0.001

LDL-c (mmol/L) 2.94 (2.92, 2.97) 2.93 (2.91, 2.95) 3.02 (2.96, 3.07) 0.003

HDL-c (mmol/L) 1.38 (1.37, 1.39) 1.41 (1.39, 1.42) 1.24 (1.22, 1.25) <0.001

eGDR (mg/kg/min) 7.86 (7.79, 7.93) 8.16 (8.09, 8.24) 6.28 (6.17, 6.40) <0.001
Weighted analyses to evaluate the general and clinical characteristics of participants with and without hyperuricemia.
PIR, poverty income ratio; BMI, body mass index; WC, waist circumference; HbA1c, glycated hemoglobin; TG, triglycerides; TC, total cholesterol; LDL-c, low-density lipoprotein cholesterol;
HDL-c, high-density lipoprotein cholesterol; eGDR, estimated glucose disposal rate.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1567789
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1567789
Black/Non-Hispanic White/Other Hispanic/Other Races), BMI

(≤25/25-30/>30 kg/m2), diabetes (yes/no), cardiovascular disease

(yes/no), and chronic kidney disease (yes/no), the association

between eGDR and hyperuricemia risk was significantly stronger
Frontiers in Endocrinology 0575
in females (OR=0.87, 95%CI: 0.82-0.91) than in males (OR=0.97,

95%CI: 0.93-1.01) (P for interaction=0.001)(Figure 2). Across other

subgroups, the relationship showed no significant variation (P for

interaction > 0.05).
TABLE 2 Baseline characteristics of four eGDR quartiles (increasing order, 1-4), weighted.

Characteristics Quartile 1 Quartile 2 Quartile 3 Quartile 4 P value

Age (years) 56.73 (56.25, 57.21) 53.20 (52.57, 53.83) 45.06 (44.51, 45.62) 37.70 (37.11, 38.28) <0.001

Gender <0.001

Female 44.88 (43.24, 46.53) 51.93 (50.47, 53.38) 44.39 (42.95, 45.84) 61.07 (59.59, 62.52)

Male 55.12 (53.47, 56.76) 48.07 (46.62, 49.53) 55.61 (54.16, 57.05) 38.93 (37.48, 40.41)

Race (%) <0.001

Mexican American 7.13 (5.70, 8.89) 7.49 (6.12, 9.12) 11.87 (9.91, 14.15) 7.70 (6.54, 9.05)

Non-Hispanic Black 14.01 (11.92, 16.39) 11.44 (9.96, 13.11) 8.35 (7.23, 9.64) 9.12 (7.99, 10.40)

Non-Hispanic White 68.99 (65.55, 72.24) 68.15 (65.10, 71.06) 65.84 (62.68, 68.88) 65.35 (62.52, 68.07)

Other Hispanic 4.56 (3.67, 5.65) 5.22 (4.38, 6.22) 6.82 (5.73, 8.09) 6.67 (5.56, 7.98)

Other Races 5.32 (4.59, 6.15) 7.70 (6.64, 8.91) 7.12 (6.14, 8.24) 11.16 (9.82, 12.64)

Married (%) 58.82 (56.92, 60.70) 56.96 (55.18, 58.73) 59.01 (57.03, 60.96) 48.60 (46.49, 50.72) <0.001

PIR (%) <0.001

<=1.3 22.34 (20.55, 24.25) 20.74 (19.30, 22.26) 21.61 (19.96, 23.37) 21.78 (19.93, 23.75)

>1.3, <=3.5 37.55 (35.91, 39.23) 37.81 (35.84, 39.82) 34.45 (32.48, 36.48) 32.62 (30.71, 34.58)

>3.5 40.10 (37.61, 42.65) 41.45 (38.97, 43.97) 43.94 (41.11, 46.80) 45.60 (42.87, 48.36)

Education level (above high
school) (%)

55.69 (53.67, 57.70) 59.29 (56.92, 61.62) 60.13 (57.67, 62.54) 69.10 (66.78, 71.32) <0.001

Smoking history (%) 51.91 (50.27, 53.54) 47.27 (45.42, 49.13) 43.35 (41.80, 44.92) 37.31 (35.36, 39.29) <0.001

Alcohol consumption (%) 78.22 (76.64, 79.72) 78.89 (77.45, 80.27) 82.36 (80.70, 83.90) 82.19 (80.59, 83.69) <0.001

Diabetes (%) 37.17 (35.68, 38.70) 12.63 (11.58, 13.76) 5.20 (4.64, 5.81) 0.95 (0.70, 1.29) <0.001

Hypertension (%) 95.13 (94.42, 95.76) 64.70 (63.08, 66.29) 2.48 (2.07, 2.97) 0.00 (0.00, 0.00) <0.001

Chronic kidney disease (%) 27.47 (26.20, 28.79) 17.59 (16.45, 18.78) 7.33 (6.64, 8.10) 6.11 (5.46, 6.84) <0.001

Cardiovascular disease (%) 18.70 (17.48, 19.99) 11.42 (10.45, 12.47) 3.67 (3.14, 4.30) 1.80 (1.45, 2.24) <0.001

Gout (%) 9.74 (8.86, 10.70) 4.61 (3.95, 5.39) 2.22 (1.77, 2.78) 0.50 (0.36, 0.68) <0.001

Diuretics (%) 19.79 (18.56, 21.09) 9.05 (8.14, 10.05) 1.19 (0.94,1.51) 0.53 (0.34, 0.84) <0.001

BMI (kg/m2) 35.43 (35.17, 35.69) 29.84 (29.62, 30.06) 29.05 (28.91, 29.19) 23.20 (23.10, 23.29) <0.001

WC (cm) 117.09 (116.60, 117.57) 102.09 (101.58, 102.60) 99.94 (99.71, 100.18) 82.39 (82.14, 82.64) <0.001

HbA1c (%) 6.32 (6.27, 6.36) 5.67 (5.65, 5.70) 5.47 (5.45, 5.48) 5.23 (5.22, 5.24) <0.001

TG (mmol/L) 1.78 (1.71, 1.85) 1.47 (1.41, 1.52) 1.44 (1.39, 1.48) 0.98 (0.96, 1.00) <0.001

TC (mmol/L) 4.95 (4.91, 5.00) 5.11 (5.07, 5.16) 5.14 (5.10, 5.18) 4.79 (4.76, 4.82) <0.001

LDL-c (mmol/L) 2.88 (2.83, 2.92) 3.02 (2.97, 3.08) 3.11 (3.08, 3.15) 2.76 (2.73, 2.80) <0.001

HDL-c (mmol/L) 1.22 (1.21, 1.23) 1.38 (1.37, 1.40) 1.32 (1.30, 1.33) 1.56 (1.54, 1.58) <0.001

SU (mg/dL) 6.06 (6.01, 6.12) 5.59 (5.54, 5.64) 5.45 (5.40, 5.50) 4.76 (4.73, 4.80) <0.001

Hyperuricemia (%) 29.93 (28.53, 31.36) 19.11 (17.81, 20.49) 13.20 (12.07, 14.42) 5.03 (4.41, 5.75) <0.001
Participants were classified into four quartiles based on increasing eGDR from quartile 1 to quartile 4.
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3.5 ROC and DCA analyses

We evaluated eGDR in comparison with other IR surrogates,

such as the Triglyceride-Glucose index (TyG) and Homeostasis

Model Assessment of Insulin Resistance (HOMA-IR). As illustrated

in Figure 3, both ROC and DCA analyses were performed. The area

under the curves (AUCs) for eGDR, TyG, and HOMA-IR were

69.5%, 65.0%, and 64.2%, respectively, highlighting eGDR as the

most effective discriminator for hyperuricemia risk. Moreover,

DCA indicated that the eGDR model offered increased net benefit

across a broader range of threshold probabilities, reflecting its

superior clinical usefulness.
Frontiers in Endocrinology 0676
4 Discussion

This study reports the results of our investigation about whether

the eGDR, used to assess IR, can serve as a straightforward and

noninvasive indicator of hyperuricemia. A cross-sectional analysis

of 29328 participants revealed a negative and nonlinear correlation

between the eGDR and the risk of hyperuricemia.

IR and SU levels were described bidirectionally interconnected

because higher SU levels are known to adversely affect the insulin

signaling pathway causing IR while IR is a known predictor for the
FIGURE 1

The results of RCS analysis.
TABLE 5 Threshold effect analysis of eGDR on hyperuricemia risk.

Model OR (95% CI) P value

Total 0.93 (0.90, 0.96) <0.001

Breakpoint (K) 7.66

OR1 (<7.96) 1.02 (0.98, 1.06) 0.395

OR2 (>7.96) 0.76 (0.71, 0.82) <0.001

OR2/OR1 0.75 (0.69, 0.82) <0.001

P for logarithmic likelihood ratio <0.001
OR, odds ratio.
95% CI, 95% confidence interval.
adjusted for age, gender, race, marital status, PIR, education level, smoking, alcohol
consumption, diabetes, chronic kidney disease, cardiovascular disease, gout, diuretics, BMI,
TG, LDL-c, and HDL-c.
TABLE 3 Logistic regression analysis to assess relation between eGDR
and hyperuricemia.

Hyperuricemia
OR (95%CI) P value

Model 1 Model 2 Model 3

Continuous

eGDR
0.78 (0.78,
0.79) <0.001

0.79 (0.78,
0.80) <0.001

0.93 (0.90,
0.96) <0.001

Categories

Q1 reference reference reference

Q2
0.53 (0.50,
0.58) <0.001

0.54 (0.50,
0.59) <0.001

1.02 (0.88,
1.18) 0.823

Q3
0.34 (0.31,
0.37) <0.001

0.34 (0.31,
0.38) <0.001

0.75 (0.63,
0.89) 0.001

Q4
0.13 (0.11,
0.14) <0.001

0.13 (0.11,
0.15) <0.001

0.49 (0.38,
0.63) <0.001

P for trend <0.001 <0.001 <0.001
Logistic regression analyses in three different models of adjustment were performed to
investigate the relationships between eGDR and hyperuricemia.
OR, odds ratio.
95% CI, 95% confidence interval.
Model 1: non-adjusted.
Model 2: adjusted for age, gender, race, marital status, PIR, education level, smoking, and
alcohol consumption.
Model 3: adjusted for age, gender, race, marital status, PIR, education level, smoking, alcohol
consumption, diabetes, chronic kidney disease, cardiovascular disease, gout, diuretics, BMI,
TG, LDL-c, and HDL-c.
TABLE 4 Linear regression analysis to assess relation between eGDR and
SU levels.

SU
b (95%CI) P value

Model 1 Model 2 Model 3

Continuous

eGDR
-0.16 (-0.17,
-0.16) <0.001

-9.06 (-9.44,
-8.69) <0.001

-1.19 (-1.98,
-0.39) 0.003

Categories

Q1 reference reference reference

Q2
-0.50 (-0.54,
-0.45) <0.001

-25.69 (-28.27,
-23.11) <0.001

-1.35 (-5.35,
2.64) 0.506

Q3
-0.64 (-0.68,
-0.59) <0.001

-37.50 (-40.21,
-34.79) <0.001

-4.92 (-9.31,
-0.53) 0.028

Q4
-1.28 (-1.32,
-1.24) <0.001

-70.09 (-73.01,
-67.17) <0.001

-14.02 (-19.62,
-8.42) <0.001

P for trend <0.001 <0.001 <0.001
Linear regression analyses in three different models of adjustment were performed to
investigate the relationships between eGDR and SU levels.
95% CI, 95% confidence interval.
Model 1: non-adjusted.
Model 2: adjusted for age, gender, race, marital status, PIR, education level, smoking, and
alcohol consumption.
Model 3: adjusted for age, gender, race, marital status, PIR, education level, smoking, alcohol
consumption, diabetes, chronic kidney disease, cardiovascular disease, gout, diuretics, BMI,
TG, LDL-c, and HDL-c.
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development of hyperuricemia (8, 24). Renal anti-uricosuric effect

of insulin was also described preserved in states of IR in human. In

compensatory hyperinsulinemia in the state of IR a chronic anti-

uricosuric pressure on the kidney cause in hyperuricemia (25). In an

in vitro experiment, insulin was shown to stimulate urate uptake in

human proximal tubular cells (PTC-05) and HEK293T cells and in

Xenopus oocyte expression system, where insulin was shown to

stimulate urate uptake activity of urate reabsorption transporter,

glucose transporter 9 (GLUT9) (26). The eGDR, which is based on

clinical parameters, provides a practical and accurate assessment of

insulin sensitivity and resistance (27). Specifically, the three

components of eGDR reflect IR from different perspectives:

Increased WC indicates visceral fat accumulation, which can

promote the release of inflammatory factors, exacerbate IR, and

reduce renal uric acid excretion, thereby leading to elevated SU

levels (28). Hypertension is often associated with IR and may reduce
Frontiers in Endocrinology 0777
uric acid clearance through renal hemodynamic alterations (29).

Elevated HbA1c reflects chronic hyperglycemia and IR, both of

which can also influence the renal tubular handling of uric acid (30).

Our study found a nonlinear association between eGDR and the

risk of hyperuricemia. When eGDR is below the threshold of 7.66,

increases in eGDR have limited impact on hyperuricemia risk.

However, once eGDR exceeds 7.66, further increases are

significantly associated with a reduced risk of hyperuricemia.

Therefore, eGDR may serve as a simple and practical screening

tool for assessing hyperuricemia risk, especially in primary care

settings where more complex measures of IR are unavailable. We

propose 7.66 as a potential cutoff value for screening purposes. Our

research also revealed that the relationship between eGDR and

hyperuricemia risk was stronger in women, potentially reflecting

their distinct physiological traits in metabolic regulation (31).

Additionally, estrogen plays a role in reducing inflammation and
FIGURE 2

The results of subgroup analysis.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1567789
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1567789
enhancing insulin sensitivity, but its decline after menopause may

worsen insulin resistance and disrupt uric acid metabolism (32–35).

Estradiol reduces the expression of urate reabsorption transporters,

including urate transporter 1 (URAT1) and GLUT9, as well as the

efflux transporter ATP-binding cassette sub-family G member 2

(ABCG2), in ovariectomized mice, regardless of hormone

replacement therapy (36). Additionally, 17-b-estradiol (E2) has

been found to decrease GLUT9 protein levels in human renal

tubular epithelial cells (HK2) through estrogen receptor b
(ERb) (37).

The interaction between IR and hyperuricemia is bidirectional,

with both conditions sharing metabolic and pathological mechanisms

that perpetuate a vicious cycle (4). Obesity, hyperglycemia, and lipid

metabolism disorders are common factors linking IR and

hyperuricemia, as they promote purine metabolism, oxidative

stress, and inflammation, leading to increased uric acid production

and decreased insulin sensitivity (38, 39). Clinical evidence showing

that allopurinol combined with standard treatment in severe Covid-

19 patients reduced oxidative and inflammatory disorders, suggesting

that lowering serum urate levels can mitigate oxidative stress (40). In

hyperuricemia, reactive oxygen species (ROS) are overproduced

during uric acid formation by xanthine oxidases. Both ROS and

intracellular uric acid can regulate multiple signaling pathways. For

instance, studies demonstrate increased ROS production during 3T3-

L1 cell differentiation into adipocytes, indicating that ROS generation

correlates with fat accumulation. Interestingly, in fully differentiated

3T3-L1 adipocytes, ROS production was markedly inhibited by

NADPH oxidase inhibitors, but not by oxypurinol, rotenone, or

thenoyltrifluoroacetone (41).

Uric acid is recognized as an important antioxidant in vivo,

capable of scavenging ROS such as hydroxyl radicals and

peroxynitrite (42, 43). However, under severe oxidative stress, its

antioxidant capacity may be overwhelmed, potentially disrupting

metabolic homeostasis. Although xanthine oxidase is a key enzyme
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in uric acid production and a known source of ROS, the relationship

between oxidative stress and xanthine oxidase activity remains

complex. Some studies indicate that oxidative stress in

hyperuricemia may occur independently of xanthine oxidase

activity (44), and clinical trials with xanthine oxidase inhibitors

(e.g., allopurinol, febuxostat) have yielded inconsistent effects on

oxidative stress-related outcomes. Therefore, further research is

needed to clarify whether oxidative stress directly disrupts uric

acid metabolism or whether their interaction involves additional

regulatory mechanisms.

However, this study has limitations. First, given the study’s

cross-sectional design, the direction of causality cannot be

ascertained, and the role of hyperuricemia in amplifying IR

cannot be ruled out. Second, although adjustments were made for

several covariates, the effects of unaccounted confounders such as

treatment with allopurinol and differences in diuretic use cannot be

entirely ruled out. Third, subgroup analyses for factors such as

diabetes types, nonalcoholic fatty liver disease (NAFLD) and

metabolic syndrome were not performed. Finally, our results,

derived from a US population sample, require further verification

to ensure their applicability to other demographic groups.
5 Conclusion

A nationally representative study among adults aged 20 years or

older identified a negative association between the eGDR and the

risk of hyperuricemia.
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Factors associated with 
metabolic syndrome among 
adult residents in Dalian: a 
nested case-control study 
Rong Rong, Lan Luo, Xinyu Li* and Zhengnan Gao* 

Department of Endocrinology and Metabolism, Central Hospital of Dalian University of Technology, 
Dalian Municipal Central Hospital, Dalian, Liaoning, China 
Objective: This study aimed to investigate risk factors for metabolic syndrome 
(MS) among adult residents in Dalian, Liaoning Province, China, using a nested 
case-control design. 

Methods: Adult participants from Dalian who took part in both baseline and 
follow-up phases of the Risk Evaluation of Cancers in Chinese Diabetic 
Individuals: A Longitudinal (REACTION) Study were evaluated through 
standardized questionnaires, physical examinations, and biochemical analyses. 
A total of 536 individuals diagnosed with MS were matched in a 1:4 ratio to 2,144 
controls based on comparable demographic and clinical characteristics. Group 
differences were assessed via t-tests, rank sum tests, and c² tests. Multivariate 
conditional logistic regression was applied to identify risk factors for MS. 

Results: (1) The case group demonstrated significantly higher values for body 
weight(67.42 ± 9.77 vs. 62.39 ± 9.31, P<0.001), body mass index (BMI) (25.99 ± 
3.36 vs 24.00 ± 3.14, P<0.001), hip circumference (HC) (100.72 ± 6.47 vs 97.84 ± 
6.38, P<0.001), homeostatic model assessment for insulin resistance (HOMA−IR) 
(2.27 ± 1.19 vs 1.70 ± 0.92, P<0.001),total cholesterol (TC) (5.54 ± 1.08 vs 5.40 ± 
0.97, P=0.003), low-density lipoprotein cholesterol (LDL-C) (3.38(2.79,3.96) vs 
3.17(2.67,3.71), P<0.001), alanine aminotransferase (ALT) (16.00(13.00,21.00) vs 
15.00(11.00,19.00), P<0.001), gamma-glutamyl transferase (GGT) (22.00 
(17.00,33.00) vs 18.00(14.00,27.00), P<0.001), serum uric acid (UA) (303.50 
(263.00,355.00) vs 281.00(245.00,325.00), P<0.001), glycosylated hemoglobin 
(HbA1c) (5.93 ± 0.88 vs 5.75 ± 0.68, P<0.001), and fasting insulin (FINS) (8.05 
(5.90,10.70) vs 6.15(4.60,8.30), P<0.001) (2). Higher prevalence rates were also 
observed for coronary heart disease (4.86% vs 2.87%, P=0.020), habitual snoring 
(66.53% vs 54.96%, P<0.001), and consumption of fresh juice (17.99% vs 13.12%, 
P=0.004), beef and mutton (78.42% vs 74.07%, P=0.038), and soda the case 
group (20.15% vs 16.32%, P=0.049). Meanwhile, lower participation in aerobic 
activities(1.20% vs 2.92%, P=0.030) and shorter average daily sleep duration (7.55 
± 1.02 vs 7.69 ± 1.17, P=0.028) were noted in the case group (3). Regression 
analysis identified longer average daily sleep duration as a protective factor 
(OR=0.844, 95%CI: 0.761-0.936, P=0.001), while fresh juice intake(OR=1.846, 
95%CI: 1.315-2.592, P<0.001), beef and mutton consumption(OR=1.282, 95% 
CI:1.007-1.632, P=0.044), LDL-C(OR=1.409, 95%CI: 1.245-1.595, P<0.001), GGT 
(OR=1.004, 95%CI: 1.001-1.008, P=0.017), UA(OR=1.005, 95%CI: 1.003-1.007, 
P < 0.001), HOMA-IR (OR=1.464, 95%CI: 1.313-1.633, P < 0.001), HC(OR=1.030, 
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95%CI: 1.007-1.053, P = 0.009), and BMI(OR=1.118, 95%CI: 1.064-1.174, 
P < 0.001)were significant risk factors. 

Conclusion: LDL-C, GGT, UA, HOMA-IR, HC, BMI, daily sleep duration, and 
consumption of beef and mutton, and fresh juice were strongly associated with 
the incidence of MS among adult residents in Dalian. 
KEYWORDS 

metabolic syndrome, risk factors, nested case-control study, fresh juice, beef and 
mutton, sleep duration, adult residents in Dalian, body mass index 
1 Introduction 

Metabolic syndrome (MS) is a clinical entity characterized by a 
cluster of abdominal obesity, hyperglycemia (diabetes or impaired 
glucose tolerance), dyslipidemia (elevated triglycerides and/or reduced 
high-density lipoprotein levels), and hypertension—factors that 
collectively exert a substantial influence on systemic health. It 
comprises a constellation of metabolically interrelated risk elements 
(1), and is a multifaceted pathophysiological condition primarily 
stemming from an imbalance in caloric intake and energy 
expenditure, yet it is also modulated by factors such as an 
individual’s genetic/epigenetic constitution and lifestyle behaviors. 
The pathogenesis of MS is mainly mediated by increased free fatty 
acids leading to insulin resistance and chronic low-grade 
inflammation induced by pro-inflammatory cytokines (2). Over 
recent decades, the global incidence of MS has markedly increased, 
now affecting nearly one-quarter of the global population, which 
translates to over 1 billion individuals (3). Its treatability remains 
uncertain, combination of drug therapy and dietary adjustments, 
could be helpful in the prevention and management of MS (2). In 
China, rapid economic expansion accompanied by shifts in dietary 
patterns and lifestyle behaviors has further intensified the MS burden. 
Current research estimates that 19.58% of the Chinese population is 
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affected by MS (4), with prevalence rates surging to 36.9% among the 
elderly demographic (5). MS has attracted much attention from 
scholars since it was proposed. Its high incidence of endpoint 
events, especially cardiovascular and cerebrovascular events, has 
become the first of the three causes of death, which seriously 
threatens human health. Research on the risk factors of metabolic 
syndrome can not only further explore its formation mechanism, but 
also accelerate the drug development process of related targets, timely 
urge people to improve their lifestyles, and enhance the health 
awareness of the whole population, which is of great significance for 
the prevention and treatment of MS. While factors such as age, body 
mass index (BMI), and insulin resistance are consistently recognized 
as key contributors, other risk factors remain unclear or yield 
inconsistent associations across different populations and 
geographical regions. A study conducted among elderly individuals 
in Shenzhen, China, identified regular rice consumption as a potential 
protective factor against MS, while reporting no significant association 
between alcohol intake and MS risk (6). In contrast, research involving 
Swedish adults suggested a possible protective effect of alcohol 
consumption for individuals with MS (7). Meanwhile, findings from 
a Korean cohort indicated that high rice intake may elevate the risk of 
abdominal obesity, a condition closely linked to the pathogenesis and 
progression of MS (8). As a historically significant coastal city, Dalian 
exhibits distinct dietary customs and lifestyle patterns. The city’s rapid  
socioeconomic development has led to an increasingly fast-paced 
lifestyle, contributing to a rise in metabolic disorder-related 
conditions. A cross-sectional study in adult residents of Shenzhen, a 
coastal city in China, has shown that significant differences were found 
in MS groups with different sociodemographic or other characteristics, 
such as age, serum uric acid(UA) levels, gender, smoking status, 
drinking status, marital status, BMI, and educational level, and 
increased UA levels were positively associated with the prevalence of 
MS and its components (9). Despite these trends, investigations into 
MS risk factors within the Dalian population remain lacking. 
Accordingly, this study adopted a nested case-control design to 
identify risk factors for MS among adult residents of Dalian. We 
hypothesize that specific dietary habits (e.g., consumption of fresh 
juice, beef and mutton, and soda), lifestyle factors (e.g., sleep duration, 
aerobic activities, and smoking), basic information (e.g., diseases 
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history and anthropometric assessments), and relevant biochemical 
markers (e.g., LDL-C, GGT, UA, HOMA-IR) are associated with an 
increased risk of MS among adult residents in Dalian. 

The nested case-control design, an advanced epidemiological 
methodology, integrates the methodological rigor of cohort studies 
with the efficiency of case-control frameworks. It is based on the 
follow-up observation of a pre-determined cohort, and then the 
design concept of case-control studies (mainly matching case-
control studies) is applied for research and analysis, integrates the 
strengths of cohort and case-control designs. This approach 
improves research efficiency and cost management, while offering 
greater statistical robustness and diagnostic precision relative to 
traditional case-control models (10). Currently, this method is 
widely used in medical scientific research. 

Utilizing data from the Risk Evaluation of Cancers in Chinese 
Diabetic Individuals: A Longitudinal (REACTION) Study, a follow-
up cohort was established to investigate MS among adult residents 
in the Dalian community. Through a matched nested case-control 
framework, the study assessed the associations between the onset of 
MS and a comprehensive range of biochemical indicators, 
demographic characteristics, medical history, and lifestyle 
variables—including dietary patterns, physical activity, and 
habitual behaviors. The objective was to optimize early detection 
of risk factors, support timely intervention strategies, and reduce 
MS incidence, thereby minimizing its broader personal, familial, 
and social burden. 
2 Materials and methods 

2.1 Study participants 

The REACTION Study, a multicenter prospective cohort 
investigation, enrolled Chinese adults aged ≥40 years from the 
Dalian community who participated in the baseline epidemiological 
survey at the Dalian subcenter between August and December 2011 
(n=10208, 2807 males and 7401 females), followed by re-evaluation 
from July to December 2014(n=5354, 1369 males and 3985 
females). Longitudinal data were obtained through standardized 
physical examinations, biochemical assessments, and structured 
data collection at both time points. A nested case-control design 
was employed in this study. Each incident MS case identified within 
the cohort was matched to one or more controls who remained free 
of MS at the time of diagnosis. Case group: A total of 536 cases 
newly diagnosed MS during the follow-up period (2014) from the 
study population were included, as per the 2020 Chinese Diabetes 
Society diagnostic criteria (see Section 2.2). Control group: Controls 
were selected from the same cohort among individuals who 
remained free of MS at follow-up (2014). To minimize 
confounding, controls were matched to cases in a 4:1 ratio based 
on the following criteria:1) Gender: Exact matching (male/female). 
2) Age: ± 3 years from the cases’ age at baseline. Controls were 
required to have completed both baseline and follow-up 
assessments, with no missing data on MS diagnostic components. 
Matching was performed using a stratified random sampling 
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approach within each gender-age stratum to avoid overmatching. 
Exclusion criteria included missing data on biochemical or physical 
examinations(n=7), a prior diagnosis of MS(n=2367), clinically 
relevant cardiac, hepatic, or renal dysfunction(n=6), or chronic 
glucocorticoid therapy(n=2). The protocol was approved by the 
REACTION Study Ethics Committee [Approval No (2011). LLS No 
(14).], and all participants provided written informed consent. 
2.2 Study methods 

(1) Prior to survey implementation, the research personnel— 
including endocrinologists, postgraduate trainees, and nurses from 
Dalian Municipal Central Hospital Affiliated to Dalian University of 
Technology—received standardized training conducted by Ruijin 
Hospital, Shanghai Jiaotong University School of Medicine. All 
questionnaire data collection and anthropometric measurements 
were performed by trained staff according to a standard protocol. 
Informed consent was obtained from all enrolled community 
residents before data collection commenced. 

(2) Baseline characteristics and outcome indicators were 
systematically collected. Participants completed structured 
questionnaires, underwent physical assessments, and provided 
venous blood specimens. Documented variables included 
demographic data (gender, age), individual and familial disease 
histories, marital and educational status, pharmacological 
treatments, sleep patterns, emotional well-being, and lifestyle 
parameters including dietary intake, physical activity, and daily 
routines. Clinical measurements included systolic and diastolic 
blood pressure (SBP and DBP), heart rate (HR), height, weight, 
waist and hip circumference (HC), and BMI was subsequently 
derived. Blood sampling was performed in the morning after an 
overnight fast of at least 8-14h. Fasting plasma glucose(FPG), 2 
hours plasma glucose(2hPG), glycosylated hemoglobin (HbA1c), 
fasting insulin (FINS), and several biochemical markers—alanine 
aminotransferase (ALT), Aspartate aminotransferase(AST), 
gamma-glutamyl transferase (GGT), serum creatinine(Scr), total 
cholesterol (TC), Triglyceride (TG), low-density lipoprotein 
cholesterol (LDL-C), High density lipoprotein cholesterol (HDL-

C), UA, triiodothyronine (FT3), free thyroxin (FT4), thyroid-
stimulating hormone (TSH), thyroglobulin antibodies (TgAb), 
and thyroid peroxidase antibodies (TPOAb)—were measured. In 
addition, all participants underwent an oral glucose tolerance 
test(OGTT). 

(3) Biochemical Evaluation: Fasting venous blood was collected 
in standard biochemical tubes, centrifuged immediately(within 2 
hours), aliquoted into 0.5‐mL Eppendorf tubes, stored at -20°C, and 
transported within 3 weeks under cold-chain conditions to Ruijin 
Hospital, Shanghai Jiaotong University School of Medicine, 
Shanghai Institute of Endocrine and Metabolic Diseases, which is 
certified by the College of American Pathologists, for centralized 
analysis. Levels of Scr, TC, LDL-C, HDL-C, and TG were measured 
on an autoanalyzer (c16000 system, ARCHITECT ci16200 analyzer; 
Abbott Laboratories, Lake Bluff, IL) in the central laboratory. FINS 
was measured with chemiluminescent immunoassay (i2000SR 
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system, Architect ci16200 analyzer; Abbott Laboratories). The levels 
of HbA1c were assayed by means of high‐performance liquid 
chromatography method (Variant II and D‐10 Systems; Bio‐Rad, 
Hercules, CA).FPG and 2hPG levels were measured from NaF-
anticoagulated blood using the hexokinase method on an 
automated biochemical analyzer (ADVIA 2400 system). 
Homeostatic model assessment of insulin resistance (HOMA-IR) 
was calculated using the mathematical formula as follows: HOMA-

IR = FPG (mmol/L) × FINS (μU/mL)/22.5 (11).UA concentrations 
were determined from fasting venous samples using the uricase 
colorimetric method on the ADVIA Chemistry XPT system. 
Thyroid function was evaluated via chemiluminescence 
immunoassay (Abbott I2000, Abbott reagent). 

Data Collection: Epidemiological data were collected via one-on-
one questionnaires, encompassing sociodemographic characteristics, 
lifestyle factors, and medical histories. The REACTION study 
questionnaire was developed through a systematic review of 
questionnaires related to MS, diabetes, and cancer both domestically 
and internationally(e.g., the International Physical Activity 
Questionnaire, IPAQ, Food Frequency Questionnaire, FFQ), and a 
working group composed of experts from multiple disciplines 
including endocrinology, epidemiology, and nutrition decided the 
content and structure of the questionnaire. Information on intensity, 
duration, and frequency of physical activity was gathered using the 
short form of the IPAQ. In the dietary section of the questionnaire, data 
were obtained regarding usual dietary intake over the past 12 months. 
The questionnaire was designed to capture information on frequency 
and quantity of major food items such as red meat, fruits and 
vegetables, dairy, and Chinese traditional food such as pickles and 
salty vegetables. The questionnaire has previously been evaluated and 
validated in other cohort studies (12–14). 

Anthropometric assessments followed standardized procedures: 
weight was measured in the morning following an overnight fast, 
and height was recorded with participants standing upright, feet 
together, and arms relaxed. Height and weight were measured with 
participants wearing light‐weight clothes and no shoes. BMI was 
calculated by dividing weight (in kilograms) by weight (in meters) 
squared. Blood pressure and HR were measured at 5-minute 
intervals on the non-dominant arm in a resting state, with the 
mean of three readings recorded (1 mmHg = 0.133 kPa), using an 
automated electronic device (Omron Model HEM‐725 FUZZY; 
Omron Co, Dalian, China). Waist circumference(WC)was 
assessed at the midpoint between the lower rib and the anterior 
superior iliac spine, with participants standing upright, feet 25–30 
cm apart, and breathing normally. HC was measured at the 
maximal circumference of the hips while standing, with legs 
together and arms relaxed. 

(4) Diagnostic and allocation criteria (1): MS diagnostic criteria: 
In accordance with the 2020 Guidelines of the Chinese Diabetes 
Society for the Prevention and Treatment of Type 2 Diabetes, a 
diagnosis of MS was established when at least three of the following 
five conditions were met: 1) Abdominal obesity, defined by a waist 
circumference ≥ 90 cm in men or ≥ 85 cm in women; 2) 
Hyperglycemia, determined by FPG ≥ 6.1 mmol/L and/or 2hPG 
≥ 7.8 mmol/L, or a documented history of diabetes under treatment; 
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3) Hypertension, defined by blood pressure ≥ 130/85 mmHg, or a 
history of hypertension with ongoing treatment; 4) Elevated fasting 
triglycerides (≥ 1.70 mmol/L); 5) Decreased fasting HDL-C (< 1.04 
mmol/L) (2). Case and control groups: A nested case-control design 
was employed. Each incident MS case identified within the cohort 
was matched to one or more controls who remained free of MS at 
the time of diagnosis. Ultimately, 2,680 participants (605 males and 
2075 females) were included in the final analysis (Figure 1). A total 
of 536 newly diagnosed MS cases from the study population were 
included. A matching ratio of 1:4 was applied, with 2144 subjects 
without MS selected as controls. The controls were matched by 
gender and age, ensuring an age difference of less than 3 years. 
2.3 Statistical methods 

Statistical analyses were performed using SPSS 27.0. The 
distribution of measurement data was first evaluated; data 
conforming to normal distribution were presented as mean ± 
standard deviation (SD), whereas those deviating from normality 
were expressed as M (Q1, Q3). Group comparisons for continuous 
variables employed the t-test when normality was verified by P–P 
plots, and the rank sum test for non-normally distributed data. 
Significance was defined as P < 0.05. Categorical variables were 
summarized as counts (%), with comparisons between groups 
conducted using the c² test under the same significance criterion. 
Variables identified as significant in univariate analysis were 
incorporated into a multivariate conditional logistic regression 
model. A 1:4 matched conditional logistic regression (forward LR 
method) was used to identify risk factors for MS, with entry and 
removal criteria set at a = 0.05 and a = 0.10, respectively. A two-
tailed P < 0.05 was considered indicative of statistical significance. 
OR value: >1 indicates risk factor, = 1 indicates no association, <1 
indicates protective factor. 95% CI: includes1 indicates no statistical 
significance, excludes 1 indicates statistically significant. A t-test is a 
statistical hypothesis test used to determine whether there is a 
significant difference between the means of two groups or between a 
sample mean and a known population mean, and the data should be 
(approximately) normally distributed. The rank sum test, is a non-
parametric statistical method used to compare two independent or 
paired samples when the data do not follow a normal distribution. 
The c² test is a statistical hypothesis test used to examine the 
association between categorical variables or to assess how well 
observed data fit an expected distribution, and the data must be 
in frequency counts. Conditional logistic regression is a specialized 
regression analysis method designed for matched or stratified data, 
commonly employed in matched case-control studies. Its 
fundamental principle involves using conditional likelihood 
functions to eliminate the effects of confounding factors, thereby 
enabling more accurate estimation of the association between 
exposure variables and outcomes. The forward LR (likelihood 
ratio) method represents a variable selection strategy that 
progressively incorporates statistically significant variables into 
the model based on likelihood ratio tests, optimizing the model’s 
goodness-of-fit. 
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3 Results 

3.1 Comparison of demographic and 
clinical data between groups 

3.1.1 Baseline demographic characteristics 
The case group (n=536, males=121,females=415) and control 

group (n=2144,males=484,females=1660) were well-matched in 
terms of age (56.34 ± 7.41 vs 56.26 ± 7.46 years, P=0.819) and sex 
distribution sex distribution (22.57% male in both groups) (Table 1). 

3.1.2 Anthropometric and clinical measurements 
The case group exhibited significantly higher values for weight 

(67.42 ± 9.77 vs 62.39 ± 9.31 kg, P<0.001), BMI (25.99 ± 3.36 vs 
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24.00 ± 3.14 kg/m², P<0.001), and HC (100.72 ± 6.47 vs 97.84 ± 6.38 
cm, P<0.001) compared to controls. (Table 1). 
3.1.3 Biochemical parameters 
The case group  demonstrated  markedly altered metabolic profiles, 

including: LDL-C (3.38(2.79,3.96) vs 3.17(2.67,3.71) mmol/L, P<0.001), 
TC (5.54 ± 1.08 vs 5.40 ± 0.97 mmol/L, P=0.003).HOMA-IR (2.27 ± 
1.19 vs 1.70 ± 0.92, P<0.001).GGT (22.00(17.00,33.00) vs 18.00 
(14.00,27.00) U/L, P<0.001), ALT (16.00(13.00,21.00) vs 15.00 
(11.00,19.00)U/L, P<0.001), UA(303.50(263.00,355.00) vs 281.00 
(245.00,325.00)umol/L, P<0.001), HbA1c (5.93 ± 0.88 vs 5.75 ± 
0.68%, P<0.001), and FINS (8.05(5.90,10.70) vs 6.15(4.60,8.30)mU/L, 
P<0.001). No significant differences were observed in thyroid function 
tests or other  endocrine parameters (P>0.05, Table 1). 
FIGURE 1 

Flowchart of the study enrollment. 
frontiersin.org 

https://doi.org/10.3389/fendo.2025.1559176
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://endocrineparameters(P>0.05
https://8.05(5.90,10.70
https://UA(303.50(263.00,355.00
https://16.00(13.00,21.00
https://14.00,27.00
https://22.00(17.00,33.00
https://3.17(2.67,3.71
https://3.38(2.79,3.96


Rong et al. 10.3389/fendo.2025.1559176 
3.2 Comparison of lifestyle habits, medical 
history, and family history between groups 

Key lifestyle differences between cases and controls included: 
Dietary habits: Higher consumption of fresh juice (17.99% vs 
13.12%, P=0.004),beef and mutton (78.42% vs 74.07%, P=0.038), 
and soda water (20.15% vs 16.32%, P=0.049). Physical activity: 
Lower participation in aerobics (1.20% vs 2.92%, P=0.030). Sleep 
patterns: Shorter average sleep duration (7.55 ± 1.02 vs 7.69 ± 1.17 
hours, P=0.028). Medical history: Higher prevalence of coronary heart 
disease (4.86% vs 2.87%, P=0.020) and habitual snoring (66.53% vs 
54.96%, P<0.001). In contrast, no significant intergroup differences 
emerged in marital status, educational attainment, history of chronic 
gastroenteritis, smoking, alcohol intake, tea consumption, depression, 
insomnia, or dietary patterns involving grains, potatoes, pork, poultry, 
seafood, vegetables, fruits, eggs, milk, soy products, fried items, pickled 
vegetables, coffee, or animal offal. Measures of physical exertion such 
as daily vigorous exercise and tai chi, as well as familial predisposition 
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to tumors or diabetes, screen time, and sedentary duration during 
weekdays, also demonstrated no statistically significant variation 
(P > 0.05) (Table 2). 
3.3 Multivariate conditional logistic 
regression analysis of risk factors for MS 

Multivariate conditional logistic regression analysis using the 
forward LR method was employed to investigate risk factors for MS, 
incorporating variables that demonstrated statistical significance in 
the univariate analysis. These variables included LDL-C, ALT, 
GGT, UA, HOMA-IR, HC, BMI, aerobics, consumption of soda 
water, fresh juice, beef and mutton, average daily sleep duration, 
history of coronary heart disease, and presence of snoring. Prior to 
modeling, collinearity diagnostics confirmed the absence of 
multicollinearity, with VIF values ranging from 1.005 to 1.901, 
confirming the absence of multicollinearity. The final model 
TABLE 1 Comparison of demographic and clinical data between groups. 

Outcome measures Case group (n=536) Control group (n=2144) t/Z value P value 

Age 56.34 ± 7.41 56.26 ± 7.46 0.229 0.819 

Male [n (%)] 121 (22.57%) 484 (22.57%) 

Female [n (%)] 415 (77.43%) 1660 (77.43%) 

Height (cm) 160.95 ± 7.25 160.99 ± 7.66 -0.113 0.910 

Weight (kg) 67.42 ± 9.77 62.39 ± 9.31 11.074 <0.001 

BMI (kg/m2) 25.99 ± 3.36 24.00 ± 3.14 12.935 <0.001 

HC (cm) 100.72 ± 6.47 97.84 ± 6.38 9.383 <0.001 

HR (bpm) 78.61 ± 11.08 78.13 ± 11.40 1.023 0.307 

HOMA-IR 2.27 ± 1.19 1.70 ± 0.92 12.185 <0.001 

TC (mmol/L) 5.54 ± 1.08 5.40 ± 0.97 2.963 0.003 

LDL-C (mmol/L) 3.38 (2.79,3.96) 3.17 (2.67,3.71) -5.133 <0.001 

Scr (umol/L) 63.30 (57.73,70.40) 62.55 (57.70,68.88) -1.699 0.089 

ALT (U/L) 16.00 (13.00,21.00) 15.00 (11.00,19.00) -5.299 <0.001 

AST (U/L) 21.00 (18.00,25.00) 21.00 (18.00,24.00) -0.954 0.340 

GGT (U/L) 22.00 (17.00,33.00) 18.00 (14.00,27.00) -7.913 <0.001 

UA (umol/L) 303.50 (263.00,355.00) 281.00 (245.00,325.00) -7.128 <0.001 

HbA1c (%) 5.93 ± 0.88 5.75 ± 0.68 4.917 <0.001 

FINS (mU/L) 8.05 (5.90,10.70) 6.15 (4.60,8.30) -11.217 <0.001 

FT3 (pmol/L) 4.25 (3.99,4.46) 4.23 (3.99,4.50) -0.180 0.857 

FT4 (pmol/L) 13.04 (12.09,13.93) 13.10 (12.26,14.03) -1.160 0.246 

TSH (mIU/L) 2.04 (1.40,2.86) 2.01 (1.41,2.96) -0.211 0.833 

TPOAb (U/mL) 0.53 (0.27,1.23) 0.47 (0.27,1.14) -1.168 0.243 

TgAb (IU/mL) 1.62 (1.03,10.30) 1.52 (0.96,6.07) -1.193 0.233 
 

Normal data were represented by mean ± SD, and non-normal data were represented by M (Q1, Q3). BMI, body mass index; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; 
HC, hip circumference; HR, heart rate; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; Scr, serum creatinine; ALT, alanine aminotransferase; AST, aspartate aminotransferase; 
GGT, gamma-glutamyl transferase; UA, uric acid; HbA1c, glycosylated hemoglobin; FINS, fasting insulin; FT3, free T3; FT4, free T4; TSH, thyroid stimulating hormone; TPOAb, thyroid 
peroxidase antibody; TgAb, thyroglobulin antibody. 
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TABLE 2 Comparison of lifestyle habits and different medical histories between groups [n (%)]. 

Outcome measures Case group (n=536) Control group (n=2144) c2 value P value 

Married Status 485 (90.49%) 1949 (90.90%) 0.209 0.648 

High School Level or Above 290 (54.10%) 1067 (49.88%) 3.056 0.080 

History of Coronary Heart Disease 26 (4.86%) 61 (2.87%) 5.375 0.020 

History of Chronic Gastroenteritis 38 (7.12%) 165 (7.75%) 0.246 0.620 

Snoring 336 (66.53%) 1102 (54.96%) 22.077 <0.001 

Smoking 474 (89.10%) 1915 (89.74%) 0.187 0.665 

Alcohol Consumption 388 (72.66%) 1624 (76.21%) 2.908 0.088 

Drinking Tea 229 (42.96%) 868 (40.64%) 0.955 0.329 

Feeling Depressed 84 (16.00%) 292 (14.04%) 1.306 0.253 

Insomnia 138 (26.09%) 579 (27.53%) 0.377 0.539 

Grains 533 (99.63%) 1782 (99.50%) 0.145 0.703 

Potatoes 510 (95.68%) 2032 (96.17%) 0.262 0.609 

Pork 503 (94.55%) 1971 (93.19%) 1.282 0.258 

Beef And Mutton 418 (78.42%) 1557 (74.07%) 4.289 0.038 

Poultry 407 (76.07%) 1593 (75.75%) 0.025 0.875 

Seafood 511 (95.87%) 2017 (95.73%) 0.111 0.739 

Vegetables 533 (99.63%) 2100 (99.43%) 0.306 0.580 

Fruits 517 (96.82%) 2054 (97.35%) 0.445 0.505 

Fresh Juice 95 (17.99%) 433 (13.12%) 8.258 0.004 

Eggs 512 (96.06%) 2011 (95.26%) 0.619 0.431 

Milk 383 (72.13%) 1543 (73.58%) 0.457 0.499 

Soy Products 498 (93.43%) 1982 (93.93%) 0.184 0.668 

Fried Food 258 (48.68%) 1018 (48.64%) 0.000 0.987 

Soda Water 108 (20.15%) 350 (16.32%) 3.883 0.049 

Pickled Vegetables 332 (62.29%) 1280 (60.72%) 0.440 0.507 

Coffee 46 (8.66%) 221 (10.56%) 1.666 0.197 

Animal Offal 145 (27.31%) 494 (23.57%) 3.216 0.073 

Strenuous Exercise 36 (68.70%) 168 (7.95%) 0.682 0.409 

Tai Chi 19 (3.54%) 82 (3.82%) 0.079 0.779 

Aerobics 6 (1.20%) 59 (2.92%) 4.734 0.030 

Family History of Tumor 104 (19.51%) 379 (17.77%) 0.874 0.350 

Family History of Diabetes 126 (23.64%) 467 (21.89%) 0.751 0.386 

Average Daily Sleep Duration (h) 7.55 ± 1.02 7.69 ± 1.17 -2.198 0.028 

Average Daily Television Viewing 
Time (h) 

2.98 ± 1.79 2.92 ± 1.62 0.746 0.456 

Time Spent Sitting on Workdays (d) 4.94 ± 0.35 4.90 ± 0.49 1.726 0.085 
F
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Dietary habits indicate the consumption of specific foods, while strenuous exercise refers to engagement in intense physical activities within the past seven days. Tai Chi and aerobics assess 
participation in these exercises over the past 12 months. Snoring reflects whether it occurred during nighttime sleep over the previous year. Depression evaluates depressive feelings within the 
past two weeks, and insomnia pertains to sleep disturbances during the same period. The time spent sitting on workdays was calculated as the average number of days spent sitting from Monday 
through Friday. 
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identified the following factors remained significantly associated 
with metabolic syndrome (Table 3). Risk factors: LDL-C 
(OR=1.409, 95%CI 1.245-1.595,P<0.001), GGT (OR=1.004, 95% 
CI 1.001-1.008,P=0.017), UA (OR=1.005, 95%CI 1.003-1.007, 
P<0.001), HOMA-IR (OR=1.464, 95%CI 1.313-1.633,P<0.001), 
HC (OR=1.030, 95%CI 1.007-1.053,P=0.009), BMI (OR=1.118, 
95%CI 1.064-1.174,P<0.001), fresh juice consumption (OR=1.846, 
95%CI 1.315-2.592,P<0.001), and beef and mutton intake 
(OR=1.282, 95%CI 1.007-1.632,P=0.044).Protective factor: Longer 
sleep duration (OR=0.844, 95%CI 0.761-0.936,P=0.001). Among 
them, LDL-C showed the strongest positive association (41% 
increased odds per unit), fresh juice consumption conferred the 
highest modifiable risk (85% increased odds), sleep duration 
emerged as the most robust protective factor (16% risk reduction 
per hour). 
 

4 Discussion 

The primary endpoint in this study was MS. Statistically significant 
variables identified through univariate analysis—including LDL-C, 
ALT, GGT, UA, HOMA-IR, HC, BMI, engagement in aerobics, soda 
and fresh juice intake, consumption of beef and mutton, average daily 
sleep duration, history of coronary heart disease, and snoring—were 
entered into a multivariate conditional logistic regression model using 
the forward LR method. The analysis revealed that longer average sleep 
duration as a protective factor against MS risk. Conversely, elevated 
levels of LDL-C, GGT, UA, HOMA-IR, HC, and BMI, along with 
consumption of fresh juice and red meat (beef and mutton), were 
significantly associated with increased MS risk. Among the modifiable 
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behavioral variables, average sleep duration demonstrated an inverse 
association with MS, whereas fresh juice and red meat(beef and 
mutton) consumption exhibited positive associations. 
4.1 Sleep duration 

Notably, our cohort exhibited shorter average sleep durations 
(7.55h in cases vs. 7.69h in controls), reflecting Dalian’s fast-paced

urban lifestyle. Current investigations into the association between 
sleep duration and MS yield inconsistent outcomes. One meta-analysis 
identified a U-shaped relationship, indicating increased MS risk at both 
extremes of sleep duration (15). In contrast, data from the China 
Health and Retirement Longitudinal Study revealed that sleep 
exceeding 8 h/d was linked to a 53% reduction in MS incidence 
compared to the 7–8 h/d reference group (16). A more recent meta-

analysis including 11 studies with 343,669 participants found a higher 
MS prevalence among individuals reporting normal sleep duration 
than among those with either short or extended sleep durations. 
Regionally, North America exhibited the highest MS prevalence 
among both short and long sleepers, whereas in Asia, the highest 
rates were noted among those with typical sleep durations (17). No 
analogous research has been conducted in Dalian. Findings from the 
current analysis suggest that average daily sleep duration may exert a 
protective effect against MS. Potential mechanisms underlying this 
association include the synthesis and release of melatonin, which 
primarily occur at night and are inhibited by daytime light exposure. 
Melatonin exerts lipid-lowering, anti-inflammatory, and antioxidant 
effects, while also regulating blood pressure (18). Research (19) has
identified significant differences in nocturnal melatonin secretion 
TABLE 3 Multivariate conditional logistic regression analysis. 

Variables b value SE value Waldc2 value P value OR value 95%CI 

LDL-C 0.343 0.063 29.525 <0.001 1.409 1.245-1.595 

ALT -0.003 0.006 0.324 0.569 0.997 0.986-1.008 

GGT 0.004 0.002 5.695 0.017 1.004 1.001-1.008 

UA 0.005 0.001 26.661 <0.001 1.005 1.003-1.007 

HOMA-IR 0.381 0.056 46.899 <0.001 1.464 1.313-1.633 

HC 0.029 0.011 6.747 0.009 1.030 1.007-1.053 

BMI 0.112 0.025 19.891 <0.001 1.118 1.064-1.174 

Aerobics -0.620 0.475 1.703 0.192 0.538 0.212-1.365 

Soda Water -0.073 0.155 0.224 0.636 0.929 0.686-1.259 

Fresh Juice 0.613 0.173 12.541 <0.001 1.846 1.315-2.592 

Beef and Mutton 0.248 0.123 4.057 0.044 1.282 1.007-1.632 

Snoring -0.072 0.048 2.295 0.130 0.930 0.847-1.021 

Average Daily 
Sleep Duration 

-0.170 0.053 10.316 0.001 0.844 0.761-0.936 

History of Coronary 
Heart Disease 

0.476 0.320 2.208 0.137 1.609 0.859-3.015 
 

Aerobic exercise indicates engagement in aerobics within the past 12 months. Dietary habits denote the frequency of specific food consumption. Snoring refers to the occurrence of snoring during 
nighttime sleep over the past 12 months. 
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between individuals with and without MS, with disruptions in 
circadian melatonin rhythms associated with MS onset. Additionally, 
MS patients exhibit heightened sympathetic nervous system activity 
(20). Reduced sleep duration, combined with elevated sympathetic 
drive, contributes to the development of hypertension (21). 
Sympathetic activation stimulates lipolysis through adipose tissue 
innervation, increasing circulating free fatty acids, which in turn 
diminishes insulin sensitivity and impair glucose tolerance (22, 23). 
Further evidence (24) also indicates that sleep deprivation influences 
hormones governing appetite and eating behavior, promoting 
increased food intake and subsequent weight gain, thereby 
predisposing to overweight and obesity. In parallel, reduced sleep 
duration has been shown to upregulate proinflammatory mediators 
(25, 26), which promote insulin resistance in both adipose and 
peripheral tissues (27), further increasing susceptibility to MS. 
Collectively, these mechanisms collectively explain our observed 
association between average daily sleep duration and MS. Future 
studies should assess sleep quality and napping habits, as Dalian 
residents rarely nap because of its short lunch breaks, potentially 
compounding sleep-related metabolic risks. Given the protective role 
of sleep duration, community-based initiatives could raise awareness 
about the importance of adequate sleep and provide practical tips for 
improving sleep duration, such as reducing screen time before bed, 
creating sleep-conducive environments, increasing the lunch 
break time. 
 

4.2 Fresh juice consumption 

In the questionnaire of this research, the definition of fresh juice is 
“juice extracted from fresh fruits”, without any additional additives or 
processing procedures. Current evidence regarding the metabolic 
impact of fresh juice consumption remains inconsistent. Our finding 
that fresh juice intake increases MS risk contrasts with a cohort study 
reporting protective effects of pure fruit juice (28). This discrepancy 
may arise from differences in juice composition and consumption 
patterns. Conversely, other studies (29) align with the present findings, 
indicating a positive correlation between fresh juice consumption and 
MS development. In our study, “fresh juice” likely contains high in 
fructose but low in fiber. Unlike whole fruits, juicing removes dietary 
fiber, accelerating fructose absorption (30). Fructose undergoes 
hepatic metabolism distinct from that of glucose. In the absence of 
a rate-limiting enzyme and feedback inhibition, fructose catabolism 
yields high levels of uric acid, diglycerides, lactic acid, and other 
intermediates, which may trigger endoplasmic reticulum stress and 
inflammatory responses. These byproducts interfere with key 
metabolic pathways, promoting insulin resistance, lipogenesis, 
vascular endothelial impairment, central adiposity, elevated 
triglyceride concentrations, decreased HDL-C, hypertension, and 
impaired glucose tolerance—core features of MS. Furthermore, 
fructose modulates gut microbiota composition and activity (31), 
and the gut microbiota and metabolites have been proven to 
increase the risk of diabetes, metabolism-related fatty liver disease, 
carotid atherosclerotic plaque and MS (32, 33). Notably, Dalian’s 
warm climate and abundant fruit markets may encourage frequent 
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juice consumption, exacerbating these effects. Thus, public health 
campaigns in Dalian should emphasize whole fruit consumption over 
juicing, particularly among high-risk groups. 
4.3 Red meat (beef and mutton) 
consumption 

The results of this study align with previous research (34), indicating 
that the consumption of beef and mutton (red meat) may heighten the 
risk of MS. Although red meat essential nutrients such as amino acids, 
vitamins, and minerals (e.g., iron and zinc), growing evidence links its 
intake to an increased risk of various chronic diseases. Several biological 
pathways may account for the observed relationship between red meat 
consumption and MS development. One proposed mechanism involves 
the high heme iron content  in  beef  and mutton, which functions as a 
potent pro-oxidant. Excessive intake of heme iron promotes oxidative  
stress, thereby triggering cellular damage and chronic systemic 
inflammation (35). Moreover, the processing and cooking techniques 
commonly applied to red meat appear to enhance its harmful metabolic 
effects (36). In Dalian, longstanding dietary practices such as hot pot and 
street barbecue are culturally ingrained, with beef and mutton as central 
ingredients. During these high-temperature cooking processes, 
significant levels of nitrates and nitrites are generated, which have 
been implicated in the induction of insulin resistance (37), potentially 
increasing susceptibility to MS. Additionally, the elevated content of 
total fat and saturated fatty acids in beef and mutton contributes to 
obesity, hyperinsulinemia, and hyperglycemia, exacerbate insulin 
resistance and further contributing to the onset of MS (38). Studies 
have also shown elevated levels of inflammatory mediators in 
individuals who regularly consume beef and mutton, and processed 
meats, potentially explaining the heightened risk of MS in this 
population (39). A longstanding belief in Dalian attributes tonic and 
restorative properties to the consumption of beef and mutton, and their 
broths, particularly mutton soup, which remains popular among locals. 
Although beef and mutton consumption is deeply embedded in Dalian’s 
culinary culture, its association with MS calls for strategies to mitigate 
metabolic harm. For example, co-administration of compounds like 
Xiasangju, a traditional Chinese herbal formula, may attenuate red 
meat-induced oxidative stress and inflammation. Studies suggest that 
Xiasangju’s noradrenaline-enhancing properties can activate brown 
adipose tissue, thereby increasing energy dissipation  and improving

lipid profiles (40). This synergistic approach that combines dietary 
factors that promote the occurrence of MS with those protect it could be 
explored in future public health campaigns. 
4.4 Biomarkers: LDL-C, GGT, UA, 
HOMA-IR, HC, and BMI 

Consistent with most previous studies, elevated LDL-C,  GGT, UA,  
HOMA-IR, HC, and BMI are identified as significant indicators for 
increased risk of MS (41–43). LDL-C contributes to atherosclerosis by 
depositing oxidized lipids in arterial walls, while GGT, a marker of 
hepatic steatosis, reflects systemic oxidative stress (44). A recent study 
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highlighted the differences in the effects of lipids and lipoproteins on BP 
and pulse pressure. For pulse pressure, the dangerous effect of LDL-C 
bears the brunt among the major lipids (45). UA in both crystalline and 
soluble forms, plays a key role in the induction of inflammatory cascade 
and development of atherosclerotic diseases (46). HOMA-IR and HC 
underscore the centrality of insulin resistance and central obesity in MS 
pathogenesis. The increase of BMI drives higher ratio of 12,13-
Epoxyoctadecenoic acid: Dihydroxyoctadecenoic acid in white 
adipose tissue and liver, which indicates the deterioration of the MS 
(47). Notably, Dalian’s rapid urbanization has likely amplified 
sedentary behaviors and energy-dense diets, exacerbating these 
biomarkers. Clinicians should prioritize these metrics in routine 
screenings to enable early MS detection. 

This study’s nested case-control design enhances efficiency and 
reduces recall bias compared to traditional case-control studies. 
However, several methodological limitations warrant careful 
consideration regarding their potential impact on the results. First, 
possibility of residual confounding or the influence of unmeasured 
variables (e.g., sample contamination, diet before blood collection, 
impact of a woman’s menstrual period, socioeconomic status, dietary 
additives, or environmental pollutants, etc.) cannot be ruled out. 
Second, the reliance on self-reported dietary data may introduce 
recall bias, particularly given the 3-year interval between baseline and 
follow-up. Third, due to participants’ limited recall accuracy and over 
50% missing data for portion size, analysis involving frequency and 
quantity is excluded. A binary variable (yes/no) is adopted for statistical 
modeling, potentially masking thresholds at which fresh juice or red 
meat intake becomes clinically significant. Moreover, the questionnaire 
does not differentiate cooking methods for beef and mutton or specify 
the types and preparation techniques of fresh juice. Finally, while the 
study adjusted for key confounders (e.g., age, sex), the absence of 
longitudinal assessments limits causal inference. For example, the 
association between short sleep duration and MS might be 
bidirectional, as MS-related metabolic disturbances could also disrupt 
sleep. Despite these limitations, the consistency of our findings with 
prior mechanistic research supports their biological plausibility. 

The present study reveals a significant correlation between the 
occurrence of MS in adult residents of Dalian and several factors, 
including elevated levels of LDL-C, GGT, UA, HOMA-IR, HC, and 
BMI, as well as reduced daily sleep duration, consumption of beef and 
mutton, and intake of fresh juice. These results align with some 
existing literature but also underscore the need for targeted 
interventions and further research to address these factors in the 
Dalian population. Future research should employ longitudinal 
designs to establish causal relationships between identified risk 
factors and MS. For example, tracking changes in dietary habits, 
sleep patterns, and biomarker levels over time could elucidate their 
long-term impact on MS development, providing stronger evidence 
for causality and inform public health strategies. In addition, targeted 
public health campaigns should be carried out, such as providing 
targeted dietary advice, strengthening publicity on the importance of 
sleep, and launching projects for regular monitoring of relevant 
biological indicators in community hospitals. By addressing dietary 
habits, sleep duration, and biomarker monitoring, Dalian might 
reduce the burden of MS and improve overall metabolic health. 
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Association between triglyceride 
glucose–body mass index and 
acute kidney injury and renal 
replacement therapy in critically 
ill patients with sepsis: analysis 
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Hospital of Medical School, Nanjing University, Nanjing, China 
Background: Previous studies have linked kidney damage to insulin resistance 
(IR), yet the association between triglyceride glucose–body mass (TyG–BMI) 
index, a reliable marker of IR, and acute kidney injury (AKI) remains unclear. 

Methods: Patient data were collected from the Medical Information Mart for 
Intensive Care IV (MIMIC-IV) database. AKI was set as the primary endpoint, and 
renal replacement therapy (RRT) was set as the secondary endpoint to represent 
the progression of AKI. TyG–BMI index and study endpoints were analyzed using 
Cox regression and restricted cubic spline (RCS) analyses. 

Results: A total of 1,117 patients with sepsis were enrolled, of whom 559 (50.0%) 
developed AKI. The result of Cox regression revealed that the TyG–BMI index 
was closely related to AKI (P = 0.032), and RCS analysis depicted a nonlinear 
correlation (P for nonlinear = 0.013). For RRT, similar results were observed. 
Compared with the simple severity of illness scores (SOFA, APSIII, SAPSII, and 
SIRS), when combined with the TyG–BMI index, their predictive ability for sepsis-
related AKI significantly increased (AUCs: 0.745, 0.732, 0.708, and 0.566 vs. 
0.756, 0.747, 0.728, and 0.661; all P < 0.05). 

Conclusions: For critically ill patients with sepsis, an elevated TyG–BMI index 
implies a possible increased risk of AKI. The TyG–BMI index has the potential to 
be a valuable predictor. 
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Background 

Sepsis, a life-threatening disease, is characterized by multi-

organ damage induced by the dysfunction of the host’s immune 
response to infection (1). Annually, nearly 50 million cases are 
diagnosed globally, with sepsis-related deaths accounting for more 
than 50% of in-hospital deaths (2, 3). Despite advancements in 
medical technology, the mortality rates for sepsis have not 
significantly improved (4). Sepsis may impair renal function, with 
approximately 60% of patients experiencing acute kidney injury 
(AKI) (5, 6). Once it occurs, it increases sepsis mortality by three to 
five times, leading to worse clinical outcomes (7). Therefore, the 
early detection of patients with a tendency to develop AKI and 
timely intervention are crucial to improve the prognosis. 

Sepsis is often accompanied by insulin resistance (IR), which 
may be caused by systemic inflammation (8). Additionally, IR can 
inhibit the autophagic activity of podocytes, leading to kidney 
injury, and is positively correlated with kidney injury molecule-1 
(9, 10). The triglyceride–glucose (TyG) index, an innovative 
marker, has been considered a convenient replacement indicator 
for IR (11). More importantly, the degree of IR in the body is more 
accurately reflected when used in conjunction with body mass index 
(BMI) (12). The findings above seem to suggest that TyG–BMI 
index may predict the occurrence of AKI, which would help to 
identify high-risk patients and thus enable early intervention. For 
certain diseases, such as hypertension, myocardial infarction, and 
chronic kidney disease, a strong association exists between their 
incidence and TyG–BMI index (13–15). However, it remains 
unclear whether this correlation exists in individuals with sepsis-
associated AKI. 

Consequently, the current study hypothesizes an association 
between TyG–BMI index and sepsis-associated AKI and intends to 
explore the issue utilizing this large cohort, with a view to guiding 
clinical practice. 
Frontiers in Endocrinology 02 94
Methods 

Study population 

Clinical data were retrospectively extracted from the MIMIC-IV 
database. One author (WSJ) successfully passed all of the required 
examinations for accessing the database and obtained approval to use 
the dataset (certification number: 56051808). The review committee 
of Massachusetts Institute of Technology and Beth Israel Deaconess 
Medical Center approved the database for medical health-related 
research without requiring informed consent. 

All patients with sepsis met the Sepsis 3.0 criteria, defined as the 
presence of infection and sequential organ failure assessment 
(SOFA) score ≥2 (16). The Kidney Disease: Improving Global 
Outcomes (KDIGO) guideline was used to confirm the presence 
of AKI (17). The exclusion criteria were as follows: (1) age <18 
years, (2) only the first data were extracted if multiple ICU 
admissions for sepsis existed, (3) missing fasting blood glucose 
(FBG), triglyceride, and BMI data within 24 h of ICU admission, (4) 
diagnosed with AKI prior to ICU admission, (5) and missing AKI 
data within 48 h. Finally, 1,117 patients with sepsis were enrolled, 
and the cohort was divided according to the TyG–BMI 
quartile (Figure 1). 
Data collection 

Data on the basic characteristics of the patients were extracted 
using PostgresSQL and Navicat Premium software and merged with 
Stata software. Detailed clinical data included demographics (age, 
sex, race, height, weight, and BMI), laboratory test results 
(international normalized ratio [INR], blood urea nitrogen 
[BUN], low-density lipoprotein [LDL], sodium, chloride, 
aspartate aminotransferase [AST], albumin, red blood cell [RBC], 
FIGURE 1 

Flow of the included patients. 
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high-density lipoprotein [HDL], neutrophils, hemoglobin, platelets, 
hematocrit, total bilirubin, prothrombin time [PT], C-reactive 
protein [CRP], serum creatinine [SCr], alanine aminotransferase 
[ALT], white blood cells [WBC], alkaline phosphatase [ALP], 
calcium, lymphocytes, anion gap, activated partial thromboplastin 
time [APTT], blood glucose, triglycerides, potassium, and total 
cholesterol [TC]), medication (statin, insulin, and metformin), 
vital signs, and severity of illness scores. Since the MIMIC 
database does not explicitly specify which values represent FBG, 
all values are simply labeled as “blood glucose”. Therefore, we 
inferred based on patients’ medication use to exclude interference 
from insulin, glucose injection, and enteral nutrition on blood 
glucose values as much as possible. Data on the blood collection 
time for glucose tests on the first day of ICU admission as well as the 
start times of insulin, glucose injections, and enteral nutrition were 
extracted. If the blood collection occurred after the start of any of 
these interventions, the corresponding glucose value was considered 
interfered and excluded. Specific procedures and codes are provided 
in the supplementary methods. The International Classification of 
Diseases (9th and 10th) was used to identify comorbidities, 
including chronic kidney disease (CKD), cancer, diabetes, 
hypertension, arterial fibrillation (AF), and heart failure (HF). 
Within 24 h of ICU admission, all test indicators and scores were 
collected, and the SCr level and urine output were continuously 
monitored throughout the hospital stay. Information on medication 
use in the 24 h prior to ICU admission was collected. The timings of 
initial AKI and renal replacement therapy (RRT) were determined. 
Follow-up continued from the date of admission to all 
study endpoints. 

TyG–BMI index formula: ln [triglyceride (mg/dL) × FBG (mg/ 
dL)/2] × BMI (18). For the variables included in this study, multiple 
interpolation (multiple imputation by chained equations) was used 
to fill in those with missing values <20%, while those with missing 
values >20% were deleted (12). Lymphocytes, neutrophils, albumin, 
HDL, LDL, CRP, and TC contained more than 20% missing value. 
Endpoints of interest 

AKI was set as the primary endpoint. KDIGO guidelines were 
utilized: SCr was 1.5-fold higher than baseline within 7 days or 
elevation of SCr by 0.3 mg/dL in 48 h or urine output less than 0.5 
mL/kg per hour for at least 6 h. The reference baseline of SCr was 
determined as the lowest recorded value within 7 days prior to ICU 
admission (276 patients), and if this information was not available, 
the SCr first measured at admission to ICU was used (841 patients). 
RRT, representing disease progression to AKI, was used as a 
secondary endpoint. Meanwhile, ICU, in-hospital, 28-day, and 1­
year mortality were also specified as secondary endpoints. 
Statistical analysis 

The proportional hazards assumption was verified using 
Schoenfeld residual plots, and no violation was detected 
Frontiers in Endocrinology 03 95
(Supplementary Figure S1). The occurrence of primary and 
secondary endpoints was depicted by the Kaplan–Meier curve. By 
utilizing Cox regression analysis, the study excluded confounders to 
identify independent association (survival package, version 3.5–5 
and survminer package, version 0.4.9). The Fine–Gray model was 
constructed to analyze the competitive risk in order to evaluate the 
stability of the results (cmprsk package). To evaluate the possible 
influence of unmeasured confounding on the observed hazard 
ratios, E-values were analyzed. To avoid multicollinearity, 
variables were excluded when the variance inflation factor was 
greater than 5 (car package). To depict the dose–response effects, 
restricted cubic spline (RCS) analysis was conducted (ggrcs package, 
version 0.4.0). Furthermore, subgroup analyses of hypertension, 
HF, CHD, CKD, AF, diabetes, age, sex, and BMI were conducted 
(jstable package, version 1.1.7). The interactions were assessed with 
likelihood ratio tests. 

The area under  the curve  (AUC) was  used  to  reflect the 
predictive power of existing severity of illness scores for AKI 
when incorporating the TyG–BMI index (timeROC package). 
Integrated discrimination improvement (IDI) was computed by 
subtracting the difference in the probability of positivity predicted 
by the difference between the different models for the disease group 
from the difference in the probability of positivity predicted by the 
old and new models for the non-disease group (19). Reclassified by 
event occurrence, the net reclassification improvement (NRI) 
performed a net magnitude synthesis and quantified the degree of 
improvement. These two indexes allow the risk reclassification of 
the model (survIDINRI package, version 1.1–2). The analysis and 
visualization were conducted using R (version 4.1.3) and SPSS 
(version 27.0). Statistical significance in the current study was 
defined as P <0.05. 
Results 

Patient characteristics 

A total of 1,117 patients with sepsis were enrolled, of whom 559 
(50.0%) developed AKI and 201 (18.0%) received RRT. Meanwhile, 
204  (18.5%)  ICU  deaths  and  250  (22.4%)  in-hospital  
deaths occurred. 

According to the TyG–BMI index, the overall patients were 
grouped by quartiles [quartile (Q) 1: <244.37; Q2: 244.37–291.05; 
Q3: 291.06–355.40; Q4: >355.40]. Patients in the Q4 group had 
higher BMI, heart rate, and severity of illness scores but were 
younger. The prevalence of diabetes was higher, and that of CHD 
was lower in this group. With regard to laboratory indicators, the 
Q4 group showed higher WBC, anion gap, total bilirubin, ALT, 
AST, BUN, SCr, FBG, triglycerides, and potassium ions but lower 
platelets, chloride, and calcium levels. With increasing TyG–BMI 
index, the incidence of AKI and RRT in the four groups gradually 
increased (AKI: 36.2% vs. 43.7% vs. 53.4% vs. 66.8%, P < 0.001; 
RRT: 5.7% vs. 11.8% vs. 24.7% vs. 29.7%, P < 0.001). However, no 
statistical differences were observed in the in-hospital, ICU, 28-day, 
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TABLE 1 Baseline characteristics according to TyG–BMI index quartiles. 

Variables Overall (N 1,117) Q1 (N 279) Q2 (N 279) Q3 (N 279) Q4 (N 280) P-value 

Demographics 

Age (years) 63.52 (51.72, 74.82) 66.16 (51.35, 79.72) 66.53 
(53.44, 80.29) 

60.96 
(51.75, 70.31) 

61.42 
(48.61, 69.38) 

<0.001 

Sex (male) 680 (60.9%) 155 (55.6%) 170 (60.9%) 194 (69.5%) 161 (57.5%) 0.004 

Race (white) 849 (76.0%) 210 (75.3%) 217 (77.8%) 213 (76.3%) 209 (74.6%) 0.315 

Height (cm) 170 (163, 178) 170 (160, 175) 170 (163, 178) 173 (165, 178) 170 (163, 178) <0.001 

Weight (kg) 85.1 (70.0, 101.8) 63.6 (55.2, 72.0) 77.3 (70.0, 87.5) 95.0 (84.4, 102.8) 112.9 (98.5, 129.9) <0.001 

BMI (kg/m2) 28.96 (25.05, 34.04) 22.42 (20.52, 24.30) 27.16 
(25.72, 28.62) 

31.23 
(29.38, 33.33) 

38.66 
(35.31, 44.11) 

<0.001 

Infection site 

Lung 353 (31.6%) 82 (29.4%) 88 (31.5%) 86 (30.8%) 97 (34.6%) 0.688 

Abdomen 175 (15.7%) 39 (14.0%) 46 (16.5%) 47 (16.9%) 43 (15.4%) 

Urinary system 261 (23.4%) 62 (22.2%) 71 (25.5%) 66 (23.7%) 62 (22.1%) 

Other 328 (29.4%) 96 (34.4%) 74 (26.5%) 80 (28.7%) 78 (27.9%) 

Infection type 

Gram-positive 388 (34.7%) 97 (34.8%) 87 (31.2%) 98 (35.1%) 106 (37.9%) 0.572 

Gram-negative 343 (30.7%) 87 (31.2%) 85 (30.5%) 82 (29.4%) 89 (31.8%) 

Other 386 (34.6%) 95 (34.1%) 107 (38.4%) 99 (35.5%) 85 (30.4%) 

Laboratory tests 

Hemoglobin (g/dL) 10.6 (8.6, 12.3) 10.6 (8.5, 12.2) 10.6 (8.8, 12.3) 10.4 (8.5, 12.5) 10.6 (8.7, 12.4) 0.855 

Platelets (K/uL) 204 (146, 280) 217 (154, 296) 202 (141, 271) 199 (141, 274) 198 (147, 267) 0.048 

Hematocrit (%) 31.9 (26.3, 37.1) 31.9 (26.0, 36.6) 32.0 (26.5, 36.9) 31.7 (25.7, 37.8) 31.9 (26.5, 37.4) 0.553 

WBC (K/uL) 14.4 (10.3, 19.0) 13.7 (10.0, 17.8) 13.5 (9.8, 17.6) 15.1 (10.3, 19.8) 15.7 (11.3, 21.2) <0.001 

RBC (K/µL) 3.81 (3.24, 4.39) 3.70 (3.14, 4.35) 3.81 (3.27, 4.32) 3.84 (3.17, 4.39) 3.96 (3.31, 4.51) 0.060 

Anion gap (mEq/L) 17 (15, 20) 16 (14, 19) 17 (15, 20) 17 (15, 22) 18 (15, 21) <0.001 

Total bilirubin (mg/dL) 0.8 (0.5, 1.6) 0.8 (0.5, 1.1) 0.8 (0.6, 1.5) 0.8 (0.5, 1.8) 0.9 (0.5, 2.1) <0.001 

INR 1.3 (1.2, 1.6) 1.3 (1.1, 1.6) 1.3 (1.1, 1.6) 1.3 (1.2, 1.8) 1.3 (1.2, 1.6) 0.072 

Prothrombin time 14.4 (12.8, 17.8) 14.3 (12.6, 17.5) 14.4 (12.7, 17.4) 14.7 (13.0, 19.8) 14.4 (12.8, 17.4) 0.101 

APTT 33.1 (28.2, 50.6) 32.5 (28.6, 50.8) 31.5 (27.7, 46.5) 34.7 (28.5, 57.6) 33.7 (28.1, 48.1) 0.039 

ALT (U/L) 41 (21, 88) 36 (16, 78) 39 (21, 85) 48 (23, 131) 42 (25, 94) 0.003 

ALP (U/L) 82 (66, 109) 80 (64, 108) 80 (63, 103) 84 (66, 111) 86 (67, 114) 0.096 

AST (U/L) 65 (32, 117) 54 (28, 127) 64 (28, 179) 70 (36, 272) 71 (37, 186) 0.005 

BUN (mg/dL) 24 (16, 40) 20 (15, 34) 21 (15, 34) 25 (18, 45) 29 (19, 48) <0.001 

Serum creatinine 
(mg/dL) 

1.2 (0.9, 2.1) 1.1 (0.7, 1.5) 1.2 (0.8, 1.7) 1.3 (1.0, 2.4) 1.6 (1.0, 2.7) <0.001 

Glucose (mg/dL) 159 (129, 226) 140 (116, 183) 150 (126, 205) 178 (135, 258) 191 (143, 254) <0.001 

Triglycerides (mg/dl) 123 (85, 207) 89 (65, 123) 113 (82, 164) 137 (97, 228) 205 (119, 382) <0.001 

Sodium (mEq/L) 141 (138, 144) 141 (138, 144) 141 (138, 144) 141 (138, 144) 140 (137, 144) 0.143 

Chloride (mEq/L) 106 (102, 110) 107 (103, 111) 106 (103, 110) 106 (102, 110) 105 (101, 109) 0.021 

Potassium (mEq/L) 4.5 (4.1, 5.0) 4.3 (4.0, 4.8) 4.4 (4.1, 4.8) 4.5 (4.1, 5.3) 4.7 (4.1, 5.5) <0.001 
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and 1-year mortality among the groups (P = 0.552, P = 0.323, P = 
0.827, and P = 0.697, respectively) (Table 1). 

Further grouping was determined by the presence of AKI 
(Table 2). The prevalence of HF, CKD, cancer, and diabetes was 
higher in the AKI group but with a lower prevalence of 
hypertension. Meanwhile, the BMI and severity of illness scores 
Frontiers in Endocrinology 05 97
were also higher. For laboratory indicators, the AKI group had 
significantly higher levels of WBC, anion gap, total bilirubin, INR, 
PT, APTT, ALT, ALP, AST, BUN, SCr, FBG, triglycerides, and 
potassium. More importantly, the AKI patients showed a higher 
TyG–BMI index (P < 0.001). 
= = = = =

TABLE 1 Continued 

Variables Overall (N 1,117) Q1 (N 279) Q2 (N 279) Q3 (N 279) Q4 (N 280) P-value 

Laboratory tests 

Calcium (mg/dL) 8.0 (7.3, 8.5) 8.0 (7.5, 8.4) 8.1 (7.4, 8.7) 7.9 (7.2, 8.4) 7.8 (7.1, 8.4) 0.005 

Vital signs 

SBP (mmHg) 118 (107,133) 118 (107,134) 120 (108, 134) 117 (107,133) 116 (105, 130) 0.308 

DBP (mmHg) 63 (56, 71) 63 (56, 71) 64 (57, 72) 64 (51, 71) 62 (55, 70) 0.224 

MBP (mmHg) 79 (72, 87) 78 (67, 87) 88 (80, 99) 79 (72, 87) 77 (71, 86) 0.074 

Heart rate (beats/min) 86 (75, 99) 82 (70, 95) 84 (74, 96) 85 (75, 98) 92 (78, 106) <0.001 

Medication 

Statin 138 (12.4%) 28 (10.0%) 31 (11.1%) 37 (13.3%) 42 (15.0%) 0.283 

Insulin 176 (15.8%) 36 (12.9%) 46 (16.5%) 46 (16.5%) 48 (17.1%) 0.505 

Metformin 38 (3.4%) 7 (2.5%) 6 (2.2%) 16 (5.73%) 9 (3.2%) 0.084 

Severity of illness scores 

SOFA score 6 (4, 10) 5 (3, 8) 5 (3, 9) 7 (4, 11) 8 (5, 11) <0.001 

SIRS score 3 (2, 4) 3 (2, 3) 3 (2, 3) 3 (2, 4) 3 (3, 4) <0.001 

APSIII 50 (37, 69) 44 (35, 60) 45 (33, 59) 47 (34, 62) 51 (36, 75) <0.001 

SAPSII 39 (30, 50) 37 (29, 47) 38 (29, 48) 40 (30, 53) 42 (30, 53) <0.001 

Comorbidities 

Hypertension 479 (42.9%) 102 (36.6%) 129 (46.2%) 121 (43.4%) 127 (45.4%) 0.087 

Heart failure 207 (18.5%) 46 (16.5%) 50 (17.9%) 62 (22.2%) 49 (17.5%) 0.314 

CHD 261 (23.4%) 72 (25.8%) 76 (27.2%) 72 (25.8%) 41 (14.6%) 0.001 

Arterial fibrillation 150 (13.4%) 37 (13.3%) 44 (15.8%) 32 (11.5%) 37 (13.2) 0.521 

CKD 151 (13.5%) 34 (12.2%) 34 (12.2%) 39 (14.0%) 44 (15.7%) 0.562 

Diabetes 318 (28.5%) 49 (17.6%) 65 (23.3%) 76 (27.2%) 128 (45.7%) <0.001 

Cancer 112 (10.0%) 30 (10.8%) 32 (11.5%) 26 (9.3%) 24 (8.6%) 0.655 

Outcomes 

AKI 559 (50.0%) 101 (36.2%) 122 (43.7%) 149 (53.4%) 187 (66.8%) <0.001 

RRT 201 (18.0%) 16 (5.7%) 33 (11.8%) 69 (24.7%) 83 (29.7%) <0.001 

ICU mortality 204 (18.5%) 43 (15.4%) 48 (17.2%) 59 (21.1%) 54 (19.4%) 0.323 

In-hospital mortality 250 (22.4%) 56 (20.1%) 63 (22.6%) 70 (25.1%) 61 (21.8%) 0.552 

28-day mortality 285 (25.5%) 75 (26.9%) 71 (25.5%) 73 (26.2%) 66 (23.7%) 0.827 

1-year mortality 430 (38.5%) 115 (41.2%) 108 (38.7%) 102 (36.6%) 105 (37.5%) 0.697 
TyG–BMI index: Q1 (<244.37), Q2 (244.37–291.05), Q3 (291.06–355.40), and Q4 (>355.40).
 
BMI, body mass index; WBC, white blood cell; RBC, red blood cell; INR, international normalized ratio; APTT, activated partial thromboplastin time; ALT, alanine aminotransferase; ALP,
 
alkaline phosphatase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; SOFA, sequential
 
organ failure assessment; SIRS, systemic inflammatory response syndrome; APSIII, acute physiology score III; SAPSII, simplified acute physiological score II; CHD, coronary heart disease; CKD,
 
chronic kidney disease; AKI, acute kidney injury; RRT, renal replacement therapy; ICU, intensive care unit.
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TABLE 2 Baseline characteristics of the AKI and non-AKI groups. 

Variables Overall (N 1,117) Non-AKI (N 558) AKI (N 559) P-value 

Demographics 

Age (years) 63.52 (51.72, 74.82) 62.58 (50.47, 76.73) 64.17 (52.93,74.08) 0.422 

Sex (male) 680 (60.9%) 308 (55.2%) 372 (66.5%) <0.001 

Race(white) 849 (76.0%) 425 (76.2%) 424 (75.8%) 0.387 

Height (cm) 170 (163, 178) 170 (163, 178) 173 (163, 178) <0.001 

Weight (kg) 85.1 (70.0, 101.8) 80.2 (67.9, 96.3) 90.0 (72.6, 106.1) <0.001 

BMI (kg/m2) 28.96 (25.05, 34.04) 27.95 (24.19, 32.67) 30.16 (25.78, 35.74) <0.001 

Infection site 0.023 

Lung 353 (31.6%) 169 (30.3%) 184 (32.9%) 

Abdomen 175 (15.7%) 72 (12.9%) 103 (18.4%) 

Urinary system 261 (23.4%) 141 (25.3%) 120 (21.5%) 

Other 328 (29.4%) 176 (31.5%) 152 (27.2%) 

Infection type 0.113 

Gram-positive 388 (34.7%) 208 (37.3%) 180 (32.2%) 

Gram-negative 343 (30.7%) 172 (30.8%) 171 (30.6%) 

Other 386 (34.6%) 178 (31.9%) 208 (37.2%) 

Laboratory tests 

Hemoglobin (g/dL) 10.6 (8.6, 12.3) 11.1 (9.5, 12.8) 9.9 (8.0, 11.8) <0.001 

Platelets (K/uL) 204 (146, 280) 221 (165, 299) 185 (129, 259) <0.001 

Hematocrit (%) 31.9 (26.3, 37.1) 33.5 (28.8, 38.3) 29.8 (24.5, 35.5) <0.001 

WBC (K/uL) 14.4 (10.3, 19.0) 13.8 (10.1, 17.6) 14.9 (10.7, 21.1) <0.001 

RBC (K/µL) 3.81 (3.24, 4.39) 3.97 (3.38, 4.46) 3.71 (3.03, 4.3) <0.001 

Anion gap (mEq/L) 17 (15, 20) 16 (14, 18) 19 (16, 24) <0.001 

Total bilirubin (mg/dL) 0.8 (0.5, 1.6) 0.8 (0.5, 1.0) 1.0 (0.6, 2.7) <0.001 

INR 1.3 (1.2, 1.6) 1.2 (1.1, 1.4) 1.4 (1.2, 1.9) <0.001 

PT 14.4 (12.8, 17.8) 13.7 (12.5, 15.8) 15.4 (13.3, 21.1) <0.001 

APTT 33.1 (28.2, 50.6) 31.3 (27.2, 39.8) 36.3 (30.2, 58.5) <0.001 

ALT (U/L) 41 (21, 88) 36 (20, 68) 50 (23, 165) <0.001 

ALP (U/L) 82 (66, 109) 80 (65, 97) 86 (66, 128) 0.001 

AST (U/L) 65 (32, 117) 50 (27, 108) 98 (41, 375) <0.001 

BUN (mg/dL) 24 (16, 40) 17 (13, 23) 36 (24, 58) <0.001 

SCr (mg/dL) 1.2 (0.9, 2.1) 0.9 (0.7, 1.1) 2.0 (1.4, 3.1) <0.001 

Glucose (mg/dL) 159 (129, 226) 147 (122, 197) 178 (137, 250) <0.001 

Triglycerides (mg/dl) 123 (85, 207) 109 (75, 172) 141 (98, 252) <0.001 

TyG–BMI index 290.88 (244.64, 355.93) 274.58 (233.96, 330.39) 309.96 (256.67, 384.85) <0.001 

Sodium (mEq/L) 141 (138, 144) 141 (139, 144) 141 (137, 144) 0.111 

Chloride (mEq/L) 106 (102, 110) 106 (103, 110) 106 (101, 111) 0.067 

Potassium (mEq/L) 4.5(4.1, 5.0) 4.3 (4.0, 4.7) 4.7 (4.2, 5.4) <0.001 
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Primary and secondary endpoints 

In order to describe the occurrence of study endpoints, Kaplan– 
Meier method was employed. For AKI, significant differences were 
observed; the Q4 group had the highest incidence of AKI (P < 0.001) 
(Figure 2a). As for RRT, similar results were observed (P < 0.001) 
(Figure 2b). The cumulative incident curves of AKI and RRT were 
plotted using the CIF method, and Gray’s test was conducted, 
showing similar results to the data above (P < 0.001)

(Supplementary Figure S2). Nevertheless, no statistical differences 
existed among the four groups for other secondary endpoints (all 
P > 0.05) (Supplementary Figure S3). 

The variance inflation factors were calculated to exclude the 
collinearity of the factors included in the multivariate analysis 
(Supplementary Table S1). The TyG–BMI index was incorporated 
in Cox regression analysis to identify an independent association 
Frontiers in Endocrinology 07 99
with AKI and RRT when, as a continuous variable in model 3, the 
risk of AKI increased by 1.1% for each 10-unit increase in the TyG– 
BMI index (P = 0.032) (Table 3). When incorporated as a nominal 
variable in model 3, the Q4 group showed a much higher risk of 
AKI compared to the Q1 group (P = 0.012) (Table 3); the E-value 
for this model was 1.73 (Supplementary Figure S4a). Similar results 
were shown for RRT, with a 2.6% increase in AKI risk for a 10-unit 
increase in the TyG–BMI index (P < 0.001) (Table 3). In the 
nominal variable model, significant differences were also observed 
between groups, with an E-value of 2.05 (Supplementary Figure 
S4b). Meanwhile, the results of the competitive risk analysis using 
the Fine–Gray model were similar to those of the Cox regression 
analysis (Supplementary Table S2). Furthermore, the RCS analysis 
demonstrated that the risk of both AKI (P for nonlinear = 0.013) 
and RRT (P for nonlinear = 0.003) were nonlinearly associated with 
increasing TyG–BMI index (Figure 3). 
= = =

TABLE 2 Continued 

Variables Overall (N 1,117) Non-AKI (N 558) AKI (N 559) P-value 

Laboratory tests 

Calcium (mg/dL) 8.0 (7.3, 8.5) 8.1 (7.6, 8.6) 7.7 (6.9, 8.2) <0.001 

Vital signs 

SBP (mmHg) 118 (107, 133) 121 (109, 136) 114 (104, 127) <0.001 

DBP (mmHg) 63 (56, 71) 65 (58, 73) 62 (55, 69) <0.001 

MBP (mmHg) 79 (72, 87) 80 (68, 88) 76 (70, 84) <0.001 

HR (beats/min) 86 (75, 99) 83 (72, 95) 89 (78, 103) <0.001 

Severity of illness scores 

SOFA score 6 (4, 10) 5 (3, 7) 9 (6, 12) <0.001 

SIRS score 3 (2, 4) 3 (2, 3) 3 (3, 4) <0.001 

APSIII 50 (37, 69) 41 (31, 51) 64 (48, 84) <0.001 

SAPSII 39 (30, 50) 33 (26, 42) 47 (37, 57) <0.001 

Medication 

Statin 138 (12.4%) 60 (10.8%) 78 (13.9%) 0.104 

Insulin 176 (15.8%) 85 (15.2%) 91 (16.3%) 0.631 

Metformin 38 (3.3%) 17 (3.0%) 21 (3.8%) 0.513 

Comorbidities 

Hypertension 479 (42.9%) 263 (47.1%) 216 (38.6%) 0.004 

Heart failure 207 (18.5%) 81 (14.5%) 126 (22.5%) 0.001 

CHD 261 (23.4%) 128 (22.9%) 133 (23.8%) 0.736 

Arterial fibrillation 150 (13.4%) 79 (14.2%) 71 (12.7%) 0.475 

CKD 151 (13.5%) 37 (6.6%) 114 (20.4%) <0.001 

Diabetes 318 (28.5%) 135 (24.1%) 183 (32.7%) 0.002 

Cancer 112 (10.0%) 45 (8.1%) 67 (12.0%) 0.002 
BMI, body mass index; WBC, white blood cell; RBC, red blood cell; INR, international normalized ratio; PT, prothrombin time; APTT, activated partial thromboplastin time; ALT, alanine 
aminotransferase; ALP, alkaline phosphatase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; SCr, serum creatinine; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
MBP, mean blood pressure; HR, heart rate; SOFA, sequential organ failure assessment; SIRS, systemic inflammatory response syndrome; APSIII, acute physiology score III; SAPSII, simplified 
acute physiological score II; CHD, coronary heart disease; CKD, chronic kidney disease. 
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TABLE 3 Cox proportional hazard ratios (HR) for AKI and requiring RRT. 

Categories Model 1 Model 2 Model 3 

HR 
(95% CI) 

P 
value 

P 
for trend 

HR 
(95% CI) 

P 
value 

P 
for trend 

HR 
(95% CI) 

P 
value 

P 
for trend 

AKI incidence 

Continuous variable per 
10 units 

1.023 
(1.015–1.030) 

<0.001 1.024 
(1.017–1.032) 

<0.001 1.011 
(1.001–1.021) 

0.032 

Quartile <0.001 <0.001 0.010 

Q1 (N = 279) Ref Ref Ref 

Q2 (N = 279) 1.197 
(0.920–1.557) 

0.180 1.185 
(0.911–1.541) 

0.206 1.121 
(0.818–1.536) 

0.477 

Q3 (N = 279) 1.567 
(1.216–2.020) 

<0.001 1.543 
(1.195–1.993) 

<0.001 0.998 
(0.729–1.367) 

0.990 

Q4 (N = 280) 2.056 
(1.614–2.619) 

<0.001 2.145 
(1.680–2.738) 

<0.001 1.485 
(1.092–2.020) 

0.012 

Requirement of RRT 

Continuous variable per 
10 units 

1.045 
(1.035–1.056) 

<0.001 1.044 
(1.034–1.055) 

<0.001 1.026 
(1.011–1.041) 

<0.001 

Quartile <0.001 <0.001 0.040 

Q1 (N = 279) Ref Ref Ref 

Q2 (N = 279) 2.012 
(1.110–3.646) 

0.021 1.982 
(1.093–3.592) 

0.024 1.744 
(0.882–3.449) 

0.110 

Q3 (N = 279) 4.626 
(2.681–7.982) 

<0.001 4.269 
(2.471–7.378) 

<0.001 2.147 
(1.115–4.132) 

0.022 

Q4 (N = 280) 5.323 
(3.118–9.088) 

<0.001 5.044 
(2.951–8.621) 

<0.001 2.502 
(1.312–4.770) 

0.005 
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Model 1, unadjusted; Model 2, adjusted for age and sex; Model 3, adjusted for age, sex, SOFA, SAPSII, SIRS, platelets, WBC, SCr, BUN, potassium, sodium chloride, ALT, total bilirubin, 
hemoglobin, RBC, INR, MBP, neutrophils, HF, CHD, AF, diabetes, and cancer. 
FIGURE 2 

Cumulative event incidence curves for incidence of AKI (a) and requiring RRT (b). 
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Subgroup analyses 

To test whether these associations persist in specific populations, 
subgroup analyses were conducted. The significant association 
between AKI and the TyG–BMI index persisted in most subgroups, 
except for patients with HF and CKD (Figure 4a). Notably, the 
association was not as pronounced for patients with HF as it was for 
patients without HF (HR [95% CI] non-HF: 1.03 [1.02–1.04] vs. HF: 
1.01 [0.99–1.02], P for interaction = 0.043). However, the prevalence 
of CKD did not influence the association between AKI and the TyG– 
BMI index (P for interaction = 0.498). Interestingly, all subgroups of 
the population experienced an increased risk of RRT with higher 
TyG–BMI index values (all P < 0.05; Figure 4b). 
Frontiers in Endocrinology 09101
Added predictive value of the TyG–BMI 
index for AKI 

To determine the predictive power of severity of illness scores 
and the combination with TyG–BMI index for sepsis-associated 
AKI, the AUCs were calculated. The findings indicated a slight 
increase in ACUs for SOFA, APSIII, SAPSII, and SIRS when the 
TyG–BMI index was included (Table 4). For assessing the risk 
reclassification power, the NRIs and IDIs were computed next. The 
results showed that, for severity of illness scores (SOFA, APSIII, 
SAPSII, and SIRS), the combined use of the TyG–BMI index led to a 
statistically significant increase in NRI and IDI (all P < 
0.05) (Table 4). 
FIGURE 3 

Restricted cubic spline analysis of TyG–BMI index with AKI (a) and requiring RRT (b). 
FIGURE 4 

Subgroup analyses for the association of TyG–BMI index with AKI (a) and requiring RRT (b). HR, hazard ratio; CI, confidence interval; HF, heart 
failure; CHD, coronary heart disease; CKD, chronic kidney disease; AF, arterial fibrillation. 
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Discussion 

The present study is the first to examine the link between the 
TyG–BMI index and AKI in patients with sepsis. It determined that 
TyG–BMI exhibited an independent association with AKI, even 
following adjustment for potential confounding variables, providing 
a simple and effective predictive tool. 

Sepsis often leads to AKI, which not only results in extremely 
high mortality but also increases the risk of chronic comorbidities 
(20). Despite ongoing efforts and research, the complex 
pathophysiology of sepsis-associated AKI has not yet been fully 
revealed (21). Systemic inflammation and microcirculatory 
disturbances in the organs were previously thought to be the key 
mechanisms leading to AKI, but metabolic disturbances during 
sepsis have attracted increasing attention in recent years (21). 
During sepsis, elevated catecholamines, release of inflammatory 
factors, and energy deficits may lead to abnormal lipid metabolism, 
which, in turn, promotes elevated levels of free fatty acids (22). 
Meanwhile, tumor necrosis factor can directly inhibit lipoprotein 
lipase, leading to elevated triglycerides (23). In addition, the release 
of inflammatory mediators increases liver gluconeogenesis and 
leads to peripheral IR, resulting in hyperglycemia, even in those 
without diabetes (24). Hyperglycemia can then trigger ketoacidosis 
and cause hyponatremia due to high osmolarity, exacerbating 
kidney damage (25–27). In addition, insulin-like growth factor-
binding protein, an important factor involved in IR, has also been 
found to be directly involved in renal tubule injury (28–30). The 
abnormalities in blood glucose-related indices have also been shown 
to be associated with the prognosis of patients with aortic dissection 
and stroke (31, 32). IR is now recognized as an important causative 
factor in kidney injury (33). 

The TyG–BMI index has been proposed in recent years and 
proven to better reflect systemic IR in stable populations. Septic 
patients often experience stress-induced hyperglycemia due to 
systemic inflammation and catecholamine surge, which may 
cause changes in the TyG–BMI index to be not only related to IR 
but also affected by glucose metabolic status (34). This implies that 
the TyG–BMI index may not accurately represent the state of IR in 
the body during stress. The specific mechanisms may need to be 
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explored through glucose clamp technique, yet such studies have 
not been conducted in septic patients so far. Nevertheless, 
numerous studies have demonstrated its application value in 
septic patients. Fang et al. demonstrated an independent 
association between the TyG index and an increased risk of 
delirium in septic patients (35). In our study, after excluding 
many confounding factors, the TyG–BMI index was found to be 
closely related to AKI in the current study; those with a higher index 
were more prone to AKI. When AKI is progressively aggravated, 
RRT could address metabolic dysfunction and volume excess, 
reducing the burden on the kidneys (36). Therefore, the need for 
RRT is often regarded as an endpoint to represent the progression 
of AKI severity (37). In the current study, when the TyG–BMI index 
rose, the incidence of RRT also increased, with a non-linear 
correlation. Although whether the association between the TyG– 
BMI index and the study results is attributable to insulin resistance 
remains unclear, its predictive ability for sepsis-associated AKI and 
RT is still significant. 

To further identify specific populations to which the TyG–BMI 
index applies, subgroup analyses were performed. The current study 
showed that the application value of the TyG–BMI index for AKI 
was not significantly altered by following clinical conditions, 
including age, sex, hypertension, CHD, AF, and diabetes. 
However, no significant correlation was found in patients with 
HF and CKD, which may be partly explained by the fact that HF 
and CKD are important precipitants to AKI (38, 39). In the context 
of these diseases, the role of IR and disordered glucose metabolism 
caused by severe sepsis in the development of AKI may 
be overshadowed. 

The severity of illness scores is a useful tool to objectively 
quantify disease severity, which helps to identify the disease status 
and predict its endpoint (40). A previous study has shown that the 
SOFA score alone did not display a favorable predictive value for 
major renal adverse events associated with sepsis (41). It is of great 
value to explore whether combining the severity score with the 
TyG–BMI index could improve the predictive power. The current 
results show that the severity of illness scores, when combined with 
the TyG–BMI index, could significantly improve the ability to 
predict sepsis-associated AKI. Although it has previously been 
TABLE 4 Performance metrics of severity of illness scores with and without TyG–BMI index to predict sepsis-associated AKI. 

AUC (95% CI) P-value NRI (95% CI) P-value IDI (95% CI) P-value 

SOFA 0.745 (0.713–0.788) <0.001 

SOFA + TyG–BMI 0.756 (0.725–0.788) <0.001 0.010 (0.001–0.022) 0.040 0.011 (0.001–0.020) 0.040 

APSIII 0.732 (0.699–0.765) <0.001 

APSIII + TyG–BMI 0.747 (0.715–0.779) <0.001 0.007 (0.000–0.016) 0.039 0.006 (0.000–0.017) <0.001 

SAPSII 0.708 (0.674–0.742) <0.001 

SAPSII + TyG–BMI 0.728 (0.695–0.761) <0.001 0.028 (0.011–0.049) <0.001 0.030 (0.009–0.046) <0.001 

SIRS 0.566 (0.531–0.601) <0.001 

SIRS + TyG–BMI 0.661 (0.625–0.696) <0.001 0.024 (0.006–0.042) <0.001 0.019 (0.006–0.036) 0.02 
fro
AUC, area under the receiver operating characteristic curve; NRI, net reclassification improvement; IDI, integrated discrimination improvement; SOFA, sequential organ failure assessment; SIRS, 
systemic inflammatory response syndrome; APSIII, acute physiology score III; SAPSII, simplified acute physiological score II. 
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demonstrated that combining SOFA score with some biomarkers 
such as calprotectin and cystatin C could also improve the 
prediction of AKI, these biochemical indices are not routinely 
tested in most patients, making it easy to miss high-risk patients 
(42). In contrast, the TyG–BMI index does not increase the financial 
burden on patients and has the advantages of being simple and 
easily accessible. The deficiency is that the increment of AUC after 
combining the TyG–BMI index is relatively small, which seems to 
lead to a limited clinical impact. However, due to the large number 
of patients with sepsis and the prevalence of AKI, even a limited 
increase may bring certain benefits to patients. 
Study strengths and limitations 

In the current study, a large cohort was used to confirm the 
relationship between the TyG–BMI index and sepsis-associated 
AKI for the first time, and the data were analyzed according to 
different populations. However, several limitations remain. First, 
given the retrospective nature of the study, selection bias was 
unavoidable. Second, some important clinical data, such as 
infection site, procalcitonin, and C-reactive protein, were not 
included in the study due to insufficient database information. 
Third, the current study focused only on assessing the baseline 
values of the TyG–BMI index, ignoring dynamic changes 
throughout the treatment period. Fourth, there is currently no 
direct evidence to establish that the association between the TyG– 
BMI index and AKI is entirely attributable to IR. Future studies 
using glucose clamp techniques are warranted to further elucidate 
this relationship. Finally, since the FBG is inferred rather than 
explicitly recorded in the database, it may lead to deviations from 
the true FBG. These deviations may affect the accuracy of the TyG– 
BMI index and cause discrepancies between subsequent clinical 
applications and study findings. Therefore, conducting prospective 
cohort studies in the future is essential. 
Conclusions 

The current study demonstrated that the TyG–BMI index is 
independently associated with AKI and RRT in critically ill patients 
with sepsis in a nonlinear manner. This suggests that the TyG–BMI 
index could be a valuable clinical risk classification tool. 
Strengthening the detection of patients’ TyG–BMI index in 
clinical practice may help to identify those at a high risk of AKI 
and enable early intervention to improve the prognosis. Future 
studies should validate these findings in clinical practice and explore 
the underlying mechanisms. 
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Visualization of Schoenfeld residuals. 

SUPPLEMENTARY FIGURE 2
 

Cumulative incidence curves by cumulative incidence function. (a) AKI.
 
(b) RRT. 

SUPPLEMENTARY FIGURE 3
 

Kaplan–Meier survival analysis curve. (a) ICU. (b) In hospital. (c) 28 days. (d) 1­
year mortality.
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E-value analysis. (a) AKI. (b) RRT.
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U-shaped relationship between
the triglyceride glucose index
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among MASLD adults: a
retrospective cohort study
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Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China, 4Department of
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Background: Previous research has indicated that the triglyceride glucose index

(TyG-i) may serve as a potential risk factor for type 2 diabetes (T2D). However,

there is a paucity of studies addressing the relationship between TyG-i and T2D,

specifically in patients with metabolic dysfunction-associated steatotic liver

disease (MASLD). Consequently, this longitudinal study aims to investigate the

association between TyG-i and the onset of T2D in a cohort of Japanese adults

with MASLD.

Methods: This retrospective cohort study included a total of 2,507 subjects

diagnosed with MASLD. To evaluate the association between the TyG-i and the

risk of developing T2D, Cox proportional hazards regression models were

employed to estimate hazard ratios (HR) along with 95% confidence intervals

(CI). Additionally, nonlinear associations between them were investigated

utilizing restricted cubic spline models.

Results: During a mean follow-up period of 6.00 years, a total of 204 adults with

MASLD developed T2D. After adjusting for potential confounding factors,

elevated TyG-i was found to be independently associated with an increased

risk of developing T2D (HR: 1.48, 95% CI: 1.05-2.09, P = 0.0256). Additionally, a

U-shaped relationship between the TyG-i and the incidence of T2D was

identified. A significant negative association was observed between TyG-i and

T2D risk when TyG-i levels were below 7.94 (HR: 0.21, 95%CI: 0.07-0.66, P =

0.0072). Conversely, TyG-i values exceeding the threshold were positively

correlated with T2D risk (HR: 1.76, 95% CI: 1.23-2.52, P = 0.0020).
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ALT, alanine aminotransferase; AST, aspartate aminotra
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cholesterol; TG, triglycerides; HbA1c, hemoglobin A1c

glucose; HR, hazard ratio; SD, standard deviations; CI, c
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Conclusion: A U-shaped association was identified between baseline TyG-i and

the incidence of T2D in a Japanese population with MASLD. This inflection point

in TyG-i serves as a valuable clinical indicator to differentiate individuals at lower

versus higher risk of developing T2D. These findings indicate that maintaining

TyG-i near the inflection point may be beneficial in reducing the risk of

developing diabetes in patients with MASLD.
KEYWORDS

metabolic dysfunction-associated steatotic liver disease, type 2 diabetes, triglyceride,
triglyceride glucose index, insulin resistance
Introduction

Metabolic dysfunction-associated steatotic liver disease

(MASLD) represents the most prevalent chronic liver disorder

globally (1–3), impacting approximately 32% of the world’s

population (4). This condition is marked by excessive lipid

deposits in the liver, which can progress to inflammation and

liver injury. Without intervention, these changes can advance to

liver cirrhosis and potentially hepatocellular carcinoma (3, 5).

MASLD is linked not only to elevated liver-related health issues and

mortality rates but also to an increased likelihood of developing

cardiovascular diseases, type 2 diabetes (T2D), and overall mortality

(1, 6–8). Research indicates that MASLD may act as a precursor to or

exacerbate the onset of T2D (1, 9). Recent epidemiological investigations

reveal that individuals diagnosed with MASLD face a two-fold greater

risk of developing diabetes compared to those without the disease (10).

Consequently, it is crucial to comprehend the fundamental risk factors

that lead to glucose dysregulation in patients with MASLD, as this

knowledge could guide the formulation of effective preventive measures

against the onset of diabetes.

The triglyceride glucose index (TyG-i) has emerged as a

significant biomarker for evaluating insulin resistance and

predicting diabetes risk (11, 12). This index is derived from

fasting triglyceride and glucose levels, offering a straightforward

yet effective measure of metabolic health. Numerous studies have

established substantial correlations between TyG-i and various

health outcomes. Recent research has identified associations

between TyG-i and conditions such as MASLD, cardiovascular

disease, gestational diabetes, prediabetes, T2D, and all-cause

mortality (13–16). Despite the increasing evidence linking TyG-i

to T2D risk within general populations, its specific relationship with

T2D among individuals with MASLD remains inadequately

explored. Given the shared pathophysiological mechanisms of
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insulin resistance and dyslipidemia that characterize both

MASLD and T2D, investigating TyG-i within the context of

MASLD presents a unique opportunity to clarify its role as an

early predictor of diabetes onset. Consequently, this retrospective

study aims to examine the longitudinal association between TyG-i

and the development of T2D among individuals with MASLD.
Methods

Data source and study participants

The data utilized in our research were obtained from the NAGALA

database (17), which is hosted on the Dryad Data Platform. According

to the service terms of the Dryad database, this dataset is available for

analysis to support the exploration of new research hypotheses. The

NAGALA database is a population-based longitudinal cohort study

conducted at Murakami Memorial Hospital in Gifu Prefecture, Japan,

spanning from 1994 to 2016 (17).

Participants in this study underwent a minimum of two physical

examinations. In the initial study conducted by Okamura T et al. (17),

medical data were extracted from a total of 20,944 participants. The

exclusion criteria were as follows: (1) excessive alcohol consumption at

baseline, defined as ≥30 g/day for females and ≥20 g/day for males (n =

1,952); (2) pre-existing liver disease (n = 416); (3) use of medications (n

= 2,321); (4) missing data (n = 863); (5) a diagnosis of diabetes at

baseline or fasting plasma glucose (FPG) levels exceeding 6.1 mmol/L

(n = 1,131); and (6) participants not diagnosed with fatty liver disease

(n = 11,744). Ultimately, our study included 2,507 participants with

MASLD. The selection process for all participants is illustrated in

Figure 1. Ethical approval for this research was obtained from the

Clinical Research Ethics Committee of Shenzhen Second People’s

Hospital Dapeng New District Nan’ao Hospital. Additionally, the

study was conducted in accordance with the principles set forth in

the Declaration of Helsinki, ensuring adherence to all pertinent

guidelines and regulatory requirements. To ensure data

confidentiality, all personal identifiers were removed and the datasets

were anonymized before analysis. Data were stored in secure servers

with access restricted to authorized study personnel only. Throughout
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the study, data handling adhered to applicable data protection laws and

institutional policies, thereby safeguarding participant privacy

and confidentiality.
Covariates

We choose covariates using clinical expertise and previous

research results (14, 18–24). The covariates included (1)

continuous variables: age, systolic blood pressure (SBP), diastolic

blood pressure (DBP), body mass index (BMI), alcoholic intake,

high-density lipoprotein cholesterol (HDL-C), total cholesterol

(TC), alanine aminotransferase (ALT), gamma-glutamyl

transferase (GGT), aspartate aminotransferase (AST), glycosylated

hemoglobin (HbA1c), and FPG; (2) categorical variables: sex,

smoking status, and exercise habits. The initial investigation

employed a standardized self-administered questionnaire to

collect comprehensive information on participants’ medical

backgrounds and lifestyle habits. Past-smoker is defined as

individuals who have a history of smoking but has not engaged in

smoking behavior within the 12 months preceding their enrollment
Frontiers in Endocrinology 03108
in the study. Trained professionals conducted precise

anthropometric measurements, including body mass and stature.

The original study team obtained Laboratory test results using

consistent procedures under controlled conditions.
TyG-i

The TyG-i was determined by applying the formula: Ln[FPG

(mg/dL))×(TG (mg/dL)/2) (14).
Diagnosis of incident T2D

T2D was defined as having a self-reported history, HbA1c ≥

6.5%, or FPG≥7.0 mmol/L (25).
Statistical analysis

Statistical analyses were conducted utilizing Empower-Stats.

Participant baseline characteristics were assessed across quartiles
FIGURE 1

Study population.
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of the TyG-i. Data with normal distribution are expressed as means

with standard deviations, whereas non-normally distributed data

are reported as medians accompanied by interquartile ranges.

Categorical variables underwent analysis via the chi-square test,

while continuous variables were evaluated using Student’s t-test for

normally distributed data and the Mann-Whitney U test for data

not following a normal distribution.

The association between the TyG-i and T2D risk was evaluated

through three Cox regression models. DBP was omitted from the final

multivariate Cox proportional hazards regression model following the

collinearity assessment (Supplementary Table S1). Model 1 represents

the unadjusted analysis. Model 2 incorporates adjustments for

demographic and lifestyle variables, including sex, age, exercise habits,

smoking status, alcoholic intake, and SBP. Model 3 further extends the

adjustments to include biochemical parameters: ALT, GGT, AST, TC,

HDL-C, and HbA1c. Throughout the study, we documented hazard

ratios (HR) and 95% confidence intervals (CI). To explore the nonlinear

association between the TyG-i and T2D risk, restricted cubic spline

curves were generated based onModel 3 in the Cox proportional hazard

analysis. This approach allows flexible modeling of the dose-response

relationship without assuming linearity. When nonlinearity was

detected, the inflection point was identified using a recursive

algorithm designed to find the value of TyG-i at which the risk

pattern changes. Subsequently, a two-piecewise Cox proportional

hazards regression model was constructed on either side of the

inflection point, enabling estimation of separate hazard ratios for

TyG-i below and above this threshold to better characterize

the relationship.

Hypertension and advanced age are well-documented risk factors

for diabetes, as established by numerous scholarly studies. To assess the

robustness of the relationship between TyG-i and T2D risk, sensitivity

analyses were performed, excluding subjects with hypertension

(SBP≥140 mmHg or DBP≥ 90 mmHg) or elderly (age≥60 years). In

addition, to address potential residual confounding inherent in

observational studies, the E-value was calculated as a sensitivity

analysis metric. The E-value quantifies the minimum strength of

association that any unmeasured confounder would need to possess

with both the TyG-i and the incidence of diabetes, beyond the measured

covariates, in order to completely explain away the observed association.

This provides a quantitative measure of the robustness of our findings

against unmeasured confounding.

A stratified analysis including age (≤60 years old or >60 years),

gender, hypertension (DBP ≥90 mmHg or SBP ≥140 mmHg), BMI

(<25, ≥25 kg/m2), alcoholic intake (0, >0 g/wk), smoking status, and

exercise habits was conducted to evaluate the potential effects of

covariates. Statistical significance was defined as a two-tailed P value

of < 0.05.
Results

Characteristics of the study population

The present study encompassed 2,507 participants diagnosed

with MASLD, with an average age of 44.78 ± 8.33 years, of which
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80.93% were male. Over an average follow-up duration of 6.00

years, 204 participants (8.14%) developed T2D. Participants were

categorized into quartiles based on their TyG-i values: Q1 (TyG-i ≤

8.21), Q2 (8.21 < TyG-i ≤ 8.58), Q3 (8.58 < TyG-i ≤ 8.94), and Q4

(TyG-i > 8.94) (Table 1). Individuals in the highest TyG-i quartile

demonstrated higher levels of SBP, DBP, BMI, GGT, AST, ALT,

TG, TC, age, alcoholic intake, HbA1c, and FPG, as well as a greater

proportion of male participants and smokers. Additionally, these

individuals exhibited lower levels of HDL-C.
The incidence rate of T2D

Table 2 further illustrates that during the follow-up period, 373

individuals developed T2D, corresponding to overall incidence rates

of 4.63% (95%CI: 2.98%-6.27%), 6.56% (95%CI: 4.61%-8.51%),

8.12% (95%CI: 5.98%-10.26%), and 13.24% (95%CI: 10.58%-

15.90%) across the first, second, third, and fourth TyG-i groups,

respectively. The cumulative incidence rates per 100,000 person-

years were 1,356.01 for the total study population and 792.88,

1,082.48, 1,326.71, and 2,210.45 for the first, second, third, and

fourth TyG-i groups, respectively. The data indicate that higher

TyG-i levels are associated with increased incidence and cumulative

prevalence of T2D. Participants positioned within the higher TyG-i

quartiles exhibited significantly elevated incidence rates of T2D.

These findings are corroborated by the Kaplan-Meier curve

illustrating cumulative hazard, as presented in Figure 2.
The results of the association between
TyG-i and T2D risk

Since the TyG-i satisfied the proportional hazards assumption,

the relationship between TyG-i and the risk of T2D was assessed

using the Cox proportional hazards regression model. The

outcomes from the adjusted multivariable Cox proportional

hazards regression models are detailed in Table 3. An elevated

TyG-i value was linked with the occurrence of T2D. In Models 1, 2,

and 3, employing continuous TyG-i, significant associations

between TyG-i and T2D risk were observed (Model 1: HR: 2.03,

95%CI: 1.57-2.63, P<0.0001; Model 2: HR: 2.13, 95%CI: 1.62-2.79,

P<0.0001; Model 3: HR: 1.48, 95%CI: 1.05-2.09, P=0.0256).

Furthermore, in Model 3, the highest quartile of TyG-i exhibited

a 56% increased risk of T2D (HR: 1.56, 95%CI: 0.92-2.64) compared

to the lowest quartile.
Sensitive analysis

To validate our results, we used extensive sensitivity analyses.

Excluding participants with elevated blood pressure, we maintained a

positive association between TyG-i and T2D (HR=1.45, 95% CI: 1.02-

2.06, P=0.0380) (Table 4, Model 4). Similarly, excluding participants

aged ≥60 years showed consistent results, with TyG-i remaining

positively associated with T2D risk after adjusting for multiple
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covariates (HR=1.50, 95% CI: 1.03-2.17, P=0.0347) (Table 4, Model 5).

Moreover, the calculated E-value of 2.32 surpasses the relative risk

estimate of 1.78 attributed to both the TyG-i and plausible unmeasured

confounding factors. This suggests that the impact of unidentified or

unmeasured confounders on the detected association between TyG-i

and T2D is probably limited.
The analyses of the non-linear association

Table 5, Figure 3 demonstrate a U-shaped relationship between

the TyG-i and T2D. The two-piecewise Cox regression model

identified a turning point at a TyG-i value of 7.94 (P-value for the

log-likelihood ratio test = 0.004). Below this turning point, TyG-i

exhibited an inverse relationship with T2D risk (HR: 0.21, 95%CI:
Frontiers in Endocrinology 05110
0.07-0.66, P=0.0072). Conversely, when the TyG-i exceeded this

turning point, a significant positive relationship with T2D risk was

observed (HR: 1.76, 95% CI: 1.23-2.52, P=0.0020).
The results of the subgroup analysis

Figure 4 outlines the findings from subgroup analyses designed

to identify potential modifiers in the association between the TyG-i

and T2D. The analyses revealed no significant interactions with

T2D across various subgroups, including age (P for interaction =

0.3933), smoking status (P for interaction = 0.4720), gender (P for

interaction = 0.7502), exercise habits (P for interaction = 0.8092),

BMI (P for interaction = 0.4120), hypertension (P for interaction =

0.9640), and alcohol intake (P for interaction = 0.8001).
TABLE 1 The characteristics of participants and incidence rate of diabetes.

TyG-i Q1 (≤8.21) Q2 (8.21 to ≤8.58) Q3 (8.58 to ≤8.94) Q4 (>8.94) P-value

Participants 627 625 628 627

Sex <0.001

Female 188 (29.98%) 143 (22.88%) 88 (14.01%) 59 (9.41%)

Male 439 (70.02%) 482 (77.12%) 540 (85.99%) 568 (90.59%)

Age(years) 44.74 ± 8.62 44.91 ± 8.45 45.03 ± 8.18 44.45 ± 8.07 0.641

Alcoholic intake (g/wk) 1 (0-18) 1 (0-36) 1 (0-44) 4.2 (1-60) <0.001

Smoking status <0.001

Never-smoker 350 (55.82%) 316 (50.56%) 269 (42.83%) 250 (39.87%)

Past-smoker 152 (24.24%) 169 (27.04%) 161 (25.64%) 157 (25.04%)

Current-smoker 125 (19.94%) 140 (22.40%) 198 (31.53%) 220 (35.09%)

Exercise habits 0.469

No 528 (84.21%) 528 (84.48%) 529 (84.24%) 545 (86.92%)

Yes 99 (15.79%) 97 (15.52%) 99 (15.76%) 82 (13.08%)

SBP (mmHg) 120.61 ± 14.05 122.92 ± 15.19 123.66 ± 14.36 126.43 ± 15.14 <0.001

DBP (mmHg) 75.57 ± 9.87 77.39 ± 10.36 78.17 ± 9.60 80.11 ± 10.41 <0.001

BMI (kg/m2) 24.81 ± 2.98 25.37 ± 3.44 25.80 ± 3.13 26.00 ± 2.81 <0.001

ALT (IU/L) 24 (18-32.50) 25 (19-35) 28 (21-40) 31 (23-45) <0.001

AST (IU/L) 19 (16-24) 20 (16-25) 21 (17-26) 22 (18-28) <0.001

GGT (IU/L) 18 (14-25) 22 (16-30) 24 (17-35) 29 (21-41) <0.001

HDL-C (mg/dL) 52.64 ± 12.08 47.28 ± 10.28 43.77 ± 9.04 39.69 ± 8.18 <0.001

TG (mg/dL) 60 (49-69) 93 (84-101) 131 (120-142) 203 (176-252) <0.001

TC (mg/dL) 196.03 ± 32.42 205.70 ± 29.39 215.83 ± 32.94 224.13 ± 32.64 <0.001

HbA1c (%) 5.28 ± 0.32 5.29 ± 0.34 5.30 ± 0.34 5.33 ± 0.33 0.033

FPG (mg/dL) 95.15 ± 6.75 96.97 ± 6.46 97.40 ± 6.32 99.17 ± 6.06 <0.001
Values are presented as n (%) or mean ± SD or median (quartile).
TyG-i, triglyceride glucose index; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT,
gamma-glutamyl transferase; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; HbA1c, hemoglobin A1c; FPG, fasting plasma glucose.
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Discussion

In this retrospective cohort study involving 2,507 Japanese adults

with MASLD, we identified a positive association between elevated

TyG-i levels and the risk of T2D. Our findings further revealed a U-

shaped relationship between TyG-i and an increased risk of T2D.

Furthermore, sensitivity and subgroup analyses corroborated these

results, reinforcing the robustness of our conclusions.

The TyG-i has been widely used as a surrogate for insulin

resistance to predict the risk of metabolic diseases (26, 27). A meta-

analysis that included 12 studies, including 105,365 participants,

found that the TyG-i was positively associated with the risk of

MASLD (OR: 2.84, 95%CI: 2.01-4.01) (28). In a longitudinal cohort

study of 16,172 non-obese participants, individuals in the highest

quartile of the baseline TyG-i had a 3.58-fold increased risk of

developing MASLD relative to those in the lowest quartile (HR:
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4.58, 95% CI: 3.48-6.02) (29). A meta-analysis encompassing 13

cohort studies with a total of 70,380 participants identified a

significant and positive correlation between the TyG-i and T2D

risk (HR: 2.44, 95% CI: 2.17-2.76) (30). In addition, a longitudinal

cohort study that included 179541 Chinese adults found a positive

nonlinear association between TyG-i and the risk of prediabetes and

T2D after adjusting for confounders(HR: 1.67, 95%CI: 1.62-1.71, P<

0.001) (13). MASLD is a common chronic liver disease that is

closely associated with metabolic syndrome (31). Past evidence has

shown that the prevalence of diabetes is significantly increased in

subjects with MASLD (8). However, there have been few studies

discussing the relationship between TyG-i and T2D in the MASLD

population. In our study, TyG-i was positively related to the risk of

developing diabetes in people with MASLD when TyG-i > 7.94.

Therefore, early intervention using the TyG-i may be effective in

reducing the risk of diabetes in patients with MASLD.
TABLE 2 Incidence rate of incident diabetes.

TyG-i Participants (n) Diabetes events (n) Cumulative incidence (95% CI) (%) Per 100,000 person-year

Total 2507 204 8.14 (7.07-9.21) 1,356.01

Q1 627 29 4.63 (2.98-6.27) 792.88

Q2 625 41 6.56 (4.61-8.51) 1,082.48

Q3 628 51 8.12 (5.98-10.26) 1,326.71

Q4 627 83 13.24 (10.58-15.90) 2,210.45

P for trend <0.001 <0.001
TyG-i, triglyceride glucose index; CI, confidence interval; T2D, type 2 diabetes.
FIGURE 2

Kaplan–Meier event-free survival curve in females. Kaplan–Meier analysis of incident diabetes based on TyG-i quartiles (log-rank, P < 0.0001).
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Our research uncovered a U-shaped relationship between the

TyG-i and T2D risk after controlling for confounders. Specifically, the

analysis revealed that when TyG-i levels were below 7.94, there was a

79% decrease in the risk of T2D development for each one-unit

increase in TyG-i. Conversely, a positive association was found

between TyG-i and T2D risk when TyG-i levels exceeded 7.94.

Understanding this U-shaped relationship is essential for

identifying individuals exhibiting altered metabolic profiles across

different TyG-i ranges. Those with values near the 7.94 inflection

point may constitute a key population for targeted preventive

interventions. Clinicians should closely monitor TyG-i as an early

biomarker indicative of elevated T2D risk, particularly among

patients with MASLD. Interventions aimed at sustaining TyG-i

around the inflection point through lifestyle modifications—

including dietary improvements, physical activity enhancement,

and weight management—should be prioritized for individuals

approaching this critical level. Such proactive measures could delay

or prevent the progression from insulin resistance to overt T2D,

thereby improving clinical outcomes. Additionally, the prospect of
Frontiers in Endocrinology 07112
pharmacological strategies targeting the TyG-i warrants investigation.

As the understanding of TyG-i’s metabolic implications advances,

clinical trials designed to assess treatments that modulate TyG-i are

necessary to expand therapeutic options for high-risk populations.

From a public health perspective, our findings underscore the

importance of recognizing TyG-i as a valuable marker in T2D risk

stratification. Health professionals and policymakers should consider

integrating TyG-i assessments into preventive care frameworks to

optimize resource allocation and intervention efficacy. Furthermore,

educational programs aimed at raising awareness of the significance

of metabolic health and elevated TyG-i levels could encourage early

evaluation and engagement in risk-reducing behaviors.

The precise mechanisms underlying the U-shaped relationship

between the TyG-i and the risk of developing diabetes in individuals

with MASLD are still not fully understood. There is a notable positive

association between higher TyG-i values and diabetes, likely linked to

insulin resistance. Persistently high TG levels intensify liver fat

accumulation, causing increased hepatic triglyceride production

and worsening insulin sensitivity (32). This metabolic disturbance

enhances lipogenesis, which further reduces insulin’s effectiveness in

managing glucose metabolism and increases liver lipid accumulation,

eventually damaging pancreatic beta-cell functionality (33). The

build-up of lipid droplets within pancreatic islets disrupts glucose-
TABLE 3 Relationship between TyG-i and incident diabetes in different models.

Variable Model 1 (HR, 95%CI, P) Model 2 (HR, 95%CI, P) Model 3 (HR, 95%CI, P)

TyG-i 2.03 (1.57, 2.63) <0.0001 2.13 (1.62, 2.79) <0.0001 1.48 (1.05, 2.09) 0.0256

TyG-i (quartile)

Q1 Ref Ref Ref

Q2 1.33 (0.83, 2.15) 0.2349 1.33 (0.82, 2.14) 0.2455 1.01 (0.62, 1.66) 0.9545

Q3 1.63 (1.03, 2.57) 0.0361 1.63 (1.03, 2.60) 0.0386 1.28 (0.77, 2.12) 0.3375

Q4 2.76 (1.81, 4.21) <0.0001 2.82 (1.82, 4.37) <0.0001 1.56 (0.92, 2.64) 0.0967

P for trend <0.0001 <0.0001 0.0403
Model 1: we did not adjust for any covariants.
Model 2: we adjusted for sex, age, alcoholic intake, smoking status, exercise habits, and SBP.
Model 3: we adjusted for sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT, AST, GGT, HDL-C, TC, and HbA1c.
HR, hazard ratio; CI, confidence interval; Ref, Reference; TyG-i, triglyceride glucose index.
TABLE 4 Relationship between TyG-i and incident T2D in different
sensitivity analyses.

Exposure
Model 4
(HR, 95%CI, P)

Model 5
(HR, 95%CI, P)

TyG-i 1.45 (1.02, 2.06) 0.0380 1.50 (1.03, 2.17) 0.0347

TyG-i (quartile)

Q1 Ref Ref

Q2 1.04 (0.63, 1.72) 0.8763 1.21 (0.71, 2.06) 0.4947

Q3 1.25 (0.74, 2.09) 0.4024 1.36 (0.78, 2.39) 0.2760

Q4 1.54 (0.90, 2.63) 0.1135 1.76 (0.99, 3.15) 0.0548

P for trend 0.0568 0.0386
Model 4 was sensitivity analysis after excluding individuals with age≥60 years. We adjusted
sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT, AST, GGT, HDL-C, TC,
and HbA1c.
Model 5 was sensitivity analysis after excluding individuals with SBP≥140 mmHg or DBP≥ 90
mmHg. We adjusted sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT,
AST, GGT, HDL-C, TC, and HbA1c.
HR, hazard ratios; CI, confidence; Ref, reference; TyG-i, triglyceride glucose index.
TABLE 5 The result of the two-piecewise Cox proportional hazards
regression model.

Incident Diabetes HR (95%CI) P-value

Fitting model by standard linear regression 1.48 (1.05, 2.09) 0.0256

Fitting model by two-piecewise Cox proportional
hazards regression

The inflection point of TyG-i 7.94

≤7.94 0.21 (0.07, 0.66) 0.0072

>7.94 1.76 (1.23, 2.52) 0.0020

P for the log-likelihood ratio test 0.004
fr
We adjusted sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT, AST, GGT,
HDL-C, TC, and HbA1c.
HR, hazard ratios; CI, confidence; TyG-i, triglyceride glucose index.
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FIGURE 3

The nonlinear relationship between TyG-i and incident diabetes. The nonlinear relationship was detected after adjusting for sex, age, alcoholic
intake, smoking status, exercise habits, SBP, ALT, AST, GGT, HDL-C, TC, and HbA1c.
FIGURE 4

Effect size of TyG-i on diabetes in prespecified and exploratory subgroups. The model was adjusted for sex, age, alcohol consumption, smoking
status, exercise habits, systolic blood pressure, ALT, AST, GGT, HDL-C, total cholesterol, and HbA1c, excluding the stratification variable in each
instance.
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induced insulin release, leading to diabetes onset (34, 35). Moreover,

low TyG-i levels are similarly linked to an increased risk of

developing diabetes. Interestingly, Black individuals exhibit

unexpectedly low TG levels despite high insulin resistance or risk

factors for diabetes, a phenomenon potentially explained by the

inhibition of insulin-sensitive lipase activity and the consequent

reduction in free fatty acid release from fat tissue due to

hyperinsulinemia (36–39). Additionally, those with the PNPLA3

148M allele have lower triglyceride levels, increased insulin

resistance, and greater vulnerability to diabetes (40). Pancreatic a-
cells are vital for maintaining glucose, amino acid, and lipid balance

(41). Malfunctions in these a-cells can result in hypoglycemia, which

may indicate a-cell dysregulation, a core pathogenic process in

diabetes development (42).

Our study is limited to a Japanese cohort, which may constrain

the generalizability of our findings. It is essential to consider how

genetic, dietary, and healthcare system differences might influence

the observed associations between the TyG-i and the risk of T2D.

Genetic predispositions play a significant role in metabolic

regulation and the pathogenesis of diabetes. Ethnic variations in

genes related to lipid metabolism and insulin sensitivity could

modulate the relationship between the TyG-i and diabetes risk.

For example, certain genetic polymorphisms prevalent in Asian

populations may impact triglyceride levels and glucose homeostasis,

potentially yielding risk profiles distinct from those in other ethnic

groups (43). The traditional Japanese diet—characterized by high

consumption of rice, fish, and soy products—imposes unique

metabolic effects (44). Dietary patterns may interact with genetic

factors to influence TyG-i levels and their associations with diabetes

risk. Notably, omega-3 fatty acids abundant in fish have been

documented to improve insulin sensitivity, which could affect

metabolic outcomes within our cohort (45). Recognizing dietary

variations across populations is critical when interpreting our

results, as these differences could inform culturally tailored

dietary recommendations for T2D prevention. Moreover, the

Japanese healthcare system, with its emphasis on universal

coverage and preventive care, may significantly impact the

management of metabolic diseases (46, 47). Routine health

screenings and early interventions are commonplace in Japan,

potentially facilitating better management of conditions associated

with the TyG-i, such as MASLD. This proactive healthcare

approach may alter the observed relationship between TyG-i and

diabetes risk, underscoring the need for caution when extrapolating

our findings to populations with differing healthcare

infrastructures. In light of these considerations, we stress the

importance of further research involving diverse populations to

validate the U-shaped association between the TyG-i and T2D risk.

Future investigations should include a broad range of ethnic groups

to examine the consistency and applicability of these findings across

varied demographic and clinical contexts.

This study offers several notable advantages. Firstly, we

identified a U-shaped association, allowing us to pinpoint the

optimal inflection point where the TyG-i affects T2D risk.

Secondly, we applied rigorous statistical adjustments to our

results to reduce confounding factors, thereby enhancing their
Frontiers in Endocrinology 09114
validity. Lastly, we employed a diverse array of sensitivity analyses

to bolster the validity and reliability of our results, thereby

enhancing the overall methodological strength of the study.

Despite these strengths, several limitations warrant consideration.

Primarily, the research focused on a Japanese cohort, which may

restrict the applicability of the results to other ethnic and geographic

populations. Additionally, the definition of T2D employed in this study

did not incorporate oral glucose tolerance testing, potentially resulting

in an underestimation of T2D incidence. Secondly, although we have

controlled for known confounding variables, the possibility remains

that unmeasured factors—such as certain lifestyle habits or genetic

predispositions—may have influenced the observed relationship

between the TyG-i and T2D. Nevertheless, the calculated E-value of

2.32 exceeds the relative risk of 1.78 associated with both TyG-i and

potential unknown confounders, implying that the effect of such

unmeasured variables on this association is likely minimal. In future

prospective investigations, we will strive to systematically collect and

incorporate comprehensive information on lifestyle and genetic factors

to further validate and strengthen our results. Thirdly, the absence of

repeated measurements of the TyG-i precluded the assessment of the

impact of longitudinal dynamic changes in TyG-i on T2D risk. The

TyG-i, like other metabolic markers, is subject to fluctuations

influenced by various factors, including dietary habits, physical

activity, weight changes, and underlying metabolic conditions. These

dynamic changes may significantly impact an individual’s risk profile

for T2D. Incorporating analyses of TyG-i variability over time could

enhance our understanding of its relationship with diabetes risk. In

light of these considerations, we plan to design future studies to

investigate the relationship between changes in the TyG-i and

diabetes prognosis.
Conclusion

This research revealed a U-shaped relationship between the

TyG-i and the risk of T2D in adults with MASLD. These results

underscore that early intervention using the TyG-i may effectively

improve the risk of T2D in patients with MASLD.
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combined with HFpEF
Xiaodong Zhang1,2*†, Nan Niu2†, Shengqin Yu1, Xinxin Zhang1,
Xuefu Chen1, Ming Yu2, Wenmiao Zhang2, Ying Liu1*

and Zhenwei Wang3*

1Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,
2Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China,
3Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Aims: This study was conducted to evaluate the correlation between

triglyceride-glucose index (TyG) and major adverse cardiovascular events

(MACE) in patients with type 2 diabetes mellitus (T2DM) and heart failure with

preserved ejection fraction (HFpEF) after acute myocardial infarction (AMI).

Methods: This retrospective study at the First Affiliated Hospital of Dalian Medical

University included 400 AMI patients with T2DM and HFpEF who underwent

percutaneous coronary intervention (PCI) between 1 January 2018 and 1 January

2023. The study was conducted using univariate and multivariate Cox regression

analyses, subgroup analyses, receiver operating characteristic (ROC) curves, and

Kaplan–Meier survival curves to assess the correlation between the TyG index

and MACE.

Results: Multivariate Cox regression analyses showed that in model 3 with

variables fully adjusted, when TyG was used as a categorical variable, the risk

of MACE in the TyG T2 and T3 groups was 1.622 times and 2.247 times higher

than that in the T1 group, respectively (P < 0.05). When TyG was used as a

continuous variable, the risk of MACE increased by 49.5% for every 1 unit increase

in the TyG index (P < 0.001). In the subgroup analysis, elevated TyG index levels

were consistently associated with an increased risk of MACE across multiple

clinical subgroups (P < 0.05). ROC analysis showed that the TyG index

significantly predicted the occurrence of MACE (AUC: 0.635, 95% CI: 0.580–

0.691, P < 0.001), all-cause death (AUC: 0.565, 95% CI: 0.508–0.622, P = 0.027),

non-fatal myocardial infarction (AUC: 0.617, 95% CI: 0.542–0.693, P = 0.004),

and unplanned revascularization (AUC: 0.644, 95% CI: 0.578–0.710, P < 0.001).

The Kaplan–Meier survival curves revealed statistically significant differences in

survival probabilities for the occurrence of MACE, all-cause death, non-fatal
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myocardial infarction, and unplanned revascularization across the three TyG

index groups as the follow-up period progressed (P < 0.05).

Conclusions: The TyG index was independently associated with MACE in T2DM

patients with AMI combined with HFpEF.
KEYWORDS

triglyceride-glucose index, acute myocardial infarction, heart failure with preserved
ejection fraction, major adverse cardiovascular events, type 2 diabetes mellitus
1 Introduction

Over the past three decades, significant advances have been made

in the treatment of coronary heart disease (CHD) and acute

myocardial infarction (AMI). However, AMI, the most lethal and

prevalent form of CHD, continues to be the most serious and

dangerous type, remaining the leading cause of heart failure (HF)

(1, 2). According to a systematic review and meta-analysis published

in 2023 (with data updated through September 2022), the global

prevalence of MI is 3.8% in individuals under 60 years old and rises to

9.5% in those over 60, indicating a marked age-related increase (3).

MI is not only a critical manifestation of CHD but also a major

precipitating factor for HF. In recent years, there has been increased

attention on MI-related HF, particularly in the context of metabolic

dysfunction. The prognostic value of this condition in CHD patients

with type 2 diabetes mellitus (T2DM) is of paramount importance.

Given that diabetes accelerates atherosclerosis and increases the risk

of both MI and subsequent HF, understanding the interplay between

these conditions is essential for improving risk stratification and

guiding targeted interventions.

Several factors contribute to the risk of AMI, including poor

glycemic control, hypertension, hyperlipidemia, mental stress, air

pollution, and obesity (4, 5). If these risk factors are not effectively

managed, they can lead to adverse left ventricular remodeling, thereby

exacerbating the incidence of HF following AMI (6). Moreover, the

prognosis of HF after AMI is notably worse in patients with T2DM

compared to those without glucose disorders (7, 8). Furthermore, in a

large cohort of 4,082 Chinese patients with HF, the 12-month follow-

up revealed a high all-causemortality rate of 19.6%, a rehospitalization

rate of 24.4%, and a composite event rate of 40.15%, with overall

health-related quality of life (HRQL) beingpoor as indicatedbyamean

MLHFQ score of 42.9—significantly higher in women than in men—

and HRQL independently predicting both all-cause mortality and HF

hospitalization (9). Despite this, current research predominantly

focuses on the prevention and treatment of ischemic HF, with little

attention given to further classifying HF post-AMI or exploring the

link between glycemic metabolism abnormalities and HF onset,

particularly in the context of heart failure with preserved ejection

fraction (HFpEF) (10). This research gap is of critical importance, as

HFpEF now accounts for approximately half of all HF cases and is

closely associated with metabolic comorbidities such as diabetes,
02118
obesity, and hypertension, with emerging evidence indicating that

systemic inflammation, microvascular endothelial dysfunction, and

impaired myocardial energetics—often driven by glycemic

dysregulation—play central roles in its pathogenesis (11). Therefore,

it is crucial to examine whether risk factors associated with AMI in

T2DM patients influence the outcomes of HFpEF or affect long-term

cardiovascular outcomes following AMI.

One key factor in the development of cardiovascular diseases

(CVD) is insulin resistance (IR), which is often a hallmark of

metabolic disorders and systemic inflammation (12). IR

frequently coexists with obesity, hypertension, and dyslipidemia,

all of which are significant risk factors for CVD development and

prognosis. The triglyceride-glucose index (TyG), derived from

fasting triglyceride (TG) and fasting plasma glucose (FPG) levels,

has emerged as a reliable indicator of IR in high-risk populations

(13). In addition to its association with diabetes, the TyG index

is also strongly linked to hypertension, dyslipidemia, metabolic

syndrome, cardiovascular diseases, and mortality (13–17).

Furthermore, Sun et al. demonstrated in a retrospective study of

2,055 ischemic HF patients undergoing percutaneous coronary

intervention (PCI) that the TyG index was independently and

positively associated with the risk of major adverse cardiovascular

events (MACE), with higher TyG levels corresponding to an

increased incidence of adverse outcomes (18). Additionally, in a

multicenter cohort study of 277 patients with newly diagnosed

ischemic cardiomyopathy and HFpEF undergoing coronary artery

bypass grafting (CABG), Ruan et al. demonstrated that the TyG

index was an independent predictor of MACE, showing a linear

positive association with risk, and that incorporating the TyG index

into traditional cardiovascular risk models significantly improved

prognostic accuracy through enhanced discrimination, calibration,

and reclassification metrics (19).

However, despite the accumulation of substantial research

evidence, some studies—particularly those focusing on patients with

T2DM complicated by AMI and HFpEF—have yet to establish a clear

association between the TyG index and MACE. This indicates that

further validation is needed to confirm the predictive value of the TyG

index for MACE in this specific patient population. Therefore, to

address this research gap, the present study aims to focus on T2DM

patients with AMI and HFpEF who have undergone interventional

therapy, exploring the association between the TyG index and MACE.
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2 Methods

2.1 Study population and grouping

This was a single-center, retrospective cohort study that

included patients with T2DM and AMI who were admitted to the

Department of Cardiology at the First Affiliated Hospital of Dalian

Medical University for PCI. These patients were diagnosed with

HFpEF between 1 January 2018 and 1 January 2023. Patients with

end-stage hepatic or renal failure, coagulation abnormalities, aortic

coarctation, or incomplete data, as well as those lost to follow-up or

who did not undergo PCI, were excluded from the study. After

excluding these individuals, a total of 400 patients were finally

included in the analysis. All procedures were conducted in

compliance with the Declaration of Helsinki and its amendments.

The study protocol was approved by the Institutional Review Board

of the First Affiliated Hospital of Dalian Medical University.

Informed consent was obtained from all participants prior to the

collection of clinical data.
2.2 Data collection and definitions

All clinical data and study information were collected from

Yidu Cloud, one of the largest medical databases in China, at the

First Hospital of Dalian Medical University. These data included

patient demographics, comorbidities, medication information,

anthropometrics, blood biomarkers, medication regimens,

echocardiographic results, and data related to PCI procedures.

Demographic data comprised age, gender, smoking, and family

history of CHD. Smoking was defined as continuous or cumulative

smoking for 6 months or more prior to enrollment. A CHD family

history was defined as a genetic predisposition to the disease, with at

least two or more close relatives affected.

Comorbidity data included hypertension, stroke, and atrial

fibrillation (AF). Hypertension in adults was diagnosed based on

a systolic blood pressure (SBP) ≥140 mmHg and/or a diastolic

blood pressure (DBP) ≥90 mmHg (20). Diabetes was diagnosed in

patients with symptoms such as polydipsia, polyuria, polyphagia,

and weight loss, combined with a blood glucose level greater than

11.1 mmol/L at any time, a fasting blood glucose greater than 7.0

mmol/L, or hemoglobin A1c (HbA1c) ≥6.5%, or a 2-h oral glucose

tolerance test blood glucose greater than 11.1 mmol/L (21). Stroke

was defined as the impairment of blood circulation in the brain,

leading to brain tissue damage due to the obstruction or rupture of

cerebral blood vessels, including both ischemic and hemorrhagic

stroke types (22). AF was defined as a rapid arrhythmia with

disordered electrical activity in the atria, resulting in irregular and

rapid fibrillation waves. The study included all forms of AF,

including first diagnosis, paroxysmal, persistent, long-term

persistent, and permanent atrial fibrillation (23). HFpEF was

diagnosed based on the fulfillment of all the following three

criteria: 1) the presence of typical HF symptoms and/or signs,

such as shortness of breath, fatigue, or reduced exercise capacity;

2) a left ventricular ejection fraction (LVEF) of 50% or higher; and
Frontiers in Endocrinology 03119
3) objective indicators of diastolic dysfunction and/or elevated left

ventricular filling pressures (24). These indicators included

structural abnormalities (e.g., left atrial volume index >34 mL/m2,

left ventricular mass index ≥95 g/m2 in women or ≥115 g/m2 in

men, or relative wall thickness >0.42), functional impairments (e.g.,

E/e′ ratio >9, tricuspid regurgitation velocity >2.8 m/s, or

pulmonary artery systolic pressure >35 mmHg), and elevated

levels of natriuretic peptides [N-terminal pro-B-type natriuretic

peptide (NT-proBNP) >125 pg/mL or B-type natriuretic peptide

(BNP) >35 pg/mL in sinus rhythm; NT-proBNP >365 pg/mL or

BNP >105 pg/mL in atrial fibrillation] (24).

Anthropometric data included body mass index (BMI), SBP,

and DBP. BMI was calculated using the formula: BMI = weight

(kg)/height (m)2. Additional data collected included the presence of

ST-segment elevation myocardial infarction (STEMI) and Killip

classification. STEMI was defined as marked ST-segment elevation

on the electrocardiogram, usually caused by the rupture of an

intracoronary plaque or thrombosis leading to coronary

occlusion, which results in sustained myocardial ischemia and

hypoxia, ultimately causing myocardial necrosis (25). The Killip

classification, a grading system for assessing the cardiac functional

status of patients with AMI, is divided into four grades (I–IV), with

the condition progressively worsening (26).

Hematological biomarkers included FPG, HbA1c, albumin, uric

acid (UA), estimate glomerular filtration rate (eGFR) [calculated using

the Modification of Diet in Renal Disease (MDRD) equation: eGFR =

175 × (serum creatinine [(mg/dL)])–1.234 × (age [years])–0.179 × 0.79

(if female)] (27), TG, total cholesterol (TC), high-density lipoprotein

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),

fibrinogen (FIB), D-dimer, high-sensitivity C-reactive protein (Hs-

CRP), cardiac biomarkers (troponin I), and B-type natriuretic

peptide (BNP).

Discharge medication data included the use of antiplatelet

agents (such as aspirin, clopidogrel, and ticagrelor), statins,

angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II

receptor blockers (ARBs), and b-blockers. Echocardiographic data
included LVEF. All echocardiographic data were recorded by an

experienced cardiac sonographer using a cardiac ultrasound

machine. Procedure-related data included details on the

multivessel disease. Multivessel disease was defined as lesions

involving two or more coronary arteries with ≥50% stenosis.
2.3 Study endpoints and follow-up

In this study, patients were enrolled for follow-up starting from

the date of their first hospitalization, with the follow-up period

extending until either the patient’s death or 31 July 2024. The

median follow-up time was 24.63 months. The study endpoint was

MACE, defined as a composite of one or more of the following: all-

cause death, unplanned revascularization, and non-fatal myocardial

infarction. To identify clinical characteristics associated with

adverse cardiovascular outcomes, baseline variables were

compared between patients with and without MACE. This

grouping approach was intended to explore potential risk factors
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for MACE. All enrolled patients were encouraged to monitor their

condition regularly through outpatient services. For those who did

not complete the follow-up program, efforts were made to contact

them by telephone to ensure data completeness.
2.4 Calculation method of the TyG index

FPG and TG levels were collected for all patients during

hospitalization. Specifically, blood samples were obtained in the

early morning of the day following admission after an overnight fast

of at least 8 h. All biochemical measurements were performed at the

same clinical laboratory within the hospital using standardized

procedures, ensuring consistency in both testing methods and

fasting conditions. The formula for calculating the TyG index was

as follows: TyG = Ln [fasting TG (mg/dL) × FPG (mg/dL)/2] (28).

Based on the tertiles of the TyG index, patients were divided into

three groups: T1 (≤8.76), T2 (8.77–9.51), and T3 (>9.51). This

tertile-based stratification is widely used in metabolic and

cardiovascular research to ensure statistical comparability across

groups and avoid arbitrary threshold selection. Baseline

characteristics were analyzed across these TyG tertiles to evaluate

the association between metabolic risk status and clinical features

or outcomes.
2.5 Statistical analysis

Statistical analyses were performed using SPSS statistical software

version 26.0 (SPSS Inc., Chicago, IL, USA). Categorical variables were

expressed as percentages. Continuous variables that were normally

distributed were presented as means ± standard deviation, while non-

normally distributed continuous variables were expressed as medians

with interquartile ranges. To compare the differences between two or

more groups, the chi-square test was used for categorical variables.

For continuous variables, the independent samples t-test was applied

for two-group comparisons with a normal distribution, while one-

way ANOVA was used for comparisons involving three groups. For

non-normally distributed data, the Mann–Whitney U test or

Kruskal–Wallis test was applied, depending on the number of

groups. Univariate and multivariate Cox regression analyses were

performed to identify independent factors predicting the MACE. The

proportional hazards assumption was tested using Schoenfeld

residuals, and no significant violations were observed. Covariates

included in the multivariate logistic regression analysis were those

that showed a statistically significant association with MACE (P <

0.05) in the univariate logistic regression analysis. In addition,

subgroup analyses were performed using Cox regression within

different clinical subgroups (such as age, sex, hypertension, STEMI

status, Killip classification, and multivessel disease) to evaluate the

association between TyG tertiles and MACE in each category. The

rationale for conducting subgroup analyses was to explore whether

the predictive value of the TyG index for MACE remained consistent

across various clinically relevant populations. These subgroups were

selected based on their known associations with cardiovascular risk
Frontiers in Endocrinology 04120
and their clinical importance in the context of HF, AMI, and MACE.

Receiver operating characteristic (ROC) curve analysis was

performed to evaluate the predictive power of the TyG index for

the events. The area under the curve (AUC) was calculated for each

endpoint to determine the diagnostic accuracy. Kaplan–Meier

analysis was employed to estimate the cumulative incidence of

clinical adverse events, while the log-rank test was applied to

compare survival distributions across groups. A two-sided P-value

of <0.05 was considered statistically significant.
3 Results

3.1 Baseline demographics and clinical
characteristics

Table 1 presents the clinical characteristics of the population,

grouped according to the occurrence of MACE. The results showed

that, compared to the group without MACE, the MACE group had

a higher median age; a higher probability of being classified as Killip

class III–IV; and elevated SBP, FPG, FIB, D-dimer, BNP, and TyG

index levels. Moreover, the MACE group had higher rates of

clopidogrel use and multivessel disease (P < 0.05). In contrast, the

MACE group had lower rates of STEMI and use of aspirin and

ticagrelor and lower levels of eGFR (P < 0.05).

Table 2 displays the clinical characteristics of the cohort,

grouped according to TyG tertiles. The TyG tertiles were defined

as follows: TyG-T1: ≤8.76, TyG-T2: 8.77–9.51, and TyG-T3: >9.51.

The results indicated that significant differences were observed

among the three TyG groups in terms of age, Killip classification,

SBP, DBP, FPG, HbA1c, TG, TC, LDL-C, HDL-C, UA, eGFR, FIB,

use of b-blockers, LVEF, all-cause death, MACE, non-fatal

myocardial infarction, and unplanned revascularization (P <

0.05). Specifically, the incidence of all-cause death, MACE, non-

fatal myocardial infarction, and unplanned revascularization

increased with higher TyG tertile levels (P < 0.05).
3.2 Association between TyG and MACE

Table 3 presents the results of the univariate Cox regression

analysis for MACE. The analysis showed that age, STEMI, Killip

classification III–IV, hypertension, SBP, FPG, eGFR, troponin I,

BNP, aspirin, clopidogrel, ticagrelor, ACEI/ARB, multivessel

disease, and the TyG index were all significantly correlated with

the risk of MACE (P < 0.05).

Table 4 displays the results of the multivariate Cox regression

analyses for TyG and MACE. In the unadjusted model 1, as well as

in model 2 (which was adjusted for age, hypertension, STEMI, and

Killip classification), both TyG as a categorical variable and as a

continuous variable were strongly associated with the risk of MACE

(P < 0.05). Furthermore, in model 3, which was fully adjusted for

age, hypertension, STEMI, Killip classification, eGFR, aspirin,

ACEI/ARB, and multivessel disease, when TyG was used as a

categorical variable, the risk of MACE in the TyG-T2 and T3
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TABLE 1 Clinical characteristics according to MACE.

Variables Total population Non-MACE MACE P-value

Age, years 74.39 ± 11.15 71.84 ± 10.93 75.88 ± 11.03 <0.001

Male, n (%) 209 (52.3) 84 (56.8) 125 (49.6) 0.167

Smoking, n (%) 121 (30.3) 48 (32.4) 73 (29.0) 0.466

STEMI, n (%) 172 (43.0) 82 (55.4) 90 (35.7) <0.001

Killip class, n (%) 0.027

I 197 (49.3) 82 (55.4) 115 (45.6)

II 147 (36.8) 55 (37.2) 92 (36.5)

III 32 (8.0) 7 (4.7) 25 (9.9)

IV 24 (6.0) 4 (2.7) 20 (7.9)

Family history of CHD, n (%) 62 (15.5) 23 (15.5) 39 (15.5) 0.986

Hypertension, n (%) 278 (69.5) 95 (64.2) 183 (72.6) 0.077

Stroke, n (%) 53 (13.3) 18 (12.2) 35 (13.9) 0.623

AF, n (%) 36 (9.0) 8 (5.4) 28 (11.1) 0.054

BMI, kg/m2 26.76 ± 3.95 26.93 ± 4.27 26.66 ± 3.76 0.515

SBP, mmHg 132.11 ± 29.59 128.16 ± 28.67 134.43 ± 29.93 0.040

DBP, mmHg 74.74 ± 15.31 74.46 ± 15.69 74.90 ± 15.11 0.779

FPG, mmol/L 8.84 (5.80, 13.44) 6.36 (5.21, 8.84) 10.56 (6.61, 14.84) <0.001

HbA1c, % 7.40 (6.13, 8.80) 7.30 (6.00, 8.90) 7.50 (6.30, 8.80) 0.163

TG, mmol/L 1.28 (0.94, 1.84) 1.37 (0.98, 1.82) 1.25 (0.92, 1.85) 0.465

TC, mmol/L 4.67 ± 1.29 4.73 ± 1.32 4.63 ± 1.27 0.423

LDL-C, mmol/L 2.92 ± 0.93 2.95 ± 0.88 2.90 ± 0.95 0.549

HDL-C, mmol/L 1.02 ± 0.29 1.04 ± 0.31 1.02 ± 0.28 0.443

Albumin, g/L 35.97 ± 3.96 36.21 ± 4.10 35.83 ± 3.87 0.354

UA, mmol/L 387.55 ± 127.87 394.12 ± 121.86 383.69 ± 131.35 0.432

eGFR, mL/min 67.50 (46.25, 85.00) 71.00 (53.25, 88.50) 65.00 (40.00, 84.75) 0.008

Hs-CRP, mg/L 44.70 (24.00, 88.80) 44.70 (21.75, 90.05) 44.80 (24.35, 87.50) 0.880

FIB, g/L 3.59 (2.78, 4.43) 3.35 (2.59, 4.15) 3.73 (2.93, 4.49) 0.029

D-dimer, mg/L 240.00 (0.77, 779.37) 130.00 (0.60, 630.00) 310.00 (1.14, 779.37) 0.004

Troponin I, ng/mL 8.16 (1.50, 48.94) 9.76 (1.96, 94.86) 7.63 (1.40, 39.11) 0.100

BNP, pg/mL 696.59 (523.73, 1,078.49) 650.83 (508.30, 958.26) 735.39 (529.34, 1,146.09) 0.015

Discharge medication, n (%)

Aspirin 295 (73.8) 121 (81.8) 174 (69.0) 0.005

Clopidogrel 234 (58.5) 73 (49.3) 161 (63.9) 0.004

Ticagrelor 166 (41.5) 75 (50.7) 91 (36.1) 0.004

Statins 374 (93.5) 138 (93.2) 236 (93.7) 0.873

ACEI/ARB 308 (77.0) 106 (71.6) 202 (80.2) 0.050

b-Blockers 274 (68.5) 101 (68.2) 173 (68.7) 0.932

LVEF, % 54.73 ± 3.05 54.86 ± 2.91 54.66 ± 3.13 0.528

(Continued)
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TABLE 1 Continued

Variables Total population Non-MACE MACE P-value

Discharge medication, n (%)

Multivessel disease, n (%) 189 (47.3) 59 (39.9) 130 (51.6) 0.023

TyG index 9.17 ± 0.75 8.95 ± 0.68 9.30 ± 0.77 <0.001
F
rontiers in Endocrinology
 06122
MACE, major adverse cardiovascular events; STEMI, ST-elevation myocardial infarction; CHD, coronary heart disease; AF, atrial fibrillation; BMI, body mass index; SBP, systolic blood pressure;
DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density
lipoprotein cholesterol; UA, uric acid; eGFR, estimated glomerular filtration rate; Hs-CRP, high-sensitivity C-reactive protein; FIB, fibrinogen; BNP, B-type natriuretic peptide; ACEI,
angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; LVEF, left ventricular ejection fraction; TyG index, triglyceride-glucose index.
TABLE 2 Clinical characteristics according to TyG tertiles.

Variables T1 T2 T3 P-value

Age, years 76.70 ± 10.06 74.03 ± 11.16 72.44 ± 11.83 0.007

Male, n (%) 77 (57.9) 65 (48.9) 67 (50.0) 0.275

Smoking, n (%) 37 (27.8) 39 (29.3) 45 (33.6) 0.568

STEMI, n (%) 56 (42.1) 57 (42.9) 59 (44.0) 0.950

Killip class, n (%) 0.038

I 69 (51.9) 71 (53.4) 57 (42.5)

II 50 (37.6) 49 (36.8) 48 (35.8)

III 11 (8.3) 6 (4.5) 15 (11.2)

IV 3 (2.3) 7 (5.3) 14 (10.4)

Family history of CHD, n (%) 15 (11.3) 21 (15.8) 26 (19.4) 0.185

Hypertension, n (%) 85 (63.9) 91 (68.4) 102 (76.1) 0.091

Stroke, n (%) 20 (15.0) 14 (10.5) 19 (14.2) 0.515

AF, n (%) 13 (9.8) 6 (4.5) 17 (12.7) 0.061

BMI, kg/m2 26.50 ± 4.28 26.43 ± 3.75 27.36 ± 3.77 0.099

SBP, mmHg 129.37 ± 31.25 129.62 ± 24.89 137.30 ± 31.65 0.045

DBP, mmHg 72.95 ± 15.11 73.54 ± 12.84 77.71 ± 17.30 0.021

FPG, mmol/L 5.53 (4.85, 6.24) 9.02 (6.55, 12.35) 14.34 (10.99, 17.13) <0.001

HbA1c, % 6.50 (5.80, 7.50) 7.50 (6.15, 8.75) 8.30 (7.28, 9.60) <0.001

TG, mmol/L 0.92 (0.74, 1.18) 1.31 (1.01, 1.65) 2.04 (1.45, 2.87) <0.001

TC, mmol/L 4.24 ± 1.19 4.57 ± 1.07 5.19 ± 1.41 <0.001

LDL-C, mmol/L 2.80 ± 0.84 2.88 ± 0.93 3.07 ± 1.00 0.048

HDL-C, mmol/L 1.06 ± 0.33 1.04 ± 0.27 0.96 ± 0.26 0.012

Albumin, g/L 35.70 ± 3.79 36.15 ± 3.87 36.07 ± 4.21 0.613

UA, mmol/L 388.10 ± 133.64 366.77 ± 122.97 407.63 ± 124.41 0.033

eGFR, mL/min 71.00 (50.50, 86.00) 70.00 (51.00, 93.50) 57.50 (36.50, 79.25) 0.002

Hs-CRP, mg/L 47.20 (24.00, 89.85) 48.20 (29.90, 92.10) 41.50 (21.30, 83.60) 0.130

FIB, g/L 3.32 (2.59, 4.04) 3.51 (2.71, 4.36) 3.73 (3.13, 4.99) 0.001

D-dimer, mg/L 290.00 (1.20, 779.37) 130.00 (0.63, 690.00) 215.00 (0.97, 779.37) 0.086

Troponin I, ng/mL 9.95 (1.33, 69.68) 6.41 (1.79, 52.51) 8.06 (1.46, 41.50) 0.934

(Continued)
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groups was 1.622 times and 2.247 times higher than that in the T1

group, respectively (HR: 1.622, 95% CI: 1.169–2.251, P = 0.004; HR:

2.247, 95% CI: 1.639–3.082, P < 0.001). When TyG was treated as a

continuous variable, the risk of MACE increased by 49.5% for every

1-unit increase in the TyG index (HR: 1.495, 95% CI: 1.272–1.757,

P < 0.001).
3.3 Hierarchical association of TyG and
MACE

Table 5 presents the hierarchical association between the TyG

index and MACE. The results indicated that in the subgroup

analysis, elevated TyG index levels were consistently associated

with an increased risk of MACE across multiple clinical subgroups.

Among patients aged <75 years, the TyG-T2 and T3 groups had

significantly higher MACE risks compared to T1 (HR = 2.060, P =

0.014; HR = 2.865, P < 0.001, respectively), and similar associations

were observed in those aged ≥75 years (T2: HR = 1.630, P = 0.019;

T3: HR = 1.942, P = 0.001). For women, both T2 and T3 groups

showed significantly elevated risks (HR = 2.347 and 2.638, both P ≤

0.001), while in men, only the T3 group was significantly associated

with increased MACE (HR = 2.052, P = 0.001). In non-STEMI

patients, both the T2 and T3 groups were at significantly higher

risk (HR = 1.944 and 2.244, both P < 0.001); among STEMI

patients, the T3 group was significant (HR = 2.659, P < 0.001).

The association remained robust in patients with hypertension (T2:
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HR = 1.477, P = 0.050; T3: HR = 1.994, P < 0.001) and was even

stronger in those without hypertension (T2: HR = 2.308, P = 0.008;

T3: HR = 2.899, P = 0.001). In Killip classification I patients, both

the T2 and T3 groups were associated with higher MACE risk (HR

= 1.850 and 2.842, P = 0.011 and <0.001), while in classification II–

IV, only the T3 group showed significance (HR = 1.955, P = 0.002).

Finally, in patients with or without multivessel disease, both the T2

and T3 tertiles were significantly linked to increased MACE risk,

with the strongest association seen in the T3 group without

multivessel disease (HR = 2.926, P < 0.001).
3.4 ROC curves and Kaplan–Meier curve
analyses

As shown in Figure 1, ROC curve analysis demonstrated that

the TyG index was a significant predictor for the risk of MACE

(AUC: 0.635, 95% CI: 0.580–0.691, P < 0.001). It also predicted all-

cause death (AUC: 0.565, 95% CI: 0.508–0.622, P = 0.027), new-

onset myocardial infarction (AUC: 0.617, 95% CI: 0.542–0.693, P =

0.004), and second PCI (AUC: 0.644, 95% CI: 0.578–0.710,

P < 0.001).

Additionally, as shown in Figure 2, the Kaplan–Meier survival

curves revealed statistically significant differences in the survival

probabilities for MACE, all-cause death, non-fatal myocardial

infarction, and unplanned revascularization across the three TyG

index groups over time (log-rank P < 0.05). Notably, patients in the
TABLE 2 Continued

Variables T1 T2 T3 P-value

Killip class, n (%) 0.038

BNP, pg/mL 697.62 (529.29, 1,067.11) 656.07 (501.76, 968.20) 755.61 (540.76, 1,137.00) 0.117

Discharge medication, n (%)

Aspirin 89 (66.9) 104 (78.2) 102 (76.1) 0.084

Clopidogrel 88 (66.2) 69 (51.9) 77 (57.5) 0.058

Ticagrelor 45 (33.8) 64 (48.1) 57 (42.5) 0.058

Statins 126 (94.7) 127 (95.5) 121 (90.3) 0.177

ACEI/ARB 97 (72.9) 102 (76.7) 109 (81.3) 0.262

b-Blockers 81 (60.9) 87 (65.4) 106 (79.1) 0.004

LVEF, % 55.43 ± 3.05 54.40 ± 2.90 54.37 ± 3.09 0.005

Multivessel disease, n (%) 57 (42.9) 68 (51.1) 64 (47.8) 0.397

All-cause death, n (%) 52 (39.1) 43 (32.3) 66 (49.3) 0.018

MACE, n (%) 67 (50.4) 81 (60.9) 104 (77.6) <0.001

Non-fatal myocardial infarction,
n (%)

13 (9.8) 18 (13.5) 29 (21.6) 0.021

Unplanned revascularization,
n (%)

10 (7.5) 28 (21.1) 34 (25.4) <0.001
TyG, triglyceride-glucose index; STEMI, ST-elevation myocardial infarction; CHD, coronary heart disease; AF, atrial fibrillation; CKD, chronic kidney disease; BMI, body mass index; SBP,
systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein cholesterol; UA, uric acid; eGFR, estimated glomerular filtration rate; FIB, fibrinogen; BNP, B-type natriuretic peptide; ACEI, angiotensin-converting enzyme
inhibitor; ARB, angiotensin II receptor blocker; LVEF, left ventricular ejection fraction; MACE, major adverse cardiovascular events.
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TyG T3 group demonstrated the steepest decline in event-free

survival. The estimated HRs for MACE from Kaplan–Meier

analysis were 1.535 (95% CI: 1.109–2.124, P = 0.010) for the TyG

T2 group and 2.141 (95% CI: 1.573–2.915, P < 0.001) for the TyG

T3 group, both compared with the T1 group.
4 Discussion

This study comprehensively investigated the association

between the TyG index and the risk of MACE in patients with

T2DM and HFpEF following AMI. Our findings revealed a clear

and consistent relationship between elevated TyG levels and

increased incidence of MACE. Patients in the highest TyG tertile

(T3) had a more than twofold increased risk of MACE compared to

those in the lowest tertile (T1), even after adjusting for multiple

clinical confounders. Moreover, the risk of MACE increased by

nearly 50% for each 1-unit rise in the TyG index. Subgroup analyses

confirmed the robustness of this association across various clinical

strata, including age, sex, hypertension status, Killip classification,

and presence of multivessel disease. These findings were further

supported by Kaplan–Meier survival curves and ROC analysis,

where the TyG index demonstrated modest but significant

predictive power for MACE and related outcomes.

Left ventricular dilation and dysfunction caused by ischemic

heart disease—specifically, structural and functional remodeling of

the left ventricle—can result in decreased LVEF or hemodynamic

abnormalities. However, in many patients with ischemic heart

disease, including those with CAD and coronary microvascular

dysfunction, this dysfunction can be delayed, inhibited, or even

reversed due to the widespread use of PCI. This phenomenon,

referred to as HFpEF caused by either coronary large vessel

obstruction or microvascular dysfunction, has become more

widely recognized (29, 30). Increasingly, researchers have focused

on the relationship between metabolic disorders and the

development of HFpEF after myocardial infarction, especially in

the context of glucose metabolism, a field that remains

underexplored (31, 32).

In our study, the clinical characteristics grouped according to

TyG tertiles revealed statistically significant differences in outcomes

such as all-cause death, MACE, non-fatal myocardial infarction,
TABLE 3 Univariate Cox regression analysis of MACE.

Variables HR 95% CI P-value

Age 1.026 1.013–1.039 <0.001

Male 0.834 0.651–1.068 0.151

Smoking 0.872 0.664–1.145 0.326

STEMI 0.599 0.463–0.776 <0.001

Killip class

I Ref

II 1.186 0.902–1.561 0.222

III 1.605 1.041–2.476 0.032

IV 2.468 1.532–3.975 <0.001

Family history
of CHD

1.092 0.776–1.536 0.615

Hypertension 1.382 1.048–1.824 0.022

Stroke 1.210 0.847–1.730 0.295

AF 1.472 0.993–2.182 0.054

BMI 0.995 0.965–1.025 0.720

SBP 1.006 1.002–1.010 0.004

DBP 1.001 0.993–1.009 0.757

FPG 1.068 1.048–1.089 <0.001

HbA1c 1.026 0.962–1.094 0.429

TG 1.026 0.904–1.165 0.689

TC 0.950 0.859–1.050 0.312

LDL-C 0.969 0.845–1.112 0.655

HDL-C 0.859 0.562–1.312 0.481

Albumin 0.986 0.956–1.017 0.378

UA 1.000 0.999–1.001 0.472

eGFR 0.993 0.989–0.997 0.001

Hs-CRP 1.000 0.998–1.002 0.890

FIB 1.049 0.963–1.143 0.272

D-dimer 1.000 1.000–1.000 0.321

Troponin I 0.999 0.998–1.000 0.047

BNP 1.000 1.000–1.000 0.001

Discharge medication

Aspirin 0.634 0.485–0.829 0.001

Clopidogrel 1.402 1.084–1.814 0.010

Ticagrelor 0.713 0.551–0.922 0.010

Statins 1.085 0.654–1.800 0.752

ACEI/ARB 1.437 1.054–1.959 0.022

b Blockers 1.068 0.818–1.394 0.629

LVEF 0.987 0.949–1.027 0.529

(Continued)
TABLE 3 Continued

Variables HR 95% CI P-value

Discharge medication

Multivessel disease 1.318 1.029–1.688 0.029

TyG index 1.470 1.256–1.722 < 0.001
HR, hazard ratio; CI, confidence interval; MACE, major adverse cardiovascular events;
STEMI, ST-elevation myocardial infarction; CHD, coronary heart disease; AF, atrial
fibrillation; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood
pressure; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; TG, triglycerides; TC, total
cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein
cholesterol; UA, uric acid; eGFR, estimated glomerular filtration rate; Hs-CRP, high-
sensitivity C-reactive protein; FIB, fibrinogen; BNP, B-type natriuretic peptide; ACEI,
angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; LVEF, left
ventricular ejection fraction; TyG, triglyceride-glucose index.
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and unplanned revascularization among the three TyG groups. The

incidence of MACE, non-fatal myocardial infarction, and

unplanned revascularization increased with higher TyG levels.

Specifically, in patients with T2DM and HFpEF following AMI,

those with a TyG index reaching or exceeding 9.51 (in the T3 group)

should be closely monitored for potential MACE, non-fatal

myocardial infarction, and unplanned revascularization events.

After adjusting for confounding factors, the TyG index remained

an independent predictor of MACE in this population.

While previous studies have not extensively investigated the

correlation between the TyG index and ischemia-induced HFpEF or
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its adverse outcomes, multiple studies have reported correlations

between the TyG index and various CVD as well as the risk of

cardiovascular events. For instance, Lyu et al. (33) found a non-

linear relationship between the TyG-BMI index and all-cause

mortality and HF-related rehospitalizations in HF patients. They

reported an inverse “J”-shaped curve, where the risk of all-cause

mortality decreased when the TyG-BMI index was below 240.0.

Similarly, Guo et al. (34) identified TyG and TG/HDL-C as

significant predictors of in-hospital mortality in non-diabetic

AMI patients. This finding aligns with the results of our study,

where TyG remained a key predictor for poor outcomes in patients
TABLE 4 Multivariate Cox regression analysis of TyG and MACE.

Variables
Model 1 Model 2 Model 3

HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value

T1 Ref Ref Ref

T2 1.535 1.109–2.124 0.010 1.661 1.198–2.303 0.002 1.622 1.169–2.251 0.004

T3 2.141 1.573–2.915 <0.001 2.304 1.680–3.160 <0.001 2.247 1.639–3.082 <0.001

TyG index 1.470 1.256–1.722 <0.001 1.505 1.282–1.767 <0.001 1.495 1.272–1.757 <0.001
Model 1: unadjusted; model 2: adjusted for age, hypertension, STEMI, and Killip classification; model 3: adjusted for age, hypertension, STEMI, Killip classification, eGFR, aspirin, ACEI/ARB,
and multivessel disease.
HR, hazard ratio; CI, confidence interval; MACE, major adverse cardiovascular events; TyG, triglyceride-glucose index; T1, tertile 1; T2, tertile 2; T3, tertile 3; STEMI, ST-elevation myocardial
infarction; eGFR, estimated glomerular filtration rate; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker.
TABLE 5 Stratified association of TyG and MACE.

Subgroups
T1 T2 T3

HR (95% CI) HR (95% CI) P HR (95% CI) P P for trend

Age

<75 years Ref 2.060 (1.160–3.660) 0.014 2.865 (1.691–4.854) <0.001 <0.001

≥75 years Ref 1.630 (1.083–2.453) 0.019 1.942 (1.291–2.922) 0.001 0.004

Gender

Male Ref 1.132 (0.709–1.807) 0.603 2.052 (1.354–3.109) 0.001 0.002

Female Ref 2.347 (1.443–3.818) 0.001 2.638 (1.620–4.297) <0.001 <0.001

STEMI

Yes Ref 1.246 (0.713–2.176) 0.440 2.659 (1.583–4.468) <0.001 <0.001

No Ref 1.944 (1.294–2.922) 0.001 2.244 (1.512–3.332) <0.001 <0.001

Hypertension

Yes Ref 1.477 (1.000–2.184) 0.050 1.994 (1.381–2.879) <0.001 0.001

No Ref 2.308 (1.245–4.279) 0.008 2.899 (1.520–5.532) 0.001 0.002

Killip classification

I Ref 1.850 (1.154–2.964) 0.011 2.842 (1.761–4.585) <0.001 <0.001

II–IV Ref 1.446 (0.915–2.284) 0.114 1.955 (1.284–2.976) 0.002 0.006

Multivessel disease

Yes Ref 1.646 (1.043–2.596) 0.032 1.850 (1.188–2.882) 0.007 0.016

No Ref 1.714 (1.055–2.784) 0.030 2.926 (1.884–4.546) <0.001 <0.001
HR, hazard ratio; CI, confidence interval; MACE, major adverse cardiovascular events; TyG, triglyceride-glucose index; T1, tertile 1; T2, tertile 2; T3, tertile 3; STEMI, ST-elevation
myocardial infarction.
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FIGURE 1

The ROC analysis of TyG for predicting MACE (A), all-cause death (B), non-fatal myocardial infarction (C), and unplanned revascularization (D). ROC,
receiver operating characteristic; TyG, triglyceride-glucose index; AUC, area under the curve; CI, confidence interval; MACE, major adverse
cardiovascular events.
FIGURE 2

The Kaplan–Meier analysis of TyG with MACE (A), all-cause death (B), non-fatal myocardial infarction (C), and unplanned revascularization (D). TyG,
triglyceride-glucose index; MACE, major adverse cardiovascular events.
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with T2DM following AMI. Furthermore, Wang et al. (35)

demonstrated that the TyG index independently predicted future

MACE in diabetic patients with acute coronary syndrome (ACS),

with Kaplan–Meier survival curves showing significant event-free

survival differences between TyG quartiles. In our study, the

stratified analysis demonstrated that elevated TyG index levels

were consistently associated with an increased risk of MACE

across multiple clinical subgroups. Among patients aged <75

years, the risk of MACE in the TyG T2 and T3 groups was 2.060

and 2.865 times higher than in the T1 group, respectively. In those

aged ≥75 years, the risk was 1.630 times higher in T2 and 1.942

times higher in T3 compared to T1. In terms of sex, women in the

T2 and T3 groups had 2.347-fold and 2.638-fold higher risks,

respectively. Among men, only the T3 group showed a significant

increase in risk (2.052-fold). In patients without STEMI, the T2 and

T3 groups had 1.944-fold and 2.244-fold higher risks, respectively,

while in STEMI patients, the T3 group showed a 2.659-fold

increase. For patients with hypertension, the MACE risk was

1.477 times higher in T2 and 1.994 times higher in T3. Among

those without hypertension, the risk increased to 2.308 times in T2

and 2.899 times in T3. Among patients with Killip classification I,

the T2 and T3 groups had 1.850-fold and 2.842-fold higher risks,

respectively. In those with Killip classification II–IV, only the T3

group showed a notable increase (1.955-fold). For patients with or

without multivessel disease, both T2 and T3 groups demonstrated

elevated MACE risks. Notably, in patients without multivessel

disease, the T3 group had the highest risk, with a 2.926-fold

increase. In summary, the TyG index was positively associated

with MACE across various subgroups, with particularly stronger

predictive value in women, non-STEMI patients, those without

hypertension, and those without multivessel disease—highlighting

its potential utility in risk stratification for targeted management in

high-risk populations.

Beyond its cardiovascular implications, the TyG index has been

explored as a non-invasive marker for various diseases. Liu and

colleagues found that the TyG index was an effective predictor for

non-alcoholic fatty liver disease and related hepatic conditions,

including hepatic fibrosis, when coupled with TyG-derived indices

like TyG-BMI (36, 37). Additionally, research by Jiang et al. (38)

suggested that the TyG index was causally associated with a reduced

stroke risk, a finding that aligns with our results. In our study, ROC

curve analysis revealed that the TyG index significantly predicted

the risk of MACE, all-cause death, non-fatal myocardial infarction,

and unplanned revascularization, all with statistically significant

predictive value. Moreover, the Kaplan–Meier survival curves

showed significant differences between the TyG tertiles in the

survival probabilities for MACE, all-cause death, non-fatal

myocardial infarction, and unplanned revascularization over time.

Patients in the higher TyG groups exhibited the fastest decline in

survival probability, suggesting that a higher TyG index (above

9.51) correlates with worse clinical prognosis. In conclusion, while

the TyG index has been linked to the prediction of a range of

diseases, including CVD, liver fibrosis, and stroke, its association

with ischemia-induced HFpEF remains underexplored. However,

our study demonstrated that the TyG index was significantly
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correlated with the occurrence of MACE in T2DM patients with

AMI and HFpEF. Therefore, clinicians should maintain a high level

of vigilance for MACE, non-fatal myocardial infarction, and

unplanned revascularization in patients with higher TyG indices,

particularly when the index exceeds 9.51.

The mechanisms by which the TyG index contributes to MACE

in HFpEF patients following AMI are likely multifactorial. First, TyG

is a recognized surrogate marker of IR, a metabolic state that

promotes myocardial lipid accumulation, fibrosis, and impaired

ventricular relaxation, all of which contribute to diastolic

dysfunction and the development of HFpEF (39–42). Second,

elevated TyG levels have been associated with microvascular

dysfunction, particularly in diabetic populations. This dysfunction,

characterized by reduced nitric oxide bioavailability and endothelial

inflammation, leads to coronary microcirculatory impairment,

exacerbating myocardial ischemia and remodeling (43, 44). Third,

IR-induced alterations in myocardial calcium handling and activation

of profibrotic signaling pathways promote left ventricular

hypertrophy and reduced compliance, further worsening diastolic

performance (45, 46). These pathophysiologic processes—IR,

microvascular dysfunction, and diastolic impairment—together

may explain the observed association between higher TyG index

values and increased MACE risk in HFpEF patients. Our findings

underscore the importance of early glycemic-lipid metabolic

assessment and intervention, especially in T2DM patients post-

AMI with preserved ejection fraction, to mitigate cardiovascular

risk and improve long-term outcomes.

This study had several limitations. First, being retrospective in

nature, selection biasmay be unavoidable. Second, patients with HFpEF

were primarily diagnosed using transthoracic echocardiography, which

lacks the sensitivity of exercise stress echocardiography andmay lead to

missed diagnoses. Third, the lack of statistical significance for some

survival analysis outcomes could be attributed to the small sample size

and single-center design of the study. Fourth, the study population was

confined to Liaoning Province, China, which may limit the

generalizability of the findings to other populations. Fifth, this study

did not employ propensity score matching (PSM) or inverse probability

of treatment weighting (IPTW) to further control for potential

confounding. The primary reasons for this were the relatively small

sample size and missing data in some covariates, which limited the

feasibility and stability of such analyses. While multivariable Cox

regression was used to adjust for known clinical covariates,

unmeasured confounding cannot be entirely excluded. Future

prospective studies with larger and more diverse populations should

consider incorporating PSM or IPTW to strengthen causal inference

and reduce residual bias. Sixth, patients lost to follow-up and those who

did not undergo interventional procedures were excluded from the

analysis. While this was done to ensure data completeness and

treatment consistency, it may have introduced survivorship bias, as

individuals with early adverse events could have been inadvertently

excluded. We acknowledge this potential bias and recommend that

future studies adopt strategies such as prospective design, improved

follow-up systems, or multiple imputation to minimize its impact.

Seventh, although the TyG index was found to be statistically associated

with MACE, its overall predictive value was limited. This suggests that,
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while the TyG index may have some prognostic relevance, it alone may

not provide strong discriminatory power in clinical practice. Moreover,

this study did not compare the TyG index with established risk scoring

systems such as the Global Registry of Acute Coronary Events

(GRACE) score and the Thrombolysis in Myocardial Infarction

(TIMI) score, due to the unavailability of complete data required

for those calculations. This lack of comparison limits the ability to

contextualize the TyG index within existing clinical risk assessment

frameworks. Future studies should include these established tools

to better evaluate the added value of the TyG index in cardiovascular

risk stratification. Eighth, while the TyG index was found to be

associated with MACE, the underlying biological mechanisms—such

as insulin resistance, chronic inflammation, or endothelial

dysfunction—were not directly investigated in this study. As this was

a retrospective analysis based on routine clinical records, mechanistic

biomarkers such as fasting insulin (for Homeostasis Model

Assessment of Insulin Resistance), inflammatory cytokines (e.g.,

interleukin-6, tumor necrosis factor-alpha), or markers of

oxidative stress were not collected. This limits the ability to explore

the potential pathophysiological pathways linking TyG to adverse

cardiovascular outcomes. Future prospective studies incorporating

metabolic and inflammatory biomarkers are warranted to better

elucidate the biological basis of the observed associations. Lastly,

although the TyG index shows promise in predicting and

assessing various diseases, there remains no standardized range or

critical value for the index across studies. Further research with larger,

multicenter, and prospective designs is necessary to clarify the

diagnostic cutoff points and prognostic value of the TyG index in

different diseases.
5 Conclusions

Our study found that in T2DM patients with HFpEF combined

with AMI, the incidence of MACE was higher, and the prognosis

worsened as the TyG index increased. The TyG index proved to be

an independent predictor of MACE and could serve as a valuable

tool for risk stratification and prognosis in this population.

Clinicians should be particularly alert to the risks associated with

left ventricular dysfunction in patients with elevated TyG indices

during the management of AMI.
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Effect of nine different exercise
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sensitivity in diabetic patients:
a systematic review
and mesh meta-analysis
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Objective: This study aimed to assess the impact of nine exercise interventions

(resistance training [BT, ball training [BT], resistance + walking [RT+W alk],

resistance + running [RT + Running], resistance + cycling [RT + bicycle],

running, and Tai Chi) on insulin sensitivity in patients with diabetes.

Methods: A systematic search of five databases (PubMed, EMBASE, Cochrane,

Web of Science, and CNKI) for RCTs investigating the effects of exercise

interventions on insulin sensitivity in patients with diabetes was conducted. The

quality of the included studies was assessed using the Cochrane Manual version

5.1.0 Risk of Bias Assessment Tool (ROB). Data analysis software was used for the

synthesis and analysis.

Results: This Meta-analysis comprised 21 randomized controlled trials involving

1140 participants. Cycling significantly reduced the fasting glucose index in

individuals with diabetes (SUCRA score=90.7%). Resistance exercise exhibited

superior efficacy in enhancing insulin sensitivity compared with alternative

interventions in patients with diabetes (SUCRA score=71.8%). Furthermore, the

combination of resistance exercise and running resulted in a noteworthy

decrease in HOMA-IR levels (SUCRA score=64.2%).

Conclusion: Cycling, resistance training, and combined aerobic and resistance

exercises have been shown to effectively enhance fasting blood glucose levels,

insulin secretion, and insulin sensitivity in individuals with diabetes. However,

additional studies with longer follow-up periods and more rigorous

methodologies are required to further validate these findings.

Systematic review registration: https://ww.crd.york.ac.uk/PROSPERO/,

identifier CRD42023450107.
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1 Introduction

Diabetes has emerged as a critical global health challenge, with

the 2023 Global Burden of Disease Study reporting approximately

529 million affected individuals worldwide and projecting a rise to

1.31 billion by 2050 (1). Type 2 diabetes (T2DM), characterized

by insulin resistance and impaired insulin secretion, accounts

for over 90% of diabetes cases and imposes substantial economic

burdens exceeding $1 trillion USD annually in healthcare

expenditures (2, 3).

Physical exercise is a cornerstone of T2DM management, with

distinct modalities operating through specific physiological

pathways to improve glycemic control. Aerobic exercise enhances

insulin sensitivity primarily through GLUT4 translocation in the

skeletal muscle, facilitating glucose uptake independent of insulin

signaling (4). This process is amplified by mitochondrial biogenesis

via the AMPK-PGC1a pathway, which improves oxidative capacity

(5), while concurrent reductions in pro-inflammatory cytokines

(TNF-a and IL-6) ameliorate adipose tissue dysfunction (6).

Resistance training exerts complementary effects through muscle

hypertrophy, which expands the glucose storage capacity (7),

enhances post-receptor insulin signaling via IRS-1/PI3K/Akt

phosphorylation cascades (8), and suppresses hepatic

gluconeogenesis (9). Combined aerobic-resistance training

synergizes these mechanisms, with recent meta-analyses

confirming superior HbA1c reductions compared to single-

modality interventions (D = -0.17%, p < 0.01) (10). Despite these

advances, the comparative efficacy of specific exercise modalities is

unclear. This network meta-analysis directly evaluated nine

interventions, including resistance training, aerobic modalities

(cycling and running), combined regimens, and mind-body

exercises, to provide evidence-based guidance for optimizing

exercise prescriptions in diabetes care.
Frontiers in Endocrinology 02132
2 Materials and methods

This systematic review was registered in the Prospero database

(ID: CRD42023450107) under the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses for Network Meta-Analyses

(PRISMA-NMA) and the Cochrane Intervention Review.
2.1 Search strategy

We conducted a comprehensive search across multiple

databases, including PubMed, Embase, Cochrane Library, Web of

Science, and CNKi, from January 2004 to December 2022, to

identify eligible studies. The search keywords were formulated

based on the PICOS framework, and the search strategies were

developed by PICOS principles: (P) population, diabetic patients;

(I) intervention, exercise; (C) comparator, control group receiving

only usual care and appropriate rehabilitation measures (placebo or

other forms of exercise); and (O) Outcome - Exercise tests in

diabetic patients. Finally, we focused on randomized controlled

trials as the preferred study design. Taking PubMed as an example,

detailed search strategies are provided in Table 1.

2.1.1 Definition of exercise interventions
The nine exercise interventions evaluated in this study are

abbreviated as follows:
RT: Resistance training

BT: Ball training

RT+Walk: Combined resistance training and walking

RT+Running: Combined resistance training and running

RT+Bicycle: Combined resistance training and cycling
TABLE 1 Search strategy on PubMed.

#1 “Exercise”[MeSH]

#2

((((((((((((((((((((Exercises[Title/Abstract])OR Physical Activity[Title/Abstract])OR Activities, Physical[Title/Abstract])OR Activity, Physical[Title/Abstract])OR
Physical Activities[Title/Abstract])OR Exercise, Physical[Title/Abstract])OR Exercises, Physical[Title/Abstract])OR Physical Exercise[Title/Abstract])OR Physical
Exercises[Title/Abstract])OR Acute Exercise[Title/Abstract])OR Acute Exercises[Title/Abstract])OR Exercise, Acute[Title/Abstract])OR Exercises, Acute[Title/
Abstract])OR Exercise, Isometric[Title/Abstract])OR Exercises, Isometric[Title/Abstract])OR Isometric Exercises[Title/Abstract])OR Isometric Exercise[Title/

Abstract])OR Exercise, Aerobic[Title/Abstract])OR Aerobic Exercise[Title/Abstract])OR Aerobic Exercises[Title/Abstract])OR Exercises, Aerobic[Title/Abstract])OR
Exercise Training[Title/Abstract])OR Exercise Trainings[Title/Abstract])OR Training, Exercise[Title/Abstract])

#3 #1 OR #2

#4 “Insulin”[MeSH]

#5
((((((((((Insulin[Title/Abstract])OR Insulin, Regular[Title/Abstract])OR Regular Insulin[Title/Abstract])OR Soluble Insulin[Title/Abstract])OR Insulin, Soluble[Title/
Abstract])OR Insulin A Chain[Title/Abstract])OR Sodium Insulin[Title/Abstract])OR Insulin, Sodium[Title/Abstract])OR Novolin[Title/Abstract])OR Iletin[Title/

Abstract])OR Insulin B Chain[Title/Abstract])OR Chain, Insulin B[Title/Abstract])

#6 #4 OR #5

#7 Randomized controlled[Publication Type]

#8 #3 AND #6 AND #7
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Fron
Bicycle: Cycling training alone

Running: Running training alone

Taichi: Tai Chi practice

CON: Control group (no exercise intervention, routine

care only)
All combined training involved sequential sessions of resistance

and aerobic exercise within the same day.
2.2 Inclusion criteria

(1) Randomized controlled clinical trials involving patients with

diabetes. (2) The experimental group utilizes various exercise

methods as interventions for diabetes. (3) The control group

receives conventional care only. (4) Active cooperation of

participants in the experimental process is required. (5) Outcome

measures include at least one of the following: Fasting blood glucose

levels (FBG), Homeostasis Model Assessment of insulin Resistance

(HOMA-IR), fasting insulin level (FI), and homeostasis model of

insulin resistance.
2.3 Exclusion criteria

(1) Papers with incomplete or insufficient data or reporting

information are excluded. (2) Non-randomized controlled trials,

animal studies, conference reports, literature reviews, abstracts, and

protocols are excluded.
2.4 Study selection

The two researchers used NoteExpress, a literature management

software, to screen and exclude duplicate articles. Initially, they

reviewed the titles and abstracts to exclude non-randomized

controlled trials, systematic reviews, conference papers, protocols,

and communications while retaining the remaining literature.

Subsequently, both researchers independently read through the

remaining literature and conducted further screening. Only when

there was agreement on inclusion criteria did an article finally get

included; otherwise, a third researcher was consulted for discussion

and resolution.
2.5 Data extraction

Two researchers independently extracted the data and assessed

study quality using the Cochrane Handbook, while a third

individual addressed any issues that arose post-data extraction.

The extracted data encompassed authorship details (author, year,

country of publication), average age, sample size, intervention

duration, and outcome indicators such as risk of bias assessment.
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2.6 Risk of bias in individual studies

We assessed the literature quality based on the Risk Bias

Assessment Tool (ROB) outlined in the Cochrane Manual 5.1.0,

considering seven key domains for evaluating randomized

controlled trials: (1) Random sequence generation, (2) Allocation

concealment, (3) Blinding of participants and personnel, (4)

Blinding of outcome assessors, (5) Handling of incomplete

outcome data, (6) Selective outcome reporting, and (7) Other

potential sources of bias.
2.7 Subgroup analysis and outcome
indicators

We conducted a subgroup analysis to categorize the

experiments based on medication status. Specifically, 13 trials

received metformin treatment, five received insulin treatment,

and the remaining three did not receive any hypoglycemic drugs.

The findings of our meta-analysis remained robust across these

subgroups, indicating that exercise intervention benefits blood

glucose levels independently of drug therapy. Our primary

outcome measure was the change in fasting plasma glucose

(DFPG) levels from baseline (mmol/L). We also compared fasting

insulin concentration (DFI; mU/ml) and HOMA-IR index

(DHOMA-IR) between the experimental and control groups.

We quantified between-study heterogeneity using I² statistics.

For fasting blood glucose (FBG), I² = 62% (95%CI: 48-75%),

indicating moderate heterogeneity. For fasting insulin, I² = 45%

(95%CI: 28-59%), suggesting low-moderate heterogeneity. For

HOMA-IR, I² = 68% (95%CI: 52-80%), reflecting moderate

heterogeneity. These values align with expected variations in

exercise interventions across diverse populations.
2.8 Data analysis

Sensitivity analyses excluding studies with high/unclear risk of bias

in ≥3 Cochrane domains (n=5 studies) confirmed robustness: FBG

reduction with cycling [MD = -50.21 mmol/L, 95%CI -92.15 to -8.27],

fasting insulin with RT vs. BT [MD = -25.94 mU/ml, 95%CI -49.83

to -2.05], and HOMA-IR ranking of RT+Running (SUCRA=62.1%). In

our included studies involving various exercise interventions, all

variables were continuous and expressed as the mean and standard

deviation (SD) with a 95% confidence interval (CI) (11). The mean

difference (MD) was used to represent the net change in the measured

variables between the experimental and control groups, with a negative

MD value indicating a greater reduction in the experimental group (12).

A random-effects model was employed for the meta-analysis while

calculating the SUCRA values to rank the interventions. Funnel plots

were used to assess publication bias, and frequency analysis of random-

effects models was conducted to evaluate the effectiveness of multiple

interventions in addressing potential differences among studies (13).
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The effectiveness of multiple interventions in addressing potential

differences between studies was evaluated using a frequency analysis

of random-effects models (13). Stata software (version 15.1) was

employed to model four chains using the Markov chain Monte Carlo

(MCMC) method. The fit and consistency of the model were assessed

using the Deviation Information Criterion (DIC). Network diagrams

illustrating the different motion interventions were generated using

Stata software (version 15.1). In case a closed-loop mesh appeared in

the network, node splitting analysis was conducted to examine local

consistency, with a passing consistency test defined as a P value >0.05.

The network diagram consists of nodes and lines connecting them,

where the width of each node and connecting line is proportional to

the sample size of the respective study (14). Furthermore, the

interventions were ranked based on their SUCRA values, and a

ranking table was created to compare their relative effectiveness. To

assess potential bias between the studies, heterogeneity was examined

by constructing a funnel plot (15). The degree of intervention was

summarized as an S value representing the area under the cumulative

ranking curve; larger values indicated better intervention effects

within a scoring range of 0-1. Similarly, the SUCRA values ranged

from 0% to 100%, with higher scores indicating superior intervention

effects. However, caution should be exercised when interpreting these

scores unless genuine clinical differences exist between the

interventions (16).

To address potential confounding by exercise duration, we

calculated the metabolic equivalents (MET-min) for each

intervention using standard compendium values (17). For example:
Fron
- Cycling: 8.0 METs

- Running: 10.0 METs

- Resistance training: 6.0 METs
Sensitivity analyses were performed to assess whether duration-

adjusted energy expenditure influenced primary outcomes.
3 Results

3.1 Study and identification and selection

A total of 7761 articles were retrieved from five electronic databases,

and three were retrieved. After excluding 2281 duplicate references, 5,

125 articles were eliminated based on the evaluation of their titles and

abstracts, resulting in 5480 remaining references. Subsequently, a

comprehensive review was performed on the remaining 355 papers

by reading them in their entirety. Following this assessment, an

additional 334 papers were excluded, ultimately leading to the

inclusion of only 21 studies for the meta-analysis. (Show in Figure 1).
3.2 Quality evaluation of the included
studies

Given the diverse range of movement modes of these

interventions, achieving blinding for both subjects becomes
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challenging. Consequently, informed consent was obtained from

all participants and their families before the experiment.

The risk-of-bias assessment across seven domains is

summarized in Figure 2, revealing consistent limitations in

participant blinding due to exercise intervention nature.”
3.3 Features of the included study

Table 2 presents the baseline characteristics of the included

studies. The present study included 21 randomized controlled trials

involving 1140 participants. The 21 trials, conducted between 2004

and 2022, encompassed a diverse age range of 10–69 years. The

exercise interventions comprised resistance training (RT), aerobic

training (such as cycling and running), combination training, Tai

Chi, and ball games. The control group received standard treatment

and daily care without exercise intervention. Control group

interventions consisted of combined resistance and walking

exercise training (18, 19), combined resistance and running exercise

training (15, 20, 21), combined resistance and cycling exercise

training (22), bicycle training (23–25), combined resistance and

cycling exercise training along with Tai Chi Qigong practice (24,

26, 27), ball game exercises (28, 29), running exercises (20, 30–34) as

well and standalone resistance exercises (22, 30, 31, 35, 36). FBG was

employed as an outcome indicator in 19 studies, while fasting insulin

was an outcome indicator in all included studies. HOMA-IR was used

in 15 studies for evaluation. These studies were conducted in various

countries, including China, South Korea, the United States, Brazil,

Iran, Turkey, the Netherlands, Greece, the United Kingdom, and

Germany. The detailed characteristics of the included studies are

provided in Table 2.
3.4 Network meta-analysis

The complete network diagram is shown in Figures 3a, 4a,

and 5a.

3.4.1 Fasting blood glucose index results of
diabetic patients

The meta-analysis results demonstrated that the intervention

effect in the bicycle group was superior. Specifically, when

comparing the cycling group with both anaerobic and running

groups [MD=-46.63, 95%CI (-91.96,-1.29)], and when comparing

the running group with the cycling group [MD=-52.19, 95%CI

(-101.70,-2.68)], significant differences were observed in favor of the

bicycle group’s intervention effect (Figure 3b). Furthermore,

compared to the control group [MD=-52.64, 95%CI (-95.72,-

9.55)], ball games [MD=-56.11, 95%CI (-103.29,-8.94)], and

Tai Chi group [MD=-73.02, 95%CI (-120.-17,-25-86)], fasting

insulin sensitivity exhibited a more pronounced improvement in

insulin sensitivity (Figure 3b). Regarding the SUCRA ranking score

(Figure 3b), cycling practice ranked first with a SUCRA score of

90%. Pairwise comparisons between the interventions are presented

in Table 3.
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Notably, cycling interventions had longer session durations

(mean 90 min) compared to running (mean 45 min) and resistance

training (mean 50 min). However, after adjusting for MET-minutes,

cycling remained superior in reducing FBG [MD = -38.72, 95%CI

(-75.15, -2.29)].

3.4.2 Fasting insulin index results of diabetic
patients

In comparison to ball games, resistance exercise demonstrated a

significant impact on enhancing insulin sensitivity [MD=-26.71, 95%

CI (-51.23, -2.19)].The Qigong exercise group exhibited significant

differences compared to the aerobic exercise group [MD=33.04, 95%

CI (4.82, 61.26)], bicycle exercise group [MD=30.54, 95% CI (4.41,

56.67)], aerobic walking combined exercise group [MD=26.03, 95% CI
Frontiers in Endocrinology 05135
(0.40, 51.66)], aerobic running combined exercise group [MD=29.74,

95% CI (4.16, 55.32)], running exercise group [MD=29.68,95%CI

(4.10,55.26)], the general control group[MD=28.54,95%CI

(5.22,51.86)], and the aerobic and bicycle combined exercise group

[MD=28. 21,95%CI(2.30,54.12)], the results suggest that the Qigong

exercise intervention had limited impact on improving insulin

sensitivity parameters. The bicycle group (SUCRA: 90.7%) exhibited

superior efficacy in enhancing insulin sensitivity parameters, as

demonstrated in Figure 4b of the SUCRA analysis. The effect size of

the key comparison indicates that, Resistance training vs. Ball

training: MD = -26.71 mU/ml, 95%CI (-51.23, -2.19);Qigong vs.

Control: MD = -28.54 mU/ml, 95%CI (-51.86, -5.22);Cycling vs.

Control: MD = -2.00 mU/ml, 95%CI (-13.79, 9.79). The MD for

Resistance Training versus Ball Training and Qigong versus control
FIGURE 1

Flow diagram of literature selection.
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was statistically significant. A comparison of the various interventions

is shown in Table 4.

3.4.3 Results of the HOMA-IR index for diabetic
patients

Themeta-analysis chart results (Figure 5b) revealed no statistically

significant differences in the reduction of HOMA-IR index among the

intervention groups. The SUCRA value indicated that the

combination of aerobic exercise and running exhibited the highest

ranking for reducing HOMA-IR values, thus proving to be the most

effective approach compared to other exercises (SUCRA: 64.2%). Ball

games ranked next (SUCRA: 62.7%), as shown in Figure 4b. HOMA-

IR changes versus control:RT+Running: MD = -1.20, 95%CI (-11.70,

9.30); ball training: MD = -3.83, 95%CI (-17.84, 10.19); Cycling: MD =

-0.10, 95%CI (-3.93, 3.73); Although RT+Running had the highest

SUCRA ranking, its effect versus control did not reach statistical

significance (95%CI crosses zero). The pairwise comparison of the

interventions is presented in Table 5.
3.5 Publication bias test

The included trials were assessed using the Cochrane risk

assessment tool and were determined to have a low-to-moderate

risk of bias. Additionally, no significant publication bias was

observed in the funnel plots (Figures 6a–c).
4 Discussion

In this meta-review and meta-analysis, we incorporated data

from studies conducted across multiple continents, including the

United States, Europe, Asia, and Australia, to augment the sample

size and enhance the generalizability of our findings. By comparing

the effects of nine different exercise interventions, we observed that

cycling, resistance exercise, and combined resistance with running

exercise exhibited comparatively superior enhancements.

Specifically, cycling showed the largest FBG reduction [MD =

-52.64 mmol/L vs. control], resistance training significantly

improved insulin sensitivity over ball games [MD = -26.71 mU/
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ml], and RT+Running had the highest probability (SUCRA=64.2%)

for HOMA-IR reduction despite non-significant effects versus

control [MD = -1.20].

By comparing the effects of nine different exercise interventions

on fasting blood glucose, fasting insulin, and HOMA-IR levels

among patients with diabetes, we observed that cycling, resistance

exercise, and combined resistance with running exercise

demonstrated relatively superior improvements in glycemic

control indicators, including FPG, FI, and HOMA-IR index.

Cycling is most likely to reduce fasting plasma glucose (FPG)

levels, which is consistent with previous evidence indicating that

cycling recruits a more significant number of type I muscle fibers

and improves glucose utilization (37, 38). The extensive

engagement of muscles and the absence of weight-bearing

characteristics make cycling a safer and more effective exercise

option for individuals with type 2 diabetes mellitus (T2DMM) (39).

Utilizing bicycles mobilizes large muscle groups and eliminates leg

weight-bearing and ground friction, making it remarkably safe and

effective for patients with T2DMM. Cycling elicits greater

recruitment of type I muscle fibers, which demonstrate higher

insulin sensitivity and GLUT4 density (4, 39). Li et al.

demonstrated that both high-intensity interval cycling and

moderate-intensity cycling significantly reduced fasting glucose in

T2DMM patients (40).

During exercise under normoglycemic-hyperinsulinemic

conditions, skeletal muscles account for nearly all human glucose

uptake. The increase in muscle glucose uptake during exercise is

attributed to enhanced contraction activity and increased blood

flow within the muscles, which facilitates glucose transport (41).

The higher level of glucose utilization observed during cycling

compared with running may be due to the greater contraction

activity resulting from the larger active muscle mass. Muscle fiber

recruitment and glycogen utilization patterns differ among various

forms of exercise. It has been discovered that the effect on muscle

glycogen supply by type I fibers was superior in the group

undergoing cycling interventions compared to those undergoing

running interventions. Type I fibers possess higher insulin content,

are more sensitive to insulin stimulation, and can recruit more

GLUT4 transport proteins, thereby enhancing the skeletal muscle’s

ability to take up and transport glucose, an effect associated with
FIGURE 2

Risk of bias graph (percentage form). The “X-axis" lists bias domains (e.g."Random sequence generation"), and the "Y-axis" represents the
"percentage of studies" falling into each risk category(Low/Unclear/High). The color-coded legend (green/yellow/red) explicitly defines each risk
level, eliminating the need for additional axis units.
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TABLE 2 Detailed characteristics of the studies included in meta-analysis.

Country Year Age (mean+SD) Total/male/female Intervention Control Outcome

CON
FBG
Fasting insulin
HOMA-IR

CON
FBG
Fasting insulin

CON
FBG
Fasting insulin
HOMA-IR

CON
FBG
Fasting insulin
HOMA-IR

CON Fasting insulin

CON
FBG
Fasting insulin
HOMA-IR

RT
Length of Intervention:
12 weeks
Freq: 3 times a week
Duration: 3 hour

FBG
Fasting insulin
HOMA-IR
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Korea 2019 T+C:36.8 (6.9)
T:11/7/4
C:6/4/2

RT+walk
Length of Intervention: 6 weeks
Freq: 3 times a week
Duration:1 hour

Holland 2004 T+C:60 (9)
T:36/25/11
C:25/20/5

RT+Walk
Length of Intervention: 26 weeks
Freq: 4 times a week
Duration: 1 hour

USA 2021
T: 53.7 (8)
C:50.1 (9.6)

T:49/49/0
C:54/54/0

RT+Running
Length of Intervention: 20 weeks
Freq: 3 times a week
Duration: 50 min

Germany 2018
T:14.6 (1)
C:14.8 (1)

T:20/0/20
C:20/0/20

RT+Running
Length of Intervention: 12 weeks
Freq: 5 times a week
Duration: 1 hour

Britain 2009

T:67.6 (4.2)
T1:69.1 (6.5)
C:66.5 (5.3)
C1:66.7 (3.7)

RT:36/15/21
AT:37/17/20
RT+AT:35/14/21
C:28/11/17

RT
Length of Intervention: 24 weeks
Freq: 3 times a week
Duration: 20 min
Runing
Length of Intervention: 24 weeks
Freq: 3 times a week
Duration: 30 min
RT+Running
Length of Intervention: 24 weeks
Freq: 3 times a week
Duration: 50 min

Iran 2018
SIT:55.36 (5.94)
A+R:54.14 (5.43)
C:55.71 (6.40)

T:52/0/17
T1:52/0/17
C:52/0/18

RT
Length of Intervention: 10 weeks
Freq: 3 times a week
Duration: 30 min
RT+Bicycle
Length of Intervention: 10 weeks
Freq: 3 times a week
Duration: 30 min

Los Lagos 2017
T:38 (8)
C:33 (7)

T:18/0/18
C:17/0/17

Bicycle
Length of Intervention: 12 weeks
Freq: 3 times a week
Duration: 3 hours
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TABLE 2 Continued

Country Year Age (mean+SD) Total/male/female Intervention Control Outcome

ON
Fasting insulin
insulin, HOMA-IR

ON
FBG
Fasting insulin
HOMA-IR

ON FBG

ON
FBG
Fasting insulin
HOMA-IR

ON
FBG
Fasting insulin

ON
FBG
Fasting insulin

ON
FBG
Fasting insulin
HOMA-IR

ON
FBG
Fasting insulin

ON
FBG
Fasting insulin
HOMA-IR

ON
FBG
Fasting insulin
HOMA-IR
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Brazil 2013
T:32.4 (7)
C:30.1 (5.5)

T:17/8/9
C:18/8/10

Bicycle
Length of Intervention: 4 weeks
Freq: 3 times a week
Duration: 40 min

C

USA 2015
T:13.8 (2.2)
C:12.1 (1.2)

E:10/8/2
C:8/5/3

Bicycle
Length of Intervention: 8 weeks
Freq: 3 times a week
Duration: 35 min

C

China 2009
T:58.1 (13.4)
C:56.6 (13.3)

T:28/12/16
C:32/16/16

Taichi training
Length of Intervention: 12 weeks
Freq: 4 times a week
Duration: 1 hour

C

Korea 2014
T:48.4 (8.6)
C:48.3 (8.2)

T:18/9/9
C:17/10/7

Taichi training
Length of Intervention: 12 weeks
Freq: 3 times a week
Duration: 45 min

C

China 2011 T+C:57.8 (6.3)
T:20/8/12
C:21/8/13

Taichi training
Length of Intervention: 12 weeks
Freq: 3 times a week
Duration: 1-1.5 hours

C

Turkey 2019
T:14.41 (1.06)
C:14.47 (1.06)

T:34/17/0
C:34/17/0

Ball game
Length of Intervention: 6 weeks
Freq: 3 times a week
Duration: 30 min

C

Brazil 2019 T+C:61.1 (6.4)
41/20/21
T:19
C:22

Ball game
Length of Intervention: 12 weeks
Freq: 3 times a week
Duration: 40 min

C

USA 2005
T:12.5 (0.5)
C:12.5 (0.7)

T:27/13/14
C:23/13/10

Running
Length of Intervention: 6 weeks
Freq: 5 times a week
Duration: 2 hours

C

Greece 2007
T:59.33 (4.76)
C:63.82 (7.03)

T:30/13/17
C:30/12/18

Running
Length of Intervention: 24 weeks
Freq: 4 times a week
Duration: 1 hour

C

Korea 2014
T:24.86 (2.75)
C:26.8 (2.8)

T:29/29/0
C:10/10/0

Running
Length of Intervention: 8 weeks
Freq: 4 times a week
Duration: 1 hour

C
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Country Year Age (mean+SD) Total/male/female Intervention Control Outcome

7/0/27
6/0/26

Running
Length of Intervention: 12 weeks
Freq: 3 times a week
Duration: 50 min

CON
FBG
Fasting insulin

7/0/37
0/0/40

Running
Length of Intervention: 24 weeks
Freq: 3 times a week
Duration: 45 min

CON
FBG
Fasting insulin
HOMA-IR

/6/0
/3/6

RT
Length of Intervention: 2 weeks
Freq: 3 times a week
Duration: 2 hours

CON
FBG
Fasting insulin
HOMA-IR

:12/12/0
:12/12/0
0/10/0

RT
Length of Intervention: 12 weeks
Freq: 3 times a week
Duration: 45–60 min
Running
Length of Intervention: 12 weeks
Freq: 3 times a week
Duration: 30 min

CON
FBG
Fasting insulin
HOMA-IR

esistance training; AT, Aerobic training; T+C, The ages of the experimental and control groups were not reported separately in the study. Only the overall age was reported;
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Iran 2015
T:49.29 (5.82)
C:49 (8.16)

T:
C:

USA 2014
T:60 (1)
C:61 (1)

T:
C:

Britain 2015
T:21 (1)
C:21 (1)

T:
C:

Iran 2014
RT:40.4 (5.2)
AT:39.6 (3.7)
C:38.9 (4.1)

RT
AT
C:

CON, control group with routine care (no exercise); T, experimental group; C, control group; RT, r
FBG, Fasting blood glucose; HOMA-IR, Homeostasis model assessment of insulin resistance.
2
2

3
4

6
9

1
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increased insulin-stimulated glucose uptake capability (37, 39).

These findings suggest that cycling elicits greater recruitment of

type I fibers and higher glucose utilization than running does.

This study suggests that resistance training is beneficial for

improving insulin utilization in patients with type 2 diabetes.

Compared to conventional exercise, resistance training can more

effectively promote skeletal muscle glucose utilization and uptake due

to its ability to increase muscle mass and cross-sectional area (42, 43),

thereby facilitating insulin signaling and peripheral tissue glucose

uptake (44, 45). Resistance training can augment glucose

phosphorylation in skeletal muscle cells, facilitating the conversion

of blood sugar into simple sugars, thereby promoting optimal insulin

secretion and maintaining blood sugar homeostasis (44, 45). Long-

term (>12 weeks) high-intensity resistance training has been shown

to significantly enhance insulin sensitivity and sustain physical

function for a duration that surpasses that of aerobic exercise (46).
Frontiers in Endocrinology 10140
The findings of various studies have demonstrated that engagement

in resistance exercise can significantly enhance metabolic health

during weight recovery, including the reduction of fasting blood

glucose levels and enhancement of insulin sensitivity (47). In a 24-

week study, a comparison between resistance training and aerobic

exercise revealed that the former enhanced insulin sensitivity and

glucose uptake in muscles mediated by insulin (46). In general,

resistance training enhances insulin sensitivity and improves fasting

glucose levels in individuals diagnosed with type 2 diabetes (46, 48).

The combination of running and anaerobic exercise

demonstrated superior efficacy in alleviating insulin resistance, as

supported by a significant reduction in the HOMA-IR index,

indicating an enhanced improvement in insulin sensitivity. The

underlying mechanisms potentially involve augmented lipid

oxidation and glycogen utilization (38), improved mitochondrial

function (49), and enhanced muscle mass and cardiorespiratory
FIGURE 3

(a) Network meta-analysis figure for FBG; (b) SUCRA plot for FBG. The “X-axis" is labeled "Rank", indicating the relative efficacy ranking of
interventions (1=most effective). The “y-axis" is labeled "Cumulative Probability", representing the probability of each intervention being ranked as the
best option.
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fitness (40). Type 2 diabetes is characterized by insulin resistance

(IR) and relative insulin insufficiency, leading to glucose intolerance

and subsequent elevation of blood glucose levels (40). However,

preserving islet b-cell function may be pivotal in preventing T2DM

onset (49, 50). Notably, the combined impact of running and

resistance training on b-cell function surpasses that achieved

through either aerobic or resistance training alone (51), likely

attributable to the prolonged duration and heightened intensity

associated with combined training regimens. Low-load high-

repetition resistance training has emerged as an alternative form

of aerobic-based resistance training capable of promoting muscle

hypertrophy and strength gains similar to those observed with high-

load low-repetition protocols (51, 52). In the context of combined

training approaches, increased fat loss during resistance exercise

aids in augmenting glucose uptake while concurrently enhancing

skeletal muscle mitochondrial oxidative capacity. This synergistic
Frontiers in Endocrinology 11141
effect maximizes reductionions in body fat content while expediting

glycogen consumption during aerobic exercise sessions (53).
5 Advantages and limitations

The methodology employed in this study was highly rigorous and

systematic. We conducted a comprehensive search across five

electronic databases, strictly adhering to predefined criteria, and

identified 21 articles encompassing a substantial sample size of 1140

patients with diabetes. To ensure accuracy, the selected articles

underwent double-checking procedures, and we incorporated various

specific joint exercise measures targeting both aerobic and anaerobic

activities, thereby providing updated and more comprehensive

evidence-based recommendations on how exercise can effectively

reduce blood glucose levels and enhance insulin sensitivity.
FIGURE 4

(a) Network meta-analysis figure for fasting insulin; (b) SUCRA plot for fasting insulin. The “X-axis" is labeled "Rank", indicating the relative efficacy
ranking of interventions (1=most effective). The “y-axis" is labeled "Cumulative Probability", representing the probability of each intervention being
ranked as the best option.
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Nevertheless, certain limitations of this meta-analysis should

be acknowledged.
Fron
1. Cycling duration confounder: The observed superiority of

cycling (e.g., FBG MD=-52.64 vs control) must be

interpreted in the context of its typically longer session

durations (35 min-3 h vs 30 min-2 h for running). While

our MET-adjusted analysis suggested that duration alone

did not fully explain efficacy (54), energy expenditure

differentials remained a potential confounder.

2. Surrogatemarkers: Reliance on FBG/FI/HOMA-IR rather than

gold-standard measures (for example, hyperinsulinemic-

eug clamps);

3. Language bias: The inclusion of the CNKI database may limit

generalizability, although funnel plots showed symmetry.
tiers in Endocrinology 12142
4. Blinding impossibility: Participant blinding was unattainable

due to the nature of the exercise intervention.
Future directions: (a) Match interventions by MET-minutes to

isolate modality effects; (b) validate findings with direct insulin

sensitivity measures; (c) extend follow-up beyond 6 months.
6 Conclusion

Our study conducted a systematic review and network meta-

analysis to compare the effects of different exercise interventions on

glycemic control in patients with diabetes. The results demonstrated

that cycling, resistance training, and combined resistance and

aerobic training effectively improved fasting blood glucose levels,
FIGURE 5

(a) Network meta-analysis figure for HOMA-IR; (b) SUCRA plot for HOMA-IR.
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TABLE 3 League table on FBG.

Bicycle RT RT+Bicycle RT_Running Running CON RT+Walk BT Taichi

(-21.52,74.26) 5,95.72) 35.71 (-15.40,86.82) 56.11 (8.94,103.29) 73.02 (25.86,120.17)

(-26.68,81.33) 2,103.36) 36.67 (-20.19,93.53) -52.39 (-105.07,0.29) 73.97 (20.64,127.30)

Bicycle .20,80.74) 9.34 (-51.68,70.36) -50.85 (-108.21,6.52) 46.65 (-11.10,104.39)

6 (-76.52,36.01) ,20.13) -10.92 (-41.83,20.00) -53.42 (-108.84,2.01) 26.39 (2.55,50.23)

2 (-85.50,33.86) 5,24.84) -16.48 (-53.24,20.28) 29.75 (-28.03,87.52) 20.83 (-10.22,51.87)

7 (-80.74,28.20) -16.93 (-44.43,10.57) 3.48 (-15.90,22.86) 20.38 (1.18,39.57)

(-70.36,51.68) .57,44.43) RT+Walk 57.07 (3.72,110.42) 37.31 (3.77,70.84)

(-6.52,108.21) .86,15.90) -57.07 (-110.42,-3.72) BT -9.49 (-33.45,14.47)

5 (-104.39,11.10) 9.57,-1.18) -37.31 (-70.84,-3.77) 9.49 (-14.47,33.45) Taichi

+Walk RT+Bicycle BT QiGong

1 (-26.12,12.11) .38,11.39) -4.83 (-24.32,14.66) 26.71 (2.19,51.23) -33.04 (-61.26,-4.82)

1 (-20.38,11.37) .79,9.79) -2.33 (-18.65,13.99) 3.01 (-13.10,19.12) -30.54 (-56.67,-4.41)

Walk 2,13.14) 2.18 (-13.32,17.68) 6.01 (-13.16,25.17) -26.03 (-51.66,-0.40)

1 (-18.65,11.23) .70,9.30) -1.53 (-16.95,13.89) 3.82 (-15.23,22.87) -29.74 (-55.32,-4.16)

5 (-18.61,11.31) .66,9.38) -1.47 (-16.90,13.96) 7.04 (-12.02,26.09) -29.68 (-55.26,-4.10)

1 (-13.14,8.12) -0.33 (-11.62,10.96) -3.83 (-17.84,10.19) -28.54 (-51.86,-5.22)

8 (-17.68,13.32) 96,11.62) RT+Bicycle 7.53 (-24.40,39.45) -28.21 (-54.12,-2.30)

1 (-25.17,13.16) 19,17.84) -7.53 (-39.45,24.40) BT 1.83 (-5.75,9.41)

3 (0.40,51.66) 2,51.86) 28.21 (2.30,54.12) -1.83 (-9.41,5.75) QiGong
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Bicycle -0.96 (-25.93,24.02) 26.3

0.96 (-24.02,25.93) RT 27.3

-26.37 (-74.26,21.52) -27.33 (-81.33,26.68) RT+

-46.63 (-91.96,-1.29) -47.58 (-99.31,4.15) -20.

-52.19 (-101.70,-2.68) -53.15 (-108.57,2.28) -25.

-52.64 (-95.72,-9.55) -53.59 (-103.36,-3.82) -26.

-35.71 (-86.82,15.40) -36.67 (-93.53,20.19) -9.3

-56.11 (-103.29,-8.94) 52.39 (-0.29,105.07) 50.8

-73.02 (-120.17,-25.86) -73.97 (-127.30,-20.64) -46.

Bold values: indicate statistically significant differences (P < 0.05).

TABLE 4 League table on fasting insulin.

RT Bicycle RT

RT -2.50 (-13.15,8.15) -7.0

2.50 (-8.15,13.15) Bicycle -4.5

7.01 (-12.11,26.12) 4.51 (-11.37,20.38) RT+

3.30 (-15.75,22.34) 0.80 (-14.99,16.59) -3.7

3.36 (-15.70,22.41) 0.86 (-14.95,16.66) -3.6

4.50 (-11.39,20.38) 2.00 (-9.79,13.79) -2.5

4.83 (-14.66,24.32) 2.33 (-13.99,18.65) -2.1

-26.71 (-51.23,-2.19) -3.01 (-19.12,13.10) -6.0

33.04 (4.82,61.26) 30.54 (4.41,56.67) 26.

Bold values: indicate statistically significant differences (P < 0.05).
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46.63 (1.29,91.96) 52.19 (2.68,101.70) 52.64 (9.5

47.58 (-4.15,99.31) 53.15 (-2.28,108.57) 53.59 (3.8

20.26 (-36.01,76.52) 25.82 (-33.86,85.50) 26.27 (-28

RT+Running 5.56 (-22.62,33.75) 6.01 (-8.1

-5.56 (-33.75,22.62) Running 0.45 (-23.

-6.01 (-20.13,8.11) -0.45 (-24.84,23.95) CON

10.92 (-20.00,41.83) 16.48 (-20.28,53.24) 16.93 (-10

53.42 (-2.01,108.84) -29.75 (-87.52,28.03) -3.48 (-22

-26.39 (-50.23,-2.55) -20.83 (-51.87,10.22) -20.38 (-3

RT+Running Running CON

-3.30 (-22.34,15.75) -3.36 (-22.41,15.70) -4.50 (-20

-0.80 (-16.59,14.99) -0.86 (-16.66,14.95) -2.00 (-13

3.71 (-11.23,18.65) 3.65 (-11.31,18.61) 2.51 (-8.1

RT+Running -0.06 (-10.56,10.44) -1.20 (-11

0.06 (-10.44,10.56) Running -1.14 (-11

1.20 (-9.30,11.70) 1.14 (-9.38,11.66) CON

1.53 (-13.89,16.95) 1.47 (-13.96,16.90) 0.33 (-10

-3.82 (-22.87,15.23) -7.04 (-26.09,12.02) 3.83 (-10

29.74 (4.16,55.32) 29.68 (4.10,55.26) 28.54 (5.
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insulin levels, and insulin resistance. These findings have significant

implications for the management of diabetes. We recommend

prioritizing cycling to reduce blood glucose levels, incorporating

resistance training to enhance insulin sensitivity, and implementing

combined training to address insulin resistance. Exercise has been

proven effective in regulating glycemia and should be widely

recommended as an essential non-pharmacological treatment for

individuals with diabetes.
Frontiers in Endocrinology 14144
Future studies should further validate the benefits of diverse

exercise regimens on blood glucose regulation in a broader

population. The genetic background and type of diabetes may

influence individual variations in response to exercise

interventions; thus, we advocate for future trials with expanded

sample sizes encompassing various ethnicities to corroborate our

current findings. Additionally, exploring the interaction between

exercise and antidiabetic drugs is imperative. Longitudinal trials
FIGURE 6

Funnel plot on publication bias. (a) FBG; (b) fasting insulin; (c) HOMA-IR.
TABLE 5 League table on HOMA-IR.

RT+Running BT Running RT+Bicycle Bicycle CON RT+Walk RT

RT+Running 0.96 (-5.50,7.42) 0.20 (-4.10,4.49) 0.51 (-3.79,4.80) 0.88 (-3.58,5.33) 0.98 (-1.30,3.25) 0.19 (-4.13,4.50) 1.58 (-4.20,7.35)

-0.96 (-7.42,5.50) BT 1.70 (-4.87,8.27) -1.27 (-7.31,4.77) -0.17 (-5.47,5.13) 1.00 (-4.45,6.45) -1.38 (-7.82,5.06) 1.10 (-2.78,4.98)

-0.20 (-4.49,4.10) -1.70 (-8.27,4.87) Running 0.31 (-4.85,5.47) 0.68 (-4.61,5.97) 0.78 (-2.87,4.43) -0.01 (-5.18,5.16) 1.38 (-5.06,7.82)

-0.51 (-4.80,3.79) 1.27 (-4.77,7.31) -0.31 (-5.47,4.85) RT+Bicycle 0.37 (-4.92,5.66) 0.47 (-3.18,4.12) -0.32 (-5.49,4.85) 1.07 (-5.37,7.51)

-0.88 (-5.33,3.58) 0.17 (-5.13,5.47) -0.68 (-5.97,4.61) -0.37 (-5.66,4.92) Bicycle 0.10 (-3.73,3.93) -0.69 (-5.99,4.61) 0.70 (-2.97,4.37)

-0.98 (-3.25,1.30) -1.00 (-6.45,4.45) -0.78 (-4.43,2.87) -0.47 (-4.12,3.18) -0.10 (-3.93,3.73) CON -0.79 (-4.46,2.88) 0.60 (-4.70,5.90)

-0.19 (-4.50,4.13) 1.38 (-5.06,7.82) 0.01 (-5.16,5.18) 0.32 (-4.85,5.49) 0.69 (-4.61,5.99) 0.79 (-2.88,4.46) RT+Walk 1.39 (-5.06,7.84)

-1.58 (-7.35,4.20) -1.10 (-4.98,2.78) -1.38 (-7.82,5.06) -1.07 (-7.51,5.37) -0.70 (-4.37,2.97) -0.60 (-5.90,4.70) -1.39 (-7.84,5.06) RT
Bicycle, bicycle training; RT+Running, resistance training and Running; BT, ball training; RT, resistance training; RT+Running, resistance training and Running; RT+bicycle, resistance training
and bicycle; RT+walk, CON, resistance training and walk; control group (no exercise).
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with larger sample sizes are also necessary to investigate the long-

term effects of exercise interventions on maintaining blood glucose

control among patients with diabetes while providing more

personalized exercise recommendations.
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